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' ABSTRACT 

This thesis presents a comprehensive experimental study for the behaviour of 
brickwork masonry subjected to concentrated load applied through a rigid steel 
bearing plate and investigates the enhancement in strength under this type of 
loading in relation to Its uni-axial compressive strength. To normalize the 

bearing strength under partial load, a thorough Investigation has been carried 

out to establish accurate values for the characteristic compressive strength of 

masonry based on the limit state theory. This has been achieved by analysing 

statistically the data collected on the crushing strength of full storey-height 
brickwork walls. Relationships for mean. and characteristic strengths for 

brickwork wall and brickwork masonry have been derived in terms of unit brick 

crushing strength for two mortar mixes and wall thicknesses and also in terms 

of unit brick and mortar cube strengths for two brick masonry thicknesses. 

Previous investigations of tfie compressive strength of brickwork masonry under 

uniform and partial load together with the design rules given in various codes 

are reviewed. A complete experimental study of materials properties used in the 

present research including the detailed study of the behaviour of brickwork 

masonry under the action of concentrated load are presented. In all 338 

brickwork panels constructed from seven different brick types and two mortar 

grades were tested of which 300 were subjected to concentrated loads and the 

remaining under uni-axial load. The test results together with the results of 56 

specimens tested under concentrated load prior to this investigation with their 

crack pattern and failure mode are reported. The results are analysed statistically 

and design charts for the characteristic bearing strength of masonry for various 

loaded area ratios are obtained. The influence of parameters such as loaded area 

ratio, loading position, loading configuration, strength of constituent materials, 

masonry thickness, element aspect ratio and the effective area of brickwork on 

the bearing strength and enhancement factor are examined. A theoretical 

investigation into the stress distribution of brickwork masonry under 

concentrated loading by Finite Element method is reported assuming brickwork 

as a homogeneous continuum and as an assemblage of separate bricks and 

mortar joints. Linear elastic and nonlinear analyses are performed using a 

standard package. A mechanism of failure is proposed for masonry under partial 
load. Based on the results obtained experimentally failure envelopes are derived 

for two masonry thicknesses. Finally, design rules based on the outcome of this 

investigation are proposed. 
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fm Mortar cube crushing strength 

f 
rnm 

Mean masonry compressive strength 
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M(iii) Mortar designation (iii), 1: 1: 6, cement: lime: sand mix by volume 
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Chapter 1 

INTRODUCTION 

, 
There are many situations In the structural design of brickwork masonry where 

concentrated loads are applied to a supporting wall or piers as In the case of 

girder bearings, column bases, beam bearings, lintels, etc. These concentrated 
loads are usually applied locally and sometimes are accompanied with uniform 

precompressive load from above. Cases like these are common in practice and 

some typical examples are shown in Fig. 1.1. 

In practice, a masonry wall at a particular floor level carries a concentrated 
load applied by the beams supporting floor slabs and direct compressive. load 

from the brickwork placed above the wall. Where steel beams-rest on either 
brickwork or concrete, It Is common to consider that the bottom flanges tend 

to bend upwards, thus causing higher bearing stresses Immediately beneath 

the web. The possibility of the bottom flanges of steel beams bending 

upwards would depend upon the loading, flange width and thickness, stiffness 

of the supporting material and workmanship In forming the bearing, The 

bearing stress distribution normal to the length of the beam could be almost 

rectangular for lightly loaded beams with narrow flanges of reasonable 

th Ickness, but for more heavily loaded beams with wide, thin flanges, the 
I. 

shape could be any one of the stress blocks, shown In Fig. 12(a). 

dist ri 
' 
bution of bearing stress In the direction of the beam axis Is dependent 

upon many factors such as: rotation at the end of the beam due to loading 

(this"Is. usually the criterion); the length of the bearing; stiffness of the 

supporting material and the workmanship In forming the bearing. Typical 

stress blocks are shown in Fig. 12(b). 

However, most beams supporting floors carry their dead load before -the 
brickwork above is placed and therefore, for dead loads only the ends of the 

beam will be free to rotate. On completion of the structure the rotation of the 

ends of the beam due to imposed loads Including finishes would be restricted, 

and would be dependent upon- relative -,, stiffness , of, Ahe Interconnected 

members. The rotation of the ends of the beam Is critical, and as the beam 

deflects, the contact area between the end of the beam and the supporting 

wall would decrease hence increasing the eccentricity of the loading. This 

would give rise to higher stresses, and non-uniform stress distribution under 

the beam. This condition would be difficult to analyse, and any adjustment of 



the stress diagram is left to the discretion of the designer at present. 

Bearing under steel beam accompanied with precompression. 

Fig. 1.1 - Typical concentrated load problems In brickwork masonry. 
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Fig. 1.2 - Typical stress blocks under steel beam applying 
concentrated load. 
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It has long been recognised that the contact stress under a concentrated load 

on masonry may be considerably greater than the compressive strength under 

unaxial loading, because of the restraint provided by the surrounding lightly 

stressed material. Provision for this effect was made in the British Code of 

Practice, CP 111, based on limited work reported in the 1930's. This code 

allowed an increase of up to 50% on the permissible compressive stress for 

, wadditlonal stresses of a purely local natureý The successor to CP 111, 

BS 5628: Part 1, by contrast, makes rather elaborate provisions for increased 

design stresses under beam and slab bearings. These appear to have been 

based on work relating to concrete and, apart from being difficult to 

understand, do not conform with experimental data from tests on brickwork 

specimens. Some codes from various countries make similar provisions to the 

above, and some take cognisance of the position of the load relative to the 

end of the wall and the loaded area, but these are known to be conservative 

for certain types of masonry. However, the design rules given by various 

codes of practice differ widely indicating the lack of comprehensive 

information in this area. Those Codes which allow increases in stress under 

concentrated loads irrespective of critical parameters are non-conservative in 

some cases particularly as loaded area ratio increases and the edge distance 

decreases. 

To arrive at a realistic design rule the stress distribution, the behaviour of 

masonry and the parameters which have a bearing on the strength of 

brickwork masonry under this type of loading need to be investigated. 

Published information on the subject is limited to a few papers. Although 

useful, available results are somewhat limited in. that they have been obtained 

for only few brick types and for rigid bearing plates to which the loading was 

applied centrally. It is only very recently that the importance of the subject has 

become apparent, presumably because of more refined design methods, and a 

number of investigators have shown interest in this field. 

In general, compressive strength of brickwork masonry subjected to 

concentrated load could be effected by factors such as: 

- the properties of brickwork masonry and its constituent 
materials; 

- the ratio of bearing area to the cross-sectional area; 

- the loading configuration; 
4 
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- the loading position and the effect of edge distance; 

- the type of units; 

- the thickness of the element; 

I- 
the aspect ratio of the element; 

- the effctive cross-sectional area of the brickwork element; 

- the angle of dispersion of the concentrated load; 

- the presence of a perpend under the bearing; 

- the ratio of unit height to bed joint thickness; 

- the characteristics of the element by which the load is 
applied; 

- the support conditions of the masonry and the effect of a 
spreader under the bearing; 

- the degree of precompression; 

the rotation of the end of the element applying the 
concentrated load; 

- the amount and positioning of reinforcement; 

- the presence of a horizontal component of load and/or 
lateral restraining. 

Although the variables involved are large in number, they are not all of equal 

significance. It is beyond the scope of this investigation to study all the 

parameters which may influence thý bearing strength of brickwork masonry. 

However, the experimental program adopted in this investigation has 

eliminated some of the variables by assuming the case where the 

concentrated load is applied to a brickwork via a ri gid bearing plate In contrast 

to a-beam which is used in practice. This immediately eliminates the influence 

of parameters such as the stiffness and the end rotation of the beam applying 

the concentrated Ioad. 

In the present investigation the effect of the pprameters listed below on the 

behaviour of brickwork masonry under concentrated load is considered. 

The properties of masonry and its constituent materials: In total, seven brick 

strengths and two mortar mixes have been employed in this investigation. The 

effect of brick crushing strength on the bearing strength of brickwork masonry 

has been studied. Design charts for the characteristic compressive strength of 
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masonry under partial load for four ratios of loaded area have been obtained 
in terms of brick crushing strengths. To compare the compressive strengths 

under partial and uniaxial load, a thorough investigation has been carried out 

to establish accurate values for the characteristic compressive strengths of 

masonry, fk. This has been achieved by analysing statistically the data 

collected on the crushing strength of full storey height brickwork walls. 

Relationships for mean and characteristic strengths for brickwork wall and 

brickwork masonry have been derived in terms of unit brick crushing strength; 
for two mortar mixes and wall thicknesses and also in terms of unit brick and 

mortar cube crushing strengths for two wall thicknesses. 

Loaded area ratio: Ratios of bearing to the total cross-sectional areas of 0.05, 

0.10,0.15,0.20,0.30 and 0.40 have been considered. The loads have been 

applied through a rigid steel plate 25mm in thickness, cut to size 

corresponding to the above loaded area ratios. 

Loading configuration: In the present investigation only strip loading 

configuration (where partial load is applied over the whole thickness of the 

specimen) has been considered. However, test results of bonded brickwork 

masonry specimens under edge or patch loading configuration (where partial 

load is applied over an area eccentric in the direction normal to the 

longitudinal axis) carried out by the author prior to this Investigation have 

been reported here and compared with the present test results. 

Loading position: The effect of loading position in terms of edge distance (the 

distance from the centroid of the bearing' plate to the nearest edge of the 

specimen) has been investigated for central, intermediate and end positions. 

Effect of material: Tests on bricks of two different materials, clay and 

lightweight autoclaved aerated concrete (AAC) were carried out to study the 

comparative effect on the bearing strength. 

Thickness of briLkwork specimen: Two masonry thicknesses, 102.5mm and 

215-Omm were investigated for each type of unit; i. e. clay and AAC bricks. 

Aspect ratio: The ratio of length to height of the elements tested were studied 

by keeping the height constant and varying the length of the specimens for 

the clay and AAC brickwork masonry. 

Effective area: The effective length and width of specimen contributing to the 

bearing strength has been determined, giving rise to the effective area of the 
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masonry element. 

In all, 338 brickwork wallettes were tested of which 300 were under 

concentrated loads and 38 under uniformly distributed axial load. Also the 

results of 56 specimens tested under concentrated strip and edge loading 

carried out at the Department of Civil Engineering at University of Edinburgh 

prior to this investigation the results of which have not previously been 

published have been included. 

The above results have been used to carry out a comprehensive parameteric 

study of the behaviour of brickwork masonry subject to concentrated loads. 

Based on these results design recommendations have been proposed. 

The structure of the thesis can be surnmarised as follows: 

Chapter 1: Introduction, scope and aim of the present investigation. 

Chapter 2: Derivation of a true values for the characteristic wall, (fkw) and 

masonry (fk) strengths statistically, based on the collected test results of full 

storey height brickwork walls. 

Chapter 3: Literature review of previous investigations of compressive strength 

of masonry under concentrated loads and the design rules given by the 

current masonry codes. 

Chapter 4: The experimental determination of the material properties from the 

repres entative samples of units, mortar and brickwork masonry. 

Chapter 5: The experimental investigation of concentrated load on brickwork, 

construction, method of testing and the results of the wallette tests. 

Chapter 6: The analysis of the results and the influence of the parameters 

studied on the bearing strength. 

Chapter 7: Theoretical investigation into the stress distribution of brickwork 

masonry by the Finite Element analysis. 

Chapter 8: Failure mechanism and envelopes for brickwork masonry applied 

through a rigid bearing plate with Proposals for design rules. 

Chapter 9: General summary and conclusions with recommendation for further 

research. 
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Chapter 2 

CHARACTERISTIC COMPRESSIVE STRENGTH OF BRICKWORK MASONRY 

2.1. INTRODUCTION 

The object of structural design is to obtain an economical structural solution 

for safety and serviceability and to ensure that a structure will fulfil its 

intended function throughout its design life. 

There are three methods which use factors of safety as a criteria for achieving 

safe, workable structure, namely: the Permissible Stress method in which 

ultimate strengths of the materials are divided by a factor of safety to provide 

design stresses which are usually within the elastic range; the Load Factor 

method In which the working loads are multiplied by a factor of safety; and 

the Limit State method which multiplies the working loads by partial factors of 

safety and also divides the ultimate strength of the material by a further 

partial factor of safety. 

The permissible stress method has proved to be a simple and useful method 

but it does have some serious disadvantages as it is based on an elastic 

stress distribution. It is not really applicable to a elasto-plastic material such 

as masonry, nor is it suitable when the deformations are not proportional to 

load. 

The load factor method uses the ultimate strength of the materials in the 

calculations without applying factors of safety to the materials strength, thus 

it cannot directly take account of the variability of the materials, and also it 

cannot be used to calculate the deflections or cracking at working loads. 

A more rational and flexible method of structural safety and serviceability Is 

, 'limit state" which is probabilistically based. The aim is to achieve acceptable 

probabilities so that a structure or part of a structure would not reach a limit 

state when it would no longer fulfil the functions of its design. 

Until recently, the code of practice for masonry structures ensured safety and 

serviceability of walls under compressive load by specifying permissible 

stresses for various types and combinations of materials. Basic compressive 

stresses for materials were given which had to be adjusted for the 

slenderness ratio of the element and the eccentricity of loading. These basic 

stresses were derived by obtaining the ultimate stresses from tests on walls 



or piers and had been divided bV an arbitrarV factor of safetV sufficientIV large 

to avoid cracking at working loads. Thus, brickwork design has alwaVs been 

related to ultimate strength and to a serviceabilitV limit state. In the current 

code 111, the design of brickwork masonrV Is based on limit state theorV. The 

two principal tVpes of limit state are the Ultimate Limit State; of failure or 

collapse and ServiceabilitV Limit State; of excessive deflection or cracking. 

Other limit states include; durability, vibration, fire resistance, fatigue, 

earthquake resistance, etc. 

In order to prevent the structure from reaching a limit state, an acceptable 

probability of failure must be estimated of load variations on the structure, and 
N 

variations in the strengths of constructional materials. Ideally, all the probable 

variations for limit state should be predicted from a sufficiently large number 

of statistically analysed data. However, at present only some of the relevant 

data is available, although it Is still possible to implement the main principles 

of the limit state philosophy. 

Variations in loads are those due to inherent variability of loads which can be 

allowed for by a "Characteristic Load Ab" and variations due to other causes, 

which are covered by a "Partial Factor of Safety for loads (yf). " 

Material strength variables are inherent variations in the material strength In 

its manufacture and quality, which can be allowed by a "Characteristic 

Strength (Rk), ' and other uncertainties which are allowed for by a "Partial 

Safety Factor for material strength, (ym). " 

The basic parameters and terminology in the consideration of structural safety 
In limit state theory was first published In 1964 12 1, and the method of applying 

the limit states approach to the design of structures is outlined in a 

publication of the International Organisation for Standardisation[3]. 

The criteria for a satisfactory design Is expressed in terms of design loading 

effects (S*) and design strengths (R*). such that: 

R* > S* 

Design loading effects are determined from the characteristic actions from the 

relationship; 

S* - effects of (yf. Qk) (2.2) 
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. where characteristic load, Ok Is defined in statistical terms by: 

Qk 2' Qm + k. Sd (2.3) 
Qk ý Qm (1+k. Cv 

Similarly, design strengths of material R* is defined by; 

R* = Rk I Ym (2.4) 

where characteristic strength Rk is defined in statistical terms by: 

Rk = Rm k. Sd (2.5) 
Rk = Rrn (1k. Cv 

The advantage with limit state approach Is that the characteristic values and 

partial safety factors could be determined statistically for a given probability of 
failure, if loadings and strengths are expressed in statistical terms. 

In the case of loads this has not been possible yet,. so that characteristic 

values were determined on the basis of available evidence, which Is the 

results from surveys of buildings in service. However, in the case of strengths 

of materials, laboratory test results can provide a statistical basis for 

determining the characteristic strengths. 

Compressive testing of brickwork masonry based on large or small scale 

specimens has been carried out in various countries for well over half a 

century, and the factors which have a bearing on the compressive strength of 

masonry, and the phenomena which accompany compressive failure are now 
fairly well recognized. 

Experimental investigations have shown factors such as; strength of unit, 

geometry of unit, strength of mortar, deformation characteristics of units and 

mortar, joint thickness, brickwork bonding, suction of units and water 

retentivity of mortar are of importance in determining the compressive 

strength of brick masonry, but are not all of equal significance. 

Mechanism of compressive failure of masonry based either on Elastic strength 

or empirical theories which 
. 

have been put forward and other published 
literatures related to masonry are reviewed and well documented elsewhere [4) 

. 
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2.2. CONCEPT OF CHARACTERISTIC STRENGTH 

Characteristic strength takes into account the inherent variations In the 

material strength due to its quality and manufacturing. It is defined In 

statistical terms by equation 2.5. 

However, the definition has been narrowed so that the characteristic strength 
is defined as a lower limit for strength below which only a small proportion of 

values likely to fall, and this proportion is taken as 5% In Britain. 

Statistical properties of characteristic strength Is based on the size of 

samples, i. e. large or small samples, and the object of defining characteristic 

strength in terms of mean and standard deviation of the samples, Is to give it 

some probabilistic meaning. This type of probability statement can be made if 

the distribution of strength is completely characterized by these two 

parameters. The most frequent , assumed distributions are Normal and 

Lognormal. 

If the mean and standard deviation are based on a large sample, so that they 

are subject to negligible sampling error, then for normal distribution at 95% 

confidence limit the value of k would be equal to 1.645 and the characteristic 

strength is expressed as; 

Rk = Rm - 1.645 Sd (2.6) 
Rk = Rm (1-1.645 Cv 

There has not been sufficient results available for a given case to determine 

the form of the distribution of strength, and so the tendency has been to 

assume strength is normally distributed. However, it may be arguable that 

when the coefficient of variation is large, (say greater than 20%), the lower tall 

of distribution may give unacceptably low values. 

An alternative distribution would be lognormal, which gives less trouble In this 

respect and Is obtained bV assuming that the logarithms of the strengths are 

normalIV distributed. This has been found to give an acceptable fit to certain 

strength distributions. 

BeechI51 assumed a value of 30 test results as a minimum for large samples 

and not less than 10 tests for small samples. He compared the values of 5% 

characteristic strengths for four types of distributions namely, Normal, 

Lognormal, Rectangular and Triangular, and determined what error was 

-11- - 



introduced by assuming a normal distribution when the true distribution was 

lognormal. For this purpose he assumed the distributions to have the same 

mean and coefficient of variation and chose values for coefficient of variations 

of 0.1,0.15 and 0.25 for good, average and poor standards respectively. In 

each case he calculated Rk/Rm, and the ratio of (110normal to (11k)lognormal and 

concluded that for these cases, the form of distribution makes comparitIvely 

little difference to the value of the characteristic strength at the same 

coefficient of variation. The greatest difference occurs with the lognormal 

distribution, which is skew, with the skewness increasing with the coefficient 

of variation. His results showed an error of 9% by assuming a normal 

distribution with the coefficient of variation of 0.25, and suggested that this is 

not very serious when fairly large material safety factors are being used In 

addition. 

In the case of small samples, it has been suggested that the value of k needs 

to be greater than the value for large sample in order to give the 

characteristic value the same confidence level. As Beechis) also stated the 

main difficultV affecting a national choice of k is that in repeated samples from 

the same population the values of mean and standard deviation varV owing to 

sampling errors, and these errors become considerable as the sample size 

decreases. Hence characteristic value will vary appreciably in repeated samples 

whatever the value of k is chosen. 

Fisher's [61 fiducial limit method could be employed to determine the values of 

k for different sample sizes. It defines a lower limit below which a new value, 

randomly taken from a sample of n-measurements from a normal distribution, 

would be expected to occur with probability of q%. It Is calculated by 

Rm - k. Sd, such that; 

tq. v/[(n+l)/n) (2.7) 

where tq is the value of Student's t with unilateral probabilitV q% and (n-1) 

degrees of freedom, taken from appropriate tables. If in the above definition of 

lower limit a value of 5 is substituted for q, the definition would be similar to 

that of characteristic value. The resulting value of k varies from 7.7328 to 

1.645 for minimum of two measurements up to infinite number of 

measurements respectively, as shown in Fig. 2.1 and Table Al In Appendix I. I. 
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Fig. 2.1 - Variation of k with number of test specimens. 

ve 

The difficulty of sampling variation still remains as repeated samples will give 

estimates of characteristic value that vary, and vary considerably for small 

samples. If repeated samples are taken from a known normal population and 

the characteristic values are calculated, then, as has been shown[51, each 

characteristic value corresponds to a true probability q that a new value will 

be below it. Although q will not necessarily be 5%, in the. long run the average 

of-the value of q will be 5%. 

Beech also investigated the variation of the estimated to the true 

characteristic strength by studying the variation of the ratio 

R= Rk(estimated) / Rk(true) in the case of repeated sampling from normal and 

lognormal distribution with known mean and standard deviation for sample 

sizes of 5,10 and 20. The results showed that the mean value of R Is less 

than unity and its standard deviation increases with coefficient of variation. For 

sample size 5 the the standard deviation of R reaches unacceptably high 

values. 

On the basis of these results he recommended that the sample size should 

not be less than 10. Although R-was found not to be normally distributed, 
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Beech suggested that it may be expected to approximate to normality as 

sample size increases. 

Based on the above priciples a method has been recommended for the 

calculation of characteristic compressive strength of masonry from small 

number of expeimental test results. The details Is outlined In Appendix I. I. 

2.3. REVIEW OF PREVIOUS WORK 

This section contains a literature survey of work carried out on the 

compressive strength of axially loaded brickwork. Experimental investigations 

which has led to empirical relationships between unit brick and brickwork 

strengths are reviewed, and, where appropiate, the results of tests on full 

storey-height brickwork walls have been collected for further statistical 

analysis in later sections. 

Extensive experimental investigations have been carried out in this country by 

the Building Research Station, the British Ceramic Research Association and 

others since 1950's. Reference may be made to the publications of Morsy 171 

and Monkl" for Information concerning work carried out prior to this date. 

In 1950, Davey and Thomas'91 described the testing carried out at Building 

Research Station to determine, among other things, the relationship between 

the strengths of brick/mortar and brickwork. They point out the insignificant__ 

Influence of the mortar upon the crushing strength of brickwork piers, and 

arising from the experimental results, advise against the use of a mortar 

-., stronger than is just necessary to give the requisite strength of brickwork. 

Using the data acquired In this investigation, Thomasilol in 1953 criticised the 

conservative provisions contained In the Code of Practice CP 111: 1948,11, 

"Structural Recommendations for Loadbearing Walls", especially in the use of 

high strength bricks. He suggested an increase of 50 to 75% In the permissible 

stresses- in brickwork using high strength bricks. This brought about the 

revision of CP 111 in 1964. 

The results [121 for full-scale, storey-height walls tested at BRS and BCRA up to 

1960 have been collected, and are as shown in Tables A2-6 in Appendix 1.11. 

The first attempt to develop a theoretical expression for the strength of 
[131 brickwork In compression was made by Haller in 1960 on the assumption of 

elastic behaviour in brickwork. However, he was quick to admit the limitation 
a 

of his formula, acknowledging the inelastic behaviour of brickwork approching 
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failure. In the same paper, based upon results derived from some crushing 
tests on brickwork, he evolved an empirical expression which relates brickwork 

strength to strength of brick and mortar. His formula gave higher values for 

brickwork strength than the unlaxial strength of unit bricks. 

Beginning In 1963, the Structural Clay Products Research Foundation In the 

United States began a series of brickwork tests designated as the "National 

Testing Program", the results of which were published In a series of SCPRF 

Research Reports. In report No. 1 [141 of the program, small scale specimens 

were tested to determine the influence of brick/mortar properties, and the 

thickness of joints on the strength of brickwork. Experimental data Indicated 

that higher brickwork compressive strengths were associated with higher, brick 

and mortar strengths, and that an inverse linear relationship existed between 

the brickwork compressive strength and the thickness of mortar joints. In 

report No. 81151 the results of 15 compressive test specimens, of which five 

were column walls, 2.44m high, 0.61m In length and 115mm thick. The other 

ten test specimens were 5-brick high stack and running bond prisms. The 

mortar were 1: 0.5: 4.5 mix by volume with joint thickness of 10mm. 'The results 

are as shown in Table A7 in Appendix 1.11. In report No. 91161 compressive, 

transverse and racking strength tests of '100mm brick walls have been 

investigated. Using three different strength of bricks, a total of 55 compressive 

test specimens, of which 40 were wall columns having heights of 0.90,1.5,2.4, 

3.0,3.6 and 4.5m, were tesied as with the previous test procedures. The 

results are as shown in Table A8 in Appendix 1.11. Report 101171 investigated'the 

effects of such variables such as method of bonding, strength of unit brick, 

type of mortar, thickness of joints, slenderness ratio and quality of 

workmanship on the compressive and transverse strength of nominal 200mm 

two-wythe brick walls. The results of reports (17,1 a' are Included In Tables A9 

and A10 in Appendix 1.11. 

In a number of crushing tests on storey-height brickwork walls In 1965, 

Prasan et al 1191 observed that the mode of failure - In brick walls, under 

compression was by transverse splitting, and this suggested the importance of 

the tensile strength of brick and also of the properties of the horizontal mortar 
joints in determining the strength of brickwork. Increases in brickwork strength 
of over 60% were observed when every bed joint was reinforced horizontally. 

His results Of crushing tests on storey-height brick walls are as shown In 

Table All in Appendix 1.11. 
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Extending the above study, Bradshaw and Hendry[201 carried out further tests 

on the crushing strength of storey-height brick walls. The outcome of the 

tests were largely in agreement with earlier results. Empirical formulae derived 

from these tests suggested the strength of brickwork in compression to be 

proportional to the square root of the brick strength, and to the third or fourth 

root of the mortar cube strength. Also the results indicated that the 

single-leaf walls to be stronger than bonded walls when axially loaded. The 

results of the tests on full storey-height walls are summarlsed in Table A12 In 

Appendix 1.11. Further tests were carried out by Bradshaw and Hendry[211 on 
storey-height, 263mm thick cavity walls. The results showed approximately 
30% reduction in strength compared with two leaves of similar materials 

constructed and tested separately. The results are as shown In Table A13 in 

Appendix 1.11. 

The results of all loading tests on walls built and tested at the Building 

Research Station from 1935 to 1948 was reported by Simms [221. 'The types of 

units used to build the test walls were clay bricks and blocks with perforations 

varying from 0 to 25% and perforated clay bricks with voids not exceeding 
25%. The mortar used were 1: 0.25: 3 and 1: 0: 3, cement: lime: sand mix by 

volume. The results are represented in Table A14 , Appendix 1.11. 

McDowall et a/ [231 carried out tests on the strength of brick walls and 

wallettes In 1966, to determine the effects of brick type, wall size, wall 
thickness and workmanship on the strength of brickwork. The aim of this test 

program was to provide Information for the committee of the Standards 

Association of Australia whom were preparing the first code of practice for 

brickwork in Australia. Only four full storey-height, 4.5-in thick walls were 
tested in conjuction with wallettes 4.5 and 9-in thick and four-brick high stack 
bond prisms. It was concluded that the thickness of wallettes did not affect 

the results and the wallettes gave a good measure of brickwork strength. 
However, the number of tests performed was not enough to draw definite 

conclusions. The results of this investigation Is summarised In Table A15 In 

Appendix 1.11. 

The results of 30 storey-height walls tests was reported by Stedham (241 in 

1968. The walls were nominally 1.35m in length, 2.475m in height and 225mm 

thick. They were tested after 28 days and the results are summarlsed In Table 

A16 In Appendix 1.11. 

A failure theory for the compressive strength of brickwork was formulated by 
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Sinha and Hendry [251 in 1966. The analysis assumed an elastic behaviour of 

brickwork, and predicted the compressive strength at first crack. In 1967, 

Hilsdorf [261 outlined a new approch towards the development of a failure 

criterion for brickwork in compression, in which the compressive strength of 

brickwork is determined by the interaction of the strength properties of brick 

and of mortar under their appropiate state of complex stresses. However, due 

to a lack of information concerning the behaviour of brick and mortar 

materials under combined stresses, the merit of this method of analysis was 

not apparent. 

Sinha (27,281 in 1968 devised a direct tensile test for one-sixth scale model 

bricks, and hence was able to relate the compressive strength of brickwork to 

the tensile strength of brick, a relationship which he found to be linear. Sinha 

and Hendry 1291 also studied the effect of brickwork bonding on the 

load-bearing capacity of model-brick walls. It was concluded that for English, 

Flemish, Garden, Header and Stretcher bonding, the load bearing capacity of 

the model brickwork was not affected for different bonding pattern to any 

practical extent. 

The performance of walls built of wire-cut bricks with and without 

perforations was comprehensively investigated by West et al [301 in 1968. The 

investigation showed that so long as the degree of perforation in bricks was 

low and the shape of the perforations did not result in points of stress 

concentration, brickwork built with perforated bricks performed under 

compression as well as those built with solid bricks. A total of 144 

storey-height, single leaf walls constructed using mortar designation M(i) and 

m(iii) were tested under axial and eccentric loading. The results for axial 

loading are as shown in Tables A17-19 in Appendix 1.11. 

Mlorsy [71 also produced a formula for the compressive strength of brickwork 

which took into account the effect of the presence of vertical mortar joints in 

brickwork. Computations using this formula, which assumed elastic behaviour 

., --of brickwork, did not yield acceptable values. 

Francis et 8/ [31 1 developed a failure theory for stack bonded prisms which was 

partly based on the elastic theory and partly based on an arbitrary assumed 

linear failure envelope for brick under blaxial compression-tension. Since the 

behaviour of brickwork near ultimate stress is principally inelastic and stack 

bonded prism does not represent brickwork from bonding point of view, this 

approach is of doubtful value. 

-17- 



Astbury et al 1321 reported the test results on 9-in and 4.5-In thick 

storey-height walls which were carried out by Structural Clay Products, British 

Ceramic Research Association and Building Research Station. A linear 

relationship was derived from the collected data and compared with the 

expression derived for the 9-in walls by StedhaM[24 1. The results reported are 

as shown in Table A20 in Appendix 1.11. 

The comparative strengths of walls built of standard and modular bricks were 

investigated by West at al [331. The results of single-leaf walls of nominal 

storey-height (2.55m) and nominally 1.35m long are summarlsed In Table A21 

in Appendix 1.11. Also the results of tests on the compressive strength of 

calcium silicate brick walls under axial loading investigated by West at al[341 

are presented in Tables A22-23 in Appendix 1.11. 

Attempts were made by Anderson [351 to correlate between minimum 

compressive strength of brick and minimum compressive strength of 

four-brick high stack bond prisms. Also the results of tests on six, single-leaf 

brick walls carried out by Base[361 are reported and comparison was made 

between the prism strength, wall strength and the tabulated values given in 

the Australian code [371 for the minimum ultimate strengths of brickwork. The 

results reported are represented in Table A24 in Appendix 1.11. 

An intensive test programme was under taken by James in Australia during 

early 1970's. The first Investigation[381 involved the testing of two types of 

locally produced bricks In a series of storey-height walls under differently 

applied compressive loading. This programme was. extended to provide 

additional information on the relationship between the strength of 

storey-height walls and small brickwork specimens. The variables such as 

mortar mix and method of laying were kept constant. Three loading conditions 

were used being axial and eccentric loading with two eccentricities, e=t/6 and 

t/3. A total of four walls were tested for each type of brick in axial loading and 

three walls were laid with each type of brick for each of two eccentric loading 

conditions. The walls were laid in the form of single-leaf panels, six 

stretchers wide and twenty-eight courses high with 10mm bed and perpend 

joints. Accompanying prisms were four-brick high stack bonded with mortar 

1: 11: 6 mix by volume constructed of the standard bricks. His further work139 
461 was along the same lines and the cumulative results for the above reports 

are represented In Table A25 in Appendix 1.11., 

James's report 
1431 to the Standard Association of Australia contains useful 
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results on 16 different tVpes of bricks in which 42 single-leaf storeV-height 

walls and 774 four-brick high stack bond prisms were tested In axial 

compression, with the same procedures as mentioned above. The results are 

also presented in Table A25 in Appendix 1.11. 

Hilsdorf's(261 approach was developed by Khoo and Hendry [471 who Investigated 

the behaviour of brick material under a state of blaxial compression-tension, 

and of mortar under a state of triaxial compression; these characteristics had 

to be assumed by Hilsdorf in the absence of direct experimental data. Based 

on the results of tests on a large number of specimens of brick with a wide 

range of crushing strength, they established an expression for the blaxial 

compression-tension strength envelope for brick. The effect of a confining 

pressure on the compressive strength of mortar for two mixes using a triaxial 

test ce 111481 was also studied. On the basis of these studies a failure theory for 

brickwork was developed 147,491, and an analytical solution was proposed In 

terms of polynomials for the brick failure envelope and the mortar triaxial 

strength curve. Comparison of brickwork prism strengths calculated by the 

above theory showed reasonable agreement with experimental results. 

2.4. DETERMINATION OF CHARACTERISTIC COMPRESSIVE STRENGTH OF 

BRICKWORK WALLS 

2.4.1. Introduction 

I it is well understood that brickwork masory will exhibit tensile cracking and 

failure In compression is bV vertical splitting. The state of stress in a brick 

'element 
within a brickwork wall under axial compressive force Is a 

combination of vertical compression and bi-lateral tension. 131-lateral tension Is 

the result of the differential lateral strain between the mortar and the brick 

element. The mortar element consequently is in a state of tri-axial 

compression. In order to drive an expression for the strength of a brickwork 

wall, it would be logical to relate the mean wall strength to the variables 

Involved. 

The primary variables include the properties of the constituent materials, such 

as the compressive and tensile strengths of the brick unit, the tri-axial 

compressive strength of mortar cube and the slenderness ratio of the wall. 

The secondary variables could Include the mortar/brick thickness ratio, the 

shape of units, percentage and geometry of perforations of the units, bonding 
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of the brickwork masonry and aspect ratio of the wall. 

Strictly speaking, the strength of a particular wall Is a function of the trlaxial 

strengths of the component materials but as information about these 

, properties is generally unavailable, attempts have been made to formulate the 

brickwork strength in terms of conventional unit brick strength for a particular 

mortar mix or mortar cube strength. It has been shown (41 that in these terms, 

brickwork strength varies roughly as a square root of the unit brick crushing 

strength and as the third or fourth root of the mortar cube strength. 

The results show considerable scatter, Indicating that these variables which 

are included in the expressions were insufficient. Introducing the tensile 

strength of the unit brick would most probably reduce the scatter and it will 

be shown later in this chapter that as the number of primary variables Is 

increased, the better the correlation coefficient between the test results and 

the fitted regression becomes. However, an Intensive survey of all the 

experimental results reported from tests on full storey-height brickwork walls 

(as mentioned in section 2.3) reveals that, presumably In the absence of a 

recognised test method, the tensile strength of unit bricks was not 

investigated. 

Attention will therefore be confined to the estimation of wall strength with 

reference to a known brick strength; (even though the apparent compressive 

strength of bricks in a standard crushing test is not a direct measure of the 

strength of the unit in brickwork), and mortar mix which Is common practice 

for design purposes. Various codes of practice provide tabular values for 

masonry strength from which wall strength can be determined on this basis. 

This section determines statistically the relationship between wall strength and 

unit brick strength for a given mortar mix and wall thickness in the form: 

I.. fmw ý Kj-fb n (2.8) 

Also the relation between the wall strength and unit brick and mortar cube 

strengths for a particular wall thickness has been investigated statistically 

assuming a relationship in the form: 

fmw = K2-fml-fb n (2.9) 

In ýea'ch of these cases the characteristic wall strength, fkw has been 

-20- 



determined statistically. Finally, the characteristic compressive strength, of 

masonry, fk will be determined by applying a modification factor to the fk"' 

values (see section 2.5). - 

2.4.2. Sorted Data 

The data used in the calculation of characteristic strength are the experimental 

results of tests on solid, single leaf storey-height, 102.5mm and 215. Omm thick 

walls, most of which were carried out in the U-K with the addition of some 
I. Australian and American results for which brick types and test procedures 

were similar to those in Britain. These results are the sorted data taken from 

the tables in appendix 1.11 which have been reviewed in section 2.3. 

A total of 646 wall test results with their corresponding unit brick and mortar 

cube strengths have been collected and sorted according to the wall thickness 

and corresponding mortar mixes, as shown In Table 2.1. 

Wall 
i k 

Mortar Designation Total 
th c ness 
t (mm) M(i) M(ii) M(Iii) M(iv) - 
102.5 
215.0 

167 
169 

27 
10 

163 
95- 

15 
-- 

372 
274 

Total 336 37 258 15 646 

Table 2.17 Details of collected wall, results. 

2.4.3. Statistical Model for the Determination of Characteristic Strength 

A'model has been put forward for the determination of'c6aracteristic strength' 
statistically. Where there a re sufficient wa 1 11 test results for a given unit brick 

strength, one can calculate the mean wall strength and the' standard deviation 

of the data and determine the type of distribution. The lower confidence 

interval could then be worked out. However, inspection of the data shows that 

there are'not sufficient wall test results for a particular unit brick strength to 

determine the type of distribution. 

The flow chart for the analysis of the data is shown in Fig. 2.2. This model- Is 

based. on the general idea that given a set of data points, it is possible to 

establish the best fit to these data points using the method of least squares 

approximation. The equation of the fitted regression is determined and the 
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standard deviation of the best fit is calculated with respect to the data points. 
A lower confidence Interval then could be calculated knowing the type of 

distribution which is possible to determine by statistical tests. 

The first step is to determine the best fit between unit brick and wall 

compressive strength for a particular wall thickness and mortar designation. 

Primary analyses were carried out. on the data for four types of fit, namely 

power, exponential, logarithmic and linear regressions by the method of least 

squares approximation. The correlation coefficients of the best fits were 

compared with the results shown in Table 2.2. 

Wall Mortar r2 
thickness 
t (m M) 

designation 
linear exponential logarithmic power 

102.5 M(i) 0.429 0.426 0.466 0.506 
M(ii) 0.436 0.349 0.354 0.281 
M(iii) 0.426 0.417 0.439 0.452 
M(iv) 0.228 0.048 0.191 0.034 

215.0 M(i) 0.431 1 0.449 0.370 0.419 
M(ii) Brick s trength is ess entially const ant. 
M(iii) 0.424 1 0.493 1 0.398 1 0.479 

Table 2.2 - Comparison between the correlation coefficients of the 
best fit to the data. 

Upon this analysis it was found that the power curves gave the most 

consistent best fit to the data, hence the assumed equation 2.8. 

A computerised statistical package called MinitablSol was employed for the 

calculation and the analysis of the characteristic strength. The package is 

programmed to operate in fiFst and higher order linear regression 

(Y=bo+b, Xl+bZX2 . ........ +bkXk)- Given a set of data, they are put In appropiate 

columns and with command NREGRESS", the regression equation is found by 

the least squares linear approximation for predicting Y from k predictors X1, 

X2, Xk. The values of the regression coefficients bo, bl, ... bk are found by 

Minitab. The basic assumption of regression made by Minitab is that the data 

is of the form Y= BO+B, X, +B2X2 . ...... + E, where the 130,131,... are unknown 

Otrue" coefficients to be estimated by bo, b, ...... and the E's are Independent 

normal errors with mean equal to zero and standard deviation (sigma) which Is 

defined by the square root of the mean squares of the error. 

-22- 



Analysis of results 

Determination of the shape of mean strength curve 

Statistical analysis 

Determination of type of distribution 

Test for Normal distribution II Test for Lognormal distribution 

Equation of ýmjean strength curve 

Calculation of residuals & standard deviation 
of the mean curve 

Analysis of variation of residuals 

Normal probability plot 

Correlation of straightness for 
normal probability plot 

Calculation of characteristic strength 

Equation of characteristic strength curve 

Fig. 2.2 - Flow chart of statistical analysis. 
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Since the data was shown to be best fitted by power curves, they were 

converted to logarithmic values such as; 

ln(fmw) = ln(Kl) + n[in(fb)] (2.10) 

ln(f,,,, ) = ln(K2) + n[ln(fb)] + I[ln(fm)] 

Regression was carried out to establish the equation of the best fit, which 

gave the "mean strength curve". The residuals of the data points (being the 

difference of the individual brick wall results and the fitted mean strength 

curve values) were calculated and plotted against unit brick and wall strengths 

to establish the variation of the residuals. 

To determine the type of distribution, normal probability plots were employed, 

In which were calculated the "normal score" for the data called "NSCORE". In a 

normal probability plot (i. e. plot of calculated residuals against the expected 

values of residuals of the wall strength from a normal probability distribution), 

if the sample is from a normal population, the points in the plot will probably 

fall roughly in a straight line. If the sample is from a non-normal population, 

the plot will show curvature. The "straightness" of the probability plot can be 

measured by the correlation coefficients (112 ) of the points In the plot. A very 

high correlation coefficient Is consistent with normality and a value of 0.97 has 

been suggested(501. The hypothesis for normality could be rejected if the 

correlation falls below this value. This test could also be used to determine 

the correlation coefficient of the normal probability plot for lognormal 

distribution by entering logarithmic values of the data points, as compared to 

the data tested for normal distribution. 

From the above test it is possible to determine whether the wall strengths are 

normally or lognormally distributed. The characteristic strength is then 

calculated by considering the standard deviation of the mean strength curve 

such that the characteristic curve for the 95% lower limit Is given by; 

f kw = f,, w - k. Sd (2.12) 

where fmw "2 Kj-fb n or K2-fb n. fml 

The package gives the standard deviation of the mean wall strength once the 

regression Is performed. This has been found to be the standard deviation of 

the mean curve provided one predictor is used, Le. if the mean wall strength 
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Is a function of unit brick strength. However, when the mean wall strength Is a 
function of two variables, unit brick and mortar cube strengths, the value of 

the standard deviation is- unacceptably high. This has been over come by 

calculating the standard deviation of the predicted value of wall strength from 

the standardized residuals (which are the residuals divided by the estimated 

standard deviations of those residuals). Analyses were carried out on all sets 
iý 
of data to compare the standard deviation obtained by the two above 

methods. The results were exactly the same for one variable functions and 

gave a more realistic value of standard deviation for the two variable 
functions. 

A detailed input and output worksheet Is given in Appendix 1.111 for the one 

variable function and In Appendix LIV for two variable functions. 

2.4.4. Statistical analysis of the data 

Two types of analysis were carried out. The first analysis assumes a 

relationship In the form of equation 2.8 relating the mean wall strength as a 
function of unit brick strength for a particular mortar mix and wall thickness. 

The second analysis assumes a relationship in the form of equation 2.9, 

relating the mean wall strength as function of unit brick and mortar cube 

strengths for a particular wall thickness. In both cases the characteristic wall 

strength was determined by performing tests on the'data to establish the type 

of distribution (ref. to Appendix 1.111 & LIV). 

2.4.4.1. Wall strength in terms of unit brick strength 

Expressions In the form of equation 2.8 have been assumed in this case and 

only the results of mortar designation M(i) and M(Iii) for the two thicknesses 

have been analysed statistically, since the data for other mixes are insufficient. 

As the results of statistical analysis, the strength of storey-height brickwork 

walls in terms of the corresponding unit brick strength are found to be 

represented by the expressions in Table 2.3. 

The normal probability plots of residuals have been carried out to determine 

the type of distribution, (i. e. whether normal or lognormal). Table 2.4 shows 

the correlation coefficients of the straightness of the normal probability plot 

(R 2) for normal and lognormal distributions. 
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The values obtained for R2 
normal satisfies the hypothesis for normality (except 

In the case of 215mm thick walls constructed with mortar designation M(iii) for 

which there were only 95 test results), and the wall strength may be taken to 

be normally distributed. The standard deviation of each mean strength curve 

was computed and since the distribution is normal, then the characteristic wall 

strength fkw was calculated from equation 2.12 for the 95% confidence limit 

for corresponding mortar mixes and wall thicknesses as; 

fkw - fmw - 1.645 Sd 

Table 2.5 shows the equation of the characteristic curves and these curves 
have been plotted in Figs. 2.3 - 2.6 for comparison with the mean strength 

curves and the test results. Fig. . 2.7 shows the calculated characteristic 
compressive strength curves for brickwork walls (fkw) for the two mortar 
designations and wall thicknesses. This has also been shown in tabular form in 

Table 2.6. 

Wall 
thickness 
t (mm) 

Mortar 
Designation 

Equation of mean 
wall strength curve 

r2 Sd Of 
the curve 

102.5 M(i) fmw"Q-312fb 0.516 50.6 1 1.250 

M(iii) fmw"=2.366fb 0.441 45.2 1.268 

215.0 M(i) fmw, =1.587fb 0.543 41.9 1.214 

M(iii) fmw, 20.69'fb 0.670 47.9 1.346 

Table 2.3 - Equations of the mean wall strength curves. 

t 

Wall 
thi k 

Mortar 
d i ti 

R2 
c ness 

t (mm) 
es gna on 

normal lognormal 

102.5 M(i) 0.994 0.987 
M(iii) 0.985 0.965 

215.0 M(i) 0.987 0.990 
M(iii) 

1 0.956 1 0.976 

Table 2.4 - Correlation coefficient for the straightness of the 
normal probability plots. 
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Wall Mortar Equation of characteristic 
thickness designation wall strength curve 
t (m M) 

102.5 M(i) fkwol. 601fb 0.516 

M(iii) fkwal. 602fb 0.441 

215.0 M(i) f kwv'l -1 
53f b 

0.543 

M(iii) fkw=0.424fb 0.670 

Table 2.5 - Equations of characteristic compressive strength 
of brickwork walls. 

fb f kw (N MM-2) 

t=102.5mm t=215. Omm 

Nm M-2 m (i) M(iii) M(i) MOH) 

5 3.67 3.26 2.76 1.25 
10 5.25 4.42 4.03 1.98 

-20 7.51 6.00 5.87 3.16 
30 9.26 7.17 7.31 4.14 
40 10.74 8.15 8.55 5.02 
50 12.05 8.99 9.65 5.83 
60 13.24 9.74 10.65 6.59 
70 14.34 10.43 11.58 7.30 
80 15.36 11.06 12.45 7.99 
90 16.32 11.65 13.27 8.64 

100 17.23 12.20 14.05 9.28 
110 18.10 12.72 14.80 9.89 
120 18.93 13.22 15.52 10.48 

Table 2.6 - Characteristic compressive strength of walls (fkw)- 
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Fig. 2.3 - Plot of results for 102.5mm thick wall and mortar M(i). 

-28- 



++ + 

3 ++- 4. - be 

++ + 
+ 

40 
++ + 

+ 

4 r 
+ +'tk++ +* 

++ 

1.4 ii - 

U' 0 9,1 - 

CQ 

'j lqlSuaalS duioD mm 

Fig. 2.4 - Plot of results for- 102.5mm thick wall and mortar M(Iii). 

-29- 



C43 

z 
+++ . 4.: r -1 

. 13 -4- + , Z- 
tw 

(D 
$4 + 

ul 

k6 ý4 ++ ++ 
-H- + 

+ 

++ I, j 
+++ !$ .0 N 

44- 
++ 

n 

rq 

0 CQ 1-1 
'j 'qj2u9. zjS -duaoo lrek 

Fig. 2.5 - Plot of results for 215. Omm thick wall and mortar M(i). 

-30- 



0 to CD 131 

tic 

- 'tz 

kci 

4F 

r4 

++ 
19ý 

4+ 
Lqs 

cia 

ur-LuX) 'j -qlWuajlS dmoo HvIL 

Fig. 2.6 - Plot of results for 215. Omm thick wall and mortarM(iii). 

-31- 



1-l-; 

CQ ýýn -Z -Z 
-% 0-1% 

4 -a "4 

mm 

-9 

cs ; '. -4-3 
rn 

to- > 

94 

0 10 0 10 0 

1 q12ua-iIS ffel 31 

Fig. 2.7 - Plot of characteristic compressive strength of walls for two 
mortar mixes and wall thicknesses. 

-32- 



2.4.4.2. Wall strength In terms of unit brick and mortar cube strengths 

Since a considerable number of experimental test results have been collected, 

it Is advantageous to analyse the data statistically to determine the relation 

between masonry wall, unit brick and mortar cube strengths. Expressions In 

the form of equation 2.9 have been assumed for the mean strength curve and 

hence the 95% lower confidence limit or the characteristic wall strength curve 

has been derived using the relevant standard deviation such that; 

f kw - K3-f 
ml-f bn (2.14) 

where fkw = tm,, - 1.645 Sd 

fkw = K2-fmi-fb n_1.645 Sd 

In all 364 test results for 102.5mm, and 272 test results for 215. Omm thick 

walls of which the mortar cube strengths were known have been analysed 

statistically and equations of the mean brickwork wall strength in terms of unit 

brick and mortar cube strengths have been determined for the two wall 

thicknesses. Table 2.7 surnmarises the results obtained. 

Wall Equation of the r2 Sd R2 
thickness mean wall strength 
t (mm) curve N 

102.5 fmw=1*242fb 0.531. f M 
0.208 53.1 1.319 0.9 7 

215.0 0.778 0.234 frnw'0.334fb . fm 
. 

62.8 1.302 0.996 

Table 2.7 - Relationship between mean wall, brick and 
mortar cube strengths. 

The cube strength for the four mortar mixes (i. e. mortar designations M(i), 

M(ii), M(iil) and M(iv)) were also analysed to obtain the mean cube strength 

and for other statistical information. The t-Interval at 95% confidence Interval 

were determined for each mix resulting in strengths of 14.7,9.5,4.7 and 

1.5 Nmm-2 for mortar designations M(i), m(ii), M(iii) and M(iv) respectively. The 

statistical analysis of the mortar cube strength are included In Appendix IN. 

The characteristic compressive strengths of brickwork walls were determined 

as before and the equations are as shown in Table 2.8. The results have been 

plotted by substituting the corresponding mortar cube strength at 95% 

confidence level for each mortar designation as shown in Figs. 2.8 - 2.11, and 
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in tabular form in Table 2.9. 

Wall Equation of characteristic 
thickness wall strength curve 
t (mm) 

102.5 fkwoO. 783fb 0.532. fmO. 208 

215.0 f kwzO. 214f b 
0.780 

-fm0.235 

Table 2.8 - Equation of characteristic wall strength curves In terms of 
unit brick and mortar cube strengths for 102.5mm and 215. Omm thickness. 

fb fk,, (NMM-2) 

t=102.5mm t-215. Omm 

NMM-2 MM M(ii) M(iii) M(iv) M(i) M(il) M(iii) M(iv) 

5 3.2 

F 

2.9 2.5 2.0 1.4 1.3 1.1 0.8 
10 4.7 4.3 3.7 2.9 2.4 2.2 1.9 1.4 
20 6.7 6.2 5.3 4.2 4.2 3.8 3.2 2.4 
30 8.4 7.6 6.6 5.2 5.7 5.2 4.4 3.3 
40 _ 9.7 8.9 7.7 6.1 7.2 6.5 5.5 4.2 
50 11.0 10.0 8.7 6.8 8.5 7.7 6.5 5.0 
60 12.1 11.0 9.5 7.5 9.8 8.9 7.5 5.7 
70 13.1 12.0 10.4 8.2 11.1 10.0 8.5 6.5 
80 14.1 12.9 11.1 8.8 12.3 11.1 9.4 7.2 
90 15.0 13.7 11.8 9.3 13.5 12.1 10.3 7.9 

100 15.9 14.5 12.5 9.9 14.6 13.2 11.2 8.5 
110 16.7 15.2 13.2 10.4 15.7 14.2 12.0 9.9 
120 1 17.5 1 16.0 1 13.8 10.9 1 16.8 1 15.2 12.9 

- 
1 9.9 

Table 2.9 - Characteristic compressive strength 
of 102.5mm and 215. Omm walls. 
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2.5. CHARACTERISTIC COMPRESSIVE STRENGTH OF MASONRY 

The strength of masonry is regarded as the strength of a brickwork specimen 

such that the effect of slenderness Is negligible. There Is no standard 
definition of a small specimen of which the strength would represent the 

masonrV strength. 

The 9-in brickwork cube was proposed in 1963 in Britain[51 - 541 as a basis for 

brickwork design, control and routine measure of quality. The Intention was to 

use the cubes for measuring the compressive strength of brickwork once the 

correlation between storey-height walls and cubes were known. Upon further 

research, it was shown that the cubes yielded an unreliable method for 

measuring the compressive strengths, due to the fact that they do not 

simulate the characteristics of the full size brickwork masonry In compression. 
The factors which support this argument are: the mode of failure; initial 

splitting followed by shear153 - 561 clearly indicating mixed stress patterns. The 

shape factor; the ratios of height to thickness and height to length is unity. 
Hence the strength of the cube is influenced by the effect of platens of testing 

machine. Strength ratio; in the large amount of work done to correlate cube 
(20,30,32,53,541 

and wall strengths , cube strength was mostly two to three 

times the wall strength. This is a far higher ratio than obtained elsewhere[53, 
58,591, using prisms of sufficient height. 

An alternative to the British cube was a prism specimen. However, prism 

strength is not necessarily equal to compressive strength of bonded brickwork, 

but it has become common practice in certain countries to test for quality 

control and strength purposes, and as long as the height of the specimen Is 

such that the platen effect is not significant, its strength Is assumed to 

represent the masonry strength. The two most common small specimens are 

stack and running bonded prisms of different height to thickness ratios 
depending on its number of courses. 

Research work In Australla[351 , where a stack bond prism Is used as a basis for 

determining brickwork design strength, has Indicated that the ratio of wall 

strength to prism strength (with h/t=3) is on average 0.9. This ratlo, 571 has 

been shown to vary with the ratio of height to thickness of specimen (h/t) 

from about 0.7 at h/t=2 to 1.0 at h/t=5. 

However, It Is possible to arrive at mean and characteristic compressive 

strengths of masonry (fmm and fk) from the wall strength already determined, 

-39- 



provided there exists a set of true reduction factors for slenderness (321 such 

that: 

fmw m S, fmm (2.15) 

or fmm - (K218)-fmi, fb 

f kw ý S-fk (2.16) 

or fk 0 (K31S)-fml-fb 

The slenderness ratio (hefltef) for the walls analysed In previous section were 

on average 18.0 and 9.0 for 102.5mm and 215. Omm thickness respectively. The 

values given in BS 5628: table 7111 for 8 are used here which are equal to 0.770 

and 0.985 for slenderness rations of 18.0 and 9.0 repectively. 

The equations for mean and characteristic compressive strengths of masonry 
for the two wall thicknesses are as shown in Table 2.10 and by substituting 

the appropriate values of cube strength for a particular mortar designation, 

sets of curves are produced representing fmm and fk values in terms of unit 

brick strength (fb) for a particular mortar designation and wall thickness. These 

curves are represented in Figs. 2.12,2.13,2.14 and 2.15 and in tabular forms In 

Tales 2.11 and 2.12. 

Masonry Equation of mean Equation of characteristic 
thickness compressive strength compressive strength of 
t (mm) of masonry (fMM) masonry (fk) 

102.5 0.531 f 0.208 fmm=1.613fb -M 
0.532. f 0.208 fk"21-017fb 

M 

215.0 fmrn'0.339fb 0.778. f M 
0.234 fk`ý0.217fb 0.780. f 

M 
0.235 

Table 2.10 - Equation for mean and characteristic compressive 

-- 
strength 

'of 
masonry. 
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fb fmm (N MM-2 

t=102.5mm t-215. Omm 

NMM-2 M(i) M(ii) M(iil) M(iv) M(l) M(ii) M(iii) M(iv) 

10 9.6 8.7 7.6 6.0 3.8 3.4 2.9 2.2 
20 13.8 12.6 10.9 8.6 6.5 5.9 5.0 3.8 
30 17.2 15.7 13.5 10.7 9.0 8.1 6.9 5.3 
40 20.0 18.3 15.8 12.4 11.2 10.1 8.6 6.6 
50 22.5 20.6 17.8 14.0 13.3 12.0 10.2 7.8 
60 24.8 22.7 19.6 15.4 15.4 13.9 11.8 9.0 
70 26.9 24.6 21.2 16.8 17.3 15.6 13.3 10.2 
80 28.9 26.4 22.8 18.0 19.2 17.4 14.7 11.3 
90 30.8 28.1 24.3 19.1 21.1 19.0 16.1 12.4 
100 32.5 29.7 25.7 20.2 22.9 20.6 17.5 13.4 
110 34.2 31.3 27.0 21.3 24.6 22.2 18.9 14.5 
120 1 35.8 1 32.7 1 28.3 1 22.3 1 26.4 23.8_ 

_ 
1 20.2 1_ 15.5 

Table 2.11 - Mean compressive strength of masonry, frnm, 
102.5mm and 215. Omm thickness In Nmm-2 - 

fb fk (N MM-2) 

t=102.5mm t=215. Omm 

N MM-2 M(i) M(ii) M(iii) M(iv) M(i) M(ii) M(iii) M(iv) 

5 4.2 3.8 3.3 2.6 1.4 1.3 1.1 0.8 
10 6.1 

-5.5 
4.8 3.8 2.5 2.2 1.9 1.4 

20 8.8 8.0 6.9 5.4 4.2 3.8 3.2 2.5 
30 10.9 9.9 8.6 6.8 5.8 5.2 4.4 3.4 
40 12.7 

. 
11.6 10.0 7.9 7.2 6.5 5.5 4.2 

50 14.3 13.0 11.2 8.9 8.6 7.8 6.6 5.1 
60 15.7 14.3 12.4 9.8 9.9 9.0 7.6 5.8 
70 17.1 15.6 13.4 10.6 10.1 8.6 6.6 
80 18.3 16.7 14.4 11.4 12.4 11.2 9.5 7.3 
90 19.5 17.8 15.4 12.1 13.6 12.3 10.4 8.0 

100 20.6 18.8 16.3 12.8 14.8 13.4 11.3 8.7 
110 21.7 19.8 17.1 13.5 16.0 14.4 12.2 9.3 
120 22.7 1 20.7 17.9 14.1 17.1 15.4 13.1 10.0 

Table 2.12 - Characteristic compressive strength of masonry, fk, 
102.5mm and 215. Omm thickness In Nmm-2. 
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2.6., DISCUSSIONS I 

Sections 2.3 and 2.4.2 reports the published results on full storey-height 
brickwork wall. It should be pointed out that no distinction has been made 
between the conditions of end fiX! ty of the walls from the point of view of the 

loading application. The tests carried out In the earlier times on walls were by 

means of knife edge loading, whereas the latter tests were conducted to try to 

simulate the conditions in practice of which the walls were tested between 

thick concrete plinths. Inspection of the results shows there Is not a 

significant difference taking into account the variation in the strength of 

brickwork. However, if the distinction had to be made the number of test 

results would have not been sufficient in order to carry out the statistical 

analyses. 

The results obtained from the two analyses outlined in sections 2.4.4.1 and 

2.4.4.2, show good agreement. Comparing the results obtained as shown In 

Tables 2.6 and 2.9, shows there is little difference in the value for fkw- 

However, this small difference in value for fkw could be explained by the fact 

that in the first analysis, fkw is given in terms Of fb only for a particular mortar 

mix, whereas. in the second analysis,, fkw is given as a function Of fb and fm, 

where values for the mortar cube strength 
'are 

the characteristic values 

obtained from the mean cube strengths. 

Provided that all the primary variables were included, it would have been 

possible to demonstrate that homegenity of the expressions would have been 

satisfied. However, due to the lack of tensile strength of brick units In the 

results the sum of indicies, as in equation 2.8 is 0.67 
-> 

(1) > 0.44, and for 

expressin in the form, of equation 2.9 is 1.01 (I+n) ý 0.74. Furthermore It Is 

arguab)e that the constant coefficients K, and K2 given In the equations are 

themselves a function of strength to some power. It is also worthy to note 

that better correlation coefficients are attained for the best fit if the number of 

primary variables is increased. This Is evident by comparing the values 
2 

obtained for r in Tables 2.3 and 2.7. 

The 95% confidence interval or the characteristic compressive strength of 

mortar cubes are 14.7,9.5,4.7 and 1.5 NMM-2 for mortar designations M(I), 

M(ii), M(iii) and M(iv) respectively compared to the values of '16.0,6.5,3.6 and 

1.5 Nmm -2 given as the minimum values of mortar-cube strength In the 

codell). 
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In the two analyses of walls the ratios Of fkw/fmw were found to be on average 
0.64 and 0.68 assuming expressions in the form of equations 2.9 and 2.8 

respectively. Also the ratio of fk/fmm based on equations 2.15 and 2.16 were 
found to be 0.64. However, in a recent paper, research work in China, 58, has 

shown that this ratio is equal to 0.72. This Is because the coefficient of 

variation of the masonry Is taken as 17%. 

In section 2.5 mean and characteristic compressive strengths of masonry, (fmm 

and fk), have been calculated based on the values given in the codell, for the 

capacity reduction factor for walls allowing for the effect of slenderness 
This, however, could be done with any set of values for B. 

Comparison has been made between the values for the characteristic 
compressive strength of masonry, fk, as obtained in section 2.5 and the 

BS 5628111. These are graphically shown in Figs. 2.16 and 2.17 for the two 

masonry thicknesses respectively. From these graphs it can be seen that the 

code[" values for fk are higher, particularly for bonded masonry. This, however, 

could be explained by the fact that the values Of fk given In BS 5628: Partllll; 

table 2(a) or fig. 1(a) for bonded masonry are the mean strength of British test 

results of single leaf walls for a particular mortar designation. This Is evident 

from Figs. 2.18 and 2.19 of which they show the comparison between the fk 

values from the codeill for two masonry thicknesses and the test results of 

storey-height walls for mortar designations M(i) and M(iii) respectively. 

However, the validity of the fk values, given in BS 5628111 Is questionable. The 

factors which support this argument are: 

- No statistical evidence for the derivation Of fk values given In 
the code exists. It is believed to be based on the test results 
of storey-height walls which originated from CP 1111111. 

fk values given by the code are mean and not characteristic 
values as shown by Figs. 2.18 and 2.19. 

fk values given in table 2(a) of the code is for bonded 
masonry, and in case of narrow brick walls(Le. where the 
thickn 

, 
ess of the wall Is equal to the width of a standard 

format brick, t=102.5mm), clause 23.1.2 of the code"] states 
that "the values Of fk obtained from table 2(a) may be 
multiplied by 1.15". Hence increasing the fk values further. 

It is well known that single leaf brick wall Is stronger than 
bonded wall, Therefore, the values for fk In table 2(a) of the 
codel'I does not represent the strength of bonded masonry, 
since it is the average strength of single leaf, 102.5mm thick 
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walls being tested In U. K. Furthermore, they need to be 
adjusted to represent masonry strength In contrast to wall 
strength. 

As a comparison, Fig. 2.20 has been Included, which Is a plot of 389 test 

results of four-brick high stack bonded prisms, 102.5mm thick constructed 

with mortar designation M(iii). The characteristic compressive strength of the 

prism, fkpi was determined as before. On the same graph the values for 

characteristic compressive strength of masonry, fk, derived from the wall test 

results, has been plotted for the same masonry thickness and mortar 
designation. fk values are 40% lower on average than fkp values. This, however, 

may be explained as being due to the different h/t ratios. In the case of 
four-brick high stack bonded prisms h/t=3, whereas in the case Of fk values, 
the code"] gives a value of 1.0 for B when hef/tef '8 (or h/t=10). To compare 
the two curves one has to be modified by another reduction factor to adjust 
for the slenderness. 

2.7. CONCLUSIONS 

Relationships of the form "'-fb n and K. fmi-fb" have been established for mean 

and characteristic brickwork wall strengths for specific mortar grades and 

strengths and two wall thicknesses by statistical analysis of wall test results. 

The constants and Indicies in the above formulae depend on the mortar mix 

and also on the tVpe of wall, i. e. whether the wall thickness Is equal to the 

unit thickness or is of bonded construction. 

The test results were found to be consistant with normal distribution In 

statistical terms. This is especially true when large number of test data Is 

available, Le. as number' of test results increase, the distribution of strength 

tends to normality. 

The characteristic strength of mortar cubes were found to be 14.7,9.5,4.7 and 
1.5 Nm M-2 for mortar designations M(i), M(11), M(iii) and M(iv) respectively. 

The characteristic compressive strength of various types of masonry (fk ) has 

been derived from the wall strength relationships by applying a correction to 

allow for the effect of slenderness ratio on the basis of the reduction factors 

given in BS 5628: Part 1: table 7111. 

A limited comparison between characteristic compressive strengths derived 
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from wall tests and from prism tests indicates that the latter gives a high 

value for fk. This may be due to discrepancies In correcting for slenderness 
effects. 
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Chapter 3 
COMPRESSIVE STRENGTH OF MASONRY UNDER 

CONCENTRATED LOADING 

3.1. INTRODUCTION 

The ability of masonry to withstand higher direct stresses over confined areas 
has been kown for a considerable time. The problem of the application of a 

concentrated force to the boundary of a brickwork structure Is one which 

presents almost insuperable difficulties for the solution of the stress 
distribution. The reason for these difficulties are many, and include the 

non-homogeneitV of brickwork, the anisotropic structure of the brickwork, and 
the difficulty in obtaining the deformation properties of the brick, mortar and 
brickwork. 

The earlier classical solutions of stress distribution theory were based on 

results given by the mathematical theory of elasticity for the simplest case of 

loading a solid homogeneous, linear elastic, Isotropic, semi-infinite medium 

assuming the material is weightless. Other investigators have produced more 

exact solutions in two and three dimensions based on the theory of elasticity. 
(591 A detailed survey is given elsewhere 

Considerable amount of theoretical and experimental work has been carried 

out on the bearing caPacity of concrete loaded over a limited area. The 

theoretical investigations have been based mainly on the Coulomb/Mohr 

theory of rupture which envisages failure as a sliding action along planes 
Inclined to the direction of the principal stress. Resistance to sliding Is brought 

about by the shearing strength or internal cohesion of the material and by a 

resistance due to internal friction which is proportional to the normal stress 

on the shear plane. 

Large numbers of tests have been carried out on, unreinforced concrete cubes 

and prisms bV various investigators. The bulk of the results have been 
[601 

collected and analVsed bV Williams , to studV toe influence of varibles such 

as specimen depth, geometrV of loaded area, loading and support media, 

concrete properties, size of aggregate, horizontal 
' 

component of load and 

effective area on the ratio of bearing strength to the characteristic cube 

compressive strength of concrete. 



Concrete is however, a relatively homogeneous material compared with 

brickwork, and any loading on a concrete structure may be considered to be 

distributed in such a way that it is not affected by any one aggregate particle. 

Theoretical solutions proposed were all based on the supposition that the 

loaded material behaves in a homogeneous, Isotropic, and elastic manner. The 

comparison of the theoretical and experimental strain distributions has shown 

that concrete satisfies these criteria, the form of the experimental strain 

distribution being similar to those of the advanced theoretical analyses. 

With brickwork it Is likely that a concentrated load will only be applied to a 

relatively small number of bricks, and hence the individual brick properties will 

have a considerable effect. The effect of the mortar beds on the strain 

distribution Is very difficult to determine experimentally. If the deformation 

properties of the brick and mortar were similar, the vertical strain distribution 

would not be greatly affected by the mortar layers. The horizontal strain 

distribution is however, influenced by the differnce in the deformation 

properties of the two materials, and vertical jointing of the composite material 

will also have an effect. 

In this situation any solution based on the theory of elasticity will be of 

doubtful validity, under-estimating the tensile stresses which are in fact 

developed. The only analytical tool likely to be useful will be the finite element 

method. 

In this chapter, the previous research work carried out on the compressive 

strength of brickwork masonry under concentrated load will be reviewed and 

the design guides given in various codes of practice are summarised. 

3.2. REVIEW OF PREVIOUS RESEARCH 

The first known series of tests[61 - 631 were carried out during the 1930's by 

the Masonry Sectional Committee of the Institute of Structural Engineers on 

the safe bearing pressure on brickwork carrying a heavy load applied through 

a steel plate bedded directly onto the brickwork. This Investigation tried to 

determine the effect of using bearing plates of different thicknesses beneath 

the load; of using stronger bricks in the top courses; and of building In the 

section through which the load was applied to the bearing plate (an 

IIIII-section). The investigation also covered the effect of slenderness ratio and 

the deflection of the lintel applying the load. 
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The results obtained indicated that as the wall length/bearing plate length 

ratio decreases the failure stress also decreases, and either building-in the 

joist or increasing the plate thickness from 12.5 to 25. Omm raises the 

resistance roughly by 30% over that of brickwork carrying the joist direct. The 

number of specimens tested was small and no definite design guide was 

proposed. However, the committee concluded that permissible stresses should 

not be Increased, although results indicated that well built brickwork, even in 

thin walls, acts as a unified mass, and is capable of sustaining load 

considerably greater than those permitted in the CP 111: 1936,111. Two reasons 

were given for this decision. The first was the rigid foundation they had 

adopted, and the second, the high quality of workmanship in the specimens 

constructed. It was also concluded that thin bearing plates were of little use, 

as was the provision of stronger bricks In only a few courses below the load. 

Building the beam Into the wall was, however, considered to increase the load 

capacity of the wall. No comment Is made about the effectiveness of rigid 

bearing plates although their tests indicated that these increases the load 

capacity of the wall. The effect of the wall height on the resistance to 

eccentric loading was not found to be important in the tests conducted (i. e. 

HA-10.7), although strains measured on the wall faces were found to indicate 

much higher compression on the more heavily loaded faces. 

A report was put forward by Building Research Station 1641 in 1956, In which it 

described a laboratory investigation of the behaviour of some brick piers and 

walls under concentrated loading. The object of the work was to obtain test 

data to be used In future revision of building regulations. Tests were made on 

storey-height piers and slender walls and axial load was applied over all or 

part of the area of the specimen. 

Concentric central and strip loading configurations were investigated using 

piers and the results obtained showed clearly the increase In stress under the 

contact area as the percentage of the loaded area decreased. The mode of 

failure In the piers under a uniform load was by vertical cracks followed by 

crushing of the brickwork In the lower portion of the pier. However, when 

subjected to concentrated loading vertical cracks were visible at loads ranging 

from 80-95% of the ultimate load. These vertical splitting cracks were 

confined to the upper half of the height of the pier and were followed at 

failure by local crushing under the load plate. 

Walls were utilized to study the effect of central strip with single or double, 
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and end loading configurations. The results again showed that as bearing area 

decreases the enhancement factor increases. In the case of end strip loading 

this Increase in stress was shown to be smaller than in the case of central 

strip loading. Again failure occurred after the formation of vertical cracks 

which passing through both brick and mortar joints, extending from one edge 

of the load plate usually to about mid-height of the wall. This form of cracking 

was observed In all the specimens tested irrespective of the position of the 

load plate with respect to the bond of brickwork. However, walls subjected to 

the concentrated loads from two symmetrically disposed load plates, vertical 

cracks formed usually under one load plate, and at failure some of these 

extended the full height of the wall with local crushing occurring under one 

load plate. 

It was concluded that, where a centrally disposed load does not cover the 

whole area of the pier, the 50% Increase In stress allowed in building 

regulations Is not applicable when the ratio of the area loaded to the total 

cross-sectional area Is greater than 0.33. On the other hand this increase 

could be at least doubled when the ratio is less than 0.125. As regards to 

concentrated loading on slender brick wall, an inference from the tests is that 

no increase In stress Is warranted if more than one-half of the wall length Is 

loaded. For more concentrated loading away from the ends of the wall, when 
load can be disposed on both sides of a load plate the increase in stress 

under contact areas may be doubled when the loaded area ratio is less than 

0.125; where, however, the local load can be disposed on one side, as in 

lintels, the Increase In stress of 50% Is justified. 

The failure stresses, strain distribution, and failure modes of full-scale 

brickwork piers, subjected to stress concentrations were investigated by 

RutherfordI591. The bearing plate length was varied; central, intermediate and 

end positions of loading were considered for the strain distributions. He also 

studied the failure stresses, strain distributions, and mode of failure of model 

brickwork piers, 1/6th and 1/3rd scale. A large number of model piers were 

tested, Increasing the range of bearing plate length used in comparison to the 

full-scale. The structural behaviour of 1/3rd-scale model cavity walls subjected 

to eccentric loading of various types were also Investigated by studing the 

strain distribution on the faces of the two leaves, across the leaves and the 

lateral deflections of the leaves of the wall. The results of this experimental 
investigation was publishedl6sl, which concluded: 
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- OBulbso of compressive strain existed under concentrated 
loads and although the vertical strains were contained within 
a 45 degrees fan drawn from the ends of bearing plate they 
were not uniformly distributed on horizontal planes within 
these limits. 

- Failure of the brickwork under a concentrated load may take 
place by vertical splitting at some distance below the loaded 
area, by horizontal Otearing" at the surface or by spalling of 
the brickwork under the load. 

- For both end and centrally applied loadings the failure stress 
increased as the bearing plate length was reduced. However, 
above Ar-0-17 the effect is not pronounced. 

- Central bearing plate tests (for 1/3rd and 1/6th-scales) had a 
failure stress of 1.3 times the end-bearing failure stress, for 
the same bearing plate. 

- One-third scale tests showed that end distance is a critical 
factor, Le. there is rapid increase from end failure stress to 
1.3 (end failure stress) as the edge distance Is increased. 

- The load was In all cases transmitted through a rigid bearing 
plate. When very short bearing plate length were used, 
simulating extreme concentrations, high failure stresses were 
obtained, particularly when the load was transmitted away 
from the end of the member. 

Kirtschig et al 1661 Investigated the partial surface load on masonry. The 

experimental tests were confined to four brick types (hollow brick, sand lime 

brick, hollow block and concrete brick) and mortar grade of 11 and Ila 

(cement-lime mortar with mean compressive strength of 2.5 and 5.0 Nm M-2 

respectively) and mortar grade III (cement mortar with mean compressive 

strength of 10 N MM-2). Wall specimens were 1m high and 1m in length and 

0.24m In thickness. Central strip, end strip and central patch loading 

configurations were choosen and also a series of columns 0.24m x 0.24m and 

0.625m in height were tested under central strip and middle concentric loading 

configurations. In each case a control specimen was tested under uniform load 

applied over the whole cross section. An expression was proposed in the 

form: 

S, -(1 So (3.1) 

oil oom( 1 +oi)maT (3.2) 
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where S() is the masonry compressive strength under uniform load, 
is the masonry compressive strength under partial load, 
Is a constant with a value greater than zero, 

CIT Is the enhancement factor. 

Enhancement factors were calculated based on the experimental results and 

were plotted against the length of loading plate (11). The results are 

reproduced and is as shown in Fig. 3.1. -- 

However, it was suggested that from the evidence of test results the values 

for CIT could not be identified as being dependent on the type of unit nor the 

strength of the mortar. As it can be seen from Fig. 3.1, the test results have a 

very large dispersion. The value of aT become smaller as the length of the 

loaded area Increases and shows a sharp increase as the length of the loaded 

area decreases, with the exception of end strip loading configuration. The 

magnitude of the values Of C'T is dependent to a very large extent on the type 

of loading. 
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Fig. 3.1 - Relation between enhancement factor and the length of 
loading plate (after Kirtschig at al (661). 
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Equations in the form: 

OIT '2 1+ b/l, 

where b Is a constant dependent on the type of loading, 
and 11 is the length of loading plate. 

(3.3) 

were obtained for the test results for each type of loading as shown in 

Fig. 3.1. An attempt was also made to relate the enhancement factor not only 

to the type of loading but also to incorporate the edge distance. Expression In 

the form: 

OIT 'ý 1+( b(a/11) + 1) /I (3.4) 

where a is the length of wall from the edge of -the loaded area to the 
nearest edge of the wall, 

and I is effective length of the wall assumed to be equal to (11+2a). 

Equations were derived for central strip loading configurations based on the 

results of the wall and column tests and also In the case of central patch 

loading on walls. A conservative approximation was 
, 

borne from these 

equations such that: 

OIT 'ý 1.0 + 0.1 a/I, (3.5) 

which was intended for use in a draft for 'engineer-designed masonry'v 'in the 

Federal Republic of Germany (Refer to section 3.3). However, these 

expressions are approximate and are based on a small number of test results. 

They are not therefore statistically valid. 

A limited number of tests on clay brick specimens were carried out by the 

author 
[671 in 1981 and the test programme was extended throughout the year 

by Professor Hendry at the Department of Civil Engineering at Edinburgh 

University. These results were'not published though they showed the influence 

of variables such as constituent material strengths, specimen thickness, ratio 

of bearing area to the total cross-sectional area, loading configuration, and the 

effect of edge distance on the compressive strength of brickwork under 

concentrated loading. The results are summarised In Appendix 11. 

In China, Dai-Xin 1681 investigated the bearing strength of brick masonry 
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specimens 240mm and 370mm thick. The loading configurations were such 

that concentrated load was applied through a bearing plate at the middle and 

end of a pier and also at the corner of a wall with return. The aim of this 

investigation was to examine the recommendation, given In the Chinese 

code(691 as given by equation 3.14 In section 3.3. The main variable 
investigated was the ratio of cross-sectional area to the loaded area. Also the 

effect of reinforcing the bed joint and bracing the specimen using brackets 

and bolts on a few test specimens was studied. He concl uded that failure due 

to development of vertical cracks Is a basic failure mode of brick masonry 

under lo,, 'cal loading. Splitting failure may happen when the ratio of specimen 

cross-sectional area to the loaded area is large (larger than 10 for piers under 

concentric central loading or 9 for walls under central edge loading). A local 

failure within the loading area may occur when the strength of brick unit is 

very low. He proposed the following formula for the design of masonry under 

uniform local loading based on the experimental work. 

-, K Nc ý* Ac R 

where 4) =1+w {(AO/A. ) -1 )0-5 

(3.6) 

(3.7) 

for w=0.708 for concentric central bearing, and w=0.364 for a central patch, end 

and the corner bearing, and suggested the upper limit of * is 3.0 and 2.0 for 

the former and latter respectiveIV. 

where Nc 
K 

W 
Ac 
R 
Ao 

A Co. 

Ao + t) t 

T 

is the bearing load, 
a constant 
strength coefficient (or enhancement factor), 
a constant related to the type of loading, 
loaded area, 
bearing strength under local load, 
effective area (see Fig. 3.2). 

Ac 
............ 

Ao=(2a+ Ot 

J-- t -.. I. 

Fig. 3.2 - Effective area under bearing (after Dal-Xln[691). 

Two dimensional elastic finite element analyses were used by All et a/ 170) to 
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carry out a preliminary study of stress distribution in masonry walls subjected 

to concentrated load. One analysis assumed masonry to be a homogeneous 

continuum, the other treated bricks and joints separately. The Influence of 

various parameters such as loaded area ratio, loading position, modular ratio 

and effect of parallel loading on the stress distribution was studied. A follow 

up (711 to this investigation used three dimensional elastic finite element 

analyses to determine the limitations of a simple two dimensional analysis in 

above, and for concentrically and eccentrically loaded walls the Influence of 

variables mentioned above were studied. However, the authors admit that 

studies of this type, although not being able to reproduce material 

non-linearities or predict failure, would provide useful guidance for the design 

of masonry walls subjected to concentrated loads. In the three dimensional 

analysis, homogeneous, Isotropic elastic behaviour were considered for the 

material. This analysis showed that the concentration ratio In the direction of 

the wall thickness Is the critical factor and as long as this ratio approches 

unity (i. e. strip loading as compared to patch loading) a two dimensional 

analysis would be representative of the three dimensional analysis. A number 

of conclusions were drawn from this study: 

- When a concentrated load is applied so that its area of 
contact extends across at least 75% of the wall thickness, 
the influence of stresses in a direction through the wall 
thickness will be negligible, and a two dimensional analysis 
will suffice. In other cases, a three dimensional analysis is 
required. 

A finite element model which treats bricks and joints 
separately is more effective, since It reflects the Influence of 
varying stiffness of its constituents. This was particularly 
Important in the study of the transverse tensile stresses, 
where peak stresses were always greater than those 
predicted in the homogeneous wall. 

- Concentrated load tests should recognise the Important 
Influence of the method of load application on the stress 
distributions within the wall. Significant variations will occur 
If the load Is applied through a flexible rather than a stiff 
loading plate. 

The transverse tensile stresses (which would Initiate cracking 
and failure) significantly increase with decreasing loaded area 
ratio. 

- The concentration of vertical stress beneath the loaded area 
Increases as the loaded area decreases. The dispersion of 
concentrated load occurs at an angle of approximately 30 
degrees. An average stress at any level calculated on the 
basis of a 45 degrees dispersion gives a reasonable 
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approximation of the stress distribution, although 
underestimating the peak stress. 

-As the ratio of brick/mortar stiffness Increases, the 
transverse tensile stresses increase In the brick and the 
vertical joints, and decrease In the bed joints. A similar effect 
is observed as the ratio of the brick thickness to the joint 
thickness is increased. 

As the concentrated load is applied closer to the edge of the 
wall, transverse tensile stresses markedly Increase. 

The presence of brick, (or bricks), with high stiffness In the 
region directly beneath the load will increase the magnitude 
of local peak transverse tensile stresses and thus potentially 
reduce the wall capacity. 

A theory was put forward by Mann et al [721 for obtaining the enhancement 

factor. Assuming brickwork as a homogeneous material, expressions for the 

maximum horizontal tensile cracking force and the height were this force acts 

were given. It was argued that this horizontal tensile forces occuring in the 

homogeneous wall cannot be applied as such to masonry walling. The reasons 

given were that the tensile cracking forces are interrupted by the vertical butt 

joints and also tensile stresses occur in the bricks caused by varying 

transverse strain between bricks and mortar. Therefore, these tensile cracking 

stresses cannot run continuously over the height of the wall as the vertical 

butt joints cannot take up tensile forces. So it was assumed that only bricks 

transfer tensile forces and as bricks only exist in every second course In the 

area of the. butt joints, the tensile cracking forces in the brick must be 

doubled. Two expressions were formulated for the enhancement factor and It 

was suggested that the smaller of the two values is decisive. Comparisons 

were made between the calculated values by this theory and with a limited 

number of test results and the values given In accordance with the German 
[731 

masonry standard D. IN 1053: Part 2 It was concluded that the enhancement 

factor from the DIN are on the safe side compared to the results from the 

theory and test results. However, due to the assumptions and lack of 

satisfactory explanations this theory Is of little value. 

Lind 1741 conducted a series of tests with the aim of developing a method of 

calculating the edge strength of masonry. Three types of units namely clay 

bricks/blocks, calcium silicate bricks and gas concrete blocks were used to 

construct walls with nominal dimensions 625x490x115mm (hxlxt) with brick 

units and 750x49Oxl2Omm for block units 'using mortar class of Ila and III 
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according to DIN 1053 173 1. The load application was made by means of a 

semi-circle device and by means of a flat bearing plate on a partial surface of 

the wall, assuming a-triangular and rectangular stress distributions respectively 

(see Fig. 3.3). 

Fig. 3.3 - Method of load application (after Lind 1741 

The results showed value of 1 for enhancement factor W, for 0.20 ý eA ý 0.0 (e 

is the eccentricity of loading normal to the longitudinal direction of the wall) 

and increases from 1 to a value of 1.25 for 0.50 >- e/t ý 0.2 for brickwork and 

w=1 for 0.25 ý e/i ý 0.0 and increases to a value 2.0 for 0.50 ý e/t > 0.25 for 

blockwork. 

However it was concluded that: 

The evaluation of masonry tests with walls having applied 
load near the edges has shown that edge stresses can be 
attained in masonry which are many times higher than the 
concentric failure stress. 

In a comparison of brick sizes, it was found there was hardly 
any difference between two and three blocks high prisms. 

Walls of standard size- brick however tended to have lower 
edge failure loads than two blocks high prisms. 

Vertically perforated clay bricks or blocks reached somewhat 
higher edge stress values than calcium silicate bricks, which 
is to be explained by the perforation pattern. 

The increase in edge load strength of gas concrete block 
masonry Is significantly lower with increasing eccentricity of 
the load than with other types of brick or block. 

An improvement in mortar strength does not Increase the 
edge strength In relation to the corresponding concentric 
failure stress. 
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Most recently, experimental investigation has been carried out at Building 

Research Station [751 in which some of 34 half storey high walls, 1.8m In length 

have been tested under concentrated load. The main test variables 
investigated were the area of the concentrated load (as a proportion of the 

total wall area) and the position of the load on the wall. The wall specimens 

were built mainly from low strength autoclaved aerated concrete blocks set In 

1: 2: 9 cement-lime mortar. Also, selected experiments were repeated on walls 
built from stronger dense concrete blocks, both in 1: 1: 6 mortar. 

It was concluded that: 

The strength enhancement under a concentrated load has 
been shown to be an approximately constant ratio of the 
compressive strength fk of the wall material, with a small 
tendency for a reduction of enhancement with increase Of fk- 

A precise value of the ratio Of fcb to fk depends upon the 
area of the concentrated load and its proximity to the Centre 
of the wall. For a loaded area of around 8% of the wall area 
applied over full thickness at the Centre of a wall, the 
enhancement factor Is 1.9. 

-A more general equation for determining the strength 
enhancement under a concentrated load applied over full 
thickness of a 200mm thick AAC block Is: 

fcb/fk "o 1+0.44(a/1) - 0.04(a/1)2 (3.8) 

where a is the length of bearing plate, 
and I Is the length of the wall. 

provided that the area of the load is not greater than 1.65t 2. 

-The mode of failure of a masonry wall appeared to be a 
function of the area of the concentrated load and its point of 
application on the wall. For a load of 8% of wall area over 
the full thickness at the centre of a wall (central strip) of any 
of the materials tested, the failure Initiated by a tensile crack 
along a vertical line under the centre point of the load, 
culminating in local crushing under the load. For an 
Increased area of load of 25%, the final failure was Instead 
by more extensive cracking and crushing in the 200mm AAC 
block walls tested. For a further Increased area of load of 
50% applied at the centre of a 200mm AAC block wall, the 
failure mode was very similar to that obtained In a wall 
loaded over the full area. 

The angle of load dispersion for the above loads appeared to 
be a function of their area, seemingly being the lines of 
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slope of 2: 1 and 3: 1 for the 8% and 25% areas respectively. 
The cut-off line for load dispersion appears to be at about 
half the height from the top. 

Where loads were applied to the edge of the walls there was 
some load spreading on one side of the load when Its area 
was 8%, resulting in the strength enhancement of around 
35%. Loads of 25% and 50% areas produces high local 
tensile stresses and it behaves more as a pier than a wall, 
resulting in a drop of compressive strength below the 
characteristic compressive strength by a mean figure of 18%. 

3.3. CURRENT DESIGN GUIDES 

it has long been recognised that the contact stress under a concentrated load 

on masonry may be considerably greater than the compressive strength under 

unaxial loading. Provision for this effect was made In the British Code of 

Practice, CP 1111111, based on early work reported in the 1930's[61 - 631 and 

1950's [641. This code allowed an increase of up to 50% on the permissible 

compressive stress for Oadditional stresses of a purely local nature". 

The successor to CP 1111111, BS 5628: 13artil1l, bV contrast, makes rather 

elaborate provisions for increased design stresses under beam and slab 

bearings. It permitts increases in local stresses beneath the bearing of a 

concentrated load of a pureIV local nature, such as beams, columns, lintels, 

etc. provided either that the element applVing the load is sensibIV rigid, or that 

a suitable spreader is introduced. It states that the concentrated load maV be 

assumed to be uniformly distributed over the area of the bearing, except In 

the special case of a spreader located at the end of a wall and spanning In Its 

plane (bearing type 3, see Fig. 3.4(c)), and dispersed In two planes within a 

zone contained by lines extending downwards at 45 degrees from the edges 

of the loaded area. An increase of 25%, 50% and 100% has been suggested 

for bearing types 1,2 and 3 respectively and states that the effect of the local 

load combined with stresses due to other loads (see Fig. 3.5(a)), should be 

checked at the bearing and at a distance of 0.4h below the bearing. 

These rules appear to have been based on work relating to concrete and apart 

from being difficult to understand, do not conform with experimental data from 

tests on brickwork specimens. 
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The CIB Recommendations for Masonry StructureS[761 give, in an appendix, a 

simpler provision for concentrated loading which takes coognisance of the 

position of the load relative to the end of the wall but which is known to be 

conservative for certain types of masonry. 

it states when a beam or other structural member imposes a concentrated 

load on a wall the design compressive strength a, of the masonry may be 

taken as: 

a, - fk/y,, (1+0.1(al/11)) ý 1.5 fk/Ym (3.9) 

and the design compressive strength may only be varied from fk/y if 

A, ý 2t 2 and eý t/6 (see Fig. 3-6). 

I 

Fig. 3.6 - Loading application and notations (after CIB code (761 ). 

The German Code 1731 makes similar allowances as above and also states that 

if walls are stressed by concentrated loads the absorption of the tensile 

splitting loads is to be assured by design measures or can be taken up by the 

tensile strength of the masonry bonding, by reinforcing or by reinforced 

concrete designs. If the absorption of the tensile splitting loads is assured by 

design measures, the distribution of pressure under concentrated loads within 

the masonry may be set at less than 60 degrees, and areas of wall subjected 

to greater stress may be constructed to a higher masonry quality. In the case 

Of perforated and cellular blocks it suggests that the load be transmitted 

through bearing plates. 

The Russian Code 1771 states that masonry must be calculated for local 

compression when loads are applied to only part of the cross-section (i. e. 

masonry supporting frames, beams, purlins, arches, floor panels, columns, etc. ) 

and the bearing capacity of masonry in local compression is determined by 

character of the pressure distribution. This code does not make any allowance 

for the increase in stress enhancement but it outlines construction 

requirements for masonry subjected to concentrated load. These are: 
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-A layer of mortar not more than 15mm thick shall be 
provided under member supports to transmit local loads to 
the masonry. The "dry" placing of these members or of 
distribution pads onto the masonry is prohibited. 

In locations of concentrated load 
', 

where required by 
calculations, load distribution pads shall be provided of 
thickness equal to a multiple 

' 
of the masonry course 

thickness but not less than 140mm, and reiforced by two 
meshes by calculation, but not less than 0.5% reinforcing In 
each direction. 

- For the support of girders, roof beams, crane girders, etc., on 
pilasters a tie Into the main wall consisting of a distribution 
pad shall be provided on the supporting part of the masonry. 

-Where concentrated edge loads exceeds 80% of the design 
capacity of the masonry in bearing, the supporting part of 
the masonry shall be reinforced by mesh located In not less 
than the three upper horizontal joints. To transfer large 
concentrated loads to the pilasters (e. g. to support girders 
and roof beams) the position of masonry within 1 to 1.2m 
below the distribution pads shall be reinforced by mesh. The 
mesh must connect the supporting parts of the pilasters to 

, 
the main part of the wall. 

The American Codes 178 - 811 give allowable bearing stress Fbr In terms of 

specified compressive strength of masonry at the age of 28 days, (f'm) such 

that; 

On full area, Fbr 0 0.26 f'm (3.10) 

On 1/3rd area or less, Fbr = 0.38 f',,, (3.11) 

This Increase applies only when the least distance between the edges of the 

unloaded areas Is a minimum of one fourth of the parallel side dimension of 

the loaded area. The allowable bearing stresses on a reasonably concentric 

area greater than one third but less than the full area shall be Interpolated 

between the values of the above equations. 

With regard to the distribution of concentrated vertical 'loads in wall, It 

suggests that the length of wall, laid up In running bond, which may be 

considered capable of working at the maximum allowable compressive stress 

to resist vertical concentrated loads, shall not exceed the centre-to-centre 
distance between such loads, nor the width of bearing area plus four times 

the wall thickness. Concentrated vertical loads shall not be assumed 
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distributed across continuous vertical mortar or control joints unless elements 
designed to distribute concentrated vertical loads are employed. However In 

the case of concrete masonry the American Concrete Institute's Code (821 

makes similar allowances except the bearing stress (F. ); 

On full area, Fa = 0.25 Fm with max. 6.21 NmM-2 (3.12) 

On 1/3rd area or less Fa ý 0.37 f',, with max. 8.27 NMM-2 (3.13) 

The Canadian Code[831 also states where a vertical load Is supported on a 

masonry surface and the ratio of the loaded surface to the total surface is not 

more than 1: 3, the allowable bearing stress, fVO. 25f'm, stipulated In the tables 

for different types of masonry given In this code, may be increased to 

0.375f'm, provided the least distance between the edges of the loaded and 

unloaded surfaces is at least one-quarter of the length of the edge of the 

loaded area perpendicular to such least distance. The allowable bearing stress 

on a reasonably concentric area greater than one-third the full area may be 

interpolated between the values given. 

The Chinese Code[691 adopts the formula for, the strength coefficient * of 

bearing strength of brickwork masonry as: 

*=( AO/Ac 10.5 (3.14) 

where AO is the calculating area affecting on bearing strength and Ac Is the 

local bearing area (refer to Fig. 3.2). This expression was derived based on the 

principle of ultimate balance and the theory of assumed *hoop strengthm and 

has been adopted In the concrete code. However an expression similar to 

Equations 3.6 and 3.7 have been recommended tor the calculation of bearing 

strength of brickwork masonry under concentrated loading. 

In the Swedish Code [841 
. local pressure is considered to occur when the length 

of the contact area In the longitudinal direction of the wall, Is less than twice 

the thickness of the wall or one third of its length. The local pressure Cy, must 

not exceed: 

CrI ý 1*5 clo-la-lb/a. b (3.15) 

where ao compressive strength of wall, 
a length of concentrated load, 

-72- 



T 

b breadth of concentrated load, 
la distance from centre of load to end of wall, 
lb distance from centre of load to nearest face of wall, 

(ref. to Fig. 3.7). 

j in le 

2t 4 1/3 

.... ...... lb 
4 

Fig. 3.7 - Loading application and notations (after Swedish Code (841). 

In the Australian Brickwork Code[851 a 50% increase in stress is permitted 

irrespective of the loaded area ratio. When loading Is transmitted through brick 

masonry, the angle of dispersion of the loading Is taken as 45" from the 

direction of such loading. 

[861 
The Australian Blockwork Code allows an increase of 85% In stress 

provided the supporting area projects beyond the loaded area on at least two 

opposite sides. In such a case the stress is assumed to be distributed through 

a cone contained within the supporting wall or pier, at slopes of 450 from the 

vertical. 

The provision'of the latest Code draft[871 follows the German provision as far 

as loaded area ratio is concerned and have used the following relationship: 

Kd m 0-9 + 0.1 Adm/Ad's or 1.50 whichever Is less (3.16) 

where Kd magnification factor 
Adm the maximum area of dispersion of the concentrated load 

in the member 
Ads the area of dispersion of the concentrated load at the 

design cross-section under consideration. 

In addition, if a load is applied within one eighth of the wall height from the 

end of the wall, no increase In stress is permitted. 
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. 
3.4. SUMMARY 

A review of literature relevant to this Investigation has been presented In this 

chapter. From the literature review, it is clear that much remains unknown 

about the concentrated load problem. Experimental Investigations have shown 

the importance of parameters such as loaded area ratio, edge distance and 

loading configuration in accessing the enhancement factor and their Influence 

on the bearing strength of brickwork masonry partially loaded. In most cases 

they have not been comprehensive because of the large number of variables 

involved. They seemed to illustrate the parameters which can be critical and to 

illustrate that significant strengthening does occur beneath concentrated loads 

in many cases. 

Theoretical Investigations have been limited to linear elastic finite element 

analysis with no attempt to model non-linear material characteristics or 

failure. Attempt is being made by All and Page In Australia to develop a 

non-linear finite element program based on non-linear fracture model of 

masonry for the analysis of the in-plane behaviour of masonry subjected to 

concentrated load. If a suitable finite element model could be developed to 

predict the failure of masonry subject to concentrated loads, a large number of 

tests could be simulated using this type of analysis and the significance of the 

parameters influencing the bearing strength could be studied. 

Design rules given in codes of practice from various countries differ widely 

indicating the lack of comprehensive information in this area. Those codes 

which allow Increases in stress under concentrated load -irrespective of critical 

parameters are non-conservative in some cases, particularly as the loaded 

area ratio increases and the edge distance decreases. 
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Chapter 4 

EXPERIMENTAL STUDY: MATERIALS PROPERTIES 

4.1. INTRODUCTION 

The existence of a masonry structure depends not only on the form of the 

structure as a whole but ultimately on the properties of individual materials; 

brick units and mortar as jointing material. Therefore, it is necessary to 

determine the characteristics of the materials involved before considering the 

structural behaviour of the material in a structural element. 

The properties -of brickwork are Influenced by variables such as type and 

physical properties of bricks, type of mortar, physical properties of the sand, 

lime and cement used for the mortar, curing, workmanship, thickness of 
brickwork element and the bed joint. 

in order to keep the scope of this investigation within reasonable limits, the 

variables such as joint thickness, curing, workmanship and the mortar's 

constituent materials were kept constant. The properties of the component 

masonrV materials are documented in this chapter. 

4.2. PROPERTIES OF BRICKS 

The bricks employed in this investigation are lettered from A to G. Bricks A, 13, 

C, and D are clay bricks and were manufactured by Steetly Bricks Limited in 

North Staffordshire. Bricks lettered E and F were manufactured locally. and are 

Scottish clay, Engineering Class A and B respectively. Brick G is a lightweight 

autoclaved aerated concrete (AAC) brick. 

4.2.1. Dimensions 

Determination of dimensions was based on the overall measurement of 

24-bricks placed In contact in a straight line upon a flat (level) surface In 

accordance with BS 3291: fig. 11881. The dimensions for the seven types of bricks 

are as shown in Table 4.1, 

4.2.2. Density 

The density of each brick type has been calculated from a sample of ten units 

and the results are presented In Table 4.2. 



4.2.3. Water Absorption 

4.2.3.1.5-hour boiling test 

Samples of ten bricks were dried In a ventilated oven at 1100C. When cooled, 

they were weighed to an accuracy of 0.1% of the mass of the units and tested 

for 5-hour boiling test in accordance to the procedure outlined In the 

BS 3291: 1974 1881. The results are as shown in Table 4.3. 

4.2.3.2.24-hour cold immersion test 

24-hour cold immersion test were carried out on sample of ten bricks In 

accordance to the procedure given in BS 3291[881. The mean of absorption 

results are calculated to the nearest 0.1% of the dry mass of the units and the 

rate of water absorption for the units are presented graphically in Fig. 4.1. 

4.2.4. Compressive Strength 

Ten samples were taken from brick stock piles in accordance with BS 3291188, 

and tested according to the same specification. The bricks were immersed in 

water for 24 hours at room temperature, and the least bed face area was 

measured to the nearest lmm, 
_ 
before testing for compressive strength. 

Specimens were tested between two 3mm plywood sheets whose linear 

dimensions, length and width were 220mm x 110mm; each sheet was used 

once only. The initial loading was applied at-the rate of 35 Nm M-2min-1, till 

about half the expected maximum load and then reduced approximately to 

15 N MM-2Min-1, until the maximum failure load was reached. The results are 

presented In Tables 4.4 to 4.10. 

4.2.5. Elastic Properties 

There is no recognised test method to determine the elastic modulus of a 

brick unit. This is due to the difficulty of obtaining an accurate reading of the 

strains which are set up in the unit under axial compressive load. This 

difficulty arises due to the geometry of the unit and the pattern of the 

perforations. Some Investigators have overcome this by cutting a test piece 

from a single solid brick such that the ratio of height to width of the test 

piece is large enough that the platen effect would become insignificant, and 

strain readings were taken using strain gauges. This method might be feasible 

provided a test specimen can be cut from a brick unit in the direction In which 

strain measurements are required. Others have tried to measure the strain on 
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a brick unit were the load was applied through wire brushes or frictionless 

pads to compensate for the platen effect. 

However, in this investigation the brick units were all perforated bricks with 

exception of type G (AAC- brick), and a chance of obtaining a test piece large 

enough was slim. In this case a test method was devised so that the elastic 

modulus and Poisson's ratio could be obtained (see Fig. 4.2(a) and (b)). In 

order to eliminate the restraint induced by the platen of the testing machine 

on the test specimen, two other bricks from the same batch were placed on 

the top and underneath the test specimen. No bonding was used between the 

interfaces, and the bed faces of the bricks were machine cut to a high 

standard such that the surfaces were all levelled with each other and were 

highly smooth in order to eliminate the friction as far as possible at the 

interfaces (refer to Fig. 4.2(b)). The purpose of a brick at each end was to 

transfer the load to the middle brick (test specimen) which will be free from 

the restraint caused by the platens of testing machine and because of smooth 

interfaces no friction would be set up, hence allowing the test specimen to 

expand laterally. 

Wire strain gauges; rosette type (see Fig. 4.2(c)) were mounted at the middle 

of each face and the vertical and lateral strain measurements were read at 

each stress level by a Sangamo strain meter. 

The plots of vertical stress-strain, vertical stress-lateral strain and 

vertical-lateral strains are shown in Figs. 4.3 to 4.5 respectively. The values 

obtained for apparent initial tange*nt modulus, apparent secant modulus at 3/4 

of maximum stress and Poisson's ratio based on the linear portion of 

vertical-lateral strains curve are as shown in Table 4.11. 

4.3. PROPERTIES OF MORTARS 

4.3.1. Proportioning and Materials 

Two grades of mortar were used for the construction of the test specimens. 

,A mortar designation M(i); 1: 1/4: 3 Portland cement: lime: sand, mix by volume 

was used for the construction of brickwork types A, B, C, D and E, of which 

the specimens were tested after 28 days. A mortar designation M(111); 1: 1: 6 

rapid hardening cement: lime: sand, mix by volume was used for the 

construction of brickwork types F and G which were tested after 7 days (see 

chapter 5). 

-77- 



Brick Dimensions of 24-bricks (mm) Dimensions of single brick (mm) 

type length width height length width height 

A 5160 2460 1604 215.0 102.5 66.8 
B 5204 2468 1574 216.8 102.8 65.6 
C 5222 2450 1602 217.6 102.1 66.8 
D 5208 2418 1620 217.0 100.8 67.5 
E 5203 2480 1590 216.8 103.3 66.3 
F 5216 2478 1580 217.3 103.3 65.8 
G 1 5165 1 2415 1 1548 1 215.2 1 100.6 64.5 

Table 4.1 - Dimensions of bricks. 

Brick Density (kg M-3 ) 

type dry fully saturated 

A 1843.3 1922.1 
B 1714.2 1757.9 
C 1627.1 1713.7 
D 1383.2 1577.8 
E 1718.7 1835.6 
F 1737.6 1876.7 
G 879.9 1 1433.1 

Table 4.2 - Density of bricks. 

Brick Water absorption (% by weight) 

type 5-hrs. boiling test 24-hrs. cold immersion test 

A 4.28 2.98 
B 2.55 2.54 
C 5.32 4.42 
D 14.07 11.47 
E 6.81 6.04 
F 8.01 7.61 - 
G 62.87 24.11 

Table 4.3 - Water absorption of bricks. 
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Fig. 4.1 - Water absorption rate of bricks. 

-79- 



Brick Di ension (mm) Least Ult., Comp. 
Ref. Top b ed Botto m bed bedýarea load strength 
No. length width length width (mm 2) (kN) (N MM-2) 

A1 215.0 102.5 215.0 101.0 21715.00 1830 84.27 
A2 215.0 101.5 215.0 102.5 21771.75 1960 90.02 
A3 215.0 102.0 215.0 102.0 21930.00 1910 87.10 
A4 215.0 102.0 215.0 101.0 21715.00 2050 94.40 
A5 213.0 101.0 213.0 101.0 21513.00 1890 87.85 
A6 214.0 102.0 214.0 100.0 21400.00 1960 91.59 
A7 215.0 101.0 213.5 102.5 21715.00 1880 86.58 
A8 213.0 102.0 215.0 101.0 21715.00 2070 95.33 
A9 214.0 102.0 215.0 100.0 21500.00 1840 85.58 
A10 215.0 102.5 214.0 101.0 21614.00 2120 1 98.08 

Mean 214-35 101-85 214.45 101: 20 21658.88 1951.0 90.08 
Sd 0.82 0.53 

. 
0.76 0.89 154.34 100.0 4.63 

CV(%) 1 0.38 1 0.52 1 0.36 1 0.88 1 0.71 1 5.1 5.10 

Table 4.4 - Physical properties-of brick type A. 

Brick Dimension (mm) Least Ult. Comp. 
Ref. Top b ed Bottom bed bed area load strength 

-2 No. length width length width (mm 2) (kN) ) (N MM 

B1 216.0 102.0 217.0 101.0 21917.00 1790 81.67 
B2 216.0 103.0 215.0 103.0 22145.00 1980 89.41 
B3 217.0 101.0 217.0 101.0 21917.00 1770 80.76 
B4 215.0 101.0 215.0 100.0 21500.00 1830 85.12 
B5 213.0 102.0 214.0 102.0 21726.00 1785 82.16 
B6 215.0 103.0 216.0 102.0 22032.00 1745 79.20 
B7 214.0 101.0 215.0 101.0 21614.00 1835 84.90 
B8 216.0 101.0 216.0 101.0 21816.00 1722 78.93 
B9 214.0 101.0 215.0 101.0 21614.00 1785 82.59 
B10 216.0 102.0 1217.0 102.0 22032.00 1779 80.75- 

Mean 215-20 101-70 215.70 101.40 21831.30 1802.1 82-55 
Sd 1.23 0.82 1.06 0.84 213.22 71.0 3.18 
CV(%) 0.57 81 0.49 0.83 0.98 3.9 1 3.85 

Table 4.5 - Physical properties of brick type B. 
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Brick Dimension (mm) Least Ult. Comp. 
Ref. Top ed Botto m bed 

' 
bed area load strength 

No. -length width length width (mm 2) (kN) (NMM-2) 

C1 218.0 102.0 218.0 102.0 22236.00 1340 60.26 
C2 220.0 102.0 218.0 102.0 22236.00 1325 59.59 
C3 218.0 102.0 219.0 101.0 22119.00 1450 65.55 
C4 219.0 102.0 219.0 101.0 22119.00 1255 56.74 
C5 217.0 102.0 220.0 102.0 22134.00 1380 62.35 
C6 218.0 101.0 219.0 101.0 22018.00 1565 71.08 
C7 220.0 102.0 219.0 102.0 22338.00 1290 57.75 
C8 216.0 102.0 216.0 101.0 21816.00 1410 64.63 
C9 216.0 101.0 216.0 101.0 21816.00 1450 66.46 
C10 216.0 101.0 216.0 101.0 21816.00 1310 1 60.05 

Mean 217.80 101.70 218-00 101.40 22064.80 1377.5 62.45 
Sd 1.55 0.48 1.49 0.52 192.01 93.1 4.45 
CV(%) 0.71 1 0.47 1 ý_ 0.68 t 0.51 I 0.87 I 6.76 I 7.13 

_j 

Table 4.6 - Physical properties of brick type C. 

Brick Dimension (mm) Least Ult. Comp. 
Ref. Top b ed Botto m bed bed area load strength 
No. length width length width (mm") (kN) (N MM 2) 

D1 217.0 100.0 220.0 100.0 21700.00 515.0 23.73 
D2 218.0 100.0 218.0 101.0 21800-00 660.0 30.28 
D3 218.0 100.0 217.0 101.0 21800.00 580.0 26-61 
D4 216.0 99.0 215.0 100.0 21384.00 655.0 30.63 
D5 218.0 99.0 217.0 101.0 21582.00 650.0 30.12 
D6 218.0 100.0 217.0 101.0 21800.00 630.0 28.90 
D7 218.0 101.0 217.0 100.0 21700-00 520.0 23.96 
D8 219.0 99.0 218.0 99.0 21582.00 560.0 25.95 
D9 218.0 100.0 218.0 99.0 21582.00 670.0 31.04 
D10 218.0 100.0 1215.0 101.0 21715.00 800.0 36.84 

Mean 217.80 99.80 217.20 100.30 21664.50 624.0 28.81 
Sd 0.79 0.63 1.48 0.82 133.02 84.8 3.93 
CV(%) 0.36 0.63 0.68 0.82 0.61 1 13.6 1 13.64___ 

Table 4.7 - Physical properties of brick type D. 
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Brick Dimension (mm) Least Ult. Comp. 
Ref. _ Top ed Botto m bed 

' 
bed area load strength 

No. -length width length width (mm 2) (kN) (NMM-2) 

E1 215.0 101.5 215.0 102.0 21822.50 2090 95.77 
E2 215.5 101.0 214.5 101.0 21644.50 1990 91-86 
E3 215.0 102.0 214.5 102.0 21879.00 2155 98.50 
E4 214.0 100.5 214.0 101.0 21507.00 2020 93.92 
E5 215.0 101.0 215.5 100.5 21657.75 2130 98-35 
E6 215.0 100.5 215.0 101.0 21607.50 1930 89.32 
E7 214.0 101.0 214.0 101.0 21614.00 2045 94.61 
E8 215.0 102.0 214.0 101.0 21614.00 1775 -82.12 
E9 215.0 101.0 215.0 101.0 21715.00 1840 84.73 
E10 215.0 100.0 215.0 100.0 21500.00 2040 1 94.88 

Mean 214.85 101.05 214.65 101.05 2165613 2001.5 92.41 
Sd 0.42 0.64 0.53 0.60 121.79 122.1 5.49 
CV(%) 1 0.20 1 0.64 0.25 1 0.59 0.56 6.1 5.94 

Table 4.8 - Physical properties of brick type E. 

Brick Dimension (mm) Least Ult. Comp. 
Ref. ToD b d, Bottom bed bed area load strength 
No. length _ width length 1 width (mmz) (kN). (N MM-2) 

F1 217.0 102.0 217.0 103.0 22134.00 1735 78.39 
F2 217.0 102.0 217.0 102.0 22134.00 1640 74.09 
F3 216.0 102.0 216.0 102.0 22032.00 1702 77.25 
F4 218.0 102.5 218.0 102.5 22345.00 1782 79.75 
F5 216.0 102.5 218.0 103.0 22140.00 1785 80.62 
F6 215.0 101.5 215.0 101.5 21822.50 1960 89.82 
F7 215.0 101.5 215.0 102.0 21822.50 2080 95.31 
F8 216.0 101.0 215.0 101.0 21715.00 1840 84.73 
F9 216.0 101.5 217.0 101.5 21924.00 1780 81.19 
F10 215.0 102.5 215.0 102.5 22037.50 1700 77.14 

Mean 216.10 101.90 216-30 102.10 22010.66 1800.4 81.83 

Sd 0.99 0.52 1.25 0.66 190.28 131.6 6.45 

CV(%) 0.46 1 0.51 1 0.58 0.64 1 0.86 1 7.31 7.89 

Table 4.9 - Physical properties of brick type F. 
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Brick Dimension (mm) Least Ult. Comp. 
Ref. Top ed Botto m bed bed area load strength 
No. length width length width (MM2) (kN) (NMM-2) 

G1 212.0 98.0 212.0 98.0 20776.00 80.0 3.85 
G2 212.0 100.5 215. Oz 100.0 21306.00 90.0 4.22 
G3 213.5 99.0 214.0 99.0 21136.50 103.0 4.87 
G4 214.0 98.0 214.0 98.0 20972.00 93.0 4.43 
a5 214.0 98.0 213.0 98.0 20874.00 92.5 4.43 
06 216.0 99.0 215.0 99.0 21285.00 94.0 4.42 
G7 214.0 99.0 213.0 99.0 21087.00 98.5 4.67 
G8 214.0 98.0 213.0 98.0 20874.00 99.5 4.77 
G9 213.0 100.0 213.0 100.0 21300.00 97.5 4.58 
G10 213.0 98.0 213.0 98.0 20874.00 92.0 1 4.41 

Mean 213.55 98.75 213.50 98.70 21047.45 94.0 4.47 
Sd 1.17 0.92 0.97 0.82 203.23 6.35 0.30 
CV(%) 0.55 1 0.93 1 0.46 1 0.83 0.97 6.76 6.86 

Table 4.10 - Physical properties of brick type G. 

Brick fb Init. tangent Secant modulus at Poisson's 
type modulus 3/4 of max. stress ratio 

(Nmm -2 (kNmm 2 (kNMM-2 

A 90.08 84.850 89.184 0.13 
B 82.55 85.304 89.211 0.16 
C 62.45 67.945 72.108 0.12 
D 28.81 47.935 51.820 0.15 
E 92 1 41 65.383 64.548 0.12 

Table 4.11 Elastic- properties of brick units. 
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4.3.1.1. Sand 

Local Scottish building sand was used throughout the investigation. It was said 

to be suitable for construction of unreinforced brickwork masonry. The grading 

of the sand is shown in Table 4.12 and illustrated In Fig. 4.6. It was carried out 

in accordance with the procedure laid in BS 120018011. The grading of the sand 

was found to lie within the limits proposed by BS 1200: table 11891 for type S 

and G sand. 

4.3.1.2. Cement 

Ordinary Portland cement (Scottish Blue Circle) was used for the - mortar 

designation M(l), which was found to be in accordance with the requirements 

of 13S 121901. 

Rapid hardening cement conforming to BS 121901 was used for the mortar 

designation M(iii) where higher earIV strength was required. 

43.1.3. Lime 

White powdered high quality hydrated lime, (Limbux) manufactured by ICI, with 

96.5% calcium hydroxide was used throughout in all batches of mortar. It was 

found to be in accordance with the requirements of BS 8901911. 

4.3.2. Density 

Density was calculated for the designation M(l) and M(ii! ) from the mortar 

cubes. The results are presented In Table 4.13. 

4.3.3. Compressive Strength 

102mm mortar cubes were made and cured hydraulically In accordance with 

the procedures given in BS 5628111 and BS 4551 1921 for each mortar grade. In 

the case of mortar designation M(i) half of the test cubes were tested at the 

age of 7 days and the other half at the age of 28 days. The results are as 

shown In Table 4.14, and are found to comply with the requirements given in 

BS 5628: table 1111. 

43.4. Elastic Properties 

152mm cubes were cast for mortar designation M(i) and M(iii) for the purpose 

of strain readings. The constituent materials were the same as before for the 

two mortar grades. The axial and lateral strains were measured on the centre 
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lines of four faces of the cubes usirg 100mm Demec gauge with gauge 

constant of 1.61x1O-5. 

The plots of vertical stress-strain, vertical stress-lateral strain and 

vertical-lateral strains for the two mortar designations are as shown In 

Figs. 4.7 to 4.9 respectively. The apparent initial tangent modulus, apparent 

secant modulus at 3/4 maximum stress and Poisson's ratio based on the linear 

portion of vertical-lateral strains curve are presented in Table 4.15. 

4.4. PROPERTIES OF BRICKWORK MASONRY 

Brickwork masonry specimens constructed using brick types A, B, C, D and E 

with mortar grade M(i) are designated as brickwork types A, B, C, D and E 

respectively, and those constructed using brick types F and G with mortar 

grade M(ili) are designated as brickwork types F and G respectively. 

4.4.1. Dimensions 

All the specimens were three stretchers in length, eight courses high and 

either single leaf or bonded with nominal dimensions; 665mm In length, 

590mm in height and either 102.5mm or 215. Omm in thickness. 

4.4.2. Density 

The density of the brickwork masonry was calculated based on at least 40 test 

specimens. Each specimen was weighed and the dimensions were measured 

accurately. The resulting densities for brickwork are presented in Table 4.16. 

4.4.3. Compressive Strength 

To obtain the compressive strength of the brickwork masonry two Identical 

test panels with nominal dimensions 590mm in height, 665mm in length and 

102.5mm in thickness were tested under uniform axial compression for 

brickwork types A, B, C, D and E. Four specimens of brickwork type F were 

tested for each of the two thickness; 102.5mm and 215. Omm. In the case of 

brickwork type 0 (AAC brickwork), ten specimens were tested for each 

thickness. 

These control specimens were 
, 

built by the same bricklayer under the same 

conditions as the rest of the test specimens. The results of these control 

specimen tests are summarized In Table 4.17, and detailed results are 

presented In chapter 5. 
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as sieve 
No. 

Sieve aperture 
(mm) 

%passing 
(by wt. ) 

3/16* 5.000 99.83 
7 2.360 98.73 
14 1.180 96.69 
25 0.600 92.75 
52 0.300 35.68 

100 0.150 5.01 
200 0.075 0.89 

Table 4.12 - Sieve analysis of the sand. 
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Fig. 4.6 - Grading curve for mortar sand. 
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Mortar Age No. of Density (kgm-3) Sd cv 

designation 
(days) 

samples 
average maximum minimum (kgm-3) 

M(i), 7 30 2082.50 2107.98 '. 2040.13 19.80 0.95 
M01 28 30 2085.27 2148.49 2044.84 21.90 1.05 
M(i), 28 29 2159.74 2205.00 2126.00 22.12 1.02 
M(iii)3 7 184 12031.29 2078.62 1868.85 43.28 2.13 

mortar used for the construction of brickwork types A, B, C&D. 

mortar used for the construction of brickwork type E. 

mortar used for the construction of brickwork types F&G. 

Table 4.13 - Density of mortars. 

Mortar Age at No. of fm Sd cv fm from 

designation test 
(days) 

samples 
(Nmm -2 (Nmm -2 M) 

BS 5628: tab. 1 
(NMM-2 

MW 1 7 30 12.24 1.84 15.02 10.7 4 

M(i), 28 30 17.61 2.23 12.66 16.0 
M(i)2 28 29 27.42 3.25 11.86 16.0 
M(iii)3 7 84 1 4.21 1.08 25.60 3.65 

1 mortar used for the construction of brickwork types k 8, C& D- 

2 mortar used for the construction of brickwork type E. 

3 mortar used for the construction of brickwork types F&G. 

4 suggested strength at 7-days is 2/3 of strength at 28-days. 

5 equivalent strength at 28-days. 

For more detailed results refer to Tables 5.4 to 5.7. 

Table 4.14 - Compressive strength of mortar cubes. 

Mortar Age at Init. tangent Secant modulus at 
' 

Poisson's 
designation test modulus max. stress 3/4 of ratio 

(days) (kNMM-2) (kNMM-2 

M 0) 28- 44.513 17.725 0.30 
M(iii) 7 1.480 1.303 0.10 

Table 4.15 - Elastic constants for mortar grade M(i) and WHO. 
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Fig. 4.7 - Vertical stress-strain relationship for mortar 
designations M(l) and M(iii). 
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4.4.4. Characteristic Compressive Strength 

The characteristic compressive strengths of masonry, fk, have been obtained 

from Table 2.12, section 2.5, for clay units depending on the thickness of the 

test specimen, mortar mix and the crushing strength of the brick units. In the 

case of of AAC brick, since Table 2.12 does not represent concrete bricks, the 

fk values for the two thicknesses have been calculated based on the method 

outlined in Appendix I. I. The results are as shown in Table 4.18 together with 

the values given for fk in BS 5628: table 2(a)111 for comparison. 

4.4.5. Elastic Properties 

Specimens with nominal dimensions 665mm in length, 590mm in length and 
102.5mm In thickness were utilized for the strain measurements. Three axial 
strain readings were taken on each side of the specimen; In the middle and 
near the ends using 121n Demec gauge with gauge constant of 6.66xl 0-6 for 
brickwork types A, B, C, D, E and F. The plots of axial stress-strain 
relationships are presented In Fig. 4.10. 

Two lateral strain readings were taken on each side of the specimen in the 

middle two courses using 241n Demec gauge with a gauge constant of 

3.33x1O_6 for brickwork types A, B, C, D, E and F. The vertical stress-lateral 

strain and vertical-lateral strains relationships are graphically presented in 

Figs. 4.11 and 4.12. The values obtained for apparent initial tangent modulus, 

apparentsecant modulus at 3/4 of maximum stress and Poisson's ratio based 

on the linear portion of lateral-vertical strains curve are as shown in 

Table 4.19. 

4.5. DISCUSSION AND CONCLUSION 

The physical properties of bricks, mortars and brickwork used in this 
investigation has been documented in this chapter. Ideally the most accurate 

method of determining the deformation constants Is to measure the stress 

and the corresponding strain at a point within the specimens. This has been 

found to be difficult In practice. 

Results of experimental investigations on elastic modulus and Poisson's ratio 

of brick units are limited. But the elastic modulus of brickwork have been 

studied by number of investigators and suggestions have been made that the 

elastic modulus of masonry Is approximately 700 to 1000 times Its 

characteristic strength. 
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Brickwork 
type 

Brickwork 
dons *t ý' Y, 
(kg m) 

Sd 

(kgm-') 

Cv 

(%) 

A 2168.29 20.85 0.96 
B 1981.85 22.66 1.14 
C 1931.63 23.01 1.19 
D 1687.46 20.59 1.22 
E 2110.09 29.69 1.41 
F 2040.77 23.72 1.16 
G 1 1093.03 1 49.35 4.51 

Table 4.16 - Density of brickwork masonry. 

Brickwork 
type 

t 

(mm) 

Mortar 
designation 

fm fb 

(NMM-2 ) (Nmm-2) 

Mean b. w. 
comp. 

_strength (Nmm 2) 

A 102.5 M(i) 17.61 90.08 31.42 
B 102.5 M(i) 17.61 82.55 27.91 
C 102.5 M(i) 17.61 62.45 17.50 
D 102.5 M(i) 17.61 28.81 13.63 
E 102.5 M(i) 27.42 92.41 31.90 
F 102.5 M(iii) 4.21 81.83 15.22 
F 215.0 M(iii) 4.21 81.83 12.26 
G 102.5 M(iii) 4.21 4.47 2.17 
G 215.0 M(Iii) 4.21 4.47 2.04 

Note: full detailed results in chapter 5, Table 5.8. 

Table 4.17 - Compressive strength of brickwork masonry 
under uniform load. 
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Brickwork 
type 

t 

(m M) 

Mortar 
designation 

fb 

(NmM-2) 

fk 

(NMM-2) 

fk 
BS 5628 
(NmM-2) 

A 102.5 M(i) 90.08 19.50 25.7 
B 102.5 M(i) 82.55 18.60 24.4 
C 102.5 M(i) 62.45 16.00 20.2 
D 102.5 M(i) 28.81 10.60 11.0 
E 102.5 M(i) 92.41 19.70 26.2 
F 102.5 M(iii) 81.83 14.60 16.1 
F 215.0 M(iii) 81.83 9.70 14.0 
G 102.5 M(Iii) 4.47 1.682 2.4 

1G 1215.0 1 M(iii) 1 4.47 1 1.732 1 2.7 

1 fk values from Table 2.12, section 2.5. 
2 fk values calculated according to the method 

outlined in Appendix I. I. 

Table 4.18 - Characteristic compressive strength of brickwork 
masonry specimens. 

Brickwork fk Init. tangent Secant modulus at Poisson's 
type m odulus 3/4 of max. stress ratio 

(NmM-2) (kNmM 2 (kNMM-2) 

A 19.50 9.843 18.648 0.24 
B 18.60 11.088 14.571 0.10 
C 16.00 17.368 15.212 0.14 
D 10.60 9.480 9.299 0.10 
E 19.70 31.274 22.219 0.18 
IF 14.60 21.949 11.287 0.20 

Table 4.19 - Elastic properties of brickwork masonry. 
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Fig. 4.10 - Vertical stress-strain relationship for 
brickwork masonry specimens. 
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Fig. 4.11 - Vertical stress-lateral strain relationship for 
brickwork masonry specimens. 

-99- 



URTICUL -. L4 TFAM STA41NS RRU T1OXShr1F 
OF PWICAWAr SP-MMMS 

12.0- 

10.0 

fItIII Brickwork C 

9.0- 

Brickwork P 

8.0 

7.0- 

Brickwork D 

6.0- 

04 

-P4 
td 
$. 4 

5.0 

4.0- Brickwork A 

,4 
3.0 

2.0 
c ork Brickwork B 

1.0- 

0.0 , 0.0 1ý. O 3.0 6.0 9.0 lio 

Vertical Strain x10-4 

Fig. 4.12 - Vertical-lateral strains relationship for 
brickwork masonry specimens. 

-100- 



The vertical stress-strain relationship for brickwork in compression to failure 

has been determined by Powell and Hodgkinson 1931. The stress was related to 

the strain on a dimensionless basis in a parabolic form. Even though there 

was some variation of results between specimens of the same materials, it 

was found to be in good agreement with the results reported by Turnsek and 
(941 Cacovic 

Sinha and PedreschiI951 investigated the elastic properties of brickwork prisms 

in three directions. It was concluded that the modulus of elasticity of 

brickwork Increases with increase in compressive strength of brickwork (om), 

and the results yielded a relationship in the form: 

E= 1180 crmO. 83 (4.1) 

Warren and Lenczner'961 have proposed the following formula for elastic 

modulus of brickwork for bricks laid in mortar designation M(i); 

E=(5.171 fbo*5 - 19.158 )X103 (4.2) 

Ameny et al 
[971 

were able to predict the elastic deformation of masonry from 

the characteristics of the component unit and mortar. To investigate the 

elastic properties of bricks; (dry pressed giant units that are specifically 
designed for use in reinforced masonry with dimensions 390x19Ox9Omm) small 

specimens 35x35x9Omm were cut from the whole brick. Strains were 

registered using foil-type strain gauges. The stress-strain curves were found 

to have an initial linear portion and had a definite indication of 

non-homogeneity. Poisson's ratio was calculated In the linear stress-strain 

range resulting in values between 0.07 to 0.14. The stress-strain curves for 

mortar cylinders (76mm diameter x 152mm) were found to be non-linear. The 

non-linearity changed for different mortar grades. Poisson's ratio was shown 

to increase with applied stress. The stress-strain curves for masonry prisms 

had an Initial linear portion, with subsequent non-linear behaviour to failure. It 

was shown that with weaker mortars the elastic modulus of masonry will be 

highly affected by the type of units. Also, depending on the kind of unit used, 

the mortar type may significantly affect the masonry elastic modulus. It was 

concluded that the simple theoretical models can give reasonable estimates of 

the short term deformation of brickwork. 
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However, it is evident from Figs. 4.3,4.7 and 4.10 that the deformation 

characteristics are non-linear for brickwork and its constituent materials. The 

vertical stress-strain curves are found to have a initial linear portion. In the 

case of brick units the gradient of the curves increases with level of stressing. 
Whereas In the case of mortars the gradients decreases with applied load. This 

is also true for brickwork masonry types C, D, E and F. However, brickwork 

types A and B show the same behaviour as the brick units which might be 

due to the properties of the units. 

Figs. 4.4,4.8 and 4.11 are the plots of vertical stress-lateral strain under axial 

compressive load for brick units, mortar grades and brickwork respectively. 

Again there is an initial Unear portion with subsequent non-linearity with 

increasing level of stress. 

Figs. 4.5,4.9 and 4.12 shows the plots of vertical-lateral strains under axial 

compressive load. Again there is an initial linear portion and the Poisson's 

ratio increases with the level of stressing. This is clearly shown In Fig. 4.5. 

It Is worth mentioning that the shapes of the curves in Fig. 4.9 for mortar 

grade M(iii) and Figs. 4.11 and 4.12 are S shape. This could be explained due 

to the formation of vertical cracks in the specimens, especially in the case of 

brickwork masonry specimens where failure under uniform compressive load is 

by vertical splitting of the specimen. Hence the increase In lateral strain, and 

the shape of curves for vertical stress-lateral strain and lateral-vertical strains. 

The change of gradient actually shows the occurrence of a major crack in the 

specimen. 

The method used for the determination of deformation behaviour of brick units 

In section 4.2.5 does not give actual values for the deformation constants 

because of the non-uniformity of stress at a section in the unit due to the 

presence of perforations. Since the holes do not transfer stress, stress 

concentrations are set up around the perforations. Therefore, it is accepted by 

the author that the values given in Tables 4.11,4.15 and 4.19 are apparent 

values for the elastic properties of brickwork masonry and its component, 

brick unit and mortar. 

Table 4.17 gives the mean brickwork masonry compressive strength under 

uniform load, fmm, obtained experimentally and Table 4.18 contains the values 

for the characteristic compressive strength of brickwork masonry, fk, 

determined from Table 2.12 In section 2.5. To compare the experimental 
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results with the results obtained from the collected wall test results reported 

In chapter 2, Table 4.20 has been constructed. From the two methods of 

analysis covered in sections 2.4.4.1 and 2.4.4.2 It Is possible to work out the 

values for fmm and fk from equations 2.15 and 2.16 (in chapter2) and 

comparison could be made between the values of fmm by the two statistical 

method of analysis and the experimental values. Comparison could also be 

made for the values Of fk obtained from the results in sections 2.4.4.1,2.4.4.2, 

2.5 and the code values. 

As Table 4.20 shows that there exists good agreement between the values of 

fmrn determined statistically and the experimental results, which in turn 

endorses the validity of the fk values. Also close agreement could be seen 

between the values Of fk obtained from the three statistical methods of 

analysis. The small difference Is due to the mortar cube strength, as discussed 

in chapter 2. 

Section 2.4.4.1 Section 2.4.4.2 Sect 2.5 Experi. BS 562B 

fb t Mortar fmm fk fmm fk fk fmm fk 

(Nmm-2) (mm) desig. (Nmm-2) (Nmm-2)1 (Nmm-2) (Nmm-2) (Nmm-2) (Nmm-2), (Nmm-2 ) 

90.08 102.5 MO) 30.63 21.21 31.96 20.24 19.50 31.42 25-90 
82.55 102.5 M(i) 29.28 20.27 30.52 19.32 18.60 27.91 24.90 
62.45 102.5 MW 25-35 17.55 26.31 16.66 16.00 17.50 20-10 
28.81 102.5 MW 17.01 11.78 17.45 11.04 10.60 13.63 11.20 
92.41 102.5 MW 31.03 21.49 35.53 22.50 19.70 31.90 27.10 
81.83 102.5 WHO 21.43 14.51 22.55 14.28 14.60 15.22 24.10 
81.83 215.0 M(iii) 13.42 8.23 14.61 9.46 9.70 12.26 21.00 
4.47 102.5 M(iii) 1.68 2.17 2.40 
4.47 215.0 1 WHO 1 1.73 2.04 2.40 

Table 4.20 - Comparison between the values of fmm and fk 
determined experimentally and by the statistical methods of chapter 2. 

-103- 



Chapter 5 

EXPERIMENTAL STUDY: CONCENTRATED LOAD ON BRICKWORK 

5.1. INTRODUCTION 

The full-scale tests carried out investigate the bearing strength of brickwork 

wallettes when subjected to concentrated loading through mild steel bearing 

plates at various positions along the wall. The investigation covered the effect 

of loaded area ratio, edge distance, loading position and configurations, wall 

thickness, effective length of wall, brick unit and mortar strengths. 

The construction, curing, preparation of test specimens and the method of 

testing together with the test programm& and the results are documented in 

this chapter. 

5.2. CONSTRUCTION OF BRICKWORK SPECIMENS 

5.2.1. Construction of Brickwork Wallettes 

The wallettes were constructed in Old English or stretcher bond and were 

three stretchers long and eight courses high. Seven strengths of bricks and 

two mortar grades (refer to section 4.2 and 4.3) were used to built the 

wallettes. The nominal dimensions were; 665mm in length, 590mm in height; 

some were 102.5mm and some 215-Omm in thickness. Mortar beds were 10mm 

and all perpends and bed joints were completely filled with mortar. 

The wallettes were constructed on a flat surface by an experienced bricklayer, 

who checked mortar bed thickness using a graduated batten, and who 

plumbed and levelled the wallettes. Wallettes were left undisturbed after 

construction to cure In the laboratory. 

In all, 300 brickwork wallettes were constructed for the investigation under 

concentrated loading, and the details are as shown in Table 5.1. 

5.2.2. Construction of Brickwork Control Specimens 

Apart from the 300 test specimens outlined In previous section, 38 auxilary 

control specimens were built and tested under uniform compressive load, 

(refer to Table 5.1) for the determination of their respective wallette 

compressive strength of which the results were reported In section 4.4.3 and 

Table 4.17. More detailed results will be given in section 5.6. These control 



specimens had nominal dimensions 590mrn in height, 665mm in length and 
102.5mm in thickness for brickwork types A to G, constructed from the same 

constituent materials as in their respective wallettes type. In addition for 

brickwork types F and G, control specimens were also constructed in the same 
height and length with 215. Omm thickness. 

No. o 
specimens 

Brick 
type 

Mortar 
designation 

t 
(mm) 

Age at 
test 

40 A M(i) 1 102.5 28 
40 B M(i) 3 102.5 28 
40 C M(i) 3 102.5 28 
40 D M(i) 3 102.5 28 
56 E M(i) 3 102.5 28 
18 F M(iii) 4 102.5 7 
18 F M(iji) 4 215.0 7 
18 0 M(iji) 4 102.5 7 
18 G M(iii) 4 215.0 7 
6 1.5 F M(iii) 4 102.5 7 
6 1,5 G M(iii) 4 102.5 7 
22 A M(i) 3 102.5 28 
22 B M(i) 3 102.5 28 
22 C M(i) 3 102.5 28 
22 D M(i) 3 102.5 28 
22 E M(i) 3 102.5 28 
42 F M(ili) 4 102.5 7 
42 F M(iii) 4 215.0 7 
10 2 G M(iii) 4 102.5 7 

1 10 2 
1GI M(iii) 4 215.0 171 

I Concentrated load applied partially over a limited area 
2 Uniformly distributed load applied over the whole area 
3 Mortar 1: 1/4: 3 Portland cement. lime. sand mix by volume 
4 Mortar 1: 1: 6 rapid hardening cement: lime: sa nd mix by volume 
5 length varied from one stretcher to six stretchers long 

Table 5.1 - Details of the constructed wallette specimens. 

5.3. TESTING EQUIPMENT 

Brick units were crushed between two 3mm thick plywood sheets in a 2.51VIN 

capacity Dennison compression machine. The mortar cubes were tested in a 
21VIN Avery-Denison testing machine. 

The control and test specimens were tested in a 1MN capacity Avery Universal 

compression machine. Load was transmitted by means of the upper platen of 

the compression testing machine, which had a ball seating to allow for the 

possibility of the loading plate being slightly off level. 
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. 
5.4. METHOD OF TESTING 

5.4.1. Preparation of Specimens 

The constructed brickwork specimens were measured, weighed accurately and 

numbered. They were placed on a 25mm thick steel base plate. A 3mm thick 

plywood sheet, which extended 10mm out from each side of the specimen, 

was inserted between the steel base plate and the base of the wallette. The 

top surface was sanded and flattened before placing in the testing machine. 
The wallettes were positioned in the testing machine such that the centre of 

the upper platen coincided with the centre point of the bearing plate ensuring 
that the load would be applied axially. 

In the case of control specimens, uniform load was transmitted through a 

150mm thick steel plate (thought to be sufficiently rigid as to ensure uniform 

loading) covering the entire cross-sectional area. In the case of test 

specimens, concentrated load was applied partially to the surface of the 

brickwork specimens via a 25mm thick steel bearing plate. 

The steel bearing plates were mounted on top of the brickwork specimens, 

using freshly made dental plaster. Before the plaster was set, a small 

increment of load was applied to the bearing plate by means of the upper 

platen of the testing machine to level the bearing plate and fill up the pores 

beneath the bearing plate. It also ensured an even bedding for the bearing 

plates on the top surface of the brickwork specimens. This was thought to be 

necessary, since stress concentrations would occur if the specimen was not 

perfectly level, and also it would hold the bearing plates in position. Then the 

load was released and the specimen was left for few minutes allowing the 

plaster to dry before the testing commenced. 

5.4.2. Loading Conditions 

in general one distinct loading configuration was Investigated. This was strip 

loading, where the load was applied partialIV over a limited area of a wall 

covering its entire thickness. This in turn was applied concentricalIV or 

eccentrIcalIV with respect to the centre of the wall in the longitudinal 

direction. The concentric partial case is termed central strip loading and 

eccentric case is either intermediate strip (where the load is applied at quarter 
point of the length of the wallettes) or and strip loading (where the load Is 

applied at the end of the wallette), see Fig. 5.1. 
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In the earlier work 1671 the results of which are presented in Appendix 11.1, in 

addition to strip loading, edge or patch loading configurations, where 

concentrated Joad is applied partially over an area of wall eccentrically in the 

direction normal to the longitudinal direction, were also investigated 

experimentally. These in turn were applied concentrically or eccentrically with 

respect to the centre of the wall in the longitudinal direction as shown in 

Fig. 5.2. 

d 

Central 

Intermediate 

End t 

1/6 warlell; 1/8 2 5,3 3 3,4,16.5 0.6 33,6 6 6.10,13 3,2 0 

Fig. 5.1 - Strip loading configuration. 

d 

Central t 
b 

Intermediate t 
b 

di 

End 

1/& 2.96, t/b vorles; 11b 1.34,2.05,4.3 

Fig. 5.2 - Edge loading configuration. 
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5.4.3. Rate of Loading 

BS 3921: 19741881 recommends a rate of loading of up to 35 NMM-2Min-1 

initially for brick units. When half the expected maximum load has been 

reached this loading rate should be reduced to 15 N MM-2Min-1 and 

maintained until the maximum failure load is reached. In the foregoing 

experiments the units were crushed under uniform load at the rate of 

15 N MM-2Min-1 throughout. 

13S 455 1: 19,90[92 1 recommends that the rate of loading for the determination of 

compressive strength of mortar cubes be within the range 0.03 to 

0.1 Nmm -2sec-1, until failure occurs. This procedure were adopted during the 

testing of mortar cubes. 

BS 5628: Part 1: 1978111 recommends a rate of loading of 1N MM-2 min-' for 

brickwork test panels under uniform load. This loading rate was applied to the 

control specimens which were tested under uniform compressive load. 

However, since this loading rate was difficult to attain in practice under 

concentrated load, the maximum loading rate in this case was set to 

15 N MM-2Min-1. The practical range reached during the testing was from 2.5 

to 14 Nm M-2M in-'. The loading rate for each particular case is presented in 

the tables of results in section 5.6. 

5.4.4. Bearing Plates 

Dimensions of bearing plates used through this investigation (see Table 5.2) 

are referred to as type I to X1. Bearing plates with reference number XII to XX 

are those used in the earlier investigation by the author 1671 and Professor 

Hendry. 

Bearing plates I to Vi corresponds to Ar equal to 0.05,0.10,0.15,0.20,0.30 and 

0.40 respectively with respect to the nominal cross-sectional area of the test 

specimens, 102.5mm in thickness. Bearing plates VII, VIII and IX correspond to 

Ar equal to 0.05,0.10 and 0.15 respectively with respect to the nominal 

cross-sectional area of test specimens 215. Omm in thickness. 

All the bearing plates were mild steef, 25mm thick plate machine cut to the 

required dimensions. They were considered to be rigid enough to transmit the 

load, due to their respective dimensions. 
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. 
5.5. TEST PROGRAMME 

A summary of the test programme is presented in Table 5.3. Brickwork types 

A, B, C and D were utilized to study the effect of brick unit strength and 

percentage of area loaded on the compressive strengths of brickwork wallettes 

102.5mm in thickness under central strip concentrated load. 

Brickwork type E was utilized to study the effect of edge distance using three 

loading positions; central intermediate and end strip loading, for various ratios 

of loaded areas. 

Brickwork types F and G were utilized to do a comparative study on the effect 

of type of brick unit and the thickness of specimens and their influence on the 

compressive strength of masonry under central, intermediate and end strip 

concentrated load. 

5.6. TEST RESULTS 

The results of tests on the crushing strength of brick units and other physical 

properties are covered in section 4.2. 

The results of mortar cubes tested for the determination of mortar cube 

strength designations M(I) and M(M) at the ages of 7 and 28 days are 

presented in Tables 5.4 to 5.7, and the summary is as shown in Table 4.14. 

The results of tests on the crushing strength of brickwork control specimens 

are presented in Table 5.8. In the case o'f brickwork types A to F inclusive the 

characteristic compressive strength, fk, have been determined from Table 2.12, 

section 2.5, whereas in the case of brickwork type G (AAC brickwork) the fk 

has been determined from the method outlined in Appendix I. I. 

The results of tests on brickwork specimens 102.5mm in thickness under 

central strip load with loaded area ratios of 0.1,0.2,0.3 and 0.4 for brickwork 

types A, B, C, D are as shown in Tables 5.9,5.10,5.11 and 5.12 respectively. 
Table 5.13 presents the results of tests on brickwork type E under central strip 

concentrated load for loaded area ratio of 0.05. The results of tests on 

brickwork type E, 102.5mm in thickness, for loaded area ratios of 0.05,0.10, 

0.15,0.20,0.30 and 0.40 under intermediate strip and end strip concentrated 

load are as shown in Tables 5.14 and 5.15 respectively. The results of tests 

under central, intermediate and end strip concentrated load, for brickwork 

types F and G, for thicknesses of 102.5 and 215. Omm are presented in 
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Tables 5.16 and 5.17. The results of tests on 102.5mm thick brickwork types F 

and 0 under central strip concentrated load with the length of the specimen 

as a variable for two sizes of bearing plates are as shown in Table 5.18. In 
each case the enhancement factor, (r. - fcb/fk) and the ratio of cracking load 

to the ultimate load at failure, (Fr , Fc/Fu) have been calculated and are as 

shown in Tables 5.9 to 5.18. 

Plate 
R f 

Dimension of bearing plate (mm) 
e . No. length b,, -eadA thickness 

(a) (b) (c) 

1 33.2 102.5 25.0 
11 66.5 102.5 25.0 
111 99.7 102.5 25.0 
IV 133.0 102.5 25.0 
V 199.5 102.5 25.0 
VI 266.0 102.5 25.0 
vil 33.2 215.0 25.0 
Vill 66.5 215.0 25.0 
Ix 99.7 215.0 25.0 
x 100.0 102.5 25.0 
X1 225.0 100.0 25.0 
xil 2 215.0 50.0 25.0 
xill 2 215.0 105.0 25.0 
XIV 2 215.0 160.0 25.0 
xv 50.0 215.0 25.0 
xvi 105.0 215.0 25.0 
xvil 160.0 215.0 25.0 
xvill 50.0 102.5 25.0 
xIx 105.0 102.5 25.0 
xx 1 160.0 102.5 25.0 

1 Strip loading 
2 Edge loading 

Table 5.2 - Dimensions of bearing plates. 
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Loading type and t Mortar fb Ik Ar 1/a t/b d/I n 
configuration (mm) desig. 2 1Nmm ) 2 (Nmm 

Central Strip 1025 M (i) 90.04 1950 010 1000 1ý0 0.500 10 
020 5,0 10 
0.30 3.3 10 
040 25 10 

82-55 18-60 0.10 100 10 
020 50 10 
0,30 3.3 10 
0.40 2.5 10 

62.45 16-00 0.1o 10.0 10 
020 50 10 
010 33 10 
0.40 2.5 10 

28.80 10-60 0.10 10.0 10 
020 
030 

5.0 10 
10 3.3 

0.40 25 10 
-is - , 

92.40 1960 
ý 

0,05 200 5 
M(iii) 81.83 14.60 005 200 - -7-- 

0,10 100 2 
0.15 66 2 

4.47 1.68 0.05 200 
0.10 100 2 
0.15 66 2 

215.0 Wit) 81.83 9.70 05 200 . 2 
0.10 100 2 

1 0.15 6.6 2 
4.47 1.73 0.05 200 3 

0 10 10.0 2 
1 015 66 2 

Intermediate Strip 102 5 Mw 92.40 19,60 005 200 1.0 0.250 5 
0 10 10,0 5 

-A)- 
0.15 6.6 5 
0,20 5.0 5 
030 33 5 
0.40 2.5 5 

NA(iii) 81.83 14-60 0.05 200 2 
0.10 100 2 
0.15 6.6 2 

1.68 ý 0.0 MO 2 
0 10 10.0 2 
0.15 6.6 2 

215.0 M(iii) 31.83 9.70 005 200 2 
0.10 10.0 2 
015 66 2 

-Z- 4.47 1.73 005 200 2 
0.10 100 2 
0 15 6.6 2 

End Strip 102.5 M (i) 92.40 19.60 0.05 20.0 1.0 0.025 10 
0.10 100 0050 10 
015 6.6 0075 9 
020 5.0 0.100 10 
0,30 3.3 0 150 5 
0.40 2.5 0200 1 

M011) 81.83 14.60 0.05 
.0 

0025 3 
0.10 10.0 0050 2 

6.6 1 0075 2 
4.47 1.68 20.0 0,025 2 

100 0,050 1 2 
015 1 66 0.075 2 

215.0 M(iii) 81.83 9.70 0.05 200 0.025 2 
0.10 10.0 0.050 2 

d - - 
U5 6.6 0.075 2 

-'d : 
Lý 

- 4.47 1.73 - 0.05 -- - 20,0 - 0025 4 
0.10 100 0050 3 
0.15 1 6.6 0.075 1 2 

Table 5.3 - Details of testing programme. 
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Cuba 
ref. 
No. 

Age 
at 
test 
Idays) 

Wet 
weight 

(9m) 

Mortar 
density 

-3) (kgm 

Ultimate 
load 

(kN) 

Compressive 
strength 

(Nmm-2 

M1 8 2234 2105 156 14.99 
M4 7 2266 2135 132 12.69 
M5 7 2220 2092 100 9.61 
M9 7 2196 2069 117 11.25 
M13 7 2216 2088 142 13.65 
M14 7 2197 2070 106 10.19 
M15 7 2199 2072 107 10.28 
MI8 7 2205 2078 167 16-05 
M19 7 2165 2040 108 10.38 
M20 7 2187 2061 127 12.21 
M24 7 2219 2091 98 9.42 
M25 7 2206 2079 115 11.05 
M28 7 2225 2097 105 10.09 
M29 7 2218 2090 107 10.28 
M30 7 2235 2106 127 12.21 
M34 7 2211 2083 144 13.84 
M35 7 2200 2073 146 14.03 
M36 7 2193 2067 133 12.78 
M40 7 2205 2078 143 13.74 
M41 7 2205 2078 138 13.26 
M42 7 2185 2059 129 12.40 
M46 7 2235 2106 157 15-09 
M47 7 2214 2086 97 9.32 
M48 7 2213 2085 125 12.01 
M52 7 2172 2047 115 11.05 
M53 7 2237 2108 134 12.88 
M54 7 2236 2107 157 15.09 
M58 7 2207 2080 128 12.30 
M59 7 2193 2067 127 12.21 
M60 

17 
2205 

1 
2078 135 12.98 

Mean 2082.50 12.24 
Scl 19.74 1.84 
Cv (%) 0.95 15.02 

Mortar l. -1/4: 3 Portland cement: lime: sand mix by volume. 

Cube dimensions - 102xlO2xlO2 mm3. 

BS 5628 - mean compressive strength of preliminary laboratory test 
-2 at the age of 7-days 12/3 of strength at 28-days) is given as 10.7 Nmm 

Table 5.4 - Results of mortar cubes tested after 7-days used for the 
constructions of brickwork typs A, B, C, and D. 

-112- 



Cubs 
ref. 
No. 

Age 
at 
test 
(days) 

Wet 
weight 

(gm) 

Mortar 
density 

-3 (kgm 

Ultimate 
load 

MN) 

Compressive 
strength 

-2 (Nmrn 

*2 28 2236 2107 200 19.22 
*3 28 2280 2148 215 20-67 
*6 28 2224 2096 193 18-55 
*7 28 2249 2119 180 17.30 
*8 28 2249 2119 156 14.99 
M10 28 2213 2085 187 17.97 
M11 28 2237 2108 228 21.91 
M12 28 2194 2067 150 14.42 
M16 28 2183 2057 ISO 14.42 
M17 28 2196 2069 164 15.76 
M21 28 2200 2073 173 16.63 
M22 28 2203 2076 184 17.69 
M23 28 2208 2081 194 18.65 
M26 28 2170 2045 140 13.46 
M27 28 2183 2057 155 14.90 
M31 28 2222 2094 210 20.18 
M32 28 2215 2087 184 17.69 
M33 28 2230 2101 212 20.38 
M37 28 2202 2075 201 19.32 
M38 28 2188 2062 157 15.09 
M39 28 2206 2079 194 18.65 
M43 28 2192 2066 ISO 18.26 
M44 28 2190 2064 175 16-82 
M45 28 2202 2075 190 18.26 
M49 28 2228 2099 172 16.53 
M50 28 2219 2091 146 14.03 
M51 28 2210 2083 185 17.78 
M55 28 2228 2099 213 20.47 
M56 28 2215 2087 190 18.26 
M57 

1 
28 2215 

1 
2087 210 20.18 

Mean 2085.20 17.61 
Scl 21.78 2.23 
cv, 1.04 12.66 

Mortar 1: 1/4: 3 Portland cement: lime: sand mix by volume. 

Cube dimensions - IGNION102 mm 
3- 

BS 5628 - mean compressive strength of preliminary 
-2 laboratory test at the age of 28-days is given as 16.0 Nmrn 

Table 5.5 - Results of mortar cubes tested after 28-daVs used for the 
constructions of brickwork typs A, B, C, and D. 
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Cuba 
ref. 
No. 

Age 
at 
test 
(days) 

Wet 
weight 

(9m) 

Mortar 
density 

-3 (kgm 

Ultimate 
load 

(kN) 

Compressive 
strength 

-2 (Nmm 

ME 1 28 2268 2137 284.0 27-30 
ME 2 28 2285 2153 258.0 24-80 
ME 3 28 2256 2126 290.0 27-87 
ME 4 28 2273 2142 285.5 27.44 
ME 5 28 2305 2172 320.9 30.76 
ME 6 28 2300 2167 342.0 32.87 
ME 7 28 2279 2148 330.0 31.72 
ME 8 28 2299 2166 320.0 30.76 
ME 9 28 2283 2151 345.0 33.16 
ME10 28 2335 2200 270.0 25-95 
ME1 1 28 2328 2194 276.0 26.53 
ME12 28 2301 2168 325.0 31.24 
ME13 28 2304 2171 328.0 31.53 
ME14 28 2289 2157 284.0 27.30 
ME15 28 2256 2126 284.0 27.30 
ME1 6 28 2308 2175 277.0 26.62 
ME17 28 2316 2182 275.0 26.43 
ME18 28 2323 2189 296.0 28.45 
ME19 28 2307 2174 327.0 31.43 
ME20 28 2340 2205 320.0 30.76 
ME21 28 2298 2165 230.0 22-11 
ME22 28 2267 2136 250.0 24-03 
ME23 28 2265 2134 243.0 23.36 
ME24 28 2277 2146 243.0 23-36 
ME25 28 2259 2129 253.0 24.32 
ME26 28 2302 2169 238.0 22.88 
ME27 28 2295 2163 255.0 24-51 
ME28 28 2265 2134 265.0 25.47 
ME29 

, 
28 2283 2151 260.0 24.99 

Mean 2159.74 27.42 
Sd 22.12 3.25 
CV 1.02 11.86 

Mortar 1: 1/4: 3 Portland cement: lime: sand mix by volume. 

Cube dimensions = 102xlO2xlO2 mm3. 

SS 5628 - mean compressive strength of preliminary 
-2 laboratory test at the age of 28-days is given as 16.0 Nmm 

Table 5.6 - Results of mortar cubes tested after 28-days used for the 
constructions of brickwork type E. 
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Cubs 
ref. 
No. 

1 

Age 
at 
test 
(days? 

Wet 
weight 

Igm) 

Mortar 
density 

-3 Jkqm 

Ultimate 
load 

JkN) 

Compressive 
strength 

-2 (Nmm 

MF 1 7 2137 2014 52.0 5.03 
MF 2 7 2122 2000 48.5 4.70 
MF 3 7 2122 2000 49.5 4.80 
MF 4 7 2108 1986 51.0 4.94 
MF 5 7 2122 2000 50.0 4.84 
MF 6 7 2128 2005 49.0 4.75 
MF 7 7 2122 2000 41.0 3.94 
MF 8 7 2141 2018 41.0 3.94 
MF 9 7 2137 2014 42.5 4.08 
MFIO 7 2130 2007 41.5 3.99 
MF11 7 2110 1988 41.5 3.99 
MF12 7 2102 1981 42.5 4.08 
MF1 3 7 2111 1989 51.5 4.99 
MF14 7 2108 1986 50.5 4.89 
MF15 7 2098 1977 49.5 4.80 
MF16 7 2119 1997 49.0 4.75 
MF1 7 7 2095 1974 49.0 4.75 
MF18 7 2111 1989 51.5 4.99 
MF1 9 7 2100 1979 25.0 2.42 
MF20 7 2110 1988 24.0 2.33 
MFZI 7 2100 1979 25.0 2.42 
MF22 7 2088 1968 24.0 2.33 
MF23 7 2098 1977 25.0 2.42 
MF24 7 2100 1979 24.0 2.33 
MF25 7 2134 2011 42.0 4.07 
MF26 7 2146 2022 42.5 4.12 
MF27 7 2130 2007 42.7 4.14 
MF28 7 2136 2013 42.5 4.12 
MF29 7 2152 2028 43.2 4.19 
MF30 7 2149 2025 42.0 4.07 
MF31 7 2141 2018 44.0 4.26 
MF32 7 2136 2013 46.0 4.46 
MF33 7 1972 1858 50.0 4.84 
MF34 7 1960 1847 50.0 4.84 
MF35 7 1968 1854 51.5 4.99 
MF36 7 1971 1857 50.5 4.89 
MF37 7 2136 2013 42.0 4.07 
MF38 7 2127 2004 42.0 4.07 
MF39 7 2137 2014 42.5 4.12 
MF40 7 2125 2002 41.5 4.02 
MF41 7 2130 2007 42.0 4.07 
MF42 7 2130 2007 42.0 4.07 
MF43 7 2180 2054 61.0 5.91 
MF44 7 2167 2042 57.5 5.57 
MF45 7 2163 2038 59.0 5.72 
MF46 7 2179 2053 62.0 6.01 
MF47 7 2144 2020 59.5 5.76 
MF48 7 2172 2047 58.5 5.67 
MF49 7 2159 2034 62.5 6.05 
MF50 7 2169 2044 65.0 6.30 
MF51 7 2162 2037 65.0 6.30 
MF52 7 2168 2043 63.0 6.10 
MF53 7 2153 2029 63.0 6.10 
MF54 7 2162 2037 63.0 6.10 
MF55 7 2170 2045 40.0 3.88 
MF56 7 2156 2032 41.5 4.02 
MF57 7 2146 2022 42.0 4.07 
MF58 7 2159 2034 41.5 4.02 
MF59 7 2164 2039 42.0 4.07 
MF60 7 2160 2035 41.5 4.02 
MF61 7 2182 2056 44.0 4.26 
MF62 7 2184 2058 46.5 4.50 
MF63 7 2140 2017 37.5 3.63 
MF64 7 2146 2022 37.0 3.58 
MF65 7 2163 2038 35.5 3.44 
MF66 7 2163 2038 35.5 3.44 
MF67 7 2140 2017 32.5 3.15 
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MF68 7 2178 2052 42.0 4.07 
MF69 7 2147 2023 33.5 3.25 
MF70 7 2159 2034 45.0 4.36 
MF71 7 2180 2054 33.0 3.20 
MF72 7 2169 2044 43.0 4.17 
MF73 7 2170 2045 46.0 4.46 
MF74 7 2142 2018 42.5 4.12 
MF75 7 2174 2049 44.0 4.26 
MF76 7 2180 2054 43.0 4.17 
MF77 7 2180 2054 43.0 4.17 
MF78 7 2132 2009 45.0 4.36 
MF79 7 2102 1981 25.0 2.42 
MF80 7 2088 1968 20.0 1.94 
MF81 7 2086 1966 22.0 2.13 
MF82 7 2087 1967 24.0 2.33 
MF83 7 2122 2000 22.0 2.13 
MF84 17 2104 1983 20.0 1.94 

Mean 2031.29 
Sd 43.28 
cv 2.13 

Mortar 1: 1: 6 rapid hardening cement: lime: sand mix by volume. 

Cubs dimensions - 102002002 mm3. 

BS 5628 - equivalent mean compressive 
strength of preliminary laboratory test 

-2 at the age of 28-days is given as 10.7 Nmm 

Table 5.7 - Results of mortar cubes tested after 7-days used for the 
constructions of brickwork types F and G. 
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Wall Age Specimen Mortar fm fb Ultimate Masonry Mean and 
No. at dimension designation load strength characteristic 

test hxIxt strangt 
(days) (mm) (Nmm-2) (Nmm-2) NN) (Nmm-21 (Nmrn 

A41 28 596468002.5 MW 17.61 90.08 2156 31.48 mi an-31.42 
I A42 28 590x665003.0 M (i) 17.61 90.08 2148 31.36 . fk 19-50 

B41 28 587x665xI01.5 MM 17.61 82.55 1897 28.10 mi an-27.91 
542 28 595x668xlO2.0 MG) 17.61 

1 
82.55 

1 

1889 27.72 . fk 18-60 

C41 28 600x673xl 02.0 MM 17.61 62.45 1204 17.54 mi an-17.50 
C42 28 595x668xl0l. 5 MW 17.61 

1 

62.45 1185 17.47 . fk 16.00 

D41 28 593465001.0 M (i) 17.61 28.81 928 13.81 m? an-13.63 
D42 28 594x666xl 01.5 MP) 17.61 28.81 909 13.44 fk 10.60 

E57 28 594x668xlO2.0 MM 27.42 92.41 2182 32.02 m? an-31.90 
E58 28 595x666xl 02.5 MW 27.42 92.41 2169 31.77 . fk 19.70 

F37 7 608x67OxlO2.5 MOW 4.21 81.83 1203 17.51 
F38 7 6IOx672x1O2.5 WHO 4.21 81.83 983 14.27 mean-15.22 
F39 7 605x672xlO2.5 WHO 4.21 81.83 1001 14.53 
F40 7 598x670002.0 WHO 4.21 81.83 998 14.60 fkl-14.60 

F41 7 609x668x218.0 MGM 4.21 81.83 1666 11.44 
F42 7 61 Ox675x2I 9.0 WHO 4.21 81.83 1754 11.86 mean-12.26 
F43 7 600x674x2l7.0 MOO 4.21 81.83 1798 12.29 
F44 7 600x673x2I 9.0 M(iii) 4.21 81.83 1983 13.45 fk' -9.70 

G37 7 600x678x 99.0 MOO 4.21 4.47 128 1.91 
G38 7 595x660xlOO. O WHO 4.21 4.47 117 1.77 mean-2.173 
G56 7 6OOx670xlDO. O MIiii) 4.21 4.47 134 2.00 
G57 7 60W70000.0 MOM 4.21 4.47 147 2.19 Sd-0.2795 
G58 7 600x665xl 00.0 MOO 4.21 4.47 148 2.23 
G59 7 6OOx673x 99.0 MOO 4.21 4.47 174 2.61 Cv-12.86% 
G60 7 600x672xl 00.0 WHO 4.21 4.47 152 2.26 
G61 7 600x665xlOO. O WHO 4.21 4.47 169 2.54 
G62 7 600x680x 99.0 WHO 4.21 4.47 127 1.89 2. fk 1.68 
G63 7 600479000.0 WHO 4.21 4.47 158 2.33 

G39 7 59Ox675x21 0.0 WHO 4.21 4.47 247 1.74 
G40 7 590x668x21 0.0 M(iii) 4.21 4.47 297 2.12 mean=2.038 
G64 7 590x67Ox215.0 MOO 4.21 4.47 298 2.07 
G65 7 590x66Ox2l6.0 MOW 4.21 4.47 304 2.13 Sd'0-1578 
G66 7 59Ox674x215.0 MOW 4.21 4.47 298 2.06 
G67 7 59Ox67Ox215.0 WHO 4.21 4.47 288 2.00 Cv-7.74% 
G68 7 59Ox674x215.0 WHO 4.21 4.47 258 1.78 
G69 7 590x675x2I5.0 MOW 4.21 4.47 329 2.27 
G70 7 59Ox672x216.0 WHO 4.21 4.47 300 2.07 2.1.73 fk 
G71 1 7 59047W`15.0 M(iii) 4.21 4.4 71 295 2.05 

fk from Table 2.12. section 2.5. 

fk calculated by the method outlined in Append; x IA. 

Table 5.8 - Results of tests on control specimens under 
uniform compressive load. 
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Wall Age Wall Plate Edge Ar d/I b/t I/a fcb Fr 
No. at dimens. dimens. dist. 

test hxIxt axb d 
Jdays) (mm) (mm) (mm) (Nmm-2 I 

A1 28 590465002-5 66.5xlO2.5 332.5 0.10 0.50 1.0 10.00 62.35 3.20 0.59 
A2 28 61.62 3.16 0.56 
A3 28 60-88 3.12 0.48 
A4 28 57.66 2.96 0.52 
A5 28 63-96 3.28 0.56 
A6 28 73.03 3.75 0.51 
A7 28 69.10 3.54 0.53 
A8 28 67.05 3.44 0.57 
A9 28 69.25 3.55 0.50 
A10 28 68.37 3.51 0.54 

All 28 59Ox665xlO2.5 133. OxlO2.5 332.5 0.20 0.50 1.0 5.00 29-19 1.50 0.50 
A12 28 586x659xl0l. O 40.20 2.06 0.64 
A13 29 59Ox665xl0l. O 34.48 1.77 0.47 
A14 28 585x658xl0l. O 32.72 1.68 0.58 
A15 28 59Ox660xl 02.0 39-61 2.03 0.56 
A16 28 588x661xl0l. O 38.14 1.96 0.52 
A17 29 592460000.0 42.11 2.16 0.64 
A18 28 59Ox660xl 00.0 32.57 1.67 0.61 
A19 28 590461001.0 35-58 1.82 0.64 
A20 28 1 590460002.0 

- - 
24.94 1.28 0.62 

A21 28 559x664xl 00.0 199.5xlO2.5 332.5 0.30 0.50 1.0 3.33 24.94 1.28 0.59 
A22 29 587x662xlOO. O 31.79 1.63 0.57 
A23 29 585x66OxlO2.0 34.23 1.76 0.53 
A24 29 585x656xlOO. O 31.10 1.59 0.53 
A25 29 585x658xl0l. O 29.24 1.50 0.55 
A26 29 585x659xl 02.5 27.68 1.42 0.57 
A27 29 585x657xl 01.5 21.03 1.08 0.48 
A28 29 587x659xlO2.0 28.75 1.47 0.39 
A29 28 590x665xl 03.5 28-12 1.44 0.33 
A30 28 590x657xl 02.5 28.85 1.48 0.32 

A31 28 590x662xl0l. O 266,0002.5 332.5 0.40 0.50 1.0 2.50 24.50 1.26 0.55 
A32 29 59Ox660x 102.0 29.63 1.52 0.50 
A33 29 59Ox657xlO2. O 25.38 1.30 0.43 
A34 29 59Ox658xl 02.0 28.61 1.47 0.38 
A35 29 590x657x 102.0 26.04 1.34 0.47 
A36 29 59Ox660xl0l. O 28.83 1.43 0.45 
A37 29, 588x662xl 02.0 29-86 1.53 0.57 
A38 29 S90x662xl 00.0 26.59 1.36 0.48 
A39 29 588x659xlO2.5 29.49 1.51 0.47 
A40 29 59Ox656xl0l. Ol 30.19 1.55 0.44 

fb - 90.04 NMM-2 

Mortar mix by volume 1: 1/4: 3; fm - 17.61 Nmm-2 

fk ' 19.50 Nmm-2 

Loading rate = 7.0 Nmm-2min. -l 

Table 5.9 - Test results of 102.5mm thick masonry under central strip 
concentrated loading for brickwork type A. 
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i 
Wal 

I 
l Age Wall Plate Edge Ar d/I b/t 1/8 

I 

fcb Fr 
No. at dimens. dimens. dist. 

test hxIxt axb d 
Idays ) (mm) (mm) (mm) (Nmm-2 ) 

B1 28 585x664xl0l. O 66.5002.5 332.5 0.10 0.50 1.0 10.00 49.88 2.68 0.59 
82 28 589x663xIO2.0 40.34 2.17 0.36 
83 28 587x667xIO2.5 56.04 3.01 0.39 
a4 28 582461001.0 40.34 2.17 0.69 
B5 28 583x664xl 01.0 55.75 3.00 0.70 
B6 28 585x668xl 03.0 54.28 2.92 0.65 
97 28 583x665xl 03.0 50.02 2.69 0.45 
88 28 579x662001.0 39.61 2.13 0.48 
B9 28 587x662xlO3.0 55.75 3.00 0.34 
810 28 1 583x662xlOO. O 50.17 2.70 0.58 

811 28 576x665xl 02.0 133. OxIO2.5 332.5 0.20 0.50 1.0 5.00 41.81 2.25 0.46 
612 28 580463001.0 41.08 2.21 0.29 
B13 28 575x663xl 02.0 32.28 1.74 0.41 
B14 28 576466000.0 33-01 1.77 0.38 
B15 28 576x662xl 02.0 30.81 1.66 0.54 
816 28 574x669xl 00.0 30.08 1.62 0.49 
B17 28 581x667xIO2.0 27.87 1.50 0.41 
B18 28 585467002.0 36.68 1.97 0.44 
819 28 5864600 01.0 33.38 1.79 0.44 
620 28 584466002.0 34.48 1.85 0.44 

821 28 584464001.0 199.5002.5 332.5 0.30 0.50 1.0 3.33 27.63 1.49 0.82 
822 28 583x668x 102.0 29.34 1.58 0.43 
823 28 582467002.0 26.90 1.45 0.47 
B24 28 576x669xl 00.0 27.39 1.47 0.38 
825 28 575x665xl 01.0 28.85 1.55 0.19 
826 28 577x664xl 02.0 28.75 1.55 0.21 
827 28 577x665xIO3.0 26.90 1.45 0.17 
828 28 574x667xl0l. O 32.28 1.74 0.23 
B29 28 570462001.0 29.59 1.59 0.24 
B30 28__ 571 x668xl 02.0 23.72 1.28 0.21 

831 29 575x665xlOO. O 266.0xiO2.5 332.5 0.40 0.50 1.0 2.50 26.41 1.42 0.19 
B32 29 570x669xl 02.0 24.57 1.32 0.21 
833 28 583464001.0 25.67 1.38 0.46 
B34 28 576x662xl 03.0 26.63 1.43 0.22 
B35 28 585463001.0 28.97 1.56 0.29 
836 28 579x667xl0l. O 26.55 1.43 0.21 
837 28 586x665xl 03.0 25-86 1.39 0.18 
B38 28 582x668x101-O 27.14 1.46 0.43 
B39 28 584466001.0 20.91 1.12 0.32 
840 28 582x669xl 02.0 28.06 1.51 0.39 

fb - 82.55 Nmm-2 

Mortar mix by volume 1: 1/4: 3; fm - 17.61 Nmm-2 

fk 0 18.60 N mm-2 

Loading rate - 7.0 Nmm-2min. -l 

Table 5.10 - Test results of 102.5mm thick masonry under central strip 
concentrated loading for brickwork type B. 
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Wa ll Age Wall Plate Edge Ar d/l b/t 1/8 fcb Fr No 

1 

. at dimens. 

1 

dimens. 1 
' 

dist. 1 
test hxIxt axb 4 

4 
d 

1 
(days) (mm) (mm) 

1 
(mm) (Nmm-2 ) 

C1 
28 585x670xIOI. 0 66-5x102.5 332.5 0.10 0.50 1.0 10.00 63.38 3.96 0.46 C2 28 578x668x1OI. O 64.55 4.03 0.55 C3 28 584x668xl 02. 

1 

0 60.15 3.76 0.44 C4 28 582x667xl0l. O 52.08 3.26 0.54 C5 28 584469003. 0 61.32 3.83 0.36 C6 28 585x688xlO3.0 ' 53.55 3.35 0.54 C7 28 589x669xlO2.0 55.40 3.35 0.34 C8 28 58Ox67OxlO2.5 55.02 3.44 0.27 c9 28 58Ox670xIOI. O 64.55 4.03 0.58 CIO 28 575x669xl 01.5 61.03 3.81 0.34 

Cil 28 580x66SxIO1.0 133. Ox1O2.5 332.5 0.20 0.50 1.0 5.00 39.90 2.49 0 44 C12 28 580x668xI 03.0 . 42.25 2.64 0 47 C13 28 583x670x1O2.0 . 36.31 2.27 0 57 C14 28 577x669x1O1.5 . 37.78 2.36 0 19 C15 28 579x662xIO2. O . 36.24 2.27 0.28 C16 28 583x670xIO1.0 34.11 2.13 0 62 C17 28 582x668xl 02.0 . 38.88 2.43 0 25 C18 28 577466002.0 . 38.88 2.43 0 60 C19 28 577x662xl0l. O . 32.72 2.05 0 34 C20 28 575x660x 100.0 . 38.14 2.38 0.29 

C21 28 575x662x1O1.0 199.5xlO2.5 332.5 0.30 0.50 1.0 3.33 33.65 2.10 0 55 C22 28 573x663xlO3.0 . 30.32 1.90 0 50 C23 28 578x662xlO2.0 . 31.79 1.99 0 59 C24 28 574x662xI 02.0 . 33.99 2.12 0 44 C25 28 575466001.0 . 31.79 1.99 0 29 
C26 28 571x663x1O2.0 . 31.69 1.98 0 31 
C27 28 568x663xl 02.0 . 27.39 1 71 0 23 C28 28 575466001.0 . . 30 1 31 96 0 20 
C29 28 570x660xIOO. O . . . 27.87 1.74 0 23 
C30 28 573x667xI 00.0 . 24.94 1.56 0.29 

C31 28 570x665xlOO. O 266. OxlO2.5 332.5 0.40 0.50 1.0 2 50 33 01 2 06 0 13 
C32 28 569x668xl0l. O . . . . 27.32 1 71 0 30 
C33 28 575x666xl0l. O . . 26.22 1.64 0 39 
C34 28 580465002.0 . 97 1 28 81 0 30 
C35 28 S78x662xlO2.0 . . . 32.09 2 01 0 29 
C36 28 571x662xlOO. 0 . . 30.08 1 88 0 17 
C37 28 575x662xlOO. O . . 27.87 1.74 0.20 
C38 28 571 x663xl 02.5 29.71 1.86 0.62 
C39 28 576x665xlO2.5 30.63 1.91 0.40 
C40 28 l S8Ox675xlO2.01 

fb - 62.45 NMM-2 

Mortar mix by volume 1: 1/4: 3; fm - 17.61 Nmm-2 

fk ' 16.00 NmM-2 

Loading rate - 4.5 Nmm-2min. -1 

Table 5.11 - Test results of 102.5mm thick masonry under central strip 
concentrated loading for brickwork type C. 
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Wall Age Wall Plate Edge Ar d/I b/t I/a fcb Fr 
No. at dimens. dimens. dist. 

test hxIxt axb d 
Idays) (mm) (mm) (mm) -2 (Nmm ) 

D1 28 582x66Ox 99.0 66.5002.5 332.5 0.10 0.50 1.0 10.00 34.48 3.25 0.60 
D2 28 590464000-0 29.34 2.77 0.35 
D3 28 590x663xl0l. O 22.30 2.10 
D4 28 590461000.0 30-51 2.88 0.60 
D5 28 595x665xl 00.0 22.00 2.08 0.37 
D6 28 590x662x 98.0 20.54 1.94 0.61 
D7 28 597x664xl 00.0 23.77 2.24 0.25 
D8 28 593x664x 99.0 26.70 2.52 0.38 
D9 28 590460001.0 26.40 2.49 0.56 
010 28 587x666x 99.0 29-34 2.77 0.65 

011 28 591462000.0 133.0002.5 332.5 0.20 0.50 1.0 5.00 23.03 2.17 0.41 
D12 28 590470000.0 17-60 1.66 0.42 
013 28 593465002.0 21.49 2.03 0.24 
D14 28 590x660x 98.0 15.55 1.47 0.45 
D15 28 591465000-0 18.85 1.78 0.47 
D16 28 590x660x 98.0 17.38 1.64 0.51 
017 28 588468000.0 18.27 1.72 0.44 
D18 28 590x667xl 00.0 18.05 1.70 0.45 
Mg 28 591x660x 99.0 22.01 2.08 0.50 
D20 28 590x660xlOO. O 16.87 1 1.59 0.30 

D21 28 595x660x 9.00 199.5xl 02.5 332.5 0.30 0.50 1.0 3.33 18.29 1.73 0.45 
D22 28 59Ox665xl 00.0 17-85 1.68 0.52 
D23 28 588x668xl 00.0 16.14 1.52 0.39 
D24 28 59ax670xlOO. O 16.14 1.52 0.67 
D25 28 585464000-0 13-94 1.32 0.35 
D26 28 585471000-0 16.48 1.55 0.33 
D27 28 591x669x 99.0 15-16 1.43 0.16 
D28 28 590x668xlOO. O 18-88 1.78 0.27 
D29 28 585x667xl0l. O 13.89 1.31 0.21 
D30 28 592470001.0 11.98 1.13 0.16 

D31 28 593x661x 99.0 266.0002.5 332.5 0.40 0.50 1.0 2.50 18.16 1.71 0.30 
D32 28 595x666xIOO-O 14.30 1.35 0.26 
033 28 592466001.0 15.40 1.45 0.25 
D34 28 59Ox664xl 00.0 13.57 1.28 0.28 
D35 28 588460000.0 17.97 1.70 0.37 
036 28 59lx667xlOO. O 12.84 1.21 0.24 
D37 28 590x665xlOO. O 17.31 1.63 0.38 
D38 28 588462000.0 16.50 1.56 0.33 
039 28 585x660xl 00.0 19.15 1.81 0.55 
D40 1 28 1595463000.01 11.47 1.08 0.47 

fb - 28.80 NMM-2 

Mortar mix by volume 1: 1/4: 3; fm - 17.61 Nmm-2 

fk ' 10.60 Nmm-2 

Loading rate - 7.0 Nmm-2min. -1 

Table 5.12 - Test results of 102.5mm thick masonry under central strip 
concentrated loading for brickwork type D. 
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Wall Age Wall Plate e Edge Ar d/I b/t I/a Icb F No. at dimens. 

I 

1 dimens. e dist. r 
test hxIxt xt axb axb d 
(days) Imm) Imm) Imm) Imm) (Nmm-2 

Elc 28 590x 6±65002.5 66.5x102.5 332.5 0.05 0.50 1.0 20-00 76.82 3 90 0 77 E2c 28 . . 
E3c 28 

11 

76.28 3.87 0.38 
E4c 28 78.92 

T 

4.01 0.48 
E5c 28 72.47 3.68 0.74 

- 
57.51 2.92 0.99 

Table 5.13 - Test results of 702.5mm thick masonry under central strip 
concentrated loading for brickwork type E. 

Wall Age Wall Plate Edge Ar d/I bA I/a fcb F r No. at dimens. dimens. dist. 
test hxIxtaxbd 
(days) (MM) (MM) (MMI (Nmm 

E27 28 6OOx675xlD3. O 33.2xlO2.5 169.0 0.05 0.25 1.0 20.00 58.68 2 98 0 95 . . E28 28 595x672x1O3.0 
78.64 3.99 0.67 E29 28 604x675xIO2.5 
69.83 3.54 0.99 630 28 595x672xIO2.5 

1 

56.34 2.86 0.95 F. J) 23 bDJx6S5x102.5 
. 61.32 3.11 0.99 

E32 28 603x676xIO2.5 66. SXICZ. 5 169. o 0.1() 0.25 1.0 10.00 57.51 2 92 0 68 E33 28 606x670xl 03.0 . . 
E34 28 60U676002.0 57.95 2.94 0.72 

E35 28 608x676xl 03.0 57-51 
, 2.92 0.77 

E36 8 609x670xl 02.5 55.90 
- 2.84 0.77 

58.83 2.99 0.62 

E37 605x67OxIO2.5 99.74 02.5 167.0 0.15 0.25 1.0 6.66 39-12 1 99 0 74 E38 28 606x665xl 02.5 . . 38.14 1 94 0 70 E39 28 589x668x1 00.0 . . 
E40 28 59Ox675xlOO. O 41.27 2.09 0.76 

E41 Z8 598x67OxlDl. O 40.39 2.05 0.63 
38.44 1.95 0.78 

E42 28 602x669xlOO. O 133. OxIO2.5 168.0 0.20 0.25 1.0 5 00 28 68 1 46 0 68 E43 28 594x675xlOO. O . . . . 
E44 28 59Dx675xl0l. O 33.30 1.69 0.56 

E45 28 587x672x101-O 30.30 1.54 0.63 

1 

E46 28 595x668x101-O 28,31 1,44 0.73 
. 33.74 1.71 0.75 

E47 28 59Ox675x1O2.5 199.5xIO2.5 168.0 0.30 0.25 1.0 3.33 26 41 1 34 0 64 593x673xl 02.0 E48 2 . . . : 
E49 28 590x667xl0l. O 42.30 2.15 0.37 

ESO 28 596x672xl0l. S 32.76 1.66 0.67 

E51 28 597x675xl0l. O 29-34 1.49 0.46 
: 

1- -- -- 
38.63 1.96 0.33 

E52 28 595x665xIOO. O 266.0002.5 167.0 0.40 0.25 1.0 2.50 30 
- 

99 1 57 0 45 
E53 28 60lx670xl0l. O . . . 
E54 28 595x672xl 02.0 32.68 1.66 0.67 

E55 28 595x662xlOO. O 31.54 1.60 0.38 

E56 28 595x663xl 03.0 36.68 1.86 0.72 
,1 35.65 1.81 0.37 

fb - 92.41 Nmm-2 

Mortar mix by volume 1: 1/4: 3; fm - 27.42 Nmm-2 

fk ' 19.60 Nmm-2 

Loading rate - 14.5 Nmm-2min. -1 

Table 5.14 - Test results of 102.5mm thick masonry under intermediate 
strip concentrated loading for brickwork type E. 
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Wall Age Wall Plate Edge Ar d/I b/t I/a fcb Fr 
No. at dimens. dimens. dist. 

test hxIxt axb d 
(days ) Imm) I (mm) (mm) INmm-2 

E la 28 1 5SOx66SxlO2. 51 33.2xlO2.5 16.63 0.05 0.025 1.0 20.00 ; 55-16 2.80 
i 

0.82 
E 2a 28 44.89 2.28 0.78 
E 3a 28 63-96 3.25 0.78 
E 4a 28 63-67 3.23 0.78 
E 58 28 49-58 2.52 0.75 
E lb 28 68-95 3.50 0.65 
E 2b 28 57.21 2.90 0.38 
E 3b 28 52.81 2.68 0.97 
E 4b 28 51,34 2.61 0.34 
E 5b 28 65.13 3.31 0.72 

E 6a 28 589x667xlOO. O 66-5X102.5 33.25 0.10 0.050 1.0 10.00 46.07 2.34 0.68 
E 7a 28 59Ox664xlOO. O 37.70 1.91 0.82 
E 8a 28 595x665xlOO. O 46.07 2.34 0.64 
E 9a 28 590x665xlOO. O 46.07 2.34 0.64 
ElOa 28 590465001.0 46.51 2.36 0.66 
E 6b 28 40-05 2.03 0.82 
E 7b 28 43.43 2.20 0.61 
E 8b 28 29.93 1.52 0.54 
E 9b 28 54.58 2.77 0.89 
ElObj 28 37.12 1.88 0.83 

Ella 28 59Ox665xlO2.5 99.7002.5 49-87 0.15 0.075 1.0 6.66 42-06 2.14 0.70 
El2a 28 59Ox665xl 02.5 45.48 2.31 0.37 
El 3a 28 59Ox665xlO2.5 42.06 2.14 0.67 
E14a 28 585x665xl0l. O 37.75 1.92 0.61 
E15a 28 590461 xl 00.0 36.19 1.84 0.66 
Ellb 28 26.21 1.33 0.82 
E13b 28 31.00 1.57 0.54 
El4b 28 39.12 1.99 0.59 
El5b 28 38.44 1.95 0.64 

El6a 28 595x665xl0l. O 133.0002.5 66.50 020 0.100 1.0 5.00 36.24 1.84 0.65 
El7a 28 592x665xl 02.0 37.78 1.92 0.58 
El8a 28 592x662xlOO. O 36.60 1.86 0.80 
El9a 28 59Ox668xl 01.0 26-92 1.37 0.74 
E20a 28 595463002.0 34.48 1.75 0.85 
El6b 28 28.46 1.44 0.64 
El7b 28 30.88 1.57 0.71 
E18b 28 39-83 2.02 0.83 
El 9b 28 32.42 1.65 0.79 
E20b 28 37.41 1.90 0.69 

E21 28 594x672xlO2.0 199.5xlC2.5 99.75 0.30 0.150 1.0 3.33 31.49 1.60 0.58 
E22 28 590x665xlO2.5 28-85 1.46 0.34 
E23 28 598x67OxlO2.0 32.03 1.63 0.90 
E24 28 602x680xl 03.0 38-83 1.97 0.45 
E25 

1 
28 -I 605x673xlO 2.0 

1 1 1 1 26.33 1.34 0. 

E26 
1 28 j 597x677xlO3.0j 266. OxlO2.5.1 13 36-68 1.86 

1 

0.68 

fb - 92.41 Nmm-2 

Mortar mix by volume 1: 1/4: 3; fm - 27.42 Nmm-2 

fk ' 19.60 Nmm-2 

Loading rate a 14.5 Nrnm-2min. -l 

Table 5.15 - Test results of 102.5mm thick masonry under end strip 
concentrated loading for brickwork type E. 
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Wall 
II 
Age Wall Plate 

I 
Edge Ar d/I 

III 
b1f I/a 'fcb 

I 
F Fr 

N o. at climens. climens. dist. 
test hxIxtaxb d 

I Idays)i Imm) Imm) Imm) INmm-2 

F 17 SM665002.5 33.2002.5 332.5 0.05 0.500 1.0 20.00 34.33 2.35 0.77 
F27 600x669xl0l. O 

1 41.88 2.85 0.71 * 0 
F37 600x667xl0l. O 66.5002.5 0.10 10.00 23.97 1.64 0.68 O'l 
F47 6DOx668xl0l. O 36-92 2.53 0.60 0* l 
F57 605x667xlOO. O 99.7xfO2.5 0.1 6.68 19.25 1.32 0.31 
F67 61Ox665xI01. O 25.31 1.73 0.70 

F13 7 605465002.5 33.2002.5 166.2 0.05 0.250 1.0 20-00 29-05 
ý 

1.99 
ý 

0.70 
F14 7 604470000-0 45.11 3.09 0.73 
F15 7 61 Ox670xl 00.0 66.5002.5 0.10 10.00 21.05 1.44 0.96 
F16 7 603472002.0 22.99 1.57 0.80 
F17 7 605x666xlOO. O 99.7002.5 0.15 6.66 17.44 1.19 0.57 
F18 17 1 600460003.0 

rI 
I 1 1 15.37 1.05 0.63 

F7 7 600x665xlO2.01 33.2x 102.5 76.6 0.05 0.025 1.0 20.00 40.98 2.81 0.93 
FSa 7 600x666xl 02.0 1 45.99 3.15 1.00 
F8b 7 600x666xlO2. O 40.39 2.77 0.87 
F11 7 607x671 x1 02.5 66.5x 102.5 

[3 

3.2 0.10 0.050 10.00 20.98 1.44 0.61 
F12 7 608x666xl0l. O 24.56 1.68 0.48 
F9 7 6OOx67lxlOl. O 99.7xlO2.5 0 50.0 0.15 0.075 6.66 16.87 1.16 0.88 
FIO 7 608472xI02.0 17 1.18 0.85 

F19 7 60047U212.0 33.2x215.0 332.5 0.05 0.500 1.0 20-00 23.41 2.41 0.89 
F20 7 ISOUHU212.0 30.22 3.12 0.89 
F21 7 605x666x2l3. O 66.5x215-0 0.10 10-00 24.71 2.55 0.71 
F22 7 6O5x665x2l5.0 1 26.65 2.75 0.97 
F23 7 600x675x2l5.0 99.7x215.0 0.15 6.66 20-98 2.16 0.54 
F24 7 602x68Ox215.0 16.65 

ý 
1.72 0.78 

F31 7 59Ox665x2l8. O 33.2x215.0 166.2 0.05 0,250 1.0 20-00 39.73 4.10 0.97 
F32 7 590470x218.0 44.28 4.56 0.78 
F33 7 595x665x2I7.0 66.5x215.0 

1 

0.10 

1 

10.00 21.76 2.24 0.95 
F34 7 595x665x215.0 18.39 1.90 0.99 
F35 7 595xHU217.0 99.7x215.0 0-75 6.66 16.17 1.67 0.83 
F36 7 5qOx667x215-O 18-88 1.95 0.91 

F25 7 600x675x2l7.0 33.2x215.0 16.6 0.05 0.025 1.0 20.00 26-61 2.74 0.95 
F26 7 600x675x2l5.0 27.41 2.83 1.00 
F27- 7 MxMx217.0 66.5x215.0 33.2 0.10 0.050 10.00 18.05 1.86 0.65 
F28 7 6oOx675x2l5. O 15.21 1.57 0.78 
F29 7j 600x675x2I8.0 99.7x215.0 50.0 0.15 0.075 6.66 17.24 1.78 0.69 
F30 7 600x670x218-0 19.31 1.99 0.87 

-2 fb - 81.83 Nmm 

Mortar mix by volume 1: 1: 6; fm - 4.21 Nmm-2 

t 102.5mm; fk ' 14.6 Nmm-2 

t 215.0mm; fk * 9.7 Nmm-2 

Loading rate 1-- 14.5 Nmm-2min. -1 

Table 5.16 - Test results of 102.5 and 215.0mm thick masonry under 
central, intermediate and end strip concentrated loading for brickwork type F. 
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Wall Age Well Plate Edge Ar d/I b/t I/a fcb Ff 
No. at dimens. dimens. dist. 

test hxIxt axb d 
(days) (mm) (mm) (mm ) (Nmm- ) 

G19 7 SM666-000-0 33.2xI02.5 332.5 0.05 0.500 1.0 20-00 6.32 3.76 1.00 
G20 7 595x670xlOO. O 7.82 4.65 1.00 
G21 7 600x670xlOO. O 66. SxIG2.5 

1 

0.10 10.00 5.04 3.00 0.95 
G22 7 6OOx670xlOO. O 5.49 3.27 0.88 
G23 7 600470000.0 99.7xI02.5 0.15 6.66 5.91 3.52 0.83 
G24 1 7 600x668xlOO. O 1 5.51 3.28 0.88 

G31 7 600x670xlOO. O 33.2xl 02.5 166.2 0.05 0.250 1.0 20.00 3.61 2.15 1.00 
G32 7 600x665xlOO. O 6.02 3.58 1.00 
G33 7 6OOx670xlOO. O 66.5xlO2.5 0.10 10.00 4.06 2.42 0.85 
G34 7 600x670xlOO. O 5.04 3.00 1.00 
G35 7 600x670xlOO. O 99.7002.5 0.15 6.66 3.96 2.36 1.00 
G36 7 1595x665x 99.0 1 1 1 4.15 2.47 1.00 

G25 7 600x670xlOO. O 33.2xIO2.5 16.6 0.05 0.025 1.0 20.00 3.46 2.06 1.00 
G26 7 605x670xl 00.0 3.46 2.06 1.00 
G27 7 600x670xlOO. O 66.5x 102.5 33.2 0.10 0.050 10.00 4.11 2.45 1.00 
G28 7 600x670xlOO. O 3.83 2.28 1.00 
G29 7 603x67Ix 99.0 99.70 02.5 50.0 0.15 0.075 6.66 4.15 2.47 1.00 
G30 7 600x670x 99.0 4.00 2.38 1.00 

G1 7 605x666x2l 0.0 33.2x215.0 332.5 0.05 0.500 1.0 20.00 8.45 4.88 0.98 
G2 7 607x67Ox2l 0.0 6.16 3.56 1.00 
G7a 7 600471 x2l 0.0 9.23 5.34 0.99 
G3 7 605x665x216.0 66.5x215.0 0.10 10.00 6.56 3.79 1.00 
G4 7 600x665x2l5. O 5.35 3.09 0.96 
G5 7 606x665x2I5.0 99.7x215.0 0.15 6.66 5.90 3.41 1.00 
G6 7 600x667x2l4.0 5.11 2.95 0.82 

G13 7 605x665x213.0 33.2x215.0 166.2 0.05 0.250 1.0 20-00 6.16 3.56 0.99 
G14 7 599x666x215-O 8.06 4.66 1.00 
G15 7 600x6O4x2l2.0 66.5x215.0 0.10 10.00 5.25 3.03 1.00 
G16 7 595x665x2l5. O 5.46 3.16 1.00 
G17 7 595x66lx2lO. O 99.7x215.0 0.15 6.66 3.15 1.82 0.91 
G18 7 605x675x213.0 4.82 2.79 0.98 

G7a 7 60Gx67lx2l3. O 33.2x215.0 16.6 0.05 0.025 1.0 20.00 6.07 3.51 0.93 
G7b 7 60047U213.0 4.94 2.86 0.86 
Glia 7 6oOx67Cx2l5. O 6.52 3.77 1.00 
G8b 7 600470415.0 5.94 3.43 1.00 
G9 7 60041SU214.0 66.5x215.0 33.2 0.10 0.050 10.00 4.01 2.32 1.00 
GlOa 7 604x666x2l 0.0 3.60 2.08 1.00 
GlOb 7 604x666x2l 0.0 4.69 2.71 1.00 
G11 7 600x67Ox2l3. O 99.7x215-0 50.0 0.15 0.075 6.66 3.52 2.03 1.00 
G12 7 ISOUVU213.0 4.09 2.36 1.00 

fb - 4.47 Nmm -2 

Mortar mix by volume 1: 1: 6; fm - 4.21 Nmm-2 

t- 102.5mm; fk ' 1.68 Nmm-2 

t- 215. Omm; fk ' 1.73 Nmm-2 

Loading rate , 14.5 Nmm-2 min. -' 

Table 5.17 - Test results of 102.5 and 215. Omm thick masonry under 
central, Intermediate and end strip concentrated loading for brickwork type 
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Wall 
No. 

Age 
at 
test 
Jdays) 

Wall 
dimens. 
hx Ix t 
(mm) 

Plate 
dimens. 
axb 
(mm) 

Edge 
dist. 

d 
(mm) 

Ar d/I b/t I/a fcb 

-2 (Nmm ) 

Fr 

F50 7 612x 217002-5 IOOxIO2.5 103.5 0.460 0.5 1.0 2.17 28.88 1.98 0.44 
F51 7 615x 445x102.5 222.5 0.225 4.45 17.65 1.21 0.94 
F52 7 615x 676xI01. O 338.0 0.145 6.76 30-00 2.05 0.59 
F53 7 613x 893002.0 446.5 0.112 8.93 33.43 2.29 0.65 
F54 7 605xl 1300 03.0 565.0 0.088 11.30 29.76 2.04 0.75 
F55 7 609A353002.0 678.0 0.074 13.53 33.24 2.28 1 0.74 

G50 7 600x 211 x 10 1.0 225x1OO. O 105.5 1.000 0.5 1.0 1.00 1.71 1.02 1.00 
G51 7 603x 446x1OO. O 223.0 0.505 1.98 3.19 1.90 0.56 
G52 7 600x 656001.0 328.0 0.343 2.92 2.94 1.75 0.43 
G53 7 600x 910x 98.0 455.0 0.247 4.04 2.81 1.67 0.36 
G54 7 596xl 125000.0 562.5 0.200 5.00 2.29 1.36 0.78 
G55 7l 6OOxl355x 99.0 677.5 0.166 6.02 2.44 1.45 1 0.45 

Brickwork type F 

fb - 81.83 Nm m-2 

Mortar mix by volume 1: 1: 6; I'm - 4.21 Nmm-2 

fk ' 14.6 Nmm-2 

Brickwork type G 

fb - 4.47 Nmm-2 

Mortar mix by volume 1: 1: 6; fm - 4.21 Nmm-2 

fk ' 1.68 Nmm-2 

Table 5.18 - Results of test on 102.5mm thick brickwork types F and G 
under central strip concentrated load for varying length of specimens. 
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Chapter 6 

EXPERIMENTAL STUDY. ANALYSIS OF RESULTS 

6.1. INTRODUCTION 

In general compressive strength of brickwork masonry under the action of 

concentrated load is influenced by such parameters as mentioned earlier in 

chapter 1. However, in the present investigation concentrated load has been 

applied to masonry specimens through a rigid steel bearing plate and the 

variables which are thought to be of importance have been examined 

experimentally. These are: 

- the properties of masonry and its constituent materials; 

- the loading area ratio; 

- the loading position and the effect of edge distance; 

- the loading configuration; 

- the thickness of the unit; 

- the aspect ratio of the unit; 

- the effective cross-sectional area of brickwork element; 

- the tVpe of brick unit. 

This chapter contains the analysis of the experimental results reported in 

chapter 5 and Appendix B. The effect of parameters listed above on the 

bearing strength and the enhancement factor have been examined and 

expressions for the compressive strength of brickwork masonry under 

concentrated loads for four ratios of loaded area have been determined 

statistically. The mode of failure and crack pattern of specimens tested under 

various loading configurations have also been included. 

6.2. ENHANCEMENT FACTOR (C) 

The apparent compressive strength of brickwork masonry loaded partially is 

known to be greater than its uniaxial compressive strength because of the 

restraint provided by the surrounding lightly stressed material. This in turn has 

led to the term "enhancement factor which is defined as the ratio of 

compressive strengths of brickwork masonry under concentrated and uniformly 
distributed loads or simply the increase in the capacity of brickwork masonry 



under the applied concentrated load with respect to Its unlaxial compressive 

strength. 

BS 5628111 expresses the local design strength under concentrated load as 

ýcfk/ym, where ym is the material partial safety factor and states that at the 

height of 0.4h beneath the loading the stress due to the design load should be 

checked and must not be greater than Bfk/ym, where B is the capacity 

reduction factor for the effect of slenderness. Values of 1.25,1.50 and 2.0 have 

been given for the enhancement factor, C, for the three types of bearings 

(refer to section 3.3 and Figs. 3.4 &'3.5). The origin of these values are not 
known to the author, but it Is believed that the proposa IS[981 were based on 

research on concrete. 

To establish an expression for the enhancement factor, the above definition 

suggests that for every specimen tested under concentrated load, an Identical 

specimen should be tested under uniform 
' 
axial load. 

' 
This could prove 

uneconomical when considering the variables Involved and the number of 

specimens needing to be tested, bearing in mind the variation in strengths of 

units and jointing mortar which ultimately influence the brickwork strength. 

However, enhancement factor could be expressed as: 

Cl "ý fcb/fmm 

or ý2 0 f'cb/fk (6.2) 

where fcb Is the mean bearing strength of masonry partially loaded; 

ff cb is the characteristic bearing strength of masonry partially loaded; 

fMM is the mean masonry compressive strength under uniform load; 

fk Is the characteristic compressive strength of masonry. 

Variation between the enhacement fact 
' 
ors obtained bV the two equations 

above have been examined bV Plotting the results obtained for brickwork tVpes 

A, B, C, D, E, F, G (reported in chapter 5), H, and L (reported in Tables B2 & 83, 

Appendix B) under central strip and tVpes E, F, G, H and L under Intermediate 

and end strip loading configurattions against the loaded area ratio and are as 

shown in Figs. 6.1 to 6.25. Also the results of tests on brickwork tVpe M 

(reported in Table 1311, Appendix B) under central, intermediate and end edge 
loading configurations against loaded area ratio are as shown In Figs. 6.26 to 

6.28. 
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The mean bearing strength curves have been established by the method of 
least squares approximation. The characteristic bearing strength at 95% lower 

confidence limit has been determined statistically based on the standard 
deviation of the data points about the mean curve. The values for the mean 

masonry strength, fmm obtained experimentally (refer to Table 5.8) and the 

characteristic compressive strength of masonry, fk obtained from the tables In 

chapter 2 have been shown on the same plot In each case. Table 6.1 contains 

the equations of the curves obtained for the mean and characteristic bearing 

strength of masonry partially loaded in terms of loaded area ratio. The ratio of 

the enhancement factors based on Equations 6.1 and 6.2 have been calculated 

and are as shown in Table 6.1. 

Inspecting the results for the ratio WC2 in Table 6.1, it can be seen that for 

those sets of data where a sufficient number of samples was tested when 
loaded area ratio (A, ) is one, the value for this ratio Is very close to unity, 
suggesting that Equations 6.1 and 6.2 would yield same value for the 

enhancement factor as would be expected. Those with values less or greater 
than unity for the ratio Cl/C2 are due to inaccuracy of the apparent value for 

the mean masonry strength (or in other words results of tests) when Ar = 1-0, 

which In some cases is based on only two test results. 

it can be shown that Equations 6.1 and 6.2 would give same value for the 

enhancement factor C, provided that a reasonable number of specimens are 
tested when Ar = 1.0 which would provide more accurate values for the mean 

and characteristic compressive strength of masonry under uniform loading. 

This has been demonstrated in the case of brickwork type G where ten 

samples were tested under uniform compressive load (i. e. when Ar'1.0). The 

values for fmm and fk were based on these results. Cumulatively the mean of 

values for the ratio CI/C2 shown in Table 6.1 is found to be 
. 
0.958 with 

standard deviation of 0.191 and coefficient of variation of 19.95%. However the 

values reported in Table 6.1 for f,, m are apparent values based on small 

numbers of test results of which the average of the strength is not the true 

mean. The enhancement factor obtained based on Equation 6.2 has been 

adopted in the foregoing analysis, because of the higher degree of certainty 
incorporated In the characteristic values with respect to failure. 
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Loading Loading t fb IMM fk Equation of mean Equation of charact. WC2 
cofig. position 

(mm) (Nmm-2) (Nmm-2) (Nmm-2 ) 
bearing strength bearing strength 

Strip Central 102.5 90.04 31.42 19.501 fcb*18.075Ar-0'485 f'cb"12.827A r-0.485 0.874 

102.5 82.55 27.91 18.601 fcb'19.467Ar-0.365 f'cb" I 5.265Ar-0'365 0.849 

102.5 62.45 17.50 16.001 fcb'17.06IAr-0.521 f'cb'14.605Ar-O . 521 1.068 

102.5 28.80 13.63 10.60 1 fcb'1 1.1 75Ar-0.344 f'cb' 8.601Ar-0.344 1.011 

102.5 92.41 31.90 19.601 fcb-31.895Ar-0.272 f'cb*26.384Ar-0'272 0.743 

102.5 81.83 15.22 14.602 fcb'14.815Ar-0.289 f'cb*11.166Ar-0.289 1.272 

215.0 81-83 12.26 9.702 fcb'12.205Ar-0.272 f'cb* 9.956Ar-O . 
272 0.971 

102.5 4.47 2.17 1.682 fcb- 2.179Ar-0.412 f'cV 1'. 740Ar -0.412 0.968 

215.0 4.47 2.04 1.732 fcb- 2.039Ar-0.464 t'cb' 1.67SAr -0.464 1.032 

215.0 72.70 17.85 11.501 fcb=23.434Ar-0.026 f'cb'21.962Ar-0.028 0.687 

102.5 
. 
33.02 14.25 9.001 fcbO12.32OAr-0.253 f'cb, 8.987Af-0.253 0.865 

Interm. 102.5 92.41 31.90 19.601 fcb=24.297Ar-0.303 f'cb'l 8.1 0OAr-O . 303 0.826 

102.5 81.83 15.22 14.602 fcb*14.238Ar-0.227 f'cb' 9.575Ar -0.227ý 1.425 

215.0 81.83 12.26 9.702 Fcb'I 1.485Ar-0.333 f'cb- 7.88OAr-0'333 1.154 

102.5 4.47 2.17 1.682 fcb, 2.176Ar-0.288 f'cb* 1.679Ar-0.288 1.001 

215.0 4.47 2.04 1.732 fcb', 2.011 Ar-O . 406 f'cb' 1.639Ar-0.406 1.042 

215.0 72.70 17.85 11.501 fcb'I 2.083Ar-0.413 f'cb' 9.552Ar-0.413 0.815 

102.5 33.02 
1 , 

14.25, 9.002, fcb- 7.247Ar-0.450 f'cb= 6.223Ar-O . 450 0.737 

End 102.5 92.41 31.90 19.601 fcb-24.032Ar-O . 
257 f, cb'l 8.247Ar -0.257 0.809 

102.5 81.83 15-22 14.602 fcb*13.932Ar-O . 
291 f'cb' 9.223Ar-0.291 1.448 

215.0 81.83 12.26 9.702 fcb'1 1.971 A r-0.223 f'cb' 9.547Ar-0.223 0.992 

102.5 4.47 2.17 1.68 2 fcb-, 2.198Ar-0.218 f'cb' 1.705Ar -0.218 0.997 

215.0 4.47 2.04 1.732 fcb- 2.011Ar-0.340 f'cb' 1.702Af-0.340 1.003 

215.0 72.70 17.85 11.501 fcb'IO. O21Ar-0.442 f'cb- 7.812Ar -0.442 0.826 

102.5 "33.02 14.25 9.002 fcb- 7.708Ar-0.316 f'cb" 6.296Ar-0.316 0.773 

Edge Central 215.0 72.70 17.85 11.501 fcb' 8.076Ar-0.562 f'cb- 5.536Ar-O* 562 0.940 

Interm. 215.0 72.70 17-85 11.50" fcb'1 0.570Ar-0.456 f'cb" 9.441Ar -0.456 0.736 

End 215.0 72.70 17.85 11 501 
j 

fcb' 9.81BAr -0.444 
1 
f'cb -0 * 444 6.537Af 0.968 

1 Mortar designation MO) 
Mortar designation M(iii) 

Table 6. 
-1 - 

Equations of 
i 
the mean and characteristic bearing strength.. 

of masonry and the ratios of enhancement factors for 
different loading positions. 
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Fig. 6.1 - Bearing strength of masonry type A as a function of loaded 
area ratio under central strip loading (t-102.5mm). 
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Fig. 6.2 - Bearing strength of masonry type B as a function of loaded 
area ratio under central strip loading (t=102.5mm). 
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Fig. 6.3 - Bearing strength of masonry type C as a function of loaded 
area ratio under central strip loading (t-102.5mm). 
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Fig. 6.4 - Bearing strength of masonry type D as a function of loaded 
area ratio under central strip loading (t=102.5mm). 
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Fig. 6.5 - Bearing strength of masonry type E as a function of loaded 
area ratio under central strip loading (t=102.5mm). 
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Fig. 6.6 - Bearing strength of masonry type F as a function of loaded 
area ratio under central strip loading (t=102.5mm). 
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Fig. 6.7 - Bearing strength of masonry type F as a function of loaded 
area ratio under central strip loading (t=215. Omm). 
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Fig. 6.8 - Bearing strength of masonry type G as a function of loaded 
area ratio under central strip loading (t=102.5mm). 

-134- 



1: 

BT. 4BIAW ST"WiFTV OF JUSOMY 

. 4S. 4 FbrArCTIOAr 
- 
OF. 4r 

10.0 CZNML STJUP LOADING 
dl? - 0.50, - t/b - 1.0 
fb 4.47 Nn=' 
t 215. Mn= I- 665mm 
Mora Lr M(IU) 
f. - 904 Nnizzil 

x 
fA, 1.73 Xmm' 

xx 
&0 

-f- a -0 

j" -ýfmi= = Jr. -- ----, -------.. --a Va%=Hrait curve 

0.0 1A -r- ii (LO ol 
A, = A.,, /A = a/l 

Fig. 6.9 - Bearing strength of masonry, type G as a function of loaded 
area ratio under central strip loading (t=215. Omm). 
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Fig. 6.10 - Bearing strength of masonry type H as a function of loaded 
area ratio under central strip loading (t=215. omm). 
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Fig. 6.11 - Bearing strength of masonry type L as a function of loaded 
area ratio under central strip loading (t=102.5mm). --, 
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Fig. 6.12 - Bearing strength of masonry type E as a function of loaded 
area ratio under intermediate strip loading (t-102.5mm). 
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Fig. 6.13 - Bearing strength of masonrV tVpe F as a function of loaded 
area ratio under intermediate strip loading (t=102.5mm). 
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Fig. 6.14 - Bearing strength of masonry type F as a function of loaded 
area ratio under intermediate strip loading (t=215. Omm). 
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Fig. 6.15 - Bearing strength of masonry type G as a function of loaded 
area ratio under intermediate strip loading (t=102.5mm). 
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Fig. 6.16 - Bearing strength of masonry type G as a function of loaded 
area ratio under intermediate strip loading (t=215. Omm). 
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Fig. 6.21 - Bearing strength of masonry type F as a function of loaded 
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Fig. 6.23 - Bearing strength of masonry type G as a function of loaded 
area ratio under end strip loading (t=215. Omm). 
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Fig. 6.24 - Bearing strength of masonrV tVpe H as a function of loaded 
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6.3. CHARACTERISTIC BEARING STRENGTH OF MASONRY (fcb) 

The relationship between compressive strength of masonry under 

concentrated load In terms of unit brick strength, fb, for a given loaded area 

ratio, Ar, has been represented by an expression of the form: 

fcb = Mb n (6.3) 

The results obtained from tests on brickwork types A, B, C and D have been 

analysed statistically and the mean bearing strength curves determined 

assuming an expression as above. The standard deviation of the mean curve Is 

calculated and hence the characteristic bearing strength f'cb curve at 95% 

confidence limit assuming normal distribution. 

The results for 102.5mm thick specimens constructed using mortar grade M(l) 

tested under central strip concentrated load for loaded area ratios of 0.1,0.2, 

0.3 and 0.4 are shown graphically in Figs. 6.29 to 6.32 respectively. 'The 

equations obtained for the mean and characteristic curves are presented in 

Table 6.2 together with the equations for the mean and characteristic 

compressive strengths of masonry corresponding to Ar 2- 1.0 for comparison. 

Ar Equation of the mean Equation of characteristic 
bearing strength bearing strength 

0.1 fcb-2.400fb 0.725 f'cb'1.770fb 0.725 

0.2 fcb=2.900fb 0.570 f'cb-2.1 90f b 
0.570 

0.3 fcb=2.710fb 0.540 f'cb-2.090fb 0.540 

0.4 fcb-2.880fb 0.515 f'cb-2.240fb 0.515 

1.0 0.699, fmm-1.216fb 0.532 fk'1.779fb 

This equation has been derived based on the experimental 
results of crushing tests of brickwork masonry control 
specimens under uniform compressive load applied over 
the whole cross-sectional area. 

Table 6.2 - Equations for mean and characteristic bearing strength of 
brickwork In terms of brick strength for different loaded area ratios. 

The results show that thb -characteristic bearing strength is 75% of the mean 

bearing strength. Figs. 6.33 and 6.34 have been included which show that as 

the bearing area decreases, the bearing strength Increases. This Increase Is 

quite significant when the loaded area ratio is less than 0.25, and when this 

ratio reaches a value of. 0.5 (i. e. when half of the cross-sectional are'a Is 
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loaded) the characteristic bearing strength, fcb approches the characteristic 

compressive strength of masonry, fk- The Increase in bearing strength from 

Ar: --0.4 to Ar=0.3,0.2 and 0.1 is 4%, 25% and 90% respectively at fb=50 N MM-2 

and this enhancement In strength increases to 5.5%, 30% and 120% 

respectively for fb=100 NMM-2 - This increase may be shown to be function of 

unit brick strength, fb, when the loaded area Is small as shown In Fig. 6.35. 

6.4. FACTORS AFFECTING THE BEARING STRENGTH 

The parameters which have an effect on the bearing strength of masonry and 

their Influence on the enhancement factor under concentrated load which have 

been studied experimentally will be examined in this section. 

6.4.1. Loaded area ratioj Ar 

The importance of this parameter has become obvious from the figures 

already presented In this chapter. To establish a relationship between loaded 

area ratio (Ad and enhancement factor (C), the results of tests carried out 

under the action of concentrated strip loading have been sorted Into three 

categories depending on the position of loading. No differentiation has been 

made between the strength of units, mortar mix or thickness of the 

specimens, but the length and the height of the specimens were kept 

constant. An expression In the form: 

ý=k. Ar (6.4) 

have been considered. The data have been analysed statistically and the 

equations for the mean curve (C) and the 95% lower limit curve (C') are 

presented in Table 6.3 and in graphical form in Figs. 6.36 to 6.38 for central, 
intermediate and end strip loading respectively, ( A, 4 o-s) - 

Loading Equation of mean Equation of 95% lower No. of 
type curve confidence level specimens 

tested 

Central Strip 1.126 Ar-0.371 0,806 Ar- 0.371 241 

Interm. Strip 1.187 Ar- 0.309 0.837 Ar-0.309 94 

End Strip 1.182 Ar-0.264 0.876 Ar-0.264 115 

Table 6.3 - Relationships for enhancement factor in terms of 
loaded area ratio. 
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It is conclusive from Figs. 6.36 and 6.38 that no increase in bearing strength is 

justified when Arý0-5, and when Arý0.5 Increase in bearing strength Is 

warranted depending on the loading position. 

6.4.2. Masonry and its constituent materials strengths 

The effect of brick strength on the bearing strength of masonry has already 
been covered in section 6.3, Figs. 6.29 to 6.35. These figures show that as the 

unit strength increases, the bearing strength increases. This increase in 

strength Is however dependent an the loaded area ratio (Ad. As loaded area 
ratio decreases, the bearing strength increases. Fig. 6.34 could be used as a 
design chart for masonry constructed with mortar designation M(i), 102.5mm in 

thickness under central strip loading configuration. 

As brick and mortar strength ultimately Influence the brickwork strength, 
therefore any Increase In the strengths of brick and/or mortar would give rise 

to higher bearing strength under concentrated load. This has been indicated in 

Figs. 6.39 to 6.41 which show bearing strength of masonry in terms of loaded 

area ratio Art and the characteristic compressive strength fk, under central, 
intermediate and end strip loading positions. It is evident from these plots that 

higher fk values give higher bearing strength. 

However, the Increase In fk value is not so clearly pronounced in Figs. 6.42 to 

6.44 which shows the influence Of fk on the enhancement factor. 

It would appear that higher fk values will result In the higher enhancement 
factor (C). This may be seen from Figs. 6.42 to 6.44 in the region where Ar Is 

small. The lower tails of the curves do not show this trend consistantly which 
could be explained by the fact that only few specimens were tested for Ar-1-0- 

6.4.3. Masonry thickness 

The effect of masonry thickness has been studied from the results of tests on 

brickwork types F and G. Two thicknesses, single leaf 102.5mm and bonded 

masonry 2115.0mm have been investigated under the action of central, 

Intermediate and end strip loading. The results have been plotted and are as 

shown in Figs. 6.45 to 6.47 for clay brickwork type F and Figs. 6.48 to 6.50 for 

AAC brickwork type 0 under central, intermediate and end strip concentrated 

loads respectively. 
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Fig. 6.39 - Influence of characteristic compressive strength of masonry 
on the bearing strength under central strip loading. 
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Fig. 6.42 - Influence of characteristic compressive strength of masonry 
on the enhancement factor under central strip loading. 
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Fig. 6.43 - Influence of characteristic compressive strength of masonry 
on the enhancement factor under intermediate strip loading. 
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Fig. 6.44 - Influence of charactersitic compressive strength of masonry 
on the enhancement factor under end strip loading. 
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d/1 - 0.50; b/t = 1.00; Clay brickwork 
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Fig. 6.45 - Effect of specimen thickness on the bearing strength of 
brickwork type F under central strip loading. 
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Fig. 6.46 - Effect of specimen thickness on the bearing strength of 
brickwork tVpe F under intermediate strip loading. 
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Fig. 6.47 - Effect of specimen thickness on the bearing strength of 
brickwork type F under end strip loading. 
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Fig. 6.48 - Effect of specimen thickness on the bearing strength of 
brickwork type G under central strip loading. 
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d/l = 0.25; b/t 1.00; AAC brickwork 
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Fig. 6.49 - Effect of specimen thickness on the bearing strength of 
brickwork type G under intermediate strip loading. 
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Fig. 6.50 - Effect of specimen thickness on the bearing strength of 
brickwork type G under end strip loading. 
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It Is apparent from Figs. 6.45 to 6.47 that 102.5mm thick clay brickwork yields 
higher bearing strength in comparison to 215. Omm thick brickwork. This 

Increase Is approximately, about 15-25% when Arý0.25 under central and end 

strip loading. However, in the case of AAC brickwork the 215. Omm thick 

masonry gives higher bearing strength at low values of loaded area ratio 
(ArO. 25). This increase In strength is not , significant under central strip 

loading, but could be about 15-25% in the case of intermediate and end strip 

loading as shown in Figs. 6.48 to 6.50. 

The effect of masonry thickness on the enhancement factor under central, 

intermediate and end strip loading for the two types of brickwork are 

presented in Figs. 6.51 to 6.56 respectively. These figures clearly show that 

2115.0mm thick specimens show higher values for the enhancement factor, 

even though the effect of specimen thickness. has been taken into account in 

chosing a suitable value for fk. Decrease of up to 30% in the value of 

enhancement factor has been observed in some cases when the specimen 

thickness has been decreased from 215. Omm to 102.5mm 

6.4.4. Aspect ratio 

Effect of masonry aspect ratio (1/h) for clay and AAC brickwork have been 

studied by keeping the height of specimens constant and varying the length. 

A bearing plate with cross-sectional area (a x b) of 100x`102.5 mm 2 was used 

for clay brickwork and the-effect of aspect ratio on the bearing strength and 

enhancement factor are as shown In Figs. 6.57 and 6.58 respectively. In the 

case of AAC brickwork, bearing plate with cross-sectional area (a x b) of 

225x1OO mm 2 was used and the results are presented in Figs. 6.59 and 6.60. 

The results are not very decisive, but the Inference is that the limiting value 
I 

for aspect ratio (i. e. the I/h ratio beyond which this effect is not significant) Is 

about 1.0 for clay and AAC brickwork. Ali and Page 170,711 used value of 1.25 

for I/h In their linear finite element analysis. 

However, it should be mentioned that In this Investigation only one specimen 

was tested under central strip concentrated load for a particular value of I/h 

for a given bearing plate dimension. Fu rther work Is needed to study the effect 

of bearing plate dimension on the bearing strength using fewer test 

specimens for a particular case. 
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CZW7RU S7W LOADING 
K t-102.5 m= 4-14.6 Nn= f. -15.22 lvmm 

t-215.0 n= fk- A7 Nn= * fý-12.26 Nn= 
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Fig. 6.51 - Effect of specimen thickness on-the enhancement factor for 
brickwork type F under central strip loading. - 
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Fig. 6.52 - Effect of specimen thickness on the enhancement factor for 
brickwork type F under intermediate strip loading. 
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Fig. 6.53 - Effect of specimen thickness on the enhancement factor for 
brickwork type F under end strip loading. 
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Fig. 6.54 - Effect of specimen thickness an the enhancement factor for 
brickwork type G under central strip loading. 
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Fig. 6.55 - Effect of specimen thickness on the enhancement factor for 
brickwork type G under intermediate strip loading. 
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Fig. 6.56 - Effect of specimen thickness on the enhancement factor for 
brickwork tVpe G under end strip loading. 
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Fig. 6.57 - Influence of aspect ratio on the bearing strength of 
claV brickwork masonrV. 
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Fig. 6.58 - Influence of aspect ratio on the enhancement factor for 
claV brickwork masonrV. 
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Fig. 6.59 - Influence of aspect ratio on the bearing strength of 
AAC brickwork masonry. 
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Fig. 6.60 - Influence of aspect ratio on the enhancement factor for 
AAC brickwork masonrV. 
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6.4.5. Loading position, 

To study the effect of loading position, the location of applied concentrated 
load was varied across the top of the specimens. Three positions namely 

central, intermediate and end loading were investigated (refer to Figs. 5.1, & 

5.2). Brickwork types E, F (for two thicknesses), G (for two thicknesses), H and 
L were tested under strip loading and brickwork type M tested under edge 
loading. The results are presented in Figs. 6.61 to 6.67 for strip and Fig. 6.68 

for edge loadings. These figures show the effect of loading position on the 

bearing strength of brickwork masonry in terms of loaded area ratio. It can be 

concluded from the results that as the loading moves away from the centre of 
the specimen (i. e. as the eccentricity is increased in the longitudinal direction) 

the bearing strength decreases. 

The effect of loading position on the enhancement factor for brickwork in 

terms of loaded area ratio is shown in Figs. 6.69 to 6.76. These results also 

confirm that as the edge distance decreases the enhancement factor 

decreases. The decrease in the strength is thought to be caused by the 

Increase In the transverse tensile stress which increase as the edge distance 

decreases and reaches its ultimate value when the load is applied at the end 

of the specimen. 

6.4.6. Loading configuration 

Two loading configurations, strip and edge (or patch) loading have been 

Investigated by employing the same specimens constructed of the same brick 

strength and mortar mix of which the results have been reported in Tables B2 

and 131 in Appendix B respectively. The results have been plotted In Figs. 6.77 

to 6.79 for three loading positions; central, intermediate and end positions 

respectively, which shows the variation of bearing strength In terms of loaded 

area ratio for the two loading configurations. It can be seen from Figs. 6.78 

and 6.79 that there Is hardly any difference between the two types of loading 

for the same loading position. 

The Influence of loading configuration on the enhancement factor are shown 

In Figs. 6.80 to 6.82 for central, intermediate and end loading positions 

respectively. The plots show strip loading yields higher enhancement factor 

but not to a significant value considering that the characteristic bearing 

strength Is dependent on the standard deviation of the data points. 
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Fig. 6.61 - Effect of loading position on bearing strength of brickwork 
tVpe E under strip loading (t=102.5mm). 
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Fig. 6.62 - Effect of loading position on bearing strength of brickwork 
type F under, strip loading (t=102.5mm). 
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Fig. 6.63 - Effect of loading position on bearing strength of brickwork 
type F under strip loading (t=215. Omm). 
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Fig. 6.64 - Effect of loading position on bearing strength of brickwork 
type G under strip loading (t=102.5mm). 
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Fig. 6.65 - Effect of loading position on bearing strength of brickwork 
type G under strip loading (t=215. Omm). 
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Fig. 6.66 - Effect of loading position on bearing strength of brickwork 
type H under strip loading (t=215. omm). 
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Fig. 6.67 -'Effect of loading position on bearing strength of brickwork 
type L under strip loading (t=102.5mm). 

. rFFXCT OF LOWPIM! POSITIOW Off M. 4RIAW STAMOTE OF MSOWRY 

EDGE LOAbLVG 
Central position 

+ Intemediate position 14 
----------- Rnd nosition 

11 

go 
24- 

12 

0 -ý 
0.0 

. f, =72.70 Nmm-!, Mortar 11(i) 
f. . 17.85 Xh2n! '. I& - 11-50 Nn2zn-o 
t=215. Om , j=665mn3#. b, 600rn 

0- -4 . -0 

r-'71 

i 1 

t- .ý 
-0 - 

0.2 0.4 0.0 0.8 

A., /A = a/l 
1.0 

Fig. 6.68 - Effect of loading position on bearing strength of brickwork 
type M under edge loading (t=215. omm). , 

+ --- zl------ 
1. -33.02 Nmni-8, Mortar MW 

, f. =, 14.25 Hmm za - 9.0 Nmm 
t. 102.5=m 1=665mm, h-600mw 

+ 
'43 

NO 

-177- 



XFFXCT OF ZO"I)V, 9 POSITIO)v Odv.. Kvff"cjrjfWVT: F. 4cTOR 
S"ýMP LOADING 

+ Central position 
13-----c3 btermediateposition 

----------- * End position 
4.2 f, -92.41 Nn=-t'Mortar M(I), 1. -27.42 Nmm' 

f. -31.90 Nmm-t fk - -19.60 xmm-e 
+ t-102.5mm, 1-665m , h-600mm 

tip 

2.8 

1.4 

0.0 

I I-M 

If 
ö %Zlj 

0.0 0.2 0.4 0.6 0.8 1.0 

A, = A. t, /A = a/l 

Fig. 6.69 - Effect of loading position on enhancement factor for 
brickwork tVpe E under strip loading (t=102.5mm). 
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Fig. 6.70 - Effect of loading position on enhancement factor for 
brickwork tVpe F under strip loading (t=102.5mm). 
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Fig. 6.71 - Effect of loading position on enhancement factor for 
brickwork type F under strip loading (t=215. Omm). 
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Fig. 6.72 - Effect of loading, position on enhancement factor for 
brickwork type G under strip loading (t=102.5mm). 
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Fig. -3.73 - Effect of loading position on enhancement factor for 
brickwork type G under strip loading (t=215. Omm). 
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Fig. 6.74 - Effect of loading position on enhancement factor for 
brickwork type H under strip loading (t=215. Omm). 
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Fig. 6.75 - Effect of loading position on enhancement factor for 
brickwork type L under strip loading (t=102.5mm). 
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Effect of loading position on enhancement factor for 
brickwork type M under edge loading (t=215. Omm). 
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Fig. 6.77 - Effect of loading configuration on the bearing strength of 
masonry under central loading position. 
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Fig. 6.78 - Effect-of loading configuration on the bearing strength of 
masonry under intermediate loading position. 
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Fig. 6.79 - Effect of loading configuration on the bearing strength of 
masonrV under end loading position. 
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Fig. 6.80 - Effect of loading configuration on enhancement factor under 
central loading position. 
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Fig. 6.81 - Effect of loading configuration on enhancement factor under 
intermediate loading position. 
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Fig. 6.82 -, Effect-of loading configuration on enhancement factor under 
end loading position. 
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6.4.7. Type of brick unit 

Influence of brick unit on the enhancement factor has been Investigated by 

comparing the results of tests on brickwork types F (clay) and G (AAC) for 

three loading positions and two thicknesses of masonry constructed using the 

same mortar mix. The results are presented In Figs. 6.83 to 6.85 for central, 
Intermediate and end strip concentrated loads respectively. 

It is shown the bonded masonry yields higher enhancement ý factor and also 

the type of unit affects the bearing strength considerably. From the plots it 

could be concluded that AAC brickwork gives higher values of enhancement 
factor than clay brickwork. Depending on the position of loading, this increase 

is quite significant at low values of loaded area ratios (Le ArO. 25). 

6.5. EFFECTIVE AREA CONTRIBUTING TO THE BEARING CAPACITY 

When a concentrated load Is applied partially to a surface of an element 
having an area A, only a portion of its cross-sectional area is stressed by the 

dispersed load. The area beyond this stressed zone Is not influenced by the 

concentrated load and the bearing strength under partial load Is not affected 

to any significant degree beyond the effective area, Ae- 

Some codes of practice relate the loaded area In relation to effective area in 

the calculation of the enhancement factor. In the case of concrete, the 

effective area given by the CEB1991 and German(1001 codes are reproduced and 

are shown in Figs. 6.86 and 6.87 respectively. In the case of brickwork 

masonry, some of the codes[l, 851 assume dispersion of the concentrated load 

to be at an angle of 45% and some 1761 give limiting value for the loaded area. 

Chinese code [691 adopts expressions for effective area in terms of length of 

loading and the thickness of the element under concentrated load as shown In 

Fig. 3.2. 
' 

To determine the effective area the limiting values for effective 

length and thickness contributing to the bearing capacity of brickwork masonry 

have to be Investigated. 

6.5.1. Effective length 

To determine the effective length contributing to the bearing strength of 

brickwork masonry a series of tests-was conducted using brickwork types F 

(clay) and G (AAC) under central strip loading configuration by keeping the 

length of loading plate constant and varying the length of specimen. In the 

case of clay brickwork the length of bearing plate, a, was chosen as 100mm 
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(roughly same as the thickness of the specimens) and the result Is as shown 
in Fig. 6.88. It can be observed that the limiting value-for the effective length, 

le, could be about six times the loaded length or In this particular case, six 
times the thickness of the specimen. In the case of AAC brickwork the length 

of bearing plate, a, was chosen to be twice the thickness of the specimens 
(i. e. 225. Omm). The result is presented in Fig. 6.89, which shows the limiting 

value is about three times the loading length or again six times the thickness 

of the specimen. 

No research work in this respect has been carried out on brickwork masonry, 

but it has been, shown[601 that the, limiting value for the effective length of 

concrete contributing to the bearing capacity of the specimen can be as high 

as eight times the actual loaded length. 

6.5.2. Effective thickness, 

To determine the limiting value of the effective thickness, t., contributing to 

the bearing strength of masonry the result of tests on brickwork type M under 

central, intermediate and end edge (patch) loading configuration is considered. 

The length of the loading plate was kept constant and the width was varied. 

The results are presented in Fig. 6.90, which shows as the ratio t/b increases, 

the bearing strength Increases. This is true for all three loading positions. 

However, this increase in the bearing strength could be due to the decrease in 

loaded area ratio, Ar and since it has been shown previously (ref. to Fig. 6.78 

and 6.79) that there is hardly any difference between strip and edge loading 

configurations, therefore it could be concluded from Fig. 6.90 that the limiting 

value for t/b is one (i. e. when patch loading becomes strip loading). 

6.53. Effective area 

From the experimental investigations reported In the two previous subsections, 

it is possible to deduce that the effective area, Ae contributing to the bearing 

capacity of brickwork masonry under concentrated- load Is 6t 2. 'However, when 

the cross-sectional area of an element under'partial load is greater'than 6t 2, it 

is recommended that the bearing strength be expressed In terms of its 

effective loaded area -ratio, Are, (where Are, Acb/Ae), which would put all 

available data Into Perspective and reduce the "scatter' commonly encountered. 

It should be mentioned that the results analysed In this chapter have not been 

modified for the effect of this parameter because Are and Ar are the same for 

the specimens tested. 
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Fig. 6.83 - Influence of unit brick type on enhancement factor 
under central strip loading. 
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Fig. 6.87 - Effective area according to DIN 104511001. 
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6.6. MODE OF FAILURE 

6.6.1. Strip Loading Configuration 

Typical failure mode and crack pattern under central strip concentrated load 

for brickwork types A, B, C, D, E, F, and G for various loaded area ratios are 

presented In Figs. 6.91 to 6.99 respectively. 

The appearence of cracks in relation to -failure of the specimen depends on 
the loaded area ratio, Ar, the tVpe of brick unit used in the construction and 

the position of applied load along the length of the specimen. 

For clay brickwork under central strip loading, a vertical crack under the centre 

of the applied concentrated load is, observed first (at about 30-70% of the 

ultimate load depending on the loaded area ratio) followed by diagonal cracks 

under the edges of - the bearing plate confined within a fan of 300 before 

failure. This is sometimes accompanied by spalling and 1local failure of. the 

brickwork under the bearing plate within the bearing zone. The, primary vertical 

crack is initiated below the middle half of the specimen and propagating up 

and down the height of the specimen as the load is increased. This will 

eventually split the specimen into two halves at failure. As loaded area ratio, 

Ar, increases the, forma, tion 
'of 

vertical, cracks. increa, ses and also the ratio of 

cracking load to ultimate,, load at failure (Fr=F C NJ decreases. The, results show 

when Ar'0.05, Fr'0.70 and decreases to Fr'20.35, at Ar=0.40. The effect, of 

thickness on the failure pattern is also pronounced in a way that the primary 

vertical crack is no longer the dominant crack in a 2115.0mm thick specimen 

compared, to 102.5mm thick specimen. In this case the failure is caused by the 

formation of diagonal cracks and local crushing, under the bearing plate as it is 

clearly shown by comparing Figs. 6.96, and 6.97. 

AAC brickwork specimens subjected to this form of loading, (see Figs. 6.98 and 

6.99), it exhibits tensile cracking, parallel to the line of action of, the imposed 

load and also the formation of a wedge or a cone, immediately under the 

loaded face which moves downwards, splitting the specimen apart (see Fig. 

6.110). In some cases diagonal cracks have been observed under the edges of 

the bearing plate or local crushing of the unit within the bearing zone. 

In the case of Intermediate strip concentrated load of which typical failure 

mode and crack pattern for brickwork types E, F and G for various loaded area 

ratios are shown in Figs. 6.100 to 6.104, the failure mode of clay and AAC 
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brickwork are the same as their respective central position, except that the 

ratio of cracking load to the ultimate load at failure Is greater than In the 

former case. Again In this case as loaded area ratio increases, the ratio F. 

decreases. The results show for Ar=0.05, 
"Fr=0.87 

and decreases to_,, F, =0.50, at 
Ar=0.40. The formation of vertical crack under the-centre line of the bearing 

plate or sometimes In the a plane of perpend (plane of weakness) and 

diagonal cracks under the edges of the plate are accompanied sometimes by 

spalling of the brickwork and local crushing. 

Typical failure mode and crack, pattern under end strip concentrated load for 

brickwork types E, F and G for various loaded area ratios are presented In Figs. 

6.105 to 6.109 respectively. Vertical and diagonal cracks are observed under 

the edge of the bearing plate sometimes running down the whole height of 

the specimen. These sometimes are accompanied by spalling of the brickwork 

and local crushing especially under small bearing plate. It is worth mentioning 

that, from the experimental results, the ratio of cracking load to the ultimate 
load at failure, Fr, for this type of loading configuration Is approximately 0.68 

and remains unchanged for varying area ratio, Ar 

6.6.2. Edge Loading Configuration 

Typical failure mode and crack pattern under central, intermediate and end 

edge concentrated load for,, brickwork., type M-(results reported ln'Table--Bl* in' 

Appendix B) for various loaded area ratios are presented in Figs. 6.111 to 6.113 

respectively. 

Spalling was frequently observed to be the first sign, usually followed by 

vertical cracks on one or more faces, often initiating at the mid-height under 

the edge and at the centre of the plate. Diagonal cracks were formed under 

the edge/s of the bearing plate, Sometimes running down the whole height of 

the specimen contained within 300 fan to the vertical. In some cases local 

crushing and collapse of brickwork under the bearing was observed at failure. 
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Fig. 6.91 - TVpical failure mode and crack pattern for brickwork type A 
under central strip loading (t=10.5mm). 
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Fig. 6,92 - Typical failure mode and crack pattern for brickwork type B 
under central strip loading (t=102.5mm). 
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Fig. 6.93 - Typical failure mode and crack pattern for brickwork type C 
under central strip loading (tý102 5mrTi). 
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Fig. 6 94 - Typical failure mode and crack pattern for brickwork type D 
under central strip loading (t= 10 5mm) 
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Fig. 6.95 - Typical failure mode and crack pattern for brickwork type E 

under central strip loading (t=102 5mm) 
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Fig. 6.96 - Typical failure mode and crack pattern for brickwork type F 

- under central strip loading (t=102.5mm). 
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Fig. 6.97 - TVpical failure mode and crack pattern for brickwork type F 
under central strip loading (t=215. Omrn). 
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Fig. 6.98 - Typical failure mode and crack pattern for brickwork type G 
under central strip loading (t= 102 5mrn) 

-203- 

Ar m 0.15 



'low 

C: y 1 

Ar z 0.05 

0.10 

Zv 

I; ," 
I 

Af = 0.15 

Fig. 6.99 - Typical failure mode and crack pattern for brickwork type G 
under central strip loading (t-215-Omrn). 
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Fig. 6.100 - Typical failure mode and crack pattern for brickwork type E 
under intermediate strip loading (t-102.5mm). 
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Fig. 6.101 - Typical failure mode and crack pattern for 
under intermediate strip loading (t=102.5mm). 
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Fig. 6 102 - Typical failure mode and crack patVrn for t, jpe F 
under intermediate- strip loading (t )I 50nim) 
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Fig. 6.103 - Typical failure mode and crack pattern for brickwork type G 
under intermediate strip loading (t=102.5mm). 
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Fig. 6.104 - Typical fai, ure mode and crack pattern for brickwork type G 
under intermediate strip loading (t=215. Ornrn). 

-209- 



L / --- 

-. -, , 
ý- 04W 

EIVI 

(c)- Ar Olj 

0.3 0 

(d)- Ar 0.20 

I (f)- Ar ý 0.40 

.. il failurp mode and crack pattern for brickwork type F 
Lind- ý! id loadinq (t= 102 5mm) 

ý) 
11) 

(b)- Ar ý0 10 Ar 0-05 



Ar = 0.15 

Fig. 6.106 - Typical failure mode and crack pattern too brickwork type F 
under end strip loading (t=102.5mm). 
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Fig. 6.107 - Typical failure mode and crack pattern for brickwork type F 
under end strip loading (t=215. Omrn). 
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Fig. 6.108 - Typical failure mode and crack pattern for brickwork type G 
under end strip loading (t=102.5mm). 
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Fig. 6.109 - Typical failure mode and crack pattern for brickviork , 'ýpe G 
under end strip loading (t=215, Omm). 
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6.7,; SUMMARY AND CONCl-USIONS 

Enhancement factor could be expressed either as a ratio of mean bearing to 

mean masonry strengths or the ratio of characteristic bearing strength. to 

characteristic compressive strength of masonry. However, It has been shown 

that the two, definitions yield same value for the enhancement factor provided 

that a reasonable number of samples have been tested under uniform load for 

the determination of the mean and characteristic compressive strengths of 

masonry. 

Expressions for the mean and characteristic bearing strength of masonry In 

terms of unit brick strength for loaded area ratios of 0.1,0.2, '0.3'and 0.44or 

102.5mm thick specimen'constructed with mortar grade M(i) have been given. 

Characteristic bearing strength Is found to be 75% of the mean bearing 

strength. 

Enh 
, 
ancement factor is a function of loaded area ratio and unit strength. It has 

: ý. ;'IC been shown that when the loaded area ratio decreases the enhancement 

factor Increases with increase in unit strength. 

Increase In the strength of unit would increase the bearing capacity under 

partial loading. As brick and mortar strengths influence the masonry strength, 

it, has been shown that as characteristic compressive strength of masonry 

increases, the bearing strength increases. 

Decrease In loaded area ratio leads to increase in bearing strength. The 

influence of this parameter Is. found to be significant and is considered as a 

primary varlable, The enhanced strength for drop in loaded area ratio of 0.4 to 

0.3,0.2 and 0.1 could be as high as 5,30 and 120% respectively. 

Depending on the type of brick unit used, masonry thickness influences the 

: bearing strength. It has been shown that 102.5mm thick clay brickwork yields 

higher bearing strength in comparison to 215. Omm thick brickwork, and 

vice versa in the case of AAC brickwork at low values of loaded area ratios 

(A40.25). This parameter shows the same effect on the enhancement factor. 

Also the AAC brickwork gives higher values for enhancement factor In 

comparison to clay brickwork 

The limiting value for aspect ratio for clay and AAC brickwork Is found to be 

about one. 
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The effect of loading configuration (strip and edge) on the bearing strength 

and enhancement factor is found to be Insignificant. , 

Position of applied concentrated load is found to be an Important parameter 

and it has been shown that as the edge distance Increases the bearing 

strength Increases and conversely as edge distance decreases, the bearing 

strength decreases. 

The effective area contributing to the bearing caPacity of brickwork masonry Is 

found to be equal to 6t2. 

The appeara n-ce of cracks In relation to failure of brickwork under concentrated 

load depends on the loaded area ratio, the position of applied load along the 

length of the element, the thickness of the element and the type 'Of units used 

ln'its construction. For'single leaf, 102.5mm thick elements constructed with 

high strength units' (in relation to the mortar cube strength), the mode of 

failure is by vertical splitting under the centre of applied load accompanied by 

diagonal cracks under the edge/s of bearing contained within a fan of 30* to 

-Ahe vertical, followed by local crushing at ultimate load. For bonded masonry, 

, 215.0mrn thick element, the diagonal cracks dominate the failure mode. For 

elements constructed with low strength units (i. e. brick strength approximately 

same as mortar cube strength) the failure is more or less localized. Sometimes 

the failure is by crushing of the unit under the bearing and other-times a 

wI edge or cone is formed which ultimately splits the element. It has been 

observed that as the loaded area Increases the diagonal cracks tend to 

become more vertical or in otherwords the angle of inclination to the vertical 

decreases. The effect of load position, i. e. where the load Is applied at the end 

of the element in contrast tolhe central position, vertical and diagonal cracks 

jorm under* the Inner edge of the bearing sometimes running down'the whole 

height. In most cases the final failure is caused by the crushing of brickwork 

in the bearing zone. 
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Chapter 7 

STRESS DISTRIBUTION IN MASONRY UNDER CONCENTRATED LOAD 

7.1. INTRODUMION 

The main object of this chapter is to analyse brickwork masonry panels 

subjected to concentrated load by the method of finite element and to study 

the nature of stress distributions set up under this type of loading rather than 

to I predict failure of the masonry panels. 

As _mentlonedý previously 'in' chapter 3, most analytical Investigations on 
brickwork masonry structures have been concerned with stress distributions 

subjected to uniform -vertical compression. The work reported by All et a J70.711 

which has been reviewed in section -3.2. seems to be only published material 

on concentrated load on masonry. However, It was pointed out In section 3.4 

that work carried out by Ali was to develop a nonlinear finite element program 
based on nonlinear fracture model of masonry for the analysis of the In-plane 

behavio'6r of masonry 'subjected to concentrated load. This work has now been 

completed"Oll and contains a comprehenssive material model which Is 

Incorporated into nonlinear finite element computer models capable of 

simula'ting'the beh'aviour'of masonry at all levels of applied load up to failure. 

it models brickwork masonry as a composite of nonlinear bricks set in a 

nonlinear mortar matrix. The nonlinear response of masonry has been 

produced by a combination of a nonlinear deformation characteristics and 

progressive failure of the constituent components. The material properties for 

the model were determined from various simple tests on samples of bricks, 

mortar and small masonry specimens. A series of failure criteria were adopted 

to model the different modes of failure in masonry constituents and due to 

the , crack sensitive nature of the problem, emphasis was given to the 

modelling of crack and post-cracking behaviour of the materials. 

Predicted failure load. and mode obtained by the finite element analyses were 

verified. by. conducting tests on solid concrete brick panels, 1022mm 

(12-courses) high, 710mm (3-stretchers) long and 1 10mm thick set In mortar 

1: 5,,. c, ement: sand mix by volume. Twenty four panels were tested under 

concentric and eccentric strip concentrated load for various loaded area ratios. 

In general, -- good agreement was shown between theory and experiments. 

Sensivity analyses were also carried out for various parameters defining the 

material t model, and the finite element analysis. The modulus of elasticity and 



the strength parameters, particularly the joint bond strength were found to be 

the most significant properties. 

The finite 
, 

element program was utilized to conduct a comprehensive 

parametric study of the behaviour of storey-height walls subjected to 

concentrated loads with the aid of substructuring and mesh-refinment 

schemes. The conclusions drawn from this study (apart from those mentioned 
in section 3.2) reveal that aspect ratio (ratio of length to height of specimen) 

, 
of. the panels Is an Important parameter. The ultimate bearing strength of the 

walls analysed were shown to be a function of the loaded area ratio, loading 

position. and the length of the wall. The capacity decreased with increase of 

the 
-loaded 

area ratio, eccentricity of the load and the length of the wall. 
These, three parameters also influence the mode of failure-which changes from 

splitting to the more gradual development of vertical cracks depending on the 

position, of the, loading plate in relation to the nearest plane of weakness 
(perpend joint) of the wall. 

A standard finite element package available at the Department of Civil 

Engineering and Building Science at Edinburgh University has been used to 

carry out limited number of analyses in order to establish whether the stress 

distribution within brickwork masonry subjected to concentrated load could be 

obtained by use of such a package. The analyses carried out are two 

dimensional plane stress linear elastic, assuming masonry as a homogeneous 

continuum - subjected to concentric -and eccentric strip partial load. This Is 

extended to treat masonry as an assemblage of separate elastic bricks and 

mortar joints. A nonlinear analysis under central strip partial load on the basis 

of a continuum, has also been carried out. 

72 METHOD OF FINRE ELEMENT ANALYSIS 

Standard finite element software called, PAFEC11021 (Program for Automatic 

Finite Element Calculations) which Is a general purpose package developed in 

Nottingham have been used to analyse brickwork masonry panels under 

concentrated load. - It includes an extensive number of facilities, performs 

several types of analysis and contains, large selection of elements. I 

The element used throughout the study is a flat eight noded Isoparametric 

curvilinear quadrilateral (elernent No. 36210), normally used in plane stress 

mode for finding stresses and displacements In thin structures. The size of 
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panels were chosen to be 665mm (3-stretchers) in length, 590mm (8-courses) 

high and 102.5mm In thickness. Due to the large number of elements and 
limitation, of the file space only two dimensional analysis have been carried 

out assuming plane stress. The panels were restrained at the bottom In the 

horizontal and vertical direction and the concentrated load has been applied by 

means, of uniform pressure (Crcbz-50 NMM-2) applied over partial surface of the 

panel simulating strip loading configuration either concentric or eccentric with 

respect to the longitudinal direction. For the linear elastic analyses the 

material constants were set to: elastic modulus, E-7 kNm M-2 and Polsson's 

ratio, v-0.20 for the case of homogeneous continuum and Ebo80 kNmm -2 , 
E., 44 kNMM-2 with Vb=0*15 and vrn-0-25 for non-homogeneous model. For 

non-linear analysis the stress-strain relationship obtained for brickwork type F 

were Idealized Into elastic and plastic ranges. The yielding stress of 8.8 N MM-2 

were obtained with the Initial elastic tangent modulus of 22 kNmM-2 and 

plastic modulus of 3.3 kNmm -2 
. 

73. RESULTS OF FINITE ELEMENT ANALYSES 

73.1. Concentric Position 

Three types of analyses have been conducted under concentrated load applied 

at the centre of the' panels. Linear elastic analysis modelling brickwork as 
homogeneous (assuming masonry as a single material), non-homogeneous 
(assuming masonry as a two-phase material, brick units and mortar joints) and 

non-linear analysis. 

73.1.1. Homogeneous 

The results are presented in Fig. 7.1. Only half of the structure Is conside - red 

since the panel is symmetrical about its centre (see Fig. 7.1(a)). The 

distribution of vertical stress, cy, as a ratio of applied concentrated pressure, 

Cycb, which is an indicaiion of the nature of the load dispersion is shown in Fig. 

7.1(b). The vertical stress Is compressive except for a small area at the top 

corners of the panel. The distribution of vertical stress becomes uniform at a 
depth below the top of the panel approximately equal to 0.6h. Most codes 

suggest that the concentrated load can be assumed to disperse at an angle of 
4511 beneath the loaded area. Thýis- has been shown in Fig. 7.1(b) and can be 

seen that the influence of concentrated load extends beyond this dispersion 

line particularly in the region immediately beneath the load and Is 

approximately contained within a fan of 300 to the horizontal. 
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The distribution of transverse stress at different sections down the height of 

the panel is, presented in Fig. 7.1-(c) with its magnitude In terms of applied 

'stress, 
CFcb. The transverse stress Is compressive Immediately underneath the 

loaded area,, and becomes, tensile at a height approximately equal to 0.15h 

under the centre of the load. The transverse tensile stress Is maximum under 

the centre-of plate and decreases at various sections away from the 

loaded, region. The location of maximum transverse tensile stress changes (y/h 

increases) as the distribution is taken away from the loading point. The 

_graphical 
output obtained from the package for finite element mesh, displaced 

shape, inplane stress vectors, largest absolute, maximum and minimum 

principal stress contours are presented in Fig. 7.2 (a)-(f) respectively. 

, 
73.12 Non-homogeneous 

The finite element ., mesh ý for this analysis Is as shown in Fig. 7.3-(a) with the 

shaded area representing the mortar joints. Again only half the structure Is 

considered with the vertical plane under the concentrated load being restraint 

-in the horizontal direction to simulate the appropiate boundary condition. 
Concentrated pressure of 50 NmM-2 is applied over 5% of the surface. The 

non-dimensional vertical stress distribution is shown In Fig. 7.3(b) at various 

levels. The magnitude, of vertical stress distribution is approximately the same 

, as the homogeneous case. The distribution of transverse stress down the 

height of two sections. (section 1: across bricks and bed joints, section 11: 

, 
across bricks, vertical perpends and bed joints) are as shown In Fig., 7,3(c). The 

transverse stressl at section J is compressive immediately under the applied 

concentrated load and tensile which is maximum at a height of 0.11h beneath 

the loaded area in the brick unit. It can be seen that the transverse stress In 

the. joints are, always compressive. The transverse stress at section 11 Js, again 

compressive immediately under the applied concentrated pressure and tensile 

which is maximum at the same height as in section 1. The distribution of the 

, stress is compressive in -the first perpend joint with subsequent ones in 

tension. The stress-, in the perpends exceeds the stress In the ý joints 

suggesting that the, splitting of the brickwork could be initiated In the vertical 

perpends due to the bond failure. Comparing the transverse tensile stress In 

the cases of homogeneous and non-homogeneous, it can be seen that the 

peak stress Js markedly greater in the latter case (compare Figs. 7.1(c) & 

7.3(c)). 
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73.1.3. ý Nonlinear analysis 

The results of nonlinear analysis 'subjected to concentrated pressure applied 

over 10% of the top surface of brickwork masonry are presented in Figs. 7.4 

and, -', ' 7.5. The vertical stress distribution (see Fig. 7.4(b)) shown In a 

non-dimensional scale is compressive except for a small area at the top 

corners of the panel and becomes uniform at *a depth below the loaded area 

approximately equal to 0.6h contained within a fan of 300. The distribution of 

transverse stress down the height In a non-dimensional scale for various 

sections Is as shown in Fig. 7.4(c). Transverse stresses at these sections are 

compressive below the loaded area and become tensile below this region. 
Under the centre of loaded area the transverse tensile stress Is maximum at a 

height of 0.35h with a magnitude, of 0.05acb. For a distribution ý at a section 

away from the centre of the load the magnitude of transverse tensile stress 
decreases and the location of the peak changes (i. e. y/h Increases). 

73.2. Eccentric Position 

The finite element mesh for the linear elastic analysis assuming brickwork as 
homogeneous, continuum under and strip concentrated load is 

-shown 
in Fig. 

7.5(a). The distribution of vertical stress Is as shown In Fig. 7.6(b). Vertical 

compressive stresses are a maximum under the loaded area whereas vertical 

tensile stresses are a maximum near the base of the panel and, do develop at 

the other unloaded end of the panel. The distribution of transverse stress for 

different sections are shown in Fig. 7.5(c)., Immediately underneath the loaded 

area the stress is compressive and becomes tensile at the depth equal to 

0.05h with -the peak occurring under the inner edge of the applied, load. The 

distribution, of transverse stress at other sections away from the loaded area 
is tensile within the top region of the panel and compressive below this 

region. The graphical output 'obtained from PAFEC are presented in Fig. 7.7. 

Comparing' the results obtained for the cases of concentric and eccentric 

loading it can be seen that as the eccentricity of load is Increased (i. e. 

decreasing the edge distance from central to end loading position) the 

magnitude of the tensile transverse stress increases. For the loaded area ratio 

of 0.05 the maximum transverse tensile stress under eccentric concentrated 

load Is approximately twice its respective value under concentric load. 
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7.4. SUMMARY AND CONCLUSION 

Two dimensional plane stress finite element analyses have been used to study 

the nature of stress distributions under concentric and eccentric concentrated 
load using a, standard package. For the concentric loading two types of 

analyses namely. linear elastic and nonlinear analysis were performed, with the 

former case modelling brickwork masonry as homogeneous continuum and as 

an assemblage of separate bricks and mortar joints. The following conclusions 

can, be drawn from this study: 

Standard package, (PAFEC) could be used successfully to 

simulate brickwork masonry panels under concentrated load. 

In general the accuracy of the results depend on the type of 
analysis and the size of elements. 

-A finite element model which treats units and joints 

seperately Is more effective, since it reflects the effect of 

varying stiffness of its constituent materials. This Is 

particularly important in the study of transverse tensile 

stress where peak stress has been shown to be greater than 

that obtained in the homogeneous model. 

A nonlinear analysis is also more effective since it reflects 
the effect of material/s nonlinearity and its Influence on the 

transverse stress distribution which shows higher peak 

stress. However, It can be uneconomical especially when 

masonry is modelled as an assemblage of separate bricks 

and joints. 

-The distribution of vertical stress is compressive with its 

peak under the loaded area and tensile at the top corners of 
the panel. It is best contained within a fan of 30" to the 

horizontal. 

- The distribution of transverse stress is compressive 
immediately below the loaded area and tensile below this 

region. The study of transverse stress in the 

non-homogeneous case shows that bricks and vertical 

perpends exhibit transverse tensile stress which causes the 

splitting of the specimen due to bond failure In the perpends 
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and tensile crack In the units. 

-As concentrated load is 'applied to the end of the panel 
(eccentric In contrast to concentric loading), the transverse 

tensile stress markedly increase. This Increase Is as high as 
200% for loaded area ratio of 0.05. 

Unfortunately a non-homogeneous nonlinear analysis was not performed due 

to the limitation of file size and excessive number of elements Involved. 

However, the results reported In this chapter are In good agreement with 

existing results 
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Fig. 7.3 Results of linear finite element analYsis under concentric 
concentrated load modelling brickwork as non-homogeneous material. 
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Chapter 8 

FAILURE MECHANISM, ENVELOPE AND DESIGN RECOMMENDATION 

8.1. FAILURE MECHANISM OF MASONRY UNDER CONCENTRATED LOAD 

Brickwork masonry falls under a uniformly distributed compressive load by 

vertical splitting due-to the development of lateral tension. Failure mechanism 
based on' sfack-bonded prisms (see Fig. 8.1(a)) 'has been derived by various 

researchers 
[13 , 25 , 26,31,47-49,1031 and suggests'that failure Is by vertical splitting 

due to horizontal tension induced in the bricks. The state of stress In a brick 

within the prism under uniform vertical load Is a combination of axial 

compression and bi-lateral tension (see Fig. 8.1(b)). Bi-lateral tension Is the 

result of the differential strain between mortar and the brick. The mortar Is 

consequently in a state of tri-axial compression (see Fig. 8.1(c)). The lateral 

tension produced which -is sometimes referred to as 'burstIng stress, ' will 

eventually cause failure in the brittle brick: Based on this theory, failure 

envelopes have been derived theoretically and experimentally and are well 

documented elsewhere 141 
. cry 

/_ 
X I 

Y 
cry 

(a)- Stack-bonded prism under uniform 
axial compressive load. 

ay 

a. crx 
t 

(TZ 
t 
Ty 

(c)- Mortar joint under 
tri-axial compression. 

Gy 

()'X 

az Ty 
(b)- BriCk element under axial 

compression and bi-lateral tension. 

Fig. 8.1 - State of stress in a brick and mortar joint within a 
stack bonded brickwork prism under uniform axial compressive load. 

However, for a brickwork panel (as shown in Fig. 8.2(a)), the above explanation 
is not sufficient since. it ignores the presence of the perpend joints. In the 



previous,, chapter the, analytical study revealed that perpends exhibit lateral 

compressive or tensile stresses (Figs. 7.3(c) & 8.2(b) & (e)) which were greater 
than the stress in the bed joints.. The transverse tensile stress set up within 

the brickworlý would cause tensile bond failure between the perpend and the 

adjacent brick/s. Meantime, the bed joints above and below the perpend are In 

a state of triaxial compression (Fig. 8.2(c)) and the bricks In a state of axial 

compression and bi-lateral tension (Fig. 8.2(d)). Since the tensile bond strength 

of brickwork Is small in relation to the tri-axial compressive strength of mortar 

and lateral tensile strength of brick, a crack is formed In the perpend. As the 
load Increases the crack propagates up and down and when the transverse 

tensile stress reaches the tensile strength of the bricks the crack would pass 
through the joints and bricks which eventually cause failure In the brickwork. 

y 
(a)- Brickwork panel under uniform axial compressive load. 

y Cr 
y 

CrX 
07X 

(TZ 

(TZ t (c)- Mortar bed joint under (b)- Perpend Joint under tri-axial tri-axial compression. 
compression near the ends of the panel. 

y 
Cy 

y 

x 

az 

(d)- Brick unit under axial compression 
(a)- Perpend joint under axial compression 

and bi-lateral tension. 
and bl-lateral tension Within the panel. 

Fig. 8.2 - State of stress in a brick, mortar bed joint and perpend 
Within a brickwork panel under uniform axial compressive load. 
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Considering a brickwork specimen (Fig. 8.3(a)) partially loaded concentrically at 
its centrold, an element Immediately under the applied load Is In a state of 
tri-axial compression. The effective compressive strength of brickwork within 
the local bearing area Is Increased, hence the enhancement of the bearing 

stress at failure. Further down the centre line of the specimen, as the 

concentrated load disperses, the state of stress In an element Is one of axial 

compression (a. ) and bi-lateral tension (ax and C), as Indicated In Fig. 8.3(b). 

When the transverse tensile stress in the perpend joint reaches the tensile 
bond strength and/or the transverse tensile stress Is greater than the tensile 

strength of the brick In this stress condition, a vertical crack appears. The 

crack is usually observed near the region where the horizontal tensile stress 
(a. ) Is a maximum. With load Increasing, the crack develops up and down the 
height of the specimen. Meanwhile, other vertical and diagonal cracks appear 

and the state of stress in the brick masonry will change. Thus the tri-axial 

stress may become unlaxial stress along a strip between the vertical cracks. In 

some cases the local compressive stress may reach the compressive strength 

of the unit, and the specimen will be crushed. 

In general, the mode of failure under concentrated load applied through a rigid 
bearing plate Is governed by three parameters. These are the loaded area 

ratio, the position of load and the strength characteristics of units. The 

appearance of the primary crack in relation to failure of the specimen depends 

, on the loaded area ratio, Ar For small values of loaded area ratio (Arý0-20) the 

vertical crack appears suddenly followed sometimes by diagonal cracks under 

the edges of bearing plate and sometimes accompanied by spalling of 
brickwork shortly before failure. In this case the failure Is caused by a vertical 

tensile crack, splitting the specimen Into two halves. As the loaded area 

increases (ArIO. 20), the ratio of cracking load to ultimate load at failure 

(Fr-Fc/F,, ) decreases, resulting In progressive failure. Conversely, as Ar 

decreases, Fr increases. In this case failure Is gradual and is caused by the 

development of vertical cracks followed by diagonal cracks under the edges of 

bearing accompanied sometimes by spalling and local failure within the 

bearing zone. This has been shown in Figs. 6.91-99 for various loaded area 

ratios-, for the central strip loading configuration., it is worth noting that for 

higher loaded area ratios (i. e. Arý0.30) sometimes vertical cracks have been 

observed under the edges of the bearing plate. It is believed that these 

vertical cracks are caused by the shear-bond failure in the perpend under the 

edges of the loading plate. 
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cenire 1ine of brickwork' masonry subjected to concentrated load. 

The effect of the load position on the mode of failure Is not so different for 

intermediate loading position In contrast to the central loading position. 
However, for the end loading position, vertical and diagonal cracks form under 
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the edge of the bearing sometimes running down the whole height of the 

specimen. In this case the failure is due to the development of the vertical 

and/or diagonal crack/s under the Inner edge of the plate sometimes 

accompanied by local failure within the bearing zone (see Figs. 6.105-109). 

The influence of low strength units (as In the case of AAC units) on the failure 

under central strip load Is seen as the formation of a wedge or a cons, 

immediately under the loaded face (see Fig. 6.110) which moves downwards, 

splitting the specimen apart (see Fig. 6.98(b) & (c)). As the loaded area ratio 

decreases (A, -0.05) the failure is of the form of local crushing of the unit (see 

Figs. 6.98(a), 6.99(a) & 6.103(a)). As the position of the loading becomes 

eccentric' diagonal crack/s dominate the mode of failure (see Figs. 6.103,6.104, 

6.108 and 6.109). 

8.2. FAILURE ENVELOPE FOR MASONRY UNDER CONCENTRATED LOAD 

The analyses of results reported In chapter 6 have shown that the major 

parameters influencing the bearing strength of brickwork masonry are the 

constituents strength characteristics which are incorporated into characteristic 

compressive strength of masonry fk, the loaded area ratio A, and the position 

of the loading (i. e. the effect of edge distance) for a given element thickness. 

Already design charts for the characteristic compressive bearing strength of 

brickwork masonry, f'cb, in terms of unit brick strength fb for mortar grade M(l), 

element thickness t=102.5mm and loaded area ratios of 0.1,0.2,0.3 and 0.4 

have been derived and presented in Table 6.2 and Fig. 6.34. 

However, an attempt is made in this section 
' 
to derive failure envelopes for 

masonry 102.5mm and 215.0mrn in thickness on a non-dimensional scale for 

enhancement factor (as a ratio Of fcb and fk) In terms of loaded area ratio 

(Ar=Acb/A) and ratio of edge distance to the total length, d/I (i. e. for central 

loading position d/1=0.50, intermediate loading position d/1=0.25 and end 

loading position d/l is approximately zero). 

All the results reported in this thesis have been sorted according to the 

specimen thickness and loading positions. The ratio C06/4 have been 

plotted against loaded area ratio A.. As before the best fit to the data points 

representing the mean curve and hence the 95 % lower confidence limits have 

been determined. The results obtained are sho wn In Table 8.1 and graphically 
8.4 and 8.5 for central, in Figs. intermediate and end loading p ositions for 

102.5mm and 215. Omm masonry thicknesses respectively. Figs. 8.6 and 8.7 
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Fig. 8.4 - Mean and characteristic curves for enhancement factor of 
102.5mm thick masonry as a function of loaded area ratio for central, 

intermediate. and end loading Positions respectively. 
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Fig. 8.5 - Mean and characteristic curves for enhancement factor of 
215. Omm thick masonry a§ a function of loaded area ratio for central, 

intermediate and end loading Positions respectively. 
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represent the three dimensional failure envelopes for brickwork masonry 
102.5mm and 215-Omm in thickness. The curves are the 95% lower confidence 
limit, A, 4 

t 
(mm) 

Loading 
position 

Mean curve 
equation 

95% lower limit 
equation 

n 

102.5 Central C=1.107Ar-0.377 V-0.792Ar -0.377 209 

Intermediate C= 1.212Ar-0.275 V-0.845Ar-0.275 64 

End C=1.195Ar -0.247 V-0.869Ar -0.247 80 

215.0 Central C=1.174Ar -0-357 C'-0.82gAr -0.357 39 

Intermediate r. =1.156A r-0-367 V-0-898Ar -0.367 37 

End C=1.159k-0-303 V-0.893Ar -0.303 42 

Table 8.1 - Equations of the mean and 95% lower confidence limit curves 
for failure envelopes under various loading position and masonry thickness. 

8.3. DESIGN RECOMMENDATION 

Current design guides for predicting the capacity of brickwork masonry 

subjected to concentrated load are at best approximate and, depending an 

their country of origin, they vary considerably. A complete review of provisions 

adopted by various codes of practice has been covered In section 3.3. 

To formulate a realistic design guide it is essential to consider major 

parameters which have an effect on the bearing strength of brickwork M , asonry 

and in doing so produce an easy and reliable formula. 

The idea is to obtain an expression for the enhancement factor for brick 

masonry taking into account the primarily variables. These have found to be 

the bearing area, position of loading along the length of the element and the 

effective length contributing to the bearing strength. However, the former and 

the latter parameters could be presented as a single variable by "'effective area 

ratio, Are" which is the ratio of loaded area to the effective area contributing 

0eI to the strength enhancement. Effective area, A. Is the product of the ff ct ve 

length, le and the effective thickness, t.. It has already been shown that the 

effective thickness is the same as the thicknessof the element or, in other 

words, the worst type of loading Is one where the concentrated load Is applied 

over the whole thickness (see Figs. 6.78,6.79 and 6.90). Also It was shown 
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that the effective length_ Is about three times the loading length, a, or six 
times the thickness of the specimen (see. Figs. 6.88 and 6.89). - 

It Is also possible to arrive at the effective length theoretically by assuming 

that the concentrated load disperses through brickwork at an angle of 450 and 

the stress at -a - 
height of 0.4h below the 

- 
bearing becomes uniform as 

postulated In BS 5628111. Hence the effective length at this level where the 

stress is assumed to be'uniform (refer to Fig. 8.8) Is shown by expersion 8.1. 

T 
0.4h 

I 

Fig. 8.8 - Dispersion of concentrated io 'd in bric6v'rk iýas' a0 onry. 

le ý2(0.4h )+a =10.8h +a (8.1) 

For masonry where the effect of slenderness is negligible, '6S 5628,11 gives 
h/t-8.0 for 6=1.00. Hence expression 8.1 could be written in terms of the 

element's thickness such that; 

Ie=6.4t +a (8.2) 

This would lend some Support to the assumption of 6t as the effective length 

although it has no. known theoretical basis., 

An expression in the form of equation 8.3 Is recommended for determining the 

enhancement factor for masonry under rigid bearing where ArenAcb/Ae and A. 

is calculated in accordance to the proposals shown in Fig. 8.9. 

0.80 Are -0.33 3.00 (8.3) 
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Fig. 8.9 - Effective area under bearing. 

The above recommended design guide not only is a function of loaded area, 

but it also takes account of loading position in relation to the edge of the 

brickwork panel and the effective length. It is based on the experimental 

results for concentrated loads on masonry panels applied through 3 rigid 
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bearing plate as reported in this thesis. Fig. 8.10 shows the recommended 
design guide-together with all the experimental results carri. ed out In this 
investigation and modified for the parameter Are according to Fig. 8.9 on the 

same plot. Limiting the value of the effective length to 6t puts the 

enhancement factor obtained from equation 8.3 on the conservative side. 
However, as Figs. 8.9 and 8.10 shows, the recommended expression for 

enhancement factor Is realistic, easy to understand and use, and Is In good 
agreement with the experimental results. 

In practice, sometimes concentrated load is accompanied by uniform 

precompression. The influence of this parameter on the ultimate bearing 

strength of masonry Is being studied at Edinburgh University and up to now 
limited number of, tests have been conducted with varying 

-degrees of 
precompresslon. The Inference from preliminary tests Is that as the as the 

precompression increases, the, ultimate bearing strength under concentrated 
load decreases, hence decrease in the 

' 
enhancement factor. The aim is to 

achieve a sufficient number of test, results, so that a. design chart similar to 

that shown in Fig. 8.11 could be produced. The data points shown In Fig. 8.11 

are the results of tests carried out up to date but the curves are simulations. 

However, In the absence of a complete design chart such as-one In Fig. 8.11, 

based on the available results it Is recommended that reduction of up to 30% 

In the enhancement factor obtained from equation 8.3 'is warranted for the 

precompression Of fk/2. Therefore, expression 8.3 could be written In a more 

general form as: 

f, cblfk 0.80 Are )-0.33 ý 3.00 (8.4) 

'where is a reduction factor for the effect of precompression. This reduction 

factor is a function of the ratio fclfk. A conservative relationship in the form; 

0.6 fclfk (8.5) 

is proposed with some typical Values shown in Table 8.2. 
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fclf k 

0.0 1.00 

0.1 0.94 
0.2 0.88 
0.3 0.82 
0.4 0.76 
0.5 1 0.70 

Table 8.2 - Proposed reduction factor for the effect of precompresslon. 

8.4. SUMMARY AND CONCLUSION 

The failure mechanism of brickwork masonry subjected to concentrated load 

apolled through a rigid bearing has been examined. In general, the failure Is by 

vertical splitting caused by the transverse tensile stress. The primary vertical 

crack is Initiated either in the brick due to the tensile failure and/or In the 

vertical perpend due to the tensile bond failure. The Influence of parameters 

such as loaded area ratio, unit brick strength and the loading position on the 

ultimate failure and crack pattern of brickwork has been discussed. 

Three dimensional failure envelopes for 102.5mm and 215. Omm thick masonry 

on a non-dimensional scales for enhancement factor, C#, ('fcblfk), In terms of 
loaded area ratio, Ar (=Acb/A), and the loading position, d/l, based on the 

experimental test results carried out in this investigation are presented. 

From the experimental test results, design guide',, for 
, 

predicting the 

enhancement factor (and hence the characteristic bearing strength) of 

brickwork masonry subjected to concentrated loads under rigid bearing have 

been recommended. Expression in the form of C=f'cb/fkmO. 80(Are)-0.33 ý3.0, Is 

proposed where Are is calculated according. to Fig. 8.9. However when 

concentrated load is accompanied with uniform precompression the above 

expression could be written as C=0.8ý(Are) -0,33 ý3.0, where Is a reduction 

factor for the effect of precompression defined byt 1.0 0.6 fC /f Osee 

Table 8.2). 
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Fig. 8.10 - Recommended design guide and Its comparison with the 
experimental test results. 
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Fig. 8.11 - Simulated design chiri sh'owing the effect of precompresslon 
on the en ha ncement, factor of brickwork masonry under concentrated load. 
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. 
Chapter 9 

GENERAL SUMMARY AND CONCLUSIONS 

9.1. GENERAL SUMMARY 

This thesis presents a comprehensive study of the behaviour of brickwork 

masonry subjected to concentrated load applied through a rigid bearing plate. 
The increase in strength under this type of load has been investigated in 

relation to its uni-axial compressive strength. 

An Introduction to the problem of stress concentration In brickwork, Its 

behaviour under partial load andthe parameters which have an influence on 
the bearing strength In general have been described in chapterl. As the 

compressive strength of brickwork masonry under partial load must be 

represented in terms of its strength under uni-axial load, a complete literature 

survey on the, compressive strength - of axially loaded brickwork has been 

carried out. In total 646 wall test results have been collected and analysed 

statistically for the determination of accurate values for characteristic 

compressive strength of brickwork masonry based on limit state theory. 

Chapter 2', has been devoted to this study. Relationships for mean and 

characteristic strengths for brickwork wall and brickwork masonry have been 

derived in terms of unit brick crushing strength for two mortar mixes and wall 

thicknesses. This is also given in terms of unit brick and mortar cube 

strengths, for two brick masonry thicknesses. Based on the collected results, 

graphical and tabular design charts have been obtained for brickwork wall and 

masonry strengths. -, A method for calculating the characteristic strength based 

on small number of test samples has been proposed. 

Chapter 3 described the previous investigations carried out on the 

compressive strength of brickwork masonry subjected to concentrated loads 

and reviewed the existing rules given in various codes. 

Experimental study of properties of materials used in this investigation have 

been reported in chapter 4. Chapter 5 contains a describtion of construction of 
brickwork specimens, testing equipment, method of testing, the test program 

and the complete results. 

The analyses of the results have -been given In chapter 6. Statistical analysis 

were performed to relate the bearing strength of brickwork in terms of loaded 

area ratio for different unit strengths. Mean and characteristic curves were 



determined in each case. The definition for enhancement factor has been 

given as the ratio of mean bearing to mean compressive strengths of masonry 

or as a ratio of characteristic bearing to characteristic compressive strengths 

of masonry. Based on the crushing strength of unit, design charts have been 

produced for the mean and characteristic bearing strengths of masonry for 

various loaded area ratios. Factors affecting the bearing strength such as the 

properties of masonry and its constituent materials, the loaded area ratio, the 

loading position and the effect of edge distance, the loading configuration, the 

thickness of the element, the type of brick unit, the aspect ratio and the 

effective cross sectional area of the brickwork element and their Influences on 

the enhancement factor have been examined. The mode of failure and the 

crack pattern under various loading configurations and positions were 

discussed. ' 

A theoretical study based on stress distributions in masonry under 

concentrated load by finite element method has been described In chapter 7. 

Two dimensional plane stress linear elastic analysis, assuming masonry as a 

homogeneous continuum subjected to concentric and eccentric strip partial 

loads have been carried out. This study was extended to treat masonry as an 

assemblage of separate elastic bricks and mortar joints. A nonlinear analysis 

under central strip partial load on the basis of a continuum has also been 

performed. 

Based on the observation of the mode of failure and crack patterns, a 

mechanism of failure has been proposed In chapter 8. The results have been 

utilized to establish three dimensioal failure envelopes for masonry under 

concentrated load. From the outcome of the investigation design guides were 

recommended. 

9.2- GENERAL CONCLUSIONS 

The following conclusions have been reached as a result of the investigations 

presented in this thesis: 

Relationships of the form r-fb n and rlf, l-fb n have been established for mean 

and characteristic brickwork wall strengths for specific mortar grades and 

strengths and two wall thicknesses bV statistical analVsis of wall test results. 

The constant and indices in the above formulae depend on the mortar mix and 

also on the tVpe of wall, Le. whether the wall thickness Is equal to the unit 

thickness or is of bonded construction. In broad terms, the wall strength Is 
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proportional to the square root of the unit strength and to the fifth root of the 

mortar cube strength. j 

The test results were found to be consistent with normal distribution In 

statistical terms. 

The characteristic compressive strength of various types of masonry (fk) has 

been derive from the wall strength relationships by applying a correction to 

allow for the effect of slenderness ratio on the basis of the reduction factors 

given in BS 5628: Pt. 11. 

A limited comparison between characteristic compressive strengths derived 

from wall tests and from prism tests Indicates that the latter gives a high 

value Of fk. This maV be due to discrepancies In correcting for slenderness 

eff ects. 

The apparent enhancement of compressive strength of brickwork masonry 

under concentrated loading Is confirmed for all load cases and material types. 

The principal variable affecting this strength enhancement is loaded area ratio. 

The enhancement factor is also dependent on load position and brick strength. 

Enhancement factor could be expressed either as a ratio of mean bearing to 

mean masonry strengths or the ratio of characteristic bearing strength to 

characteristic compressive strength of masonry. However, it has been shown 

that the two definitions yield same value for the enhancement factor provided 

that a reasonable number of samples have been tested under uniform load for 

the determination of the mean and characteristic compressive strengths of 

masonry. 

Expressions for the mean and characteristic bearing strengths of masonry In 

terms of unit brick strength for loaded area ratios of 0.1,0.2,0.3 and 0.4 for 

102.5mm thick specimen constructed with mortar grade M(i) have been given. 

Characteristic bearing strength, is found to be 75% of the mean bearing 

strength. 

Increase in the strength of unit would increase the bearing capacity under 

partial loading. As brick and mortar strengths influence the masonry strength, 

It has been shown that as characteristic compressive strength of masonry 

increases, the bearing strength increases. 
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Decrease in loaded area ratio leads to Increase in bearing strength. The 

Influence of this parameter is found to be significant and Is-considered as a 

primary. variable. The enhanced strength for drop In loaded area ratio of 0.4 to 
0.3,0.2 and 0.1 could be as high as 5,30 and 120% respectively. 

Depending on the type of brick unit used, masonry thickness Influences the 

bearing strength. It has been shown that 102-5mm thick clay brickwork yields 
higher bearing strength In comparison to 215. Omm thick brickwork. and vice 

versa in the case of AAC brickwork at low values of'loaded area ratios 
(A40.25). This parameter shows the same effect on the enhancement factor. 

Also the AAC brickwork gives higher values for enhancement factor In 

comparison to clay brickwork. 

The effect of loading configuration (strip and edge) on the bearing strength 

and enhancement factor is found to be Insignificant. 

Position of applied concentrated load Is found to be an Important Parameter 

and it has been shown that as the edge distance Increases the bearing 

strength Increases and conversely as edge distance decreases, the bearing 

strength decreases. 

The failure mechanism of brickwork masonry subjected to concentrated load in 

general is by vertical splitting caused by the transverse tensile stress. The 

primary vertical crack is initiated either In the brick due to the tensile failure 

and/or in the vertical perpend due to the tensile bond failure. 

Three dimensional failure envelopes for two masonry thicknesses on a 

non-dimensional scales for enhancement factor, ý' (Ofeb/fO, In terms of loaded 

area ratio, A, (=Arb/A), and the loading position, d/l, based on the experimental 

test results carried out in this investigation are presented. 

From the experimental test results, design guide for predicting the 

enhancement factor (and hence the characteristic bearing strength) of 

brickwork masonry subjected to concentrated loads under rigid bearing have 

been recommended. Expression in the form of C-f'd/fk'0.80(Are) -0.33g3.0, Is 

proposed where Are is calculated according to Fig. 8.9. However, when 

concentrated load is accompanied with uniform precompression the above 
-0.33 

expression could be written as 1; -0.80&(Are 93.0, where C Is a reduction 

factor for the effect of precompression defined by ý-0.7+0.6fc/fký 1-0- 
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9.3. SUGGESTIONS FOR FURTHER RESEARCH 

The failure criterion of brickwork masonry subjected to concentrated load 

established in this thesis applies only to the particular case where the load is 

transmitted through a rigid steel bearing plate. A logical extension to this 

study would be to determine the influence of other parameters such as the 

characteristics of the element by which the load Is applied, the support 

conditions of the masonry, the degree of precompression, the rotation of the 

end of the element applying the concentrated load, the effect of spreader 

under the bearing, the presence of horizontal component of load and/or lateral 

restraint, the angle of dispersion of concentrated load, the height at which the 

vertical stress becomes uniform and the aspect ratio of brickwork panel for 

the same loaded area ratio. As perpends are thought to be a plane of 

weakness, the presence of a perpend under the bearing needs to be examined. 

Reinforcing the brickwork would Improve the bearing capacity but to what 

extent is not known, therefore, the amount and positioning of reinforcement 

needs to be investigated. 

To recommend a realistic general design rule the major variables must be 

identified and should be incorporated into the proposal. For example, a valid 

design chart showing the effect of precompression on the enhancement factor 

(see the simulated chart shown In Fig. 8.1 1) Is required to modify or correct the 

value of enhancement factor. 
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1. APPENDLX A' 

I. I. METHOD OF CALCULATING CHARACTERISTIC COMPRESSIVE STRENGTH OF 

BRICKWORK MASONRY FROM SMALL NUMBER OF TEST RESULTS 

In practice only a small number of samples would be tested experimentally 

and assuming a normal distribution 'based on a small sample size would lead 

to unacceptable values for characteristic strength. The reason for this may be 

explained by the fact that the variation In strength of masonry Is high. This 

tends to give rise to a high standard deviation of the sample. Also, the 

calculated mean based on a small sample would not represent the true mean. 

However, assuming lognormal distribution and provided that the number of 
test results Is small, say a minimum of ten, it would be Possible to calculate 
the characteristic value by the method below. The value obtained for the 

characteristic strength using this method would be the Closest that could be 

calculated compared to the actual true characteristic value If It was 
determined using normal distribution based on a much larger number of test 

samplOs. 

If the strengths obtained on n number of test specimens is xi, for lul to n, 

then; 

Xk 0 Xm - k-Sd (1) 

where k= ta. [(n+l)/n)0.5 (2) 

where; Xk characteristic strength of the sample, 

standard deviation of the sample, 
Student's t with unilateral probablity ct% and 
(n-1) degrees of freedom. 

Using lognormal distribution; 

let yi - log(xi), for 11 to n, then calculating ym and S. from: 

ym = 1/n (E(yi)) (3) 

Sy 1/(n-1) [E(y, 2) - 1/n(Ey, )2 1 )0.5 (4) 

Then Yk w yrn - k*Sy (5) 



where -k 
is a, function of n and is obtained from Table Al. Then; 

Xk a antilog(yo (6) 

No. of - 
samples 

Student's 
t 

k 

2- 6.314 7.7320 
3 2.920 3.3717 
4 2.353 2.6307 
5 2.132 2.3354 
6 2.015 2.1764 

, 7-. 1.943 2.0771 
8 1.895 2.0100 
9 1.860 1.9606 

10 1.833 1.9225 
11 1.812 1.8926 
12 1.796 1.8693 
13 1.782 1.8493 
16 1.753 1.8070 
17 1.746 1.7966 
18 1.740 1.7877 
19 1.734 1.7790 
20 1.729 11717 
31 1.697. 1.7242 
41 1.684 1.7044 
51 1.678 1.6944 

101 1.660 1.6682 

-. 201 1.650 1.6541 
1.645 1.6450 

Table Al - Value of k at 95% confidence Interval. 

f 
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1.11. COLLECTED DATA 

Dimensions in (mm) Mortar Strength (Nmm-2) Age h/t 

Wall - Brick mix 
(h xIx0 (h xIx0 Brick Mortar Cuba Wall (days) ratio 

251150367005 Buthington LB75 1: 11: 6 80.74 9.14 28.41 21.58 28 24.0 
7.61 23.51 18.06 
8.36 27.03 18.41 

Kirton Brick 39.58 4.47 11.03 7.65 - 
5.78 

- 
14.96 8.65 

2515xl378x! 05 Elm commons 33.92 7.01 10.69 10.34 
2-holes 6.34 17.79 11.93 

5.55 20.34 13.65 
Crosi-IGYS 1 15 H. Williamson 22.20 6.74 10.27 10.76 21B 24.0 

6.96 10.20 10.76 
Q. 52 9.86 10.55 

F. R. Sand/Lime 17.65 8.07 4.19 4.48 
8.00 5.01 4.62 
7.45 4.94 4.79 

Hurworth 1:. 25: 3 39.85 19.51 23.30 20.75 
18.62 26.20 21.58 
16.03 21.62_ 19-51 

Coatham StOb 33.30 12.31 17.34 12.34 
14.51 22.41 14.27 
13.16 19.34 12.96 

Kibbile orth 67.15 1 . 65 12.58 19.31 
11.79 27.96 22.61 
15.62 30.79 21.37 

Table A2 - Strength of single leaf walls with mortar designation M(i) & M(ill). 
(after Foster[121) 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx tj Brick Mortar Cube Wall (days) ratio 

2762x1372x115 67 Blue Rustic 1:. 25: 3 73-50 19.03 37.23 21.44 28 24.0 
14-holes 19.48 37.92 

1 
24,20 

2531x1372xI15 67 Smooth Red 61.71 19-93 29-65 25.58 22.0 
7-slots 18.55 26.06 22.82 

16-06 18-55 22.13 
67 Smooth Red 56.47 18.68 2 7.11- -TOY 7-5 
14-holes 19.24 27.85 20.75 

18.03 26.20 1 20.06 
67 Smooth Red 61.71 13.20 24.96-f -I 7.31 
7-slots 13.55 27.58 22.13 

12.00 22.75 18.68 
--1-5-16x1362xIO5 Jacobean mixed 56.12 21.0 23.03 23.7Z- 

darks 11.93 21.72 15.79 
Solid 14.27 21.72 17.65 

2515x1338x1O3 Coernarvon 47.99 21.03 18.75 19.17 24.4 
common 19.65 19.24 18.27 
3-holes 19-99 20-68 14-34 

-2515xI375x1O5 Jacobean Blue/ 68.88 15-96 33.09 28.68 24.0 
Brown 

1 
17.62 32.03 27.99 

Solid 
- 

15-00 35.37 26-68 
Chesterton BufF - 64.19 .5 

_ 21-. 48- -18.06-- 
14 - holes 16.31 27.30 19.44 
Chesterton Tudor 63.98 19-31 33.23 19-86 
14-holes 21.48 32.96 19.10 

2515x1359x1O5 Common 46.95 17.03 17.62 17.24 
12.62 25.79 17.37 
15.89 19.62 15.24 

Spade facing 47.37 20.27 19.51 17.03 
15.49 24.96 17.72 
16.22 20-06 17.86 

'-j-6j6x9O5x1O2 Kirton Brick 39.58 -- 12.48 2 K-67 
-- - 8.69 

2515xT375xlO5 Hooton Common 44.26 14.38 12.80 . 10.74 24.0 1 15.86 13.18 10.10 

-- - 
17.35 12.13 11.86 

Buttington LB79 80.74 2.5 32-13- 29.85 
27.92 

1 
25.99 28.41 

27.03 30.27 28.54 
-y5--l5xl394xlO2 Catherall multi 52.19 13.38 25 * 79 22.27 24.7 

Blue/Brown 15.17 29.96 19.06 

- - 
14.23 

7 
33.09 1 22.89 

0 3 2515 ti 341 xi Caernarvon LB50 48.54 23 . 65 15-79 18.27 - -14--4 
21.72 20.52 14.69 

122.72 25-65 20.89 
2515xT356xlO3 Catherall Buff 53.92 20.72 22.6 --1-5-. 72 

Rustic with stain 15.25 25.79 14.65 
18.24 17.93 15.58 

-j5--j5xI35IxIO5 Buckley Old Wks 50-33 16.79 211.41 - 19-82 
Red Multi Rustics 19.51 20.28 17.48 

- 115.55 19.13 17.03 
-Y5--l5x1359xlO5 Buckley Old Wks 4j. 1 1 1624 20.82- 17.51 

Mixed Buff 16.93 18.20 16.06 
1 16.10 18.48 16.41 

Table A3 - Strength of single leaf walls with mortar designation M(l). 
(after Foster[12)). 
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Dimensions in (mm) Mortar Strength (Nmm-2) Age h/t 

Wall Brick mix 
(h xIx0 (h xIx0 Brick Mortar Cube wall (days) ratio 

2515x1353x219' Steerpoint W/C 1: 1: 6 47.02 3.77 13.41- 7.93 28 11.5 
14-holes 3.79 13.17 8.27 

1 3.11 10.07 7.72 
Pinhoe W/C 41.85 4.35 14.58 8.69 

. 
10-holes 5.92 14.89 8.55 

2.42 14.00 7.86 
2515x1359x2I9 Kirton Brick 39-85 5.35 12.48 5.77 

5.20 12.20 7.24 
Koala Red 68.53 4.68 21-65 9.96 
7-slots 4.33 19.86 8.27 
BrownRill Buff 50.07 321 1. . 79- 
7-slots 3.85 19.68 9.79 
Apedale Red 91A2 3.88 47.64 14.27 
Solid 4.54 34.54 14.27 

2515xl384x225 Elm Common 33-92 7.33 10-89 7.52 11.2 
2-holes 6.63 16.06 9.58 

8.83 14.96 9.31 
H. Williamson 22.20 5.85 13-03 9.79 

8.14 9.45 9.72 
7.86 1 11.65 10.34 

F. R. Sand/Lime 17.65 5.89 8.00 5.65 
7.79 8.07 
6.74 6.16 

2531xJ350x229 Exmouth S/D 1 42.82 5.86 13.51 7.96 
1 1 4.02 14.48 8.14 

Ottery S/D 1 37.85 4.68 9.31 5.00 

- 
4.56 7.65 5.00 

Rougemont W7C /O. Itp 4. DD 24.82- 12.62-- 
facing 4.87 19.44 11.79 
7-slots 6.12 22.96 8.17 7 12.6 

6.40 19.86 8.27 28 
3.08 18.75 9.65 
2.83 21.58 8.27 7 
3.63 18.62 9.45 28 
3.40 17.79 8.96 
3.39 18.89 10.62 

67 Buff S/F 60.74 3.21 19.31 7,79 
7-slots 3.85 19.68 9.79 

- 
4.65 119.86 -- 

11.10 
- -1ý53-ixI35U219 W. 74 3.34 18.89 9.14 11.6 

3.45 18.82 10.62 
3.53 18-68 

- 
9.79 

67 Red Solids 91.42 3.88 W 7-64 13.93 - 12.6 
83.77 1 4.54 34.54 14.27 21 12.6 

- "5fx-U-5-10-429 Pinhoe W/C - 9.7ýF 28 

- . 57 18.48 9.31 
Rougemont S/O 35.09 3.87 6.03 6.14 

5.67 6.04 6.14 
Pinhoe S/D 39.23 4.12 10-00 6.14 

5.10 1 6.79 5.48 
-j-762xj350x229 Western S/D 20.62 3.32 6.64 5.31- 12.1- 

3.83 7.72 5.65 
Western W/C -10.62 )2.1 

4.02 20.48 11.62 
Honickowle Lower 33-58 3.23 10.41 7.65 
S/P 3.66 110.41 7.31 

253Ix135Ox229 26.34 3.72 9.65 - 5.15 11.1 
3.13 -- 5.4 

33-09 3.33 10.27- 6.96 
3.66 10.27 7.48 

Table A4 - Strength of bonded walls with mortar designation M(111). 
(after Fosteý121). 
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Dimensions in (mm) Mortar Strength (Nmm-21 Age h/t 
I 

Wall Brick mix, 
(h xIx 0' (h xIx t) Brick Mortar Cube Wall (days) ratio 

25I5xI378x219 Jacobean 1:. 25: 3 68.88 16-00 31.78 20.48 28 11.5 
Blue/Brown 14.34 27.03 19.03 
Solid 1 12-00 27.48 19.44 
Apedale Blue 73-50 15.20 34.13 19.93 
14-holes 15.72 

__ 
34.68 19.79 

Chesterton Buff 64.19 1 T2 7 19.22 12.45 
14-holes 16.62 24.18 12.31 
Chesterton 28.75 16.89- 
14-holes 18-06 28.54 17.65 

2515x1359x219 Common 46.95 15.48 16.41 10.96 1 
13.17 19.82 

1 
9.24 

13.03 21.06 IIIA5 
Spade facing 47.37 19.75 24.96 16.34- 1 

17.24 22.24 13.72 
17.27 21.55 13.34 

2515x1372x225 Hooton Common 44-26 18-53 20.34 _T"6 11.2 1 
15-62 11.38 10.00 
16-62 16.38 9.00 

Buthington LB75 80.74 22.55 27.03 23.65 
20-82 26.48 24.06 

2515 1348x216 Caernarvon LB50 48-54 
1 

18.41 23.58 16.27 11.6 
18.52 19.58 16.96 
19-58 22A4 18.96 

_F5 1 -5xl 3 94x2l 9 Cutheral Multi 52.19- 2 f-Iff- _ITU 19.31 
Blue/Brown 20-13 27.35 19.86 

23-72 1 23-65 16.55 
YSýIW364x2_19 Catheral -Buff 53.92 18.31 19.94 12.67 

Rustics with Stain 16.51 22.48 14.00 
15.42 25.18 14.00 

25I5x1391x219 Buckley Old Wks 50-33 19*48 16.10 12.89 
Red Multi Rustic 22.73 19.11 10.62 

19.97 22.34 12.96 
2515x1384x 19 Buckley Old Wks 43.71 18.24 12.86 IYV3- 

Mixed Buff 17.58 14.10 10.82 

" - 
17.27 17.51 12.10 

2518x1436x219 Standard 34 
. 04 10.41 17.93 2.27-- - 27 

12.82 18.48 11.86 28 
13.44 19.17 11.03 120 
12-07 18.75 12.41 28 
10-96 19-99 10.82 28 
14.41 20-55 13.86 120 
10-41 1 20.68 1 12.27 28 

68.74 11.58 23.72- 12. 29 
11.03 23.99 12.41 29 
10.76 25.86 10.17 28 
10.41 23.24 13-03 28 
11.45 22.34 12.82 120 
13-86 25.92 14.75 120 
14-20 26.27 16-62 120 
12.13 25.23 13.27 120 
-- -- 18.62 330 

_1 
4.96 330 

61.02 12.76 21.86 -12.89 28 
13.24 17.86 13.27 
13.58 21.79 11.40 
12.34 21.79 12.96 
12.62 20.89 11.27 

Table A5 - Strength of bonded walls with mortar designation M(i). 
(after Foster 1121). 
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Dimensions in (mm) Mortar Strength (Nmm-2) Age h/t 

Wall Brick mix 
(h xIx0 (h xIx0 Brick Mortar Cuba Wall (days) ratio 

2762x775x219 67 smooth Red 1:. 25: 3 61.57 21.37 25.86 14.41 28 12.6 
7-slots 18.48 23.72 14.98 

21.99 28.13 17.31 
13.44 27.44 12.62 
14.89 28.13 15.86 
12.76 

- 
21.24 14.7 

2762x667xZl9 10 - 
T4 21.72 13.69- 

12.27 26.13 16.41 
9.65 24.96 16-06 
9.41 24.75 14-34 
9.45 21.65 14.69 

12.48 24.82 14.34 1 
2762x565x219 10.96 22.89 16.89 

3.48 27.92 16.89 
14.93 28.54 17.31 
14.00 27.30 13.27 
11.65 27.10 17.31 
9.10 20.89 14.07 1 

2762xit57419 9.55 21.86 14.96 
15.86 28.13 15.44 
13.65 24.82 15.93 
15.86 27.37 16.48 
11.24 22.75 14-96 
11-55 24.06 

2762xI35Ox2I9 67 Blue Solid 84.81 17.29 47-85 24-55 
67 Blue Rustic 73.50 15.20 34.13 19.93 12.1 
14-holes 1 15.72 34.68 19.79 

2531xI35Ox229 67 Smooth Red 61.71 15.03 26.41 16.62 11.1 
7-slots 

1 
15.93 3.1 2 

:0 
12 27 

15.51 27.03 . 18.62 
67 Smooth Red 56.47 17.79 25 . 99 14 . 00 
1 -holes 4 16.96 25.65 12.96 

20.48 27.23 14.00 
67 Smooth Red 61.71 15-03 21.58- 14.89 
7-slots 13.24 25.23 15.31 

14.55 22.41 14.89 
14.20 23.72 15.58 

Rougemont W/C 86.74 12.89 42.89 16.27 
Class A 12-41 42.89 15.93 1 
Rougemont W/C 89. 89 . .5 

11. -7V 21-58 
Class 8 

_ 
10-82 40.61 19.24 

Steerpoint S/P 4B 17.79 -TT7TU- 

- 
8.27 17.44 

- 
10-27 1 -F7M-2xI35Ox229 Tt eerpoint W/C 57.36 9.86 25-51 13-27 12.1 

- 
10.14 25-58 13.10 

Hurworth 39.83 18.55 20-. 82 16.00- - 
19.86 25.72 17.17 
22.34 22.27 15.24 

Kibbleworth 67.15 12.48 27.96 18-55 
13.51 28.58 17.58 

- 
14.62 

- 
22.37 112.55 Coatham Stob 33.30 T4. Tf 22.82 14-. 34- 

17.65 16.55 14.89 
15.38 13.38 12.48 

"jg5-j5xj38jx222 Jacobean Mixed 56.12 16.48 19.86- T&T§- -M 
Darks 19.37 17.10 18.20 
Solids 14-62 26.48 16.96 1 

T55'15035N216 - Caornarvon 47.99 19.44 21.5 1- 16.41 
Common 19.03 18.48 17.37 
3-holes 1 . 41 22.48 16.96 

Table A6 - Strength of bonded walls with mortar designation M(l). 
(after Foster[121). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx t) Brick Mortar Prism wall (days) ratio 

244041 Ox1 12.5 69x238xl 12.5 1:. 5: 4.5 91.84 8.33 26.26 28 19.2 
8.33 24.58 
7.08 26.06 
7.08 25.99 

11.39 25.72 

400x238xl 12.5 69x238xl 12.5 1:. 5: 4.5 91.85 8.80 31.75 It 
_ 

28 3.2 
5-brick high 32.67 
running bond 30.14 

31.47 
30.70 

400x238xl 12.5 69x238xI 12.5 1:. 5: 4.5 91.84 8.80 32.87 28 3.2 
5-brick high 30.96 
stack bonded 33.17 

29.89 
31.01 

5-brick high running bond prism 
5-brick high slack bond prism 

Table A7 - Results of wall columns and 5-brlck high prisms. 
(after SCPRFI'51). 

0 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h-/I 

Wall Brick mix 
(h xIx0 (h xIx Brick Mortar Prism Wall (days) ratio 

2375x6OOx1OO 55x2O6x92 1:. 5: 4.5 110.96 11.69 35.18 28 26.1 
11.69 37.54 
9.20 38.14 
9.20 39.69 
9.20 39-91 

985x600xIOO 57x2OOx8§ 73.85 7.94 35.78- - 10.9 
7.94 31.10 
7.94 33-93 
7.94 29. SO 
7.94 34.57 

155Ox6OOx1OO 57x2OOx89 73-85 8.36 -- 17.4- 
8.36 33.17 
8.36 28.52 
8.36 33.16 
9.22 29.98 

2375x6OOxlOO 57x2OOx89 8.82 32.46- - 28.8 
30.96 
30-63 
27.64 
27.02 

3025x600x1OO 57x2OOx89 73-85 f. N- 31.56 34.1 
8.98 31.49 
9.71 26.77 
9.71 26.98 

10.47 29.94 
3675x6OOxlOO 57x2OOx89 73.85 8.85 28.00- 41.3 

7.66 24-04 
8.14 20-96 

10.16 23.87 
8.74 25.27 

455Ox6OOx1OO 57x2OOx89 13.85 9.51 19.04 51.3 
7.80 15.80 
7.59 17.78 
7.12 21.74 

11.65 21.07 
2 3T7 5x6 0-0 x 10 0 55.5xl94x9O. 5 

. 
43.48 10.50 19-66 26.3 

10.50 25.92 
10.50 24.84 
11.67 23.19 
10.78 20.88 

400x2OOxlOO 57x2OOx89 73-85 43.04 4.0 
6-brick high 37.72 
running bond 43.77 

40.54 
39.51 

U200000 57x2OOx89 73.85 45.76 4.0 
6-brick high 40.97 
stack bond 42.37 

42.98 

- 
35.75&* 

- TORN600000 57x2OOx89 73.85 T7 67 4.0 
6-brick high 42.72 
3-stretchers 36.12 
long pier 40.91 

45.96 

6-brick high running bonded prism 
6-brick high stack bonded prism 
6-brick high 3-stretchers long pier 

Table A8 - Results of Wall columns, piers and prisms. 
(after SCPRFI'61). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t, 

Wall Brick mix 
(h xIx0 (h xIx0 Brick Mortar Prism Wall (days) ratio 

966x6OOx2OO 55x200x89 1:. 5: 4.5 81.81 13.47 29.72 28 5.0 
15-courses high 11.40 36.07 

11.40 33.81 
11.32 
11-32 31.74 

1866x6OOx2OO 11.01 33.00 9.6 
29-courses high 9.6s 29.81 

10-65 33.29 
11.87 33-83 
10.95 31.28 

2447x6OOx2OO 9.36 30.51 112.6 
38-courses high 13.27 30.61 

9.81 29.85 
17.14 31.87 
10.67 31.86 

3025K6OOx2OO 11.91 32.56 15.5- 
47-courses high 12.82 32.42 

11.14 31.90 
11.42 32.78 
10.84 33.94 

399Ox6OOx2OO 11.20 29-34 20.6 
62-courses high 9.46 31.36 

8.54 30.80 
8.94 33.01 

10.60 30.96 
4572x6OOx2FO 8.86 29.19 23.6 
71 -courses high 10.07 29.67 

7.50 27.74 
9.80 28.79 

** 6.44 27.08 
3990x6OOx25O 10.24 29-85 20.6 
62-courses high 10.32 30.64 

9.44 26.95 

2222x6l Ox92.2 + 57x2O3x92 85-50 11-50 30.201 20-62 2 
28.06 21.17 
29.51 23.79 

metal ties every 6 courses 
header at every 6 courses 
6-brick high stack bonded prisms at h/t-4.32 

+ results from Reference 65D 

Table A9 - Results of wall columns and prisms. 
(after SCPRFE17-181). 



Dimensions in (mm) Mortar Strength (Nmm-2) Age h/t 

Wall Brick mix 
(h xIx0 (h xIx0 Brick Mortar Prism* Wall (days) ratio 

533x4OOx2OO 55.5xI 94x9O. 5 1:. 5: 4.5 43.48 10.83 24.76 28 2.7 
metal ties 10.83 25.87 
at 6-courses 10.31 26.89 

10.31 26.27 
10.31 26.55 

brick header 10 * 31 27.88 
at 7-courses 10-87 30.79 

10.87 27.33 
10-87 28.74 
10.87 24.75 

metal ties 55x200x89 81.81 8.76 33.31 
at 6-courses 8.76 31.03 

10-56 32.22 
10-56 32.19 
10,56 32.16 

brick header 10-56- 30.50 
at 7-courses 8.76 36.24 

8.76 34.74 
8.76 33.95 
8.76 33.02 

metal ties 57x2O6x92 110-96 6.97 38.58 
at 6-courses 6.97 38.25 

6.97 34.04 
6.97 33.02 
8.31 40.52 

brick header 8.31 38.16 
at 7-courses 8.31 36.50 

8.31 38.42 
8.76 37.14 
8.76 34.18 

533x4OOx1OO 55.5xl 94x9O. 5 1:. 5: 4.5 43.48 11.17 31.63# 5.3 
31.32 
28-85 
32.83 
30.85 

55x200x89 81-81 8.76 34.08 
37.10 
36.73 

10.83 33-68 
33.75 

57x2O6x92 110-96 10.52 38.40 
43.67 
40.18 
34.66 
43.93 

bonded double wythe, 2-stretchers in length and 8-courses high prism 
single leaf, 2-stretchers in length and 8-courses high prism 

Table A10 - Results of single and double wythe bonded prisms. 
(after SCPRF1181). 
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Dimensions in Imm) Mortar Strength INmm-2 Age h/t 

Wall Brick mix 
lh xIx0 1h xIx0 Brick Mortar Prism Wall (days) ratio 

2450400012-5 72x225x112.5 1: 1: 6 38.89 8.04 6.31 28 21.8 
6.52 14.07 
0.55 4.55 

13-51 14.34 
51.71 6.52 17.79 

4.34 14-82 

(1) 1: 1: 6 38.89 8,28 15.20 28 21.8 (2) 1: 0: 3 38.89 14.07 13.42 

(3) 1: 0: 3 38.89 9.31 > 21.3 7 28 21.8 
(4) 1: 0: 2 33.94 16.41 20.06 
(5) 1: 01 33.94 15.44 14.74 

1: 0: 3 33.94 1 6. ý6 10.89 

11) vertical chase 10500902.5 deep. axial loading + 0.21 Nmm-2 Superimposed. 
(1) vertical chase l05Oxl9xl2.5 deep, axial loading + 0.55 Nrnm-2 superimposed. 
(3) reinforced 1-course every 1-course 
(4) reinforced I-course every 3-courses 
(5) reinforced 1-course every 4-courses 
(6) reinforced 1-course every 5-courses 

Table All - Results of sin jle leaf walls. 
(after Prasan[19). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx t) Brick Mortar Prism Wall (days) ratio 

245Ox9OOxI12-5 standard 1: 1: 6 33.27 4.55 5.76 38 21.8 
1: 0: 3 42.99 13.89 11.24 46 

(2) 1: 0: 3 42.99 10.93 12.34 18 
1: 0: 3 42.99 10.62 14.55 18 
1: 0: 3 42.99 16.89 16-89 78 
1: 0: 3 42-99 5.96 16.06 2 
1: 0: 3 42.99 18.10 1 18.41 18 

(1) 1: 0: 3 42.99- 4.83- -- -16. oo --T- 
1.0: 3 42.27 15.41 21-37 148 

(3) 1: 0: 3 42.99 5.27 11.24 7 
1: 0: 3 42.27 4.79 14.03 8 
1: 0: 3 25.58 5.55 8.72 19 

1: 0: 3 25.58 5.31 7.48 7 

--------------- ---------------- 
j 

1: 0: 3 
--------- 

25.58 
L 

------ 
6.48 L 

------ ----- 
i 7.17 

------ 
13 L 

------- ------ (1) reinforced every second course 
(2) joint thickness - 5mrn 
(3) 19mm off plumb 

Table A12 - Results of single leaf walls. 
(after Bradshaw & Hendry[201 ) 

--------------------------------- 

Dimensions in (mm) 

--------------------------------- 

--------- 

Mortar 
--------------------------- 

Strength (Nmm-2 
------ ------------------- 

-------- 

Age h/t 

Wall Brick mix 
(h xIx0 (h xIx0 

----------- ------------------ --------- 
Brick Mortar Prism Wall 

-------- -------- ------ ------ 
(days) ratio 

---- 
24gOx9OOx225 66x225xl 02.5 1: 11: 6 25.58 3.41 5.00 

-------- 
28 

------ 
11.0 

29.37 7.86 6.38 
32.96 7.55 6.14 

24qOx9OOx267 25-58 2.31 5.31 9.3 25.58 4.62 5.90 
47.26 16.27 11-96 
29-96 8.38 8.48 
29.96 7.58 5.21 
29.96 7.58 4.45 

* cavity walls 267mm thickness. 

Table A13 - Strengths of bonded and cavity walls. 
(after Bradshaw & Hendry[211 ). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx t) Brick Mortar Prism Wall (days) ratio 

2400xI 200xl 12.5 Solid bricks of 1: 0-3 12.82 18.62 6.84 30 21.3 
standard shape 20-68 16-55 8.62 
(with & without 24.13 15.17 9.31 
frogs) 32.41 -- 9.31 

30.68 12.41 9.31 
_ 7 

1:. 25-3 21.10 16.27 5.9 30 
15.44 7.31 

21.37 17.65 8.55 
22.06 13.79 7.45 

- - - 
23.44 13.72 8.76 

T. - 1 6 24.13 6.89 0.00 
8.55 
9.58 
9.38 
9.86 
8.69 
8.34 g 

24OOx12OOx225 1: 0: 3 12.82 24.13 6.76 10.7 
24.13 -- 9.93 
24.13 -- 9.72 
26.20 22.06 8.89 
31.51 15.86 9.38 
29.72 13.79 9.65 

1:. 25: 3 54.12 19.99 17.58 
54.12 19.99 18.96 
84.12 14.00 24.13 21 
84.12 14.00 20.55 
84.12 14.00 24.27 

OOx12OOx1O3 Solid bricks with 1: 0: 3 9.86 15.65 8.27 7 23.3 
(vertical perfs. 19.17 15.86 9.72 
not more 1:. 1: 3 29.51 14.20 11-10 30 
than 25%) 29.51 10.34 

40.95 9.24 
40.95 12.82 
46.82 12.20 
46-82 14.07 

1: 1: 6 29.51 4.41 10.82 
29.51 8.34 
40.95 10.34 
40-95 7. S8 
46-82 9.72 
46-82 9.79 

4()Oxl 200x225 1: 0: 3 19.17 12.07 10-55- U-7 10.7 
1:. 25: 3 60.12 13.38 17.72- 

60.12 14.82 20.27 
60.12 13.51 19.37 
87.56 14.96 22.61 
87.56 12.82 25.72 
87.56 12.82 25.30 

Table A14 - Results of single leaf and bonded walls. 
(after Simms 1221). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 

I 

(h xIx0 (h xIx0 Brick Mortar Prism Wall (days) ratio 

26250387012.5 75x225xlO8 1:. 5: 4.5 65.50 12.19 13.79 41 23.3 
65.50 12.19 11.03 37 
58.50 16.17 11.03 36 

1 58.50 1 16.17 1 L 19.31 
_ 
1 40_ 1 

Table A15 - Results of single leaf walls with mortar designation M(11). 
(after McDowaII1231). 

Dimensions in Imm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
I 

(h xIx0 (h xIx0 Brick Mortar Cube Wall (days) ratio 

2515xI372x225 65x2l5xlO2.5 1: 1: 6 20.62 5.24 6.62 5.31 28 11.2 
20.62 5.24 7.72 5.65 
26.34 7.79 9.65 5.17 
26.34 7.79 -- 5.45 
31.58 4.96 20.48 10.62 
31.58 4.96 -- 11.58 
33.09 7.58 10.27 6.96 
33.09 7.58 -- 7.45 
33.58 6.96 10.41 7.65 
33.58 6.96 -- 7.24 
35.09- 5.52 6.05 6.14 
35.09 5.52 6.04 6.14 
37.85 7.52 9.31 4.96 
37.85 7.52 7.65 4.96 
39.23 6.76 10.00 6.14 
39.23 6.76 6.79 4.76 
42.82 6.96 13.51 7.24 
42.82 6.96 14.48 8.14 
48.68 6.55 21.65 9.79 
48.68' 6.55 18.48 9.31 
76.19 3.72 24-82 12.55 
76.19 3.72 19.44 11.72 

1:. 25: 3 57.36 17.31 24.13 13.24 
57.36 17.31 25.58 13.03 
86.74 19.31 42.89 16.20 
86.74 19.31 -- 15.86 
89.22 18.13 33.79 21.51 
89.22 18.13 40.61 19.17 
48.61 19.72 17.79 11.10 

--------- ------------------ 
L 

-------- 
48.61 
------ 

19.72 I 
------- 

17.44 
------ 

1027 
------ ------ 

Table A16 - Strengths of bonded walls and 9-In. cubes. 
(after Stedham (241 ). 
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Dimensions in (mm) Mortar Strength INmm-2 Age h/t 

Wall Brick mix 
Jh xI x't) (h xIx0 Brick Mortar Cuba Wall (days) ratio 

25400372005 65x2I5xIO2.5 1:. 25: 3 104.25 11.10 50.50 23-86 14 24.0 
Solid brick 11.24 49.50 26.06 

1 17.93 46.26 30.20 
3-holes 82.05 11.62 31.44 19.99- - 

13.08 31.78 22.55 

__ 
12.48 32.54 

' - 
21-37 

11-holes 8T5 3 16-55 IT 47 18.82 
16.79 29.92 18.13 
14.89 33.37 1 9.37 

Solid brick 82.60 13.82 45.78 _ 21-37 
14.62 39.58 21.79 
13.38 38.89 23.51 

- 3-holes 9722 12.82 31.54 1VO 3 
14.89 31.03 19.58 

1 16.55 43-89 21.37 1 
11 -holes 79-57 17.80 24.98 17.44 

22.10 27.83 16.48 
26.41 29.43 17.31 

Solid brick 90-05 14.41 40-89 24.27 
13.17 44.20 23.51 
16.41 40.06 22.48 

3-holes 89.70 8.14 35.23 23-65 
12-20 36.75 24.41 
14.89 42.75 27.10 

7-slots, 55-85 14-69 27.03 18.00 
17.03 22.48 16.62 
16.96 23.79 19-03 

16-holes 70.81 8.89 27.79 18.82 
13-38 20.89 16.69 
14.41 25-03 17.31 

3-holes 80.53 12.96 40-27 21.65 
9.83 37.23 20.62 

10.96 39-51 21.99 
7-slots F 62.47 15.17 23-86 21.37 1 

11.93 27.23 21.99 
14.20 22.89 19.37 

14-holes 65.57 11.27 26.82 18.68 1 
10.41 23.58 20.13 
10-00 24-41 17.65 1 

Solid brick 41.78 14.20 24.34- 19.03 1 
10.62 23.92 20.06 
10.20 18.20 18.20 

3-holes 48.13 12.96 19.72 16.20 
13.79 22.61 15.93 
12.55 16.27 16.27 

16-holes 44.33 11.89 25-86 17.65 
1 

10.62 23.99 14.20 
110.89 22.20 13.93 

Table A17 Results'of'slngleý leaf walls'wit mortar designation M(i). ' 
et al (after West 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 1h xIx t) Brick Mortar Cube Wall (days) ratio 

254OxI372x1O5 65x2I5xIO2-5 %25: 3 45.78 15.44 24.96 19.44 14 24.0 
Solid brick 14.34 20.27 17.72 

16.06 24.34 14.13 , 
3-holes 52.26 17.72 20.34 15.36- - 

19.44 22-06 13.93 
18-55 18.41 17.86 

5-slots 40.20 13.03 20.68 15.79 
12.13 15.24 16-34 

1 16A8 15-51 14-96 1 
Solid brick 31.58 12.03 10-51 13.17 

19.00 16.75 12.96 
13-13 17.41 

' 
12.34 

-, 3-holes 51.43 18-62 TU W m 
10.89 14.27 9.8i 

. 13-65 12.89 9.79 
14-holes 30.20 18.13 14.89 13.79 

16.27 9.58 
15.79 13.76 

Solid brick 85.84 10.79 42.75 34.13- - 
12.89 45-85 34.47 
16-13 

. 
47.30 27.30 

16-holes 60.26 14.00 24.89 20.06 
10.93 22.48 19.03 
9.00 27.48 20.41 

Solid brick 1: 1: 6 104.25 5.16 46.88 19.03 
4.07 44.61 17.31 
5.24 

- 
41.58 20.06 

3-holes 82.05 4-. 94 27.23 16.41 
4.87 31.44 15.03 
6.23 33.1-t_ 15.31 

Solid brick 82.60 4.72 35.51 18-96 
6.72 37.09 18.89 
5.24 32.54 18.55 

3-holes 97.22 3.90 29.20 12.82 
4.14 34.96 12.76 

1 6.62 27.68 16.89 
11-holes 79-57 6.81 22.59 12.58 

3.72 23.39 11.50 
7.04 25.79 12.86 

11-holes 80-53 5.24 23.10 8.76 
5.30 26AI 10.96 

1 4.74 29-65 8.07 
Solid brick 90-05 5.15 T2.26 15.38 1 

4.39 40.95 13-24 
4.14 41.51 15.79 

3-holes 8 42.33 16.92 
3.63 37.30 16.62 
3.34 136.03 1 18.00 1 

Table A18 Results of single leaf walls with mc)rtar designation M(I) & M(111). 
(after West et al 1301). 
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Dimensions in (mm) Mortar Strength (Nmm-21 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx t) Brick Mortar Cube Wall (daysi ratio 

254Ox1372xIO5 65x21 SO 02.5 1: 1: 6 55.85 5.40 19.62 13.10 14 24.0 
7-slots 3.99 15.10 10.96 

4.46 19.86 12.34 
16-holes 70.81 3.79 17.86 10.14 

5.25 17.58 11.93 
5.83 19.72 10-82 

3-holes 80.53 3.76 34.68 14.00 
4.59 39.09 15.86 
4.23 139.16 14.48 1 

7-slats 62.47 6.33 20.13 14.89 
5.11 22.06 15.24 
5.39 20.62 18.34 

14-holes 65.57 3.46 19.03 12.00 
3.11 20.89 11.65 
2.90 22.48 13.24 

Solid brick 41.78 5.62 20.82 16.06 
4.80 22.68 16.00 
4.52 21.79 

- - - 
14.62 

- 3-holes 48.13 5.4ý T6 4 1 16.55 
4.99 18.48 10.96 
5.78 18.55 

- 
11.24 

16-holes 4.33 4.60 20.13 9.51 
5.32 20.86 9.17 
5.09 19-68 10-51 

Solid brick 45.78 6.87 24.34 18.48 
5.81 19.93 16.06 
7.58 21.41 17.10 

3-holes 52.26 4.08 13.93 11.45 
7.08 12.13 11.10 
6.21 17.79 

- 
10.62 

5-slots 40.20 TTT(Y 5.5 1.31 
4.42 12.55 12.89 
6.34 13.86 12.27 

Solid brick 31.58 5.16 12.38 10.07 
6.48 17.10 10.41 
7.36 15.31 10.27 

3-holes 51.43 7.14 20.17 10.20 
3.76 18.89 10.89 
5.53 18-89 11.62 

14-holes 30.20 4.80 9.45 8.48 
4.56 10.89 8.41 

112.43 9.69 9.86 
Solid brick 85-84 7.32 38.82 25-92 1 

6.31 43.30 24-55 
4.01 43.16 22.48 

16-holes 60.26 3.00 20.82 16.34 
5.39 21.75 16.00 
5.62 22.06 15.31 

Table A19 - Results of single leaf walls with mortar designation M(111). 
(after West et . 3/1301). 
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Dimensions in Imm) Mortar Strength (Nmm-2) Age - h/t 

Wall Brick mix 
(h xIx0 (h xIx0 Brick Mortar Cuba Wall (days) ratio 

254Ox1372x225 Wire cut 1:. 25: 3 61-23 12.76 21.86 12.69 28 11.1 
perforated 13-24 17.86 13-27 
standard 13-58 21.79 11.40 
bricks 12.34 21.79 12.96 

12.62 20.89 11.27 
11.58 19.24 10-83 
12.07 20-00 11.38 
12.82 19.79 11.96 
11-65 20.13 13.10 
16-69 16.62 11.55 
11.58 19.17 12.24 
11.03 19.93 12.41 
10.76 20.20 10.17 
10.41 19.65 13.03 
11.45 20-34 12.82 
12.48 20-34 12-27 
12.82 17.72 11.86 
12.07 19.44 12.41 
10-96 23.79 10.83 
10.41 21-51 12.27 

61.50 21-03 20.53 12.14 
16-00 18.75 12.96 
19.65 25-17 16.20 
18.82 24.82 14.55 
9.83 21.05 14.27 
9.72 20.06 12.96 

. 10.20 21.24 1 12.14 
41.09 13.47 14.25 11.12 1 

15.58 12.73 
1 

10.27 
23.44 
32.48 

14.98 
12.41 

11.54 
12.14 

8.83- 
8.27 

- 

33.58 13.93 12.82 11.96 
33.51 16.34 14.73 11.10 
33.37 16.87 13.24 10.69 
31.44 15.72 13.12 : 10.83 46 
30.48 6.38 12.07 8.55 41 
31.17 

- 
7.10 1. 

- 
9.60 I 7.58 L 28 I i 

Table A20 - Results of bonded wall with mortar designation M(l). 
(reported by Astbury & West (321). 

Dimensions in Imm) Mortar Strength (Nmm-2) Age h/t 

Wall Brick mix 
(h xIx0 Jh xIx0 Brick Mortar Cuba Wall (days) ratio 

2540037 2005 65x215x1O2.5 1:. 25: 3 "- 122.80 2.12 44.75' 23.79 14 24.0 
11.72 29.51 19.24 

. 20 
-- 

41.99 
- 

20.20 1 
80.53 16.59 1 0 4-7 18.82 

16.79 29.92 18.13 
14.89 33.37 19.37 

Table A21 - Results of single leaf walls with mortar designation M(l). 
(after West et al 1331). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 6 
(h xIx0 (h xIx0 Brick Mortar Prism Wall (days) ratio 

2600xl37OxlO3 65x215x1O2.5 1:. 25: 3 33.50 18-08 19.0 22.4 28 25.0 
17.16 18.8 20.7 
15.12 22.0 1 23.7 

44.80 14.35 18.6 23.0 - 
12.00 16.3 23.3 
15.30 18.3 

- 
21.5 

15.41 
= 
12.3 

16.2 
15.5 

16_38 
- 

12.1 15.8 
- 28.80 16.4 t 

17.60 
16.5 
18.3 

20.0 
21.5 

- 

18-81 
- 

16.6 20.3 
1: 1: 6 16.30 4.73 7.6 9.9 

4.85 7.9 10.4 
5.78 7.4 9.7 1 - 32-80 3.33 11.5- 1 1.4 
3.37 10.2 9.9 
3.41 10.3 10.6 

27.00 3.53 11.8 12.6 
3.25 12.4 11.6 
3-93 13.4 

. 12.5 
38.30 3.99 10.4 12.5 

3.91 11.3 14.7 
3.44 9.5 14.3 

33-50 4.58 18.4 13.1 
4.42 13.7 12.7 
4.07 16.1 1 114.3 

44.80 4.05 11.4 14 '31 3.23 12.7 
1 

15.5 
3.36 

1 

12.2 14.9 
58.3 4.68 14.0 12.5 

4.67 14.6 M 
4,66 14.5 

. 13.8 
22.60 3"92 11.7 11.0 

4.00 11.6 
111.8 

. 
89 10.4 11.5 

28-80 4*58 12.7 13.1 
5 11 12.1 13.4 
4 35 11.8 12.9 

1: 2: 9 33.50 2.74 12.9 _ 10.9 
1.94 14.0 10.1 
1.72 

- 
14.1 10.6 

44.80 11.6ý 11.0 12.0 
1.59 9.8 12.3 
1.72 11.8 

1 

12.2 
22. . 79 7.6 9.1 

. 46 7.4 8.7 
] 

1.50 8.2 

5-brick high stack bond prism. 

Table A22 - Results of the strength of Qalclum Silicate Brick walls. 
(after West et al 1341). 
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Dimensions in (mm) Mortar Strength (Nmm- 2 
Age h/t 

Wall Brick mix 
(h xIX0 (h xIX0 Brick Mortar Prism wall fdays) ratio 

26000370003 65x2l5xlO2.5 1:. 25: 3 31.80 14.3 14.6 14.9 14 25.0 
11.6 11.7 15.8 
10.9 11.5 17.4 
14.0 12.7 14.6 28 
13.1 13.4 15.8 
12.6 13.8 1 15.0 

1: 1: 6 31.80 3.4 10.5 10.0 14 
3.5 9.1 9.3 
2.9 9.6 8.5 
3.1 11.2 12.1 28 
3.5 10.6 11.8 
3.6 10.2 13.3 
5.1 13.0 15.8 365 
3.7 13.6 16.6 
4.2 12.9 15.8 
4.3 13.9 

. 17.4 
1: 2: 9 31.80 1.2 8.3 8.8 14 

1.3 7.5 8.4 
1.5 8.4 9.9 
1.6 8.1 8.1 28 
2.3 7.6 9.9 
1.3 7.1 9.0 

* 5-brick high stack bond prism. 

Table A23 - Results of the strength Of Calcium Silicate Brick walls. 
(after West et al (341). 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h xIx0 (h xIx t) Brick Mortar Prism Wall (days) ratio 

26670388015 standard 1: 11: 6 91.70 4.00 33.16 18.48 28 23.2 
88.25 32.47 17.79 
68.26 21.51 13.65 
57.92 23.17 14.75 

108.94 34.61 18.34 
132.38 38.82 1 19.31 

1: 1: 6 91.70 4.21 38.47 28 
88.25 4.07 28-61 
68.26 4.27 24.61 
58.61 4.34 19.92 
57.92 3.59 22.55 

108.94 3.86 42.75 
132.38 4.55 40.82 
41.02 3.93 23.85 
39.44 3.79 21.37 
68.95 4.27 31.03 
43.71 3.72 28.20 
77.91 3.79 27.72 
72.39 4.41 32.75 
21.10 3.72 14.55 
44.13 4.21 27.65 
75.15 4.21 28.48 
60.40 5.58 27.79 
33.92 3.31 22.68 
32.54 4.14 20.89 
96.53 3.93 36.54 
99.28 4.21 32.85 
55.71 3.93 30.75 
54.40 3.38 31.16 
46-95 4.34 25.51 
34.34 1 3.86 16.34 

* 4-brick high stack bond prism. 

Table A24 - Results of single leaf walls and stack bond prisms. 
(after Anderson(351). I 
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Dimensions in (mm) Mortar Strength (Nmm-2 Age h/t 

Wall Brick mix 
(h x, I x0 (h xIx t) Brick Mortar Prism wall (days) ratio 

24000400005 . 
75x225xIO6 1: 1: 6 68.60 4.10 25.51 15-17 28 22.9 

5.14 23.24 15.86 
4.10 23-06 18.55 
3.76 26.30 18.06 

64-84 5.96 28.17 15.10-- - 
4.96 28.54 17.86 
4.27 30.13 18.06 
3.93 27.48 18.48 

0: 1: 5 68-60 0.48 11.45 6.62 
- - 24oOxl4OOxl5O 75x228xl5O 1: 1: 6 47.16 3.90 18-20 15.44 28 

47.16 3.62 22.89 14.96 
50.06 3.93 20-55 17.31 1 

2400xl4OOxlO5 75x225xIO8 1: 1: 6 66.12 3.59. 26.92 22.555- -2 V 22.9 
3.65 0 26.23 20.82 
3.83 28.61 22.75 

- 82-05 4.10 26.59 7 
3.96 1 28-06 21.51 
4.00 20.00 19. n03 
3.96 24.79 20.75 
3.48 26.92 21.93 

-- 
3.83 30.41 21-65 

V5.50 2.76 30.92 22.00 
2.41 30.20 23.17 

2405xx14OOx225 -I-5x-225x1O8 1: 1: 6 65.50 2.69 31.51 21.44 26-- 110.7 
2.83 31.30 21.31 
3.03 30.54 19-03 
2.76 32.10 18.48 
3.03 32.03 19.03 
3.31 35.72 18.89 
3.03 32.13 19.44 
2.76 33.20 20.27 
2.69 32.86 19.10 

, 2.90 33.03 20-55 
-2--- -1-5 4OOxl4OOxlO5 -T5-x- 2-2 5 x- 10 8 1: 1: 6 71.84 25-03 20.137 ! 22.9 

71.43 31-99 22.61 
33-51 17.17 12.89 
25.65 11.79 9.65 

1:. 25: 3 71.48 
- - 

39-30 32.75 
1: 1-. 6 55.16 

40.47 

1 
23.72 
18.89 

28.20 14.41 
66.12 28.48 
55.92 27.58 
31-37 14-96 

1:. 25: 3 66.12 44.88 
66.12 38.82 
64.81 40-95 
55.92 34.47 

4-brick high stack bond prism. 

Table A25 - Results of walls and stack bond prisms. 
(after James 138,39,40,41,43,44,451) 
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1.111. STATISTICAL ANALYSIS OF BRICKWORK WALL STRENGTH IN TERMS OF 
UNIT BRICK STRENGTH 

Command: MINITAS 
MINITAS RELEASE 5.1 '" COPYRIGHT - MINITAB, INC. 1985 
STORAGE AVAILABLE 10000 ý 
MTS > READ 'CHAR_Cll Cl C2 

167 ROWS READ 
ROW Cl C2 

1 9.86 8.27 
2 12.82 6.84 
3 20.68 8.62 
4 21.10 5.90 

MTS > NOTE'**LINEAR FIT*** 
MTB; > NOTE"**Cl - UNIT BRICK STRENGTH 
MTB, > NOTE***C2 - WALL STRENGTH 
MTB > REGRESS C2 ON 1 PREDICTOR Cl RESIDS IN C3 FIT IN C4 

The regression equation is, 
C2 - 9.89 + 0.153 Cl 

Predictor Coef Stdev t-ratio 
Constant 9.8900 0.8286 11.94 
Cl 0.15297 0.01374 11.14 

s-3.999 R-sq - 42.9% R-sq(adj) - 42.6% 

Analysis of Variance 
SOURCE DF SS ms 
Regression 1 1982.7 1982.7 
Error 165 2638.5 16.0 
Total 166 4621.2 

Unusual Observations 
Obs. C1 C2 Fit Stdev. Fit Residual St. Rasid 
35 33 23.700 15.014 0.437 8.686 2.1911 

123 69 28.680 20.426 0.357 8.254 2.0711 
129 71 32.750 20.824 0.376 11.926 3.0011 
151 86 34.130 23.021 0.514 11.109 2.8011 
152 86 34.470 23.021 - 0.514 11.449 2.89R 
165 123 23.790 28.674 0.969 -4.884 -1.26 X 
166 123,19.240 28.674 0.969 -9.434 -2.43RX 
167 123 20.200 28.674 0.969 -8.474 -2.18RX 
R de notes an obs. ýwith a large st. resid. 
X de notes an obs. whose X value gives it large infl uence. 

MTS > PLOT C2 C1 

C2 
2 

30+ 
22 

4 
2252 24 

20+ 2* 22*2***33*4* 21* 2 2 
2272*2 23 24 

33 22 4 *4 
24 32 2* 
*4 

104. 22 
23 

--------------------------------------------------------- C11 
0 25 50 75 100 125 

-287- 



MTS > PLOT C3 Cl 
3.2+ 

2 
C3 

2 
1.6+ 22 

2 

3 2*** 24 
-2 *23 *2 

0.0+ 3 22 42*2 **4 2* 3 
- 33 42 *2** 

. *3 
3 32 *3 ** *h 

2* 22 
*2 3 

-1.6+ 2 
2 

------ -------------------------------------------------- cl 
0 25 50 75 100 125 

MTS > PLOT C3 C2 
3.2+ 

2 
C3 

1.6+ 

22 
2* 3* 2*3* 
2 24 *2* ** 

0.0+ *2*3233 5** 2**2* 
- *3**2 3***3* 3t 

2**4 42 
* 2* **** 

2*2 2 
-1.6+ -2 

*2 

--------------------------------------------------------- C2 
6.0 12.0 18.0 24.0 30.0 36.0 

MTS > PLOT C4 Cl 
3 

C4 

3 
25.0+ 3 

6 
33 

+3 
- 33 

20.0+ 733 
- 339 

399 
3++ 

- 83 
15.0+ 4+ 

3 
36 

--------------------------------------------------------- c1 
25 50 75 

. 
100 125 
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MTB'> NSCOR C3 CS 
MTS > PLOT C3 C5 

3.2+ 

C3 

'2* 
1.6+ *3; * 

232 
34* 

6452 
- 276 

0.0+ 67764 
- 3766* 
- 5553 
- *45 - 
- *3332 

-1.6+ 

------------------- C5 
-2.0 

. --1.0 
0.0 1.0 2.0 

MTS > CORRELATION OF C3 C5 
Correlation of C3 and C5 - 0.993 

MTS > NOTE*** LOGARITHMIC FIT*** 
MTB > LET C80-LOGE(Cl) 
MTB > LET C81 =C2 
MTB > REGRESS C81 ON 1 PREDICTOR, C80'RESIDS IN C83 FIT IN C84 

The regression equation is 
C81 14.0 + 8.24 C80 

Predictor Coef Stdev t-ratio 
Constant -14.003 2.720 -5.15 
C80 8.2427 0.6866 12.01 

s-3.866' R-sq 46.6% R-sq(adj) - 46.3% 

Analysis of Variance 
SOURCE DF Ss MS 
Regression 1 2154.6 2154.6 
Error 165 2466.7 14.9 
Total 166 4621.2 

Unusual Observations 
Obs. C80 C81 Fit Stdev. Fit Residual St-Resid 

1 2.29 8.270 4.860 1.171 3.410 0.93 X 
2 2.55 6.840 7.024 0.998 -0.184 -0-05 X 

14 3.36 21.500 13.695 0.496 
, 

7.805 2-0411 
35 3.51 23.700 14.941 0.418 8.759 2.2811 
80 3.94 9.860 18.475 0.299 -8-615 -2.23R 
82 3.94 9.790 18.475 0.299 -8-685 -2.25R 

123 4.23 28.680 20.883 0.361 7.797 2-03R 
129 4.27 32.750 21.188 0.376 11.562 3. OOR 
151 4.45 34.130 22.697' 0.463 11.433 2-98R 
152 4.45 34.470 22.697, ', 0.463 11.773 3-07R 
R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influence. 
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MTS > PLOT Cal C80 

C81 
2 

30+ 
-2 2'b* 

4 
-A22 322 6 

20+ 2 22**2**3342 322 
* *363***2*22 4 

332 24 *3* 
23* * 3**2* 
*22 * 

lo+ 22 
3** 

-------- 4 -------------------------------------------- - -- C80 

2.50 3.00 3.50 4.00 4.50 

MTS > PLOT C83 C80 
3.2+ 

C83 - 

2 
1.6+ 22 

2 
2 *** 2 

3** 
2 1* 31** 2 

0.0+ *3 35*** *ý* 43 
22* 2 232***232 3 

2 *2 1*2 * "*** 2 
* 2***3* 2 

22 

-1.6+ 

2 

--------------------------------------------------------- Cao 
2.50 3.00 3.50 4.00 4.50 

MT13 > PLOT C83 C81 
3.2+, 

C83 

1.6+ 

22 
2 32 

-2 *21122 
0.0+ **2 45 22* 32*2* 

- *3 f**422225 2 
2 2* 

2 *4 4 
22 *2 

2 

-------------------------------------------------- 
6.0 12.0 18.0 24.0 30.0 36.0 
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MTB > PLOT C84 C80 

3 
24.0+ 33 

636 
C84 42 + 

6763 
- 3663 

18-0+ 3+66 
- 83+ 

497 
3 

12.0+ 4** 
4 

6.0+ 

C80 2.50 3.00 3.50 4.00 4.50 
MTB > NSCOR C83 C85 
MTB > CORRELATION OF C83 C85 
Correlation of C83 and C85 - 0.986 
MTB > NOTE*** EXPONENTIAL FIT*** 
MTS > LET C90-Cl 
MTS > LET C91=LOGE(C2) 
MTB > REGRESS C91 ON I PREDICTOR C90 RESIDS IN C93 FIT IN C94 
The regression equation is 
C91 - 2.36 + 0.00915 C90 
Predictor Coef Stdev t-ratio 
Constant 2.35712 0.04993 ' 47.20 
C90 0.0091543 0.0008278 11.06 
sm0.2410 R-sq -42.6% R-sq(adj) - 42.2% 
Analysis of Variance 
SOURCE DF Ss ms 
Regression 1 7.1009 7.1009 
Error 165 9.5815 0.0581 
Total 166 16.6824 
Unusual Observations 
Obs. C90 C91 Fit Stdev. Fit Residual St-Resid 

2 13 1.9228 2.4745 0.0403 -0.5517 -2.32R 
4 21 1.7750 2.5503 0.0344 -0.7753 -3.25R 
5 21 1.9892 2.5503 0.0344 -0.5610 '-2.35R 
7 22 2.0082,2.5591 0.0337 -0-5508 -2.31 R 

35 33 3.1655 2.6638 0.0263 0.5017 2.0911 
37 40 2.1622 2.7194 0.0231 -0.5573 -2.3211 
80 51 2.2885 2.8279 0.0190 -0.5394 -2.25R 
82 51 2.2814 2.8279 0.0190 -0.5466 -2.28R 

165 123 3.1693 3.4813 0.0584 -0.3120 -1.33 X 
166 123 2.9570 3.4813 0.0584 -0.5243 -2.24RX 
167 123 3.0057 3.4813 0.0584 , -0.4756 -2.03RX 
R denotes an obs. with a large st. resid. X denotes an obs. whose X value gives It large influence. 
MTB > PLOT C91 C90 

3.60+ 

C91 -23 
3 

*2 3 2* 52* 25 3 
3.00+ 2* 22*2*1*33*4* 2* 22 

k 2272*2 23 24 
34 32 4 *4 

*2 32 2* 
25 

2.40+ 
2 

*2 

1.80+ 
4 --- - --------------------------------------------------- C90 
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0 25 50 75 100 125 
MTS > PLOT C93 C90 

1.5+ 2*. 22 
*** 2* 2ý 

C93 -2* **** 
2 2** 34 

-2 *226*** 3 2* 
0.0+ *2 2* 3* 2 23* 22 4 

23 113 *2 *2 
2 32 2 2* 

23 
2 

-1.5+ 
2 

2 

-3.0+ 

- 
--------------------------------------------------- ------- C90 
0 25 50 75 100 125 

MTB > PLOT C93 C91 

1.5+ 2** 2 
***2* 

C93 *2 
*2 22**33* 2 

2 228*2*3* 
0.0+ **2 32***33 4*22 

- 32 3****** *2 
2 *32 *2 

2 

-1.5+ 
2 

-3.0+ 

------------ 4 --------- 4 ---------------------------------- C91 

1.75 2.10 2.45 ZBO 3.15 3.50 
MTS > PLOT C90 C94 
C90 3 

105+ 3, 
3 

6 
+33 

3 
70+ 633 

- 3943 
- 66 
- 6+66 
- 83+ 

35+ 97 
- 34 

*72 

0+ 
--------------------------------------------------------- C94 

2.40 2.60 2.80 3.00 3.20 3.40 
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MTS : ý; NSCOR C93 C95 
MTS > CORRELATION OF C93 C95 
Correlation of C93 and C95 - 0.987 

MTS > NOTE`POWER FIT*** 
MT8 > NOTE***NORMAL DISTRIBUTION"" 
MTS > LET C11=LOGE(C1) 
MTS > LET C22-LOGE(C2) 
MT13 > REGRESS C22 ON 1 PREDC1 I RESID IN C23 FIT C24 

The regression equation is 
C22 - 0.838 + 0.516 C11 

Predictor Co , ef Stdev t-ratio 
Constant 0.8381 0.1572 5.33 
C11 0.51591 0.03969 13.00 

s -0.2235 R-sq 50.6% R-sq(adi) - 50.3% 

Analysis of Variance 
SOURCE DF SS MS' 
Regression 1 8.4408 8.4408 
Error 165 

1ý 
8.2417 0.0499 

Total 166 16.6824 

Unusual Observations 
Obs. C11 C22 Fit Stdev. Fit Residual St. Resid 

1 2.29 2.1126 2.0188 0.0677 0.0938 0.44 X 
2 2.55 1.9228 2.1542 0.0577 -0.2314 -1-07 X 
4 3.05 1.7750 2.4113 0.0393 -0.6363 -2.89R 

14 3.36 3.0681 2.5718 0.0287 0.4963 2.24R 
34 3.51 3.1091 2.6498 0.0242 0.4593 2.0711 
35 3.51 3.1655 2.6498 0.0242 0.5157 2.32R 
37 3.68 2.1622 2.7358 0.0201 -0-5737 -2-58R 
51 3.79 2.3125 2.7935 0.0183 -0.4810 -2.16R 
80 3.94 2.2885 2.8709 0.0173 -0.5825 -2.61 R 
82 3.94 2.2814 2.8709 0.0173 70.5896 -2.65R 

129 , 4.27 3.4889 3.0408 0.0217 0.4481 2.01 R 
R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influence. 

MTS > PLOT C22 C1 I 

3-60+ 

C22 -2 3* 
3 

232 *322 73 
3.00+ 2* 22**2**3342 3 22 

*363**1*2*22 4 
343 24 *3* 

3**2* 
- 232 

2.40+ 
2 

2 

1.80+ 

--------------------------------------------------------- C11 
2.50,3.00 3.50 4.00 4.50 
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MTB > PLOT C23 Cl I 
C23 

2 
2 

1.5+ 222 
3 

2 23** 
3* 33** *2** 

0.0+ 2* 232*2 *3* 33 
- *2* 4 11*22 4 

3 **3** ** 2 
*22 

223 
2 

2 
-3.0+ 

--------------------------------------------------------- Cil 
2.50 3.00 3.50 4.00 4.50 

MTS > PLOT C23 C22 
C23 - 

2 
1.5+ 2 

2* 

2 *12 232 1 
3 52* 32 ** 

0.0+ *** 2*33*23* 3*2* 
3* ***2 **3**2** 

2 *2*22*** *2 

*2 2 

22 

2 
-3.0+ 

--------------------------------------------------------- C22 
1.75 2.10 2.45 2.80 3.15 3.50 

MTS > NSCOR C23 C25 NOTE***TEST FOR NORMAL DISTRIBUTION"* 
MTS > PLOT C23 C25 
C23 - 

**2 
1.5+ *32* 

- '4332 
*5 

*554 

- 2675 
0.0+ 27774 

- '4764 

- *5552 

- 44 

- 2331 

-1.5+ 2* 
2*2 

-3.0+ 
--- ----------------------------------------------------- C25 

-2.0 -1.0 0.0 1.0 2.0 
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MTS > CORRELATION OF C23 C25 
Correlation of C23 and C25 - 0.994 

MTB > NOTE*** LOGNORMAL DISTRIBUTION"* 
MTB > LET C50zLOGE(C1 1) 
MTB > LET C51=LOGE(C22) 
MTB > REGRESS C51 ON I PRED C50 RESID IN C54 FIT C55 

The regression equation is 
C51 a 0.0540 + 0.728 C50 

Predictor Coef Stdev t-ratio 
Constant 0.05399 0.07482 0.72 
C50 0.72839 0.05466 13.33 

s; - 0.08270 R-sq - 51.8% R-sq(adj) - 51.5% 

Analysis of Variance 
SOURCE DF SS ms 
Regression 1 1.2145 1.2145 
Error 165 1.1284 0.0068 
Total 166 2.3430 

Unusual Observations 
Obs. C50 C51 Fit Stdav. Fit Residual St. Rasid 

1 0.83 0.74794 0.65702 0.02999 0.09092 1.18 X 
2 0.94 0.65378 0.73612 0.02422 -0.08235 - 1.04 X 
4 1.11 0.57377 0.86608 0.01504 -0.29230 -3.59R 
5 1.11 0.68775 0.86608 0.01504 -0-17832 -2-1911 
7 1.13 0.69725 0.87663 0.01433 -0.17938' -2.20R 

13 1.21 1.10215 0.93684 0.01048" 0.16531 2.0211 
14 1.21 1.12104 0.93684 0.01048 0.18420 2.25R 
34 1.26 1.13432 0.96889 0.00870 0.16543 2.01 R 
35 1.26 1.15230 0.96889 0.00870 0.18341 2.23R 
37 1.30 0.77111 1.00269 0.00723 -0.23157 -2.81 R 
51 1.33 0.83834 1.02449 0.00663 -0.18614 -2.26R 
80 1.37 0.82789 1.05279 0.00641 -0-22490 -2.73R 
82 1.37 0.82477 1.05279 0.00641 -0.22801 -2.77R 

R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influence. 

MTS > PLOT C51 C50 
2 

1.20+ 3 22 
2 **2 * *4 

C51 -222 ** *2322' 7* * 
*3*3**337** 42 
* 572*2** 23 

1.00+ 2523 4* 
- 222 3*** 

2 
0.80+ 

0.60+ 

-------------------- - ----------------------------------- C50 
0.90 1.05 1.20 1.35 1.50 
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MTB > PLOT C54 C50 

2.0+ 2 
322 

C54 - 2**,, *** 3*,, 
2 2** ** 2* 

- *3 * 35**3422* 
0.0+ 22* 2 252*325*11 75 

*2 *2 ***3 *3 ** 
22 3* 222 2 

2 

-2.0+ 

2 

-4.0+ 

------------------- -------------------------------------- C50 
0.90 1.05 1.20 1.35 1.50 

MTB > PLOT C54 C51 

2.0+ 2 
*2 **2 *2 

C54 - 2********* 
2 ****** *2* 

-3* 432335** * 
0.0+ *3 ** 434263 625 * 

2 *, * *2*2*3*** 2 
322**3*2* 

2 

-2.0+ 2 

2 

-4.0+ 
4 ------------------- 4------------------------- 

---+c5l 0.60 0.75 0.90 1.05 1.20 1.35 

MT13 > PLOT C55 C50 
C55 - 

33 
- 93 

1.12+ 363+ 
9+3 

6699 
3+9 

8 
0.96+ 4+6 

3 
32 

32 

0.80+ 

0.64+ 
-------------------------------------------------------- C50 

0.90 1.05 1.20 1.35 1.50 

MT13 > NSCOR C54 C56 NOTE***TEST FOR LOGNORMAL DISTRIBUTION"* 
MTB > CORRELATION OF C54 C56 
Correlation of C54 and C56 - 0.987 
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MTB > NOTE ***CALCULATION OF CHAI 
MTB > LET C30-C24-1.64540.2235 
MTB > LET C31-EXPONENTIATE(C30) 
MTB > PRINT C30 
C30 

1.65114 1.78657 2.03326 2.04364 
2.07907 2.07907 2.07907 2.09790 
2.20414 2.22863 2.22863 2.22863 
2.25168 2.25526 2.25526 2.25526 
2.26506 2.27904 2.27904 2.27904 
2.36817 2.36817 2.37168 2.37168 
2.37619 2.39608 2.39608 2.39608 
2.42583 2.42583 2.42583 2.42665 
2.43209 2.43209 2.44325 2.44325 
2.45627 2.46087 2.46087 2.46087 
2.46908 2.46908 2.46908 2.47345 
2.49214 2.49214 2.50329 2.50329 
2.51086 2.51155 2.51155 2.51155 
2.54583 2.54583 2.54583 2.54831 
2.55152 2.55152 2.58504 2.58504 
2.59730 2.59730 2.59730 2.59730 
2.61594 2.61594 2.61763 2.61763 
2.64089 2.64089 2.64089 2.65401 
2.66827 2.66827 2.67313 2.68750 
2.72844 2.73463 2.73463 2.73463 
2.73597 2.73597 2.73597 2.74428 
2.74772 2.74772 2.76757 2.76757 
2.79027 2.79228 2.79228 2.79228 
2.86782 2.86782 2.86782 2.95231 

RACTERISI 

2.04364 
2.11286 
2.23676 
2.25526 
2.28213 
2.37168 
2.41938 
2.42665 
2.44325 
2.46757 
2.47345 
2.50329 
2.52768 
2.54831 
2.58504 
2.60362 

-2.62860 
2.65401 
2.68750 
2.73463 
2.74428 
2.76757 
2.83180 
2.95231 

rIC STRENGTH*** 

2.05020 2.06659 
2.20414 2.20414 
2.25168 2.25168 
2.25526 2.25526 
2.28213 2.28213 
2.37619 2.37619 
2.41938 2.41938 
2.42665 2.43209 
2.45627 2.45627 
2.46757 2.46757 
2.47345 2.49214 
2.51086 2.51086 
2.52768 2.52788 
2.54831 2.55152 
2.59730 2.59730 
2.60362 2.60362 
2.62860 2.62860 
2.65401 2.66827 
2.72844 2.72844 
2.73463 2.73463 
2.74428 2.74772 
2.79027 2.79027 
2.83180 2.83180 
2.95231 

MTB > PRINT C31 
C31 

5.2129 5.9690 7.6390 7.7186 7.7186 7.7694 7.8979 
7.9970 7.9970 7.9970 8.1490 8.2719 9.0624 9.0624 
9.0624 9.2871 9.2871 9.2871 9.3630 9.5037 9.5037 
9.5037 9.5378 9.5378 9.5378 9.5378 9.5378 9.5378 
9.6317 9.7673 9.7673 9.7673 9.7975 9.7975 9.7975 

10.6779 10.6779- 10.7154 10.7154 10.7154 10.7638 10.7638 
10.7638 10.9801 10-9801 10.9801 11.2389 11.2389 11.2389 
11.3116 11.3116 11.3116 11.3208 11.3208 11.3208 11.3826 
11.3826 11.3826 11.5104 11.5104 11.5104 11.6612 11.6612 
11.6612 11-7149 11.7149 11.7149 11.7938 11.7938 11.7938 
11.8115 11.8115 11.8115 11.8633 11.8633 11.8633 12.0871 
12.0871 12.0871 12.2226 12.2226 12.2226 12.3155 12.3155 
12.3155 12.3240 12.3240 12.3240 12.5244 12.5244 12.5244 
12.7538 12.7538 12.7538 12.7855 12.7855 12.7855 12.8266 

A 2.8266 12-8266- 13.2638' 13.2638 13.2638 13.4275 13.4275 
13.4275 13-4275 13.4275 13.4275 13.5125 13.5125 13.5125 
13-6801 13-6801 13.7032 13.7032 13.8544 13-8544 13.8544 
14.0257 14.0257- 14.0257 14.2109 14.2109 14.2109 14.4150 
14.4150 14.4150 14.4852 14.6950 14.6950 15.3090 15.3090 
15.3090 15.4041 15.4041 15.4041 15.4041 15.4041 15.4041 
15.4248 15.4248 15.4248- 15.5534 15.5534 15.5534 15.6071 
15.6071 15.6071' 15.9200 15.9200 15.9200 16.2854 16.2854 
16-2854 16-3181 16.3181 16.3181 16.9760 16-9760 16.9760 
17.5986 17.5986 17.5986 19.1501 19.1501 19.1501 
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MTS > PLOT C30 C1 I 
3 

3 
2.80+ 36 3 

2+ 
C30 

669 
767 

3+69 
2.40+ 83+ 

3 
3494 

- 34** 
2.00+ 

1.60+ 

C11 2.50 3.00 3.50 4.00 4.50 

MTS > PLOT C31 C1 
3 

C31 
3 

3 
16-0+ 33 6 

- +3 
363 

397 
93 

12.0+ +39 
- 6+ 

a 
4+ 
3 

8.0+ 36* 

4 ----------------------------- 4-------------------------- C1 

0 25 50 75 100 125 

MTB > NOTE***EQUATION OF CHARACTERISTIC CURVE*** 
MTB > REGRESS C30 ON I PRED C11 RESID IN C32 FIT C33 

The regression equation is 
C30 - 0.470 + 0.516 C1 1 

Predictor Coef Stdev t-ratio 
Constant 0.470472 -0.000000 
C11 0.515915 0.000000 

Sa0 R-sq 100.0% R-sq(adj) 100.0% 

Analysis of Variance 
SOURCE DF SS, ms 
Regression 1 8.4408 8.4408 
Error 165 0.0000 0.0000 
Total 166 8.4408 

Unusual Observations 
Obs. Cil C30 Fit Stdev. Fit Residual St. Resid 

1 2.29 1.65114 1.65113 0.00000 0.00000 *X 
2 2.55 1.78657 1.78657 0.00000 0.00000 *X 

X denotes an obs. whose X value gives it large influence. 



MTS >'PRINT C33 
C33 

1.65113 1.78657 2.03326 
2.07907 2.07907 2.07907 
2.20414 2.22863 2.22863 
2.25168 2.25526_ 2.25526 
2.26506 2.27904 2.27904 
2.36817 2.36817 2.37168 
Z3761 9 2.39608 2.39608 
2A2583 2.42583 2A2583 
2.43209 2.43209 2.44325 
2.45627 2.46087 2.46087 
2.46908 2A6908 2.46908 
2.49214 2.49214 2.50329 
2.51086 2.51155 2.51155 
2.54583 2.54583 2.54583 
2.55152 2.55152 2.58504 
2.59730 2.59730 2.59730 
2.61594 2.61594 2.61763 
Z64089 2.64089 -2.64089 
2.66827 2.66827 2.67313 
2.72844 2.73463 2.73463 
Z73597 2.73597 2.73597 
2.74772 2.74772 2.76757 
Z79027 2.79228 2.79228 
2.86782 2.86782 2.86782 

MTS > PLOT C33 C 11 

2.04364 
2.09790 
2.22863 
2.25526 
2.27904 
2.37168 
2.39608 
2.42665 
2.44325 
2.46087 
2.47345 
2.50329 
2.51155 
2.54831 
2.58504 
2.59730 
2.61763 
2.65401 
2.68750 
2.73463 
2.74428 
2.76757 
2.79228 
2.95231 

2.04364 
2.11286 
2.23678 
2.25526 
2.28213 
2.37168 
2.41938 
2.42665 
2.44325 
2.46757 
2.47345 
2.50329 
2.52768 
2.54831 
2.58504 
2.60362 
2.62860 
2.65401 
2.68750 
2.73463 
2.74428 
2.76757 
2.83180 
2.95231 

2.05020 2.06659 
2.20414 2.20414 
2.25168 2.25168 
2.25526 2.25526 
2.28213 2.28213 
2.37619 2.37619 
2.41938 2.41938 
2.42665 2.43209 
2.45627 2.45627 
2.46757 2.46757 
2.47345 2.49214 
2.51086 2.51086 
2.52768 2.52768 
2.54831 2.55152 
2.59730 2.59730 
2.60362 2.60362 
2.62860 2.62860 
2.65401 2.66827 
2.72844 2.72844 
2.73463 2.73463 
2.74428 2.74772 
2.79027 2.79027 
2.83180 2.83180 
2.95231 

3 
3 

2.80+ 36 3 
2+ 

C33 - 767 
669 

- 3+69 
2.40+ 83+ 

3 
3494 

- 34** 
2.00+ 

1.60+ 

-------------------------------- - ----------------------- cil 
2.50 3.00 3.50 4.00 4.50 

MTB > LET C35-E) 
MTS > PRINT C35 
C35 

5.2129 5.9690 
7.9970 7.9970 
9.0624 9.2871 
9.5037 9.5378 
9.6317 9.7673 

10.6779 10.6779 
10.7638 10.9801 
11.3116 11.3116 
11.3826 11.3826 
11.6612 11.7149 
11.8115 11.8115 
12.0871 12.0871 
12.3155 12.3240 
12.7538 12.7538 
12.8266 12.8266 
13A275 13.4275 
13.6801 13.6801 
14.0257 14.0257 
14.4150 14.4150 

PONENTU 

7.6390 
7.9970 
9.2871 
9.5378 
9.7673 
10.7154 
10.9801 
11.3116 
11.5104 
11.7149 
11.8115 
12.2226 
12.3240 
12.7538 
13.2638 
13.4275 
13.7032 
14.0257 
14A852 

kTE(C33) 

7.7186 
8.1490 
9.2871 
9.5378 
9.7673 
10.7154 
10.9801 
11.3208 
11.5104 
11.7149 
11.8633 
12.2226 
12.3240 
12.7855 
13.2638 
13.4275 
13.7032 
14.2109 
14.6950 

7.7186 7.7694 7.8979 
8.2719 9.0624 9.0624 
9.3630 9.5037 9.5037 
9.5378 9.5378 9.5378 
9.7975 9.7975 9.7975 
10.7154 10.7638 10.7638 
11.2389 11.2389 11.2389 
11.3208 11.3208 11.3826 
11.5104 11.6612 11.6612 
11,7938 11.7938 11.7938 
11-8633 11.8633 12.0871 
12.2226 12.3155 12.3155 
12.5244 12.5244 12-5244 
12.7855 12.7855 12.8266 
13.2638 13.4275 13.4275 
13.5125 13.5125 13.5125 
13.8544 13.8544 13.8544 
14.2109 14.2109 14.4150 
14.6950 15.3090 15.3090 

-299- 



15.3090 . 15.4040, 15.4040 15.4040 15.4040 15.4040, 15.4040 
15.4248 15.4248 15.4248 15.5534 15.5534 15.5534 15-6071 
15.6071 A 5.6071 15.9200 15.9200 15.9200 18.2854 16.2854 
16.2854 16.3181 16.3181 16.3181 16.9760 16.9760 16.9760 
17.5986 17.5986 17.5986 19.1501 19.1501 19-1501 

MTB > PLOT C35 Cl 
3 

C35 
3 

3 
16.0+ 33 6 

+3 
363 

397 
93 

12.0+ +39 
6+ 

8 
4+ 
3 

8.0+ 36* 

------------------------------------ --------------------- cl 
0 25 ' 50 75 100 125 

MTB >STOP 
*** Minitab Release 5.1 *** Minitab, Inc. 
Storage available 10000 

End of MINITAS run: Completed 
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I. IV. STATISTICAL ANALYSIS OF BRICKWORK WALL STRENGTH IN TERMS OF 
UNIT BRICK AND MORTAR CUBE STRENGTHS 

Comm6nd: MINITAB 
MINITAB RELEASE 5.1 *** COPYRIGHT - MINITAB, INC. 1985 
STORAGE AVAILABLE 10000, 
MTB > READ 'CHAR_Xl' Cl C2 C3 

372 ROWS READ 
ROW Cl C2 C3 

1 9.86 15-65 8.27 
2 12.82 18.62 6.84 
3 20.68 16.55 8.62 
4 21.10 16.27 5.90 

MTB > NOTE***Cl a UNIT BRICK STRENGTH*** 
MTB 

,> 
NOTE***C2 - MORTAR CUBE STRENGTHh** 

MTB > NOTE***C3 - BRICKWORK WALL STRENGTH*** 
NITS > LET Cll-LOGE(ClI 
MTB > LET C12-LOGE(C2) 
MTS > LET C13-LOGE(C3) 
MT8 > NOTE***EQUATION OF MEAN STRENGTH 
MTB > REGRESS C13 ON 2 PRED Cll C12 STORE ST RESID IN C20 VALUES IN C21 

The regression equation is 
C13 - 0.217 + 0.531 Cll + 0.208 C12 

Predictor Coef Stdev t-ratio 
Constant 0.2171 0.1285 1.69 
Cil 0.53079 0.03119 17.02 
C12 0.20767 0.02148 9.67 

0.2772 R-sq -. 53.1 % R-sq(adi) - 52.8% 

Analysis of Variance 
SOURCE OF SS IVIS 
Regression 2 31.354 15.677 
Error 361 27.743 0.077 
Total 363 59.097 

SOURCE DF SEQ SS 
C11 1 24.174 
C12 17 . 180 
Unusu al Obs ervations 
Obs. C11 C13 Fit Stdev. Fit Residual St-Resid 

1 2.29 2.1126 2.0029 0.0560 0.1097 0.40 X 
2 2.55 1.9228 2.1784 0.0499 -0.2556 -0.94 X 
4 3.05 1.7750 2.4148 0.0354 -0.6399 -2.3311 

82, 3.94 2.2814 
, 

2.8513 , 0.0183 -0.5699 -2.06R 
165 4.81 3.1693 2.9265 ý ., 0.0436 0.2428 , 0.89 X_ 
174 4.07 2.4006 2.9548 0.0210 -0.5542 , -2.0011 
176 4.18 2.4006 2.9562 0.0184 -0.5555 -2.01 R 
198 2.87 1.5665 2.1579 0.0361 -0.5913 -2.15R 
199 2.87 1.4996 2.1745 0.0362 -0.6748 -2.46R 
200 2.87 1.5304 2.1727 0.0361 -0.6423 -2.34R 
247 3.66 1.8421 2.5930 0.0168 -0.7509 -2.71 A 
318 4.39 2.1702 2.8905 0.0228 -0,7203 -2.61 R 
319 4.39 2.0882 2.8696 0.0239 -0.7815 -2.83R 
358 3.12 2.1041 1.9562 0.0452 0.1479 0.54 X 
360 3.12 2.1633 1.9506 0.0457 0.2127 0.78 X 
363 3.46 2.1748 2.0912 0.0451 0.0836 0.31 X 
365 

, 
3.46 -0.2107 2.1509 0.0397 -2.3616 -8.61 R 

R denotes an obs. with a large St. resid. 
X denotes an obs. whose X valu e gives it large influence. 
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MTB > PLOT Cl 3 Cl I 

3.6+ 625 
35 325 2 

C13 23 233 *2 342822 +56 *11 2 
2*3 269+43336936 +5 33' *" 

23367 54*62*444*33* 632 
2.4+ 262* 289 3 74 822 33 2 

23*6* 43* 2 2* 2 
*2 

2 
1.2+ 

0.0+ 

--------------------------------------------------------- - 
2.50 3.00 3.50 4.00 4.50 

-cl I 

MTB > PLOT C12 Cl I 
C12 

23 
3.0+ 2 4232322 2 

42 * 23 3* 2 842233*3*3 4*2 211 
2*ý 253 *1*34 3**3*32 6*3 11 

3 *74 * *2*4 24* 22 2 
* *5 323 

2.0+ 32722 4*3 
*2 *3*** 3 *2 * ** * 

2 22** 232 *3`3 2822 
3 **2 2 24 *2 32* 224 8*4 21* 

-2 33 *2412 
1.0+ 2 

22 
22 

3 
0.0+ 

--------------------------------------------------------- CII 
2.50.3.00 3.50 4.00 4.50 

N* a8 
MTS > PLOT C13 C12 

3.6+ 3 *2 
-3 *5 *** 22 23 

C13 - 233* *2 2*24726442327*1111 
***72*3442 *3 2** 1133545758+32321* 
23*85733*222** **223225*33*2 

2.4+ *22 24235 43334*453 3*2 2 
- *2 42 22 5* *6*** 

2 

2 
1.2+ 

0.0+ 

-------------------------------------------------------- C12 
0.00 0.60 1.20 1.80 2.40 3.00 
N* -8 
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MTO > PLOT C20 Cl 1 

C20 2h*2 
4 *3 *2 132 4*4' 23 

28 23 77 236+ 23 1164*4 947 
0.0+ 4 4+7 34 6+332768632 +38 4" 

*4 42* 2 26*473 232 93 4' 
21,3 4* 5 *3 52 

21 2* 
2 

-3.5+ 

-7.0+ 

--------------------------------------------------------- Cil 
2.50 3.00 3.50 4.00 4.50 

N* 8 

MTB > PLOT C20 C12 

C20 -- t12 2 
22* 4* *34 '2322 

*2226 ***442+3522 4 333*3 ft 2 523235*2*2** 3 
0.0+ *2 3* 522254**55 ****22666+9596263* 

*25265323* 5* *1*2242542*3 
2**5 22* *3 *2 2 22 

****3 
2 

-3.5+ 

-7.0+ 

4-------------------------------------------------------- C12 

0.00 0.60 1.20 1.80 2.40 3.00 
N* -8 

MTB > PLOT C20 C13 

C20 

0.0+ 

-3.5+ 

-7.0+ 

*2*'* 2 
*1 *21,267 2122211 

2*236774588789594* 
3272477 ..... 65* 
8*76535+5562 

4 2424353 
33 

------------------------------------- ------------------- C13 
0.00 0.80 1.60 2.40 3.20 

N* -8 
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MTB> NSCOR C20 C25 
MTS > PLOT C20 C25 

C20, **2* 
*8654422 

7 
0.0+ ....... 4 

2 ..... 2 
*45686- 

*323 
*2 

-3.5+ 

-7.0+ 

--------------------------------------------------------- C25 
ý -2.4 -1.2 0.0 1.2 2.4 

N* -8 

MTS > CORRELATION OF C20 C25 
Correlation of C20 and C25 = 0.945 

MTB > NSCOR C13 C26 
MTS > PLOT C13 C26 

3.6+ *22* 
- 55533" 

C13 -2.... 88* 

4 .... 
2.4+ 5 ..... 

*436673 
222 

*2 
1.2+ 

0.0+ 

--------------------------------------------------------- C26 
-2.4 -1.2 0.0 1.2 2.4 

MTS > CORRELATION OF C13 C26 
Correlation of C13 and C26 - 0.967 

MTS > NOTE***C30 - RESIDUAL a 
MTB > LET C30-C13-C21 
MTB > NOTE***C31 -+ OR - S. D. (e) 
MTS > LET C31-C30/C20 
MTB > NOTE*** K1 - SUM OF SQUARES/DEGREES OF FREEDOM 
MTB > LET K1 -27.743/361 
MTB > NOTE***C32 - VARIANCE OF PREDICTED VALUE OF WALL STRENGTH 
MTS > LET C32=Kl-(C31**2) 
MTB > NOTE***C33 - STAND. DEV. OF PREDICTED WALL STRENGTH 
MTB > LET C33-SQRT(C32+Kl) 
MTB > NOTE***C34 w THE LOWER 95% CONFIDENCE LINE ON In(f mwl&(f b) GRAPH 
MTS > LET C34-C21-0.645*03) 
MTS > NOTE***EQUATION OF CHARACTERISTIC STRENGTH 
MTS > REGRESS C34 ON 2 PRED C11 C12 FIT IN C35 
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The regression equation is* - 
C34 --0.245 + 0.532 C1 I+0.208 C12 

Predictor Coof Stdev 
. , 

t-ratio 
Constant -0.244783 0.000451 -542.44 
Cil 0.531567 0.000110 4852.58 
C12 0.208094 0.000075 2757.88 

z 0.0009736 R-sq 100.0% R-sqjadj) 100.0% 

Analysis of Variance 
SOURCE OF SS ms 
Regression, 2 31.455 15.728 
Error 361 0.000 0.000 
Total 363 - 31.455 
SOURCE DF SEQ SS 
C11 1 24.246 
C12 1 7.209 
Unusual Observations 
Obs. Cil C34 Fit Stdev. Fit Residual St . Resid 

1 2.29 1.53770 -1.54406 0.00020- -0.00636 -6.67RX 
2 2.55 1.71502 1.71976 0-00018- -0.00475 -4.96RX 

141 4.39 2.77348 2.77553 0.00011 --0.00204 -2.11 R 
142 4.39 2.78010 2.78227 0.00011 -0.00216 -2.24R 
143 4.39 2.77059 2.77258 0.00011 -0-00200 -2.0611 
165 4.81 2.46487 2.46871 0.00015 -0.00385 -4. OORX 
357 4.89 2.63809 2.64076 0.00013 -0.00267 -2.76R 
358 3.12 1.49419 1.49699 0.00016 -0.00280 -2.92RX 
359 3.12 1.53162 1.53377 0.00015 -0.00215 -2.23R 
360 3.12 1.48846 1.49137 0.00016 -0.00291 -3.03RX 
361 3.46 1.67656 1.67853 --0.00014 -0.00197 -2.04R 
362 - 3.46 1.64618 1.64875 0.00015 -0.00257 -2.67R 
363 3.46 1.62916 1.63209 " 0.00016 -0.00293 -3.05RX 
366 3.46 1.64618 1.64875 0.00015 -0.00257 -2.67R 
R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influen ce. 

MTB > STOP 
*** Minitab Release 5.1 *** Minitab, Inc. 
Storage available 10000 
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I. V. STATIST1CAL: ANALYSES OF MORTAR CU13ES 'STRENGTHS 

Mortar 1: 1/4: 3, coment: llme: sand mix by volume 

MTS > READTHAR Ml'Cl 
331 ROWS READ7 

Cl - 
14.30 11.60 10.90 14.00 

MTB > HISTOGRAM OF Cl 
Histogram of Cl Na 331 
Each * represents 2 obs. 

Midpoint Count 
61 
84 

10 36 
12 61 
14 72 
16 65 
18 42 
20 31 
22 -13 
24 2 
26 -2 
28 2 

MTB > AVERAGE THE VALUES IN C1 
MEAN - 15.110 

MTS > STANDARD DEVIATION OF C1 
STMEV. w 3.5637 

MTS > NSCOR OF C1, PUT INTO C2 
MTB > PLOT C1 C2 

28.0+ 

C1 
2 

322 
21.0+ *53* 

- +765 

8++* 
- 9++7 

14.0+ ... 6 
3 

276++ 
2244*7 

**2 
7.0+ 

------------------ --------------------------- - ------------ C2 
-2.4 -1.2 0.0 1.2 2.4 

MTB > CORRELATION OF C1 C2 
Correlation of C1 and C2 - 0.990 

MTB > TINTERVAL WITH 95 PERCENT CONFIDENCE FOR DATA IN Cl 

N MEAN STDEV SE MEAN 95.0 PERCENT C. I. 
Cl 331 15-110 3.564 0.196 ( 14.725,15.496) 
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Mortar 1: 0.5: 4.5, coment: lime: sand mix by volume 

MTS > READ'CHAR M2'Cl 
110 ROWS READ7 

cl 
8.33 8.33 7.08 7.08 

MTB > HISTOGRAM OF Cl 
Histogram of Cl Na 110 

Midpoint Count 
61 
77 
8 19 
9 25 

10 14 
11 29 
12 9 
13 3 
14 0 
15 0 
16 2 
17 1 

MTB > AVERAGE THE VALUES IN C1 
MEAN - 9.8645 

MTB > STANDARD DEVIATION OF C1 
ST. DEV. - 1.8943 

MTB > NSCOR OF C1, PUT INTO C2 
MTB > PLOT C1 C2 

17.5+ 

C1 2 

14.0+ 

2222 
- 53332 

10.5+ 26625* 
- 24* 
- 92443 
- *424* 
- 22 5 

7.0+ 4 2* 

--------------------------------------------------------- C2 
-2.0 -1.0 0.0 1.0 2.0 

MTB > CORRELATION OF C1 C2 
Correlation of C1 and C2 - 0.963 

MTB > TINTERVAL WITH 95 PERCENT CONFIDENCE FOR DATA IN Cl 

N MEAN STDEV SE MEAN 95.0 PERCENT C. I. 
Cl 110 9.864 1.894 0.181 ( 9.506,10.222) 
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Mortar 1: 1: 6, cementlimemand mix by volume 

MTS > READ'CHAR_M3'Cl 
279 ROWS READ 

cl 
9.14 7.61 -8.36 4.47 

MT8 > HISTOGRAM OF Cl 
Histogram of Cl N- 279 
Each * represents 2 obs. 

Midpoint Count 
23 
3 43 
4 94 
5 56 
6 30 
7 27 
8 21 
92 

10 0 
11 0 
12 1 
13 0 
14 1 
15 0 
16 1 

MTB > AVERAGE THE VALUES IN C1 
MEAN - 4.9420 

MTB > STANDARD DEVIATION OF C1 
ST. DEV. - 1.7604 

MTS > NSCOR OF C1, PUT INTO C2 
MTS > PLOT C1 C2 
C1 

15.0+ 

10.0+ 

3543222 
29853 

- *++7 
5.0+ 6.... 

- 69 ...... 7 
23 24555683 

0.0+ 
--------------------------------------------------------- C2 

-2.4 -1.2 0.0 1.2 2.4 
MTS > CORRELATION OF C1 C2 
Correlation of C1 and C2 - 0.922 

MTS > TINTERVAL WITH 95 PERCENT CONFIDENCE FOR DATA IN Cl 

N MEAN STDEV SE MEAN 95.0 PERCENT C. I. 
Cl 279 4.942 1.760 0.105 ( 4.734,5.150) 
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,, ý": Mortar 1: 2: 9, cement: llme: sand mix by volume 

MTB > READ 'CHAR M4'C1 
15 ROWS READ 

C1 
2.74 '11.94 1.72 1.66 ... 

MTB > HISTOGRAM OF C1 
Histogram of C1 N 15 

Midpoint 
, 

Count 
1.2 1* 
1.4 3 
1.6 5 
1.8 3 *** 
2.0 1 
2.2 0 
2.4 1 
2.6 0 
2.8 1 

MTS > AVERAGE THE VALUES IN C1 
MEAN - 1.6880 

MTB > STANDARD DEVIATION OF C1 
ST. DEV. 0.39975 

MTS > NSCOR OF C1, PUT INTO C2 
MTS > PLOT C1 C2 

C1 

2.50+ 

2.00+ 

2 

1.50+ 2 

2 

--------------------------------------- 7 ----------------- C2 
-1.40 -0.70 0.00 0.70 1.40 

MTS > CORRELATION OF C1 C2 
Correlation of C1 and C2 - 0.932 

MTS > TINTERVAL WITH 95 PERCENT CONFIDENCE FOR DATA IN C1 

N MEAN STDEV SE MEAN 95.0 PERCENT C. I. 
C11 15 1.688 0.400 0.103 ( 1.467,1.909) 
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11. APPENDIX B 

11.1. RESULTS OF TESTS ON BRICKWORK UNDER CONCENTRATED LOAD 

Wall Age Wall Plate Edge Ar d/I b/t I/a fcb 
No. at dimens. dimens. dist. 

test hxIxt axb d 
(days) (mm) (mm) (mm) (Nmm-2 ) 

M3 14 590465415.0 215x 50 107.50 0.075 0.162 0.233 3.09 32.09 2.79 
M14 30 37.40 3.25 
M1 14 590465415.0 215x1O5 107.50 0.158 0.162 0.488 3.09 15.28 1.33 
M18 55 17.63 1.53 
M2 15 , 590465415-0 215x16O 107.50 0.241 0.162 0.744 3.09 19.33 1.68 
M11 38 20.35 1.77 
M19 1 53 1 1 1 23.66 

1 
2-06 

M7 Is 59046U215.0 215x 50 166.25 0.075 0.250 0.233 3.09 32.56 2.83 
M15 30 36.28 3.15 
m8 35 590465415.0 215xIO5 166.25 0.158 0.250 0.488 3.09 23.48 2.04 
M17 55 26.00 2.26 
M10 35 590465415.0 215x16O 166.25 0.241 0.250 0.744 3.09 21.80 1.90 
M9 36 20.20 1.76 
M21 53 1 18-63 1.62 

M6 18 90x665x215.0 215x 50 332.50 0.075 0.500 0.233 3.09 28.38 2.47 
M13 29 40.47 3.52 
M5 15 9046U215.0 215005 332.50 0.158 0.500 0.488 3.09 19.29 1.68 
M16 30 30.12 2.62 
M4 17 590465415.0 215060 332-50 0.241 0.500 0.744 3.09 14.46 1.26 
M12 38 22.09 1.92 

1 M20 L 53 1 1 1 1 16.86 11.471 

fb - 72.70 Nmm-2 

Mortar mix by volume 1: 1/4: 3; fm - 12.69 Nmm-2 cured hydralically 

fm a 22.97 N mm-2 cured by covering in Polyethene sheet (same as masonry) 

fk ' 11.50 NMM-2 

Prism strength: 

fp - 20.53 Nmm-2 fp - 23.54 Nmm-2 fp a 14-45 NMM-2 

fkp' 13.60 NMM-2 fkp- 20.00 Nmm-2 fkp' 12-50 Nmm-2 

A 

Table BI Test results of 215mm thick masonrV tVpe M under 
concentrated edge loading. 

(after Malek[671) 
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Wall Age Wall Plate Edge Ar d/l b/t 1/8 Icb 
No. at dimens. dimens. dist. 

test hxIxt axb d 
-2 N Idays) (mm) (mm) (mm) MM ( ) 

H1 32 59046U215.0 50x215 25.00 0.075 0.038 1.0 13.30 28.65 2.49 
H2 32 32.37 2.81 
H1 40 590465415.0 1 OSx2I5 52.50 0.158 0.079 1.0 6.33 28.22 2.45 
H8 39 21.97 1.91 
H13 26 59046U215.0 16Ox215 80.00 0.241 0.120 1.0 4.16 15.81 1.37 
H14 31 19.83 1 1.72 

H3 28 590465415.0 SUM 166.25 0.075 0.250 1.0 13.30 33.12 2.88 
H4 28 37.49 3.26 
H9 38 59UOU215.0 105x215 166.25 0.158 0.250 1.0 6.33 22.77 1.98 
H10 39 129.46 2.56 

H5 27 59046U215.0 SUM 332.50 0.075 0.500 1.0 13.30 23.91 2.08 
H6 27 26.14 2.27 
H11 38 590465415.0 MUM 332.50 0.158 0.500 1.0 6.33 24.98 2.17 
HIS 30 590x665x215.0 160x2l 5 332.50 0.241 0.500 1.0 4.16 23.87 2.08 
H16 33 24.53 2.13 

fb - 72.70 Nmm-2 

Mortar mix by volume 1: 1/4: 3 

fk ' 11.50 Nmm-2 

'Table B2 - Test results of 215mm thick masonry under concentrated strip 
concentrated strip loading. 

_,,,, 

(after Hendry [unpublished]). 
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Wall Age Wall Plate Edge Ar d/I b/t 1/8 fcb 
No. at dimens. dimens. dist. 

test hxIxt axb d 
) -2 Mm 

I 

(days) (mrn) (mm) (mm i m 

L1 30 59Ox665xlO2.5 50002.5 25.00 0.075 0.038 1.0 13.30 17.48 1.94 
L9 31 19.14 2.13 
L4 29 590x665xlO2.5 105x102.5 52.50 0.158 0.079 1.0 6.33 11.92 1.32 
L17 28 12.51 1.39 
L14 28 59Ox665x1O2.5 160x`102.5 80.00 0.241 0.120 1.0 4.16 13.95 1.55 
L16 28 12.27 1.36 

L2 29 59Ox665xlO2.5 SUMS 166-25 0.075 0.250 1.0 13.30 22.70 2.52 
L12 28 24.82 2.76 
L5 29 59Ox665xlo2.5 105xIO2.5 166.25 0.158 0.250 1.0 6.33 17.23 1.91 
L13 28 14.27 1.59 
L18 28 59Ox665xl 02.5 160x`102.5 166.25 0.241 0.250 1.0 4.16 13.81 1.53 
L20 29 14.74 1.64 

L3 29 59Ox665xl 02.5 50xIO2.5 332.50 0.075 0.500 1.0 13.30 23-86 2.65 
L7 31 22.68 2.52 
L15 28 24.67 2.74 
L6 28 590x665xIO2.5 105x`102.5 332.50 0.158 0.500 1.0 6.33 20.48 2.28 
L8 31 19.33 2.15 
L19 28 18.97 2.11 
L10 28 59Ox665xlO2.5 160002.5 332.50 0.241 0.500 1.0 4.16 12.76 1.42 
L16 33 1 1 1 1 . 53 1.38 

fb - 33.02 NMM-2 

Mortar mix by volume 1: 1: 6; fm - 6.22 Nmm-2 cured hydralically 

fm - 6.41 Nmm-2 cured by covering in Polyethene sheet (same as masonry) 

fk ' 9.0 Nmm-2 

Prism strength: 
fp - 8.35 Nmm-2 fp a 8.47 Nmm-2 fp - 7.68 Nmm-2 

fkp,! 6.60 Nmm-2 . -2 fkp, 6.35 Nmm fkp" 5.85 Nmm-2 

Table B3 - Test results of 102.5mm thick masonry type L under 
concentrated strip loading. 

(after Hendry 
[unpubli'Shed) ). 
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