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Abstract

This thesis is an investigation into the ability of artificial neural networks to learn
to map from a symbolic representation of CVC triphones to a continuous repre¬

sentation of vowel formant tracks, and the influence of a number of factors on

that ability. This mapping is interesting because, apart from being a necessary

part of any text to speech system and not having any accepted definitive solu¬
tion, it is from a discrete symbolic representation to a continuous non-symbolic
representation. Neural networks provide one method of automatically learning
such mappings and prove to be capable of doing so in this particular case.

The input representation used appears to have little effect on the perfor¬
mance of the neural networks. A feature based representation does no better
than a 1-of-n coding of the phonemes. The representation of the vowel formant
tracks, produced as output of the neural networks, has a far greater effect on
performance. Simple representations consisting of the initial, central and final
frequencies of the formant tracks out-perform polynomial and Fourier coefficient
representations which encode more information about the shape of the formant
tracks.

The back-propagation and conjugate gradient neural network training algo¬
rithms produced neural networks with similar performance, and the use of cross-
validation made no difference in generalisation (although the cross-validation data
set was far too small). Interestingly, neural networks with no hidden layer proved
to be as capable of learning the mapping as those with a hidden layer.

I have also derived a relationship predicting the result of a modified rhyme
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test from the root-mean-square error of the F1 vowel formant tracks of a set
of utterances, and confidence bounds on that prediction. However, it would be
unwise to apply this result to speech produced by other means than my neural
networks.
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Chapter 1

Introduction

1.1 Aims of the Thesis

The purpose of this thesis is to investigate the ability of artificial neural net¬
works (ANNs) to learn to produce the Fl, F2 and F3 formant tracks of the
vowel in CVC triphones, and to examine the effects of different input and out¬

put representations, ANN architectures, ANN training algorithms and training
methodologies.

The mapping from a phonemic or phonetic representation of speech to a rep¬

resentation of the acoustic structure of the speech which is suitable for driving
a speech synthesiser is a necessary part of any text-to-speech system. It is also
the point at which a discrete symbolic representation must be mapped to a con¬

tinuous non-symbolic representation. ANNs are a useful tool in mappings of this
kind. ANNs implement a very general class of models. That is, they make very

few assumptions about the nature of the mapping between the input and output
data. This contrasts with most other approaches to the problem which assume

that the mapping takes a particular form. In essence, the ANNs' implementation
of the mapping is based purely on the data used to train the net, and incorporates
no phonetic knowledge, except for that used to construct the input and output

representations.
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I have trained a large number of ANNs to map from an input representation
of CVC triphones to an output representation of the Fl, F2 and F3 vowel formant
tracks. I have used a variety of input and output representations. The ANNs also
differed in the training algorithm used (back-propagation or conjugate gradient)
and on whether cross-validation was used or not. Most ANNs trained had a

hidden layer, but a small number did not. When a hidden layer was used, the
number of nodes in the layer was varied. For each combination of the above, a

number of different initial states of the ANN weights were used, to increase the
chance of finding the best solution.

The questions which I have sought to answer are:

• Question 1. Are feed-forward ANNs capable of learning to map from
descriptions of CVC triphones to descriptions of the Fl, F2 and F3 formant
tracks of the vowel? See Section 9.1 for evaluation of this question.

• Question 2. What is the effect of different representations of the input
phonemes on the ability of the ANNs to learn the mapping? The input
representations are described in Section 6.4 and evaluated in Section 9.2.

• Question 3. What is the effect of different output representations in repre¬

senting formant tracks? That is, how good are these representations when
extracted from real speech data, not as produced by an ANN? The output
representations are described in Section 6.5 and this question is discussed
in Section 6.5.4. Section 9.3 answers this question.

• Question 4. What is the effect of different representations of the output
formant tracks on the ability of the ANNs to learn the mapping? The output
representations are discussed in Section 6.5 and evaluated in Section 9.4.

• Question 5. What are the effects of different ANN training algorithms,
namely a conjugate gradient method and the back-propagation algorithm?
This is discussed in Section 6.6.1 and evaluated in Section 9.5.1.

• Question 6. How effective is cross-validation in preventing overtraining
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of the ANNs and hence increasing generalisation to previously unseen tri-
phones? This is discussed in Section 6.6.2 and evaluated in Section 9.5.2.

• Question 7. What are the differences in performance between two and
three layer ANNs? The former are less powerful than the latter. This is
discussed in Section 6.6.3 and evaluated in Section 9.5.3.

• Question 8. What are the effects of the input and output representations
on the number of hidden layer nodes needed for best performance? This
gives a crude measure of the difficulty of the task. This is discussed in
Section 6.6.4 and evaluated in Sections 9.2.3 and 9.4.5.

For each combination of representations, training algorithms, methodologies
and size of hidden layer I trained 5 ANNs, each with a different initial state. For
the perceptrons, with no hidden nodes, I trained 10 ANNs with different initial
states for each combination of representations and methodologies used. In all, I
trained 800 different ANNs for these experiments, plus a number more in initial
work and other explorations. As each ANN took between 20 minutes and several
hours to train, depending on the training algorithm and size of hidden layer, this
represents a large amount of computer time.

The need for a large amount of computer time restricted the total number
of combinations which could be trained. I have not trained every possible com¬

bination. Instead I have trained three main sets. Firstly, I have trained ANNs
which vary only in the input representation used and the number of hidden nodes.
They all use the same single choice of other experimental variables. Similarly, I
have trained ANNs which only vary in the output representation. Finally I have
trained a number of combinations which differ from some ANNs in the first two

sets only on one dimension, such as training algorithm or the use of two layers
instead of three.

The training data was extracted from a database of single word utterances
recorded by a single speaker. The CVC triphones used were restricted to those
containing stop consonants /p, t, k, b, d, g/ and monophthongs /1, i, e, a, a, t>,

o, 13, u, 3, d, a/, giving a total of 554 triphones in all.
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1.2 Thesis Structure

The thesis begins with a review of approaches to speech synthesis. Chapter 2
begins by examining the stages involved in text to speech systems. Spectrum and
waveform types of synthesis are discussed, as is articulatory synthesis, synthesis
by rule and concatenative synthesis. I give a characterisation of the contrasting
natures of the phonemic and formant spaces. The mapping between these two
spaces, using ANNs, and the effects of representations within these spaces on

learning the mapping, is the main focus of this thesis.

Chapter 3 presents an overview of learning systems in general and ANNs
in particular. The idea of a model is outlined, and the choices to be made in
defining a model are discussed. The distinction between training and testing
sets of data is explained. Generalisation, the ability to perform correctly on a

previously unseen test set, is the most important ability of a learning system.
It is desirable to prevent overtraining, where high performance on the training
data is at the expense of poor generalisation. Cross-validation is advanced as a

precaution against overtraining.

After a brief discussion of neural networks in general, feed-forward and simple
recurrent artificial neural networks are discussed in more detail. In my work I have
used only two and three layer feed-forward ANNs, but some related approaches
use recurrent ANNs in which the output or hidden node activations are fed back
to extra input nodes (called context nodes).

Chapter 4 is a review of applications of ANNs to language. It begins by re¬

viewing the use of ANNs to model phonological processes and in speech synthesis.
The use of ANNs in speech recognition, parsing, syntax, morphology, comprehen¬
sion, grammar learning and in very simple models of language users is covered in
less detail.

Chapter 5 examines a number of differing models of formant tracks. The
simplest models are those which represent a formant track as a single value, either
the central or most extreme frequency, or an average frequency. These may be
of use in classification but are not useful in synthesis, except in conjunction with
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some method to convert them to a full trajectory that can incorporate transitions
with the neighbouring segments, such as the simple step function models [63]. The
Holmes, Mattingly and Shearme model [41] is an example of a more elaborate
model typical of those used in synthesis by rule systems.

The Broad and Fertig model [12] of vowel formant tracks for ClC triphones
sums a vowel target value and two functions, one for each of the context conso¬
nants. Each function is a set of points for the consonant, derived from speech
data. Broad and Clermont elaborate this model [11], with a number of models,
each more abstracted than the first. The final model is a sum of vowel target
values and exponential curves whose parameters are determined by the conso¬

nantal context. Imaizuma and Kiritani present a different model [45] based on

second-order delay functions.

I end this chapter by discussing the use of formant models in training ANNs.
In my work, the ANNs and formant models used are together equivalent to the
models discussed previously. They all map from a phonemic or phonetic descrip¬
tion to a vowel formant trajectory. These other models can be seen as rival to
my work. However, direct comparisons are difficult, and would be best achieved
by deriving the models from the speech data I have used and then comparing the
accuracy on the training and test sets.

The different input and output representations used are described in detail
in Chapter 6. The different training regimes are explained — different ANN
training algorithms, the use of cross-validation, the differences between two and
three layer ANNs and the variation in hidden layer size. The creation of the data
used in training, testing and cross-validation and the composition of the data sets
are described. Section 6.8 explains the scheme I have used to name ANN training
trials to reflect the particular combinations of input and output representations,
training algorithms and methodology and ANN architecture used. I then list the
particular combinations used.

I have used a form of modified rhyme test [25, 7] in evaluating the performance
of the ANNs, and the adequacy of the formant track representations used. I
discuss this and sources of intelligibility error, together with a formant track error
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which does not require the use of subjects in evaluation, but whose relationship
to a perceptual intelligibility error needs to be determined. Chapter 6 concludes
with a description of the process used to turn a representation of vowel formant
tracks into CVC utterances recorded on cassette tape.

Chapter 7 describes Experiment I, in which I determine a linear relationship
between the root-mean-square error on the F1 vowel formant tracks and the intel¬
ligibility error as measured by a modified rhyme test presented to subjects. The
experiment and derivation of the relationship are described in detail. Confidence
bounds on the regression line are also found, making the relationship a useful tool
for choosing between ANNs when a perceptual test is not possible. The chap¬
ter concludes with a detour to examine the significant differences between the
responses of the subjects with English accents and those with Scottish accents.

Chapter 8 describes Experiment II, a second modified rhyme test which was

designed to answer the questions set out earlier. The experimental setup is de¬
scribed and the raw results are presented. Chapter 9 is the heart of the thesis.
Here the results of Experiment II are used to answer the questions raised at
the beginning of this introduction. The performance of ANNs which differ on
only the dimension in question are compared, allowing the best input and out¬

put representations, ANN architecture, ANN training algorithm, and training
methodology to be determined.

Chapter 10 takes a look at some of the formant tracks produced by the best
overall ANN, comparing them with the original data. Comparisons are made
for the complete tracks of all instances of the triphone /pot/ and for the vowel
formant track initial, central and final frequencies across all instances and in
particular contexts. This chapter illustrates some interesting features of the ANN
output compared with the original data.

Chapter 11 concludes the thesis. It discusses the work presented in the pre¬

vious chapters, the limitations of the work and suggests possible further work.

Appendix A describes a flexible formant synthesiser program used in the ex¬

periments. Written in the object-oriented language C++ this synthesiser allows
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the user to arrange the digital components in any desired configuration and makes
adding new components a simple task. The current components implement the
equations used in the Klatt formant synthesiser [51].

Appendix B contains some of the materials used in the modified rhyme tests
to test the intelligibility of the ANN produced formant tracks and the various
formant track representations.

Appendix C contains a subclass of the Machine Readable Phonetic Alphabet
(MRPA) [61] which is used in some of the figures in the thesis. The MRPA uses

only alphabetic characters, which makes it useful when IPA characters are not
available, such as in the data analysis (Splus [10]) and drawing package (xfig)
used in the production of this thesis.
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Chapter 2

Speech Synthesis

2.1 The Stages Involved in Text to Speech Sys¬
tems

Text to speech (TTS) systems are composed of a number of stages. The overall
aim of such a system is to take a string of words written using ordinary alphabetic
(graphemic) characters and to produce the spoken utterance equivalent to the
words, just as if a human being had read out the words. The stages typically
involved are:

1. Text to Phonemic Level. The graphemic representation is mapped to a

phonemic representation of the utterance. This holds information on the
phonemes making up the words, and probably some prosodic information
such as word and sentence stress.

2. Phonemic Level to Phonetic Level. The phonemic representation is con¬

verted to a phonetic representation. The phonetic level carries information
about the actual realisation of the phonemes in the phonemic level. Effects
such as coarticulation and reduction must be taken into account. The cor¬

rect allophones for the context must be found. The prosodic information
may be used to create pitch contours and may alter durations of segments.

8



3. Synthesis. The phonetic representation is mapped to a representation to
be used for input to the production stage.

4. Production. The representation produced by the synthesis stage is used to
drive some process which in turn produces the waveform of the utterance.

The different approaches to TTS may not all follow these stages. In articula-
tory synthesis, the phonemic to phonetic stage may be reduced in complexity as

effects such as coarticulation should occur naturally as a result of the articulatory
model of the human speech production system used. In the work presented in
this thesis, the input for the artificial neural networks (ANNs) is close to the
phonemic level of representation. Many of the processes normally included in the
phonemic to phonetic stage are carried out by the ANNs, along with the synthesis
stage.

2.2 Models of Speech Production

Linggard [64] divides models of speech production into three main types. These
are articulatory synthesis (discussed in Section 2.3), spectrum synthesis and time
domain synthesis. However, features of the latter two can often be related to

articulatory models. For example, formants are an acoustic phenomenon which
spectrum synthesis aims to produce, but they are the result of resonances in
cavities of the vocal tract, modelled in articulatory synthesis, and the frequency
of the formant is the resonant frequency of the matching cavity (determined in
turn by the length of the cavity, modified by complex interactions with the cavity
wall and articulators).

2.2.1 Spectrum Synthesis

In spectrum methods of synthesis, the aim is to directly model the speech signal
itself, working in the frequency domain. An example of this approach is formant
synthesis [1, 27, 41, 51]. A source signal (which can incorporate voicing, aspiration
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and frication) is modified by resonators (producing poles, or peaks in the signal at
a given frequency) and antiresonators (producing zeros, or troughs in the signal
at a given frequency) to produce a signal containing formants similar to that of
natural speech. The resonators and antiresonators have variable frequency and
bandwidth. The components can be analogue electronic devices [41], or can be
simulated in a software program on a digital computer.

In a serial or cascade synthesiser the resonators are connected in series, which
automatically results in correct amplitudes for the formants, as shown by Fant [27].
This arrangement can be regarded as a simple model of the vocal tract, without
nasal coupling. Only a small number of resonators (3-5) are necessary to produce
acceptable quality speech. This arrangement performs well for non-nasal voiced
speech.

A parallel synthesiser, where the resonators are in parallel with each having
a gain control setting the amplitude, performs better on stops, nasals and frica¬
tives. The Klatt synthesiser [51] incorporates both serial and parallel pathways,
producing a synthesiser capable of production of the full range of speech sounds.
The synthesiser I have written for my own use is based on the Klatt synthesiser
but has greater flexibility in the configuration of components (see Appendix A).
Since I only synthesise vowels I only use the serial or cascade mode of operation.

To control a formant synthesiser it is necessary to provide the frequency and
bandwidths for the resonators. In the parallel case it is necessary to also pro¬

vide the amplitudes. Bandwidths and amplitudes may be set to constant values
for given phonemes, in which case all that is needed is to specify the formant
trajectories.

2.2.2 Waveform Synthesis

Formant synthesis and other spectrum methods attempt to match the spectrum
of a natural utterance. That is, they attempt to match the speech in the frequency
domain. Some methods of synthesis attempt to match the waveform of a natural
utterance. That is, they operate in the time domain. The best known of these
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techniques is Linear Predictive Coding (LPC) [47, 48, 67].

In LPC synthesis predictor coefficients are calculated for a linear weighted
sum whose input is a series of samples of a signal and whose output is the next

sample in the signal. Some minimisation procedure is used to find the coefficients
which minimise the mean-squared prediction error. The prediction error is the
difference between the actual signal and the predicted signal. New coefficients
are calculated periodically. This technique is a very effective way of producing
low bit-rate codings of speech. That is, predictor coefficients can be extracted
from speech then resynthesised to produce a highly accurate recreation of the
original speech. Resynthesis requires an error signal, which may be random
noise for unvoiced speech and an impulse train for voiced speech. The predictor
coefficients are a much more compact representation of the speech than the speech
signal itself.

There are a number of variants on the LPC theme, including the PARCOR
method of Itakura and Saiko [48, 49]. Other time-domain codings include Pitch-
Synchronous Overlap-Add (PSOLA), which multiplies the speech signal by a

moving Hamming window to produce the coding [39]. PSOLA allows manipula¬
tion of pitch periods and duration of segments.

2.3 Articulatory Synthesis

Articulatory synthesis is carried out by creating quantitative models of the human
speech production process, that is, by simulating the operation of the processes

leading up to the acoustic signal. The full set of processes that could be modelled
are neuromuscular, articulatory, aerodynamic and acoustic source generation pro¬

cesses [92]. A very early articulatory model was the ingenious mechanical device
constructed by von Kempelen in the late eighteenth century [102]. An early
digital simulation was developed by Flanagan and colleagues [30].

Given the complexity of the structures involved, simulations are based on

11



greatly simplified models of the articulatory system. Typical simplifications in¬
clude regarding the vocal tract as a series of linked tubes of either constant cross-
sectional area or constant cross-sectional shape. Cross-modes and reflections are

often ignored, and the simpler wave equations used. A full model would have to
include the effects of smooth and discontinuous changes in pipe cross-sectional
area and shape, yielding pipe walls, the effects of turbulence and possibly even

changes in the speed of sound, which depends on temperature, humidity, gas den¬
sity and the diameter of the pipe. A general discussion of models can be found
in [64, 92],

Typically, the number of parameters to be controlled is about 7-9, if lip and
tongue parameters are included. The values of the parameters change slowly,
relative to the granularity of the simulations, but the accuracy of their trajectories
is important in producing high quality speech output. Various theories have been
advanced about how these trajectories should be constructed. Gesture theories
construct the trajectories from a concatenated series of articulatory gestures (ie.
segments of trajectories) which must be smoothed together at the transitions [14,
31]).

Alternatively, the trajectories could be the result of a number of conflicting
effects. The formant target theory says that when a vowel is produced the ar¬

ticulators attempt to reach their ideal target values for that vowel. Their initial
positions are determined by the previous segment and they must reach the initial
positions for the following segment. They have only a limited time in which to
achieve this and are subject to limits on their maximum speed and acceleration
due to the physical effect of inertia, the physiological limits on the muscles and
the limitations of the neuromuscular control system. This theory therefore sees

the trajectories as an attempt to reach goal states under a set of constraints.

The creation of the trajectories of the articulatory parameters corresponds to
the synthesis stage of the TTS process, as described in Section 2.1. In a complete
system, these trajectories might be calculated as in a synthesis by rule system

(based on one of the theories discussed above). It might eventually be possible
to build a complete system that begins with a cognitive model of phonological
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processes, proceeds to a neuromuscular control system and then to an articulatory
synthesis system.

At present, articulatory synthesis is a research field, not a route to commer¬

cially viable speech synthesis.

2.4 Synthesis By Rule

A number of successful systems have used the synthesis by rule approach to map¬

ping from a phonetic level description to the control parameters for the speech
production system. Synthesis by rule systems use a set of rules (possibly supple¬
mented by a look-up table) to perform the mapping. Liberman and colleagues [62]
specified a set of rules associated with subphonemic features which were used to
produce formant tracks. There were rules for manner, place, voicing and position.
Later examples include the work of Holmes, Mattingley and Shearme [41], the
MITalk system [1], and the work of Klatt [51, 52]. The speech production module
has generally been an acoustic domain method such as a formant synthesiser or
an LPC synthesiser.

The formant synthesis method requires formant trajectories to be produced.
This can be based on the formant target approach. Each vowel has an associated
target value for each formant. This value is the "ideal" frequency for the formant
— the value it will reach given sufficient duration. The phonemes before and
after the vowel establish start and end points for the formant tracks (loci). The
formant track begins at the set start point (or points at it), moves towards the
target vowel frequency, possibly not reaching it, then moves to the final frequency.

The rate of change of the formant track frequency has some maximum value,
and the initial and final values must be reached. This means that the central tar¬

get frequency may not be reached. The synthesis by rule program must calculate
trajectories for the formant tracks which meet these constraints. The trajecto¬
ries may be altered by the addition of durations for steady state segments and
transition segments within the vowel formant track. The process creating the
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trajectories must be able to combine the various targets and durations in some

manner. Priorities may be associated with the elements to be combined. For
instance, the model may require the formant tracks to reach the consonant loci,
but only to move towards the vowel target. The various elements may be found
by examining real speech, but typically some hand adjustment takes place.

The values for the formant targets and consonant loci may be derived purely
from rules based on phonemic features as in Liberman's work [62], or may be
found from a look-up table, or may result from a mix of these two approaches
as in the Klatt system [51]. The speech produced by all of these methods is
intelligible, if machine-like.

2.5 Concatenative Synthesis

Concatenating single phonemes is a poor method of synthesis, due to the inability
to cope with coarticulation. Researchers have tried using larger units of speech,
such as words, syllables, half-syllables and diphones [13, 26, 66, 73, 74, 75, 89].
The process involves concatenating segments of speech waveform, or some trans¬
form of the speech waveform, to produce continuous speech. Linear predictive
coding is commonly used in concatenative synthesis. Formant tracks, PSOLA
and other codings have also been used.

In diphone synthesis segments of speech are taken between the centres of ad¬
jacent phonemes so that the important transition information between phonemes
is captured. All possible transitions between all of the allophones in the target
language must be included in the database of diphones. In cases where coar¬

ticulation effects occur beyond adjacent phonemes it may be advantageous to
add segments covering three phonemes. Depending on the type of coding used,
techniques may be available to alter the duration and pitch of segments so that
natural sounding speech with stress and prosody are produced. PSOLA allows
this type of manipulation [39].
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2.6 Mapping From the Phoneme Space to the
Vowel Formant Space

The lowest level of discrete symbolic description of speech is the phonetic de¬
scription. The levels above this (phonemic, syntactic) are also discrete symbolic
descriptions. The next level down is a time series of control parameters for some
synthesis method, such as formant, LPC or articulatory synthesis. This level is
not symbolic, but a continuous, non-symbolic description. Hence in any speech
production system, whether it is a TTS system or a human speaker (assuming
that humans really do use discrete symbols in cognition), there is some process

mapping from a symbolic description to a set of non-symbolic, continuous values.

The process of producing vowel formant tracks given a phonemic or phonetic
description of the CVC triphone containing the vowel can be seen in terms of
a mapping from one mathematical space (the phoneme space) to another space
(the formant space). The task of the researcher is to find this mapping, or an

adequate approximation to it, using some set of tools.

In my experiments using ANNs, the inputs to the ANNs are symbolic de¬
scriptions of CVC triphones and the outputs are continuous descriptions of vowel
formant tracks.

2.6.1 Characteristics of the Phoneme Space

The phoneme space is discrete on most dimensions. Typical dimensions are

height, voicing and roundedness. These are all expressed as either binary values
or as a small number of values implying an ordering. Most systems of phonemic
features have imposed no more structure beyond specifying the existence of a
number of features which are present in each segment of a string of concatenated
segments. Some approaches, such as autosegmental phonology [38], have used
more complex structures. Autosegmental phonology employs a series of tiers, or
ordered sequences of objects. Relationships are established between the tiers by
association lines. One aspect of this is that the segmentations on different tiers
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are no longer necessarily at the same instants in time.

In generative phonology, strings of phonemes (with associated features) are

rewritten to phonetic descriptions. It is at this stage that processes such as coar-

ticulation have their effect. The rules employed may be complex and somewhat
ad hoc and may be applied multiple times. It is this type of mapping which is
generally used in TTS systems. Local [65] has called for the use of phonological
models which allow a simpler and more coherent mapping to the phonetic level.
I have ignored this question entirely by using ANNs to map directly from a broad
phonetic level representation to some representation of the vowel formant tracks1.
Any necessary transformations of the this level of description have been carried
out by the "black box" of the ANN, as well as the mapping to the formant track
description.

2.6.2 Characteristics of the Formant Space

The formant space is some representation of the actual vowel formant tracks.
The thing being represented is a physical object, not a mental object, being
composed of sound waves in a medium. Most representations will be comprised
of continuous valued numbers. The most "direct" representation used here, after
the digitised waveform itself (composed in fact of integers in a large range, but
approximating a continuous object), is the vowel formant tracks extracted by a

formant tracker. This representation is a series of numbers in a computer of type
real that in fact take a large but finite number of values but which are in essence

continuous when compared to the small set of values phonemic features take.

A number of more compact representations are used in this work; using a

small number of points on the formant tracks, or using the coefficients of some
mathematical function (polynomials or Fourier transforms) applied to the tracks.

JThat is the transcribed phonemes in the description extracted from the corpus of segmented
speech which provided the experimental material were those observed by the transcriber. These
may well not have been the phonemes which would have been present in a citation form tran¬
scription of the words contained in the utterance. That is, the observed phonemes may have
been the result of some transformations.
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It would be possible to represent the vowel formant tracks in a discrete manner

however, and it might have been useful to have done so. One possibility would be
to divide the duration of the track up into a number of segments, find the mean

frequency of a formant track in that segment and divide these frequencies up into a

number of bins. The natural choice would be frequency bins one Bark unit apart,
as the Bark unit is based on the width of the critical band for frequency resolution
in humans, as derived from psychophysical experiments [107]. Another possibility
would be to describe formant tracks in terms of the closest fit to a number of

standard shapes, although this would risk losing entirely any connection with the
continuous nature of the physical formants.

2.6.3 The Mapping

The mapping can be summed up as an informal theorem — there exists some

mathematical function which maps the discrete phonemic value of a speech utter¬
ance to a continuous acoustic value of that speech utterance. This function should
have a number of properties. In particular, it should have some form of continuity,
so that phonemes with similar features should produce similar acoustic values.
This does of course assume that the features used to describe phonemes have
some correspondence to features of speech. Strictly speaking, they correspond
to aspects of the mental representation of speech, at least in theory. Phonetic
features correspond to physical aspects of speech. These are frequently confused
or conflated. It is possible to argue that the whole of the above would be better
stated as a discussion of the mapping between the phonetic level of representation
and the formant (acoustic) level.

2.7 Learning the Function

To learn the function mapping a CVC triphone to the vowel formant tracks there
are two requirements:
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1. A class of models. This determines the nature of the function carrying out
the mapping. This can be a detailed model motivated by phonetic or physio¬
logical knowledge, or a more general model. These include the general linear
model (GLIM) [15] which is the linear sum of a series of terms involving the
input values, various non-linear extensions to the GLIM, or models involv¬
ing other combinations of functions. Artificial Neural Networks (ANNs)
provide a very general model, being capable of approximating a very wide
class of functions [19, 34].

2. A method of determining the parameters of the chosen model. A wide range
of methods are available, either in the field of statistics or the related field
of learning systems. The method must automatically adjust the parameters
in order to reproduce a training data set. Hopefully the final model will
then successfully work with new data not included in the training data set.

The various types of synthesis by rule can be seen as implementing particular
models of the vowel synthesis function. This is discussed further in Chapter 5.
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Chapter 3

Learning Systems and Artificial
Neural Networks

3.1 General Issues

The term learning system can be applied to a wide range of techniques throughout
traditional statistics and less traditional approaches such as artificial neural net¬
works (ANNs) in their various forms and inductive learning systems. Although
it generally appears attached to techniques outside mainstream statistics, this
is a reflection of a separation in the jargon used rather than a true distinction.
What they all have in common is that they can all be seen as automatically ad¬
justing parameters of some more or less general model to fit some training data
set. The training set may be presented as pairs of input and output values, or as
independent and dependent variables. The user of the system may wish to use it
to predict output or dependent variables given an input not in the training set.
The ability to make predictions (correct or otherwise) given new input values is
called generalisation.

Learning systems are used in two main ways. The first is classification, where
the input data is assigned to a limited number of disjoint sets. This can be seen

as a partition of the input space. An example of this is deciding what the species
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of a flower is from information such as the length and width of petals and sepals,
as in the well known iris data set [6, 29]. The second is as a mapping from the
input space to the output space. An example is predicting someone's height given
their age and weight. One particular type of prediction that has its own set of
techniques is the prediction of the next element in a time-series given the history
of the series.

3.1.1 Models

Any particular instance of using a learning system embodies a particular model
of the process that generated the training data. Linear regression assumes that
the dependent variable is linearly related to the independent variables and hence
can be predicted by a linear combination of them. Any transformations applied
to variables before applying the regression procedure are also part of the model.
The commonly used least-squares method of fitting the regression line is based
on assumptions about the nature of the distribution of the samples about the
population mean and of the distribution of measuring errors. Even the choice of
what variables to use is a part of the model.

In classification problems, the fundamental difference between different meth¬
ods is in the nature of the partition of the input space. Methods which construct
decision trees correspond to dividing the space up with planes parallel to the axes.

Other methods correspond to planes in any orientation, or to curved surfaces or

to volumes of various shapes.

3.1.2 Training and Testing Sets

The training set is the set of data used in constructing or training the model.
While the errors (that is, difference between the output values in the data and
those produced by the model) on the training set can give some indication of how
well the model matches the underlying, real physical process which generated the
data, they give a biased estimate of how close that match is, underestimating
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the true probable error. For this reason it is necessary to use a test data set,

composed of data not used in training, to give a measure of how successfully
the model fits the process. The one exception to this is if the training data is
exhaustive. That is, if the training data includes all possible cases. In this case

the training set error is obviously the true error.

3.1.3 Generalisation and Overfitting

In most cases, we are interested in using the model to predict the output matching
a previously unseen input — we are interested in generalisation. We can never

guarantee to have produced the best possible model of the process just using the
data set, unless it covers all possibilities. All we can do is produce the best model
possible in the class of models the learning system is capable of, under the set
of assumptions we have made about the process (often implicit and unstated).
Of course, if we know exactly how the process being modelled works, then we

can build an accurate mathematical model, but then we wouldn't need a learning
system.

One example of the problems of generalisation and choosing model parame¬
ters is fitting a polynomial curve of order n to a set of n points. If no further
restrictions are made, there is an infinite set of curves that can be fitted through
the set of points with zero error. However, if we are using the fitted curve to

predict what other points "belong" to the set of which the training points are a

sample, then we get a different answer for each curve.

A different type of problem occurs when there is some degree of "noise" in the
data. This can be due to the probabilistic nature of the process. One example of
this is in speech. For the same vowel in the same context, the acoustic structure
of the vowel will be different each time it is uttered. The utterances will form

a distribution about the average vowel utterance. Another source of noise is
measurement error. In the case of a process that produces "noisy" data, a full
model would consist of some predictor of the average case and a description of
the distribution of points around that average.
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If the sample data is taken from a process which produces a distribution of
points around some average case, then it may be a mistake to attempt to minimise
the error as much as possible. We are not interested in fitting a model to the
actual points we have, but in fitting a model to the underlying process, to the
average1 of the distribution. If we fit too closely to the training data we may

in fact do worse at generalisation. This type of problem is known as overfitting.
The general solution for this is to pick the simplest class of models you think can

capture the nature of the underlying process and to keep the power of the model
as restricted as possible. A number of other techniques are also used to guard
against overfitting, including a number based around cross-validation and some

that introduce complexity costs. However, all strategies for avoiding overfitting
(other than selecting models based on a real understanding of the process being
modeled) are necessarily ad hoc and do not guarantee success. These issues are
discussed further in [87, 106].

3.1.4 Cross-Validation

Cross-validation is the use of a third data set (along with the training and test
sets) to aid in selection of the best model. If we have a number of competing
models, we can use a set of data not used for training to measure the performance
of each of the models and pick the best. Because it was used as the selection
criterion, the performance on this new data set is not an unbiased estimator of
the performance of the model. For this reason, we must not use the test set for
selection, but use a third set, the cross-validation set.

In learning systems that iteratively improve the model's fit to the data, each
iteration can be seen as producing a separate model. Cross-validation can be
used to select the iteration at which the model gives the best performance on

the previously unseen cross-validation data. It is assumed that this will be the
iteration which gives the best performance on all data. The training proceeds

XI am being deliberately vague about what I mean by average, as it depends on what
assumptions you make about the nature of the distribution and the best way of fitting a model
to it, which may also depend on your intended use of the model!
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as normal, until either convergence is reached (there is no further improvement),
or some other stopping criterion, such as a maximum number of iterations, is
reached. On each training iteration, the error on the cross-validation set is de¬
termined. The state of the model at the iteration with the best cross-validation

error is taken as the output of the training. Normally, the state of the model at
the last iteration is taken as the output of the training.

3.1.5 Size of Training Set

We want to produce a model that reflects the operation of the underlying process

creating the data — we want to minimise error over all the possible data that
the process can generate. For this, the more data we have, the better. If we have
all the possible data, we don't need a model for prediction, only a lookup table
(although we may be interested in the "why" as well as the "what" and still want
to create a simpler model). If we don't have all the data, more data results in a

lower estimated prediction error. That is, we expect to get better predictions if
we have more training data.

However, generating data is generally not free, and there may be practical
restrictions on the amount of data that can be processed while producing the
model. We have to come to a compromise. At an absolute minimum, we must
have more training examples than number of free parameters in the fitted model.
That is, if we have found the values of N parameters controlling the model, we
had better have at least N + 1 training examples, and hopefully many more.

Some learning systems can automatically adjust the number of free parameters
depending on the performance on the training data, or a researcher may adjust
things by hand.

3.2 Neural Networks

The term neural networks is applied to a class of computational devices which
consist of a large number of connected simple elements or nodes. Some researchers
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are interested in producing detailed models of biological neural networks. Most
work is unconnected to biological neural networks, and I have used the term
artificial neural network (ANN) to refer to the type of neural network I have
been using. ANNs work on numerical data only, not on symbols. They process

input vectors and produce output vectors. Some are static, producing one output
vector for each input vector. Some are dynamic, producing a succession of output
vectors for a constant or changing input vector.

The connections of an ANN are weighted and the output, or activation of the
node is the result of some function applied to the sum of the weighted inputs.
In some cases the weighted inputs are multiplied not summed. A single node is
shown in Figure 3.1.

General discussions of the types of ANNs and of the uses to which they have
been put are available in [40, 69, 86] and many other books.

- y

n

Figure 3.1. A single node in an artificial neural network.
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3.2.1 Feed-Forward Artificial Neural Networks

The simplest form of ANN has a layer of input nodes and a layer of output
nodes, with the weighted links projecting only from the input layer to the output
layer. This type of network is called a perceptron and has a simple learning rule
(the algorithm used to adjust the weights) called the delta rule. The perceptron
has limited computational capacities. In classification it can only produce linear
separations [71]. It is trained by repeatedly presenting each of the input/output
training patterns. The activations of the input layer nodes are set to the input
pattern. The input layer activations then determine the weighted inputs of the
nodes on the output layer. These weighted inputs are acted on by each output
node's activation function to determine the node's activation. The values of the
weights are then altered by the training algorithm (either after each training
pattern, or after all patterns have been presented), to reduce the error between
the output layer activations and the output training pattern.

Generally, the error measure to be minimised is the least-squares error E =

T,P(tp-yp)2 where E is the error, p is the input/output pair, tp is the target output
for p and yp is the actual output produced by the ANN for p. Any activation
function (the function mapping the input to a node to the output of the node) can
be used, but the non-linear logistic function shown in Equation 3.1 and plotted
in Figure 3.2 is the most common choice. This function keeps values in the
range (0,1) and acts as a smoothed threshold (which is useful in classification
but not necessary here). If all nodes were linear, then the ANN would only
be able to carry out linear mappings, as the sum of linear transformations is a

linear transformation. The back-propagation algorithm uses the derivative of the
activation function. In the case of the logistic function this derivative is very

simple.

<M~ (3.1)

A more complex ANN is the multi-layer feed-forward ANN (also called a

multi-layer perceptron. This has one or more hidden layers of nodes between
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Summed Input

Figure 3.2. The logistic function.
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the input and the output layers, as shown in Figure 3.3. The weighted links
project only from one layer to the next, never across layers or back to other
layers. These types of ANNs can be trained using the generalised delta rule [84],
or using any of a number of error minimisation techniques such as conjugate-
gradient minimisation [77]. As in the case of the perceptron, each input and
output pattern is treated separately. Activations propagate forward through the
ANN which then reaches its final state.

Output layer
A

Hidden layer
A

Hidden layer
A

Input layer

Figure 3.3. The architecture of a multi-layer, feedforward ANN.

Feed-forward, three-layer (ie. one hidden layer) ANNs can learn to successfully
classify any set of data, given enough nodes in the hidden layer, as demonstrated
by Baum [8]. Baum and Haussler have also investigated the ability of such ANNs
to generalise to new examples drawn from the same distribution as the training
data [9].

These types of ANNs can be related to methods in classification and approx¬

imation. ANNs make no prior assumptions about the process being modelled.
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This makes ANNs a good choice for situations when you either have no knowledge
of the mapping being used, or when you wish to act as if you have no such knowl¬
edge. However, if knowledge about the mapping is available, more mainstream
techniques that can incorporate this knowledge should do as well or better than
ANNs.

3.2.2 Recurrent Neural Networks

Recurrent ANNs are those whose connections do not just feed forward but which
form recurrent connections. This allows the networks to evolve with time —

to be dynamic. Even with a constant input vector, the output can change at
each time-step of the network. This makes recurrent ANNs capable of modelling
time-series in a natural fashion, and gives them a memory of previous events.
However, training general recurrent ANNs is far more computationally expensive
than training feed-forward ANNs. Williams and Zipser [105] present a training
algorithm whose storage requirements are 0(n3) on the number of nodes and
whose computational requirements are 0(n4) on the number of nodes.

There are a number of simple recurrent ANNs that can use the training algo¬
rithms used for feed-forward ANNs. Jordan [50] experimented with networks in
which the output unit activations were copied back to an extra set of input units.
Elman [22] used a similar architecture in which the hidden layer was copied back
to the input layer. In both cases, the activations of the extra context nodes de¬
pended on both the copied activation and their own previous activations. That
is a(t) — ya{t — 1) + x{t — 1) where a(t) is the context node's activation at time t
and x(t) is the activation of its associated hidden or output node at time t. This
scheme gives the ANN a memory. The degree of influence of the past can be
adjusted by changing the value of y. Figure 3.4 shows the architecture of Jordan
and Elman ANNs.
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Figure 3.4. The architecture of Jordan and Elman ANNS.
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Chapter 4

Artificial Neural Networks and

Language

Artificial neural networks (ANNs) have been used in a number of different ways
by linguists and other researchers working with language and speech. ANNs
have been used in phonology [36, 50, 80, 93, 98], in text-to-speech systems [46,
56, 90, 91, 99, 100, 101], in speech recognition [23, 32, 33, 68, 81, 82, 83] and
as parsers [2, 4, 5, 22, 28, 57, 95, 88, 97]. They have also been used in systems
modelling language use, such as question-answering and paraphrasing of script-
based stories [3, 5, 70, 96].

4.1 Phonological Processes

Traditional generative phonology [16] sees phonological processes as consisting of
a set of rules applied in a sequential order to strings of symbols, often cyclically.
These are both awkward to apply, relying on ordering to select the next rule, and
unconvincing as accounts of psychological processes (although in general linguists
claim to not care about this point). A number of researchers have argued for other
accounts of these processes. Some of the newer approaches to phonology, collec¬
tively known as non-linear phonologies, such as autosegmental phonology, may
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offer simpler mappings between levels of representation, due to richer structures
within those representations. Most connectionist implementations of phonolog¬
ical processes and speech synthesis have mapped in single steps between layers
of representation, but have generally stuck to linear representations, as has the
author of this thesis in his experiments.

Coleman, Local and others have developed a text-to-speech system (YorkTalk)
which uses a non-segmental phonemic representation, with a richer structure
than string-based phonologies [17]. There is no rewriting within the phonological
level, although constraint processes do operate during the construction of the
phonological representation by a phonotactic parser operating on the input text
string. A strict distinction is drawn between the phonemic level, composed of a
structured symbolic representation, and the phonetic level, composed of numeric
parameter values suitable for controlling a speech synthesiser (in this case, a
version of the Klatt formant synthesiser). A mapping from the phonemic to
phonetic levels is accomplished by a single application of a set of exponency

rules which set parameter values, followed by a single application of a set of
interpolation rules. After this it is possible to assign values for all necessary
parameters at 5ms intervals. ANNs would be a possible replacement for the
single, parallel application of rules between the layers of representation, although
ANNs are effectively black boxes and would hence not embody any phonetic
knowledge.

In 1988 George Lakoff advanced an outline of a connectionist phonology [60],
drawing on his theory of cognitive linguistics as outlined in [59] which some

researchers, such as Touretzky [98] and Gasser [36] have taken as inspiration.
Lakoff's cognitive phonology uses parallel rules and constraints applying every¬

where simultaneously, which corresponds naturally to using ANNs to map be¬
tween layers of representation.

Touretzky has attempted to implement Lakoff's theories, constructing a series
of connectionist systems that map between various levels of representation [98].
He aims to ensure that his mapping architecture can only accomplish the types
of transformations observed in phonology, and requires that observed phenomena
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should be explicable in term of the computational architecture. This differs sig¬
nificantly from much of the ANN work in phonological processes, including most
of that discussed below. In most work, ANNs may learn to produce the types of
mapping described by linguists, but are not constrained to do so by their archi¬
tecture. As Pinker and Prince point out [76], they are capable of transformations
never seen in language, such as reversing all the phonemes in a word.

NETtalk is probably the best known application of ANNs to language. Sejnowski
and Rosenberg [93] trained a feedforward ANN with one hidden layer to map a

graphemic representation of a word to its phonemes, represented as phonemic fea¬
tures. The input layer held seven letters in all, and the phoneme for the central
letter was produced. Each letter was coded by turning on one of 29 input nodes,
each representing a possible letter of the alphabet or a punctuation mark such
as a word boundary. The output phoneme was coded in terms of 21 phonemic
features (which the authors describe as articulatory features) and 5 other features
coding for such things as stress and syllable boundaries.

The NETtalk ANN was trained on two different texts. The first was a tran¬

scription of 1024 words of informal speech by a child, which included the elisions
and modifications to be expected in this kind of speech. After 50 passes through
the corpus, 95% of the phonemes were produced correctly. Stress was assigned
almost totally correctly after only 5 passes. Phonemes in a test set of 439 words
were produced with 78% accuracy, indicating that the network generalised well
to new words. The authors do not say how the results per phoneme translated
into results per word. Assuming 5 letter words and equal distribution of errors
on phonemes, 78% accuracy on phonemes would translate into 29% accuracy on

words. In a similar experiment, Dietterich et al [20, 21] achieved a performance
of 80.8% correct per phoneme on a 1000 word test set, with only 13.6% correct
per word.

On a corpus of the 1000 most commonly occurring words (as listed in the
Brown corpus [55]), the network achieved a phoneme performance of 98%, with a

generalisation performance of 77% phoneme accuracy on 20012 test words. With
the same assumptions as above, this translates into a word accuracy of 27%.
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The learning curves for NETtalk follow the same power laws that charac¬
terise human learning. However, the type of ANN used is capable of arbitrary
mappings, and therefore drawing parallels with human learning is somewhat sus¬
pect. Overall, NETtalk is a good demonstration of the possibilities of ANNs. To
be used successfully as a replacement for a conventional text-to-phoneme mod¬
ule of a TTS system its performance would have to be much improved, which
might happen with a much larger training corpus. Many TTS systems, such as

DECtalk (whose phonemic-to-phonetic and speech synthesis modules NETtalk
borrowed to produce actual speech), use a large look-up table of phonemic tran¬
scriptions of words with a rule-based module to produce transcriptions of words
not in the look-up table. An improved NETtalk might make a replacement for
the rule-based module.

Dietterich et al [20, 21] compared the performance of a NETtalk style ANN
with the simple decision-tree learning algorithm ID3 [78, 79]. They found that if
they used the same procedures as with NETtalk then the ANN performed better
than ID3. If the ANN output was thresholded to produce only zeros and ones,

as ID3 is constrained to do, the ANN did worse than ID3.

However, if the method of decoding the output (in terms of features) was

altered to only consider those phoneme/stress pairs occurring in the training
data, then the ID3 performance increased to the same level as that of the ANN.
If the decoding only considered sequences of phoneme/stress pairs seen in the
training data then performance of both the ANN and ID3 increased, and were

equal. This underlines the importance of representations and the output decoding
method used in systems containing an ANN or other learning system.

Tuerk et al [101] improved NETtalk performance by not using a distributed
output coding, and by correcting an error in coding in the original work, improv¬
ing phoneme recognition to 99.4% correct on the 1000 most frequent words. On
a test set of new words, 73% of words were judged to be pronounced acceptably
by a synthesiser when the Dietterich block coding was used.

Reggia et al [80] have constructed a connectionist model of grapheme-to-
phoneme mapping based around an "indirectly interactive dual-route hypothesis
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of reading aloud" that accounts for observed psychological data and is also in¬
fluenced by neurophysiological evidence. The ANN uses a form of spreading
activation. The model is intended as a test (or instantiation) of a psychological
hypothesis and is very dissimilar in form and intent from the NETtalk style ANN.

Jordan [50] trained a recurrent ANN to produce a single sequence of phonemic
feature vectors. The feature values took values between 0.1 and 0.9, and were left
unspecified for some phonemes. In training the target values were set every four
network iterations, and the weights updated. Once trained the ANN successfully
produced the targets at the specified instants and interpolated in the interme¬
diate steps and for the unspecified values. Jordan interprets the trajectories of
the output node values in terms of theories and observations about articulation.
However, an ANN that can only produce one output sequence is inadequate as

a model of coarticulation. While the output values may follow paths which cor¬

respond to coarticulation, it is probably best to take this as an illustration that
ANNs may be capable of modelling these processes.

4.2 Speech Synthesis

ANNs have been used surprisingly little in speech synthesis — the production of
control parameters for a synthesiser from a phonemic representation of an utter¬
ance. This mapping is, in general, between two different types of representation
— from a discrete symbolic representation to a continuous real-valued represen¬

tation. It is precisely in this type of mapping that the strengths of ANNs lie.

Tuerk et al [100, 101] have addressed the problem of producing synthesiser
parameters from a phonemic representation. Kumar et al [56] have used ANNs
to produce formant tracks in a flawed set of experiments. Ishikawa and Naka-
jima [46] used ANNs to interpolate sampled spectra between CV syllables in
concatenative synthesis. Scordilis and Gowdy [90, 91] have used ANNs to pro¬

duce fundamental frequency (Fo) contours, as has Traber [99].

Tuerk, Monaco and Robinson [101] trained a set of 61 ANNs (one for each
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allophone) to produce LPC parameters. The ANNs were feed-forward nets with
the previous output copied to the input. The rest of the input consisted of a
feature-based representation of the adjacent two phonemes, a description of the
speaker's dialect, sex, height and age, an indicator of the number of frames to be
output and an indicator of the current frame. The training data was taken from
the TIMIT database [35]. The authors were interested in the effects of setting
different speaker characteristics. Only the sex setting had any effect. However,
the use of such settings did allow the researchers to use more training data than
might otherwise have been available, as the usual need for single-speaker data can

be restricting. The researchers do not give the number of tokens of speech used,
or the number of different speakers. The speech generated was poor, but the
researchers blame the LPC representation for this. No evaluation scores (either
distance metrics on the produced parameters or listening tests) are given, and it
is not clear if the ANNs were tested on previously unseen inputs.

In subsequent work, Tuerk and Robinson [100] concentrated on single speaker
synthesis of LPC coefficients. They trained 50 ANNs (one for each phoneme) to
produce coefficients suitable for use in synthesising continuous speech, using the
feed-back mechanism of the Jordan style ANNs to give smooth transitions be¬
tween adjacent segments. The inputs consisted of the previous output, a feature-
based representation of the adjacent two phonemes, an indicator of the number of
frames to be output and an indicator of the current frame. The researchers have
not conducted listening tests, but are aware of the difficulties of evaluating the
quality of the synthesis without them. They do examine the speech in the light
of phonetic knowledge and conclude that it behaves as it should. Generalisation
to new sequences of phonemes seems to be good.

Overall, this seems to be a successful method of using ANNs in synthesis. By
going directly for synthesis involving all phonemes, they have made it easier to
acquire sufficient training data. The use of recurrent ANNs removes the problem
of choosing a static model of formants and other linguistic features, as each
successive time frame is represented in turn.

Kumar et al [56] taught an Elman style recurrent ANN (with extra input
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units based on previous activations of hidden units) to map from phonemes to
formants. A separate ANN was trained for each of the first three formants.
The input training data consisted of a total of nine CVC triphones. In one set
of tests the triphones were of fixed duration, in a second they were of varying
duration, but the researchers do not indicate if there were multiple instances of
the same triphone with different durations. The 6 input nodes represented the
phonemes /b, d, g, a, e, i/. The appropriate vowel was activated for the duration
of the utterance, while the first and then the second consonant were turned
on in a pair of square-wave pulses. This results in there being no information
about the final consonant until halfway through the vowel, which is too late. The
output data was composed of artificial formant tracks created using the duration-
dependent exponential model of CVC formants due to Broad and Clermont [11].
The researchers also trained a set of feed-forward ANNS, with the square pulses
of the consonant inputs replaced with half-gaussian pulses, in order to impart
temporal information and a steady and smooth change in output.

The results give root mean square errors for the Elman net of 47 Hz for
Fl, 119 Hz for F2 and 47 Hz for F3. These are then expressed as percentages
of the formant frequency value (as far as I can tell, it is not stated), which is
misleading. A percentage in terms of the possible range of values would give a

better indication of the ANN performance in learning the trajectory. Bark scaled
figures would give a better comparison between the formants.

The results for previously unseen test triphones give similar results to the
training triphones. This seems surprising given the apparent small size of the
training set, which I would have expected to have led to overtraining on the
training set and a resultant poor generalisation to the test set. However, this
may be explained by examining the nature of the model formants used.

All CV and VC transitions were included in the training data. In the model (as
derived by Broad and Clermont [11], see Section 5.2.4), the tracks are composed
of two consonantal contours, one determined by the initial consonant, the other
by the final consonant, added to the vowel target. The contours are exponential
curves, and as expected in a model of CVC triphones, the influence of the initial
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consonant falls off rapidly into the second half of the vowel, and similarly the
final consonant has little influence in the first half. Therefore, the test data was

almost a reprise of the training data, with the triphone halves joined up in a

different order. The final consonant cannot influence the first half of the formant

tracks, because the ANN does not know what it will be. The initial consonant
can affect the second half of the formant tracks as it helps determine the state of
the hidden units (copied back to the input layer) at the centre of the triphone.

As no listening tests were carried out, it is difficult to gauge the performance
of the ANNs, and as I have shown above, there was no real test of generalisation.
The question of performance depends on the accuracy of the artificial formant
tracks, and on the adequacy of the effective division of the vowel into two almost
independent halves.

Ishikawa and Nakajima [46] used ANNs to interpolate between the spectro¬
grams of concatenated CV syllables. CV syllables are an effective unit for concate-
native synthesis in Japanese, but some interpolation is necessary. They trained
a feed-forward ANN to produce a phonetic feature vector when presented with
a frame of a spectrogram. At transitions between phonemes, the classification
ANN produced feature vectors that lay between those for the two phonemes.

They then trained a set of ANNs (each trained only on a sub-set of consonants)
to produce frames of spectrograms, taking as input the phonetic classification
output from the classification ANN. For those spectrogram frames from the
centre of a phoneme the phonetic feature vector produced by the classifier would
be similar to the prototypical vector for that phoneme. For frames taken from
the transition between phonemes, the feature vectors produced by the classifier
would lie somewhere between the prototypical vectors of the two phonemes.

In synthesis the researchers used the prototypical phonetic feature vectors

assigned to each phoneme. To produce transitions between phonemes, the pro¬

duction networks were given inputs linearly interpolating between the phonemes,
and they produced output that smoothly interpolated between phonemes, but not
necessarily in a linear fashion. The researchers say that this ingenious scheme
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gave good coarticulation and natural sounding speech, although no formal eval¬
uation is included in the paper.

Scordilis and Gowdy [90, 91] used feed-forward ANNs to generate an Fo value
for a phoneme given the phoneme, 10 previous phonemes and one future phoneme
("macrophonemic" network) , and a Jordan style recurrent ANN to generate the
F0 values frame by frame within the phonemes ("microphonemic" network). The
only results given are for training on 20 isolated words. The ANNs get within a

few Hz of the contour, suggesting that the small training set and large number of
hidden units (20 or 30) has led to overtraining. There are no results for previously
unseen test words, and I would expect generalisation to be poor.

Traber [99] makes a far more solid attempt at using ANNs to produce Fo
contours over whole sentences. An Elman style net with activations from the
hidden layer (second of two hidden layers in this case) was fed back to the input.
The researchers felt that the feedback was necessary to allow declination to be
learnt. The input represented a wide window over accent, boundary and phrase
information and a narrower window over segmental syllable information. The
output was eight values corresponding to four straight lines which represented
the Fo contour within the syllable at the centre of the input window.

The researchers discovered that an ANN trained on a small number of contours

learnt them by heart but generalised poorly. Networks with large hidden layers
and large windows also generalised poorly even with more training data. They
present results for a network which performed well on test data. The larger input
window covered 13 syllables in all, and the smaller covered 3 syllables. The total
number of nodes was 95, with 2180 weights. There were 186 training sentences,
with a total of 6584 syllables. This ANN had a root-mean-squared error of 7.02
Hz on the training data and 9.38 Hz on test data. The researchers actually prefer
to use a smaller ANN in their TTS system as it copes better with previously
unseen types of pattern not contained in the training corpus, despite doing less
well on the test data. They have not carried out formal listening tests but are
aware of the need for them and the weaknesses of evaluating by using distance
metrics between the target and produced trajectories.
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4.3 Speech Recognition

Automatic speech recognition (ASR) consists of a number of stages. The speech
signal (usually after some processing to produce a spectrogram or LPC coeffi¬
cients, for example) is mapped to a phonetic level of description. This is then
transformed to a phonemic level description, taking into account effects such as

coarticulation, and then the words matching the phoneme string must be found.
Generally, the descriptions will be probabilistic, expressing the probability of a
slice of speech corresponding to a particular phone or word. ANNs have been used
both as modules in complete ASR systems, and in a more cognitive framework
as potential models of human performance at specific levels.

McClelland and Elman [68] constructed two connectionist models of speech
perception. Both used feedforward ANNs with inhibitory and excitatory connec¬

tions within layers. TRACE 1 mapped from a set of input features extracted
from real speech, covering 100 time slices, to a phonemic level. The features used
are not specified. TRACE 11 mapped from artificial parameters to phonemes
and on to words. The authors claimed to observe various effects matching those
in real speech perception, including the ability to cope with coarticulation. In
general, they are more interested in providing a model of human performance
than in creating a system useful for ASR, and they do not provide tables of the
performance of the systems on the training data or on test data.

Elman and Zipser [23] explored the ability of feed-forward ANNs to learn
the mapping from spectrograms (divided into frequency bins) to phonemes. In
the same paper they showed that if an ANN was taught to reproduce an input
waveform spectrum on its output, through a hidden layer with fewer nodes than
the input and output (an encoder net), then a feature representation was learnt,
with many features corresponding to those commonly identified by phoneticians.
There was also a segmenting effect.

Other researchers have applied ANNs within an ASR framework. Renals,
Rohwer et al explored the use of ANNs to label spectrograms with words [83] and
with phonetic labels [81], using a variety of networks such as feed-forward ANNs
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trained using back-propagation and ANNs based on radial basis functions. They
have also looked at the effects of different input representations, such as LPC
cepstral coefficients, quantised FFT spectrograms and an auditory model [82].
Franzini et al [32, 33] integrated a feed-forward ANN which assigned phone labels
to frames of LPC cepstral coefficients with a Hidden Markov Model based Viterbi
recogniser, achieving a 98.5% test word accuracy on a digit recognition task. More
recently, ANNs have become common tools in ASR research, with many papers

published, and ASR forms the major application of ANNs in language related
research.

4.4 Parsing, Syntax, Morphology and Compre¬
hension

ANNs have been applied in a number of different ways at the syntactic and
semantic levels of language — as parsers, to form past tenses, to disambiguate
referents and to create conceptual representations of sentences.

4.4.1 Learning Grammars

A number of researchers have explored the ability of various types of ANNs
to learn grammars. Generally the grammars used are regular expressions and
context-free grammars (of relevance to natural language). Formal grammars are

characterised by the sets of symbols used, a set of production rules and start

symbol. For each grammar there exists a language (the set of strings generated
by the grammar) and an automaton (a machine which recognizes the strings
belonging to the grammar). For more information about types of grammars and
automata, see [42].

A number of researchers have used simplified recurrent networks of the types

suggested by Jordan [50] and by Elman [22]. Both are feed-forward networks with
either the output layer (Jordan) or the hidden-unit layer (Elman) connected back
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to an extra set of input units. The activation of the input units depends on a

a weighted sum of the previous output activations, thereby providing a memory

beyond the previous iteration.

Elman [22] showed that his recurrent networks could learn to predict the
next letter in a sequence of letters, formed into words. The result was that
the prediction error was high at the start of a word and decreased within the
word. If letters were coded by features, features such as consonant had low error

rates (the position of consonants being fairly predictable) which other features
such as high were less predictable. Elman also showed that when sequences

of words (represented by random vectors) were presented, ordered into simple
sentences such as monster eat mouse, then the ANN could learn to predict the
next word, though with low accuracy (the next word not being very predictable).
However, the internal representation (as found using hierarchical clustering on the
activation patterns of the hidden units) showed that the ANN had discovered the
grammatical categories that the words fell into, such as nouns, transitive verbs
and intransitive verbs. If a new word was added to the sentences fed a trained-up
network, the word would be quickly added to the appropriate category.

In the same paper, Elman demonstrates an ANN learning pronominal refer¬
ence. The inputs are simple sentences made up of words represented by random
vectors, corresponding to one of a number of templates with a pronoun present.
The output was a vector coding for the structural position of the referent (in¬
cluding outside the input sentence). The network was able to learn the task and
generalised fairly well (61% correct) to test sentences including new arrangements
of the structures. Allen and Riecken also demonstrated pronoun reference in their
experiments with ANNs answering questions about microworlds [5].

Allen used Elman type nets in experiments in which he showed ANNs capable
of both recognising and generating strings drawn from simple context-free gram¬

mars and regular expressions [2, 4]. Giles et al used similar nets to learn regular
grammars and then extracted the equivalent Deterministic Finite Automaton
(DFA) from the trained network [37]. Earlier they had used ANNs with second-
order (multiplicative) connections and an external, continuous valued stack to
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learn context-free grammars [97].

Servan-Schreiber et al [95] explored the conditions under which an Elman
style ANN can carry information about long-distance dependencies across inter¬
vening elements to distant elements when trained to predict the next element
in strings produced by a finite-state grammar. They showed that the embed-
dings (the intermediate steps) must have some dependency on the information
to be maintained, otherwise it was liable to be lost. However, the information
was maintained even if only subtle statistical properties of the embedded strings
depended on the early information, allowing the ANN to deal with the types of
dependencies found in natural language.

Kwasny took another approach in using an ANN as an alternative to rules in
a "Wait and See" Parser operating with a stack which stored structures [57]. The
aim was to create a deterministic parser that would learn its rules and handle
ill-formed inputs.

Another approach, completely ignoring the ability of ANNs to learn and to
operate in a subsymbolic fashion, is to create an algorithm which will convert a
grammar into an ANN. Fanty's algorithm [28] converts a context-free grammar
into a structure comprised of a large number of units, operating in parallel, that
represent terminals and nonterminals in the grammar. The final pattern of acti¬
vation represents the parse tree. Schnelle and Doust take a similar approach to
create network forms of an Earley chart-parser [88].

ANNs have been used for morphology, in particular to learn the past tenses
of English verbs. Rumelhart and McClelland [85] trained a feed-forward ANN
to produce the past tense of the input word. The input word was coded in
terms of its phonemes. This coding was converted by a hard-wired layer of
the ANN into what the authors named a Wickelfeature representation as it was
based on an idea originally suggested by Wickelgren [104]. Wickelfeatures form a

distributed representation based on phonemic features taken from three successive
phonemes (including word boundaries). The input Wickelfeature coding was

converted to the output Wickelfeature coding by the learning portion of the ANN,
a linear pattern associator (since there were no hidden layers) and decoded to a
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phonemic representation by another set of hard-wired weights. The input values
were present tenses of verbs and the output was trained to be the corresponding
past tense.

The training took part in three stages. Initially the 10 most frequent verbs
were presented for 10 training epochs, then the 410 medium frequency verbs
were added and another 190 training epochs run. Finally the 86 low frequency
verbs were added, but not trained over. The high frequency verbs were learned
accurately at first, with no difference between the regular and irregular verbs. The
addition of the medium frequency verbs led to an initial drop in the performance
on the high frequency irregular verbs but not on the high frequency regular verbs.
The irregular verbs were treated as if they were regular verbs. After more training
the accuracy increased on the irregular verbs increased again. It is claimed that
the pattern observed is similar to that found in children acquiring the same skill.
However, Pinker and Prince [76] have criticised on a number of grounds the notion
that this ANN represents a model of human language acquisition. Mozer [72] has
investigated the same learning problem using recurrent ANNs with the input
presented sequentially.

4.5 Language Users

Allen has explored the abilities of recurrent ANNs to answer questions about
microworlds [3, 5]. The ANNs used were modified versions of the Elman type
network. The microworlds consisted of objects with attributes. The inputs to the
ANNs consisted of a representation of a microworld and a coding representing a

question, such as What color is the car? The output represented the response,

such as blue. The ANNs also showed the ability to cope with pronouns. If the
network was asked Is the apple on the left? and then asked Is it red?, it would
answer correctly.

St. John and McClelland [96] taught recurrent ANNs to accept a sentence
as input and to produce a conceptual representation of the event the sentence
describes, with any unspecified slots filled on the basis of expectations learnt
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by the ANN. Miikulainen and Dyer [70] took this further by applying multiple
recurrent ANNs to the task of paraphrasing script-based stories. The input is a

representation of a story, presented sequentially. This is generally only part of
the full script about, for example, eating in a restaurant. A series of four ANNs
processes this to finally produce an output sequence corresponding to the full
script for the particular story that was input, with the slots for customer, for
example, filled in correctly. The intermediate representations include conceptual
representations as in the St. John and McClelland paper.
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Chapter 5

Formant Models

I am interested in investigating the ability of ANNs to map from phonemic de¬
scriptions of CVC triphones to the associated Fl, F2 and F3 vowel formants. For
this it is necessary to have some representation or model of the vowel formant
tracks. The representation extracted from the speech data is a series of frequency
values at successive time frames, a description consisting of anything up to 60
numbers per formant track, or 180 numbers per vowel, with the length depending
on the duration of the vowel and the frame-shift. This is not a useful represen¬

tation for use with a static ANN, although it would be usable with a recurrent
ANN evolving through time, such as a Jordan or Elman style ANN.

It is necessary to reduce the formants to a compact representation which cap¬

tures the phonetically relevant information, allowing the reproduction of recog¬
nisable and natural sounding vowels. The representation should also be learnable
by a ANN, and should be robust. That is, small errors in the representation of
a formant track should lead to only small changes in the vowel reproduced from
it. I am restricting the discussion to the formant frequencies only. This ignores
the formant bandwidths and intensities, which also form part of a full model of
vowel formants.

A model of a formant track comprises two parts. Firstly, a set of parameters
which in some way capture the important information underlying the segments
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involved. Secondly, some way of combining these values to produce a full formant
track. The model includes some assumptions about what is important about
vowel formants.

Vowel formants are affected by their context. In my experiments this context
is provided by adjacent consonants, and many other studies also use adjacent
phonemes only, although it is known that phonemes more distant from the vowel
can also have an effect. Broad and Fertig [12] showed that the effects of an adja¬
cent consonant extended across the whole vowel. The general effect of adjacent
consonants is to alter the initial and final positions of a formant track (some the¬
ories assign a locus to each consonant — a characteristic frequency from which
the formant emerges, or which the formant approaches) and to move the central
portion of the vowel formant away from the characteristic frequency found in
isolated instances of the vowel, in the direction of the consonantal loci, a phe¬
nomenon referred to as undershoot. The general effect in speech is a reduction
towards the central schwa vowel. The duration of the vowel, affected by speaking
rate and intonation, also affects the degree of reduction. Any adequate model
which produces vowel formants from phonemic or phonetic specifications must

produce formant tracks incorporating these phenomena.

5.1 Single Point Models

Much of the work on representing vowel formant tracks has been from the point
of view of classification of the vowel, not production of the vowel. These efforts
have often used a single value to represent each formant track. Typically the
representation of a formant track is either a) the frequency at the centre of the
vowel (that is, after half the vowel duration), b) the maximum or minimum fre¬
quency (extremum) for the formant (which may be at different times for different
formants in the same vowel), or c) the mean value of the formant track, averaged
over the duration of the vowel (or some subset of the vowel's duration), as illus¬
trated in Figure 5.1. Different representations may be used for different formants
within a single vowel. The mean value of the formant track is generally used only
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for Fl. Huang discusses these representations in [43].

Figure 5.1. Single point models of vowel formants. a) Centre frequencies, b)
Extrema. c) Mean value (Fl only).

These representations may be adequate for classification (or they may need
further information), but they are not adequate in themselves for producing vowel
formants where the entire track must be constructed. The points identified in
this manner may form part of a method for constructing a formant track.

5.2 Vowel Trajectory Models

For production of vowels it is necessary to produce full formant tracks spanning
the duration of the vowel. Usually, varying the first three formant tracks Fl,
F2 and F3 is seen as sufficient to produce natural sounding vowels, with any

higher formants being kept constant across all vowels. The synthesis methods
discussed below can be seen as consisting of a set of parameters and a method of
constructing a full formant track from those parameters. A full formant track is
taken to be a specification that allows the determination of formant frequencies
for each time frame used to drive a synthesiser.
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5.2.1 Step Function Models

These are the simplest and crudest form of production model. Each vowel and
consonant is assigned a set of parameters which are the frequencies for the formant
tracks within that phoneme. These match the consonantal formant loci and vowel
formant targets. Formant tracks are constructed from step functions which are

then smoothed. That is, a formant track is set to its associated value for the
duration of a segment (this may be modified in some variants of the model),
giving discontinuous changes at the boundaries of segments. These tracks are then
smoothed. An example of this kind of model is given in [63]. Figure 5.2 shows
the construction of a formant track using this model. The major disadvantage of
this model is that there is no mechanism to incorporate vowel target undershoot.

cvccvccvc

a) b) c)

Figure 5.2. A very simple step model of a single formant track, a) Parameters
for each segment, b) The step function set by the parameters, c) The smoothed
step model.

5.2.2 The Holmes, Mattingly and Shearme Model

The model of vowel formants used by Holmes et al [41] uses a larger set of
parameters and a more complex combination algorithm. "Phonetic elements"
(the elements making up the string of symbols which is transformed to synthesiser
parameters) have up to 25 associated parameters, of which 13 play a role in
determining vowel formant trajectories:
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• Rank. The relative rank of two adjacent elements determines which set of
parameters determine the trajectory of the transition between the elements.
Stop consonants rank high, vowels low and others between these extremes.

• Standard duration.

• Unstressed duration. Vowels only

• Fl, F2 and F3 frequencies.

• Fixed contribution for Fl, F2 and F3.

• Proportion of steady state added to fixed contribution for Fl, F2 and F3. A
proportion of the steady state frequency of the adjacent element is added to
the fixed contribution to determine the formant frequency at the boundary
between the elements.

• External transition durations for Fl, F2 and F3. The duration of the tran¬
sition in the adjacent element.

• Internal transition durations for Fl, F2 and F3. The duration of the tran¬
sition in the controlling element.

If two adjacent segments have equal ranking, then the first has priority. The
frequency at the segment boundary is calculated as the fixed contribution plus
the steady state frequency of the adjacent element multiplied by the given pro¬

portion. The transition is then linearly interpolated from the boundary to reach
the steady states at the limits of the transition durations. If a segment contains
two transitions whose summed durations do not fill the entire duration of the

segment, then the remaining duration is at the steady state frequency for the
segment. Otherwise, the transitions are terminated at the point at which they
meet. Figures 5.3 and 5.4 illustrate these processes.

The Klatt [52] and MITalk [1] systems and many other synthesis by rule sys¬

tems use similar models. In some cases some parameter values are calculated
using rules triggered by phonetic features instead of being obtained from a look¬
up table. In the MITalk system, Klatt uses a locus model in which the formant
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Figure 5.3. F2 parameter transitions for the sequence /S 00/. The ideal
transition, represented by the solid line, is approximated by the series of time
samples, represented by the dotted line. The vertical dashed line represents the
boundary between the two elements. (Based on [41], Fig. 3.)
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1720Hz-

oo

1480Hz

Figure 5.4. F2 parameter transitions for the sequence /S 00 L/ showing the
intersection of the transitions for /S 00/ and for /00 L/. the solid line represents
the transitions actually used; the dotted lines represent values calculated but
later discarded. The vertical dashed lines represent boundaries between adjacent
elements. ([41], Fig. 4.)
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transitions into the vowel are determined in part by consonantal loci. The York-
Talk system [17] uses Klatt's locus model, but the parameters are calculated using
rules mapping directly from a richly structured phonological representation.

5.2.3 The Broad and Fertig Model

Broad and Fertig [12] analysed the influences of the initial and final consonants on
the vowel formant tracks in CVC triphones containing the vowel /i/. They found
that, while the nonlinear interaction between the consonants was statistically
significant, its contribution to the formant tracks was low and it was feasible to
ignore it in constructing a model of the influence of the consonants on the formant
tracks. They proposed the model

fff(t) =m<">(() + + rj">((), ( = 1,2 11 (5.1)
(n)where is the expected value of the nth formant frequency at time t when

the initial consonant is C, and the final consonant is Cj, nd™>(*) is the mean over
all utterances of the nth formant at time t, a\n\t) is an additive initial consonant
influence on the nth formant determined by C; and is a final consonant
influence determined by Cj.

As the mean for a formant track at a particular instant, does not
seem very informative they recast the equation as

fff(t) = y(") + a[(n\t) + rfn\t), (5.2)

where is a constant for each n and can be interpreted as vowel target values.

From a speech database of 1728 CVC triphones consisting of three repetitions
of 24 x 24 CVC triphones (the 24 consonants included silence), the researchers
traced the vowel formant tracks and derived the values of the formant targets
and the consonantal influences (I am ignoring the detail of this derivation). The
final model consists of the vowel targets and curves for each initial and final
consonantal context. The vowel formant track for the consonantal context is
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derived by adding the formant target, the initial consonantal curve and the final
consonantal curve. This process is illustrated in Figure 5.5.

Each curve is in fact composed of values found at each of 11 time points
throughout the vowel. The vowels are normalised in time, so duration effects
are ignored. The model cannot incorporate changes in vowel formant trajectory
due to different rates of speech. A statistical analysis showed that the errors in
predicting instances of the formants were consistent with the natural variation in
formant tracks for the same triphones, suggesting that the model was a good fit
to the data.

5.2.4 The Broad and Clermont Models

Broad and Clermont [11] built on the earlier work by Broad and Fertig [12]
to produce a series of increasingly abstracted models of vowel formant tracks in
CVC' context (they used C' to indicate the final consonant). They used a smaller
set of consonants (/b,d,g/) with a larger set of ten vowels. The contexts used
were 30 VC and 30 CVd sequences, recorded three times each.

Model I: Additivity of CV and VC' Transitions

Model I was built on the assumption of the additivity of CV and VC transitions,
as used in the Broad and Fertig model. They restated the Broad and Fertig
model as

where F is the vowel formant track in context CVC', n is the discrete time in
frames, / and g are the initial and final consonant transition functions and T
is the vowel target for vowel V. They calculated the values of the elements of
equation 5.3 using the following (where a dot indicates averaging over a

subscript or argument) :

Fcvc(n) = fcv(n) + Ty + gvc{n), (5.3)

Ty = Fv..(0), (5.4)
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123456789 10 11

TIME POINT

a)

l l l l I I I I

23456789 10 11
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b)

1 23456789 10 11
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23456789 10 11
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c) d)

Figure 5.5. The Broad and Fertig vowel formant model, a) Curve for first
initial consonant, b) Curve for final consonant, c) W1' for vowel, d) Summation
of consonant curves and V^1).
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gvciji) = Fvc>.(n) - Tv,
fcv(n) = Fcvd.(n) - Tv - gvd(n).

(5.5)
(5.6)

averaging over instances where appropriate. In Equation 5.5 the vowel formant
targets are taken to be the mean values of the onset of the formant tracks in
the VC' utterances. This model is very similar to that of Broad and Fertig, but
applied to a number of vowels. The consonantal curves are still composed of a
sequence of values, one for each time slice, and the vowels are all normalised to
have the same number of time slices.

Model II: Per-Consonant Similarity

The next assumption incorporated was that initial consonant formant contours
had the same underlying shape over all the vowels, and similarly for final conso¬
nant formant contours. Model I had a separate contour for each consonant-vowel
combination. This new assumption can be expressed as

for the final consonant contours. Fvc. is the average VC' contour, V is the
consonant locus, g*Ci is the common contour shape for final consonant C' and k'
is a scale factor. By a complex process, the researchers derived the values of L',
g* and k! for each final consonant, and similarly for L, f* and k for each initial
consonant. The transition functions now become

Model III: Target-Locus Scaling

In Model III, the assumption is that scale factors kcv and k'vc, found for Model
II are proportional to the distance between the vowel formant targets Tv and the

Fvc'.ip) — ~b ^vc'9c'(n)i (5.7)

fcv(n) = Lc — Ty F kcvfc(n)i
Svc = L'q, — Tv + kyc'9c'(n)-

(5.8)
(5.9)
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consonant loci Lc and L'c,. This can be expressed as

kcv = l*c(,Tv — Lc),
k'vc = Vc'iTv — L'c,).

(5.10)
(5.11)

where [ic and [i'Ci are consonant dependent constants which the researchers de¬
rived from the data. The transition functions now become

Model IVa: Duration-Independent Exponentiality

The researchers say that the consonant contours look suggestively exponential,
although the example they give doesn't really convince me over other alternatives.
However, exponentials have the useful property of tending to an asymptote, which
is important to the model. They also assume that the vowel targets should match
the asymptotes of the exponential curves used as consonantal contours. The
derivation is described as "cumbersome" by the researchers. In the process they
derive new values for the formant targets Ty and the consonant loci L'c, as well
as the scale factors k'c, and b'Ci, and presumably for Lc, kc and be, although
these are not discussed. The transition functions now become

Model IVb: Duration-Dependent Exponentiality

The time scales used in the previous models were all normalised for vowel dura¬
tion, that is, all vowels were divided into the same number of time frames (11).
The researchers construct a model of type IVa to unnormalised formant tracks.

fcv(n) = (Tc - Lv)[ncfc(n) ~ 1]?
9vc = (Ty — L'ci)[9c>9ciin) ~~ !]•

(5.12)

(5.13)

fcv(n) = kc{Tc - Lv)exp(bcn),
gvc> = k'c,(Tv — L'c,)exp(b'c,n).

(5.14)
(5.15)
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They then suggest that formant tracks of differing lengths can be obtained by us¬

ing segments of the exponential curves truncated at durations matching the vowel
duration, measuring from the consonant end of the curve. This is illustrated in
Figure 5.6.

The models are all evaluated thoroughly as to how well they explain the
training data. They provide good fits to the data (taking into account the natural
variability of speech data), with the accuracy not decreasing too much as the
models become more abstracted. However, the researchers do not examine if the
models provide a good fit to vowels in CVC triphones not used to create the
models.

5.2.5 The Imaizumi and Kiritani Model

Imaizumi and Kiritani [45] propose a model of CVC formant transitions, where
the CVC triphone is embedded in a VCVCV utterance. They use delay functions
to represent the vowel-to-vowel, consonant-to-vowel and vowel-to-consonant in¬
fluences, combined in an additive fashion as for Broad and Clermont. They are

particularly interested in incorporating the ability to represent different speech
rates into their model. The trajectory of the nth formant in a vowel segment
Fn{t) is expressed as

Fn(t) = Unit) - Cnp(t) - Cnf(t) (5.16)

where Un(t) is the step response of a second order delay function (described
below) which represents the vowel-to-vowel effects and Cnp(t) and Cnf(t) are
first order delay functions which represent the effects of preceding and following
consonants. are taken as fixed vowel target frequencies of each vowel in the
sequence VjCpVjC/V3. The index i selects the vowel. The index j represents the
formants. For back vowels, the numbering of formants goes 1, 2, 3 from F1 to
F3, but for front vowels it goes 1, 3, 2 to account for continuity in formants.

The functions Un(t) are composed of the simpler second order delay functions
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0

0 d2 d3

Figure 5.6. Modeling CVC' contours on a real-time scale, (a) Transition func¬
tion fcv(t) is defined forward from t = 0. (b) Transition function gvc'(t') is
defined backwards from time t' — 0. We truncate / and g to durations D2
and D3. (c) Superposition of the f-g pairs from (a) and (b) with vowel target T.
(Based on [11], Fig. 10)
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Wj(t), expressed as

Wj(t) = Rltj + ai(t)(Riij - Ri-ij), (5.17)
= 1 — 1 + bj(t) exp(—bj(t))u(t — ti), (5.18)

bj(t) = (t-ti)/gj, (5.19)

t - U) = { 1 lirt>U (5.20)

where gj is a time constant representing transition speed.

These functions are combined to produce the vowel-to-vowel functions in such
a way as to account for coupling between resonance frequencies (for more expla¬
nation, see [45])

Ux = Wl, (5.21)
U2 = h^/w2W3, (5.22)
U3 = \/W2W3/h, (5.23)
q = (Wl + W*)/W2W3, (5.24)
h - q-\/q2- 4(1 - fc2)/(2(1 - k2)), A: = 0.2. (5.25)

The functions representing the effects of the adjacent consonants are defined
as follows.

Cnp,t(f) = cnPti exp( (t fp,i)/9p)i for <C t <C (5.26)
Cnj,i{t) = c„/)t exp(—(A/)t- - t)/^/), for tPii < t < tfii. (5.27)

where tpi is the initial time of vowel Vj, is the final time of Vj and and gj
are time constants representing the decay speed.

The researchers then proceeded to derive the necessary values from a set of
specially recorded speech and explored the effects of changes in speech rate on

the intelligibility of the recorded speech and of speech produced via the model
described above. They found that at a slow speaking rate vowel intelligibility was
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100% and consonant intelligibility was 83%. At a fast speaking rate (twice that
of the slow rate), vowel intelligibility was 83% and consonant intelligibility was

63%. For the slow rate, both vowel and consonants synthesised using the model
were more intelligible than those synthesised using the formants extracted from
the training data. At the fast rate, the vowels constructed using the model were
more intelligible than those constructed using the original formants.

5.3 ANNs and Formant Models

The models of vowels used in my experiments differ from those described above
in that those above are intended to produce vowel formant tracks for the given
contexts with no other mechanism adjusting parameters for them. That is, the
models above embody a full method of production from strings of phonetic or

phonemic segments to full formant tracks. The parameters, once found, are kept
constant.

In my work an ANN creates the parameters controlling the model, standing
between it and the input string. The ANN plus the formant model is equivalent
to the full models described above, and any comparisons should be made on that
basis.

The models used in my work are simple compact descriptions of the formant
tracks. In some ways they are more like the single point descriptions used for
classification, discussed in Section 5.1, although they do allow the recreation of
formant tracks. However, the more complex models used in production may sug¬

gest useful representations for my work. Conversely, ANNs may have a possible
role as parts of modified versions of the above models. For instance, an ANN
could adjust the scale factors of the fixed shapes of consonantal effect contours
in the Broad and Clermont models, possibly taking into account wider context
than the adjacent vowels.
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Chapter 6

Experimental Methods

6.1 Aims of the Experiments

The aim of my experiments is to select a good form of model for mapping from
a broad phonetic description of CVC triphones to vowel formant tracks. An
ANN is to be used for the mapping, but choices must be made between different
possible input and output representations, training methods, ANN architectures
and ANN training algorithms. These choices may be independent or may interact.
The questions to be answered are listed in Chapter 1. This chapter concerns itself
with explaining the representations, training algorithms and methodology. The
questions themselves are answered in Chapter 9.

6.2 Representations

In order to train the neural networks it is necessary to represent the input data
(phonemes and durations) and the output data (vowel formants) in some fashion
which is appropriate for the network. The input data must be coded as a vector
of real numbers and the output data must be coded as a vector of real numbers
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in the range [0, 1] l.

The form of the representations will have a bearing on how easily (in terms
of number of hidden nodes required and number of learning iterations) and how
well (in terms of accuracy on both the training and test sets) the network learns
the required mapping. A good representation should encode useful information
about the domain in a way which aids the learning process. Similar items of
data should have similar representations, and distinguishing information should
be easily computed. However, it is one of the strengths of neural networks that
they can cope with less than optimal representations, which is why they are often
used in situations where the underlying process is poorly understood.

The expectation is that input representations which make explicit the pho¬
netic information that determines the shape of the formants will give better per¬
formance than other representations. Similarly, an output representation which
both represents what is important about the shape of the vowel formants, and is
easy to learn should result in good performance.

It should be noted that performance should be measured by how intelligible
the resultant speech is, not by how close the produced output values are to the
target values, although the two should be related. However, the ANN is trained
to produce output values as close as possible to the given target values. I have
attempted to find a function that predicts performance on a perceptual test from
the root-mean-squared error between original and ANN produced vowel formant
tracks (see Chapter 7).

Hn fact, due to the difficulty in pushing the values of the network output to 0 or 1 (a very
large magnitude of input activations into the output nodes being required), outputs are usually
coded into the range [0.1, 0.9], as I have done.
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6.3 Question 1: Can ANNs Learn The Map-

ping?

The first question (see Chapter 1) was "Are feed-forward ANNs capable of learn¬
ing to map from descriptions of CVC triphones to descriptions of the Fl, F2
and F3 formant tracks of the vowel?". This question underlies all of the other
questions. If an ANN using any of the combinations of input and output represen¬
tations, training algorithms and methodologies discussed in this chapter produces
reasonably intelligible vowels, then the answer to this question is yes.

6.4 Question 2: Input Representations

The input divides into two parts — the phonemic data and the duration data.
The phonemic data or representation of the input triphone is comprised of entities
which take on a limited number of values, while the duration data is intrinsically
real-valued.

6.4.1 Representing the Input Phonemes

The input triphone consists of an initial stop consonant, a vowel and a final stop
consonant. The input vectors are constructed by concatenating the representa¬
tions for the three phonemes. The two consonants use the same coding scheme,
the vowel a separate coding scheme. The representations I have used give each
input node either a binary value (0 or 1) or a value taken from a small range of
values. I have therefore kept each set of node values between 0 and 1, although
this is not necessary (unlike the case of the output values).

I have called the three kinds of representations used Traditional, Continuous
and Symbolic (see below). The first two are feature representations; the first codes
the consonants using binary values only, the second codes place of articulation
using one node taking a range of values; and the third is a simple one-of-n coding
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that does not incorporate any linguistic knowledge.

We would expect the Traditional and Continuous coding schemes to result in
better performance then the Symbolic scheme, as they are based on our knowledge
of phonetic processes, and so, in theory, require less processing on the part of the
ANN than the less rich Symbolic scheme. The Symbolic scheme is as simple as it
can be made.

6.4.2 The Traditional Input Representation

The Traditional input representation is a representation based on that of Lade-
foged [58]. Place of articulation of the consonants has been coded using a node
for each position, ie. a node each for labial, alveolar, and velar features. Since
I have only used stop consonants, the only other necessary feature is voicing, a

binary feature. (See Table 6.1).

The backness and height features of the vowels have been coded using one

node each, with them having a range of possible values. Roundness was a binary
feature. (See Table 6.2).

The multi-valued features contain a notion of ordering and a progression along
a continuous dimension that may be useful to the ANN in trying to produce the
output representation, especially if the continuous progression along the set of
feature values is matched by a progression along a set of matching "features" of
the output formants.

6.4.3 The Continuous Input Representation

The Continuous input representation coded features as positions on a continuum
wherever possible. It used the same vowel representation as the Traditional rep¬
resentation (see Table 6.2), and represented the consonants using the two features
place and voicing (see Table 6.3).
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phoneme features
labial alveolar velar voicing

P 1.0 0.0 0.0 0.0
t 0.0 1.0 0.0 0.0

k 0.0 0.0 1.0 0.0
b 1.0 0.0 0.0 1.0
d 0.0 1.0 0.0 1.0

g 0.0 0.0 1.0 1.0

Table 6.1. The coding of consonants in the Traditional input representation.

phoneme features
back height round

I 0.0 0.67 0.0
i 0.0 1.00 0.0
e 0.0 0.33 0.0
a 0.0 0.00 0.0
a 1.0 0.00 0.0
x> 1.0 0.00 1.0
0 1.0 0.33 1.0
u 1.0 0.67 1.0
u 1.0 1.00 1.0

3 0.5 0.50 0.0
a 0.5 0.50 0.0
A 0.5 0.33 0.0

Table 6.2. The coding of vowels in the Traditional and Continuous input rep¬
resentations.
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phoneme features
place voicing

P O o o o
t obi o o
k H-1 o p o
b 0.0 1.0
d 0.5 1.0

g 1.0 1.0

Table 6.3. The coding of consonants in the Continuous input representation.

6.4.4 The Symbolic Input Representation

The Symbolic input representation represented the phonemes using a one-of-n
coding, ie. it used as many nodes as there were possible phonemes and represented
each by turning on one node and turning the rest off. This obviously contains no

useful phonetic knowledge of any kind. See Tables 6.4 and 6.5.

phoneme features
P t k b d g

P 1.0 0.0 0.0 0.0 0.0 0.0
t 0.0 1.0 0.0 0.0 0.0 0.0
k 0.0 0.0 1.0 0.0 0.0 0.0
b 0.0 0.0 0.0 1.0 0.0 0.0
d 0.0 0.0 0.0 0.0 1.0 0.0

g 0.0 0.0 0.0 0.0 0.0 1.0

Table 6.4. The coding of consonants in the Symbolic input representation.

6.4.5 Representing the Duration Information

Some information on the duration of the phonemes making up the triphone was

required in the input representation. A triphone was represented as the total
duration, the relative start time of the vowel (taking the start of the triphone as

time 0) and the relative end time of the vowel (see Figure 6.1).

66



Figure 6.1. The durational information about each triphone was coded by the
triple (length, vstart, vend), with each number transformed as in Equation 6.1
([0, 1] mapped to [0.1, 0.9]).
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phoneme features
I i e a a V> 0 u u 3 3 A

I 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
t> 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
D 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 6.5. The coding of vowels in the Symbolic input representation.

All the triphones were of duration of less than one second, so there was no

need to squash the durations onto the range [0, 1]. However, in some previous ex¬

periments I had used time information in the outputs, not the inputs, and for this
reason I had the times squashed onto the range [0.1, 0.9] by the transformation
in Equation 6.1.

F(time) = (0.9 — 0.1)time -f 0.1 (6-1)

This transformation was not necessary when using the durational information
as an input, but since I already had the data coded in this way, and it should
create no extra work for the ANN, I used it for these experiments.

6.4.6 Representing the Stress Information

Each phoneme representation (see section 6.4.1) had added to it a node repre¬

senting the stress placed on that phoneme. Stress had been assigned to phonemes
by the transcribers of the speech data used for these experiments, and this was

used with no modifications. The criteria are discussed in [61]. The nodes took
values as follows:
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Primary Stress The value 1.0

Secondary Stress The value 0.5

No Stress The value 0.0

6.4.7 The Complete Input Representation

The complete input representation consisted of a vector of numbers in the range

[0, 1] composed of the three phoneme representations, plus their stress represen¬

tations, and the duration representation (see Figure 6.2).
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Figure 6.2. The complete input representation for the triphone /k'ad/.

6.5 Questions 3 and 4: Output Representations

The output of the ANNs was some representation of the first three formants of the
vowel. Three main types of representation were used: a) the frequencies at the
start, centre and end of the vowel, b) a set of polynomial coefficients representing
a curve fitted to the vowel formants, and c) a set of Fourier coefficients fitted
to the vowel formants. The first type (Tri representation) was further divided
into representations where the second and third formant frequencies were either
directly represented or coded as ratios or differences from the first formant.

All formant frequencies were Bark scaled before any representation was ex¬

tracted. Bark scaling [107] maps the measured frequencies to a scale which more
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accurately reflects human perception. The scaling is composed of two linear por¬
tions between 0 and 500Hz and between 500Hz and 1220Hz and logarithmic above
this frequency. The definition (taken from [94]) are shown in Equation 6.2 and
plotted in Figure 6.3. This has the desirable property of reducing the penalty for
a given error in the formant tracks at higher frequencies, compared with those
at lower frequencies. One Bark corresponds to the critical bandwidth. Two for-
mants that are within the critical bandwidth of each other should, in theory, be
perceived identically.

B(f) =
0.01/ 0 < / < 500
0.007/ + 1.5 500 </ < 1220
6 In / — 32.6 1220 </

(6.2)

6.5.1 The Tri Output Representations

This set of representations mapped each vowel formant track to a triple of fre¬
quency values - those at the beginning, centre and end of the track.

Correcting the Formant Tracks

The formant tracker used displayed some inaccuracies at the boundaries of the
vowel segment. This was due to sharp changes in formant frequency being
smoothed by the tracker algorithm, and hence producing a steep slope at the
boundary instead of a discontinuity. Where this slope occurred it could be de¬
tected by its gradient which was greater than that normally found in formant
tracks. Where the gradient was above a set threshold (50Hz difference in a 5ms
time) the data extraction code moved inwards along the track until it found a
flatter portion, or it moved beyond a set distance (10ms) from the segment bound¬
ary. The value at this point was taken as the true boundary value. Inspection of
problem cases showed that this method produced good results.
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Coding the First Formant (Fl) values in the Tri Representations

All of the Tri representations coded the Fl values in the same manner. Each
triple of Fl values (ie, at the start, centre and end of the vowel segment) was

mapped onto the range [0.1, 0.9] by the transformation in Equation 6.3.

r \ (freQ ' lowfreq)(0.9 — 0.1) „

F(freq) = U \ + 0.1 6.3
highjreq — lowjreq

Here F(freq) is the value to be used in training the neural network, cor¬

responding to the Fl Bark frequency freq, lowfreq is the bottom limit of the
frequency range (set to 2.0 Bark, about 200IIz) and highfreq is the top limit of
the frequency range (set to 9.9 Bark, about 1200Hz).

The frequency range limits were chosen to ensure that the output numbers
filled as much as possible the range [0.1, 0.9], to use the full range of output
values available to the neural network and hence use its full power. In theory the
network nodes have an output range (0.0, 1.0) but this requires inputs going to
(+oo, —oo), causing problems if 0.0 or 1.0 are specified as target values.

The Tri-ratio Output Representation

In this sub-type of the Tri representation the F2 and F3 values were mapped
onto the range [0.1, 0.9] by a transformation that expressed them as a ratio to
the Fl value (Equation 6.4).

F(frel) = (6-4)

Here F(freq) is the value to be used in training the neural network, Flfreq is the
Fl frequency value, and freq is the F2 or F3 frequency value. This transformation
produces values in the required range, so no further processing is necessary.

The resultant output values consisted of vectors composed of nine real-valued
numbers — the Fl, F2 and F3 values for the start, centre and end times of the
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vowel segment, after the above transforms.

The Tri-difference Output Representation

In this representation, the second and third formants are represented as differ¬
ences from the first formant, which are then scaled onto the interval [0.1, 0.9]
(Equation 6.5).

= ((/re?-ry^)-^-//)(0.9-0.1) +^higndi j j — lowdi j j

Here lowdiff and highdiff are the highest and lowest values for the difference
between the first formant and the second or third formant, for each position
(start, centre and end). This ensures that the resultant values cover as much of
the available range as possible. Table 6.6 shows the values used to code F1 (using
Equation 6.3), F2 and F3 (using Equation 6.5).

Fl F2 - Fl i-H[JH1CO

high low high low high low

start 7.52 3.18 10.37 2.14 11.65 6.77
centre 11.56 2.85 10.65 2.00 12.00 3.15

end 10.35 2.54 11.07 6.33 12.12 4.30

Table 6.6. The highest and lowest values of F1 and of the differences (F2 — Fl)
and (F3 — Fl), in Bark.

The Tri-plain Output Representation

In this representation, the F2 and F3 values are not represented relative to the
Fl values, but are merely scaled onto the interval [0.1, 0.9], exactly as for Fl. For
the second formant, the upper and lower frequency limits are 15.02 Bark and 5.7
Bark, and for the third formant the values are 16.70 Bark and 13.58 Bark. The
same limits were used for the initial, central and final points, unlike the method
used for the Tri-diff output representation.
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6.5.2 The Polynomial Output Representations

An alternative to the Tri input representation was to use a set of polynomial
coefficients to represent the formant tracks. Each of the first three vowel formant
tracks was represented by the coefficients of a second order polynomial (hence,
three values per formant) fitted to the vowel formant tracks. In some trials these
tracks were Bark-scaled before the polynomials were found.

The time axis of each track was mapped onto the interval [-1, 1]. This achieved
the following:

1. Time 0 was at the centre of each track. This has the effect of making the
zeroth coefficient (constant) the frequency of the centre of the track. The
order one coefficient (x) measures the slope of the track left to right and the
order two coefficient (x2) measures the quadratic curve of the track, with
the maximum or minimum point (after subtracting the slope measured by
the order one coefficient) at the centre of the track. This seems to be a

reasonable way of describing the characteristics of a formant track.

2. All tracks were mapped to the same time interval. Hence tracks of similar
shape, but over different durations, would have a similar polynomial coef¬
ficient representation. This may simplify the task of the ANNs learning to

produce vowel formant tracks using this representation.

The coefficients were found by general least squares, using the singular value
decomposition method [77]. This method ensures that there are none of the
problems caused by small or zero pivot values in the standard methods. These
can result in very large values for coefficients which cancel each other's effects
out in fitting the curve but which would be better replaced by small or zero val¬
ues. These large values would result in a loss of the continuity of representation
required for the neural network to produce good generalisation. However, ex¬

perimentation showed that the standard methods would have sufficed, producing
the same coefficients as the singular value decomposition method. This is to be
expected in this case with simple curves and low order polynomials.
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The coefficients obtained had to be scaled to the range [0.1, 0.9] to be used
in the target output representation of the ANNs. The maximum and minimum
values for each of the nine coefficients (three formant tracks each represented by
three values) were found and mapped to the extremes of the range, with the other
values linearly mapped between them, in a similar way to the Tri representation
(See Equation 6.3). This still allows the production of coefficient values outside
this range with previously unseen triphones, as the ANN can produce output
values outside [0.1, 0.9], given large enough activations. This is unlikely to happen
except in extreme cases, which is a desirable trait.

I experimented with various orders of polynomials. I evaluated the represen¬

tations by producing the coefficients for all the formant tracks I had available, re¬
producing tracks from the coefficients and then measuring the root-mean-squared
error between the original and new tracks. Orders of less than two produced poor

tracks. Those of order greater than two added little extra accuracy. As discussed
above, polynomials of order two seem to be a good representation of vowel for¬
mant tracks.

6.5.3 The Fourier Coefficient Output Representations

The final type of output representation used was the coefficients of the discrete
Fourier transform of the first three vowel formant tracks. This transforms the

curve into the frequency domain — representing the curve as a sum of sinusoidal
components.

The sinusoid associated with a given coefficient is a function of the interval
between the samples in the time domain. In the time domain, the samples are

real-valued. In the frequency domain, the discrete Fourier coefficients (samples)
are complex-valued, including amplitude and phase information. The zeroth
coefficient has a zero complex part. This coefficient represents the steady-state
part of the curve. That is, it is the average of the points making up the curve
— the baseline from which the sinusoidal components diverge. I used the realft
function given in [77] to calculate the Fourier coefficients needed.
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There were three different representations used :

1. The original vowel formant track is described by 4 discrete Fourier coef¬
ficients. This gives 7 real values which describe each vowel formant track
(the zeroth coefficient has no imaginary part).

2. The original vowel formant track is Bark scaled before being described by
4 discrete Fourier coefficients. This gives 7 real values which describe each
vowel formant track.

3. The original vowel formant track is Bark scaled before being described by
2 discrete Fourier coefficients. This gives 3 real values which describe each
vowel formant track.

The resulting values were then scaled to be in the range [0.1, 0.9] (see Sec¬
tion 6.5.2 for explanation).

6.5.4 Question 3: Evaluating the Output Representations

It is desirable to compare the limitations of each output representation. That is, if
the representation was produced perfectly, how good would the produced speech
be? This can be tested by producing speech from the target representations based
on the formant tracks extracted from the original speech data. It is inevitable
that some information will have been lost. I wish to know whether this affects the

quality of the speech produced. If a representation produces poor speech, then
we cannot expect a neural network to magically produce good speech using that
representation. However, if the neural networks fail to produce good speech using
a representation that is capable of it, then we know there that for some reason

the representation is unsuitable for training neural networks, and can explore
further.
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6.6 Types of Training Regime

A number of combinations of input and output representation, network architec¬
ture (two or three layer), training algorithm and training methodology (cross-
validation or training to completion) were chosen to allow the comparisons dis¬
cussed in Section 6.1 to be made. For each combination a number of ANNs were

trained. For those combinations using three-layer ANNs, the number of nodes in
the hidden layer was varied, with the numbers 1, 2, 4, 6, 8, 10, 12, 14, 16, 18 and
20 being used. For each size of hidden layer, five ANNs were trained, each with
different initial states, giving a total of 55 ANNs for each combination. For the
combinations using two-layer ANNs, there were no possible variations in network
size, as the number of input and output nodes are fixed by the representations
used. A total of ten ANNs with different initial states were trained for each of

these combinations.

6.6.1 Question 5: Training Methods

Conjugate Gradient Training

Most of the ANNS were trained using a conjugate gradient method. This opti¬
misation technique makes use of more information about the error surface than
the back-propagation method. It proceeds by a series of line-searches — looking
for the minimum on a particular line on the error surface. The error surface is
composed of the error values for each possible combination of parameters (the
weights, for ANNs). Details of algorithms for conjugate gradient searches are

given in [77]. Researchers have found that conjugate gradient methods usually
increase the speed of training ANNs dramatically [54].

In my training trials using conjugate gradient methods, a pair of ANN sim¬
ulation programs written by Richard Rohwer were used. The program bpSstrict
was used to train three layer ANNs, both with and without cross-validation. The
more general program bp was used to train two-layer ANNs, but did not imple¬
ment cross-validation. The training was set to cease after 300 line searches or
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700 gradient evaluations, or when the error converged (failed to improve).

Back-Propagation

A small number of ANNs were trained using the back-propagation algorithm.
Back-propagation is an algorithm in which errors on the output nodes of an
ANN are propagated backwards through the network and are used in calculating
changes to the weights. It uses only the local error gradient in choosing how to
update the weights and hence is a simple steepest-descent optimisation algorithm.
The amount of change at each update is controlled by a parameter called the
learning rate.

Back-propagation is usually used with a momentum term which adds some

of the previous update to the current update. This can speed up convergence to
a minimum in areas where the error gradient is small and fairly constant (the
error surface is "flat"), but it can cause overshoot of an actual minimum and
so extend training times. While optimisation methods are usually applied after
evaluating the error for all the training data (called batch updates in the ANN
field), back-propagation is often used after each presentation of a training pattern
(called on-line updates in the ANN field). This does not use the overall error
rate, just error rates on single patterns and may not converge in some cases, but
in general results in a speed-up in training. Momentum helps avoid problems
due to patterns giving contradictory information about the error. Details of the
back-propagation algorithm, and a derivation, can be found in [84]. After some
experimentation, I used a learning rate of 0.005 and a momentum term of 0.5 in
my training trials, with on-line updates. Training ceased either at convergence
or after 1000 iterations (determined by experimentation).
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6.6.2 Question 6: Cross-Validation Training and Training
to Completion

Most ofmy ANN training trials used cross-validation (as described in Section 3.1.4)
As well as the training set of triphones, the error for a cross-validation triphone
set was found on each iteration of the training procedure. The weight matrix
corresponding to the minimum cross-validation error was stored. The training
proceeded until the stopping criterion was reached. The ANN weight matrix
corresponding to the minimum cross-validation error was taken as the output of
the training process. This is intended to prevent overtraining and hence increase
the generalisation of the ANN to previously unseen test data, at the expense of
an increase in the training set error. However, due to the paucity of the data
available, the cross-validation set was much smaller than it ideally should have
been.

A smaller number of training trials took the state of the ANN weight ma¬

trix when training ceased as the output of the training process. I refer to this
as "training to completion", although strictly speaking, both methodologies are

trained to completion.

6.6.3 Question 7: Differences Between Two and Three
Layer ANNs

Three layer feed-forward ANNs (ie. those with a single hidden layer) are signif¬
icantly more powerful than those with no hidden layer. Three layer ANNs can

approximate, to any required degree of accuracy, any continuous function uni¬
formly [19, 34] whereas two layer ANNs can only form linear combinations of the
activation function used. The mapping from a representation of CVC triphones
to a representation of vowel formant tracks may be too complex for a two layer
ANN to learn (this was my expectation), but might be learnt by a three layer
ANN.

79



6.6.4 Question 8: Hidden Layer Size

The number of hidden nodes in an multi-layer ANN is seen as a measure of the
power of the ANN. That is, the more hidden nodes an ANN has, the more ac¬

curately it can learn a given training set. Too few hidden nodes will result in an

ANN unable to learn the training set to any degree of accuracy and poor per¬

formance on previously unseen inputs (poor generalisation). Too many hidden
nodes will allow the ANN to learn the training data to a high degree of accuracy,
including the noise present in the data. In effect, instead of finding some un¬

derlying relationship between the input and output vectors, the ANN will have
learnt each single relationship. This results in poor generalisation to previously
unseen input vectors. So, to perform optimally on new test data an ANN should
have just enough hidden nodes and no more.

It was with this idea in mind that I trained ANNs with varying numbers of
hidden nodes on each pairing of input and output representations of the training
data. The number of hidden nodes producing the best performance on the test
data can be taken as a measure of how difficult the mapping from the input to
the output spaces is for the particular representations used. The error should in¬
crease for ANNs using fewer hidden nodes. For ANNs using more hidden nodes,
training to completion2, might be expected to result in poorer error rates in the
test data. However, for many of the ANNs I used the cross-validation methodol¬
ogy which should, in theory, prevent overtraining on the training data and poor

generalisation. So, we might expect the pattern of errors for the best ANNs with
each number of hidden nodes used to be either a V shape or to be decreasing and
then flat.

2That is, until the error on the training set ceases to decrease or the output is within some

specified distance of the target output.

80



6.7 The Speech Data Used in Training, Cross-
validation and Testing

6.7.1 Source of the Speech Data

The training, testing and cross-validation data was extracted from a CSTR speech
database produced for ATR [61]. The speech is single-speaker (mgsw), with 5000
single word utterances recorded. The speech files have been hand-labelled at the
word, broad phonetic and fine phonetic levels. The speech data was recorded at
20000 Hz in a sound insulated room.

6.7.2 Processing of the Speech Data

Extracting Triphones

All Consonant-Vowel-Consonant (CVC) triphones present in the speech data base
were extracted. The speech data contained instances of the consonants /p, t, k,
b, d, g, m, n, r), 0, 5, s, z, J1, 3, tf, (fe, h, j, w, r, 1, m, x, f, v, w/ and the vowels /i,
i, e, a, a, t>, o, 13, u, 3, o, a, al, aU, eo, el, la, ol, aO, 13d/.

Extracting Vowel Formant Tracks

For each triphone, a generalised centroid formant tracker [18] was run on the
speech data to extract three formant tracks. The following summary data was

recorded :

• The duration of the triphone.

• The duration of the vowel.

• The start time of the vowel in the triphone.
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• The phonemes and stresses. No other label information was preserved.
Where a phoneme was segmented internally (eg. into stop and burst), these
segments were collapsed together.

• The frequency values of the 1st, 2nd and 3rd formant tracks at the following
times :

— The start of the vowel segment.
— The centre of the vowel segment.
— The end of the vowel segment.

• Information identifying the files containing the original speech data and
segmentation, and the place within segmentation of the triphone.

Various representations of the vowel formant tracks were created as discussed
in Section 6.5.

6.7.3 Partition of the Speech Data into Training, Cross-
Validation and Test Sets

I decided to limit my experiments to CVC triphones containing stop consonants

/p, t, k, b, d, g/ and monophthongs /i, i, e, a, a, u, o, U, u, 3, o, a/. This gave 554
triphones in all. The 554 triphones used were partitioned into 3 data sets — the
training, cross-validation and test sets. A further set of triphones was selected
from the training set to act as a further test set.

The Training Speech Data Set

The training set had to be as large as possible. A previous set of experiments
using a specially recorded set of triphones had failed because of the lack of training
data. The chosen training set contained 512 triphones, and ideally would have
been much larger.
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Ideally the cross-validation and test sets would have contained a large number
of triphones also. However, the need to use as many triphones as possible in the
training set was felt to be more important in order to ensure the likelihood of
success.

The distribution of triphones in the training set is given in Tables 6.7 and 6.8.
The distribution of initial and final consonants, summed over the vowels is given
in Table 6.9. It is obvious that the distribution of triphones, vowels, consonants
and pairs of initial and final consonants are all uneven. The expected effect of
this is to produce better performance on vowels, consonants and triphones which
are common in the training data, compared to those which are infrequent.

The Cross-Validation Speech Data Set

The cross-validation set was used in training of ANNs using the cross-validation
paradigm. That is, after each iteration of the learning algorithm, the error on the
cross-validation set was calculated. After the training was completed, the state
of the ANN at the training iteration with the lowest error on the cross-validation
set was taken as the output of the training process. This is intended to find the
ANN configuration which generalises to new data best. See Section 6.6.2. The
cross-validation set contained 20 triphones. 19 of the 20 triphones did not appear
in the training set (ie. no triphone with the same three phonemes appeared in the
training set), hopefully giving a good measure of generalisation. The triphones
used are given in Table 6.10.

The Test Speech Data Set

The test set comprised 20 triphones which did not appear in the training or cross-

validation sets (ie. no triphone with the same phonemes appeared in the other
sets), providing a strong test of generalisation to previously unseen triphones. The
vowel /u/ appeared in the test set (in the triphone /but/) but did not appear
at all in the training or cross-validation sets. The triphones used are given in
Table 6.11. After much of the ANN training was complete I realised that I
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I p t k b d g

p - 3 5 - 3 - 11

t 2 3 32 - 81 - 118
k - 9 - - - 9
b - 7 5 -

- 7 19
d 6 4 11 - 30 1 52

g
8 26 53 - 114 8 209

i P t k b d g

P 2 3 4 - 9
t

k 2 2
b - 2 - . 2
d 3 3 - - 2 - 8

g -

7 8 4 - 2 - 21

e P t k b d g

P - - 15 -
- 15

t 3 - 9 - 3 - 15
k
b - 1 - 3 - 4

d 2 - 3 -
- 5

g - 4 - - 4

5 5 27 6 43

a P t k b d g

P - 3 2 - - - 5
t - - 8 3 - - 11

k 4 3 - 3 - - 10
b - - 3 - 2 - 5
d

g
4 6 13 6 2 - 31

a P t k b d g

P - 10 2 -
- 12

t - 5 - - 5

k - - - 1 - 1

b
d

g - - - 7 - 7
- 15 2 - 8 - 25

A P t k b d g
P - - - 3 - 3
t - - - - 2 - 2

k 3 2 - - - 5
b - 2 - - - 2
d - - 6 - - 6

g
3 4 6 3 2 - 18

Table 6.7. Distribution of triphones containing I, i, e, a, a and a in the Training
set. The initial consonant is to the left, the final consonant above the table.
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T> P t k b d g

P 2 2 - - - - 4
t - - 2 - - - 2
k 2 5 - - - - 7
b - 2 2 5 - - 9
d 2 3 - - - 2 7

g - 2 - - 1 - 3
6 14 4 5 1 2 32

3 P t k b d g
P - 18 - - 18
t - - 4 - - 4
k 2 3 - 6 - 11
b - - - 5 - 5
d - 2 - - 2

g
2 23 4 - 11 - 40

u P t k b d g

P - 4 - - 4
t - - 3 - 3
k - 2 -

- 2
b - 2 -

- 2

d - 2 -
- 2

g - - 2 - 2
- 4 6 - 5 15

u p t k b d g

P
t

k
b
d

g

a P t k b d g

P - 7 -
- 2 - 9

t - 6 - 9 6 5 26
k - 2 - 2 - 4 8
b - - 3 3 3 9
d 3 5 - 2 6 - 16

g
3 20 - 16 17 12 68

3 P t k b d g

P 2 2 - - 4
t -

k - 3 -
. 3

b - 2 -
- 3 - 5

d

g -

2 7 - 3 - 12

Table 6.8. Distribution of triphones containing t>, o, 0, u, a and 3 in the Training
set. The initial consonant is to the left, the final consonant above the table.
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p t k b d g

p 6 52 28 3 5 - 94
t 5 14 55 12 95 5 186
k 13 27 2 5 7 4 58
b - 16 12 8 16 10 62
d 16 17 22 2 38 3 98

g - 6 - - 10 - 16
40 132 119 30 171 22 514

Table 6.9. Summary of distribution of triphones in the Training set, over all the
vowels. The initial consonant is to the left, the final consonant above the table.

Initial Final
Consonant Vowel Consonant Source

t o P 'entapralz
k 3 d akad'emlk
d 9 k 'adskwat
t '3 b dlst'3bd
t 3 d 'ent3d
d '3 t d'3ti
b 'a g b'ag
g a P gap
k 'a d k'ad
b 'e t b'eto
b I d bid
d 'e d d'ed
d i g dlgri
b i b bibis'i
d i k h'andlkap
P 3 d pod
b 'o t b'ot
t 'u k t'ok
b 'f5 t b'utlo
b 'a k b'Akh)

Table 6.10. The triphones used for cross-validation.
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should have included in the test set triphones which had the same phonemes as

some in the training set, but different durations, in order to test how the ANNs
performed on triphones with only slight differences to those seen before.

Initial Final
Consonant Vowel Consonant Source

P 0 g popog'ando
k 9 P kp'asoti
g 9 t 'ngotlv
t ,3 P Int,3prlt'elj9n
k '3 d ok'3d
b 'a P b'aptlzom
b 'a t b'atl
d 'a k d'ak
k 'e P k'ept
t I g Inv,estlg'el/9n
P "i d sp'id
b i g big'lnz
P '0 k p'nklt
b t> b bob
t 'o t t'ot

g 'o d g'odon
k 'y d k'od
d 'o g d'Uglas
d 'a b d'Ab9l
b u t buts

Table 6.11. The Test triphones used for testing performance and generalisation.

The TrainTest Speech Data Set

It is impossible to make perceptual evaluations of performance on the entire
training set due to its large size. I selected a set of 20 triphones from the training
set to form the traintest set. This set was chosen to span the range of phoneme
combinations in the training set, and should provide a measure of how well the
ANNs learnt the training data. The triphones making up the TrainTest set are
listed in Table 6.12.
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Initial Final
Consonant Vowel Consonant Source

k 'a t k'atagoriz
k 'i 'P k'i'plQ
t I d opolntld
k 'x> t sk'otlnd
d TO g dogz
d ■o t d'otaz
t 'a k ot'ak
d I P dlp'nzotld
d A k pr'odAkt
t I k .otom'atlk
d 'o P od'opt
d I d h'andld

P ■i k sp'iko
P 'o t p'ot
P £ k pr'ospeks
d i t ditell
t 'e k t'ekst
k a d kadz
b I t bltw 'in
d I P dlp'end

Table 6.12. The TrainTest triphones used for testing performance on members
of the Training set.
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6.8 Naming of ANN Training Trials

Each ANN training trial consisted of a neural network of a given size being
trained with a particular set of input and output data, and possibly with a cross-

validation set. The input and output representations are described in Chapter 6.2.

I have adopted a uniform naming scheme for these trials, in an attempt to
make things clearer. Each trial name is given by concatenating the following:

1. The name of the input representation. See Table 6.13

2. The name of the output representation. See Table 6.14

3. If the ANN weights were set to those found at the completion of training
(ie. when no further reduction of error occurred) then the string "end"
is included. If the weights were those that gave a minimum error on the
cross-validation triphone set training, then the no string is included.

4. If the training was carried out by back-propagation (using my program

ff) then the string "bp" is included. All the two layer networks (without
hidden layers) fall into this category. If the training is carried out by the
conjugate-gradient method then the string "bp" is not included.

5. The number of nodes in the hidden layer. In some trials a two layer network
was used. In these cases, this number is omitted.

6. The number of the trial. For each setup, a number of trials were run with
different initial networks. This number differentiates between the trials and

is also the random seed used to set up the initial weights in the ANN. Trials
are numbered from zero.

So, for example, the third trial using the Traditional input representation,
the Tri-ratio output representation and having 6 nodes in the hidden layer would
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be called Trad.TRat.6.3. The zeroth trial using the Continuous input repre¬

sentation, the PolyBark output representation, having no hidden layer and be¬
ing trained to completion with the back-propagation algorithm, would be called
Cont.PolyBark.bp. end. 0.

Representation Name
Traditional (Section 6.4.2)
Continuous (Section 6.4.3)
Symbolic (Section 6.4.4)

Trad
Cont

Sym

Table 6.13. The Names Used for Input Representations in Trial Names.

Representation Name

Tri-ratio (Section 6.5.1) TRat
Tri-difference (Section 6.5.1) TDif
Tri-plain (Section 6.5.1) Tri

Polynomials of Order 2 (Section 6.5.2) Poly
Polynomials of Order 2 of Bark-scaled vowel formant tracks
(Section 6.5.2) PolyBark
Four Fourier Coefficients (7 real values) (Section 6.5.3) FFT4
Four Fourier Coefficients of Bark-scaled vowel formant tracks

(7 real values) (Section 6.5.3) FFTBark/f
Two Fourier Coefficients of Bark-scaled vowel formant tracks

(3 real values) (Section 6.5.3) FFTBark2

Table 6.14. The Names Used for Output Representations in Trial Names.

6.9 Combinations of Input, Output and Train¬

ing Regime Used

The combinations of input representation, output representation, training algo¬
rithm and training methodology are shown in Table 6.15.
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Name Input Output Training Methodology
Representation Representation Algorithm

Trad.TRat.bp Traditional Tri-ratio bp Cross-validation
Trad.TDif Traditional Tri-difference eg Cross-validation

Trad.Tri.bp Traditional Tri-plain bp Cross-validation

Trad.Tri.bp.end Traditional Tri-plain bp To completion
Trad.TRat Traditional Tri-ratio eg Cross-validation
Trad.TRat.end Traditional Tri-ratio eg To completion
Trad.Tri Traditional Tri-plain eg Cross-validation
Trad.Tri.end Traditional Tri-plain eg To completion
Trad.Tri.bp Traditional Tri-plain bp Cross-validation
Trad.FFT4 Traditional FFT4 eg Cross-validation
Trad.FFTBark4 Traditional FFTBark4 eg Cross-validation
Trad.FFTBark2 Traditional FFTBark2 eg Cross-validation
Trad.Poly Traditional Polynomial eg Cross-validation

Trad.PolyBark Traditional Polynomial Bark eg Cross-validation

Trad.Poly.end Traditional Polynomial Bark eg To completion
Sym.TRat Symbolic Tri-ratio eg Cross-validation
Cont.TRat Continuous Tri-ratio eg Cross-validation

Table 6.15. The experimental trials, "bp" stands for back-propagation and
"eg" stands for conjugate gradient.
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6.10 Evaluation Methods

6.10.1 Introduction

The only real tests of synthesised speech quality are those which involve pre¬

senting speech to people. These take a large amount of time and effort, so are

infeasible to apply to large numbers of sets of triphones. Hence, I have only
used an intelligibility test to a) produce a measure which can be applied to large
numbers of vowel formant sets with little cost in time and effort (Experiment I
in Chapter 7), and b) as the final test for the triphones produced by the neural
networks selected using the measure produced (Experiment II in Chapter 8).

6.10.2 Intelligibility Measures

I have used an intelligibility measure based upon the modified rhyme test as

used in [7], which was in turn based on the rhyme test of [25]. Subjects are

presented with a series of synthesised utterances and have to select one of a

number of responses on a response sheet. Since I am changing the vowels, not
the consonants, the test is in fact more of an assonance test than a rhyme test.

I devised words (some nonsense and some real) for all of the vowels /1, i, e, a,
a, o, o, U, u, 3, o, a/ and all of the consonant contexts /b_b, b_g, b_p, b_t, d_b,
d_d, d_g, d_k, d_p, d_t, g_d, k_d, k_p, k_t, p_d, p_k, p_t, t_d, t_g, t_k, t_p, t_t/
in the test set and traintest set. It became apparent that the test set triphones
with the vowel /a/ could not be used, since I could not create words for the /a/
case for all the consonant contexts. There was also the risk that any poor quality
utterance would be classified as a /a/ triphone, with no other attempt to identify
the nearest vowel. This resulted in there being 37 triphone utterances used per

neural network in the intelligibility tests.

The utterances were synthesised as described in Section 6.11. They were

recorded on a Marantz CP230 cassette recorder using Dolby B noise reduction
onto TDK AR cassette tape. A gap of 3 seconds was left between utterances
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(using the Unix 'sleep' command, so some of the gaps may have been longer
— no unevenness was apparent). An extra 4 second gap was added where the
subjects had to turn a page of the response sheet. This spacing gave subjects
enough time to respond but gave no time for consideration.

For each utterance the subject had to circle one of six words. The set of
responses for a particular triphone remained the same throughout the test. All
triphones with the same consonant context had the same six words to choose from.
This was so that the subjects could not learn which answer was the correct one
for a given pair of consonants. This is not normally a problem with intelligibility
tests, but as so many different versions of the same triphone were to be presented
in one test (up to 12 times) this was necessary. The possible responses for each
consonant context are shown in Table 6.16

6.10.3 Sources of Intelligibility Error

There are three ways in which differences in the errors in the intelligibility of the
speech produced by the ANNs may come about:

1. The ANNs may differ in how accurately they learn to produce the output
vectors of the training set.

2. They may differ in how well they generalise to produce the output vectors
for previously unseen data.

3. For any particular size of error on the output nodes of the ANN, a repre¬

sentation may produce more or less intelligible speech.

6.10.4 The Formant Track Error Measure

It would be desirable to have a measure of how good a synthesised utterance
is without the large amount of work involved in an intelligibility test such as

the Modified Rhyme Test in which subjects are necessary. This would allow the
following:
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context vowel and ma tching word
b_b p bob a bab a barb I bib 3 borb u boob

b-g i beeg e beg I big A bug 3 berg a bag
b-P a bap e bep I bip i beep 3 burp u boop
b_t I bit a bat £ bet u boot 3 bert a bart
d_b A dub a dab £ deb I dib 3 durb p dob
d_d I did a dad £ dead i deed U dood A dud

d-g o dog a dag I dig 3 dawg U dug 3 dirg
d_k Q dark P dock A duck 3 dirk U dook a dack

d-P I dip a dap £ dep 3 dorp U doop p dop
d_t i deet I dit 3 daught 3 dirt a dart u doot

g-d 0 gored o god U good 3 gird a guard a gad
k_d U could a card 3 cawed O cod £ ked 3 curd

k_p e kep I kip i keep A cup u coop 3 curp
k_t p cot a cat a cart £ ket u coot 3 curt

p_d i peed e ped I pid 0 pud u poohed 3 purred
P-k i peak e peck I pick 3 pork 3 perk P pock
p_t 0 port a part p pot A putt 3 pert a pat
t_d I tid e ted a tarred i teed P tod u tood

t-g I tig a tag £ teg i teague A tug p tog
t_k a tack e tech I tick i teak 3 turk A tuck

t_p 3 turp a tap P top 3 torp A tup U toop
t_t 3 taut Q tart D tot A tut 3 turt U toot

Table 6.16. The possible response words for each consonant context and choice
of vowel.
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• "Instant" evaluation of alterations to synthesis methods and comparisons
between methods.

• Selection of the best versions of a synthesis method (or of types of input
and output representation and numbers of hidden units in ANNs, as in this
work), prior to final evaluation using a more costly intelligibility measure.

The example of such a method which I have used is the root-mean-square
error of the synthesised vowel formant tracks compared with the original vowel
formant tracks for the same utterance, taken from real speech. This is determined
by summing the square of the difference between the formants at a number of
time intervals (the sample rate is a natural choice for digitised speech), then
dividing by the number of intervals before taking the square root:

where st is the value of the synthesised formant at time t and ot is the value of
the original formant at time t.

A number of other researchers have used this error measure (for instance, [11,
56]) but have used it as the single evaluation method with no further justification
or attempt to relate it to other evaluation methods.

6.11 Synthesising Triphones From ANN Out¬
put and Vowel Formant Representations

The output from a ANN is a vector of numbers between 0 and 1. From this
output we must eventually produce an utterance, a CVC triphone. The stages
involved in producing speech from the output of a given ANN were:

1. Reverse any transformations used to produce an output representation with
values in the range [0, 1], to create one of the output representations de¬
scribed in Section 6.5.

(6.6)
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2. Produce the first three vowel formant tracks from the output representation.

3. Synthesise the vowel from the formants.

4. Concatenate the synthesised vowel and tokens of the initial and final con¬
sonants.

5. Play back the resultant CVC triphone using the equipment described in
Section 6.10.2.

6.11.1 Synthesising Vowels From Vowel Formants

Synthesis of vowels from the vowel formants produced by the ANNs or from
inverting the formant representations was carried out by my own implementation
of the formant synthesis algorithm described in [51]. This implementation was

designed to be as flexible as possible, allowing the digital components (such as

resonators, antiresonators and noise sources) to be connected up as the user

wishes, and for it to be a simple matter to add new types of component. It was
implemented in C++, as the object-oriented approach suited the type of design
I wished to create. More details are given in Appendix A.

6.11.2 Creating the CVC Triphones

The vowel portion of the triphone was synthesised as described in Section 6.11.1.
The triphone was created by concatenating the synthesised vowel with tokens of
the initial and final consonants. These tokens were extracted from speech from
the same speaker as had been used for training and testing the ANNs. The
initial and final sets were distinct, but each contained only one example of each
consonant. That is, there was no attempt to use initial and final consonants
which came from the context in which they were to be used. This will have the
effect of reducing the quality of the synthesised triphones, but will mean that
correct identification of the vowel rests on the quality of the vowel.
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Audio output of the digitised speech produced by the synthesis was via CSTR's
audio output system (ao, which uses a Macintosh computer with National In¬
struments NB-AO-6 Rev.C board to carry out the DA conversion which is then
amplified by a Yamaha A-09 audio amplifier).
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Chapter 7

Experiment I: Relating Formant
Track Errors and Intelligibility
Errors

7.1 Experimental Setup

12 sets of output data from ANN training trials were chosen randomly from
the large number available. The small number of trials which resulted in very

extreme formant track errors were omitted from the available choices. The trials

chosen gave a reasonable coverage of the range of formant track errors for all
three formants. Figure 7.1 shows the distribution of the chosen trials within the
full set of trials, for F1 and F2 formant errors.

The 37 triphones for each trial were synthesised as detailed in Section 6.11,
resulting in 444 utterances. These were recorded as described in Section 6.10.2,
resulting in a tape that was approximately 32 minutes long, plus a two minute
break at the half-way point. It quickly became apparent that the break was not
needed and it was skipped for all except the first couple of subjects. The front
page and first page of the booklet given to the subjects is shown in Appendix B.
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F1 and F2

. • Trad.PoJy.end.18.3
• Trad.TDH.8.3 Vv.*'

Trad. TRar. end. 1.2 *

v«£p , Coni.TRW.e.o

• Trad.FFT4.2.0

Trad.FFTBarti2.20.3-

100

F1 Formant Track Error (Bark)

150

Figure 7.1. The F1 and F2 distributions of the formant track errors for each
ANN. The randomly picked trials used in deriving a relationship between formant
track errors and intelligibility errors are labeled. The formant track errors shown
are the sums of the errors over the 40 utterances used.
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The trial utterances were prefaced by 10 example words (all CVC triphones),
taken from the training set and synthesised using the original vowel formant
tracks. The purpose of this was to familiarise the subjects with the sound of
the synthesis and the method of presentation. The recorded utterances were

played back through the Marantz CP230 cassette recorder used to record them,
amplified by a Revox tape recorder and listened to via Revox 3100 headphones
in soundproof booths.

A total of 25 subjects were used. There were 11 Scottish and 12 English speak¬
ers, plus two others (American and Irish). I asked for some indication of accent
from the subjects because I expected there to be differences between English
and Scottish speakers. Scottish accents have preserved post-vocalic /r/ [44, 103].
There is no vowel /3/, and the following contrasts are missing: /a/ v /a/, /n/
v /o/ and /u/ v /u/. Scots will regard a word whose spelling contains a vowel
followed by an 'r' as containing the sound /r/, which does not occur in the tri¬
phones of the RP speech upon which the synthesis is based. I expected problems
with triphones containing the vowels /3, a, a, o, o, O, u/. Two types of error
were possible. Firstly, synthesised triphones that contained these triphones were

likely to be misclassified as containing other vowels. Secondly, where the triphone
did not contain 3, the triphone was very unlikely to be mistakenly classified as

containing /3/. This increases the chance of a correct classification, even if the
vowel is poor, as the subject is choosing between 5 possibilities instead of 6.

7.2 Experimental Results

The percentage errors for the 25 subjects and sets of triphones produced by 12
different ANNs are shown in Figure 7.2. A boxplot of these results is shown in
Figure 7.3. A boxplot shows the distribution of data within each set. For each set

(here the intelligibility errors for each ANN), a box, whiskers (the lines extending
from the box) and outliers (the single points) are plotted. The centre of the box
is the median. The box shows the inter-quartile range (the central half of the
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data). The whiskers extend to the nearest point to, but not beyond, the inter¬
quartile range multiplied by 1.5. The outlying points are all the points beyond
the whiskers.

For example, in the figure, Trad.PolyBark.end.18.3 has a small inter-quartile
range and short whiskers, showing that the intelligibility errors for most subjects
were fairly evenly spread within a small range. There are two outliers, so two
subjects had atypical results. Trad.Poly.8.0 has a large interquartile range, so

the main body of subjects produced a wide range of intelligibility errors. The
whiskers are short in relation to it, and there are no outliers, so no subjects
produced errors far from the normal range.

7.3 Rejecting Intelligibility Errors That May be
due to Chance

There is a level of intelligibility error beyond which the measured error might
be due to chance. The points in this region cannot be used, since there will be
no strong relationship between the formant errors and the intelligibility error. I
chose to keep points only where the probability of the error mark being due to
chance is less than 15%.

There are 37 responses per experiment, and 25 subjects, giving 925 responses

per experiment in all. If responses are randomly picked, then the probability of
being correct on one response is 1/6. The distribution is binomial, but can be
approximated by the Normal distribution. At the 15% level, this matches 287
correct responses, which gives an Intelligibility Error of 69%.

On this basis I have decided to only use the responses for experiments Trad.-
Tri.end.16.2, Trad.Tri.bp.4, Sym.TRat.18.3, Trad.TRat.end.1.22, Cont.TRat.6.0,
and Trad.PolyBark.end. 18.3.

Looking at the boxplot for the 12 experiments (Figure 7.3), we see that
Trad.PolyBark.end.18.3 has a low variability of marks between subjects, whereas
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Subject Trad.Tri.end.16.2 Trad.Tri.bp.4 Sym.TRat.18.3 Trad.TRat.end.1.2 Cont.TRat.6.0 Trad.PolyBark.end.18.3 Trad.Poly.8.0 Trad.FFT4.2.0 Trad.Poly.1.3 Trad.Poly.2.2 Trad.FFTBark2.20.3 Trad.TDif.8.3 Mean
subl 32.4 27.0 37.8 51.4 59.5 67.6 75.7 73.0 81.1 73.0 81.1 83.8 61.9

sub2 29.7 29.7 32.4 56.8 56.8 62.2 75.7 73.0 62.2 75.7 70.3 83.8 59.0
sub3 24.3 35.1 45.9 67.6 67.6 78.4 81.1 70.3 75.7 83.8 75.7 83.8 65.8
sub4 32.4 27.0 35.1 54.1 70.3 67.6 75.7 81.1 78.4 81.1 89.2 83.8 64.6

sub5 21.6 21.6 27.0 56.8 56.8 67.6 64.9 78.4 81.1 73.0 89.2 73.0 59.2

sub6 24.3 24.3 37.8 64.9 62.2 70.3 78.4 78.4 81.1 81.1 86.5 86.5 64.6
sub7 32.4 27.0 37.8 64.9 62.2 67.6 73.0 70.3 70.3 83.8 83.8 81.1 62.8
sub8 27.0 35.1 18.9 59.5 56.8 70.3 83.8 78.4 81.1 78.4 83.8 81.1 62.8

sub9 21.6 27.0 35.1 56.8 64.9 70.3 81.1 78.4 75.7 81.1 86.5 81.1 63.3
sub 10 29.7 24.3 37.8 45.9 70.3 56.8 64.9 62.2 78.4 81.1 73.0 73.0 58.1
sub 11 29.7 32.4 21.6 59.5 54.1 67.6 81.1 81.1 78.4 86.5 83.8 86.5 63.5

sub 12 32.4 29.7 40.5 56.8 67.6 67.6 81.1 75.7 78.4 81.1 89.2 89.2 65.8
subl3 27.0 37.8 45.9 59.5 73.0 73.0 81.1 78.4 81.1 86.5 83.8 86.5 67.8
subl4 24.3 27.0 24.3 29.7 59.5 67.6 78.4 73.0 78.4 81.1 83.8 83.8 59.2

subl5 27.0 24.3 24.3 56.8 62.2 70.3 81.1 75.7 64.9 83.8 83.8 81.1 61.3
subl6 29.7 24.3 27.0 48.6 59.5 64.9 67.6 73.0 70.3 78.4 83.8 83.8 59.2
sub 17 29.7 27.0 29.7 54.1 59.5 64.9 67.6 67.6 73.0 73.0 78.4 75.7 58.3
subl8 29.7 45.9 32.4 59.5 67.6 62.2 70.3 75.7 78.4 78.4 75.7 75.7 62.6

subl9 35.1 32.4 37.8 62.2 62.2 67.6 81.1 78.4 78.4 81.1 75.7 81.1 64.4
sub20 18.9 32.4 21.6 43.2 56.8 70.3 62.2 83.8 73.0 75.7 83.8 75.7 58.1
sub21 29.7 29.7 18.9 56.8 54.1 59.5 81.1 81.1 83.8 75.7 75.7 75.7 60.1

sub22 29.7 27.0 37.8 59.5 64.9 73.0 75.7 78.4 73.0 86.5 78.4 86.5 64.2
sub23 21.6 27.0 37.8 64.9 32.4 62.2 67.6 70.3 73.0 75.7 62.2 83.8 56.5
sub24 27.0 29.7 35.1 67.6 54.1 70.3 64.9 70.3 78.4 81.1 81.1 73.0 61.0

sub25 24.3 29.7 29.7 54.1 62.2 62.2 75.7 73.0 83.8 89.2 89.2 81.1 62.8
Mean 24.4 26.2 29.6 54.3 58.6 65.2 72.9 73.2 74.7 78.6 79.2 79.6 61.9

Figure 7.2. The percentage error for triphones in the intelligibility test used to
relate intelligibility error and formant track error.
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Figure 7.3. The subject intelligibility errors for the 12 ANN triphone sets used
in the experiment relating intelligibility error and formant error.
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Trad.Poly.8.0 and the worse experiments have higher variabilities. This further
suggests that Trad.PolyBark.end.18.3 is less subject to guessing than the 6 worst
experiments. However, there is little difference in variability between some of the
6 worst experiments and some of the 6 best experiments. A boxplot for just the
6 best experiments is shown in Figure 7.4.
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Figure 7.4. Overall intelligibility errors for the best 6 triphone sets used in the
experiment relating intelligibility error and formant error.
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7.4 Derivation of a Relationship Between For-
mant Track Errors and Intelligibility Errors

Correlations between the intelligibility error, the mean vowel formant errors per

utterance (referred to as "formant errors" henceforth) and a number of transfor¬
mations of the formant errors are shown in Table 7.1.

error Fl F2 F3
error 1.00 0.97 0.93 0.49
F1 0.90 1.00 0.98 0.25

F2 0.86 0.98 1.00 0.17
F3 0.45 0.25 0.17 1.00
Fl2 0.87 0.99 0.99 0.16
F22 0.82 0.97 0.99 0.05
F32 0.46 0.26 0.17 0.99

log Fl 0.91 1.00 0.98 0.33

log F2 0.89 0.98 0.99 0.27

log F3 0.45 0.26 0.19 0.99

VFI 0.91 1.00 0.98 0.29

VF2 0.88 0.99 1.00 0.22

VF3 0.45 0.25 0.17 1.00

1 /Fl -0.92 -0.98 -0.96 -0.40

1/F2 -0.90 -0.97 -0.97 -0.36

1/F3 -0.47 -0.29 -0.23 -0.96
1 /Fl2 -0.92 -0.97 -0.94 -0.45

1/F22 -0.90 -0.95 -0.94 -0.42

1/F32 -0.49 -0.34 -0.28 -0.93

Table 7.1. The correlations between the intelligibility error and various trans¬
formations of the formant errors.

F3 formant track error and transformations of the F3 formant track error were

poorly correlated with the intelligibility error. F2 was highly correlated with the
intelligibility error at 0.86, but F1 was better at 0.90. The best correlation with
the intelligibility error was that for 1/F1 at -0.92. However, with only a small
difference in correlation, only 6 groups of samples and no strong reason to suspect
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that the relationship is anything but linear, I have chosen to fit a linear regression
between the mean F1 vowel formant error and the intelligibility error.

An F test of the regression of F1 and the intelligibility error gave an Fi,i48 of
614.3, which is significant at the 0.1% level, so this fit was definitely a significant
one. Adding further variables to the regression equation (eg. transformations of
Fl, F2 and F3) did not significantly improve the fit. The regression obtained is

Intelligibility Error = —8.94 -f 83.34(F1 error) (7-1)

The mean of the absolute values of the residuals is 6.15, and the maximum
absolute value of a residual is 23.09. It must be remembered that these are the

difference between the fit and individual errors per subject, not the mean values
over the subjects. The errors in predicting the mean value of intelligibility error

for each of the Fl formant errors used are shown in Figure 7.5.

Triphone Mean Predicted Residual
Set Value Value

Trad.Tri.end. 16.2 27.68 29.85 -2.18

Trad.Tri.bp.4 29.41 32.90 -3.49

Sym.TRat.18.3 32.43 31.53 0.90
Trad.TRat .end. 1.22 56.43 52.82 3.61
Cont.TRat.6.0 60.65 54.03 6.62

Trad.PolyBark.end.18.3 67.24 72.70 -5.46

Figure 7.5. The residuals of the predicted mean values of intelligibility error at
each value of Fl vowel formant error used.

One reason why the use of only one variable is significant in the regression
is that the Fl, F2 and F3 formant errors are highly correlated for the formants
produced by the neural networks (this may not be the case for speech produced
by other methods). This means that the error for Fl gives a good measure of the
error for F2 and F3, so the F2 and F3 errors add little extra information.
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7.5 Confidence Bands on the Derived Relation¬

ship

The relationship I have derived above (Equation 7.1) gives an estimate of what the
mean intelligibility error would be for the set of utterances used when presented
to a very large number of subjects. We need to determine some error bounds on

the predicted values and obtain a measure of how different two predicted values
must be before we can be sure that the two sets of utterances being compared
really are different.

A confidence interval for the mean value of the intelligibility error ^y\x0 0e-
the average intelligibility error over all subjects, which is what we are really
interested in) for a given F1 vowel formant error is given by Equation 7.2, where
Xo is the given vowel formant error and YXo is the predicted mean value of
the intelligibility error at Xo■ The estimate of the standard deviation of the
predicted value Syx is given by Equation 7.3. See, for example, [53] for details
of the derivation of this confidence interval.

For the values used to calculate the regression, Sy\x = 59.61 and Sx = 0.018,
with X = 0.655. Hence, the value of %o for the regression obtained is as given

Confidence interval for ^y\x0 is Yx0 ± £n-2,i-a/2'S'yx (7.2)

(7.3)

Shx = ~ YiYH ^ i= 1

si—.px-x)21=1

(7.4)

(7.5)

in Equation 7.6.

(7.6)
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The regression line and the confidence bands are shown in Figure 7.6.

F1 Vowel Formant Error (Bark)

Figure 7.6. The regression line relating F1 formant error and intelligibility error,
with 90% confidence bands shown.

Estimates of how far apart two predicted intelligibility values must be in order
to be sure (to some confidence level) that they are indeed different is shown in
Figure 7.7. These distances are the same as the distance from the regression line
to the confidence bands.

7.6 Differences Between the Responses of Scots
and English Speakers

The subjects divided roughly into Scots and English groups (with two others).
While not connected with the main area of research I was interested in whether
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Intelligibility Error (%)

Figure 7.7. The width of the various confidence bands for the predicted intel¬
ligibility errors. If two predicted values differ by more than the indicated figure
then there is that level of confidence that they are truly different. The shaded
areas represent levels of intelligibility error outside the upper and lower limits of
the points used in deriving the regression, and so are less firmly based than the
unshaded area. The confidence bands are based on a one-sided t-test.
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there would be a difference in the responses of these two groups. The overall
marks for each of the 11 Scots subjects and 12 English subjects are shown in
Table 7.2. Comparing these marks with a T test shows that there is a significant
difference at the 0.5% level between the English and Scots subjects.

Scots Mean 176.5 Sample SD 9.6
Subject 1 8 14 16 17 18 20 21 23 24 25
Mark 169 165 181 181 185 166 186 177 193 173 165

English Mean 162.2 Sample SD 11.6
Subject 2 3 4 5 7 9 11 12 13 15 19 22
Mark 182 152 157 181 165 163 162 152 143 172 158 159

Table 7.2. The overall marks for the 11 Scottish subjects and 12 English sub¬
jects.

Comparing the results of each experiment for the Scots and English subjects
(Figure 7.3) shows a significant difference (5% level) on six sets of triphones
(Trad.TDif.8.3, Sym.TRat.18.3, Cont.TRat.6.0, Trad.Poly.2.2, Trad.Poly.8.0 and
Trad.PolyBark.end. 18.3) and on the overall marks.

Triphone English Scots
Set Mean SE Mean SE

Trad.TDif.8.3 7.6 1.6 6.3 1.5

Trad.Tri.bp.4 25.7 2.2 26.2 1.7
Trad.TRat.end. 1.2 17.2 3.9 15.1 1.4

Sym.TRat.18.3 26.5 2.6 24.0 2.9
Cont.TRat.6.0 16.1 3.3 13.5 2.1

Trad.Tri.end. 16.2 27.1 1.5 26.4 1.6
Trad.FFT4.2.0 9.5 1.8 8.7 1.4

Trad.FFTBark2.20.3 7.5 2.6 6.5 2.3

Trad.Poly.1.3 8.3 1.7 9.3 2.3

Trad.Poly.2.2 8.1 1.7 6.7 1.6
Trad.Poly.8.0 10.3 2.6 8.3 1.9

Trad.PolyBark.end. 18.3 12.7 1.4 11.3 1.5

Table 7.3. Mean marks and standard errors for the Scots and English subjects.
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There are significant differences between the confusion matrices for Scots and
English subjects (see Tables 7.4, 7.5 and 7.6).

Correct
Actual Choice
Choice 3 a a £ 1 i 0 3 15 A u total

3 11.2 16.6 6.3 10.1 4.2 11.4 7.7 14.7 3.7 5.5 5.5 96.8
a 0.1 14.6 1.9 1.1 1.1 — 1.7 0.2 0.1 1.6 0.9 23.3
a 0.3 2.4 8.0 — 0.1 0.3 4.9 5.7 0.2 0.4 1.1 23.3
£ 0.1 5.3 0.3 11.6 7.8 2.6 2.3 — 0.1 0.6 0.4 31.0
I — 1.4 — 1.6 55.8 15.5 3.3 1.1 2.5 0.6 1.1 82.7
i — 0.2 — 0.2 0.5 11.0 0.3 0.2 — — — 12.4

0 0.5 0.9 0.6 1.4 1.0 1.7 19.7 2.4 2.4 2.0 — 32.6
D 3.3 — 3.1 2.0 — 4.1 12.4 15.1 2.5 — — 42.4
0 2.7 — 2.3 — — 1.2 1.8 4.7 12.6 — — 25.4
A 2.8 1.9 0.6 6.6 10.0 4.3 — 1.2 — 12.1 — 39.5
U 3.0 4.8 0.9 1.6 3.4 8.0 5.9 2.6 — 1.4 2.9 34.5

none — — — — 0.1 — — 0.1 — — 0.1 0.3

total 24 48 24 36 84 60 60 48 24 24 12 444

Table 7.4. Confusion matrix of vowels for the Scots subjects in the first intelli¬
gibility test.

If we represent the choices where Scots subjects make a confusion significantly
more often than the English subjects by S and the choices where the English
subjects make a confusion significantly more than often than the Scots by an E,
we have Table 7.7.

As discussed in Section 7.1, the Scots subjects lack the contrasts /a/ v /a/,
/o/ v /o/ and /u/ v /u/ and would expect that the words taken as containing
an /3/, /a/ or /o/ for the purposes of the experiment would really contain an

/r/, and this sound would not be present in any of the presented utterances. As
expected from this, the English subjects correctly identified these vowels more

often than the Scots subjects.

In fact, we can see that the English subjects generally preferred to respond
with /3/ and /a/. It seems that if the vowel was poor it was reported as one of
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Actual
Choice 3 a a e I

Correct
Choice
i o 0 tJ A u total

3 16.7 20.8 7.8 18.3 6.3 16.7 12.8 19.4 6.8 7.0 6.8 139.3
a — 13.6 0.8 0.7 1.2 0.2 1.7 0.1 — 1.2 0.3 19.7
a 0.3 2.9 10.3 — 0.3 0.2 8.3 6.3 0.2 0.2 1.1 29.9
e — 3.3 0.2 8.9 8.3 1.9 2.0 — 0.1 0.5 0.3 25.4
I — 0.8 — 0.8 52.3 14.5 1.3 0.7 2.8 0.4 0.8 74.3
i — — — 0.7 1.1 11.3 0.3 0.7 — — — 14.0
t> 0.6 0.7 0.3 0.5 1.0 0.9 11.5 1.3 1.8 1.3 — 19.8
a 2.3 — 1.8 1.4 — 3.9 13.8 13.3 1.4 — — 38.1
U 0.6 — 1.3 — — 0.3 1.5 2.7 10.6 — — 16.9
A 2.1 0.7 0.3 3.3 8.8 3.3 — 0.2 — 11.6 — 30.1
U 1.3 3.6 0.8 0.8 3.7 5.6 3.6 2.5 — 1.4 2.2 25.4

none 0.2 1.8 0.4 0.7 1.3 1.3 3.3 0.9 0.3 0.5 0.6 11.2
total 24 48 24 36 84 60 60 48 24 24 12 444

Table 7.5. Confusion matrix of vowels for the English subjects in the first
intelligibility test.
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Actual
Choice 3 a a £ I

Correct
Choice
i o 3 6 A u total

3 0.4 0.5 9.5 — 5.4 0.6 0.5 2.8 2.9 20.0 2.7 0.1

a 30.7 25.0 3.8 30.4 85.6 17.1 92.8 50.6 30.7 25.0 5.4 11.3
a 76.6 13.8 0.6 — 45.0 55.9 0.1 62.3 92.8 30.0 98.1 0.4
e 30.7 1.1 55.9 3.8 78.7 39.7 61.4 — 95.2 63.0 57.5 18.1
I — 26.6 — 7.4 11.3 64.5 0.4 6.2 31.6 68.0 28.3 11.5
i — 13.4 — 11.2 25.7 85.0 92.3 1.8 — — — —

t> 92.6 57.3 22.9 1.1 100.0 10.2 — 25.9 27.9 19.0 — 1.0

0 33.4 — 10.5 8.9 — 79.3 37.8 25.8 12.8 — — 30.0
V — — 6.9 — — 8.4 61.4 2.1 15.8 — — —

A 39.0 0.8 16.7 0.1 15.9 15.0 — 1.4 — 69.0 — 1.0

U 3.9 11.1 80.0 9.8 83.0 11.3 2.3 84.8 — 91.0 8.7 6.4
none 17.1 5.9 9.7 15.5 9.6 5.7 5.3 14.5 22.8 5.0 6.7 4.8

Table 7.6. Level of significance (in %) of differences between the confusion
matrices of vowels for Scots and English subjects.

these by the English subjects. They did not have /o/ as a possible response. The
Scots subjects, if they had any preferred response, preferred words which would
contain the vowels /o/ or /u/ or /u/ in RP, and correctly identified these more
often than the English subjects. The distribution of vowels was such that the
Scots subjects gave more correct responses than the English subjects. For some
reason the Scots subjects seemed better at following the instruction to make some

response for each utterance.
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Correct
Actual Choice
Choice 3aaelioD«Au total

3 EE E EEEE E E
a E E E
e S S
I s
i E
t> S E S
U s s s
A s s s s
U s

none E

Table 7.7. Summary of significant differences between confusions for the English
and Scots subjects. Where the English subjects make a confusion significantly
more often than the Scots subjects (at a 5% level) there is an E, and for the
opposite case there is an S.
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Chapter 8

Experiment II: Setup and Raw
Results

The Experiment II intelligibility test was designed to enable me to answer the
questions raised at the beginning of Chapter 6. This chapter first describes the
choice of ANNs whose outputs were used in the intelligibility test and the running
of the intelligibility test. The chapter then lists the raw results which are used
in Chapter 9 to answer the questions about the best choices of input and output

representations, ANN training algorithms, ANN architectures and the training
methods. Finally it describes a replication of the derivation of a relationship
between the triphone errors and the intelligibility errors, using this new data.

8.1 Choosing the ANN Training Results to Use

In order to compare the effectiveness of the different input and output represen¬
tations and the variations in training methodology, it was necessary to choose
from each experimental setup the "best" performing ANN and then compare

these with each other. Given the range of numbers of hidden nodes (typically 1,
2, 4, 6, 8, 10, 12, 14, 16, 18 and 20) and the range of random initial weights (5
different sets of initial weights for each network configuration) this gave up to 55
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different sets of speech data to compare to find the best in each setup. Running
intelligibility tests was not practical for this purpose, so the F1 formant errors
were used to predict the intelligibility errors using Equation 7.1 as derived in
Chapter 7 using the results of Experiment I.

The predicted intelligibility errors are subject to error, with confidence bounds
as shown in Figure 7.7. For each experimental setup, the best ANN, its associated
predicted intelligibility error and the number of ANNs with similar predicted
intelligibility errors are shown in Table 8.1. The "best" choices from each setup
were then included in the Experiment II intelligibility test. As can be seen from
the table, many of the setups did not have one clear best ANN. If the predicted
errors are similar then the real errors should also be similar. However, it is
possible that if the "best" ANNs from two experimental setups have very similar
intelligibility errors in the second test then different choices of the "best" ANNs
would have resulted in a different ordering of the performance of the two setups.

The best ANNs for the setups using FFT coefficients as formant representa¬
tions had very poor predicted intelligibility errors. Trad.FFTBark4 and Trad.-
FFTBark2 were omitted from the final intelligibility tests, but the best example
from Trad.FFT4 was used in order to give a final comparison for these sets of
experiments. Trad.Tri.bp.end was also omitted due to the whole set being very

similar to Trad.Tri.bp.

Speech created directly from the various output representations used to train
the ANNs was also included in the intelligibility test. This allowed some idea
of the limitations of the representations in representing vowel formant tracks to
be determined. Speech synthesised from the original vowel formant tracks as

extracted from the real speech data was also included in order to give some idea
of the limitations of the rather crude speech synthesis method used. This gave a

total of 18 sets of triphones to be used in the final synthesis. Each set contained
37 triphones, giving a total of 666 triphones in all.
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ANN Predicted Similar predicted
Error errors

5% 10% 25%
Trad.TRat.end. 12.1 24.3 0 0 0

Trad.Tri.end. 12.1 28.1 5 2 1

Sym.TRat. 14.1 28.8 3 2 0

Trad.Tri.bp.10.0 30.9 2 2 2

Trad.Tri.bp.end. 7 33.7 9 9 9

Trad.Tri.bp.4 33.7 7 5 4

Trad.TRat.bp.8 33.8 4 2 1

Cont.TRat.20.1 34.0 1 1 0
Trad.Tri.10.0 36.4 0 0 0

Trad.TRat. 10.1 38.5 0 0 0

Trad.Poly.end. 12.2 65.6 5 4 0

Trad.Poly.12.1 66.5 1 0 0
Trad.PolyBark. 14.1 68.4 5 4 2

Trad.TDif. 16.4 76.0 27 23 6
Trad.FFT4.20.0 184.4 4 2 1

Trad.FFTBark4.10.0 238.1 5 4 2

Trad.FFTBark2.14.1 243.8 2 1 1

Table 8.1. The ANN with best predicted intelligibility error for each experimen¬
tal setup. The predicted intelligibility error is shown, as is the number of other
ANNs with better than a 5%, 10% and 25% probability of being as good as the
predicted best.

117



8.2 The Experimental Setup

Essentially the same experimental setup was used as in Chapter 7 for Experiment
I. The same recording and play back facilities were used. The same choice of
triphones were used, with the same possibilities for the responses.

There were 18 sets of 37 triphones, giving 666 in total. At approximately
4 seconds per triphone this would result in an experiment of about 45 minutes
duration. This was too long, so the speech utterances were split into two parts,
with subjects being given only one part. Each triphone set was split between the
two subject groups, with 19 utterances going to one group and 18 to the other,
and with the distribution of triphones being balanced between the groups. The
distribution of triphones from each experiment into the two groups is shown in
Table 8.2.

8.3 Raw Results

The raw intelligibility errors for the two groups of subjects are shown in Tables 8.3
and 8.4. Boxplots of the evaluation errors for each set of subjects are shown in
Figures 8.1 and 8.2. The combined means and standard errors are shown in
Figure 8.3.

The means and standard errors for the triphones in the test set and those in
the traintest set are shown in Figure 8.4. A paired t-test shows that there is a very

significant difference overall between the results for the test and traintest triphone
sets. Breaking this down to individual ANNs, Trad.TRat.bp.8, Trad.TRat.-
end.12.1, Trad.Tri.10.0, Cont.TRat.20.1, Trad.Poly. 12.1, Trad.PolyBark.14.1,
Trad.Poly.end. 12.2 and Trad.FFT4.20.0 had significant differences at the 5% level
between intelligibility errors on the test set and the traintest set. One peculiarity
is that while the better ANNs did worse on the test set (previously unseen) than
on the traintest set (a small subset of the training set), as would be expected,
this was reversed for the more poorly performing ANNs.
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-4-3 poly £
w-066.2 2 1 2 1 2 2 1 2 1 l 1 1 1 2 2 1 2 2
w-512_2 1 1 1 2 2 1 1 1 2 l 2 1 2 2 2 2 1 2

w-652_2 1 1 1 2 2 2 1 1 1 2 2 1 2 1 2 1 2 2

w-946_3 2 1 2 1 1 1 1 2 1 1 2 1 2 2 2 2 1 2

wl 141.2 2 2 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1

wl483.2 1 1 2 1 2 2 1 1 1 1 2 2 2 1 2 1 2 2
wl594_3 1 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 1

W1831.2 2 1 1 1 1 1 2 1 2 2 2 2 2 1 2 1 2 1

w2078.7 1 1 2 2 1 2 2 2 2 2 1 1 1 1 2 1 2 1

w2237_2 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 1 1 2

w2410.4 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 1 2
w3318-2 2 1 1 2 1 2 1 2 2 2 1 2 2 1 1 1 2 1

w3319_2 1 2 2 2 1 2 2 1 1 1 2 2 1 1 1 1 2

w3321_2 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

w3579_2 2 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2

w4415_2 1 2 2 1 1 1 1 2 2 1 1 2 2 1 2 2 2 1
w4457_2 1 2 1 2 1 1 1 2 1 2 1 2 2 1 2 2 2 1

w-110.2 2 1 1 1 2 2 1 2 1 2 1 1 1 2 2 1 2

wl 144.3 1 2 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2

wl319.3 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1 1 2 1

wl341.2 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 2

wl438.2 1 1 2 1 2 2 2 2 2 1 2 2 1 1 1 2 1 1

wl491.2 2 2 2 2 1 1 1 2 1 1 1 2 1 1 2 2 1 2
w1545.6 1 2 2 1 1 2 2 2 1 2 2 1 1 2 1 1 1
wl928.2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2

W2037.5 1 2 2 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1
w2098.8 1 1 2 1 2 2 2 1 2 1 1 2 1 2 1 2 2 1
w3306.2 2 2 1 2 1 1 1 2 2 1 2 1 1 1 2 2 1 2
w3409.2 2 2 1 1 2 1 2 1 1 2 2 1 1 2 1 1 2 2
w3504.2 1 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 2
w3645.3 1 2 1 1 2 1 1 2 2 1 2 2 1 2 1 2 2 1
w3906_7 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1
w3971_2 2 1 1 2 1 1 2 1 1 2 2 2 2 2 1 2 1 1

w3996.8 1 1 2 1 1 1 2 1 2 2 1 2 1 1 2 2 2 2

w4051.2 1 1 2 2 1 2 1 2 1 2 2 1 2 2 2 1 1 1
w4138.3 2 2 2 2 2 1 1 1 1 1 1 2 2 2 1 2 1 1

w4446_2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 2 1 2 1

Table 8.2. The allocation of triphones from each experimental setup into the
two groups of subjects (1 and 2) used in the Experiment II intelligibility test.
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Mean 29.2 31.2 26.8 36.3 32.9 31.5 31.6 44.4 32.1 32.5 38.4 31.2 43.1 27.4 50.7 33.7 31.5 40.9 27.7 42.3 27.6 28.5
CN

co

trk 22.2 22.2 11.1 27.8 11.1 5.6 22.2 22.2 16.7 11.1 22.2 11.1 16.7 11.1 27.8 27.8 22.2 27.8 16.7 27.8 16.7 11.1 00

tri 5.6 0.0 11.1 16.7 16.7 11.1 16.7 22.2 11.1 27.8 22.2 11.1 22.2 11.1 33.3 11.1 22.2 27.8 11.1 22.2 5.6 0.0 rr

lO

poly 5.6 11.1 5.6 5.6 11.1 11.1 11.1 22.2 11.1 22.2 16.7 16.7 38.9 5.6 27.8 5.6 22.2 22.2 11.1 11.1 11.1 11.1 TT

fit 16.7 5.6 5.6 16.7 11.1 5.6 11.1 16.7 11.1 11.1 27.8 11.1 16.7 0.0 44.4 11.1 11.1 27.8 0.0 16.7 5.6 0.0 OJ
CN
rH

Trad.PolyBark.end. 12.2 72.2 66.7 66.7 61.1 72.2 72.2 72.2 88.9 66.7 77.8 77.8 61.1 72.2 72.2 77.8 72.2 66.7 72.2 66.7 77.8 61.1 72.2 VU
|

Trad.PolyBark.14.1 55.6 50.0 50.0 55.6 50.0 55.6 66.7 61.1 61.1 61.1 55.6 55.6 55.6 61.1 61.1 72.2 44.4 61.1 55.6 66.7 50.0 50.0
T—1

t-'
\r>

Trad.Poly.l 2.1 38.9 50.0 55.6 50.0 38.9 44.4 50.0 61.1 38.9 50.0 55.6 38.9 50.0 55.6 61.1 44.4 44.4 50.0 44.4 72.2 50.0 50.0
t-

oi

Trad.FFT4.20.0 63.2 63.2 57.9 63.2 57.9 78.9 57.9 68.4 68.4 63.2 63.2 63.2 73.7 47.4 73.7 57.9 42.1 73.7 57.9 63.2 57.9 63.2 CN
CD

Trad.Tri .bp.10.0 15.8 15.8 10.5 15.8 42.1 21.1 10.5 31.6 10.5 21.1 42.1 31.6 31.6 15.8 57.9 15.8 21.1 36.8 5.3 36.8 26.3 15.8
CN

TT
CN

Trad.Tri.end.12.1 10.5 21.1 15.8 21.1 10.5 5.3 15.8 10.5 21.1 15.8 21.1 10.5 36.8 5.3 26.3 21.1 26.3 31.6 21.1 26.3 10.5 15.8
CN

00

Trad.Tri.10.0 21.1 21.1 10.5 36.8 36.8 26.3 26.3 36.8 21.1 21.1 26.3 21.1 42.1 21.1 36.8 31.6 31.6 31.6 15.8 21.1 10.5 15.8
CD

CN

Cont.TRat.20.1 27.8 27.8 22.2 33.3 16.7 22.2 27.8 44.4 27.8 27.8 27.8 22.2 38.9 22.2 44.4 33.3 22.2 38.9 27.8 38.9 11.1 22.2
lO

00
CN

Sym.TRat.14.1 27.8 27.8 27.8 55.6 33.3 38.9 22.2 50.0 38.9 38.9 33.3 27.8 38.9 16.7 55.6 38.9 16.7 50.0 33.3 50.0 33.3 38.9
I

I*9C
I

Trad.TRat.end.12.1 oqoqoqcocDco<DrHcocorHco-,^cO''tfoqcDcDoqoqoqco
HCOH<NCO<NCOTr<M<NCSCST}<<NTt<HCOOOi-HHTHCS

CO
r-'
CN

Trad.TRat.10.1 21.1 31.6 10.5 36.8 21.1 31.6 26.3 57.9 21.1 10.5 42.1 36.8 36.8 15.8 52.6 15.8 31.6 36.8 10.5 57.9 21.1 21.1
TT

05
CN

Trad.Tri .bp.4 COIOOOHOOIO^^COCOHHHCO^OOOOHIOCOHIC
IOOIOT-HLOOOT—4<X>iOT-<rHCNiOt-'iOLOr-HOlx5'—<0

1-Hf-lCNrHr-lT-lCOCN (N (N TT'-H'-ICNt-HCNCNi-H
00

Trad.TDif.16.4 89.5 89.5 78.9 89.5 94.7 78.9 78.9 94.7 89.5 84.2 89.5 84.2 89.5 94.7 94.7 94.7 78.9 84.2 84.2 100.0 78.9 78.9
CO
t-'
00

Trad.TRat.bp.8 10.5 10.5 10.5 21.1 21.1 21.1 10.5 36.8 10.5 10.5 26.3 10.5 26.3 5.3 42.1 21.1 15.8 10.5 10.5 31.6 10.5 10.5
lO

t-'

Subject 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20 1-21 1-22
|Mean|

Table 8.3. Intelligibility errors per subject for set one of the Experiment II
intelligibility test.6
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Mean
ooidcdoNMoojoortd^oo^ooooosdoNoj
^corrcoTfco^TrcocoTfTrcocococOTrcococoTfcoco

trk 15.8 5.3 10.5 10.5 10.5 5.3 15.8 10.5 21.1 10.5 10.5 5.3 5.3 10.5 10.5 10.5 10.5 5.3 5.3 5.3 10.5 5.3 9.6

tri 31.6 26.3 47.4 21.1 26.3 21.1 31.6 26.3 26.3 21.1 31.6 21.1 21.1 26.3 26.3 21.1 47.4 31.6 36.8 21.1 31.6 21.1 28.0
poly 26.3 10.5 10.5 10.5 21.1 15.8 10.5 5.3 15.8 10.5 15.8 15.8 15.8 15.8 5.3 15.8 5.3 15.8 15.8 5.3 10.5 10.5 12.9
fft 21.1 21.1 26.3 15.8 21.1 10.5 26.3 21.1 21.1 15.8 21.1 21.1 21.1 21.1 21.1 31.6 31.6 21.1 21.1 15.8 31.6 21.1 21.8

Trad.PolyBark.end.12.2 63.2 68.4 68.4 63.2 68.4 68.4 68.4 68.4 68.4 63.2 68.4 68.4 57.9 68.4 63.2 68.4 73.7 63.2 68.4 63.2 68.4 63.2 66.5
Trad.PolyBark.14.1 73.7 78.9 84.2 68.4 78.9 73.7 78.9 84.2 84.2 84.2 84.2 73.7 89.5 73.7 84.2 78.9 68.4 78.9 63.2 68.4 78.9 84.2 78.0

Trad.Poly.12.1 78.9 78.9 84.2 68.4 84.2 84.2 84.2 68.4 89.5 78.9 84.2 94.7 84.2 73.7 68.4 78.9 78.9 78.9 73.7 84.2 78.9 89.5 80.4
Trad.FFT4.20.0 83.3 94.4 88.9 88.9 55.6 83.3 94.4 88.9 77.8 83.3 88.9 77.8 72.2 88.9 88.9 72.2 72.2 72.2 88.9 88.9 88.9 83.3 82.8
Trad.Tri.bp.10.0 22.2 33.3 27.8 22.2 27.8 16.7 33.3 22.2 33.3 27.8 33.3 33.3 33.3 11.1 33.3 38.9 27.8 22.2 27.8 22.2 33.3 22.2 27.5
Trad.Tri .end.12.1 22.2 11.1 16.7 22.2 27.8 11.1 11.1 22.2 33.3 50.0 11.1 33.3 22.2 38.9 5.6 16.7 16.7 27.8 16.7 5.6 22.2 11.1 20.7

Trad.Tri. 10.0 OMCO«^(NrtCOaOt>.qa5(»C4CNCOCO(NCO(NGOCO«
COO«CO^(NCOMN^o6o6s^lNSCO(Nd(NN(o6
COCOCOCOTr<MCOCO(N»-HfOCO(M(N<N<NCOCSCO<N<NCOCO

Cont.TRat.20.1 26.3 42.1 21.1 42.1 26.3 36.8 36.8 31.6 36.8 31.6 42.1 31.6 10.5 36.8 31.6 21.1 31.6 26.3 15.8 21.1 36.8 21.1 29.9
Sym.TRat.14.1 21.1 5.3 10.4 5.3 31.6 21.1 21.1 21.1 10.5 5.3 26.3 26.3 15.8 26.3 10.5 10.5 21.1 21.1 5.3 10.5 15.8 10.5 16.0

Trad.TRat .end .12.1 22.2 27.8 27.8 16.7 22.2 27.8 38.9 27.8 16.7 22.2 33.3 38.9 27.8 5.6 11.1 11.1 27.8 27.8 22.2 11.1 22.2 5.6 22.5
Trad.TRat.10.1 oqcsoii^TfcOTfoqoqo^oqoqoqoqoico^c^^oqcsoirH

S(N(X)CDTfCO^hSo6NNhNo6cOTr(NTPb.'do6(N

Trad.Tri .bp.4 44.4 38.9 27.8 38.9 33.3 27.8 61.1 50.0 16.7 33.3 44.4 50.0 22.2 38.9 22.2 27.8 44.4 33.3 38.9 27.8 33.3 50.0 36.6
Trad.TDif.16.4 83.3 83.3 77.8 83.3 77.8 83.3 66.7 83.3 88.9 83.3 83.3 83.3 72.2 94.4 88.9 83.3 72.2 83.3 77.8 77.8 88.9 77.8 81.6
Trad.TRat .bp.8 COOOOOOOMWCOCONCSOOOO^HINOjoqcOoqNC^NiO

CO(N(M<NfO<MCOCSrH<NCO<N(MrH<NCOCSCOCSt-H(M(M(M

Subject 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 Mean
Table 8.4. Intelligibility errors per subject for set two of the Experiment II
intelligibility test.
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Figure 8.1. Boxplot of the evaluation errors for the first set of subjects, from
the Experiment II evaluation test.
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Figure 8.4. Plot of the combined mean evaluation errors over both sets of
subjects, showing the test (0) and traintest (X) results separately. From the
Experiment II evaluation test. The lines represent one standard error each side
of the mean.
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8.4 Relating Formant Track Errors and Intelli¬
gibility Errors Using the Experiment II Data

Chapter 7 derived a relationship between formant track errors and intelligibility
errors, using the Experiment I results. I replicated the derivation using the re¬

sults from Experiment II. The main difference between the derivations was that
with Experiment I it was possible to use the results per subject. The Experiment
II data was split into two subject groups and I was forced to use the mean in¬
telligibility errors and estimated variances, resulting in poorer confidence bounds
than might have been obtained with a single subject group.

The highest correlation with intelligibility error for untransformed formant
errors was for Fl, at 0.93, compared with 0.90 with the Experiment I data. This
gave the regression equation

which is a flatter line than that obtained for Experiment I (see Equation 7.1).

Fl2 had a higher correlation with the intelligibility errors of 0.98, and pro¬

duced a significantly better fit. No other transformations or combinations of
transformations made a significant improvement. The fit for Fl2 was

which gave the regression line shown in Figure 8.5 with 90% confidence bands.
A plot of confidence bounds against predicted intelligibility error is shown in
Figure 8.6. The bands are similar to those in Figure 7.7, but the points used in
the derivation span a wider range.

Intelligibility Error = —3.09 + 67.3(F1 error) (8.1)

Intelligibility Error = 12.0 + 62.6(F1 error)2 (8.2)
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F1 Vowel Formant Error (Bark)

Figure 8.5. The regression line for the square of the F1 formant error, predicting
intelligibility error (for Experiment II), with 90% confidence bands shown.
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Figure 8.6. The width of the various confidence bands for the predicted Ex¬
periment II intelligibility errors. If two predicted values differ by more than the
indicated figure then there is that level of confidence that they are truly differ¬
ent. The shaded areas represent levels of intelligibility error outside the upper
and lower limits of the points used in deriving the regression, and so are less
firmly based than the unshaded area. The bands are based on a one-sided t-test.
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Chapter 9

Experiment II: Evaluation of
Representations and Methods

9.1 Question 1: Ability of ANNs to Produce
Vowel Formant Tracks

It is clear from the raw results of Experiment II (see Figures 8.3 and 8.4) that
some of the ANNs learned to produce vowel formant tracks whose intelligibility
was only a few percentage points worse than the intelligibility of the original
vowel formant tracks used in training. The errors were fairly high, around 20-
25%, but so were those of the original tracks when resynthesised. This reflects
the inadequacies of the synthesis process used, especially the concatenation of
the consonant tokens onto the synthesised vowel token. Interestingly, the best
ANN used in the Experiment II intelligibility test (Trad.Tri.end.12.1) had a lower
overall intelligibility error than the resynthesis of the Traditional output repre¬
sentation (extracted from the original speech data) used in training it. I think
that this is due to the regularised nature of the ANN output (see Chapter 10).
That is, the original speech contains the natural variation of human utterances,
and is affected by context beyond the triphone, whereas the ANN speech is an

"average" utterance of the vowel in the context of the triphone alone.
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9.2 Question 2: Comparing Different Input Rep¬
resentations

9.2.1 The Performance of Three Input Representations

The three forms of input representation to be compared are described in Sec¬
tion 6.4. They are the Traditional representation, the Continuous representation
(which codes place of articulation, backness and height as continua instead of
using binary values) and the Symbolic representation which uses a 1-of-n coding
which does not incorporate any description of phonetic or phonemic features. The
output representation used is that I have called the Tri-ratio representation. The
Bark scaled F2 and F3 frequencies are represented as ratios to the Bark scaled
F1 frequency. The ANNs were trained using the conjugate gradient method and
cross-validation was used to determine the end of training. The best ANNs us¬

ing these three sets of representations were Trad.TRat.10.1, Cont.TRat.20.1 and
Sym.TRat.14.1. The test set and traintest set intelligibility errors for these three
ANNs and their associated standard errors are shown in Figure 9.1.

The probabilities of the ANNs having the same performance was calculated
using a paired t test on the intelligibility errors per subject. The results for the
test set are shown in Table 9.1. There is no clear best input representation. The
Continuous representation seems to be less similar to the other two, but not at
a significant level.

The results for the traintest set are shown in Table 9.2. The Traditional

representation did significantly worse than the Symbolic and Continuous repre¬

sentations.

From this it seems that the Traditional representation may have resulted in
slightly poorer performance on the training set, but that the generalisation to
new triphones was no worse than the others.
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Figure 9.1. The test set (0) and traintest set (X) intelligibility errors of the best
ANNs using the Traditional, Continuous and Symbolic input representations and
the Tri-ratio output representation. The bars show the standard errors.

Symbolic Continuous Traditional

Symbolic — 0.239 0.945
Continuous 0.239 — 0.172
Traditional 0.945 0.172 —

Table 9.1. The probabilities of the best ANNs using the three types of input
representation having the same performance on the test triphone set.
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Symbolic Continuous Traditional

Symbolic — 0.625 0.007
Continuous 0.625 — 0.002
Traditional 0.007 0.002 —

Table 9.2. The probabilities of the best ANNs using the three types of input
representation having the same performance on the traintest triphone set.

9.2.2 Generalising to a New Vowel

The test set of triphones contains the vowel /u/ (in the triphone /but/), which
does not appear in the training set. This provides an interesting test of the
generalisation resulting from the use of features to represent phonemes in the
input representations. The Traditional and Continuous input representations
both use the same feature representation of vowels (see Table 6.2). They differ in
the feature representations used for consonants (see Tables 6.1 and 6.3). As can

be seen in Table 9.3, these representations do result in the vowel being perceived
as a /u/. My conclusion is that the ANNs really do use the information encoded
in the phonetic representations about the acoustic nature of the vowel and that
the ANNs can produce a new vowel on the basis of the phonetic features.

u 3 a

Traditional
Continuous

Symbolic

91% 9%
100%
18% 77% 5%

Table 9.3. The classifications of the vowel in the triphone /but/ synthesised
using formant tracks created by ANNs using the Traditional, Continuous and
Symbolic input representations. Results are from Experiment II, and are for 22
subjects.

The Symbolic input representation uses a one-of-n coding to represent the
vowels (see Table 6.5). This does not encode any phonetic information. The
input node representing /u/ will not have been set to any value other than zero in
training, so the ANN should have totally disregarded that input node. Therefore
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the /u/ input representation corresponds to turning off all the other nodes in the
vowel section of the input. The expected outcome might be a neutral or average
vowel (in the context), possibly perceived as a schwa, although the duration of
the vowel is longer than might be expected for a schwa. In the intelligibility tests,
the possible response words for each utterance did not include schwa, as it was
not possible to construct CVC words containing schwa. Table 9.3 shows that
77% of subjects classified the vowel as a /3/ which has a similar vowel quality
to schwa, but whose expected duration more closely matches the utterance in
question. Most of the remaining subjects classified the vowel as a /u/. I think
that this is probably due to an expectation created by hearing a number of other
utterances which were clearly /but/ in the same rhyme test. There were three
different triphones with a /b_t/ context presented in the rhyme tests — /but/,
/bit/ and /bat/ . The latter two triphones would be distinctly shorter than
/but/, making it the likely choice by subjects who were unsure of an utterance's
identity.

The vowel formant tracks for the original speech, the Tri representation ex¬

tracted from the original speech and the tracks produced by ANNs using the
Traditional, Continuous and Symbolic input representation are shown in Fig¬
ure 9.2. The F1 track is reproduced accurately by the ANNs, but the F2 tracks
are lower than in the original speech and the F3 tracks are all different in shape.
The Sym formant errors are larger than those for Trad and Cont on F1 and F3.

The representation of vowels in the Traditional and Continuous representa¬
tions is in terms of three features — backness, height and rounding. The back
feature takes the values {0.0, 0.5, 1.0} and the height feature takes the values
{0.0, 0.33, 0.67, 1.0}. It is possible that the performance in producing the vowel
/u/ might be improved by adjusting the values of the back and height features
associated with it (currently both 1.0). It might even be possible to incrementally
adjust values of these features to improve performance on all vowels.
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Figure 9.2. Vowel formant tracks for the triphone /but/. The original tracks
extracted from the speech data are shown (solid lines), together with the Tri
representation of these tracks and the tracks produced by ANNs using the Tra¬
ditional, Continuous and Symbolic input representations.
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9.2.3 Questions 2 and 8: Input Representations and Hid¬
den Nodes

The number of hidden nodes necessary to accurately learn the training data
and produce good generalisation may provide some insight into the "difficulty"
of learning the mapping between input and output data for the representations
used. For more discussion, see Section 6.6.4.

Looking at the test set formant track errors plotted against the number of
hidden nodes of the ANNs for the three input representations no pattern is ap¬

parent. Figure 9.3 shows the errors for the Symbolic input representation. The
other two ANNs have very similar graphs. The situation is even worse if we look
at the patterns of predicted intelligibility error as we often cannot unequivocally
choose a best ANN. Figure 9.4 shows the graph for the ANNs using the Symbolic
input representation1.

There seems to be no clear relationship between number of hidden nodes
and performance for the three sets of ANNs looked at, and no clear differences
between the sets. Therefore nothing can be concluded about the power of ANN
necessary to use the different representations.

9.3 Question 3: Comparing the Representational
Capabilities of the Output Representations

The three output representations used (Tri, Polynomial and FFT) differ in their
ability to represent vowel formant tracks. The Experiment II intelligibility test
included triphones produced using the original vowel formant tracks, and the
three output representations extracted from these tracks. The results can be
seen in Figure 8.3. The best intelligibility came from the Polynomial represen¬
tation, followed by the original tracks, the FFT representation and finally the

1 These two figures are very similar, but the predicted intelligibility error is based only on
the F1 errors, not the total errors.
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Figure 9.3. The output errors for the ANNs trained using the Symbolic input
representation and the Tri-ratio output representation. The best value is marked
with a larger dot.
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Figure 9.4. The predicted intelligibility errors for the ANNs trained using the
Symbolic input representation and the Tri-ratio output representation. The best
predicted value is marked with a larger dot and the values having a greater than
5% chance of actually being better than than that value are marked with a cross.
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Tri representation. However, the Polynomial representation was not significantly
better than the original tracks. The FFT representation was significantly worse

than the original tracks only at the 10% level. The Tri representation was sig¬
nificantly worse than everything else at the 0.1% level. The results of a paired
t-test on the intelligibility errors per subject comparing the representations are

shown in Table 9.4.

Polynomial Original FFT Tri
Polynomial
Original
FFT
Tri

1.00 0.74 0.02 0.00
0.74 1.00 0.07 0.00

0.02 0.07 1.00 0.00
0.00 0.00 0.00 1.00

Table 9.4. The probabilities of the Polynomial representation, the original for-
mant tracks, the FFT representation and the Tri representation having the same
real intelligibility errors on the test triphone set.

9.4 Question 4: Comparing Different Output
Representations

9.4.1 The Different Output Representations

The different output representations to be compared are described in Section 6.5.
For each output representation the Traditional input representation was used.
The conjugate gradient training algorithm was used with the end of training
determined by cross-validation.

There are three variants of the Tri representation, where each vowel formant
track is described by a triple of values — at the beginning, centre and end of the
track. In all these cases the formant frequencies were Bark scaled. The Tri-ratio
representation represented the F2 and F3 values as ratios to the F1 values. The
Tri-difference representation represented the F2 and F3 formant frequencies as

differences from the first formant and the Tri-plain representation did no special
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processing. In all cases where values were not automatically mapped onto [0, 1]
by the processing, this was done as a final stage. The best ANNs for these three
representations were Trad.TRat.10.1, Trad.TDif.16.4 and Trad.Tri.10.0 respec¬

tively.

An alternative representation was to represent each vowel formant as a poly¬
nomial curve and to use the polynomial coefficients as the output representation.
The two variants of this used were polynomials of order 2 with no Bark scaling of
the vowel formant tracks and polynomials of order 2 with Bark scaling. The best
ANNs for these two representations were Trad.Poly.12.1 and Trad.PolyBark.14.1
respectively.

The final type of representation used were Fourier transforms of the vowel
formant tracks. The Fourier coefficients were used as the representations, with
the complex values being represented by two real numbers. The three types of
representation used were four Fourier coefficients, four Fourier coefficients of Bark
scaled tracks and two Fourier coefficients of Bark scaled tracks. The best ANNs

for these three representations were Trad.FFT4.20.0, Trad.FFTBark4.10.0 and
Trad.FFTBark2.14.1. respectively. However, since the predicted intelligibility
errors for these three ANNs were so poor, only Trad.FFT4.20.0 was used in
Experiment II.

The intelligibility of the basic representations used was also tested. That is,
utterances were synthesised from the representations used in training the ANNs
and tested. The vowel formant tracks extracted from the original recorded speech,
upon which everything else was based, were also used to create utterances which
were tested. This should give some idea of the limits of performance possible
using these representations and how near the ANNs get to reaching the best
possible performance. The basic representations are named Tri, Poly and FFF,
with the original vowel formant tracks named Trk.
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9.4.2 Accuracy of Learning the Training Set

I first looked at how well the three output representations Tri-plain, Poly and
FFTJt are learnt by the ANNs, examining the errors for the output node corre¬

sponding to the frequency value of the centre of the first formant. However, the
magnitude of the errors must be judged relative to the distribution of the target
values for the output nodes. An error of 0.1 is far more serious if all the output
values for the training set are in the region [0.49, 0.51] than if they cover the
region [0.1, 0.9].

Given the shape of the error distributions and the output value distributions
it seems reasonable to scale the output errors by the standard deviations of the
output values per node. This should give a clearer view of how well the training
set output values were learnt. Histograms of the scaled values for the nodes
determining the frequency value of the centre of the first formant are shown in
Figure 9.5.

9.4.3 Accuracy of Production of the Traintest and Test
Triphones

The intelligibility scores are based not on the whole corpus of speech used in
training, but on 20 triphones chosen from the training set (called the traintest
set) and on 17 triphones not included in the training set comprising a test set.
The intelligibility errors for these two sets are shown in Figure 9.6. While the
intelligibility errors for the representations themselves are similar for both the
traintest and test sets, there are significant differences between the intelligibil¬
ity errors for the speech produced by the ANNs. In particular, Trad.Tri. 10.0,
Trad.Poly. 12.1, Trad.PolyBark. 14.1, Trad.FFT4.10.0 and Trad.Poly. 12.1 had sig¬
nificantly different results for the test and traintest sets.

The probabilities of the best ANNs for each output representation and the
original output representations having the same performance, calculated using a

paired t-test on the intelligibility errors per subject is shown in Table 9.5 for the
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FFT4
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Poly

2 4 6

Scaled Absolute Error

Figure 9.5. The scaled errors on the output node determining the frequency
of the centre of the first formant of the best ANN trained to produce the Tri¬
plain, Polynomial and FFT4 representations of the training data. The errors are
scaled by dividing by the standard deviation of the output node values for the
representation.
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test set and Table 9.6 for the traintest set.

For the test set there is no significant difference in the intelligibility errors for
the original vowel formant tracks and the Polynomial and FFT representations.
The Tri representation does slightly worse, being significantly different from the
tracks and the FFT representation at the 5% level and different from the Polyno¬
mial representation at the 10% level. It may seem odd that the 10% significant
difference here is for the two representations with the most difference between
the mean intelligibility errors, but the errors per subject must have followed more

similar patterns than the others.

The next best performers on the test set are the ANNs using the Tri-ratio
and Tri-plain output representations. Trad.TRat.10.1 and Trad.Tri.10.0 are sig¬
nificantly different from all other ANNs and the representations at the 1% level,
but are not significantly different from each other.

The ANNs using Polynomial, PolyBark and FFT4 output representations
are significantly worse. The Polynomial and PolyBark ANNs are significantly
different at the 10% level, with Bark scaling resulting in worse performance. The
Tri-difference representation leads to the worst performing ANN of all.

Looking at the traintest set, the intelligibility errors for the original vowel for¬
mant tracks, the Polynomial and the FFT representations are even more similar
than for the test set. The ANN trained using the Tri-plain output representation
produced speech as intelligible as the Tri representation itself, but significantly
worse than the other representations (5% level). The Tri-ratio trained ANN was

the next best performer, clearly different from all others. Much worse were the
Polynomial and PolyBark trained ANNs, with the Bark scaling the worst of the
pair at 10% level significance. The FFTJ. and Tri-difference trained ANNs had
the same level of performance, significantly worse than anything else.

Histograms of scaled error values for the nodes corresponding to the centre of
the first formant are shown in Figures 9.7 and 9.8.

It seems clear that the error values for the output nodes representing the
frequency of the centre of the first formant are worse where the intelligibility
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Figure 9.6. The mean intelligibility errors for the test set (0) and traintest set
(X) of triphones, over the ANNs used for testing the output representations. The
bars represent one standard deviation each side of the mean.
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poly 0.44 0.79 0.06 0.00 0.00 0.00 0.00 0.00 0.00
trk 0.44 — 0.55 0.04 0.00 0.00 0.00 0.00 0.00 0.00

fft 0.79 0.55 — 0.01 0.00 0.00 0.00 0.00 0.00 0.00

tri 0.06 0.04 0.01 — 0.00 0.01 0.00 0.00 0.00 0.00

Trad.Tri.10.0 0.00 0.00 0.00 0.00 — 0.13 0.00 0.00 0.00 0.00

Trad.TRat. 10.1 0.00 0.00 0.00 0.01 0.13 — 0.00 0.00 0.00 0.00

Trad.Poly.12.1 0.00 0.00 0.00 0.00 0.00 0.00 — 0.07 0.26 000
Trad.PolyBark .14.1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 — 0.94 0.00
Trad.FFT4.20.0 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.94 — 0.00

Trad.TDif.16.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —

Table 9.5. The probabilities of the best ANNs using the different types of input
representation having the same real intelligibility errors on the test triphone set.
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poly 0.89 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00
trk 0.89 — 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00
fft 0.41 0.17 — 0.01 0.00 0.00 0.00 0.00 0.00 0.00
tri 0.00 0.01 0.01 — 0.53 0.00 0.00 0.00 0.00 0.00

Trad.Tri.10.0 0.00 0.00 0.00 0.53 — 0.00 0.00 0.00 0.00 0.00
Trad.TRat.10.1 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00

Trad.Poly. 12.1 0.00 0.00 0.00 0.00 0.00 0.00 — 0.07 0.00 0.00
Trad.PolyBark. 14.1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 — 0.00 0.00

Trad.FFT4.20.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 — 0.52
Trad.TDif.16.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 —

Table 9.6. The probabilities of the best ANNs using the different types of input
representation having the same real intelligibility errors on the traintest triphone
set.
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Figure 9.7. The scaled absolute error values for the test set of triphones on
the output node determining the frequency of the centre of the first formant of
the best ANN trained to produce the Tri-plain, Polynomial and FFT4 repre¬
sentations. The scaling was by the standard deviation of the error values of the
representation on the training set.
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Figure 9.8. The scaled absolute error values for the traintest set of triphones
on the output node determining the frequency of the centre of the first formant
of the best ANN trained to produce the Tri-plain, Polynomial and FFTJ repre¬
sentations. The scaling was by the standard deviation of the error values of the
representation on the training set.
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errors are worse, both for the traintest and test sets of triphones. This pattern
is repeated if the errors across all of the nodes are examined. The output errors
for the training set did not follow this clear pattern (compare, for instance, Fig¬
ures 9.5 against 9.7 and 9.8). The traintest set, being a subset of the training
set, should show the same pattern as the training set as a whole, but is clearly
not very representative.

Comparing the test set errors with the training set errors shows that while the
training set output values for the Tri-plain, Poly and FFT4 representations were

learnt with similar accuracy, generalisation varied, with the Tri-plain representa¬
tion leading to better generalisation, the Poly representation being significantly
worse and the FFT4 representation being worst of all.

9.4.4 Effect of Errors in Output Values on Intelligibility
Errors

Once the output error values have been scaled to account for the varying spreads
of output values in the training data there is a clear relationship between the
output errors and the intelligibility errors. Hence, there is no evidence from the
above results for differing sensitivities of the vowel formant representations to
errors in the output values. Any such effect is buried in the differences between
the test set output error patterns for the three representations examined.

9.4.5 Questions 4 and 8: Output Representations and
Hidden Nodes

As for the input representations, the number of hidden nodes necessary to accu¬

rately learn the training data and produce good generalisation may provide some

insight into the "difficulty" of learning the mapping between input and output
data for the representations used. For more discussion, see Section 6.6.4.

Examining the total output errors for all ANNs on any one of the output

148



representations shows no obvious patterns, except that the more successful rep¬
resentations tend to have lower numbers of hidden nodes in their most successful

ANN. Figure 9.9 shows the ANN output errors for the ANNs using the PolyBark
output representation. Looking at the predicted intelligibility errors (which are

proportional to the output errors for F1 only) there does seem to be worse perfor¬
mance for lower numbers of hidden units, and possibly a worsening performance
with more hidden units than the best for some representations. However, this is
very inconclusive and should be regarded with some scepticism. Figure 9.10 shows
the predicted values for the ANNs using the PolyBark output representation.

a-

8 _

I
I
I
a

|
a -

Trad.PolyBark

Number of Hidden Nodes

Figure 9.9. The total output errors for all ANNs trained on the PolyBark
output representation. The best performance is marked with a larger dot. The
Traditional input representation was used.
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Trad.PolyBark

10

Number of Hktten Nodes

Figure 9.10. The predicted intelligibility errors for all ANNs trained on the
PolyBark output representation. The best performance is marked with a larger
dot. Errors with a more than 5% chance of being better than the best choice are
marked with a cross. The Traditional input representation was used.
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9.5 Comparing Different Training Methodolo¬
gies

9.5.1 Question 5: Comparing Back-propagation to Con¬
jugate Gradient ANN Training Algorithms

Most of the ANNs in my experiments were trained with an artificial neural net¬
work simulator using the conjugate gradient algorithm [54, 77] to minimise the
output errors on the training set. A few ANNs were trained with a different simu¬
lator using the more well-known back-propagation algorithm [84]. The conjugate
gradient method was preferred due to the great speed-up in training times that
resulted, typically of the order of 5-10 times. Comparisons can be made between
the intelligibility errors for the speech produced on the test and traintest sets by
two pairs of ANNs. Trad.Tri.10.0 can be compared with Trad.Tri.bp.10.0 and
Trad.TRat. 10.1 can be compared with Trad.TRat.bp.8, although for the latter
pair there is a further difference in that Trad.TRat. 10.0 has no hidden layer. Fig¬
ure 9.11 shows the mean intelligibility errors for these ANNs and the associated
standard errors for the test and traintest triphone sets. Tables 9.7 and 9.8 show
the results of a pairwise t-test on the mean marks per subject for the ANNs for
the test and traintest triphone sets.

There is no significant difference in intelligibility error between Trad.Tri. 10.0
and Trad.Tri.bp. 10.0 for the traintest set. There is a significant difference for
the test set, with the back-propagation method doing better than the conjugate
gradient method.

There is a significant difference (at the 5% level) between the intelligibility er¬

rors on the traintest set for Trad.TRat. 10.0 and Trad.TRat.bp.8, with the latter,
using back-propagation, performing better. This time there is no significant dif¬
ference on the test set. There is a second difference between these ANNs however,
in that Trad.TRat.bp.8 has no hidden layer. It seems that having no hidden layer
had no negative effects on performance (see Section 9.5.3). So, in one case the
back-propagation algorithm seems to produce better generalisation to the test
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Figure 9.11. The mean test set (O) and traintest set (X) intelligibility errors
for the ANNs which differ on the minimisation algorithm, using either conjugate
gradient or back-propagation methods. The bars show one standard error each
side of the means.
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Trad.Tri.10.0 Trad.Tri.bp.10.0 Trad.TRat.10.1 Trad.TRat.bp.8
Trad.Tri.10.0

Trad.Tri.bp.10.0
Trad.TRat.10.1

Trad.TRat.bp.8

— 0.00
0.00 —

— 0.16
0.16 —

Table 9.7. The probabilities of the ANNs which differ in minimisation method
not having the apparent ordering of intelligibility error for the test triphone set.

Trad.Tri.10.0 Trad.Tri.bp.10.0 Trad.TRat.10.1 Trad.TRat.bp.8
Trad.Tri.10.0

Trad.Tri.bp.10.0
Trad.TRat.10.1

Trad.TRat.bp.8

— 0.10
0.10 —

— 0.00
0.00 —

Table 9.8. The probabilities of the ANNs which differ in minimisation method
not having the apparent ordering of intelligibility error for the traintest triphone
set.
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set without boosting training set performance, and in the other case the training
set performance is improved but does not produce better generalisation.

Overall, I think little can be confidently stated about the relative merits of
the back-propagation and conjugate gradient minimisation algorithms when ap¬

plied to this particular set of problems, although the results do suggest that using
the back-propagation algorithm may give better results. Against this must be
balanced the increased training times for back-propagation compared with the
conjugate gradient method. The relative benefits may well depend on the indi¬
vidual case, being determined by the error landscape the learning algorithm must
cross (which depends on the nature of the mapping problem), and the starting
point in that landscape (which depends on the initial state of the ANN).

9.5.2 Question 6: Comparing Cross-validation to Training
to Completion Methodologies

Most ANNs were trained using the cross-validation methodology. That is, after
each update of the ANN connection weights in training, the performance on a

cross-validation set (not part of the training set or the final test set) was deter¬
mined. The ANN state producing the best performance on the cross-validation
set was taken to be the result of the training procedure. This methodology aims
to prevent the effects of overtraining. Some of the ANNs were trained to com¬

pletion without using a cross-validation set. The state of the ANN when the
training procedure reached a steady state (ie. there was no further improvement
possible from the current state) was taken to be the final outcome of the training
procedure. Trad.TRat.10.1, trained using cross-validation can be compared to
Trad,TRat.end.12.1, trained to completion. Trad.Tri.10.0, trained using cross-

validation, can be compared to Trad.Tri.12.1, trained to completion. Figure 9.12
shows the mean intelligibility errors of these ANNs and the associated standard
errors, for the test and traintest triphone sets. Table 9.9 and 9.10 show the results
of a pairwise t-test on the mean marks per subject of the ANNs, for the test and
traintest sets.
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Figure 9.12. The mean test set (O) and traintest set (X) intelligibility errors for
the ANNs which differ in the training methodology using either cross-validation
or training to completion methods. The bars show one standard error each side
of the means.
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Trad.TRat.10.1 Trad.TRat.end.12.1 Trad.Tri.10.0 Trad.Tri.end.12.1
Trad.TRat.10.1

Trad.TRat.end. 12.1
Trad.Tri.10.0

Trad.Tri.end. 12.1

— 0.65
0.65 —

— 0.00
0.00 —

Table 9.9. The probabilities of the ANNs which differ in training methodology
(using either cross-validation or training to completion methods) not having the
apparent ordering of intelligibility error for the test triphone set.

Trad.TRat.10.1 Trad.TRat.end.12.1 Trad.Tri.10.0 Trad.Tri.end.12.1
Trad.TRat.10.1

Trad.TRat.end. 12.1
Trad.Tri.10.0

Trad.Tri.end. 12.1

— 0.00
0.00 —

— 0.43
0.43 —

Table 9.10. The probabilities of the ANNs which differ in training methodology
(using either cross-validation or training to completion methods) not having the
apparent ordering of intelligibility error for the traintest triphone set.

156



We have the same odd pattern that occurred in Section 9.5.1. Trad.TRat.-
end.12.1 performs significantly better than Trad.TRat.10.0 on the traintest set
but not on the test set, while Trad.Tri.end. 12.1 performs significantly better than
Trad.Tri.10.0 on the test set but not on the traintest set. Again, it seems that
training to completion may have been advantageous in this case, but the nature
of the improvement is not clear cut.

The use of the cross-validation methodology was inadequate in these exper¬

iments anyway. The complete set of CVC triphones available was smaller than
would have been ideal. This necessitated using most of the triphones (514) in the
training set, with the cross-validation and test sets being very small (20 triphones
each, originally). Ideally, these three sets would have been of comparable sizes,
all larger than the actual training set. This would have required a substantially
larger amount of phonemically labelled speech from a single speaker, recorded
under a single set of conditions. This was not available.

Using a larger set of consonants, instead of just the stop consonants used
here, would have much increased the number of triphones available, while at the
same time making the mapping from phonemic to acoustic descriptions more

complex. The complexity may well rise more slowly than the increasing number
of triphones. The idea of phonemes being compositions of features supports this,
as the ANNs would be learning the effects of single features and small groups
of features instead of each phoneme being totally distinct in its effects from all
others. If learning the effects of one consonant on the adjacent vowel formants
did not carry over to other consonants with similar features, then the notion
of phonemic features would be weakened. Therefore, it seems that increasing
the number of triphones used in training, cross-validation and testing may well
have lead to better generalisation performance by the ANNs, and more satisfac¬
tory measurement of that performance, despite the increased complexity of the
problem.
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9.5.3 Question 7: Comparing ANNs Using a Hidden Layer
to ANNs With No Hidden Layer

Most of the ANNs trained had a single hidden layer. This allows the ANN to

approximate to any required accuracy a large class of continuous functions, given
enough hidden nodes and a training algorithm capable of learning the mapping.
The task of mapping phonemic descriptions of CVC triphones to the first three
formants of the vowel almost certainly falls within the class of functions that an
ANN can approximate.

A small number of ANNs were trained using no hidden layer. That is, the
input units were directly connected to the output units by weighted links. This
architecture limits the class of functions that the ANN can approximate to linear
functions. This is a severe restriction and my expectation was that these percep-

tron ANNs would not be capable of learning the required mapping to the same

accuracy as the three-layer ANNs.

The three layer ANN Trad.Tri.bp.10.0 (with 10 hidden nodes) was com¬

pared to the two-layer ANN Trad.Tri.bp.4. Both of these ANNs used the back-
propagation algorithm in training. The three layer ANN Trad.TRat. 10.1 (with
10 hidden nodes) was compared with the two-layer ANN Trad.TRat.bp.8. The
first of these was trained using the conjugate gradient algorithm and the second
was trained using the back-propagation algorithm. Figure 9.13 shows the mean

intelligibility errors of these ANNs and the associated standard errors, for the
test and traintest triphone sets. On the traintest set, the first pair had almost
identical results, while for the second set Trad.TRat.bp.8 had significantly bet¬
ter performance. However, it is possible this was entirely due to the use of the
back-propagation algorithm. On the test set, there was no significant difference
within the pairs.

These results suggest that the ANNs with no hidden layers performed as well
as the ANNs with a hidden layer. For the second pair, the ANN with no hidden
layer performed better, but this may have been due to the difference in train¬
ing algorithm. Contrary to my expectations, it would seem that the mapping
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from the phonemic description of CVC triphones (using only stop consonants
and monophthongs) to a description of the Fl, F2 and F3 formants can be ap¬

proximated as successfully by a combination of linear functions as by a non-linear
function. One caveat is that the inadequacies of the training, cross-validation and
test sets may have obscured a real difference between the potential performance
of ANNs on this task.

Figure 9.13. The mean test set (0) and traintest set (X) intelligibility errors
for the ANNs which differ on whether they have a hidden layer or not. The bars
show one standard error each side of the means.
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Trad.Tri.bp.10.0 Trad.Tri.bp.4 Trad.TRat.10.1 Trad.TRat.bp.8
Trad.Tri.bp. 10.0
Trad.Tri.bp.4
Trad.TRat.10.1

Trad.TRat.bp.8

— 0.20
0.20 —

— 0.16
0.16 —

Table 9.11. The probabilities of the ANNs which differ in whether they have a
hidden layer or no hidden layer not having the apparent ordering of intelligibility
error for the test triphone set.

Trad.Tri.bp.10.0 Trad.Tri.bp.4 Trad.TRat.10.1 Trad.TRat.bp.8
Trad.Tri.bp.10.0
Trad.Tri.bp.4
Trad.TRat. 10.1

Trad.TRat.bp.8

— 0.93
0.93 —

— 0.00
0.00 —

Table 9.12. The probabilities of the ANNs which differ in whether they have a
hidden layer or no hidden layer not having the apparent ordering of intelligibility
error for the traintest triphone set.
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9.6 The Best Combinations of Representations
and Methods

The best representations and methods are summarised in Table 9.13.

Test set Traintest set

Input
Representation

Any Symbolic or
Continuous

Output Tri-plain or Tri-plain
Representation Tri-ratio

Back-propagation or Unclear Unclear

conjugate gradient
Cross-validation Completion? Completion?
or to completion Unclear Unclear

3-layer or No No

2-layer difference difference

Table 9.13. The best representations and methodologies, for the test and train-
test sets of triphones.

Of the trained ANNs used in the Experiment II intelligibility test (see Chap¬
ter 8), Trad.Tri.end.12.1 performed best on the test set. On the traintest set,
Trad.Tri.bp.8 performed best, closely followed by Trad.TRat.end.12.1 and Trad.-
Tri.end. 12.1. On combined scores, Trad.Tri.end. 12.1 came out best. This is
consistent with the best choices determined above, except for the Traditional in¬
put representation. However, there were no examples of ANNs evaluated in the
Experiment II intelligibility test with Symbolic or Continuous input representa¬
tions and the best choices of other values. That the best overall combination

is compatible with the individual best choices suggests that they are indepen¬
dent, or that any interaction is too small to show in the restricted number of
combinations examined here.
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Chapter 10

Comparison of Original and ANN
Produced Vowel Formant Tracks

This chapter looks at some of the vowel formant tracks produced by an ANN,
comparing them to the original tracks used in training. I examine some interesting
features of the ANN output and the original data.

I have used the ANN Trad.Tri.end. 12.1, which had the best overall perfor¬
mance on the test and traintest triphone sets in the final intelligibility test. The
effects of duration and contexts are illustrated. The comparisons are made us¬

ing the Tri representation, where each formant track is represented by a triple
of values — the initial, central and final frequency values of the formant. In
the figures, phonemes are written in the Machine Readable Phonetic Alphabet
(MRPA), described in Appendix C.

10.1 Formant Tracks, Durations and Vowels

Figure 10.1 shows the Fl, F2 and F3 vowel formant tracks for all instances of
/pot/ in the original training data. Figure 10.2 shows the equivalent vowel for¬
mant tracks produced by the ANN Trad.Tri.end.12.1. The tracks for the original
data show the variability of the training data. The tracks produced by the ANN
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follow a regular pattern, with the effect of duration clearly apparent. For in¬
stance, for F2, longer durations lead to a lowering of the central frequency, which
could be interpreted as a closer approach to the vowel target. The onset and
final frequencies are also lowered with increased duration, but not to the same

extent. Figure 10.3 shows how the central vowel formant frequencies vary with
vowel duration. The points form straight lines with no flattening off. If the vowel
centres are tending towards a vowel target then the target does not appear to be
reached in any of the utterances.

Figure 10.4 shows Fl, F2 and F3 vowel formant tracks from the original data
and from the ANN for an instance of each vowel in the context /p_t/. The instance
chosen is that with the median duration over all instances of the triphone. If there
are an even number of instances of a triphone, the instance with duration just
greater than the median was chosen. The tracks produced by the ANN follow the
same general pattern as those taken from the original data, but with numerous

small differences. These differences may be as much due to the random variability
in the original natural speech as to a failure of the ANNs to produce intelligible
vowel formants. For instance, the /pat/ vowel formants produced by the ANN
differ in shape from the original vowel formants for the utterance shown, but are
in fact much closer to the vowel formant shapes of all the other original /pat/
triphones.

10.2 The Distributions of the Frequencies of the
Centre Points of the Vowel Formant Tracks

Figure 10.5 shows the distributions of the frequencies of the centre points for
each vowel, for the original data and for the tracks produced by the ANN Trad.-
Tri.end.12.1. This follows the expected pattern, with the ANN produced tracks
having similar medians but smaller variances than the original data.

Figure 10.6 shows the same comparison for the context /p_t/ only. Both the
original and ANN tracks show a general reduction in variance, except for /pat/
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Time (Seconds)

Figure 10.1. The original vowel formant tracks for all instances of the triphone
/pot/ in the training data. The formant tracks have been summarized as the
initial, central and final frequencies.
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Time (Seconds)

Figure 10.2. The vowel formant tracks produced by the ANN Trad.Tri.end.12.1
for all instances of the triphone /pot/ in the training data. The formant tracks
have been summarized as the initial, central and final frequencies.
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Figure 10.3. The frequencies of the centre of the Fl, F2 and F3 vowel formants
produced by the best overall ANN for all instances of the triphone /pot/ in the
training data, plotted against the vowel duration.
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and /pit/. The ANN F1 tracks show almost no variance, showing that duration
has had little effect in determining the F1 tracks in this context (and probably
in all contexts). This can be seen in Figure 10.2, where the F1 tracks have a very

narrow spread.

10.3 The Distributions of the Frequencies of the
End Points of the Vowel Formant Tracks

Figure 10.7 shows the distribution of the frequencies of the initial points of the
vowel formant tracks, for both the original data and the tracks produced by the
ANN Trad.Tri.end.12.1. Figure 10.8 shows the distribution for triphones with
an initial /p/. Figure 10.9 shows the distribution in the context /p_t/. In all
cases the medians are similar for the original and ANN produced tracks, with
smaller variances for the ANN produced tracks. Adding more context reduces
the variances. For instances of the same triphone, the variance is in general small
for the original speech and very small for the ANN produced speech. It is clear
that the final phoneme does have an effect on the frequency of the start point
of the vowel formants. The frequencies of the final points of the vowel formant
tracks behave in the same fashion.
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Figure 10.4. Formant tracks for context /p_t/ for each vowel, for the original
training data (dashed line) and the ANN Trad.Tri.end.12.1 (solid line). The
instance with the median duration is plotted.
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F1 Values for Original Data F1 Values for ANN Output

F3 Values for Original Data F3 Values for ANN Output

Figure 10.5. Distributions of the vowel centre frequencies for the original for-
mant tracks and the formant tracks produced by the ANN Trad.Tri.end. 12.1.
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F1 Values for Original Data F1 Values for ANN Output

a aa i o oo u

F2 Values for Original Data F2 Values for ANN Output

a aa i o oo u

Figure 10.6. Distributions of the vowel centre frequencies for the original for-
mant tracks and the formant tracks produced by the ANN TradTri.end.12.1, in
context /p_t/.
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Figure 10.7. Distributions of the vowel onset frequencies for the original formant
tracks and the formant tracks produced by the ANN Trad.Tri.end.12.1, over all
contexts.
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F1 Onset Values for Original Data F1 Onset Values for ANN Output

aaae i iooouuh

F2 Onset Values for Original Data F2 Onset Values for ANN Output

aaae i ji ooouuh

F3 Onset Values for Original Data F3 Onset Values for ANN Output

a aa e i ii o oo u uh

Figure 10.8. Distributions of the vowel onset frequencies for the original formant
tracks and the formant tracks produced by the ANN Trad.Tri.end.12.1, in context
/P-/•
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F1 Onset Values for Original Data F1 Onset Values for ANN Output

F2 Onset Values for Original Data F2 Onset Values for ANN Output

F3 Onset Values for Original Data F3 Onset Values for ANN Output

a aa i o oo u

Figure 10.9. Distributions of the vowel onset frequencies for the original formant
tracks and the formant tracks produced by the ANN Trad.Tri.end. 12.1, in context
/p_t/.
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Chapter 11

Conclusion

11.1 Summary

The aim of this thesis was to investigate the ability of ANNs to learn the mapping
from CVC triphones to Fl, F2 and F3 vowel formant tracks and to investigate
the influence upon learning this mapping of a number of factors. The form of the
output representation was found to be the most important factor, with the simple
Tri-plain representation, consisting of the initial, central and final frequencies of
the tracks, being the most successful. The input representation had less influence,
with there being no difference in generalisation between the representations used,
and only slight differences on the learning of the training data.

The influence of the ANN training algorithm (either back-propagation or a

conjugate-gradient method) was unclear. The effects of using cross-validation
were also unclear, although this was possibly due to the inadequate size of the
cross-validation data set. Surprisingly, two-layer ANNs (with no hidden layer and
hence capable of a more restricted class of functions than those with a hidden
layer) appeared to perform as well as three-layer ANNs. If this is so, and not
merely a result of other limitations in the experiments, such as the rather crude
formation of the triphone utterances, then we can conclude that the function
mapping from CVC triphones to the vowel formant tracks is essentially linear.

174



I was unable to come to any conclusions about the influence of the number of
hidden nodes in the three-layer ANNs on learning the mapping.

11.2 Discussion

I have successfully demonstrated the ability of feed-forward ANNs to learn the
mapping between a broad phonetic representation of CVC triphones and a rep¬

resentation of Fl, F2 and F3 vowel formant tracks. I have also had some success

in investigating the influence of input and output representations on the success

of that learning process.

Input representations have less of an impact than I would have expected. I
now think that I should have used a purely binary representation, such as that
used by Chomsky and Halle in The Sound Pattern of English [16], although
I suspect that this would have differed little from the other representations in
performance. Another possibility would be to use a richer, structured represen¬

tation, from one of the non-linear phonologies, although the transformation of
this kind of representation to a form suitable for input to an ANN would not be
straightforward.

It may be that a better method of determining the number of hidden nodes
required in adequately learning the mapping would have revealed some differ¬
ences between the input relationships. The use of an ANN training algorithm
that automatically adjusts the number of hidden nodes, such as the Cascade-
Correlation algorithm [24] might have been more successful than attempting to
select between ANNs trained with different sizes of hidden layer.

There are obvious differences between the performance using the different
output representations. Fourier coefficients performed very poorly. Polynomial
coefficients performed better, but not greatly. Two of the three representations
based on taking three points per formant track (initial, central and final) per¬

formed well, producing the most intelligible speech. This was despite the repre¬

sentation, as extracted from the original speech, producing the least intelligible
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utterances of the three types. This demonstrates that these Tri representations
were by far the easiest for the ANNs to learn, far outweighing their lack of accu¬
racy in reproducing the original formant tracks.

Interestingly, the ANN produced utterances, using the Tri-plain represen¬

tation, were more intelligible than the utterances produced from the Tri-plain
representation as extracted from the original speech data. I ascribe this to two
factors. Firstly, the lack of random variance in the ANN produced speech, com¬
pared with the original, natural speech may increase intelligibility. Secondly, the
original vowels were taken from triphones within isolated words, so they may

have been influenced by context beyond the CVC triphone which is obviously
lacking in the resynthesised utterance.

I found no difference between the performance of ANNs trained using the
back-propagation algorithm and those trained using the conjugate gradient algo¬
rithm. However, the conjugate gradient algorithm is to be preferred for practical
reasons, as training with it takes much less time than with the traditional back-
propagation algorithm.

Cross-validation proved to be ineffective, probably due to the very inadequate
size of the cross-validation data set. A much larger set of single speaker speech
data would have improved all aspects of this work.

It is interesting that ANNs without a hidden layer performed as well as those
with a hidden layer. This indicates that the mapping is essentially linear, at least
as far as can be determined within the constraints imposed by the limitations
of my work. The linearity of the mapping is consistent with the success of the
various formant models discussed in Chapter 5. Only the Imaizumi and Kiritani
model [45] is truly non-linear. The Broad and Clermont models [11] use linear
combinations of functions which are either unique to each consonantal context,
or exponential functions whose parameters are determined by the consonantal
context.

One major disadvantage of using ANNs to learn a mapping is their black-box
nature. It is difficult to get any understanding of how an ANN is carrying out a
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mapping. I have shown in this thesis how the input and output representations
and a number of other factors can influence the ability of ANNs to learn to

produce a representation of vowel formant tracks, but I have not been able to

give any account of the way in which the ANNs perform the mapping. I have made
an attempt to investigate the internal processes of the ANN that had the best
overall performance, but have made no progress. The commonly used techniques,
such as principal components analysis, apply more naturally to ANNs used for
classification than to my ANNs which are mapping to a continuous space.

11.2.1 Discussion of The Relationships Derived Between
Vowel Formant Error and Intelligibility Error

The equations predicting modified rhyme test intelligibility errors from formant
track errors, derived using data from Experiments I and II, are an interesting facet
of my work. The Experiment I derived equation was found in order to help me

select ANNs to use in Experiment II. The results support the common practise
of using root-mean-square formant track errors as a measure of the adequacy
of synthesised speech, and have the added bonus of giving some idea of the
likely intelligibility error, and confidence bounds on that error. This allows the
experimenter to determine how sure he is that some process which decreases the
formant track error really does increase the intelligibility. However, applying
these results to synthetic formant tracks outside the work presented in this thesis
is rather suspect.

These results are based on a particular set of test triphones, and most of
the triphone sets were created by synthesising the formant descriptions output
by neural networks trained to produce these when given descriptions of CVC
triphones as input. The choice of the test triphones is somewhat arbitrary and is
restricted to a subset of stop consonants and vowels. The neural network output
may be biased in certain ways and will not cover all possible patterns of errors.
In particular, the F1 and F2 formant errors are highly correlated, resulting in
there being no extra predictive power in using the F2 errors once the F1 errors

have been included in the regression. The F3 errors are less correlated with the
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F1 errors but do not quite reach a significant level of predictive power once the
square of the F1 formant errors has been used, but with a larger amount of data
I would expect this to play a role.

The technique used to produce the triphone given the vowel is crude and there
may well be an end effect restricting the minimum intelligibility error obtained.

The relationships found seem reasonable. In both cases the F1 formant error
was the most important and the intelligibility error was a monotonically increas¬
ing function of the F1 error. The confidence intervals are rather larger than I
would like and make the relations a rather blunt instrument in deciding if one
predicted intelligibility error is really better than another.

A fundamental restriction is the three basic independent variables used - the
Fl, F2 and F3 vowel formant errors. These root-mean-square errors probably do
not capture all the important features of the shape of vowel formants. They also
assume that the model formant tracks (those extracted from the original speech
data) are perfect, and are the only correct realisation of the vowel formant in that
context. Other aspects of the shape may be important. Two formant tracks with
the same root-mean-square formant errors but different shapes (especially at the
initial and final points) may have significantly different intelligibility errors. A
synthetic formant track which exactly parallels the model track at a small enough
distance may have a low intelligibility error but have a high formant track error.

The shape of the formant tracks is not the only determiner of intelligibility.
The bandwidth and intensity also matter and were kept at constant rates in the
synthesis of the utterances used in the intelligibility tests. If an experimenter is
also trying to produce the correct bandwidths and intensities for his synthetic
vowels he will need to include some measure of their performance. Another effect
of using constant bandwidths and intensities for all the synthesised vowels is that
the values used are likely to be more suited to some vowels than others, leading
to raised intelligibility error rates for some vowels.

The intelligibility errors and vowel formant errors used are averages over a

number of utterances, so the regression equations may be poor predictors of
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performance on any particular vowel in any particular triphone context. The
effects of bandwidth and intensity mentioned above will also have an effect. A
third problem is the crude method used to produce the triphones. The consonants
were added by concatenating tokens extracted from the original speech to the
synthesised vowel. The same tokens were used for all of the triphones. This
should reduce the role of particular allophones of the consonants in cueing for
the presence of a particular vowel, but will also result in increased error rates for
some vowels due to the allophones being the wrong ones for the context.

The regression equations produced above have some utility in helping me to
select the best neural networks from a host of candidates (see Section 8.1) but
their use for other purposes would be a little suspect. To produce better predictors
of intelligibility error based on formant track errors and other measures would
require a much larger amount of work. If the formant tracks used for synthesis
were produced by one particular method the resulting regression equation would
only be useful for prediction of intelligibility errors for vowels produced using that
method. The alternative would be to systematically vary the original formant
tracks extracted from speech. Phonetic knowledge of the effects of the shapes of
vowel formants could guide the variations. The effects of varying Fl, F2 and F3
could be isolated. Greater amounts of data would lead to regression equations
which were more firmly based and which would have smaller confidence bounds,
giving greater discriminatory power.

11.3 Farther Work

It would be interesting to find the performance of ANNs trained on CVC triphones
containing the full set of consonants and monophthongs available. The complexity
of the mapping to be learnt would increase, but the amount of data available
would increase greatly. The current work shows that there is generalisation from
the effects of a consonant in a particular triphone to the effects in other triphones,
so the increase in complexity of the mapping may well be roughly linear, whereas
the number of usable triphones in the speech database will increase by roughly
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the proportionate increase in the number of consonants squared multiplied by the
proportionate increase in the number of vowels (assuming a uniform distribution
of phonemes, and random ordering, both of which are not realistic).

Re-running the experiments described in the thesis with more data might
help determine the questions which were not satisfactorily answered, although it
would require much more of computer time than has already been used. It might
be preferable to use just use the best combinations as determined here in training
on an increased set of data.

It would be interesting to compare the performance of feed-forward ANNs,
trained either on the triphones used in this work or on a larger data set, against
other vowel synthesis methods. A set of simple recurrent ANNs, as used in the
experiments by Tuerk and Robinson [100], would be a good candidate. Another
option would be to choose a model such as those discussed in Chapter 5 and
determine the model parameters either by some statistical method or using the
methods previously used with those models. I would be particularly interested
in the performance of the Broad and Clermont [11] models.

The attempt to study the effects of using various numbers of hidden nodes
failed. Using a method which automatically adjusts the number of hidden nodes,
such as the cascade-correlation algorithm [24] might shed more light on this
matter.

Section 11.2.1 discusses the limitations of my derivation of an equation which
predicts a modified rhyme test intelligibility error from formant track errors.

A systematic investigation of this relationship, looking at each formant track
independently and using a variety of different formant track error measures, on

a carefully selected set of utterances, might prove interesting and might yield a

useful tool. However, it would involve a large amount of work and require a large
amount of time to be spent running rhyme tests (or other perceptual tests) on

subjects.
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Appendix A

The fsynth Formant Synthesiser

The synthesised vowels used in evaluating the performance of the ANNs in pro¬

ducing vowel formant tracks were created using a formant synthesiser program
called fsynth. This was written by the author of this thesis, in C++, with the
intention of creating a formant synthesiser that could be configured however the
user wished and which could be easily modified. C++ is an object-oriented
programming language. The programmer creates classes, which are groups of
associated variables and functions. When the program is run, objects are cre¬

ated, each of which is a member of a particular class. Different classes can have
function or methods that have the same names but whose actions depend on the
class. For instance, a time-step in the synthesiser is achieved by calling the Step
method of each synthesiser component object, each of which does the correct
thing for that type of component.

The fsynth synthesiser program is based on the Klatt formant synthesiser [51],
using the same digital components. Each type of component has an associated
C++ class. The user can specify which components to use, and how to connect
them together, so that many different architectures of synthesiser are possible. It
is a simple process to create new types of component, due to the object-oriented
nature of the design. These can be incorporated into the existing program with
minimal changes to the existing code, provided the new classes of component use
the specified set of class methods to interact with the rest of the program.
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A.l Component Class Requirements

All component classes must be a daughter class of the synth-object class and must
implement the following methods:

• Set. This method must set the internal parameters which govern the oper¬

ation of the object. For instance, resonators set the frequency, bandwidth
and interval between time frames. Values are read from the controller ob¬

ject as necessary.

• Step. This method runs the component object for one time-step. The new

output value must be set, and must also be returned from the object.

• Component-type. This method returns a value of enumeration type component-
type. This should be unique to the class, and serves to identify the type of
class. This is not currently used, but may be useful in any further develop¬
ment.

A.2 Component Classes

A.2.1 Resonator

The resonator class implements the digital resonator, as defined in [51]. This is
used to produce poles (such as formants) in the speech signal. The step method
returns output value y(nT), computed by

y(nT) = Ax(nT) + By(nT — T) + Cy{nT - 2T) (A.l)

where n is the output frame number, T is the time between frames, and x(nt) is
the current input. Values y(nT—T) and y(nT—2T) (the two previous outputs) are
stored internally within the object. The set method reads the formant frequency
F and the bandwidth W from the controller object and sets the constants A, B
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and C. These are calculated as

C = -exp(-27rlTr), (A.2)
B = 2exp(—ttWT) * cos(2ttFT), (A.3)
A = l-B-C. (A.4)

A.2.2 Antiresonator

The antiresonator class implements the antiresonator, used to create zeros in the
speech signal. The step method returns output value y(nT), computed by

y(nT) = A'x{nT) + B'y(nT - T) + C'y(nT - 2T) (A.5)

where the step method sets constants A', B' and C', calculated as

A' = l/A, (A.6)
B' = -B/A, (A.7)
V = -CA. (A.8)

A.2.3 Impulse Generator

The impulse-generator class is used to create output impulses of value 1 at a

frequency set by the set method. The frequency is used to derive the period of
the impulses, rounded to the nearest whole number of time frames. The step
method returns the value 1 every period number of time frames, otherwise it
returns the value 0.
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A.2.4 Differencer

The differencer class returns the difference between the current and previous
inputs:

y(nT) — x(nT) — x(nT — T). (A.9)

A.2.5 Amplitude Control

The ampLcontrol class acts as a gain control. The set method sets a gain setting
which the step method multiplies by the input to give the output value:

y(nT) = setting * x(nT). (A.10)

A.2.6 Noise Generator

The noise-generator class generates a noise signal. This is a pseudo-random num¬

ber with a pseudo-gaussian distribution in the range (-1, 1) (created by summing
16 pseudo-random numbers).

A.2.7 Modulator

The modulator class applies a square-wave to its input. The set method sets the
frequency of the square-wave. The step method returns the input value for the
first half of the wave, and 0 for the second half of the wave.

A.2.8 Low-Pass Filter

The low-pass-filter class acts as a first-order low-pass digital filter. The step
method returns output values given by

y(nT) = x(nT) -f y{nT — T). (A.11)
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A.3 Using the fsynth Program

Usage : fsynth <spec file> <parameter file> <output file>

A.3.1 The Specification File

The specification file specifies what components are to be used and how they are

to be connected. The format of the file is as follows:

<int number of component objects>

<int component number> <char * component name> <char * component

type> <int number of predecessors> <int predecessor number>
<int predecessor number> ...

The first integer is the number of component objects. Each component is then
specified. The first entry in the component field is a unique integer, greater than
zero, which is used in referring to the component. These should run from one

to the number of components. The highest numbered component is the output
component. The next entry is a unique name to use for the component (this is
not currently used). The third entry is the name of the component class. The
fourth entry is the number of predecessor components. That is, the number of
components whose outputs provide the input for this component. Finally there
is a list of the component numbers of the predecessor components. There should
be no loops in the synthesiser. An example of a specification file for a parallel
formant synthesiser is:

16

1 impulse_generator impulse_generator 0
2 glottaljresonator_l resonator 1 1
3 glottal_zero antiresonator 1 2
4 voicing_amplitude ampl_control 1 3
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5 preformant_diff differencer 1 4
6 fl_amplitude ampl_control 1 4
7 nasal_amplitude ampl_control 1 5
8 f2_amplitude ampl_control 1 5
9 f3_amplitude ampl_control 1 5
10 f4_amplitude ampl_control 1 5
11 nasal_resonator resonator 1 7

12 fl_resonator resonator 1 6

13 f2_resonator resonator 1 8

14 f3_resonator resonator 1 9

15 f4_resonator resonator 1 10

16 radiation_characteristic differencer 5 11 12 13 14 15

A.3.2 The Parameter File

The parameter file controls the operation of the formant synthesiser. It is laid
out as follows:

<float sample freq>
<float end time>

<int component number> <setting 1> <setting 2>
<int component number> <setting 1> ...

<float time>
<int component number> <setting 1> <setting 2> ...

<int component number> <setting 1> ...

0
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0

<float time>
0

-999

The first entry is the sample frequency. The second entry is the time to run

the synthesiser for. The next entries are initial settings for the components. Each
field consists of a component number followed by the settings, as appropriate, for
that component. A zero ends the initial settings.

Following the initial settings is a series of updates of the component settings,
separated by zeros. Each update consists of the time at which to make the update,
and a set of component numbers with their new settings. The final time given
should match the end time value. A negative time (for example, -999) stops the
synthesiser.

An example of a control file for a parallel formant synthesiser, matching the
specification file above, is given below. The synthesiser runs for 0.5 seconds and
only the F1 formant varies.

20000

0 .5

1 100

2 0 100

3 1500 6000

4 60

6 80

7 80

8 80

9 80
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10 80

11 250 100

12 450 50

13 1450 70

14 2450 110

15 4000 250

0

0.1

12 460 50

0

0.2

12 470 50

0

0.3

12 480 50

0

0.4

12 490 50

0

0.5

0

-999

A.3.3 The Output File

The output file is currently a speech data file using CSTR's vox format. A
header gives details of the file contents. This is followed by the output values of
the synthesiser, in short int format.
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Appendix B

Intelligibility Test Materials

The following two pages show the cover page and first page of the response booklet
given to subjects in Experiment I. See Chapter 7 for more details.
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Instructions

You will hear a series of utterances consisting of an initial consonant, a vowel and
a final consonant (a triphone). The utterances are in an English RP accent. For
each utterance you will have a choice of six possible words. Ring the word that
is closest to what you heard.

For example, if you heard the word "tot", and were given the choices

123. a) tart b) tut c) tot d) turt e) taut f) toot

you would ring the word "tot":

123. a) tart b) tut c) tot d) turt e) taut f) toot

Ring a word for each utterance. Even if none matches what you heard, ring
the closest word. Note that it is the intelligibility of the utterances which is
being tested, not you! Some of the words on the response sheet, and some of the
utterances, may be nonsense words.

The sets of choices on the response sheet are numbered, but the tape has only
the utterances, so you will have to make sure you retain your place on the page.

The utterances will be played continuously, with a three second gap between
them. There will be a pause at the end of each page, and there will a short break
halfway through the words. Before the test words you will hear 10 example words:
bed, bird, deep, talk, cut, got, park, big, bad and book. Please indicate below
whether you have an English, Scottish or other accent :

Scottish English Other (specify)

190



SECTION ONE
1. a) dart b) doot c) dit d) dirt e) daught f) deet

2. a) bart b) bit c) bet d) bat e) boot f) bert

3. a) perk b) peck c) peak d) pock e) pork f) pick
4. a) dub b) dab c) dib d) durb e) dob f) deb

5. a) tuck b) tack c) turk d) tick e) tech f) teak

6. a) bag b) berg c) bug d) beeg e) big f) beg
7. a) dob b) dab c) dub d) deb e) dib f) durb

8. a) dorp b) dep c) dip d) doop e) dap f) dop
9. a) dag b) dig c) dawg d) dug e) dog f) dirg
10. a) teg b) tag c) tog d) tug e) teague f) tig
11. a) cup b) coop c) kep d) kip e) curp f) keep

12. a) peak b) pork c) perk d) pock e) peck f) pick
13. a) bart b) bert c) bat d) bit e) bet f) boot

14. a) peak b) perk c) pork d) pick e) pock f) peck
15. a) bib b) bab c) boob d) bob e) barb f) borb

16. a) dug b) dirg c) dig d) dag e) dog f) dawg
17. a) cart b) cot c) ket d) cat e) curt f) coot

18. a) tug b) tog c) tig d) teague e) tag f) teg

19. a) tack b) tuck c) tech d) tick e) turk f) teak

20. a) beg b) bag c) bug d) beeg e) big f) berg
to a) ked b) curd c) could d) cawed e) cod f) card

22. a) boot b) bart c) bert d) bat e) bit f) bet

23. a) durb b) deb c) dob d) dab e) dub f) dib

CN a) dip b) doop c) dep d) dap e) dop f) dorp
25. a) tag b) t:L6 c) teague d) teg e) tog f) tug

26. a) dag b) dirg c) dig d) dawg e) dug f) dog
27. a) berg b) bag c) beeg d) beg e) bug f) big
to 00 a) peak b) pick c) pock d) pork e) peck f) perk
to CD a) kip b) coop c) keep d) cup e) curp f) kep
30. a) cod b) could c) cawed d) card e) curd f) ked

CO a) bab b) barb c) borb d) boob e) bib f) bob

CNCO a) dap b) doop c) dep d) dorp e) dip f) dop
33. a) coot b) curt c) cat d) cot e) cart f) ket



Appendix C

The Machine Readable Phonetic

Alphabet (MRPA)

The main text of this thesis uses IPA notation. However, in the figures I have had
to use an ASCII based notation called the Machine Readable Phonetic Alphabet
(MRPA), developed by the Centre for Speech Technology Research (CSTR), Ed¬
inburgh University [61]. The relevant MRPA symbols are listed below with their
IPA equivalents and example words.

IPA MRPA Example IPA MRPA Example
P P pea a a bad

t t tea, a aa bard

k k key A uh bad

b b bee 3 m bird

d d dye a <9 about

g g guy t> o pot
I i bid 3 oo port
i ii bead 15 u pat
£ e bed u uu boot
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