
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



On the evolution of effector gene

families in potato cyst nematodes

Dominik R. Laetsch

Doctor of Philosophy

Institute of Evolutionary Biology

School of Biological Sciences

University of Edinburgh

2017





Declaration

I declare that this thesis is my own work, and that the work described here is my

own except where explicitly stated. This work has not been submitted for any other

degree or professional qualification.

Dominik R. Laetsch

August 2017

iii



iv



Abstract

Potato cyst nematodes (PCN) are economically relevant plant parasites that infect

potato crops. The genomes of three PCN species are available and genome data

have been generated for several populations of PCN, to address questions related

to the molecular basis of plant parasitism.

In this thesis, I employ approaches of comparative genomics to highlight dif-

ferences and similarities between PCNs and other nematode species. I present two

new software solutions to address challenges associated with the field of compar-

ative genomics: BlobTools, a taxonomic interrogation toolkit for quality control of

genome assemblies, and KinFin, a solution for the analysis of protein orthology data.

I apply both software solutions to genomic datasets of nematodes, platyhelminths,

and tardigrades. Based on KinFin analysis of plant parasitic nematodes, I identify

protein families in PCNs likely to be involved in host-parasitic interaction, termed

effectors, and discuss their functions. I highlight examples of horizontal gene trans-

fer from bacteria to plant parasitic nematodes. Through genomic data of European

and South American populations of PCNs, I address variation in populations, in-

fer phylogenetic relationships, and try to estimate the effect of selection on effector

genes identified through KinFin. Furthermore, I estimate the rate of variation across

the reference genomes of two PCNs.
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Lay summary

Potato cyst nematodes (PCNs) are small worms that infect potato crops and cause

reduction in crop yield in the UK and across the world. As cysts they can persist

in the soil for many years, even in the absence of a suitable host, which limits the

success of control and eradication measures. They use small molecules, proteins

which are encoded by genes in their genomes, to establish infection and to prevent

the immune system of the host from detecting them. Understanding how these

proteins differ from the proteins of other worms, for example those that do not

infect potatoes, could inform detection and controls measures. This PhD thesis aims

to further our understanding of the proteins, and the underlying genes, of PCNs

by comparing them between different populations of PCNs and to those of other

worms, both free-living and parasitic. During this thesis I developed two software

solutions. One is aimed at identifying contamination in genomic data, which is a

common phenomenon when working with organisms that live in the soil. The other

allows comparison of sets of proteins between organisms, which I use to identify

both evolutionary conserved and species-specific protein sets in PCNs, focussed

on those involved in the parasitic interaction with the host. Finally, I investigate

variation in populations of PCNs based on genomic data, identify patterns in

the variation, and formulate hypotheses regarding the population structures of

PCNs. These results can now be explored further by other researchers using the

methodological innovations I developed.
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Chapter 1

Introduction

“Io ritornai da la santissima onda

rifatto sì come piante novelle

rinovellate di novella fronda,

puro e disposto a salire a le stelle.”

- Dante Aligheri, La Comedia, Purgatorio Canto XXXIII

1.1 Thesis structure

In this thesis, I present analyses of genomic data of economically important parasites

of potato crops, potato cyst nematodes (PCNs) of the genus Globodera.

I developed two software solutions in order to overcome common challenges

associated with genome sequencing data of non-model organisms. I illustrate their

functionality through use cases and apply them to genomic data of PCNs in order

1
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to study evolutionary patterns of gene/protein families involved in host-parasite

interactions. These proteins are termed effectors.

In this Chapter, I outline the challenges associated with genome sequencing

data of non-model organisms and describe the biology of the organisms on which

this thesis is focussed.

In Chapter 2, I present BlobTools, a modular toolkit for the taxonomic inter-

rogation and visualisation of genome assemblies for the purpose of quality con-

trol. The software was developed to address the issue of contamination in genomic

datasets and its functionality is illustrated based on three use cases.

In Chapter 3, I discuss available methods for the analysis of gene/protein fam-

ilies and present KinFin, a software solution for taxon aware analysis of clustered

protein data. I explain how I formalised the problem of analysis of protein clustering

data and illustrate the KinFin workflow based on four use cases.

In Chapter 4, I describe the biology of PCNs and apply KinFin to a protein

clustering dataset of Clade IV nematodes sensu Blaxter et al., 1998, including two

PCNs: G. pallida and G. rostochiensis. I explore parameter space of the protein

clustering approach and analyse effector gene families in PCNs from an evolutionary

perspective.

In Chapter 5, I compare the published genome assemblies of PCNs and high-

light differences and similarities. Through the use of genomic data for different

species and populations, I explore patterns of variation within the genomes. I esti-

mate rates of variation for the reference genomes of G. pallida and G. rostochiensis

and investigate phylogeographic patterns of populations of G. pallida.
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In Chapter 6, I summarise the main findings and present thoughts on future

analysis inspired by the results described in this thesis.



4 1.2 Genomics of non-model organisms

1.2 Genomics of non-model organisms

The genomics revolutions was pioneered by model organisms such as ‘the worm’

(Caenorhabditis elegans) and ‘the fly’ (Drosophila melanogaster). Recently, decreas-

ing costs of sequencing technologies have democratised access to these approaches,

enabling the study of organisms sampled from wild populations. Analysis of the re-

sulting data is, however, non-trivial since few solutions exists for addressing the

challenges associated with these samples.

1.2.1 Low-complexity metagenomes

Advances in next generation sequencing technologies have generated vast amounts

of data and knowledge (Goodwin, McPherson, and McCombie, 2016). The decrease

in cost per nucleotide lead to an increased application of these technologies to non-

model organisms, life forms which have so far not been intensively studied by the

research community. Genome-enabled science on these species can then illuminate

novel processes and reveal the patterns of evolution. For non-model species, the

luxury of large amounts of material from cultured isolates is often not possible,

and research must progress from organisms sourced from the wild or from complex

mixtures of species. DNA extracted from a sample may therefore contain genomes

from multiple organisms — food sources, host material, symbionts, pathogens,

commensals and external contaminants — in addition to the target organism. In

some cases, the associated genomes can be considered ‘contaminants’, while in

others, they can provide insights into the biology of the target organism. In all

cases they should be identified, isolated, and investigated with care.

Hence, genome datasets should be viewed as low-complexity metagenomes

until a assessment of the taxonomic composition has been made. Several solutions
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for taxonomic screening of genomic datasets exist and are discussed in Chapter 2.

However, as none of these met the needs of the datasets I intended to analyse for

this thesis I developed BlobTools, a modular toolkit for taxonomic interrogation of

genome assemblies. The software is based on ideas from Kumar et al. (2013), which

I implemented and expanded upon.

1.2.2 Definition of gene families

The field of comparative genomics is concerned with the study of similarities

and differences between the information encoded in the genomes of organisms.

Fitch (1970) classified homologous sequences into two groups: orthologues, where

homology is a result of speciation events, and paralogues, where homology is a

consequence of gene duplication.

A standard approach in comparative genomics, often referred to as the ‘ortho-

logue conjecture’, is based on the assumption that between orthologues functional

conservation is more likely than between paralogues. This is because gene dupli-

cation events are viewed as an important source of functional innovation (Ohno,

1970). Several studies have been aimed at testing the ‘orthologue conjecture’

(Nehrt et al., 2011; Altenhoff et al., 2012; Chen and Zhang, 2012) and obtained

mixed results, which has led to international collaborations such as the ‘Quest of Or-

thologs’ project, targeted at benchmarking orthology-inference methods with stan-

dardised datasets (Altenhoff et al., 2016).

Exploitation of orthologue definitions across species, the study of gene family

evolution, genome evolution, species phylogenetics, and as loci for population

genetics and ecological genetics, is demanding. Many research projects aim to

identify orthologues of interest that have a specific distribution across species,



6 1.2 Genomics of non-model organisms

for example identifying gene families that are synapomorphic for — or that have

been specifically lost from — a particular clade. Exploring the effects of assuming

different underlying phylogenies on the analysis of the origins of orthologues may

assist in discriminating between competing hypotheses. Grouping species by non-

phylogenetic classifiers — such as habitat, mating system or life history — may also

identify protein families uniquely present/absent or exhibiting differential copy-

number.

While orthologues and paralogues are readily distinguished by phylogenetic

analysis, such approaches are too computationally expensive for the identification of

‘clusters’ of homologous sequences — containing both orthologues and paralogues

— across many taxa. Hence, the standard approach is to rely on sequence sim-

ilarity searches and subsequent post-processing of the results to identify putative

homologues. The simplest form of orthology inference through sequence similarity

searches is referred to as reciprocal-best-BLAST-hit (RBBH) approach (Bork et al.,

1998; Tatusov, Koonin, and Lipman, 1997), where two sequences originating from

different genomes are considered orthologous if they are recovered as each other’s

best hit in sequence similarity searches. While RBBH analysis has been found to be

robust compared to other orthology inference methods (Salichos and Rokas, 2011;

Altenhoff and Dessimoz, 2009; Hulsen et al., 2006) and is effective at recovering

orthologous group seeds for further analysis (Dalquen and Dessimoz, 2013), it has

certain limitations. RBBH analysis sensu stricto is only capable of identifying 1-

to-1 orthology, and therefore suffers from high false negative rates if paralogues,

uncollapsed allelic copies (arising from the genome assembly process if loci are

sufficiently diverged), or very similar sequences in the case of custom sequence col-

lections are present in the set of query or subject sequences. Another problem is the

issue of transitivity (Johnson, 2007), a property of orthologues which implies that,

if the proteins ‘A’ and ‘B’ and ‘B’ and ‘C’ are orthologues, it follows that the proteins
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‘A’ and ‘C’ are also orthologues. This assumption is often not fulfilled in the case of

RBBH analysis.

Candidate orthologues and paralogues between taxa are commonly identified

through clustering of protein sequence data using tools such as OrthoFinder (Emms

and Kelly, 2015), OrthoMCL (Li, Stoeckert, and Roos, 2003), and others. Or-

thoFinder can be viewed as an improvement on the OrthoMCL pipeline, as it is

more user friendly — as each step in the pipeline can be run independently — and

accounts for gene length bias and phylogenetic distance between proteomes. Both

clustering pipelines construct graphs from the results of ‘all vs. all’ sequence simi-

larity searches, where proteins are represented as nodes and edges between them

are weighted by the search results. These graphs are then processed using the MCL

(Markov Clustering) algorithm (Van Dongen, 2001). The MCL algorithm is used to

deconstruct these often highly connected graphs based on random walks between

nodes in the graph. This is based on the assumption that densely connected regions

in a graph will be visited more frequently than sparsely connected regions. The

random walk is a Markov process which assumes independence of past states and

transitions between states based on a probability distribution. One of the param-

eters controlling the MCL algorithm is the MCL inflation value, which affects the

‘granularity’ of the resulting clusters: lower inflation values result in fewer clusters

containing more members, while higher inflation values lead to more clusters con-

taining fewer members. The implications of this parameter for the identification

of protein families is that at lower inflation values protein families might be erro-

neously clustered, while at higher inflation values genuine protein families might

be split into several clusters. In the original OrthoMCL paper (Li, Stoeckert, and

Roos, 2003), the authors evaluated the influence of the parameter (ranging from

1.1 to 4.0) on the clustering of seven proteomes (Arabidopsis thaliana, C. elegans, D.

melanogaster, Homo sapiens, Plasmodium falciparum, Sacharomyces cerevisiae, and
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Escherichia coli) based on the consistency of enzyme commission (EC) numbers as-

sociated with sequences in the resulting clusters. For clusters containing two or

more sequences annotated with EC numbers they calculated the EC consistency. EC

consistency varied from 80% to 88% with increasing inflation value (with a pro-

nounced difference between 1.1 and 1.5), based on which they concluded that an

inflation value of 1.5 (EC consistency of 86%) balances sensitivity and specificity.

The inflation value of 1.5 has become the standard for clustering analysis using the

MCL algorithm.

While established pipelines for the inference of orthology exist, only a few

solutions are available for the comparative analysis of their output. Most solutions

are either geared towards taxonomically restricted groups of organisms or require

substantial effort to implement on local computing infrastructure. In order to carry

out the analysis of effector protein families in Globodera species, I developed KinFin

which is a software solution for taxon-aware analysis of protein clustering data. The

software is described in detail in Chapter 3 and applied to protein data of Globodera

species and other nematodes of Clade IV in Chapter 4.

1.3 Plant parasitism within the phylum Nema-

toda

Nematoda is a phylum of vermiform, ecdysozoan animals (Dunn et al., 2008). To

date over 23,000 species have been described (Hallan, 2008) and the estimated di-

versity ranges from 100,000 to 100,000,000 species (Lambshead, 1993). Members

of this phylum display a wide range of trophic behaviours, ranging from free-living

microbivors to obligate parasites of multicellular eukaryotes.
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Research in the field of nematology is traditionally focussed on parasitic ne-

matodes affecting human health. Apart from the devastating and direct effects of

animal parasitic nematodes, plant parasitic nematodes (PPNs) constitute an indi-

rect burden on human health by substantially decreasing crop yield and contribut-

ing to famine in developing nations. The estimated annual cost of PPNs on human

agriculture exceeds £58 billion (Nicol et al., 2011). Over 4,100 PPN species have

been described (Decraemer et al., 2006) and several are considered a significant

burden on global food safety due to their role as pathogens and vectors of plant

viruses.

The term plant parasitism describes a broad array of feeding modes ranging

from free-living predatory behaviour over migratory ecto-/endoparasitism to fac-

ultative/obligate sedentary endoparasitism (Baldwin, Nadler, and Adams, 2004).

Plant parasitism within the phylum Nematoda is estimated to have arisen indepen-

dently at least four times within three of the five phylogenetic clades sensu Blaxter

et al., 1998, namely Clade I (order Dorylaimida), Clade II (order Triplonchida) and

Clade IV (order Tylenchida) (Blaxter et al., 1998; Blaxter and Koutsovoulos, 2015).

Tylenchida includes the majority of economically relevant PPNs such as root-knot

nematodes (genus Meloidogyne) and cyst nematodes (genera Heterodera and Glo-

bodera) (Jones et al., 2013). It is noteworthy that all nematodes participating in

plant parasitic interactions have evolved within clades which include free-living ne-

matodes (Blaxter et al., 1998; Megen et al., 2009).

The traditional hypothesis for the emergence of plant-parasitism within Ty-

lenchida states that this feeding mode has evolved gradually from fungal-feeding

over facultative parasitism of peripheral plant tissue into more complex interac-

tions; eventually culminating in the development of sedentary endoparasitism (Luc

et al., 1987). This hypothesis is partially supported by feeding type analyses, which
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suggest a gradual evolution from simple forms of ectoparasitism and migratory en-

doparasitism towards complex forms of sedentary endoparasitism (Bert et al., 2008;

Holterman et al., 2009). However, depending on the reconstruction method (un-

ordered parsimony, step-matrix based parsimony and likelihood based approaches),

the ancestral feeding mode of Tylenchids ranges from fungal-feeding over predatory

plant-feeding to bacteriovore-feeding and is currently not resolved (Bert, Karssen,

and Helder, 2011). Adaptations to plant parasitism by nematodes include the de-

velopment of the stylet, a protrusible hollow mouth spear located at the anterior

end of PPNs, and specialised secretory gland cells within their oesophagus (Hussey,

1989; Baldwin, Nadler, and Adams, 2004). The stylet serves both as an instru-

ment for the penetration of host cell walls and as a structure for the delivery of

effector gene products expressed in the oesophageal gland cells (Mitchum et al.,

2013).

1.3.1 Comparative genomics of plant parasitic nematodes

In 1998 the genome sequence of the free-living nematode Caenorhabditis elegans —

the first animal genome to be sequenced — was published (C. elegans Sequencing

Consortium, 1998). Ten years later the genomes of the first plant-parasitic ne-

matodes, the root-knot nematodes Meloidogyne incognita (Abad et al., 2008) and

Meloidogyne hapla (Opperman et al., 2008) were published. More recently three

other tylenchid genomes from the pine-wood nematode Bursaphelenchus xylophilus

(Kikuchi et al., 2011), the pale potato cyst nematode Globodera pallida (Cotton et

al., 2014) and the peach root-knot nematode Meloidogyne floridensis (Lunt et al.,

2014) have been published. During the duration of my PhD project, two addi-

tional Globodera genome assemblies were published which are discussed in detail

in Chapter 5. However, it should be noted, that all genome projects published to
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date concern tylenchid plant parasites, while dorylaimid and triplonchid parasites

are currently neglected.

The available PPN genomes have been screened for common genomic features

underpinning the plant-parasitic lifestyle (Bird et al., 2015; Zarowiecki and Ber-

riman, 2015). A common theme in PPN genomes are genes coding for cell wall

modifying proteins which have been obtained via horizontal gene transfer (HGT)

from bacterial and fungal donors (Danchin et al., 2010). However, the vast majority

of effector genes associated with parasitism in a given PPN species are often poorly

conserved between species and appear to be synapomorphies of different lineages

(Bird et al., 2015; Kikuchi et al., 2011; Cotton et al., 2014). Both aspects of PPN

genomes — acquisition of metabolic genes through HGT and lineage-specificity of

effector genes — have also been observed in plant-parasitic fungi (Oliva et al., 2010)

and oomycetes (Judelson, 2012), suggesting that these features might be general

traits within genomes of plant parasites (Bird et al., 2015).
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1.3.2 Nematode effector proteins

In order to minimise the impact of PPNs on agricultural crop production, it is crucial

to understand how these parasites establish and maintain infection within their

hosts. Gene products involved in the interaction between PPNs and their hosts are

often referred to as ‘effectors’. Hogenhout et al. (2009) defined effectors as ‘all

pathogen proteins and small molecules that alter host-cell structure and function’.

Since the comparative genomic analyses carried out in Chapter 4 are guided by

previously published effector sequences (see Section 4.2.1), the definition of the

term — within the scope of this thesis — can therefore be broadened to include ‘all

gene products previously described as effectors’. Candidate effectors in PPNs are

often identified among excretory/secretory proteins of the parasite, since export

into the host is a necessary requirement. Expression of the underlying genes occurs

primarily in three specialised secretory gland cells, one dorsal and two subventral.

Effector proteins are then secreted through the stylet opening as indicated by

increased plant immune response around this structure in susceptible hosts (Jones,

1981; Williamson and Kumar, 2006). Effector proteins are synthesised in the cell

body of the gland cells and N-terminal signal peptides facilitate their transport

through the secretory pathway after which they are packaged into secretory vesicles,

released from the cell through exocytosis and eventually injected into the host

(Mitchum et al., 2013). A high number of secreted nematode proteins have been

identified through bioinformatic mining of transcriptome and genome data from

PPNs (Rosso and Grenier, 2011; Mitchum et al., 2013; Kikuchi, Eves-van den Akker,

and Jones, 2017; and references therein). The functional diversity of these effectors

can be divided into three main groups: cell wall modifying enzymes, gene products

altering plant development and plant defence suppressing effectors.
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Cell wall modifying effectors

The plant cell wall, composed of a variety of oligo- and polysaccharides, acts as

a physical barrier for PPNs which has to be overcome in order allow migration

through and feeding on the host. Cell wall modifying effectors (CWMs) comprise

the largest group described for PPNs and include several families of cellulases,

xylanases, polygalacturonases, pectate lyases, invertases, arabinases and expansin-

like proteins. This is largely due to the fact that these proteins contain well defined

domains and are easily identified in metazoan genomes since they are absent in

non-plant-parasitic organisms. The majority of these genes have highest identity

to bacterial and fungal genes, suggesting acquisition through HGT (Danchin et al.,

2010; Haegeman, Jones, and Danchin, 2011).

Plant defence manipulating effectors

Plants have evolved multiple layers of defence to sense and resist infections in-

cluding effector-triggered immunity, a form of innate immune response which elic-

its apoptosis in infected cells. One nematode effector that has been shown to di-

rectly target the immune response in plants is SPRYSEC-19 in G. rostochiensis. This

effector interacts with a nucleotide-binding-leucine-rich repeat (NB-LRR) protein

in the host without triggering programmed cell death (Postma et al., 2012). An-

other example is the G. pallida Gp-RBP-1 SPRYSEC effector which elicits Gpa2- and

RanGAP2-dependent plant cell death (Sacco et al., 2009). Both effectors are mem-

bers of a family of SPRY domain proteins which are found in all nematode genomes

but are typically not secreted. However, in G. pallida this gene family experienced

an enormous expansion (299 G. pallida proteins are predicted to have one or more

SPRY domains) (Cotton et al., 2014). Akin to CWEs, some plant defence manipulat-

ing effectors show signatures of horizontal gene transfer. One example is a group of



14 1.3 Plant parasitism within the phylum Nematoda

secreted chorismate mutases which are found in both root-knot and cyst nematodes

(Lambert, Allen, and Sussex, 1999; Bekal, Niblack, and Lambert, 2003). In the host

these enzymes are part of the shikimate pathway. The presence of underlying genes

in the parasite genomes suggests at a role during establishment of the feeding site

through interference with salicylic acid production and defence signalling (Jones et

al., 2003). Chorismate mutase genes are usually absent from metazoan genomes,

which makes them strong candidates for horizontal gene transfer (Jones, Furlan-

etto, and Kikuchi, 2005). Other secreted proteins such as superoxide dismutases

and glutathione peroxidases are thought to neutralize host defences involving reac-

tive oxygen species and anti-microbial molecules (Bellafiore et al., 2008; Dubreuil

et al., 2007) and the underlying gene families appear to be expanded in some ne-

matode species (Cotton et al., 2014).

Plant development altering effectors

Sedentary PPNs cause profound changes to host cell structure and physiology dur-

ing establishment and maintenance of the feeding site. One example of this group in

cyst nematodes are small, secreted proteins with high identity to CLAVATA3/ESR-

related (CLE) signalling peptides (Lu et al., 2009; Olsen and Skriver, 2003). In

plants, CLE signalling proteins are involved in shoot, floral and root meristem main-

tenance and vascular development (Jun, Fiume, and Fletcher, 2008). Nematode-

encoded CLEs enable the formation of feeding sites in host roots through the mim-

icking of plant CLE ligands (Wang et al., 2011a; Guo et al., 2011).
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Evolutionary signatures of effectors

The search for proteins bearing signal peptides but lacking transmembrane domains

in PPN proteomes, predicted from genomes and transcriptomes, has revealed a large

collection of secreted proteins of unknown function and little homology to those in

other organisms (Davis, Hussey, and Baum, 2004). Lineage-specific expansions of

protein families have been shown to correlate with the emergence of novel functions

and stress response (Rubin et al., 2000), and the size of gene families has been

suggested to provide information on their adaptive significance (Lespinet et al.,

2002).

The fact that effector screening in PPNs is primarily based on the presence of a

N-terminal signal sequence may hinder the discovery of effectors excreted by non-

classical secretion pathways. One such example are MIF (macrophage migration

inhibitory factors) orthologues found in animal parasitic nematodes (Vermeire et

al., 2008). Study of this type of effectors has so far been neglected in PPNs although

there is experimental evidence of their existence. Two examples are a peroxiredoxin

in Globodera rostochiensis (Robertson et al., 2000) and an annexin gene in G.

pallida (Fioretti et al., 2001). Another problem concerning effector screens of PPN

genomes based on signal peptides is associated with erroneous gene predictions,

such as the absence of the segment coding for the signal peptide at the start of the

gene (Zarowiecki and Berriman, 2015). Within this thesis, I tried to ameliorate

these effects by guiding the analyses in Chapter 4 based on orthology to published

effectors.

Bioinformatic classification of effector proteins can also be achieved by

analysing the life-stage specific expression patterns of a PPN and comparing free-

living and parasitic stages (Zarowiecki and Berriman, 2015). Eves-van den Akker
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et al. (2016b) used this approach for the analysis of the G. rostochiensis genome

and the resulting effectors were included in the analyses in Chapter 4.

Within the following chapters, I describe the development and illustrate use

cases of two software solutions — Chapter 2 and 3 — which allowed me to conduct

comparative genomics analyses on PCN genomes, outlined in Chapter 4 and 5.

Chapter 6 includes a summary of the most important aspects of the thesis and an

outlook for further research is presented.



Chapter 2

BlobTools: software for interrogation

of genome assemblies

“There is a computer disease that anybody who works with computers

knows about. It’s a very serious disease and it interferes completely with

the work. The trouble with computers is that you ‘play’ with them!”

- Richard P. Feynman, Surely You’re Joking, Mr. Feynman!

2.1 Introduction

Interrogation of genome assemblies to guarantee single-taxon origin is a fundamen-

tal step in the genome assembly process. Failure to identify non-target sequence can

lead to false conclusions regarding the biology of the target organism, such as its

metabolic pathway complement or events of horizontal gene transfer (HGT) be-

tween species. Several reports of HGT into eukaryotic genomes have later been

17
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shown to be based on undetected contamination in assemblies. Identification of

contamination can radically change the conclusions of a study, as shown for the

starlet sea anemone Nematostella vectensis (Artamonova and Mushegian, 2013) and

the tardigrade Hypsibius dujardini (Koutsovoulos et al., 2016). Importantly, unde-

tected non-target sequence contamination of published genomes will pollute pub-

lic sequence databases and promote propagation of annotation errors (Merchant,

Wood, and Salzberg, 2014; Kryukov and Imanishi, 2016).

Reliable assignment of a DNA sequence from a new assembly to its species-

of-origin, i. e. the association of the sequence ID to an unique, numerical identifier

(TaxID) of the NCBI Taxonomy database (Federhen, 2012), is a non-trivial problem

(Bridge et al., 2003). Current contaminant screening pipelines are based on

sequence similarity to sequences of known origin, sequence composition signatures

such as k-mers, and/or shared coverage profiles across different datasets. Few are

readily applicable to datasets of eukaryotic genomes of any size (Kumar et al., 2013;

Eren et al., 2015; Tennessen et al., 2016; Mallet et al., 2017).

Anvi’o (Eren et al., 2015) can partition assemblies by clustering sequences

based on the output of CONCOCT (Alneberg et al., 2014). CONCOCT uses Gaussian

mixture models to predict the cluster membership of sequences by considering se-

quence composition and coverage profiles. PhylOligo (Mallet et al., 2017) relies

exclusively on sequence composition and performs iterative, partially supervised

clustering of sequences based on sequence composition profiles. ProDeGe (Ten-

nessen et al., 2016) uses a fully unsupervised method based on sequence similarity

to databases and sequence composition to partition assemblies using principal com-

ponents analysis (PCA). It should be noted that while taxonomic assignment based

on higher order sequence composition (such as k-mers of length four or greater) is

highly effective for bacterial sequences, its success has been limited for eukaryotic

genomes, as the information content (represented by the number of coding bases) is
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lower and sequence composition spectra often show multimodal distributions (Chor

et al., 2009).

Existing contaminant screening pipelines also differ in the way results are

presented. Anvi’o depicts assemblies through interactive plots with rich an-

notations of sequence composition features, coverages across datasets and taxo-

nomic/binning results. PhylOligo offers heatmaps of hierarchical clusterings of

sequences, tree visualisations, and t-SNE (t-Distributed Stochastic Neighbour Em-

bedding) plots, where sequence composition clusterings have been reduced to two

dimensions. ProDeGe displays sequences in an interactive, three-dimensional k-

mer PCA plot.

BlobPlots, or Taxon-Annotated Gc-Coverage (TAGC) plots, are another con-

tamination detection and data partitioning methodology. Kumar et al. (2013) vi-

sualised genome assemblies as two-dimensional scatter plots (see Figure 2.1.1),

in which sequences are represented by dots and coloured by taxonomic affiliation

based on sequence similarity search results. For each sequence, the position on the

Y-axis is determined by the base coverage of the sequence in the coverage library,

a proxy for molarity of input DNA. The position on the X-axis is determined by the

GC content, the proportion of G and C bases in the sequence, which can differ sub-

stantially between genomes. BlobPlots have proven to be an intuitive and powerful

approach for taxonomic interrogation of genome assemblies (Koutsovoulos et al.,

2014; Dentinger et al., 2015).

I developed BlobTools as a modular command-line solution for the visualisation

of genome assemblies and taxonomic interrogation for purposes of quality control.

It is a complete reimplementation of the blobology pipeline (Kumar et al., 2013).

BlobTools is focussed on usability and includes improved taxonomic assignment of

sequences based on custom user input, support for coverage information based on

multiple formats and sequencing libraries, and novel visualisations.
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Figure 2.1.1: Taxon-Annotated Gc-Coverage (TAGC) plot. CLC assembly of G. rostochiensis

dataset ERR123958 taxonomically annotated based on best BLAST hit against NCBI nt.

In this chapter, I describe the implementation of BlobTools and list three use

cases which highlight different features of the toolkit. Parts of Sections 1.2.1,

2.1, 2.2, and 2.3 have been submitted as a ‘Software Tool Article’ to the Open

Research publishing platform F1000Research (Laetsch and Blaxter, 2017a), which

is currently under public peer-review (DOI: 10.12688/f1000research.12232.1).

Section 2.4 was published as part of Koutsovoulos et al., 2016 in Proceedings of the

National Academy of Sciences (DOI: 10.1073/pnas.1600338113) and Section 2.5

was published as part of Eves-van den Akker et al., 2016b in BMC Genome Biology

(DOI: 10.1186/s13059-016-0985-1).

https://f1000research.com/articles/6-1287/v1
https://dx.doi.org/10.1073/pnas.1600338113
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0985-1
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2.2 Implementation

BlobTools is written in the programming language Python and consists of a main

executable that allows the user to interact with the implemented commands (see

Table 2.2.1). It offers a simple, modular command line interface — ‘samtools style’

sensu Seemann, 2013 — which can easily be adapted to process multiple datasets

simultaneously using GNU parallel (Tange, 2011). Inputs for BlobTools are stan-

dard file formats commonly created during the course of genome assembly projects.

The primary processing in BlobTools constructs a BlobDB data structure based

on user input. From this data structure, BlobTools generates easily interpretable,

two-dimensional visualisations ready for publication, in addition to tabular output,

which allows the user to partition sequences and sequencing reads contributing to

them for separate downstream processing.

2.2.1 Taxonomy assignment approach

Taxonomy assignment in BlobTools is based on user-supplied, tab-separated-value

(TSV) files composed of three columns: the input sequence ID, a NCBI TaxID, and a

numerical score. I refer to these TSV files as ‘hits’ files below. They can be generated

from the output of sequence similarity searches, such as BLAST (Camacho et al.,

2009) or Diamond (Buchfink, Xie, and Huson, 2015) searches against public or

custom databases, or the output of other contaminant identification tools. The

BlobTools command taxify allows easy conversion of tabular file formats to

BlobTools compatible input, in addition to annotation of similarity search results

based on NCBI TaxID mapping files, as available from UniProt and NCBI.

BlobTools assigns a single NCBI taxonomy for each sequence in the assembly,

based on the highest scoring NCBI TaxID in the input provided by the user at
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Table 2.2.1: Tasks performed by BlobTools command.

BlobTools command Task

create Parsing of input files and creation of BlobTools data structure, i. e.

BlobDB

view Generation of tabular output for manual inspection and subsequent

partitioning of sequences in the assembly, input files for CONCOCT,

and/or COV files based on a BlobDB

plot Plotting of BlobPlots based on a BlobDB

covplot Plotting of CovPlots based on a BlobDB and a COV file

seqfilter Partitioning of sequences from a FASTA file based on a list of se-

quence IDs

bamfilter Partitioning of PE reads from a BAM file based on a list of sequence

IDs and their mapping behaviour

map2cov Generation of a COV file (containing base and read coverage)

based on a BAM/CAS file

taxify Annotation of tabular sequence similarity search output (e. g.

BLAST/Diamond output) with TaxIDs from a mapping file or

generation of a BlobTools ‘hits’ file based on custom user input

taxonomic ranks of species, genus, family, order, phylum, and superkingdom. Score

calculation can be controlled through a minimal score threshold (--min_score)

and a minimal difference in scores (--min_diff) between the best and second-

best scoring taxonomy. In addition, three non-canonical taxonomic annotations are

possible: ‘no-hit’, the suffix ‘-undef’ and ‘unresolved’. Sequences not assigned to

any taxonomic group, or not passing the --min_score threshold, are labelled ‘no-

hit’. If a NCBI TaxID has no explicit parent at a taxonomic rank, the suffix ‘-undef’ is

appended to the next upper taxonomic rank for which one does exist. For instance,
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the taxonomic family Suidae (pigs) has no order assigned to it, which results in

taxonomic assignment of ‘Chordata-undef’ at the rank of order. In cases where the

score difference between the best and second-best hits is smaller than --min_diff,

sequences are labelled as ‘unresolved’.

Multiple ‘hits’ files can be provided as input. In this case, the behaviour

of the taxonomy assignment process can be controlled further through ‘taxrules’.

The highest scoring taxonomy can either be inferred across all files (‘bestsum’) or

successively (‘bestsumorder’) in the order in which the files were supplied as input.

In the latter case, only sequences that received no hits from one file are considered

for taxonomic annotation in the next file which allows leveraging reliability of scores

of different input file sources.

The original blobology pipeline by Kumar et al. (2013) recommended the use

of a single, best BLAST hit per sequence for taxonomy assignment. However, tax-

onomically mis-annotated sequences in databases — often derived from inclusion

of un-screened genome assemblies — can lead to erroneous taxonomic annotation.

BlobTools mitigates this issue by accepting multiple hits per sequence and allocating

taxonomy based on the highest sum of scores.

It should be noted that a definitive taxonomic placement for every sequence

in the assembly is not required for successful taxonomic partitioning of sequences,

since differential coverage and sequence composition profiles between the genomes

are often sufficient.

2.2.2 Visualisation options

In BlobTools, sequences are depicted as circles in BlobPlots — as opposed to dots in

the blobology pipeline — and the diameter of circles is scaled proportionally to
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sequence length. The scatter-plot is decorated with coverage and GC histograms for

each taxonomic group, which are weighted by the total span (cumulative length)

of sequences occupying each bin. A legend reflects the taxonomic affiliation of

sequences and lists count, total span and N50 by taxonomic group. Taxonomic

groups can be plotted at any taxonomic rank and colours are selected dynamically

from a colour map. The number of taxonomic groups to be plotted can be controlled

(--plotgroups, default is ‘7’) and remaining groups are binned into the category

‘others’. An example is shown in Figure 2.3.2A.

The power of differential coverage profiles across multiple sequencing libraries

for partitioning sequences in an assembly prompted the development of CovPlots

(Figure 2.3.3). CovPlots are analogous to BlobPlots except that the GC-axis is

replaced by a coverage-axis of a second sequencing library. CovPlots can be used for

the visualisation of patterns of differential coverage signatures between taxonomic

groups in an assembly.

The commands for generating BlobPlots and CovPlots support additional input

parameters controlling visualisation behaviour. These include cumulative addition

(--cumulative) or separate plotting (--multiplot) for each taxonomic group,

exclusion (--exclude) or relabelling (--relabel) of taxonomic groups, assign-

ment of specific HEX colours to groups (--colour) or labelling sequences based on

arbitrary, user defined categories (--catcolour). The latter could be, for instance,

binned categories of RNAseq mappings to sequences in the assembly as shown in

Section 2.4 and Koutsovoulos et al., 2016.

ReadCovPlots (Figure 2.3.2B and 2.3.2C) visualise the proportion of reads of a

library that are unmapped or mapped, showing the percentage of mapped reads by

taxonomic group, as barcharts. These can be of use for rapid taxonomic screening

of multiple sequencing libraries within a single project. The underlying data of
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ReadCovPlots and additional metrics are written to tabular text files for custom

analyses by the user.

2.2.3 Support of multiple coverage libraries

BlobTools supports coverage input (BAM/CAS format) from multiple sequencing

libraries. As these data formats contain more information than needed, BlobTools

parses coverage information of sequences — normalised base coverage and read

coverage — into COV files in TSV format. These files can be generated through the

command map2cov prior to construction of a BlobDB.

Within the BlobDB data structure, base and read coverage information is stored

for each sequence in the assembly. If more than one coverage file is supplied,

BlobTools constructs an additional coverage library (‘covsum’) internally, containing

the sum of coverages for each sequence across all coverage files. This internal cov-

erage library is considered when extracting views or plotting visualisations.

2.2.4 Operation

BlobTools is freely available under GNU General Public License v3.0 at https:

//github.com/DRL/blobtools. System requirements for BlobTools include a

UNIX based operating system, Python 2.7, and pip. An installation script is

provided, which installs Python dependencies, downloads and processes a copy

of the NCBI TaxDump, and downloads and compiles a copy of samtools (Li et

al., 2009). Instructions for installation and execution of BlobTools can be found

at the GitHub repository and detailed documentation is available at https://

blobtools.readme.io.

https://github.com/DRL/blobtools
https://github.com/DRL/blobtools
https://blobtools.readme.io
https://blobtools.readme.io
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BlobTools workflows

Two recommended workflows for BlobTools have been developed: Workflow A is

targeted at de novo genome assembly projects in the absence of a reference genome

and workflow B is aimed at projects where a reference genome is available.

Workflow A (Figure 2.2.1A) proceeds through construction of a BlobDB data

structure based on input files (step A1), visualisation of assembly and generation of

tabular output (A2), partitioning of sequence IDs based on user-defined parameters

informed by the visualisations (A3) and partitioning of PE reads based on sequence

IDs (A4). It should be noted that while the BlobTools command create (step A1)

supports multiple mapping formats, it is recommended that these are processed in

advance using the command map2cov. Generation of tabular ‘hits’ files is simplified

through the command taxify, which allows annotation of similarity search results

based on TaxID mapping files or based on custom user input in tabular format.

BlobTools can process both PE and SE read files. The command bamfilter in

step A4 is only of relevance if PE read data is used, since partitioning of SE read data

is trivial and can easily be achieved via GNU grep. The command bamfilter can

be controlled with a list of sequence IDs to include or to exclude. Use of an exclusion

list causes all sequence IDs, except those specified, to be included. In both cases

it will output up to four interleaved FASTQ files depending on the actual mapping

behaviour of the read pairs and whether the parameter --include_unmapped is

provided. Possible mapping behaviours of read pairs are: both reads mapping to

included sequences (included-included: ‘InIn’), one read mapping to an included

sequence and the other being unmapped (‘InUn’), and one read mapping to an

excluded sequence and the other mapping to an included sequence (‘ExIn’). If

the --include_unmapped parameter is specified, read pairs where neither read

maps to the assembly (‘UnUn’) are also reported. The latter case can occur if the
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assembler used for generating the sequences did not make use of all reads in the

dataset. The resulting PE read files can then be assembled separately and the

workflow is repeated. Decisions concerning which PE read files to use is left to the

discretion of the user. However, as a general rule, if target taxa have been sequenced

at low coverages it might be preferable to be inclusive (using ‘InIn’, ‘InEx’, ‘InUn’

and ‘UnUn’ reads for assembly) and risking including non-target reads, than being

exclusive (using only ‘InIn’ and ‘InUn’ reads for assembly) and thereby risking losing

significant proportions of reads from the target genome(s).

Figure 2.2.1: BlobTools workflows. A Workflow A. 1: Creation of a BlobDB data structure based

on input files. 2: Generation of visualisations and tabular output. 3: Partitioning of sequence IDs

in assembly, based on user-defined parameters informed by the visualisations. 4: Partitioning

of PE reads based on sequence IDs. B Workflow B. 1: Reads are mapped against the reference

genome. 2: BAM file is processed to generate FASTQ files based on read mapping behaviour. 3:

FASTQ file of read pairs where neither read maps to the reference genome (‘UnUn’) are assem-

bled de novo and used in workflow A. 4: partition of read pairs of target taxon recovered from

workflow A are assembled together with the other target taxon read pairs from step 2 and used in

workflow A.

Workflow B (Figure 2.2.1B) should be applied when a reference genome is
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available. Reads are mapped against the reference genome (B1) and the resulting

BAM file is processed with the command bamfilter (B2) using the parameter

--include_unmapped and without providing a list of sequences. This will result

in three FASTQ files: ‘InIn’, ‘InUn’, and ‘UnUn’. Since taxonomic origin of the ‘InIn’

and ‘InUn’ reads has been established through the mapping step, only the ‘UnUn’

reads are assembled de novo (B3) and processed via workflow A. This decreases

computational requirements substantially. If workflow A yields a PE read partition

of the target organism — consisting of regions in the organism’s genome not present

in the reference — these reads can then be used together with the ‘InIn’ and ‘InUn’

reads from step B2 to generate a new assembly (B4) which should be screened

again via Workflow A. This iterative workflow can easily be applied to projects

studying highly variable species, where segmental presence/absence is common

and a reference genome is expanded to form a pangenome as new samples are

sequenced, or holobiomes, where reference genomes of multiple taxa are expanded

as new samples are added.

2.3 Use case 1: BlobTools analysis of simulated

datasets

2.3.1 Introduction

Assessment of a novel computational tool is simplified when using simulated data,

since the ‘truth’ is known and computational outcomes can thus be evaluated em-

pirically. I simulated two read libraries for the nematode Caenorhabditis elegans

contaminated with other organisms. Library A contains C. elegans reads contami-

nated with reads from Escherichia coli, Homo sapiens chromosome 19 and H. sapiens

mitochondrial (mtDNA) genome, mimicking a dataset where the target genome is
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contaminated with DNA from food (E. coli) and operator (H. sapiens). Library B is

composed of C. elegans reads contaminated with Pseudomonas aeruginosa, mimick-

ing a project where the metazoan target species is heavily colonised by a prokaryotic

organism.

The read datasets were assembled and processed using BlobTools (workflow A)

with the goal of separating the four different genomes. To simulate phylogenetic

distance between sequences in the assemblies and those in the databases used

for sequence similarity searches, sequences in the databases originating from the

relevant taxa were removed at different taxonomic ranks, excluding sequences

from hominids, Escherichia, Pseudomonas, and Caenorhabditis elegans. The resulting

assemblies were evaluated against the ‘truth’, i. e. based on the genome-of-origin of

the reads contributing to them. In addition, the influence of sequence similarity

search parameters on BlobTools taxonomic annotation was evaluated.

2.3.2 Methods

BlobTools v1.0 (Laetsch et al., 2017) was used for all analyses.

Data

Reference genomes were retrieved from the ENSEMBL website and read datasets

were simulated as Illumina HiSeq2500 PE reads with mean coverage as listed in

Table 2.3.1 using ART v2.5.8 (Huang et al., 2012) (-l 150 -m 500 -s 10).

Reads were concatenated into the two libraries and shuffled using BBmap shuffle

v37.02 (https://sourceforge.net/projects/bbmap/).

https://sourceforge.net/projects/bbmap/
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Genome assembly

All assemblies were performed using CLC assembler v5.0.0 (QIAGEN) by

specifying read libraries as PE with an insert size ranging from 300 to 700b

(-p fb ss 300 700). To assess the number of conserved genes recovered, as-

semblies were evaluated using BUSCO v2.0.1 (Simão et al., 2015) against the

databases: nematoda_odb9, mammalia_odb9, enterobacterales_odb9, and

gammaproteobacteria_odb9.

Table 2.3.1: Simulated read libraries.

Dataset Reference genome INSDC Accession Coverage (X)

Library A

C. elegans N2 GCA_000002985.3 50

E. coli str. K-12 substr. MG1655 GCA_000801205 25

H. sapiens chr19 GRCh38.p10 GCA_000001405.25 10

H. sapiens mtDNA GRCh38.p10 GCA_000001405.25 250

Library B
C. elegans N2 GCA_000002985.3 25

P. aeruginosa PAO1 GCA_000006765.1 100

Read mapping

All mapping files were created by mapping read libraries against assemblies using

BWA mem v0.7.15-r1140 (Li, 2013) and samtools v1.5 (Li et al., 2009). BAM

files were converted to COV format using BlobTools map2cov.
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Sequence similarity searches

Sequence similarity searches were performed against NCBI nt (retrieved 2017-

06-13) using BLASTn megablast v2.6.0+ (Camacho et al., 2009) and against

Uniprot Reference Proteomes (retrieved 2017-07-07) using Diamond blastx

v0.9.5 (Buchfink, Xie, and Huson, 2015). Parameters for BLASTn were -evalue

1e-25 and -outfmt '6 qseqid staxids bitscore std' for all searches.

Diamond was run with the parameters --sensitive --evalue 1e-25 --outfmt

6 and results were annotated with NCBI TaxIDs using the BlobTools command

taxify and a UniProt ID mapping file, filtered to only include NCBI TaxIDs.

For the evaluation of the impact of parameters of sequence similarity searches

on BlobTools taxonomic assignment, additional parameters were used for BLAST

and Diamond searches. The search parameter IDs and parameters are as fol-

low:

• MTS1: -max-target-seqs 1

• MTS10: -max-target-seqs 10

• HSP1: -max_hsps 1

• CUL10: -culling_limit 10 (only BLAST)

Sequence similarity searches were taxonomically restricted to simulate phylo-

genetic distance between query and subject sequences in the database. BLASTn

searches were taxonomically restricted by retrieving GI lists from the NCBI nu-

cleotide portal for the TaxIDs 9604 (‘Hominidae’), 561 (‘Escherichia’), 6239

(‘Caenorhabditis elegans’), 28384 (‘other sequences’), and 286 (‘Pseudomonas’)

and supplying them with the parameter -negative_gilist. Diamond blastx
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searches taxonomically restricted by retrieving subtree TaxIDs for the relevant

groups from NCBI taxonomy portal and removing the associated sequences from

Uniprot Reference Proteomes.

Evaluation of influence of sequence similarity search parameters on BlobTools

taxonomy assignment

The ‘true’ taxonomy of sequences in the combined assembly of both simulated read

libraries was compared to the taxonomy inferred by BlobTools based on sequence

similarity searches. The ‘true’ taxonomy of each sequence was determined by

mapping the simulated read libraries against the assembly. Unambiguous taxonomy

— cases where only reads originating from one reference genome map to a sequence

in the assembly — could be assigned to 98.07% of sequences (16,289 out of 16,610)

in the assembly, totalling 99.89% (158,001,623 out of 158,178,224 b) of assembled

span.

Similarity search results were supplied to BlobTools to construct BlobDBs and

tabular output was generated using BlobTools view (--hits -r superkingdom

-r phylum -r order). Taxrule ‘bestsumorder’ (-x bestsumorder) was specified

in cases where results from both BLASTn searches against NCBI nt and Diamond

blastx searches against Uniprot Reference Proteomes were used as input (always

in this order). For each BlobDB, accuracy was calculated at the taxonomic ranks

of order (Rhabditida, Primates, Pseudomonadales, and Enterobacterales). Tables

were evaluated using the script analyse_blobtools_tables.py (available at

https://github.com/DRL/blobtools_manuscript).

For each taxon, counts of bases in the assembly were classified as true/false

positives/negatives as follows:

https://github.com/DRL/blobtools_manuscript
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• True positives (TP): sum of bases in sequences where BlobTools taxonomic

annotation of taxon is equal to ‘true’ taxonomy.

• False positives (FP): sum of bases in sequences where BlobTools taxonomic

annotation indicated the taxon, but the ‘true’ taxonomy differed.

• True negatives (TN): sum of bases in sequences where both BlobTools taxo-

nomic annotation and ‘true’ taxonomy was different to taxon.

• False negatives (FN): sum of bases in sequences where BlobTools taxonomic

annotation of taxon failed to reflect ‘true’ taxonomy.

Precision and recall was calculated using the formulae:

Precision=
T P

(T P + F P)

Recall=
T P

(T P + FN)

The F -score (Rijsbergen, 1979) was calculated as the harmonic mean of

precision and recall, based on the formula:

F-score= 2 ∗
Precision ∗Recall
Precision+Recall
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Taxonomic partitioning of read libraries using BlobTools

Both simulated read datasets were assembled together and each library was mapped

individually against the assembly. The assembly was supplied to BlobTools, together

with coverage information extracted from BAM files and the results of sequence

similarity searches. The search results provided to BlobTools were from BLASTn

megablast (MTS1 and HSP1) and Diamond blastx (MTS1) searches against tax-

onomically restricted versions of NCBI nt and UniProt Reference Proteomes.

A BlobPlot, ReadCovPlots and a CovPlot were generated at the taxonomic rank

of ‘order’. A tabular view of the BlobDB was generated using the command view

under the taxrule ‘bestsumorder’ and for the taxonomic ranks of ‘superkingdom’,

‘phylum’, and ‘order’. Sequences were partitioned based on differential coverage

and taxonomy annotation (see Figure 2.3.3) using the tabular view and the UNIX

tools GNU grep, GNU cut, and GNU awk. Subsequently, read pairs were parti-

tioned based on mapping behaviour to these sequence partitions using the com-

mand bamfilter and only read pairs where both reads mapped to included se-

quences (i. e. the ‘InIn’ set) were assembled by taxonomic group.

BlobPlots for the four assemblies based on partitioned read sets, ‘RH-BT’ (Rhab-

ditida), ‘PR-BT’ (Primates), ‘PS-BT’ (Pseudomonadales), and ‘EN-BT’ (Enterobac-

terales) were generated. Coverage information was based on mapping of both sim-

ulated sequencing libraries against all four assemblies and sequences were coloured

based on the genome-of-origin of the simulated reads mapping to them.
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Evaluation of taxonomic partitioning of read libraries

To account for assembly and mapping biases, the original simulated read sets were

also assembled separately by taxon, yielding the assemblies CELEG-SIM (reads

simulated from the C. elegans genome), HSAPI-SIM (H. sapiens chromosome 19

and mtDNA), PAERU-SIM (P. aeruginosa), and ECOLI-SIM (E. coli).

Cleaned assemblies were evaluated based on the count of simulated reads by

genome-of-origin mapping to them (Table 2.3.2) and based on standard assembly

metrics (Table 2.3.3).

2.3.3 Results

Influence of sequence similarity search parameters on BlobTools taxonomy

assignment

Since exhaustive searches against large databases require time and computing

power, I focussed on parameters that limit resource usage and control the num-

ber of returned results. In both BLASTn and Diamond blastx, the options

-max-target-seq and -max-hsps are implemented. The former is an early filter

applied during primary search and excludes initial hits from later examination. The

latter controls the number of high-scoring pairs (HSPs) reported between a query

and a subject in the search. The BLASTn specific parameter -culling-limit con-

trols the number of hits that can be allocated to a given region on the query.

In the context of sequence similarity searches for taxonomic annotations, FNs

arise mainly through phylogenetic distance of the target sequence to the ones in the

database, resulting in the lack of results (i. e. ‘no-hit’). However, both FNs and FPs
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Figure 2.3.1: Values for precision and recall of taxonomic assignment via BlobTools based

on combinations of sequence similarity search parameters. Top: Sequence similarity searches

when query organism is present in the database. Bottom: Sequence similarity searches when

query organism is not present in the database.
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can also arise through taxonomically mis-annotated sequences in the database, i. e.

when a genome sequence is contaminated with sequences from another genome.

For instance, if the target organism is E. coli a FN could originate from a C. elegans

genome contaminated with bacterial DNA, as the bacterial sequence in the assembly

would be tagged with the TaxID of C. elegans. Simultaneously, this result would

count as a FP if the target organism is C. elegans, since a non-nematode sequence is

tagged with the TaxID of C. elegans. The values for precision and recall are shown

in Figure 2.3.1. Detailed values for F-scores and the number of bases annotated

as TP, FP, TN, FN for each of (the combinations of) search parameters are listed in

Table S1 and S3 in Laetsch and Blaxter, 2017a.

Sequence similarity searches against databases without taxonomic masking

yielded results mostly congruent with taxonomic annotation through read mapping.

FP taxonomic annotations in BLASTn searches were only found for a small amount

of E. coli sequences. One such sequence is ‘contig_8499’ in the combined assembly

of both simulated libraries, which was assembled from read pairs originating from

the X chromosome of the C. elegans reference (position 5,909,163 to 5,911,151).

However, BLASTn searches identified this sequence as a Tn10 transposon with

the taxonomic annotation of Enterobacterales. A likely explanation for this case

is the transposition of this sequence into a fosmid clone during the C. elegans

genome project, as has been noted by the WormBase database (see http://www.

wormbase.org/species/c_elegans/feature/WBsf977957#0123--10). No

FPs were observed for Diamond searches, as these are restricted to protein coding

sequences. However, variation in the number of FNs was greater and caused

mainly by the absence of hits. Diamond searches exhibited the highest number of

FNs, especially for H. sapiens and E. coli sequences. This was more pronounced

when using MTS1. If more hits are supplied, the number of FNs decreases. If

BLASTn searches were provided in addition to Diamond searches (using taxrule

‘bestsumorder’), recall ranges between 0.9993 and 1.0.

http://www.wormbase.org/species/c_elegans/feature/WBsf977957#0123--10
http://www.wormbase.org/species/c_elegans/feature/WBsf977957#0123--10


38 2.3 Use case 1: BlobTools analysis of simulated datasets

Taxonomic masking of sequence databases to simulate phylogenetic distance

between query and subject sequences, revealed more complex patterns of interac-

tion between search parameters which varied between the taxa. This variation is

not surprising since taxonomic masking was carried out at different, non-analogous

taxonomic ranks. Similar to unmasked searches, FPs are not a major concern. Low-

est values of precision (ranging from 0.8167 to 0.8642) were observed for E. coli

sequences when using Diamond alone. Number of FNs bases are also most extreme

in taxonomic annotations based on Diamond alone (for H. sapiens and P. aerugi-

nosa sequences) or when using the BLASTn parameter CUL10 (for P. aeruginosa se-

quences). Hence, I discourage the use of -culling_limit for similarity searches

used for taxonomic annotation in BlobTools.

For this dataset, the best trade-off between false positive and false neg-

ative taxonomic annotations was achieved by combining a BLASTn search

(-max-target-seqs 10 -evalue 1e-25) against NCBI nt with a Diamond

search (--evalue 1e-25 --max-target-seqs 1) against UniProt Reference Pro-

teomes, in this order, using BlobTools taxrule ‘bestsumorder’ (lowest precision

and recall, 0.9996 and 0.9374, respectively). However, a much faster search

with acceptable outcome was achieved by changing the BLASTn parameters to

-max-target-seqs 1 -max_hsps 1 (lowest precision and recall, 0.9997 and

0.9042, respectively).

Although phylogenetic distance between query sequences and those in the

databases was simulated through taxonomic masking, it should be noted that the

results discussed here are by no means universal. If an organism has not been

sequenced previously, the number of FNs will be high and if it was, but the data is

contaminated with other taxa or the organism is a contaminant itself, the number

of FPs and FNs will be greater.
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Taxonomic partitioning of read libraries using BlobTools

The BlobPlot (Figure 2.3.2A) and ReadCovPlots (Figure 2.3.2B and C) of the

initial assembly of both read libraries revealed the taxonomic composition of the

datasets. In the BlobPlot, Rhabditida and Pseudomonadales sequences form two

distinct ‘blobs’ at high coverage separated by their GC content. Primate and

Enterobacterales sequences are visible at lower coverages (with the exception of

the human mtDNA sequence near the Rhabditida ‘blob’). Although taxonomic

annotation is inaccurate for some sequences in each ‘blob’, patterns of coverage and

GC defining the ‘blobs’ allow manual imputation of taxonomic membership.

The CovPlot (Figure 2.3.3) yields an even clearer picture by separating the

‘blobs’ based on the coverage received in each read library. Rhabditida sequences

appear on a diagonal line as reads from both libraries contribute to their coverages.

Pseudomonadales, Rhabditida and Enterobacterales sequences are clearly sepa-

rated, with Primates and Enterobacterales overlapping. Partitioning of sequence

IDs was achieved using parameters based on differential coverage and taxonomy

annotation.

BlobPlots for the four assemblies ‘RH-BT’, ‘PR-BT’, ‘PS-BT’, and ‘EN-BT’ based

on partitioned reads are shown in Figure 2.3.4. Taxonomic evaluation of cleaned

assemblies (based on the count of simulated reads by genome-of-origin mapping

to them) is shown in Table 2.3.2, and standard assembly metrics are listed in

Table 2.3.3.
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Table 2.3.2: Evaluation of read mappings. Percentages of reads (partitioned by taxonomic origin)

mapped to sequences in each of the BlobTools-processed assemblies (suffix ‘-BT’). Reads that did not

map to any sequence are listed under ’Not Mapped’. Bold: Zero reads mapped.

Reads mapping (in %) to

Taxonomic origin of

simulated reads
‘RH-BT’ ‘PR-BT’ ‘PS-BT’ ‘EN-BT’

Unmapped

reads (%)

C. elegans 99.99 0.00 0.00 0.00 0.01

H. sapiens 0.02 99.33 0.00 0.00 0.66

P. aeruginosa 0.29 0.00 99.66 0.03 0.02

E. coli 0.72 0.22 0.06 98.64 0.35
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Figure 2.3.2: Visualisations of assembly of simulated sequencing libraries. A BlobPlot of the

assembly. Sequences of the four taxa are recovered as distinct ‘blobs’. B ReadCovPlot of library A.

C ReadCovPlot of library B.
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Figure 2.3.3: CovPlot of assembly of simulated sequencing libraries. Parameters for partition-

ing the sequences in the assembly which were applied to the tabular representation of the BlobDB

are indicated as dotted lines and text annotations in the scatter plot.
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Figure 2.3.4: BlobPlots of assemblies by taxon after read partitioning. Coverage was obtained

by mapping simulated reads to assemblies. Sequences are taxonomically annotated with ‘true’ tax-

onomy based on origin of simulated reads mapping to them. Sequences labelled as ‘no-hit’ did not

receive any reads mapping to them. A Assembly of partition of Rhabditida reads (‘RH-BT’). One P.

aeruginosa sequence (span 4.886 b) remains. B Assembly of partition of Primates reads (‘PR-BT’).

Five E. coli sequences (total span 3.838 b) remain. C Assembly of partition of Pseudomonadales

reads (‘PS-BT’). D Assembly of partition of Enterobacterales reads (‘EN-BT’). One sequence of P.

aeruginosa (span 254 b) remains.
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2.3.4 Conclusion

The use of simulated read datasets allowed evaluation of the influence of dif-

ferent sequence similarity search strategies on the taxonomic annotation and re-

vealed an optimal combination of search parameters for BlobTools taxonomic an-

notation: combining BLASTn megablast(-evalue 1e-25 -max-target-seqs 1

-max_hsps 1) searches against NCBI nt and Diamond blastx (--evalue 1e-25

--max-target-seqs 1) searches against UniProt ReferenceProteomes. While not

generating the ‘best’ taxonomic annotation, search time is reduced substantially

with a minor sacrifice in recall.

Taxonomic partitioning of the simulated read libraries proved successful. Only

minor proportions of the reads were erroneously binned as revealed by the evalu-

ation of read mappings by genome-of-origin to the final assemblies (Table 2.3.2).

The highest percentage of erroneously partitioned reads (0.72% of reads mapping

to the ‘RH-BT’ assembly) originated from the E. coli genome and the number is most

likely inflated due to E. coli genome fragments contained in the C. elegans genome.

The highest proportion of unbinned reads (0.66% of reads not mapping to any as-

sembly) originated from H. sapiens, and could have been prevented by being more

inclusive during the partitioning step of reads (by also including ‘InUn’ read pairs)

followed by a second iteration of BlobTools workflow A. However, the small frac-

tion of read pairs that received an erroneous taxonomic assignment or were left out

during the partitioning step had little effect on the overall assembly success for each

taxon (Table 2.3.3), as metrics of assemblies from simulated reads by taxon (‘-SIM’)

are very similar to those of assemblies generated from reads partitioned using the

BlobTools pipeline (‘-BT’).
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2.4 Use case 2: BlobTools analysis of Hypsibius du-

jardini assemblies

2.4.1 Introduction

Tardigrades are meiofaunal animals within the superphylum Ecdysozoa. They

have attracted the interest of the scientific community due to their unresolved

phylogenetic position within Ecdysozoa and the ability of some species to withstand

extreme conditions by transitioning into an ametabolic state, a process refered to

as cryptobiosis (see Yoshida et al., 2017a and references therein).

Boothby et al., 2015 published a study claiming that 17.5% of the genes within

the genome of the tardigrade Hypsibius dujardini originated from horizontal gene

transfer (HGT) from multiple metazoan and bacterial taxa. The magnitude of the

proportion of genes originating from HGT events was unprecedented and is almost

double the proportion found in the most extreme case reported within the animal

kingdom, the bdelloid rotifer Adineta vaga, which has acquired 9.6% of the genes

in its genome through HGT (Boschetti et al., 2012).

Within eight days, collaborators and I published a rebuttal to Boothby et al.,

2015 on BioRxiv (Koutsovoulos et al., 2015), followed by a peer-reviewed article

(Koutsovoulos et al., 2016) in the same journal as the original study. Based

on an independent genome assembly from a subculture of the same strain of

H. dujardini we could attribute the inflated estimate of HGTs to non-tardigrade

sequences in the assembly of Boothby et al., 2015. The original claim was also

robustly challenged by other research groups using independent approaches and

sequencing data (Delmont and Eren, 2016; Arakawa, 2016; Arakawa, Yoshida, and

Tomita, 2016; Bemm et al., 2016). A correction to the original article, stating



CHAPTER 2. BlobTools: software for interrogation of genome assemblies 47

that an outdated version of the genome assembly was provided in error, and a

reply to Arakawa, 2016 and Bemm et al., 2016, reducing the rate of HGT to 3.8 –

7.1%, were published by the authors (Boothby et al., 2016; Boothby and Goldstein,

2016). The original paper was not retracted. The question of the proportion of

genes originating from HGTs in the H. dujardini genome was eventually settled

through a comparative genomics study using an improved assembly of H. dujardini

(Yoshida et al., 2017a) which suggests that less than 2.3% of genes originate from

HGT events.

Here, I illustrate how BlobTools allowed visualisation of the different assem-

blies of H. dujardini through BlobPlots, RNAseq-based coloured BlobPlots, and Cov-

Plots.

2.4.2 Methods

Data

A preliminary assembly of H. dujardini was cleaned using BlobTools v0.9.4 by

G. Koutsovoulos and myself, as described in Koutsovoulos et al., 2016, resulting in

the final assembly ‘nHd.2.3’. The Boothby et al., 2015 assembly (‘UNC’, University

of North Carolina) was obtained from the authors, together with the short insert size

WGS read libraries used in the assembly. Additional read libraries used in Boothby

et al., 2015 were not considered. RNAseq reads (poly(A)-selected) were obtained

from Levin et al., 2016.
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BlobTools analysis

I performed sequence similarity searches and read mappings of WGS and RNAseq

reads, as described in Koutsovoulos et al., 2016. Coverage information of reads

used for assembly ‘nHd.2.3’ is referred to as ‘nHd reads’ and coverage information

of all three short read libraries used in the ‘UNC’ assembly by Boothby et al., 2015 is

referred to as ‘UNC reads’. I generated BlobDBs, coverage information, and category

colour (‘catcolour’) files as described in Koutsovoulos et al., 2016. In ‘catcolour’

(CSV) files, sequences of an assembly are grouped into user-defined categories

which can be used for colouring BlobPlots. For the analysis in Koutsovoulos et

al., 2016, sequences were grouped into four categories, ‘>100 base cov’, ‘10-99

base cov’, ‘1-9 base cov’ or ‘0 base cov’, based on the normalised base coverage they

received from the RNAseq reads mapping to them. BlobPlots, CovPlots and RNAseq-

based coloured BlobPlots were generated for both assemblies using BlobTools

v1.0 based on the data generated for Koutsovoulos et al., 2016. BlobPlots and

CovPlots were generated at the taxonomic ranks of phylum and superkingdom,

respectively.

2.4.3 Results

The BlobPlots for both assemblies are depicted in Figure 2.4.1. It should be noted

that, at the time, few genomic sequences for Tardigrada were available in public

databases and therefore taxonomic annotation assigned tardigrade sequences to

their phylogenetically closest and best sampled phyla, i. e. Nematoda, Chordata,

Arthropoda and Mollusca. While minor contamination remains in the ‘nHd.2.3’

assembly (Figure 2.4.1A), the level of contamination in the ‘UNC’ assembly (Fig-

ure 2.4.1B) is substantial: roughly one third of the ‘UNC’ assembly is derived from
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non-tardigrade genomes, mainly Proteobacteria and Bacteriodetes which also ac-

count for the largest scaffolds in the assembly.

RNAseq-based coloured BlobBlots (Figure 2.4.2) revealed further evidence

for a non-tardigrade origin of many scaffolds in the ‘UNC’ assembly. Since

poly(A)-selected RNAseq libraries fail to capture bacterial and archaeal mRNA, non-

eukaryotic sequences in an assembly receive little to no base coverage. Out of the

135 Mb in the ‘nHd.2.3’ assembly (Figure 2.4.2A), 8.7 Mb received a base coverage

of zero, which can be due to either remaining non-tardigrade sequences or non-

coding regions of the H. dujardini genome. The ‘UNC’ assembly displays 94.2 Mb

(out of 252.5 Mb) which receive no base coverage from RNAseq data and overlap

with the sequences labelled as contaminants in Figure 2.4.1B.

CovPlots for both assemblies are shown in Figure 2.4.3. Patterns of differential

coverage between the read sets (‘nHd reads’ and ‘UNC reads’) allow identification

of sequences unique to each library, which are unlikely to be part of the H. dujardini

genome. Remaining bacterial sequences in the ‘nHd’ assembly (Figure 2.4.3A)

could thus be identified easily, as they did not receive any coverage from ‘UNC

reads’. However, a proportion of bacterial sequences occur at the same coverage

as eukaryotic sequences, which suggests that these could be sequences harbouring

HGT genes which were incorrectly taxonomically annotated. The CovPlot of the

‘UNC’ assembly (Figure 2.4.3B) allows a glimpse into the contamination landscape

of the read datasets. Substantial proportions of the assembly received coverage

from either ‘UNC reads’ or ‘nHd reads’, suggesting they are private to each dataset

and possible lab-specific contaminants. Sequences which only received coverage

from ‘nHd reads’ have most likely been assembled from other read libraries not

considered here. Some sequences in the ‘UNC’ assembly are found at low coverages

in both datasets, which suggests that the underlying organisms are biologically

associated with H. dujardini, such as food sources, commensals, or pathogens.
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Figure 2.4.1: BlobPlots of tardigrade assemblies. A BlobPlot of the ‘nHd.2.3’ assembly with cov-

erage information from ‘nHd reads’. B BlobPlot of the ‘UNC’ assembly with coverage information

from ‘UNC reads’. The BlobPlot displays high amounts bacterial sequences.
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Figure 2.4.2: BlobPlots of tardigrade assemblies coloured by categories of normalised

RNAseq base coverage. A BlobPlot of the ‘nHd.2.3’. B BlobPlot of the ‘UNC’ assembly, showing

low RNAseq base coverage for sequences labelled as bacterial in Figure 2.4.1.
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Figure 2.4.3: CovPlots of tardigrade assemblies. Scaling of diameters of circles based on se-

quence length was set to ‘False’. A CovPlot of the ‘nHd.2.3’ assembly using coverage information

of ‘nHd reads’ on the x-axis and of ‘UNC reads’ on the y-axis. B CovPlot of the ‘UNC’ assembly

using coverage information of ‘UNC reads’ on the x-axis and of ‘nHd reads’ on the y-axis.
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2.4.4 Conclusion

The comparative analysis of the two alternative hypotheses concerning the H. du-

jardini genome (Koutsovoulos et al., 2016), highlighted the strength of the modular

approach of BlobTools as it allowed me to quickly incorporate new functions as the

need for them arose: CovPlots and the --catcolour option of plotting functions

were developed during this study. The --catcolour option is a flexible feature of

BlobTools as it allows direct control over the ‘colour’ dimension of plots based on

any grouping defined by the user, e. g. expression data, counts of predicted genes

(with introns), etc. Furthermore, the controversy surrounding the genome of H. du-

jardini emphasised the need of assembly interrogation tools focussed on usability

to ease adoption by the research community.
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2.5 Use case 3: BlobTools analysis of Globodera ros-

tochiensis assembly

2.5.1 Introduction

The yellow potato cyst nematode Globodera rostochiensis is an important pathogen

of potato crops (Hockland et al., 2012). A genome project was initiated in order to

understand the genomic differences and similarities between G. rostochiensis and

its sister species G. pallida. I was involved in the analysis of the genome (Eves-van

den Akker et al., 2016b), which is discussed in detail in Chapter 5.

Here, I describe how the assembly of G. rostochiensis was screened for contam-

ination using BlobTools prior to further analysis by collaborators and myself. Se-

quence similarity searches for taxonomic annotation were performed against both

public and custom sequence databases to assure that non-nematode sequences were

removed prior to downstream analysis.

2.5.2 Methods

Data

The genome was assembled by the Wellcome Trust Sanger Institute as described in

(Eves-van den Akker et al., 2016b), based on three WGS short read libraries: one

PE and two MP read datasets.
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Read mapping

I mapped read libraries to the assembly using CLC mapper v4.21, requiring an

alignment identity of 80% along 80% of the length of reads (-s 0.8 -l 0.8)

which resulted in three files in CAS format.

Sequence similarity searches for taxonomic annotation

I performed three sequence similarity searches of the assembly: one search

against NCBI nt using BLASTn megablast v2.3.0+ (Camacho et al., 2009)

(-evalue 1e-65 and -max_target_seqs 1), one search against UniProt Refer-

ence Clusters 90 (Uniref90) (Suzek et al., 2015) using Diamond blastx v0.7.12

(Buchfink, Xie, and Huson, 2015) (--sensitive and --max-target-seqs 25),

and one search against a custom sequence database of the genome assem-

bly of G. pallida (Cotton et al., 2014) using BLASTn megablast v2.3.0+

(-evalue 1e-65 and -max_target_seqs 1).

BlobTools analysis

Using Blobtools v0.9.9, I constructed a BlobDB using the assembly, the CAS

mapping files of the three read datasets, and the similarity search results provided

in the order as listed above under the taxrule ‘bestsum’. Diamond results were

annotated with NCBI TaxIDs based on the UniProtID mapping file (retrieved from

the UniProt website) using the BlobTools command taxify. BlobPlots were drawn

at the taxonomic rank of phylum using the cumulative coverage of all three read

libraries. Using tabular output of BlobTools view, taxonomically annotated non-

nematode scaffolds with a bitscore ≥200 were inspected manually using the NCBI
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BLAST web service and removed if evidence for non-nematode origin was found.

A second BlobPlot, after removal of contaminant scaffolds and remapping of read

datasets, was generated.

Screening for rDNA sequences in filtered assembly

I interrogated the filtered assembly for small subunit (SSU) and large subunit

(LSU) rDNA sequences, by carrying out sequence similarity searches using BLASTn

megablast v2.3.0+ (--evalue 1e-65) against the SILVA SSUParc/LSUParc

databases (Quast et al., 2013) composed of quality checked and aligned ribosomal

RNA sequence, which were translated into rDNA sequences prior to searches.

2.5.3 Results

The BlobPlots of the assembly of G. rostochiensis are shown in Figure 2.5.1. The

unprocessed assembly (Figure 2.5.1A) already showed minimal levels of contami-

nation, suggesting that the initial assembly was already processed to remove non-

nematode sequences. Nevertheless, 23 bacterial and fungal scaffolds (cumulative

length of 98.2 kb) were removed from the assembly. The filtered assembly (Fig-

ure 2.5.1B) displays minor differences in coverage compared to the unprocessed

assembly, due to stochasticity of the read mapping process. Screening of the assem-

bly for rDNA sequences revealed no evidence for additional contaminants, as hits

were only observed against SSU and LSU sequences of G. rostochiensis.
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Figure 2.5.1: BlobPlots of the G. rostochiensis assembly. A BlobPlot of the unfiltered assembly.

B BlobPlot of the assembly after filtering.



58 2.5 Use case 3: BlobTools analysis of Globodera rostochiensis assembly

2.5.4 Conclusion

This use case illustrates how BlobTools can be used for rapid screening of genome

assemblies and contaminant removal, even if read partitioning and subsequent

reassembly is not carried out. The minor levels of contamination in the initial G.

rostochiensis assembly did not warrant read partitioning, as the small amount of

non-nematode sequences are unlikely to have affected the assembly process. The

use of multiple sequence similarity search results for taxonomic annotation allows

the incorporation of evidence from multiple sources and lets the user, through the

tabular output of BlobTools ‘view’, inspect the scores for each taxonomy by database.

This feature was exploited here to manually inspect possible contaminants.

In retrospect, the use the Uniref90 database for taxonomic annotation was a

suboptimal choice, as it contains entries derived from non-redundant sequences

in the UniProt Knowledgebase (The UniProt Consortium, 2017) and selected Uni-

Parc sequences (a non-redundant archive of most protein sequences from public

databases) clustered using the CD-HIT algorithm (Li and Godzik, 2006) at 90%

sequence identity over 80% of the length of the longest sequence. A Uniref90 clus-

ter is given the NCBI TaxID of the common ancestor of all sequences it contains.

As an example, entry ‘UniRef90_O17915’ (GTP-binding nuclear protein ran-1) is

composed of sequences from 38 nematode taxa (of which 28 originate from ani-

mal parasites) in addition to one partially predicted protein from the genome of

the alpaca, Vicugna pacos. The TaxID associated with the entry is Bilateria (33213),

although the alpaca sequence most likely originated from contamination. In this

analysis, the low value of sequence similarity searches against Uniref90 entries for

taxonomic annotation was compensated by the other sequence similarity search

results, but its use for BlobTools taxonomic annotation is not encouraged.
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2.6 BlobTools improves the genome assembly pro-

cess

In this chapter, I have presented the BlobTools pipeline and discussed its imple-

mentation. BlobTools workflows and features were highlighted based on three use

cases. By analysing simulated read libraries of mixtures of bacterial and metazoan

taxa (Section 2.3), the performance of the BlobTools pipeline for taxonomic an-

notation of sequences and subsequent partitioning of PE read datasets could be

evaluated empirically. In addition, evaluation of parameters for sequence similarity

searches used in BlobTools taxonomic annotation revealed optimal combinations

of parameters, leveraging computational costs and accuracy. Comparative analy-

sis of genome assemblies of the same taxon were presented in Section 2.4, based

on visualisation of alternative genome assemblies of the tardigrade H. dujardini us-

ing BlobPlots, RNAseq-based coloured BlobPlots and CovPlots. In Section 2.5, I

described a simple BlobTools analysis for identification of contaminants in a draft

genome assembly.

The ease of interpretation of BlobPlots has favoured adoption by users, and the

current implementation has been applied successfully to genome projects involving

tardigrades (Koutsovoulos et al., 2016; Yoshida et al., 2017a), mealybugs and their

endosymbionts (Husnik and McCutcheon, 2016), ectoparasitic mites (Dong et al.,

2017), diptera (Dikow et al., 2017), honeybees and their metagenomes (Gerth and

Hurst, 2017), nematodes (Eves-van den Akker et al., 2016b; Gawryluk et al., 2016;

Slos et al., 2017; Szitenberg et al., 2017), bacteria (Mellbye et al., 2017; Samad et

al., 2016; Wang and Chandler, 2016; Fuller et al., 2017), butterflies (Nowell et al.,

2017), a fungal pathogen of barley (McGrann et al., 2016), and fungi (Compant

et al., 2017).

Its modular interface and reliance on standard bioinformatic input formats
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has lead to the integration of BlobTools into the Edinburgh Genomics QC pipeline

and an assembly/QC pipeline at the University of Exeter (Leonard, 2017). Fur-

thermore, my work on BlobTools contributed to the award of the BBSRC Re-

search grant ‘BlobToolKit: Identification and analysis of non-target data in all Eu-

karyotic genome projects’ (Project reference BB/P024238/1), aimed at improving

BlobTools and offering access through a free web-service (for more information,

see http://blobtoolkit.genomehubs.org/). The BlobTools code base will be

developed further under the umbrella of the BlobToolKit project and improvements

are planned for the underlying BlobDB data structure and the process of taxonomic

annotation.

Currently, BlobTools stores the information parsed from input files in Python

classes which are subsequently translated (serialised) into a JSON (JavaScript

Object Notation) file, termed BlobDB. Subsequent access to the data by other

commands, e. g. for generating a BlobPlot, requires deserialisation of the entire

BlobDB file which can takes several minutes if large amounts of sequence similar-

ity searches were provided. Redesign of the BlobTools data structure and refac-

toring of the code would allow the use of a SQL (Structured Query Language)

database, which would improve runtime and minimise file size. Python libraries

for interaction with SQL databases are freely available, such as SQLAlchemy (see

https://www.sqlalchemy.org/). Interaction of legacy BlobDBs would be guar-

anteed through appropriate conversion functions. This novel BlobDB would stream-

line interaction with the planned BlobToolKit web service, since portions of the data

can be accessed rapidly for both export to plain text files and visualisation. It would

improve the user experience through reduced runtime and simplify development of

novel computations on the data as new types of data can readily be added with

minor changes to the code base.

Several improvements to the process of taxonomic annotation are planned. For

http://gtr.rcuk.ac.uk/projects?ref=BB%2FP024238%2F1
http://blobtoolkit.genomehubs.org/
https://www.sqlalchemy.org/
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one, an important aspect of sequence similarity search results is currently ignored:

the position of hits across the length of a query. At present, summation of scores

of hits is carried out across the whole length of the query sequence. By making

BlobTools aware of ‘regions’ on the sequences in an assembly, new taxrules could

be developed which compute scores of hits to competing taxonomies differently

depending on the region on the query. For instance, a taxrule could be developed

to consider taxonomic ‘homogeneity’ of hits across the length of the sequence. A

locus on a sequence which receives many contradictory taxonomic annotations,

due to being a highly conserved region sequenced in many taxa, could thus be

assigned less weight during score computation compared to other regions on that

sequence which receive fewer but more taxonomically homogenous hits. This could

also be developed further to address issues of HGT and chimeric contigs/scaffolds

due to errors in the assembly process. Secondly, taxonomic annotation is currently

performed independently at each taxonomic rank. This can lead to edge case

scenarios where, based on the sum of scores, taxonomy for the same sequence

varies greatly between ranks. This could be mitigated by developing a ‘root-tip’

taxrule which is aware of the taxonomic hierarchy of ranks. Lastly and in sync with

the goals set for the BlobToolKit project, BlobTools will be distributed with a ‘black

list’ of sequence IDs in public databases for which taxonomic annotation has been

deemed dubious in past studies.

In summary, BlobTools is a user-friendly and reliable solution for visualisation,

quality control and taxonomic partitioning of genome datasets. Wider adoption

of BlobTools screening by the research community will help control the influx of

taxonomically mis-annotated sequences into public sequence databases and pre-

vent inaccurate biological conclusions based on contaminated genome assemblies.

Planned developments within the BlobToolKit project will improve user experience

and the process of taxonomic annotation.
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Chapter 3

KinFin: software for the analysis of

protein families

“Science is what we understand well enough to explain to a computer.

Art is everything else we do.”

- Donald E. Knuth, Foreword to the book ‘A=B’ (1996)

3.1 Introduction

In comparative genomics it is now a common approach to define gene families by

clustering protein sequences — i. e. all proteins of the proteomes of the organisms

under analysis — based on sequence similarity, and to analyse protein cluster

presence and absence in different species groups as a guide to biology. Due to the

high dimensionality of these data, downstream analysis of protein clusters inferred

63
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from large numbers of species or from species with many genes is non-trivial and

few solutions exist for transparent, reproducible and customisable analyses.

Several high-quality solutions to orthology analysis have been proposed. Or-

thoDB is a high-quality curated orthology resource (Zdobnov et al., 2017). The

current release (2015) includes 3600 bacterial and 590 eukaryotic taxa, and is ac-

cessed through a responsive web interface for direct download and interrogation of

clusters. OrthoDB includes rich functional annotation of sequences. While the main

database includes only published genomes and is centrally managed (i. e. users can-

not submit datasets for analysis), the OrthoDb software toolkit is available for local

installation and deployment. PhylomeDB is a database of defined orthology groups,

built with manual curation (Huerta-Cepas et al., 2014), but was last updated in

2014, and is, again, managed centrally and focussed on published genomes. In the

ENSEMBL databases, the Compara toolkit is used to parse gene homology sets, and

infers orthology and paralogy based on a given species tree (Herrero et al., 2016).

Updating of Compara analyses is not trivial, and requires the ENSEMBL web toolkit

for display and interrogation. For ongoing research programs, few tools for orthol-

ogy analysis are available. For bacterial data, several tools for pan-genome analysis

have been developed (Vinuesa and Contreras-Moreira, 2015; Chaudhari, Gupta,

and Dutta, 2016; Xiao et al., 2015) but solutions that cope well with the data rich-

ness of eukaryotic species are often tailored to defined taxonomic groups (Song et

al., 2015) or expect closely related taxa. EUPAN is a pipeline for pan-genome anal-

ysis of closely related eukaryotic genomes developed within the scope of the ‘3000

Rice Genomes Project’ (Hu et al., 2017). The approach is based on mapping of raw

reads to reference genomes, followed by coordinated assembly and lift-over of gene

annotations for inferring presence/absence of gene models.
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In the absence of toolkits that allow local implementation of clustering anal-

yses, custom taxon grouping and dynamic analysis, I have developed KinFin. Kin-

Fin takes a protein clustering output by tools such as OrthoFinder or OrthoMCL,

alongside functional annotation data, and user-defined species taxonomies, and de-

rives rich aggregative annotation of orthology groups. KinFin reads from standard

file formats commonly produced along genome sequencing and annotation projects

and can therefore easily be integrated in comparative genomics projects for the iden-

tification of protein clusters of interest in user-defined, taxon-aware contexts.

Within this chapter, four use cases for KinFin are presented in which gene

families of different taxa are investigated. Parts of this chapter have been published

as an article on the bioRxiv pre-print server (Laetsch and Blaxter, 2017b) (DOI:

10.1101/159145) and have been accepted for publication to the journal ‘G3: Genes,

Genomes, Genetics’ (Laetsch and Blaxter, 2017c). Furthermore, KinFin was used

to analyse patterns of gene family evolution across ecdysozoan phyla focussing on

tardigrades which has been published in the journal ‘PLOS Biology’ (Yoshida et al.,

2017b) (DOI: 10.1371/journal.pbio.2002266).

3.2 Implementation

KinFin is a standalone Python 2.7 application. A detailed description of

the functionality of KinFin can be found at https://kinfin.readme.io/.

Required input for KinFin is an orthology clustering (format defined by

OrthoMCL/OrthoFinder), a file linking protein sequences to taxa (SequenceIDs

defined by OrthoFinder), and a config file. The config file guides analyses by

grouping taxa into user-defined sets under arbitrary attributes. These attributes

could include, for instance, standard taxonomy (as embodied in the NCBI Taxon-

omy TaxIDs), alternative systematic arrangements of the taxa involved, lifestyle,

http://www.biorxiv.org/content/early/2017/07/03/159145
https://doi.org/10.1371/journal.pbio.2002266
https://kinfin.readme.io/
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geographical source or any other aspect of phenotype or other metadata. KinFin

dynamically constructs sets based on the config file and computes metrics, statis-

tics and visualisations which allow identification of clusters that are diagnostic for,

or expanded/contracted in, each taxon set. Optional input files include proteome

FASTA files (to extract length statistics for clusters, taxa and taxon sets), functional

annotations of proteins in InterProScan (Jones et al., 2014) format, and a phy-

logenetic tree topology in Newick format.

3.2.1 Visualisation of orthologue clustering

In KinFin, global analysis of the clustering of protein sequences can be performed

from the point of view of the clusters themselves (their properties and patterns)

or of the constituent proteomes. The distribution of cluster size, i. e. the number

of proteins contained in a cluster, is an important feature of analyses, and KinFin

simplifies the comparison of alternative clusterings, e. g. clusterings originating from

different MCL (Markov Clustering) inflation parameters, or with overlapping but

distinct taxon composition) by generating frequency histograms of cluster size.

These can then be interrogated for deviations from the expected power-law-like

distribution. To aid understanding of the distribution, the user can generate a

more detailed frequency histogram which considers the number of taxa contributing

to each cluster (for an example see Figure 3.3.1). The behaviour of individual

proteomes can be explored by creating a network representation of the clustering.

KinFin can produce a graph file with nodes representing proteomes and edges

connecting nodes weighted by the number of times two proteomes co-occur in

clusters. Optionally, universal clusters containing proteins from all proteomes can

be excluded. The graph can be interrogated using graph analysis and visualisation

tools such as Gephi (Bastian, Heymann, and Jacomy, 2009).
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3.2.2 Analysis based on arbitrary sets of input proteomes

Through the config file, the user can instruct KinFin to analyse the clustering

under arbitrary taxon sets, i. e. sets of proteomes. For taxonomy-based analyses,

KinFin derives analyses at different taxonomic ranks (by default phylum, order,

and genus; can be modified by the user) by parsing the NCBI TaxIDs given for each

proteome. Any other classification of the input proteomes can be given, and nested

taxonomies specified by use of multiple, ranked attribute types. This allows, for

example, the testing of congruence of clustering data with competing phylogenetic

hypotheses regarding relationships of the taxa from which the input proteomes were

derived.

3.2.3 Classification of clusters

KinFin builds a series of matrices associating clusters and proteomes, and clusters

and user defined taxon sets. Each cluster is classified as absent or present for each

proteome or taxon set, and is assigned a cluster type:

• singleton: composed of a single protein

• specific: composed of multiple proteins from a single taxon set

• shared: composed of multiple proteins from multiple taxon sets
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3.2.4 Single-copy orthologue definition

Clusters composed of a single protein from each proteome (i. e. putative single-copy

orthologues) are useful for downstream phylogenetic analyses. However, due to

the intrinsic difficulties of genome assembly and annotation, the number of single-

copy orthologues decreases as more proteomes are included in the clustering. To

compensate for this, KinFin can identify ‘fuzzy’ single-copy orthologue clusters using

the parameters --target_count (target number of copies per proteome, default

‘1’), --target_fraction (proportion of proteomes at --target_count), and

lower/upper counts for proteomes outside of --target_fraction (--min and

--max).

3.2.5 Rarefaction curves

The concept of the pan-genome is frequently used in microbial genomics to delimit

the core genome — composed of regions shared by all taxa — and the accessory

genome — composed of regions shared by only some taxa — that are found in

the varied genomes of a species. The size of the pan-genome can be visualised

using rarefaction curves, and KinFin deploys this framework to visualise the size

of the pan-proteome of the different arbitrary sets defined by the user. Curves are

calculated by repeated, random sampling of the proteomes in each arbitrary set and

cumulative summation of novel non-singleton clusters.

3.2.6 Pairwise protein count representation tests

For user-defined attributes involving two (or more) taxon sets, pairwise representa-

tion tests of protein counts are computed for clusters containing proteins from each
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taxon set using either a two-sided Mann-Whitney U test (default), Welch’s t-tests,

Kolmogorov-Smirnov statistic, Kruskal-Wallis H-test, or a Student’s t-test. From this,

clusters ‘enriched’ or ‘depleted’ in count in one set compared to another can be iden-

tified. It should be noted that the statistical tests test for non-homogeneity of the

distributions of protein counts between the sets and, due to limited ‘sample size’

(the number of proteins of different taxon sets within a cluster), might not achieve

statistical significance even when counts differ substantially between sets. In addi-

tion to text outputs, volcano plots (log2-fold change in means versus test p-value)

are drawn. As a visual aid, horizontal lines are drawn at p-values 0.05 and 0.01 and

vertical lines at | log2-fc(means)| = 1 and 95%-percentile of log2-fc(means).

3.2.7 Functional annotation and protein length analysis

KinFin integrates functional annotation and protein length data into analyses. If

the necessary input files are provided, KinFin generates output files tabulating

mean and standard deviation of sequence lengths, domain and Gene Ontology

(GO) term entropy within clusters, and the fraction of proteins per cluster which

are putatively secreted, based on SignalP_Euk (Petersen et al., 2011) annotation.

Additionally, for each cluster all matching domains and inferred GO terms are listed

with description and information regarding their frequency within both proteins

and proteomes in the cluster.

While inference of functional annotation of a protein is relatively straightfor-

ward, no defined standards exist for inferring representative functional annotation

(RFA) of clusters of proteins. KinFin is distributed with a script that infers RFAs

of clusters through the parameters --domain_taxon_cov (minimum fraction of

taxa in cluster that have at least one protein annotated with a specific domain)

and --domain_protein_cov (minimum fraction of proteins in cluster annotated
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with a specific domain), to grant users fine control over cluster functional annota-

tion.

3.2.8 Analysis based on phylogeny

Analysis of clusters in a phylogenetic context allows the identification and quantifi-

cation of clusters that are unique innovations of certain monophyletic groups (i. e.

synapomorphies). Based on a user-defined tree topology, KinFin identifies synapo-

morphic clusters at nodes using Dollo parsimony. The Dollo parsimony method

(Farris, 1977) assumes that while multiple, independent losses of a gene in differ-

ent lineages are common, multiple independent gains of the same gene are improb-

able. My implementation of Dollo parsimony for the identification of synapomor-

phic clusters requires that only the proteomes under a given node are members of

the cluster and that at least one taxon from each child node is a member. Since

Dollo parsimony does not penalise multiple losses, KinFin classifies synapomor-

phies into ‘complete presence’ and ‘partial absence’ subgroups. The output includes

lists of synapomorphies and apomorphies (‘singleton’ and ‘non-singleton’ proteome-

specific clusters) and detailed description of synapomorphic clusters at each node.

Prominent or consistent functional annotation can be mapped onto synapomor-

phic clusters, filtered by the parameter --node_taxon_cov (minimum presence

of proteomes as fraction of total proteomes under the node), and the parame-

ters --domain_taxon_cov and --domain_protein_cov detailed in the previous

Section.
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3.2.9 Analyses of clusters containing genes of interest

Output of protein clustering analysis often serves as substrate for the identification

of homologues of genes of interest from a model species in the target species. KinFin

is distributed with a script which takes as input a list of protein IDs or gene IDs (to

obtain all isoforms or only the isoforms included in the clustering) and writes tables

indicating the counts of proteins in each cluster and their representative functional

annotations.

3.2.10 Output

KinFin generates output folders for each relevant column in the config file and writes

overall metrics for all taxon sets, detailed metrics for each cluster and results of

pairwise representation test, draws the rarefaction curve and volcano plots, and lists

clusters classified as ‘true’ and ‘fuzzy’ single-copy orthologues. Resulting text files

can easily be interrogated using common UNIX command line tools or spreadsheet

software.

3.2.11 Operation

KinFin is freely available under GNU General Public License v3.0 at https://

github.com/DRL/kinfin. System requirements for KinFin include a UNIX based

operating system, Python 2.7, and pip. An installation script is provided, which

installs Python dependencies and downloads mapping files for Pfam, Interpro and

GO IDs from European Bioinformatics Institute (EBI) website. Instructions for

installation and execution of KinFin can be found on the GitHub repository and

detailed documentation is available at https://kinfin.readme.io.

https://github.com/DRL/kinfin
https://github.com/DRL/kinfin
https://kinfin.readme.io
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3.3 Use case 1: Analysis of gene families in filarial

nematodes

3.3.1 Introduction

In order to illustrate some of the main functionalities of KinFin, I chose to ad-

dress questions regarding the biology of filarial nematodes. Filarial nematodes

(Onchocercidae) include many species of medical and veterinary interest and the

phylogenetic relationships among them remain under debate (Park et al., 2011;

Nadler et al., 2007), with the current NCBI reference taxonomy likely to be incor-

rect. I analysed the proteomes of 16 species: 11 filarial nematodes, three related

spirurid nematodes and two Caenorhabditis species. Caenorhabditis species were

included because of the quality of available structural and functional annotations.

For three species, two independent assemblies and proteome predictions were in-

cluded. I used KinFin to generate a robust multi-locus alignment and phylogeny,

and then incorporated this tree into KinFin analyses of synapomorphies and other

features of groups of filaria. Furthermore, using sets of Caenorhabditis elegans genes

implicated in pathways of interest, I investigated orthology and paralogy within the

filarial nematodes.

3.3.2 Methods

Protein clustering

Proteomes listed in Table 3.3.1 were downloaded from WormBase parasite (WBPS8)

(Howe et al., 2016; Howe et al., 2017) and https://ngenomes.org. Protein files

https://ngenomes.org
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were filtered by excluding sequences shorter than 30 residues or containing non-

terminal stops (filter_fastas_before_clustering.py) and only the repre-

sentative isoform for each gene was kept (filter_isoforms_based_on_gff3.py).

Proteins were functionally annotated through InterProScan v5.22-61.0

(Jones et al., 2014) using the Pfam-30.0 database (Finn et al., 2016) and out-

put was converted to compatible input format for KinFin (iprs_to_table.py).

OrthoFinder v1.1.4 (Emms and Kelly, 2015) was used to generate the com-

mands for BLASTp analyses. BLASTp commands were further modified by adding

the following options -seg yes, -soft_masking true and -use_sw_tback as

suggested by Moreno-Hagelsieb and Latimer, 2008. BLASTp analyses were run on

the EDDIE supercomputing cluster at the University of Edinburgh using BLASTp

v2.3.0+ (Camacho et al., 2009). Proteome clustering was carried out at default

MCL inflation value of 1.5.

Table 3.3.1: Protein datasets used in clustering. Taxon ID: Identifiers used in KinFin analysis.

Species: Taxonomic species name. Proteins: Number of representative isoforms included in the

KinFin analysis.

TAXON ID Species Source ID Proteins

AVITE Acanthocheilonema viteae WBPS8 PRJEB4306 10,123

BMALA Brugia malayi WBPS8 PRJNA10729 11,008

BPAHA Brugia pahangi WBPS8 PRJEB497 14,664

CBRIG Caenorhabditis briggsae WBPS8 PRJNA10731 22,305

CELEG Caenorhabditis elegans WBPS8 PRJNA13758 20,219

DIMMI Dirofilaria immitis WBPS8 PRJEB1797 12,423

DMEDI Dracunculus medinensis WBPS8 PRJEB500 10,919

EELAP Elaeophora elaphi WBPS8 PRJEB502 10,409

LOA1 Loa loa WBPS8 PRJNA246086 12,473
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Table 3.3.1 Continued from previous page

TAXON ID Species Source ID Proteins

LOA2 Loa loa WBPS8 PRJNA60051 14,908

LSIGM Litomosomoides sigmodontis WBPS8 PRJEB3075 10,001

OFLEX Onchocerca flexuosa WBPS8 PRJEB512 16,094

OOCHE1 Onchocerca ochengi WBPS8 PRJEB1204 12,807

OOCHE2 Onchocerca ochengi WBPS8 PRJEB1809 13,580

OVOLV Onchocerca volvulus WBPS8 PRJEB513 12,110

SLABI Setaria labiatopapillosa ngenomes.org nSl.1.1 9687

TCALL Thelazia callipaeda WBPS8 PRJEB1205 10,911

WBANC1 Wuchereria bancrofti WBPS8 PRJEB536 13,056

WBANC2 Wuchereria bancrofti WBPS8 PRJNA275548 11,053

Phylogenetic analysis

An initial KinFin analysis identified 781 single-copy orthologues. Sequences for

these 781 clusters were extracted (get_protein_ids_from_cluster.py and

GNU grep) and aligned using mafft v7.267 (E-INS-i algorithm) (Katoh and Stan-

dley, 2013). Alignments were trimmed using trimal v1.4 (Capella-Gutiérrez,

Silla-Martínez, and Gabaldón, 2009), concatenated using FASconCAT v1.0 (Kück

and Meusemann, 2010), and analysed using RAxML v8.1.20 (Stamatakis, 2014)

under the PROTGAMMAGTR model of sequence evolution and 20 alternative runs

on distinct starting trees. Non-parametric bootstrap analysis was carried out for

100 replicates.
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KinFin analysis

KinFin was then rerun, providing additional classification in the config file and

functional annotation data. In the config file, taxon sets were defined for the

taxonomic rank of ‘order’ by supplying NCBI TaxIDs for each proteome, for the

attribute ‘clade’ by grouping taxa into taxon-sets for the major filarial clades, and for

the attribute ‘host’ by separating human parasites from those of other animals and

outgroups. For the attribute of ‘clade’, only one proteome per species was allocated

to its respective taxon set (i. e. LOA2, OOCHE1, and WBANC2) and unique labels

were specified for the remaining taxa. The topology of the tree inferred through

phylogenetic analysis was provided in Newick format and the two Caenorhabditis

species were specified as outgroups in the config file. The Mann-Whitney-U test was

selected for pairwise protein count representation tests and the required number of

proteomes in a taxon-set to be used in rarefaction/representation-test computations

was set to ‘2’.

Representative functional annotation of clusters

Using get_protein_ids_from_cluster.py, representative functional anno-

tation (RFA) was inferred for all clusters (-x 0.75 -p 0.75, requiring that

75% of proteins in a cluster share a domain and that 75% of proteomes

have at least one protein with that domain) and for synapomorphic clusters

(-n 0.75 -x 0.75 -p 0.75, with the additional requirement that also 75% of

taxa at a node are present in the cluster).
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Analysis of genes of interest

Genes involved in haem biosynthesis and homeostasis were identified based on

representatives from C. elegans, and absence of missing genes was confirmed

through TBLASTn (Camacho et al., 2009) against the respective genomes. The

presence of paralogues was confirmed by manual inspection of gene models on

WormBase ParaSite.

3.3.3 Results

The 19 proteomes (derived from 16 species) included 248,750 protein sequences

(with a total length of 95,162,557 aa) after filtering. OrthoFinder, at the

MCL inflation value of 1.5, placed these into 42,691 clusters, of which 57.97%

were singletons (containing 9.95% of protein sequences). The clusters displayed

a power-law like frequency distribution, but with a marked deviation from this

expectation at a cluster size of 19, matching the number of proteomes in the analysis

(Figure 3.3.1). This pattern, although less pronounced, has been observed before

for protein databases such as COG (Clusters of Orthologous Groups of proteins)

(Unger, Uliel, and Havlin, 2003) and TRIBES (Enright, Kunin, and Ouzounis,

2003), and has been seen in other datasets analysed with KinFin. These clusters

contain a large number of strict (‘true’) single-copy orthologues, and many ‘fuzzy’

single-copy orthologues.

KinFin can assist in deciding which of several alternative proteome predictions

is more likely to be correct. Examination of the distribution of clusters within species

can highlight outlier datasets. Both C. elegans and C. briggsae have higher total

protein counts than any of the filarial species and display the highest proportion of

singletons (CELEG: 15.7% and CBRIG: 24.4%) (Figure 3.3.2). For the species for
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Figure 3.3.1: Distribution of cluster sizes. The distribution of counts of proteins for each clus-

ter is coloured based on the number of proteomes present in each cluster. Total values of counts

of each cluster size are indicated with grey dots. A fitted power-law curve (grey) is drawn for

reference.

which two assemblies were analysed, variation in proportion of singletons is largest

for L. loa (LOA1: 14.6% vs. LOA2: 15.1%).

The 781 single-copy orthology clusters identified in the initial KinFin analysis

yielded a robustly supported phylogeny (Figure 3.3.3A). By rooting the tree with

the common ancestor of Caenorhabditis species, the three non-filarial taxa are

recovered in expected positions, with S. labiatopapillosa most closely related to

the onchocercids, followed by T. callipedia and D. medinensis. The relationships

between the onchocercid taxa is not congruent with the reference NCBI taxonomy,

but with a previous analysis using a smaller number of loci (Lefoulon et al., 2016).

D. immitis is recovered as sister to Onchocerca spp. (the clade defined by node ‘n11’

in Figure 3.3.3A), and W. bancrofti, Brugia spp. and L. loa (node ‘n15’) form a clade

distinct from L. sigmodontis, A. viteae and E. elaphi (node ‘n16’).

The additional 3887 ‘fuzzy’ single-copy orthologues identified by KinFin were
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Figure 3.3.2: Count of proteins by type of cluster. ‘Shared’: clusters containing proteins from

multiple taxa. ‘Specific’: clusters containing two or more proteins from a single proteome. ‘Single-

ton’: clusters containing a single protein.

not used in the analysis. However, ‘fuzzy’ single-copy orthologues can be useful for

analysis of proteomes from more distantly related taxa, where stochastic absence

and duplication can severely limit the number of single-copy loci recovered for

phylogenetic analyses. ‘Fuzzy’ orthologues can be used in combination with tools

such as PhyloTreePruner (Kocot et al., 2013) which filters out-paralogues and

selects appropriate in-paralogues.

I explored the proteomic diversity represented by the three clades within

Onchocercidae (Figure 3.3.3A, at nodes ‘n11’, ‘n15’, ‘n16’) by defining taxon sets

for each of the nodes and used KinFin to generate rarefaction curves for each set

(Figure 3.3.4). Curves for node ‘n11’ (D. immitis and Onchocerca species) and

node ‘n15’ (W. bancrofti, Brugia species and L. loa) show comparable slopes and

the number of non-singleton clusters recovered in both is very similar (11,084
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Figure 3.3.3: Phylogenetic tree of nematodes in the analysis and functional annotation of

synapomorphies. A: Phylogenetic tree based on 781 single-copy orthologues. Non-parametric

bootstrap support for all branches is 100. Internal nodes are labelled. B: Table summarising

‘complete presence’ synapomorphic clusters (100% taxon coverage) and ‘partial absence’ synapo-

morphic clusters (75% ≤ taxon-coverage < 100%) and the percentage for which a RFA could

be inferred. ‘N/A’ is used for cases in which nodes are ancestors of less than four taxa or when

percentage of RFA could not be calculated due to lack of clusters.



80 3.3 Use case 1: Analysis of gene families in filarial nematodes

clusters for ‘n11’ and 10,989 for ‘n15’). Fewer unique protein clusters (9393) were

recovered when sampling node ‘n16’ (L. sigmodontis, A. viteae and E. elaphi). The

fact that none of the curves reaches a plateau suggests that their protein space has

not been sampled exhaustively.

Figure 3.3.4: Rarefaction curves for taxon sets. Rarefaction curves for proteomes within taxon

sets defined by major clades within the onchocercid nematodes: ‘n11’ = D. immitis and On-

chocerca species. ‘n15’ : W. bancrofti, Brugia species and L. loa. ‘n16’: L. sigmodontis, A. viteae and

E. elaphi. The envelope around rarefaction curves was computed based on 25 iterations of random

sampling.

Of all proteins used in the analysis, 157,873 (63.47%) were annotated with

InterPro (IPR) domains. RFA of clusters yielded 12,026 (28.17%) clusters where

75% of contained proteins shared an IPR domain and 75% of proteomes had

at least one protein with that domain. Using the phylogeny based on single-

copy orthologues (Figure 3.3.3A), I identified synapomorphies at each node and

investigated their RFA (Figure 3.3.3B). While many clusters are synapomorphies

of deeper nodes, Onchocercidae and the three groups within Onchocercidae have

few synapomorphic gene family births (ten at ‘n10’, seven at ‘n11’, six at ‘n15’ and

zero at ‘n16’). Of those, only two clusters at ‘n11’ received a RFA: a ‘Chromadorea

ALT’ cluster (‘OG0007060’) and a ‘SOCS box domain’ cluster (‘OG0009843’). The
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Chromadorea ALT domain is found across Nematoda and is also found in several

other clusters. B. malayi ALT-1, the first described Chromadorea ALT protein

(contained in cluster ‘OG0000082’), has been proposed as a candidate vaccine

target for human lymphatic filariasis (Gregory et al., 2000). The synapomorphic

‘Chromadorea ALT’ cluster is specific to Onchocerca spp. and D. immitis and might

harbour the same potential for onchocerciasis. SOCS box domains were first

identified in proteins involved in suppression of cytokine signalling, and are key

regulators of both innate and adaptive immunity (Alexander, 2002). Proteins in

‘OG0009843’ do not contain any of the other domains usually associated with

SOCS, such as SH2 (a combination found in ‘OG0000874’ and ‘OG0007539’) or

Ankyrin repeat-containing domains (a combination found in ‘OG0001559’ and

‘OG0015826’). However, they may still play an immunomodulatory role during

infection as has been suggested for SOCS box proteins in L. sigmodontis (Godel et

al., 2012).

Definition of taxon sets based on host species (‘human’ vs. ‘other’ vs. ‘out-

group’) recovered 628 clusters specific to filarial nematodes, but none had proteins

of more than four out of seven proteomes. Hence, I found no evidence of system-

atic convergent adaptation to human hosts in the analysed proteomes of filarial

nematodes.

KinFin permits rapid assessment of differences in copy number between species

and taxon sets using protein count representation tests. Analysis of clusters shared

between taxa at either side of the basal split in Onchocercinae (‘n11’: D. immitis

and Onchocerca spp., and ‘n15’: other filaria) (Figure 3.3.5) identified 10 clusters

with extreme differences (see Table 3.3.2). Among these was cluster ‘OG0000051’,

which includes prolyl 4-hydroxylase orthologues, including Bm-PHY-1 and Bm-

PHY-2 which are essential for development and cuticle formation, and have been

suggested as potential targets for parasite control (Winter et al., 2013). While all
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‘n15’ taxa have exactly two paralogues (‘WBANC2’ contained only Wb-PHY-1, but

Wb-PHY-2 was located through a TBLASTN search and was present in ‘WBANC1’),

counts in ‘n11’ taxa ranged from five (‘OFLEX’) to 14 (‘OVOLV’). Three additional

singleton prolyl 4-hydroxylase clusters were identified, composed only of ‘n15’ taxa.

The number of paralogous prolyl 4-hydroxylases in D. immitis and Onchocerca spp.

could have negative implications in control measures against this locus.

Figure 3.3.5: Volcano plot of protein count representation tests. Mann-Whitney-U tests were

carried out for clusters shared between taxa at ‘n11’ (D. immitis and Onchocerca spp.) and ‘n15’

(W. bancrofti, Brugia spp. and L. loa). The histogram (top) shows density of data points by loca-

tion on the x-axis.



CHAPTER 3. KinFin: software for the analysis of protein families 83

Ta
bl

e
3.

3.
2:

R
FA

of
te

n
cl

u
st

er
s

of
in

te
re

st
.

C
lu

st
er

s
ex

hi
bi

ti
ng

m
os

t
ex

tr
em

e
va

lu
es

fo
r

lo
g 2

-f
ol

d
ch

an
ge

of
m

ea
ns

am
on

g
‘n

11
’(

D
.

im
m

it
is

an
d

O
nc

ho
ce

rc
a

sp
p.

)
an

d
‘n

15
’(

W
.b

an
cr

of
ti

,L
.l

oa
an

d
Br

ug
ia

sp
p.

).
µ

n1
1
:

M
ea

n
co

un
t

of
pr

ot
ei

ns
at

‘n
11

’.
µ

n1
5
:

M
ea

n
co

un
t

of
pr

ot
ei

ns
at

‘n
15

’.
Pr

ot
ei

ns
:

co
un

t
of

pr
ot

ei
ns

in
cl

us
te

r.
Pr

ot
eo

m
es

:
co

un
t

of
pr

ot
eo

m
es

in
cl

us
te

r.

C
lu

st
er

ID
lo

g 2
-f

c
µ

n1
1

µ
n1

5
Pr

ot
ei

ns
Pr

ot
eo

m
es

IP
R

ID
s

IP
R

de
sc

ri
pt

io
n

O
G

00
00

20
2

3.
17

9.
00

1.
00

54
9

N
on

e
N

on
e

O
G

00
00

05
1

2.
51

10
.0

0
1.

75
10

5
19

IP
R

01
35

47
Pr

ol
yl

4-
hy

dr
ox

yl
as

e
al

ph
a-

su
bu

ni
t,

N
-t

er
m

in
al

IP
R

00
51

23
O

xo
gl

ut
ar

at
e/

ir
on

-d
ep

en
de

nt
di

ox
yg

en
as

e

O
G

00
01

05
9

2.
12

4.
33

1.
00

37
19

IP
R

00
02

19
D

bl
ho

m
ol

og
y

(D
H

)
do

m
ai

n

O
G

00
00

61
1

2.
09

4.
25

1.
00

34
17

IP
R

00
05

71
Zi

nc
fin

ge
r,

C
C

C
H

-t
yp

e

O
G

00
00

49
4

2.
00

4.
00

1.
00

29
17

IP
R

00
89

14
Ph

os
ph

at
id

yl
et

ha
no

la
m

in
e-

bi
nd

in
g

pr
ot

ei
n

O
G

00
00

04
2
−

3.
55

1.
00

11
.7

5
11

6
12

N
on

e
N

on
e

O
G

00
00

06
2
−

2.
74

1.
75

11
.6

7
99

12
N

on
e

N
on

e

O
G

00
01

11
6
−

2.
58

1.
00

6.
00

28
10

N
on

e
N

on
e

O
G

00
00

02
4
−

2.
09

4.
33

18
.5

14
3

14
N

on
e

N
on

e

O
G

00
00

85
7
−

2.
08

1.
00

4.
25

31
16

N
on

e
N

on
e



84 3.3 Use case 1: Analysis of gene families in filarial nematodes

To demonstrate the utility of KinFin for targeted analysis of clustered protein

sequences (and their underlying genes and gene families), I focussed on the biology

of haem synthesis and transport in the Onchocercidae. This pathway is a target of

active investigation for drug development. While most organisms can synthesise

haem, a complete haem biosynthetic pathway is lacking in all nematodes studied

to date (Rao et al., 2005), and proteins of only two of the 12 catabolic steps

have been described in C. elegans (Ce-COX-10 and Ce-COX-15). In C. elegans,

multiple haem responsive genes (HRGs) have been characterised (Rajagopal et al.,

2008; Chen et al., 2011; Sinclair and Hamza, 2015) and orthologues have been

identified in B. malayi (Bm-HRG-1 and Bm-HRG-2) and D. immitis (Luck et al.,

2016). In C. elegans, HRGs are involved in haem trafficking within the epidermis

(HRG-2), to oocytes (HRG-3) and within the intestine (HRG-1/4/5/6). Other

ABC transporters in C. elegans have been implicated in haem homeostasis (MRP-

5, F22B5.4, and ABTM-1) (Severance et al., 2010; González-Cabo et al., 2011;

Antonicka et al., 2003). An orthologue of MRP-5 has been described in B. malayi

(Luck et al., 2016). Several animal parasitic nematodes (including B. malayi, D.

immitis, and O. volvulus) have been shown to harbour a functional ferrochelatase

(FeCH) acquired through horizontal gene transfer from an alphaproteobacterium

(Elsworth, Wasmuth, and Blaxter, 2011; Nagayasu et al., 2013; Wu et al., 2013).

Other nematodes have distinct ferrochelatase-like (FeCL) homologues which lack

the active site. I catalogued homologues of these proteins in the clustering analysis

(Figure 3.3.6).
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FeCL proteins were identified in all species. B. pahangi has two FeCL proteins

while all other taxa have one, but both are located at scaffold borders and may

be the result of an assembly artefact. The horizontally-acquired FeCH is absent

from the Caenorhabditis proteomes (and genomes) but present in all the other

taxa analysed. Paralogues in one of the O. ochengi proteomes are suggestive of

misprediction. COX-10 and COX-15 are present in most taxa in the analysis;

paralogues in B. pahangi and O. flexuosa are a result of fragmented assemblies.

COX-10 is present in W. bancrofti ‘WBANC1’ (on scaffold ‘WBA_contig0009713’),

but the gene was not predicted. COX-10 was not found in E. elaphi, which suggests

that either the corresponding genomic region was not assembled or that the gene

has been lost.

Presence/absence of proteins involved in haem homeostasis showed a more

complex pattern. Ce-HMT-1, an ATP-dependent phytochelatin transporter, was

restricted to Caenorhabditis spp. and D. medinensis. The other ABC-transporter-

like proteins (ABTM-1, MRP-5, and F22B5.4) were present across all taxa. For

F22B5.4, genuine paralogues were found in both Caenorhabditis spp. and O. volvu-

lus. Ce-MRP-5 and Bm-MRP-5 were located within the same cluster, and apparent

paralogues in O. flexuosa and W. bancrofti ‘WBANC1’ derived from predictions lo-

cated at the ends of scaffolds. While no orthologues of Ce-HRG-2/3/4/5/6 were

identified, the cluster containing Ce-HRG-1 included representatives from most

species. Missing orthologues of HRG-1 were identified using TBLASTN searches

in S. labiatopapillosa (scaffold ‘nSl.1.1.scaf00038’), O. ochengi ‘OOCHE2’ (scaffold

‘nOo.2.0.Scaf03259’), W. bancrofti ‘WBANC1’ (scaffold ‘WBA_contig0001821’), and

A. viteae (scaffold ‘nAv.1.0.scaf00129’). The two HRG-1 paralogues in D. immitis

were identified previously (Luck et al., 2014; Luck et al., 2016). Interestingly, Bm-

HRG-2 (Bm2383) is not orthologous to Ce-HRG-2 but rather to Ce-C25H3.7, an

orthologue of human FAXC (failed axon connection).
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3.3.4 Conclusion

I presented some of the main capabilities of KinFin through the analysis of pro-

teomes of filarial nematodes and outgroup species. By extracting single-copy or-

thologues I resolved the phylogenetic relationships between filarial nematodes. I

explored synapomorphic clusters and their functional annotations across the phy-

logeny and identified putative gene families of interest. Through definition of (phy-

logenetic) taxon sets, I assessed the proteomic diversity across key clades of filarial

nematodes. To illustrate targeted analysis of proteins of interest, I analysed clusters

containing proteins involved in haem metabolism and homeostasis using charac-

terised orthologues from the model organism C. elegans.

In summary, all non-Caenorhabditis nematodes analysed have a functional

FeCH, orthologous to the one acquired through HGT in B. malayi. Proteins responsi-

ble for the only two steps in haem biosynthesis described in C. elegans are also found

in all taxa, apart from COX-10 in E. elaphi. The haem transporters HRG-2/3/4/5/6

are (in this analysis) restricted to Caenorhabditis spp., but all spirurid nematodes

analysed have retained HRG-1, a FAXC-like cluster orthologous to Bm-HRG-2, and

MRP-5, and these may mediate haem transport from the intestine.
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3.4 Use case 2: Analysis of gene families in parasitic

worms

3.4.1 Introduction

Parasitic taxa within the phyla Nematoda and Platyhelminthes are of substantial

medical and veterinary interest. Estimates suggest that a quarter of the human

population is infected by parasitic worms and suffers from pain, malnutrition, and

disability due to the diseases they cause (GBD 2015 Disease and Injury Incidence

and Prevalence Collaborators, 2016). According to the World Health Organisation,

diseases associated with nematode and platyhelminth infections account for eight

out of 19 of the most neglected tropical diseases (Molyneux, Savioli, and Engels,

2017). Furthermore, infections of domestic animals lead to substantial economic

losses in developing countries, affecting meat and milk production (Charlier et al.,

2014) as well as the livestock industry (Morgan et al., 2013).

The 50 Helminth Genome project at the Wellcome Trust Sanger Institute

(WTSI) is an international collaboration with the McDonnell Genome Institute

(Washington University), Edinburgh Genomics (University of Edinburgh) and sev-

eral research groups around the world. The project is aimed at sequencing and un-

derstanding the genomes of those nematode and platyhelminth parasites with the

greatest medical and veterinary impact. It should be noted that the word ‘helminth’

does not refer to a taxonomic group but rather to a phenotypic description, as both

nematodes and platyhelminths belong to different superphyla (Winnepenninckx,

Peer, and Backeljau, 1998). Platyhelminthes is nested within the superphylum

Lophotrochozoa, while Nematoda is part of the superphylum Ecdysozoa (Dunn et

al., 2008). Hence, both lineages acquired the molecular machinery necessary to in-

fect animals independently. In Platyhelminthes animal parasitism arose most likely
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once (Olson and Tkach, 2005), while in Nematoda multiple transitions from free

living to animal parasitic lifestyles have occurred (Blaxter et al., 1998). Compari-

son of the gene family repertoire of both phyla can thus highlight similarities and

differences which might one day be exploited for the development of vaccines and

treatments.

Mark Blaxter and I were invited to participate in the analysis of the data

generated by the 50 Helminth Genome Project. I applied KinFin to datasets

generated by collaborators and analysed the clustering of 1.6 million proteins from

previously published genomes and of 31 nematode and 14 platyhelminth species

sequenced within the scope of the project. I surveyed synapomorphic gene families

at key nodes within the phylogenetic tree of metazoans and expanded on the

analysis of ferrochelatases reported in Section 3.3.

3.4.2 Methods

Data

Collaborators within the 50 Helminth Genome Project provided a phylogenetic tree,

InterProScan functional annotations, and an Ensembl Compara (Herrero et al.,

2016) protein clustering of 91 species, comprising 25 platyhelminths, 56 nematodes

and 10 outgroup taxa from other animal phyla (Table 3.A.1).

Analysis of synapomorphic clusters

The Ensembl Compara protein clustering was analysed using KinFin v0.8.3

(Laetsch, 2017a) by providing InterPro IDs from functional annotations and the
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phylogenetic relationships of the included taxa. Synapomorphic clusters at 28

nodes of interest across the phylogenetic tree were investigated and grouped into

the categories ‘complete presence’ (if all taxa under the node were present in the

cluster) or ‘partial absence’ (if at least 90% of taxa under the node were present).

RFA of a cluster was inferred if more than 80% of the species in the cluster contained

at least one protein with that domain.

Phylogenetic analysis of ferrochelatase clusters

I screened Compara clusters for ‘Ferrochelatase domain‘ (IPR001015) and ‘Fer-

rochelatase active site‘ (IPR019772) annotation, and collaborators provided me

with the protein sequences based on that list. I retrieved additional ferrochelatase

protein sequences from NCBI GenBank for 17 bacterial taxa: Rhizobium legumi-

nosarum (YP_002977390.1), Sinorhizobium meliloti (NP_386909.2), Roseibium sp.

(ZP_07659792.1), Ehrlichia chaffeensis (YP_507215.1), E. canis (YP_303255.1),

E. ruminantium (YP_196566.1), Pseudomonas putida (YP_001266120.1), P. flu-

orescens (YP_350458.1), P. syringae (YP_234061.1), Leadbetterella byssophila

(YP_003998063.1), Mucilaginibacter paludis (EFQ76108.1), Hydrogenobacter

thermophilus (ADO44739.1), and Wolbachia endosymbionts of Brugia malayi

(YP_198549.1), Muscidifurax uniraptor (ZP_03788224.1), Drosophila melanogaster

(NP_966898.1), Culex quinquefasciatus (YP_001975511.1), and Dirofilaria immitis

(ABV58328.1) based on Elsworth et al. (2011). Phylogenetic analysis was carried

out as described in Section 3.3.2.



CHAPTER 3. KinFin: software for the analysis of protein families 91

3.4.3 Results

The Compara clustering comprised 1,640,269 proteins placed in 384,608 clusters,

of which 275,037 were singletons (accounting for 16.77% of proteins). Results

of the KinFin analysis of synapomorphic clusters at 28 nodes of interest within

the tree of Metazoa are listed in Table 3.4.1. In total, 3512 ‘complete presence’

synapomorphic clusters were found for the 28 nodes of interest, of which 16.86%

were assigned a RFA. Allowing for stochastic absence of proteomes in clusters, 2369

‘partial absence’ synapomorphies could be identified, of which 23.98% received a

RFA. The low percentage of RFAs for synapomorphic clusters could be explained

by diverse gene annotation pipelines applied to each of the taxa. However, it is

striking that phylogenetically deeply conserved protein clusters, e. g. at node ‘A’

(Platyhelminthes) and node ‘B’ (Nematoda), contained many proteins that have

so far escaped functional annotation by the research community. Synapomorphic

clusters which received a RFA were grouped into 24 functional categories relevant

to parasitism and are visualised in Figure 3.4.1.
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Figure 3.4.1 (previous page): Phylogenetic tree of Metazoa annotated with functional cate-

gories of synapomorphic gene families. Rectangular panels indicate counts of synapomorphic

gene families grouped by 24 functional categories, detailed in the major panel. Node: Node in phy-

logenetic tree to which a panel refers to. Other: synapomorphic gene families with representative

functional annotation that could not be grouped into one of the 24 functional categories. None:

synapomorphic gene families that had no representative functional annotation.

Functional annotation of synapomorphic clusters is diverse, but no striking

signature of parasitism between nematodes and platyhelminths, or within either

phylum could be observed. Some functional annotations were frequently associated

with synapomorphic clusters, including several related to sensory perception (such

as G-protein coupled receptors), parasite surfaces (platyhelminth tegument or

nematode cuticle maintenance proteins), and protein degradation (proteases and

protease inhibitors).

Within Nematoda, Clade IVa (Strongyloididae) displayed the highest number of

synapomorphic clusters, including five fatty acid and retinol-binding (FAR) clusters,

a novel ferrochelatase cluster, and the highest number of synapomorphic G-protein

coupled receptor (GPCR) clusters within Nematoda. Fatty acid and retinol-binding

proteins have previously been implicated in host-parasite interaction in both plant-

and animal-parasitic nematodes (Prior et al., 2001; Rey-Burusco et al., 2015),

suggesting a role in immune modulation, which might be involved in the host-

parasite interaction in Strongyloididae.

Analysis of synapomorphic clusters of parasitic platyhelminths (Neodermata,

composed of Protopolystoma, Trematoda and Cestoda) identified a clade-specific

inositol-pentakisphosphate 2-kinase that produces inositol hexakisphosphate nano-

deposits in the cyst wall of some Echinococcus species (Casaravilla et al., 2006).

These deposits increase the surface area for protein adsorption and might play a

role in host-parasite interaction (Díaz et al., 2016). Synapomorphic clusters, with
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RFAs grouped under the category ‘Membrane’ and ‘Vesicle transport’, were prevalent

at several platyhelminth nodes and might be involved in maintenance and function

of the neoderm (double bilayer) of these taxa.

As described in Section 3.3, most nematode genomes lack genes coding for

functional ferrochelatases but harbour ferrochelatase-like (FeCL) genes of unknown

function which are devoid of the active site. Exceptions are animal parasites in

nematode Clades III and IV that acquired a functional ferrochelatase via horizontal

gene transfer from alphaproteobacteria (Elsworth, Wasmuth, and Blaxter, 2011;

Wu et al., 2013; Nagayasu et al., 2013). Screening for clusters containing proteins

annotated with ‘Ferrochelatase domain‘ (IPR001015) and/or ‘Ferrochelatase active

site‘ (IPR019772) identified four clusters. Two clusters were entirely comprised of

proteins from nematode taxa and lacked the active site: the synapomorphic Clade

IVa cluster (‘Clade IVa FeCL’) and a cluster containing proteins from most nematodes

(‘FeCL’). The other two clusters harbour functional ferrochelatases: one consisting

of non-nematode taxa (‘FeCH’) and one composed of 34 nematode and five non-

nematode taxa (‘FeCH-HGT’). Phylogenetic analysis revealed the synapomorphic

‘Clade IVa FeCL’ to be part of the nematode ‘FeCL’-clade (Figure 3.4.2). The five

non-nematode sequences in the ‘FeCH-HGT’ cluster were recovered inside the non-

nematode FeCH clade, and were most likely an artefact of the Compara clustering

method. The nematode sequences in the ‘FeCH-HGT’ cluster form a monophyletic

clade placed next to alphaproteobacteria, consistent with previous findings. The

species composition of ‘FeCH-HGT’ suggests that the acquisition of the functional

ferrochelatase predated the split of Clades III and IV.
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of protein sequences in ferrochelatase groups. Non-parametric bootstrap support is depicted

for main branches only. ‘FeCL’ (Nematode): nematode specific FeCL proteins, devoid of active

site; ‘Clade IVa FeCL’ (Nematode): synapomorphic FeCL cluster of Nematode Clade IVa; ‘FeCH’

(Non-Nematode): functional FeCH cluster composed of taxa of non-nematode phyla; ‘HGT-

FeCH’ (Nematode): Clade III/IV specific FeCH acquired through horizontal gene transfer from

alphaproteobacteria; ‘Alphaproteobacteria’: FeCH of non-Wolbachia alphaproteobacteria; ‘Bacteri-

odetes’: FeCH of L. byssophila and M. paludis; ‘Gammaproteobacteria’: FeCH of Pseudomonas spp.;

‘Wolbachia-like’: FeCH of Wolbachia spp., E. chaffeensis and H. thermophilus.
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3.4.4 Conclusion

KinFin analysis of synapomorphic clusters was a valuable addition to other analysis

performed by collaborators. For instance, it revealed that Clade IVa (Strongyloidi-

dae) displays the highest number of synapomorphic GPCR chemosensory clusters

of any group. This was missed by other analyses as ‘bait’ sequences from C. elegans

were too dissimilar to identify Clade IVa GPCRs (Matthew Berriman, 2017, pers.

comm.).

Reanalysis of the origins of the HGT-derived ferrochelatase in filarial nema-

todes, based on the synapomorphic Clade IVa FeCL cluster, lead to a hypothesis re-

garding the time point of the acquisition of the functional FeCH through HGT, which

must have occurred before the split of Clade III and IV. Furthermore, identification

of synapomorphic clusters in Neodermata, functionally linked to membrane mainte-

nance and vesicle transport, might reveal effective targets for control or treatment.

It should be noted that each of the synapomorphic clusters at nodes comprised solely

of parasitic taxa harbours the potential to be relevant for understanding their biol-

ogy since these proteins are either absent from other taxa or sufficiently different

to be clustered with other proteins.
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3.5 Use case 3: Analysis of gene families in Ecdyso-

zoa

3.5.1 Introduction

Previous work on the genome of the tardigrade Hypsibius dujardini by members

of the Blaxter lab (Koutsovoulos et al., 2016) led to a collaboration with the

Arakawa lab which generated genome and transcriptome data for another hypsibiid

tardigrade, Ramazzottius varieornatus. Both species belong to the same class

of tardigrades (Eutardigrada), but the terrestrial species R. varieornatus readily

enters anhydrobiosis and is resistant to desiccation (Horikawa et al., 2008), while

the limnoterrestrial tardigrade H. dujardini requires prolonged pre-exposure to

drying conditions (Kondo, Kubo, and Kunieda, 2015). Hence, both taxa serve

as complementary model organisms for the study of the molecular processes of

anhydrobiosis in tardigrades.

Tardigrades are members of the superphylum Ecdysozoa together with arthro-

pods, onychophorans, nematodes, nematomorphs, priapulids, kinorhynchs, and

loriciferans (Dunn et al., 2008), but the phylogenetic relationships between these

groups is under debate, as approaches based on morphological, developmental

and molecular traits yield conflicting results (Campbell et al., 2011; Borner et al.,

2014). Traditionally, Ecdysozoa is divided into three subgroups based on morpho-

logical and developmental traits: Panarthropoda (Arthropoda, Onychophora, and

Tardigrada), Nematodida (Nematoda and Nematomorpha), and Scalidophora (Pri-

apulida, Kynorhyncha, and Loricifera) (Nielsen, 2013; Telford et al., 2008). How-

ever, molecular phylogenies consistently recover Tardigrada as a sister phylum to

nematodes and nematomorphs (Dunn et al., 2008; Campbell et al., 2011; Borner

et al., 2014), thus contradicting the Panarthropoda hypothesis.
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KinFin allows computation of synapomorphic clusters under a given tree topol-

ogy. By supplying alternative tree topologies the effect on counts of synapomor-

phic clusters at key nodes can be compared. This can be seen as an analysis of

gene/protein family birth, a form of rare genomic change sensu Rokas and Holland,

2000, and be used to evaluate competing phylogenetic hypotheses.

The collaboration between the Arakawa and the Blaxter lab was initiated in

order to pool resources and data with the aim of improving genome assemblies

and gene annotations for R. varieornatus and H. dujardini, by reducing the effect of

heterozygous regions on the assembly and removing residual contamination. Fur-

thermore it was aimed at investigating the molecular machinery underpinning an-

hydrobiosis, resolving the phylogenetic position of tardigrades within Ecdysozoa,

and assessing the extent of horizontal gene transfer (HGT) in both genomes. I

carried out protein clustering analysis based on the protein predictions of tardi-

grade genomes assembled by Yuki Yoshida and Georgios Koutsovoulos in addition

to publicly available proteomes derived from genomes of other ecdysozoan taxa.

I conducted KinFin analyses based on these clusterings under alternative phyloge-

netic hypothesis and investigated patterns of synapomorphies and representative

functional annotations of clusters.

3.5.2 Methods

Data

I was supplied with proteomes derived from the genome assemblies of the tadi-

grades R. varieornatus and H. dujardini by Yuki Yoshida and Georgios Koutsovoulos.

Protein predictions from genomes of Annelida (Capitella teleta), Nematoda (Ascaris
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suum, Brugia malayi, Bursaphelenchus xylophilus, Caenorhabditis elegans, Meloidog-

yne hapla, Plectus murrayi, Pristionchus pacificus, Trichuris muris, and Trichinella spi-

ralis), Arthropoda (Anopheles gambiae, Apis mellifera, Acyrthosiphon pisum, Cimex

lectularius, Dendroctonus ponderosae, Daphnia pulex, Ixodes scapularis, Nasonia vit-

ripennis, Pediculus humanus, Plutella xylostella, Solenopsis invicta, Strigamia mar-

itima, Tribolium castaneum, Tetranychus urticae, and Drosophila melanogaster), Mol-

lusca (Octopus bimaculoides), and Priapulida (Priapulus caudatus) were retrieved

from public databases as described in Yoshida et al., 2017a.

KinFin analysis

Protein clustering and functional annotation was generated as described in Yoshida

et al., 2017a. In brief, protein clustering was carried out at MCL inflation values

of 1.1, and 1.5 – 5.0 (in increments of 0.5), to investigate robustness of conclu-

sions based on alternative phylogenetic hypotheses. For all other analyses, the

protein clustering under the MCL inflation value 1.5 was used. OrthoFinder

clustering output was analysed using KinFin v0.8.2 (Laetsch, 2017a) under

two competing phylogenetic hypotheses: either ‘Tardigrada+Arthropoda’ (Pa-

narthropoda hypothesis), where Tardigrada and Arthropoda share a concestor, or

‘Tardigrada+Nematoda’ (Triradiata hypothesis, due to shared pharynx morphology

between the taxa), where Tardigrada and Nematoda share a concestor. Single-

copy orthologues between H. dujardini and R. varieornatus, ‘true’ and ‘fuzzy’ 1-to-1

clusters between all species, and synapomorphic clusters under the two competing

phylogenetic hypotheses were identified using KinFin output.

A network representation of the OrthoFinder clustering at MCL inflation

value 1.5 was generated using the generate_network.py script distributed with
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KinFin. The nodes in the graph were positioned using the ForceAtlas2 layout algo-

rithm (Jacomy et al., 2014) implemented in Gephi v0.9.1 (Bastian, Heymann,

and Jacomy, 2009) (Scaling = 10000.0, Stronger gravity = True, Gravity

= 1.0, Dissuade hubs = False, LinLog mode = True, Prevent overlap

= False, Edge Weight Influence = 1.0).

3.5.3 Results

Analysis of protein clustering using KinFin

The clustering at MCL inflation value 1.5 of the 537,608 proteins in the dataset

yielded 144,610 clusters, of which 125,951 were singletons, accounting for 23.43%

of proteins and 11.6% of amino acid span (cumulative amino acid length). Clus-

ters shared by two or more species accounted for the majority of amino acid span

(87.9%), while comprising 12.1% of clusters. H. dujardini displayed more species-

specific clusters than R. varieornatus and contained more paralogues in clusters

shared with R. varieornatus. H. dujardini was also found in more clusters shared

with non-tardigrade species, suggesting gene loss in R. varieornatus. I found 1486

tardigrade-specific clusters, of which 365 (24.56%) received a RFA, including 53

peptidase clusters, 27 kinase clusters, and 29 clusters associated with signalling

function of which 18 were GPCRs. These annotations are commonly found in

clade-specific protein families and suggest innovation in these classes of function

is a general feature in metazoan evolution. However, certain tardigrade-specific

clusters were part of the Wnt signalling pathway, including homologues to Wnt,

Frizzled, and chibby proteins. 21 tardigrade-specific clusters linked to cryptobiosis
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were found containing domain annotations connected to genome repair and main-

tenance, including molecular chaperones (2), histone/chromatin maintenance pro-

teins (11), genome repair systems (4), nucleases (2), and chromosome cohesion

components (2).

I supplied Georgios Koutsovoulos with 21 ‘true’ and 2144 ‘fuzzy’ 1-to-1 clusters

between all species. He screened ‘fuzzy’ 1-to-1 clusters to eliminate outparalogues

and generated a phylogeny for ecdysozoan taxa (Figure 3.5.1).

Figure 3.5.1: Phylogenetic tree of ecdysozoan phyla. Phylogeny of 28 species from 5 phyla,

based on 322 loci derived from whole genome sequences, and rooted with the lophotrochozoan

outgroup. The labels on the nodes are Bayes proportions from PhyloBayes analysis / bootstrap

proportions from Randomized Axelerated Maximum Likelihood (RAxML) maximum likelihood

bootstraps / proportion of trees of individual loci supporting each bipartition. Note that different

numbers of trees were assessed at each node, depending on the representation of the taxa at each

locus. * indicates maximal support (Bayes proportion of 1.0 or RAxML bootstrap of 1.0). From

Yoshida et al., 2017a.
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The supermatrix phylogeny strongly supported Tardigrada as a sister phylum

to Nematoda. Within Nematoda and Arthropoda, the relationships of species were

congruent with previous analyses, and the earliest branching taxon in Ecdysozoa

was the priapulid. Support was high across the phylogeny, with only two internal

nodes in Nematoda and Arthropoda receiving less-than-maximal support. Develop-

mental and anatomical data do not, in general, support a tree linking Tardigrada

with Nematoda. Tardigrades are segmented, have appendages, and have a cen-

tral and peripheral nervous system anatomy that can be homologised with those

of Onychophora and Arthropoda (Gross and Mayer, 2015; Martin et al., 2017). In

contrast, nematodes are unsegmented, have no lateral appendages, and have a sim-

ple nervous system. The triradiate pharynx — found in Nematoda, Nematomorpha,

and Tardigrada — is one possible morphological link, but Nielsen, 2013 has argued

that the structures of this organ in nematodes and tardigrades (and other taxa) are

not homologous and have evolved independently.

Network representation of the clustering

A network representation of the clustering where nodes represent proteomes and

edges are weighted by the number of shared occurrences of proteomes in clusters,

is shown in Figure 3.5.2. This type of visualisation allows exploration of protein

clusterings from the point of view of proteomes as opposed to clusters. Proteins

from tardigrade genomes occupy more clusters shared with arthropod taxa than

with nematode taxa, which is visible from the thickness of edges which is scaled by

edge weight.
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Figure 3.5.2: Network representation of the clustering. Nodes represent proteomes. The

thickness of an edge connecting two nodes is weighted by the count of shared occurrences of pro-

teomes in clusters. Links involving H. dujardini (red) and R. varieornatus (orange) are coloured.

The inset box on the lower right shows the average weight of edges between each phylum and

both Tardigrades, normalised by the maximum weight (i. e. count of co-occurrences of Tardigrades

and the annelid C. teleta). 0: A. gambiae, 1: A. mellifera, 2: A. pisum, 3: A. suum, 4: B. malayi,

5: B. xylophilus, 6: C. elegans, 7: C. lectularius, 8: C. teleta, 9: D. ponderosae, 10: D. pulex, 11: H.

dujardini, 12: I. scapularis, 13: M. hapla, 14: N. vitripennis, 15: O. bimaculoides, 16: P. caudatus,

17: P. humanus, 18: P. murrayi, 19: P. pacificus, 20: P. xylostella, 37: R. varieornatus, 22: S. invicta,

23: S. maritima, 24: T. castaneum, 25: T. muris, 26: T. spiralis, 27: T. urticae, 38: D. melanogaster.
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Investigation of synapomorphic clusters under competing phylogenetic hy-

potheses

Synapomorphies were evaluated across clusterings based on nine MCL inflation

values and the two competing tree topologies (Panarthropoda vs. Triradiata) and

counts are visualised in Figure 3.5.3. Allowing for partial absence, I found 154

families to be synapomorphic congruent with Panarthropoda, and 99 congruent

with Triradiata. Of those, 20 under Panarthropoda and five under Triradiata

contained proteins from both tardigrades and at least 5 other taxa (out of 9

nematodes and 15 arthropods). This trend was observed for clusterings across all

MCL inflation values tested.

Figure 3.5.3: Count of synapomorphies under alternative phylogenetic hypotheses. Count of

synapomorphies (allowing for partial absence) at key nodes supporting Panarthropoda hypothesis

(orange) and Triradiata hypothesis (grey) for clusterings performed at different MCL inflation

parameters.

At inflation value 1.5, I found six synapomorphic clusters where all taxa were

present congruent with Panarthropoda, while not a single such cluster was found

under the Triradiata hypothesis. The six loci identified as universally retained

protein families in Panarthropoda included spaetzle, a cysteine-knot/cytokine-like

family that is known to interact with the Toll receptor pathway in D. melanogaster,
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where it is involved in dorso-ventral patterning as well as immune response. Other

clusters were functionally annotated as having serine-type endopeptidase activity or

harbouring a thioredoxin domain and thus being involved in cell redox homeostasis.

However the remainder of the clusters had no informative annotation other than

the presence of domains of unknown function (DUFs). Again, it is surprising

that such deeply conserved loci have escaped functional, genetic and biochemical

annotation.

3.5.4 Conclusion

Protein clusterings and their analyses using KinFin allowed investigation of synapo-

morphic clusters under competing phylogenetic hypotheses, which subsequently

served as substrate for further analyses by collaborators. The visualisation of the

clustering as a network, where nodes represent proteomes and edges are weighted

by the number of shared occurrences in clusters, enables a novel, proteome-focussed

view on clustering results which needs to be explored further.

Assessment of the extent of synapomorphic clusters at key nodes under the

competing phylogenetic hypotheses, a form of rare genomic change, lent support

to the Panarthropoda hypothesis (Tardigrada and Arthropoda sharing a common an-

cestor), but the support was not strong. Analyses under the assumption of the Trira-

diata hypothesis (Tardigrada and Nematoda sharing a concestor) identified synapo-

morphic clusters at about half the rate than when Panarthropoda was assumed.

However, it should be noted that recognition of synapomorphic protein families

may be compromised by the same long branch attraction issues that plague phy-

logenetic analyses (Dunn et al., 2008; Campbell et al., 2011; Borner et al., 2014),

and also that any taxon where gene loss is common, which has been suggested for

Nematoda (Wasmuth et al., 2008), may score worse in protein family membership
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metrics. Results of phylogenetic analysis conflict with the findings based on synapo-

morphies as they recover a topology congruent with the Triradiata hypothesis. This

is supported by other rare genomic changes, such as the loss of the same three HOX

genes in nematodes and tardigrades (see HOX protein analysis by Mark Blaxter in

Yoshida et al., 2017a). HOX genes are involved in the anterior-posterior patterning

across Metazoa.

Hence, the position of Tardigrada within Ecdysozoa remains an open ques-

tion. Clearly, more genomic data is needed, especially from representatives of

Onychophora, Heterotardigrada (the sister group to Eutardigrada), Nematomor-

pha, and enoplian (basal) Nematoda. This will hopefully allow construction of a

robust phylogenetic tree.
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3.6 Use case 4: Analysis of gene families in Nema-

toda

3.6.1 Introduction

Development of KinFin was initially sparked by the idea of analysing protein

families across all available nematode proteomes derived from both genomes and

transcriptomes. The underlying code has been designed with this magnitude of data

in mind. WormBase ParaSite (version WBPS8) contains 100 nematode proteomes

and the Blaxter Lab has generated protein predictions from 25 additional genomes

and five transcriptomes, totalling 125 nematode proteomes from 107 species.

Here, I present a clustering analysis of these nematode proteomes and 26

outgroup species which was used to assess performance of KinFin and will serve

as substrate for further analysis by colleagues. Furthermore, I briefly explore the

effect of inclusion of isoforms on results of protein clusterings, assess the protein

space uncovered by these proteomes for taxonomic clades within Nematoda, and

present a network representation of the protein clustering.

3.6.2 Methods

Data

Proteomes and annotation files (GFF3) were retrieved by Duncan Berger and

myself, for the 151 species listed in Table 3.A.2. Proteomes were filtered using

the script filter_fastas_before_clustering.py distributed with KinFin
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v0.8.3 (Laetsch, 2017a), to exclude sequences shorter than 30 amino acids or

containing internal stops.

Protein clustering

BLAST commands were generated using using GNU parallel (Tange, 2011) based

on recommendations by Moreno-Hagelsieb and Latimer, 2008 (-evalue 1e-5

-outfmt '6' -seg yes -soft_masking true -use_sw_tback). The 22,801

sequence similarity searches between proteomes were run using BLAST v2.4.0+

(Camacho et al., 2009) on the EDDIE supercomputing cluster at the University of

Edinburgh.

Sequence IDs of non-representative isoforms for each proteome were deter-

mined using the KinFin script filter_isoforms_based_on_gff3.py. The se-

quence similarity search results were filtered to exclude hits between and within

non-representative isoforms using the script filter_sequences_from_blast.py

to generate a second set of results from which non-representative isoforms were ex-

cluded.

Protein clustering was carried out using OrthoFinder v1.1.4 (Emms and

Kelly, 2015), at 9 different MCL inflation values (1.5 – 5.0 in increments of 0.5)

for both sets of BLAST results, including all isoforms (‘AI’) and only including

representative isoforms (‘RI’). The resulting clusterings based on BLAST results

containing only the representative isoforms (where all non-representative isoforms

are found in singleton clusters due to the lack of BLAST results), were filtered with

the KinFin script filter_sequences_from_clustering.py.

Functional annotation of proteins was generated based on InterProScan
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v5.22-61.0 (Jones et al., 2014) results against PFAM v30.0 (Finn et al., 2016)

and SignalP-Euk v4.1 (Petersen et al., 2011).

KinFin analysis

KinFin analysis was carried out for each of the protein clusterings using KinFin

v0.8.3 (Laetsch, 2017a) by providing a functional annotation file created using the

script functional_annotation_of_clusters.py based on the InterProScan

output. A rarefaction curve was drawn by defining custom taxonomic groups for

Nematoda based on Blaxter et al., 1998 and Blaxter and Koutsovoulos, 2015 within

the config file. Rarefaction curves were calculated for taxon sets of size two or

greater and with 30 repetitions of random sampling of the proteomes.

KinFin output for the protein clustering at MCL inflation value 3.0 and based on

the ‘RI’ proteome set was used to generate a network representation of the clustering

using the script generate_network.py. The network was visualised using Gephi

v0.9.1 (Bastian, Heymann, and Jacomy, 2009). Nodes were positioned based on

the ForceAtlas2 layout algorithm (Jacomy et al., 2014) by starting from a random

layout (Scaling = 10000.0, Stronger gravity = True, Gravity = 1.2,

Dissuade hubs = True, LinLog mode = True, Prevent overlap = True,

Edge Weight Influence = 1.0). Nodes were scaled based on proteome size

and coloured based on taxonomic groupings.
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3.6.3 Results

Composition of the proteomes

The set of proteins including isoforms contained 3,162,746 proteins with a cumula-

tive length of 1,154,475,022 amino acids. Exclusion of non-representative isoforms

lead to a dataset composed of 2,835,046 proteins with a total span of 982,530,736

amino acids. The number of predicted isoforms varies between proteomes depend-

ing on the quality of gene annotations of the underlying genomes and the data

used to infer them, since proteomes based on transcriptomes always include iso-

forms. In this dataset, 83 out of 151 proteomes contained no isoforms. Percentages

of non-representative isoforms above 50% were encountered in the proteomes of

H. sapiens (80.50%), Propanagrolaimus sp. JU765 (61.60%, based on an unpub-

lished version of the genome), and D. melanogaster (54.20%). While H. sapiens

and D. melanogaster are well established model organisms the result for the pana-

grolaimid nematode was puzzling. However, the recent publication of the genome

revisited the gene predictions, which revised the amount predicted proteins from

32,914 to 27,350 (Schiffer et al., 2017).

Protein clustering

Clustering of the proteomes including all isoforms (‘AI’) yielded between 1,590,254

(MCL inflation value 1.5) and 1,927,885 (5.0) clusters. If isoforms were excluded

(‘RI’), the number of clusters varied between 1,540,385 (1.5) and 1,870,356 (5.0).

In both clusterings, no ‘true’ 1-to-1 clusters could be identified which is most likely

an effect of the reduced quality of some of the included proteomes.

The number and span of proteins was evaluated based on the type of cluster
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they were placed in: ‘singleton’ (containing only one protein), ‘specific’ (composed

of multiple proteins from one proteome), and ‘shared’ (consisting of multiple

proteins from multiple proteomes). A clustering becomes more granular with

increasing MCL inflation value, i. e. more proteins end up in ‘singletons’ or ‘specifics’

than in clusters shared with other proteomes. The extent of this effect is summarised

in Table 3.6.1 for the clustering of two sets of proteomes across the nine MCL

inflation values. The proportion of proteins and amino acids placed in different

cluster types is fairly consistent between the two sets of proteomes and across MCL

inflation values: most proteins and amino acids are placed in shared clusters. A

smaller proportion is contained in singleton clusters, while less than three percent of

proteins and amino acids are grouped in proteome specific clusters. Unsurprisingly,

the ‘RI’ proteome set has slightly higher mean percentages for both proteins and

amino acids placed in singleton clusters, caused by the absence of isoforms which

otherwise would place them in proteome specific clusters. The ‘AI’ proteome set

exhibits slightly higher SD values which suggest a greater effect of MCL inflation

value on the clustering. It should be noted that the effect of phylogenetic distance

between proteomes probably has a great influence on the resulting clusterings in

this dataset. Since for some species multiple proteomes were included, a significant

proportion of clusters will appear shared although they are composed of proteomes

of the same species.

KinFin analysis

KinFin analysis of the protein clusterings was carried out on the Blaxter lab com-

puting cluster (using one cpu thread). Parsing of the input files took less than 10

minutes in all cases, but computing of metrics and writing of output files took on
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Table 3.6.1: Effect of inclusion of isoforms on protein clusterings. Population mean (µ) and

SD (σ) of percentage of proteins and amino acids placed in the three cluster types based on sets of

proteomes. ‘AI’: including all isoforms. ‘RI’: including only representative isoforms.

Cluster type

Singleton Specific Shared

Proteome set µ σ µ σ µ σ

Proteins (%) ‘AI’ 13.37 0.10 2.78 0.88 83.85 0.97

Amino acids (%) ‘AI’ 5.85 0.08 2.45 0.78 91.70 0.85

Proteins (%) ‘RI’ 13.70 0.11 2.56 0.79 83.74 0.90

Amino acids (%) ‘RI’ 6.17 0.10 2.33 0.72 91.50 0.82

average 15.6 hours per clustering and required 95.8 GB of memory. While this is ac-

ceptable for a dataset of this size, improvements are planned to remove residual re-

dundancy in the computational steps and to decrease memory requirements.

KinFin output of the protein clustering at MCL inflation value 3.0 based on the

‘RI’ set of proteomes was used to calculate rarefaction curves for custom taxonomic

groups (Figure 3.6.1) and was visualised as a network, in which nodes represent

proteomes and edges between nodes are weighted by the number of co-occurrences

of proteomes in clusters (Figure 3.6.2).

The rarefaction curves are a common form of visualisation of sampling success.

Here, they are used to display the amount of novel non-singleton clusters uncovered

by successive addition of proteomes for each taxonomic group. Clade V is the best

sampled clade within Nematoda, containing model organisms such as C. elegans and
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many other free-living and animal-parasitic species. Clade IV, containing species

from both free-living species and parasites of animals, plants and invertebrates,

exhibits the second steepest growth in the plot, despite containing less sampled

proteomes than the entirely animal-parasitic Clades III and I, which is currently

composed of animal parasites and one free-living congener. This is suggestive of

an enlarged protein space comprised by Clade IV proteomes linked to the varied

life styles. While both Clades III and I appear to approach a plateau, this is most

likely an artefact based on prominent sampling of species of medical and veterinary

importance. Inclusion of free-living taxa in Clade I and invertebrate parasitic or

basal taxa in Clade III, would most likely disturb this apparent trend. Neither Clade

V nor Clade IV show signs of reaching a plateau, while no data is available for Clade

II nematodes.

Figure 3.6.1: Rarefaction curves for taxonomic groupings proteomes. Taxonomic groupings of

Nematoda was based on Blaxter et al., 1998 and Blaxter and Koutsovoulos, 2015.

The two proteomes in the analysis containing the greatest number of proteins

are the Clade I nematode R. culicivorax (48,179) and the Clade IV nematode M.

floridensis (47,957). In both cases, this is most likely a result of the low quality

of the underlying genomes. While the network representation appears to recover

some of the general taxonomic groupings, this is not a stable configuration and
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Figure 3.6.2: Network representation of a protein clustering of proteomes. Nodes represent

proteomes. The thickness of an edge connecting two nodes is weighted by the count of shared

occurrences of the proteomes in clusters. Nodes are scaled based on proteome size and coloured

based on taxonomic groupings. For nematode species, colouring was based on clade/group sensu

Blaxter et al., 1998 and Blaxter and Koutsovoulos, 2015.

it is difficult to draw conclusions based on it. The extreme connectivity between

nodes hinders the layout algorithm from arriving at a stable topology and clearly,

more work is needed to address this. However, the network representation is a

useful visualisation for rapid visual identification of outliers in the clustering, since

well connected proteomes are drawn to the centre of the network and low quality

proteomes often are tend to remain in the periphery.



118 3.6 Use case 4: Analysis of gene families in Nematoda

3.6.4 Conclusion

Based on the modularity of the OrthoFinder clustering pipeline, the BLAST results

I generated can serve as a resource for future studies, since addition of a new

proteome only requires n− 1 novel BLAST searches, as opposed to n2− 1, where n

is the number of non-novel proteomes to be included in the clustering.

This use case showed that KinFin is able to process large scale datasets effi-

ciently and revealed several issues with the quality of some of the proteomes used.

Based on the clusterings I generated, Flo McLean and Duncan Berger were able to

identify major problems with the proteome of the Clade V nematode H. bacterio-

phora, which prompted a re-annotation project and subsequently led to an improved

annotation for this species. Visualisation of the rarefaction curves for the four clades

in Nematoda revealed differences in their contribution to nematode protein space.

Addition of new proteomes of Clade V and Clade IV species reveals more ‘novelty’

than those of Clade III and Clade I, which is most likely a product of sampling

strategies of nematode genome projects.

However, much more work is needed to identify outliers in the dataset that

are based on low quality proteomes and assess the protein family space across

Nematoda.
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3.7 Kinfin facilitates large scale analysis of proteome

data

As ever more genomes are sequenced and our understanding of the diversity of

protein space increases, it concomitantly becomes more difficult to see the patterns

in complex orthology data. To ease this bottleneck I have developed KinFin, a tool

that takes the output of standard orthology inference pipelines and provides a user-

friendly but rich analytical toolkit to review and interrogate orthology clustering.

By permitting user definition of custom taxon sets, KinFin can be used to highlight

changes in presence or membership of orthologue groups associated with either

taxonomy or phenotypes of interest. Its reliance on standard input file formats

and explicit parameters makes integration in comparative genomics projects easier,

and thus promotes transparent and reproducible analysis of clustered protein

data.

It should be noted that up until now, due to the lack of software solutions capa-

ble of analysing protein clustering data using custom user input, results of protein

clustering data have essentially been ‘lost to science’ since very few researchers de-

posit their clustering data and the subsequent analysis workflow in a way that allows

reproducibility. Formalisation of this type of analysis within KinFin now guarantees

reproducibility given that the config file of the KinFin run, the parameters used, and

the necessary input files are published.

KinFin readily processes large datasets, as shown in Section 3.4 and 3.6

and the speed of execution promotes hypothesis exploration, such as comparing

alternative phylogenetic topologies (Section 3.5), or contrasting taxon sets specified

in the config files. Visualisations of rarefaction curves (Section 3.3) and network

representations (Section 3.6) allow identification of outlier datasets.
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In this chapter, several insights were gained into the biology of the analysed

taxa. In Section 3.3, I investigated protein families involved in haem metabolism in

filarial nematodes, on which I expanded in Section 3.4 by analysing proteomes of

nematodes and platyhelminths. I could form a hypothesis regarding the acquisition

of a functional FeCH gene through horizontal gene transfer in Clade III and Clade

IV nematodes and discovered a novel, synapomorphic FeCL protein family in

Strongylodidae. In addition, I uncovered many synapomorphic protein families

in both nematodes and platyhelminths which might be linked to parasitism and

await further analysis. In Section 3.5, I showed how KinFin can be used for

exploration of alternative evolutionary hypotheses, which recovered evidence for

the Panarthropoda hypothesis in the phylogeny of ecdysozoans, suggesting that

Tardigrada and Arthropoda are sister clades. This is based on the number of

recovered synapomorphic clusters shared between both groups. However, the

phylogenetic position of tardigrades remains under debate, as this result conflicts

with other conclusions derived from the same data, such as phylogenetic analysis

and HOX gene complement which both support the Triraditata hypothesis in which

Nematoda and Tardigrada share a concestor. More data from under-sampled

taxonomic groups are needed to address this question. In Section 3.6, I present

preliminary work on a protein family analysis of 128 nematode and 23 outgroup

proteomes, where I assess effect of inclusion of isoforms in clustering analysis and

analyse contribution of clades sensu Blaxter et al., 1998 to the nematode protein

space. This dataset has and will be a valuable resource for further research.

While KinFin is a useful addition to the comparative genomics toolbox, plenty

of room for improvement exists. Mark Blaxter has recently submitted a NERC

proposal to tackle unsolved questions regarding the phylogenetic relationships

within the superphylum Ecdysozoa, on which I am a named researcher and in which

KinFin would feature prominently. This would allow me to continue work on the
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KinFin code base and develop new analyses and visualisations. Some of the features

I plan to implement are as follows:

• Refactoring of code to accommodate interaction with a SQL database for

storage of results and reduction of overall runtime, since often users do not

need all results currently being calculated by KinFin. This would also decrease

memory requirements substantially, as previously calculated results can be

accessed if needed but are not necessarily kept in memory at all times.

• Refactoring of code to create a ‘Read-eval-print loop’ (REPL) user interface for

interaction with the underlying SQL database, as illustrated by Ramanujam,

2017.

• Improved visualisations of cluster memberships of sets of taxa based on the

UpSet suite of visualisation methods by Lex et al., 2014.

• Integration of benchmarking functions for clusterings based on user defined

priors, e. g. sets of proteins which are known to be bona fide orthologues

and which can be used to assess performance of the clustering method. The

same code base would also allow standardised comparison between output

of different clustering pipelines.

• Integration of algorithmic infrastructure to allow exploration of additional

dimensions associated with proteins and proteomes, such as arbitrary numer-

ical data (e. g. expression patterns of mRNAs associated with proteins), results

of sequence similarity searches against public databases (e. g. BLAST results

for searches of eukaryotic proteomes against bacterial proteome databases),

feature track data (e. g. genomic location of the underlying loci, which would
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allow KinFin to understand the concept of isoforms and would enable anal-

ysis concerning synteny conservation between taxa and flagging of poten-

tial contaminants/HGTs within genomes), and phylogenetic data (e. g. tree

topologies inferred for clusters or multiple alternative phylogenies for pro-

teomes). These features would enable analysis of protein clusterings that

currently are tedious to carry out for custom datasets and would allow the

user to ask complex questions such as ‘what are the functional annotations

of clusters yielding a certain tree topology?’, ‘for proteins of genes that are

co-localised in the underlying genomes, which domains co-occur more often

than expected?’, or ‘which proteins shown signs of contamination or acquisi-

tion through HGT based on the genomic location, expression and sequence

similarity search data?’

• Further development of network based analysis and visualisations of the

proteomes, i. e. ‘clustering of clustering data’. The current process for the

network representation is purely visual and based solely on co-occurrence

of proteomes and clusters which determines the weight of edges connecting

the nodes. This yields highly connected networks which are currently only

useful for identification of clear outliers. Using the information supplied

through additional data about the proteins, network representations could be

generated for these additional dimensions which would yield more granular

clusters of proteomes.

• Improvements on protein family expansion analysis by expanding on the

current algorithmic infrastructure for pairwise protein count representation

tests to include taxon set ‘specific’ expansions.

• Development of an additional graphical user interface for simple interaction

with analysis and visualisation of the data.
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The magnitude and multi-dimensionality of the data generated by the field of

comparative genomics calls for new approaches capable of handling the amount of

data and being aware of the biological connections between the different dimen-

sions. KinFin is a robust starting point for the development of a versatile toolkit

which could one day serve as an ‘operating system’ for comparative genomics.
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Chapter 4

Effector gene families in Globodera

species

Paul: “Stilgar, do we have wormsign?”

Stilgar: “Usul, we have wormsign the likes

of which even God has never seen.”

- Paul & Stilgar, Dune (1984)

147
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4.1 Introduction

Within Nematoda, Clade IV sensu Blaxter et al., 1998 harbours taxa with a wide

diversity of life styles including plant-parasites (Families Tylenchidae, Parasitaphe-

lenchidae, Aphelenchoididae), animal-parasites (Strongyloididae), pathogens of

invertebrates (e. g. Steinernematidae) and free-living bacteriovores (e. g. Panagro-

laimidae) (Blaxter et al., 1998; Megen et al., 2009; Blaxter and Koutsovoulos, 2015;

Bird et al., 2015). The family Tylenchidae includes the majority of economically

relevant PPNs (Jones et al., 2013), such as root-knot nematodes (genus Meloidog-

yne), cyst nematodes (genera Heterodera and Globodera), and the pine wood nema-

tode Bursaphelenchus xylophilus. A detailed description of the biology of Globodera

species can be found in the introduction of Chapter 5. Several phylogenetic analyses

of Clade IV nematodes based on established phylogenetic loci have been published

(Subbotin et al., 2000; Holterman et al., 2009; Scholl and Bird, 2005; Megen et al.,

2009) and general agreement exists on the phylogenetic relationships among the

taxa. However, no comprehensive multi-locus phylogeny has been inferred based

on the published Clade IV nematode genomes.

Here, I present a KinFin clustering analysis of proteomes derived from 19 Clade

IV and two Caenorhabditis species genomes. First, I carry out a RBBH analysis

to identify putative effector proteins within the proteomes of Globodera species,

based on sequences deposited on public databases. The resulting Globodera proteins

are used as seeds in subsequent analyses. I explore the effect of MCL inflation

values on the clustering based on KinFin output files and perform analyses to test

the influence of this parameter on the clustering and the representative functional

annotations of clusters. Based on the results I decide on an optimal MCL inflation

value. The resulting protein cluster set is used to infer a robust phylogenetic tree for

Clade IV nematodes which serves as a basis for the investigation of synapomorphic
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clusters and protein family expansions within the genus Globodera, with emphasis

on effector proteins.

4.2 Methods

4.2.1 Compilation of a target effector protein list

A set of 226 plant-parasitic nematode effectors was compiled from the literature

by querying the NCBI website with the string ‘effector’ and restricting the search

taxonomically to tylenchid nematodes and their protein sequences retrieved (see

Appendix 4.A.1). Using a RBBH approach, the sequences were used for identifying

G. pallida and G. rostochiensis orthologues used in the clustering. I implemented the

RBBH approach in the program rbbh.py (https://github.com/DRL/thesis),

which takes FASTA protein files and reciprocal BLAST results as input. Recip-

rocal BLAST searches were carried out between the effector sequences and the

PCN proteomes as well as between the PCN proteomes, using BLASTp v2.6.0+

(Camacho et al., 2009) and following recommendations by Moreno-Hagelsieb

and Latimer, 2008 regarding RBBH analysis (-max_target_seqs 1 -max_hsps

1 -outfmt '6 std qlen slen qcovs qcovhsp' -evalue 1e-3 -seg yes

-soft_masking true -use_sw_tback). RBBHs were established considering

hits with E-values ≤ 1e−5 and a query coverage ≥ 25%.

The three RBBH files (G. pallida vs. effectors, G. rostochiensis vs. effectors,

and G. pallida vs. G. rostochiensis) were compared to the sets of published PCN

effectors, containing 574 proteins from G. pallida (Thorpe et al., 2014) and 54

proteins of G. rostochiensis (Eves-van den Akker et al., 2016b). A protein in the

G. pallida or G. rostochiensis genome was labeled ‘effector’ if a) it was present in

https://github.com/DRL/thesis


150 4.2 Methods

one of the published PCN effectors sets, b) it was a RBBH to one of the plant-

parasitic nematode effectors mined from the literature, or c) its RBBH in the other

PCN genome fell under a) or b). An effector was declared ‘novel’ if it had not

been labeled as an effector by Thorpe et al., 2014 or Eves-van den Akker et al.,

2016b.

4.2.2 Protein clustering

Proteomes were retrieved from WormBase ParaSite (WBPS8) for the taxa listed in

Table 4.2.1, with the exception of M. arenaria for which genome assembly and anno-

tation was carried out in the Blaxter Lab by Laura Salazar-Jaramillo. For each gene,

only the representative isoform was kept and protein sequences below a length of

30 residues and containing more than one non-terminal stop codon were removed.

Sequence similarity searches were performed using BLAST v2.4.0+ (Camacho

et al., 2009) (-evalue 1e-5 -outfmt '6' -seg yes -soft_masking true

-use_sw_tback) on the EDDIE supercomputing cluster at the University of Ed-

inburgh. Protein clustering was carried out using OrthoFinder v1.1.4 (Emms

and Kelly, 2015) across 19 different MCL inflation values (1.1, and 1.5 – 10.0 in

increments of 0.5).
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4.2.3 KinFin analysis

For all analyses, KinFin v1.0.3 (Laetsch, 2017b) was used with default parame-

ters, unless specified otherwise.

An initial KinFin analysis, targeted at identifying single-copy orthologues suit-

able for phylogenetic analysis, was carried out for each of the 19 clusterings and

revealed 4 to 28 ‘true’ single-copy clusters present in all species depending on in-

flation value. The clustering based on the MCL inflation value 4.0 was chosen (see

Section 4.3.2) for which 28 ‘true’ single-copy clusters were found. The clustering at

4.0 was subsequently screened for clusters where at least two thirds of species are

present with a protein count of 1, while the remaining species are absent, which

resulted in 399 additional clusters. It should be noted that this is different from

the concept of ‘fuzzy’ single-copy clusters, of which 3045 were found using default

parameters (‘-n 1 -x 0.75 --min 0 --max 20’). Phylogenetic analysis based

on the 427 single-copy clusters was carried out as described in Section 3.3.2. The

resulting tree topology was supplied in a second KinFin run for each of the 19 infla-

tion values, together with InterProScan v5.22-61.0 (Jones et al., 2014) results

against PFAM v30.0 (Finn et al., 2016) and SignalP-Euk v4.1 (Petersen et al.,

2011). In the KinFin config file, the concestor of Caenorhabditis spp. was defined

as outgroup. Proteomes were grouped based on ‘life style’ and NCBI TaxIDs were

supplied for each species as listed in Table 4.2.1.

Representative functional annotation (RFA) was inferred using Inter-

ProScan annotation (IPR) for all clusters in each of the 19 clusterings using

functional_annotation_of_clusters.py with six parameter combinations

concerning ‘-p’ (minimum protein coverage of domain in cluster) and ‘-x’ (mini-

mum taxon coverage by proteins with domain in cluster): ‘p=0.0 x=0.50’, ‘p=0.0

x=0.75’, ‘p=0.0 x=0.95’, ‘p=0.25 x=0.0’, ‘p=0.25 x=0.0’, ‘p=0.50 x=0.0’,
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and ‘p=0.75 x=0.0’. For clustering at MCL inflation value 4.0, RFA was also in-

ferred for SignalP-Euk (SignalP) annotations (‘p=0.0 x=0.75’) and for IPR anno-

tations of synapomorphic clusters (‘p=0.0 x=0.75 n=0.75’, where n refers to the

parameter ‘--node_taxon_cov’ which specifies the minimum taxon coverage of

taxa under a node). Cluster size distribution for clusterings at MCL inflation values

1.5, 4.0 and 9.0 were visualised using plot_cluster_size_distribution.py

using the colour map ‘viridis’.

4.2.4 Effect of MCL inflation parameter on clustering

The effect of MCL inflation value on the 19 clusterings and taxon occu-

pancy for certain sets of taxa and inflation values was visualised based on the

output KinFin using analysis_of_inflation_values.R (https://github.

com/DRL/thesis) which uses the UpSetR library (Conway, Lex, and Gehlenborg,

2017).

4.2.5 Phylogenetic analysis of poly-γ-glutamate synthase clus-

ter

Cluster ‘OG0039632’ (MCL inflation value 4.0) was identified based on the ef-

fectors list and contained one sequence of each PCN (‘GPLIN_000553400’ and

‘GROS_g07961’). The G. pallida sequence displayed sequence similarity to a

Meloidogyne artiellia poly-γ-glutamate synthase protein. Based on sequence sim-

ilarity searches against NCBI and WormBase ParaSite (WBPS9), together with

information from a previous study on genes coding for polyglutamate synthe-

sis genes (Denker et al., 2008), a set of sequences was compiled. Two nema-

tode sequences were retrieved from WBPS9 based on results of BLAST searches

https://github.com/DRL/thesis
https://github.com/DRL/thesis
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of the two PCN proteins: ‘nRc.2.0.1.t47789-RA’ (Romanomermis culicivorax)

and ‘Dd_13536’ (Dytilenchus destructor). From NCBI, 37 sequences were re-

trieved: ‘CAC84452.1’ (M. artiellia), ‘XP_016947101.1’ (Drosophila biarmipes),

‘XP_020613253.1’ (Orbicella faveolata), ‘EDO44155.1’ (Nematostella vectensis)

‘XP_012557422.1’ (Hydra vulgaris), ‘ELT99805.1’ (Capitella teleta), ‘KXJ11887.1’

(Exaiptasia pallida), ‘XP_013397781.1’ (Lingula anatina), ‘EFN59253.1’ (Chlorella

variabilis), ‘GAQ82684.1’ (Klebsormidium nitens), ‘CEL95394.1’ (Vitrella bras-

sicaformis), ‘ABO99165.1’ (Ostreococcus lucimarinus), ‘KIW80809.1’ (Fonsecaea

pedrosoi), ‘OAL34971.1’ (F. nubica), ‘EXJ67640.1’ (Cladophialophora psam-

mophila), ‘KIW93775.1’ (C. bantiana), ‘CCO20520.1’ (Bathycoccus prasinos),

‘OQE31531.1’ (Penicillium steckii), ‘KOS41241.1’ (P. nordicum), ‘KIW02604.1’

(Verruconis gallopava), ‘EBA27436.1’ (Aspergillus fumigatus), ‘XP_001822130.2’

(A. oryzae), ‘OGM40173.1’ (A. bombycis), ‘AIO71030.1’ (Burkholderia okla-

homensis), ‘AJX35602.1’ (B. oklahomensis), ‘WP_066571474.1’ (Burkholderia sp.

ABCPW 14), ‘WP_066491221.1’ (Burkholderia sp. BDU8), ‘WP_076890427.1’

(B. pseudomallei), ‘WP_060364544.1’ (B. stagnalis), ‘WP_060362796.1’ (B. stag-

nalis), ‘WP_035533562.1’ (Paraburkholderia sacchari), ‘WP_043285452.1’ (P.

oxyphila), ‘WP_051391089.1’ (P. mimosarum), ‘WP_090882466.1’ (Nitrosovibrio

sp.), ‘NP_215088.1’ (Mycobacterium tuberculosis), ‘YP_001086643.1’ (Clostridioides

difficile), and ‘NP_625239.1’ (Streptomyces coelicolor). These sequences were used,

together with the two PCN sequences, for a phylogenetic analysis as described in

Section 3.3.2.
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4.2.6 Phylogenetic analysis of NodL-like acetyltransferase clus-

ter

Cluster ‘OG0011331’ (at MCL inflation value 4.0) was identified based on the ef-

fector list and contains sequences from G. pallida (‘GPLIN_000026100’), G. ros-

tochiensis (‘GROS_g11033’) M. arenaria (‘MAREN.g14695’, ‘MAREN.g14696’, and

‘MAREN.g6955’) M. floridensis (‘augustus_masked-nMf.1.1.scaf05753-processed-

gene-0.1-mRNA-1’ and ‘augustus_masked-nMf.1.1.scaf20924-processed-gene-0.0-

mRNA-1’), and M. hapla (‘MhA1_Contig222.frz3.gene26’). From NCBI, 42

NodL O-acetyltransferase protein sequences from bacterial taxa were re-

trieved: ‘OJU42973.1’ (Alphaproteobacteria bacterium 65-37), ‘AMN39228.1’

(Rhodoplanes sp. Z2-YC6860), ‘AOO82925.1’ and ‘WP_083269893.1’ (Bosea

vaviloviae), ‘SCW70859.1’ (Ancylobacter rudongensis), ‘SHG67911.1’ (Bradyrhi-

zobium erythrophlei), ‘WP_065731432.1’ (B. icense), ‘WP_028163926.1’ and

‘WP_028350716.1’ (B. elkanii), ‘WP_065753467.1’ (B. paxllaeri), ‘WP_050402763.1’

(B. embrapense), ‘WP_057849985.1’ (B. valentinum), ‘WP_057862021.1’ (B.

lablabi), ‘WP_057842264.1’ (B. retamae), ‘WP_057835876.1’ (B. jicamae),

‘WP_050628818.1’ (B. viridifuturi), ‘WP_081914325.1’ (Rhizobiales bacterium

YIM 77505), ‘WP_020699280.1’ (Reyranella massiliensis), ‘WP_072294822.1’

(Nitrosovibrio sp. Nv17), ‘WP_002729555.1’ (Phaeospirillum molischianum),

‘WP_012561774.1’ (Oligotropha carboxidovorans), ‘WP_092745830.1’ (Acidovo-

rax valerianellae), ‘WP_041799518.1’ and ‘WP_044406715.1’ (Rhodopseudomonas

palustris), ‘WP_088432277.1’ and ‘WP_017357490.1’ (Stenotrophomonas mal-

tophilia), ‘WP_088587077.1’ (Achromobacter marplatensis), ‘WP_045163657.1’

(Pseudomonas stutzeri), ‘WP_083237752.1’ (P. xanthomarina), ‘WP_091942489.1’

(Methylobacterium salsuginis), ‘WP_048445899.1’ (M. variabile), ‘WP_048463064.1’

and ‘WP_060848034.1’ (M. aquaticum), ‘WP_021246960.1’ (Sphingobium baderi),

‘WP_066721732.1’ (Sphingomonas pituitosa), ‘WP_058755772.1’ (S. endophytica),

‘WP_039515417.1’ (Xanthomonas arboricola), ‘WP_058362501.1’ (X. translucens),
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‘WP_057673590.1’ (X. campestris), ‘WP_043093799.1’ and ‘WP_029562053.1’ (X.

sacchari), and ‘WP_029218016.1’ (X. cassavae). In addition, 12 bacterial and one

eukaryotic acetyltransferase sequences, and two NodL-like acetyltransferases from

M. incognita and M. javanica were retrieved from the supplementary information

of Scholl et al., 2003. Alignment and phylogenetic analysis was performed as de-

scribed in Section 3.3.2.

4.2.7 Analysis of lineage-specific protein family expansions

Clusters were visualised based on KinFin output using the script

effector_cluster_annotation.R (https://github.com/DRL/thesis).

4.3 Results

4.3.1 PCN effectors identified through RBBH analyses

Results of RBBH analysis between PCN proteomes and effectors reported in the

literature (‘literature effectors’) were used for creating a target list of PCN protein

IDs for subsequent analysis of the protein clustering (see Table 4.3.1). In total, 230

proteins in G. pallida and 226 in G. rostochiensis were labeled as effectors through

RBBH analysis. Of these, 17.8% (for G. pallida) and 85.8% (for G. rostochiensis) are

labeled ‘novel’, since they were not included in the lists compiled by Thorpe et al.,

2014 and Eves-van den Akker et al., 2016b.

Orthology to ‘literature effectors’ could be established for 50 proteins from G.

https://github.com/DRL/thesis
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pallida and 49 proteins from G. rostochiensis and was restricted to proteins orig-

inating from Heteroderidae (G. pallida, G. rostochiensis, H. glycines, H. schachtii),

Meloidogynidae (M. incognita), and Pratylenchidae (P. goodeyi, subfamily Praty-

lenchinae) sensu Megen et al., 2009. Unsurprisingly, for both PCN species most

of the RBBHs to ‘literature effectors’ stem from Heteroderidae species: 94.0% for

G. pallida and 91.8% for G. rostochiensis. ‘Literature effectors’ labeled ‘novel’, are

listed in Table 4.3.2.

Due to the non-transitive nature of RBBH results, 16 cases were encountered

in which a protein in a PCN species displayed a RBBH to a ‘literature effector’

but its RBBH in the other PCN species did not. One example is the HYP effector

‘AIT18706.1’ (see Table 4.3.2) which was the RBBH of ‘GPLIN_001025300’. The

PCN-RBBH of ‘GPLIN_001025300’ is ‘GROS_g08893’, which is RBBH of another

HYP effector ‘AIT18707.1’. This is expected as RBBH analyses suffer from high false

negative rates if duplicated sequences are present in the query and subject sets,

but does not pose an issue since the results are used for identification of putative

effector families in the clustering. For 21 ‘literature effectors’, RBBH results were

transitive.

The four ‘novel’ effectors identified based on ‘G. pallida literature effectors’

are three HYP effectors (previously reported in Eves-van den Akker et al., 2014),

involved in biotrophy in early parasitic stages, and a nematode-specific fatty-

acid- and retinol-binding (FAR) protein ‘CAA70477.2’, involved in evasion of host

defences through interference with host-lipid signalling (Prior et al., 2001). Based

on ‘G. rostochiensis literature effectors’, six ‘novel’ effectors were found in G. pallida

and 14 in G. rostochiensis. Comparisons against ‘H. glycines literature effectors’

revealed, 13 and 19 ‘novel’ effectors. One recently described ‘tyrosinase-like’

effector from H. schachtii (Habash et al., 2017), expressed in the oesophageal

gland and involved in interference with plant hormone homeostasis, was found in



CHAPTER 4. Effector gene families in Globodera species 159

both PCN species. Two ‘M. incognita literature effectors’ received RBBHs from both

PCNs: MSP21 (‘AAN08587.1’), an acid phosphatase with a signal peptide expressed

in subventral gland cells (Huang et al., 2003), and a dual oxidase (‘AAY84711’)

involved in cuticle biosynthesis (Bakhetia et al., 2005). The M. incognita protein

Mi-MSP2 (AAQ10016.1), expressed in the subventral gland of parasitic J2 with

unknown function (Huang et al., 2003), was only recovered as orthologous to a

G. rostochiensis protein, but not to G. pallida. Orthologues to a calreticulin effector

in P. goodeyi (‘AIW66697.1’) (Pestana, Abrantes, and Gouveia, 2015), which in M.

incognita has been proposed to modulate plant defences (Jaouannet et al., 2013),

was also found in both PCNs.
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Table 4.3.1: Proteins labeled as ‘effectors’ by RBBH analysis. Species: species name associated

with ‘literature effector’. Count: number of sequences identified by RBBH. PCN RBBH: number of

sequences identified by RBBH which also have a RBBH to the other PCN species. Novel: number

of sequences identified by RBBH which were not labeled as ‘effectors’ by Thorpe et al., 2014 or

Eves-van den Akker et al., 2016b.

Globodera pallida Globodera rostochiensis

Species Count PCN RBBH Novel Count PCN RBBH Novel

G. pallida 4 4 3 2 2 2

G. rostochiensis 15 11 6 19 12 14

H. glycines 27 16 13 23 19 19

H. schachtii 1 0 1 1 0 1

M. incognita 2 2 2 3 2 3

P. goodeyi 1 1 1 1 0 1

Literature (Σ) 50 34 26 49 35 40

PCN RBBH (Σ) 180 180 15 177 177 154

All (Σ) 230 214 41 226 212 194
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4.3.2 Assessment of effect of MCL inflation value on cluster-

ing

For the 19 clusterings at different MCL inflation values, the number of result-

ing clusters increased asymptotically from 115,990 (MCL inflation value 1.5)

to 169,716 (10.0) with increasing MCL parameter. The proportion of single-

ton clusters decreased from 86.49% to 62.83% in the same direction, but ab-

solute numbers of singletons increased from 100,315 to 106,627. This is as

expected since increasing MCL inflation controls the granularity of the clus-

tering, reducing the number of resulting clusters and thereby reducing the

proportion of singletons. The proportion of clusters receiving RFA varied

depending on MCL parameter and RFA parameters. The strictest RFA pa-

rameter tested was --domain_protein_cov 0.75 --domain_taxon_cov 0.0

(‘p=0.75 x=0.0’, requiring that 75% of proteins in a cluster share an

IPR ID), which resulted in representative functional annotation of 9.81%

(1.1) to 21.57% (10.0) of clusters. The most lenient RFA parameter was

--domain_protein_cov 0.0 --domain_protein_cov 0.5 (‘p=0.0 x=0.5’,

requiring that 50% of taxa present in a cluster have at least one protein sharing an

IPR ID), yielded RFA percentages between 11.58% (1.1) and 26.25% (10.0). To fur-

ther investigate the contribution of MCL and RFA parameters on the ‘RFA landscape’,

clusters which received an RFA were visualised by the number of contributing taxa

across MCL and RFA parameters (see Figure 4.3.1). Differences between RFA pa-

rameters are minor, while the MCL inflation value has a larger effect. In all panels,

1.1 appears as a clear outlier which is most likely due to the fact that its inclusivity

leads to high heterogeneity of functional annotations within clusters which prevents

RFA. Inflation values above 1.1 yield more consistent numbers across a wide range

of taxon counts, with higher inflation values generating higher numbers of RFAs.

This trend is however reversed for clusters containing 19 or more taxa, where lower

inflation values generate a higher count of RFAs. This effect of higher granularity
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on deeply conserved clusters across the taxa is most likely caused by several factors,

since an analysis of GO terms associated with IPR IDs did not show a clear pattern

linked to losses of RFAs at higher inflation values.

For all further analysis, representative functional annotations of clusters based

on the RFA parameters ‘p=0.0 x=0.75’ are used as it results in an intermediate

distribution of percentage of clusters with RFAs, ranging from 11.00% (1.1) to

23.48% (10.0).

p=0.25 x=0.0 p=0.50 x=0.0 p=0.75 x=0.0

p=0.0 x=0.50 p=0.0 x=0.75 p=0.0 x=0.95
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Figure 4.3.1: Visualisation of RFA of clusterings at different MCL inflation values. Each of

the six parameter combinations of the RFA is visualised as a panel, titled with the parameters.

Y-axes display the count of clusters which contain at least IPR based RFA in the given analysis.

X-axes show the count of taxa present in the cluster. Lines are drawn for each clustering based on

MCL inflation value. p: minimum proportion of proteins in a cluster sharing an IPR annotation. x:

minimum proportion of taxa in a cluster having at least one protein sharing an IPR annotation.

Systematic RFA peaks at taxon counts of five and 15 were observed across

all MCL and RFA parameters. Taxon composition of clusters with RFAs was

therefore visualised for clusters containing five and 15 taxa at the inflation values

1.5, 4.0, and 9.0 (see Figure 4.3.2). For clusters containing five taxa the three
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most frequent sets of taxa are identical between all three inflation values and

account for 76.08, 76.49, and 71.82% of clusters of size five, respectively. The

observed RFA peak is therefore due to closely related taxa (Steinernema spp.,

Strongyloididae and subsets of Tylenchida) and ultimately an effect of sampling.

Clusters containing 15 taxa, are composed of two main configurations: all taxa

except Heteroderidae and all taxa except Strongyloididae+Alloionematidae, which

again is due to phylogenetic distance and sampling. The two taxa most frequently

absent from clusters containing 20 or 19 taxa are M. incognita and G. pallida,

suggesting that the two proteomes are lacking core proteins present in all other

nematodes in this analysis.

Another view of the effect of MCL inflation values can be achieved by visual-

ising the entire distribution of cluster sizes across clusterings. Distributions were

generated for MCL inflation values 1.5, 4.0, and 9.0 and are shown in Figure 4.3.3.

Deviations from the expected power-law can be observed at taxon counts of five,

15 and 21, similar to those seen for cluster RFA. While higher MCL inflation val-

ues generally seem to perform better concerning number of RFA clusters, a high

granularity of clusters risks partition of genuine protein families.

I chose the MCL inflation value of 4.0 for all subsequent analysis of this dataset.

This is based on two reasons: this value yielded the highest count of ‘true’ 1-to-1

clusters (where every taxon is present and has exactly one protein) and displayed

an intermediate distribution of counts of RFA clusters along the spectrum of taxon

counts. Concerning ‘fuzzy’ 1-to-1 clusters, this inflation value displayed the second

highest count (3045), only surpassed by the value of 3.5 (3045).
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4.3.3 Analysis of protein clustering

The OrthoFinder clustering at MCL inflation value of 4.0 placed the 477,345

proteins in 153,457 clusters of which 66.23% were singletons (accounting for

21.29% of proteins). Phylogenetic analysis based on 427 single-copy clusters

yielded a robust phylogenetic tree (Figure 4.3.4).

Figure 4.3.2: Analysis of taxon composition of clusters. A: clusters with taxon count of five.

B: clusters with taxon count of 15. Panels with are drawn for each inflation value (columns).

Taxon membership is visualised for the ten most frequent sets, with bar plots indicating count of

clusters for a given set. Phylogenetic relationships for taxa are indicated using the phylogenetic

tree discussed in Section 4.3.3.
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Figure 4.3.3: Cluster size distribution for three MCL inflation values. The distribution of

cluster sizes is coloured based on the number of proteomes present in each cluster. Total values of

counts of each cluster size are indicated with grey dots. A fitted power-law curve (grey) is drawn

for reference. A: Clustering based on MCL inflation value of 1.5, B: Clustering based on MCL

inflation value of 4.0. C: Clustering based on MCL inflation value of 9.0.
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Figure 4.3.4: Phylogenetic tree of Clade IV nematodes. Tree rooted based on concestor of

Caenorhabditis species. All branches have non-parametric bootstrap support of 100, except where

indicated. Taxonomic families sensu Megen et al., 2009 are listed in bold. Nodes of interest have

been labeled with names.

Traditional taxonomy has grouped Steinernematidae, Alloionematidae, Pana-

grolaimidae, and Strongyloididae in the order Rhabditida, while the plant parasitic

taxa (Heteroderidae, Meloidogynidae and Parasitaphelenchidae) were unified un-

der the separate order Tylenchida (Andrássy, 1976). In the light of molecular data,

De Ley and Blaxter, 2002 revisited the taxonomy of nematodes and grouped mem-

bers of these taxa within the suborder Tylenchina. Subsequent studies have con-

firmed this grouping (Bert et al., 2008; Megen et al., 2009; Holterman et al., 2009),

with only one study (Nadler, Bolotin, and Stock, 2006) (based on 28S rDNA and

the mitochondrial markers 12S rDNA and COX1) rejecting the inclusion of Stein-

ernematidae in Tylenchina. To my knowledge, the present phylogenetic analysis

presents the most comprehensive analysis to date, composed of 427 loci, totalling



CHAPTER 4. Effector gene families in Globodera species 173

107,842 amino acid sites (proportion of gaps in alignment: 25.03%). Steinerne-

matidae is recovered as sister to all other Tylenchina, analogous to previous analy-

ses based on 18S rDNA. Node ‘n5’ separates two main clades: the clade under node

‘n7’, composed of Strongyloididae and Rhabditophanes sp. KR3021, and the clade

under node ‘n8’ comprised by the free living panagrolaimid and the plant parasitic

families. Due to the limited number of taxa included in the analysis, conclusions

regarding systematics of Clade IV taxa cannot be drawn with confidence. However,

this tree is a robust basis for further analysis. It should be noted that, although

in this analysis Heteroderidae and Meloidogynidae are sister clades, plant-parasitic

endoparasitism in these groups has evolved independently (Bert et al., 2008).

4.3.4 Synapomorphic clusters

Synapomorphic clusters at 12 nodes of interest and their RFAs were investigated

and counts are listed in Table 4.3.3. A very low count of synapomorphic clusters is

recovered at node ‘n5’ (ancestor of non-Steinernema Clade IV nematodes).

The 456 PCN effector proteins were placed in 259 clusters. Of those, 181

were found in synapomorphic clusters of which 85 received an RFA based on

IPR IDs. Among those, 18 ‘complete presence’ clusters are synapomorphic to the

ancestral node of all taxa of which six appear to be secreted based on SignalP

annotations. These include a ‘Nematode fatty acid retinoid binding’ (IPR008632)

cluster, containing the PCN orthologues to Gp-SEC-2 (Gp-FAR-1, ‘CAA70477.2’),

a Hsp90 cluster (IPR001404) containing the Ce-ENPL-1, a calreticulin/calnexin

(IPR001580) cluster harbouring PCN orthologues to the calreticulin ‘literature

effector’ from P. goodeyi (Li et al., 2015) and Ce-CRT-1, which is required for normal

sperm and oocyte development (Park et al., 2001). In addition, three ‘protein

disulfide isomerase’ clusters were found. These contain the C. elegans homologues
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Table 4.3.3: Synapomorphic clusters. Counts, RFA (in %) and number of clusters containing

at least one effector protein from PCN identified through RBBH analysis for ‘complete presence’

(100% of taxa under node are present) and ‘partial absence’ (at least 75% and less than 100% of

taxa under node are present) synapomorphic clusters for each of the 12 nodes of interest. Nodes

in bold are ancestors of only PPN. ‘N/A’ indicates cases in which nodes are ancestors of less than

four taxa or when percentage of functional annotation could not be calculated due to lack of

clusters.

Complete presence Partial absence

Node Count RFA (%) Effectors Count RFA (%) Effectors

n0 1630 90.7 18 3170 84.3 20

n1 4570 40.0 0 N/A N/A N/A

n2 29 72.4 2 110 69.1 1

n5 1 100.0 0 18 50.0 0

n6 1964 36.7 0 1121 36.3 0

n7 1116 41.4 0 168 42.3 0

n8 48 56.3 0 120 38.3 1

n12 1234 40.5 0 300 34.3 0

n13 41 43.9 1 51 37.3 0

n21 217 41.5 2 375 44.8 7

n27 1228 28.6 0 1435 14.3 0

n28 2068 22.4 129 N/A N/A N/A

Ce-PDI-2 (cluster ‘OG0000954’), Ce-PDI-3 (‘OG0002675’), Ce-PDI-6 and Ce-PDI-6A

(‘OG0002540’) which are part of the prolyl 4-hydroxylase beta-subunit, essential

for collagen biogenesis during larval development (Winter, McCormack, and Page,

2007; Eletto et al., 2014).
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Synapomorphic cluster at nodes ‘n13’, ‘n21’ and ‘n28’ were screened for PCN

effectors based on the effector sequences previously identified (Table 4.3.1). How-

ever, all synapomorphic clusters at these nodes are of potential interest in relation to

plant parasitism, since they contain only plant parasitic taxa. At node ‘n13’, only a

single synapomorphic cluster (‘OG0000615’) was identified which contained a PCN

effector. The cluster received no IPR RFA, but the G. rostochiensis orthologue was

identified by Eves-van den Akker et al., 2016b as an expansin-like cell-wall degrad-

ing enzyme, acquired via HGT. Hence, this suggests that acquisition might have oc-

curred prior to the split of Parasitaphelenchidae and Heteroderida/Meloidogynidae.

Synapomorphies at this node also include a ‘Glycosyl transferase family 31’ cluster

(‘OG0005813’) and a chemosensory ‘Serpentine type 7TM GPCR chemoreceptor

Srsx’ cluster (‘OG0000130’) which are not part of the known effectorome of PCN.

PCN proteins in both clusters carry ‘SignalP-noTM’ annotation, suggestive of secre-

tion.

Node ‘n21’ harbours two ‘complete presence’ (‘OG0011347’ and ‘OG0009436’)

and seven ‘partial absence’ synapomorphic clusters containing PCN effectors. Clus-

ter ‘OG0011347’ contains PCN orthologues to a literature effector from H. glycines,

oesophageal gland-localized secretory protein 12 (‘AJR19780.1’). The cluster is

composed of one protein from each species with the exception of M. floridensis

which has three paralogues. However, two of the underlying gene predictions

might be a result of the fragmented assembly since they are located at the ends

of scaffolds. Cluster ‘OG0009436’ contains a G. rostochiensis protein which was

identified as an effector through an elevated expression level in the 14dpi stage by

Eves-van den Akker et al., 2016b. The seven ‘partial absence’ clusters include two

composed of orthologues of literature effectors: cluster ‘OG0014476’ contains PCN

proteins recovered as RBBH to Hg-10C02, a secreted protein of unknown func-

tion expressed in subventral gland cells in H. glycines (Gao et al., 2003), and to

Mi-MSP2 (Huang et al., 2003). The latter cluster contains no orthologue of G.
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pallida, analogous to the results of RBBH analysis. The five remaining clusters all

contain proteins from G. rostochiensis acquired by HGT as described in Eves-van

den Akker et al., 2016b. These include three GH53 arabinogalactan endo-1,4-beta-

galactosidase clusters, one L-threonine aldolase cluster of unknown function, and

one NodL-like acetyltransferase cluster (‘OG0011331’) containing M. hapla and G.

rostochiensis proteins, reported to have been acquired through HGT from rhizo-

bial bacteria and involved in feeding site induction (Paganini et al., 2012; Eves-

van den Akker et al., 2016b). The latter is an interesting case since structure of

feeding sites differ substantially between Heteroderidae and Meloidogynidae. Nev-

ertheless both PCN and three RKN (M. arenaria, M. floridensis, and M. hapla) are

members of this cluster. Although rhizobial taxa are common contaminants of se-

quencing datasets (Laurence, Hatzis, and Brash, 2014), both PCN proteins originate

from contigs flanked by sequences of clear metazoan origin. In rhizobial bacteria

this protein is involved in the biosynthesis of Nod factors, a family of signalling

molecules which trigger root-hair deformation, as one of the early steps of nodule

formation during the legume-Rhizobium symbiosis (Göttfert, 1993). Comparative

genomic analysis of rhizobial species revealed that nod genes, in addition to other

loci involved in establishment of symbiosis, tend to be organised on plasmids or

islands within the genome (González et al., 2003). Low conservation of synteny

between species in those regions suggests that they are shaped by rearrangements

and horizontal transfer, lending plausibility to the hypothesis of rhizobial bacteria

acting as donors to nematode taxa. Scholl et al., 2003 described two RKN NodL-like

acetyltransferase, derived from EST data from M. incognita and M. javanica. Phylo-

genetic analysis suggested acquisition from rhizobial donors after the separation of

Meloidogynidae and Heteroderidae, since PCR amplification failed to recover this

gene in cyst nematodes. In order to verify monophyly of the putative NodL-like

acetyltransferase from PCN and RKN found in cluster ‘OG0011331’, a phylogenetic

tree was inferred based on NodL (O-acetyltransferases) sequences retrieved from

NCBI and sequences analysed in Scholl et al., 2003 (Figure 4.3.5).
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Figure 4.3.5: Phylogenetic tree of NodL-like acetyltransferase proteins. Non-parametric

bootstrap support is only indicated for branches with support above 90. Species are coloured

by taxonomic family (based on NCBI taxonomy). Sequences from Scholl et al., 2003 are indi-

cated with an asterisk and their functional classification is indicated in brackets. All sequences

retrieved from NCBI are O-acetyltransferases (i. e. NodL). Nematode (Tylenchida) sequences form

a monophyletic clade.
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Genes coding for NodL acetyltransferases are found sporadically across a wide

range of bacterial families, which is compatible with the hypothesis of increased

HGT of this locus. In the tree, these are clearly separated from other acetyl-

transferase sequences (from Lactobacillales, Saccharomycetales, Enterobacterales,

Clostridiales, Bacillales, and Streptomycetales) by long branch lengths. Nematode

NodL-like proteins form a monophyletic clade divided into PCN and RKN sequences.

It should be noted that the G. pallida protein, one of the three M. arenaria proteins,

and the two M. floridensis proteins are derived from fragmented gene models, which

will have contributed to their long branch lengths. The NodL sequence most closely

related to nematodes was predicted from the rhizobial taxon ‘Rhizobiales bacterium

YIM 77505’, which was sampled within the scope of an environmental study of ther-

mophilic bacteria of the Tengchong hot spring sediment from the Yunnan province

in China (NCBI BioSample ID ‘SAMN02745209’) and sequenced using the PacBio

RS platform. Based on the nature of this sample and the long branch lengths — posi-

bly caused by the high error rate of the PacBio technology — no clear hypothesis

regarding the HGT donor taxon can be formulated. Failure of previous studies to de-

tect genes coding for NodL-like acetyltransferases in cyst nematode genomes might

be explained by the low homology at the nucleotide level between the Meloidogyne

and Globodera sequences, which could be a result of assimilation of the bacterial

sequence to the background genome after acquisition through HGT. Furthermore,

no clear role has been assigned yet to NodL-like acetyltransferases in PPN. While

previous studies have suggested involvement in feeding site induction (Paganini

et al., 2012; Eves-van den Akker et al., 2016b), this has not been proven. How-

ever, secretions of Meloidogyne incognita, termed NemF (RKN factor), have been

shown to elicit root-hair deformations in wild-type Lotus japonicus similar to those

caused by Nod factors (Weerasinghe, Bird, and Allen, 2005). This response was

altered or absent in L. japonicus mutants at genes involved in Nod factor reception,

suggesting that NemF interacts with the same receptor pathway. This effect was

also observed in tomato which implies that the response to NemF is not a specific
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feature of legumes. NodL-like acetyltransferases in RKN might be involved in the

biosynthesis of NemF, analogous to NodL orthologues in rhizobial Nod factor syn-

thesis.

Unsurprisingly, node ‘n28’ (ancestor of PCN) displayed the highest number of

synapomorphic clusters containing effectors. The PCN proteins contained within

these clusters account for 270 (59.21%) of PCN proteins labeled as effectors through

RBBH analysis. Of these, 19 displayed SignalP annotation congruent with secretion.

This set of 270 proteins were collated into a list (‘PCN-synapomorphic effectors’)

for subsequent analysis in Chapter 5. One of the clusters synapomorphic to PCN

(‘OG0039632’, annotated as ‘Capsule synthesis protein, CapA’) contained a G.

pallida protein labeled as effector by Thorpe et al., 2014 due to sequence similarity

to a protein to a M. artiellia sequence (Veronico et al., 2001), another putative

HGT from bacteria to nematode. However, neither PCN sequence was recovered

as a RBBH to this literature effector (‘CAC84452.1’). The result of phylogenetic

analysis of a selection of bacterial and eukaryotic poly-γ-glutamate synthase (PGA)

proteins is shown in Figure 4.3.6. Nematode proteins form a clade in which PCN and

RKN sequences are clearly separated by long branches. Poly-γ-glutamate synthase

(PGA) is usually found in bacteria and cnidarian nematocytes, where it was acquired

through HGT from a firmicute donor and is critical to nematocyte discharge. A

phylogenetic study by Denker et al., 2008 suggests that PGA genes where acquired

independently through HGT in multiple eukaryotic lineages (including Nematoda,

Arthropoda, Viridiplantae, Fungi, Annelida and Choanoflagellates), in addition

to be acquired once at the root of metazoans where it was subsequently lost in

all lineages except Porifera and Cnidaria. While an in depth analysis of these

claims would go beyond this section, the sequences originating from nematode

taxa, for which a genome is available, were investigated. Nematode sequences are

positioned in relative vicinity in the tree in Figure 4.3.6, but fail to form a clade. The

D. destructor sequence originates from a scaffold (‘scaffold443’) which only contains
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one other gene (‘Dd_13535’) which has no domains annotated with the exception of

a transmembrane domain and no hits against NCBI nt. The R. culicivorax sequence

resides alone on scaffold ‘nRc.2.0.scaf11901’. Both of these cases suggest that

these are more likely to be artefacts of the sequencing projects rather than genuine

HGTs. Burkholderia is the most commonly encountered contaminant in sequencing

datasets (Laurence, Hatzis, and Brash, 2014). The picture is different for the

PCN species: the G. rostochiensis sequence originates from a scaffold containing

29 genes (‘GROS_00231’) and the G. pallida sequence is located on a scaffold

(‘pathogens_Gpal_scaffold_148’) together with 47 other genes. The neighbouring

genes display no sign of bacterial origin (both PCN genes have a Fibronectin type

III gene on one side). Hence, it appears that Globodera species acquired a PGA gene

via HGT from Proteobacteria, as did M. artiellia. However, no other proteome in

the clustering contained a protein annotated as ‘Capsule synthesis protein, CapA’

(IPR019079), suggesting that this acquisition took place either independently in

Globodera spp. and M. artiellia or occurred in the common ancestor of both groups

and was subsequently lost in all four Meloidogyne species in this analysis.

4.3.5 Protein family expansions

KinFin facilitates assessment of protein family expansions through pairwise repre-

sentation tests of mean counts of proteins in ‘shared’ clusters between groupings and

the background (all taxa not in a grouping). Results for these tests are visualised as

volcano plots in Figure 4.3.7. Differences in protein counts in ‘shared’ clusters for

groups of interest, results of pairwise protein count representation tests of plant-

parasitic nematodes vs. the background, and the genus Globodera vs. the other gen-

era are depicted in Figure 4.3.7. One example for a consistent family expansion in

PPNs (Figure 4.3.7A) is cluster ‘OG0000346’, a Serine-threonine/tyrosine-protein

kinase, present in all taxa with a single copy, except in PPNs where counts range
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Figure 4.3.6: Phylogenetic tree of polyglutamate synthesis proteins. Non-parametric bootstrap

support is only indicated for branches with support above 80. Blue: Monophyletic Proteobacteria

clade (with the exception of a Nitrosovibrio sp. NV6 sequence). Orange: Monophyletic Ascomy-

cota clade. Green: Nematode sequences.

from two (B. xylophilus) to ten (M. arenaria). Concerning representation count

differences between PCN and other genera (Figure 4.3.7B), an extreme expansion

was observed PCN within a BTB/POZ cluster ‘OG0000116’ synapomorphic to ‘n21’:

while all Meloidogyne spp. contain one copy, G. pallida harbours 54 paralogues

and G. rostochiensis displays 21. BTB/POZ domains are highly conserved structural

motifs involved in protein-protein interactions (Stogios et al., 2005).

Pairwise protein count representation test implemented in KinFin require the

clusters to be shared between the groups that are to be compared. In order to

explore protein family expansion further, all clusters (as well as the subset of clusters

containing PCN effectors) were visualised based on the number of proteins they
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Figure 4.3.7: Volcano plots for results of pairwise protein count representation tests. The

histogram (top) shows density of data points by location on the x-axis. A: results for tests be-

tween plant-parasitic taxa and all other taxa. B: results for tests between members of the genus

Globodera and all other genera.
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contain and the number of taxa that contributed to them, based on IPR and SignalP

RFAs. The results are shown in Figure 4.3.8 and 4.3.9.

Figure 4.3.8: Visualisation of clusters based on IPR RFA. Clusters that received at least one IPR

ID through RFA are visualised in A and C. Clusters that received no IPR ID through RFA are de-

picted in B and D. Scatter plots are decorated with histograms depicting the proportion of clusters

in each bin. A: Effector clusters which received an IPR RFA. B: Effector clusters that which did not

receive a IPR RFA. C: All clusters which received a IPR RFA. D: All clusters which did not receive a

IPR RFA.

As expected, the proportion of effector clusters that received IPR RFAs (Fig-

ure 4.3.8A and B, 45.2%) is higher than for the complete clustering (Figure 4.3.8C
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and D, 19.7%). The same is true for SignalP RFAs suggestive of secretion (Fig-

ure 4.3.9A and B, 53.3%, vs. Figure 4.3.9C and D, 10.8%). The distribution of

effector clusters with IPR RFAs by number of containing taxa (Figure 4.3.8A, top

histogram) display four clear peaks. The two peaks at taxon count one and two are

due to singletons and PCN specific clusters, while the two peaks at 20 and 21 are

caused by the synapomorphic effector clusters at node ‘n0’ in the tree. This effect

is not as pronounced for effector clusters with SignalP RFAs suggestive of secre-

tion (Figure 4.3.9A, top histogram), as very few clusters containing more than two

taxa are annotated as such. This could be caused by increased domain shuffling in-

volving signal peptides in PCN taxa, leading to neo-functionalisation of conserved

proteins, but this remains to be tested.

There were three outliers in effector clusters with IPR RFAs which may be pro-

tein family expansions (Figure 4.3.8A, scatter plot): a cluster containing 298 pro-

teins from both PCN taxa (‘OG0000011’), one containing 133 proteins from all

taxa (‘OG0000050’), and one composed of 91 proteins from all taxa except G. pal-

lida (‘OG0000087’). ‘OG0000011’ is a SPRY domain cluster which contains the

Gr-SPRYSEC-19 effector (‘GROS_g14234’) involved in host immunity suppression

(Postma et al., 2012), the highly variable Gp-RBP-1 (‘GPLIN_000437400’) aviru-

lence factor targeted by the host immune system (Sacco et al., 2009), as well as

276 other SPRY proteins from G. pallida and 20 from G. rostochiensis. However,

within this cluster only 8.7% of proteins have SignalP annotation suggestive of se-

cretion. This protein family expansion has been reported before (Cotton et al.,

2014). ‘OG0000050’ is a ‘CAP domain’ cluster (IPR014044) involved in a multitude

of cellular processes. The cluster was labeled as effector because it contains two G.

pallida proteins which were recovered as orthologues to H. glycines (‘AAK55116.1’)

and G. rostochiensis (‘AHW98763.1’) venom-allergen proteins, which have been

shown to be involved in suppression of host immunity in certain PPNs (Lozano-

Torres et al., 2014). It contains seven proteins from each PCN, while counts for



CHAPTER 4. Effector gene families in Globodera species 185

Figure 4.3.9: Clusters with SignalP RFA. Clusters that received a SignalP RFA of ‘SignalP-noTM’

or ‘SignalP-noTM’ in combination with ‘SignalP-TM’ are shown in A and C. Clusters that received a

SignalP RFA of ‘SignalP-TM’ or received no RFA are shown in B and D. Scatter plots are decorated

with histograms depicting the proportion of clusters in each bin. A: Effector clusters which re-

ceived an SignalP RFA. B: Effector clusters that which did not receive a SignalP RFA. C: All clusters

which received a SignalP RFA. D: All clusters which did not receive a SignalP RFA.

other taxa vary from one to 17 with no discernible pattern that could be linked to

lifestyle or phylogeny. The cluster ‘OG0000087’ was annotated with the domains

‘SKP1 component dimerisation’ (IPR016072) and ‘SKP1 component POZ domain’

(IPR016073). Both domains are found in S-phase kinase-associated (SKP) pro-

teins, which are involved in ubiquitin-mediated degradation of proteins involved in
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core developmental processes (Nayak et al., 2002). The cluster only contains one

protein from G. rostochiensis which was labeled as effector based on orthology to a

SKP1 protein reported from the same species (‘AHW98770.1’). This literature effec-

tor was shown to be expressed in key parasitic stages and might be involved in the

fundamental developmental changes caused to the host cell during formation of the

syncytium (Ali et al., 2015). Screening of the G. pallida proteome revealed three

proteins annotated with domain IPR016072 and one with domain IPR016073, but

no protein exhibiting both. The biggest cluster in this analysis is a BTB/POZ protein

family composed of C. briggsae, and the five Steinernema species.
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4.4 Conclusion

I analysed proteomes of Clade IV nematodes which contain taxa of medical, eco-

nomical and agricultural importance. Evaluation of the effect of MCL inflation val-

ues on representative functional annotation of the resulting clusterings, revealed

small differences across the parameter interval from 1.5 to 10.0. Unsurprisingly,

taxonomic composition of the underlying proteome set has a much greater influ-

ence on representative functional annotation. Hence, estimation of optimal MCL

inflation value for clusterings should be done for each dataset using, for example,

the number of ‘true’ or ‘fuzzy’ 1-to-1 clusters. In this dataset, the distribution of

‘true’ and ‘fuzzy’ 1-to-1 clusters peaked around MCL Inflation values which also

generated an intermediate distributions of RFA clusters.

KinFin output was used to infer a robust phylogeny for Clade IV nematodes

based on 427 loci, which subsequently was used in a second KinFin run to inves-

tigate synapomorphic clusters at key nodes with respect to PCN effector proteins.

Clusters of interest were identified for the basal node — shared by all nematodes in

the analysis — suggesting that these effector proteins have either been repurposed

for plant parasitism in PCNs or that these carry out deeply conserved functions that

have simply been labeled as effector due to expression pattern in parasitic stages or

their phenotype when disrupted. Most of the PCN effector proteins were, however,

restricted to the PCN taxa. Analysis of synapomorphic clusters at the node repre-

senting the common ancestor of Globodera and Meloidogyne revealed a NodL-like

acetyltransferase previously reported to be restricted to Meloidogyne species (Scholl

et al., 2003). Phylogenetic analysis suggest monophyly of all nematode NodL-like

acetyltransferases and could be explained by acquisition of the underlying genetic

locus from a rhizobial bacterium prior to the split of Heteroderidae and Meloidog-

ynidae. Additional genomes of other Heteroderidae are urgently needed to fully

assess the patterns of effector protein family evolution in PCN, especially those
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putatively acquired through horizontal gene transfer. During this analysis it also

became apparent that several proteomes (e. g. M. hapla, M. floridensis, and M. are-

naria) still suffer from high levels of contamination. This manifested itself mainly

during exploration of synapomorphic clusters in Meloidogynidae, which uncovered

clusters composed of proteins with high similarity to bacterial sequences originating

from short scaffolds with no proximity to loci of obvious eukaryotic origin.

I generated a list of putative effector proteins in PCN proteomes based on RBBH

results to published effector sequences. The use of RBBH analysis for identification

of PCN effector seeds was preferred over the alternative of adding the effector

proteins to the respective proteomes, as some species for which many effectors

have been sequenced do not have proteomes predicted from genomes. A third

option would have been the use of EST datasets, but would also have affected the

clustering due to the amount of missing data. The RBBH analysis revealed a list

of 456 effectors identified in the proteomes of PCNs, of which 235 have not been

labeled as effectors by Thorpe et al., 2014 and Eves-van den Akker et al., 2016b.

This list will be used in further analysis in Chapter 5.
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Chapter 5

Comparative genomics of the Glo-

bodera species complex

“An old adage assures us there is no royal road to knowledge. There

is certainly no royal road to a knowledge of nematodes. The traffic

in this direction has not justified the installation of through trains and

sleeping cars; so he who takes this route must be prepared to put up with

inconveniences, and to make the best of certain disgusting passages.”

- Nathan A. Cobb, Nematodes and Their Relationships,

Yearbook of the US Department of Agriculture, 1914

209
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5.1 Introduction

5.1.1 Potato cyst nematodes

Potato cyst nematodes (PCNs) are sedentary tylenchid endoparasites of the genus

Globodera that parasitise Solanum tuberosum (potato) and several other solena-

ceous hosts. PCNs originated and co-evolved with their hosts in South America

(Plantard et al., 2008; Evans and Stone, 1977) and were introduced into Europe in

the 19th century as a result of resistance breeding programs against potato blight

(Evans, Franco, and De Scurrah, 1975). From Europe they have spread to other

regions in Asia, Africa and the US, and are considered a major pest in temperate

regions (Franklin, 1951; Hockland et al., 2012; Mimee et al., 2015). The impli-

cations of the independent introduction events on population structure, effector

diversity and phylogeography are only poorly understood. Early attempts to char-

acterise different populations of morphologically indistinguishable strains, which

exhibit distinct patterns of virulence, resulted in a pathotype naming scheme based

on multiplication rates on host plants (Kort et al., 1977).

The losses in crop yield for UK potato farmers caused by the PCNs G. pallida

and G. rostochiensis are estimated to reach £50 million per year or 9% of production

(DEFRA, 2010). The discovery of a single resistance gene in potato acting against

the ‘Ro1’ pathotype of G. rostochiensis in the 1970s has selected for G. pallida

in mixed populations and therefore allowed G. pallida to become the prevalent

metazoan parasite of potatoes in Northern Europe (Minnis et al., 2002). For G.

pallida no comparable single, dominant resistance gene in the host is available and

research has focussed on quantitative trait loci which confer a certain degree of

resistance but are difficult to breed and can be overcome by virulent pathotypes.

Furthermore, the ability of PCNs to remain dormant in the soil for many years makes
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crop rotation unfeasible (Trudgill, Phillips, and Elliott, 2014) and recent legislation

has limited the use of nematicides to control infestation (Clayton et al., 2008). As

a consequence there is great need to understand the biology of these parasites and

their interactions with the host in order to develop novel approaches to guarantee

sustainable and competitive potato production within the UK. One effort in this

direction started in 2008 in the form of the Globodera genome sequencing project

and culminated in a reference genome of G. pallida and the analysis of gene

expression profiles throughout the parasite’s life cycle (Cotton et al., 2014). In

addition to the reference strain G. pallida ‘Lindley’ (pathotype Pa2/3), genome data

for several other populations of G. pallida from the UK and South America as well

as for the sister species G. rostochiensis were generated during the project.
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5.1.2 Globodera pallida

The reference genome and life-stage specific analysis of gene expression for G.

pallida by Cotton et al., 2014 offers a comprehensive and detailed view of the

biology of this parasite. Potato cyst nematodes begin their life cycle as second

stage juveniles (J2) as they hatch from cysts in the soil. This occurs in response

to an environmental cue in the form of host root secretions. The emergence from

dormancy is associated with large-scale up-regulation of transcriptional activity.

High levels of expression were observed for genes whose products are involved

in carbohydrate metabolism, defence responses against pathogens and the plant

immune system, and poly-A transferase activity (Cotton et al., 2014). The J2 larva

penetrates the host cell wall using its stylet and migrates intercellularily to the

vascular cylinder of the root in order to establish the initial feeding site (syncytium),

a feeding cell composed of fused host cells which provides the nematode with

nutrients. Establishment of the feeding site requires substantial changes to the host

cell structure, including localised cell wall degradation and protoplast fusion to

progressively enlarge the feeding cell until eventually up to 200 neighbouring cells

are incorporated (Lilley, Atkinson, and Urwin, 2005). Genes up-regulated in J2

were enriched for products with signal peptides, suggesting secretion of proteins

involved in this step. During the three to six week long development into an adult

male or an egg-laying female, the J2 undergoes three moulting steps (Sobczak and

Golinowski, 2011). The transitions through these early parasitic stages correlate

with the largest changes in gene expression during the life cycle of the nematode.

Down-regulated gene classes include those coding for proteins involved in signal

transduction, chemotaxis and neurotransmission, as expected during the transition

of a free-living organism to a sedentary parasite (Cotton et al., 2014). Up-regulation

is observed for genes coding for products involved in lipid metabolism and protein

degradation, as well as a large group of glutathione synthesase proteins, suggested

to be involved in neutralising plant defences — break-down of cytotoxic hydrogen
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peroxide released by the plant upon cell damage — and alteration of signalling or

regulation of plant development in which glutathione has important roles. The sex

of the adult nematode is determined by its success in establishing the feeding site,

to be specific by the size of the syncytium and its proximity to vascular tissue which

guarantees abundance of nutrients. This environmental mode of sex determination

results in a greater proportion of males as population density increases (Phillips,

Forrest, and Farrer, 1982; Sobczak and Golinowski, 2011). The sexual fate is

fixed shortly before the moult to J3. Males feed until the end of J3, emerge as

J4 from the feeding site and migrate to find females. Although both pre-parasitic

J2 larva and males migrate through host cells they display only minor similarities in

differentially expressed genes, limited to genes related to neuromuscular functions.

Up-regulation in non-feeding, migratory males is observed primarily for genes

associated with storage mobilisation, protein and lipid metabolism, and sperm

production. In contrast, female worms begin to enlarge and adopt a spherical shape

upon reaching adulthood. Once the female is fertilised, the embryos develop into

J2 larva inside the body of the female and enter dormancy. Subsequently, the cuticle

of the female transforms into a robust cyst which becomes detached from the root

after the death of the host plant. The J2 larva inside the cyst are able to survive in

the soil for decades in the absence of a host (Spears, 1968).

Populations of G. pallida

During the Globodera genome project, genome data were generated for seven pop-

ulations of G. pallida, including the reference population ‘Lindley’. The populations

are listed in Table 5.1.1. The samples comprise five populations from the UK and

two from South America.

The two South American populations have been reported to be distinct from
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Table 5.1.1: Genomic reads of G. pallida populations. All reads were generated on the Illumina

HiSeq2000 platform from PE libraries with an insert size of 475 b. Reads are available on ENA.

ENA Run ID Population Pathotype Origin Reads

ERR114517 ‘Lindley’ Pa2/3 England (UK) 78,227,699

ERR123952 ‘Bedale’ Pa2/3 England (UK) 143,620,834

ERR123953 ‘Luffness’ Pa2/3 Scotland (UK) 135,215,151

ERR123954 ‘Newton’ Pa2/3 England (UK) 123,555,048

ERR123955 ‘Pa1’ Pa1 Scotland (UK) 129,324,633

ERR123956 ‘P5A’ P5A Peru 134,270,353

ERR123957 ‘P4A’ P4A Peru 126,694,929

each other and from the European populations based on molecular markers (Blok

and Phillips, 1995; Blok, Phillips, and Harrower, 1997; Blok et al., 1998; Subbotin

et al., 2000). The population ‘P4A’ appears to be more closely related to European

populations. The ‘Lindley’ population is a representative of the virulent pathotype

‘Pa2/3’ which is able to overcome the H2 resistance from Solanum multidissectum, as

are ‘Bedale’, ‘Newton’, and the Scottish ‘Luffness’ population. The latter population

has been suggested to be a result of a separate introduction to Europe as it has

been shown to be distinct from other European populations, and to share an

ancestral relationship with the ‘P4A’ population from Peru (Pylypenko et al., 2005;

Madani et al., 2010). The other UK ‘Pa2/3’ populations have been shown to

constitute a monophyletic group, based on 250 random amplified polymorphic

DNA (RAPD) markers (Blok, Phillips, and Harrower, 1997). The population ‘Pa1’

has morphotypes not present in other populations of G. pallida — females are

‘cream’ coloured as opposed to ‘white’ — and lacks the virulence gene necessary to
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overcome the H2 resistance (Phillips et al., 1992). However, previous studies have

been based on limited number of loci and the heterogeneity of some populations of

G. pallida — paired with the lack of suitable marker loci for population membership

delimitation — have resulted in a complex picture of population structure.

5.1.3 Globodera rostochiensis

The yellow potato cyst nematode G. rostochiensis comprises a lesser threat to UK

potato industry compared to G. pallida, since the dominant pathotype ‘Ro1’ in the

UK can be controlled by a single major resistance locus in potato crops (H1). A

single introductory event of G. rostochiensis into Europe has been suggested (Phillips

and Trudgill, 1998; Hockland et al., 2012). In contrast, introduction to the USA and

Canada appears to have occurred within the past century and was initially confined

to a few localised regions, due to enforcement of strong quarantine measures (Olsen

and Mulvey, 1962; Orchard, 1965). However, despite these efforts an increase in

outbreaks has been observed since 2006 (Sun et al., 2007; Mahran et al., 2010) and

research into detection and management of G. rostochiensis are of major interest.

High-throughput genotype-by-sequencing (GBS) approaches have been applied to

populations of G. rostochiensis in order to resolve the population structure of ‘Ro1’

in Canada (Mimee et al., 2015). This approach is based on sequencing of DNA of

pooled samples of cysts, which has been digested using restriction enzymes. Reads

are subsequently processed and de novo assembled through the UNEAK (Universal

Network Enabled Analysis Kit) pipeline (Lu et al., 2013), based on which variants

are called.

A reference genome assembly for the ‘Ro1’ population of G. rostochiensis was

generated within the scope of the Globodera genome project by staff at the Wellcome

Trust Sanger Institute. I was invited to coordinate the genome annotation. Together
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with Mark Blaxter and Sebastian Eves van-den-Acker, I organised a collaborative

manual genome curation event at the University of Edinburgh, during which 15

researchers from Canada, the Netherlands, USA, and UK revised and improved gene

models I previously predicted on the assembly. This was made possible through the

use of a Badger genome exploration environment (Elsworth, Jones, and Blaxter,

2013) — to query functional annotations of the G. pallida and G. rostochiensis

genomes — and a WebApollo (Lee et al., 2013) instance for the collaborative

curation of structural gene predictions. Both web services were configured by

Michael Clarke and myself. During and after the curation event, approximately

one-eighth (1566) of the predicted gene models were inspected and, if necessary,

refined. I used the resulting set of curated gene models to re-predict gene models on

the assembly, which served as basis for subsequent comparative genomics analyses.

The results were published by Sebastian Eves van-den-Acker and myself as joint first

authors in the journal ‘BMC Genome Biology’ as Eves-van den Akker et al. (2016b)

(DOI: 10.1186/s13059-016-0985-1). Furthermore, I coordinated the deposition

of the G. rostochiensis genome assembly and its final annotation on WormBase

ParaSite.

5.1.4 Globodera ellingtonae

Based on morphological and molecular differences to known Globodera species, in

2012 a new PCN species, G. ellingtonae, was described from samples collected from

potato fields in Oregon, USA (Handoo et al., 2012). Marker sequences of ITS1 and

28S rDNA suggested that G. ellingtonae is more similar to the tobacco cyst nematode

G. tabacum and to G. rostochiensis, than to G. pallida. A high-quality draft genome

assembly of G. ellingtonae, generated from long (PacBio) and short (Illumina MiSeq

and HiSeq) read data, was published recently (Phillips et al., 2017), but no gene

annotation is available yet.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0985-1
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5.1.5 Comparative genomics of potato cyst nematodes

In this chapter, I describe analyses I performed on the genome assemblies of

G. pallida, G. rostochiensis, and other nematodes. These include some analysis

published in Eves-van den Akker et al. (2016b) (DOI: 10.1186/s13059-016-0985-

1), such as comparison of quality metrics between the genome assemblies of G.

pallida and G. rostochiensis, lack of conservation of synteny between both genomes,

and patterns of non-canonical splice-sites across Nematoda. Here, I estimate

the rate of variation for the reference populations used to generate the genome

assemblies of G. pallida (‘Lindley’) and G. rostochiensis (‘Ro1’) and present new

results concerning the phylogeography of G. pallida populations and assess their

genomic variation.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0985-1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0985-1
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5.2 Methods

5.2.1 Data

Files related to the genome assemblies of G. pallida and G. rostochiensis were re-

trieved from WBPS8: assemblies, repeat-masked assemblies (soft-masked), and

annotations in GFF3. In addition, assemblies and annotations in GFF3 were down-

loaded for all 100 nematodes species on WBPS8. The genome assembly of G. elling-

tonae (‘ASM172322v1’) was retrieved from NCBI (BioSample ID ‘SAMN04393202’).

A novel genome annotation of Heterorhabditis bacteriophora in GFF3 was pro-

vided by Flo McLean. Read datasets for the G. pallida populations listed in Ta-

ble 5.1.1 and for the ‘Ro1’ population of G. rostochiensis (‘ERR123958’) were

downloaded from ENA. Intronic features were added to annotation files using

GenomeTools v1.5.9 (Gremme, Steinbiss, and Kurtz, 2013) (gt gff3 -sort

-tidy -retainids -fixregionboundaries -addintrons) and the resulting

output was converted to BED format using GNU awk, GNU sed and Perl. For sub-

sequent processing of BED files, BedTools v2.26.0 (Quinlan and Hall, 2010) was

used.

5.2.2 Assessment of regions in PCN genomes

For G. pallida, G. rostochiensis and G. ellingtonae, feature track files in BED format

were created using the script masked_fasta2bed (https://github.com/DRL/

thesis) based on repeat-masked assemblies. The resulting BED files delimit

regions composed of canonical nucleotides (‘AGCT’), unknown regions (‘N’), IUPAC

ambiguity codes for nucleotides (‘MRWSYKVHDB’), and repeats (nucleotides in

lower case). For the assemblies of G. pallida and G. rostochiensis, the BED files

https://github.com/DRL/thesis
https://github.com/DRL/thesis
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were filtered to only include runs of N’s shorter than 10 b. These BED files delimit

the regions in each assembly on which further analyses are performed.

5.2.3 Synteny analysis

Synteny analysis between the G. pallida and G. rostochiensis genomes was per-

formed as described in Eves-van den Akker et al. (2016b). In brief, synteny be-

tween scaffolds was assessed based on a OrthoMCL clustering (Li, Stoeckert, and

Roos, 2003) (at MCL inflation value of 1.5) using i-adhore-3.0.01 (Simillion et

al., 2008). The G. rostochiensis scaffold ‘GROS_00007’ was visualised together with

the four largest homologous G. pallida scaffolds using circos v0.67-7 (Krzywin-

ski et al., 2009), including GC-content and BLASTn results (E-value cutoff of 10−65)

between the scaffolds.

5.2.4 Splice sites

During the collaborative curation event for the G. rostochiensis genome assembly,

several attendees reported a high incidence of non-canonical splice sites (GC/AG

as opposed to GT/AG). Using the script extractRegionFromCoordinates.py

(available at https://github.com/DRL/GenomeBiology2016_globodera_

rostochiensis), I extracted splice donor and acceptor sites from GFF3 files of

the two PCN genomes and genomes of representative species across the phylogeny

of Nematoda for subsequent analysis by collaborators (see Eves-van den Akker et

al., 2016b). I repeated this analysis for the 100 nematode genomes deposited on

WBPS8 and contrasted levels of non-canonical GC/AG splice sites with the N50

metric, intron count and number of unique proteins to each genome, defined as the

https://github.com/DRL/GenomeBiology2016_globodera_rostochiensis
https://github.com/DRL/GenomeBiology2016_globodera_rostochiensis
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sum of proteins present in singletons and proteome-specific clusters based on the

KinFin analysis in Section 3.6.

5.2.5 Sequencing of additional G. pallida populations

Cysts derived from a single mother cyst from each of the G. pallida populations

‘Pa1’ and ‘Luffness’ were reared in root-trainers on the susceptible potato cultivar

‘Desiree’ by Vivian Blok at the James Hutton Institute in Dundee. Two months af-

ter inoculation, I sampled 29 (‘Pa1_A’) and 21 (‘Pa1_B’) adult females from two

‘Pa1’ cohorts and 24 adult females from one ‘Luffness’ cohort. Sample ‘Pa1_B’ was

collected from a single root which is equivalent to sampling ‘sister’ worms, while

‘Pa1_A’ and ‘Luffness’ were sampled from multiple roots and are therefore ‘cousins’.

I carried out DNA extractions based on a protocol developed by AurÃl’lien Richard

for C. elegans which I modified for low-input samples. The protocol is available

at https://github.com/DRL/thesis. The resulting DNA concentrations var-

ied between 4.5 and 5.4 ng/µl, measured on a Qubit 2.0 Fluorometer (Thermo

Fisher Scientific). From each sample, 1 µl was used to carry out whole genome am-

plification reactions using the REPLI-g UltraFast Kit (Quiagen). This yielded DNA

concentrations of 106.7 ng/µl (‘Pa1_A’), 32.0 ng/µl (‘Pa1_B’), and 67.2 ng/µl (‘Luff-

ness’). From each sample, two Illumina NexteraXT sequencing libraries — based

on un-amplified (‘WGS_NX’) and amplified (‘WGA_NX’) DNA — and one Illumina

Nextera sequencing library — based on amplified DNA (‘WGA_N’) — were gener-

ated by Edinburgh Genomics and sequenced on the Illumina HiSeq4000 platform.

These datasets are referred to as ‘bottlenecked’ populations hereinafter.

https://github.com/DRL/thesis
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5.2.6 Quality and adapter trimming of reads

Read datasets of the G. rostochiensis ‘Ro1’ population, seven G. pallida populations

(listed in Table 5.1.1), and the nine samples from the ‘bottlenecked’ populations

were adapter and quality trimmed via trimmomatic v0.36 (Bolger, Lohse, and

Usadel, 2014) using default parameters, except that minimum length of trimmed

reads was set to 50. Only paired reads were kept for subsequent analysis.

5.2.7 Read mapping

Trimmed reads were mapped using bwa mem v0.7.15-r1140 (Li, 2013) and

samtools v1.5 (Li et al., 2009). Only read pairs for which both reads mapped

as ‘proper pairs’ — reads mapping in forward-reverse orientation with an insert

size falling within a distribution based on 256,000 reads pairs — were kept.

Duplicated reads were flagged using Picard Tools v2.9.0 MarkDuplicates

(http://broadinstitute.github.io/picard/) and BAM files were sorted

using samtools v1.5.

5.2.8 Coverage analysis of PCN datasets

Coverage information was extracted from BAM files via BedTools genomecov

(-bga) to create BED files containing base coverage for each region in the assembly.

These regions were filtered to only contain regions with five or more reads mapping

to them. These files delimit known regions in the assembly for which each

read dataset provides sufficient coverage for further analysis. UpsetR plots were

created using the script coverage_upsetr.R based on data extracted via the script

generate_upsetr_expression.py (both are available at https://github.

http://broadinstitute.github.io/picard/
https://github.com/DRL/thesis
https://github.com/DRL/thesis
https://github.com/DRL/thesis
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com/DRL/thesis). In the case of the ‘Lindley’ and ‘Ro1’ coverage BED files,

additional BED files were created by excluding regions containing more than twice

the median coverage to exclude regions of high coverage due to repetitive regions.

Coverage decay plots were generated for CDS regions of the G. pallida assembly

using each of the G. pallida BAM files via the script bamCov.py (https://github.

com/DRL/thesis).

5.2.9 Variant calling

Variant calling was performed via FreeBayes v1.1.0 (Garrison and Marth, 2012)

with parameters geared towards analysis of pooled samples of diploid organisms.

Only reads with a mapping quality of 20 or more were considered for variant

calling, and the minimum read depth and number of reads supporting an alter-

nate allele was set to five. The maximum read depth per sample was set to

500 (-n 4 --strict-vcf -p 2 --haplotype-length 0 -m 1 -q 20 -Q 20

-J -K -C 5 --min-coverage 5 --max-coverage 500 -=). Three variant call-

ings were performed: one for each of the reference populations ‘Lindley’ and

‘Ro1’, and one joint calling of all G. pallida population datasets. Filtering, calcu-

lation of metrics, and subsetting of VCF files was performed using bcftools v1.5

(https://github.com/samtools/BCFtools). Parameters for hard filtering of

variants consisted in standard quality filters of variants: a minimum read depth of

five reads, at least one read mapping on each strand and at least one read ‘bal-

anced’ on each side of the variant site ('DP>=5 & QUAL > 1 & QUAL/AO > 10 &

FORMAT/GQ >= 10 & RPL >=1 & RPR>=1 & SAF>=1 & SAR>=1'). Estimation of

heterozygosity, i. e. the inbreeding coefficient Fis =
SNPsObs,Hom−SNPsEx p,Hom

SNPsAll−SNPsEx p,Hom
, based on

biallelic SNPs and calculation of ‘missingness’ was carried out for each sample us-

ing VCTtools v0.1.15 (Danecek et al., 2011).

https://github.com/DRL/thesis
https://github.com/DRL/thesis
https://github.com/DRL/thesis
https://github.com/DRL/thesis
https://github.com/DRL/thesis
https://github.com/samtools/BCFtools
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5.2.10 Estimation of SNP frequency in reference popula-

tions

In order to assess SNP frequencies in the G. pallida ‘Lindley’ and G. rostochiensis ‘Ro1’

reference populations — which were used to construct the reference assemblies —

the rates of variants per base were calculated based on the VCF files described in

the previous section. Two sets of BED files were used to delimit regions based on

which variant rates were calculated:

• ‘ALL’: all continuous regions of length ≥500 b with a read coverage ≥ five

• ‘COV’: all continuous regions of length ≥500 b with a read coverage ≥ five

and a maximum read coverage of twice the median coverage of the dataset,

i. e. 128 for ‘Lindley’ and 142 for ‘Ro1’

The ‘ALL’ BED file delimits regions for which sufficient coverage for variant call-

ing was observed, while the ‘COV’ BED files exclude regions for which exces-

sive coverage was observed which might be due to paralogous genes or low-

complexity/repeat regions. Variants in VCF files were subsetted by type — SNPs,

Indels, and MNPs — using bcftools v1.5 (https://github.com/samtools/

BCFtools), and subsequently processed using BedTools coverage (option:

-counts) and GNU awk to count biallelic variants for each type, in regions delim-

ited by the ‘ALL’ and ‘COV’ BED files. The variant rates were calculated by dividing

the number of variants of each type by the total length of the sampled region.

https://github.com/samtools/BCFtools
https://github.com/samtools/BCFtools
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5.2.11 Phylogenetic analysis of SNP data

The hard filtered VCF file containing variants of all G. pallida datasets was processed

to convert sequence IDs to numerical identifiers and sample names were shortened

to one letter codes using GNU sed. Phylogenetic analysis was carried out on the

resulting VCF file using SNPhylo v20140701 (Lee et al., 2014) with 0.02 as min-

imum minor allele frequency, 0.1 as maximum percent of missing data, and setting

the number of autosomal sequences to the number of scaffolds for which variants

were called. The program’s internal quality filtering removed 3,019,960 ‘low qual-

ity’ sites and 1,613,734 biallelic and polymorphic SNPs were used. SNPhylo uses

SNPRelate (Zheng et al., 2012) for linkage disequilibrium (LD) pruning of SNPs

based on the pairwise genotypic correlation within sliding windows of 500,000 b

to reduce the influence of clusters of SNPs on the phylogenetic analysis. Since little

is known concerning patterns of LD across the genome of G. pallida, analyses were

conducted for values for LD thresholds ranging from 0.1 to 0.9. SNPhylo converts

the resulting SNPs to FASTA format, which are aligned using MUSCLE v3.8.31

(Edgar, 2004). Phylogenetic trees were inferred using the maximum likelihood

method implemented in IQ-TREE v1.5.5 (Nguyen et al., 2015) using its auto-

matic model selection (Kalyaanamoorthy et al., 2017) and performing 100 non-

parametric bootstraps. Automatic model selection converged on the models ‘TVM’

(transversion model: variable base frequencies, variable transversion rates, transi-

tion rates equal), ‘TVM+I’ (transversion model with proportion of invariable sites),

and ‘GTR’ (general time reversible model: variable base frequencies and symmetri-

cal substitution matrix) depending on the dataset, based on bayesian information

criterion.
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5.2.12 Assessment of signatures of selection in coding re-

gions

The hard filtered VCF file of all G. pallida datasets was filtered further to include

only biallelic SNPs without any missing data. The resulting VCF file, the FASTA file

of the G. pallida assembly and the GFF3 file of the annotations were partitioned

into separate files for each scaffold that contained a variant in coding regions. The

script generate_popgenome_calls.py (https://github.com/DRL/thesis)

was used to generate R scripts which execute the McDonald-Kreitman test (MK-test)

(McDonald and Kreitman, 1991) implemented in PopGenome v2.2.4 (Pfeifer et

al., 2014) on coding regions of genes for each scaffold and test significance using a

Fisher’s exact test. The South American ‘P5A’ population was selected as outgroup

in the analysis based on the results described in Section 5.3.7. This approximate

version of the MK-test allows computation of the neutrality-index (N I) based on

SNPs in VCF files, but assumes that probability of co-occurrence of SNPs in the same

codon is small and hence only examines codons with a single SNP. The null hypoth-

esis in the MK-test is that the ratio of non-synonymous to synonymous substitutions

between populations (fixed sites, F) is equal to the equivalent ratio within popula-

tions (polymorphic sites, P). Assuming that synonymous substitutions are neutral,

departures from this equality are attributed to selection. N I ( Pn/Ps
Fn/Fs

) measures the di-

rection and magnitude of the departure from neutrality. N I > 1 indicates an excess

in non-synonymous polymorphic sites which is interpreted as a sign of negative se-

lection. N I < 1 occurs if there is an excess of non-synonymous sites fixed between

populations which suggests positive selection.

https://github.com/DRL/thesis
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5.3 Results

5.3.1 Comparison of PCN assemblies

Standard genomic metrics for the three published PCN assemblies (Table 5.3.1)

highlight the superiority of the assembly of G. ellingtonae. The use of long read

(PacBio) data in conjunction with short read (Illumina HiSeq and MiSeq) data

yielded a highly contiguous assembly with CEGMA (Parra, Bradnam, and Korf,

2007) completeness values similar to those of G. rostochiensis.

The assembly size of the G. ellingtonae assembly is in agreement with that

of G. rostochiensis, suggesting that the 20 Mb of N’s in the G. pallida genome

might be an artefact of the assembly process. For the two PCN assemblies for

which gene predictions are available, the cumulative span of genic regions is

identical. However, the number of predicted genes in G. pallida is greater than

in G. rostochiensis, suggesting a higher incidence of fragmented gene models.

Furthermore, CEGMA metrics indicate a lower completeness concerning eukaryotic

core genes in G. pallida. The differences in contiguity between the assemblies are

visualised as cumulative length plots at the level of scaffolds, contigs and regions

containing N’s in Figure 5.3.1.

The high contiguity of the G. ellingtonae assembly is evident from the cumula-

tive length curve at the level of scaffold. In contrast, the assemblies of G. pallida

and G. rostochiensis contain high numbers of short scaffolds as a result of the short

read assembly process. The cumulative length curve of regions containing N’s hints

not only at differences between G. pallida and the other two assemblies in the num-

ber of regions but also in the length distribution of these regions. The distributions

for the three assemblies are visualised as histograms in Figure 5.3.2. The distribu-

tion for the G. pallida assembly shows a high number of continuous regions of N’s



CHAPTER 5. Comparative genomics of the Globodera species complex 227

Table 5.3.1: Metrics of PCN assemblies. †: Values taken from Phillips et al. (2017). N/A: met-

rics not available.

Metric G. pallida G. rostochiensis G. ellingtonae

Assembly size (Mb) 123.6 95.9 106.0

Scaffolds (n) 6873 4281 2246

Scaffold N50 (bp) 120,481 88,688 327,189

Longest scaffold (bp) 599,721 688,384 2,517,252

Contig N50 (bp) 11,611 11,372 13,178

Longest contig (bp) 93,564 111,501 173,609

Span of N’s (bp) 19,976,929 4,399,212 899,007

GC (%) 36.7 38.1 36.7

CEGMA (Complete/Partial %) 74.19/80.65 96.4/95.56 92.3/96.3 (†)

Mean CEGMA (Complete/Partial) 1.23/1.29 1.15/1.24 N/A

Genes (n) 16,403 14,308 N/A

Span of genic regions (Mb) 39.57 39.57 N/A

Mean gene length (b) 2765.6 2412.3 N/A

Span of exonic regions (Mb) 17.76 18.21 N/A

Mean exon length (b) 135.1 145.5 N/A

Span of intronic regions (Mb) 21.81 21.36 N/A

Mean intron length (b) 189.6 192.7 N/A

Proteins (n) 16,403 14,309 N/A

Proteins w/ start and stop (n) 14,598 13,495 N/A
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Figure 5.3.1: Cumulative length plots for PCN genomes. A: cumulative length plot for scaf-

folds. B: cumulative length plot of contigs. C: cumulative length plot of regions containing N’s.

GP: G. pallida. GR: G. rostochiensis. GE: G. ellingtonae. Differences between assemblies are most

pronounced at the level of scaffold and regions containing N’s.

ranging from 2500 to 15000 b, which are absent from the other assemblies. For the

assembly of G. pallida, 454 PE libraries of insert sizes of 3 kb, 8 kb, and 20 kb were

used (Cotton et al., 2014), which most likely are accountable for the high number

of contiguous regions of N’s.

Table 5.3.2: Span of PCN reference assemblies. ‘AGCT’: regions in the assemblies neither an-

notated as low-complexity/repeat regions nor containing ≥10 N’s. N’s: regions composed of ≥10

N’s. dust: low-complexity regions annotated by dust masker. tandem: tandem repeats annotated

by TRF. RM: Repeat regions annotated by RepeatMasker. Values for low complexity and repeat

regions are not additive since regions were annotated independently and do overlap.

Span

Assembly Total (b) ‘AGCT’ (%)
‘agctn’ (%)

Total N’s dust tandem RM

G. pallida 123,625,196 55.81 44.19 16.16 28.06 5.19 19.36

G. rostochiensis 95,876,286 79.24 20.76 4.59 17.03 7.72 0.07

Based on the soft-masked assembly files and the annotations retrieved from
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Figure 5.3.2: Histogram of length distribution of regions containing N‘s. Runs of N’s were

visualised in 25 bins for each assembly. GP: G. pallida. GR: G. rostochiensis. GE: G. ellingtonae.

The G. pallida assembly displays more and longer stretches of unknown regions than the other two

assemblies.

WBPS8, annotations concerning repeat and low-complexity regions were in-

vestigated. The length of regions composed of ‘AGCT’ and ‘agctn’ (i. e. low-

complexity/repeat region or continuous regions of≥10 N’s) are listed in Table 5.3.2.

The length of ‘AGCT’ regions in the G. pallida assembly is 69.0 Mb (55.81%) com-

pared to 76.0 Mb (79.24%) of the G. rostochiensis assembly. The difference in pro-

portion of total assembly length is due to the length of regions composed of N’s

(16.16%) in the G. pallida assembly, in addition to the number of regions annotated

by the RepeatMasker algorithm. Due to the nature of the repeat finding algorithms,

sites within coding regions can also been annotated as low-complexity/repeat re-

gions. In G. pallida, 2.14 Mb (12.03%) of exonic regions overlap with annotations

indicating low-complexity/repeat regions, compared to 0.66 Mb (3.62%) of exonic
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regions in G. rostochiensis. The span for further analysis was estimated as the total

number of bases in the assembly not containing runs of N’s of length ten or longer,

yielding 103.65 Mb for G. pallida and 91.48 Mb for G. rostochiensis.
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5.3.2 Synteny between G. pallida and G. rostochiensis

Based on orthology inferred through an OrthoMCL clustering of proteins, 109 syn-

tenic clusters of scaffolds were identified which contained at least five consecutive

syntenic protein coding loci. In total, 38.2 Mb (36.9%) of the G. pallida assembly

were partially syntenic to 31.1 Mb (34.0%) of the G. rostochiensis assembly (ignor-

ing N’s). Breaks in synteny between two scaffolds were observed in 20 pairs, seven

of which involved inversions. The low proportion of syntenic regions most likely re-

flects the draft nature of both assemblies. However, high rates of intrachromosomal

rearrangements have been observed for other nematodes, such as C. elegans and C.

briggsae (Coghlan and Wolfe, 2002; Kent and Zahler, 2000). A subset of the largest

syntenic cluster is shown in Figure 5.3.3. Synteny breakpoints which primarily co-

occur with large insertions in the G. pallida assembly may suggest either large-scale

genomic rearrangements or over-scaffolding of the G. pallida assembly.

Figure 5.3.3: Conservation of synteny between G. pallida and G. rostochiensis. G. rostochien-

sis genes (blue) in scaffold ‘GROS_00007’ (500 kb) are syntenic (green arcs) with G. pallida genes

(red) on four scaffolds. Synteny breakpoints primarily co-occur with large insertions in the G.

pallida assembly. GC content and regions of undetermined sequence are represented by orange

and black bars, respectively
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5.3.3 Analysis of GC/AG splice sites

The result of the analysis of non-canonical GC/AG splice site frequencies in genomes

of representative species of the phylum Nematoda, published in Eves-van den Akker

et al. (2016b), is shown in Figure 5.3.4. These results indicate that the two genomes

of PCN nematodes exhibit the highest proportion of non-canonical GC/AG splice

sites among the surveyed species and that certain taxa do not display any gene

with those splice sites, which might be an artefact of certain gene annotation

pipelines.

In order to test whether the frequency of GC/AG splice sites in PCNs rep-

resent an extreme case within the phylum Nematode, I surveyed all 100 species

of nematodes available on WBPS8. The percentage of GC/AG splice sites plotted

against the N50 metric for each of the 100 nematode genomes is displayed in Fig-

ure 5.3.5. Across the nematode genomes surveyed, percentages ranged from 0% (in

nine species including all three Meloidogyne species) to 8.9% in H. bacteriophora.

However, an improved genome annotation of H. bacteriophora generated recently

by Flo McLean only contains GC/AG splice sites in 0.80% of the introns, suggesting

that this high rate is an artefact. A similar case is H. polygyrus for which alter-

native assemblies yield different rates of GC/AG splice sites (1.1 vs. 4.3%). Two

Angyostrongylus species exhibit consistent and even higher proportions than those

in Globodera species. In general, non-canonical GC/AG splice sites appear to be as-

sociated with mid-range N50s. The percentage of proteins unique to each genome

(Figure 5.3.6) revealed further outlier proteomes, such as that of Romanomermis

culicivorax (63.2% of proteins do not cluster with other species), but no clear con-

nection exists between number of proteins unique to a proteome and GC/AG splice

sites.
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Figure 5.3.4: Percentages of GC/AG splice sites across selected nematode species Percentages

of GC/AG splices sites with associated consensus sequences are shown for 17 species against a

schematic phylogeny of the phylum Nematoda (adapted from Blaxter and Koutsovoulos, 2015).

Thickness of branches is scaled by percentages of GC/AG splices sites. Red numbers indicate

those which likely represent under reporting due to over-strict parameter settings during gene

prediction.
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Figure 5.3.5: Percentages of GC/AG splice sites and N50 of nematode genomes. Genomes

with a GC/AG splice site percentage ≥0.75% are labelled. Labels are filled for species for which

either two alternative genomes/annotations exist (Heterorhabditis bacteriophora, Heligmosomoides

polygyrus, Loa loa) or for which closely related species exhibiting high rates (Globodera species

and Angiostrongylus species). High percentages of GC/AG splice site appear to be associated with

mid-range N50s, and no clear phylogenetic pattern is apparent.
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Figure 5.3.6: Percentages of GC/AG splice sites and unique proteins of nematode genomes.

Percentage of unique proteins is the number of proteins in singleton and proteome-specific clusters

in the KinFin analysis of the OrthoFinder clustering at MCL 3.0 (‘RI’) in Section 3.6.
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In order to investigate the high proportion of GC/AG sites in the Angiostrongy-

lus species, I analysed the counts of splice sites by gene in the species indicated by

filled labels in Figure 5.3.5. These consist of two pairs of sister species with high

and congruent GC/AG percentages (Globodera and Angiostrongylus species), one

pair of splice site congruent annotations (Loa loa) and two pairs of alternative gene

predictions which exhibit different numbers of GC/AG splice sites (H. polygyrus and

H. bacteriophora). Histograms of the counts of GC/AG splice sites per gene of these

taxa are shown in Figure 5.3.7. Counts per gene in Globodera and Angiostrongy-

lus species exhibit similar distributions, as opposed to Heligmosomoides and Het-

erorhabditis, which could indicate that the high number of GC/AG splice sites in the

gene annotations of Angiostrongylus species is a genuine feature of the underlying

genomes. However, consistent and coordinated re-annotation of many nematode

genomes is warranted, and parameters such as non-canonical splice-sites or pro-

portion of unique proteins might be useful metrics for quality control of genome

annotations.

Figure 5.3.7: Distribution of GC/AG splice sites across genes. Distributions of counts of

GC/AG splice sites per gene.Angiostrongylus, Globodera, and Loa species display similar distri-

bution between the respective genomes, while alternative gene predictions H. polygyrus and H.

bacteriophora differ.
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5.3.4 SNP frequency in PCN reference populations

Assessment of coverage of both reference assemblies — by their respective popu-

lation datasets — revealed distinct patterns of coverage. For the assembly of G.

pallida, regions covered by five or more reads account for 92.27 Mb (87.64%) of

the total span of the assembly, compared to 90.84 Mb (99.30%) for the assembly of

G. rostochiensis. Of these, 84.76 Mb for G. pallida and 89.07 Mb for G. rostochiensis

are composed of continuous regions of length ≥ 500 b (‘ALL’ regions). To account

for repetitive regions, further filtering was performed based on a maximum read

coverage of twice the median coverage for each dataset (‘COV’ regions). This re-

duced the span of continuous regions of length ≥ 500 b to 60.41 Mb in G. pallida

and 82.12 Mb in G. rostochiensis. While the ‘ALL’ regions are almost identical in

length between both species, filtering based on twice the median coverage removed

a much longer span in the G. pallida assembly. This is consistent with the high pro-

portion of bases in the assembly annotated as repeats/low-complexity regions listed

in Table 5.3.2.

Variants were called on both PCN reference assemblies using the respective

population datasets based on which they were assembled. Rates of variants for both

types of regions — ‘ALL’ and ‘COV’ — were calculated and are listed in Table 5.3.3.

G. rostochiensis displays lower rates of SNPs, MNPs, and indels than G. pallida,

although a much greater proportion of the assembly is covered by reads. Hence it

appears that the G. pallida assembly harbours a greater proportion of repeat/low-

complexity regions and that — even if these are excluded — the numbers of variant

sites are higher than in G. rostochiensis. Decrease and increase of the minimum

length of continuous regions had little effect on the variant rate in both species,

suggesting that these are stable estimates. The lower proportion of variant rates

in G. rostochiensis are in agreement with the hypothesis that a single introductory

event led to the establishment of the ‘Ro1’ population in Europe leading to a lower
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genetic diversity due to a founder effect. Higher genetic diversity in G. pallida also

explains challenges encountered during the assembly process. Cotton et al. (2014)

reported that the read datasets of the ‘Lindley’ population used for the assembly of

the reference genome displayed a high rate of polymorphisms — with at least 1.2%

of sites being variable — which is roughly twice the estimated rate of this analysis.

However, no details were given on how this estimate was calculated. The present

analysis should be seen as a conservative estimate, as I tried to not overestimate the

rate of variation due to neither the mapping nor the variant calling process, as only

reads in proper pairs were used and variants were stringently quality filtered.

Table 5.3.3: Estimates of variant rates in PCN reference populations. Regions: type of regions

on which rates of variants were estimated. COV: continuous regions (≥500 b) for which read

coverage ranged between five and twice the median coverage of the dataset. ALL: all continuous

regions (≥500 b) with read coverage ≥ five. Span: sampled length of the genome.

1× 10−3 Variants/b

Species Population Regions Span (Mb) SNPs MNPs Indels

G. pallida Lindley
COV 60.41 5.55 1.29 0.22

ALL 84.76 6.69 1.54 0.26

G. rostochiensis Ro1
COV 82.12 1.72 0.49 0.05

ALL 89.07 1.90 0.52 0.06
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5.3.5 Coverage in G. pallida population datatsets

Coverage of the G. pallida genome was assessed individually for each dataset as

well as together. Coverage decay plots (Figure 5.3.8) were used to visualise the

proportional coverage of coding regions in the genome for each read datasets

at different read coverage thresholds. The UK and South America populations

(Figure 5.3.8A) cover a higher proportion of coding regions at a higher read depth

than the ‘bottlenecked’ populations (Figure 5.3.8B). This is to be expected since

average read depth is smaller due to the limited amount of genomic material used

for sequencing. Among the datasets in Figure 5.3.8A, the ‘Lindley’ population

appears as an outlier. This dataset contains fewer reads than the other population

read sets and the shape of the coverage decay curve is distinct from all the others

exhibiting a steeper decrease at lower read coverages.

A possible explanation for this is that the ‘Lindley’ dataset was grown in culture

as opposed to soil (Vivian Blok, 2015, pers. comm.) and contains much less con-

tamination from non-nematode organisms than the other population datasets. The

assembly and scaffolding process of the G. pallida genome was a complex procedure,

due to the number of different sequencing technologies used — see supplementary

information in Cotton et al., 2014 — and the inherent level of contaminant ma-

terial associated with wild isolates. This could have lead to erroneous assemblies

such as chimeric scaffolds composed of both non-nematode and nematode contigs.

One example of this is a ribosomal operon sequence of the ascomycote Fusarium

sp. integrated into scaffold ‘pathogens_Gpal_scaffold_190’ in the region 155,768

– 157,563). While this sequence in itself is non-coding, the fungal 18S sequence

overlaps with the gene model ‘GPLIN_000641700’, a seven exon gene with no func-

tional annotation. If more of these cases exist — and these contaminants are not

part of the ‘Lindley’ dataset — a pattern like the one in Figure 5.3.8A would be

observed. This sort of contamination due to chimeric sequences is hard to address
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Figure 5.3.8: Coverage decay plots of population datasets for CDS regions. A: G. pallida

populations from Table 5.1.1. B: ‘bottlenecked’ G. pallida populations sequenced as described in

Section 5.2.5.
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with currently available contamination screening tools. However, future versions

of BlobTools will be able to address this problem, as discussed in Section 2.6.

Figure 5.3.9: Coverage of G. pallida assembly regions by sets of read sets. A and B: Genomic

(A) and coding (B) regions covered by sets all G. pallida read sets. C and D: Genomic (C) and

coding (D) regions covered by sets of G. pallida population read sets from Table 5.1.1.

In order to assess how many bases in the genome of G. pallida are covered

by all datasets at a read coverage of five or more, I visualised the proportion of

genomic and coding regions covered by sets of G. pallida datasets. The result is

depicted in Figure 5.3.9. Mandatory coverage of five or more reads in all datasets
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reduces the genomic region covered to 33.85% (Figure 5.3.9A). Subsequent set-

dropout is lead by read sets derived from the ‘bottlenecked’ populations followed

by ‘Lindley’ and ‘Luffness’. Of the bases in coding regions (Figure 5.3.9B), 52.57%

are covered by all read datasets and dropout of ‘Lindley’ is observed in the fifth most

frequent set, despite the fact that other ‘bottleneck’ populations display much lower

general coverage. This is in agreement with the theory that non-nematode regions

contribute to the lack of coverage from the relatively uncontaminated ‘Lindley’

dataset. Exclusion of ‘bottlenecked’ datasets recovers a greater proportion of

covered span in both genomic (Figure 5.3.9C) and coding (Figure 5.3.9D) regions.

Set-dropout for genomic regions is lead by the distantly related South American

‘P5A’ population followed by ‘Lindley’. For coding regions, ‘Lindley’ is again the first

population to leave the set, which could suggests that up to 5 Mb of coding regions

in the current assembly might not be part of the true G. pallida genome.
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5.3.6 Variation across G. pallida populations

After hard filtering of the VCF file the variant calling of all G. pallida samples

yielded 4,633,694 variants. Of these 78.86% were SNPs and 22.67% indels. A

high proportion of sites are multiallelic (15.90%), but only 2.27% are multiallelic

SNPs. Hence, many variant sites are composed of multiple categories of variants,

which inconveniences subsequent analyses which are based on biallelic variants

and is likely to underestimate the variation in the populations. This is undoubtedly

caused by the nature of the samples which are derived from pooled specimens

of highly polymorphic organisms. Results of the estimation of heterozygosity as

the inbreeding coefficient Fis for each of the samples are listed in Table 5.3.4.

The highest values for Fis were observed for read datasets of the ‘bottlenecked’

sample ‘Pa1_B’, which is composed of females derived from the offspring of a single

cyst. This suggests that even minor ‘bottlenecking’ of PCN can reduce the level

of heterozygosity substantially, since the number of homozygous sites is lower for

‘Pa1_A’ which derives from the same population but contains ‘cousins’ as opposed

to ‘sisters’. The ‘Pa1’ sample exhibits much higher heterozygosity since it was

generated by pooling hundreds of cysts. Analogously, read datasets based on the

‘Luffness’ sample derived from ‘inbred’ females displays lower heterozygosity than

the pooled sample ‘Luffness’ from the same population. Unsurprisingly, highest

values for heterozygosity were estimated in the South American population ‘P4A’.

However, the other South American population displayed only intermediate signs

of outbreeding, exceeded by several UK populations, such as ‘Newton’, ‘Bedale’,

and ‘Pa1’. The ‘Lindley’ population appears to be largely in Hardy-Weinberg-

Equilibrium as no major excess or depletion of homozygotes is observed. Although

missing sites were excluded for the estimation of heterozygosity, it should be noted

that a correlation (r2 = 0.6385, p = 1.24 ∗ 10−4) exists between the fraction of

missing genotypes for a sample in the VCF file and its inbreeding coefficient Fis (see

Figure 5.3.10). The population ‘P4A’ is the only population which deviates from
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this trend as it display a low number of missing sites in the VCF file but appears

to be highly heterozygous. Since correlation does not necessarily imply causation,

the pattern could simply be an artefact caused by the inherent lower coverage of

the samples derived from ‘bottlenecked’ populations which are based on less input

DNA.
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Figure 5.3.10: Correlation between results of heterozygosity estimates and missing data
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Table 5.3.4: Heterozygosity of G. pallida datasets. Heterozygosity, i. e. the inbreeding coeffi-

cient Fis, was calculated based on 2,486,754 biallelic SNPs and ignoring missing sites. Expected

number of homozygous sites (E(HOM)) was estimated as 1,749,352.1. O(HOM): observed

number of homozygous sites. F : inbreeding coefficient (positive values in bold)

Dataset Population O(HOM) F

Lindley Lindley 1,734,103 -0.02068

P4A P4A 950,046 -1.08395

P5A P5A 1,563,462 -0.25209

Newton Newton 1,386,896 -0.49153

Bedale Bedale 1,418,699 -0.44840

Luffness Luffness 1,576,756 -0.23406

Luffness.WGS.NX Luffness 1,827,750 0.10632

Luffness.WGA.N Luffness 1,810,571 0.08302

Luffness.WGA.NX Luffness 1,895,438 0.19811

Pa1 Pa1 1,546,994 -0.27442

Pa1_A.WGS.NX Pa1 1,717,305 -0.04346

Pa1_A.WGA.N Pa1 1,694,161 -0.07485

Pa1_A.WGA.NX Pa1 1,763,969 0.01982

Pa1_B.WGS.NX Pa1 1,904,404 0.21027

Pa1_B.WGA.N Pa1 1,972,048 0.30200

Pa1_B.WGA.NX Pa1 2,014,214 0.35918
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5.3.7 Phylogenetic analysis of G. pallida populations

The phylogenetic analysis of biallelic SNPs in all G. pallida populations was based on

output of SNPhylo across nine different LD-thresholds used for SNP pruning. The

number of resulting sites used in tree construction are listed in Table 5.3.5.

Phylogenetic analyses yielded three distinct tree topologies (Figure 5.3.11A,

B, and C), depending on the linkage disequilibrium (LD) threshold used for SNP

pruning. Exclusion of both South American populations from the dataset recovered

a stable tree topology across all LD-thresholds (Figure 5.3.11D), indicating that the

signal contained in SNP data separates European populations reliably. Exclusion

of either ‘P4A’ or ‘P5A’ also resulted in stable tree topologies across the sampled

parameters space, suggesting that presence of the two South American populations

in combination with the LD-pruning algorithm for SNP in SNPrelate yielded

subsets of SNPs which indicate different evolutionary relationships. The number

of biallelic SNP sites in the alignments used for inferring trees in Figure 5.3.11D,

E and F were 33,178, 37,442, and 39,243, and the number of phylogenetically

informative sites were 1491, 2398, and 1592, respectively.

Taken together, the results of the phylogenetic analyses suggest, that the

‘Luffness’ and ‘Pa1’ populations form distinct monophyletic clades, as do the three

English populations ‘Lindley’, ‘Bedale’ and ‘Newton’ (Figure 5.3.11D). This is in

agreement with previous phylogenetic studies (Blok and Phillips, 1995; Blok,

Phillips, and Harrower, 1997; Blok et al., 1998; Subbotin et al., 2000). Inclusion

of both South American populations in the dataset interferes with the LD-pruning

algorithm and results in biallelic sites which yield contradicting tree topologies

(Figure 5.3.11A, B, and C). This can be caused by several factors such as the high

rate of heterozygosity observed for ‘P4A’ or the high amount of multiallelic non-SNP

variation observed in the dataset. Further analysis of the patterns of multiallelic
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Table 5.3.5: Phylogenetic analysis based on SNPs in G. pallida populations. Sites: sites in the

alignment created by SNPhylo. All/Informative/Constant: classification of sites in alignment by

IQ-TREE. Phylogenetic model: model inferred by IQ-TREE. Topology: Topology of the resulting

trees as show in Figure 5.3.11.

Sites

LD-threshold All Informative Constant Phylogenetic model Topology

0.1 6970 852 4998 TVM A

0.2 8901 835 6878 GTR A

0.3 12,209 905 9970 TVM A

0.4 17,026 1127 14,307 TVM A

0.5 26,379 1625 22,110 TVM+I B

0.6 43,874 2421 35,259 TVM C

0.7 72,560 4693 55,979 TVM A

0.8 130,176 12,910 93,854 GTR B

0.9 232,628 36,126 154,240 TVM A
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Figure 5.3.11: Phylogenetic trees based on biallelic SNP data. A–C: Tree topologies listed in

Table 5.3.5. D–F: Tree topologies recovered when excluding samples from the datasets. Annota-

tions indicate the range of LD thresholds for which a given topology was recovered (LD-threshold

of the depicted tree in bold). Modifications to taxon composition of the analysed SNP data are

shown in squared brackets. Non-parametric bootstrap support are indicated on branches.
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variation in the dataset could shed more light on this issue but are complex to

carry out. Separate analysis of the European populations together with either one

of the South American populations, recovers ‘P5A’ as being distantly related to

the European populations (Figure 5.3.11E) and suggest that ‘P4A’ might have an

ancestral relationship with ‘Luffness’. The English populations ‘Lindley‘, ‘Newton’

and ‘Bedale’, are more closely related to ‘Luffness’ than to ‘Pa1’. This could be caused

by a separate introductory event to Europe of the ‘Pa1’ population through a South

American population not included in this dataset. The other European populations

could be the result of an introduction of a ‘P4A’-like ancestor. Phylogenetic studies

based on Cytb sequences recovered the same pattern and suggested that a P4A-

like or a P4A-hybrid population gave rise to the UK populations closely related

to ‘Luffness’ (Pylypenko, Phillips, and Blok, 2008; Madani et al., 2010; Hoolahan

et al., 2012). The conflicting phylogenetic pattern which arises when both South

American populations are included in the analysis, might be the result of ‘P4A’ being

a hybrid of an unknown species, closer related to to ‘P5A’, and the ancestor of the

European population ‘Luffness’. Testing of this hypothesis would require assemblies

of the populations which is not achievable with the available sequencing data due to

the levels of heterozygosity. It should be noted that LD pruning — as implemented

in the SNPrelate package used by SNPhylo — is performed for each scaffold

individually. In fragmented assemblies, such as the one of G. pallida, this can lead

to under-estimation of linkage between SNPs, adding an additional caveat to this

analysis.
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5.3.8 Signatures of selection in coding regions

Of the 2930 scaffolds containing biallelic SNPs in coding regions after quality

filtering, only 2222 scaffolds contained SNPs in coding regions with no missing

genotypes for which PopGenome could calculate the MK-test statistic. The MK-

test was applied to the 121,284 CDS regions (92.26% of all CDS regions) on

these scaffolds. However, the MK-test failed to produce results for 98.83% of

the CDS regions. Of these, CDS regions without any SNP account for 24.20%,

while 74.62% are due to lack of fixed sites synonymous or non-synonymous be-

tween ‘P5A’ and the other populations. For 1423 CDS regions PopGenome gen-

erated a result for the MK-test, but 718 of these yield values for N I approach-

ing ∞, due to lack of fixed sites between the two sets of populations or fixed

sites within the ingroup. The 705 CDSs for which the MK-test could be calcu-

lated successfully are located on 375 scaffolds and are part of 599 genes. These

included seven of the effectors identified through RBBH analysis in Chapter 4

and all display N I values of zero, indicating neutrality. G. pallida proteins recov-

ered from synapomorphic clusters that contain at least one of the effector pro-

teins identified through RBBH analysis, yielded one protein from a synapomor-

phic cluster in all Clade IV nematodes (a NUDIX hydrolase containing a SPRY do-

main, N I=0) and 19 proteins from clusters synapomorphic to Globodera species for

which the the MK-test returned a result for at least one of the underlying coding se-

quences. However, none of these received a significant p-value (Fisher’s-Exact test,

p-value<0.05). In the whole analysis, only eight CDS regions received a significant

p-value, with seven displaying N I values of zero indicating neutral evolution, which

belong to the genes ‘GPLIN_000313300’, ‘GPLIN_000362400’, ‘GPLIN_000727500’,

‘GPLIN_000917100’, ‘GPLIN_000971800’, ‘GPLIN_001104400’, and ‘GPLIN_00139

5700’. One CDS in the gene ‘GPLIN_000284900’ displayed a N I value of 0.30, lo-

cated on scaffold ‘pathogens_Gpal_scaffold_57’. It is located on a contig with no

other gene surrounding it, contains no introns, and its protein sequence is annotated
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with three ‘Zinc finger, CCHC-type’ domains, one ‘aspartic peptidase’ domain and

one ‘domain of unknown function’ (DUF1759). A BLAST search of its 1062 amino

acid protein sequence against NCBI reveals 27% identity to a Pao retrotransposon

in the genome of Brugia malayi.
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5.4 Conclusion

The results presented in this chapter highlight some of the problems which persist in

the genomic resources available to date for potato cyst nematodes, such as possible

remaining contaminants in the reference genome of G. pallida revealed by coverage

analysis, issues with the amount of unknown and repeat regions in the assembly,

and extreme and complex variation within the sequencing datasets of populations of

G. pallida. Datasets based on ‘bottlenecked’ samples — in combination with WGA

approaches and/or low input sequencing library preparation methods — display

lower levels of heterozygosity and may serve as a viable technique for the study

of variation of G. pallida populations. However, the low coverage achieved in the

presented datasets and the lack of replication prevented a formal assessment of the

success of this approach. Other promising approaches for the study of G. pallida

populations are the use of GBS datasets (Mimee et al., 2015) or the selective capture

of target regions of the genome, which are carried out at the James Hutton Institute

by John Jones and Vivian Blok (John Jones, 2016, pers. comm.). The latter approach

consists in designing capture probes based on genic regions which are used to enrich

the proportion of these regions in the sequencing data. It should however be noted

that due to the issues I highlighted here — concerning chimeric sequences and

the high proportion of repetitive/low-complexity regions in the G. pallida assembly

— care should be taken to only include validated gene models in the probe set,

since repeat elements and non-Globodera regions could limit the success of this

approach.

Comparison of the genome assemblies of PCNs revealed the superior contiguity

of the recently published draft genome of G. ellingtonae (Phillips et al., 2017). Once

gene annotations are available, these could be exploited to expand on the study the

evolution of gene families across plant parasitic nematodes and serve as a basis

for further analysis on the level of synteny between PCN genomes. Analysis of
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the repeat/low-complexity and unknown regions in the genome assemblies of G.

pallida and G. rostochiensis revealed differences in the structure of these assemblies

and are likely to be a result of the assembly process of the G. pallida genome.

Estimation of rates of variation in the reference populations ‘Lindley’ and ‘Ro1’,

revealed higher rates for G. pallida which is in agreement with the theory that the

G. rostochiensis ‘Ro1’ population is the result of a single introductory event causing

a founder effect.

Analysis of splice sites revealed possible problems with several datasets cur-

rently available on WormBase parasite. The metrics presented here might serve

as novel benchmarks for the assessment of quality of gene predictions in draft

genomes. Re-annotation of several nematode genomes is warranted and efforts

should be coordinated and assessed using comparative genomics approaches.

Phylogenetic analysis of biallelic SNPs in the datasets of G. pallida populations

revealed robust patterns for the European populations which support hypotheses

formulated in previous phylogeographic studies using smaller number of loci.

The South American populations ‘P4A’ and ‘P5A’ display varying phylogeographic

patterns depending on the parameters used. When analysed separately, ‘P5A’

is more distantly related to the European populations than ‘P4A’. The patterns

observed for ‘P4A’ are suggestive of a hybrid origin of this population, which has

already been proposed by other researchers (Pylypenko, Phillips, and Blok, 2008;

Madani et al., 2010; Hoolahan et al., 2012).

Analysis of signatures of selection on coding regions in the genome of G.

pallida recovered few regions for which an assessment could be made. The eight

CDS regions that received a significant p-value in the MK-test displayed no sign

of positive or negative selection and it can be concluded that due to the nature of

the populations from which datasets have been generated, assessments regarding

selective processes on coding regions of the genome of G. pallida can not be inferred.



254 5.4 Conclusion

Alternatives to this approach, such as the generation of FASTA files from SNP

data is inconvenienced by the same problems that impede success of approaches

based on variant data alone. Furthermore, as far as I am aware, assumptions

made by available software for the analysis of variation data are violated by the

complex structure of variation in the highly heterozygous populations of G. pallida.

Future use of long read sequencing data for the generation of PCN reference

genomes, paired with short read data from ‘bottlenecked’ populations will reveal

phylogeographic patterns and shed light on the selective processes acting on the

coding regions of these organisms.



Chapter 6

Outlook

“Nothing is built on stone;

All is built on sand, but we must build as if the sand were stone.”

- Jorge Luis Borges, In Praise of Darkness, (1974)

In this thesis, I presented two software solutions that I developed in order to

address two common challenges associated with genomics of non-model organisms:

taxonomic interrogation of genome assemblies and custom taxon analysis of clus-

tered protein data for the purpose of protein family analysis. I showed examples

of their functionality — based on several use cases involving a wide range of tax-

onomic groups of organisms — thereby illustrating their general suitability for the

field of genomics.

BlobTools, described in Chapter 2, has been well received by the research

community and several publications by collaborators, other researchers, and myself,

proved that it is a valuable addition to the bioinformatic toolbox. Shortcomings

255
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of the software solution — such as its current inability to distinguish chimeric

sequences from bona fide contamination — have been pointed out and planned

improvements to the software are discussed in Section 2.6.

KinFin, discussed in Chapter 3 and applied to potato cyst nematodes and other

clade IV nematodes in Chapter 4, is a software solution which integrates structural

and functional genomic data of organisms and allows the user to analyse these high-

dimensional data in the light of evolutionary, ecological and taxonomic hypotheses.

The use cases presented in Chapter 3 involved analyses of groups of taxa of medical,

veterinary and evolutionary interest and I was able to replicate previously reported

findings by other researchers as well as to formulate new hypotheses regarding

timing of horizontal gene transfer and to identify proteins of interest based on

evolutionary patterns.

Through the analysis of publicly available genomic data from multiple organ-

isms and sources with both BlobTools and KinFin, I was able identify problems con-

cerning taxonomic composition and structural gene predictions in several genomes.

One example is the number of single-copy orthologues encountered in different

analyses of KinFin. The analysis of ecdysozoan protein families (Section 3.5) —

which included 28 species from five phyla — yielded 21 ‘true’ single-copy ortho-

logues. In comparison, the analysis of protein families of Clade IV nematodes in

Chapter 4 returned 28 single-copy orthologues, and only after exploration of clus-

tering parameter space. Hence, either Clade IV nematodes have a higher turnover

of genes than the taxa across five phyla or, and this is more likely, quality of gene

predictions in Clade IV nematodes is suboptimal due to fragmented assemblies, con-

tamination, and uncollapsed haplotypes in the case of polyploid taxa in the genus

Meloidogyne. I think it lies within the obligations of the genomics community to de-

velop standardised infrastructure and procedures to limit the influx of questionable

data into public databases. The BlobToolKit grant awarded to Mark Blaxter is a first
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step into this direction. However, since all of biology is inherently interconnected

— as all organisms are related through a common ancestor — we have also to start

thinking about methods to validate existing data in the public databases, since mis-

annotated sequences have the potential to propagate false conclusions across many

areas of research. I have highlighted some simple metrics which can be used to as-

sess gene predictions in genome assemblies, but coordinated efforts by the research

community to address this problem are needed urgently.

Analysis of the evolutionary patterns of protein families of potato cyst nema-

todes (described in Chapter 4) was focussed on effector proteins based on sequences

in the literature. Previously reported findings could be replicated and two cases of

putative horizontal gene transfers from bacteria to Globodera species were investi-

gated which lead to formulation of hypotheses about the time point of their acqui-

sition. A set of effector proteins was compiled for PCNs based on orthology to effec-

tor sequences published in the literature. Future analyses of the patterns of protein

family evolution in PCNs could be improved significantly through genomes data

from other Heteroderidae such as the soybean cyst nematode, Heterodera glycines,

or the sugarbeet nematode, H. schachtii.

In Chapter 5, I analysed published genome assemblies of PCNs and assessed

their quality. Through the use of genomic data for different species and populations

of PCNs, I explored patterns of variation within their genomes and estimated rates of

variation for the reference genomes of G. pallida and G. rostochiensis. I investigated

phylogeographic patterns of populations of G. pallida which agree with previously

published results. Analysis of patterns of selection across coding regions within the

G. pallida species complex highlighted currently unsolved problems due to the level

and nature of variation observed in the different populations. I presented a possible

solution for the amelioration of this effect through the application of whole genome

amplification approaches applied to ‘bottlenecked’ samples.
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In summary, this thesis provides novel solutions to common challenges in the

field of comparative genomics and — by applying them to the study evolutionary

patterns in effector gene families in potato cyst nematodes — identifies current

obstacles in the analysis of highly complex populations of plant parasitic nema-

todes.
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