GENETIC BASE BROADENING IN TOMATO (Lycopersicon esculentum Mill.)

Gabriel Saavedra Del Real

PhD Thesis
The University of Edinburgh
August 2001

Abstract

Genetic variability in many modern crops is very limited because of bottlenecks during domestication and past selection pressures. This narrow genetic base has resulted in a lack of genetic variability in some crops, and increasing the susceptibility to biotic and abiotic stresses, and may limit responsiveness to market needs. Tomato (Lycopersicon esculentum Mill.) is one of many autogamous crop species in which the exploited germplasm has been severely reduced as a result of the process of domestication, and particularly because the initial germplasm used to generate much of the material exploited in current varieties, represented a very small fraction of the initial variability available. The concept of genetic base broadening has been suggested as a means of mitigating this lack of diversity in modern crops, with the aim to utilise the rich genetic resources available in wild relatives, vintage varieties, and landraces. Genetic base broadening programmes involve the systematic utilisation of an arrangement of genetic variability in such a way as to generate a mass of newly adapted gene stocks available as parents in breeding programmes.

This research examines options available within a genetic base broadening programme, limited by space and time. Different populations were created by hybridisation in order to examine options and feasibility within a base broadening programme. These included a study of the genetic diversity of the genus Lycopersicon, using 43 accessions of different taxa to examine the level of genetic variability in tomato, and the richness of diversity available in wild relatives and vintage/landrace tomato cultivars. Hybridisation was conducted as part of genetic base broadening programme to create inter-taxon and intra-taxon crosses between selected tomato cultivars and wild relatives. As part of possible strategies, double crosses between inter-taxon populations were tested and analysed. The created populations were selfed and examined using morphological and molecular markers for polymorphism, genetic distances and heterozygosity indices from genetic population analysis computational program packages Popgene and NTSYS.

Results are presented for these populations over a number of generations and reviewed against possible strategies for conservation and utilisation of this sample of
populations for future breeding programmes. Results showed that there is large genetic diversity at morphological and molecular level between and within Lycopersicon taxa. L. esculentum presented limited genetic diversity within the accessions examined, and a narrow genetic base. However, substantial sources of genetic diversity are available to incorporate into the cultivated tomato from both wild relatives and old varieties and landraces of the cultivated species.

After hybridisation, the created populations did not follow the expectation of autogamous crops, and revealed only a tendency toward decreasing genetic variability in further generations. The F_{1} generation behaved as expected, for both morphological and molecular markers, but in F_{2} and F_{3} generations, the results fluctuated from increasing to decreasing values for all indices examined. However, from the data obtained it was possible to theorise about the number of parents to be involved, and the created population size that should be used in genetic base broadening programmes, along with strategies for the conservation of the created genetic variability.

The methods utilised in this project, morphological and molecular markers, gave valuable information about the genetic diversity in self-pollinating generations. However, morphological characters were more limited than molecular markers in respect to information accuracy, because of the number and type of traits selected. The sample size affected both type of markers. From the genetic indices utilised, average gene diversity $\left(H_{s}\right)$, total gene diversity $\left(H_{t}\right)$, and effective number of alleles $\left(A_{e}\right)$ were more informative than the arbitrary mean proportion of polymorphic loci (P) and number of polymorphic alleles (A). However, all indices had some merit and usefulness in analysing the data obtained in this research.

For the future, it is hoped to use the experience gained with Lycopersicon spp utilising morphological and molecular markers in order to answer some more of the questions that will arise in any genetic base broadening programme.

Dedication

This work is dedicated to my wife Rossana, my children Ignacio and Maria Jose, and my parents.

I declare that all the work in the thesis was done purely by myself except where identified.

Edinburgh, January 2002

Acknowledgements

I wish to express my sincere gratitude to many people who helped me in completing this thesis. In particular, I would like to thank the following people whose assistance was invaluable to me.

My supervisors Dr. W. Spoor and Dr. L. Harrier for their encouragement, help, criticism during the experimental work, analysis of data, and writing up this thesis.

Dr. M. Möller of Royal Botanic Garden Edinburgh for his friendship, interest, help, support, and for expending hours discussing and analysing this work.

Dr. H. Parzies of University of Hohenheim for his friendship, support and constant discussions about subjects involved in the thesis.

The technical staff of Crop Science Department of the Scottish Agricultural College especially Jeanette Taylor, Pamela Muntch, Linda Patterson, Robert Redpath, Adrian Thompson, and Helen Kearney.

Especial acknowledge to Instituto de Investigaciones Agropecuarias and CRI La Platina for the financial assistance through a studentship during these years. Some words of thankful to the former CRI La Platina Director Mr. Daniel Claro and former Head of the Horticulture Department Mr. Moises Escaff, because they believed in me and made me possible to accomplish this task.

Finally, I would like to thank my family for their constant support, encouragement and everything they did for me.
Abstract II
Dedication IV
Declaration V
Acknowledgements VI
Table of contents VII
Table of tables XIV
Table of figures XVII
Table of plates XIX
List of abbreviations XX
Chapter 1: Introduction, background and rationale 1
1.1 General Introduction 2
1.2 Genetic base broadening 3
1.2.1 Definitions 3
1.2.2 Genetic base broadening efforts in crops 5
1.3 Tomato as a model for genetic base broadening 7
1.3.1 Tomato as a crop 7
1.3.2 Botanic and taxonomic classification 8
1.3.3 Morphology and pollination biology 10
1.3.4 Tomato crop: origin and evolution 10
1.3.5 Genetic variability in L. esculentum. 12
1.3.6 Genetic diversity in Lycopersicon spp 14
1.3.6.1 Phylogenetic relationship and genetic distance among Lycopersicon spp 15
1.3.6.2 Crossability 17
1.3.7 Utilisation of tomato genetic resources 19
1.4 Aims and objectives of the study 21
2.1 Materials 24
2.1.1 Germplasm 24
2.1.2 Plant growth conditions 24
2.2 Methods 25
2.2.1 Molecular markers 25
2.2.1.1 Plant DNA extraction 25
2.2.1.2 DNA evaluation, quantification and pooling 31
2.2.1.3 Polymerase chain reaction (PCR) 32
2.2.1.3.1 Microsatellites or Short Tandem Repeat (STRs) 32
2.2.1.3.2 Random Amplified DNA Polymorphism (RAPD) 33
2.2.1.4 Image analysis. 37
2.2.2 Morphological characters. 38
2.2.2.1 Pollination and crosses 38
2.2.2.2 Plant morphology evaluation. 38
2.2.2.3 Fruit harvest and seed extraction. 39
2.3 Population size 39
2.4 Statistical analysis. 39
Chapter 3: Genetic diversity of Lycopersicon spp germplasm. 43
3.1 Introduction 44
3.2 Morphological diversity in Lycopersicon germplasm 45
3.2.1 Morphological characteristics 46
3.2.2 Genetic distances between Lycopersicon species. 48
3.2.2.1 Distribution of genetic similarities between Lycopersicon species and accessions 48
3.2.2.2 Genetic similarity analysis within and between Lycopersicon spp 50
3.2.3 Analysis of molecular variance (AMOVA) of morphological characters in Lycopersicon spp 52
3.3 Molecular diversity in Lycopersicon germplasm 53
3.3.1 Microsatellite markers 53
3.3.1.1 Population structure and diversity 54
3.3.1.1.1 Polymorphic loci 55
3.3.1.1.2 Diversity indices 56
3.3.1.1.3 Genetic diversity within and between species 59
3.3.1.1.4 Genetic diversity relationship in respect to the number of accessions sampled. 60
3.3.1.2 Genetic similarity analysis associated to Lycopersicon spp accessions 62
3.3.1.2.1 Distribution of genetic similarities 62
3.3.1.2.2 Genetic similarity analysis within Lycopersicon spp accessions 63
3.3.1.3 Relationship between Lycopersicon spp accessions 64
3.3.1.4 Genetic indices for red- and green-fruited species in Lycopersicon spp 68
3.3.2 Random amplified polymorphic DNA (RAPD) markers 69
3.3.2.1 Population structure and diversity in Lycopersicon spp accessions 70
3.3.2.1.1 Polymorphic loci 70
3.3.2.1.2 Diversity indices 71
3.3.2.1.3 Genetic diversity partitioning. 74
3.3.2.1.4 Genetic diversity relationship in respect to the number of accessions sampled 75
3.3.2.2 Genetic similarities based on RAPD data associated to Lycopersicon spp 76
3.3.2.2.1 Distribution of genetic similarities 76
3.3.2.2.2 Genetic similarity analysis within Lycopersicon spp accessions 78
3.3.2.3 Relationship between Lycopersicon spp accessions based in RAPD markers 79
3.3.2.4 Genetic indices for red- and green-fruited species in Lycopersicon spp 83
3.4 Genetic variability within L. esculentum accessions 83
3.4.1 Genetic diversity present in accessions of L. esculentum 84
3.4.2 Genetic distances between L. esculentum accessions 85
3.4.3 Relationship between grouped L. esculentum accessions. 86
3.5 Relationship among genetic distance/similarity matrices 87
3.6 Discussion 87
Chapter 4: Parent selection and F_{1} characterisation 96
4.1 Introduction 97
4.2 Parent selection 97
4.2.1 Morphological characterisation and differences between parent accessions 98
4.2.2 Molecular markers and differences between parent accessions 104
4.2.3 Analysis of some continuous morphological characters in parents 105
4.3 Microsatellites and RAPD primers selection to use in F_{1} and further generations 107
4.4 Parents hybridisation 109
4.5 $\quad F_{1}$ generation analysis of morphological and molecular characters. 111
4.5.1 Molecular characteristics 111
4.5.2 Morphological characteristics. 112
4.5.3 Analysis of continuous characters in F_{1} generation. 116
4.6 Discussion 119
Chapter 5: Selfing effect and genetic diversity in created Lycopersicon populations 125
5.1 Introduction 126
5.2 Morphological characteristics of F_{2} and F_{3} populations 126
5.2.1 Discrete characters 127
5.2.2 Continuous characters 131
5.2.3 Genetic diversity in groups of crosses. 134
5.2.4 Genetic diversity in bulked crosses 135
5.3 Molecular markers and population characteristics 138
5.3.1 Microsatellite markers analysis in F_{2} and F_{3} generations 138
5.3.2 RAPD markers analysis in F_{2} and F_{3} generation 140
5.3.3 Molecular markers and genetic diversity in bulks of populations 143
5.4 Results of genetic base broadening in a field trial 145
5.5 Discussion 146
Chapter 6: Theoretical strategies for conservation of genetic variability in autogamous crops subjected to genetic base broadening 155
6.1 Introduction 156
6.2 General constraints. 156
6.3 Strategies for autogamous crop species 157
6.3.1 Self-pollination. 158
6.3.2 Facultative out-crossing populations 158
6.3.3 Exploitation of male sterility 161
6.4 Management of created populations 162
6.4.1 Single-site exploitation of natural selection 162
6.4.2 Multi-site exploitation of natural selection 163
6.5 General conclusions 164
Chapter 7: General conclusions 168
References 178
Appendices 194
Appendix 1: Morphological characterisation of tomato 195
Appendix 1: Morphological characterisation of tomato 195
Appendix 2: Genetic similarity matrices 201
Part 1. Genetic similarity matrix from 16 morphological characters of 35 accessions of Lycopersicon accessions 202
Part 2. Genetic similarity matrix from 55 microsatellite markers of 38 Lycopersicon accessions 203
Part 3. Genetic similarity matrix from 268 RAPD markers of 38
Lycopersicon accessions 204
Part 4. Lycopersicon accessions codes of identification 205
Appendix 3: Statistical analyses of morphological and molecular markers data of Lycopersicon spp accessions. 206
Part 1. Statistical analyses of genetic indices from microsatellite markers data given in Tables 3.3.1 and 3.3.2 207
Part 2. Equation regression and analysis of variance of regression analysis done in section 3.3.1.1.4 Figure 3.3.3 between sample size and population genetic indices based in microsatellite markers data 209
Part 3. Statistical analyses of genetic indices from microsatellite markers data given in Table 3.3.5 214
Part 4. Statistical analyses of genetic indices from RAPD data given in Tables 3.3.6 and 3.3.7. 215
Part 5. Equation regression and analysis of variance of regression analysis done in section 3.3.2.1.4 Figure 3.3.10 between sample size and population genetic indices based in RAPD markers data. 217
Part 6. Statistical analyses of genetic indices from RAPD markers data given in Tables 3.3.10 222
Part 7. Statistical analyses of genetic indices from microsatellite and RAPD markers data given in Tables 3.4.1 224
Part 8. ANOVA of means from continuous characters in fruits of Lycopersicon spp accessions selected as parents showed in Tables 4.3.1 and 4.3.2. 225
Part 9.1 ANOVA of means in crosses and parent accessions of continuous characters in F_{1} generation of inter- and intra-taxon crosses presented in Tables 4.7.1 and 4.7.2. 228
Part 9.2 ANOVA of means in crosses and parent accessions of continuous characters in F_{1} generation of inter- and intra-taxon crosses presented in Appendix 5 238
Part 10. ANOVA of continuous characters from inter- and intra-taxon crosses in F_{2} and F_{3} generations presented in Table 5.2 264
Part 11. Statistical analyses of genetic indices for morphological characters in F_{2} and F_{3} generation presented in Table 5.3 268
Part 12. Statistical analyses of genetic indices for microsatellite markers in F_{2} and F_{3} generation inter- and intra-taxon crosses presented in Table 5.5 270
Part 13. Statistical analyses of genetic indices for RAPD markers in F_{2} and F_{3} generation presented in Table 5.6 272
Part 14. ANOVA of means from percentage of damaged fruits by South American tomato pinworm presented in Table 5.8 274
Appendix 4: Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses 275
Part 1 276
Part 2 278
Part 3 280
Appendix 5: Means of crosses and parental accessions of continuous traits in F1 generation of inter- and intra-taxon crosses. 282

Table of tables

Chapter 1
Table 1.1 Taxonomic classification of Lycopersicon 8
Table 1.2 Lycopersicon classification according to Rick (1976) 9
Table 1.3 Some characters introgressed by inter-taxon crosses from wild relatives into tomato. 19
Chapter 2
Table 2.1 Lycopersicon spp wild relatives, landraces, and varieties used in the Lycopersicon esculentum genetic base broadening project 26
Table 2.2 Chemicals name, use, formulae, molecular weight, and source utilised in the experiments 29
Table 2.3 Reagents, concentration and source utilised in the experiments 30
Table 2.4 Buffers reagents and concentrations 30
Table 2.5 Microsatellite oligonucleotide primers utilised in the experiments 35
Table 2.6 Random amplified polymorphic DNA oligonucleotide primers utilised in this experiment 36
Chapter 3
Table 3.2.1 Reproductive morphological characters in Lycopersicon spp. 49
Table 3.2.2 Descriptive statistical analysis of a genetic similarity matrix based on 13 morphological traits within Lycopersicon accessions 52
Table 3.2.3 Analysis of molecular variance of 13 morphological characters in 34 accessions of Lycopersicon spp 53
Table 3.3.1 Number and proportion of polymorphic loci (P) in 8 species belonging to the genus Lycopersicon based on 55 microsatellite marker data 56
Table 3.3.2 Mean of 4 diversity indices for 8 Lycopersicon spp based on 55 microsatellite markers 58
Table 3.3.3 Descriptive statistical analysis of a genetic similarity matrix for 55 microsatellite markers data within 6 Lycopersicon spp 64
Table 3.3.4 Analysis of molecular variance (AMOVA) of a genetic similarity matrix based on 55 microsatellite markers of 37 accessions of Lycopersicon spp 68
Table 3.3.5 Genetic diversity statistics and population partitioning parameters for 2 groups of Lycopersicon spp based on the fruit colour 69
Table 3.3.6 Number and proportion of polymorphic loci (P) in 9 species belonging to the genus Lycopersicon based on 268 RAPD markers 71
Table 3.3.7 Mean of 4 diversity indices for 8 Lycopersicon spp based in 268 RAPD markers 73
Table 3.3.8 Descriptive statistical analysis of genetic similarities matrix of 268 RAPD markers within 6 Lycopersicon spp 78
Table 3.3.9 Analysis of molecular variance (AMOVA) of genetic similarities matrix based on 268 RAPD markers of 37 Lycopersicon spp accessions 82
Table 3.3.10 Genetic diversity indices and partitioning parameters for two groups of Lycopersicon spp based in fruit colour utilising 268 RAPD markers 83
Table 3.4.1 Mean genetic diversity indices $\left(A, A_{e}, H_{s}, I, F_{s t}\right.$, and $\left.P\right)$ of grouped L. esculentum accessions in landraces, old varieties, modern varieties $O P$, and F_{1} hybrids for two different genetic markers 85
Table 3.4.2 Genetic similarity and genetic distance matrix between landraces, old varieties, modern varieties OP, and F_{1} hybrids of L. esculentum based on 55 microsatellite markers data 86
Table 3.4.3 Genetic similarity and genetic distance matrix between landraces, old varieties, modern varieties OP, and F_{1} hybrids of L. esculentum based on 168 RAPD markers data 86
Chapter 4
Table 4.1 Species and accessions selected as parents for hybridisation 98
Table 4.2.1 Morphological characteristics of Lycopersicon spp accessions utilised as parents. 102
Table 4.2.2 Morphological characteristics of Lycopersicon spp accessions utilised as parents 103
Table 4.3.1 Means of 3 fruit characters (fruit diameter, length and ratio d / l) of Lycopersicon spp accessions selected as parents 106
Table 4.3.2 Means of 3 fruit characters (fruit weight, solid soluble content, and weight of 1000 seeds) of Lycopersicon spp accessions selected as parents 107
Table 4.4 Microsatellite and RAPD primers selected to analyse parental accessions, hybridisation and further generations in Lycopersicon spp 108
Table 4.5 Parental accessions, crosses, reciprocal crosses, and seed number obtained 110
Table 4.6.1 Morphological characteristics of F_{1} plants of Lycopersicon spp inter- and intra-taxon crosses 114
Table 4.6.2 Morphological characteristics of F_{1} plants of Lycopersicon spp inter- and intra-taxon crosses 115
Table 4.7.1 Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses 117
Table 4.7.2 Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses 118
Chapter 5
Table 5.1 General morphological characteristics of F_{2} and F_{3} generations from inter-taxon crosses involving 3 wild relatives and L. esculentum, and intra-taxon crosses within L. esculentum accessions. 129
Table 5.2 Means, statistical analysis and standard error for continuous characters in inter- and intra-taxon crosses between wild relatives and L. esculentum. 133
Table 5.3 Genetic diversity indices for morphological characters in F_{2} and F_{3} generations of crosses involving L. esculentum and wild relatives 136
Table 5.4 Genetic diversity indices for morphological characters in bulks of populations of Lycopersicon F_{2} and F_{3} generations in inter- and intra-taxon crosses 137
Table 5.5 Genetic diversity indices from microsatellite data of F_{2} and F_{3} generations in 3 inter-taxon crosses and one intra-taxon cross of Lycopersicon spp 139
Table 5.6 Genetic diversity indices from RAPD data of F_{2} and F_{3} generations in 3 inter-taxon crosses and one intra-taxon cross of Lycopersicon spp 142
Table 5.7 Genetic diversity indices from microsatellite and RAPD data in bulks of populations in F2 and F3 generations of Lycopersicon inter- and intra-taxon crosses 144
Table 5.8 Means and standard error from percentage of damaged fruits by South American tomato pinworm (Tuta absoluta (Meyrick, 1917), Lepidoptera - Gelechiidae) 146
Chapter 6
Table 6.1 Percentage of individuals presenting inserted or exserted styles in inter- and intra-taxon crosses of F_{2} and F_{3} generations 160
Table 6.2 Percentage of individuals presenting inserted or exserted styles in double crosses involving tomato and its wild relatives 160
Table 6.3 Proportion of heterozygous and homozygous individuals from crosses of heterozygous and homozygous populations in one locus with simple mendelian segregation 166
Table 6.4 Model for a single locus segregating in mendelian ratios for a cross between one heterozygous and one homozygous population, followed by back crosses to both parents 167
Table of figures
Chapter 3
Figure 3.2.1 Multidimensional scale (MDS) presentation of 13 morphological traits data for 35 Lycopersicon spp accessions 51
Figure 3.3.1 Principal components analysis of 5 genetic diversity indices in 8 Lycopersicon spp based on 55 microsatellite markers 59
Figure 3.3.2 Diversity partitioning within and between species in Lycopersicon spp 60

Figure 3.3.3 Plot of the average number of polymorphic alleles per locus (A),
effective number of alleles $\left(A_{e}\right)$, gene diversity $\left(H_{s}\right)$, Shannon's
information index (I), and number of polymorphic loci (P), versus
number of samples in Lycopersicon spp accessions
Figure 3.3.4 Histogram of a genetic similarity matrix for 38 accessions of Lycopersicon spp based on 55 microsatellite markers. 62
Figure 3.3.5 Histogram of a genetic similarity matrix for 18 accessions of L. esculentum based on 55 microsatellite markers 63
Figure 3.3.6 Dendrogram for Lycopersicon spp obtained using UPGMA based in similarity matrix from microsatellite data 66
Figure 3.3.7 Principal components analysis (PCA) of 38 accessions of Lycopersicon based on a similarity matrix 67
Figure 3.3.8 Principal components analysis for 6 genetic diversity indices in 8 Lycopersicon spp based in 268 RAPD markers. 74
Figure 3.3.9 Genetic diversity partitioning plot for 8 Lycopersicon spp based on 268 RAPD markers. 75
Figure 3.3.10 Plot of average number of polymorphic alleles per locus (A), effective number of alleles $\left(A_{e}\right)$, average gene diversity $\left(H_{s}\right)$, Shannon's information index (I), and proportion of polymorphic loci (P) based in 268 RAPD markers versus number of samples in Lycopersicon spp accessions. 76
Figure 3.3.11 Histogram of genetic similarities between 38 accessions of Lycopersicon spp based on 268 RAPD markers 77
Figure 3.3.12 Histogram of genetic similarities between 18 accessions of L. esculentum based on 268 RAPD markers 77
Figure 3.3.13 Dendrogram for Lycopersicon spp obtained using UPGMA based in similarity matrix from 268 RAPD markers 80
Figure 3.3.14 Principal components analysis (PCA) plot of 38 accessionsof Lycopersicon spp based on similarity matrix of268 RAPD markers81
Figure 3.4.1 Dendrogram of genetic distance utilising UPGMA method of grouped L. esculentum accessions based on 55 microsatellite markers 87
Figure 3.4.2 Dendrogram of genetic distance utilising UPGMA method of grouped L. esculentum accessions based on 168 RAPD markers 87

Table of plates

Chapter 1
Plate 2.1 Agarose gel electrophoresis of PCR amplification products of Lycopersicon microsatellite locus LE21085 37
Plate 2.2 Agarose gel electrophoresis of PCR amplification products from 12 Lycopersicon taxa 38
Chapter 3
Plate 3.1 Leaf diversity of 10 samples of Lycopersicon spp 47
Plate 3.2 Agarose gel electrophoresis of PCR amplification products of Lycopersicon spp microsatellite locus LEPRP4 54
Plate 3.3 Agarose gel electrophoresis of PCR amplification products of Lycopersicon spp microsatellite locus LEGAST1 55
Plate 3.4 Agarose gel electrophoresis of PCR products from RAPD markers Primer OPA-16 in Lycopersicon spp accessions 70
Chapter 4
Plate 4.1 Agarose gel of microsatellite from primer LE-21085 in parents and F_{1} populations of inter-taxon crosses in Lycopersicon spp 111
Plate 4.2 Agarose gel of RAPD from primer OPA-12 in parents and F_{1} populations of inter-taxon crosses in Lycopersicon spp 112

A	Adenine
A	Number of polymorphic alleles per locus
A_{e}	Effective number of alleles
AMOVA	Analysis of molecular variance
ANOVA	Analysis of variance
C	Cytosine
CGN	Centre for Genetic Resources
CpDNA	Chloroplast DNA
CPRO-DLO	Centre for Plant Breeding and reproduction Research
CTAB	Hexadecyltrimethylammonium bromide
Cvr.	Cultivar
DNA	Deoxyribonucleic acid
DNTP	Deoxynucleotide triphosphate (Adenine, Cytosine, Guanine and, Thyamine)
DTT	Dithiothreitol
EDTA	Ethylen diaminetetraacetic acid
FAO	Food and Agriculture Organisation
$F_{s t}$	Fixation index
G	Guanine
GEM	Germplasm enhancement of maize
HCl	Hydrochloric acid
HOPE	Hierarchical open-ended population enrichment
H_{s}	Average gene diversity
$\mathrm{H}_{\text {t }}$	Total gene diversity
I	Shannon's information index
INIA	Instituto de Investigaciones Agropecuarias
IPGRI	International Plant Genetic Resources Institute

IPK	Institute für Pflanzengenetik und Kulturpflanzenforschung
KCl	Potassium chloride
MDS	Multidimensional scale
MgCl_{2}	Magnesium chloride
MtDNA	Mitochondrial DNA
NTSYS	Numerical Taxonomical System
OP	Open pollinated
P	Probability
P	Proportion of polymorphic loci
PAUP	Phylogenetic Analysis Using Parsimony
PCA	Principal Components Analysis
PCR	Polymerase Chain Reaction
PGU	Plant Growth Unit
PVP	Polyvinylpyrrolidone
QTL	Quantitative Trait Loci
RAPD	Random Amplified Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphism
SAC	Scottish Agricultural College
SE	Standard Error
SSR	Simple Sequence Repeat
STR	Short Tandem Repeats
T	Thymine
TBE	Tris-borate EDTA
TGRC	Tomato Genetics Resources Center
UPGMA	Unweighted Pair-group Method with Arithmetic Average
USDA-ARS	United States Department of Agriculture-Agricultural Research Service
UV	Ultra-violet

Chapter 1

Introduction, background and rationale

1.1 General introduction

In most crop species, as a result of domestication and subsequent breeding/selection processes exploited populations represent a small fraction of the variability available. The lower overall genetic diversity of modern cultivars of autogamous species may also reflect genetic "bottlenecks" to which these species have been subjected. This may be because of natural phenomena such as polyploidy, mating and dispersion systems, and geographical barriers, or during their introduction to new regions away from the centre of origin. In some cases only a limited number of seeds/propagules (or accessions) were carried back by explorers, and this has served as the essential base of modern cultivars today. Over the intervening years many genotypes have been lost as a result of the disappearance of old varieties and landraces, and their replacement by new more productive varieties, apparently more adapted to biotic and abiotic stresses of these localities. More recently, commonly used breeding techniques such as backcross, pedigree selection, or hybrid production have been effective, in terms of producing new varieties with highly prescribed characteristics, but this has been obtained at the further expense of genetic diversity (Sneep, 1979; Rick, 1987; Miller and Tanksley, 1990).

During the period of scientific breeding, utilisation of the available genetic diversity has been poor; for years plant breeders have confined their programmes to a relatively small part of the overall genetic resources (Gepts, 1993; Kannenberg and Falk, 1995) and plant breeders have depended to a large extent on the recycling of a limited gene-pool (Berg, 1997). However, over a similar time frame, a great amount of germplasm such as wild relatives, old varieties, landraces, and other breeding material has been stored in genebanks; this is a potentially valuable, but relatively under exploited, source of genetic variability. Only a small amount of this variability has been introgressed into crop species, and then usually aiming to solve a specific problem (most frequently disease resistance) involving a single or a few genes. Most plant breeders are very constrained and cannot afford to work with germplasm that even temporarily dilutes agronomic performance or quality (Kannenberg and Falk, 1995), since working "elite" germplasm is easily disrupted by crosses with
unimproved "exotic" germplasm from landraces and wild relatives (Tanksley and Nelson, 1996). Even though there are good reasons to diversify breeding sources, the fact remains that breeding progress continues in most crops, albeit at variable and sometimes slowing rate, and breeders must develop cultivars that meet the standards of highly competitive markets of today. In addition, exploitation of heterogeneity and crop evolution in farmers' fields are outside the scope of most, particularly commercial plant breeding research (Berg, 1997).

Concern about this perceived lack of genetic diversity and the resulting genetic vulnerability of our food plants has led researchers and policy makers to assess the situation in different crops (Simmonds, 1993; Van Beuningen and Busch, 1997). Genetic base broadening is one approach which has been suggested, in the Leipzig Agreement (FAO, 1996), as a means of providing a viable sustainable genetic base from which varieties can be selected either directly or following hybridisation with existing and currently exploited genetic base of a crop species.

1.2 Genetic base broadening

1.2.1 Definitions

Genetic base broadening has been defined as 'composite crosses’ (Suneson, 1956), 'incorporation' (Simmonds, 1993) and 're-synthesis' (Becker et al., 1995). However, regardless of the term used, the definition per se has been the same. Genetic base broadening is the incorporation and re-synthesis of populations from wild relatives, landraces and/or old varieties into relatively new varieties or accessions, with the aim of enhancing the ability to respond to biotic and abiotic stresses in future breeding generations. Genetic base broadening involves the systematic utilisation of an arrangement of genetic variability in a manner likely to generate a mass of newly adapted genotypes to be made available as source material in breeding programmes (Simmonds, 1993).

Strictly, base broadening should be without preconceived aims, partly because it is difficult to predict future requirements, and partly because such preconceptions may influence the construction of the initial populations. The intention must be to create
populations that have an enhanced ability to respond to any local need. These populations, selected for local adaptation, would contribute to the sustainability of agricultural systems and be an immediate source of variability in the case of unexpected local environmental changes (biotic or abiotic).

Garanko (1991) commented that broad-based genetic materials are essential to meet a number of breeding objectives. Breeders can no longer be dependent on the basic stock of cultivars which they inherited from their predecessors. Furthermore, previously unexploited germplasm can perhaps lead to the discovery of new developmental pathways and ecological adaptations that may be important to meet the needs of changing agronomic practices (Kannenberg and Falk, 1995). Wild species and primitive cultivars present valuable initial material to turn into the breeding programs, and the number and diversity of original ancestors can provide insight into the relative genetic diversity within and among populations (Van Beuningen and Busch, 1997). Kannenberg and Falk (1995) argue that diversification of a crop breeding base must be through introgression of new germplasm via meritorious cultivars or lines that are from different genetic backgrounds but competitive with commercial germplasm. Both the potential for long term genetic gain and the reduction of genetic vulnerability may depend, in part, on the initial genetic diversity present in the genetic base of the crop (Van Beuningen and Busch, 1997).

Introgression has been usually described as backcrossing new genes controlling desired characters into adapted accessions (Cooper et al., 1998; Ortiz, 1998). However, the methodology only allows a few foreign genes to be introduced at one time (Simmonds, 1993). Single major genes are usually the objectives of 'Introgression' programmes, but transfer of undesired genes is likely to be greater if the transfer is from more distantly related wild species, owing to the high diversity of the alleles (Carver and Taliaferro, 1992). This approach has been used mostly for major disease resistant genes, but some polygenic inherited stress responses and quality traits have also been transferred (Cooper et al., 1998).
'Incorporation' creates new genetic stocks, where a variety of new allelic combinations can be expected. It does not emphasise specific gene transfer, as in
introgression, but requires rigorous characterisation and evaluation of the phenotypes generated. In general, phenotypes of exotic materials may not provide any useful or usable guide to breeding directly, but probabilities of broader gene combinations are higher (Rick and Chetelat, 1995; Ortiz, 1998). Incorporation is more powerful than introgression for broadening the genetic base, but demands the assurance of a longterm programme utilising approaches that are more population-oriented than gene- or character-oriented (Cooper et al., 1998).

1.2.2 Genetic base broadening efforts in crops

The narrowness of the genetic base has been established in many crops (Hawkes, 1979; Sneep, 1979; McClean and Hanson, 1986; Miller and Tanksley, 1990; Simmonds, 1993; Dubreuil and Charcosset, 1998). However, only rarely has recognition of this problem resulted in deliberate breeding effort to broaden the genetic base available to the breeders. Frequently, techniques such as traditional introgression and even more sophisticated approaches involving gene transfer from other species, along with the technologically demanding approaches for improving selection efficiency within a narrow gene pool (marker assisted selection) have been proposed as means to maintain or increase the productivity of new cultivars. These 'quick fix' solutions may continue for sometime to create more productive cultivars, but it is yet to be proven that these are sustainable approaches in the long term.

The Global Plan of Action and Leipzig Declaration by FAO (FAO, 1996a) recognised that there was currently a need for genetic enhancement for many crops now and this group could only be expected to increase in the future. As a result of Leipzig Agreement two expert workshops were supported by FAO and IPGRI to discuss broadening the genetic base of crops, the first Rome in 1997 and the second in Edinburgh (UK) in 1999. This was followed by a special forum on base broadening at the $3^{\text {rd }}$ International Crop Science Congress 2000 in Hamburg. Plans have been established to develop a web-based forum, both to encourage general developments, but also to alert interested groups in progress in crop species, or countries for linkages and funders. Therefore, FAO has given considerable support to these actions, because this methodology has the potential to be one of the most
environmentally benign of agricultural technologies. The search for genetic resistance or tolerance to biotic and abiotic stresses could decrease the use of the many contaminant and pollutant products used in modern agriculture. The result of this search could be a more sustainable and environmentally friendly agriculture.

Examples of deliberate base broadening activities, although relatively rare, can be found in a range of crops. In outbreeding species such as maize (Zea mays L.), tropical germplasm was adapted to conditions in southern maize-growing regions in the USA (Goodman, 1985); Salhuana et al. (1993) reported a national project for Germplasm Enhancement of Maize (GEM) in the USA; Kannenberg and Falk (1995) designed a breeding system for maize called HOPE - Hierarchical Open-ended Population Enrichment. In sorghum (Sorghum bicolour (L.) Moench), Ethiopian and Sudanese landrace germplasm was successfully incorporated into adapted Indian cultivars (Mengesha and Rao, 1982). In clonal crops, usually outbreeders, the narrow gene pool of potato (Solanum tuberosum L.) has been enhanced by the creation of neotuberosum populations from wild relatives from the Andigena Group (Gledinning, 1979; Plaisted, 1982; Mendoza, 1989; Simmonds, 1993). In Cassava (Manihot esculenta Crantz) (Nassar, 1989) and sugarcane (Saccharum officinarum L.) (Chave, 1991; Simmonds, 1993) there have also been researches enhancing the genetic base. In the case of inbreeding crop species such as barley (Hordeum vulgare L.) there have been approaches for broadening the genetic base, such as the incorporation of exotic germplasm into barley breeding pools in the Nordic Region (Lehmann, 1991; Vetelainen et al., 1996), and the recurrent introgressive population enrichment (RIPE) in Canada (Kannenberg and Falk, 1995). Becker et al. (1995) reported re-synthesis research in oil seed rape (Brassica napus L.). Other autogamous crops have also been studied for genetic base broadening such as oat (Avena sativa L.) (Frey, 1994), soyabean (Glycine max (L.) Merr.) (Wang, 1994), rice (Oryza sativa L.)(Li et al., 1994), and Arabica coffee (Coffea arabica L.) (Agwanda and Awuor, 1989). Several other researchers have suggested the use of incorporation in other crops using wild relatives and landrace populations as sources of genetic variability. Thus, Ahmad et al. (1996) proposed an incorporation programme in cultivated lentils (Lens culinaris ssp culinaris) because of the very limited variability
found in this crop. Such a programme has also been suggested in tomato (Lycopersicon esculentum Mill.) by Garanko (1991) and Rick and Chetelat (1995); and in common bean (Phaseolus vulgaris L.) by Welsh et al. (1995).
For the future, the introduction of novel, favourable alleles and gene combinations from wild relatives and other sources into gene pools and the efficient international exchange of germplasm may both contribute to broadening the genetic base to maximise genetic gains and reduce genetic vulnerability (Van Beuningen and Busch, 1997).

1.3 Tomato as a model for genetic base broadening

Tomato has been selected as a model within autogamous crops because it is an amenable crop, easy to cross between species; it has a narrow genetic base; it has a large number of wild relatives; landraces exist and finally it is possible to obtain at least two generations per year under artificial experimental conditions.

1.3.1 Tomato as crop

Tomato (Lycopersicon esculentum Mill.) is one of the most important vegetable crops in the world, representing 20.66% of the vegetable production in the world in 1998 with 89 million tonnes (FAO, 1999). The main producer countries are China and the USA; however in respect to yield, the Netherlands and UK are the highest with 466,667 and $283,333 \mathrm{~kg}$ per hectare respectively, though in these countries production is under protection (plastic tunnels and glasshouses). In comparison, the world average yield reaches just $28,343 \mathrm{~kg}$ per hectare; and countries such as the USA ($65,063 \mathrm{~kg} / \mathrm{ha}$), Chile ($63,430 \mathrm{~kg} / \mathrm{ha}$), and Australia ($44,944 \mathrm{~kg} / \mathrm{ha}$) are able to produce higher yields from very substantial areas of field grown crops. In area, China and India are the largest tomato growing countries with 539,000 and 350,000 ha respectively; and globally in 1998 there were 3.1 million hectares under tomato cultivation (FAO, 1999).

The main uses for tomato are as fresh fruit and for processing. For fresh consumption, tomato is grown either in the open field or under protected conditions. The use of greenhouses and other protection systems are common practice in
northern latitudes, while field growing is the most common approach in developing countries. Processing tomatoes are all grown under field conditions; to be dried or canned, or made into juice or paste.

1.3.2 Botanic and taxonomic classification

Lycopersicon is a relatively small genus within the large and diverse family Solanaceae, which consists of around 90 genera (Table 1.1). Within the sub-family Solanoideae, Lycopersicon belongs to the largest tribe, Solaneae. This tribe consists of around 18 genera containing the genus Lycopersicon and the closely related genus Solanum (Hogenboom, 1979). Rick (1979a) considered that there are profound differences between Lycopersicon and Solanum in terms of cytogenetic evolution, and morphological/physiological differentiation, therefore separation of the two genera is justified. However, latest systematic research, using molecular sequencing techniques, indicated that Lycopersicon has evolved from within a paraphyletic genus Solanum (Spooner et al., 1993; Olmstead and Palmer, 1997; Knapp and Spooner, 1999). Thus, Lycopersicon species could be regarded as belonging to the genus Solanum, but the systematic treatment of Solanum sensu stricto will be applied for the present study, and the genus Lycopersicon utilised.

Table 1.1 Taxonomic classification of Lycopersicon (NCBI, 2001)

Kingdom	Plantae
Division	Tracheophyta
Sub-division	Spermatophytina
Class	Angiospermae
Sub-class	Dicotyledoneae
Order	Solanales
Sub-order	Solanineae
Family	Solanaceae
Sub-family	Solanoideae
Tribe	Solaneae
Genus	Lycopersicon

All species in the genus Lycopersicon are typical of the Solanoideae sub-family, each having an identical chromosome number $(2 n=2 x=24)$, regular flowers, compressed seeds and curved embryo (Taylor, 1986).

Müller (1940) quoted by Taylor (1986) subdivided the genus Lycopersicon based on fruit colour: Eulycopersicon (red-fruited species such as L. esculentum, L. esculentum var. cerasiforme, L. cheesmanii, and L. pimpinellifolium) and Eriolycopersicon (green-fruited species such as L. hirsutum, L. pennellii, L. parviflorum, L. chmielewskii, L. peruvianum, and L. chilense), but this division is arbitrary and does not correspond to more fundamental differences between species. Rick (1976) divided the genus into species that can be easily crossed with the edible tomato, esculentum-complex and those which cannot, peruvianum-complex (Rick, 1979a; Warnock, 1988; Miller and Tanksley, 1990) (Table 1.2).

Table 1.2 Lycopersicon classification according to Rick (1976)

Esculentum-complex	Peruvianum-complex
L. esculentum Mill.	L. chilense Dun.
L. esculentum var. cerasiforme(Dun.) Gray	L. peruvianum (L.) Mill.
L. pimpinellifolium (Jusl.) Mill.	L. peruvianum var. humifusum Mull.
L. cheesmanii Riley	
L. cheesmanii var. minor (Hook. F.) Porter	
L. parviflorum Rick, Kes., Fob. \& Holle	
L. chmielewskii Rick, Kes., Fob. \& Holle	
L. hirsutum Humb. and Bonpl.	
L. hirsutum var.glabratum (Mull.) Luckwill	
L. pennellii (Corr.) D'Arcy	
L. pennellii var. puberulum (Corr.) D'Arcy	

1.3.3 Morphology and pollination biology

Lycopersicon esculentum is a tropical or sub-tropical plant that has been adapted to a wide range of environments far different from its original home. The species is perennial by nature, but it is almost universally cultivated as an annual.

Tomato plants are characterised by a herbaceous growth habit, odd pinnate leaves, yellow coloured corolla and anthers, and soft edible berry fruits. Tomato flowers develop in cymes and flowering is centrifugal; flowers are abracteate and hermaphrodite; the pistil is enveloped by stamens forming the characteristic of this genus, a flask-shaped anther cone.

Genus Lycopersicon has a very unusual pattern of anther dehiscence: anthers split laterally and the split occurs soon after or during the corolla opening. Pollen is released inside the anther cone and emerges through the communal channel formed by the joining of each elongated anther.

Tomato crop plants are usually autogamous, but in regions with excessive activity of pollinating insects, about 10 to 15% natural cross pollination occurs (Taylor, 1986). Rate of success of effective pollination is influenced by temperature and relative humidity, the optimum ranging from 22 to $28^{\circ} \mathrm{C}$ and 70 to 85% humidity (Stevens and Rick, 1986).

The fruit is a berry, in wild species it is 2 -celled, each cell being regular in shape and with a somewhat dry placenta. In cultivated forms, the cells can be numerous, irregular in size and outline, with the placenta markedly succulent. Each fruit contains many seeds, approximately disc-shaped and covered with hairs. (Hector, 1936; Taylor, 1986; Kaul, 1991).

1.3.4 Tomato crop: origin and evolution

The tomato is a relatively new crop. The oldest records date back less than 400 years, a brief time when compared with the oldest available records of many other crops (Boswell, 1937; Smartt and Simmonds, 1996). It has been suggested by several publications that the original site of domestication was Mexico (Jenkins, 1948; Rick, 1958; Hawkes, 1991; Villand et al., 1998), where the ancient people called it
"Tomatl". The cherry tomato (Lycopersicon esculentum var. cerasiforme) is almost certainly the direct ancestor of the modern cultivated form (Boswell, 1937; Rick and Forbes, 1975; McClean and Hanson, 1986; Taylor, 1986; Hanson and McClean, 1987; Hawkes, 1991; Villand et al., 1998), but Bretó et al. (1993) also included L. pimpinellifolium, because of its close phylogenetic position to L. esculentum. Most Lycopersicon spp occur as weeds in South America, where currently all the wild relative species are to be found (Hawkes, 1991). It has been suggested that there was an export of plants or seeds toward the northern part of the continent by native people of South America (Rick, 1991).

Deliberate selection and breeding to adapt tomato to specific growing areas has been in progress for little more than 200 years (Stevens and Rick, 1986). The short history of the tomato crop begins with its introduction into Europe by the Spanish early in the 16 th Century. In the 17th Century it was grown in England for ornament only, although it was known to be eaten elsewhere. By the end of the 18th Century it was grown in fields in Italy and used extensively as food, but it was half century or more before people in the USA generally dared to eat it (Boswell, 1937).

Stevens and Rick (1986) comment that prior to 1860 no cultivars had been developed in the USA; the few that were used had been imported, mostly from England, but with a few from France. The efforts at selection by early growers of the crop in Europe, together with natural factors, produced a very interesting and effective assortment of general types (Boswell, 1937).

Research attempts leading to the current popularity of tomatoes date back to 1905 when Halsted et al. (1905) reported the occurrence of single gene mutants in tomato. In 1909, Winkler evaluated the tomato cytologically and found it to have $2 \mathrm{n}=2 \mathrm{x}=$ 24 chromosomes. Linkage of mutant genes was first noted in 1917 by Jones (De Verna and Paterson, 1991). In the late 1920s rapid progress was made in cultivar development as hybridisation followed by selection in segregating generations was utilised (Stevens and Rick, 1986). Prior to 1925, tomato improvement was largely a result of selection of new genotypes within existing heterogeneous cultivars or selection of chance variance which resulted from spontaneous mutations, natural outcrossing or recombination of pre-existing genetic variation. By the mid-1930s
breeders were developing procedures to improve selection efficiency. Starting in 1940, accelerated introgression of useful exotic traits contributed to significant improvement, manifested in a $4 \mathrm{x} / 5 \mathrm{x}$ fold increase yield (Rick and Chetelat, 1995). Much of the later work on tomato breeding has been carried out through commercial companies. Necessarily, therefore, this has been subject to secrecy, particularly in the case of greenhouse cultivars (Stevens and Rick, 1986). However, there are still breeding programmes in public funded companies in some countries, but without the commercial impact of private multinationals, which invest in research and marketing at the same level.

1.3.5 Genetic variability in L. esculentum

The tomato is one of the many self-pollinated crop species in which genetic variability of the exploited germplasm has been severely reduced by the processes of domestication and the breeding of new cultivars outside the native region. Results reported by Miller and Tanksley (1990), Van der Beek et al. (1992) and RusKortekaas et al. (1994) show the relatively low amount of genetic variation detected with RFLP and RAPD markers among L. esculentum cultivars.

The lower overall genetic diversity of modern cultivars may in part reflect the genetic 'bottleneck' to which modern tomato cultivars were subjected during their introduction from Latin America to Europe (and later to the USA) (Boswell, 1937). For instance, only a limited number of seeds (accessions) were carried back and which served as the basis of modern cultivars of today (Garanko, 1991).

Rick and Chetelat (1995) suggested that the initial genetic variability of the ancestral form may have already been at low level, and was further diminished by the combination of autogamy and repeated reproductive bottlenecks (Rick, 1976; Miller and Tanksley, 1990; Williams and St. Clair, 1993). Perhaps, domestication from wild relatives to Lycopersicon esculentum was accompanied by a transition from exserted to inserted stigmas with consequent change from facultative outcrossing to enforced autogamy (Rick, 1979b), such that all representatives of Lycopersicon esculentum are self-compatible and exclusively inbreeding (Taylor, 1986). Within L. esculentum, apart from induced variation and variability resulting from the occasional
introgression of traits from wild species (Rick, 1979b), little genetic diversity can be found (Miller and Tanksley, 1990; De Verna and Paterson, 1991; Bretó et al., 1993; Williams and St. Clair, 1993; Rick and Chetelat, 1995). Williams and St. Clair (1993) reported that one striking feature of the Unweighted Pair Group Method Arithmetic Average (UPGMA) dendograms and Phylogenetic Analysis Using Parsimony (PAUP) cladograms, utilising RAPD and RFLP markers, was that nine of the modern cultivars analysed grouped on the same branch, even though the samples contained introgressed germplasm from different wild species. Miller and Tanksley (1990) proposed that the lower diversity observed in the modern cultivars may reflect popular breeding methods. The basic breeding methodology used, following hybridisation, includes pedigree and backcross methods. Both methods produce homozygous lines of which only a very limited number become a cultivar.

As far back as 1937, Boswell gave warning about limited differences between cultivars, initially because several commercial firms and seed growers had given special attention to the isolation of superior stocks and strains of a number of leading commercial varieties. Therefore, if the differences between cultivars are still decreasing, methods to identify cultivars unambiguously need to be developed. Molecular markers techniques have been indicated as tools for fingerprinting cultivars (Lindhout et al., 1991).

One approach to create genetic variability looking for desirable traits in tomato has been deliberate mutagenesis. Methods used to induce mutants have been highly varied and include treatments with radium, x-rays, Uv-light, induced osmotic stress, neutrons, and chemical mutagens (De Verna and Paterson, 1991). The tomato has been a classical species for mutational studies. An increased number of mutants, as a result of induced mutagenesis and the discovery of isozyme variants, has enhanced the repertoire of stocks available for mapping and other purposes (De Verna and Paterson, 1991). Rick (1984) listed 688 monogenic mutants. A few notable examples of mutants are: ripening mutants rin (Clayberg et al.,1970), nor (Clayberg et al.,1973) and Nr (Clayberg et al.,1960); male sterile mutants ms series (Rick and Butler, 1956), jointless j (Rick and Butler, 1956) and j-2 (Clayberg et al.,1960); anthocyanin-deficient and hairless (hl ini) which can be used as a marker (Rick and

Butler, 1956); self-pruning ($s p$)for machine harvest (Rick and Butler, 1956); and $v g c$ for fruit colour development (Bohm et al., 1966). Some mutants have been of great value for studies in physiological processes, mineral transport and metabolism (Rick, 1987).

Another way to induce variability is via tissue culture to exploit somaclonal variation (Hostika and Hanson, 1984; Evans, 1987; O’Connell and Hanson, 1987), but De Verna and Paterson (1991) reported that there had been not much success with this method.

Another source of genetic variation has been the utilisation of tomato wild relatives developing sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides (Rick et al., 1986). Rick et al. (1988) reported that this hybrid has served as a vehicle to develop monosomic alien addition lines and diploid individuals carrying traits derived from the wild species. Unfortunately, the extra chromosomes always carried many undesirable genes along with the useful and the plants were usually weedy and low producers (Griffiths et al., 1996).

1.3.6 Genetic diversity in Lycopersicon spp

Tomato wild relatives are mostly distributed from northern Chile to southern Colombia and from the Pacific Ocean coast to the eastern foothills of the Andes. Curiously, the close relative Lycopersicon esculentum var. cerasiforme is the only wild tomato species found outside South America. It is widely distributed in Peru, Ecuador, but also in Mexico (Garanko, 1991). Also L. cheesmanii is the only wild taxon endemic in the Galapagos Island (Ecuador).

Traditionally, variability has been measured by morphological characteristics, but recently biochemical/molecular methods have become more popular. These methods (isozymes, Random Amplified Polymorphic DNA or RAPD, Amplified Fragment Length Polymorphism or AFLP, Single Sequence Repeat or SSR, Restriction Fragment Length Polymorphism or RFLP) permit simple and more accurate estimates of genetic variability within populations and at other levels (Garanko, 1991). Miller and Tanksley (1990) found that the level of DNA polymorphism, detected through RFLP, within accessions and species of Lycopersicon was highly
correlated with the mating system, self-incompatible species harboured, on average, more than ten-fold variation within accessions compared with self-compatible species (Stevens and Rick, 1986; Miller and Tanksley, 1990).

The amount of genetic variation found within accessions as opposed to between accessions (estimated as the average genetic distance between individuals within accessions as opposed to between accessions) differed greatly among the Lycopersicon species (Miller and Tanksley, 1990). More genetic variation could be found within a single accession of the self-incompatible species (e.g. L. peruvianum) than among all accessions of any one of the self-compatible species (e.g. L. esculentum or L. pimpinellifolium) (Bretó et al., 1993; Rick and Chetelat, 1995). Miller and Tanksley (1990) estimated that the three self-incompatible species (L. hirsutum, L. pennellii and L. peruvianum), in terms of total variation, together contained nearly three times as much genetic variation as the four self-compatible species combined (L. esculentum, L. pimpinellifolium, L. cheesmanii, and L. parviflorum).

Williams and St. Clair (1993) suggested that the low diversity observed in L. cheesmanii may be due to the use of two accessions, but Miller and Tanksley (1990) also found this species to have less diversity than L. esculentum. However, one form of L. cheesmanii, characterised by its highly ornate and elaborately subdivided leaflets, has been given subspecific status. This group is more common than the typical form and is known as botanic variety "minor" (Taylor, 1986).
L. peruvianum is a remarkably polymorphic species (Rick, 1979a; Bretó, et al., 1993). A high level of genetic variability is evident between individuals of the same population, between populations of a given race, and between races. The variation in this species, expressed in morphological as well as biochemical and genetical characters, is so extreme that one seldom faces two plants of identical genotype (Rick, 1979a).

1.3.6.1 Phylogenetic relationship and genetic distances among Lycopersicon spp

There are common barriers to effective hybridisation of the different Lycopersicon species, including hybrid sterility, which leads to incompatibility and incongruity
(Hogenboom, 1979). The importance of these barriers varies considerably but generally is proportional to the phylogenetic distance between parents (Rick and Chetelat, 1995).

McClean and Hanson (1986) found that mitochondrial DNA (mtDNA) phylogeny placed L. chmielewskii closest to L. pennellii, also places L. hirsutum and L. esculentum as close relatives, and the two other red-fruited species (L. pimpinellifolium and L. cheesmanii) were found to be closer to the green-fruited species than to the cultivated tomato. The study of Palmer and Zamir (1982), based on chloroplast DNA (cpDNA), placed L. chmielewskii close to L. peruvianum, while cross-compatibility data (Rick, 1979a) suggested a more distant relationship between these two species.

In the case of closely related species L. parviflorum and L. chmielewskii, studies of allozymes have confirmed the complete uniformity within populations of 'parviflorum' and the extensive heterozygosity shown by the outbreeder 'chmielewskii'. L. parviflorum is assumed to have evolved from 'chmielewskii' and to have become genetically isolated from the parent species by virtue of inbreeding (Taylor, 1986). Rick (1983) also reported that L. chmielewskii and L. parviflorum are sibling species.

In spite of many unique characteristics, such as very short internodes, there appears to be no doubt that L. cheesmanii is closely related to L. esculentum and L. pimpinellifolium (Rick and Fobes, 1975; Palmer and Zamir, 1982; Rick, 1983; Hanson and McClean, 1987), because these three species have coloured fruited (Taylor, 1986); probably L. pimpinellifolium gave rise to L. cheesmanii (Bretó et al., 1993).

Similarly, the presence of crossing barriers has been taken to strengthen the case for regarding L. chilense as a true species and not simply a form or variety of L. peruvianum (Rick and Lamm, 1955).

1.3.6.2 Crossability

In respect to cross-compatibility, Rick (1979a) commented that comparative chromosomal morphology and pairing displayed a remarkable degree of coherence in tomato species. However, in the Solanaceae family, self-incompatibility is gametophytically controlled. The self-incompatible nature of pollen is conditioned by its own haploid genome, including self-incompatible gene (s). This gene prevents pollen tube growth in styles expressing the same allele (Hogenboom, 1979). Several considerations lead to the conclusion that such barriers (incompatibility) were acquired secondarily to geographic isolation and other kinds of genetic differentiation (Rick, 1979a). So, evolution of the mating system and adaptation to specific habitats must have played major roles in the speciation processes within the Lycopersicon species (Bretó et al., 1993).

It is difficult to generalise in respect to fertility of inter-taxon hybrids and comportment of later generations. The situation varies from complete fertility with no cytogenetic irregularities in later generations, as in L. esculentum $\mathrm{x} L$. pimpinellifolium which can be reciprocally hybridised (Taylor, 1986), to combinations with appreciable F_{1} (genic) sterility and inviability, reduced recombination, modified segregation ratios, and other problems in F_{2} generations (Rick, 1979a).
L. parviflorum, L. cheesmanii and L. cheesmanii var. minor can be reciprocally hybridised with cultivated tomato without any major interspecies barrier. In the case of L. pennellii, this species freely hybridises with members of the 'esculentumcomplex' giving fertile hybrids showing no sign of disturbed chromosome pairing. The inter-taxon hybrid can be easily backcrossed to L. esculentum, provided that the tomato is used as the female parent. L. pennellii also hybridises unilaterally with L. pimpinellifolium, L. cheesmanii, L. parviflorum, and L. hirsutum. L. pennellii cannot be crossed with either L. chilense or L. peruvianum, and is therefore behaving as a classic member of the 'esculentum-complex' (Table 1.2) (Taylor, 1986).
L. hirsutum var. typicum shows unilateral incompatibility with the cultivated tomato. Normal seed and hybrid plants can easily be obtained using L. esculentum as the female, but the reciprocal cross does not result in fruit set. L. hirsutum var. glabratum
is more tolerant of foreign pollen than the var. typicum forms in this species, and it is reciprocally compatible with the crop species and its close relatives (Taylor, 1986). When a self-compatible tomato species L. esculentum is crossed as female with either of the self-incompatible species, L. peruvianum or L. hirsutum var. typicum (both species have exserted styles), pollen tube growth is not inhibited in the style, whereas in the reciprocal crosses, the pollen tube growth is arrested and the cross fails (Kaul, 1991).
L. chilense is separated from cultivated tomato by severe barriers to prevent intercrossing. The stigma of the wild species will not accept L. esculentum pollen and the flowers rapidly abscise. Although the reciprocal cross results in fruit development, viable seeds are produced only rarely. Ayusa et al. (1986) reported that F_{1} plants from the cross L. esculentum $\times L$. peruvianum were strongly selfincompatible, but cross-compatible with L. esculentum as staminate parent.

There are several approaches to overcome these interspecific barriers. In tomato crosses, Gradziel and Robinson (1985) found that bud pollination 2 to 4 days before flowering followed by 4 h of 95 to 99% relative humidity led to the avoidance of selfincompatibility in some genetic lines of L. hirsutum. Generally, the related Lycopersicon species are inter-compatible only when a self-compatible species is used as female parent (Kaul, 1991). Also the barrier between 'esculentum-complex' and 'peruvianum-complex' can be broken down by the application of embryo culture, which succeeds only when the member of the 'esculentum-complex' is used as the female parent (Rick, 1979b). However, techniques such as protoplast fusion have also proved to be successful in overcoming incompatibility barriers (Adams and Quiros, 1985; O’Connell and Hanson, 1985; Handley et al., 1986).

To summarise, self-fertility with various degrees of facultative outcrossing is found in Lycopersicon chmielewskii, L. esculentum, L. pimpinellifolium and the selfcompatible biotypes of L. hirsutum and L. pennellii. Obligate outcrossing are selfincompatible biotypes of L. chilense, L. hirsutum, L. peruvianum, and L. pennellii. L. cheesmanii and L. parviflorum are completely autogamous.

1.3.7 Utilisation of tomato genetic resources

Among cultivated species, tomato is in a highly favourable position with respect to available germplasm of related wild species. Nearly every wild taxon is represented by an ample number of accessions which represents the range of genetic variation, geographic distribution, varied ecological sites, etc. Since 1940, resistance genes for at least 42 major diseases have been discovered in exotic germplasm of which 20 have been used in horticultural tomatoes (Rick and Chetelat, 1995). Doolittle (1954) reported a great amount of tolerance and resistance sources to different diseases and nematodes in wild tomato available to introgress into the tomato crop.

Utilisation of these exotic genetic resources has been assisted recently by the application of various molecular genetic methodologies. Intensive mapping of the tomato genome by Tanksley et al. (1992) via L. esculentum \times L. pennellii hybrids paved the way for these and many other important investigations (Rick and Chetelat, 1995). Wide hybridization has played an invaluable role in providing desirable variation for those interested in increasing the diversity of L. esculentum (Table 1.3). The most significant application of wide hybridisation in the improvement of the tomato has been in providing novel sources of disease and pest resistance (De Verna and Paterson, 1991). Although this resistance has been derived from all known wild relatives of the tomato, certain species such as L. chilense, L. peruvianum, L. hirsutum, and L. pimpinellifolium appear to be the richest sources (Rick and Chetelat, 1995). However, Williams and St. Clair (1993) comparing old and modern cultivars suggested that relatively few new alleles have been introgressed by interspecific crosses that have introduced economically important traits into the modern cultivars

Table 1.3 Some characters introgressed by inter-taxon crosses from wild relatives into tomato.

Species	Character	Reference
L. pimpinellifolium	Resistance to Fusarium wilt	Taylor, 1986
L. pimpinellifolium	Resistance to bacterial speck (Pseudomonas tomato)	Taylor, 1986
L. pimpinellifolium	Long shelf life	Lobo et al., 1990

L. cheesmanii	Jointless pedicel gene (j2)	Stevens and Rick, 1986
L. cheesmanii	Tolerance to salinity	Taylor, 1986
L. parviflorum	Solid soluble content	Taylor, 1986
L. chmielewskii	Solid soluble content	Taylor, 1986
L. hirsutum	Resistance to tomato fruit worm (Heliothis zea Boddie)	Taylor, 1986
	Resistance to sugar beet army worm (Spodoptera exigua	Taylor, 1986
Hübner)		

1.4 Aims and objectives of the study

The aims of this research are related to aspects of the creation and subsequent management of populations, to increase the genetic base of autogamous crops; and will include different types of populations created from various sources. Although it is not possible to undertake an entire base broadening approach for any crop within three years, this project has chosen a tomato crop as a model to help designing a strategy for genetic base broadening in other autogamous crops.

This project intends to examine:

1) How much variability exists in genetic material from different sources?

- Levels of variability within populations
- Levels of variability between populations

2) How do created populations behave after hybridisation and selfing/outcrossing?

- Comparison of these populations with parent profiles and L. esculentum populations

3) Decline of variability in succeding generations. Is it possible to maintain this variability in later generations?

- To what extent do DNA polymorphism and diversity increase/decrease?
- How is maintenance of variability affected by self-pollination?

At the outset of a project aimed at broadening the genetic base of an autogamous crop species, a number of other questions have to be considered:

- How large should be the scale of operation?
- How many parental lines should be utilised?
- What should the range of parents be, or how wide should be the choice of parental material?
- Can the population be large enough to generate variability for many years even at low rates of natural outcrossing?
- Will there be a need for continued hybridisation?
- How will selection be minimised particularly during the initial phase?
- Should the material be exploited at one or many different sites?
- Does the selection of different sites lead to maintenance of variability?

In the light of studies undertaken, it is intended to examine some of these questions in a review of strategy for base broadening.

Chapter 2

Materials and methods

2.1 Materials

2.1.1 Germplasm

Seeds from 43 accessions, listed in Table 2.1, were obtained from the Centre of Genetic Resources (CGN, part of CPRO-DLO, Wageningen, The Netherlands), Tomato Genetics Resources Center (TGRC, Department of Vegetable Crops, University of California, Davis, California, U.S.A.), United States Department of Agriculture - Agricultural Research Service (USDA-ARS, Plant Genetic Resources Unit, Cornell University, Geneva, NY, U.S.A.), Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK, Gatersleben, Germany), and Instituto de Investigaciones Agropecuarias (INIA, CRI-La Platina, Santiago, Chile). The six groups of species in this study included 12 open-pollinated (OP) vintage cultivars and landraces, 4 modern OP cultivars; 7 modern F_{1} hybrids within Lycopersicon esculentum and 1 wild type accession of Lycopersicon esculentum var. cerasiforme; 9 Lycopersicon cheesmanii; 8 Lycopersicon hirsutum; 4 Lycopersicon parviflorum; 4 Lycopersicon pennellii; and 6 Lycopersicon pimpinellifolium.

2.1.2 Plant growth conditions

The experiments were carried out in the Plant Growth Unit (PGU) and laboratories of the Department of Biotechnology in the Scottish Agricultural College (SAC), Edinburgh, Scotland, and within the experimental station of CRI-La Platina in the Instituto de Investigaciones Agropecuarias (INIA), Santiago, Chile.

From each accession 5 tomato plants were grown in the PGU greenhouses at $22 \pm$ $2^{\circ} \mathrm{C}$ and under $14 / 10$ hours light/dark cycles. Light source was 400 watt, highpressure sodium lamps. Plants under field conditions were grown in Santiago at $33^{\circ} 34^{\circ}$ S latitude and $70^{\circ} 38^{\prime} \mathrm{W}$ longitude, altitude 625 meters above sea level., in a clay loam soil during the southern hemisphere spring-summer season 1999-2000.
For greenhouse growth of plants, seeds were sown in seedling trays (9×6 holes) containing a mixture of compost (Irish moss peat) : perlite (3:1). Seedlings were transplanted to 13 cm pots containing the same substrate at the stage of 3 to 4 true leaves. Plants were transplanted again to 18 cm pots at 20 to 25 cm height stage and
tied to a cane as support. Plants were watered every day and fed twice a week with Tomato Feed Premier (pbi Home \& Garden Ltd.) fertiliser containing $\mathrm{N}: \mathrm{P}: \mathrm{K}(5: 5: 10)$ and trace elements.

2.2 Methods

2.2.1 Molecular markers

2.2.1.1 Plant DNA extraction

Chemicals utilised in DNA extraction and evaluation are listed and described in Table 2.2, while reagents utilised are presented in Table 2.3.

Young leaves from individual plants in each accession were sampled and total genomic DNA was isolated according to a modified CTAB method of Hachizume et al. (1996).

Fresh leaf tissue with main veins removed (0.3 g) was frozen in liquid nitrogen and ground to a fine powder using a mortar and pestle. One ml of DNA extraction buffer (Table 2.4) was added to the homogenate of leaf tissue, mixed and poured into a 2 ml Eppendorf microcentrifuge tube. The cationic detergent CTAB facilitated DNA extraction because it solubilized cell membranes, while Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ preserved the DNA against degradation by native enzymes, such as lipolytic lipoxygenases, DNases, and/or secondary products released from the cells upon disruption. The extraction buffer also included EDTA as metal-dependent enzyme inhibitor, because it chelated divalent cations as Mg^{2+} and Ca^{2+}. Reducing agents DTT and PVP were included to protect the DNA against tannins, quinones, disulphides, peroxidases, and polyphenoloxidases action.

The sample tube was incubated for 30 minutes at $65^{\circ} \mathrm{C}$ in a heat block (Techna, DB3) and allowed to cool at room temperature. The incubation at $65^{\circ} \mathrm{C}$ results in the formation of a CTAB-DNA complex, denaturation of many proteins, and dissociation from other DNA contaminants (Milligan, 1992; Taylor et al., 1993).

Table 2.1 Lycopersicon spp wild relatives, landraces, and varieties used in the Lycopersicon esculentum genetic base broadening project.

Specie	Accession	Cultivar	Cultivar Type	Origin		Donator
1 Lycopersicon cheesmanii	CGN 15820			Galapagos	Ecuador	CGN - Holland
2 Lycopersicon cheesmanii	LA 0166			Galapagos	Ecuador	TGRC-Davis-USA
3 Lycopersicon cheesmanii	PI 379035	LA 1404		Galapagos	Ecuador	USDA-ARS-USA
4 Lycopersicon cheesmanii var. minor	LA 0317			Galapagos	Ecuador	TGRC-Davis-USA
5 Lycopersicon cheesmanii var. minor	PI 379040	LA 1411		Galapagos	Ecuador	USDA-ARS-USA
6 Lycopersicon esculentum		Limachino	Landrace			INIA-Chile
7 Lycopersicon esculentum	LA 2338	Ailsa Craig	Vintage			TGRC-Davis-USA
8 Lycopersicon esculentum	LA 0516	Ace	Vintage			TGRC-Davis-USA
9 Lycopersicon esculentum	LA 2414	Cal Ace	Modern			TGRC-Davis-USA
10 Lycopersicon esculentum	LA 3238	Earliana	Vintage			TGRC-Davis-USA
11 Lycopersicon esculentum	LA 2711	Edkawy	Landrace			TGRC-Davis-USA
12 Lycopersicon esculentum	LA 0534	Lukullus	Vintage			TGRC-Davis-USA
13 Lycopersicon esculentum	LA 2706	Moneymaker	Modern			TGRC-Davis-USA
14 Lycopersicon esculentum	LA 0502	Marglobe	Vintage			TGRC-Davis-USA
15 Lycopersicon esculentum	LA 0180	San Marzano	Vintage			TGRC-Davis-USA
16 Lycopersicon esculentum	LA 3008	San Marzano	Vintage			TGRC-Davis-USA
17 Lycopersicon esculentum	LA 0012	Pearson	Vintage			TGRC-Davis-USA
18 Lycopersicon esculentum	LA 1506	Stone	Vintage			TGRC-Davis-USA
19 Lycopersicon esculentum	PI 303782	Red Top	Vintage			USDA-ARS-USA
20 Lycopersicon esculentum	PI 270243	Roma	Modern			USDA-ARS-USA
21 Lycopersicon esculentum		Super Roma	Modern			INIA-Chile

Specie	Accession	Cultivar	Cultivar Type	Origin		Donator
22 Lycopersicon esculentum		1702-FA-144	F_{1} hybrid			INIA-Chile
23 Lycopersicon esculentum		Boa F,	F_{1} hybrid			INIA-Chile
$2+$ Lycopersicon esculentum		Cobra F	F_{1} hybrid			INIA-Chile
25 Lycopersicon esculentum		Grandeur F_{1}	F_{1} hybrid			INIA-Chile
26 Lycopersicon esculentum		Presto F/	F_{1} hybrid			INIA-Chile
27 Lycopersicon esculentum		Super Max F1	F_{1} hybrid			INIA-Chile
28 Lycopersicon esculentum		Vita F1	F_{1} hybrid			INIA-Chile
29 Lycopersicon esculentum var. cerasiformes	LA 1673			Lima	Peru	TGRC-Davis-USA
30 Lycopersicon hirsutum	LA 1353	PI 365934		Cajamarca	Peru	TGRC-Davis-USA
31. Lycopersicon hirsutum	LYC 4/88					IPK-Germany
32 Lycopersicon hirsutum var. glabratum	G 29255	VIR 3950			Ecuador	USDA-ARS-USA
33 Lycopersicon hirsutum var. glabratum	LA 1223	PI 365903		Chimborazo	Ecuador	TGRC-Davis-USA
3+ Lycopersicon hirsutum var. glabratum	PI 199381			Lima	Peru	USDA-ARS-USA
35 Lycopersicon parviflorum	LA 1322	PI 379032		Cusco	Peru	TGRC-Davis-USA
36 Lycopersicon parviflorum	LA 1326	PI 379033		Apurimac	Peru	TGRC-Davis-USA
37 Lycopersicon parviflorum	T 1264/94					IPK-Germany
38 Lycopersicon pennellii	LA 0716	PI 246502		Arequipa	Peru	TGRC-Davis-USA
39 Lycopersicon pennellii	PI 473422			Lima	Peru	USDA-ARS-USA
40 Lycopersicon pennellii var. puberulum	LA 1926	CGN 15819		Ica	Peru	TGRC-Davis-USA
41 Lycopersicon pimpinellifolium	PI 230327				Ecuador	USDA-ARS-USA
42 Lycopersicon pimpinellifolium	PI 270449				Mexico	USDA-ARS-USA
43 Lycopersicon pimpinellifolium	PI 390739				Peru	USDA-ARS-USA

Then 1 ml of chloroform : isoamyl alcohol (24:1) was added to the tube. The tube was gently shaken, and then centrifuged $(12,000 \mathrm{xg})$ at room temperature $\left(22^{\circ} \mathrm{C}\right)$ for 4 minutes. The aqueous phase (approximately $750 \mu \mathrm{l}$) was transferred to a new 1.5 ml microcentrifuge tube and an equal volume of chloroform was added, mixed and centrifuged as above. The extraction processes with chloroform:isoamyl alcohol and chloroform remove problematic complex carbohydrates and denatured proteins (Taylor et al., 1993).

The aqueous phase (approximately $600 \mu \mathrm{l}$) was transferred to a new microcentrifuge tube and an equal volume of precipitation buffer (Table 2.4) containing 1% of 2 mercaptoethanol was added. The addition of 2-mercaptoethanol inhibits any oxidation reaction occurring (Taylor et al., 1993). The sample was gently mixed and the suspension was allowed to precipitate at room temperature for 30 minutes. The CTAB and nucleic acids form an insoluble complex under reduced salt conditions and which precipitates, leaving the remaining carbohydrates dissolved in the supernatant.

Centrifugation at room temperature for 3 minutes ($12,000 \times \mathrm{g}$) was followed by pouring off the supernatant and dissolving the pellet in $100 \mu \mathrm{l}$ of $1 \mathrm{M} \mathrm{NaCl}: \mathrm{TE}$ (Table 2.4) and incubating at $65^{\circ} \mathrm{C}$ for 15 minutes in dry block. Resuspending the pellet in 1 M NaCl :TE increases the concentration of salt and reprecipitates the DNA. The polysaccharides remain soluble in high salt concentration and do not coprecipitate with the DNA (Milligan, 1992).

Then 2.5 volumes $(250 \mu \mathrm{l})$ of cold ethanol $\left(-20^{\circ} \mathrm{C}\right)$ was added, mixed and centrifuged as above. The precipitate was washed in $250 \mu \mathrm{l}$ of 70% ethanol, dried and redissolved in $100 \mu \mathrm{l}$ of sterile distilled water. Co-precipitated RNA was eliminated by adding $1 \mu \mathrm{l}$ of RNase ($500 \mu \mathrm{~g} / \mathrm{ml}$) and incubated for 15 minutes at $37^{\circ} \mathrm{C}$. The DNA stock was stored at $-20^{\circ} \mathrm{C}$ in a freezer.
Table 2.2 Chemicals name, use, formulae, molecular weight, and source utilised in the experiments.

Common Name	Use*	Chemical Name	Formula	Molecular Weight	Source
2-mercaptoethanol	1	2-hydroxyethylmercaptan	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$	78.13	Sigma, M-7154
Agarose	2-3				Amresco, 0710
Agarose Ultrapure-1000	3				GibcoBRL, 10975
Bleach	5	Sodium hypochloride			
Boric acid	3		$\mathrm{H}_{3} \mathrm{BO}_{3}$	61.83	Sigma, B-6768
Bromophenol blue	2-4	3',3",5',5"-tetrabromophenolsulfonephthalein	$\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{Br}_{4} \mathrm{O}_{5} \mathrm{SNa}$	691.90	Sigma, B-6131
Chloroform	1		CHCl_{3}	119.40	Sigma, C-2432
Chloroform: Isoamyl alcohol	1	24:1			Sigma, C-0549
CTAB	1	Hexadecyltrimethylammonium bromide	$\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{NBr}$	364.50	Sigma, H-6269
DTT	1	Dithiothreitol	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}$	154.20	Sigma, D-9779
EDTA	1-3	Ethylen diaminetetraacetic acid	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}_{2} \\ 2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	373.20	Amresco, 0105
Ethanol	1		$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	46.06	Amresco, E 193
Ethidium bromide	1-2	2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{Br}$	394.30	Sigma, E-8751
Isoamyl alcohol	1	3-methyl-1-butanol	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	88.15	Sigma, I-9392
Metaphor agarose	3				Flowgen, 50180
PVP - 40	1	Polyvinylpyrrolidone			Sigma, PVP-40
Sodium chloride	1		NaCl	58.44	Sigma, S-3014
Sucrose	4	a-D-glucopyranosyl b-D-fructofuranoside	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	342.30	Sigma, S-7903
TBE - buffer	2-3	Tris - borate - EDTA buffer (5X)			Sigma, T-4415
TE - buffer	1	Tris - EDTA buffer (100x)			Sigma, T-9285
TRIZMA base	1-3	(tris[hidroxymethyl]amino methane)	$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{3}$	121.10	Sigma, T-8524

Table 2.3 Reagents, concentration and source utilised in the experiments.

Reagent	Use	Concentration	Source
Amplitaq DNA Polymerase, Stoffel Fragment 10x Stoffel buffer: Tris- $\mathrm{HCl}(\mathrm{pH} 8.3)$ KCl	1	$10 \mathrm{U} / \mathrm{ml}$	Perkin Elmer, F0717
Perkin Elmer, H1240			
Magnesium Chloride ($\left.\mathrm{MgCl}_{2}\right)$			100 mM
dNTPs-mix (dATP, dCTP, dGTP, and TTP)	1	5 mM	Bio Gene Ltd., 300-113
Low DNA Mass Ladder	1	25 mM	Perkin Elmer, H0994
100bp DNA Ladder	2	$470 \mathrm{ng} / 4 \mathrm{ml}$	Gibco BRL, 10068-013
RNAse, DNAse-free from bovine pancreas	3	$500 \mathrm{mg} / \mathrm{ml}$	Boehringer, 1119 915

* 1) RAPD and microsatellite PCR reaction; 2) DNA evaluation; 3) DNA extraction.

Table 2.4 Buffers reagents and concentrations.

Reagent	Stock	Extraction Buffer		Precipitation Buffer		1M NaCl : TE	
		$\begin{gathered} \text { in } \\ 100 \mathrm{ml} \end{gathered}$	Final Concent.	$\begin{gathered} \text { in } \\ 100 \mathrm{ml} \end{gathered}$	Final Concent.	$\begin{gathered} \text { in } \\ 100 \mathrm{ml} \end{gathered}$	Final Concent.
CTAB		2 g	2\%	1 g	1\%		
$\begin{aligned} & \hline \text { Tris- } \mathrm{HCl} \\ & (\mathrm{pH} 8.0) \end{aligned}$	1M	10 ml	100 mM	5 ml	50 mM	1 ml	10 mM
EDTA	0.5M	4 ml	20 mM	2 ml	10 mM	0.2 ml	1 mM
NaCl	5M	28 ml	1.4 mM			20 ml	1 M
PVP - 40		3 g	3\%				
DTT		0.1 g	0.10\%				
Distilled water		58 ml		93 ml		78.8 ml	

2.2.1.2 DNA evaluation, quantification and pooling

Qualitative and quantitative assessment of DNA was carried out by agarose gel electrophoresis in a horizontal submerged Flowgen medium size chamber (24.5 cm between electrodes). The agarose gel 3 mm thick was made by dissolving 1.2% agarose in $1 \times$ TBE buffer (89 mM Tris- $\mathrm{HCl}, 89 \mathrm{mM}$ boric acid, 5 mM EDTA) in a beaker and heating it in a microwave oven for 2 minutes, swirling once the solution started boiling. The solution was left cooling at room temperature, when it reached $60^{\circ} \mathrm{C}$ the gel was poured into a frame and a 20 well comb put into the warm liquid. The gel frame was allowed to cool and solidify at room temperature, and once set it was placed in a cold chamber at $4^{\circ} \mathrm{C}$ for 30 minutes.

The DNA sample was diluted 10 fold $(2 \mu \mathrm{l}$ in $18 \mu \mathrm{l}$ of sterile distilled water), then $2 \mu \mathrm{l}$ of the dilution mixed with $2 \mu \mathrm{l}$ of gel loading buffer (sucrose $40 \%(\mathrm{w} / \mathrm{v})$, bromophenol blue $0.25 \%(\mathrm{w} / \mathrm{v})$, stored at $\left.4^{\circ} \mathrm{C}\right)$ and 4μ of mixture loaded in each wells. As a standard comparison a low DNA mass ladder (Gibco BRL) in a similar proportion was used.

The gel was run for 1 hour in $0.5 \times$ TBE buffer at 94 V , then stained in ethidium bromide ($0.5 \mu \mathrm{l} / \mathrm{ml}$) for 30 minutes.
Gel visualisation and evaluation was completed under UV illuminator at 302 nm , the image was captured by Flowgen IS-500 gel documentation system and analysed by densitometry in a Flowgen IS-1000 gel analysis system, comparing the total area of the bands produced with the standard bands. From F_{2} generation forward a spectrophotometric analysis was included using the DNA analyser Eppendorf BIO Photometer.

Once DNA quality and quantity ($\mathrm{ng} / \mu \mathrm{l}$) was known, an aliquot of the stock was diluted to a concentration of approximately $10 \mathrm{ng} / \mu \mathrm{l}$ as working sample. A similar aliquot from the working sample of $25 \mu \mathrm{l}$ was taken from each of the 5 plants per accession, mixed pooling the DNA before starting the PCR experiments, and kept frozen at $-20^{\circ} \mathrm{C}$ for the duration of the experimentation.

2.2.1.3 Polymerase Chain Reaction (PCR)

Reagents utilised in PCR reactions are presented and described in Table 2.3.

2.2.1.3.1 Microsatellites or Short Tandem Repeat (STRs)

A set of 18 microsatellites primers of $18-20$ oligonucleotides in length were tested (Table 2.5). These primers were extracted from literature available on tomato microsatellites (Smulders et al, 1994; Broun \& Tanksley, 1996; Provan et al., 1996; Arens et al., 1995). Fifteen primers were selected based on whether they demonstrated polymorphism between and within Lycopersicon spp.

After testing several amplification reaction protocols (Vosman \& Arens, 1997; Broun \& Tanksley, 1996; Provan et al, 1996; Arens et al, 1995; Morgante \& Olivieri, 1993) it was found that 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.3), 10 \mathrm{mM} \mathrm{KCl}, 0.2 \mathrm{mM}$ deoxynucleotide triphosphates (dNTPs), $0.2 \mu \mathrm{M}$ each primer, 0.05 U Stoffel fragment DNA polymerase, 2.5 mM MgCl a 20 ng genomic DNA per $15 \mu \mathrm{l}$ reaction volume represented the best results. The reaction components were mixed in a 0.5 ml Eppendorf microcentrifuge tube in the order described above. Amplifications were performed using a TRIO-Thermoblock (Biometra) or Gene E (Techna) thermal cycler, both devices have hot lid, therefore mineral oil to avoid evaporation was not required. Amplification conditions were 1 cycle at $94^{\circ} \mathrm{C}$ for 30 seconds (hot starting), 30 cycles at $94^{\circ} \mathrm{C}$ for 30 seconds (denaturation), 2 minutes at specific annealing temperature for every primer pair, and 3 minutes at $72^{\circ} \mathrm{C}$ (extension), final extension of 7 minutes at $72^{\circ} \mathrm{C}$ was followed by soaking at $4^{\circ} \mathrm{C}$. PCR products were stored in a fridge at $4^{\circ} \mathrm{C}$ for no more than 24 hours before electrophoresis. The annealing temperature was calculated as the sum of $4^{\circ} \mathrm{C}$ for each C and G bases, and $2^{\circ} \mathrm{C}$ for each A and T bases, then subtracted $5^{\circ} \mathrm{C}$ from the sum.

Fifteen $\mu \mathrm{l}$ of PCR products were electrophoresed in 3.5\% Metaphor Agarose (Flowgen):Ultrapure 1000 (Gibco BLR) (2:1). The agarose was prepared by dissolving in chilled $1 \times \mathrm{TBE}$ and incubating for 30 min at room temperature, with continuous stirring until the agarose was completely hydrated. A conical flask
containing the mixed agarose was wrapped in plastic film, pierced for ventilation and weighed. The suspension was heated for 2 min in a microwave oven, stirred and heated till boiling, and boiled for 1 min . The flask was weighed again and the difference was made up with distilled water. The boiled agarose was cooled, and when it reached $60^{\circ} \mathrm{C}$, it was poured into the frame and the comb set. Once the gels had set, they were kept wrapped in plastic film at $4^{\circ} \mathrm{C}$ in cold room overnight to strengthen the resolution capacity of the gel.

As a standard comparison $4 \mu \mathrm{l}$ of 100 bp ladder (Gibco BRL) solution $(8 \mu \mathrm{l} 100 \mathrm{bp}$ ladder in $108 \mu \mathrm{l}$ loading buffer) was eletrophoresed in addition to the PCR samples. Electrophoresis was performed in a horizontal Flowgen chamber using a double gel (40 cm between electrodes), at $3.9 \mathrm{~V} / \mathrm{cm}$ for 2 hours in 0.5 X TBE buffer.

The gel was stained as before in ethidium bromide $(100 \mu \mathrm{EtBr}$ in 200 ml distilled water), visualised under UV and photographed.

2.2.1.3.2 Random Amplified DNA Polymorphism (RAPD)

The random-sequence primers for the polymerase chain reaction (PCR) were 10-base oligonucleotides in length, at least $50 \% \mathrm{G} / \mathrm{C}$ in content and lacked internal inverted repeats (Waugh \& Powell, 1992). The series OPA, OPH, OPI, and OPL from Operon Inc. were tested and additional primers from other series included (Table 2.6). Amplification reaction conditions were similar to those reported by Hachizume et al (1996) consisting of 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.3), 10 \mathrm{mM} \mathrm{KCl}, 0.2 \mathrm{mM}$ each dNTPs, 40 pM primer, $3.5 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{ng}$ genomic DNA, and 0.05 U Stoffel fragment DNA polymerase per $10 \mu \mathrm{l}$ reaction volume in a 0.5 ml microcentrifuge tube. DNA amplification was performed in a thermal cycler from Biometra (TRIOThermoblock) or Techna (Gene E), programmed for 1 cycle at $94^{\circ} \mathrm{C}$ for 30 seconds (hot starting), then 45 cycles at $94^{\circ} \mathrm{C}$ for 30 seconds (denaturation), $40^{\circ} \mathrm{C}$ for 2 minutes (annealing) and $72^{\circ} \mathrm{C}$ for 3 minutes (extension). One cycle of 7 minutes at $72^{\circ} \mathrm{C}$ as final extension was completed and followed by soaking at $4^{\circ} \mathrm{C}$.

Ten $\mu \mathrm{l}$ of amplification products were separated by electrophoresis in a 2% agarose gel as detailed in 2.2.1.2. As a standard comparison $4 \mu \mathrm{l}$ of a 100 bp ladder $(8 \mu \mathrm{l} 100$ bp ladder and $108 \mu \mathrm{l}$ loading buffer) was utilised. The gel was run at 156 V for 2
hours in 1xTBE buffer, stained in ethidium bromide $(0.5 \mu \mathrm{l} / \mathrm{ml})$ for 30 minutes and visualised under UV illuminator at 302 nm and recorded.
Table 2.5 Microsatellite oligonucleotide primers utilised in the experiments.

Locus	Repeat	Forward Primer	Reverse Primer	Number of alleles	Fragment Size (bp)
LE20592	$(\mathrm{TAT})_{15}(\mathrm{TGT})_{4}$	5'- CTG TTT ACT TCA AGA AGG CTG-3'	5'-ACT TTA ACT TTA TTA TTG CCA CG-3'	7	166
LE21085	$(\mathrm{TA})_{2}(\mathrm{TAT})_{9}$	5'- CAT TTT ATC ATT TAT TTG TGT CTT G-3'	5^{\prime} - ACA AAA AAA GGT GAC GAT ACA-3'	5	104
LECHI3	(TA) ${ }_{6}(\mathrm{GA})_{4}$	5'- TAA CAA TCA AAA GAA CTT CGC-3'	5'-ATC CCC TTA TTG ATT ACA TCC-3'	2	128
LEEFIA	(TA) ${ }_{8}$ (ATA),	5^{\prime} ' AAA TAA TTA GCT TGC CAA TTG -3'	5^{\prime} - CTG AAA GCA GCA ACA GTA TTT -3'	8	131
LEGASTI		5'- GTT CTT TTG GTG GTT TTC CT-3'	5'-TTA TTT CTC TGT TGT TGC TG-3'	4	204
LEGTOM5	(TA) ${ }_{10}$	5'- AAA GAT AAA GCA TGA AAT GAA -3'	5'-GGA GTT GAG ATA AAG TGA AGA -3'	2	181
LEILVIB	$(\mathrm{T})_{8}(\mathrm{TA})_{10}(\mathrm{~T})_{5}$	5'- GAT CGA CAC ATT TGA ATT TGT -3'	5^{\prime} '-GGT CAC TAA TTA ATT GAT TCC - 3^{\prime}	3	143
LELE25	(TA) ${ }_{1}$	5'- TTC GAT AAA GCA TGA AAT GAA -3'	5^{\prime} - CTC TAT TAC TTA TTA TTA TCG -3'	3	225
LELEUZIP	(AAG) ${ }_{6}$ TT (GAT) ${ }_{7}$	5'- GGT GAT AAT TTG GGA GGT TAC-3'	5'-CGT AAC AGG ATG TGC TAT AGG-3'	4	105
LEMDDNa	(TA),	5'- ATT CAA GGA ACT TTT AGC TCC-3'	5'-TGC ATT AAG GTT CAT AAA TGA-3'	4	211
LEPRP4	$(\mathrm{TAT})_{3}(\mathrm{TGT})_{5}$	5'- TTC ATT TCT TGC AAC TAC GAT -3'	5^{\prime} - CAT ACT AGC AAC ATC AAA GGG -3'	4	200
LERBCO	$(\mathrm{TG})_{4}(\mathrm{TA})_{6}$ TGTA	5'- CAT TAC CTC CAT TGC TA-3'	5'-GTC TCG TAC TTC TTC AT-3'	4	172
LESSRPSPGa	(TATT) ${ }_{\text {s }}$	5^{\prime} - GAA TAT ATC GGG GAC AAT CTC -3'	5'-AAC GAA ATC TTT GTT CAG TGA -3'	2	219
LESSRPSPGb	(C) 10	5'- AAC ATT AGT TTG ATT GGA TGG-3'	5'-TTA AAC TTG CTT GAC TTT CC-3'	5	332
TG51	GATA/GACA	5 '- CCT ACG TAC CTA CCC ATG T -3'	5'-ACA TAC AAA CAG AGA GAC AAA -3'	8	140

Table 2.6 Random amplified polymorphic DNA oligonucleotide primers utilised in this experiment.

Code	Sequence		Molecular Weight
OPA - 01	5'- CAG GCC CTT C	-3'	2955
OPA - 02	5'- TGC CGA GCT G	-3'	3035
OPA - 03	5'- AGT CAG CCA C	-3^{\prime}	2988
OPA - 04	5'- AAT CGG GCT G	-3'	3059
OPA - 05	5'- AGG GGT CTT G	-3^{\prime}	3090
OPA - 06	5'- GGT CCC TGA C	-3^{\prime}	2995
OPA - 07	5'- GAA ACG GGT G	-3'	3108
OPA - 08	5'- GTG ACG TAG G	-3'	3099
OPA - 09	5'- GGG TAA CGC C	-3'	3044
OPA - 10	5'- GTG ATC GCA G	-3'	3059
OPA - 11	5'- CAA TCG CCG T	-3'	2979
OPA - 12	5'- TCG GCG ATA G	-3^{\prime}	3059
OPA - 13	5'- CAG CAC CCA C	-3^{\prime}	2933
OPA - 14	5'- TCT GTG CTG G	-3'	3041
OPA - 15	5'- TTC CGA ACC C	-3'	2939
OPA - 16	5'- AGC CAG CGA A	-3'	3037
OPA - 17	5'- GAC CGC TTG T	-3'	3010
OPA - 18	5'- AGG TGA CCG T	-3^{\prime}	3059
OPA - 19	5'- CAA ACG TCG G	-3'	3028
OPA - 20	5'- GTT GCG ATC C	-3^{\prime}	3010
OPL-12	5'- GGG CGG TAC T	-3^{\prime}	3075
OPL - 16	5'- AGG TTG CAG G	-3'	3099
OPL-18	5'- ACC ACC CAC C	-3^{\prime}	2893
OPH-01	5'- GGT CGG AGA A	-3^{\prime}	3108
OPH-11	5'- CTT CCG CAG T	-3'	2970
OPH-14	5'- ACC AGG TTG G	-3'	3059
OPH-16	5'- TCT CAG CTG G	-3^{\prime}	3010
OPI-15	5'- TCA TCC GAG G	-3^{\prime}	3019

2.2.1.4 Image analysis

Microsatellites bands were analysed by treating the shared bands present in each lane as co-dominant markers. In Plate 2.1 the arrows are showing the parental bands A and B (in lanes 55 and 56), which were evaluated as alleles AA and BB; all the other lanes represent F_{2} segregating individuals from the cross $\mathrm{A} \times \mathrm{B}$ and were evaluated as AA if only band A was present, BB if band B was present, or AB if both bands were present. All microsatellite analyses in this studied were carried out utilising this method, unless stated in the respective section

Plate 2.1. Agarose gel electrophoresis of PCR amplification products of Lycopersicon microsatellite locus LE21085 consisting in parental accessions L. esculentum var. cerasiforme (55) and L. esculentum cv. Limachino (56), and from 57 to $68 \mathrm{~F}_{2}$ segregating individuals from the cross 55×56.

In the case of RAPD, the image was analysed evaluating polymorphism by absence (0) or presence (1) of bands, as it is showed in Plate 2.2. The arrows display the polymorphic bands in the electrophoresis agarose gel.

Plate 2.2 Agarose gel electrophoresis of PCR amplification products from 12 Lycopersicon taxa RAPD markers.

Arrows show polymorphic positions with primer OPA-18; 31 = L. esculentum cv. 1702- F_{1}-144; $33=$ L. esculentum cv. Boa $\mathrm{F}_{1} ; 34=$ L. esculentum cv. Cobra; $40=$ L. esculentum var. cerasiforme, LA-1673; $41=$ L. hirsutum,, LA-1353; $42=$ L. hirsutum, G29255; $44=$ L. hirsutum var. glabratum, LYC 4/88; $45=$ L. hirsutum var. glabratum, LA-1223; $47=$ L. hirsutum var. glabratum, PI-1993181; 49 = L. parviflorum, LA-1322; $50=$ L. parviflorum, LA-1326; $52=$ L. parviflorum, T-1264/94.

2.2.2 Morphological characters

2.2.2.1 Pollination and crosses

Most plants were allowed to self-pollinate. Only selected accessions as parents were hybridised. After the second truss had formed, three to four flowers per truss were emasculated before opening and pollen release. Stamens from mature flowers were left in a plastic container and dried overnight in a desiccator with silica gel. When the emasculated flowers opened the stigma was receptive, and were put in contact with the pollen. The flower was then tagged and the fruit allowed to develop.

After hybridisation, one fruit from each individual growing in each population was harvested and mixed all together. During the following generations the same procedure was followed.

2.2.2.2 Plant morphology evaluation

There were 16 discontinuous characters evaluated. These were selected from a list published in "Descriptors for Tomato" (IPGRI, 1996). The characters, evaluation stages, and scores are detailed in Appendix 1.

2.2.2.3 Fruit harvest and seed extraction

Fruits were harvested at a ripe stage, each accession and/or hybridisation were bulked in sealed plastic bag, crushed, and left to ferment for week. Then the fruits were washed in a 1% sodium hypochloride solution for 20 minutes, rinsed in water, and the seeds separated from the pulp and skin. Seeds were dried overnight in a petri dish containing a layer of filter paper, then packed in a paper bag and stored in a desicator containing silica gel to keep drying the seeds.

2.3 Population size

Initially 5 plants per accession were grown in the greenhouse. After hybridisation, 8 plants were grown for most populations created from inter- and intra-taxon crosses in all generations studied. However, 40 plants were grown in one population (I-1939) and reciprocal (I-3919), which was randomly selected by a draw from inter-taxon crosses and 20 plants in the case of intra-taxon crosses E-2219 and reciprocal E-1922. The same number of 40 and 20 plants from all these populations quoted before were grown during the development of F_{1} to F_{3} generations.

2.4 Statistical analysis

Descriptive statistics, analysis of variance (ANOVA) (Snedecor, 1934) for normally distributed characters, Kruskal-Wallis test (Kruskal and Wallis, 1952) for nonnormally distributed characters, and Tukey test (Tukey, 1953) for multiple comparison analysis were carried out utilising the statistical program Minitab 11.1. Graphs, tables and figures were produced using the programs MS-Word 97 and MSExcel 97.

Analysis of molecular variance (AMOVA) was utilised to measure the genetic structure of the populations from which the samples were drawn. It works on binary data (0 and 1) creating a distance matrix between samples. The analysis treats genetic
distances as deviations from a group mean position, and uses the generated deviations as variances. The total sum of squares of genetic distances may then be partitioned representing the within-group and the between-group mean squares. $\Phi_{\text {st }}$ represents the correlation between random genetic accessions within a group relative to random accessions from the population at large. $\Phi_{\text {st }}$ statistic is analogous to Wright's $\mathrm{F}_{\text {st }}$ (Wright, 1965). This multilocus approach, originally, was developed for haplotype data, but it has recently become much applied for RAPD- and binary-data to estimate between populations variability. The data with a hierarchical structure allows an analysis of variance-like approach that can be extended to evaluate molecular marker data even with absence of replicated values for sample.

Genetic similarity values between pairs of genotypes were calculated using Jaccard's coefficient (Sneath and Sokal, 1973). This did not include 0-0 matches as indicator of similarity. Using genetic similarity matrices, dendrograms were constructed according to the unweighted pair-group method with arithmetic average (UPGMA) (Sneath and Sokal, 1973). Data were analysed through the program NTSYS-pc version 1.80 (Numerical Taxonomy System, Applied Biostatistics, NY).

Genetic diversity, in this research, was analysed and quantified in terms of diversity indices. They are mathematical measures of species diversity in a community. Diversity indices provide more information about community composition than simply species richness (i.e. number of species present). The aim was to examine the genetic diversity in Lycopersicon taxa and the possible changes when hybridising accessions inter- and intra-taxon. The following diversity indices were used in this research:

- Mean proportion of polymorphic loci (P). A locus is defined as polymorphic when the frequency of the most common allele is less than 1 and represent the percentage of all loci that are polymorphic regardless of allele frequencies.
- Mean number of alleles per locus (A), which represents the arithmetic mean of the number of alleles per locus across all loci or allele richness.
- Effective number of alleles $\left(A_{e}\right)$. This equals the actual number of alleles only when all alleles have the same frequency, estimates the reciprocal of homozygosity, and it is calculated as:

$$
A_{e}=\frac{1}{\sum x_{i}{ }^{2}}
$$

where x_{i} is the population frequency of the i th allele at a locus.

- Gene diversity (H), which is the probability that two alleles randomly chosen from a population will be different $(\mathrm{Nei}, 1987)$ and it is calculated as:

$$
H=1-\sum x_{i}{ }^{2}
$$

where x_{i} is the population frequency of the i th allele at a locus.
Average gene diversity $\left(H_{S}\right)$ was calculated as the average of sub-populations, in this case accessions and populations created by hybridisation, it represents the diversity within a population; and total gene diversity $\left(H_{t}\right)$ utilised all populations as a meta-population, it represents the diversity between all populations. The upper bound of gene diversity is 1.0 when calculated utilising co-dominant marker and 0.5 with dominant markers.

- Shannon's information index (I) enables analogous comparisons between codominant and dominant markers because it is not bounded by 1.0 and is calculated as:

$$
I=\sum x_{i} \ln x_{i}
$$

where x_{i} is the population frequency of the i th allele at a locus.
Population differentiation was calculated according to Hartl and Clark (1997) as:

$$
F_{S t}=\frac{(H t-H s)}{H t}
$$

And it represents the partitioning of the diversity between and within present in the populations analysed.

All calculations and statistical analysis of genetic diversity and population differentiation were carried out utilising the program Popgene (Yeh, 1997). During the calculations the data were treated as populations not in Hardy-Weinberg equilibrium and indices calculated as dominant or co-dominant depending the morphological or molecular marker utilised. Allele frequencies were estimated from the information obtained in the gel electrophoresis and the score of the bands present. Significance levels were represented by asterisks, being significant differences ($P \leq 0.05$) '*' and highly significant differences $(P \leq 0.01)^{\text {'**'. Non-significant }}$ differences $(P>0.05)$ were denoted by 'ns'.

Chapter 3

Genetic diversity of Lycopersicon spp germplasm.

3.1 Introduction

Deliberate selection and breeding to adapt tomato to specific growing areas have been in progress for little more than 200 years (Stevens and Rick, 1986). However, a common problem has always been the lack of genetic variability among tomato germplasm. Boswell in 1937 already reported that problems and new requirements had arisen so quickly that tomato breeders could not find naturally occurring chance variants with the desired characteristics fast enough to met these requirements.

The low overall genetic diversity of modern cultivars reflect genetic "bottlenecks" to which modern tomato cultivars were subjected to during their domestication in Latin America and later introduction to Europe. Rick (1976) supposed that only limited number of seeds, and therefore probably accessions, were brought back by explorers and became the base of worldwide tomato breeding. However, natural bottlenecks during species evolution, such as autogamous plants that had hermaphrodite flowers with pistil enveloped by joined stamens and inserted stigma, suggest that the initial genetic variability of the ancestral form may have already been at low level (Rick, 1976; Miller and Tanksley, 1990; Williams and St. Clair, 1993; Rick and Chetelat, 1995).

Moreover, breeders have been selecting material mainly with inserted stigmas with the aim of enforcing autogamy, but this low diversity has been further reduced by the use of breeding methods that promote genetic uniformity, such as pedigree selection or single-seed descent. The number of cultivars released per year have been increasing, but the genetic and morphological differences between them decreasing. Within commercial breeding, relatively few dominant cultivars have come to be used as suitable parental material, usually in newly released cultivars showing only slight or 'cosmetic' differences, and which justifies a new name.

Among cultivated species, tomato is in highly favourable position with respect to germplasm availability in related wild species and landraces or old varieties. Nearly every taxon is characterised by a large number of accessions representing a range of genetic variation, geographic distribution and ecological niches. However, very few breeders are willing to use wild relatives because of the difficulty and time it takes to remove unwanted 'wild' characters. Nevertheless, resistance to at least 42 major
diseases has been discovered in exotics since 1940 and over 20 such resistances have been bred into horticultural tomatoes, a number that is continually rising (De Verna and Patterson, 1991; Rick and Chetelat, 1995). Landraces and old varieties have a greater useful diversity than modern cultivars, but their utilisation requires larger screening programmes and more expense. Therefore breeders prefer to restrict their programmes to the small amount of genetic diversity present in a few advanced lines and the introgression of individual specific traits from wild relatives (Cooper et al., 1998)

Modern tomato varieties are closely related to the wild species L. esculentum var. cerasiforme and the two taxa can be freely crossed, in agreement with the subdivision esculentum-complex of the Lycopersicon genus by Rick (1976). Although unilateral relationships are common, hybrids can be obtained from nearly all combinations without need of special techniques, such as embryo rescue (Rick, 1979a). Of the diverse difficulties of crossing between Lycopersicon species, the most influential are blocks to hybridisation and hybrid sterility. It is difficult to generalise in respect to the fertility of inter-taxon hybrids and behaviour in later generations. This can range from complete fertility of reciprocal hybrids to combinations with strong F_{1} sterility and inviability (Taylor, 1986; Rick, 1979a).

The objectives of this chapter are to demonstrate the levels of morphological and molecular diversity within L. esculentum accessions and the amount of genetic diversity available within the genus Lycopersicon. Based on these observations, the creation of a range of different types of populations will be studied in relation to base broadening objectives.

3.2 Morphological diversity in Lycopersicon germplasm

The phenotypic expression of morphological characters is usually divided into discontinuous (qualitative) and continuous (quantitative) variation. Most characters in nature are continuous or metric characters, such as yield, fruit size, tolerance/resistance to biotic or abiotic stresses, etc. However in a breeding programme both kind of traits can be useful to characterise individuals, populations, or species, and to analyse the diversity present between and within them.

In general phenotypic discontinuous variation is associated to one or two genes controlling the trait in a Mendelian manner. These qualitative characters are usually not strongly affected by environmental factors, unlike quantitative characters. Continuous variation in phenotype is associated to the collective action of many genes lying at different quantitative trait loci (QTL) and is usually highly influenced by environmental conditions. Thus data obtained in one site are unique. However, there are certain patterns of behaviour that can be studied and utilised in breeding programmes through statistical methods of quantitative genetics. These methods allow the calculation of indices of genetic variation and analysis of the quantitative genetic variation in QTLs.
In the following section, morphological evaluation of 38 accessions of 7 species of Lycopersicon, were assessed for 16 qualitative characters with the aim of examining the variation and genetic distances between accessions and species.

3.2.1 Morphological characteristics

Lycopersicon species form a cohesive group in respect to the following characteristics: herbaceous growth; sprawling or prostrate habit; stem organisation in sequences of 2- or 3-leaved sympodia; odd pinnate segmented leaves; cymose inflorescence; ebracteate, bright yellow, chasmogamous, pentamerous, hermaphrodite flowers with pistils enveloped by the connate or connivent anthers; and the fruit is a soft berry (Kaul, 1991; Taylor, 1986; Rick, 1979a).

In this research, of the 18 qualitative morphological characters analysed, 3 presented common characteristics for all accessions under study. All had pubescent hypocotyls, trusses with multiple flowers, and yellow corollas.

There was a considerably diversity observed in leaf shapes between and sometimes within species, as shown in Plate 3.1. Within L. esculentum there were some slight differences between accessions, generally within the called "potato leaf type" and "tomato leaf type". These leaf types were very similar to L. esculentum var. cerasiforme and L. pimpinellifolium, but the shape was very different in comparison to L. pennellii, L. hirsutum, L. cheesmanii, and L. parviflorum.

Plate 3.1 Leaf diversity of 10 samples of Lycopersicon spp.

1.- Lycopersicon esculentum
2.- Lycopersicon esculentum var. cerasiforme
3.- Lycopersicon hirsutum
4.- Lycopersicon hirsutum var. glabratum
5.- Lycopersicon parviflorum
6.- Lycopersicon pennellii
7.- Lycopersicon pennellii var. puberulum
8.- Lycopersicon cheesmanii
9.- Lycopersicon pimpinellifolium (a,b and c)
10.- Lycopersicon cheesmanii var. minor

1.- Lycopersicon esculentum
2.- Lycopersicon esculentum var. cerasiforme
3.- Lycopersicon hirsutum
4.- Lycopersicon hirsutum var. glabratum
5.- Lycopersicon parviflorum
6.- Lycopersicon pennellii
7.- Lycopersicon pennellii var. puberulum
8.- Lycopersicon cheesmanii
9.- Lycopersicon pimpinellifolium (a, b and c) 10.- Lycopersicon cheesmanii var. minor

Table 3.2.1 presents information in relation to flower characteristics and fruit morphology in accessions of the genus Lycopersicon examined in this research. In respect to style position, self-incompatible species, such as L. hirsutum and L. pennellii, possess highly exserted style. The character of green fruit at maturity, in these species, is strongly associated to characters such as highly exserted style and self-incompatibility. All representative cultivars and accessions of L. esculentum were self-compatible and exclusively inbreeding (Taylor, 1986), since domestication was accompanied by a transition from exserted to inserted stigmas and consequent change from facultative outcrossing to enforced autogamy (Rick, 1979b). Most of the species with red fruits, such as L. pimpinellifolium, L. cheesmanii and L. esculentum var. cerasiforme, presented styles at the same level as the anthers or slightly exserted, a characteristic correlated with autogamy.

The exterior colour of the immature fruit did not show much variation between species. In respect to fruit pubescence, L. esculentum and L. esculentum var. cerasiforme, two taxa very closely related, showed only sparse hairiness (few hairs covering the fruit). In the other more distantly related species, the hairiness increased from intermediate levels to dense (fruits completely cover with hairs). Fruit size in tomato wild relatives was always small to very small (less than 2 cm diameter) in comparison to L. esculentum cultivars which have been selected for bigger fruit size.

3.2.2 Genetic distances between Lycopersicon species

3.2.2.1 Distribution of phenetic similarities between Lycopersicon species and accessions

In order to analyse statistically phenetic distances between Lycopersicon spp, a dissimilarity matrix was created using the method described by Gower (1985) for a multivariate analysis of morphological traits. For each categorical character, the distance between two accessions was scored as zero if the character matched, and one if they did not. To create a morphological distance matrix, the individual trait distances for each pair of lines were added, then divided by the number of traits scored in both lines.

This matrix was transformed into similarities utilising the additive inverse (Appendix 2, part 1). Morphological data for 13 traits were available for 35 out of 38 accessions of 6 species of Lycopersicon. The 3 remaining accessions (L. esculentum cv. Cal Ace, L. parviflorum LA-1326, and L. pennellii PI-473422) did not complete the growing cycle and they were ommitted from the matrix.

To visualise the relationships between species, the similarity matrix was converted to a two dimension coordinate plot with the multidimensional scaling (MDS) procedure (Schiffman et al., 1981), using the program NTSYS-pc version 1.80. The stress parameter for this MDS procedure was 0.465 , defined by Kruskal (1964) as "poor". Figure 3.2.1 shows that there are two main groups, one including all L. esculentum accessions and the close relative L. esculentum var. cerasiforme. The other group includes all remaining wild relatives. The esculentum group formed a close group, except for two cultivars, Limachino (Chilean landrace) and Super Roma that were located at the bottom of the plot. In the other extreme, cv. Edkawi (Egyptian landrace) was aligned at the same horizontal level with wild cherry tomato (L. esculentum var. cerasiforme).
Table 3.2.1 Reproductive morphological characters in Lycopersicon spp. (Details in Appendix 1)

Species	Style Position	Exterior colour of immature fruit	Fruit pubescence	Fruit size	Exterior colour of mature fruit
L. cheesmanii	Same level as stamen	Greenish-white to light green	Sparse to intermediate	Very small	Orange to red
L. cheesmanii var. minor	Slightly exserted	Green	Dense	Very small	Orange
L. esculentum	Inserted to same level as stamen	Light green to green	Sparse	Intermediate to very large	Orange to red
L. esculentum var. cerasiforme	Same level as stamen	Light green	Sparse	Small	Red
L. hirsutum	Highly exserted	Light green	Dense	Small	Green
L. hirsutum var. glabratum	Highly exserted	Green	Dense	Small	Green
L. parviflorum	Inserted to same level as stamen	Light green to green	Intermediate to dense	Very small	Green to red
L. pennellii	Highly exserted	Greenish-white	Intermediate	Small	Green
L. pennellii var. puberulum	Highly exserted	Greenish-white	Intermediate	Small	Green
L. pimpinellifolium	Same level as stamen to slightly exerted	Greenish-white to green	Intermediate	Very small	Red

Within the group of wild relatives, each species clustered with its own kind, but it was noticeable that the green fruited species (L. pennellii, L. hirsutum and L. parviflorum) grouped together. Lycopersicon hirsutum accessions were very closely grouped, and showed little differences in the traits analysed. This is reflected in the grouping of 4 out of 5 accessions at just one point. L. pimpinellifolium accessions had more variation between them than the other species which presented relatively close individual groups. The two accessions of L. cheesmanii var. minor were located apart from L. cheesmanii entries. Accessions of L. parviflorum and L. pennellii showed some differences within them, reflected in the position of every one in the plot.

3.2.2.2 Phenetic similarity analysis within and between Lycopersicon spp

Morphological data from 13 traits were used to generate a phenetic similarity matrix for 35 accessions of Lycopersicon. Similarities were analysed grouping all the combinations of accessions for each species in the matrix, excluding selfcombinations giving value 1 , and treated as a whole utilising descriptive statistics (Table 3.2.2). Some species such as L. parviflorum and L. pennelli were considered in this analysis though they were represented by only two accessions, but L. esculentum var. cerasiforme was discarded because no comparison was possible with just one entry.

The highest genetic similarity mean was presented by L. hirsutum with 0.88 , ranging from 1.00 to 0.31 , while the lowest means were found in L. parviflorum.

Within L. esculentum accessions there was high variation of distances, reflecting also the high number of accessions analysed.

Figure 3.2.1 Multidimensional scale (MDS) presentation of data of 13 morphological traits for 35 Lycopersicon accessions.

© Lycopersicon hirsutum

* Lycopersicon parviflorum
- Lycopersicon pimpinellifolium
- Lycopersicon esculentum
* Lycopersicon pennellii
* Lycopersicon cheesmanii
* Lycopersicon cheesmanii f. sp. minor - Lycopersicon esculentum var. cerasiforme

Table 3.2.2 Descriptive statistical analysis of a genetic similarity matrix based on 13 morphological traits within Lycopersicon accessions.

	\mathbf{N}	Mean	SE	Max	Min
L. esculentum	$136(17)$	0.51	± 0.01	0.85	0.23
L. cheesmanii	$10(5)$	0.66	± 0.05	0.85	0.39
L. pimpinellifolium	$3(3)$	0.72	± 0.11	0.92	0.54
L. hirsutum	$10(5)$	0.88	± 0.08	1.00	0.31
L. parviflorum	$1(2)$	0.46	-	-	-
L. pennellii	$1(2)$	0.77	-	-	-

Numbers between brackets correspond to the number of accessions analysed per species; $\mathrm{N}=$ number of observations; $\mathrm{SE}=$ standard error; $\mathrm{Max}=$ maximum value; $\mathrm{Min}=$ minimum value .

3.2.3 Analysis of molecular variance (AMOVA) of morphological characters in Lycopersicon spp

The 35 accessions were grouped according to taxa, then the genetic distance matrix built from the morphological categorical data transformed to binary as explained in section 3.2.2.1, was analysed by Analysis of Molecular Variance (AMOVA) procedure (Excoffier et al., 1992) calculating the variance between and within taxa for the morphological characters (Table 3.2.3). The results indicated highly morphological differentiation ($P<0.01$) between Lycopersicon taxa analysed, where 37.1% of the total variation found was attributable to morphological differences between and 62.9% within taxa.

Table 3.2.3 Analysis of molecular variance of 13 morphological characters in 34 accessions of Lycopersicon spp.

Source of variation	Sum of squares	df	Mean square	Percentage
Within taxa	$412,487.99$	28	$14,731.71$	62.9%
Between taxa	$278,095.62$	5	$55,619.12$	37.1%
TOTAL	$690,583.61$	33		

Variance within taxa	$14,731.71$
Variance between taxa	$8,688.57$
Φ_{st}	0.371

3.3 Molecular diversity in Lycopersicon germplasm

3.3.1 Microsatellite markers

Microsatellites, or short tandem repeats (STRs), or simple sequence repeats (SSRs) are a common feature in the eukaryote genome. They contain a basic repeat motif of $2-8$ base pairs (Hamada et al, 1982, 1984; Tautz \& Rentz, 1984). Such STRs/SSRs can be found in large numbers and are relatively evenly distributed throughout the genome. It has been suggested that the variability of microsatellites is due to variations in the number of copies of the basic repeat unit, likely caused by slippage of the polymerase during replication (Schlötterer \& Tautz, 1992) or unequal crossing-over (Schlötterer, 1998). Microsatellite analysis has shown high variability even in populations which showed low levels of variation in allozymes and mitochondrial DNA (Schlötterer, 1998). Amplifying these regions through polymerase chain reaction (PCR) using a unique pair of flanking oligonucleotides as primers, almost regularly presents comprehensive polymorphisms because of different number of repeats (Morgante \& Olivieri, 1993). Most microsatellite loci are selectively neutral and as they are embedded in single copy DNA, this facilitates the unambiguous scoring of alleles (Schlötterer, 1998).

3.3.1.1 Population structure and diversity

In this analysis microsatellite bands were treated as dominant markers. This approach was adopted because there was no information available from segregating populations to determine ranking order of alleles. Therefore the alleles could not be scored unequivocally, as it is showed in Plate 3.2. In lane 2 band ' a ' is clearly one allele, also lanes 41 and 42 show bands ' c ' and ' d ' as one allele. However, in lane 4 are present bands ' a ' and ' b ', and in lane 32 bands ' c ' and ' d ', that are repeated in several other lanes. The microsatellite locus LEPRP4 is described with a size of about 200 bp , but considering the variability of microsatellites and the closeness of the bands in the gel, it is difficult to score them. Similar is the case showed in Plate 3.3 for locus LEGAST1, which is described with an expected size of 204 bp and marked with an arrow.

Plate 3.2 Agarose gel electrophoresis of PCR amplification products of Lycopersicon spp microsatellite locus LEPRP4.

Left lane $=$ molecular marker in base pairs; numbers on the other lanes indicate Lycopersicon spp accessions in Table 2.1

In order to score the alleles unequivocally the dominant marker approach was adopted, scoring the bands of the same size as 1 if the band was present in each lane across the gel and 0 if the band was absent.

Plate 3.3 Agarose gel electrophoresis of PCR amplification products of Lycopersicon spp microsatellite locus LEGAST1.

Left lane $=$ molecular marker in base pairs; numbers on the other lanes indicate Lycopersicon spp accessions in Table 2.1; arrows indicate locus position.

In this section (3.3.1.1) L. esculentum var. cerasiforme was not included in the analysis, because there was only one accession.

3.3.1.1.1 Polymorphic loci

In the results presented in Table 3.3.1, out of the 55 microsatellite loci assessed, 53 (96.36%) were polymorphic. L. esculentum had the largest number of polymorphic loci (52\%), followed by L. hirsutum var. glabratum and L. hirsutum with 33% and 30%, respectively. L. pimpinellifolium (20\%) and L. pennellii (18\%) showed the lowest number.

Table 3.3.1 Number and proportion of polymorphic loci (P) in 6 species and 2 infraspecific categories belonging to the genus Lycopersicon based on 55 microsatellite marker data.

Species	Number of polymorphic loci	Proportion of polymorphic loci
L. esculentum	29	0.52
L. cheesmanii	14	0.25
L. cheesmanii var. minor	14	0.25
L. pimpinellifolium	11	0.20
L. parviflorum	16	0.29
L. hirsutum	17	0.30
L. hirsutum var. glabratum	18	0.33
L. pennellii	10	0.18

A non-parametrical statistical analysis utilising the Kruskal-Wallis test showed no significant differences between species (Details in Appendix 3, part 1). These differences could be considered as an index for the variability within species. However the proportion of polymorphic loci (P) does not reflect the real genetic variation in a population, because is very sensitive to the number of samples analysed.

3.3.1.1.2 Diversity indices

Diversity indices for the 38 accessions of 6 Lycopersicon spp and 2 infraspecific categories were calculated. Each accession was regarded as a sample, each taxon was considered as a population, with several accessions as samples. The species as a whole were treated as metapopulations allowing the calculation of each index as an overall. The statistical analyses of the indices were carried out using the ANOVA procedure for genetic indices, which were tested for normal distribution. These indices were the average gene diversity $\left(H_{S}\right)$ and the Shannon's information index (I). Indices whose values are not distributed normally, such as the number of polymorphic alleles per locus (A) and the effective number of alleles $\left(A_{e}\right)$, were
analysed with the non-parametric Kruskal-Wallis test. Results are given in Table 3.3.2, and details of the statistical analysis are given in Appendix 3, part 1.

ANOVA analyses produced significant differences between species for some genetic indices such as the number of polymorphic alleles per locus (A), the effective number of alleles $\left(A_{e}\right)$ and the Shannon's information index (I). The results showed a significant difference of A, A_{e} and I only for L. pennelli in comparison with all other taxa. The mean number of alleles per locus (A) differed very significantly $(P<0.01)$ between taxa and varied from 1.18 in L. pennelli to the higher value 1.53 presented by L. esculentum and L. hirsutum var. glabratum. Considering all the taxa together 1.96 (SE: ± 0.03) alleles per locus are found in average, so there are more polymorphic alleles per locus between than within taxa of Lycopersicon spp. In the case of effective number of alleles $\left(A_{e}\right)$, the means between taxa differed significantly $(P<0.05)$ with a range from 1.12 in L. pennellii to 1.30 , the highest value corresponding to L. esculentum. The average for all 6 species and 2 infraspecific categories was 1.48 (SE: ± 0.04). The mean effective number of alleles, according to Hartl and Clark (1997), estimates the reciprocal of homozygosity. Based on this estimate, homozygosity of the Lycopersicon spp accessions was about 67%.

Table 3.3.2 Mean of 4 diversity indices for 6 Lycopersicon spp and 2 infraspecific categories based on 55 microsatellite markers.

Species	N	A	A_{e}	H_{s}	I
		**	*	ns	*
L. esculentum	18	$\begin{aligned} & 1.53 \mathrm{a} \\ & (\pm 0.07) \end{aligned}$	$\begin{aligned} & 1.30 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$	$\begin{gathered} 0.18 \\ (\pm 0.03) \end{gathered}$	$\begin{aligned} & 0.27 \mathbf{a} \\ & (\pm 0.04) \end{aligned}$
L. cheesmanii	3	$\begin{aligned} & 1.26 \mathrm{a} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.17 \mathrm{a} \\ & (\pm 0.04) \end{aligned}$	$\begin{gathered} 0.10 \\ (\pm 0.02) \end{gathered}$	$\begin{aligned} & 0.14 \mathbf{a} \\ & (\pm 0.03) \end{aligned}$
L. cheesmanii var. minor	2	1.26 a (± 0.06)	$\begin{aligned} & 1.18 \mathbf{a} \\ & (\pm 0.04) \end{aligned}$	$\begin{gathered} 0.11 \\ (\pm 0.03) \end{gathered}$	$\begin{aligned} & 0.18 \mathrm{a} \\ & (\pm 0.04) \end{aligned}$
L. pimpinellifolium	3	1.21 a (± 0.06)	$\begin{aligned} & 1.15 \mathrm{a} \\ & (\pm 0.04) \end{aligned}$	$\begin{gathered} 0.08 \\ (\pm 0.02) \end{gathered}$	$\begin{aligned} & 0.12 \mathbf{a} \\ & (\pm 0.03) \end{aligned}$
L. parviflorum	3	$\begin{aligned} & 1.29 \mathrm{a} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.18 \mathrm{a} \\ & (\pm 0.04) \end{aligned}$	$\begin{gathered} 0.11 \\ (\pm 0.02) \end{gathered}$	$\begin{aligned} & 0.16 \mathbf{a} \\ & (\pm 0.04) \end{aligned}$
L. hirsutum	2	1.31 a (± 0.06)	$\begin{aligned} & 1.22 \mathbf{a} \\ & (\pm 0.04) \end{aligned}$	$\begin{gathered} 0.13 \\ (\pm 0.03) \end{gathered}$	$\begin{aligned} & 0.19 \mathbf{a} \\ & (\pm 0.04) \end{aligned}$
L. hirsutum var. glabratum	3	$\begin{aligned} & 1.53 \mathrm{a} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.23 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$	$\begin{gathered} 0.13 \\ (\pm 0.03) \end{gathered}$	$\begin{aligned} & 0.20 \mathrm{a} \\ & (\pm 0.04) \end{aligned}$
L. pennellii	3	1.18 b (± 0.05)	1.12 b (± 0.04)	$\begin{gathered} 0.07 \\ (\pm 0.02) \end{gathered}$	0.10 b (± 0.03)

$\mathrm{N}=$ number of accessions; $A=$ Number of polymorphic alleles per locus; $A_{e}=$ Effective number of alleles; $H_{S}=$ Average gene diversity; $I=$ Shannon's information index; numbers between brackets correspond to standard error; significance ${ }^{*}=P<0.05 ;{ }^{* *}=P<0.01$; ns $=$ no significance; same letters show no statistical differences.

The average gene diversity $\left(H_{S}\right)$ did not differ significantly between species ranging from 0.07 to 0.18 . The total gene diversity $\left(H_{t}\right)$ of the taxa was 0.30 (SE: ± 0.02), therefore the probability that 2 randomly sampled alleles in the whole sample are different is higher than 30%. However, Shannon's information index (I) showed significance between means ranging from 0.10 to 0.27 and a total value of 0.45 (SE: ± 0.03) for all Lycopersicon spp.

A principal components analysis (PCA) was carried out based on genetic diversity indices (Figure 3.3.1). The first component clearly separates L. esculentum from the wild relatives, and the second component separates L. pennellii and L. parviflorum from the main group, but also from L. esculentum. These components explained 82.2% and 16.6% of the total variation at diversity indices level.

Figure 3.3.1 Principal components analysis of 5 genetic diversity indices in 6 Lycopersicon spp and 2 infraspecific categories based on 55 microsatellite markers.

First Component

3.3.1.1.3 Genetic diversity within and between species

The total diversity $\left(H_{t}\right)$ of species analysed can be divided into two fractions: diversity found between and within species. The fixation index $\left(F_{S t}\right)$ gives the relative amount of the total diversity that is found between species and can be expressed as a percentage. Data extracted from H_{S} (Table3.3.2) and H_{t} in diversity indices was used to obtain the $F_{S t}$ values for each species.

The results given in Figure 3.3 .2 show that diversity between taxa ranged from 40% to 76%. Most of diversity present in tomato wild relatives was found between taxa. In contrast, in L. esculentum ocurred mostly within the taxa. Wild relatives, L.
pennellii and L. pimpinellifolium presented little diversity within taxa (24% and 28%), closely followed by L. cheesmanii (33\%), but all other taxa were in the range from 36% to 45%. Overall, the mean $F_{S t}$ for all species was 61.74%.

Figure 3.3.2 Diversity partitioning within and between taxa in Lycopersicon based in 55 microsatellite markers.

3.3.1.1.4 Genetic diversity relationships in respect to the number of accessions

 sampledIn order to determine how the genetic indices behaved in respect to the number of samples analysed, a regression analysis was carried out. As there were not enough samples to perform the regression in all species, only the three presenting more populations were selected: L. hirsutum, L. cheesmanii, and L. esculentum. The results of these relationships are presented in Figure 3.3.3 and the statistical analysis in Appendix 3, part 2. The five indices analysed $\left(A, A_{e}, H_{S}, I\right.$, and $\left.P\right)$ showed a tendency for L. hirsutum to increase when the number of samples rose higher than any other species; L. cheesmanii is located at a lower level very close to L. esculentum. Slopes between L. esculentum and L. cheesmanii were similar in all
indices, but different from L. hirsutum. These results suggest that increasing the number of samples in the different species to be analysed, more genetic diversity could be found in accessions of L. hirsutum than L. esculentum and L. cheesmanii. It is probably that the inbreeders L. esculentum and L. cheesmanii have close levels of genetic diversity because of the bottlenecks they have undergone during their evolution.

Figure 3.3.3 Plot of the average number of polymorphic alleles per locus (A), effective number of alleles $\left(A_{e}\right)$, gene diversity $\left(H_{s}\right)$, Shannon's information index (I), and number of polymorphic loci (P), versus number of samples in Lycopersicon spp accessions.

3.3.1.2 Genetic similarity analysis associated to Lycopersicon spp accessions

3.3.1.2.1 Distribution of genetic similarities

The distribution of genetic similarities between Lycopersicon accessions is presented in Figure 3.3.4 and 3.3.5 that shows a histogram based on genetic similarities matrix (Appendix 2, part 2) for 38 accessions of Lycopersicon spp and for 18 accessions of L. esculentum, respectively. The purpose of this section is to examine and compare the genetic similarity distribution of Lycopersicon spp and L. esculentum accessions, with the aim to observe where these differences lay.

The mean genetic similarities among species utilised in this study was 0.38 (SE: ± 0.01), while the distribution ranged from nearly 0.00 (distant) to a maximum of 1.00 (similar). The higher concentration of observations was located between 0.20 and 0.50 . There was in the frequencies a tendency to skew toward the end with less genetic similarities.

In the case of L. esculentum accessions, the mean genetic similarities were 0.64 (SE: ± 0.01), ranging from 0.34 to 1.00 , and most observations were concentrated between 0.60 and 0.80 , but skewed toward the end with most similarities.

Figure 3.3.4 Histogram of a genetic similarity matrix for 38 accessions of Lycopersicon spp based on 55 microsatellite markers.

Figure 3.3.5 Histogram of a genetic similarity matrix for 18 accessions of L. esculentum based on 55 microsatellite markers.

3.3.1.2.2 Genetic similarity analysis within Lycopersicon spp accessions

The genetic similarity matrix (Appendix 2, part 2) generated from microsatellite data for the 38 accessions of Lycopersicon spp was analysed statistically within each species; L. esculentum var. cerasiforme was not included in this analysis because there was only one accession available. The results shown in Table 3.3.3 were analysed for descriptive statistics. Genetic similarities within species showed that L. pennellii and L. pimpinellifolium revealed accessions with similar values for microsatellite markers, and most dissimilar accessions were located within L. hirsutum. The closest distance between maximum and minimum was displayed by L. pennellii and L. pimpinellifolium. The higher mean corresponded to L. esculentum and the lower to L. hirsutum.

Table 3.3.3 Descriptive statistical analysis of a genetic similarity matrix for $\mathbf{5 5}$ microsatellite markers data within 6 Lycopersicon spp.

Species	N	Mean	SE	Max	Min
L. cheesmanii	10	0.56	± 0.05	0.83	0.33
L. esculentum	153	0.64	± 0.01	0.75	0.34
L. hirsutum	10	0.46	± 0.03	0.65	0.31
L. parviflorum	3	0.62	± 0.19	1.000	0.43
L. pennellii	3	0.63	± 0.16	0.67	0.42
L. pimpinellifolium	3	0.57	± 0.06	0.67	0.47

$\mathrm{N}=$ number of observations; $\mathrm{SE}=$ Standard Error; $\operatorname{Max}=$ Maximum value; Min = Minimum value.

3.3.1.3 Relationship between Lycopersicon spp accessions

A dendrogram based on the cluster analysis of a similarity coefficient matrix was constructed for all accessions of Lycopersicon spp utilised in this study. The cluster analysis was carried out based on these values by the unweighted pair group method with arithmetic average (UPGMA). As shown in Figure 3.3.6, most accessions of wild green-fruited taxa, species such as L. hirsutum, L parviflorum and L. pennellii, grouped together and are clearly separated from the red-fruited. However, one redfruited accession of L. parviflorum (T1264/94 from IPK, Germany) and one greenfruited L. hirsutum var. glabratum (PI-199381 from USDA-ARS, USA) clustered out of their groups closer to red-fruited accessions and species. The only accession of L. esculentum var. cerasiforme grouped within the L. esculentum accessions; and L. pimpinellifolium entries were located adjacent to the esculentum group; next came the accessions of L. cheesmanii, showing their isolated evolution on the Galapagos Islands.

In order to obtain further information about the grouping of the wild relatives and cultivated accessions, a principal component analysis (PCA) was carried out utilising the similarity matrix. The PCA presented in Figure 3.3 .7 reflected the relationship within and between wild species and L. esculentum entries that were also obtained in
the dendrogram. The first and second component could explain 18% and 6% of the variation, respectively. The first axis obviously classified wild species apart from the cultivated types (including L. esculentum var. cerasiforme and L. parviflorum entry T1264/94). The second axis separated cultivated tomato into F_{1} hybrids and some modern open pollinated (OP) cultivars from old cultivars, both landraces were split one in each sector.

Figure 3.3.6 Dendrogram for Lycopersicon spp obtained using UPGMA based in similarity matrix from microsatellite data.

Figure 3.3.7 Principal components analysis (PCA) of 38 accessions of Lycopersicon based on a similarity matrix.

$\begin{array}{ll}\text { * } \text { L. parvifloru } & \text { L. hirsutum } \\ \text { ○ L. pennelli var. puberulum } & \text { ○ L. pennellii }\end{array}$

- L. esculentum var. cerasiforme

67

Analysis of molecular variance (AMOVA) was conducted for 37 accessions of Lycopersicon spp utilising the similarity matrix (Excoffier et al, 1992). The results (Table 3.3.4) showed a highly significant value for $\Phi_{\mathrm{st}}(P<0.01)$ and that only a 40.1% of the genetic variation was accounted for between species. The remaining 59.9% of the variation can be found within species.

Table 3.3.4 Analysis of molecular variance (AMOVA) of a genetic similarity matrix based in 55 microsatellite markers of 37 accessions of Lycopersicon spp.

	Sum of squares	df	Mean square	Percentage
Total within taxa	$1,274.46$	31	41.11	59.9%
Total between taxa	926.49	5	185.30	40.1%
TOTAL	$2,201.95$	36		

Variance within taxa	41.11
Variance between taxa	27.55
Φ_{st}	0.401

3.3.1.4 Genetic indices for red- and green-fruited species in Lycopersicon spp

A further population analysis, grouping the species in green- and red-fruited, was carried out to determine whether there were statistical differences between both groups. The results displayed in Table 3.3.5 did not provide statistical significance between both groups in any of the parameters. Details are presented in Appendix 3, part 3. Few differences were observed between groups, but most of the values were very close. In the case of the fixation index $\left(F_{S t}\right)$, red-fruited species showed that 66% of the diversity lies between and 34% within species of the group, while in green-fruited 57% was between and 43% within species.

Table 3.3.5 Genetic diversity statistics and population partitioning parameters for 2 groups of Lycopersicon spp based on the fruit colour.

	\boldsymbol{P}	A	A_{e}	H_{s}	I	$F_{s t}$
	ns	ns	ns	ns	Ns	
Red-	$\mathbf{0 . 8 1}$	$\mathbf{1 . 8 2}$	$\mathbf{1 . 4 0}$	$\mathbf{0 . 0 9}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 6 6}$
fruited		(± 0.05)	(± 0.05)	(± 0.01)	(± 0.03)	
species		$\mathbf{1 . 8 6}$	$\mathbf{1 . 4 2}$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 3 9}$	$\mathbf{0 . 5 7}$
Green-	$\mathbf{0 . 8 5}$		(± 0.05)	(± 0.05)	(± 0.01)	(± 0.03)
fruited						
species						

$P=\overline{\text { proportion of polymorphic loci; } A=\text { number of polymorphic alleles per locus; } A_{e}=\text { effective }}$ number of alleles; $H_{S}=$ average gene diversity; $I=$ Shannon's information index; $F_{S t}=$ fixation index; numbers between brackets correspond to standard error; ns = no statistical significance.

3.3.2 Random amplified polymorphic DNA (RAPD) markers

Advances in the application of polymerase chain reaction (PCR) has made possible to score individuals at a large number of loci. A method developed simultaneously by Welsh and McClelland (1990), Williams et al. (1990), and Caetano-Anollés et al. (1991), later called random amplified polymorphic DNA or RAPD has been utilised for different purposes because of its simple and fast methodology, small amount of DNA required; each primer used has the potential to detect multiple bands, and the costs of utilising this technique are low. RAPD is one of the main techniques utilised for characterisation of germplasm (Hu and Quiros, 1991; Kresovich et al., 1992; Wilkie et al., 1993) and analysis of genetic diversity (Pejic et al., 1998; Villand et al., 1998; Mengistu et al., 2000).

Polymorphisms in RAPD are the result of variations in the sequence of the primerbinding sites (e.g. point mutation), which impede stable linkage with the primer, or from indels (insertions/deletions) that change the band size. In respect to inheritance, they are transmitted mainly as dominant markers (Waugh and Powell, 1992), but also co-dominantly (Kawchuk et al., 1994). However, most often they are treated as dominant marker, because if one allele at a RAPD site is unamplifiable, then the marker/marker homozygote cannot be distinguished from the marker/null heterozygote. Provided there is only a single amplifiable allele per locus, this does
not bias the estimation of allele frequencies necessary for population genetic analysis, but it does reduce the accuracy of such estimation relative to analysis with co-dominant markers (Lynch and Milligan, 1994).

In this part of the study RAPD are treated as dominant markers to establish relationships and genetic similarities between and within 38 accessions of Lycopersicon.

3.3.2.1 Population structure and diversity in Lycopersicon spp accessions

In this analysis RAPD bands were treated as dominant markers being evaluated as presence (1) or absence (0). Plate 3.4 shows the results of an agarose gel electrophoresis of PCR products from RAPD primer OPA-16 and the arrows mark some of the polymorphic loci. Bands of the same size were scored as 1 if the band was present in each lane across the gel and 0 if the band was absent.

Plate 3.4 Agarose gel electrophoresis of PCR products from RAPD markers primer OPA-16 in Lycopersicon spp accessions.

Left and right lanes correspond to molecular markers; arrows indicate examples of polymorphic loci; numbers indicate the accessions in Table 2.1; 1 to $5=$ L. cheesmanii; 6 to $24=$ L. esculentum; $29=$ L. esculentum var. cerasiforme; 30 to $34=$ L. hirsutum; 35 to $37=L$. parviflorum; 38 to $40=$ L. pennellii; 41 to $43=$ L. pimpinellifolium.

3.3.2.1.1 Polymorphic loci

The 28 primers used to screen the 38 Lycopersicon accessions produced a total of 268 amplified DNA fragments. The number and proportion of polymorphic loci (P) within species are displayed in Table 3.3.6 (Details in Appendix 3, part 4). L.
esculentum presented the highest, with 162 out of $268(62 \%)$, and L. cheesmanii var. minor the lowest, with 40 out of 268 (15\%), polymorphic bands. The non-parametric Kruskal-Wallis test showed no statistical significance for this index. In general, most species showed fairly low proportions, between 20% and 30%, of polymorphic loci. However, overall 262 out of 268 bands (97.76%) were polymorphic.

Table 3.3.6 Number and proportion of polymorphic loci (P) in 6 species and 2 infraspecific categories belonging to the genus Lycopersicon based on 268 RAPD markers.

Species	Number of Polymorphic loci	Proportion of polymorphic loci
L. esculentum	167	0.62
L. cheesmanii	90	0.33
L. cheesmanii var. minor	40	0.15
L. pimpinellifolium	75	0.28
L. parviflorum	79	0.29
L. hirsutum	56	0.21
L. hirsutum var. glabratum	92	0.34
L. pennellii	64	0.24

3.3.2.1.2 Diversity indices

Four genetic diversity indices (number of polymorphic alleles per locus (A), effective number of alleles $\left(A_{e}\right)$, average gene diversity $\left(H_{S}\right)$, and Shannon's information index $(I))$ are presented in Table 3.3.7. The structure of the analysis was similar to that utilised for microsatellites (3.3.1.1.2), ANOVA was carried out on normally distributed indices such as H_{S} and I, and the non-parametric Kruskal-Wallis procedure for non-normally distributed indices such as A and A_{e}. Details of the statistical analysis are presented in Appendix 3, part 4. All indices analysed differed statistically between taxa ($P<0.01$). A range between 1.16 to 1.62 of average polymorphic alleles per locus was found. Considering all taxa as a metapopulation A
was $1.98(\pm 0.01)$, confirming the results obtained with microsatellites that there are more polymorphic alleles per locus in average between than within taxa. L. esculentum and L. cheesmanii var. minor were statistically different from all other taxa for this index.

The mean effective number of alleles $\left(A_{e}\right)$ for all 8 taxa was $1.55(\pm 0.02)$, with a range from 1.11 to 1.32 . Considering A_{e} as the inverse of homozygosity, then the most homozygous species was L. cheesmanii var. minor with 90%. The mean Nei (Nei, 1987) average gene diversity $\left(H_{S}\right)$ for 8 taxa was $0.12(\pm 0.01)$, the average diversity of species varying from 0.07 (L. cheesmanii var. minor) to 0.19 (L. esculentum). The total gene diversity $\left(H_{t}\right)$ in the entire sample was $0.32(\pm 0.01)$. The species L. hirsutum and L. pennellii were very close for H_{S}. The Tukey's test indicated that L. esculentum was statistically different from all the other taxa, as it also was L. cheesmanii var. minor. The other taxa showed no differences. Shannon's information index (I) was low across the species, the mean for 8 species was 0.18 (± 0.02) with values fluctuating from 0.10 to 0.29 , and I as an overall of species was $0.14(\pm 0.01)$.

A principal component analysis was performed for 6 genetic indices for 8 taxa (Figure 3.3.8). The first component separated L. esculentum from the other Lycopersicon spp, but also L. cheesmanii var. minor in the other side of the plot. Most of the taxa grouped close together, but L. cheesmanii was located separately in the upper part from all other taxa. The first component explains 99% of the total variation.

Table 3.3.7 Mean of 4 diversity indices for 6 Lycopersicon spp and 2 infraspecific categories based in 268 RAPD markers.

Species	n	A	A_{e}	H_{s}	I
		**	**	**	**
L. esculentum	18	$\begin{aligned} & 1.62 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & 1.32 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.19 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.29 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
L. cheesmanii	3	1.35 bc (± 0.03)	$\begin{aligned} & 1.24 \text { bc } \\ & (\pm 0.02) \end{aligned}$	0.14 bc (± 0.02)	0.20 bc (± 0.02)
L. cheesmanii var. minor	2	1.16 bd (± 0.02)	$\begin{aligned} & 1.11 \text { bd } \\ & (\pm 0.02) \end{aligned}$	0.07 bd (± 0.0 I)	0.10 bd (± 0.01)
L. pimpinellifolium	3	1.29 bc (± 0.03)	$\begin{aligned} & 1.20 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$	0.11 bc (± 0.01)	$\begin{aligned} & 0.17 \mathbf{b c} \\ & (\pm 0.02) \end{aligned}$
L. parviflorum	3	1.30 be (± 0.03)	$\begin{aligned} & 1.20 \text { bc } \\ & (\pm 0.02) \end{aligned}$	0.12 bc (± 0.01)	$\begin{aligned} & 0.17 \mathbf{~ b c} \\ & (\pm 0.02) \end{aligned}$
L. hirsutum	2	1.23 bc (± 0.03)	1.16 bc (± 0.02)	0.09 bc (± 0.01)	0.14 bc (± 0.02)
L. hirsutum var. glabratum	3	1.36 bc (± 0.03)	$\begin{aligned} & 1.23 \text { bc } \\ & (\pm 0.03) \end{aligned}$	0.14 bc (± 0.01)	0.20 be (± 0.02)
L. pennellii	3	1.25 bc (± 0.03)	1.16 bc (± 0.02)	0.09 bc (± 0.01)	0.14 bc (± 0.02)

$\mathrm{n}=$ number of accessions; $A=$ Number of polymorphic alleles per locus; $A_{e}=$ Effective number of alleles; $H_{S}=$ Average gene diversity; $I=$ Shannon's information index; numbers between brackets correspond to standard error; significance ${ }^{*}=P<0.05 ;{ }^{* *}=P<0.01$; ns $=$ no significance; same letters show no statistical differences.

Figure 3.3.8 Principal components analysis for 6 genetic diversity indices in 6 Lycopersicon spp and 2 infraspecific categories based in 268 RAPD markers.

3.3.2.1.3 Genetic diversity partitioning

F-statistics for the 6 species and 2 infraspecific categories are given in Figure 3.3.9. The $F_{S t}$ explains that most of the diversity found in all species was due to differences between species, except in L. esculentum where 58.2% of the diversity lay within species. In contrast the $F_{S t}$ value for L. cheesmanii var. minor showed that 80% of the diversity was found between species.

Figure 3.3.9 Diversity partitioning within and between taxa in Lycopersicon based on 268 RAPD markers.

3.3.2.1.4 Genetic diversity relationship in respect to the number of accessions sampled

The relationship between genetic diversity indices, based in 268 RAPD markers, and number of accessions sampled was studied using analysis of regression for each index and species. In this part of the research only three species were analysed, the other species were disallowed because of the low number of samples which would make any extrapolation of the results and statistical analysis difficult.

The results are displayed in Figure 3.3.10 and the statistical analysis in Appendix 3, part 5. Most regressions displayed in the plots were statistically very significant ($P<0.01$), but L. cheesmanii in H_{S} and L. esculentum in A_{e} were not statistically significant. For the five indices, L. hirsutum presented very steep slope in comparison to a shallow L. esculentum and L. cheesmanii. These results were very similar to those obtained with microsatellites and confirm the suggestion that there are more genetic diversity in L. hirsutum than in the other species examined, when the number of samples is increased.

Figure 3.3.10 Plot of average number of polymorphic alleles per locus (A), effective number of alleles $\left(A_{e}\right)$, average gene diversity $\left(H_{s}\right)$, Shannon's information index (I), and proportion of polymorphic loci (P) based in 268 RAPD markers versus number of samples in Lycopersicon accessions.

3.3.2.2 Genetic similarities based on RAPD data associated to Lycopersicon spp.

3.3.2.2.1 Distribution of genetic similarities

Figure 3.3 .11 is a histogram of the distribution of genetic similarities based on the matrix presented in Appendix 2 (part 3), between 38 accessions belonging to 6 species of Lycopersicon. Mean genetic similarity between species was 0.41 (SE: ± 0.005), the distribution ranged from 0.18 to 0.88 , and a concentration of similarities was found in the region of 0.30 and 0.50 .

Figure 3.3.11 Histogram of genetic similarities between 38 accessions of Lycopersicon spp based on 268 RAPD markers.

Figure 3.3.12 Histogram of genetic similarities between 18 accessions of L. esculentum based on 268 RAPD markers.

A second histogram (Figure 3.3.12) shows the genetic similarities between 18 L . esculentum accessions based on the same matrix as quoted before. The mean between accessions was 0.59 ($\mathrm{SE}: \pm 0.008$), the range fluctuation was from 0.33 to 0.88 , and most of the observations were between 0.60 and 0.70 .

3.3.2.2.2 Genetic similarity analysis within Lycopersicon spp accessions.

Each species combination of similarities was grouped and analysed using descriptive statistics. In this analysis L. esculentum var. cerasiforme was not included because there was only one accession, and so it was not possible to perform any combinations. Results are displayed in Table 3.3.8, it is not possible statistically to compare these means between species because they are the result of genetic similarities within each species. There was not much variation for genetic similarities within species, but L. hirsutum and L. pennelli showed lower genetic similarities within each species. The greatest difference between maximum and minimum value was presented by L. esculentum.

Table 3.3.8 Descriptive statistical analysis of genetic similarity matrix of 268 RAPD markers within 6 Lycopersicon spp.

Species	N	Mean	SE	Max	Min
L. cheesmanii	10	0.58	± 0.02	0.69	0.50
L. esculentum	153	0.59	± 0.01	0.88	0.33
L. hirsutum	10	0.44	± 0.04	0.64	0.29
L. parviflorum	3	0.58	± 0.12	0.82	0.43
L. pennellii	3	0.54	± 0.04	0.61	0.49
L. pimpinellifolium	3	0.61	± 0.03	0.66	0.57

$\mathrm{N}=$ number of observations; $\mathrm{SE}=$ Standard Error; $\mathrm{Max}=$ Maximum value; $\mathrm{Min}=$ Minimum value.

3.3.2.3 Relationship between Lycopersicon spp accessions based in RAPD markers.

Using genetic similarity values, a dendrogram was constructed to visualise the relative relatedness among Lycopersicon accessions. The cluster analysis was performed utilising the UPGMA method. Figure 3.3 .13 shows all accessions clustering within their respective species, except L. hirsutum fo. glabratum (PI199381) which is closer to the L. parviflorum cluster. Of the eight taxa, L. esculentum var. cerasiforme was closely linked to L. esculentum, and all other redfruited species formed a major cluster separated from green-fruited species (L. pennelli, L. hirsutum, and L. parviflorum). This cluster of green-fruited taxa included the red-fruited L. parviflorum T1264/94.

In order to discover more relationships in the grouping of the different Lycopersicon spp accessions, a PCA analysis was carried out using the similarity matrix as raw data (Appendix 2, part 3) (Figure 3.3.14). The PCA shows similar relationships between accessions as inferred from the dendrogram. The first and second components explained 16.0% and 6.5% of the variation between entries, respectively. The first axis divided L. esculentum from most of the wild relatives, except L. esculentum var. cerasiforme, two entries of L. pimpinellifolium, and one from L. cheesmanii var. minor. The remaining accession of L. pimpinellifolium, one belonging to L. cheesmanii, and one L. cheesmanii var. minor were located closer to the limit between both groups.

Figure 3.3.13 Dendrogram for Lycopersicon spp obtained using UPGMA based in similarity matrix from 268 RAPD markers.

Figure 3.3.14 Principal components analysis (PCA) plot of 38 accessions of Lycopersicon based on similarity matrix of 268 RAPD markers.

quaroduoo puovas

- L. hirsutum
○ L. pennellii
* L. parviflorum
\odot L. pennelli var. puberulum

The second axis divided tomato cultivars into two groups, one containing two landraces, some old cultivars and the very closely related cultivars Ace and Cal Ace, and the other group containing all the other cultivars, including L. esculentum var. cerasiforme. Similarly, L. cheesmanii accessions were isolated in the upper part of the plot, clearly apart from the other wild types and close to L. esculentum accessions, mostly old cultivars and landraces.

An analysis of molecular variance (AMOVA) was carried out over 37 accessions of Lycopersicon spp utilising the similarity matrix produced from RAPD markers (Table 3.3.9). In this analysis L. esculentum var. cerasiforme was not considered because there was just one accession growing. The results that show a highly statistical significance for $\Phi_{\mathrm{st}}(\mathrm{P}<0.01)$ and only 40.1% of the variation was due to differences found between species, while 59.9% of the variation was found within species.

Table 3.3.9 Analysis of molecular variance (AMOVA) of genetic similarities matrix based on 268 RAPD markers of 37 Lycopersicon spp accessions.

	Sum of squares	df	Mean square	Percentage
Total within taxa	$33,515.74$	31	$1,081.15$	59.9%
Total between taxa	$26,629.86$	5	$5,325.97$	40.1%
TOTAL	$60,145.60$	36		

Variance within taxa	$1,081.15$
Variance between taxa	811.25
$\Phi_{\text {st }}$	0.401

3.3.2.4 Genetic indices for red- and green-fruited species in Lycopersicon spp.

An analysis was carried out on different species grouped by their fruit colour (red and green-fruited) based on the similarity matrix presented in Appendix 2, part 3. The statistical analysis for significance between both groups was divided between normally distributed indices $\left(H_{S}\right.$ and $\left.I\right)$ utilising ANOVA procedure and nonnormally distributed $\left(P, A, A_{e}\right)$ utilising the non-parametric Kruskal-Wallis test. Results are presented in Table 3.3.10 and details of the statistical analysis in Appendix 3, part 6. In this analysis no index displayed statistical significances between groups, most values between indices were very close, and few differences were observed between both red- and green-fruited species. The $F_{s t}$ shows that 19% of the diversity in red-fruited species lay between species and 81% within species, while in green-fruited species 9% of the variation was found between and 91% within species.

Table 3.3.10 Genetic diversity indices and partitioning parameters for two groups of Lycopersicon spp based in fruit colour utilising 268 RAPD markers.

	P	A	A_{e}	H_{s}	I	$F_{s t}$
	ns	ns	Ns	ns	ns	
Red-	$\mathbf{0 . 8 6}$	1.86	1.44	0.26	0.40	0.19
fruited		(± 0.02)	(± 0.02)	(± 0.01)	(± 0.01)	
species		$\mathbf{1 . 8 5}$	$\mathbf{1 . 5 1}$	$\mathbf{0 . 2 9}$	$\mathbf{0 . 4 4}$	$\mathbf{0 . 0 9}$
Green-	$\mathbf{0 . 8 5}$		(± 0.02)	(± 0.02)	(± 0.01)	(± 0.02)
fruited species						

$P=\overline{\text { proportion of polymorphic loci; } A=\text { number of polymorphic alleles per locus; } A_{e}=\text { effective }}$ number of alleles; $H_{S}=$ average gene diversity; $I=$ Shannon's information index; $F_{S t}=$ fixation index; numbers between brackets correspond to standard error; ns = no statistical significance.

3.4 Genetic variability within L. esculentum accessions

In order to analyse the genetic diversity present in L. esculentum accessions and to investigate contribution to the esculentum gene-pool, the accessions were grouped in landraces, old varieties (vintage), modern varieties open-pollinated (OP), and modern F_{1} hybrids.

3.4.1 Genetic diversity present in accessions of L. esculentum

Means of diversity indices for the four groups of L. esculentum accessions are given separately for both genetic markers, microsatellites and RAPD (Table 3.4.1). Statistical analysis of each genetic index, per molecular marker group, was carried out between the four groups of tomato. The statistical analysis of the results was performed utilising the ANOVA procedure for genetic indices which were predominantly normally distributed as H_{S} and I. Non-normally distributed indices such as A and A_{e}, were analysed with the non-parametric Kruskal-Wallis test. In the case of $F_{S t}$ and P no statistical analysis could be performed because there were no replications. Details of the statistical analysis are presented in Appendix 3, part 7.

The results show no statistical significance for any indices in microsatellite markers. In respect to A, there was not a big difference between means, but F_{t} hybrids presented less polymorphic alleles per locus than the other groups. A_{e} showed that there was a high homozygosity for all groups of L. esculentum, between 79% to 90%. Old and modern OP varieties presented more polymorphic loci than landraces and $\mathrm{F}_{\text {, }}$ hybrids. $\mathrm{F}_{\text {st }}$ means show F 1 hybrids with a higher value and modern varieties OP with a lower.

However, for RAPD marker analysis, all genetic indices means analysed presented high significance ($P<0.01$). The number of polymorphic alleles per locus (A) showed slightly higher values for RAPD than for microsatellites, and also for A_{e} a decrease in homozygosity values (ranging from 88% to 73%). In respect to H_{S} and I, there were no great differences between RAPD and microsatellites data. RAPD gave consistently higher $F_{S t}$ and P values than microsatellites did.

Table 3.4.1 Mean genetic diversity indices $\left(A, A_{e}, H_{s}, I, F_{s t}\right.$, and $\left.P\right)$ of grouped L. esculentum accessions in landraces, old varieties, modern varieties OP, and F_{1} hybrids for two different genetic markers.

	A	A_{e}	H_{s}	I	$F_{s t}$	P
Microsatellites	ns	ns	ns	ns		
Landraces	$\begin{gathered} 1.26 \\ (\pm 0.06) \end{gathered}$	$\begin{gathered} 1.18 \\ (\pm 0.04) \end{gathered}$	$\begin{gathered} 0.11 \\ (\pm 0.02) \end{gathered}$	$\begin{gathered} 0.15 \\ (\pm 0.04) \end{gathered}$	0.38	0.26
Old varieties	$\begin{gathered} 1.35 \\ (\pm 0.06) \end{gathered}$	$\begin{gathered} 1.20 \\ (\pm 0.05) \end{gathered}$	$\begin{gathered} 0.12 \\ (\pm 0.02) \end{gathered}$	$\begin{gathered} 0.18 \\ (\pm 0.04) \end{gathered}$	0.32	0.35
Modern varieties OP	$\begin{gathered} 1.40 \\ (\pm 0.07) \end{gathered}$	$\begin{gathered} 1.27 \\ (\pm 0.05) \end{gathered}$	$\begin{gathered} 0.15 \\ (\pm 0.03) \end{gathered}$	$\begin{gathered} 0.23 \\ (\pm 0.04) \end{gathered}$	0.11	0.40
F_{1} hybrids	$\begin{gathered} 1.16 \\ (\pm 0.05) \end{gathered}$	$\begin{gathered} 1.11 \\ (\pm 0.04) \end{gathered}$	$\begin{gathered} 0.06 \\ (\pm 0.02) \end{gathered}$	$\begin{gathered} 0.09 \\ (\pm 0.03) \end{gathered}$	0.63	0.16
RAPD	**	**	**	**		
Landraces	$\begin{aligned} & 1.19 \text { bd } \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & 1.13 \mathbf{b} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.08 \mathbf{~ b} \\ & (\pm 0.01) \end{aligned}$	$\begin{aligned} & 0.11 \mathbf{b} \\ & (\pm 0.02) \end{aligned}$	0.60	0.18
Old varieties	$\begin{aligned} & 1.47 \text { a } \\ & (\pm 0.04) \end{aligned}$	$\begin{aligned} & 1.26 \text { a } \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1 5} \mathbf{~ a} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.23 \mathbf{a} \\ & (\pm 0.02) \end{aligned}$	0.20	0.48
Modern varieties OP	1.39 ac (± 0.04)	$\begin{aligned} & 1.26 \mathbf{a} \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1 5} \mathbf{~ a} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.22 \mathbf{a} \\ & (\pm 0.02) \end{aligned}$	0.23	0.41
F_{1} hybrids	1.24 bc (± 0.03)	$\begin{aligned} & 1.37 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.09 \mathbf{b} \\ & (\pm 0.01) \end{aligned}$	$\begin{aligned} & 0.13 \mathbf{b} \\ & (\pm 0.02) \end{aligned}$	0.53	0.24

$A=$ number of polymorphic alleles per locus; $A_{e}=$ effective number of alleles; $H_{S}=$ average gene diversity; $I=$ Shannon's information index; $F_{S t}=$ fixation index; $P=$ proportion of polymorphic loci; ** $=$ high statistical significance $(\mathrm{P}<0.01)$; ns $=$ no significance; same letters show no statistical differences.

3.4.2 Genetic distances between L. esculentum accessions

Genetic similarity between groups within L. esculentum obtained from microsatellite data was high, as shown in Table 3.4.2. The most similar groups were old varieties and modern varieties OP, while the most distant relationship was F_{1} hybrids and old varieties. Table 3.4 .3 shows the genetic distance/similarity of the four tomato groups,
but based in RAPD markers data. Again the closest link was between old varieties and modern varieties OP, and the most distant, F_{1} hybrids from landraces.

Table 3.4.2 Genetic similarity and genetic distance between landraces, old varieties, modern varieties $O P$, and F_{1} hybrids of L. esculentum based on 55 microsatellite markers.

populations	1	2	3	4
1 Landraces	****	0.93	0.95	0.88
2 Old varieties	0.07	****	0.97	0.83
3 Modern varieties OP	0.05	0.03	****	0.87
$4 \mathrm{~F}_{1}$ hybrids	0.13	0.19	0.14	****

Genetic identity (above diagonal) and genetic distance (below diagonal).

Table 3.4.3 Genetic similarity and genetic distance between landraces, old varieties, modern varieties OP, and F_{1} hybrids of L. esculentum based on 168 RAPD markers.

populations	1	2	3	4
1 Landraces	****	0.89	0.86	0.75
2 Old varieties	0.11	****	0.95	0.88
3 Modern varieties OP	0.14	0.06	****	0.87
$4 \mathrm{~F}_{1}$ hybrids	0.25	0.13	0.14	****

Genetic identity (above diagonal) and genetic distance (below diagonal).

3.4.3 Relationship between grouped L. esculentum accessions

Utilising the genetic distance values a dendrogram was constructed in order to visualise relative genetic relatedness among L. esculentum groups. For each molecular marker and utilising the UPGMA method dendrograms were constructed (Figure 3.4.1 and 3.4.2), which show similar links for both markers and reflects clearly the relationship found in genetic distance/similarity matrix.

Figure 3.4.1 Dendrogram of genetic distance utilising UPGMA method of grouping L. esculentum accessions based on 55 microsatellite markers.

Figure 3.4.2 Dendrogram of genetic distance utilising UPGMA method of grouping L. esculentum accessions based on 168 RAPD markers.

3.5 Relationship among genetic distance/similarity matrices

To analyse the relationship among the genetic distance/similarity matrices from morphological, microsatellite and RAPD data, in Lycopersicon spp accessions a Mantel test (Mantel, 1967) was carried out. The results showed high correlation between microsatellite and RAPD data ($\mathrm{Z}=89.22 ; \mathrm{r}=0.921 ; \mathrm{P}<0.01$), but neither morphological and microsatellite data $(Z=24.82 ; r=-0.110 ; P<0.01)$, nor morphological and RAPD data $(Z=26.45 ; r=-0.1110)$ showed correlation.

3.6 Discussion

Morphological diversity in Lycopersicon spp.

Analysis of 16 morphological characters in Lycopersicon spp made discrimination between species possible, although three characters were common to all accessions.

Diversity in the other characters analysed presented great variation, especially in leaf shape, size and colour. Closely related taxa to L. esculentum such as L. esculentum var. cerasiforme and L. pimpinellifolium presented very similar leaves, with some slight morphological differences, while at the other extreme L. pennellii and L. hirsutum were completely different. Other taxa such as L. parviflorum and L. cheesmanii presented great variation within each taxon, but as expected no similarity to L. esculentum was found in leaf shape.

A highly exserted style is a common characteristic for green-fruited species such as L. pennellii and L. hirsutum, which are self-incompatible and exclusively outbreeders. It acts as a primary physical barrier to avoid direct contact of self pollen and style within a flower, and also facilitates cross-pollination, mainly by insects (Rick, 1979b). Other species such L. parviflorum, that contained green- and redfruited accessions, or red-fruited L. cheesmanii and L. pimpinellifolium have styles at the same level of stamens or only slightly exserted, characteristic of facultative outbreeding species. All representatives of L. esculentum and L. esculentum var. cerasiforme showed stigmas inserted at the level as the anthers. The accessions of L. esculentum are all self-compatible and exclusively inbreeding (Taylor, 1986), because domestication was accompanied by a transition from exserted to inserted styles and consequent change from facultative outcrossing to enforced autogamy (Rick, 1979b). This was probably as an effect of non-deliberate selection, as a result of selection of other features associated with homozygosity.

With respect to fruit characteristics, there were few differences between species for exterior colour of immature fruit. However, green-fruited species have very densely pubescent fruit in comparison with L. esculentum and its closely related species. These presented medium to sparse pubescence, again probably selected together with fruit size during the domestication of tomato.

Multidimensional scaling (MDS) showed all red-fruited species clustering in one sector and green-fruited in another. However, there was a clear separation between tomato cultivars and wild relatives, although L. esculentum var. cerasiforme, as expected because of its relatedness, grouped almost within the L. esculentum cluster.

Little morphological diversity was found within L. hirsutum; four of the accessions clustered in one point. It is possible that this reflected limited morphological variability within the species, but also it could be due to close similarities between the accessions received from the genebanks. However, the dispersion of points observed in L. cheesmanii show the diversity found within this species. The separate position of L. cheesmanii var. minor accessions shows the differences that exist between both these taxa and also the original sites within the Galapagos Islands, all from different islands and some from the coast and the other from inland. The scattered distribution of L. pimpinellifolium can also be expected due to their different regional origins (see Table 2.1), and therefore isolation from each other, limiting gene flow between them. Accessions of L. parviflorum and L. pennellii also presented a great diversity within them, especially L. parviflorum which is usually described as a green-fruited species, but also included a red-fruited accession.

Genetic similarity within species showed a high variation in L. esculentum, but this was expected since most of the selected traits analysed were related to fruit characteristics. These traits are some of the most variable in the accessions utilised in this study, and controlled just by few genes. The results of comparing genetic similarity of wild relatives and L. esculentum show a closer relationship with L. esculentum var. cerasiforme, as expected, but a greater distance with all other species involved. This study only examined a very limited number of morphologic characteristics. The potential value of these characters for current breeding is questionable, but the variation found in these characters is indicative of the variation that may exist within related species and which may have value in breeding programmes of tomato. Similarly the AMOVA analysis also demonstrated the high variability present in Lycopersicon spp, but also the morphological diversity present in old varieties, landraces and modern cultivars, including F_{l} hybrids of L. esculentum.

Molecular diversity in Lycopersicon spp.

Different indices can be used to assess genetic diversity between and within populations and species. Some are more sensitive than others, but the information is
valuable in the interpretation of results. This is the case of the proportion of polymorphic loci (P), where differences can be considered as an index for variability within species. However, it does not reflect the real genetic variation in a population, because a slightly polymorphic locus is counted as much as a very polymorphic one and is very sensitive to the number of samples analysed. For both markers used, microsatellites and RAPD, L. esculentum presented the higher level of polymorphisms (0.52 and 0.62 , respectively). This is expected because of the number of samples analysed in comparison to the wild relatives. The level of polymorphic loci, in the other species and for both markers, was 0.34 and 0.15 , relatively low. These values are similar to other inbreeding species, such as diploid wheat relatives (between 0.30 and 0.17) (Hedge et al. 2000), or for cowpea (Vigna unguiculata (L) Walp) (between 0.39 and 0.14) (Pasquet, 2000), both with allozymes.

Average gene diversity $\left(H_{S}\right)$ in cultivated tomato based on microsatellite markers ($H_{S}=0.18$) and RAPD markers $\left(H_{S}=0.19\right)$ were within the range reported by Villand et al. (1998) for primary and secondary centres of diversity (0.22 and 0.14, respectively) utilising RAPD. Most of the wild relatives of tomato presented lower values for H_{S} than L. esculentum, though with no statistical significance. For both markers, L. hirsutum var. glabratum showed a higher mean than the other species, but the values were very similar. These indices in general do not show much information because of the unbalanced number of samples per species and the limitations of using scoring system of presence or absence. However, by plotting a regression of each index and balancing the number of samples per species with more than five accessions for both molecular markers, it is possible to indicate that wild species show a clear tendency for steeper slopes than L. esculentum, especially the self-incompatible outbreeder L. hirsutum. This indicates that there is more genetic diversity in natural populations than in domesticated L. esculentum. This is supported by results of previous work from Miller and Tanksley (1990) and Hamrich and Godt (1997) who suggested that self-incompatible species contains more genetic variation than self-compatible species.

A PCA for each molecular marker was carried out to investigate whether the combination of all genetic indices can be used to explain spatial species structure. It
was possible to show that L. esculentum is completely separated from the wild relatives, also in the partitioning of diversity in both markers L. esculentum presented almost 60% of the diversity coming from differences within populations, while all other taxa most diversity was between populations.

From both molecular data sets, genetic similarity matrices were constructed and analysed as histograms. The histograms showed a huge range of similarities, from 0.10 to 1.00 ; this is expected because of the distribution of frequencies from the matrix of genetic similarities obtained combining many different taxa. However, histograms of L. esculentum accessions only showed closer similarities, between 0.40 to 1.00 , values similar to those found by Nienhuis and Bosco (1994) and Villand et al. (1998) utilising RAPD. The frequencies of Lycopersicon spp accessions in the histogram skewed toward the lower end with less genetic similarities, while L. esculentum accessions skewed in the other direction. This distribution of genetic similarity frequencies shows the close relationship within the tomato accessions analysed and the dissimilarity with Lycopersicon spp accessions, which can possess novel characters to incorporate in L. esculentum.

The means of genetic similarity within species showed no great differences, but some species exhibited a large variation between minimum and maximum values. This genetic variability, expressed as a function of the genetic identity within species, showed differences useful for characterising individual accessions and selection of parents for the next steps in this study. It is not proposed to utilise this information as part of a phylogenetic study in Lycopersicon spp, because of the limitations of time and objectives of this work. However, the means of genetic similarity for wild species in comparison to L. esculentum showed that L. esculentum var. cerasiforme is genetically the closest relative. The other accessions of wild species presented larger genetic distance in respect to domesticated tomato cultivars indicating that there is genetic diversity available, which can be exploited in a genetic base broadening programme.

Dendrograms (Figures 3.3.6 and 3.3.13) and PCA analysis (Figures 3.3.7 and 3.3.14) of genetic similarity matrices for both markers also showed a clear separation of wild relatives and L. esculentum cultivars, and also a separation already noticed in
morphological analysis, between red- and green-fruited species. This was also noted by Miller and Tanksley (1990) utilising RFLPs and Peralta and Spooner (2001) using DNA sequences of the structural gene granule-bound starch synthase (GBSSI or "waxy"). Both kinds of analysis confirmed the close relationship between L. esculentum and L. esculentum var. cerasiforme, as well as to L. pimpinellifolium. This agrees with results of Rick and Fobes (1975) who also proposed L. esculentum var. cerasiforme as a hypothetical ancestor of domesticated L. esculentum in Mexico. It also agrees in part with Quiros (1974) who indicated an ancestry from a preLycopersicon ancestor to L. peruvianum to L. hirsutum to L. esculentum var. cerasiforme and subsequently to the domesticated tomato. The same author suggests that the other species, such as L. chilense, L. parviflorum, L, chmielewskii and L. cheesmanii, are diverging types from this major stalk.

Accessions of L. hirsutum showed scattered distribution in the plots, suggesting that they contained more genotypic than phenotypic diversity as four accessions were identical morphologically. Genetic similarities between L. pennellii accessions were not very close for both molecular markers, in average they had 63% to 54% similarities with microsatellites and RAPD respectively. These results imply that there is genetic diversity available to exploit within accessions in this species. The evolution in isolation (allopatric speciation) of the Galapagos Islands species, L. cheesmanii and L. cheesmanii var. minor, was confirmed in both dendrograms and PCA plots (Figure 3.3.6, 3.3.7, 3.3.13, and 3.3.14). This species is a rich source of genes for breeding programmes, such as jointless pedicel gene ($j 2$), high content of solid solubles and ascorbic acid, salt tolerance, and others (Taylor, 1986). However, this species could posses certain weaknesses against the vast range of mainland pests and diseases affecting Lycopersicon because of limited exposure to them during the processes of natural selection and evolution. Another interesting case is L. parviflorum. Warnock (1988) described it as green-fruited species, but with affinities to the esculentum complex. Both PCA plots show green-fruited accessions situated far apart from the red-fruited accession T-1264/94. Furthermore two green-fruited accessions analysed with microsatellites were identical, and similarly with RAPD they were very closely located, implying a very close relationship. The origins of
both accessions in Peru are not far apart, and this could explain in part the genetic similarities. The other red-fruited species, L. pimpinellifolium, clustered close to L. esculentum indicating close genetic relationship between both species (Rick, 1977; Rick and Fobes, 1975; Rick et al., 1979).

AMOVA analysis of microsatellite and RAPD markers showed, in both cases, that 60% of the total variation found was due to differences within species. This is an important finding for this project because it indicates that there is high genetic variability, at the molecular level, present not only between species, but also within them.

In the genetic analysis between red- and green-fruited species, genetic diversity indices did not present statistical differences, although there were some slightly higher values in green-fruited species, for both markers. These results were not entirely expected, since green-fruited species are mainly outbreeders, and there should be more diversity in this group in comparison to red-fruited species. However, the results are based on a relatively small number of accessions, which may not reflect the real diversity and heterogeneity existing in these species.

Genetic variability within L. esculentum accessions
An analysis of genetic variability within L. esculentum accessions was carried out in order to observe and characterise four groups of accessions: landraces, old varieties, modern varieties $O P$, and F_{1} hybrids. It has to be accepted at the outset that the analysis may have been affected by the low number of samples within each group. However, means of genetic diversity indices showed no statistical significance for microsatellite markers, but highly significant results ($P<0.01$) for RAPD markers. For most indices, old and modern varieties presented similar levels of genetic diversity reflecting the narrow genetic base used in their breeding process and also the close parentage that breeding techniques have produced in this crop. Differences between both groups can be taken as marginal for this experiment, considering that most cultivars utilised were selected because they were not introgressed with wild genetic material. Landraces and F_{1} hybrids were significantly different and lower than the other groups in RAPD markers. In the case of F_{1} hybrids, these lower values
reveal the decreasing genetic base utilised in these modern cultivars as a reflection of the breeding method, which first reduces heterozygosity in each parental line and therefore genetic diversity because of selection of few individuals as parental stock. But also the loci analysed could have not been involved in heterosis and not associated to phenotypic characters in the F_{1} hybrids. Landraces showed the statistical effect of a limited number of samples analysed. These facts are clearly demonstrated in the proportion of polymorphic loci (P), where old varieties and modern varieties OP showed almost twice as many polymorphic loci compared to $\mathrm{F}_{\text {, }}$ hybrids and landraces. Analysing A_{e} as the reciprocal of homozygosity, all groups showed high levels of homozygosity for both markers (between 73% to 90%), a result expected for a highly inbreeding species such as L. esculentum. In addition, average gene diversity $\left(H_{S}\right)$ showed low values, in agreement with that found by Villand et al. (1998) for secondary centres of diversification (Vavilov, 1926) ($H_{S}=$ 0.13). A low H_{S} is expected because of bottlenecks and selection pressure that reduce variability within cultivars, and post-domestication facts such as adaptation to new environments. In respect to partitioning the diversity available in these groups, the results showed that in old varieties and modern varieties OP most diversity lay in differences within populations. On the other hand in F_{1} hybrids and landraces most diversity was between populations. Genetic identity and dendrograms based on these two matrices confirm the results obtained in genetic indices, where a close relationship between old and modern varieties OP was observed, and at some distance F_{1} hybrids and landraces. However, in both dendrograms landraces clustered with the group of OP varieties and old cultivars indicating a closer relation with them.

In general, the results presented, regardless of the limitations stated, show the low genetic base in L. esculentum and the availability in wild species of genetic resources usable in breeding programmes. It also shows that there is still variability available within tomato crop cultivars, especially old varieties and landraces.

Differences between microsatellite and RAPD markers analysis
Microsatellite and RAPD markers did not show large differences in genetic distances between taxa, or partitioning genetic diversity with AMOVA, or grouping red- and green-fruited taxa in the dendrograms. However, there were differences locating some accessions within the dendrograms and PCA analysis, which can be explained by the sampling region of the genome that each marker utilise. Microsatellites are markers locus-specific, therefore they sample only small regions of the genome and the diversity present in that region. Conversly, RAPD markers sample randomly regions on the genome that contains segment sharing sequence similarity to the primer. The loci sampled by RAPD are more representative of the genome, but they are limited by reproducibility and quality of data, because as dominat marker heterozigosity is not detectable.

Chapter 4

Parent Selection and F_{1} Characterisation

4.1 Introduction

Any research project involving breeding and hybridisation needs parent selection, but this is particularly important in a genetic base broadening project where the philosophy and aims are to conserve as much as possible of the genetic variation of the species/accessions utilised. There is a real need to balance the number of parents (and their individual characters) with the ability to handle the number of individual crosses and subsequent populations.

Parent selection is one of the most important steps in the present project, because within the correct choice lies the future of the research; therefore, morphological and molecular characterisations of species and accessions are a fundamental prerequisite in this study which aims to investigate the value of different approaches.

The aims of this chapter include:
i) to present and characterise the accessions of L. esculentum and its wild relatives selected as potential parents.
ii) to select a set of polymorphic primers for microsatellites and RAPD analysis.
iii) to review hybridisation and F_{1} generation populations.

4.2 Parent selection

From the 38 accessions of 8 taxa characterised in Chapter 3, only 10 accessions involving 6 taxa, as genetically and morphologically diverse as possible, were selected as parents for inter- and intra-taxon hybridisation. Table 4.1 gives the genetic material selected, their identification as accession or cultivar and country of origin. All entries, except L. esculentum cv. Limachino from INIA-Chile, were obtained from different agencies in USA and Germany, where they have been multiplied and conserved within the gene-banks of TGRC in Davis, California; USDA-ARS in Cornell University, New York; and IPK, Gatersleben, Germany. This germplasm was selected based on information obtained in Chapter 3, details on the rationale for choices are given in this Chapter. In this choice of parents, no L. cheesmanii accessions were included because of the inability to produce flowering in this species which coincided with flowering in the other material.

Table 4.1 Species and accessions selected as parents for hybridisation.

Species	Accession	Cultivar	Country of origin
L. esculentum		Limachino	Chile
L. esculentum	LA 0516	Ace	USA
L. esculentum	LA 0534	Lukullus	UK
L. esculentum	LA 0502	Marglobe	USA
L. esculentum	LA 0180	San Marzano	Italy
L. esculentum var. cerasiforme	LA 1673		Peru
L. hirsutum var. glabratum	PI 199381		Peru
L. parviflorum	T1264/94		Peru
L. pennellii var. puberulum	LA 1926		Peru
L. pimpinellifolium	PI 270449		Mexico

4.2.1 Morphological characterisation and differences between parent accessions

 Of the 18 morphological characters selected and analysed in this study, three were monomorphic. All parental accessions showed presence of hypocotyl pubescence, horizontal leaf attitude, and multiparous inflorescence type. Tables 4.2.1 and 4.2.2 give a brief resume of the 15 traits that characterise each parental accession and made possible the morphological analysis. Some traits were common in some species and accessions, but the combination of them was unique for each entity. However, there were many reasons to select these accessions, therefore detailed characteristics are described in the following paragraphs.Within L. esculentum accessions, the Chilean cultivar Limachino was selected because from a morphological point of view, it is a cultivar with determinate growth containing within its genome the self-pruning gene (sp) (Butler, 1952; Rick, 1982; Stevens and Rick, 1986) and potato type leaf (less segmented leaf) controlled by the c gene (Rick and Butler, 1956). These characters are only found in this entry. The fruits were of intermediate size. They were flattened, fasciated shape and multi locular controlled by f (Rick and Butler, 1956) and lc (Fryxell, 1954) genes
respectively. The expression of orange fruit colour was controlled by three genes: red flesh colour (R) (Rick and Butler, 1956), yellow skin or pigmented fruit epidermis (Y) (Rick and Butler, 1956), and modifier tangerine flesh colour (t) (Rick and Butler, 1956); and pointed blossom end shape controlled by gene nipple-tip (nt) (Butler, 1955).

Cultivar Ace is a modern open pollinated (OP) cultivar and is still in use in some regions for field growing. This cultivar was characterised by indeterminate growth $\left(s p^{+}\right)$and standard leaf shape (C). In general the fruits were large in size, but under the experimental growing conditions did not reach their full potential, although the fruits were bigger than any other accession. As in cv. Limachino, the fruits were flattened, fasciated (f) and multilocular (lc). The colour was red, suggesting the gene combination red flesh colour (R), yellow skin (Y) and non-tangerine flesh colour (T). Blossom end shape was flat ($N t$).

Cultivar Lukullus is a greenhouse OP cultivar, no longer in use. Its growth type is indeterminate $\left(s p^{+}\right)$and presents standard leaf type (C). Fruit shape was slightly flattened (F), small in size, and presenting usually two or three locules $(L c)$. Fruit colour and blossom end shape were similar to 'Ace'.
Cultivar Marglobe is a very old field growing OP cultivar, whose history can be traced back to the year 1925. No introgression from wild relatives has been reported in the pedigree of this cultivar (Boswell, 1937). It is a cultivar commonly utilised as a control for morphological traits (Stevens and Rick, 1986) and used to be the base of breeding programmes in the USA during the first decades of the last century, as it was the most successful cultivar in those years (Boswell, 1937). It has indeterminate growth $\left(\mathrm{s} p^{+}\right)$and standard leaf type (C). Fruit shape was rounded (F), small size and presented two locules $(L c)$. Fruit colour and blossom end shape were similar to 'Ace' and 'Lukullus'.

As representative of processing tomatoes, cultivar San Marzano was chosen. It is also an old OP field growing cultivar, although currently not cultivated, but is extensively used in breeding programmes. The growth type was indeterminate ($s p^{+}$) and with standard leaf type (C). Fruit shape was cylindrical, character controlled by ovate gene
(o) (Rick and Butler, 1956), with two locules ($L c$), and small size. Fruit colour was red, as for cv . Ace.

In the L. esculentum cultivars there were some common characters for the species, such as $1 / 2$ purple $11 / 2$ green hypocotyl colour controlled by anthocyaninless gene a (Rick and Butler, 1956) and modified by anthocyanin loser gene al (Rick and Butler, 1956); yellow corolla colour controlled by gene $W f$ (Rick and Butler, 1956); inserted style by exserted stigma genes Ex-1, Ex-2 and Ex-3 (Tikoo and Anand, 1982), and the sparse fruit pubescence controlled by gene P (Rick and Butler, 1956).

With L. esculentum var. cerasiforme or "cherry tomato", a very close relative of tomato, there was no choice as only one accession was obtained and grown. The hypocotyl colour was similar to L. esculentum ($1 / 2$ purple $/ 1 / 2$ green) (A and $a l$), with indeterminate growth type $\left(\mathrm{sp}^{+}\right)$and standard leaf type (C). Flower characteristics were yellow corolla colour ($W f f$) with a stigma position at same level as the tips of the anthers ($E x$ -). Fruits were very small ($<2 \mathrm{~cm}$ diameter), rounded shape (F), red colour (R, Y and T), with two locules $(L c)$, and flat blossom end shape ($N t$).
L. hirsutum var. glabratum, accession PI-199381, had purple hypocotyl colour (A and $A l$), indeterminate growth type $\left(s p^{+}\right)$, and peruvianum leaf type. In addition, the flowers had a bright yellow corolla colour, larger size, and more open shape. It is likely that due to their self-incompatibility, L. hirsutum requires insect pollination for reproduction, and have bright colours, attractive shapes and odours to attract pollinators (Prokopy and Owen, 1983; Schoonhoven et al., 1998). A highly exserted style (ex-) is another characteristic typical of these self-incompatible taxa, the exserted style avoids contact with own pollen, and acts as a primary barrier preventing self-pollination and facilitating cross-pollination via insects. These species were characterised by hairiness, the fruit were densely pubescent (p), very small and round shaped (F). The colour was green because of the green flesh ($g f$) gene (Clayberg et al., 1967) that controls the persistence of chlorophyll in the locules, and clear skin (y). The fruits had a flat blossom end shape similar to all tomato wild relatives utilised in this study.

The selection of L. parviflorum was based on fruit colour, because this species has been described as green-fruited (Taylor, 1986) and of the 3 samples grown two had
green fruits. Regardless of the cross-compatibility of this species with L. esculentum, the red-fruited accession (T1264/94) was selected in order to increase the chances of positive hybridisation of these species. This entry also produced great amount of flowers, synchronously with the other species. In respect of hypocotyl colour, it showed purple colour similar to L. hirsutum var. glabratum and all other tomato wild relatives, except L. esculentum var. cerasiforme. Growth type was semi-determinate, but corresponding to a vine-type growth, very branching and aggressive. The leaves were a very typical shape for this species, with leaflets smaller than in other species and more widely spaced. Flowers showed a yellow corolla colour (Y), and a slightly exserted style position; a common characteristic in species exhibiting facultative selfpollination. The fruits had intermediate pubescence (p), round shape (F), very small size, red exterior colour but pink flesh colour (R, Y and T).

From the three accessions of L. pennellii grown, L. pennellii var. puberulum (LA1926) was chosen because it developed fruits earlier than other accessions. In respect to flowering timing, amount of flowers and pollen produced all accessions behaved similarly. Accession LA-1926 presented a determinate growth type ($s p$) and a typical pennellii leaf type. Leaflets were smaller than L. esculentum, more rounded, brighter and sticky. Flowers showed a bright yellow corolla, but were larger than in L. hirsutum, and a highly exserted style (ex-), typical for self-incompatible entomophilous species. Fruits were very small, with a dense pubescence (p) and green colour in exterior and flesh $(g f)$.

The choice of parental accession in L. pimpinellifolium was based on geographical distances, PI-270449 originated from Mexico and most of the other accessions were from Peru and Ecuador. This accession had a vigorous indeterminate growth type $\left(s p^{+}\right)$, with a typical pimpinellifolium leaf type with smaller and more serrate leaflets than L. esculentum. The flowers were yellow (Wf) with a slightly exserted style (ex-), typical for a facultative self-pollinated species. Fruit pubescence was intermediate (p), and the fruits very small in size were of round shape (F) and pink colour $(R, y$ and T).
Table 4.2.1 Morphological characteristics of Lycopersicon spp accessions utilised as parents.

Species	Cultivar/ Variety	Hypocotyl Colour	Growth Type	Leaf Type	Corolla Colour	Style Position	Inmature Fruit Colour	Fruit Pubescence
L. esculentum	Limachino	1/2 purple	determinate	Potato type	yellow	inserted	greenish-white	sparse
L. esculentum	Ace	1/2 purple	indeterminate	Standard	yellow	inserted	light green	sparse
L. esculentum	Lukullus	1/2 purple	indeterminate	Standard	yellow	inserted	green	sparse
L. esculentum	Marglobe	1/2 purple	indeterminate	Standard	yellow	inserted	greenish-white	sparse
L. esculentum	San Marzano	1/2 purple	indeterminate	Standard	yellow	inserted	light green	sparse
L. esculentum	var. cerasiforme	1/2 purple	indeterminate	Standard	yellow	same level of stamens	light green	sparse
L. hirsutum	var. glabratum	purple	indeterminate	Peruvianum	bright yellow	highly exserted	light green	dense
L. parviflorum		purple	semideterminate	Parviflorum	yellow	slightly exserted	light green	intermediate
L. pennellii	var. puberulum	purple	determinate	Pennellii	bright yellow	highly exserted	dark green	dense
L. pimpinellifolium		purple	indeterminate	Pimpinellifolium	yellow	slightly exserted	greenish-white	intermediate

Details of each morphological character in Appendix 1.
Table 4.2.2 Morphological characteristics of Lycopersicon spp accessions utilised as parents.

Species	Cultivar/ Variety	Fruit Shape	Fruit Size	Mature Fruit Colour	Flesh Colour	Fruit Cross Shape	Shape of Pistil Scar	Number of locules	Blossom End Shape
L. esculentum	Limachino	Flattened	Intermediate	Orange	orange	irregular	irregular	>5	pointed
L. esculentum	Ace	Flattened	Intermediate	Red	red	irregular	dot	>5	flat
L. esculentum	Lukullus	Slightly flattened	Small	Red	red	round	dot	2-3	flat
L. esculentum	Marglobe	Rounded	Small	Red	red	round	dot	2	flat
L. esculentum	San Marzano	Cylindrical	Small	Red	pink	angular	dot	2	indented
L. esculentum	var. cerasiforme	Rounded	very small	Red	red	round	dot	2	flat
L. hirsutum	var. glabratum	Rounded	very small	Green	green	round	dot	2	flat
L. parviflorum		Rounded	very small	Red	pink	round	dot	2	flat
L. pennellii	var. puberulum	Rounded	very small	Green	green	round	dot	2	flat
L. pimpinellifolium		Rounded	very small	Pink	pink	round	dot	2-3	flat

Details of each morphological character in Appendix 1

4.2.2 Molecular markers and differences between parental accessions

Molecular markers used in selecting parents from Lycopersicon spp accessions were microsatellites and RAPD. Data analysed came from the general screening described in Chapter 3.3. The similarity matrices utilised in this analysis are given in Appendix 2 part 2 for microsatellites and part 3 for RAPD markers. Accessions selected as parents are highlighted in bold.

Considering only the accessions selected as parents, the UPGMA dendogram based on microsatellite analysis (Figure 3.3.6) showed that accessions belonging to L. esculentum and including L. esculentum var. cerasiforme clustered together; two subclusters were formed, one consisting of Limachino, Ace and "cherry" tomato, and other with Lukullus, Marglobe and San Marzano. Other parental accessions belonging to wild relative species, such as L. pennellii var. puberulum, L. parviflorum, L. hirsutum var. glabratum, and L. pimpinellifolium, formed other cluster, but reflected the genetic distances between them and other accessions. The closest accessions were L. esculentum cvs. Lukullus and Marglobe, with approximately 90% of similarity. The most distant accession was that belonging to L. pennellii var. puberulum.

The dendogram generated from RAPD data analysis (Figure 3.3.13) showed close similarity to that produced from microsatellite data, but the L. esculentum cluster contained L. pimpinellifolium; two sub groupings could be observed: one involving Limachino and Ace, and the second Lukullus, Marglobe, San Marzano. The cluster was completed by L. esculentum var. cerasiforme accession constructing the main cluster. As in the microsatellite dendogram, remaining wild relatives did form another cluster and again the most and least similar accessions were the same.

Mantel's test (Mantel, 1967) established a statistically significant ($P<0.05$) moderate correlation between microsatellite and RAPD genetic similarity matrices for accessions selected as parent $(\mathrm{r}=0.44)$.

4.2.3 Analysis of some continuous morphological characters in parents

Continuous morphological characters are usually the expression of several loci within the genome (polygenic characters). These phenotypes are highly influenced by environmental conditions (genotype x environment interactions) (Srb, et al., 1952; Mayo, 1987; Jensen, 1988; Griffiths et al., 1996). The genotype establishes the aptitude for growth and development, while the environment determines the mode of development, resulting in the phenotype (Simmonds, 1979).

Results of the analyses of the continuous morphological characters are displayed in Tables 4.3.1 and 4.3.2. ANOVA was carried out to observe statistical differences between parent accessions; details are shown in Appendix 3 part 8. Tukey's multiple comparison test was used on variables with statistical significance. No results of the accessions L. hirsutum var. glabratum (PI-199381) and L. pennellii var. puberulum (LA-1926) were analysed because of the scarcity of fruits during the growing season. Fruit diameter, length and ratio (diameter/length) showed statistically highly significant differences ($P<0.01$) between parents; L. esculentum accessions presented fruits significantly bigger than wild relatives (Table 4.3.1). Within esculentum cultivars, Ace and Limachino were also significantly larger in size than the others. In respect to fruit ratio, this character reflects the shape of each accession and statistical differences were expected to be found. Values below 1 represent elongated fruits, such as San Marzano; values closer to 1 represent rounded fruits, such as Lukullus, Marglobe, and wild relatives; and values greater than 1 represent flattened fruits, such as Limachino and Ace.

Fruit weight, solid soluble content, and weight of 1,000 seeds also presented highly significant differences ($P<0.01$) between parents (Table 4.3.2). Significantly heavier fruits were found in accessions of L. esculentum, cultivars Ace and Limachino. Mean fruit weights of Lukullus, Marglobe and San Marzano were not significantly different, but they were greater than those of the wild relatives. However, these were not statistically different.

Table 4.3.1 Means of 3 fruit characters (fruit diameter, length and ratio d / l) of Lycopersicon spp accessions selected as parents.

Species/Accession	Fruit diameter (cm)	Fruit length (cm)	Fruit ratio (D/L)
	**	**	**
L. esculentum cvs.			
11 - Limachino	$\begin{aligned} & 5.86 \mathrm{bc} \\ & (\pm 0.21) \end{aligned}$	$\begin{gathered} 4.42 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{aligned} & 1.33 \mathrm{ac} \\ & (\pm 0.03) \end{aligned}$
15 - Ace	$\begin{gathered} 6.76 \mathrm{a} \\ (\pm 0.45) \end{gathered}$	$\begin{gathered} 4.74 \mathrm{a} \\ (\pm 0.26) \end{gathered}$	$\begin{gathered} 1.42 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{bde} \\ & (\pm 0.11) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{bc} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 1.20 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$
21 - Marglobe	$\begin{aligned} & 3.81 \mathrm{bde} \\ & (\pm 0.14) \end{aligned}$	$\begin{aligned} & 3.45 \mathrm{bc} \\ & (\pm 0.16) \end{aligned}$	$\begin{aligned} & 1.11 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$
22 - San Marzano	$\begin{aligned} & 2.82 \mathrm{bde} \\ & (\pm 0.10) \end{aligned}$	$\begin{gathered} 4.82 \mathrm{a} \\ (\pm 0.36) \end{gathered}$	$\begin{aligned} & 0.61 \mathrm{bde} \\ & (\pm 0.05) \end{aligned}$
$39-L$. esculentum var. cerasiforme	$\begin{aligned} & 1.80 \mathrm{bdf} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.67 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.08 \mathrm{bd} \\ & (\pm 0.0 \mathrm{l}) \end{aligned}$
52 - L. parviflorum	$\begin{aligned} & 1.03 \mathrm{bdf} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.87 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 1.19 \mathrm{bd} \\ & (\pm 0.01) \end{aligned}$
60 - L. pimpinellifolium	$\begin{aligned} & 1.44 \mathrm{bdf} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.29 \mathrm{bd} \\ & (\pm 0.07) \end{aligned}$	$\begin{aligned} & 1.13 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$

Numbers between brackets correspond to standard error; D/L = diameter/length; ** $=$ high statistical significance $(P<0.01)$; same letters show no statistical differences between means.

Solid soluble content, mainly glucose and fructose (Hewitt and Gavey, 1987), showed highly significant differences $(P<0.01)$. L. parviflorum accession had significantly higher values than any other entry, but also the wild types had higher values than the L. esculentum accessions. Within L. esculentum entries, significant differences in sugar content were found between cultivars. Limachino and Marglobe were statistically different to Lukullus, San Marzano and Ace.

Seed size also was highly significant ($P<0.01$); bigger seeds were found within L. esculentum accessions compared to wild relatives. Statistically, L. pimpinellifolium showed the smallest seeds and L. esculentum cvs. Lukullus and Ace the largest.

Table 4.3.2 Means of 3 fruit characters (fruit weight, solid soluble content, and weight of 1000 seeds) of Lycopersicon spp accessions selected as parents.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } 1,000 \\ \text { seeds }(\mathrm{g}) \end{gathered}$
	**	**	**
L. esculentum cvrs.			
11-Limachino	$\begin{aligned} & 86.21 \mathrm{bc} \\ & (\pm 9.70) \end{aligned}$	$\begin{aligned} & 5.10 \text { bde } \\ & (\pm 0.13) \end{aligned}$	$\begin{aligned} & 2.97 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$
15 - Ace	$\begin{aligned} & 127.07 \mathrm{a} \\ & (\pm 22.79) \end{aligned}$	$\begin{aligned} & 5.77 \mathrm{bde} \\ & (\pm 0.46) \end{aligned}$	$\begin{aligned} & 3.00 \mathrm{ac} \\ & (\pm 0.0 \mathrm{I}) \end{aligned}$
19 - Lukullus	$\begin{gathered} 24.90 \text { bde } \\ (\pm 1.98) \end{gathered}$	$\begin{aligned} & 6.68 \mathrm{bdf} \\ & (\pm 0.24) \end{aligned}$	$\begin{gathered} 3.18 \mathrm{a} \\ (\pm 0.05) \end{gathered}$
21 - Marglobe	$\begin{gathered} 30.42 \mathrm{bde} \\ (\pm 3.46) \end{gathered}$	$\begin{aligned} & 5.23 \mathrm{bde} \\ & (\pm 0.27) \end{aligned}$	$\begin{aligned} & 2.45 \mathrm{bd} \\ & (\pm 0.03) \end{aligned}$
22 - San Marzano	$\begin{gathered} 22.79 \mathrm{bde} \\ (\pm 2.45) \end{gathered}$	$\begin{aligned} & 6.20 \mathrm{bdf} \\ & (\pm 0.16) \end{aligned}$	$\begin{aligned} & 1.59 \mathrm{bde} \\ & (\pm 0.02) \end{aligned}$
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 3.46 \mathrm{bdf} \\ & (\pm 0.33) \end{aligned}$	$\begin{aligned} & 7.09 \mathrm{bd} \\ & (\pm 0.24) \end{aligned}$	$\begin{aligned} & 1.26 \mathrm{bde} \\ & (\pm 0.05) \end{aligned}$
52 - L. parviflorum	$\begin{aligned} & 0.68 \mathrm{bdf} \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & 10.76 \mathrm{a} \\ & (\pm 0.31) \end{aligned}$	$\begin{aligned} & 1.13 \mathrm{bde} \\ & (\pm 0.02) \end{aligned}$
$60-$ L. pimpinellifolium	$\begin{aligned} & 1.98 \mathrm{bdf} \\ & (\pm 0.2 \mathrm{l}) \end{aligned}$	$\begin{aligned} & 8.59 \mathrm{bc} \\ & (\pm 0.20) \end{aligned}$	$\begin{aligned} & 0.86 \mathrm{bdf} \\ & (\pm 0.03) \end{aligned}$

Numbers between brackets correspond to standard error; $\mathrm{D} / \mathrm{L}=$ diameter/length; ${ }^{* *}=$ high statistical significance $(P<0.01)$; same letters show no statistical differences between means.

4.3 Selection of microsatellites and RAPD primers to use in F1 and further generations

To analyse a large number of populations through PCR procedures, ideally there should be few oligonucleotide primers, each giving highly polymorphic results between populations, and which are reliable, consistent, reproducible, and comparable (Hoelzel and Green, 1998).
Of the 18 microsatellite and 80 RAPD primers investigated, 6 and 7 respectively were selected, which fulfilled the characteristics described above. In the case of microsatellite markers a total of 26 loci were amplified of which $24(92 \%)$ were polymorphic and two common to all accessions. In RAPD markers, out of 92 amplified bands, $61(66 \%)$ were polymorphic and 31 were common to all accessions. Selected primers for both microsatellites and RAPD markers are presented in Table
4.4, which also displays total number of bands amplified and average number of bands per accession. On average, microsatellite primers presented 4.3 bands considering all the primers, and 1.95 bands per accession. RAPD primers showed 13.1 bands considering the average of all primers and 8.1 bands per accession.

Table 4.4 Microsatellite and RAPD primers selected to analyse parental accessions, hybridisation and further generations in Lycopersicon spp.

Primer ${ }^{1}$	Total number of bands	Average number of bands/accession	Approx. band size range (bp)
Microsatellites :			
LE20592	4	1.0	$177-166$
LE21085	4	2.1	210-98
LEEF 1A	4	1.6	231-186
LEGAST1	6	3.0	365-194
LELEUZIP	4	2.0	$177-66$
LEPRP4	4	2.0	239-192
Average	4.3	1.95	
RAPD :			
OPA - 01	12	7.9	1350-525
OPA - 12	8	6.4	800-350
OPA-19	9	6.4	800-275
OPH-01	15	8.9	1400-300
OPH-11	17	8.6	1200-275
OPL-16	14	8.8	1200-240
OPL-18	17	9.6	1500-450
Average	13.1	8.1	

[^0]In the microsatellites, PCR produced one or two bands (alleles) per loci as expected in this kind of molecular marker. More amplified bands were expected in RAPD markers and they ranged in average from 6.4 to 9.6 bands. Another difference between both markers was the band size range. While microsatellite primers produced amplification products ranging from 365 to 66 bp , RAPD produced sizes between 1400 and 240 bp .

4.4 Parents hybridisation

In order to create segregating populations after selecting the parents, manual hybridisations between all accessions were carried out, as explained in Chapter 2 (2.2.21). However, when working with wild relatives there is a possibility of failure in some crosses owing to genetic incompatibilities between species. Most incompatibilities between species or even between accessions are physical or genetic and can be overcome utilising breeding manipulations.

In this project no manipulations, except emasculation, were carried out, and there was no attempt to overcome any hybridisation failure. The esculentum-complex species crossed easily with tomato accessions. It was found that green fruited species such as L. hirsutum and L. pennellii could be utilised as staminate parent for intertaxon crosses, but they were not good pollen receptors.

In the case of L. esculentum accessions, cv. Marglobe presented the lowest level of fecundity based in the number of hybridisations carried out (Table 4.5), 22\% as female and 44% as male. The highest levels were presented by cultivars Limachino, Ace, and Lukullus. Within wild relatives, the red-fruited L. parviflorum accession showed the highest fecundity with 77% as female and 66% as male.
Table 4.5 Parental accessions, crosses, reciprocal crosses, and seed number obtained.

	Species	Cultivar/accession	Number	11	15	19	21	22	39	47	52	56	60
11	L. esculentum	Limachino			103	167	164	0	41	0	162	275	291
15	L. esculentum	Ace	LA - 0516	41		91	9	21	1	0	0	85	59
19	L. esculentum	Lukullus	LA-0534	161	131		0	7	15	1	15	0	43
21	L. esculentum	Marglobe	LA-0502	76	56	0		0	0	0	1	0	0
22	L. esculentum	San Marzano	LA-0180	49	43	11	3		10	1	8	15	4
39	L. esculentum	var. cerasiforme	LA-1673	20	9	18	0	0		0	13	0	0
47	L. hirsutum	var. glabratum	PI-199381	0	0	0	0	0	0		0	0	0
52	L. parviflorum		T1264/94	4	1	15	0	3	24	0		15	16
56	L. pennellii	var. puberulum	LA-1926	0	0	0	0	0	0	0	0		0
60	L. pimpinellifolium		PI-390739	2	0	0	6	0	1	1	29	174	

Crosses: Female (rows) x Male (columns) below diagonal; reciprocal crosses: Female (rows) x Male (columns) above diagonal.

4.5 F_{1} generation analysis of morphological and molecular characters

After hybridisation an F_{1} generation was grown. In the case of the Lycopersicon spp accessions utilised as parents, all morphological and molecular characters studied were genetically homozygous. This was confirmed by growing the parental accessions together with each generation and observing non segregation of characters.

4.5.1 Molecular characteristics

Molecular markers, microsatellites and RAPD, were not examined in F_{1} plants because they did not show segregation within individuals, but heterozygosity in respect to parents. Microsatellites presented both alleles sharing the same locus in all individuals studied for all primers, and selected RAPD bands showed always the presence of the dominant allele in all loci, including the heterozygous, making impossible any further genetic analysis.. However, in any genetic population analysis based on molecular markers, the F_{1} generation shows the highest level of heterozygosity: for co-dominant markers, such as microsatellites $H_{S}=1.0$ and for dominant markers, such as RAPD $H_{S}=0.5$, because there is only half of the information available. Examples of inheritance of microsatellite and RAPD markers in various F_{1} s are shown in Plates 4.1 and 4.2.

Plate 4.1 Agarose gel of microsatellite from primer LE-21085 in parents and F_{1} populations of inter-taxon crosses in Lycopersicon spp.

Arrow shows microsatellite position; $\mathbf{M}=$ molecular size marker in $\mathrm{bp} ; 39=$ L. esculentum var. cerasiforme; $11=$ L. esculentum cv . Limachino; $15=L$. esculentum cv . Ace; $19=L$. esculentum cv . Lukullus; 1 to $3=F_{1}$ from cross between 39 and $\mathbf{1 1 ; ~} 4$ to $6=F_{1}$ cross between 39 and $\mathbf{1 5} ; 7$ to $16=F_{1}$ cross between 39 and 19 .

Plate 4.2 Agarose gel of RAPD from primer OPA-12 in parents and F_{1} populations of inter-taxon crosses in Lycopersicon spp.

Arrows show polymorphic positions; $\mathbf{M}=$ molecular size marker in $\mathrm{bp} ; \mathbf{3 9}=L$. esculentum var. cerasiforme; $\mathbf{1 1}=$ L. esculentum cv . Limachino; $\mathbf{1 5}=$ L. esculentum cv. Ace; $19=L$. esculentum cv. Lukullus; $\mathbf{5 2}=$ L. parviflorum; 1 to $3=\mathrm{F}_{1}$ from cross between 39 and $\mathbf{1 1 ; ~} 4$ to $6=\mathrm{F}_{1}$ cross between 39 and $15 ; 7$ to $16=F_{1}$ cross between 39 and $19 ; 17$ to $19=F_{1}$ cross between 52 and $\mathbf{1 1}$.

4.5.2 Morphological characteristics

Morphological traits for inter- and intra-taxon crosses were analysed and the results presented in Tables 4.6.1 and 4.6.2. Results of more F_{1} accessions are shown in Appendix 4.
One or at most two genes control most morphological traits chosen for characterising accessions and crosses, as described in Section 4.2.1. Such genes behave in Mendelian manner and it is possible to study their segregation ratios in F_{2} generation. All F_{1} populations presented characteristics such as indeterminate growth type, yellow corolla colour, sparse fruit pubescence, and red mature fruit colour. For other characters, such as hypocotyl colour, presence of $1 / 2$ purple $11 / 2$ green hypocotyl was a common feature in most F_{1} populations, but in some inter-taxon crosses only purple hypocotyls were also found. Leaf type was a variable characteristic, depending on the parents involved in the cross and, in the case of inter-taxon crosses showed a tendency toward the tomato wild relative types. Within intra-taxon crosses of L. esculentum, F_{1} populations did not show variation from the standard leaf type. In respect of stigma position, most accessions presented inserted stigmas or stigmas at the same level as the tips of the anthers, but there were two inter-taxon crosses involving L. parviflorum as parent that presented slightly exserted stigmas. Immature fruit colour for inter-taxon crosses was mainly greenish-white to light
green colours, except one cross involving L. esculentum cv . Limachino and L. esculentum var. cerasiforme that presented green colour.

The colour of immature fruit in intra-taxon crosses varied from light green to green, and only one accession presented greenish-white colour in all individuals.

The most common fruit shape found in F_{1} populations of inter- and intra-taxon Lycopersicon spp crosses was rounded, though some crosses involving L. esculentum cvs. Ace and Limachino presented slightly flattened fruits, and others containing L. esculentum cv. San Marzano presented heart shaped or cylindrical fruits.

There was not much variation for fruit size between all $\mathrm{F}_{1} \mathrm{~s}$, most of them showed very small or small fruits; only two $\mathrm{F}_{1} \mathrm{~s}$ presented intermediate fruit size and both contained as parent L. esculentum cv. Ace. Flesh colour in mature fruits ranged between orange and red in most of F_{1} populations. From all $\mathrm{F}_{1} \mathrm{~s}$ grown, only one (E1522) showed irregular fruit cross sectional shape; all others exhibited a round and angular shape. In shape of pistil scar, a dot was the common character, but intrataxon crosses including L. esculentum cv. Ace presented a stellate shape. The number of locules was very variable between accessions, ranging from 2 to >4, but the most common value was two locules especially within inter-taxon crosses. Blossom end shape was flat for almost all inter-taxon crosses, except one (I-2260) that presented indented shape. In intra-taxon crosses there was a distribution between flat, indented and pointed end shapes.
Table 4.6.1 Morphological characteristics of F_{1} plants of Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Hypocotyl Colour	Growth Type	Leaf Type	Corolla Colour	Style Position	Immature Fruit Colour	Fruit Pubescence
I-3919	$1 / 2$ purple	Indeterminate	Standard	Yellow	Same level of stamens	Light green	Sparse
I-1939	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
I - 5211	Purple	Indeterminate	Parviflorum	Yellow	Same level of stamens	Greenish-white	Sparse
I - 1152	Purple	Indeterminate	Parviflorum	Yellow	Same level of stamens	Light green	Sparse
I - 6021	1/2 purple	Indeterminate	Pimpinellifolium	Yellow	Inserted	Greenish-white	Sparse
I-1560	1/2 purple	Indeterminate	Pimpinellifolium	Yellow	Same level of stamens	Greenish-white	Sparse
E-1922	$1 / 2$ purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
E-2219	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse

114
Table 4.6.2 Morphological characteristics of F_{1} plants of Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Fruit Shape	Fruit Size	Mature Fruit Colour	Flesh Colour	Fruit Cross Shape	Shape of Pistil Scar	Number of locules	Blossom End Shape
I - 3919	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I - 1939	Rounded	Very small	Red	Red	Round	Dot	2	Flat
I - 5211	Slightly flattened	Very small	Red	Red	Angular	Dot	2	Flat
I - 1152	Slightly flattened	Very small	Red	Red	Round	Dot	2	Flat
I - 6021	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I - 1560	Slightly flattened	Very small	Red	Red	Angular	Dot	3	Flat
E-1922	Heart shaped	Small	Red	Orange	Angular	Dot	2	Indented
E-2219	Heart shaped	Small	Red	Orange	Angular	Dot	2	Indented

4.5.3 Analysis of Continuous characters in F_{1} generation

Six continuous characters were analysed in F_{1} population for each cross, inter- and intra-taxon, and compared statistically with the parents and mean expected value. ANOVA was carried out to determine statistical significance between means and a Tukey's test to establish the differences. Results for selected crosses are displayed in Tables 4.7.1 and 4.7.2. These crosses, and when possible the reciprocal, were selected as a sample from each wild relative x L. esculentum and intra-taxon L. esculentum group of crosses, including all accessions involved in the hybridisations. Results for the remaining crosses are presented in Appendix 5. Details of ANOVA procedure for both groups are displayed in Appendix 3, part 9.1 and 9.2.

For all crosses, inter- and intra-taxon, diameter, length and ratio of the fruits presented statistically significant differences $(P<0.01$ or $P<0.05$) between the means of cross, reciprocal and parental accessions. Inter-taxon crosses containing L. esculentum var. cerasiforme showed that mean diameter and length of fruits were smaller than expected value (average of parents) when hybridised with L. esculentum accessions normally presenting larger fruits such as cvs. Limachino and Ace. Means were within expected value when crossed with L. esculentum cv. Lukullus. Fruit ratio was within expected values in all cases. In these three crosses the F_{1} populations were statistically different from esculentum cultivars in diameter, length and ratio of fruits. Similar results were found when analysing crosses involving L. parviflorum and L. pimpinellifolium.

Within intra-taxon crosses of L. esculentum, diameter and length of fruits were within or slightly smaller than expected values. Fruit ratio varied depending on the parents utilised in the cross, but most of the populations presented values close to the expected. Fruit ratios for most crosses were close to 1 (round shape), but those including cvs. Ace and Limachino (slightly flattened to flattened shape) showed a tendency toward these shapes. In the case of crosses involving cv. San Marzano (cylindrical shape), the tendency was towards fruits slightly elongated (values <1) but not completely cylindrical or pear shaped.

Table 4.7.1 Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit diameter (cm)	$\begin{aligned} & \text { Fruit length } \\ & (\mathrm{cm}) \end{aligned}$	Fruit ratio (D/L)
	**	**	*
I-3919	$\underset{(\pm 0.06)}{2.67 \mathrm{bc}}$	$\underset{\substack{ \pm .48 \mathrm{bc} \\(\pm 0.06)}}{ }$	$\begin{aligned} & 1.08 \mathrm{~b} \\ & (\pm 0.01) \end{aligned}$
I-1939	$\begin{aligned} & 2.70 \mathrm{bc} \\ & (\pm 0.10) \end{aligned}$	$\underset{(\pm 0.10)}{2.48 \mathrm{bc}}$	$\begin{gathered} 1.09 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
Expected value	2.73	2.37	1.14
39 - L. esculentum var. cerasiforme	$\underset{(\pm 0.05)}{1.80 \mathrm{bd}}$	$\begin{aligned} & 1.67 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$	$\begin{gathered} 1.08 \mathrm{~b} \\ (\pm 0.01) \end{gathered}$
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{a} \\ & (\pm 0.11) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{a} \\ & (\pm 0.12) \end{aligned}$	$\begin{gathered} 1.20 \mathrm{a} \\ (\pm 0.05) \end{gathered}$
	**	**	**
I-5211	$\begin{aligned} & 1.55 \mathrm{bc} \\ & (\pm 0.07) \end{aligned}$	$\begin{gathered} 1.30 \mathrm{bde} \\ (\pm 0.07) \end{gathered}$	$\begin{aligned} & 1.20 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
I-1152	$\begin{aligned} & 1.91 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.68 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.14 \mathrm{~b} \\ & (\pm 0.03) \end{aligned}$
Expected value	3.45	2.65	1.26
52 - L. parviflorum	$\underset{(\pm 0.02)}{1.03 \mathrm{bd}}$	$\underset{(\pm 0.02)}{0.87 \mathrm{bdf}}$	$\begin{gathered} 1.19 \mathrm{~b} \\ (\pm 0.01) \end{gathered}$
11-Limachino	$\begin{gathered} 5.86 \mathrm{a} \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 4.42 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{gathered} 1.33 \mathrm{a} \\ (\pm 0.03) \end{gathered}$
	**	**	*
I-6021	$\underset{(\pm 0.10)}{2.24 \mathrm{bc}}$	$\underset{(\pm 0.10)}{2.13 \mathrm{bc}}$	$\begin{aligned} & 1.06 \mathrm{~b} \\ & (\pm 0.01) \end{aligned}$
Expected value	2.63	2.37	1.12
60 - L. pimpinellifolium	$\underset{(\pm 0.06)}{1.44 \mathrm{bd}}$	$\underset{(\pm 0.07)}{1.29 \mathrm{bd}}$	$\begin{gathered} 1.13 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
21 - Marglobe	$\begin{gathered} 3.81 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{gathered} 3.45 \mathrm{a} \\ (\pm 0.16) \end{gathered}$	$\begin{gathered} 1.11 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
	**	**	**
I-1560	$\begin{gathered} 2.79 \mathrm{bc} \\ (\pm 0.04) \end{gathered}$	$\underset{(\pm 0.05)}{2.38 \mathrm{bc}}$	$\underset{(\pm 0.02)}{1.17 \mathrm{~b}}$
Expected value	4.10	3.02	1.28
60 - L. pimpinellifolium	$\begin{aligned} & 1.44 \mathrm{bd} \\ & (\pm 0.06) \end{aligned}$	$\underset{(\pm 0.07)}{1.29 \mathrm{bd}}$	$\underset{(\pm 0.02)}{1.13 \mathrm{~b}}$
15 - Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{a} \\ & (\pm 0.26) \end{aligned}$	$\begin{gathered} 1.42 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
	**	**	**
E-1922	$\begin{aligned} & 3.97 \mathrm{a} \\ & (\pm 0.09) \end{aligned}$	$\begin{aligned} & 3.90 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.02 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$
E-2219	$\underset{(\pm 0.16)}{3.30 \mathrm{bc}}$	$\begin{aligned} & 3.40 \mathrm{bc} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 0.97 \mathrm{bc} \\ & (\pm 0.03) \end{aligned}$
Expected value	3.24	3.95	0.91
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{a} \\ & (\pm 0.11) \end{aligned}$	$\underset{(\pm 0.12)}{3.07 \mathrm{bd}}$	$\begin{aligned} & 1.20 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \mathrm{bd}}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.05)}{0.61 \mathrm{bd}}$

[^1] crosses; first two digits correspond to female parent; same letters show no statistical differences.

Table 4.7.2 Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } \begin{array}{c} 1,000 \\ \text { seeds }(\mathrm{g}) \end{array} \end{gathered}$
	**	**	**
I-3919	$\underset{(\pm 0.69)}{11.23 \mathrm{bc}}$	$\begin{aligned} & 6.86 \mathrm{bc} \\ & (\pm 0.44) \end{aligned}$	$\underset{(\pm 0.05)}{2.50 \mathrm{bc}}$
I-1939	$\xrightarrow[(\pm 1.30)]{11.82 \mathrm{bc}}$	$\begin{gathered} 8.75 \mathrm{a} \\ (\pm 0.69) \end{gathered}$	$\begin{aligned} & 2.52 \mathrm{bc} \\ & (\pm 0.03) \end{aligned}$
Expected value	14.18	6.89	2.22
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 3.46 \mathrm{bd} \\ & (\pm 0.33) \end{aligned}$	$\begin{gathered} 7.09 \mathrm{a} \\ (\pm 0.24) \end{gathered}$	$\begin{aligned} & 1.26 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{a}}$	$\begin{aligned} & 6.68 \mathrm{bd} \\ & (\pm 0.24) \end{aligned}$	$\begin{gathered} 3.18 \mathrm{a} \\ (\pm 0.05) \end{gathered}$
	**	**	**
I-5211	$\begin{gathered} 2.23 \mathrm{~b} \\ (\pm 0.34) \end{gathered}$	$\begin{gathered} 7.68 \text { bde } \\ (\pm 0.15) \end{gathered}$	$\xrightarrow[(\pm 0.08)]{1.66 \text { bde }}$
I-1152	$\begin{aligned} & 4.08 \mathrm{~b} \\ & (\pm 0.33) \end{aligned}$	$\begin{aligned} & 9.27 \mathrm{bc} \\ & (\pm 0.21) \end{aligned}$	$\begin{aligned} & 2.43 \mathrm{bc} \\ & (\pm 0.03) \end{aligned}$
Expected value	43.45	8.00	2.05
52 - L. parviflorum	$\begin{gathered} (\pm 0.68 \mathrm{~b} \\ (\pm 0.03) \end{gathered}$	$\begin{aligned} & 10.76 \mathrm{a} \\ & (\pm 0.31) \end{aligned}$	$\underset{(\pm 0.02)}{1.13 \mathrm{bdf}}$
11-Limachino	$\begin{aligned} & 86.21 \mathrm{a} \\ & (\pm 9.70) \end{aligned}$	$\begin{gathered} 5.10 \mathrm{bdf} \\ (\pm 0.13) \end{gathered}$	$\begin{gathered} 2.97 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
	**	**	**
I-6021	$\begin{gathered} 7.60 \mathrm{~b} \\ (\pm 0.89) \end{gathered}$	$\begin{gathered} 8.16 \mathrm{a} \\ (\pm 0.72) \end{gathered}$	$\underset{\substack{2.03 \mathrm{bc} \\(\pm 0.07)}}{ }$
Expected value	16.20	6.91	1.66
60 - L. pimpinellifolium	$1.98 b$	$\begin{gathered} 8.59 \mathrm{a} \\ (\pm 0.20) \end{gathered}$	$\underset{(\pm 0.03)}{0.86 \mathrm{bd}}$
21 - Marglobe	$\begin{aligned} & 30.42 \mathrm{a} \\ & (\pm 3.46) \end{aligned}$	$\begin{aligned} & 5.23 \mathrm{~b} \\ & (\pm 0.27) \end{aligned}$	$\begin{gathered} 2.45 \mathrm{a} \\ (\pm 0.03) \end{gathered}$
	**	**	**
I-1560	$\underset{(\pm 0.67)}{12.53 \mathrm{~b}}$	$\begin{gathered} 5.25 \mathrm{~b} \\ (\pm 0.25) \end{gathered}$	$\underset{\substack{2.38 \mathrm{bc} \\(\pm 0.07)}}{ }$
Expected value	64.53	7.18	1.93
60 - L. pimpinellifolium	$\begin{aligned} & 1.98 \mathrm{~b} \\ & (\pm 0.21) \end{aligned}$	$\begin{gathered} 8.59 a \\ (\pm 0.20) \end{gathered}$	$\underset{\substack{0.86 \mathrm{bd} \\(\pm 0.03)}}{ }$
15 - Ace	$\begin{aligned} & 127.07 \mathrm{a} \\ & (\pm 22.79) \end{aligned}$	$\begin{gathered} 5.77 \mathrm{~b} \\ (\pm 0.46) \end{gathered}$	$\begin{gathered} 3.00 \mathrm{a} \\ (\pm 0.01) \end{gathered}$
	**	ns	**
E-1922	$\begin{gathered} 33.83 a \\ (\pm 1.27) \end{gathered}$	$\begin{gathered} 6.19 \\ (\pm 0.54) \end{gathered}$	$\begin{aligned} & 3.21 \mathrm{a} \\ & (\pm 0.08) \end{aligned}$
E-2219	$\begin{aligned} & 23.77 \mathrm{~b} \\ & (\pm 3.10) \end{aligned}$	$\begin{gathered} 5.71 \\ (\pm 0.21) \end{gathered}$	$\begin{aligned} & 3.20 \mathrm{ac} \\ & (\pm 0.04) \end{aligned}$
Expected value	23.84	6.44	2.39
19 - Lukullus	$\underset{(\pm 1.98)}{24.89 \mathrm{~b}}$	$\begin{gathered} 6.68 \\ (\pm 0.24) \end{gathered}$	$\begin{aligned} & 3.18 \mathrm{ac} \\ & (\pm 0.08) \end{aligned}$
22 - San Marzano	$\begin{aligned} & 22.79 \mathrm{~b} \\ & (\pm 2.45) \end{aligned}$	$\begin{gathered} 6.20 \\ (\pm 0.16) \end{gathered}$	$\begin{aligned} & 1.59 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$

[^2] crosses; first two digits correspond to female parent; same letters show no statistical differences.

Fruit weight for inter-taxon crosses showed the most remarkable diversity between the species involved in the crosses. Fruits of wild species were very small, averaging between 0.68 and 3.46 g . In contrast L. esculentum cultivars utilised as parents averaged between 127.07 and 22.79 g , approximately 34 times greater than those from wild species. Statistically significant differences $(P<0.01)$ were found in all $\mathrm{F}_{\text {}}$ populations from inter-taxon crosses and means were further away from the expected values. In the case of intra-taxon crosses, most F_{1} populations showed significant differences $(P<0.01)$ between means, except the cross of cultivars San Marzano and Marglobe that presented no differences. Fruits tended to be smaller than or very close to expected values.

The mean soluble solid concentration in inter-taxon crosses ranged from 5.25 to 9.27 ${ }^{\circ}$ Brix, about 1.3 times less than the value of $7.09-10.76{ }^{\circ}$ Brix observed in tomato wild relatives. But these values were about 1.3 bigger than the range of $5.10-6.68$ ${ }^{\circ}$ Brix in tomato cultivars utilised as parents. Most populations presented means significantly higher than their L. esculentum parents, except one cross involving L. pimpinellifolium and cultivar Ace (I-1560) that did not differ statistically from the value of L. esculentum parent. Most intra-taxon crosses did not differ significantly; the means of F_{1} populations were similar to the means of parents and therefore close to the expected value. Only three crosses differed significantly (E-1119 and E-1911, E-1121 and E-2111, and E-2221).

Heavier seeds than the wild parent were found in all inter-taxon crosses (high significance $P<0.01$). The 1000 seeds weight of F_{1} populations ranged from 1.66 to 3.48 g , while wild relatives parents were 2 to 2.7 times smaller ranging from 0.86 to 1.26 g , and the seeds were very similar to tomato cultivars (1.59 to 3.18 g). All intrataxon crosses showed significantly different seed weight ($P<0.01$), most of them had heavier seeds than the expected value and sometimes higher than both parents.

4.6 Discussion

Germplasm selection and characterisation
Morphological differences between some selected L. esculentum cultivars, based on the studied traits, are relatively limited. Most of the selected morphological
characters involved fruit characteristics, such as shape, colour, and size, which is the product of years of tomato breeding. Therefore, less similarity was expected in relation to wild relatives that present non-domesticated characteristics. Consequently, it is interesting to include very old and relatively modern cultivars in a genetic base broadening project. Such cultivars can contain genes for characters that have been discarded some years ago, but which today could be part of novel genetic combinations and provide more alternatives for exploitation of genetic variability in a breeding programme.

In respect to tomato wild relatives, selection was confined mainly to plants that produced flowers and fruits during the growing season in the greenhouse. In this study, due to time constraints it was not possible to test large number of species and accessions for response to greenhouse conditions. Although basic knowledge extracted from reports and books provided information on the species, each accession responded in different ways. In addition, there was the need to select species and accessions that had coincidence of flowering.

The self-incompatible L. hirsutum var. glabratum, accession PI-199381 was selected partly because of coincidence of flowering with other chosen accessions, and also for the large amount of flowers produced under the greenhouse growing conditions. This fact ensured enough pollen for cross-pollination and flowers for emasculation. Furthermore, Martin (1962) reported that this subspecies is more tolerant of foreign pollen than is the typical form of this species. Most importantly, this accession was the only one producing fruits during the growing season. This was also observed with L. pennellii var. puberulum (LA-1926).

In the case of molecular markers, genetic similarity matrices and dendrograms confirmed the first choice of parents based on morphological characters (Section 3.3). Differences between tomato and wild relatives were sufficient to discriminate between them using molecular markers. Cultivars Lukullus and Marglobe had the closest relationship, with nearly 85% similarity, for both markers. This in part is a reflection of the markers used in the study, but is reinforced by morphological characters such as fruit shape and growth type. However, these cultivars belong to completely different ages and geographical regions of breeding. Marglobe is an old

American OP cultivar for field production and Lukullus a relatively modern OP British cultivar for greenhouse purposes. Cultivar San Marzano grouped in the same cluster with Lukullus and Marglobe, but it was distant from them, almost 60% in both molecular markers. This distance is due to the fact that it has been selected for the different genetic characteristics of processing tomato: high solid soluble content, cylindrical fruit shape, and adaptation to high input production systems. Cultivars Limachino and Ace grouped together, but still there were differences observed between them, they were not identical on a molecular basis. The esculentum cluster included L. esculentum var. cerasiforme, but L. pimpinellifolium was included only in RAPD data. This indicates that L. pimpinellifolium is also closely related to L. esculentum.

Continuous characters showed statistical differences between the accessions selected as parents. For example, diameter, length and weight of fruits showed a clear difference between the cultivars that produce bigger fruits such as Limachino and Ace with all other accessions. There were also statistical differences between L. esculentum accessions and wild relatives, because wild tomato accessions tend to produce smaller fruits (usually less than 2 cm in diameter and length). In fruit ratio, wild accessions presented means very close to 1 , i.e. means almost round shaped, but L. esculentum accessions showed more variability, because they were selected for different shapes (Ku et al., 1999). Important differences were found in soluble solid content. All wild accessions presented statistically higher sugar contents than tomato cultivars, demonstrating again the availability of interesting characteristics in these wild types. This character is the most important for processing tomato, however progress in gene introgression has been hampered because of the linkage of this character with small fruit size, indeterminate growth habit and poor fruit set (MacGillivray and Clemente, 1956; Stevens and Rudich, 1978). Statistical differences were also present between small seeds from wild types and larger seeds from L. esculentum cultivars. Related Lycopersicon spp produced more and smaller seeds that can be easily disseminated, thus increasing the probability of finding a suitable environment for germination and survival. Conversely, tomato cultivars have been bred for larger seeds with the aim of giving uniform germination and high
vigour under direct field sowing and therefore do not depend upon natural vectors for dispersal, such as wind or birds(Doganlar et al., 2000).

Microsatellites and primer selection

Only 6 microsatellite and 7 RAPD primers were found useful after screening complete sets of oligonucleotide primers. The main requirement for these primers was the display of polymorphisms between the selected parent accessions, allowing them to be characterised and discriminated. This was possible except that two L. esculentum cultivars (Marglobe and Lukullus) presented 100% similarity microsatellites, but the same accessions showed differences with RAPD markers.

The differences observed between microsatellite and RAPD markers are the results of the different molecular characteristics of each technique. Polymorphisms in microsatellites are due to slippage of the DNA polymerase during replication (Schlötterer \& Tautz, 1992), and also the length of the polymorphism is affected by recombination, insertions and other genetic effects. The primer aims to anneal to a specific locus, usually of nuclear origin. In microsatellites the polymorphisms are due to length variation between alleles. Conversely, RAPD variation is due to mutational effects, with different evolutionary implications, that take place in the annealing site of the primer and between the two adjacent sites responsible for the amplification. Disappearance of bands can be due to base changes (inversions, insertions, or deletions) that change primer targeting sites. RAPD fragments from total extracted DNA are generated from nuclear, chloroplast and mitochondrial genomes. They are not locus specific.

Parents hybridisation

Results of crossing the different Lycopersicon spp accessions selected as parents showed the degree of incompatibility expected between red- and green-fruited species (Stevens and Rick, 1986). No cross involving both green-fruited species, L. pennellii var. puberulum and L. hirsutum var. glabratum as female set fruits. This is in complete agreement with the subgeneric classification of genus Lycopersicon by

Rick (1976). Unilateral incompatibility is the main cause of crossing failure (Chetelat and De Verna, 1991; Foolad, 1996); crosses between L. esculentum and L. pennellii and L. hirsutum are only possible in one direction, green-fruited species as staminate parent. A multigenic and unilateral incompatibility system determines the direction of fertility (Rick, 1969). This incompatibility is manifested by inhibition of L. esculentum pollen tube growth in stigma, style or ovaries of L. pennellii and L. hirsutum (Hardon, 1967).

In the case of intra-taxon L. esculentum crosses, low fecundity between some accessions may be explained by a lack of coincidence between pollen maturation and stigma receptiveness. Although pollination was carried out on several occasions on flowers at different stages, stigma receptivity could have varied between the different accessions and fertilisation could not occur.

F_{1} generation: morphological and molecular characterisation

The F_{1} generation of a cross between two completely homozygous lines has the highest degree of heterozygosity, but they are completely homogeneous. The results of the inter-taxon crosses showed phenotypic uniformity in each F_{1} population for the characteristics studied, but most of them expressed dominant characters of tomato wild relatives. For instance, all crosses had indeterminate growth phenotypes, but genotypes of crosses containing as parent cv . Limachino should be $s p^{+} / s p$. Therefore determinate growth phenotype ($s p$) is recessive.

Phenotypes for many characters in nature and agriculture show continuous variation. This continuous distribution has been attributed to the collective action of several genes interacting with the environment. Therefore the phenotypic response to environmental stresses change between and sometimes within sites. However, within an $F_{\text {}}$ generation it is possible to observe responses like heterosis when crossing two homozygous lines. However, the amount of heterosis is dependent on the genetic difference between the parents (Wricke and Weber, 1986). No heterosis was observed for most of the characters examined in inter- or intra-taxon crosses, except seed weight that presented an increase over the average of both parents or expected value.

All characters involving fruit size (diameter and length) and weight were distant from expected values, dominance of small fruit was evident. In inter-taxon crosses, when large- and small-fruited accessions were crossed, the fruit size of the F_{1} hybrids typically resembled that of the smaller fruited parent (MacArthur and Butler, 1938). In intra-taxon crosses, the presence of oblate (o) gene that elongates the fruit tended to decrease the size, whereas the genes for fasciation (f) and tangerine (t) and those increasing locule number increased fruit size (MacArthur and Butler, 1938). For fruit ratio the high level of dominance of the characteristics of the wild accessions was shown in the F_{1} generation; the means of $\mathrm{F}_{1} \mathrm{~s}$ for most characters were almost all different from expected values and similar to those of the wild parent. The wild relative alleles always gave smaller values for the fruit shape ratio, in that way showing a tendency to more round-shaped fruits. In the case of intra-taxon hybridisations, most crosses also showed a tendency toward round to slightly flattened fruits and some hybrids were distant from expected value.

Solid soluble content in most inter-taxon crosses presented the effects of wild relative accessions in the direction expected, increasing the mean concentration; however there were linkages with undesirable characters for the tomato processing industry such as indeterminate growth and small fruit size. Grandillo and Tanksley (1996) found that a major Quantitative Trait Loci (QTL) for this charactyeristic is probably a pleiotropic effect of the gene for the indeterminate growth habit $\left(\mathrm{s}^{+}\right)$. Most intrataxon crosses showed no statistical variation, as expected in both cases.

The weight of 1000 seeds had opposite effects for inter-taxon crosses to that expected based on the parental means. Heterotic increase of the seed weight was observed in inter- and intra-taxon crosses, where most F_{1} accessions presented higher weight of 1000 seeds than expected. Although this type of change is not desirable in tomato breeding, this is an example of what occurs when using diverse gene-pools as parental sources.

Chapter 5

Selfing effect and genetic diversity in created Lycopersicon populations

5.1 Introduction

The loss of genetic diversity and, therefore, variability over time in agricultural crops reduces the genetic material available for use by present and future generations. Modern breeding techniques and objectives are leading to crop varieties with potentially dangerous uniformity, in response to market needs and registration (patents) laws.

The incorporation of genes from wild relatives and discarded genetic material into adapted, but genetically depauperate, breeding material is the objective of a genetic base broadening programme to increase genetic diversity. But in autogamous species, inbreeding results in homozygosity, which can again lead to reduced genetic variability in individual populations in a few generations, and therefore a decreasing of the total genetic diversity of the species.

The objective of this chapter is to show the behaviour of F_{2} and F_{3} generations created from particular inter- and intra-taxon crosses of Lycopersicon spp from a morphological and molecular point of view. The material will also be examined as total populations (inter-taxon and intra-taxon) to observe some of the features that one might expect if, as would be expected in a base broadening programme, the products of individual crosses were bulked and treated as one population.

5.2 Morphological characteristics of F_{2} and F_{3} populations

Most standards established by UPOV for "DUS" (distinctness, uniformity and stability) are based on morphological characteristics of the species. Once a new breed is presented as a cultivar, it is tested by the Official Governmental Organisation and if it satisfies the appropriate requirements, it can be named and commercialisation can start. For breeders, morphological traits continue to be of great importance because it is possible to assess many plants segregating for different characters readily and rapidly.

Segregating populations are the base of any breeding and genetic base broadening programme.

5.2.1 Discrete characters

An assessment of morphological characters from F_{2} and F_{3} segregating populations was carried out and the results are displayed in Table 5.1. From inter-taxon crosses containing accessions of L. esculentum var. cerasiforme and L. esculentum, 40 plants were analysed for morphological characters; in the case of L. parviflorum and L. pimpinellifolium 16 and 20 plants in the intra-taxon L. esculentum crosses. Unfortunately it was not possible to assess the segregation ratios in the crosses because of the small number of plants grown per cross for reasons of space in greenhouse. However, a descriptive analysis was carried out. From the 18 characters analysed, 4 were monomorphic for all individuals and the remaining were polymorphic. The monomorphic characters included the absence of hypocotyl pubescence, horizontal leaf attitude, multiparous inflorescence type, and yellow corolla colour. Hypocotyl colour, in all individuals and for all crosses and generations, showed anthocyanin presence, probably due to homozygosity for gene A. But the anthocyanin loser gene (al) did segregate in all of them, displaying phenotypes from $1 / 4$ and $1 / 2$ purple hypocotyl (alal) to full purple (Al-). In respect to plant growth type controlled by the self-pruning gene $s p$, products had indeterminate growth in crosses involving L. esculentum var. cerasiforme and L. pimpinellifolium with L. esculentum, including the crosses with determinate growth accessions. Lines from crosses with L. parviflorum showed a different growth character, vine-type growth, but indeterminate. This character description was not found in papers reviewed, or in tomato genes databases. The intra-taxon crosses between L. esculentum accessions presented both growth types, indeterminate and determinate, segregating when the crosses involved accessions containing the gene $s p$.

Crosses within L. esculentum and with L. esculentum var. cerasiforme showed standard and potato leaf types, depending on the type of cross. Potato leaf type is a recessive character controlled by the gene c, which produces leaves less segmented. As was expected, most individuals observed showed the standard leaf type in these accessions. Crosses containing L. parviflorum as parents displayed individuals with the standard leaf type, but also segregated to'parviflorum' leaf type. The phenotype of this trait is characterised by small, relatively simple leaves carried on slender
stems. Similar results were observed in the case of crosses with L. pimpinellifolium, which presented the standard and the 'pimpinellifolium' leaf type, characterised by a lack of deeply serrated leaf margins. In these last two crosses, wild characters were presented by most individuals in both F_{2} and F_{3} generations.

Style position is a trait controlled by the exserted style gene (ex), found only in wild species. The material containing L. parviflorum as a parent showed segregation in F_{2} and F_{3} generations of individuals that presented exserted and inserted styles. The individuals from crosses involving L. pimpinellifolium displayed inserted and exserted styles in F_{2}, but in F_{3} only the inserted type. All individuals from the other inter-taxon crosses (L. esculentum \times L. esculentum var. cerasiforme) and intra-taxon crosses within L. esculentum had styles inserted or at the same level of stamens. This was expected because these two species are closely related and L. esculentum var. cerasiforme is mainly an autogamous species with inserted styles.

For exterior colour of immature fruits no gene descriptions were found in the literature and Lycopersicon genes databases, although it is used as a descriptor character in Descriptors of Tomato (IPGRI, 1996). There were patterns observed in this trait. Intra-taxon crosses and crosses involving L. esculentum var. cerasiforme showed light green and green immature fruits, but the segregation in crosses involving L. parviflorum and L. pimpinellifolium produced light green and greenish white fruits.

Fruit pubescence is a trait controlled by the gene peach (p). All individuals of intrataxon crosses showed sparse fruit pubescence, but inter-taxon crosses containing L. esculentum var. cerasiforme and L. pimpinellifolium presented segregation in F_{2} and F_{3} generations for this trait. All fruits and therefore individuals in accessions that include L. parviflorum as parent displayed intermediate fruit pubescence in F_{2} and F_{3} generations. Therefore it is likely that there may be a modifier gene present in the L. parviflorum accession.
Table 5.1 General morphological characteristics of F_{2} and F_{3} generations from inter-taxon crosses involving 3 wild relatives and L. esculentum, and intra-taxon crosses within L. esculentum accessions.

	L. esculentum var. cerasiforme		L. parviflorum		L. pimpinellifolium		L. esculentum	
Character	F_{2}	F_{3}	F_{2}	F_{3}	F_{2}	F_{3}	F_{2}	F_{3}
Hypocotyl colour	$1 / 2$ purple to full purple	$1 / 2$ purple to full purple	$1 / 4$ purple to full purple	$1 / 4$ purple to $1 / 2$ purple	$1 / 2$ purple to full purple	1/2 purple	$1 / 2$ purple to full purple	$1 / 2$ purple to full purple
Hypocotyl pubescence	Absent							
Plant growth type	Indeterminate	Indeterminate	Semi-determinate	Semi-determinate	Indeterminate	Indeterminate	Indeterminate and determinate	Indeterminate and determinate
Leaf attitude	Horizontal							
Leaf type	Potato leaf type and standard	Potato leaf type and standard	Parviflorum type and standard	Parviflorum type and standard	Pimpinellifolium type and standard	Pimpinellifolium type and standard	Potato leaf type and standard	Potato leaf type and standard
Inflorescence type	Multiparous							
Corolla colour	Yellow							
Style position	Inserted	Inserted and the same level as stamen	Inserted and slightly exserted	Inserted and highly exserted	Inserted and slightly exserted	Inserted and the same level as stamen	Inserted and the same level as stamen	Inserted and the same level as stamen
Exterior colour of immature fruit	Light green	Light green and green	Greenish white and light green	Greenish white and light green	Light green and greenish white	Light green and greenish white	Light green and green	Light green and green
Fruit pubescence	Sparse and intermediate	Sparse and intermediate	Intermediate	Intermediate	Intermediate and sparse	Sparse and intermediate	Sparse	Sparse
Predominant fruit shape	Rounded and slightly flattened	Rounded and slightly flattened	Slightly flattened and rounded	Slightly flattened and rounded	Slightly flattened and rounded	Slightly flattened	All shapes	All shapes
Fruit size	Very small and small	Very small and small	Small	Small	Very small and small	Very small and small	Small and intermediate	Small and intermediate
Exterior colour of mature fruits	Red and orange	Red and orange						
Flesh colour of pericarp	Orange, pink and red	Orange, pink and red	Orange and pink	Orange, pink and red	Orange and pink	Pink and red	Red and orange	Red and orange
Fruit crosssectional shape	Round	Round	Round and angular	Round and angular	Round	Round	Round, angular and irregular	Round, angular and irregular
Number of locules	Two and three	Two and three	Two and three	Two and three	Two	Two	Two to eight	Two to eight
Shape of pistil scar	Dot and irregular	Dot and irregular						
Fruit blossom end shape	Flat and indented	Flat	Flat	Flat	Flat	Flat	Flat and indented	Flat and indented

The segregation in inter-taxon crosses showed a tendency toward the wild character, i.e. pubescent fruits.

Fruit shape is a character controlled by several genes with different effects. For example ovate (o) controls the length/diameter ratio, fasciated (f) controls the number of locules together with lc (locule number), and others (Fryxell, 1954; Rick and Butler, 1956). Crosses within L. esculentum showed the expected segregation in F_{2} and F_{3} generations in respect to the fruit shape of the parents. Different shapes could be found, from very flattened to plum types. These characters have been selected and propagated by breeders for many years. However, in crosses involving related tomato species, the fruit tended toward round or slightly flattened shapes, an apparently dominant character present in wild types.

In respect to fruit size, Grandillo et al. (1999) reported that there are several QTLs controlling this character. The results of F_{2} and F_{3} generations for inter-taxon crosses showed that individuals tended to produce larger fruits than the wild relative parent, but smaller than the respective L. esculentum accession involved. In the case of intrataxon crosses, there was segregation, also expected depending on the parents involved, from small to intermediate fruit size. Large fruits were not expected in crosses involving cv. Ace.

Exterior colour of mature fruits was red for most of the individuals in the different generations and crosses. The exception was in intra-taxon 'esculentum' crosses containing cv. Limachino, where there were individuals segregating to orange colour. Fruit colour is controlled by genes red (R), yellow skin (Y) and tangerine (t). The same genes red and tangerine are involved in flesh colour of the pericarp that combined with skin colour, gives the fruit colour. There was segregation for this character in both types of crosses, inter- and intra-taxon. Accessions containing L. esculentum var. cerasiforme showed in F_{2} and F_{3} generation segregation of orange, red and pink colour. Those containing L. parviflorum showed orange and pink fruited individuals in F_{2}, but orange, pink and red fruits in F_{3}. In respect to L. pimpinellifolium, F_{2} individuals presented orange and pink flesh colour, but in F_{3} mainly pink and red. In intra-taxon crosses only the populations with cv . Limachino
as parent displayed segregation to red and orange, but all the other combinations were red.

Fruit cross-sectional shape is linked to fruit shape genes. Most individuals in all accessions showed round shape, but in accessions containing L. parviflorum there was segregation to angular shape, or more square fruits. In the case of L. esculentum crosses, segregation depended on the parents utilised, but individuals showed round, angular and irregular sectional shape.

Number of locules is a trait controlled by gene few locules $(L c)$, usually two locules are formed. This character varied in all crosses and generations depending on the parents involved. Segregation was mostly toward two or three locules. In the case of L. esculentum crosses, there were individuals presenting two to eight locules. Segregation in both generations was observed.

The shape of the pistil scar was a dot in all inter-taxon crosses accessions, but in intra-taxon crosses there were few individuals showing an irregular shape. Fruit blossom end shape was flat in most individuals in any of the inter- or intra-taxon crosses. However there was segregation in F_{2} plants of crosses involving L. esculentum var. cerasiforme to indented shape only when cv. San Marzano was the other parent. A similar case was observed in F_{2} and F_{3} generation for intra-taxon crosses.

5.2.2 Continuous characters

Although continuous characters by their nature are variable depending on the environmental conditions, six traits were statistically analysed in F_{2} and F_{3} generations, to show the differences between crosses (Table 5.2). The number of plants examined was the same as in section 5.2.1 and one fruit was collected per plant for continuous characters analysis. The accessions were grouped in three intertaxon types of crosses containing one common wild relative as parent and one intrataxon group with the L. esculentum crosses. ANOVA procedure was performed to detect statistical significance between groups and a Tukey's test for multiple comparisons. Details are given in Appendix 3 part 10.

Fruit weight differed significantly $(P<0.01)$ in F_{2} and F_{3} generations. In both cases, as expected, the L. esculentum group had larger fruits with means (F_{2} with 34.48 g and F_{3} with 59.57 g) significantly different from the other groups. The smallest mean was measured for fruits of the L. parviflorum group (F_{2} with 3.98 g and F_{3} with 6.46 g). The groups containing L. esculentum var. cerasiforme and L. pimpinellifolium did not present statistical differences between them in F_{2} but they were different from L. parviflorum. However, in F_{3} generation all three groups were not statistically different.

In F_{2} and F_{3} generations fruit diameter was differed significantly $(P<0.01)$. The means for both generations of L. esculentum were larger and different $(P<0.01)$ from the other groups. They showed 4.08 cm and 4.95 cm for the F_{2} and F_{3}, respectively. The shortest diameter was displayed by L. parviflorum with means of 1.86 cm in F_{2} and 2.34 cm in F_{3} generation. This group was statistically different from L. esculentum var. cerasiforme and L. pimpinellifolium, however the latter two groups did not show statistical differences.

In respect to fruit length, both generations showed statistically significant differences ($P<0.01$). The group of L. esculentum displayed the largest means with 3.51 cm for F_{2} and 4.26 cm for F_{3} plants. The smallest means in length were observed in the L. parviflorum group with 1.61 cm for F_{2} and 1.92 cm for the F_{3} generation. In the F_{2}, all groups were statistically different, but in the F_{3} the L. esculentum var. cerasiforme and L. pimpinellifolium groups did not show differences.

There was no statistical significance for fruit ratio (diameter/length) in both F_{2} and F_{3} generations. The ratios fluctuated from 1.10 to 1.17 for F_{2} and from 1.09 to 1.23 in F_{3} plants.
$\mathrm{N}=$ number of samples; small numbers correspond to standard error; ** $=$ high significance ($P<0.01$); * $=$ significance ($P<0.05$); ns $=$ no statistical significance; same letters show no statistical significance.

Solid soluble content showed no statistical significance in F_{2} generation, presenting values from 6.24° brix for the L. esculentum var. cerasiforme group to 7.58° brix for the L. pimpinellifolium group. In F_{3} there were significant differences $(P<0.01)$, with the L. parviflorum group having the largest mean with 7.24° brix and L. esculentum group with the lowest, $5.58{ }^{\circ}$ brix. There was no statistical difference between L. parviflorum and L. pimpinellifolium groups, but L. esculentum var. cerasiforme and L. esculentum groups were different in respect to the other groups.

The 1,000 seed weight showed statistically significant differences $(P<0.01)$ in F_{2} and F_{3} generations. The group of L. esculentum presented the heavier seeds (3.15 g in F_{2} and 3.04 g in F_{3}), statistically different from any other group. However, there were no statistical differences between the means of L. esculentum var. cerasiforme, L. parviflorum, and L. pimpinellifolium.

5.2.3 Genetic diversity in groups of crosses

A statistical analysis of each genetic diversity index $\left(A, A_{e}, H_{S}\right.$, and $\left.I\right)$ of morphological characters, analysed as dominant marker (presence (1) or absence (0) of a character), was carried out for F_{2} and F_{3} generations. As stated in section 5.2.1, the same number of individuals were sampled for these analyses. Inter-taxon crosses of tomato wild relatives and L. esculentum accessions were grouped according to the wild type utilised as one parent, and intra-taxon crosses within L. esculentum accessions were treated as a further group. Genetic indices displaying significant differences between groups are indicated by asterisks (Table 5.3). The statistical analysis was performed using the ANOVA procedure for genetic indices that are normally distributed such as H_{S} and I. Non-normally distributed indices such as A and A_{e}, were analysed with the non-parametric Kruskal-Wallis test. For the number of polymorphic loci (P) there was no statistical analysis because of the few number of observations available per group. A Tukey's test was carried out and small letters were used to specify significances between different groups (Table 5.3). Details of the statistical analysis are shown in Appendix 3, part 11.

The results (Table 5.3) show a significantly lower number of polymorphic alleles per locus (A) and proportion of polymorphic loci (P) for L. esculentum and L. esculentum
var. cerasiforme groups compared with L. parviflorum and L. pimpinellifolium in F_{2} and F_{3} generations. But significantly higher diversity indices $\left(A_{e}, H_{S}\right.$, and $\left.I\right)$ were produced in F_{2} for L. parviflorum and L. pimpinellifolium groups than for L. esculentum and L. esculentum var. cerasiforme groups. In the F_{3} these three indices, however, showed no statistical difference. It is possible that these indices were higher in F_{2} generation because they had less alleles in common between utilised parents than in the case of L. esculentum and L. esculentum var. cerasiforme, therefore the heterozygosity was higher.

5.2.4 Genetic diversity in bulked crosses

Another approach to the analysis of the genetic diversity indices was carried out for the F_{2} and F_{3} generations: all crosses of tomato wild relatives with L. esculentum were grouped in one bulk population of inter-taxon crosses, and crosses involving only L. esculentum in intra-taxon crosses. This could be regarded as two approaches to base broadening, i.e. limiting the pool of genetic variability to within a species (i.e. L. esculentum) or to deliberately incorporate variability from a much wider source including likely progenitor species (i.e. L. esculentum x wild relatives).
The results displayed in Table 5.4 show a tendency to decrease the value from F_{2} to F_{3} generation in most of the indices of inter-taxon crosses. However, $F_{S t}$ was identical in both generations. In the case of intra-taxon crosses, indices such as A, A_{e}, and P show identical values in both generations, but all other indices showed the same trend as in inter-taxon crosses. Inter-taxon crosses showed higher values than intra-taxon crosses in most indices such as A, A_{e}, H_{S}, I, and P, but lower for $F_{S t}$. Overall, total gene diversity $\left(H_{t}\right)$ in the F_{2} was $0.39(\pm 0.01)$ and the fixation index $\left(F_{S t}\right)$ was 0.37 for inter-taxon crosses, while in F_{3} plants H_{t} was $0.35(\pm 0.02)$ and $F_{S t}$ was identical. In the case of intra-taxon crosses, the F_{2} had values of $H_{t}=0.15$ (± 0.04) and $F_{S t}=0.42$, but in the $\mathrm{F}_{3} H_{t}$ increased to 0.16 and $F_{S t}$ decreased to 0.4 .
wild relatives.

Crosses between L. esculentum and:	N	A		A_{e}		H_{s}		I		P	
		$\mathrm{F}_{2}{ }^{*}$	F3*	$\mathrm{F}_{2}{ }^{*}$	$\mathrm{F}_{3} \mathrm{~ns}$	$\mathrm{F}_{2}{ }^{* *}$	F3 ns	$\mathrm{F}_{2}{ }^{* *}$	F3 ns	F_{2}	F3
L. esculentum var. cerasiforme	40	1.20b	1.16 b	1.16 b	1.13	0.13 bd	0.11	0.19 bd	0.16	0.20	0.16
		± 0.06	± 0.05	± 0.05	± 0.05	± 0.03	± 0.03	± 0.04	± 0.03		
L. parviflorum	16	1.55a	1.54a	1.43a	1.38	0.24a	0.22	0.34a	0.32	0.55	0.54
		± 0.12	± 0.12	± 0.10	± 0.10	± 0.05	± 0.05	± 0.08	± 0.07		
L. pimpinelifolium	16	1.61 a	1.52a	1.50a	1.38	0.27a	0.21	0.38a	0.31	0.61	0.52
		± 0.12	± 0.13	± 0.11	± 0.10	± 0.06	± 0.05	± 0.08	± 0.07		
L. esculentum	20	1.33b	1.33 b	1.27 b	1.27	0.15 bc	0.16	0.22 bc	0.23	0.33	0.33
		± 0.10	± 0.10	± 0.08	± 0.09	± 0.04	± 0.05	± 0.06	± 0.06		

$\mathrm{N}=$ number of individuals sampled; $A=$ number of polymorphic alleles per locus; $A_{e}=$ effective number of alleles; $H_{s}=$ average gene diversity; $I=$ Shannon's information index; $\mathrm{P}=$ proportion of polymorphic loci; small numbers correspond to standard error; ** $=$ high significance ($P<0.01$); * = significance $(P<0.05) ;$ ns $=$ no statistical significance; same letters show no statistical significance.
Table 5.4 Genetic diversity indices for morphological characters in bulks of populations of Lycopersicon F_{2} and F_{3} generations in inter- and intra-taxon crosses.

	N	A		A_{e}		H_{s}		H_{t}		I		$F_{\text {st }}$		P	
Crosses:		F2	F3	F_{2}	F3	F2	F3	F_{2}	F3	F2	F3	F2	F3	F_{2}	F3
Inter-taxon	72	$\begin{gathered} 2.15 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 2.11 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} 1.38 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 1.32 \\ \pm 0.06 \end{gathered}$	$\begin{gathered} 0.25 \\ \pm 0.01 \end{gathered}$	$\begin{aligned} & 0.22 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} 0.39 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.35 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.42 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.38 \\ \pm 0.06 \end{gathered}$	0.37	0.37	0.90	0.86
Intra-taxon	20	$\begin{gathered} 1.33 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.33 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.27 \\ \pm 0.08 \end{gathered}$	$\begin{gathered} 1.27 \\ \pm 0.09 \end{gathered}$	$\begin{gathered} 0.15 \\ \pm 0.04 \end{gathered}$	$\begin{aligned} & 0.16 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} 0.26 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.26 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.22 \\ \pm 0.06 \end{gathered}$	$\begin{gathered} 0.23 \\ \pm 0.06 \end{gathered}$	0.42	0.40	0.33	0.33

$\mathrm{N}=$ number of individuals sampled; $A=$ number of polymorphic alleles per locus; $A_{c}=$ effective number of alleles; $H_{s}=$ average gene diversity; $H_{t}=$ total gene diversity; $I=$ Shannon's information index; $F_{s t}=$ fixation index; $P=$ proportion of polymorphic loci; small numbers correspond to standard error

5.3 Molecular markers and population characteristics

Molecular markers have been very useful tools to provide information that either confirms previous evidence based on morphological characteristics and/or provides further evidence. In the case of generation analysis after hybridisation and selfing, they can provide valuable information about segregation of alleles at the molecular level.

5.3.1 Microsatellite markers analysis in F_{2} and F_{3} generations

A statistical analysis of each genetic index was performed between the results of four groups of inter- and intra-taxon crosses, namely L. esculentum var. cerasiforme, L. parviflorum, L. pimpinellifolium, and L. esculentum. The number of markers and bands examined are presented in Table 4.4 and the data were treated as co-dominant markers.

The statistical analysis of the results was carried out using the ANOVA procedure for genetic indices that are normally distributed such as H_{S} and I. Non-normally distributed indices $\left(A\right.$ and $\left.A_{e}\right)$ were analysed with the non-parametric Kruskal-Wallis test. In the case of statistical significance Tukey's test was performed for multiple comparisons. Details of the statistical analysis are given in Appendix 3 part 12.

For the number of polymorphic loci (P) there was no statistical analysis because of the few number of observations available per group, because the statistical package Popgene takes all loci in each group as one and gives just one value.

The results (Table 5.5) show a significantly $(\mathrm{P}<0.05)$ lower number of polymorphic alleles per locus (A) for the L. esculentum group compared to three inter-taxon crosses in F_{2}. The F_{3} generation did not give a statistical significance. The effective number of polymorphic alleles $\left(A_{\mathcal{C}}\right)$ was statistically significant $(P<0.05)$ in F_{2} generation. L. esculentum var. cerasiforme and L. parviflorum presented no difference between them, nor did L. pimpinellifolium and L. esculentum groups. However in F_{3} there was no statistical significance between groups.

Average gene diversity $\left(H_{S}\right)$ and Shannon's information index (I) were statistically significant $(\mathrm{P}<0.05)$ in the F_{2} generation, but no significance in the F_{3}. In the case
Table 5.5 Genetic diversity indices from microsatellite data of F_{2} and F_{3} generations in 3 inter-taxon crosses and one intra-taxon cross of Lycopersicon spp.

Crosses between L. esculentum and:	N	A		A_{e}		H_{s}		I		P	
		$\mathrm{F}_{2}{ }^{*}$	$F_{3} \mathrm{~ns}$	$\mathrm{F}_{2}{ }^{*}$	F3 ns	$\mathrm{F}_{2}{ }^{*}$	F_{3} ns	F_{2} *	F_{3} ns	F2	F_{3}
L. esculentum var. cerasiforme	40	1.71a	1.57	1.70a	1.48	0.35a	0.26	0.49a	0.37	0.71	0.57
		± 0.09	± 0.09	± 0.04	± 0.08	± 0.06	± 0.06	± 0.09	± 0.09		
L. parviflorum	16	1.86a	1.57	1.82a	1.49	0.40a	0.26	0.57a	0.37	0.86	0.57
		± 0.06	± 0.09	± 0.06	± 0.10	± 0.05	± 0.06	± 0.06	± 0.09		
L. pimpinellifolium	16	1.71a	1.86	1.54b	1.73	0.27a	0.39	0.39a	0.56	0.71	0.86
		± 0.08	± 0.09	± 0.07	± 0.08	± 0.06	± 0.05	± 0.08	± 0.06		
L. esculentum	20	1.29 b	1.57	1.28b	1.44	0.23b	0.24	0.32b	0.33	0.29	0.57
		± 0.05	± 0.09	± 0.05	± 0.07	± 0.06	± 0.04	± 0.08	± 0.08		

$\mathrm{N}=$ number of individuals per cross analysed; $A=$ number of polymorphic alleles per locus; $A_{c}=$ effective number of alleles; $H_{s}=$ average gene diversity; $I=$ Shannon's information index; $\mathrm{P}=$ proportion of polymorphic loci; small numbers correspond to standard error; ** $=$ high significance ($P<0.01$); * = significance ($P<0.05$); ns = no statistical significance; same letters show no statistical significance.
of F_{2} plants, the L. esculentum group displayed the lowest H_{S} value of 0.23 , which was different from the other groups. In I, the differences were similar, but the lowest value for the L. esculentum group was 0.32 .

The proportion of polymorphic loci (P) showed a low value for the L. esculentum group (0.29), but L. esculentum var. cerasiforme and L. pimpinellifolium had similar means (0.71), while L. parviflorum had the highest (0.86) for the F_{2} generation. In the F_{3}, only the L. pimpinellifolium group showed a different value (0.86), all other groups had identical values (0.57).

Overall, total gene diversity $\left(H_{t}\right)$ in the F_{2} generation of inter-taxon crosses was 0.51 (± 0.01), but in F_{3} was $0.39(\pm 0.02)$. In intra-taxon crosses H_{t} was $0.24(\pm 0.03)$ for F_{2} and $0.26(\pm 0.04)$ for F_{3}. The results of fixation index $\left(F_{S t}\right)$ for inter-taxon crosses were 0.20 and 0.13 for F_{2} and F_{3} respectively, but 0.04 in F_{2} and 0.08 in F_{3} for intrataxon crosses.

5.3.2 RAPD marker analysis in F_{2} and F_{3} generations

With the aim to observe the behaviour of dominant markers (presence or absence of bands) on genetic indices, a statistical analysis of each marker was carried out in the four groups of crosses. The results were analysed utilising the ANOVA procedure for genetic indices for normally distributed (H_{S} and I) and the non-parametrical KruskalWallis test for non-normally distributed $\left(A\right.$ and $\left.A_{\mathrm{e}}\right)$ indices. In the case of P, there was no statistical analysis because of the little data available. In indices statistically significant a Tukey's test was done for multivariate analysis. Details of the analysis are given in Appendix 3 part 13 and the number of markers utilised in RAPD analysis are presented in Table 4.4.

The results are shown in Table 5.6. A and $A_{\mathcal{e}}$ had high statistical significant differences $(P<0.01)$ between means in both generations, F_{2} and F_{3}. In both indices no differences were found between L. esculentum var. cerasiforme and L. parviflorum groups, either between L. pimpinellifolium and L. esculentum groups. The lowest values for each index and generation were in L. pimpinellifolium group, except for A_{e} in F_{2} showing to L. esculentum as the lowest value with 1.13 .

The index H_{S} presented high statistical significance $(P<0.01)$ for F_{2} and F_{3} generations. The lowest H_{S} were in L. esculentum group for F_{2} with 0.07 and in L. pimpinellifolium group for F_{3} with 0.10 . The L. esculentum group showed to be different to all other groups in F_{2}, but in F_{3} this group was not different with L. pimpinellifolium. In both generations, L. esculentum var. cerasiforme group did not have differences with L. parviflorum group, but in F_{2} this group showed also no differences with L. pimpinellifolium.

Shannon's information index (I) exhibited high statistical significance $(P<0.01)$ in F_{2} and statistical significance $(P<0.05)$ in F_{3}. The lowest values for I in F_{2} were in L. pimpinellifolium and L. esculentum groups with 0.11 , and L. pimpinellifolium group in F_{3} with 0.15 . No differences in means were found between L. esculentum var. cerasiforme and L. parviflorum groups in both generations, either between L. pimpinellifolium and L. esculentum groups. In respect to proportion of polymorphic loci (P), L. pimpinellifolium group showed the lowest proportion in both, F_{2} and F_{3} generations, with 0.19 and 0.25 , respectively. The highest proportion was displayed by L. esculentum var. cerasiforme with 0.46 in F_{2} and 0.45 in F_{3}.

Overall, total gene diversity $\left(H_{t}\right)$ for inter-taxon crosses showed values of 0.23 (± 0.02) in F_{2} and $0.12(\pm 0.03)$ in F_{3}. For intra-taxon crosses this index was 0.24 (± 0.03) in F_{2} and $0.14(\pm 0.05)$ in F_{3}. The $F_{S t}$ index in inter-taxon crosses in F_{2} was 0.37 and 0.18 in F_{3}. In the case of intra-taxon crosses $F_{S t}$ was 0.40 for F_{2} and 0.21 for F_{3}.
Table 5.6 Genetic diversity indices from RAPD data of F_{2} and F_{3} generations in 3 inter-taxon crosses and one intra-taxon cross of Lycopersicon spp.

Crosses between L. esculentum and:	N	A		A_{e}		H_{s}		I		P	
		$\mathrm{F}_{2}{ }^{* *}$	F_{3} **	$\mathrm{F}_{2}{ }^{* *}$	F_{3} **	$\mathrm{F}_{2}{ }^{* *}$	F_{3} **	$\mathrm{F}_{2}{ }^{* *}$	$\mathrm{F}_{3}{ }^{*}$	F_{2}	F3
L. esculentum var. cerasiforme	40	1.46a	1.46a	1.29a	1.34a	0.17a	0.18a	0.25a	0.26a	0.46	0.45
		± 0.08	± 0.11	± 0.06	± 0.10	± 0.01	± 0.02	± 0.03	± 0.03		
L. parviflorum	16	1.35a	1.35a	1.24a	1.27a	0.14a	0.15a	0.20a	0.21a	0.35	0.35
		± 0.16	± 0.16	± 0.13	± 0.13	± 0.02	± 0.02	± 0.03	± 0.03		
L. pimpinellifolium	16	1.20b	1.26b	1.15b	1.18 b	0.08 bc	0.10b	0.11 b	0.15 b	0.19	0.25
		± 0.12	± 0.15	± 0.010	± 0.11	± 0.02	± 0.02	± 0.02	± 0.02		
L. esculentum	20	1.24 b	1.27 b	1.13 b	1.21 b	0.07 bd	0.11 b	0.11 b	0.16 b	0.22	0.26
		± 0.10	± 0.15	± 0.06	± 0.12	± 0.01	± 0.02	± 0.02	± 0.03		

$\mathrm{N}=$ number of individuals analysed per cross; $A=$ number of polymorphic alleles per locus; $A_{e}=$ effective number of alleles; $H_{s}=$ average gene diversity; $I=$ Shannon's information index; $\mathbf{P}=$ proportion of polymorphic loci; small numbers correspond to standard error; ** $=$ high significance ($P<0.01$); * $=$ significance $(P<0.05) ;$ ns $=$ no statistical significance; same letters show no statistical significance.

5.3.3 Molecular markers and genetic diversity in bulks of populations

A statistical analysis of genetic diversity indices in bulks of F_{2} and F_{3} populations was carried out grouping the crosses as in Chapter 5 part 2.4. The number of markers utilised are presented in Table 4.4.

The results presented in Table 5.7 showed that using data from co-dominant microsatellite markers most of the indices in inter-taxon crosses decreased from F_{2} to F_{3} generation, except for the Shannon's information index (I), which increased. However, intra-taxon crosses displayed an increasing tendency in all indices. The comparison of indices between groups showed higher values for inter-taxon than for intra-taxon crosses, with the exception of I, which displayed for F_{2} generation a lower value in the inter-taxon group.

In the case of RAPD, indices such as $A, F_{S t}$ and P decreased from F_{2} to F_{3} generation, while $A_{e}, H_{S} . H_{t}$, and I increased in inter-taxon crosses. However in the intra-taxon group the number of polymorphic alleles per locus $(A), A_{e}, H_{S}, H_{t}, I$, and P increased, while and $F_{S t}$ decreased. Most of the indices decreased from inter- to intra-taxon groups, but in F_{2} and F_{3} generations $F_{S t}$ increased.
Table 5.7 Genetic diversity indices from microsatellite and RAPD data in bulks of populations in F2 and F3 generations of Lycopersicon inter- and intra-taxon crosses.

Microsatellites	N	A		A_{e}		H_{s}		H_{t}		I		$F_{s t}$		P	
Crosses:		F_{2}	F3	F2	F3	F2	F3	F_{2}	F3	F_{2}	F3	F2	F3	F_{2}	F3
Inter-taxon	72	$\begin{gathered} 2.00 \\ \pm 0.00 \end{gathered}$	$\begin{gathered} 1.86 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 1.75 \\ \pm 0.00 \end{gathered}$	$\begin{gathered} 1.61 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.41 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.34 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.51 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.39 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.20 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.35 \\ \pm 0.02 \end{gathered}$	0.20	0.13	1.00	0.86
Intra-taxon	20	$\begin{gathered} 1.29 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 1.57 \\ \pm 0.08 \end{gathered}$	$\begin{gathered} 1.28 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 1.44 \\ \pm 0.07 \end{gathered}$	$\begin{gathered} 0.23 \\ \pm 0.06 \end{gathered}$	$\begin{gathered} 0.24 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} 0.24 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.26 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} 0.32 \\ \pm 0.08 \end{gathered}$	$\begin{gathered} 0.33 \\ \pm 0.08 \end{gathered}$	0.04	0.08	0.29	0.57

RAPD	N	A		A_{e}		H_{s}		H_{t}		I		$F_{\text {st }}$		P	
Crosses:		F2	F3	F2	F3	F2	F3	F_{2}	F3	F2	F3	F_{2}	F3	F2	F3
Inter-taxon	72	$\begin{gathered} 1.74 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} 1.67 \\ \pm 0.06 \end{gathered}$	$\begin{gathered} 1.38 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 1.42 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.15 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.20 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.23 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.24 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.35 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.36 \\ \pm 0.04 \end{gathered}$	0.37	0.18	0.74	0.66
Intra-taxon	20	$\begin{gathered} 1.24 \\ \pm 0.10 \end{gathered}$	$\begin{gathered} 1.27 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} 1.13 \\ \pm 0.06 \end{gathered}$	$\begin{gathered} 1.21 \\ \pm 0.12 \end{gathered}$	$\begin{gathered} 0.07 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.11 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.12 \\ \pm 0.03 \end{gathered}$	$\begin{gathered} 0.14 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.11 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.16 \\ \pm 0.03 \end{gathered}$	0.40	0.21	0.22	0.26

$\mathrm{N}=$ number of individuals analysed per cross; $A=$ number of polymorphic alleles per locus; $A_{e}=$ effective number of alleles; $H_{s}=$ average gene diversity; $H_{t}=$ total gene diversity; $I=$ Shannon's information index; $F_{s t}=$ fixation index; $P=$ proportion of polymorphic loci; small numbers correspond to

5.4 Results of Genetic Base Broadening in a field trial

As part of the selfing programme of this project, a complete set of F_{1} accessions were grown in CRI La Platina, Santiago, Chile. As a result of this programme, data on insect attack on fruits were taken and statistically analysed. The insect under study was the South American tomato pinworm (SATP) (Tuta absoluta Meyrick, Lepidoptera - Gelechiidae). This is an insect that has become a serious tomato pest in countries such as Argentina (Bahamondes and Mallea, 1969), Chile (Povolny, 1975; Larraín, 1986; Estay, 1998), Peru, Bolivia, Ecuador, Colombia, Venezuela (Povolny, 1975), Uruguay (Carvallo et al., 1981), and Brazil (Moreira et al., 1981). Severe SATP attack can cause yield losses of up to 100\% (Scardini et al., 1982; Espinoza, 1991). Quality standards for both fresh market and processing tomatoes require the industry to rely heavily on the use of pesticides for SATP control. However, genetic resistance or tolerance to SATP in tomato may provide an alternative method for pest control.

In the segregating F_{2} generation, the percentage of damaged fruits at harvest was observed and analysed in groups similar to Section 5.2.2. L. esculentum parents utilised in the hybridisation were used as control. The data were statistically analysed as a completely random design using ANOVA for significance and Tukey's test for multiple comparisons. Details are given in Appendix 3 part 14.

The results are presented in Table 5.8. These results show that the means differ significantly $(\mathrm{P}<0.01)$. The most damaged fruits were in L. esculentum parents with a mean of 62.98%, but intra-taxon crosses showed a mean of 54.76%. No statistical differences were found between crosses of L. esculentum and the parental group. All inter-taxon crosses displayed statistically $(P<0.01)$ lower damage than intra-taxon crosses and tomato parents, but no differences between them. The lowest mean for damaged fruit was observed in L. parviflorum group with 14.74%.

Table 5.8 Means and standard error for percentage fruits damaged by the South American tomato pinworm (Tuta absoluta Meyrick, Lepidoptera Gelechiidae)

	Mean**	Standard error
L. esculentum parents	62.98 a	± 9.28
Crosses of L. esculentum with:		
L. esculentum	54.76 a	± 0.32
L. esculentum var. cerasiforme	30.90 b	± 5.55
L. parviflorum	14.74 b	± 3.24
L. pimpinellifolium	24.08 b	± 3.19

** $=$ high statistical significance $(P<0.01)$; same small letter show no statistical significance

5.5 Discussion

Morphological characteristics

Most morphological characters analysed in this study are the phenotypical expression of one or two genes. Segregation ratios were not analysed because there were few individuals per segregating generation growing in the greenhouse due to limited space. Therefore, it is not possible to determine the ratio, but observe the tendency expressed in the morphology of the plants. The results of these observations in both F_{2} and F_{3} generations showed that most individual plants from inter-taxon crosses tend more toward the wild than the domesticated character, such as smaller fruits or vine-type growth.

The problem in the use of wild relatives as source of variation seems to be less in the characterisation and identification of desirable characters, but more in the difficulty of introgressing these traits into domesticated germplasm without introducing undesirable associated characters of the wild relatives (Hawtin et al., 1996). Once an adapted germplasm has been obtained, the introduction of new traits from wild relatives or landraces can present severe difficulties to the breeder. This is even more so for traits under complex genetic control. For these reasons, breeders are reluctant to incorporate massively germplasm from wild relatives into adapted stocks. Modern cultivars are usually the first choice for breeders looking for better characters.

Conversely, a genetic base broadening programme envisages to incorporate novel characters to adapted germplasm and maintain the genetic variability at the highest level.

The only main morphological difference in the intra-taxon crosses of tomato cultivars in the present project was in the type of vegetative growth (determinate vs indeterminate), fruit shape and size. Tomato cultivars produce fruits with extreme variation in both shape and size. The diverse fruit types have been selected for particular purposes either for their utility or for their novelty (Ku et al., 1999). It is possible that humans initially selected for mutations associated with larger fruits and variable shapes, and gradually sufficient mutations accumulated to produce the present day cultivars (Grandillo et al., 1999).

The difference in fruit weight between inter- and intra-taxon crosses was expected, but no comparison between F_{2} and F_{3} generations was possible as they grew in different seasons. Fruit ratio confirmed the visual estimation of shape in most plants, corresponding to a slightly flattened to round shape in both group of crosses.

In respect to solid soluble content, there was an expectation to have lower concentrations of sugars in L. esculentum crosses than in inter-taxon. But in the F_{2} generation no statistical differences were found between them. Within F_{3} intra-taxon crosses the solid soluble content was significantly lower probably due to differences in the environmental conditions during the growing season. The full potential expression of continuous characters could not be determined because of restricted growing conditions at SAC both in space and compost.

In the present study, seed weight was found to be higher for L. esculentum in comparison to inter-taxon crosses. Most domesticated plant species produce larger seeds than those from wild relatives (Evans, 1993). During domestication and subsequent plant breeding, plants have been selected for larger seeds to give uniform and high germination and high vigour under field conditions (Doganlar et al., 2000). The incorporation of wild relatives' genes into tomato cultivars resulted in lighter and smaller seeds as phenotypic effect linked to smaller fruits. Seed weight in tomato is quantitatively inherited and determined mainly by additive gene action (Nieuwhof et al., 1989). QTLs for seed weight are often in close proximity to loci for fruit
weight and soluble content (Goldman et al., 1995; Grandillo and Tanksley, 1996), but whether these relationships are due to linkage or pleiotropy has not yet been determined (Doganlar et al., 2000).

Morphological diversity indices

There was no clear tendency within the genetic indices analysed for the three types of data, namely co-dominant markers (morphological and microsatellites) and dominant (RAPD). Genetic variability in small populations is affected by specific phenomena. The effects of genetic drift and selection enhance the risk of losing alleles at selected or unselected genes (de Rochanbeau et al., 2000). The expectation for these genetic indices was a decreasing trend from the F_{2} to the F_{3} generation. In autogamous species, inbreeding results in homozygosity. The frequency of heterozygous loci over a series of self-pollinated generations will be expected to fall by half in each succeeding generation $\left(H_{S}\right)$ (Srb et al., 1965). Similarly it was also expected to observe an increase in A_{e} because of its relation with homozygosity.

However, in the morphological character analysis, the intra-taxon crosses for all indices showed similar or identical values from F_{2} to F_{3} generations. This can be explained by the similarity present among the L. esculentum cultivars and the type of characters selected, which are very stable after years of breeding. The little genetic variability found could be due to a few fruit characters, such as shape or size. Conversely, inter-taxon crosses displayed a decreasing tendency for all indices, but H_{S} not accomplishing the expected half value. Similar situation was observed when comparing A and A_{e} among groups, where there was no statistical difference between L. esculentum and L. esculentum var. cerasiforme groups, either for H_{S} and I in F_{2} generation, but they were statistically different to L. parviflorum and L. pimpinellifolium groups.
In the case of bulked populations, from 20 loci examined, inter-taxon crosses tended to be almost three fold higher for both F_{2} and F_{3} generations than intra-taxon crosses in respect to proportion of polymorphic loci (P). However, there were no differences observed from F_{2} to F_{3} generations in both types of bulked populations. P is simply the proportion of loci examined that show evidence of more than one allele, but it
suffers from two defects: arbitrariness and imprecision (Ayala and Kiger, 1984). The number of variable loci observed will depend on how many individuals are examined, but still it is a useful measure of variation. The results suggest that crosses involving tomato wild relatives as parents possess higher number of polymorphic loci as effect of heterozygous alleles incorporation into mainly homozygous loci of L. esculentum cultivars and they are conserved at high level until F_{3}. However, it is necessary to explore during more generations to conclude properly whether this index decreases. The effective number of alleles $\left(A_{e}\right)$ from inter- to intra-taxon crosses was higher in 9% for F_{2} and 4% for F_{3} generations. There were less homozygous loci in inter- than in intra-taxon bulked populations, effect also observed in H_{S} and I. From F_{2} to F_{3} generations, these three indices showed decreasing values for inter- and a very slight variation for intra- specific bulked populations. The $F_{S t}$ for inter-taxon crosses showed that 37% of the total allelic variation is apportioned within populations, and nearly 40% in the case of intra-taxon crosses, within the range estimated for predominantly inbreeding species, approximately 43% (Bretting and Goodman, 1989).

These findings suggest that the number of loci analysed was too small and a number of them could be homozygous for the species or accessions utilised as parents, especially between the closely related species L. esculentum and L. esculentum var. cerasiforme. This low level of genetic variation found within self-compatible species may be because of the role of autogamy that drives the decrease of genetic variation and fixation of alleles (Rick, 1984; Peralta and Spooner, 2001).

Molecular diversity indices

Microsatellite and RAPD markers produced very variable results, from decreasing to increasing values in F_{2} and F_{3} generations. Proportion of polymorphic loci (P) showed in microsatellites an expected tendency between groups for F_{2} generation, where L. parviflorum group presented the highest value and the lowest L. esculentum group. However, RAPD markers, at the same generation, showed completely distorted values in relation to the microsatellites, being the highest L. esculentum var. cerasiforme and the lowest L. pimpinellifolium group. In F_{3} generation,
microsatellites displayed 3 identical values (0.57); the exception was L. pimpinellifolium group with 0.86 . RAPD conserved similar distribution of values. In bulked populations, microsatellites and RAPD markers, in F_{2} generation the intertaxon crosses were almost three fold higher than intra-taxon crosses, but in both markers this difference decreased in F_{3} generation. These results are not the best comparison between populations, because they are biased by the selection of the most polymorphic primers in both molecular marker systems utilised in this experiment. However, they give a robust indication of the differences between the created populations, especially between inter- and intra-taxon crosses.

In respect to A and A_{e}, both markers showed that L. esculentum and L. parviflorum groups in F_{2} generation had differences statistically significant from L. esculentum var. cerasiforme and L. pimpinellifolium groups. In bulked populations, A_{e} presented differences between inter- and intra-taxon crosses of 27% to 11% for F_{2} and F_{3} generations in both molecular markers. Considering that the closer the difference between A and A_{e}, the higher the similarity of allele frequencies between populations; therefore it is likely that less variability exist among the accessions analysed, microsatellites showed the least difference in F_{2} generation for L. esculentum and L. esculentum var. cerasiforme. However these differences increased in F_{3} generation. This relation was reflected in bulked populations, where intra-taxon crosses showed little difference in comparison to inter-taxon crosses. In the case of RAPD, the trend of the values was similar to microsatellites but the differences were higher. These results can be expected in predominantly self-pollinated species because of their tendency to homozygosity, especially remarkable is the case of intrataxon esculentum crosses where the parents used in the crosses were genetically close. Both molecular markers showed a clear difference between intra- and intertaxon crosses; this is expected since the difference reflects the lower genetic diversity present in edible tomato accessions and which increases when hybridised to accessions with more variation in their genetic background, such as wild relatives.

Slight differences between F_{2} and F_{3}, in both markers, were found for H_{S} and I. The H_{S} and I in L. esculentum group was statistically different from all other groups in the F_{2} generation for both microsatellites and RAPD. H_{S} in bulked populations
showed almost two fold higher values in inter- than intra-taxon crosses in F_{2} and F_{3} generations for both markers. In respect to H_{t}, inter-taxon bulked populations showed higher values than intra-taxon for microsatellites and RAPD in both generations. However, from F_{2} to F_{3} generations for microsatellite markers the value decreased in inter-taxon crosses, but the index decreased in intra-taxon and both crosses analysed by RAPD. These measures are the most commonly used to estimate genetic variability. In theory these values should range from 0 to 1 (homozygosity to full heterozygosity), although for dominant markers, like RAPD, the maximum level is 0.5 . Co-dominant markers never reach the maximum level of 1 for self-pollinating species; populations in equilibrium can reach 0.5 as maximum. For autogamous species, H_{t} and I are more useful indices because H_{S} does not reflect well the amount of genetic variation in such organisms. There will be more homozygotes in a population in which crosses between relatives is common, even though different individuals can carry different alleles if the locus is variable in the population. There will also be more homozygotes in a population in which mating between relative is common than in a population where it does not occur, even when the allelic frequencies are identical in both populations (Ayala, 1982). The lower H_{t} index of intra-taxon esculentum crosses demonstrate the low levels of diversity present in L. esculentum accessions but indicate that there is still variability present within landraces and old cultivars. This may be useful for breeding purposes when incorporated into appropriate populations (Saavedra and Spoor, 2002).
Fixation index $\left(F_{S t}\right)$ is usually utilised to analyse the differences in genetic variability among populations. The F_{2} bulked populations analysed with microsatellite markers in inter-taxon crosses showed that about 20% and 4% in intra-taxon crosses genetic variation can be explained as differences between populations; but 80% and 96% of the genetic variation lie in the differences within populations, respectively. In F_{3} generation inter-taxon crosses decreased to 13% the variation due to differences between populations and intra-taxon crosses increased to 8%. For RAPD markers, the values obtained reflect the high differentiation of genetic variability among created populations, 37% for the inter-taxon and 40% for the intra-taxon or esculentum group. However, these results fell to 18% and 21% respectively in F_{3}
generation. The variability of these results can be explained by the number of segregating individuals present in the samples taken in each population. However, these results indicate that a sizeable portion of the genetic variability in created populations lies within populations, but also the variability between is very important; this is one of the objectives in a base broadening approach.

These results were not expected for markers assumed not affected by environmental conditions. However, there are several possible explanations for these observations. The most obvious is sample size, due to which the total diversity potentially present within the created populations may not be represented. However due to time and financial constraints it was not possible to increase the number of samples per created population. An alternative explanation is accidental out-crossing occurred within the greenhouse, in spite of controlled conditions. The out-crossing may have occurring as a result of: the individual plants being grown too close together; contact between flowers; pollen blown away by movement during watering; and/or by insects. The relativity of the indices obtained with each genetic marker, for instance H_{S} (average gene diversity) will depend on the number of polymorphic loci utilised in the calculations, each monomorphic locus included will decrease the index level. Also the number of polymorphic loci included will change the effective number of alleles $\left(A_{e}\right)$ considering it as the inverse of homozygosity, and the proportion of polymorphic loci (P) that with low number of loci samples the information is locked up in allele frequencies.

Low values for H_{S} and I in L. esculentum crosses were found in comparison to intertaxon crosses. This fact demonstrates again the low molecular diversity present in tomato cultivars as a result of low genetic variability of ancestral forms (Rick and Chetelat, 1995). Breeding methods utilising pedigree selection, backcrosses and single-seed descent promote homozygosity. The inter-taxon crosses showed statistical differences in comparison to L. esculentum group for these indices. Thus, when considering the tomato cultivars as a genetic starting point, incorporation produced an increase in heterogeneity, the desired effect in a genetic base broadening project. This is reflected in the total gene diversity $\left(H_{t}\right)$ where values for inter-taxon crosses are twice as high of the intra-taxon with microsatellite markers. By grouping
data, it may be possible to formulate preliminary recommendations about relative approaches. This is very important because base broadening should act to create pools of diversity, which will be handled as populations.

Comparing results between the 3 types of markers, it is necessary to consider that there may be several reasons for the observed differences in the RAPD assay and the other marker systems. Scoring of RAPD polymorphisms appears to be more subject to error than scoring the other, co-dominant polymorphisms, such as microsatellites or morphological. The presence of a RAPD band of apparently identical molecular weight in different individuals is not evidence that the two individuals share the same homologous fragment, and single bands can sometimes be comprised of several comigrating amplification products. These limitations do not prevent the estimation of allele frequencies necessary for population genetic analysis, but they do reduce the accuracy of such estimation relative to co-dominant markers such as microsatellites. To increase the degree of statistical power using RAPD 2-10 times more individuals need to be sampled per locus (Lynch and Milligan, 1994).

Field trial

A field trial was carried out to analyse the effect of incorporation of genes from wild relatives in tomato cultivars. The experiment was carried out studying the SATP attack of fruits under field conditions. Cultivar resistance/tolerance to the SATP in tomato may provide an efficient alternative method for pest control. Resistance to SATP has been found in several wild Lycopersicon species (França et al., 1984; Lourenção et al., 1984). These preliminary results show a significant difference between inter- and intra-taxon crosses, especially those including L. parviflorum as parent. Unfortunately, these accessions presented the smaller fruits within all intertaxon groups, characteristic that have to be improved. However, the effect of natural resistance could be due to secondary compounds produced by the plants, mainly atomatine that acts as repellent to moths laying eggs in leaves and green fruits, usually found in greater concentrations in tomato wild relatives (Rick and Chetelat, 1995). This is a valuable source of information for future genetic base broadening projects because the data show some effect in early segregating generations, which later can
become in integral part of breeding programmes for control of this pest in South America.

Although the observed results of this chapter were not as expected, the information on segregating populations from inter- and intra-taxon crosses has provided a platform to develop further the idea of incorporation. In addition, the information obtained in this project will help answer questions relating to strategies for the conservation of created genetic variability in autogamous plants (Chapter 6).

Chapter 6

Theoretical strategies for conservation of genetic variability in autogamous crops subjected to genetic base broadening

6.1 Introduction

A genetic base broadening programme does not only involve the selection of parents, hybridisation and management of consecutive generations, but also includes a range of strategies determined by constraints such as size of experiment, type of accessions involved, methodology suitable to the reproductive biology of the species, locations, amount of time, and funding.

The utilisation of available genetic resources, such as wild relatives and germplasm temporarily not utilised by breeders or recycled old cultivars are key resources. Wild relatives of crops that have survived under natural selection pressures can be particularly useful as source of genes for specific adaptive traits (Hawtin et al., 1996). The incorporation of this genetic material into domesticated and adapted germplasm through hybridisation can be the starting point for broadening the genetic base, but in the case of autogamous crops it is also necessary to design a strategy for the conservation of the created variability. In highly autogamous crops, such as tomato, the created populations will be at a homozygosity level similar to parents after few generations of self-pollination. Even without human intervention, genetic variability will decrease, however such intervention can exacerbate the decline.

The aims of this chapter are to discuss different strategies to conserve, as best as possible, the high genetic variability created with broad scale hybridisations at the beginning of a genetic base broadening programme. In addition, some of the general questions raised at the start of this project will be examined in the light of information and experience acquired during its course.

6.2 General constraints

Genetic base broadening is often considered to be an activity at the interface between germplasm conservation and utilisation (Cooper et al., 1998). As such there is a lack of clarity as to interest and who will be the key players, the public or private sector. However, the main problem lies in funding the activity, because this point focuses on several questions regarding the scale of the operation and the duration of the project. The scarcity of long-term funding for research, in general, has had negative effects both for maintaining and increasing the utilisation of germplasm stored in genebanks,
and this is reflected in the limited activity in genetic base broadening projects. Depending on the reproductive biology of the crop under study, several generations are required as a minimum in order to achieve a degree of local adaptation.

Large-scale base broadening approaches have been successful in improving crop productivity, for example in maize (Goodman, 1985) and sorghum (Mengesha and Rao, 1982). Simmonds (1993) proposed that genetic base broadening should be on a large scale because there are heavy losses and discards within the genetic material created. For instance, in this study 90 hybridisations including reciprocals were carried out at different development stages of the flowers, but only 49 crosses successfully produced F_{1} seeds, from these 49 crosses only 33 produced seeds in F_{2}, and 32 in F_{3}. Most of the losses were because of genetic incompatibilities, such as the case of crosses between green- and red-fruited species, but there were also populations presenting susceptibility to greenhouse diseases or weak plant development due to unsuitable genetic combinations.

6.3 Strategies for autogamous crop species

Base broadening is about creating large populations that have good local adaptation, but have not been selected for the other requirements of crops namely pest/disease resistance and quality aspects. So are we creating variability to 'fix the variability' or are we creating populations where the possibilities, exist in future, for further recombination and assortments. So we must remember that initially with autogamous species, we need to maintain diversity or new combinations at early stages (in order to allow local adaptation or natural selection to work). This will be followed by an inevitable collapse as selection kicks in, and what is required then are mechanisms ('natural' or with human intervention) which facilitate further recombination.

There are several ways to conserve the genetic variability in predominantly autogamous plants after hybridisation, from the simple method of self-pollination to more complex system involving facultative out-crossing or male sterility. It is further possible to utilise combinations of methods depending on the reproductive biology of the species.

6.3.1 Self-pollination

Selfing is a simple method for multiplying hybridised genetic material. However, there are some constraints for this system (see Chapter 5). But, variation in the system adopted such as backerossing to both original parents in a population, or double crosses from F_{1} populations could mitigate the loss of genetic variability. Alternatively, forced hybridisation may be used to regularly regenerate variability, but how often and what percentage of population would be involved? It is difficult to estimate. By itself self-pollination cannot be considered as base broadening, since one would need extremely substantial resources in order to sample all possible combinations within a population. Inevitably, if the programme is carried out at a single site, there will be very heavy losses of the variability due to specific natural selection pressure. This might be appropriate, if the base broadening project has reasonably defined aims (e.g. introduction of a range of pest/diseases resistances while maintaining adaptability) and if new base broadening populations are started for other defined projects. Difficulties arise where base broadening is more generic, and where aims are not defined or indeed where they are not known at all. It may be then that other approaches use a large number of sites to maintain a 'large scale' diversity, whilst sacrificing variability at each site. This can be with or without cycles of random deliberate hybridisation within each sub-population, and may also include deliberate hybridisation between sub-populations.

Double crosses of F_{1} accessions of different parentage is another possibility of producing populations with wider combinations of alleles, but at the end selfing of these populations will lead to homozygosity in further generations. However, the genetic variability that could be created from these crosses may be higher than in simple crosses because of the wider possibilities of recombination of genes and the subsequent production of novel genotypes.

6.3.2 Facultative out-crossing populations

In autogamous crops there are, within natural occurring populations or cultivars stored in gene-banks, accessions that possess characteristics for out-crossing, such as
exserted styles in Lycopersicon. This character is found within wild relatives and can be introgressed into populations presenting inserted styles by simple hybridisation. Exserted styles allow the reception of pollen from different plants and flowers through insects.

By utilising wild type accessions carrying this trait as parent in simple crosses and later, if necessary, in double crosses, populations segregating toward both phenotypes can be created. Therefore out-crossing could occur giving the appropriate environmental conditions for growing and the presence of pollination vectors, such as insects and/or wind. However, it is important to consider possible genetic incompatibilities between selected parents, otherwise it might be necessary to use "bridge" crosses in order to utilise these lineages in genetic base broadening programmes.

A simple analysis of the segregation for style length was carried out in F_{2} and F_{3} inter- and intra-taxon crosses, and in double crosses. Results of F_{2} and F_{3} segregation are shown in Table 6.1, and those for double crosses in Table 6.2.

In both generations F_{2} and F_{3}, the L. esculentum intra-taxon and inter-taxon crosses containing L. esculentum var. cerasiforme as parent did not show individuals with exserted styles in the flowers. It is likely that these two species share the same alleles controlling this trait. In the case of those crosses containing L. parviflorum and L. pimpinellifolium, segregation for this character showed a higher percentage of individuals presenting inserted than exserted styles in F_{2} and F_{3}. There was also a tendency of increased number of individuals with inserted styles from F_{2} to F_{3} generations, perhaps due to a dominant character controlled by the family genes Ex. However, this may also be a reflection of the plants sampled in the F_{2} generation. Double crosses are usually used in hybrid cultivar production to exploit hybrid vigour from four lines. In the present study, two out of seven populations had only individuals with inserted styles. The other populations showed a tendency toward inserted styles, but one cross (5219x3915) displayed higher percentage of individuals possessing exserted styles. However, some populations segregated strangely and these results presented unexplained abnormalities.

Table 6.1 Percentage of individuals presenting inserted or exserted styles in inter- and intra-taxon crosses of F_{2} and F_{3} generations.

	F $_{2}$		F3		
L. esculentum cross with	N	Inserted style	Exserted style	Inserted style	Exserted style
L. esculentum L. esculentum var. cerasiforme L. parviflorum	20	100%	0%	100%	0%
L. pimpinellifolium	40	100%	0%	100%	0%

$\mathrm{N}=$ number of plants observed
In a genetic base broadening project this could be another strategy to create populations with mixed style types exhibiting in- and out-breeding characteristics, and conserving heterozygosity within populations.

Table 6.2 Percentage of individuals presenting inserted or exserted styles in double crosses involving tomato and its wild relatives.

Double cross	\mathbf{N}	Inserted styles	Exserted styles
1939×5211	18	57.9%	42.1%
6021×2239	15	100%	0%
3911×1560	12	72.7%	27.3%
5222×1960	19	78.9%	21.1%
5219×3915	20	45.0%	55.0%
1160×5219	16	100%	0%
1539×1560	20	55.0%	45.0%

The first two digits represent the female parent and the second two the male parent. $11=L$. esculentum cv. Limachino; $15=$ L. esculentum cv. Ace; $19=$ L. esculentum cv. Lukullus; $21=L$. esculentum cv. Marglobe; 22=L. esculentum cv. San Marzano; 39=L. esculentum var. cerasiforme, LA-1673; 52=L. parviflorum, T1264/94; 60=L. pimpinellifolium; PI-390739. $\mathrm{N}=$ number of plants observed.

Selection in favour of facultative out-crossing, may create problems of utilisation of the material, since: a) the individual maintains a higher levels of heterozygosity and therefore useful superior traits in breeding programmes are masked, and b) the
character of exserted style itself will have to be selected against in order to eventually obtain autogamous cultivars.

6.3.3 Exploitation of male sterility

Exploitation of male sterility is another alternative to maintain genetic variation at higher levels in self-pollinated crops. Male sterility is widely used commercially in F_{1} hybrid production. The use of male sterile parents in a genetic base broadening programme could be one solution to the problem of conserving genetic variability within populations. The presence of male sterility alleles allows the identification of male sterile plants in the population, then seeds can be harvested mainly from male sterile plants ensuring higher levels of out-crossing and recombination.

Male sterility may be genetically controlled by nuclear genes; it is usually recessive, thus MsMs and Msms are male fertile and msms male sterile plants. However, it can also be cytoplasmically controlled and in this case is maternally inherited (Kaul, 1991), and then female ($\mathrm{S}=$ male sterile) \times male ($\mathrm{F}=$ fertile) produces female S individuals. Male sterility may also involve both genetic and cytoplasmic control, with both the $m s m s$ genotype and the S cytoplasm needed for male sterility, and the Ms genes are epistatic to the S cytoplasmic genes. This allows simple restoration of male fertility (Mayo, 1987).

When selecting male sterile parents the choice of individuals presenting recognisable characteristics within the populations is very important. This methodology has already been utilised by Kannenberg and Falk (1995) in their hierarchical recurrent introgressive population enrichment (RIPE) method for enhancing the genetic base in barley.

In plant breeding an advantage associated with the use of monogenic sterility systems is their inability to generate 100% sterile populations, critical are the early generations (Jensen, 1988). In equilibrium, $\mathrm{F}_{2} \mathrm{~s}$ yield 25% sterile progeny. However, in plant breeding practice the gradual loss of male sterile individuals in a population is of little consequence, except in long-term research projects (Jensen, 1988). A base broadening programme is not interested in 100% effectiveness, the system is merely a mean of allowing recombination to occur, but the scale of the operation is
important. An ideal genetic male sterility system for a genetic base broadening project should be facultative in the extent that it can also be autogamous under certain conditions or manipulations.

In the case of tomato, there are a number of genetic male sterile mutants in a wide variety of types and genetic backgrounds listed by Stevens and Rick (1986). The degree of androecium reduction in the $m s$ series varies from extremely modified stamens to those that can be distinguished from normal only by the absence of viable pollen (Stevens and Rick, 1986). However, it seems that not all male sterile variants are potentially useful, because some of them do not accomplish the requirements of total recessivity, or normal female fertility. In the present study male sterility was not used as germplasm for hybridisation.

Questions on the exploitation of male sterility are very much minor to the comments above. A weak system of male sterility might be as effective as facultative outcrossing as a means of generating and maintaining genetic variability.
In any base broadening programme some selection will inevitably take place, particularly for generally favourable agronomic characters, and for characteristics influencing local adaptability. The use of techniques such as male sterility systems may have value in producing populations where there is little initial focus, but have intrinsic problems in a clearly directed programme with very defined aims.

6.4 Management of created populations

6.4.1 Single-site exploitation of natural selection

Single-site exploitation is an easy way for managing the created populations in a genetic base broadening programme. Regardless of less costs and better control over field trials and data acquisition, this method has a limitation from the point of conserving genetic variability. Single-site exploitation would lead to the adaptation of populations to defined environments, biasing the selection of individuals and narrowing the genetic background of the populations. Conversely, knowledge of the nature and relative magnitude of the various types of genotype-environment interactions only become obvious when the populations are subjected to many environments in different sites.

6.4.2 Multi-site exploitation of natural selection

Genetic base broadening may be desirable for a number of reasons (discussed elsewhere in this thesis), either to create new genotypes to be exploited for existing crop production areas, or indeed to extend the cropping areas and off-season production (saline soils, cold/heat resistance, etc.). How such populations are treated may indeed determine success or failure. For example, development and exploitation of a base broadening programme at one site may produce material adapted to those specific conditions, this is acceptable whether the site is representative of a major cropping area, but of limited or no value if the site does not represent such area.

Multi-site evaluation of populations in a base broadening programme can have several advantages and can operate in a range of environments, depending on the overall scale of the operation.

Environments can vary greatly, so that testing sites cannot cover the whole range of production areas for a crop. The adaptation of a crop, i.e. the ability to survive in particular environment, and the exploitation of its productivity are under an extremely complex genetic control (Hawtin et al., 1996). In genetic base broadening, multi-sites studies intend to exploit the genotype-environment interactions that allow local adaptation in artificially created populations. Simmonds (1993) proposed 'let nature do the work', in populations spread across very diverse environmental conditions, such as countries, regions and sites within a region. The populations will be exposed to diverse environmental stresses and disease pressures and the result being that different genotypes will survive at each site.

Although the scale of a genetic base broadening programme depends absolutely on economic factors, it can be considered at a number of levels: 1) for local needs in a specific environment; 2) for undefined environments lying within a broad ecogeographic region/zone; 3) for undefined (or unknown) quality aspects across a range of environments (specific broad eco-geographic zone); and 4) for undefined environments lying across a wide range of eco-geographical zones.
This net is not exhaustive, there may be other combinations. All, ultimately, depend on the resources (financial) available, but the different levels and scales may require collaboration at national, regional, or greater levels. This inevitably will bring
problems of logistics and collaboration. Management of such complex programmes may involve centralised reassortment of the gene-pool, followed by selection for adaptability at single sites, and followed by reassessment at multiple sites to determine the nature of adaptation. The frequency of such reassortment activities, along with other questions relating to the incorporation of new genetic material will depend on the nature of the crop and the environmental effects on the plants.

Examples for multi-sites experiments in genetic base broadening are found in Latin America and the USA, where locally adapted maize germplasm was distributed and evaluated under different environmental conditions (Sevilla and Holle, 1995). Other examples are potatoes (Simmonds, 1993) and GEM (germplasm enhancement of maize) systems in maize (Goodman, 1985).

The disadvantages of this kind of approach are the high cost, logistic difficulties to find partners around the world and the control over every experimental site, specially the personnel involved at each site.

However, this method, linked with any other quoted in this chapter, could help to solve the problem of utilising genetic variation and accelerate the analysis of progeny performances under different selection pressures in agronomically relevant environments.

6.5 General conclusions

Genetic base broadening is an activity needed in autogamous crops, but the lack of long-term research funds has contributed to neglecting long-term pre-breeding activities (Cooper et al., 1998). This type of activity should last for long periods aiming at the creation of new diversity through continued recombination and selection. There are several sources of germplasm with pest resistance and/or tolerance to environmental stresses that could be incorporated into adapted cultivars through a comprehensive germplasm enhancement programme. The relative success of any effort or programme will depend on the availability and utilisation of the genetic variation. However, the conservation of the created genetic variability at higher levels in autogamous species is the key issue, and there is a need to address the question of useful strategies.

Modelling a strategy for autogamous crops can help to decide when and how often to hybridise again the population to regenerate genetic variability. Autogamous crops, assuming that they are in Hardy-Weinberg equilibrium (distribution of alleles frequencies $p^{2}+2 p q+q^{2}$), decrease heterozygous individuals for a determined single mendelian segregating locus by a half in each self-pollination, therefore increasing the proportion of homozygous individuals for that locus (Table 6.3), then within the population there is a decrease of the genetic variability for that locus. The existence of genetic variation is a necessary condition for evolution (Ayala and Kiger, 1984). If at a certain gene locus all individuals of a population are homozygous for exactly the same allele, selection cannot take place at that locus, because the allelic frequencies cannot change from generation to generation. Critical point in this trend occurs between F_{4} and F_{5}, where the number of heterozygous loci fall below 10%, after this point the decreasing heterozygosity for this locus reaches the lowest levels, almost zero. This model suggest that backeross hybridisation using both parents should be done at this stage, repeated every 4 cycles (Table 6.4) and it must involve a large part of the population. In this way, the equilibrium of the proportion of homozygous (decrease to 50%) and heterozygous (increase to 50%) individuals can be recovered and the genetic variability conserved at higher levels.
The individual merits of the different approaches can be determined, but there is need to stimulate support and funding for these initiatives, which is essential for carrying out and developing appropriate techniques and systems.
Table 6.3 Proportion of heterozygous and homozygous individuals from crosses of heterozygous and homozygous populations in one locus with simple mendelian segregation.

Generations	Homozygous \times Heterozygous populations		Heterozygous \times Heterozygous populations		Homozygous x Homozygous populations	
	Heterozygous individuals	Homozygous individuals	Heterozygous individuals	Homozygous individuals	Heterozygous individuals	Homozygous individuals
$\mathbf{F}_{\mathbf{1}}$	50.00%	50.00%	50.00%	50.00%	100.00%	
$\mathbf{F}_{\mathbf{2}}$	25.00%	75.00%	25.00%	75.00%	50.00%	50.00%
$\mathbf{F}_{\mathbf{3}}$	12.50%	87.50%	12.50%	87.50%	25.00%	75.00%
$\mathbf{F}_{\mathbf{4}}$	$\mathbf{6 . 2 5 \%}$	$\mathbf{9 3 . 7 5 \%}$	$\mathbf{6 . 2 5 \%}$	$\mathbf{9 3 . 7 5 \%}$	12.50%	87.50%
$\mathbf{F 5}_{\mathbf{5}}$	3.13%	96.87%	3.13%	96.87%	$\mathbf{6 . 2 5 \%}$	$\mathbf{9 3 . 7 5 \%}$
$\mathbf{F 6}_{6}$	1.56%	98.44%	1.56%	98.44%	3.13%	96.87%
$\mathbf{F 7}_{7}$	0.78%	99.22%	0.78%	99.22%	1.56%	98.44%
$\mathbf{F 8}_{8}$	0.39%	99.61%	0.39%	99.61%	0.78%	99.22%

Table 6.4 Model for a single locus segregating in mendelian ratios for a cross between one heterozygous and one homozygous population, followed by back crosses to both parents .

Generations	$\mathbf{A A}$	$\mathbf{A B}$	$\mathbf{B B}$
\mathbf{F}_{1}	50.00%	50.00%	
\mathbf{F}_{2}	62.50%	25.00%	12.50%
\mathbf{F}_{3}	68.75%	12.50%	18.75%
\mathbf{F}_{4}	71.88%	6.25%	21.87%
\mathbf{F}_{1}	37.50%	50.00%	12.50%
\mathbf{F}_{2}	50.00%	25.00%	25.00%
\mathbf{F}_{3}	56.25%	12.50%	31.25%
\mathbf{F}_{4}	59.38%	6.25%	34.37%
\mathbf{F}_{1}	31.25%	50.00%	18.75%
\mathbf{F}_{2}	43.75%	25.00%	31.25%
\mathbf{F}_{3}	50.00%	12.50%	37.50%
\mathbf{F}_{4}	53.12%	6.25%	40.63%
\mathbf{F}_{1}	28.12%	50.00%	21.88%
\mathbf{F}_{2}	40.63%	25.00%	34.37%
\mathbf{F}_{3}	46.88%	12.50%	40.62%
\mathbf{F}_{4}	50.00%	6.25%	43.75%
\mathbf{F}_{1}	26.56%	50.00%	23.44%
\mathbf{F}_{2}	39.06%	25.00%	35.94%
\mathbf{F}_{3}	45.31%	12.50%	42.19%
\mathbf{F}_{4}	48.44%	6.25%	45.31%
	\leftarrow cross AA \& \& BB		

Chapter 7

General Discussion

This project has aimed to investigate some of the problems associated with the initial management of plant populations specifically created to exploit the potential benefits of a wide genetic base using Lycopersicon as a model. The narrowness of the genetic base in Lycopersicon esculentum was examined using both morphological and molecular markers. Selection of potential parents for such base broadening activity was determined first by morphological characters such as flowering and fruit setting in greenhouse, morphological diversity between potential parents, and then molecular markers to confirm the diversity in the first choice of parents. The behaviour of these specially created populations was examined through subsequent generations using a similar range of investigatory tools. The main results and achievements are as follows: analysis of the genetic diversity in Lycopersicon spp germplasm; parent selection, characterisation and hybridisation; behaviour in F_{1}, F_{2} and F_{3} generations of created Lycopersicon populations; and theoretical considerations for conservation of created genetic variability extrapolated to autogamous crops subjected to genetic base broadening.

The approach of this project was ambitious, attempting to respond to broad questions that cannot be answered in a three year period with limited space, labour and resources. The several questions outlined at the beginning of the project, should be refined and narrowed after the experience obtained during the development of this research. In addition there also are several questions about the research, particularly the methodology, accessions selection, and many more facets that should be analysed with the aim to improve any future investigation in this large topic of genetic base broadening. Research is intended to be perfectly planned and executed, but when working with live organisms it is difficult to achieve the perfect plan because of the behaviour and responses of these organism to the environment. There are several factors that can be controlled such as temperature, light, soil, nutrition, etc., but they also can react and trigger other reactions, which cannot be predicted because of the interaction genotype - environment.

In respect to the species choice for the project, there are other species more suitable for genetic studies; for example the widely utilised Arabidopsis thaliana. This is a
small weed of the mustard family (Brassicaceae), which in 4 to 6 weeks produces mature plants containing more than 10,000 seeds. However, Lycopersicon esculentum was selected from among other autogamous crops such as Phaseolus spp because Lycopersicon spp satisfied all the basic needs for this type of project; easy to cross; a narrow genetic base; a large number of wild relatives and landraces stored in genebanks ready to use for this kind of research. Wild and unadapted germplasm represents a rich source of variation. Though exotic germplasm can present problems of adaptation and characters not desirable in a breeding programme, it can help to increase response to selection as a result of the improvement of genetic variability. Furthermore, there is a complete list of morphological markers, recognised and described genes, and molecular markers already tested for this species. Considering all these facts, tomato was the right choice to answer the questions stated in this research.

The parents used in the project were selected both for their morphological and molecular characteristics. One accession per wild species was chosen and five accessions of L. esculentum. Close relatives such as L. esculentum var. cerasiforme and L. esculentum cultivars did not show huge morphological differences and genetic distances, but there were still more genetic differences present than among tomato accessions. The other non-domesticated accessions represented most of the species related to tomato, however L. cheesmanii was not included as parent in the hybridisations because flowering did not coincide with the other accessions. Unfortunately, hybridisations between green-fruited accessions and L. esculentum were not successful producing more generations, but this was expected and a more ample vision on the behaviour of wider crosses was not possible to achieve. However, the natural acceptance/rejection of the crosses, without human intervention after hybridisation, was decided as part of a base broadening project to observe the effects and problems that could arise using wide crosses in other projects.
In the case of wide crosses, the use of hybridisation techniques, such as embryo rescue or bud pollination may be desirable; the latter method was utilised in this research but was not successful when crossing the incompatible species selected in this project. The created populations did not represent the huge genetic diversity
present between and within Lycopersicon spp, reflecting that only a small part of each species and hence possible genetic combinations were used. It also likely that some of the accessions selected have similar alleles sharing the same locus, when analysed through molecular markers; therefore the genetic indices may not reflect the real diversity between and within populations, nevertheless such techniques were a useful approach to the tendencies existing in the created populations.

Much effort was concentrated on collecting large amounts of morphological and molecular data on individual crosses; this information tended to treat the individuals as a series of crosses instead of populations. Other approaches not explored might include narrowing the scope and examining only two large contrasting populations such as inter- and intra-taxon groups. These two approaches would have given more global information about the development of autogamous populations subjected to genetic base broadening, but the project looked for more specific information about determined crosses and then integrating the data in groups. The experimental design adopted, on reflection, was not necessarily the most appropriate but these views have arisen following the experience obtained during the development of the project, and will be useful when designing future projects related to genetic base broadening. In this project, two types of markers were used, morphological and molecular, to identify differences between and within species; accessions selected as parents for hybridisation; and created populations. Morphological markers have been, until recently, most used for research studying species and populations, and also in breeding projects. The benefits of such markers are the number of individuals that can be assessed in one generation; the diversity of characters that can be studied in each species; and the ease of scoring. The expression of these, usually qualitative, characters depend on genotype-environment interaction, but the effect of environment can be reduced by carrying out the experiments in standardised conditions. When analysing large segregating populations, morphological markers give accurate information about segregation rates and genetic diversity present.

Most of the morphological markers selected for this research were related to fruit characteristics, which are important in tomato descriptors because of the limited differences among accessions in vegetative traits. There are more traits that could be
utilised as markers, but the ones selected were the most commonly used and easy to observe. The number of morphological markers could be increased but this would not have produced any more accurate results, but an increase in number of individuals sampled per segregating generation, would have produced potentially more valuable results without losing any of the advantages of the approach.

In order to make recommendations on strategies for base broadening, it is essential that appropriate approaches to describe the variability be developed, and how such approaches might change with different management. With molecular markers, both co-dominant and dominant markers were used, requiring two different types of statistical analysis and resulting in enhanced value of the data. The co-dominant microsatellite markers are the product of highly mutable loci, which may be present at many sites in a genome. They fall into the category of site-targeted PCR, where the primers are designed to amplify specific regions of the genome. Conversely, dominant RAPD markers are the products of arbitrary primers in a PCR reaction, which is usually the amplification of many discrete DNA products. Each product will be derived from a region of the genome that contains two short segments which share sequence similarity to the primer and which are on opposite strands and sufficiently close together for the amplification to work. Polymorphisms are detected as presence or absence of bands and mainly result from sequence differences in the primer binding site. Both markers, microsatellites and RAPD, can be visualised by agarose gel electrophoresis, although microsatellites are recommended to be visualised utilising polyacrylamide gel (PAGE). However, tomato genome is large enough to amplify substantial microsatellites bands in agarose gels. The PCR techniques utilised in both markers are relatively simple and time consuming, but microsatellites visualisation is more expensive because of the use of special Metaphor agarose, but still cheaper than PAGE since it is less complicated to prepare and assemble.
Microsatellites are sometimes not representative of the whole genome; this is a limitation because the loci can be located in a specific region and it is only possible to sample the diversity present in that region. However, RAPD has a random spread around the genome, and the loci sampled are more representative of the genome. RAPD is a quick technique, simple and efficient, but band profiles can be difficult to
reproduce, even within laboratories, and more so if personnel, equipment or conditions are changed. However, an important limitation is data quality, since for dominant markers, heterozygosity is not detectable, bands sometimes consist of comigrating products and band identities are difficult to assign. In spite of these limitations, both techniques generate data that can be analysed and applied to genetic diversity and variability studies through the analysis of genetic relationship between samples, or calculation of population genetics parameters, in particular diversity and its partitioning at different levels. The results demonstrate the robust nature of the information from microsatellites and DNA analysis, uninfluenced by environmental factors.

Other molecular marker techniques that could have been used in this project include Amplified Fragment Length Polymorphism (AFLP), which is a dominant highly reproducible method that combines restriction digestion and PCR. However, such an approach is more demanding technically and expensive than RAPD. Other approaches such as co-dominant Restriction Fragment Length Polymorphism (RFLP) have similar limitations. Newer techniques such as proteomics are in development and offer choices for the future.

Statistical analysis of the populations was carried out utilising the most used population genetic indices, perhaps other software packages could analyse the data in other ways, but at the end the indices are the same. All population genetic indices used in this project were utilised as an approach to test the usefulness of each one. However, there were some better than others and more useful. Mean proportion of polymorphic loci (P), for instance, is a very imprecise and arbitrary measure of genetic variation, but useful for certain purposes, such as quick observations. Average gene diversity $\left(H_{S}\right)$ is a better and more precise measure of genetic variation, because it estimates the probability that two alleles taken at random from a population are different. its quality is limited in self-pollinating populations because most individuals will present more homozygous loci witrhin a population. However, it gives a good approach that it is improved when utilised together with information from total gene diversity $\left(H_{t}\right)$, which is calculated from allelic frequencies as if the individuals in the population were mating with each other at random. Shannon's
information index (I) is similar to H_{S} but not bounded by 1.0 ; this index is useful when comparing large populations through co-dominant and dominant markers, but in this case its information was not relevant in comparison to the other indices. Number of polymorphic alleles (A) was not very informative per se, but in combination with effective number of polymorphic alleles $\left(A_{\mathcal{C}}\right)$ gave valuable information about genetic variability. Partitioning the genetic variability $\left(F_{S t}\right)$ gave a good approach how the diversity was distributed, within or between populations.

In the light of the results obtained during this research most aims proposed at the beginning were achieved, but whether these results answer the questions stated are now part of the evaluation. The analysis of genetic diversity within and between Lycopersicon taxa showed great levels of variability between the tomato wild relatives, but also there was genetic variability between tomato cultivars, especially old cultivars and landraces. After selection of parents and hybridisation, all created populations showed phenotypic uniformity in the F_{1} generation for the characters studied, also there was genetic uniformity at molecular level. In selfing F_{2} and F_{3} generations, these populations segregated as expected for morphological continuous and discontinuous characters, as long as for molecular markers. In general, phenotypic traits tended toward the wild type characters. The genetic indices analysed did not show the expected decline of variability for autogamous crops after consecutive selfing. However, the observed results gave information of segregating populations from inter- and intra-taxon crosses to develop further the idea of incorporation and speculate about strategies for conservation of created genetic variability in autogamous crops. Several strategies, based in the information and experience gathered in this research, were analysed intending to answer the question about "How to maintain this genetic variability in later generations?". From the simple and naturally occurring system of self-pollination to more complex systems involving facultative out-crossing and/or male sterility exploitation were discussed, but any method depend on the reproductive biology of the species and to give a general recommendation of which method rely is difficult to answer.
Questions about the scale of operation and number of parents to be utilised in the projects are more related to economical concerns. However, this research gave an
idea that the genetic base broadening projects should be of large scale, so the number of parents involved. It is important to consider a manageable population size, number of populations and hybridisations. In respect to parental material range, this germplasm should be wide enough to allow the incorporation of novel genetic combinations and characters, but also facilitate the hybridisations without the use of special techniques to produce crosses, especially when working with large populations with rich genetic diversity.

The created populations should be large enough to generate variability for many years, and in this way can overcome the consequences of genetic drift, where the population reaches a "fixation" state and only new mutations or incorporations into the population can reintroduce variation. Most autogamous species still possess some out-crossing rate, but in some cases, such as tomato, it is possible to encourage the use of facultative out-crossing when selecting parental lines that have exserted stigma as characteristic; another alternative discussed in this research is the exploitation of male sterility. About the continuous hybridisation to conserve the created genetic variability, a model was designed for one single locus and showed that there will be a need for hybridisation again in F_{4} to F_{5} generations in the case of completely autogamous populations.

Genetic base broadening programmes must minimise selection, as part of its philosophy, particularly during initial stages, but natural selection always occur in the populations. There are biotic and abiotic stresses acting over the population producing a natural selection pressure, therefore human intervention should be minimised to allow that these forces produce the effect in the population. With the aim to utilise these forces is recommended a multi-site exploitation of natural selection. The populations exposed to different environmental conditions and biotic pressures will produce many different genotypes surviving at each site maintaining the genetic variability as an overall within the population. However, the high costs and logistic difficulties are great disadvantages for this kind of approach.

The results obtained in this project are interesting, but require validation/comparison with other alternative populations. Future research should include comparison of
populations with differing levels of initial variability against focussed and nonfocussed base broadening objectives. Additional questions for autogamous species will focus on the desirability of establishing populations that can continue to provide variability on which selection can take place over an extended period thereby eliminating the need to re-establish populations from original parental sources.

Most domesticated crops need genetic base broadening, some earlier than others to reduce the barriers for future crop improvement. Chilean agriculture is similar to many; the rapid development of F_{1} hybrids and genetically narrow modern cultivars over the last 20-25 years, has led to a rapid erosion of the variability once widespread within the species utilised by the agricultural community.. At present, there is still diverse germplasm available in isolated communities and farms, but this is transitory as farmers continue to accept the norms of modern agriculture with high yield potential and uniformity within cultivars. Therefore in the short term there is real risk that this genetic material will be lost forever. Chile has considerable diversity with regard to climate and soil types. There will be a real need to find cultivars, which will be able to exploit this environmental variability. Base broadening activity in a country such as Chile may hold additional advantages, namely the conservation of genetic material in a manner which allows further evolution. Such research in a range of specific crops could be extrapolated/exported to neighbouring countries because of the geographical position and climatic advantages in comparison to other countries. For instance, it is possible to obtain two or three harvests a year in crops such as tomato, beans, broccoli, maize, etc.

For the future, it is hoped to use the experience gained with Lycopersicon spp utilising morphological and molecular markers in order to answer some of the questions posed in the introduction. These operational questions need to be examined in order to remove the empiricism that has, by and large, dominated previous base broadening efforts. Such methodologies on their own will not answer all the questions. Some questions will be very much species specific, others are more a matter of resources and finance. Nevertheless, the lessons learnt from pursuing some of the questions, in such an amenable species, will have messages for other autogamous crops in other environments.

Finally, broadening the genetic base of a crop species can take many forms: by creating diverse populations utilising a wide range of parental material (landraces through to progenitor species); by encouraging exploitation of genotypes in space and time (diversification schemes); by utilising deliberate genotype mixtures or designing improved landraces (exploiting agronomic combining ability); by developing farmer participatory selection programmes (allowing farm-based adaptation), to name but a few. All of these approaches have merits for different agricultural systems and all need to be considered in order to avoid an unsustainable dependency on a few genotypes.

References

ADAMS, T. L. and QUIROS, C. F. (1985). Somatic hybridization between Lycopersicon peruvianum and L. pennellii: regenerating ability and antibiotic resistance as selection systems. Plant Science 40, 209-219.

AGWANDA, C. O. and OWUOR, J. B. O. (1989). Clonal comparative trials in Arabica Coffee (Coffea arabica L.). I: The effect of broadening the genetic base on the stability of yield in Kenya. Kenya Coffee 54, 639-643.

AHMAD, M., MCNEIL, D. L., FAUTRIER, A. G., ARMSTRONG, K. F. and PATERSON, A. M. (1995). Genetic relationships in Lens species and parentage determination of their inter-specific hybrids using RAPD markers. Theor Appl Genet 92, 1091-1098.

ARENS, P., BREDEMEIJER, G., SMULDERS, M. J. M. and VOSMAN, B. (1995). Identification of tomato cultivars using microsatellites. Acta Horticulturae 412, 4957.

AYALA, F. J. and KIGER, J. A. Jr. (1984). Modern genetics. Menlo Park, California: The Benjamin/Cummings Publishing Company, Inc.

AYUSA, M. C., NUEZ, F. and CUARTERO, J. (1986). Relationship between Lycopersicon esculentum and a compatible form of Lycopersicon peruvianum. Rep Tomato Genet Coop 36, 2.

BAHAMONDES, L. A. and MALLEA, A. R. (1969). Biologia en Mendoza de Scrobipalpula absoluta (Meyrick) Povolny (Lepidoptera -Gelechiidae), espécie nueva para la República Argentina. Revista de Facultad de Ciencias Agrárias 15, 96104.

BECKER, H. C., ENGQVIST, G. M. and KARLSSON, B. (1995). Comparison of rapeseed cultivars and resynthesized lines based on allozymes and RFLP markers. Theor Appl Genet 91, 62-67.

BERG, T. (1997). Devolution of plant breeding. In Using diversity. Enhancing and maintaining genetic resources on-farm, eds. SPERLING, L. and LOEVINSOHN, M. Ottawa, Canada: IDRC.

BOHM, G. W., SANDERSON, G. and BOYNTON, J. E. (1966). A search for biochemical mutants in the tomato. Rep Tomato Genet Coop 16, 5-7.

BOSWELL, V. R. (1937). Improvements and genetics of tomato, peppers and eggplant. Yearbook of agriculture (US Dept. Agr.) 176-206.

BRETO, M. P., ASINS, M. J. and CARBONELL, E. A. (1993). Genetic variability in Lycopersicon species and their genetic relationship. Theor Appl Genet 86, 113120.

BRETTING, P. K. and GOODMAN, M. M. (1989). Genetic variation in crop plants and management of germplasm collections. In Scientific management of germplasm: characterization, evaluation and enhancement, eds. STALKER, H. T. and CHAPMAN, C. pp.41-54. Rome : IBPGR.

BROUN, P. and TANKSLEY, S. D. (1996). Characterisation and genetic mapping of simple repeat sequences in the tomato genome. Mol. Gen. Genet. 250, 39-49.

BUTLER, L. (1952). The linkage map of the tomato. J. Hered. 43, 25-35.
BUTLER, L. (1955). Dihybrid F_{2} segregations for genes of linkages groups II, III, and IV. Rep Tomato Genet Coop 5, 7-13.

CAETANO-ANOLLÉS, G., BASSAUR, B. J. and GRESSHOFF, P. M. (1991). DNA amplification fingerprinting using very short arbitrary oligonucleotides primers. Bio/Technology 9, 553-557.

CARVALLO, R., BASSO, C., SCATONI, I. and COMOTTO, F. (1981). Ensayo para el control de Scrobipalpula absoluta (Meyrick) temporada 1980-81. Revista Técnica, Montevideo 50, 41-46.

CARVER, B. F. and TALIAFERRO, C. M. (1992). Selection theory and procedure in progenies of distant hybrids. In Distant hybridisation of crop plants, eds. KALLOO, G. and CHOWDHURY, J. B. pp. 122-148. Heidelberg, Germany: Springer-Verlag.

CHAVE, J. W. (1991). Sugar cane breeding at the W.I. Central Sugar Cane Breeding Station with special reference to the base broadening programme. 63-70.(Abstract)

CHETELAT, R. T. and DEVERNA, J. W. (1991). Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci in chromosomes 1, 6 and 10. Theor Appl Genet 82, 704-712.

CHETELAT, R. T., RICK, C. M. and DEVERNA, J. W. (1989). Isozyme analysis, chromosome pairing, and fertility of Lycopersicon esculentum x Solanum lycopersicoides backcross hybrids. Genome 32, 783-790.

CLAYBERG, C. D., BUTLER, L., KERR, E. A., RICK, C. M. and ROBINSON, R. W. (1967). Supplementary list of tomato genes as of January, 1967. Rep Tomato Genet Coop 17, 2-11.

CLAYBERG, C. D., BUTLER, L., KERR, E. A., RICK, C. M. and ROBINSON, R. W. (1970). Additions to the list of genes, January 1967 to January 1970. Rep Tomato Genet Coop 20, 6-11.

CLAYBERG, C. D., BUTLER, L., KERR, E. A., RICK, C. M. and ROBINSON, R. W. (1973). Additions to the list of genes. Rep Tomato Genet Coop 23, 3-7.

CLAYBERG, C. D., BUTLER, L., RICK, C. M. and YOUNG, P. A. (1960). Second list of known genes in the tomato. J. Hered. 51, 167-174.

COOPER, H. D., SPILLANE, C., KERMALI, I. and ANISHETTY, N. M. (1998). Harnessing plant genetic resources for sustainable agriculture. Plant Genetic Resources Newsletter 114, 1-8.

DE ROCHAMBEAU, H., FOURNET-HANOCQ, F., and VU TIEN KHANG, J. (2000). Measuring and managing genetic variability in small populations. Ann. Zootech. 49, 77-93.

DEVERNA, J. W., CHETELAT, R. T., RICK, C. M. and STEVENS, M. A. (1987). Introgression of Solanum lycopersicoides germplasm. In Tomato Biotechnology, eds. JONES, R. A. and NEVINS, D. J. pp. 27-37. New York: Alan R. Liss, Inc.

DEVERNA, J. W. and PATERSON, A. H. (1991). Genetics of Lycopersicon. In Genetic improvement of tomato. ed. KALLOO, G. pp. 22-38. Berlin: SpringerVerlag.

DOGANLAR, S., FRARY, A. and TANKSLEY, S. D. (2000). The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet 100, 1267-1273.

DOOLITTLE, S. P. (1954). The use of wild Lycopersicon species for tomato disease control. Phytopathology 44, 404-414.

DUBREUIL, P. and CHARCOSSET, A. (1998). Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96, 577-587.

ESPINOZA, W. (1991). Manual de produçao de tomate industrial no Vale de Sâo Francisco. Brasilia: CODEVASF/IICA.

ESTAY, P. (1998). Polilla del tomate, su manejo integrado. Tierra Adentro 21, 2023.

EVANS, D. A. (1987). Somaclonal variation. In Tomato Biotechnology, eds. JONES, R. A. and NEVINS, D. J. pp. 59-71. New York: Alan R. Liss, Inc.

EVANS, L. T. (1993). Crop evolution, adaptation and yield. Cambridge: Cambridge University Press.

EXCOFFIER, L., SMOUSE, P. E. and QUATTRO, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics 131, 479-491.

FAO (1996a). Global plan of action for the conservation and sustainable utilisation of plant genetic resources for food and agriculture, and the Leipzig Declaration.

FAO (1996b). Report on the state of the world's plant genetic resources.
FAO (1999). Production Yearbook. Production Yearbook 1999 52, 227.

FOOLAD, M. R. (1996). Unilateral incompatibility as a major cause of skewed segregation in the cross between Lycopersicon esculentum and L. pennellii. Plant Cell Report 15, 627-633.

FRANÇA, F. H., MALUF, W. R., ROSSI, P. E. F., MIRANDA, J. E. C. and COELHO, M. C. F. (1984). Avaliaçâo e seleçâo em tomate visando resistência à traça-do-tomateiro. pl43.

FREY, K. J. (1994). Remarking a crop gene pool: the case history of Avena. Proceedings of the National Science Council, Republic of China, part B, Life Sciences 18, 85-93.(Abstract)

FRYXELL, P. A. (1954). Genetics of locule number. Rep Tomato Genet Coop 4, 1011.

GARANKO, I. B. (1991). Germplasm resources in Lycopersicon. In Genetic Improvements of Tomato. ed. KALLOO, G. pp. 51-57. Berlin: Springer-Verlag.

GEPTS, P. (1993). The use of molecular and biochemical markers in crop evolution studies. In Evolutionary biology, ed. HECHT, M. K. E. pp. 51-94. New York: Plenum Press.

GLENDINNING, D. R. (1979). Enriching the potato gene-pool using primitive cultivars. In Proceedings of the conference: Broadening the genetic base of crops, ed. ZEVEN, A. C. and VAN HARTEN, A. M. pp. 39-45. Wageningen: Centre for Agricultural Publishing and Documentation.

GOLDMAN, I. L., PARAN, I. and ZAMIR, D. (1995). Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum x L. cheesmanii cross. Theor Appl Genet 90, 925-932.

GOODMAN, M. M. (1985). Exotic maize germplasm: status, prospects and remedies. Iowa State J Res 59, 497-527.

GOWER, J. C. (1985). Measures of similarity, dissimilarity, and distance. In Encyclopedia of statistical sciences, eds. KOTZ, S. and JOHNSON, N. L. pp. 397405. New York: Wiley.

GRADZIEL, T. and ROBINSON, R. W. (1985). Overcoming stylar incompatibility in Solanum and Lycopersicon by using bud pollination under high humidity. Plant Cell Incomp Newslett. 17, 13.

GRANDILLO, S., KU, H. M. and TANKSLEY, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99, 978-987.

GRANDILLO, S. and TANKSLEY, S. D. (1996). QTL analysis of horticultural traits differentiating cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92, 935-942.

GRIFFITHS, A. J. F., MILLER, J. H., SUZUKI, D. T., LEWONTIN, R. C. and GELBART, W. M. (1996). An introduction to genetic analysis. New York: W.H. Freeman and Co.
hachizume, t., Shimamoto, L., Harushime, Y., YUi, M., SATO, T., IMAI, T. and HIRAI, M. (1996). Construction of a linkage map for watermelon (Citrullus lanatus (Thumb.) Matsui and Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90, 265-273.

HALSTED, B. D., OWEN, E. J. and SHAW, J. K. (1905). Experiments with tomatoes. NJ Agr Exp Stn Annu Rep 26, 447-477.

HAMADA, H., PETRINO, M. G. and KAKUNAGA, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA 79, 6465-6469.

HAMRICK, J. L. and GODT, M. J. W. (1997). Allozyme diversity in cultivated crops. Crop Sci 37, 26-30.

HANDLEY, L. W., NICKELS, R. L., CAMERON, M. W., MOORE, P. P. and SINK, K. C. (1986). Somatic hybrids plants between Lycopersicon esculentum and Solanum lycopersicoides. Theor Appl Genet 71, 691-697.

HANSON, M. R. and MCCLEAN, P. M. (1987). Tomato plastid and mitochondrial genomes: changes and conservation. In Tomato Biotechnology, eds. JONES, R. A. and NEVINS, D. J. pp. 215-228. New York: Alan R. Liss, Inc.

HARDON, J. J. (1967). Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57, 795-808.

HARTL, D.L. and CLARK, A.G. (1997). Principles of population genetics. Sunderland, MA, USA: Sinauer Assoc.

HAWKES, J. G. (1979). Genetic poverty of the potato in Europe. In Proceedings of the conference: Broadening the genetic base of crops, ed. ZEVEN, A. C. and VAN HARTEN, A. M. pp. 19-36. Wageningen: Centre for Agricultural Publishing and Documentation.

HAWKES, J. G. (1991). Centros de diversidad genética vegetal en Latinoamérica. Diversity 7, 7-9.

HAWTIN, G., IWANAGA, M. and HODGKIN, T. (1996). Genetic resources in breeding for adaptation. Euphytica 92, 255-266.

HECTOR, J. M. (1936). Introduction to the botany of field crops, vol II. Johannesburg, South Africa: Central News Agency Ltd.

HEDGE, S. G., VALKOUN, J. and WAINES, J. G. (2000). Genetic diversity in wild wheats and goat grass. Theor Appl Genet 101, 309-316.

HEWITT, J. D. and GARVEY, T. C. (1987). Wild sources of high soluble solids in tomato. In Tomato Biotechnology, eds. JONES, R. A. and NEVINS, D. J. pp. 45-55. New York: Alan R. Liss, Inc.

HOELZEL, A. R. and GREEN, A. (1998). PCR protocols and population analysis by direct DNA sequencing and PCR-based DNA fingerprinting. In Molecular genetic analysis of populations. A practical approach, ed. HOELZEL, A. R. pp. 201-236. Oxford: IRL Press.

HOGENBOOM, N. G. (1979). Incompatibility and incongruity. In The Biology and taxonomy of the Solanaceae, eds. HAWKES, J. G., LESTER, R. N. and SKELDING, A. D. pp. 435-444. London: Academic Press.

HOSTIKA, L. P. and HANSON, M. R. (1984). Induction of plastid mutations in tomatoes by nitromethylurea. J Hered. 75, 242-246.

HU, J. and QUIROS, C. F. (1991). Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Reports 10, 505-511.

IPGRI (1996). Descriptors for tomato (Lycopersicon spp). International Plant Genetic Resources Institute, Rome Italy.

JENKINS, J. A. (1948). The origin of the cultivated tomato. Econ. Bot. 2, 379-392.

JENSEN, N. F. (1988). Plant breeding methodology. New York: John Wiley and Sons.

JONES, D. F. (1917). Linkage in Lycopersicum. Am. Nat. 51, 608-621.

KANNENBERG, L. W. and FALK, D. E. (1995). Models for activation of plant genetic resources for crop breeding programs. Canadian J Plant Sci 75, 45-53.

KAUL, M. L. H. (1991). Reproductive biology in tomato. In Genetic improvement of tomato, ed. KALLOO, G. pp. 39-50. Berlin: Springer-Verlag.

KAWCHUK, L. M., LYNCH, D. R., HACHEY, J., BAINS, P. S. and KULCSAR, F. (1994). Identification of a codominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato. Theor Appl Genet 89, 661-664.

KNAPP, S. and SPOONER, D. M. (1999). A new name for a common Ecuadorean and Peruvian wild tomato species. NOVON 9, 375-376.

KRESOVICH, S., WILIAMS, J. G. K., MCFERSON, J. R., ROUTMAN, E. J. and SCHAAL, B. A. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor Appl Genet 85, 190-196.

KRUSKAL, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1-27.

KRUSKAL, W. H. and WALLIS, W. A. (1952). Use of ranks in one criterion analysis of variance. J. Amer. Statist. Assoc. 47, 583-621.

KU, H. M., DOGANLAR, S., CHEN, K.-Y. and TANKSLEY, S. D. (1999). The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9, 844-850.

LARRAIN, P. (1986). Eficacia de insecticidas y frecuencia de aplicación basada en niveles poblacionales críticos de Scrobipalpula absoluta (Meyrick) en tomates. Agricultura Técnica 46, 329-333.

LEHMANN, L. C. (1991). The use of genetic resources for isolating disease resistance for barley cultivar development. Barley Genetics VI, 650-652.

LI, C. P., CHEN, Y. H., CHERN, C. G., TSENG, T. H., CHEN, C. C., LAI, M. S. and KUO, Y. C. (1994). Broadening genetic diversity of cultivated rice through interspecific hybridisation within genus Oryza.I. Journal of Agricultural Reaserch of China 43, 261-274.(Abstract)

LINDHOUT, P., VERKERK, R., MULLAART, E., UITTERLINDEN, A. and VIJG, J. (1991). Cultivar identification of tomato by DNA analysis with repetitive probes. Rep Tomato Genet Coop 41, 31.

LOBO, M., ALVARAN, I. and CARDONA, M. P. (1990). Fruit storage life in Lycopersicon pimpinellifolium. Rep Tomato Genet Coop 40, 20.

LOURENÇAO, A. L., NAGAI, H. and ZULLO, M. A. T. (1984). Fontes de resistência a Scrobipalpula absoluta (Meyrick, 1917) em tomateiro. Bragantia 43, 569-577.

LYNCH, M. and MILLIGAN, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 91-99.

MACARTHUR, J. W. and BUTLER, L. (1938). Size inheritance and geometric growth processes in the tomato fruit. Genetics 23, 253-268.

MACGILLIVRAY, J. H. and CLEMENTE, L. J. (1956). Effect of tomato size on solid content. Proc. Am. Soc. Hort. Sci. 68, 466-469.

MANTEL, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209-220.

MARTIN, F. W. (1962). Distribution and interrelationship of incompatibity barriers with Lycopersicon hirsutum Humb. and Bonpl. complex. Evolution 17, 519-528.

MAYO, O. (1987). The theory of plant breeding. Oxford: Clarendon Press.
MCCLEAN, P. E. and HANSON, M. R. (1986). Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112, 649667.

MCGRATH, D. J., GILLESPIE, D. and VAWDREW, L. (1987). Inheritance of resistance to Fusarium oxysporum f.sp. lycopersici races 2 and 3 in Lycopersicon pennellii. Aust J Agric Res 38, 729-733.

MENDOZA, H. A. (1989). Population breeding as a tool for germplasm enhancement. American Potato Journal 66, 639-653.

MENGESHA, M. H. and PRASADA-RAO, K. E. (1982). Current situation and future of sorghum germplasm. In Sorghum in the Eighties, ed. ICRISAT pp 323-335. India: ICRISAT.

MENGISTU, L. W., MUELLER-WARRANT, G. W. and BARKER, R. E. (2000). Genetic diversity of Poa annua in western Oregon grass seed crops. Theor Appl Genet 101, 70-79.

MILLER, J. C. and TANKSLEY, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet $\mathbf{8 0}$, 437-448.

MILLIGAN, B. G. (1992). Plant DNA isolation. In Molecular genetic analysis of populations. A practical approach. ed. HOELZEL, A. R. pp. 59-88. Oxford, UK: IRL Press.

MITRICK, A. J., SKROCH, P. W., NIENHUIS, J., HINRICHSEN, P., BASCUR, G. and MUÑOZ-SCHICK, C. (1997). Gene pool classification of common bean landraces from Chile based in RAPD and morphological data. Crop Sci 37, 605-613.

MOREIRA, J. O. T., LARA, F. M. and CHURATA-MASCA, M. G. C. (1981). Ocorrência de Scrobipalpula absoluta (Meyrick) (Lepidoptera - Gelechiidae) danificando tomate rastreiro em Jaboticabal-SP. 58.

MORGANTE, M. and OLIVIERI, A. M. (1993). PCR-amplified microsatellites as markers in plant genetics. Plant J 3, 175-182.

MÜLLER, C. H. (1940). A revision of the genus Lycopersicon. USDA Misc. Publ. 328, 29.

NASSAR, N. M. A. (1989). Broadening the genetic base of cassava, Manihot esculenta Krantz, by interspecific hybridisation. Can J Plant Sci 69, 1071-1073.

NCBI (2001). Taxonomy browser. In: National Center for Biotechnology Information. Bethesda, MD, USA. http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy.

NEI, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

NIENHUIS, J. and BOSCO, J. D. (1994). Genetic distances among toamto cultivars as measured by RAPD molecular markers. Acta Horticulturae 376, 59-66.

NIEUWHOF, M., GARRETSEN, F. and VAN OEVEREN, J. C. (1989). Maternal and genetic effects on seed weight of tomato, and effects of seed weight on growth of genotypes of tomato (Lycopersicon esculentum Mill.). Plant Breed 102, 248-254.

O'CONNELL, M. A. and HANSON, M. R. (1985). Somatic hybridization between Lycopersicon esculentum and Lycopersicon pennellii. Theor Appl Genet 70, 1-12.

O'CONNELL, M. A. and HANSON, M. R. (1987). Construction and characterisation of somatic hybrids in Lycopersicon. In Tomato Biotechnology, eds. JONES, R. A. and NEVINS, D. J. pp. 71-80. New York: Alan R. Liss, Inc.

OLMSTEAD, R. G. and PALMER, J. D. (1997). Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Systematic Botany 22, 19-29.

ORTIZ, R. (1998). Genetic enhancement and base broadening efforts. In Implementation of GPA in Europe - Braunschweig Proceedings, pp. 191-203.

ORTIZ, R., MADSEN, S., RUIZ-TAPIA, E. N., JACOBSEN, S. E., MUJICASANCHEZ, A., CHRISTIANSEN, J. and STOLEN, O. (1999). Validating a core collection of Peruvian quinoa germplasm. Genetic resources and crop evolution 46, 285-290.

PALMER, J. D. and ZAMIR, D. (1982). Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc. Natl. Acad. Sci. 79, 5006-5010.

PASQUET, R. S. (2000). Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101, 211-219.

PEJIC, I., AJNONE-MARSON, P., MORGANTE, M., KOZUMPLIK, V., CASTIGLIONI, P., TARAMINO, G. and MOTTO, M. (1998). Comparative analysis of genetic similarities among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97, 1248-1255.

PERALTA, I. E. and SPOONER, D. M. (2001). Granule-Bound Starch Synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L.section Lycopersicon (Mill.) Wettst. subsection Lycopersicon). In press: Am J Bot..

PLAISTED, R. L. (1982). Progress and future plans for the use of neotuberosum populations. In Utilisation of the genetic resources of the potato III, pp. 65-79. Lima, Peru: International Potato Center.

POVOLNY, D. (1975). On three Neotropical species of Gnorimoschemini (Lepidoptera - Gelechiidae) mining Solanaceae. Acta Universitatis Agriculturae Facultas, Brno 2, 379-393.

PROKOPY, R. J. and OWENS, E. D. (1983). Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28, 337-364.

PROVAN, J., POWELL, W. and WAUGH, R. (1996). Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet 92, 1078-1084.

QUIROS, C. F. (1974). Phylogeny of the tomato species. Rep Tomato Genet Coop 24, 19-20.

RICK, C. M. (1958). The role of natural hybridisation in the derivation of cultivated tomatoes of western South America. Econ. Bot. 12, 346-367.

RICK, C. M. (1969). Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62, 753-768.

RICK, C. M. (1973). Potential genetic resources in tomato species: clues from observations in native habitats. In Genes, enzymes, and populations, ed. SRB, A. M. New York: Plenum Press.

RICK, C. M. (1976). Tomato (family Solanaceae). In Evolution of crop plants, ed. SIMMONDS, N. W. pp. 262-273. London: Longman.

RICK, C. M. (1977). A key for the tomato species. Rep Tomato Genet Coop 27, 21.
RICK, C. M. (1979a). Biosystematic studies in Lycopersicon and closely related species of Solanum. In The biology and taxonomy of the Solanaceae, eds. HAWKES, J. G., LESTER, R. N. and SKELDING, A. D. pp. 667-677. London: Academic Press.

RICK, C. M. (1979b). Potential improvement of tomatoes by controlled introgression of genes from wild species. 167-173.

RICK, C. M. (1982). Lycopersicon esculentum (tomato). In Genetic maps, ed. O'BRIEN, S. J. pp. 360-367. Frederick, MD: National Cancer Institute.

RICK, C. M. (1983). Tomato (Lycopersicon). In Tomato biotechnology, eds. TANKSLEY, S. D. and ORTON, T. J. pp. 17-26. New York: Alan R. Liss.

RICK, C. M. (1984). Evolution of mating systems: evidence from allozyme variation. In Genetics: new frontiers, Proceedings of the XV International Congress of Genetics, eds. CHOPRA, V. L., JOSHI, B. C., SHARMA, R. P., and BANSAL, H. C. 4, 215-221. Essex; Epping.

RICK, C. M. (1984). Stock list. Rep Tomato Genet Coop 34, 22.
RICK, C. M. (1987). Genetic resources in Lycopersicon. In Tomato Biotechnology, eds. NEVINS, D. J. and JONES, R. A. pp. 17-27. New York: Alan R. Liss, Inc.

RICK, C. M. (1991). Tomato resources of South America reveal many genetic treasures. Diversity 7, 54-56.

RICK, C. M. and BUTLER, L. (1956). Cytogenetics of the tomato. Adv. Genet. 8, 267-382.

RICK, C. M. and CHETELAT, R. T. (1995). Utilisation of related wild species for tomato improvement. Acta Horticulturae 412, 21-38.

RICK, C. M., CHETELAT, R. T. and DEVERNA, J. W. (1988). Recombination in sesquidiploid hybrids of Lycopersicon esculentum x Solanum lycopersicoides and derivatives. Theor Appl Genet 76, 647-655.

RICK, C. M., DEVERNA, J. W., CHETELAT, R. T. and STEVENS, M. A. (1986). Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc Natl Acad Sci USA 83, 3580-3583.

RICK, C. M. and FOBES, J. F. (1975). Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club 102, 376-386.

RICK, C. M. and LAMM, R. (1955). Biosystematic studies on the status of Lycopersicon chilense. Am J Bot. 42, 663-675.

RICK, C. M., TANKSLEY, S. D. and FOBES, J. F. (1979). A pseudoduplication in Lycopersicon pimpinellifolium. Proc Natl Acad Sci 76, 3435-3439.

RUS-KORTEKAAS, W., SMULDERS, M. J. M., ARENS, P. and VOSMAN, B. (1994). Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome 37, 375-381.

SAAVEDRA, G. and SPOOR, W. (2002). Genetic base broadening in autogamous crops: Lycopersicon esculentum Mill. As a model. In Managing plant genetic resources. ed. ENGELS, J. M. M., BROWN, A. H. D., and JACKSON, M. T. pp. 291-299. Wallingford, UK: CABI Publishing.

SALHUANA, W., POLLAK, L. and TIFFANY, D. (1993). Public/private collaboration proposed to strengthen quality and production of U.S. corn through maize germplasm enhancement. Diversity 9-10, 77-79.

SCARDINI, D. M. B., FERREIRA, L. R. and GALVEAS, P. A. O. (1983). Ocorrênciada traça do tomateiro Scrobipalpula absoluta (Meyr.) no Estado do Espírito Santo. In Congresso Brasileiro de Entomologia, 8 Resumos p72. Brasilia, Brasil.

SCHIFFMAN, S. S., REYNOLDS, M. L. and YOUNG, F. W. (1981). Introduction to multidimensional scaling. New York: Academic Press.

SCHLÖTTERER, C. (1998). Microsatellites. In Molecular genetic analysis of population. A practical approach. ed. HOELZEL, A. R. pp. 237-261. Oxford, UK: IRL Press.

SCHLÖTTERER, C. and TAUTZ, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20, 211-215.

SCHOONHOVEN, L. M., JERMY, T. and VAN LOON, J. J. A. (1998). Insects and flowers: the beauty of mutualism. In Insect-Plant biology from physiology to evolution, Anonymous pp. 315-342. London: Chapman and Hall.

SCOTT, J. W. and JONES, J. P. (1991). Genetic control of resistance to races 1,2, and 3 of Fusarium wilt. Rep Tomato Genet Coop 41, 47.

SEVILLA, R. and HOLLE, M. (1995). Recursos genéticos vegetales. La Molina, Lima, Peru.

SIMMONDS, N. W. (1979). Principles of crop improvements. London: Longman.
SIMMONDS, N. W. (1993). Introgression and incorporation. Strategies for the use of crop genetic resources. Biol. Rev. 68, 539-562.

SMARTT, J. and SIMMONDS, N. W. (1994). Evolution in crop plants. London: Longman.

SMULDERS, M. J. M., BREDEMEIJER, G., RUS-KORTEKAAS, W., ARENS, P. and VOSMAN, B. (1997). Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94, 264-272.

SNEATH, P. H. A. and SOKAL, R. O. (1973). Numerical taxonomy. San Francisco, USA: Freeman.

SNEDECOR, G. W. (1934). Calculation and interpretation of analysis of variance and covariance. Ames, Iowa, USA: Collegiate Press.

SNEEP, J. (1979). The breeder's point of view on broadening the genetic base. In Proceedings of the conference: Broadening the genetic base of crops, ed. ZEVEN,A.C. and VAN HARTEN,A.M. pp. 13-18. Wageningen: Centre for Agricultural Publishing and Documentation.

SPOONER, D. M., ANDERSON, G. J. and JANSEN, R. K. (1993). Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepino (Solanaceae). Am J Bot 80, 676-688.

SRB, A. M., OWEN, R. D. and EDGAR, R. S. (1965). General Genetics. San Francisco: W.H. Freeman and Company.

STEVENS, M. A. (1980). Utilization of natural varieties to develop resistence to biotic and environmental stress in processing tomato cultivars. Acta Horticulturae 100, 405-410.

STEVENS, M. A. and RICK, C. M. (1986). 2. Genetics and breeding. In The Tomato Crop. A scientific basis for improvement, eds. ATHERTON, J. G. and RUDICH, J. pp. 35-110. Cambridge: Chapman and Hall Ltd.

STEVENS, M. A. and RUDICH, J. (1978). Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in the tomato. HortScience 13, 673-678.

SUNESON, C. A. (1956). An evolutionary plant breeding method. Agron J 56, 188191.

TANKSLEY, S. D., GANAL, M. W., PRINCE, J. P., DE VICENTE, M. C., BONIERBALE, M. W., BROUN, P., FULTON, T. M., GIOVANNONI, J. J., GRANDILLO, S., MARTIN, G. B., MESSEGUER, R., MILLER, J. C., PATERSON, A. H., PINEDA, O., RODER, M., WING, R. A., WU, W. and YOUNG, N. D. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141-1160.

TANKSLEY, S. D. and NELSON, J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into breeding lines. Theor Appl Genet 92, 191-203.

TAUTZ, D. and RENZ, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acid Res. 12, 4127-4138.

TAYLOR, B. H., MANHART, J. R. and AMASINO, R. M. (1993). Isolation and characterisation of plant DNA. In Methods in plant molecular biology and biotechnology, eds. GLICK, B. R. and THOMPSON, J. E. pp. 37-47. Boca Raton, Florida: CRC Press Inc.

TAYLOR, I. B. (1986). 1. Biosystematics of the tomato. In The Tomato Crop. A scientific basis for improvement, eds. ATHERTON, J. G. and RUDICH, J. pp. 1-34. Cambridge: Chapman and Hall Ltd.

TIKOO, S. K. and ANAND, N. (1982). Stable phenotypic expression of stigma position in tomato. Rep Tomato Genet Coop 32, 48.

TUKEY, J. W. (1953). The problem of multiple comparisons. Princeton, USA: Princeton University.

VAN BEUNINGEN, L. T. and BUSCH, R. H. (1997). Genetic diversity among North American spring wheat cultivars: II. Ancestor contributions to gene pools of different eras and regions. Crop Sci. 37, 580-585.

VAN DER BEEK, H., VERKERK, R., ZABEL, P. and LINDHOUT, P. (1992). Mapping strategy for resistance genes in tomato based on RFLPs between cultivars:

CF9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84, 106-112.

VAVILOV, N. I. (1926). Studies on the origin of cultivated plants. Bull. Appl. Bot. Pl. Breed. 16, 1-248.

VETELAINEN, M., NISSILA, E., TIGERSTEDT, P. M. A. and VON BOTHMER, R. (1996). Utilisation of exotic germplasm in Nordic barley breeding and its consequence for adaptation. Euphytica 92, 267-273.

VILLAND, J. (1995). Comparison of molecular marker and morphological data to determine genetic distances among tomato cultivars. Dissertation, University of Wisconsin, Madison.

VILLAND, J., SKROCH, P. W., LAI, I., HANSON, P., KUO, C. G. and NIENHUIS, J. (1998). Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Sci 38, 1339-1347.(Abstract)

VOSMAN, B. and ARENS, P. (1997). Molecular characterisation of GATA/GACA microsatellite repeats in tomato. Genome 40, 25-33.

WANG, J. L. (1994). Broadening soybean genetic basis in the northeast of China. Journal of Northeast Agricultural University 1, 1-8.(Abstract)

WARNOCK, S. J. (1988). A review of taxonomy and phylogeny of the genus Lycopersicon. HortScience 23, 669-673.

WAUGH, R. and POWELL, W. (1992). Using RAPD markers for crop improvement. Tibtech 10, 186-191.

WELSH, J. and MCCLELLAND, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Res 18, 7213-7218.

WELSH, W., BUSHUK, W., ROCA, W. and SINGH, S. P. (1995). Characterisation of agronomic traits and markers of recombinant inbred lines from intra-and interracial populations of Phaseolus vulgaris L. Theor Appl Genet 91, 169-177.

WILKIE, S., ISAAC, P. G. and SLATER, R. J. (1993). Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86, 497-504.

WILLIAMS, C. E. and ST.CLAIR, D. A. (1993). Phenetic relationship and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36, 619-630.

WILLIAMS, J. G. K., KUbLELIK, A. R., LIVAK, K. J., RAFALSKI, J. A. and TINGEY, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleis Acid Res 18, 6531-6535.

WINKLER, H. (1909). Über die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Z Bot. 8, 417-531.

WRICKE, G. and WEBER, W. E. (1986). Quantitative genetics and selection in plant breeding. Berlin: Walter de Gruyter.

WRIGHT, S. (1965). The interpretation of population structure by F-statistics with special regard to system mating. Evolution 19, 395-420.

YEH, F., YANG, R. C., BOYLE, T., YE, Z. H. and MAO, J. (1997). Popgene, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.

Appendix 1

APPENDIX 1 : MORPHOLOGICAL CHARACTERIZATION OF TOMATO (IPGRI, 1996)

Plant descriptors

1) Vegetative

1.1 Seedling

Records should be taken when the seedling primary leaves are fully opened and the terminal bud is around 5 mm in size.

1.1.1	Hypocotyl colour
1	Green
2	$1 / 4$ purple from the base
3	$1 / 2$ purple from the base
4	Purple

1.1.2 Hypocotyl pubescence

0 Absent
1 Present

1.2 Plant characteristics

Records should be taken when the fruits of the 2 nd and 3rd truss are ripened.

1.2.1 Plant growth type

1 Dwarf

2 Determinate
3 Semi-determinate
4 Indeterminate

1.2.2 Leaf attitude

3 Semi-erect
5 Horizontal
7 Drooping
1.2.3 Leaf type (see figure 1)
1 Dwarf 5 Pimpinellifolium

2 Potato leaf type 6 Hirsutum
3 Standard 7 Other
4 Peruvianum

Figure 1. Leaf type.

1

2

2) Inflorescence and fruit

Unless otherwise indicated, all observations on the fruit should be taken, when possible, on the 3 rd fruit of the 2 nd and/or 3rd truss at the full matutity stage, provide normal fertilization has occurred.

2.1 Inflorescence descriptor

2.1.1 Inflorescence type

Observe the 2nd and 3rd truss of at least 10 plants
1 Generally uniparous
2 Both (partly uniparous, partly multiparous)
3 Generally multiparous

2.1.2 Corolla colour

1 White
2 Yellow
3 Orange
4 Other

2.1.3 Style position

The relative position of the style compared with the stamens.
Average of 10 styles from different flowers of different plants.
1 Inserted
2 Same level as stamen
3 Slightly exserted
4 Highly exserted

2.2 Fruit descriptors

Unless otherwise indicated, all observations on the fruit should be taken, when possible, on the 3rd fruit of the 2nd and/or 3rd truss at the full maturity stage, provided normal fertilization has occurred. Record the average of 10 fruits from different plants.

```
2.2.1 Exterior colour of immature fruit
1 Greenish-white
L Light green
5 Green
Dark green
9 Very dark green
2.2.2 Fruit pubescence
3 Sparse (L. esculentum)
5 Intermediate (L. pennelii)
D Dense (L. hirsutum)
```

```
2.2.3 Predominant fruit shape
Recorded after fruits turn colour (see figure 2)
1 Flattened (oblate)
2 Slightly flattened
R Rounded
High rounded
Heart shaped
Cylindrical (long oblong)
Pyriform
8 Ellipsoid (plum shaped)
O Other
```

```
2.2.4 Fruit size
At maturity
V Very small (<3 cm)
Small (3-5 cm)
3 Intermediate (5.1-8 cm}
Large (8.1-10 cm)
V Very large (>10 cm)
```

Figure 2. Predominant fruit shape.

1

3

4

5

6

7

8

```
2.2.5 Exterior colour of mature fruit
Recorded at maturity
1 Green
2 Yellow
3 Orange
4 Pink
5 Red
Other
2.2.6 Flesh colour of pericarp (interior)
l Green
2 Yellow
3 Orange
Pink
5 Red
Other
```


2.2.7 Fruit cross-sectional shape

(See figure 3)
1 Round
2 Angular
3 Irregular
Figure 3. Fruit cross-sectional shape.

1

2

3

2.2.8 Number of locules

Counted on at least 10 fruits

> 2.2.9 Shape of pistil scar
> (See figure 4)
> 2 Stellate
> 3 Linear
> 4 Irregular

Figure 4. Shape of pistil scar.

1

2

3

4

(See figure 5)
 1 Indented
 2 Flat
 3 Pointed

2.2.10 Fruit blossom end shape

Figure 5. Fruit blossom end shape.

1

2

Appendix 2

Appendix 2 Part 1 Genetic similarity matrix from 16 morphological characters of 35 accessions of Lycopersicon accessions (Accessions codes in Part 4).

HIM1

Appendix 2 Part 4 Lycoperiscon accessions codes of identification.

Lchees 1	L. cheesmanii				CGN-15820
Lchees2	$=$ L. cheesmanii				LA-0166
Lchees3	$=$ L. cheesmanii				PI-379035
Lcheem 1	L. cheesmanii	var.	minor		LA-0317
Lcheem2	L. cheesmanii	var.	minor		PI-379040
Lescul1	$=$ L. esculentum			cv.	Limachino
Lescul2	L. esculentum			cv.	Ailsa Craig
Lescul3	$=$ L. esculentum			cv.	Ace
Lescul4	$=$ L. esculentum			cv.	Cal Ace
Lescul5	L. esculentum			cv .	Earliana
Lescul6	$=$ L. esculentum			cv .	Edkawi
Lescul7	$=$ L. esculentum			cv.	Lukullus
Lescul8	$=$ L. esculentum			cv .	Moneymaker
Lescul9	$=$ L. esculentum			cv.	Marglobe
Lescul10	$=$ L. esculentum			cv.	San Marzano
Lescull1	$=$ L. esculentum			cv .	Pearson
Lescul12	$=$ L. esculentum			cv .	Stone
Lescull3	$=$ L. esculentum			cv .	Red Top
Lescul14	$=$ L. esculentum			cv .	Roma
Lescul15	L. esculentum			cv.	Super Roma
Lescull 6	$=$ L. esculentum			cv .	$1702 \mathrm{~F}_{1}$
Lescul17	L. esculentum			cv.	Boa F_{1}
Lescull 8	$=$ L. esculentum			cv .	Cobra F
Lescer	$=$ L. esculentum	var.	cerasiforme		LA-1673
Lhirs 1	L. hirsutum				LA-1353
Lhirs2	$=$ L. hirsutum				LYC 4/88
Lhirsg 1	L. hirsutum	var.	glabratum		G-29255
Lhirsg2	L. hirsutum	var.	glabratum		LA-1223
Lhirsg3	L. hirsutum	var.	glabratum		PI-199381
Lparvil	$=$ L. parviflorum				LA-1322
Lparvi2	= L. parviflorum				LA-1326
Lparvi3	= L. parviflorum				T-1264/94
Lpenn 1	$=$ L. pennellii				LA-0716
Lpenn2	$=$ L. pennellii				PI-473422
Lpennp	= L. pennellii	var.	puberulum		LA-1926
Lpimpl	$=$ L. pimpinellifolium				PI-230327
Lpimp2	$=$ L. pimpinellifolium				PI-270449
Lpimp3	= L. pimpinellifolium				PI-390739

Appendix 3

Appendix 3 Statistical analyses of morphological and molecular markers data of Lycopersicon spp accessions.

Part 1 Statistical analyses of genetic indices from microsatelite markers data given in Tables 3.3.1 and 3.3.2. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices P, A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I.

Kruskal-Wallis Test for proportion of polymorphic loci (P) in microsatellite markers data of Lycopersicon spp.

Kruskal-Wallis Test				
Species	N	Median	Ave Rank	Z
L.escul	1	29.00	8.0	1.53
L.chees	1	14.00	3.5	-0.44
L.cheesm	1	14.00	3.5	-0.44
L.hirs	1	17.00	6.0	0.65
L.hirsg	1	18.00	7.0	1.09
L.parv	1	16.00	5.0	0.22
L.penn	1	10.00	1.0	-1.53
L.pimp	1	11.00	2.0	-1.09
Overall	8		4.5	
H $=6.92$	$D F=7$	$P=0.437$		
$H=7.00$	$D F=7$	$P=0.429$	(adjusted for ties)	

Kruskal-Wallis Test for number of polymorphic alleles per locus (A) in microsatellite data of Lycopersicon spp.

Kruskal-Wallis Test

Species	N	Median	Ave Rank	Z
L. chees	55	1.000	212.0	-0.53
L. cheesm	55	1.000	212.0	-0.53
L. escul	55	2.000	272.0	3.21
L. hirs	55	1.000	224.0	0.22
L. hirsg	55	1.000	228.0	0.47
L. parvi	55	1.000	220.0	-0.03
L. penn	55	1.000	196.0	-1.53
L. pimp	55	1.000	200.0	-1.28
Overall	440		220.5	
$H=13.22$	$D E=7$	$\mathrm{P}=0.067$		
H $=1.26$	$D E=7$	$\mathrm{P}=0.003$	(adjusted for ties)	

Kruskal-Wallis Test for effective number of alleles $\left(A_{e}\right)$ in microsatellite markers data of Lycopersicon spp.

Kruskal-Wallis Test

Species	N	Median	Ave Rank	Z
L. chees	55	1.000	211.7	-0.55
L. cheesm	55	1.000	213.3	-0.45
L. escul	55	1.058	266.8	2.89
L. hirs	55	1.000	225.5	0.31
L. hirsg	55	1.000	230.4	0.62
L. parvi	55	1.000	218.4	-0.13
L. penn	55	1.000	196.1	-1.52
L. pimp	55	1.000	201.8	-1.17
Overall	440		220.5	

$H=11.37 \quad D F=7 \quad \mathrm{P}=0.123$
$H=17.62 \quad D E=7 \quad \mathrm{P}=0.014$ (adjusted for ties)

One-Way Analysis of Variance of average gene diversity $\left(H_{s}\right)$ in microsatellite markers data of Lycopersicon spp.

One-Way Analysis of Variance of Shannon's information index (I) in microsatellite markers data of Lycopersicon spp.

| Analysis of Variance | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Factor | 7 | 0.9952 | 0.1422 | 2.05 | 0.048 |
| Error | 432 | 29.9248 | 0.0693 | | |
| Total | 439 | 30.9200 | | | |

Level	N	Mean
L. chees	55	0.1436
L. cheesm	55	0.1539
L. escul	55	0.2658
L. hirs	55	0.1869
L. hirsg	55	0.1946
L. parvi	55	0.1610
L. penn	55	0.1039
L. pimp	55	0.1176
Pooled StDev $=$	0.2632	

Part 2 Equation regression and analysis of variance of regression analysis done in section 3.3.1.1.4 Figure 3.3.3 between sample size and population genetic indices based in microsatellite markers data.

Sample size versus observed number of alleles (A).

- L. cheesmanii
$A=1.10+0.0544$ Sample size
$S=0.05829 \quad \mathrm{R}-\mathrm{Sq}=50.6 \% \quad \mathrm{R}-\mathrm{Sq}=47.1 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.048733	0.048733	$14.34^{* *}$	0.002
Error	14	0.047576	0.003398		
Total	15	0.096309			

- L. esculentum
$A=1.03+0.0600$ Sample size
$S=0.06490 \quad \mathrm{R}-\mathrm{Sq}=64.7 \% \quad \mathrm{R}-\mathrm{Sq}=63.4 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.21596	0.21596	$51.27^{* *}$	0.000
Error	28	0.11795	0.00421		
Total	29	0.33391			

- L. hirsutum
$A=1.12+0.0934$ Sample size
$\mathrm{S}=0.05187 \quad \mathrm{R}-\mathrm{Sq}=72.8 \% \quad \mathrm{R}-\mathrm{Sq}=70.3 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.079124	0.079124	$29.41^{* *}$	0.000
Error	11	0.029591	0.002690		
Total	12	0.108715			

Sample size versus effective number of alleles $\left(A_{e}\right)$.

- L. cheesmanii
$A_{e}=1.08+0.0357$ Sample size
$\mathrm{S}=0.04405$
$R-S q=\quad 43.5 \%$
$\mathrm{R}-\mathrm{Sq}=39.5 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.020908	0.020908	$10.78^{* *}$	0.005
Error	14	0.027161	0.001940		
Total	15	0.048068			

- L. esculentum
$A_{e}=1.04+0.0357$ Sample size
$S=0.04698$
$\mathrm{R}-\mathrm{Sq}=\quad 55.2 \%$
$\mathrm{R}-\mathrm{Sq}=53.6 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.076270	0.076270	$34.56^{* *}$	0.000
Error	28	0.061787	0.002207		
Total	29	0.138057			

- L. hirsutum
$A_{e}=1.10+0.0537$ Sample size
$S=0.03515$
$\mathrm{R}-\mathrm{Sq}=\quad 65.8 \%$
$\mathrm{R}-\mathrm{Sq}=\quad 62.7 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.026184	0.026184	$21.19^{* *}$	0.000
Error	11	0.013594	0.001236		
Total	12	0.039778			

Sample size versus average gene diversity $\left(H_{\mathrm{s}}\right)$

- L. cheesmanii
$H_{S}=0.0459+0.0194$ Sample size
$\mathrm{S}=0.02454 \quad \mathrm{R}-\mathrm{Sq}=42.3 \% \quad \mathrm{R}-\mathrm{Sq}=38.2 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.0061867	0.0061867	$10.28^{* *}$	0.006
Error	14	0.0084285	0.0006020		
Total	15	0.0146151			

- L. esculentum
$H_{S}=0.0225+0.0202$ Sample size
$\mathrm{S}=0.02617$
$R-S q=56.1 \%$
$\mathrm{R}-\mathrm{Sq}=54.5 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.024519	0.024519	$35.80^{* *}$	0.000
Error	28	0.019178	0.000685		
Total	29	0.043697			

- L. hirsutum
$H_{S}=0.0601+0.0304$ Sample size
$\mathrm{S}=0.02012 \quad \mathrm{R}-\mathrm{Sq}=65.4 \% \quad \mathrm{R}-\mathrm{Sq}=62.3 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.0084133	0.0084133	$20.79^{* *}$	0.000
Error	11	0.0044516	0.0004047		
Total	12	0.0128649			

Sample size versus Shannon's information index (I)

- L. cheesmanii
$I=0.0660+0.0288$ Sample size
$\mathrm{S}=0.03549$
$\mathrm{R}-\mathrm{Sq}=\quad 43.6 \%$
$\mathrm{R}-\mathrm{Sq}=\quad 39.6 \%$

Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.013632	0.013632	$10.82^{* *}$	0.005
Error	14	0.017636	0.001260		
Total	15	0.031268			

- L. esculentum
$I=0.0309+0.0304$ Sample size
$S=0.03807$
$\mathrm{R}-\mathrm{Sq}=\quad 57.7 \%$
$\mathrm{R}-\mathrm{Sq}=\quad 56.2 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.055304	0.055304	$38.16^{* *}$	0.000
Error	28	0.040583	0.001449		
Total	29	0.095887			

- L. hirsutum
$I=0.0837+0.0467$ Sample size
$S=0.02996$
$\mathrm{R}-\mathrm{Sq}=\quad 66.7 \%$
$\mathrm{R}-\mathrm{Sq}=$
63.7\%

Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	0.019826	0.019826	$22.08^{* *}$	0.000
Error	11	0.009876	0.000898		
Total	12	0.029702			

Sample size versus number of polymorphic loci.

- L. cheesmanii
$P=5.20+3.02$ Sample size
$S=3.174$
$\mathrm{R}-\mathrm{Sq}=51.5 \%$
$R-S q=\quad 48.0 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	149.44	149.44	$14.84^{* *}$	0.002
Error	14	141.00	10.07		
Total	15	290.44			

- L. esculentum
$P=1.63+3.30$ Sample size
$\mathrm{S}=3.570$
$\mathrm{R}-\mathrm{Sq}=64.7 \%$
$\mathrm{R}-\mathrm{Sq}=63.4 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	653.40	653.40	$51.28^{* *}$	0.000
Error	28	356.77	12.74		
Total	29	1010.17			

- L. hirsutum
$P=6.27+5.16$ Sample size
$\mathrm{S}=2.869$
$\mathrm{R}-\mathrm{Sq}=\quad 72.8 \%$
$\mathrm{R}-\mathrm{Sq}=70.3 \%$
Analysis of Variance

Source	DF	Sum of Squares	Medium Square	F	P
Regression	1	241.77	241.77	$29.38^{* *}$	0.000
Error	11	90.53	8.23		
Total	12	332.31			

Part 3 Statistical analyses of genetic indices from microsatellite markers data given in Tables 3.3.5. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I. Tested levels were groups of species in red-fruited and green-fruited.

Non-parametric Kruskal-Wallis Test for A in Lycopersicon spp fruit colour groups.

Kruskal-Wallis Test

Groups	N	Median	Ave Rank	Z
Red	55	2.000	54.5	-0.33
Green	55	2.000	56.5	0.33
Overall	110		55.5	
$H=0.11$	$D E=1$	$\mathrm{P}=0.742$		
$H=0.26$	$D F=1$	$\mathrm{P}=0.608$	(adjusted for ties)	

Non-parametric Kruskal-Wallis Test for A_{e} in Lycopersicon spp fruit colour groups.

Kruskal-Wallis Test

Groups	N	Median	Ave Ran	Z
Red	55	1.360	54.2	-0.42
Green	55	1.284	56.8	0.42
Overall	110		55.5	
$H=0.17$	$D F=1$	$\mathrm{P}=0.678$		
$\mathrm{H}=0.17$	$\mathrm{DF}=1$	$\mathrm{P}=0.677$	(adjusted for ties)	

One-Way Analysis of Variance for H_{s} in $L y c o p e r s i c o n ~ s p p ~ f r u i t ~ c o l o u r ~ g r o u p s . ~$

One-Way Analysis of Variance for I in Lycopersicon spp fruit colour groups.

Analysis of Variance					
Source	DF	SS	MS	E	
Groups	1	0.0095	0.0095	0.16	0.690
Error	108	6.3886	0.0592		
Total	109	6.3981			Individual 95% CIs For Mean
					Based on Pooled StDev

Part 4 Statistical analyses of genetic indices given in Tables 3.3.6 and 3.3.7. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices P, A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I.

Kruskal-Wallis Test for proportion of polymorphic loci (P) in RAPD markers data of Lycopersicon spp.

Kruskal-Wallis Test

Species	N	Median	Ave Rank	Z
L.chees	1	0.3358	6.0	0.65
L.cheesm	1	0.1493	1.0	-1.53
L.escul	1	0.6231	8.0	1.53
L.hirs	1	0.2089	2.0	-1.09
L.hirg	1	0.3433	7.0	1.09
L.parv	1	0.2948	5.0	0.22
L.penne	1	0.2388	3.0	-0.65
L.pimpi	1	0.2799	4.0	-0.22
Overall	8		4.5	
$H=7.00$	$D F=7$	$P=0.429$		

* NOTE * One or more small samples

Kruskal-Wallis Test for number of polymorphic alleles per locus (A) in RAPD markers data of Lycopersicon spp.

Kruskal-Wallis Test on A

C1	N	Median	Ave Rank	Z
L.chees	268	1.000	281.0	0.48
L.cheesm	268	1.000	245.0	-1.54
L.escul	268	2.000	365.0	5.19
L.hirs	268	1.000	241.0	-1.77
L.hirsug	268	1.000	281.0	0.48
L.parv	268	1.000	273.0	0.03
L.penne	268	1.000	265.0	-0.42
L.pimpi	268	1.000	229.0	-2.44
Overall	2144		272.5	

$\begin{array}{lll}H=34.12 & D F=7 & \mathrm{P}=0.000 \\ H=49.92 & D F=7 & \mathrm{P}=0.000 \quad \text { (adjusted for ties) }\end{array}$
Kruskal-Wallis Test for effective number of alleles $\left(A_{e}\right)$ in RAPD markers data of Lycopersicon spp.
Kruskal-Wallis Test on Ae

C1	N	Median	Ave Rank	Z
L.chees	268	1.000	281.9	0.53
L.cheesm	268	1.000	247.5	-1.40
L.escul	268	1.269	351.2	4.42
L.hirs	268	1.000	243.4	-1.63
L.hirsug	268	1.000	283.6	0.62
L.parv	268	1.000	276.2	0.21
L.penne	268	1.000	267.1	-0.30
L.pimpi	268	1.000	229.0	-2.44
Overall	2144		272.5	
$H=27.02$	$D E=7$	$P=0.000$		
$H=37.30$	$D F=7$	$P=0.000$	(adjusted for ties)	

One-Way Analysis of Variance of average gene diversity $\left(H_{s}\right)$ in RAPD markers data of Lycopersicon spp.

One-Way Analysis of Variance of Shannon's information index (I) in RAPD markers data of Lycopersicon spp.

Analysis	of Variance		
Source	DF	SS	MS
I	7	2.7190	0.3884
Error	2136	68.4206	0.0320
Total	2143	71.1396	
Level	N	Mean	StDev
L.chees	268	0.1321	0.1923
L.cheesm	268	0.0618	0.1479
L.escul	268	0.1888	0.1937
L.hirs	268	0.0865	0.1687
L.hirsug	268	0.1300	0.1866
L.parvi	268	0.1153	0.1848
L.penne	268	0.0922	0.1696
L.pimpi	268	0.1102	0.1836
Pooled StDev $=$	0.1790		

Part 5 Equation regression and analysis of variance of regression analysis done in section 3.3.2.1.4 Figure 3.3.10 between sample size and population genetic indices based in RAPD markers data.

Sample size versus observed number of alleles (A).

- L. cheesmanii

The regression equation is
$A=1.06+0.108$ Sample size

Predictor	Coef	StDev	T	P
Constant	1.06052	0.02860	37.08	0.000
Sample S	0.108149	0.008971	12.06	0.000
$\mathrm{~S}=0.03468$	$\mathrm{R}-\mathrm{Sq}=90.1 \%$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=89.5 \%$		

Analysis of Variance

- L. hirsutum

The regression equation is
$A=0.456+0.276$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.4563	0.2614	1.75	0.106
Sample S	0.27561	0.08237	3.35	0.006
S $=0.2461$	R-Sq $=48.3 \%$	R-Sq $($ adj $)=44.0 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.67821	0.67821	11.20	0.006
Error	12	0.72692	0.06058		
Total	13	1.40513			

Unusual Observations

Obs	Samples	A	Fit	StDev Fit	Residual	St Resid
14	2.00	0.2623	1.0075	0.1101	-0.7452	$-3.39 R$

[^3]- L. esculentum

The regression equation is
$A=1.09+0.0781$ Sample size

Predictor	Coef	StDev	T	P
Constant	1.09319	0.07344	14.88	0.000
Sample s	0.07810	0.02289	3.41	0.004
S $=0.07153$	R-Sq $=43.7 \%$	R-Sq $($ adj $)=39.9 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.059563	0.059563	11.64	0.004
Error	15	0.076747	0.005116		
Total	16	0.136310			

Sample size versus effective number of alleles $\left(A_{e}\right)$.

- L. cheesmanii

The regression equation is
$A_{e}=1.07+0.0648$ Sample size

Predictor	Coef	StDev	T	P
Constant	1.06776	0.02002	53.32	0.000
Sample s	0.064775	0.006280	10.31	0.000
$S=0.02428$	R-Sq $=86.9 \%$	R-Sq $($ adj $)=86.1 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.062703	0.062703	106.38	0.000
Error	16	0.009430	0.000589		
Total	17	0.072134			

- L. hirsutum

The regression equation is
$A_{e}=0.506+0.221$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.5056	0.2835	1.78	0.100
Sample s	0.22134	0.08934	2.48	0.029
$\mathrm{~S}=0.2670$	$\mathrm{R}-$ Sq $=33.8 \%$	$\mathrm{R}-\mathrm{Sq}($ adj $)=28.3 \%$		

Analysis of Variance

- L. esculentum

The regression equation is
$A_{e}=0.984+0.0579$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.9841	0.2675	3.68	0.002
Sample s	0.05790	0.08337	0.69	0.498
S = 0.2605	R-Sq = 3.1\%	R-Sq (adj) $=0.0 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.03273	0.03273	0.48	0.498
Error	15	1.01794	0.06786		
Total	16	1.05067			

Unusual Observations

Obs	Samples	Ae	Fit	StDev Fit	Residual	St Resid
7	3.00	0.1955	1.1578	0.0639	-0.9623	-3.81 R

R denotes an observation with a large standardized residual

Sample size versus average gene diversity $\left(H_{s}\right)$

- L. cheesmanii

The regression equation is
$H_{s}=0.110+0.0323$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.1098	0.2026	0.54	0.595
Sample s	0.03231	0.06354	0.51	0.618
S = 0.2457	R-Sq = 1.6\%	R-Sq $($ adj $)=0.0 \%$		

Analysis of Variance

- L. hirsutum

The regression equation is
$H_{s}=-0.0555+0.0644$ Sample size

Predictor	Coef	StDev	T	P
Constant	-0.05550	0.03166	-1.75	0.105
Sample s	0.064397	0.009976	6.46	0.000
$\mathrm{~S}=0.02981$	$\mathrm{R}-\mathrm{Sq}=77.6 \%$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=75.8 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.037027	0.037027	41.67	0.000
Error	12	0.010663	0.000889		
Total	13	0.047690			

Unusual Observations						
Obs	Sample s	Hs	Fit	StDev Fit	Residual	St Resid
12	2.00	0.00753	0.07330	0.01333	-0.06577	-2.47 R

R denotes an observation with a large standardized residual

- L. esculentum

The regression equation is
$H_{s}=0.0500+0.0256$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.05001	0.02789	1.79	0.093
Sample s	0.025643	0.008691	2.95	0.010
S $=0.02716$	R-Sq $=36.7 \%$	R-Sq $($ adj $)=32.5 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.0064208	0.0064208	8.70	0.010
Error	15	0.0110642	0.0007376		
Total	16	0.0174850			

Sample size versus Shannon's information index (I)

- L. cheesmanii

The regression equation is
$I=0.0597+0.0541$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.05968	0.01650	3.62	0.002
Sample S	0.054073	0.005175	10.45	0.000
$\mathrm{~S}=0.02000$	R-Sq $=87.2 \%$	R-Sq (adj) $=86.4 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.043696	0.043696	109.20	0.000
Error	16	0.006402	0.000400		
Total	17	0.050099			

- L. hirsutum

The regression equation is
$I=-0.0405+0.0836$ Sample size

Predictor	Coef	StDev	T	P
Constant	-0.04053	0.03335	-1.22	0.248
Sample s	0.08359	0.01051	7.96	0.000
$S=0.03140$	R-Sq $=84.1 \%$	R-Sq $($ adj $)=82.7 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.062393	0.062393	63.28	0.000
Error	12	0.011831	0.000986		
Total	13	0.074224			

Unusual Observations						
Obs	Sample s	I	Fit	StDev Fit	Residual	St Resid
7	3.00	0.27350	0.21025	0.00843	0.06325	2.09 R

R denotes an observation with a large standardized residual

- L. esculentum

The regression equation is
$I=0.0707+0.0389$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.07074	0.04116	1.72	0.106
Sample s	0.03891	0.01283	3.03	0.008
S $=0.04009$	R-Sq $=38.0 \%$	R-Sq $($ adj $)=33.9 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.014782	0.014782	9.20	0.008
Error	15	0.024108	0.001607		
Total	16	0.038890			

Sample size versus number of polymorphic loci (P).

- L. cheesmanii

```
The regression equation is
P=0.0457 + 0.109 Sample size
```

Predictor	Coef	StDev	T	P
Constant	0.04565	0.02805	1.63	0.123
Sample S	0.109391	0.008798	12.43	0.000
$\mathrm{~S}=0.03401$	R-Sq $=90.6 \%$	R-Sq (adj) $=90.0 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.17883	0.17883	154.60	0.000
Error	16	0.01851	0.00116		
Total	17	0.19734			

The regression equation is
$P=-0.123+0.160$ Sample size

Predictor	Coef	StDev	T	P
Constant	-0.12301	0.05670	-2.17	0.051
Sample s	0.15975	0.01787	8.94	0.000
$S=0.05339$	R-Sq $=86.9 \%$	R-Sq $($ adj $)=85.9 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.22786	0.22786	79.94	0.000
Error	12	0.03420	0.00285		
Total	13	0.26207			

- L. esculentum

The regression equation is
$P=0.0851+0.0776$ Sample size

Predictor	Coef	StDev	T	P
Constant	0.08506	0.06721	1.27	0.225
Sample s	0.07760	0.02095	3.70	0.002
S = 0 $=0.06546$	R-Sq $=47.8 \%$	R-Sq $($ adj $)=44.3 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	0.058798	0.058798	13.72	0.002
Error	15	0.064275	0.004285		
Total	16	0.123073			

Part 6 Statistical analyses of genetic indices from RAPD markers data given in Tables 3.3.10. Non-parametric test Kruskal-Wallis was carried out for nonnormally distributed indices A and $A_{e} ;$ ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I. Tested levels were groups of species in red-fruited and green-fruited.

Non-parametric Kruskal-Wallis Test for A in Lycopersicon spp fruit colour groups.

Kruskal-Wallis Test

A	N	Median	Ave Rank	Z
Red fruited	168	2.000	170.0	0.28
Green fruited	168	2.000	167.0	-0.28
Overall	336		168.5	
$H=0.08 \quad \mathrm{DF}=1$	$\mathrm{P}=0.777$			
$\mathrm{H}=0.22 \mathrm{DF}=1$	$\mathrm{P}=0.638$	(adjusted for ties)		

Non-parametric Kruskal-Wallis Test for A_{e} in Lycopersicon spp fruit colour groups.

```
Kruskal-Wallis Test
```

A_{e}	N	Median	Ave Ran	Z
Red fruited	167	1.385	162.5	-1.13
Green fruited	168	1.473	173.9	1.02
Overall	336		168.5	
$\mathrm{H}=2.07 \quad \mathrm{DF}=2$	$\mathrm{P}=0.355$			
$\mathrm{H}=2.08 \quad \mathrm{DF}=2$	$\mathrm{P}=0.354$	(adjusted for ties)		
* NOTE * One or more small samples				

One-Way Analysis of Variance for H_{s} in Lycopersicon spp fruit colour groups.

One-Way Analysis of Variance for I in Lycopersicon spp fruit colour groups.

Part 7 Statistical analyses of genetic indices from microsatellite and RAPD markers data given in Table 3.4.1. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I. Tested levels were L. esculentum accessions grouped in landraces, old varieties, modern varieties OP, and F_{1} hybrids.
Non-parametric Kruskal-Wallis Test for A in L. esculentum groups for RAPD.

Kruskal-Wallis Test

A	N	Median	Ave Rank	Z
Landrace	168	1.000	291.5	-3.47
Old Varieties.	168	1.000	383.5	3.62
Modern Varieties OP	168	1.000	361.5	1.93
Fl hybrids	168	1.000	309.5	-2.08
Overall	672		336.5	
$H=24.91 \quad \mathrm{DF}=3$	$\mathrm{P}=0.000$			
$\mathrm{H}=38.26 \quad \mathrm{DF}=3$	$\mathrm{P}=0.000$	(adjusted for ties)		

Non-parametric Kruskal-Wallis Test for A_{e} in L. esculentum groups for RAPD.

Kruskal-Wallis Test

Ae	N	Median	Ave Rank	Z
Landrace	168	1.000	292.3	-3.41
Old Varieties	168	1.000	376.1	3.05
Modern varieties OP	168	1.000	368.5	2.47
Fl hybrids	168	1.000	309.2	-2.11
Overall	672		336.5	
$H=23.60 \quad D F=3$	$\mathrm{P}=0.000$			
$\mathrm{H}=34.35 \quad \mathrm{DF}=3$	$\mathrm{P}=0.000$	(adjusted for ties)		

One-Way Analysis of Variance for H_{s} in L. esculentum groups for RAPD.

One-Way Analysis of Variance for I in L. esculentum groups for RAPD.
Analysis of Variance

Part 8 ANOVA of means from continuous characters in fruits of Lycopersicon spp accessions selected as parents showed in Table 4.3.1 and 4.3.2.

Fruit diameter (cm)
One-Way Analysis of Variance

Fruit length (cm)

One-Way Analysis of Variance

Analysis of Variance

Source	DF	SS	MS	F	P
Parents	7	177.690	25.384	77.95	0.000
Error	72	23.446	0.326		
Total	79	201.136			

Fruit ratio (d/l)

One-Way Analysis of Variance

Analysis of Variance

Source	DF	SS	MS	F	P
Parents	7	3.98852	0.56979	60.22	0.000
Error	72	0.68120	0.00946		
Total	79	4.66972			

Fruit weight (g)

One-Way Analysis of Variance

Solid soluble content (${ }^{\circ}$ brix)

One-Way Analysis of Variance

Weight of 1,000 seeds (g)

One-Way Analysis of Variance

Part 9.1 ANOVA of means in crosses and parent accessions of continuous characters in F_{1} generation of inter- and intra-taxon crosses presented in Tables 4.7.1 and 4.7.2

Fruit diameter (cm)

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C4							
Source Accessions	DF SS		MS	F P		P	
	3	146.843	48.948	372.14	0.000		
Error	36	4.735	0.132				
Total	39	151.578					
				Individual 95\% CIs For Mean			
Level	N	Mean	StDev	-----+-			+-
I 5211	10	1.5530	0.2234	(*-)			
I 1152	10	1.9120	0.1628				
L.parvif	10	1.0290	0.0472	(- *)			
Limachino	10	5.8630	0.6689				(* -)
Pooled StD	$\mathrm{v}=$	0.3627		1.5	3.0	4.5	6.0

One-Way Analysis of Variance

Analysis of Variance			
Source	DF	SS	MS
Accessions	2	29.126	14.563
Error	27	2.994	0.111
Total	29	32.120	
Level	N	Mean	StDev
I 6021	10	2.2430	0.3194
L.pimpin	10	1.4380	0.1740
Marglobe	10	3.8110	0.4477
Pooled StDev $=$	0.3330		

```
Individual 95% CIs For Mean
Based on Pooled StDev
```



```
\begin{tabular}{llll}
1.60 & 2.40 & 3.20 & 4.00
\end{tabular}
```

One-Way Analysis of Variance

Analysis of Variance

Analysis of Variance

Fruit length (cm)

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance					
Source	DF	SS	MS	F	P
Accessions	2	62.133	31.067	126.17	0.000
Error	27	6.648	0.246		
Total	29	68.781			

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance			
Source	DF	SS	MS
Accessions	3	0.18569	0.06190
Error	36	0.21847	0.00607
Total	39	0.40417	
Level	N	Mean	StDev
I 5211	10	1.2016	0.0727
I 1152	10	1.1441	0.0971
L.parvif	10	1.1869	0.0456
Limachino	10	1.3271	0.0865
Pooled StDev $=$	0.0779		

One-Way Analysis of Variance

Analysis of Variance			
Source	DF	SS	MS
Accessions	2	0.02762	0.01381
Error	27	0.09642	0.00357
Total	29	0.12404	
Level	N	Mean	StDev
I 6021	10	1.0563	0.0365
L.pimpin	10	1.1274	0.0718
Marglobe	10	1.1104	0.0650
Pooled StDev $=$	0.0598		


```
Individual 95% CIs For Mean
Based on Pooled StDev
```



```
    1.050 1.100 1.150
```

One-Way Analysis of Variance

One-Way Analysis of Variance

Fruits Weight (g)

One-Way Analysis of Variance

Analysis of Variance					
Source	DF	SS	MS	E	P
Accessions	3	52828	17609	74.22	0.000
Error	36	8541	237		
Total	39	61369			

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

Solid Soluble Content (${ }^{\circ}$ Brix)

One-Way Analysis of Variance

Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance

One-Way Analysis of Variance


```
Individual 95% CIs For Mean
Based on Pooled StDev
```


One-Way Analysis of Variance

Analysis of Variance			
Source	DF	SS	MS
Accessions	2	64.59	32.30
Error	27	28.00	1.04
Total	29	92.59	
Level	N	Mean	StDev
I 1560	10	5.250	0.785
L.pimpin	10	8.590	0.644
Ace	10	5.770	1.442
Pooled StDev $=$	1.018		

One-Way Analysis of Variance

Weight of 1000 seeds (g)

One-Way Analysis of Variance

Analysis of Variance					
Source	DF	SS	MS	F	P
Accessions	3	7.6527	2.5509	200.79	0.000
Error	12	0.1524	0.0127		
Total	15	7.8052			

Level	N	Mean	StDev	Based on Pooled StDev			
I 3919	4	2.4975	0.0974				
I 1939	4	2.5200	0.0632				
L.esc.cer.	4	1. 2625	0.0960	$(-*-)$			
Lukullus	4	3.1750	0.1676				(- * -)
Pooled StDev	$=$	0.1127		1.20	1.80	2.40	3.00

One-Way Analysis of Variance

Analysis of Variance

Source	DF	SS	MS
Accessions	3	7.94187	2.64729
Error	12	0.09950	0.00829
Total	15	8.04137	

Level	N	Mean	StDev
I 5211	4	1.6600	0.1657
I 1152	4	2.4250	0.0526
L.parvif	4	1.1300	0.0258

| Limachino 4 | 2.9700 | 0.0476 |
| :--- | :--- | :--- | :--- |

Pooled StDev $=0.0911$

One-Way Analysis of Variance

Analysis of Variance			
Source	DF	SS	MS
Accessions	2	5.45807	2.72903
Error	9	0.07860	0.00873
Total	11	5.53667	
Level	N	Mean	StDev
I 6021	4	2.0250	0.1340
L.pimpin	4	0.8550	0.0661
Marglobe	4	2.4500	0.0622
Pooled StDev $=$	0.0935		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance					
Source	DF	SS	MS	F	P
Accessions	3	7.7141	2.5714	150.52	0.000
Error	12	0.2050	0.0171		
Total	15	7.9191			

Individual 95\% CIs For Mean Based on Pooled StDev

Part 9.2 ANOVA of means in crosses and parent accessions of continuous characters in F_{1} generation of inter- and intra-taxon crosses presented in Appendix 5.

Fruit Diameter (cm)

One-Way Analysis of Variance

$\left.\begin{array}{lrrrrrr}\text { Analysis of Variance for C4 } \\ \text { Source } & \text { DF } & \text { SS } & & & \text { MS } & \text { F }\end{array}\right]$ P

Total	39	175.048

Level	N	Mean	StDev
I 3915	10	3.2260	0.4612
I 1539	10	2.1750	0.4198
Ceras	10	1.7970	0.1571
Ace	10	6.7580	1.4093
Pooled StDev $=$	0.7746		

One-Way Analysis of Variance

| Analysis of Variance for C6 | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DE | SS | MS | F | P |
| C5 | 3 | 35.9603 | 11.9868 | 283.28 | 0.000 |
| Error | 36 | 1.5233 | 0.0423 | | |
| Total | 39 | 37.4836 | | | |

Level	N	Mean	StDev
I 5219	10	1.9780	0.1596
I 1952	10	1.8860	0.1169
Parvifl	10	1.0290	0.0472
Lukullus	10	3.6470	0.3576
Pooled StDev $=$	0.2057		

One-Way Analysis of Variance
Analysis of Variance for C8

Source	DE	SS	MS
C7	3	16.6762	5.5587
Error	36	1.6836	0.0468
Total	39	18.3598	
Level	N	Mean	StDev
I 5222	10	1.6780	0.1749
I 2252	10	1.6910	0.2269
Parvifl	10	1.0290	0.0472
SanMarz	10	2.8230	0.3206
Pooled StDev $=$	0.2163		

One-Way Analysis of Variance

One-Way Analysis of Variance
Analysis of Variance for C12

Source	DF	SS	MS
Cl1	2	25.6339	12.8170
Error	27	2.1875	0.0810
Total	29	27.8215	
Level	N	Mean	StDev
I 1960	10	2.1120	0.2914
Lukullus	10	3.6470	0.3576
Pimpinel	10	1.4380	0.1740
Pooled StDev $=$	0.2846		

One-Way Analysis of Variance

Analysis of Variance for C14			
Source	DF	SS	MS
C13	2	7.952	3.976
Error	27	2.859	0.106
Total	29	10.810	
Level	N	Mean	StDeV
I 2239	10	2.9450	0.4361
SanMarz	10	2.8230	0.3206
Ceras	10	1.7970	0.1571
Pooled StDev $=$	0.3254		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C18							
Source	DF	SS	MS	F9.50	0.000		
C17	3	27.962	9.321				
Error	31	30.407	0.981				
Total	34	58.368					
				Individual 95\% CIs For Mean Based on Pooled StDev			
Level	N	Mean	StDev		--+--		
E 1115	10	4.4410	0.4616	(-----	--)		
E 1511	5	5.2960	1.2832		--	---)	
Limachi	10	5.8630	0.6689			*---	
Ace	10	6.7580	1.4093				
Pooled S	$\mathrm{ev}=$	0.9904		4.0	5.0	6.0	7.0

One-Way Analysis of Variance

Analysis of Variance for	C20		
Source	DF	SS	MS
C19	3	34.797	11.599
Error	36	12.343	0.343
Total	39	47.140	
Level	N	Mean	StDev
E 1119	10	3.9520	0.4986
E 1911	10	3.5970	0.7399
Limachi	10	5.8630	0.6689
Lukullus	10	3.6470	0.3576
Pooled StDev $=$	0.5855		

One-Way Analysis of Variance

Analysis of Variance for C22			
Source	DE	SS	MS
C21	3	40.532	13.511
Error	36	10.160	0.282
Total	39	50.691	
Level	N	Mean	StDev
E 1121	10	3.7690	0.5478
E 2111	10	3.2220	0.4240
Limachi	10	5.8630	0.6689
Marglobe	10	3.8130	0.4489
Pooled StDev $=$	0.5312		

One-Way Analysis of Variance

Analysis of Variance for C24			
Source	DF	SS	MS
C23	3	49.518	16.506
Error	36	24.852	0.690
Total	39	74.369	
Level	N	Mean	StDev
E 1519	10	5.0100	0.7497
E 1915	10	4.7960	0.2918
Ace	10	6.7580	1.4093
Lukullus	10	3.6470	0.3576
Pooled StDev $=$	0.8309		

One-Way Analysis of Variance

Analysis Source	of Variance for C26						
	DE	SS	MS			2	
C25	3	82.678	27.559	33.22	0.000		
Error	36	29.866	0.830				
Total	39	112.544					
				Individu Based on	$\begin{aligned} & 95 \% \mathrm{CIs} \\ & \text { ooled St } \end{aligned}$	Mean	
Level	N	Mean	StDev				
E 1522	10	4.3440	0.5704		(---*-		
E 2215	10	3.9180	0.9508		*---)		
Ace	10	6.7580	1.4093				-)
SanMarz	10	2.8230	0.3206	(---*			
Pooled S	$\mathrm{ev}=$	0.9108		3.0	4.5	6.0	7.5

One-Way Analysis of Variance
Analysis of Variance for C28

Source	DF	SS	MS
C27	3	7.210	2.403
Error	36	5.258	0.146
Total	39	12.469	

Level	N	Mean	StDev
E 1922	10	3.9660	0.2855
E 2219	10	3.2950	0.5216
Lukullus	10	3.6470	0.3576
SanMarz	10	2.8230	0.3206

One-Way Analysis of Variance

Analysis of Variance for C30			
Source	DF	SS	MS
C29	2	50.14	25.07
Error	26	26.45	1.02
Total	28	76.59	
Level	N	Mean	StDev
E 1521	9	4.241	0.919
Ace	10	6.758	1.409
Marglobe	10	3.813	0.449
Pooled StDev $=$	1.009		

One-Way Analysis of Variance

Fruit Length (cm)

One-Way Analysis of Variance

One-Way Analysis of Variance
Analysis of Variance for C4

Source	DF	SS	MS
C3	3	60.753	20.251
Error	36	10.139	0.282
Total	39	70.891	

Level	N	Mean	StDe
I 3915	10	2.8030	0.355
I 1539	10	1.7670	0.557
Ceras	10	1.6720	0.1536
Ace	10	4.7360	0.8158
Pooled StDev $=$	0.5307		

One-Way Analysis of Variance
Analysis of Variance for C6

| | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| C5 | 3 | 24.8031 | 8.2677 | 183.72 | 0.000 |
| Error | 36 | 1.6200 | 0.0450 | | |
| Total | 39 | 26.4232 | | | |
| | | | | | Individual 95% CIS For Mean |
| | | | Mased on Pooled StDev | | |

One-Way Analysis of Variance

Analysis of Variance for C8

Source	DF	SS	MS
C7	3	93.190	31.063
Error	36	12.206	0.339
Total	39	105.396	
Level	N	Mean	StDev
I 5222	10	1.5870	0.1704
I 2252	10	1.6230	0.2047
Parvifl	10	0.8680	0.0494
SanMarz	10	4.8150	1.1326

```
\begin{tabular}{rr}
F & P \\
91.62 & 0.000
\end{tabular}
Individual 95\% CIs Eor Mean Based on Pooled StDev
```


One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C12							
Source	DF	SS	MS	$\begin{array}{r} E \\ 80.71 \end{array}$	P		
C11	2	16.194	8.097		0.000		
Error	27	2.708	0.100				
Total	29	18.902					
				Individual 95\% CIs For Mean			
Level	N	Mean	StDev	--+-----			
I 1960	10	2.0030	0.3488		(--		
Lukullus	10	3.0740	0.3649				(--*---)
Pimpinel	10	1.2860	0.2147	(--*---)			
Pooled St	$\mathrm{v}=$	0.3167		1.20	1.80	2.40	3.00

One-Way Analysis of Variance

Analysis of Variance for C14			
Source	DF	SS	MS
C13	2	49.817	24.909
Error	27	12.331	0.457
Total	29	62.149	
Level	N	Mean	StDev
I 2239	10	2.9910	0.2523
SanMarz	10	4.8150	1.1326
Ceras	10	1.6720	0.1536
Pooled StDev $=$	0.6758		

One-Way Analysis of Variance

Analysis	Va	ce for					
Source	DF	SS	MS	E	P		
C15	2	66.310	33.155	65.50	0.000		
Error	27	13.667	0.506				
Total	29	79.977					
				Individ Based on	$\begin{aligned} & 95 \% \\ & \text { oled } \end{aligned}$	Mean	
Level	N	Mean	StDev	-----+-			
I 2260	10	2.2720	0.4354		-)		
SanMarz	10	4.8150	1.1326				
Pimpinel	10	1.2860	0.2147	*-			
Pooled S	$\mathrm{v}=$	0.7115		1.5	3.0	4.5	6.0

One-Way Analysis of Variance

Analysis of Variance for C18			
Source	DF	SS	MS
C17	3	7.798	2.599
Error	31	14.103	0.455
Total	34	21.901	
Level	N	Mean	StDev
E 1115	10	3.5520	0.6556
E 1511	5	3.9820	0.7871
Limachi	10	4.4210	0.4430
Ace	10	4.7360	0.8158
Pooled StDev $=$	0.6745		

One-Way Analysis of Variance

Analysis of Variance for C20			
Source	DF	SS	MS
C19	3	10.560	3.520
Error	36	8.492	0.236
Total	39	19.052	
Level	N	Mean	StDev
E 1119	10	3.5220	0.3387
E 1911	10	3.2810	0.7067
Limachi	10	4.4210	0.4430
Lukullus	10	3.0740	0.3649
Pooled StDev $=$	0.4857		

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C26

Source	DF	SS	MS
C25	3	5.834	1.945
Error	36	29.687	0.825
Total	39	35.521	

E	P
2.36	0.088

Individual 95\% CIs For Mean
Based on Pooled StDev

One-Way Analysis of Variance

Analysis of Variance for C28			
Source	DF	SS	MS
C27	3	17.269	5.756
Error	36	14.302	0.397
Total	39	31.571	
Level	N	Mean	StDev
E 1922	10	3.9020	0.1621
E 2219	10	3.4010	0.3832
Lukullus	10	3.0740	0.3649
SanMarz	10	4.8150	1.1326
Pooled StDev $=$	0.6303		

One-Way Analysis of Variance

Analysis of Variance for C30			
Source	DF	SS	MS
C29	2	8.273	4.137
Error	26	14.757	0.568
Total	28	23.030	
Level	N	Mean	StDeV
E 1521	9	4.0667	0.8993
Ace	10	4.7360	0.8158
Marglobe	10	3.4500	0.5052
Pooled StDev $=$	0.7534		

One-Way Analysis of Variance

Analysis of Variance for C32			
Source	DF	SS	MS
C31	2	6.654	3.327
Error	27	15.843	0.587
Total	29	22.497	
Level	N	Mean	StDev
E 2211	10	3.6790	0.5302
SanMarz	10	4.8150	1.1326
Limachi	10	4.4210	0.4430
Pooled StDev $=$	0.7660		

F	P
5.67	0.009

Individual 95\% CIs For Mean Based on Pooled StDev

One-Way Analysis of Variance

Analysis of Variance for C34			
Source	DF	SS	MS
C33	2	9.388	4.694
Error	25	16.270	0.651
Total	27	25.659	
Level	N	Mean	StDev
E 2221	8	4.0200	0.5889
SanMarz	10	4.8150	1.1326
Marglobe	10	3.4500	0.5052
Pooled StDev $=$	0.8067		

Fruit Ratio (d/l)

One-Way Analysis of Variance

Analysis of Variance for C2			
Source	DF	SS	MS
C1	3	0.44923	0.14974
Error	36	0.17947	0.00499
Total	39	0.62870	
Level	N	Mean	StDeV
I 3911	10	1.0620	0.0656
I 1139	10	1.1350	0.0828
Ceras	10	1.0750	0.0360
Limachi	10	1.3270	0.0865
Pooled StDev $=$	0.0706		

One-Way Analysis of Variance

Analysis of Variance for C4			
Source	DF	SS	MS
C3	3	0.68345	0.22782
Error	36	0.34563	0.00960
Total	39	1.02908	
Level	N	Mean	StDeV
I 3915	10	1.1510	0.0769
I 1539	10	1.2700	0.1493
Ceras	10	1.0750	0.0360
Ace	10	1.4210	0.0943
Pooled StDev $=$	0.0980		

One-Way Analysis of Variance

Analysis of Variance for C6			
Source	DF	SS	MS
C5	3	0.08930	0.02977
Error	36	0.27594	0.00766
Total	39	0.36524	
Level	N	Mean	StDev
I 5219	10	1.1110	0.0436
I 1952	10	1.0900	0.0394
Parvifl	10	1.1880	0.0452
Lukullus	10	1.1990	0.1586
Pooled StDev $=$	0.0875		

$$
\begin{array}{rr}
F & { }^{P} \\
23.73 & 0.000
\end{array}
$$

Individual 95\% CIs For Mean Based on Pooled StDev

One-Way Analysis of Variance

Analysis of Variance for C8			
Source	DF	SS	MS
C7	3	1.88651	0.62884
Error	36	0.23949	0.00665
Total	39	2.12600	
Level	N	Mean	StDev
I 5222	10	1.0580	0.0501
I 2252	10	1.0430	0.0440
Parvif1	10	1.1880	0.0452
SanMarz	10	0.6120	0.1419
Pooled StDev $=$	0.0816		

One-Way Analysis of Variance

Analysis of Variance for C10			
Source	DF	SS	MS
C9	2	0.28941	0.14470
Error	27	0.13541	0.00502
Total	29	0.42482	
Level	N	Mean	StDev
I 1160	10	1.1120	0.0496
Limachi	10	1.3270	0.0865
Pimpinel	10	1.1260	0.0714
Pooled StDev $=$	0.0708		

One-Way Analysis of Variance

Analysis of Variance for C12			
Source	DF	SS	MS
C11	2	0.0967	0.0483
Error	27	0.2933	0.0109
Total	29	0.3900	
Level	N	Mean	StDeV
I 1960	10	1.0600	0.0483
Lukullus	10	1.1990	0.1586
Pimpinel	10	1.1260	0.0714
Pooled StDev $=$	0.1042		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C16			
Source	DF	SS	MS
C15	2	1.33331	0.66665
Error	27	0.24556	0.00909
Total	29	1.57887	
Level	N	Mean	StDev
I 2260	10	0.9120	0.0454
SanMarz	10	0.6120	0.1419
Pimpinel	10	1.1260	0.0714
Pooled StDev $=$	0.0954		

One-Way Analysis of Variance

Analysis of Variance for C18			
Source	DF	SS	MS
Cl7	3	0.1090	0.0363
Error	31	0.5074	0.0164
Total	34	0.6164	
Level	N	Mean	StDev
E 1115	10	1.2760	0.1837
E 1511	5	1.3280	0.1186
Limachi	10	1.3270	0.0865
Ace	10	1.4210	0.0943
Pooled StDev $=$	0.1279		

One-Way Analysis of Variance

Analysis of Variance for C2O			
Source	DF	SS	MS
C19	3	0.3081	0.1027
Error	36	0.4595	0.0128
Total	39	0.7676	
Level	N	Mean	StDev
E 1119	10	1.1250	0.1120
E 1911	10	1.1020	0.0766
Limachi	10	1.3270	0.0865
Lukullus	10	1.1990	0.1586
Pooled StDev $=$	0.1130		

One-Way Analysis of Variance
Analysis of Variance for C22

One-Way Analysis of Variance

Analysis of Variance for C24			
Source	DF	SS	MS
C23	3	0.3079	0.1026
Error	36	0.6453	0.0179
Total	39	0.9532	
Level	N	Mean	StDeV
E 1519	10	1.2750	0.1405
E 1915	10	1.2140	0.1338
Ace	10	1.4210	0.0943
Lukullus	10	1.1990	0.1586
Pooled StDev $=$	0.1339		

One-Way Analysis of Variance

Analysis of Variance for C26			
Source	DF	SS	MS
C25	3	3.2790	1.0930
Error	36	1.0938	0.0304
Total	39	4.3728	
Level	N	Mean	StDev
E 1522	10	1.0190	0.1073
E 2215	10	1.0470	0.2846
Ace	10	1.4210	0.0943
SanMarz	10	0.6120	0.1419
Pooled StDev $=$	0.1743		

One-Way Analysis of Variance

Analysis of Variance for C30			
Source	DF	SS	MS
C29	2	0.77009	0.38504
Error	26	0.23158	0.00891
Total	28	1.00167	
Level	N	Mean	StDev
E 1521	9	1.0500	0.1187
Ace	10	1.4210	0.0943
Marglobe	10	1.1110	0.0656
Pooled StDev $=$	0.0944		

Analysis of Variance for C32
Source DE SS MS

C31	2	2.5601	1.2801
Error	27	0.5494	0.0203
Total	29	3.1095	

Level	N	Mean	StDev
E 2211	10	0.9940	0.1828
SanMarz	10	0.6120	0.1419
Limachi	10	1.3270	0.0865
Pooled StDev $=$	0.1426		

One-Way Analysis of Variance

Analysis of Variance for C34			
Source	DF	SS	MS
C33	2	1.2535	0.6267
Error	25	0.3044	0.0122
Total	27	1.5579	
Level	N	Mean	StDeV
E 2221	8	0.9000	0.1099
SanMarz	10	0.6120	0.1419
Marglobe	10	1.1110	0.0656
Pooled StDev $=$	0.1104		

Fruit Weight (g)

One-Way Analysis of Variance

Analysis of Variance for C2			
Source	DF	SS	MS
C1	3	45792	15264
Error	36	8887	247
Total	39	54679	
Level	N	Mean	StDev
I 3911	10	12.42	4.39
I 1139	10	9.41	4.51
Ceras	10	3.46	1.05
Limachi	10	86.21	30.77
Pooled StDev $=$	15.71		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C6

Source	DF	SS	MS	F	P
C5	3	3638.5	1212.8	118.34	0.000
Error	36	369.0	10.2		

Total 39 4007.5

Level	N	Mean	StDev
I 5219	10	4.597	1.214
I 1952	10	4.174	0.546
Parvifl	10	0.679	0.090
Lukullus	10	24.894	6.262
Pooled StDev $=$	3.201		

One-Way Analysis of Variance
Analysis of Variance for C8

Source	DF	SS	MS
C7	3	3158.6	1052.9
Error	36	556.9	15.5
Total	39	3715.5	
Level	N	Mean	StDev
I 5222	10	2.988	0.786
I 2252	10	3.595	1.062
Parvif1	10	0.679	0.090
SanMarz	10	22.788	7.754

Pooled StDev $=3.933$
One-Way Analysis of Variance

Analysis of Variance for C10			
Source	DF	SS	MS
C9	2	43388	21694
Error	27	8558	317
Total	29	51946	
Level	N	Mean	StDev
I 1160	10	9.65	1.95
Limachi	10	86.21	30.77
Pimpinel	10	1.98	0.67
Pooled StDev $=$	17.80		

One-Way Analysis of Variance

One-Way Analysis of Variance

| Analysis of Variance for C14 | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| C13 | 2 | 1887.4 | 943.7 | 37.78 | 0.000 |
| Error | 27 | 674.4 | 25.0 | | |
| Total | 29 | 2561.8 | | | |

Level	N	Mean	StDeV
I 2239	10	14.825	3.702
SanMarz	10	22.788	7.754
Ceras	10	3.459	1.051
Pooled StDev $=$	4.998		

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance
Analysis of Variance for C22

Source	DF	SS	MS
C21	3	27371	9124
Error	36	12058	335
Total	39	39429	
Level	N	Mean	StDeV
E 1121	10	30.51	14.41
E 2111	10	19.26	8.11
Limachi	10	86.21	30.77
Marglobe	10	30.42	10.94
Pooled StDev $=$	18.30		

One-Way Analysis of Variance
Analysis of Variance for C24

Source	DF	SS	M
C23	3	55797	1859
Error	36	51502	143
Total	39	107299	

Level	N	Mean	StDev
E 1519	10	58.61	19.46
E 1915	10	55.65	10.34
Ace	10	127.07	72.09
Lukullus	10	24.89	6.26
Pooled StDev $=$	37.82		

One-Way Analysis of Variance
Analysis of Variance for C2

Source	DF	SS	MS
C1	3	66416	22139
Error	36	54928	1526

Total $39 \quad 121344$

Level	N	Mean
E 1522	10	44.61
E 2215	10	36.74
Ace	10	127.07
SanMarz	10	22.79
Pooled StDev =	39.06	

StDev

One-Way Analysis of Variance
Analysis of Variance for C4

Source	DF	SS	MS
C3	3	774.2	258.1
Error	36	1906.9	53.0

Total $39 \quad 2681.1$

Level	N	Mean	StDev
E 1922	10	33.830	4.008
E 2219	10	23.769	9.822
Lukullus	10	24.894	6.262
SanMarz	10	22.788	7.754
Pooled StDev $=$	7.278		

F	P
27.24	0.000^{2}

Individual 95\% CIs For Mean
Based on Pooled StDev

$$
\begin{array}{rr}
\mathrm{F} & \mathrm{P} \\
13.00 & 0.000
\end{array}
$$

F	P
4.87	0.006

Individual 95% CIs For Mean Based on Pooled StDev

One-Way Analysis of Variance

Analysis of Variance for C26			
Source	DF	SS	MS
C25	2	52497	26248
Error	26	54928	2113
Total	28	107424	
Level	N	Mean	StDev
E 1521	9	48.19	29.74
Ace	10	127.07	72.09
Marglobe	10	30.42	10.94
Pooled StDev $=$	45.96		

One-Way Analysis of Variance

Analysis of Variance for C28			
Source	DF	SS	MS
C27	2	25097	12548
Error	27	10126	375
Total	29	35223	
Level	N	Mean	StDev
E 2211	10	27.16	10.88
SanMarz	10	22.79	7.75
Limachi	10	86.21	30.77
Pooled StDev $=$	19.37		

One-Way Analysis of Variance

Analysis of Variance for C30			
Source	DF	SS	MS
C29	2	291.5	145.8
Error	25	2162.2	86.5
Total	27	2453.7	
Level	N	Mean	StDev
E 2221	8	26.764	8.820
SanMarz	10	22.788	7.754
Marglobe	10	30.422	10.937
		9.300	
Pooled StDev $=$	9.		

Solid Soluble Content (${ }^{\circ}$ Brix)

One-Way Analysis of Variance

Analysis of Variance for C2			
Source	DE	SS	MS
C1	3	87.473	29.158
Error	36	24.932	0.693
Total	39	112.406	
Level	N	Mean	StDev
I 3911	10	9.1100	0.9938
I 1139	10	8.0710	1.0184
Ceras	10	7.0900	0.7608
Limachi	10	5.1000	0.4082
Pooled StDev $=$	0.8322		


```
\begin{tabular}{rr} 
F & P \\
\(42.10^{2}\) & \(0.000^{2}\)
\end{tabular}
Individual 95\% CIs For Mean Based on Pooled StDev
```


One-Way Analysis of Variance

Analysis of Variance for C6

Source	DF	SS	MS	F	P
C5	3	84.075	28.025	51.78	0.000
Error	36	19.485	0.541		
Total	39	103.560			

Level	N	Mean	StDev
I 5219	10	8.940	0.638
I 1952	10	8.530	0.464
Parvifl	10	10.760	0.986
Lukullus	10	6.680	0.755
Pooled StDev $=$	0.736		

One-Way Analysis of Variance

Analysis of Variance for C8						
Source	DF	SS	MS	$\begin{array}{rr} \mathrm{F} & \mathrm{P} \\ 68.12 & 0.000 \end{array}$		
C7	3	109.865	36.6220.538			
Error	36	19.354		68.12	0.000	
Total	39	129.219				
				Individual 95\% CIs For Mean Based on Pooled StDev		
Level	N	Mean	StDev	--+----	-+---	
I 5222	10	7.590	0.684		--*	
I 2252	10	8.470	0.672			
Parvifl	10	10.760	0.986			(--*--)
SanMarz	10	6.200	0.510	(--*--)		
Pooled S	ev $=$	0.733		6.0	. 5	

One-Way Analysis of Variance

Analysis of Variance for C10			
Source	DF	SS	MS
C9	2	66.36	33.18
Error	27	45.69	1.69
Total	29	112.05	
Level	N	Mean	StDev
I 1160	10	7.750	2.120
Limachi	10	5.100	0.408
Pimpinel	10	8.590	0.644

Based on Pooled StDev

F	P
19.61	0.000

Individual 95\% CIs For Mean Based on Pooled StDev

Analysis of Variance for C12			
Source	DF	SS	MS
Cl1	2	24.07	12.03
Error	27	27.29	1.01
Total	29	51.35	
Level	N	Mean	StDev
I 1960	10	6.700	1.431
Lukullus	10	6.680	0.755
Pimpinel	10	8.590	0.644
Pooled StDev $=$	1.005		

One-Way Analysis of Variance

Analysis of Variance for C14			
Source	DF	SS	MS
C13	2	7.274	3.637
Error	27	17.094	0.633
Total	29	24.368	
Level	N	Mean	StDev
I 2239	10	7.3500	1.0298
SanMarz	10	6.2000	0.5099
Ceras	10	7.0900	0.7608
Pooled StDev $=$	0.7957		

One-Way Analysis of Variance

Analysis of Variance for C16			
Source	DF	SS	MS
C15	2	28.789	14.394
Error	27	22.345	0.828
Total	29	51.134	
Level	N	Mean	StDev
I 2260	10	7.5800	1.3448
SanMarz	10	6.2000	0.5099
Pimpinel	10	8.5900	0.6437
Pooled StDev $=$	$\mathbf{0 . 9 0 9 7}$		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C20			
Source	DF	SS	MS
C19	3	19.507	6.502
Error	36	25.184	0.700
Total	39	44.691	
Level	N	Mean	StDev
E 1119	10	4.9400	0.8631
E 1911	10	5.9400	1.1472
Limachi	10	5.1000	0.4082
Lukullus	10	6.6800	0.7554
Pooled StDev $=$	0.8364		

One-Way Analysis of Variance

Analysis of Variance for C22			
Source	DF	SS	MS
C21	3	18.33	6.11
Error	36	64.38	1.79
Total	39	82.71	
Level	N	Mean	StDev
E 1121	10	5.322	0.696
E 2111	10	6.770	2.405
Limachi	10	5.100	0.408
Marglobe	10	5.230	0.849
Pooled StDev $=$	1.337		

One-Way Analysis of Variance

Analysis of Variance for C24			
Source	DF	SS	MS
C23	3	7.48	2.49
Error	31	36.77	1.19
Total	34	44.25	
Level	N	Mean	StDeV
E 1519	5	5.420	0.554
E 1915	10	5.740	1.139
Ace	10	5.770	1.442
Lukullus	10	6.680	0.755
Pooled StDev $=$	1.089		

One-Way Analysis of Variance

Analysis of Variance for C26			
Source	DF	SS	MS
C25	3	17.97	5.99
Error	36	98.17	2.73
Total	39	116.14	
Level	N	Mean	StDev
E 1522	10	5.410	1.729
E 2215	10	7.200	2.362
Ace	10	5.770	1.442
SanMarz	10	6.200	0.510
Pooled StDev $=$	1.651		

F	P
2.10	0.120

Individual 95\% CIs For Mean Based on Pooled StDev

Individual 95\% CIs For Mean Based on Pooled StDev

One-Way Analysis of Variance

Analysis of Variance for C28			
Source	DF	SS	MS
C27	3	4.70	1.57
Error	36	37.69	1.05
Total	39	42.40	
Level	N	Mean	StDev
E 1922	10	6.190	1.706
E 2219	10	5.710	0.669
Lukullus	10	6.680	0.755
SanMarz	10	6.200	0.510
Pooled StDev $=$	1.023		

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C32									
Source	DF	SS	MS	$\begin{array}{r} \mathrm{F} \\ 14.42 \end{array}$	$\begin{array}{r} \text { P } \\ 0.000^{2} \end{array}$				
C31	2	23.546	11.773						
Error	27	22.041	0.816						
Total	29	45.587							
				Individual 95\% CIs For Mean Based on Pooled StDev					
Level	N	Mean	StDev						
E 2211	10	7.2700	1.4221						
SanMarz	10	6.2000	0.5099						
Limachi	10	5.1000	0.4082	(-----*-----)					
Pooled S	$\mathrm{v}=$	0.9035		5.0	6.0	7.0	8.0		

One-Way Analysis of Variance

Weight 1,000 Seeds (g)

One-Way Analysis of Variance

Analysis of Variance for C 2

Source	DF	SS	MS
C1	3	5.9527	1.9842
Error	12	0.1485	0.0124

$\begin{array}{lll}\text { Total } & 15 & 6.1012\end{array}$

Level	N	Mean	StDev
I 3911	4	2.5600	0.0678
I 1139	4	1.9800	0.0632
Ceras	4	1.3525	0.1965
Limachi	4	2.9700	0.0476
Pooled StDev $=$	0.1112		

One-Way Analysis of Variance
Analysis of Variance for C4

Source	DF	SS	MS
C3	3	10.0256	3.3419
Error	12	0.2109	0.0176
Total	15	10.2365	
			Mean
Level	N	StDev	
I 3915	4	2.4850	0.0900
I 1539	4	3.4800	0.1386
Ceras	4	1.3525	0.1965
Ace	4	3.0050	0.0661
Pooled StDev $=$	0.1326		

One-Way Analysis of Variance

Analysis of Variance for C6			
Source	DE	SS	MS
C5	3	9.0026	3.0009
Error	12	0.1498	0.0125
Total	15	9.1524	
Level	N	Mean	StDev
I 5219	4	2.6400	0.0632
I 1952	4	2.3550	0.1310
Parvifl	4	1.1300	0.0258
Lukullus	4	3.1750	0.1676
Pooled StDev $=$	0.1117		

One-Way Analysis of Variance

Analysis of Variance for C8			
Source	DF	SS	MS
C7	3	3.48702	1.16234
Error	12	0.04055	0.00338
Total	15	3.52757	
Level	N	Mean	StDev
I 5222	4	2.3525	0.0780
I 2252	4	2.0725	0.0727
Parvifl	4	1.1300	0.0258
SanMarz	4	1.5900	0.0383

One-Way Analysis of Variance

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C14							
Source	DF	SS	MS	$\begin{array}{r} F \\ 60.69 \end{array}$	$\begin{array}{r} P \\ 0.000 \end{array}$		
C13	2	1.6581	0.8291				
Error	9	0.1229	0.0137				
Total	11	1.7811					
				Individual 95\% CIs Eor Mean Based on Pooled StDev			
Level	N	Mean	StDev				
I 2239	4	2.2325	0.0299				
SanMarz	4	1.5900	0.0383		---)		
Ceras	4	1. 3525	0.1965	(---*-			
Pooled S	StDev $=$	0.1169		1.40	1.75	2.10	2.45

One-Way Analysis of Variance

One-Way Analysis of Variance

Analysis of Variance for C18			
Source	DF	SS	MS
C17	3	0.79500	0.26500
Error	12	0.09020	0.00752
Total	15	0.88520	
Level	N	Mean	StDev
E 1115	4	3.3900	0.1281
El511	4	2.7750	0.0839
Limachi	4	2.9700	0.0476
Ace	4	3.0050	0.0661
Pooled StDev $=$	0.0867		

One-Way Analysis of Variance

Analysis of Variance for C20			
Source	DF	SS	MS
C19	3	1.9647	0.6549
Error	12	0.1475	0.0123
Total	15	2.1122	
Level	N	Mean	StDev
E 1119	4	3.4100	0.0987
E 1911	4	2.4600	0.0952
Limachi	4	2.9700	0.0476
Lukullus	4	3.1750	0.1676
Pooled StDev $=$	0.1109		

One-Way Analysis of Variance

Analysis of Variance for C22			
Source	DF	SS	MS
C21	3	2.86612	0.95537
Error	12	0.11488	0.00957
Total	15	2.98099	
			Mean
Level	N	StDev	
E 1121	4	3.6175	0.1740
E 2111	4	3.2200	0.0432
Limachi	4	2.9700	0.0476
Marglobe	4	2.4500	0.0622

One-Way Analysis of Variance

Analysis of Variance for C24							
Source	DF	SS	MS	$\begin{array}{r} E \\ 198.97 \end{array}$	P		
C23	3	7.1032	2.3677		0.000		
Error	12	0.1428	0.0119				
Total	15	7.2460					
				Individual 95\% CIs For Mean Based on Pooled StDev			
Level	N	Mean	StDev	(-*-)			
E 1519	4	3.4550	0.1050				
E 1915	4	4.7050	0.0640	$(-*-)\left(-{ }^{\text {- }}\right.$)			
Ace	4	3.0050	0.0661				
Lukullus	4	3.1750	0.1676	(-*-)			
Pooled S	Dev $=$	0.1091		3.00	3.60	4.20	4.80

One-Way Analysis of Variance

Analysis of Variance for C26			
Source	DF	SS	MS
C25	3	6.5377	2.1792
Error	12	0.1565	0.0130
Total	15	6.6942	
Level	N	Mean	StDev
E 1522	4	2.9550	0.0719
E 2215	4	3.1950	0.2029
Ace	4	3.0050	0.0661
SanMarz	4	1.5900	0.0383
Pooled StDev $=$	0.1142		

One-Way Analysis of Variance

Analysis of Variance for C28			
Source	DF	SS	MS
C27	3	7.7141	2.5714
Error	12	0.2050	0.0171
Total	15	7.9191	
Level	N	Mean	StDev
E 1922	4	3.2050	0.1578
E 2219	4	3.2000	0.1178
Lukullus	4	3.1750	0.1676
SanMarz	4	1.5900	0.0383
Pooled StDev $=$	0.1307		

One-Way Analysis of Variance

Analysis of Variance for C30							
Source	DF	SS	MS	$\begin{array}{r} E \\ 93.30 \end{array}$	P		
C29	2	3.1511	1.5755		0.000		
Error	9	0.1520	0.0169				
Total	11	3.3030					
				Individual 95\% CIs For Mean Based on Pooled StDev			
Level	N	Mean	StDev	--------			
E 1521	4	3.7025	0.2060				
Ace	4	3.0050	0.0661		(--*-		
Marglobe	4	2.4500	0.0622	(--*--)			
Pooled St	Dev $=$	0.1299		2.50	3.00	3.50	

One-Way Analysis of Variance

Analysis of Variance for C32							
Source	DF	SS	MS	527.77	0.000^{P}		
C31	2	7.45920	3.72960				
Error	9	0.06360	0.00707				
Total	11	7.52280					
				Individual 95\% CIs Eor Mean Based on Pooled StDev			
Level	N	Mean	StDev				
E 2211	4	3.4500	0.1322				(-*)
SanMarz	4	1.5900	0.0383	(-*)			
Limachi	4	2.9700	0.0476			(*-)	
Pooled S	$\mathrm{ev}=$	0.0841		1.80	2.40	3.00	3.60

One-Way Analysis of Variance

Part 10 ANOVA of continuous characters from inter- and intra-taxon crosses in F_{2} and F_{3} generations presented in Table 5.2.

One-Way Analysis of Variance for Fruit Weight in F_{2}

One-Way Analysis of Variance for Fruit Diameter in F_{2}
Analysis of Variance

Source	DF	SS	MS	F	P
Groups	3	26.026	8.675	65.16	0.000
Error	27	3.595	0.133		
Total	30	29.621			

			Individual 95\% CIs For Mean			
Level N	Mean	StDev	-+	+	+	
L.esc.cera. 7	2.7200	0.2228				
L.parvifl. 7	1.8557	0.0443				
L.pimpinel. 5	2.3320	0.3849		*		
L.esculen. 12	4.0833	0.4947				(- - * - -)
Pooled StDev =	0.3649		1.60	2.40	3.20	4.00

One-Way Analysis of Variance for Fruit Length in F_{2}

One-Way Analysis of Variance for Fruit Ratio in F_{2}
Analysis of Variance

Source	DF	SS	MS	F	P
Groups	3	0.0180	0.0060	0.40	0.756
Error	27	0.4074	0.0151		
Total	30	0.4254			

One-Way Analysis of Variance for Soluble Solid Content in \mathbf{F}_{2}
Analysis of Variance

Source	DF	SS	MS	F	P
Groups	3	7.19	2.40	1.08	0.373
Error	27	59.74	2.21		
Total	30	66.92			

		Individual 95% CIs For Mean Based on Pooled StDev
Level	N	Mean
L.esc.cera. 7	6.243	0.382

One-Way Analysis of Variance for 1,000 Seeds Weight in F_{2}

One-Way Analysis of Variance for Fruit Weight in F_{3}

One-Way Analysis of Variance for Fruit Diameter in F_{3}

One-Way Analysis of Variance for Fruit Length in F_{3}

One-Way Analysis of Variance for Fruit Ratio in F_{3}

Analysis of Variance

Source	DF	SS	MS	F	P
Groups	3	0.0786	0.0262	1.04	0.392
Error	28	0.7079	0.0253		
Total	31	0.7865			

One-Way Analysis of Variance for Solid Soluble Content in F_{3}

Source	DF	SS	MS	$\begin{array}{r} F \\ 30.84 \end{array}$	P		
Groups	3	17.203	5.734		0.000		
Error	28	5.206	0.186				
Total	31	22.409					
				Individual 95\% CIs For Mean Based on Pooled StDev			
Level	N	Mean	StDev		-		
L.esc.cer	6	6.2667	0.2251		-*		
L.parvifl	7	7.2429	0.4158			(---	
L.pimpin.	5	7.1600	0.3286			(----*	
L. escul.	14	5.5786	0.5177	(---*--)			
Pooled StD	ev $=$	0.4312		5.60	6.30	7.00	7.70

One-Way Analysis of Variance for Seed Weight in F_{3}

Part 11 Statistical analyses of genetic indices for morphological characters in F_{2} and F_{3} generation presented in Table 5.3. Non-parametric test KruskalWallis was carried out for non-normally distributed indices A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I.

Kruskal-Wallis Test for A in F_{2}

Kruskal-Wallis	Test			
Groups	N	Median	Ave Rank	Z
L.esc.cera.	7	1.300	9.6	-1.80
L.parvifl.	7	1.500	18.8	1.59
L.pimpin.	5	1.600	22.1	2.28
L.escul.	9	1.300	10.7	-1.67
Overall	28		14.5	
$H=10.51$	$D E=3$	$\mathrm{P}=0.015$		
$H=10.67$	$D F=3$	$\mathrm{P}=0.014$	(adjusted for ties)	

Kruskal-Wallis Test for A_{e} in F_{2}

Kruskal-Wallis Test				
Groups	N	Median	Ave Rank	2
L.esc.cera.	7	1.251	9.1	-1.99
L.parvifl.	7	1.393	18.6	1.51
L.pimpin.	5	1.516	23.0	2.55
L.escul.	9	1.277	10.8	-1.65
Overall	28		14.5	
$\mathrm{H}=11.87$		$=3 \quad \mathrm{P}=0.0$		
$\mathrm{H}=11.87$		$=3 \quad \mathrm{P}=0$.	8 (adjust	for t

One-Way Analysis of Variance for H_{s} in F_{2}

Analysis of Variance					
Source DE	SS	MS	$\begin{array}{rr} F & P \\ 6.04 & 0.003 \end{array}$		
Group 3	0.08139	$\begin{aligned} & 0.02713 \\ & 0.00449 \end{aligned}$			
Error 24	0.10785				
Total 27	0.18924				
			Individual 95\% CIs For Mean Based on Pooled StDev		
Level N	Mean	StDev			
L.esc.cera. 7	0.13400	0.06962	(----	-----)	
L.parvifl. 7	0.23814	0.07339		(--	
L.pimpin. 5	0.26880	0.05940			
L.escul. 9	0.15322	0.06357		*-----)	
Pooled StDev =	0.06703			$40 \quad 0.210$	

One-Way Analysis of Variance for I in F_{2}

Analysis of Variance				PS	PS
Source	DF	SS	MS	5.90	0.004
Group	3	0.16401	0.05467	5.90	
Error	24	0.22251	0.00927		
Total	27	0.38652			

Kruskal-Wallis Test for A in F_{3}

Kruskal-Wallis	Test			
Groups	N	Median	Ave Rank	Z
L.escul.	11	1.300	12.5	-1.01
L.esc.cera.	5	1.200	7.7	-2.04
L.parvifl.	7	1.500	19.2	1.75
L.pimpin.	5	1.500	19.0	1.35
Overall	28		14.5	
H $=7.83$	$\mathrm{DF}=3$	$\mathrm{P}=0.050$		
$\mathrm{H}=7.97$	$\mathrm{DF}=3$	$\mathrm{P}=0.047$	(adjusted for ties)	

Kruskal-Wallis Test for A_{e} in F_{3}

Kruskal-Wallis	Test			
Groups	N	Median	Ave Rank	Z
L.escul.	11	1.266	13.3	-0.64
L.esc.cera.	5	1.129	8.0	-1.95
L. parvifl.	7	1.354	18.6	1.51
L.pimpin.	5	1.327	18.0	1.05
Overall	28		14.5	

$H=5.99 \quad D F=3 \quad P=0.112$

One-way Analysis of Variance for I in F_{3}

One-way Analysis of Variance for H_{s} in F_{3}

| Analysis of Variance for | Hs | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Groups | 3 | 0.04368 | 0.01456 | 2.83 | 0.060 |
| Error | 24 | 0.12334 | 0.00514 | | |
| Total | 27 | 0.16702 | | | |

Part 12 Statistical analyses of genetic indices for microsatellite markers in F_{2} and F_{3} generation presented in Table 5.5. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I.

Kruskal-Wallis Test for A in F_{2}

Kruskal-Wallis	Test on	Na		
Groups	N	Median	Ave Rank	Z
L. escul.	14	1.000	19.0	-2.52
L.esc.cers.	14	2.000	31.0	0.66
L.parvif.	14	2.000	35.0	1.72
L.pimpinel.	14	2.000	29.0	0.13
Overall	56			28.5
$H=7.32$	$D F=3$	$\mathrm{P}=0.062$		
$H=10.40$	$\mathrm{DF}=3$	$\mathrm{P}=0.015$	(adjusted for ties)	

Kruskal-Wallis Test for A_{e} in F_{2}

Kruskal-Wallis	Test	on	Ne	
Groups	N	Median	Ave Rank	Z
L. escul.	14	1.000	19.0	-2.51
L.esc.cers.	14	1.975	35.2	1.77
L.parvif.	14	1.926	35.3	1.79
L.pimpinel.	14	1.662	24.5	-1.05
Overall	56		28.5	
$H=10.29$	$D E=3$	$\mathrm{P}=0.016$		
$H=10.88$	DF $=3$	$\mathrm{P}=0.012$	(adjusted for ties)	

One-way ANOVA for H_{s} in F_{2}

One-way ANOVA for I in F_{2}

Analysis of Variance					
Source	DF	SS	MS	F	P
Groups	3	1.1081	0.3694	4.07	0.011
Error	52	4.7226	0.0908		
Total	55	5.8307			

Kruskal-Wallis Test for A in F_{3}

```
Kruskal-Wallis Test
```

Groups	N	Median	Ave Rank	Z
L.escul.	14	2.000	26.5	-0.53
L.esc.ceras. 14	2.000	26.5	-0.53	
L.parvif.	14	2.000	26.5	-0.53
L.pimpinel.	14	2.000	34.5	1.59
Overall	56		28.5	
$H=2.53$	$D E=3$	$\mathrm{P}=0.471$		
$H=3.67$	$\mathrm{DF}=3$	$\mathrm{P}=0.300$	(adjusted for ties)	

Kruskal-Wallis Test for A_{e} in F_{3}

Kruskal-Wallis Test				
Groups	N	Median	Ave Rank	Z
L.escul.	14	1.471	21.8	-1.78
L.esc.ceras. 14	1.499	27.9	-0.15	
L.parvif.	14	1.612	27.7	-0.21
L.pimpinel.	14	1.835	36.6	2.14
Overall	56		28.5	
$H=5.85$	$D F=3$	$P=0.119$		
$H=6.15$	$D E=3$	$P=0.105$	(adjusted for ties)	

One-way ANOVA for H_{s} in F_{3}

| Analysis of Variance for Hs | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Groups | 3 | 0.2364 | 0.0788 | 1.71 | 0.176 |
| Error | 52 | 2.3913 | 0.0460 | | |
| Total | 55 | 2.6277 | | | |

One-way ANOVA for I in F_{3}

Part 13 Statistical analyses of genetic indices for RAPD markers in F_{2} and F_{3} generation presented in Table 5.6. Non-parametric test Kruskal-Wallis was carried out for non-normally distributed indices A and A_{e}; ANOVA was carried out for predominantly normally distributed genetic indices H_{s} and I.

Kruskal-Wallis Test for A in F_{2}
Kruskal-Wallis Test

Groups	N	Median	Ave Rank	Z
L. escul.	118	1.000	217.0	-1.79
L.esc.ceras.	118	1.000	273.0	3.36
L. parvif.	118	1.000	247.0	0.97
L. pimpinel.	118	1.000	209.0	-2.53
Overall	472		236.5	

$\begin{array}{lll}H=16.36 & D F=3 & P=0.001 \\ H=25.82 & D E=3 & P=0.000 \quad \text { (adjusted for ties) }\end{array}$

Kruskal-Wallis Test for A_{e} in F_{2}

Kruskal-Wallis	Test			Z
Groups	N	Median	Ave Rank	Z
L. escul.	118	1.000	213.1	-2.15
L.esc.ceras.	118	1.000	271.4	3.21
L. parvif.	118	1.000	249.3	1.18
L. pimpinel.	118	1.000	212.2	-2.24
Overall				
	472		236.5	
$H=15.97$	$D F=3$	$P=0.001$		
$H=24.15$	$D F=3$	$P=0.000$	(adjusted for ties)	

One-way ANOVA for H_{s} in F_{2}

Analysis of Variance				MS	PS
Source	DF	SS	MS		
Groups	3	0.7710	0.2570	7.81	0.000
Error	468	15.4005	0.0329		
Total	471	16.1715			

				Individual 95\% CIs For Mean Based on Pooled StDev			
Level	N	Mean	StDev				
L. escul.	118	0.0723	0.1491	(--	---1		
L.esc.ceras.	118	0.1682	0.2024			(---	--)
L. parvif.	118	0.1352	0.2004			---	
L. pimpinel.	118	0.0764	0.1681		-		
Pooled StDev	$=0$			0.050	0.100	0.150	0.200

One-way ANOVA for I in F_{2}

Kruskal-Wallis Test for A in F_{3}
$\left.\begin{array}{lcccr}\text { Kruskal-Wallis } & \text { Test } & & & \text { Z } \\ \text { Groups } & \mathrm{N} & \text { Median } & \text { Ave Rank } & \text { Z } \\ \text { L.escul. } & 118 & 1.000 & 221.0 & -1.43 \\ \text { L.esc.ceras. } & 118 & 1.000 & 265.0 & 2.62 \\ \text { L.parvif. } & 118 & 1.000 & 241.0 & 0.41 \\ \text { L.pimpinel. } & 118 & 1.000 & 219.0 & -1.61 \\ \text { Overall } \\ & & 472 & & 236.5\end{array}\right]$

Kruskal-Wallis Test for A_{e} in F_{3}

One-way ANOVA for H_{s} in F_{3}

One-way ANOVA for I in F_{3}

Part 14 ANOVA of means from percentage of damaged fruits by South American tomato pinworm presented in Table 5.8.

One-way ANOVA: Percentage of damaged fruits by tomato pinworm.

Analysis of Variance					
Source	DF	SS	MS	F	P
Groups	4	11909	2977	18.03	0.000
Error	34	5615	165		
Total	38	17524			Individual 95% CIs For Mean
					Based on Pooled StDev

Appendix 4

Appendix 4 Part 1 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Hypocotyl Colour	Growth Type	Leaf Type	Corolla Colour	Style Position	Immature Fruit Colour	Fruit Pubescence
I - 3911	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Greenish-white	Sparse
I-1139	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Green	Sparse
I - 3915	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
I - 1539	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
I - 5219	1/2 purple	Indeterminate	Parviflorum	Yellow	Slightly exserted	Light green	Sparse
I - 1952	Purple	Indeterminate	Parviflorum	Yellow	Slightly exserted	Light green	Sparse
I - 5222	1/2 purple	Indeterminate	Parviflorum	Yellow	Same level of stamens	Light green	Sparse
I - 2252	Purple	Indeterminate	Parviflorum	Yellow	Slightly exserted	Light green	Sparse
I-1160	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse

$\mathrm{I}=$ inter-taxon cross; $\mathrm{E}=$ intra-taxon cross; first two digits correspond to female parent and seconds two to male parent; details of each cross in Table 4.5; details of morphological character in Appendix 1.
Appendix 4 Part 1 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Fruit Shape	Fruit Size	Mature Fruit Colour	Flesh Colour	Fruit Cross Shape	Shape of Pistil Scar	Number of locules	Blossom End Shape
I-3911	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I-1139	Slightly flattened	Very small	Red	Orange	Round	Dot	3	Flat
I-3915	Slightly flattened	Small	Red	Orange	Round	Dot	4	Flat
I-1539	Slightly flattened	Very small	Red	Orange	Angular	Dot	3	Flat
I-5219	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I-1952	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I - 5222	Rounded	Very small	Red	Red	Round	Dot	2	Flat
I - 2252	Rounded	Very small	Red	Red	Round	Dot	2	Flat
I - 1160	Slightly flattened	Very small	Red	Orange	Round	Dot	2	Flat

[^4] each cross in Table 4.5; details of morphological character in Appendix 1.
Appendix 4 Part 2 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Hypocotyl Colour	Growth Type	Leaf Type	Corolla Colour	Style Position	Immature Fruit Colour	Fruit Pubescence
I - 1960	$1 / 2$ purple	Indeterminate	Pimpinellifolium	Yellow	Inserted	Light green	Sparse
I - 2239	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Greenish-white	Sparse
I - 2260	Purple	Indeterminate	Pimpinellifolium	Yellow	Inserted	Greenish-white	Sparse
E-1115	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Green	Sparse
E-1511	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Green	Sparse
E-1119	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Green	Sparse
E-1911	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
E-1121	$1 / 2$ purple	Indeterminate	Standard	Yellow	Same level of stamens	Light green	Sparse
E-2111	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Green	Sparse

[^5] each cross in Table 4.5; details of morphological character in Appendix 1.
Appendix 4 Part 2 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Fruit Shape	Fruit Size	Mature Fruit Colour	Flesh Colour	Fruit Cross Shape	Shape of Pistil Scar	Number of locules	Blossom End Shape
I-1960	Rounded	Very small	Red	Red	Round	Dot	2	Flat
I - 2239	Rounded	Very small	Red	Orange	Round	Dot	2	Flat
I - 2260	Cylindrical	Very small	Red	Red	Round	Dot	2	Indented
E-1115	Slightly flattened	Small	Red	Orange	Angular	Stellate	>3	Flat
E-1511	Slightly flattened	Intermediate	Red	Orange	Angular	Dot	>4	Indented
E-1119	Rounded	Small	Red	Red	Round	Dot	3	Flat
E-1911	Rounded	Small	Red	Red	Angular	Dot	2	Pointed
E-1121	Rounded	Small	Red	Orange	Angular	Dot	2	Pointed
E-2111	Rounded	Small	Red	Red	Angular	Dot	2	Pointed

$I=$ inter-taxon cross; E = intra-taxon cross; first two digits correspond to female parent and seconds two to male parent; details of
each cross in Table 4.5; details of morphological character in Appendix 1.
Appendix 4 Part 3 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Hypocotyl Colour	Growth Type	Leaf Type	Corolla Colour	Style Position	Immature Fruit Colour	Fruit Pubescence
E-1519	$1 / 2$ purple	Indeterminate	Standard	Yellow	Inserted	Green	Sparse
E-1915	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
E-1522	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Greenish-white	Sparse
E-2215	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Green	Sparse
E-1922	$1 / 2$ purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
E-2219	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Light green	Sparse
E-1521	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Green	Sparse
E-2211	1/2 purple	Indeterminate	Standard	Yellow	Same level of stamens	Green	Sparse
E-2221	1/2 purple	Indeterminate	Standard	Yellow	Inserted	Green	Sparse

Appendix 4 Part 3 Morphological characteristics of F1 generation Lycopersicon spp inter- and intra-taxon crosses.

Crosses	Fruit Shape	Fruit Size	Mature Fruit Colour	Flesh Colour	Fruit Cross Shape	Shape of Pistil Scar	Number of locules	Blossom End Shape
E-1519	Slightly flattened	Intermediate	Red	Orange	Angular	Stellate	4	Flat
E-1915	Slightly flattened	Small	Red	Orange	Angular	Stellate	4	Flat
E-1522	Rounded	Small	Red	Pink	Irregular	Stellate	3	Pointed
E-2215	Rounded	Small	Red	Pink	Angular	Stellate	3	Flat
E-1922	Rounded	Small	Red	Orange	Angular	Dot	2	Flat
E-2219	Rounded	Small	Red	Orange	Angular	Dot	2	Flat
E-1521	Rounded	Small	Red	Red	Angular	Dot	2	Flat
E-2211	Rounded	Small	Red	Orange	Angular	Dot	2	Pointed
E-2221	Rounded	Small	Red	Orange	Angular	Dot	2	Flat

$\mathrm{I}=$ inter-taxon cross; E = intra-taxon cross; first two digits correspond to female parent and seconds two to male parent; details of
each cross in Table 4.5; details of morphological character in Appendix 1.

Appendix 5

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit diameter	Fruit length (cm)	$\begin{aligned} & \text { Fruit ratio } \\ & (\mathrm{D} / \mathrm{L}) \end{aligned}$
	**	**	**
I-3911	$\begin{aligned} & 2.73 \mathrm{bc} \\ & (\pm 0.10) \end{aligned}$	$\underset{(\pm 0.11)}{2.58 \mathrm{bc}}$	$\begin{aligned} & 1.06 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
I-1139	$\underset{(\pm 0.16)}{2.56 \mathrm{bc}}$	$\begin{aligned} & 2.26 \mathrm{bc} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 1.14 \mathrm{~b} \\ & (\pm 0.03) \end{aligned}$
Expected value	3.81	3.05	1.20
39 - L. esculentum var. cerasiforme	$\underset{(\pm 0.05)}{1.80 \mathrm{bd}}$	$\underset{(\pm 0.05)}{1.67 \mathrm{bd}}$	$\underset{(\pm 0.01)}{1.08 \mathrm{~b}}$
11 - Limachino	$\begin{gathered} 5.86 \mathrm{a} \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 4.42 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{aligned} & 1.33 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$
	**	**	**
I - 3915	$\begin{aligned} & 3.23 \mathrm{bc} \\ & (\pm 0.15) \end{aligned}$	$\underset{(\pm 0.11)}{2.80 \mathrm{bc}}$	$\underset{(\pm 0.02)}{1.15 \mathrm{bd}}$
I-1539	$\underset{(\pm 0.13)}{2.18 \mathrm{bd}}$	$\begin{aligned} & 1.78 \mathrm{bd} \\ & (\pm 0.18) \end{aligned}$	$\underset{(\pm 0.05)}{1.27 \mathrm{bc}}$
Expected value	4.28	3.20	1.25
39 - L. esculentum var. cerasiforme	$\underset{(\pm 0.05)}{1.80 \mathrm{bd}}$	$\underset{(\pm 0.05)}{1.67 \mathrm{bd}}$	$\underset{(\pm 0.01)}{1.08 \mathrm{bd}}$
15 - Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \\ & \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{a} \\ & (\pm 0.26) \end{aligned}$	$\underset{(\pm 0.02)}{1.42 \mathrm{a}}$
	**	**	*
I - 5219	$\underset{(\pm 0.05)}{1.98 \mathrm{bc}}$	$\begin{aligned} & 1.79 \mathrm{bc} \\ & (\pm 0.06) \end{aligned}$	$\underset{(\pm 0.01)}{1.11 \mathrm{ac}}$
I - 1952	$\underset{(\pm 0.04)}{1.89 \mathrm{bc}}$	$\underset{(\pm 0.03)}{1.73 \mathrm{bc}}$	$\begin{aligned} & 1.09 \mathrm{bc} \\ & (\pm 0.01) \end{aligned}$
Expected value	2.34	1.97	1.19
$52-$ L. parviflorum	$\begin{aligned} & 1.03 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$	$\underset{(\pm 0.02)}{0.87 \mathrm{bd}}$	$\underset{(\pm 0.01)}{1.19 \mathrm{ac}}$
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{a} \\ & (\pm 0.11) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{a} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 1.20 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$
	**	**	**
I - 5222	$\begin{aligned} & 1.68 \mathrm{bc} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.59 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.06 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$
I-5222	$\underset{(\pm 0.07)}{1.69 \mathrm{bc}}$	$\begin{aligned} & 1.62 \mathrm{bc} \\ & (\pm 0.06) \end{aligned}$	$\begin{aligned} & 1.04 \mathrm{bc} \\ & (\pm 0.01) \end{aligned}$
Expected value	1.93	2.84	0.90
52 - L. parviflorum	$\begin{aligned} & 1.03 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$	$\begin{aligned} & 0.87 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$	$\begin{gathered} 1.19 \mathrm{a} \\ (\pm 0.01) \end{gathered}$
22 - San Marzano	$\begin{aligned} & 2.82 \mathrm{a} \\ & (\pm 0.10) \end{aligned}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\begin{aligned} & 0.61 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$
	**	**	**
I - 1160	$\underset{(\pm 0.07)}{2.55 \mathrm{bc}}$	$\underset{(\pm 0.05)}{2.29 \mathrm{bc}}$	$\begin{aligned} & 1.11 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
Expected value	3.65	2.85	1.23
11-Limachino	$\underset{(\pm 0.21)}{5.86 \mathrm{a}}$	$\begin{aligned} & 4.42 \mathrm{a} \\ & (\pm 0.14) \end{aligned}$	$\begin{aligned} & 1.33 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$
$60-$ L. pimpinellifolium	$\begin{aligned} & 1.44 \mathrm{bd} \\ & (\pm 0.06) \end{aligned}$	$\underset{(\pm 0.07)}{1.29 \mathrm{bd}}$	$\begin{aligned} & 1.13 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit diameter (cm)	Fruit length (cm)	Fruit ratio (D/L)
	**	**	**
I-1960	$\underset{(\pm 0.09)}{2.11 \mathrm{bc}}$	$\underset{(\pm 0.11)}{2.00 \mathrm{bc}}$	$\underset{(\pm 0.02)}{1.06 \mathrm{bc}}$
Expected value	2.54	2.18	1.16
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{a} \\ & (\pm 0.11) \end{aligned}$	$\begin{gathered} 3.07 \mathrm{a} \\ (\pm 0.12) \end{gathered}$	$\begin{aligned} & 1.20 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$
$60-$ L. pimpinellifolium	$\underset{(\pm 0.06)}{1.44 \mathrm{bd}}$	$\underset{(\pm 0.07)}{1.29 \mathrm{bd}}$	$\underset{(\pm 0.02)}{1.13 \mathrm{ac}}$
	**	**	**
I-2239	$\begin{gathered} 2.95 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{aligned} & 2.99 \mathrm{bc} \\ & (\pm 0.08) \end{aligned}$	$\begin{aligned} & 0.99 \mathrm{ac} \\ & (\pm 0.05) \end{aligned}$
Expected value	2.31	3.24	0.84
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \mathrm{a}}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.05)}{0.61 \mathrm{bd}}$
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 1.80 \mathrm{~b} \\ & (\pm 0.05) \end{aligned}$	$\underset{(\pm 0.05)}{1.67 \mathrm{bd}}$	$\begin{aligned} & 1.08 \mathrm{a} \\ & (\pm 0.01) \end{aligned}$
	**	**	**
I-2260	$\underset{(\pm 0.11)}{2.07 \mathrm{bc}}$	$\underset{(\pm 0.14)}{2.27 \mathrm{bc}}$	$\begin{aligned} & 0.91 \mathrm{bc} \\ & (\pm 0.01) \end{aligned}$
Expected value	2.13	3.05	0.87
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \mathrm{a}}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.05)}{0.61 \mathrm{bd}}$
60 - L. pimpinellifolium	$\underset{(\pm 0.06)}{1.44 \mathrm{bd}}$	$\underset{(\pm 0.07)}{1.29 \mathrm{bd}}$	$\begin{aligned} & 1.13 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
	**	**	ns
E-1115	$\underset{(\pm 0.15)}{4.44 \mathrm{bd}}$	$\begin{aligned} & 3.55 \mathrm{bc} \\ & (\pm 0.20) \end{aligned}$	$\begin{gathered} 1.28 \\ (\pm 0.06) \end{gathered}$
E-1511	$\begin{aligned} & 5.30 \mathrm{ac} \\ & (\pm 0.57) \end{aligned}$	$\begin{aligned} & 3.98 \mathrm{ac} \\ & (\pm 0.35) \end{aligned}$	$\begin{gathered} 1.33 \\ (\pm 0.05) \end{gathered}$
Expected value	6.31	4.58	1.37
11-Limachino	$\begin{gathered} 5.86 \mathrm{a} \\ (\pm 0.21) \end{gathered}$	$\begin{aligned} & 4.42 \mathrm{a} \\ & (\pm 0.14) \end{aligned}$	$\begin{gathered} 1.33 \\ (\pm 0.03) \end{gathered}$
15-Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{a} \\ & (\pm 0.26) \end{aligned}$	$\begin{gathered} 1.42 \\ (\pm 0.02) \end{gathered}$
	**	**	**
I-1119	$\begin{aligned} & 3.95 \mathrm{~b} \\ & (\pm 0.16) \end{aligned}$	$\begin{gathered} 3.52 \mathrm{~b} \\ (\pm 0.11) \end{gathered}$	$\underset{(\pm 0.04)}{1.13 \mathrm{bc}}$
I-1911	$\begin{aligned} & 3.60 \mathrm{~b} \\ & (\pm 0.23) \end{aligned}$	$\underset{(\pm 0.22)}{3.28 \mathrm{~b}}$	$\underset{(\pm 0.02)}{1.10 \mathrm{bc}}$
Expected value	4.76	3.75	1.26
11-Limachino	$\begin{gathered} 5.86 \mathrm{a} \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 4.42 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{aligned} & 1.33 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{~b} \\ & (\pm 0.11) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{~b} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 1.20 \mathrm{ac} \\ & (\pm 0.05) \end{aligned}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit diameter (cm)	Fruit length (cm)	$\begin{gathered} \text { Fruit ratio } \\ \text { (D/L) } \end{gathered}$
	**	**	**
E-1121	$\begin{aligned} & 3.77 \mathrm{~b} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 3.62 \mathrm{bc} \\ & (\pm 0.17) \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
E-2111	$\begin{gathered} 3.22 \mathrm{~b} \\ (\pm 0.13) \end{gathered}$	$\begin{gathered} 2.99 \text { bde } \\ (\pm 0.13) \end{gathered}$	$\begin{aligned} & 1.08 \mathrm{~b} \\ & (\pm 0.03) \end{aligned}$
Expected value	4.84	3.94	1.22
11 - Limachino	$\begin{gathered} 5.86 \mathrm{a} \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 4.42 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{gathered} 1.33 \mathrm{a} \\ (\pm 0.03) \end{gathered}$
21 - Marglobe	$\begin{aligned} & 3.81 \mathrm{~b} \\ & (\pm 0.14) \end{aligned}$	$\begin{aligned} & 3.45 \text { bce } \\ & (\pm 0.16) \end{aligned}$	$\begin{aligned} & 1.11 \mathrm{~b} \\ & (\pm 0.02) \\ & \hline \end{aligned}$
	**	**	**
E-1519	$\underset{(\pm 0.23)}{5.01 \mathrm{bc}}$	$\begin{aligned} & 3.93 \mathrm{bc} \\ & (\pm 0.13) \end{aligned}$	$\begin{aligned} & 1.28 \mathrm{ac} \\ & (\pm 0.04) \end{aligned}$
E-1915	$\begin{aligned} & 4.80 \mathrm{bc} \\ & (\pm 0.09) \end{aligned}$	$\begin{aligned} & 3.98 \mathrm{bc} \\ & (\pm 0.12) \end{aligned}$	$\underset{(\pm 0.04)}{1.21 \mathrm{bc}}$
Expected value	5.20	3.91	1.31
15 - Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{gathered} 4.74 \mathrm{a} \\ (\pm 0.26) \end{gathered}$	$\begin{aligned} & 1.42 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{bd} \\ & (\pm 0.11) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{bd} \\ & (\pm 0.12) \end{aligned}$	$\begin{aligned} & 1.20 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$
	**	ns	**
E-1522	$\begin{aligned} & 4.34 \mathrm{bc} \\ & (\pm 0.18) \end{aligned}$	$\begin{gathered} 4.27 \\ (\pm 0.13) \end{gathered}$	$\underset{(\pm 0.03)}{1.02 \mathrm{bc}}$
E-2215	$\begin{gathered} 3.92 \text { bce } \\ (\pm 0.30) \end{gathered}$	$\begin{gathered} 3.87 \\ (\pm 0.34) \end{gathered}$	$\begin{aligned} & 1.05 \mathrm{bc} \\ & (\pm 0.09) \end{aligned}$
Expected value	4.79	4.78	1.02
15 - Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{gathered} 4.74 \\ (\pm 0.26) \end{gathered}$	$\begin{aligned} & 1.42 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \text { bde }}$	$\begin{gathered} 4.82 \\ (\pm 0.36) \end{gathered}$	$\begin{aligned} & 0.61 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$
	**	**	**
E-1922	$\begin{aligned} & 3.97 \mathrm{a} \\ & (\pm 0.09) \end{aligned}$	$\begin{aligned} & 3.90 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$	$\begin{aligned} & 1.02 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$
E-2219	$\begin{aligned} & 3.30 \mathrm{bc} \\ & (\pm 0.16) \end{aligned}$	$\underset{(\pm 0.12)}{3.40 \text { bce }}$	$\begin{aligned} & 0.97 \mathrm{bc} \\ & (\pm 0.03) \end{aligned}$
Expected value	3.24	3.94	
19 - Lukullus	$\begin{aligned} & 3.65 \mathrm{ac} \\ & (\pm 0.11) \end{aligned}$	$\underset{\substack{3.07 \\(\pm 0.12)}}{\text { bde }}$	$\begin{aligned} & 1.20 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$
22 - San Marzano	$\begin{aligned} & 2.82 \mathrm{bd} \\ & (\pm 0.10) \end{aligned}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.05)}{0.61 \mathrm{bd}}$
	**	**	**
E-1521	$\begin{aligned} & 4.24 \mathrm{~b} \\ & (\pm 0.29) \end{aligned}$	$\begin{aligned} & 4.07 \mathrm{ac} \\ & (\pm 0.30) \end{aligned}$	$\underset{\substack{1.05 \mathrm{~b} \\(\pm 0.04)}}{ }$
Expected value	5.29	4.09	1.27
15 - Ace	$\begin{aligned} & 6.76 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{a} \\ & (\pm 0.26) \end{aligned}$	$\begin{aligned} & 1.42 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
21 - Marglobe	$\begin{aligned} & 3.81 \mathrm{~b} \\ & (\pm 0.14) \end{aligned}$	$\begin{aligned} & 3.45 \mathrm{bc} \\ & (\pm 0.16) \\ & \hline \end{aligned}$	$\underset{(\pm 0.02)}{1.11 \mathrm{~b}}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	$\begin{aligned} & \text { Fruit diameter } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Fruit length } \\ & (\mathrm{cm}) \end{aligned}$	Fruit ratio (D/L)
	**	**	**
E-2211	$\begin{aligned} & 3.61 \mathrm{bc} \\ & (\pm 0.18) \end{aligned}$	$\begin{aligned} & 3.68 \mathrm{bc} \\ & (\pm 0.17) \end{aligned}$	$\begin{aligned} & 0.99 \mathrm{bc} \\ & (\pm 0.06) \end{aligned}$
Expected value	4.34	4.62	0.97
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \mathrm{bd}}$	$\begin{aligned} & 4.82 \text { a } \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.05)}{0.61 \mathrm{bd}}$
11 - Limachino	$\begin{aligned} & 5.86 \mathrm{a} \\ & (\pm 0.21) \end{aligned}$	$\begin{aligned} & 4.42 \mathrm{ac} \\ & (\pm 0.14) \end{aligned}$	$\begin{aligned} & 1.33 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$
	**	**	**
E-2221	$\begin{aligned} & 3.60 \mathrm{a} \\ & (\pm 0.16) \end{aligned}$	$\begin{aligned} & 4.02 \mathrm{ac} \\ & (\pm 0.17) \end{aligned}$	$\begin{aligned} & 0.90 \mathrm{bc} \\ & (\pm 0.04) \end{aligned}$
Expected value	3.32	4.13	0.86
22 - San Marzano	$\underset{(\pm 0.10)}{2.82 \mathrm{~b}}$	$\begin{aligned} & 4.82 \mathrm{a} \\ & (\pm 0.36) \end{aligned}$	$\begin{aligned} & 0.61 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$
21 - Marglobe	$\begin{gathered} 3.81 \mathrm{a} \\ (\pm 0.14) \end{gathered}$	$\begin{aligned} & 3.45 \mathrm{bc} \\ & (\pm 0.16) \end{aligned}$	$\underset{(\pm 0.02)}{1.11 \mathrm{a}}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } 1,000 \\ \text { seeds }(\mathrm{g}) \\ \hline \end{gathered}$
I - 3911	$\begin{gathered} 12.42 \mathrm{~b} \\ (\pm 1.38) \end{gathered}$	$\underset{(\pm 0.31)}{9.11 \mathrm{a}}$	$\underset{(\pm 0.03)}{2.56 \mathrm{bc}}$
I-1139	$\begin{aligned} & 9.41 \mathrm{~b} \\ & (\pm 1.42) \end{aligned}$	$\begin{aligned} & 8.07 \mathrm{bc} \\ & (\pm 0.32) \end{aligned}$	$\underset{(\pm 0.03)}{1.98 \text { bde }}$
Expected value	44.93	6.10	2.16
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 3.46 \mathrm{~b} \\ & (\pm 0.33) \end{aligned}$	$\begin{aligned} & 7.09 \mathrm{bc} \\ & (\pm 0.24) \end{aligned}$	$\underset{(\pm 0.05)}{1.26 \mathrm{bdf}}$
11 - Limachino	$\begin{aligned} & 8621 \mathrm{a} \\ & (\pm 9.70) \end{aligned}$	$\underset{(\pm 0.13)}{5.10 \mathrm{bd}}$	$\begin{aligned} & 2.97 \mathrm{a} \\ & (\pm 0.02) \end{aligned}$
	**	*	**
I-3915	$\underset{(\pm 1.97)}{18.35 \mathrm{~b}}$	$\begin{gathered} 7.41 \mathrm{a} \\ (\pm 0.44) \end{gathered}$	$\underset{(\pm 0.04)}{2.49 \mathrm{bde}}$
I - 1539	$\begin{aligned} & 6.11 \mathrm{~b} \\ & (\pm 1.34) \end{aligned}$	$\underset{(\pm 0.43)}{7.62 \mathrm{a}} \underset{\substack{ \\\hline}}{ }$	$\begin{gathered} 3.48 \mathrm{a} \\ (\pm 0.07) \end{gathered}$
Expected value	65.27	6.43	2.18
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 3.46 \mathrm{~b} \\ & (\pm 0.33) \end{aligned}$	$\begin{gathered} 7.09 \mathrm{a} \\ (\pm 0.24) \end{gathered}$	$\begin{gathered} 1.26 \mathrm{bdf} \\ (\pm 0.05) \end{gathered}$
15 - Ace	$\begin{gathered} 127.07 \mathrm{a} \\ (\pm 22.79) \\ \hline \end{gathered}$	$\begin{aligned} & 5.77 \mathrm{~b} \\ & (\pm 0.46) \\ & \hline \end{aligned}$	$\begin{gathered} 3.00 \text { bde } \\ (\pm 0.01) \\ \hline \end{gathered}$
I - 5219	$\begin{aligned} & 4.60 \mathrm{bc} \\ & (\pm 0.38) \end{aligned}$	$\begin{aligned} & 8.94 \text { bc } \\ & (\pm 0.20) \end{aligned}$	$\underset{(\pm 0.03)}{2.64 \mathrm{bc}}$
I - 1952	$\begin{gathered} 4.17 \text { bce } \\ (\pm 0.17) \end{gathered}$	$\begin{gathered} 8.53 \text { bce } \\ (\pm 0.15) \end{gathered}$	$\begin{gathered} 2.36 \text { bde } \\ (\pm 0.07) \end{gathered}$
Expected value	12.79	8.72	2.15
52 - L. parviflorum	$\underset{(\pm 0.03)}{0.68 \mathrm{bde}}$	$\underset{(\pm 0.31)}{10.76 \mathrm{a}}$	$\begin{aligned} & 1.13 \mathrm{bdf} \\ & (\pm 0.02) \end{aligned}$
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{a}}$	$\underset{(\pm 0.24)}{6.68 \mathrm{bde}}$	$\begin{array}{r} 3.18 \mathrm{a} \\ (\pm 0.05) \\ \hline \end{array}$
I - 5222	$\begin{aligned} & \mathbf{N}^{* *} \\ & 2.99 \mathrm{~b} \\ & (\pm 0.25) \end{aligned}$	$\begin{aligned} & 7.59 \mathrm{bc} \\ & (\pm 0.22) \end{aligned}$	$\begin{gathered} 2.35 \mathrm{a} \\ (\pm 0.04) \end{gathered}$
I-2252	$\begin{aligned} & 3.60 \mathrm{~b} \\ & (\pm 0.34) \end{aligned}$	$\begin{aligned} & 8.47 \mathrm{bc} \\ & (\pm 0.21) \end{aligned}$	$\underset{(\pm 0.04)}{2.07 \mathrm{bc}}$
Expected value	11.73	8.48	1.36
$52-$ L. parviflorum	$\begin{aligned} & 0.68 \mathrm{~b} \\ & (\pm 0.03) \end{aligned}$	$\begin{aligned} & 10.76 \mathrm{a} \\ & (\pm 0.31) \end{aligned}$	$\begin{aligned} & 1.13 \mathrm{bdf} \\ & (\pm 0.02) \end{aligned}$
22 - San Marzano	$$	$\begin{gathered} 6.20 \mathrm{bd} \\ (\pm 0.16) \\ \underset{\sim k}{*} \end{gathered}$	$\begin{gathered} 1.59 \text { bde } \\ \frac{(\pm 0.02)}{* \pi} \\ \hline \end{gathered}$
I-1160	$\begin{aligned} & 9.65 \mathrm{~b} \\ & (\pm 0.62) \end{aligned}$	$\begin{aligned} & 7.75 \mathrm{ac} \\ & (\pm 0.67) \end{aligned}$	$\underset{(\pm 0.03)}{1.84 \mathrm{bc}}$
Expected value	44.10	6.85	1.91
11-Limachino	$\begin{gathered} 86.21 \mathrm{a} \\ (\pm 9.70) \end{gathered}$	$\underset{(\pm 0.13)}{5.10 \mathrm{bd}}$	$\begin{gathered} 2.97 \mathrm{a} \\ (\pm 0.02) \end{gathered}$
$60-$ L. pimpinellifolium	$\begin{aligned} & 1.44 \mathrm{~b} \\ & (\pm 0.06) \end{aligned}$	$\begin{gathered} 1.29 \mathrm{a} \\ (\pm 0.07) \end{gathered}$	$\underset{(\pm 0.02)}{1.13 \mathrm{bd}}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } 1,000 \\ \text { seeds }(\mathrm{g}) \\ \hline \end{gathered}$
	**	**	**
I - 1960	$\begin{aligned} & 6.17 \mathrm{~b} \\ & (\pm 0.94) \end{aligned}$	$\begin{aligned} & 6.70 \mathrm{~b} \\ & (\pm 0.45) \end{aligned}$	$\begin{aligned} & 1.92 \mathrm{~b} \\ & (\pm 0.03) \end{aligned}$
Expected value	13.44	7.64	2.02
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{a}}$	$\begin{aligned} & 6.68 \mathrm{~b} \\ & (\pm 0.24) \end{aligned}$	$\begin{gathered} 3.18 \mathrm{a} \\ (\pm 0.05) \end{gathered}$
60 - L. pimpinellifolium	$\begin{gathered} 1.98 \mathrm{~b} \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 8.59 \mathrm{a} \\ (\pm 0.20) \end{gathered}$	$\begin{aligned} & 0.86 \mathrm{c} \\ & (\pm 0.03) \\ & \hline \end{aligned}$
	**	**	**
I - 2239	$\underset{(\pm 1.17)}{14.83 \mathrm{~b}}$	$\begin{aligned} & 7.35 \mathrm{a} \\ & (\pm 0.32) \end{aligned}$	$\underset{(\pm 0.01)}{2.23 \mathrm{a}}$
Expected value	13.12	6.65	1.47
22 - San Marzano	$\underset{(\pm 2.45)}{22.79}$	$\begin{aligned} & 5.20 \mathrm{bd} \\ & (\pm 0.16) \end{aligned}$	$\underset{(\pm 0.02)}{1.59 b}$
39 - L. esculentum var. cerasiforme	$\begin{aligned} & 3.46 \mathrm{c} \\ & (\pm 0.33) \end{aligned}$	$7.09 \mathrm{ac}_{0.24)} \quad(\pm$	$\begin{gathered} 1.26 \mathrm{c} \\ (\pm 0.05) \end{gathered}$
	**	**	**
I - 2260	$\begin{aligned} & 5.75 \mathrm{~b} \\ & (\pm 0.82) \end{aligned}$	$\begin{gathered} 7.58 \mathrm{~b} \\ (\pm 0.42) \end{gathered}$	$\begin{aligned} & 1.99 \mathrm{a} \\ & (\pm 0.05) \end{aligned}$
Expected value	12.38	7.40	1.23
22 - San Marzano	$\underset{(\pm 2.45)}{22.79}$	$\begin{aligned} & 6.20 \mathrm{c} \\ & (\pm 0.16) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.59 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
60 - L. pimpinellifolium	$\begin{aligned} & 1.98 \mathrm{~b} \\ & (\pm 0.21) \end{aligned}$	$\begin{array}{r} 8.59 \mathrm{a} \\ (\pm 0.20) \\ \hline \end{array}$	$\begin{aligned} & 0.86 \mathrm{c} \\ & (\pm 0.03) \end{aligned}$
	**	ns	**
E-1115	$\begin{gathered} 40.38 \mathrm{bc} \\ (\pm 4.20) \end{gathered}$	$\begin{gathered} 5.43 \\ (\pm 0.22) \end{gathered}$	$\begin{gathered} 3.39 \mathrm{a} \\ (\pm 0.06) \end{gathered}$
E-1511	$\begin{gathered} 68.10 \mathrm{bc} \\ (\pm 18.57) \end{gathered}$	$\begin{gathered} 4.62 \\ (\pm 0.34) \end{gathered}$	$\underset{(\pm 0.04)}{2.78 \mathrm{bd}}$
Expected value	106.64	5.44	2.99
11-Limachino	$\begin{gathered} 86.21 \mathrm{ac} \\ (\pm 9.70) \end{gathered}$	$\begin{gathered} 5.10 \\ (\pm 0.13) \end{gathered}$	$\underset{(\pm 0.02)}{2.97 \mathrm{bc}}$
15-Ace	$\underset{(\pm 22.79)}{127.07}$	$\begin{gathered} 5.77 \\ (\pm 0.46) \end{gathered}$	$\begin{aligned} & 3.00 \mathrm{bc} \\ & (\pm 0.01) \end{aligned}$
	**	**	**
I-1119	$\underset{(\pm 3.07)}{32.86 \mathrm{~b}}$	$\begin{aligned} & 4.94 \mathrm{bc} \\ & (\pm 0.27) \end{aligned}$	$\underset{(\pm 0.03)}{3.41 \mathrm{a}}$
I-1911	$\underset{(\pm 5.08)}{27.54}$	$\begin{aligned} & 5.94 \mathrm{ac} \\ & (\pm 0.36) \end{aligned}$	$\underset{(\pm 0.03)}{2.46 \mathrm{bd}}$
Expected value	55.55	5.89	3.07
11-Limachino	$\begin{aligned} & 86.21 \mathrm{a} \\ & (\pm 9.70) \end{aligned}$	$\begin{aligned} & 5.10 \mathrm{bc} \\ & (\pm 0.13) \end{aligned}$	$\begin{aligned} & 2.97 \mathrm{bc} \\ & (\pm 0.02) \end{aligned}$
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{~b}}$	$\begin{aligned} & 6.68 \mathrm{a} \\ & (\pm 0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.18 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } 1,000 \\ \text { seeds }(\mathrm{g}) \end{gathered}$
	**	*	**
E-1121	$\underset{(\pm 4.56)}{30.51 \mathrm{~b}}$	$\begin{aligned} & 5.32 \mathrm{ac} \\ & (\pm 0.22) \end{aligned}$	$\begin{aligned} & 3.62 \mathrm{a} \\ & (\pm 0.09) \end{aligned}$
E-2111	$\begin{aligned} & 19.26 \mathrm{~b} \\ & (\pm 2.56) \end{aligned}$	$\begin{aligned} & 6.77 \mathrm{a} \\ & (\pm 0.76) \end{aligned}$	$\begin{aligned} & 3.22 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
Expected value	58.32	5.17	2.71
11-Limachino	$\begin{gathered} 86.21 \mathrm{a} \\ (\pm 9.70) \end{gathered}$	$\begin{aligned} & 5.10 \mathrm{bc} \\ & (\pm 0.13) \end{aligned}$	$\underset{(\pm 0.02)}{2.97 \mathrm{c}}$
21 - Marglobe	$\underset{(\pm 3.46)}{30.42 \mathrm{~b}}$	$\begin{aligned} & 5.23 \mathrm{ac} \\ & (\pm 0.27) \end{aligned}$	$\underset{(\pm 0.03)}{2.45 \mathrm{~d}}$
	**	ns	**
E-1519	$\underset{(\pm 6.15)}{58.61 \mathrm{~b}}$	$\begin{gathered} 5.42 \\ (\pm 0.18) \end{gathered}$	$\begin{aligned} & 3.46 \mathrm{bc} \\ & (\pm 0.05) \end{aligned}$
E-1915	$\underset{(\pm 3.27)}{55.65 \mathrm{~b}}$	$\begin{gathered} 5.74 \\ (\pm 0.36) \end{gathered}$	$\begin{aligned} & 4.71 \mathrm{a} \\ & (\pm 0.03) \end{aligned}$
Expected value	75.98	6.23	3.09
15-Ace	$\underset{(\pm 22.79)}{127.07 \mathrm{a}}$	$\begin{gathered} 5.77 \\ (\pm 0.46) \end{gathered}$	$\underset{(\pm 0.01)}{3.00 \mathrm{bd}}$
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{~b}}$	$\begin{gathered} 6.68 \\ (\pm 0.24) \end{gathered}$	$\begin{aligned} & 3.18 \mathrm{bd} \\ & (\pm 0.05) \end{aligned}$
	**	ns	**
E-1522	$\begin{gathered} 44.61 \mathrm{~b} \\ (\pm 4.08) \end{gathered}$	$\begin{gathered} 5.41 \\ (\pm 0.55) \end{gathered}$	$\begin{aligned} & 2.96 \mathrm{bc} \\ & (\pm 0.04) \end{aligned}$
E-2215	$\underset{(\pm 8.24)}{36.74 \mathrm{~b}}$	$\begin{gathered} 7.20 \\ (\pm 0.75) \end{gathered}$	$\begin{aligned} & 3.20 \mathrm{a} \\ & (\pm 0.10) \end{aligned}$
Expected value	74.93	5.99	2.30
15 - Ace	$\underset{(\pm 22.79)}{127.07}{ }^{2}$	$\begin{gathered} 5.77 \\ (\pm 0.46) \end{gathered}$	$\begin{aligned} & 3.00 \mathrm{ac} \\ & (\pm 0.01) \end{aligned}$
22 - San Marzano	$\underset{(\pm 2.45)}{22.79}$	$\begin{gathered} 6.20 \\ (\pm 0.16) \end{gathered}$	$\begin{aligned} & 1.59 \mathrm{bd} \\ & (\pm 0.02) \end{aligned}$
	**	ns	**
E-1922	$\underset{(\pm 1.27)}{33.83 \mathrm{a}}$	$\begin{gathered} 6.19 \\ (\pm 0.54) \end{gathered}$	$\begin{gathered} 3.21 \mathrm{a} \\ (\pm 0.08) \end{gathered}$
E-2219	$\underset{(\pm 3.11)}{23.77 \mathrm{~b}}$	$\begin{gathered} 5.71 \\ (\pm 0.21) \end{gathered}$	$\begin{gathered} 3.20 \mathrm{a} \\ (\pm 0.06) \end{gathered}$
Expected value	23.84	6.44	2.38
19 - Lukullus	$\underset{(\pm 1.98)}{24.90 \mathrm{~b}}$	$\begin{gathered} 6.68 \\ (\pm 0.24) \end{gathered}$	$\begin{gathered} 3.18 \mathrm{a} \\ (\pm 0.05) \end{gathered}$
22 - San Marzano	$\underset{(\pm 2.45)}{22.79 \mathrm{~b}}$	$\begin{gathered} 6.20 \\ (\pm 0.16) \end{gathered}$	$\begin{gathered} 1.59 \mathrm{~b} \\ (\pm 0.02) \end{gathered}$
	**	ns	**
E-1521	$\underset{(\pm 9.40)}{48.19 \mathrm{~b}}$	$\begin{gathered} 5.14 \\ (\pm 0.20) \end{gathered}$	$\begin{aligned} & 3.70 \mathrm{a} \\ & (\pm 0.10) \end{aligned}$
Expected value	78.75	5.50	2.73
15-Ace	$\underset{(\pm 22.79)}{127.07}$	$\begin{gathered} 5.77 \\ (\pm 0.46) \end{gathered}$	$\begin{aligned} & 3.00 \mathrm{~b} \\ & (\pm 0.01) \end{aligned}$
21 - Marglobe	$\begin{gathered} 30.42 \mathrm{~b} \\ (\pm 3.46) \end{gathered}$	$\begin{gathered} 5.23 \\ (\pm 0.27) \end{gathered}$	$\underset{(\pm 0.03)}{2.45 \mathrm{c}}$

Appendix 5. Means of crosses and parental accessions of continuous traits in F_{1} generation of inter- and intra-taxon crosses.

Cross/Accession	Fruit weight (g)	Solid soluble content (brix ${ }^{\circ}$)	$\begin{gathered} \text { Weight } 1,000 \\ \text { seeds }(\mathrm{g}) \end{gathered}$
	**	**	**
E-2211	$\underset{(\pm 3.44)}{27.16 \mathrm{~b}}$	$\begin{aligned} & 7.27 \mathrm{a} \\ & (\pm 0.45) \end{aligned}$	$\begin{gathered} 3.45 \mathrm{a} \\ (\pm 0.07) \end{gathered}$
Expected value	54.50	5.65	2.28
22 - San Marzano	$\underset{(\pm 2.45)}{22.79}$	$\begin{aligned} & 6.20 \mathrm{~b} \\ & (\pm 0.16) \end{aligned}$	$\begin{gathered} .59 \mathrm{c} \\ (\pm 0.02) \end{gathered}$
11-Limachino	$\begin{aligned} & 86.21 \mathrm{a} \\ & (\pm 9.70) \end{aligned}$	$\begin{gathered} 5.10 \mathrm{c} \\ (\pm 0.13) \end{gathered}$	$\begin{aligned} & 2.97 \mathrm{~b} \\ & (\pm 0.02) \end{aligned}$
	ns	ns	**
E-2221	$\begin{aligned} & 26.76 \\ & (\pm 2.79) \end{aligned}$	$\begin{gathered} 5.31 \\ (\pm 0.62) \end{gathered}$	$\begin{gathered} 3.39 \mathrm{a} \\ (\pm 0.25) \end{gathered}$
Expected value	26.60	5.72	2.02
22 - San Marzano	$\begin{gathered} 22.79 \\ (\pm 2.45) \end{gathered}$	$\begin{gathered} 6.20 \\ (\pm 0.16) \end{gathered}$	$\begin{aligned} & 1.59 \mathrm{c} \\ & (\pm 0.02) \end{aligned}$
21 - Marglobe	$\begin{gathered} 30.42 \\ (\pm 3.46) \end{gathered}$	$\begin{gathered} 5.23 \\ (\pm 0.27) \end{gathered}$	$\begin{gathered} 2.45 \mathrm{~b} \\ (\pm 0.03) \end{gathered}$

[^0]: 'Primers sequences are presented in Tables 2.5 and 2.6.

[^1]: Numbers between brackets correspond to standard error; I = inter-taxon crosses; $\mathrm{E}=$ intra-taxon

[^2]: Numbers between brackets correspond to standard error; I = inter-taxon crosses; E = intra-taxon

[^3]: R denotes an observation with a large standardized residual

[^4]: $\mathrm{I}=$ inter-taxon cross; $\mathrm{E}=$ intra-taxon cross; first two digits correspond to female parent and seconds two to male parent; details of

[^5]: $\mathrm{I}=$ inter-taxon cross; $\mathrm{E}=$ intra-taxon cross; first two digits correspond to female parent and seconds two to male parent; details of

