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INTRODUCTION

After outlining the SU(3) symmetry of strong interactions,
which is well satisfied experimentally and becoming famous, we
describe its application to weak interactions, and coneentrate
on Cabibbo's theory which assumes special properties of weak
interaction currents with respect to SU(3). Cabibbo's theory
seems well satisfied experimentally, though some of his assumptions
are on not very secure grounds. For the purpose of checking these
assumptions separately, we derive sum rules between experimentally
observed branching ratios and decay coupling constants. At
present, these sum rules are satisfied within experimental errors,
which are large, but may hopefully be reduced in the future,

Pomeranchuk's theorems have been of great interest in high
energy physics, and group theoretical approaches to particles
extend these theorems, and sometimes enable one to derive stronger
results. It is shown in Chapter 6 what information may be obtained
using SU(6), and appears that although additional non-trivial
results follow compared with SU(3), we may not prove anything
definitive, such as the derivation of the conjecture of zero
gquantum number exchange dominance, from the theorem. I am
very grateful to Professor E.J. Squires of Durham University
for correspondence and discussion about thise.

Following confirmation of SU(3) as a group suitable for
the descrintion of the purely "internal" quantum numbers of
elementary particles, an attempt was made to try to combine

this symmetry with a group which accounts for spin conservation.
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The first proposal along these lines was that the group SU(6)

be a good symmetry; this group contains both SU(3) and SU(2)
(the spin group) as subgroups. At first sight, however, this
scheme appears nonrelativistic, and this resulted in a number

of further proposals for relativistic "extension' of SU(6).

This has resulied in an avalanche of literature during the first
half of 1965. Of these schemes, we choose just one, which is due
to Feza Glrsey, and is, in a way, the most simple-minded of all
the schemes, since it consists only in finding a relativistically
covariant spin operator, which is a non-local momentum-dependent
operator, We describe the derivation of this in Chapters IV and
Ve In Chapter Viiwe show that the magnetic moment operator is
simply related to Wu, the Bargmann-~Wigner operator. Hence,
according to SU(6), the ratio of proton and neutron magnetic
moments is =~ 3/2. a result well-known in the ctatic limits
Finally, we consider the forms of interaction Lagrangians in
SU(6) and show that the conventional ones, taken in the right
combinations, lead to the desired ¢, T symmetry in the statiec

limit. For reference, an appendix on Young's diagrams is added.



CHAPTER I

OUTLINE OF SU (3) SYMMETRY OF STRONG INTERACTIONS.

1. INTRODUCTION

It is perhaps true to say that unitary symmetry is now even
more well-known amongst physicists who do not work "professionally™
with it, than Regge poles were three years ago. This is due to two
factorsy; the experimental verification of SU(3) has been superb,
and the theory is easy, especiaily now that so many people are
engaged in a search for higher symmetries than SU(3), which leads
them to excursions into SU(6), U(12), non-compact ﬁk12),

U(6)(® U(6), U(6, 6) and even non-unitary groups such as SL(6, C)
etce Compared with this sophisticated group theory SU(3) appears
like the alphabet, (It is in féct the sasiest non trivial group
there is -- SU(2) is regarded by mathematicians as trivial), and

I think it is not either worthwhile or called for to go rigorously.
from A to Z of SU(3). Most of this is well-known, and in general
most of what is not well-known is not worth knowing. Of course,
there are several different approaches to group theory in physics,
differing generally in the amount of mathematics they contain,

and this makes any "complete" coverage of the field virtually
impossibles Instead, I shall just mention the most well-tried
and successful references to the subject and content myself there-
after with a quick review of SU(3), stopping only to emphasigze

some points and review others - most of these being because of
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their later importance in SU(6).

Stated briefly, the idea of any symmetry is to group particles
into families. In the hypothetical limit in which the symmetry is
exact, all the members of a family become identical in their
physical properties. Thus if electromagnetism is "turned off",
the proton and neutron become identical (the nucleon), the sigma
triplet also become identical, etc. sU(3) just extends isospin
symmetry to include strange particles. So, in the SU(3) limit,

- 9 s < —_—

the 4" baryons p, n, 7 4 2 2 oA . B 5 = are
identical, and so are the mesons %', %0, % s My K'» K, K°, E°.
This limit, of course, is a gocod deal more hypothetical, as it were,
than that in which electromagnetism is absent, since for example,
the K particle is about 4 times as massive as the =« S0, in the
theory of SU(3), a good deal of attention is paid to the breaking
of the symmetry. In particular, if one assumes that the symmetry
breaking term transforms in a particular way under the group, one
may derive the famous Gell-Mann - Okubo mass formula, so mysteriously
weli satisfied experimentally.

The original approach to SU(3) was through vector currents
in weak interactions, and Gell-Mann's (1962) paper is a superb
account of this. Ne'eman's (1961) paper is on the same subject.
We deal with the subject of weak interaction currents and their
\;Snaervation in Chapters II &1II. Briefly, all vector currents
are conserved in the limit in which all mass differences within
a multiplet are zero. Following this, an entirely different

approach to the subject began, with the accent on strong interactions

"only", i.e. with no reference to weak interaction currents. The
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problem here is that we must conserve two gquantum numbers, T3
and Y (hypercharge = B + §) and so mathematically speaking,
we want to look for a group of rank 2. Amongst the semi-simple
groups, the choice fortunately is fairly restricted being only
su(3), Bys Cp, and Gye Gy (an exceptional group in Cartan's
classification) was the only serious rival to SU(3), and being
wise after the event, one can say that what success it had was
due to the fact that it contained SU(3) as a subgroup. For the
aesthetically-minded, it had the additional attraction of being
the group associated with quaternion algebras. However, it had
no 8 dimensional representation, but only a 7, so the A had
to be singlet, and this was considered a2 disadvantage. An
excellent and comprechensive review of the mathematics of group
theory and of the above four groups as candidates for higher
symmetries is by Behrends, Dreitlein, Fronsdal and B.W. Lee (1962).
See also Fronsdal (1962).

These two approaches, of Gell-Mann on the one hand, and of
Behrends et al. on the other, were compared and reviewed by
d'Espagnat (1962). Speiser and Tarski (1963) reviewed all
rossible groups containing 8 dimensional representations, and
their paper has a good treatment of global properties of groups.
We mention also de Swart's paper (1963). The problem of breaking
and of the mass formula is treated by Gell-Mann (1961 and 1962),
Okubo (1962) and GHirsey, T.De Lee and Nauenberg (196L4). Other
reviews are by Sakurai (1963), Gell-Mann and Ne'eman (1965);
Gasiorowitz and Clashow (1965), Lipkin (1965) and Cutkosky (196L).
It is interesting as well as historically accurate, *o note that

unitary symmetry was first proposed in connexion with the Sakata
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model by Ikeda, Oyawa and Ohnuki (1959). The experimental con-
sequences and their comparison with the facts is outlined also

by Glashow and Rosenfeld (1963).

2e Symmetric Sakata Model and Quarks.

Apart from the trivial one, the lowest dimensional repre-
sentation of SU(3) is the 3 dimensional onee. In the version of
'8U(3) based on the Sakata model (this version is now abandoned),
P, n and A were assigned to this representation. In the eight-
fold way, in which all 8 baryons belong to the same representa-
tion, it appears that no particles belong to the fundamental
representations If there were such "fundamental" particles, the
success of SU(3) would be a lot easier to understand and Gell-
Mann (1964b) and Zweig (unpubliched) suggested that perhaps such
particles do exist. It is now beginning to be thought that they
are fictitious, the experimental lower limit on their mass being
~ 3 Beve On the other hand, the existence of heavy triplets
would explain the mass formula success (GHrsey et al., 196L).
Whether or not they exist anyway, it is instructive to work with
them and regard them as mathematical entities. Moreover, we shall
label them, p, ny, and A o+ We can now work with three basic.
fermion fields.,

Let us first note some facts concerning the representations
of SU(3):-
(i) The simplest representation of transformations on a three

dimensional veector looks like



(Einstein summation

By — Uab ﬂb convention)
-] &+
Uspy =  Uap

We denote this by 3. Its adjoint
+ b
g2 — Upy B
also forms a representation, called 3 .

(ii) The general representation of SU(3) may be constructed
from these simplest representations by‘forming tensors. The
irreducible tensorial set is symmetric in all upper indices and
in all lower indices., All its contractions involving one upper
and one lower index vanishe. An irreducible tensorial set with
P upper and q lower indices yields a representation labelled

D(p, @) and of dimension
e + 1)(a +1)(p+q+2) .

(iii) It is often required to take the direct product of
several representations and to extract the irreducible components.
This procedure is facilitated with the use of Young's diagrams

(see appendix). We quote the following resultss

3x3 = 34+6
Tx3% = 34+8
3x3 = 1+38
3%x8 = 34+064+15(g=2,p=1)
8x8 = 1+8+8+ 10+ 10+ 27.
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(iv) A representation with p = q is self-adjoint and of dimension
(p + 1)3. Mesons are generally believed to belong to self-adjoint

representations, and in SU(3) these are 1, 8, 27 ete., Otherwise

B5(p, a) = D(a, p).
Let us represent p, n and /\ by a three-component vector

[N
| P
\ n

and first rewrite the classical symmetries as infinitesimal
unitary operations on this vector.

I. Baryon number conservation

II. Hypercharge conservation

T 1+ ie 1 ¥
1

III. Charge independence - isospin invariance

3 » 0 0 O
y 1+%edo% V.
0
These are all exact symmetries of strong interactions. The Jjump

to SU(3) is made by hypothesizing that any 3 x 3 unitary matrix

is an approximate symmetry of the Lagrangian, In fact, we will
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get U3, sinece I and II involve the trace~baryon number is
included in the group, if we assign it to the quarks.

S0 we assume that

b — (1 +1d :SzeaTa)\“‘

is an approximate symmetry, where Qa are nine real infinitesimals
and Ta are & complete set of nine 3 % 3 hermitian matrices.
Besides the five conserved currents corresponding to I, II and

III, there are now four additional strangeness-bearing partially

(or approximately) conserved currents

(a) /_\'Yun + eces
(b) RY“ P + seee

hec. of (a)
hece of (b)

whose divergences are proportional to (mn -n, j (mp - mA_),
and so they are conserved in the limit of degenerate baryon mass.
As the \ - N mass difference, however, is much greater than the
P - n mass difference, so are the medium-strong symmetry-breaking
interactions much stronger than electromagnetisme.

The Jjump to unitary symmetry is made less abrupt by the
following observation of Matthews and Salam (1962). If to the
classical symmetries I, II and III is adjoined the discrete

operation

vy — 8¢

i
-
\_,/
b

or



e = P
n > A
AN > n

which is assumed to be an approximate symmetry of the Lagrangian,
then it follows that all of U3 must be a higher symmetry. The

proof is easye-

- /’o o o
|

v — s[1+%3, o =2 '] sy

0 /;

, ;= 0
= (1"'%3/ t OB}W
Lo 0 0)

which is a sort of isospin, in A -~ p space. It is called by
Levinson, Lipkin and Meshkov (1962) U-spin, in analogy with

I-spin and appears on the root diagram as follows.

u{\-slo"‘ /IV— SA’G(‘V\

& > I'§ffn

)

7‘1-3

The similarity of "I-spin, U-spin, V-spin" with childhood memories
of verb conjugation, is due to the fact that Lipkin is one of the

authors!



3. Mesoms
The quark-antiquark pseudoscalar sources
T vy ¥

transform according to 3 x 3 = 1 + 8, and so may be

invariantly coupled to either a singlet meson

T g ¥ £5 = £

a ”

or to an octet of mesons

-
T 15 6, g

ﬁg+=ﬁgs ﬁa=0

&

or to bothe Explicitly the above expansion may be written as
N EAN 4),1/\75—,_9 v . /\Y)-/
%q)u/‘_g%—/\ + s fyw“f + &, ja_Ts‘“n

+f93‘ﬁTY/\ S 6(93—2ﬁb,')_ ,D + Cp;;ﬁﬁb’)‘/\

So we may identify 521 and 523 as an isotopic doublet with

hypercharge (= strangness here) one

K.

e

"



=10 =

Similarly, ﬁ25 and.ﬁ32 comprise two components of an
isdtriplet:
+
ﬁ23 - x
532 s R

The identification of «° fellows from demending that =,
%~ and x° form an isotriplet, as do pn, np and (pp - nn)/ /2,
80
Agg < ﬁiﬁ, o )

J2

This givzes seven of the mesons, The remaining one, now

called r) s corresponds to

7-1;('2‘611 + By Ayy) = ]

and wae predicted by sU(3). It has been discovered at 550 Mev,

We may now write out the meson matrix explicitly

A = \

|
"
irtu

X _— !I"/;’ ) + -
4) / K V 6 ‘/'Z 0 +

end it is traceless, as required for SU(3).
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In matrix notation, then, the invariant interaction:

becomes
WY5/6W

and the symmetry operations become

vy — U§

- -l
y — YU

6 — ugut

for finite transformation U, and for infinitesimal trans-
formations
y —> ¥ + 1eTy
vy — W - ieVT
4 ~= e 1e[T,;sj
where T 1is an arbitrary hermitian matrix, and e 1is infinitesimal.‘

Note that transformation I acts trivially on § =~ the mesons have no

baryon number,

4., Baryons and Resonances

As far as the Sakata model is concerned, all is well up to
this point, But now, one has to ask, where do ) and = go?
We can get more baryons by looking for bound states of meson

and Sakaton °* which will transform like

3x 8 = 34 64+ 15

A word is called for here about how to determine the iso=

spin and strangeness content of an irreducible representation:
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the dimensionalitggg we can fine easily from the Young diagram
technique, The rule for weight diagrams (WD) is: ( see Speiser,
196L4) take WDy, bring its centre ( the point 0, 0) without
rotation successively over every weight of WD2, and merk the
places of wpl. We then get one diagram with, in general, quite
a few degenerate weights, In SU(3) the rule for reducing this
diagram is that as we go inwards from the outermost (non-
degenerate) "layer" of weights, the degeneracy can increase only
by steps of 1 for each layer, We can then finally check the
dimensions from the Young diagram reduction,

As an example

ASN]

and also
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J_ fits into 6 or 15, whereas — fits only into 15. But
the remaining resonances, which should go into these representa-
tions, have spin ;/2, and clearly all the particles in one

representation have the same spin and parity. For these and



other reasons, the Sakata model was abandoned, and its place taken

by the eightfold way, in which all the baryons are placed to=-

gether in an eight-dimensional representation,

baryon octet

8¢ we have the

[ A = o \
/e - ‘
/ \
/ -5 i
%, = A,z it ‘
P s
_ T R
n Z >
and its adjoint
/-2 ® 5 -
/ n
. f
S / o i G —
¢ = . ALT 2
e vi
= > x5
9 3

and the free Lagrangian is

Lo TofTa0t e

where



|
|
|
|

)N

o -+

n
+
-
~
+
=
s
“-
e
-
—+
V)
‘Q
M
L
+
M)
(&
™
A
™

Tr(Fy) =

where, of course, the trace is an invariant in SUB-'

To construct invariant trilinear interactions in ¥, V and
6, since there are two independent traces of three matrices,
e (¥ Y5 ¥ ) and Tr (V¥ Y5 4 V¥), in general we take a linear
combination suggested by Gell=lMann, and write the interaction

Lagrangian as

'iiw\' - aﬁTr(‘FT)‘[:‘F)‘PS) + C}OQ ‘f(‘(f T)‘%\b(ﬂi}
and ?e/?& is called the f/d ratice . HExperimentally (see e.g.
lartin and Wali (1963) and Q964) and Cutkosky (1963), the £
parameter was determined to be between 0,25 and 0,45, where
£f+d=1. SU(6) in fact fixes the f£/d ratio to be >/3 (see
e.g. Gursey, Pais and Radicati (1964)), giving £ = 0.L.

In the eightfold way, baryon-meson resonances have to be

assigned to one of the representations appearing in the product

decomposition
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Tc accommodate the N3, , 3, resonance, we must use either
the 27 or 10 representations, as only these have I = %/2 states,
The problem was really to decide between these, 1t was made a
lot easier by the fact that, in the representation 10 the weight
diagram is triangular, as shown below, and in such representations,

the mass formula follows an equal spacing rule with respect to

isotopic multiplets (see Glashow and Sakurai, 1962):

N33 1238 Mev,
Y, 1385 Mev
= 1532 Mev (predicted and
found)
SL 1679 ( do. )
—x
Thus = was predicted at 1532 Mev, which agrees with

the measured mass, and 5L was then predicted at 1679 Mev. It
was found (V.,E, Barnes et al,, 1964) as is well known, at 1676
A 20 Mev, This brilliant success confirmed the eightfold way
as against the Sakata model ( 10 does not appear in 3 x 8)
and also 10 as against 27 for fermion resonances,

The other predictions and successes (and failures) of sU(3)
will not be discussed here, but they are to be found in the

numerous reviews mentioned earlier,
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CHAPTER II

SYMMETRY PROPERTIES OF WEAK INTERACTIONS

l. Introductory remarks on weak interactions.

Weak interactions may more or less uniquely be defined as
those interactions which cause the decay of spin %+ baryons and
0" mesons with parity violation, and those interactions involving

neutrinos, They may be divided into 3 classest=

(a) Purely leptonic. There is only one example of this type,

n — e + \% + v

(b) Leptonic (or semi-leptonic)., These involve both strongly
interacting particles (hadrons) and leptons. The most well-

known example is p-decayi-

n—> p + e + Q; (1)

Strange particle decays also come into this category:-

AN==p « o. % YV, (2)

(e) Non-leptonic, These involve no leptons:=

/\—-’>p+7c—.

Since we are eventually going to consider what unitary

symmetry has to say about weak interactions, and unitary symmetry



is concerned only with hadrons, we do not consider class (a) at
all, Since, in addition, there are extra difficulties associated
with non~leptonic processes, we shall not consider class (ec)
either, Let us say in passing, though, that unitary symmetry

has been applied to non-leptonic processes, with some good
success., (Cabibbo (1964), Sugawara (1964), B.W. Lee (1964),

and for SUg, Babu (1965)).

So we consider class (b), =Examples (1) and (2) are
archetypal as far as selection fules are concerned, since (1)
has AI = 1, AS = 0 and (2) has AI =%, AS = 1,
for the participating hadrons, All leptonic decays can be
described by one of these two selection rules, In principle,
the selection rule AS =1, AI = 7/2 is possible, for example

in

and in 1963 it looked as if this reaction might actually be taking
place, but the evidence now is consistent with no such reaction,
Also, reactions with A& = 2, such as

en+e+ve

d® not occur, we think, So we are left with the types

NI =%, 4S8 = 1 (2)

In the language of field theory, if we want to write down
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the simplest hamiitonian, deseribing say, B-decay, we put
H
B v V. ¥

The next simplest one we put down by analogy with the
vector nature of electromagnetic interactions, and so, following

Fermi, we put

HB e WPYMWD.*G 73 5 * + h.c,. (3)
The Y5 is put in to get the right behaviour in the

static limit.

2, (V = 4) Fermi interaction.

This is almost good enough, but not quite, We know that
weak interactions Violate parity conservation, so, since the
observable is proportional to IH(2 s to get a pseudoscalar
observable we must have I composed of the sum of two terms of

opposite parity. The interaction
H = f%/+r£~4w1+czf<'Lyr)4v

"’]44 X‘(’*"e/v('*ﬂ')\;
(&)

accomplishes this, This is very close to Fermi's interaction,
but was arrived at 23 years later) In eg, (4), V and A stand
for vector and axial vector, as describing the way the proton
and neutron enter the interaction, It would be nice if

gv = gA, and we would then get the so~called V - A interaction.

This is not exactly the case, but will be explained later: in
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fact we have V = 1.2 A approximatelye.
We call the objects

JTOV, where 0 = 1, Yg» Ys Y, T5 glAV currents,
and we now have the important results that (a) weak interactions
are described by a hamiltonian of the form
(hadron current) x (lepton current)

and each current is a combination of vector (Yu) and axial vector
(YHYS) terms only. In the case of the lepton current the form is
exactly V - A, but for the hadrons is V - xA where x # 1 is
caused by renormalisation of A.

Originally one believed x = 1, and the V - A form is famous.
At the time (ce. 1958, 1959) various theoretical arguments were put
forward which lead uniquely to this form of interaction. The most
important are (i) chirality invariance (Marshak and Sudarshan,
1958) and (ii) the two component formulation of Dirac spinors by
Feynman and Gell-Mann (1958). There is an excellent discussion
of these theories in the recent review by Wu (1964). The reascn
that we mention them here is that there is an interesting new
proposal by Zachariasen and Zweig (196’ ), in connexion with (ii)
and the Christenson-Cronin-Fitch-Turlay (1964) observation of
K2° —> 2%y which seems to imply the breakdown of CP invariance,
The point is that the V - A hamiltonian respects CP invariance, but
if we include other currents (S, T, P) we may succeed in violating
both parity and CP. Now Gell-Mann and Feynman arrived at (V - A)

with the reasoning that derivative coupling of two-component spinor

fields ls forbidden. This is some sort of criterion of glementarity
of the particles participating. But if we believe in quarks, we

may abandon elementarity at the level of so-far-observed particles,
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and ineclude S, T, P currents, thus getting CP violation. This is
®
also the basis of Gell-Mann's U(12) symmetry, based on com=-

mutation relations of such quark-currents.

3 The Conserved Vector Current Hypothesise

(a2) Descriptione

Let us consider again the decays

b - e + Ne 4 79A '
and

n->p + e 4+ Y

and let them be described by coupling constants gu and
(gv’ gA) where gy, is the coefficient of the (V, A) current.
Now, from experiments on the O+~—e 0+ transition in O‘f) &y
in the beta-decay is found to be within 2 per cent of the Fermi con-
stant gu of p-decay. This excellent agreement is not really a
blessing, but a puzzle, since in beta decay we expect strong renor-
malisation effects from the virtual emission and reabsorption of
pions and baryons. This renormalisation, of course, is not present
in p decay. To explain this unexpected agreement, Feynman and
Gell-Mann (1958) and earlier Gershtein and Zeldovich (1955) proposed
the conserved veetor current (CVC) theory.

The idea behind this is magnificently simple. Let us think
in terms of physical processes. Nucleons can emit and absorb
virtual pions such ags n <> n + x° —> D+ K <> N + x+ + % 4+ ees

Therefore, a neutron exists for only a fraction of its lifetime

¥ Peynman et al, 1964,
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as a bare neutron, the rest of its life it exists as a proton
surrounded by a negatively charged pion cloud or as a neutron
surrounded by a neutral pion cloud, etece The neutron in the
latter state is called a dressed or physical neutron to differen-
tiate it from a bare neutron, In the old beta decay theory,
only the bare nucleon, and not the dressed nucleon, is assumed
to undergo beta decay. Therefore, a nucleon undergoes beta decay
only for a fraction of its lifetime, and the effective coupling
strength of the nucleon must be proportionately reduced or
renormalised by the fraction of time spent as a dressed nucleon,
On the other hand, a muon does not have strong interactions.
Its Fermi interaction strength needs no renormalisation. Therefore
the effective coupling constant in muon decay should equal the
intrinsic one, So it was a mystery why the effective strength of
the vector couplings in both beta and muon decay were found to be
equal within 2 per cent. Feynman and Gell-Mann said that the
answer is that the pions carry with them the beta interaction

strength when they are virtually emitted from the nueleons

Fige le Feynman diagram of the decay of the physical neutron.
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(see Fige 1) and so the vector part of the nuclear beta interaction

is so arranged as to have no renormalisation effect.

(b) Analogy with electromagnetisme

To think up how to actually write down this condition, we
realise that there is a direct electromagnetic analogy. Consider
the electron and the protone. The electron is a simple object -

a Dirac particle with a point charge (except for small radiative
corrections) - whereas the proton is a very complicated object
containing a meson cloud surrounding a bare nucleon core., Yet the
total charge of the proton, which one measures in low energy
electron-proton scattering, is the same as the proton charge one
would measure if there were no pion interaction. In fact, all
interactions are arranged in such a way that the electriec charge of
the proton is the same whether it is bare or dressed.

How do we achieve this equality in electromagnetism? First,

electric charge conservation holds in the process

P <> n +x

4

i.ee the = has the same charge as the proton. Second, even when

the proton is in the "dissociated" state, the interaction of the x"
with the electromagnetic field is the game as that of the proton.
(Fige 2)e Mathematically, the vector potential Au couples to the
conserved charge current which consists of the gum of the p and w+
currents. Of course, if the pion interaction with the electromagnetic
field were different from the proton interaction, such as happens

for the magnetic moment, this conservation law would not hold. So

the magnetic moment of the physical proton differs from that of the
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Fig, 2,
physical proton.

bare proton,

T

Feynman diagram of the e = m interaction of the

Let us now write all this down in terms of equations,

The charge current for a proton is given by the space and time

components

oo

>
L

1l

>

3;&& W:W)Wﬁ&

le s , te]

= Ity

\

el

A neutron, of course, has no charge current, Since

proton and

current as

_ 1+ T3

}/ﬁ e LFN z“- -2 \Phi

T,= +1 for
3 0

T& = « 1 for neutron, we may write the nucleon charge



decomposing into isoscalar and isovector parts,

Now congervation of this current implies conservation of
jﬁ and. JX separately. Conservation of jﬁ implies conserva=-
tion of the number of nucleons, But jX is not conserved by

itself unless we add the pion contribution, i.e,

J/w - ;i;c\f%—‘j‘(ﬁ\( + (Fx}mﬁr‘}s

and this corresponds to the Feynman diagram of fig, 2, Note that
if we are to derive the conserved current from a Lagrangian and
action principle, we must therefore include a pion term in the
Lagrangian, Hence we may not regard the pion as just a nucleon=-
antinucleon bound state (as in the Fermi-Yang model) but must

regard it as in some sense "elementary".

(e) Formulation of CVC theory.

For a conventional vector beta interaction, the nucleon

current is given by

— e
‘i/A = é%jLFk!/*~ L*—‘Pu for B~ decay



DG

_ Tt T,
where Ciyy, = — L(/n W - .4/)0
T _
+ ¢f> o,
and similarly
D = 1y Y. T +
s WZ_V/N //A qu for B decay.

These currents are very similar to the electromagnetic
isovector current., In fact, JX% J; and J; are the three
components of the same isotopic spin current Ju.

| Feynman and Gell-Mann (1958) suggested that, just as for
electromagnetism, we must supplement the nucleon current by a

pion term, so that we have

— o . >
| W YT T 0 'T)
,J/'” LA “FN’L("‘/" +

Physically this is equivalent to attributing the same
beta=interaction strength to the direct pion-lepton as to the
baryon-lepton vertex, as in Fig, 1., Since the strong interactions

=

are charge independent, we have conservation of isotopic spin I ,

a generalisation of conservation of charge, i,e, of I So the

3
Feynman - Gell-Mann hypothesis amounts to the assumption that
the total isotopic spin current, including nucleon and pion
(and any other particles that happen to be around and that have
isospin) terms, is conserved,

The analogy between the beta interaction and electromagnetism
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may be illustrated by the following table (see Wu, 1964).

Electrodynamicsi

Vector B interaction
C 1i nstant e i
oupling consta N gV
3 +
Current Jﬁ Jﬁ
v B 4
Field Potential A, weYu( - 5)W
Interaction Hamiltonian eJ > A 3 EVJ+ VY (1 o+ YRy
) 13 M W2 H e 5 'Ve

L, Can Other Current be Conserved?

(a) Strange vector

currents,

The thing we must be careful of is that we always know what

we mean when we advocate conserving a particular current, Ve have

Jjust seen that the CVC hypothesis, when applied to the current in

beta decay, is equivalent to conservation of the isospin current,

and is therefore equivalent to conservation of isospin in strong

intersctions. This is a beautiful and remarkable connection

between strong and weak interactions, and is the approach used

by Gell=-Mann (1962) in his classic paper on unitary symmetry.

If we adopt this philosophy, then it is quite meaningful to
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talk about conservation of the gtrange vector current, since
strange virtual mesons surrounding, say a /\ particle, will

be fo, and in analogy with the previous case, CVC will now
say that K° has the same coupling to (e Vo) as A\ has.

In other words, the (A p)(e” J,) coupling constant is.
renormalised. This, of course, need not be experimentally horne
out by the facts, but this is what we mean by a conserved

strange vector current,

(p) Axial vector current,

It is a natural question to ask whether we may also conserve
the axial vector current, There was, in fact, a lot of talk
about this round about 1959,

Let us first notice that in beta decay, the axial coupling

constant is larger than the vector coupling constant

80 g, is not renormalised, but it is tempting to think it
almost is, i.e,, it is in the limit of something having zero mass,

The condition for its conservation is

I
®)

<r' la,&/: (x) / P>

or O[/)‘<JOI| é?(x)’),>.—;0
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(i) We can easily show that, if jA is conserved, pion
decay is forbidden, The decay is determined by the matrix

element

-|.

T (L) . o Tk « A
GIlhh 177 = 5310 lem<on )y vy

j%L) = lepton current

because =® 1is a pseudoscalar,
From Lorentz invariance

WA )
Lofyy (v = Cc“

where Qy, is the pion momentum, Current conservation then

demands

3

oA
0 = <O\Cl,\é'/\lw>:'66‘l=-—/%l .

L

B = plon mass

80 C = 0
or B = 0 .

So we s8till could have conservation of the axial current in the
limit in which the pion mass vanishes., This is the supposed SU(3)
symmetry limit of Gursey, Lee and Nauenberg (1964).

(ii) sSplitting up the axial vector current into isoscalar
and isovector parts, as we did previously, if we conserve each

part, we get conservation of chirality (i.e. "handedness™) and
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and "isotopic chirality" (see e.g. Nambu, 1962), Then we can
" double"™ our groups and get, for example SU(B)L x sU(3), where
L and R stand for right and left handed spinors., This was pro-
posed by Gell=Mann (196L4a), but leads to =2 doubling in the number
of parti.cles predicted - for each positive (negative) parity
particle, we predict a negative (positive) parity one. This is
not seen experimentally, so the scheme is generally discredited.
Also, for the current to be conserved, we require the baryon
mass = 0

(iii) what we do in practice is to postulate a "partially
conserved axial current"™ (PCAC), embodied in the famous
Goldberger-Treiman relation, which relates the divergence of
the axial current to the pion mass. But let us mention that,

to achieve an uarenormalised gy > i.e, gA = gv, it is not

sufficient to assume a conserved axial current naively; we
must also have zero nucleon mass (or baryon mass, in general),

This was pointed out by Treiman (see Pais and Treiman (1964)),
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CHAPTER III.

WEAK _INTERACTIONS AND UNITARY SYMMETRY

1. he I b e L
(a) Discussion,

In the last chapter we considered what sort of inter-
action Hamiltonian to write down for the weak interactions, and,
improving on Fermi's original version, to account for parity

violation, we arrived at the form
" (L)
n = ea
where JﬁL) = Wz Yu (1 + Y5)t, = (V = A) lepton current

V = XA hadron current.

and Ju

This is called a current-current interaction, We believe that all
weak interactions may be deseribed by a current-current inter-
action, even if it is only an "effective™ one, By this we mean
that probably the ™ true"™ Hamiltonian (if we believe in
Hamiltonians) is not of this form, which becomes very singular
at high energies, and so we consider for instance =z form

W =g dJ W where W 1is an intermediate boson, But if the

N . » limit

boson has high mass (which it has - the lower/1is now ~ |-y BeV)
then we get an effective intergetion as above, So now that all
interactions are of the same form, we mey ask, are they all of

the same gtrength? That is, are all the coupling constants equal?

A relation between the coupling constants, the simpler the better,
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is then equivalent to some sort of universality of the weak inter-
actions,
Let us draw pictorially all the weak interactions we may

have

where the things in the circles are schematic, e.g. Sh means any
nén-strange combination of particles (current) and pA means a
current of strangeness = : l, The relevant coupling constants
are g 82 and gj. gl is the purely leptonic coupling constant

for p decay.

Let us summarise what we may say about the vector and

axial vector parts of g9 g2 and gs.
(i) Vector part:=-

idhat is 8, ? == If CVC holds, then measured

g, = "real" (unrenormalised) g,.

What is 33 ? =- There is approximate CVC for AS =1
(1t is broken because of the large mass

differences between strange and non=-strange



(11)

(b)

particles), So in an approximate
sense we can meaningfully talk

about 83 = gl, ete,

Axial Vector Part:e= Since there is no CVC, we cannot really

talk about unrenormalised couplings,

Search for principle that gives relations between gq g2
and .
&3

Let us first note that in practice gg ~ gg as we saw

above (it is Just this that leads to CVC), Also AS =1

decays are weaker than S = 0 decays by a factor of about 5,

i,

1

N
€5

Let us start from the simplest possibility and continue

until we reach something which is physically reasonable,

(i) Naive Universal Fermi Interaction (UFI)

This is flatly contradicted by experiment, but 8, &,

experimentally.

(11)

Less naive UFI

S = 1 processes are outside the universality scheme,

and g = 32, g3 unrelated,

(iii)

Experimentally, ~ 2 per cent discrepancy between &, and 8o

SU3 tells us that AS =1 and AS = 0 processas are
related, since it relates strange and non-strange particles.
Gell=lMann = Cabibbo hypothesis for UFI:-

(Gell=Mann & Levy, 1958, Cabibbo, 1963)
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& 2 * 8
2 g, = 8 cos -3
Then if we put
{ 83 = gl sin ©

then g, and @ are unrelated, and we can determine & from

experiment, Ve discuss this in the next section.

2. Cabibbo's Theory.

We shall discuss Cabibbo's assumptions and their implications
one at a time,
(a) weak interaction selection rules,

It is observed that all experimentally observed weak inter-

actions aré consistent with the selection rules

AS = 0 AL = 1

AS = AQ = 1, .. AI = %
and that

AS = » AQ, o' AT =72
and

AS = 2

decays do not occur,

Therefore there are two sorts of currents, both charged,
with 8§ =0, I =1 and S =1, I =%, Cabibbo assumes that
these currents transform like an octet under SU}‘ This assumption
is very convenient, since an octet will contain no more charged
currents, If AS = =« AQ or AS = 2 decays do appear, then

these currents would have to be assigned to a 10 or 27 representation.
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(b) Cabibbo assumes that the vector part of Ju is in the same
octet as the electromagnetic current. This then automatically
implies CVC for both A S =0 and AS = 1 processes. The

vector current octet with them looks like

AS=/
7\41:; 1/7_
/
4
_ 45=0
" -7 At;(

—

Jy

- -
SM. CUlrept = )

3+

L
V3

SU3 has a very advantageous feature, the famous f£/4 ratio,
which often enables one to fix things up by using the arbitrariness
of this ratio. This is precisely what we do here, for determining
g8,/ 8ye

The point is that a current is made up of two particles,
both of which belong to an octet, and so the current may belong

to any one of the two octets in the resulting decomposition

8 x & = 27+10+T5+88+88+1

and in general will belong to a linear combination. The two octets
may be arranged so that they are respectively symmetric and anti-
symmetric in the component particles, as indicated above. So in
general we have an amount f of 8&/&nd an amount d of 88!:1.
Henee the arbitrary f/d ratio. However, the vector current

octet must be consierved, i.e.

o g’ -
m Ju = 0

and hence must be an f-type octet.s For the axial current, we still
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have both f and 4 types. We shall see later that for B-decay

g
A £f+d _ a
2. 5. 148

SU(6) determines the f/d ratio and gives gA/gV = 1,67,
which is, of course, too large. One argues that symmetry breaking
reduces this, but this suggestion has some of the properties of

a pious hope.,

(e) The relative strength of AS =1 and AS = 0 decays is
now determined by an angle 8. Cabibbo assumes that this angle
is the game for jA as for jv. It is possible to verify this,
and the indications are certainly that this is so. If so, it is
a remarkable thing, that axial and vector currents point in the
same direction in SU(3) space, as it were,

We may find GA from comparing the decays =® — pv &and
K — uv, both of which take place with axial currents only

(00 — vacs)s In fact . 5
= 4 [ — 13A1 :>
_1_51& «‘;/«\)) ‘kllu <? “(;

M (zt=pv) e (1 1

ks
P

3

and hence &

A = 0. 257 ®

ev is found from the decays K+_% ° + et +v anad

xt —> x° e* v both of which are 0 = 0~ (Fermi) transitions
and so are vector interactions only. So we get (see the next

section for details)

G-V = O' 26
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and the two angles coincide to within experimental errors.

3 Discussion of Cabibbo's Theory.

(a) The quantitative results of Cabibbo's theory rest on the
assumption that the A S = 1 currents are not renormalised at
alle This would in fact be the case if unitary symmetry were
exaet, But it is broken, and in particular there is an appreciable
% -K and N -1 mass difference. Sakurai (1964) has estimated
the effect of the breaking, and derived a corrected value of 8,

which is smaller than Cabibbo's 8.

(v) In terms of ©, one can now express g, (A8 =0, AI =1)
and g4 (A8 =1, AI = %) in terms of g1s and one gets
coupling constants of the right order of magnitﬁde. The most

important result is
€o = gy cos a

whieh then gives, using Cabibbo's value of O, a 6 per cent dis-
crepancy between the coupling constants of beta decay and p decay.
This has overshot however, since the actual discrepancy is about
2 or 3 per cente. Using Sakurai's corrected © (see above) we
get the right value for goe

In any case, it is extremely interesting that we have a
relation between the strangeness conserving and strangeness
violating decays,on the one hand, and the purely 1eptonic u decay
which is not at all related to the strong interactions, on the
other hand. Needless to say, the reason for this is not at all

understoods
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(e) It is important to test separately the vector and axial
vector part of the Cabibbo theory, since the assumptions about
the axial vector are on less secure grounds., The assumptions
are two - (i) that the axial currents really do belong to the
same octet., Stated equivalently, that the f/d ratio is the
same for the S = O and (8| = 1 axial currents; (ii) that
the angle © is the same for the axial as for the vector octet.
Making these assumptions separately, we derive sum rules for
already existing experimental branching ratios and coupling
constants, to help to decide how good the assumptions are., We

discuss this in the next section.

(a) It is interesting that © is small., Various speculations
have been made about what € would be if unitary symmetry were
exact. Of course, there is no guiding principle here, you have
to invent your own.

The first thing that comes to mind is the possibility that
© = 0 in the SU(3) limit., This would mean that strange particle
decays are forbidden (Oehme and Segré; 1964 ).

Assuming that neutral currents do not play a part in the
octet (they are absent in leptonic decays, but not of course in
non-leptonic ones), and also that the photon be placed in the
same octet as the hypothetical intermediate boson, Matthews and
Ssalam (1964) have shown that in the exact symmetry limit, we
should have cos € = (1 + \ff /2 |2 , which agrees with
Cabibbo's value,

Using different reasoning, Oehme (196L) makes a case for



which is numerically about right., Here, one assumption is that
the direction of the current in unitary space is determined by the

SU(3) breaking term in the strong Hamiltonian.

L4, Tests of Cabibbo's Theory.

For convenience, let us first proceed according to Cabibbo's
assumptions., In SU(3), the baryon and antibaryon octets are

described by the following matrices

=H .3 w— —
L7 A 7t ‘ ZF’,A/:' 2 =
= =2 ) »
v._')— Vé* r 2 (V]
= _ —Zf’__A I§ = P "Ezc ~A =°
E7 z JT ;&; n J z VT Vo
;.’ 43 2:./_\ — p— ;‘_/T
-~ 7k reooTn R

The strangeness conserving weak current has Y =0, I =1
and so transforms like ETF s i.2¢ the element Jé of the current
octet, Similarly J3 transforms like p with y =1, I=1%
and so is the strangeness changing current. So, according to
Cabibbo, the matrix element of the weak current taken between

baryon states C and D is

<D\ lC7 = <D e §(TY)L + (TA)) 3

+mer§(§f)'3 «—(‘J'/f);Mc>



-0~

We assume that the currents Ju belong to an octet and so the
matrix elements are related to each other by SU(3) Clebsch-
Gordan coefficientss

R~

£
<B(, \ 7 = X Coie (1)
where the C's are the coefficients required to make
XLO\, S
it 39 g 1t
(>a»€ o
a unitary scalar and is the so-called reduced matrix element.
tgquation (1) is the Wigner-Eckart theorem. The C~coefficients
can be obtained by reference to tables (e.g. de Swart, 1963).
Here, however, we shall derive these in a simple way.,
We want to contract the indices 8o as to make 3'2 Bir J%
an invariant. Since the trace of matrices is invariant under

SU(3) (this is what S stands for!) we form the traces

T (JBB) and Tr (JBB) .

Since there are three matrices involved it is clear that
these are the only two independent traces. It is more usual to

form the following symmetric and antisymmetric combinationss
T {J(BF 2 ’EB)S

These are called D and F type respectively and the reduced
matrix element for these two cases will be denoted by D and F.
For the strangeness conserving decays, we want the matrix

element of JE which goes with ‘g(D - F)(B'E)2 + (D + F)(ﬁé)%ﬁ
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where the explicit expressions for (ﬁb)?, and (Eﬁ)? are given

belows

(BB (\/— >{%—;+—§—; 7+ ?’;
(3, - ?KZ &)1 T ) T E

Similarly for the strangeness changing current we form

[0-F)(88) & (p+e)(Fp)’ 4

where

Cmf - {7 (k) -2 3
}7(\/1 Vb>“ -IrE Z%‘J—;/\g

So it is a simple matter to write down the following matrix elementss

(N

1. Strangeness—~-conserving decays
x|
<F|)Z]y\> . D+ F

(NLSLIZ™ & —20
Ve

(fb LIH[T L A>)

(T35 ) s > o vx
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2. Strangeness~changing decays.

<plFghhy  an 2EIF
Vi

| Talz7>2 ~ ~d+F

N Th) 27y o~ DZ3F
/6

Cabibbo assumes that Jv belongs to the same octet as the
electromagnetic current, so is conserved, and so is pure F type.
From above, we can see that the coefficient D should be zero,
for the isospin current Jé which is Jjust the step-up operator
for isospin cannot induce 5 Tes A transition which is,
from above, pure D type. Also following Cabibbo we introduce
the coefficients cos & for Jé and sin 6 for Jg. Thus we have

the following table

Decay : v ? A . Branching ratio

according to UFI
n — p+l+y cos © (D+F)cos ©
Z¥ A oty 0 - )%D cos @
a7 3 1 2 57
A\ = D+l +v g- sin © JE(D+3F) sin @ 1.4 o
77— n+t 4y sin © (=D+F) sin @ 5.1 o

«—

TSN\ Y -Jg sin @ J%(D-3F) sin € b 7
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Now let us make more general assumptions, and not assume that
the angle © is the same for vector and axial vector currents, and
also not assume that the £/d ratio is the seme for the strange as
for the non-strange current (i.e. that these currents transform
like members of the same octet).

Let us call the coefficients of the symmetric and anti-
symmetric terms respectively d and f for the strangeness
conserving current, and D and F for the strangeness changing
current,s Let us in addition represent the relative strength of
the strangeness conserving and strangeness changing currents by

Cv and Sv for the vector current and CA and S for the

A
axial vector current. Then we may draw up the following table

for the leptonic decay matrix elements. "
% 2
Hoa (V] +aldf >

Decay v A ; a
/\'9 63*'6'4—; - ?)‘_ S,\/ .\/Zi— (F+ -%‘)54 2,98
2 D Nnted — Sv ; (D*F) 543, 2495
L o Avesd O 1z 9 3,00

) +e + \/3 CA
= 1" 5 ¢ i3 D -

Z s> Are s \}1 Sy \/i(‘:' 3)%4( 2.98
In addition
p el

Ul

. .
G\/ C 5 ‘A = (ﬁ-&—c[}%

~ v o) » |



The decays k* - uv and x'— [TRY are both axial vector

decays, and we may write

5 e
T (Kt > v - M
LA R Y

My

°e++ v are bhoth

The decays X' — x%e'+ v and xt— =«
0O — 0 transitions, and so are due to vector interactions
only. Hence we may write the amplitudes as (see, e.g., Dalitz,

1964 ) \ y
Tro 7 e+v (lo,r-rfo)/A )7,\ <vH ]| T, 0 | T >CL

+ . \ v
74'\) . + -
@n the SU(3) limit there is only one form factor in Ke3 decay ).

_V

, Vv e
Now - <T+\)AS._/O)T\’°> = \/'i\@/s/(/"v ;\/Z.G

Vv \/)_: v o,
and <K+[T,)‘07>—G/ v o
ACz( | Tt > Ty “f;@
The relative factor of % is from the SU(3) Clebsch-Gordan
'coefficients. Using these matrix elements, we have (see, €.g.
Jackson, 1962) \
g -
P ed) - == AT R/ T) el
~ Tox &
where A = (Mrr_g. — Mye) and Ro is a recoil factor, here having
the value 0,94, Similarly
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| (L(+,, Wroe“l’\)) T o My . R ( >

and the recoil factor R1 has the value Rl = 0,571,

So

R -\'._,04—\)) ~ 3
I(K-—)\\é I E’V_( M >x S x 0.5

S S .+ y * .
P(“ )’Wee/d) Cy Mt — WMy 0 256 x 0-Ty

Thus we may compile the followinge-

(/\> = m = D'B‘Txtod—[gcﬁb 2’7Y(F +/§)"S,;,}

all N
(Z’ 7o nev s L g
\>’ e = A 35 x0 [5’\/ *-Z'CI\T(D#:)S
- Z o Nes _
7 = ————— = 0 -~ R
Z°> el I~ e [3 4 CAJ
="\ . Z > Nev L N
)+ I B ey
- 2
= = v
?‘l GC‘
.
L g L
> - P =



K P(K-pM“) 34 | NN
2 = - S m —
Ly E = Lo L -/‘ Mic
e
My
K lq( [(t)Tfoe V) S’J’ " -
AN - e 2 3
T /5 & (’\T'F/)Tﬁ'ev) CVL (W‘h—"' ——W\,o> X O0- (9 (1)

Where the first l branching ratios have been derived from
the universal Fermi interaction (see e.ge. Feynman and Gell-Mann,
1958).

Cabibbo's assumptions are
2 y
(1) C, + S, =1

g

(i1) Cy ‘\".S,; = |
(111) Cy = Cy4

(iv) @/d ~ Flp

In order to derive any relations between the equations (1)
we must use at least 3 assumptions. We therefore choose the sets
(i), (ii) and (iii), and (i), (ii) and (iv)e In other words,
we always have an "angle" characterising the relative strength
of strangeness conserving and strangeness changing processes,

Our two sets of assumptions are (a) the same angle for vector

and axial vector currents (b) the same f/d ratio for strangeness—
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changing and strangeness conserving axial vector currents.

(a) Same angle. We get the following sum rulesi-

()

— | (2)

% +1] 5 _
Y . Y,
Wﬂ> K L
(%), (5] - 3 ?
) = 3 -~
using the notation of equation (1) and g 2
s - [ — —e
J} = 0 T3 X (0 5 ﬁ«("“) ;<£:_\|,5 | ‘Mf s jit-fo
g = [-y2 x e’ . [—
3 =
g = vv)")’X(Of )
2 + fz("“): . ) X 0-°rlg
Sv = \ - ?w Myt — mag?

. ( C ? 7 X (O s
Using Willis's results (1964), equations (2) and (3) give

LIS = 306[10s]  RES =095 (10¢] 2)
796 R s - _ 73
?401(6_)-7)))((0 = )?3 /(ffiy K(orzr/)-l)‘/g.of x(o.«l /:\7)

where the figures in brackets are consistent with the experimental
errors., The square roots of the first two terms of equation (3)

are the tangents of the Cabibbo angles, giving
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"LQ\« 9\/; qu‘ ! ‘l’f}A«QA( = 0.2

(For equation (3), the lifetimes and branching ratios were taken
from Roos's tables (1963) and the branching ratio for =z — xle’v

from Wu (196L)).

(b) same £/4 ratio. We get the sum rules

AL %‘) -jf—fj = 3%«((-—/1)”[(7‘;)“%7] i

1— i?1<f““)

S TRNC ®

where the symbols are as before and

(4k) = 4,7,

[-20 x (O—-q

@

Experimentally, these give

LS = 0 L [/O‘OL] ) /{H/j’; ,0.25,/:0.;47 )

LES = 0951+ 00 = B
S L}/ K/H’-—o.z(féio.oog -

Where again the figures in brackets are those consistent with the
experimental errors. The large errors arise in general because of

the occurrence of the term 1 ~ g% » whose proportionate error is

very large.
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CHAPTER IV.

WIGNER'S SUPERMULTIPLET THEORY AND ITS EXTENSION TO
PARTICLE PHYSICS.

1. Supermultiplet Theory.

The physics of elementary particles is a natural extension
of atomic and nuclear physics, and started from the study of
the mesons which glue nucleons tightly together to form nuclei,
So it is indeed fitting that SU(6), the new much~-talked=-about
group of elementary particles, should be a simple extension of
Wigner's group SU(L) for nuclear supermultipletsy Wigner's
theory, of course, is highly non-trivial, and a very great idea,

We shall discuss the physical motivations and content of
su(4), and for this we go backwards in time about 30 years,

The very first step in the direction of so=-called "internal®™
symmetries was taken by Heisenberg, who suggested that the
neutron and proton are just two st&tes of the same particle,

the nucleon, One said that in "isospin® space, the neutron

has third component -+ and the proton +%, and the nucleon
defines an isotopic multiplet., Now, in nuclear forces, there
existed (and still exists!) the property of charge independence,

which says

Vpp = Vnn = Vpn in the same state.

Fer instance, for the 13 state, this relation applies,
-

whereas for the “S state it is meaningless, since the Pauli
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execlusion principle does not permit two identical nucleons to

38 state, In our modern group theoretical language,

be in a
the prineiple of charge independence can be stated by saying that
the nuclear force is isospin 1ndepenaent, i,e, does not depend
on the "orientation™ of the nucleon in isospin space,

Now if we jump ahead and assume, as Yukawa suggested, that
nuclear forcees are due to exchange of "heavy" mesons, then we
can state the assumption of isospin independence in terms of
our mesons, and their interéction at the nucleon vertex, We
can then atiempt to verify charge independence by studying the
pion-nucleon vertex by scattering at high energy. This has
been done by now, of course, but in those days was not possible,

So what was wanted was some way of verifying charge
independence without studying meson interactions, It was at
this point that Wigner (1937) suggested that we can verify
whether or not isospin is conserved in the nuclear multiplets,
This is independent of any model of strong coupling, and in
particular of the meson hypothesis. The point is that we assume
isospin independence, and we already have spin independence of
nuclear interactions, so I(I + 1), J(J + 1), I, and J3 are all
good guantum numbers, and the nucleon levels we observe are
eigenstates of these operators., (Of course, isospin invariance

is broken by the Coulomb interaction, Just as spin invariance

is broken by spin-orbit coupling,)

of-

)

Let us now study the levels of the nucleon (I = %, J =

We lsbel the states by (13, JB)
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The brackets mark I-spin and J-spin multiplets and we have
invariance under the group (SU(2))I x (SU(Z))J. But if we did
not know what was going on and Jjust looked at the nucleon, we
would observe 4 (almost) degenerate states, and the group of
invariance we would guess at would be SU(L4), the group of the
L4, dimensional harmonic oscillator., We should then classify our
states according to the irreducible representations of sU(L),
and see what success we have, Recent evidence on this is reported
by Franzini and Radicati (1963),

If the group of invariance is SU(L4), this corresponds to
more than conservation of I-spin and J-spin separately., To
see this, let us state the case in terms of mesons,

I-invariance will be achieved by a meson which changes a
neutron into a proton, but leaves the spin invariant, as shown.

This is a ®=meson,.

J=invariance will be achieved by a meson which flips the

spin but does not change the charge, i.e. a neutral spin one meson
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If = and w mesons both contribute to the nuclear force
in an invariant way, we have invariance under (8U( 2)1) x (su(z))J .
But suppose now that we have a meson which has both charge and

spin, and thus can change a spin up neutron into a spin down

/\nT

proton: -

i .

h—%
n ¢’ Py

then this operation will belong to the group SU(L4) only, which
can interchange all possible combinations of spin and isospin,
but not to (SU(Q))I X (SU(Q))J. If all these mesons are coupled
with equal strength, we have invariance under SU(4)., Ve may draw
a table of the different nucleon forces, and the exchanged

particle to which they correspond,
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Force Spin flip Charge flip Meson SI, J)
Wigner No No 7 (0, 0)
Bartlett Yes No ® (0, 1)
Heisenberg No Yes » (1, 0 )
Majorana Yes Yes p (1, 1)
2. Exten n to Zlemen cle

These considerations are readily extended to include strange
particles, The isospin group SU(2) is then extended to SU(3).
This was first realised by Gursey & Radicati (196L4) and inde-
pendently by Sakita (1968, Instead of proton and neutron, above,

visualise 3 "basic" particles, an isodoublet and isosinglet, with

J =13

There are now 6 degenerate states and our group is SU(6).

3. Mesons in gu(L) and SU(6).

We have already discussed the role of mesons in SU(L), Let
us now count the number of states the mesons occupy. For a meson

of spin J and isospin I, this is (27 + 1)(2I + 1). So we have



J 1 N = (27+1)(21+1)
Bartlett w 1 0 3
Heisenberg x 0 1 3
Majorana P 1 1 3
%2 dim,
Wigner r) _ 0 0 3 dim.,

There are 16 (=u2) meson states, which split into 15 and 1
under SU(4). We may see this also by forming nucleon=anti=
nucleon combinations and lebelling the S‘U(2)I x SU(Z)J multi-
plicity (2I+1, 2J+1).

I=-spin 2 x 2 = 3+ 1
J=spin 222 = 3+ 1
o 4 SU(LF) (2’2) X (232) = (391) + (103) ¥ (393) + (101)

= 3+3+9+1
15+1 ®

"

The decomposition may also be done with Young diagrams (see

appendix for details of these)

O x Eé} - E”%‘ N ﬁj
S =

For 3U(6) we proceed exactly similarly, using SU(3) decom~

positions in baryon-antibaryon states:
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3 x 3 = 8 + 1

2 x 2

i

1+ 3

6 x 6 (1,1) + (8,1) + (1,3) + (8,3)

so we get two octets and two singlets of spin O and 1, As usual,
the (1,1) state will be a singlet ( trace) under sSU(6) and will

belong to a different irredueible representation, So we have
6 x 6 = 3% + 1

The parity must be = (baryon-antibaryon in S-wave state) so 35

is composed of

nonet

)

0" octet

and we get a natural explanation of the well=known 9 vector and
8 pseudo-scalar mesons, The pseudoscalar singlet ¥ (960 Mev)
belongs to a different representation of SU(6), and this perhaps
explains why it doesn't mix with 7 , as p does with w, a

problem well-known in SU(3) decays.

4L, Symmetry Breaking for the Mesons.

The usual mass formula for mesons in SU(3) is

u2 = “5 + a I(I+l) - %?

Now let us introduce Heisenberg forces which split the = and
K from p and K*-. Let us adjust the mass formula correspondingly

by adding a Casimir operator for spin, so



2
2 2
o= pg +oa I(I+1) - %% + bJ(JT+1)
Consider H;;t and ué Same I, Y, different J
2 2
“p and (o do, do,
Subtract,
2 2 2

and this equation is satisfied to 1 per cent, It was known to be

true in SU(3) days, but was regarded as mysterious,

5 Baryons in SU(6).

If we believe that the 6 dimensional representation of SU(6)
is a quark state, then to get a physical baryon, we must combine

3 quarks togesher, In SU(3)

3 x 3 x3= (6+3)x 3

= 10 + 8 + 8 + 1
T Ej P A

Ll t}
and we see that 10 is totally symmetric in the 3 threes, 1

totally antisymmetric., In SU(6), we must decompose 6 x 6 x 6,
The totally symmetric state contains

3%
where n = 6, Ng = 56
el s '
similarly N, = n(n-1)(n=2) _ _nl
3% 3'(n=3)!
N = 20

A L)
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Which do we choose?

By the Pauli exclusion principle, S is antisymmetric,
i.,e., repulsive, in space coordinates, and A is symmetric,
i,e, attractive, 5o A seems the obvious choice, But for this,
the quarks would need to be fractionally charged., We can avoid
this (which is a feature of Gell-Mann's model (1964)) if we have
a boson "core® as in the appendix to Gﬁrsey, Lee and Nauenberg
(1964) =~ see also Lee (1965), This core can also provide
attraction for the mutually repelling quarks and allow us to have

the 56 representation, Then a physical baryon has the appearance

= @]

O

0

0 —o repulsive

o— (1 attractive

and we are back to Bohr's atomic modell Ultimately, we choose

56 because it gives the better SU(3) and SU(2) content:-

56 = (10, 4) + (8, 2)
spin ?/2 spin %
decuplet octet

which fits exactly with the observed particles, 20 gives

20 = (8, 2) + (1’ ’-'-)
spin % spin 3/2
octet singlet,

The symmetry breaking for the baryons is again represented

by a simple generalisation of the SU(3) mass formula to

M =

=

+a I(I+1) =

y2
o T ¢ 6y + eJ(J+1)

which gives
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which is correct to 2 per cent, Of course, these forms for the
mass formula are by no means unique, The mass formula is dis=-

cussed further by Pais (1964), Kuo and Yao (1964) and Beg and
singh (1964a, D).

6. Resonances in 8U(6).

For the product decomposition of SU(6) representations, we

refer to the appendix, Meson baryon resonances will belong to

56 x 35 = 70 + 56 + 700 + 1134
v

(8, 4) = found
(10, 2) 2

parity
(8, 2) S
(1, 2) -~ found

Some of the states belonging to 70 have been found, as

e

indicated., These are discussed by Pais (1964),
Dyson and Xuoyg,(196u) have classified Y = 2 states, From

56 x 56 = 462 + 1050 + 1134 + L9o
10 O v Y T E]II;IJ EEFI] Hﬂ:ﬂ

and the fact that Y = 2 fermions must belong to an antisymmetric
state, the deuteron must belong to 490 or 1050, Dyson & Xuong
choose 490 and from the mass formula, identify other members

of the multiplet, They also consider Y = 0 states., In genefal,
resonances can be fitted well into SU(6), but we refer to the

literature for details.



7. Concluding Remarks.

The spin part of SU(6), which is SU(2), is usually thought
of as being represented by the Pauli ¢ matrices, but this in fact
only represents the spin in the rest frame of the particle, The
problem of finding a covariant spin operator which reduces to 0
in the rest frame of the particle is a difficult one, There have
been various attempts, but the one we shall adopt is Gursey's
solution, which is deslt with in the next chapter. Using this
definition of spin, the free Lagranglan is invariant, and part
of the interaction Lagrangien is invariant also, so that su( 6)
is a good symmetry in the conventional sense of the word Sy
metry, In, for example, Salam's scheme, the free Lagrangian is
not invariant and so, on boosting, particles change from one
representation to another, This can be used perhaps to explain
the appearance of more particles with increasing energy, but is

not our philosophy.



CHAPTER

THE _POINCARE GROUP AND THE COVARIANT DERINITION OF SPIN.

l. The Poincaré Group

whatever may be the fate of symmetries such as 3U(3), or
any other "internal®™ symmetry scheme, the Poincaré’(inhomogeneous
Lorentz) group is, we believe, of fundamental importance, since
its operators are Lorentz transformations, and we believe that
all laws of physics must be Lorentz covariant, i.e, they mast have
the same form in different frames which can be reached one from
the other by a Lorentz transformation, The Poincaré,group defines
a symﬁetry, which is a purely kinemstic one, While it is true,
we believe, that the kinematic symmetries continue to play a role
of great importance, it is not true that they form a closed bookj
the amount of new results relating to the Poincaré group which have
been obtained in the past few years is evidence of this, Also,
it is not absolutely certain that it is the Poincaré group which
plays the fundamental role, and Wigner and Philips (1962) and
cursey (1963, 1964), (Girsey & Lee, 1963) have done some very
intepesting work on the de Sitter group, which breaks down to
the Poincaré’group in the limit of flat space~time, Also the
interpretation of reflection generators which "extend" the
Poincaré group has raised a number of questions relating to
measurability (Wigner, 1964), It is also worth mentioning that
Wigner's theory of types under these operations(1939, 1964) has
lead Tarimer (1965) to a space-time theory of quarks, and thence

of internal quantum numbers.,



It will be in order to make some remarks about the group we
are considering, First, we are not including reflections of
v
space and time, that is, we treat the restricted Poincare group,

and secondly, the faet that the group is inhomogeneous means that

we also consider, apart from pure Lorentz ("boost") transfore-
mations and rotations, translations of the origin, It is only
by virtue of including translation operators (which are generated

by momentum) that we can define spin,

Finally, in the way of introductory remarks, a very relevant
one is that the Lorentz group, both in its homogeneous and in-
homogeneous version, is non~compact, This is a mathematical term
which corresponds to the physical observation that by doing a
series of Lorentz transformations along the hyperbola in (?, t)
space, you never arrive back at your starting point, since you
keep on speeding up., This is to be contrasted, for example, with
rotations in a plane, where after rotating through 2x, you are
again at the starting point. Rotation groups are compact, whereas
Lorentz groups are non-compact, The very important consequence of
this is that unitary rapresentations are infinite dimensional,
Thus they cannot be represented by finite dimensional matrices,
There are representations, of course, using finite dimensional
matrices, but they are not unitary., We shall note the importance

of these representations further on,
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2. The Wigner Representation of the Poincare Group.

This representation is the most well-known to physicists,
and indeed leads to the greatest physical information, e shall
not discuss it in detail here, for it is a task which must be
done either with complete thoroughness or not at all, We will
merely sketch the results and for details refer to the original
monumental work of Wigner (1939) and also to his lectures at
Istanbul in 1962 (1964), which contain a summary of the 1939
paper, Other summaries of the Poincaré’group are to be found
in wightman (1960), Wigner (1963) and Macfarlane (1963),

We mist first diestinguish between the two groups we shall
deal with - the "actual® Poincaré’(i.e. transformations of L=
vectors ete,, in space-time) and the guantum mechanical Poincare
group, which induces (unitary) transformations on state vectors
in Hilbert-space (i.e., "wave functions®), Let us deal with these

one at a time, -

(a) The restricted Poinggré’grgup.

Consider coordinate space, with real coordinates

Xjeons x3, X, = ety & = +1ly=1,-1,~1, A pure Lorentz trans-
formation along the x-axis is now
/ _
%o = {‘)(’O b {ST?CI /SC U—/C
/ ‘ 1
Xy = h, _,/ﬁY;c,, ¢ l

(1)



From (1), v2 . 72;32 = 1
But cosh2u - sinhzu = L
Sc we may put cosh u = ¥
sinh u = Y
tanhu - B = -‘-;- = "rpapidity"
and we have
[ ) 5 ;
W Cosh « —Sinh «w O By
)
X, _ «—St‘h‘/\ U CA‘DSL\O\_ Loy
7(1 O | Wy
1 { *3
3
! = A | o2

and it will be noted that for this pure (boost) Lorentz trans-
formation, N\ is symmetric, A general Lorentz transformation
contains rotations, for which the matrix is not symmetric, but
whose off-diagonal elements are sin & and -sin &, for rotation
through an angle &, “ boost transformation may be regarded as
a rotation through an imaginary angle u, and so a general (homo-
geneous) Lorentz transformation may be viewed as a rotation
through a complex angle (& +iu) .

The Poincare group includes translations, so let us denote
the product of the displacement by the lU-vector a and the Lorentz
transformation /\ by (a,/\ ). The group equation then reads

(al’/\ 1)(&2D/\ 2) = (al +/\1325 A.}.A 2) (2)

whose physical interpretation is easy enough,



e

Now the four dimensional vector a can be uniquely charac-

terised also by the hermitian matrix h(a).

a —' g ax + iay

h( a) =

a - ia at + az

and the determinant of h 1is then just the Lorentz length of
the vector a.

Now consider the transformation

eh(a)BY = n(a')

If det B = 1, then B transforms the vector a 1linearly
into a vector a', leaving the length of a unchanged., This

defines a Lorentz transformation, and corresponds to

A a

In fact, B defines the group SL(2, C) where

a',

i

S = specia l = unimodular, L = 1linear, 2 = 2 dimensional,
C = complex transformations, and sSL(2, C) bears a 2 to 1
homomorphism with the Lorentz group, since B and =B transform
a into the same a'., In terms of h and B, equation (2) now

reads
(h,, B;)(h,, B)) = (hy + BhB,",B.B,) (3)

and we write equation (3) in symbolic form, using a set of

equations, We write
(n, B) =[n] (B)

then



[hl][hz] - [h'.l. * h2]

(,)(B,) = (By B, (1)

(8) [n]

Also we note that for a boost transformation

1
™
5
+
| S
~~
w0
N’

BAT) =  BA)Y

#
(b) The Quantum Mechanical Restricted Poincare Group.

Corresponding to the symmetry transformation (a, A ) there
is a unitary or antiunitary O(a, A ) which transforms the quantum
mechanical description of any state §y into the description
¥' = 0(ay,A )¥. The faect that O is unitary or anti-unitary

comes from conservation of transition probasbility:-

(b, £) 2 = (y', #') 2

and if we do not include discrete reflections, O can always be
made unitary. Actually, O is only determined up to a phase, but
this phase can be proved to be : 1.

So we have
O(QI’AI)O(aznA 2) = = o(al +/\1 32'/\1/\2)

and corresponding to equation (4) we have

]
i

T .
2 hy + h,

g, Is, Is.B, (5)
Lg Ty » Teng* I

where L stands for Lorentz transformation and T for translation,



(e) Representations
We now find expliecit forms for L and T, They will be unitary,
and so infinite dimensional, as mentioned before,
As we introduced a 2 x 2 matrix corresponding to translations,

let us now introduce a similar matrix for momentum

P, + P -p, = 1ip

(6)
-p,. + ip

It will be noticed that the signs are reversed from the
definition of h(a)., p is the h which corresponds to the

contragradient vector GP’

p = h(GP) .

The wave functions will now depend on p plus a discrete
variable,
The mathematical meaning of p 1is connected with the operators

Th which correspond to pure displacements, These form an abelian

invariant subgroup. We put

T( a) ¥(p) = exp[ i(a,p, - ap -2ap =ap )J ¥(p)

This formula is intuitively obvious, when we observe that

px xR ete,, but its rigorous establishment requires some care-

ox
ful justification (Wigner, 1939) which we omit here,
JInstead of ¢(p), let us introduce the notation [ D, HS >
where ‘g is a necessary variable, since there may be several (in

fact there may be an infinite number of) state vectors which transform
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the same way under displacements, Ve have

Th( a) , P:S> = €Xxp [i(ptat ";:Z)] (P: 2 >
Now
Trace[h(a)p] = 2(ptat - —1)32 )

So introducing the notation

il

< hp> 1 Trace (hp)

we have

2| 2,5> = em(i<m>)(p, 5> (7)

(This was of course why we introduced a contravariant, and not
a covariant, p).

We have now dealt with translations, Their effect on a
state vector is expressed by equatibn (7)¢ All we need to do now
is find out what happens to lp, S > under a homogeneous Lorentz
transformation, LB - then we have solved the Poincare group!
The way to proceed is easily seen, principally because it is the
only thing we can do! We use esquations (5), especially the third
one. Let us do this, and apply T, to LBlp, S>  to see how

it transforms

T (Lglp,3>) = Tulyg]y, 3>
= LBTK_”/\ &'IL—-I |F,S>
= Lyoqpli<s b €7p>)1p, 3>
= ep(i< BB p>)bpl p S
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where the last step is valid because the exponential is a co-
efficient and Ly 1is linear, Since the symbol <...2> in-
dicates a trace, we may shift the first factor to the end, and

get
- P o ={ -
W (Lglp,5>) = axp(i<h 8 p 87>) L p 3>
(8)
So we have solved our problem already - or almost! Comparing

equations (6) and (7), we see that LBI Py 5> transforms under

-1 <
T as the vectors [B* p B % S>, and is therefore a linear

h
combination of these:

Lglp.S> = Z 4
5 77

It is probably no exaggeration to say that this equation is

=1 -
/{S PE)7> (9)

the most important in the whole of physics, and why, we shall see
in a few lines, It is essentially at the bottom of Feynman rules
for calculating graphs, and we know that these lay the foundations
of particle physies,

The key to the problem is to ask the question, what are the
A,)? They are not difficult to find, and the best derivation is
in Wigner (1964)., The outcome is that they are rotation matrices.

This is remarkable! To know how states transform under the
Poincare group, we do not need to know anything except the group
of 3 dimensional rotations, SU, = which we know anyways Let
us add a word here - the A,? are only rotation matrices for

states with positive time-like momenta, This is important, as

we shall see later,
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This rotation group is called the little group. Physically

It is the subgroup of the Lorentz group that leaves a particular
momentum invariant, For states with positive time-~like momenta,
it is SUQ. For states with light-like momenta it is the Huclidean
group E2, i.e. the group of all translations and rotations in
2 dimensions., For states of space-like momenta, it is the 2 + 1
Lorentz group (i.e., with metric + + =),

It is easy to verify expliecitly that the little groups are
these, We want to find what further restrictions our matrices B
have, in order that a particular momentum component be invariant

under the group.

Apart from an overall . nmetric , p of equation (6) may be written

A%%
doo-r p-c = po +/>,t, + fj_’(fl.{_ fztl

We may easily prove the following:-

(a) (rc+ F?> = pe+ P,’C'——r),_'(fl-‘— P33

- 2\ _ _ —
(b) CFQ“’)O’(’ = ro"rl(’l_Pl(’L"fz (/3

2\ N _ .
(e) tL(VO"' ?_c ! = Po — 1T+ prCa—psTy

ST e A —_ e
since (a) 4, =7C, , T, =-7,, s "’f]/
2=~ - =2
(b) P° == s f = A by hypothesis,
> 2
Hence if we put p_ + p' ¢ =B, a general 2 x 2 complex

o
matrix, it obeys

Az § =] = _
(B ) =. by &' Cy (since lezz‘) (10)



(i) Time-like momentum,

Pat p = p,y P» = O

+
then Cy P G, = b,

wvhere C3; 1s the particular lorentz matrix which leaves
Po invariant

. -+
e 0,007 e 1 (11)

e |
belongs to SU(2).

is already unimodular, so now it is unitary also and

Cq

(ii) gpace-like momenta

Put Pog " P = p3 = 0
— + -
by hypothesis,

® - +
fe TL,T,0 = 1

~ end substituting from (10)

i.e. C (12)

2

j«€. we have the group of real 2 x 2 linear transformations,
Looking at our original matrix B, it is just the group that
leaves, in this case, poz - p12 - p32 invariant, i.e., the

2.+ 1 Lorentz group.
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3. Spine-noncovariant definition.

We must now write down what are the generators of the group,
and their commutation relations, To find these we consider
infinitesimal transformations,

Let us first consider trahslatione:-

o

X, = X4 &
H H o

so adopting the convention of writing a ket in configuration space, a

then (

) \ e

Y7 s e (k=1)

Yo ey = (B + Lavpy 1.
= (¥ tavpy)[xpm>

and B”N is the generator of translations, TFor a finite trans-

formation,

(% daapiice |

Hpn >
Chenges in p are exactly analogous. We put
B0 i
>\/w> i 97/\\01— 0:3/.\\)
SR

So the transformation of Hilbert space vectors is



-2
[P o pa? = [+ g M)j% p~>

=[1poaslpeps - et ) S p>

and the generator (for the case of no spin, as above) of L-
momentum transformations is

g

_ S 2
J/M) o J:L(f/“b}o_( Pa >

and in general one adds a term 22/~A) (:«—Z}Zf%) corresponding

to the existence of spin, A finite transformation is

0 .
( F;U~j7 5 CL%LJ%V")<jt7*BJi/ ——IQJ%%ap\) ( Jiﬁﬂf>

\

L JZ, ) :r v
7 .
in general.;;;\J is an angular momentum,
We now write down commtation relations between these
generators, Physically speaking, these relations express what
happens when we perform two operations in succession,

The commutation relations are

Z—/O—K))%-\)] ;;;( g/\/,\ j%v — gk/,,_J’Aq + S’K\,j‘y‘_é’/\\]j&«> :
[3ex, 07 = S8y B - S P2
(P, P} = ©

(12)

We have changed our notation, mainly because of the worry of

upper and lower indices, Here the metric tensor @/~4 = §;~° ,

//A)"V:=') ..l end Xy = (Xo,
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t us now split these up. We put

iPo Po hermitian = energy

1K, n =1,2,3 pure Lorentz transformation (boost).
= 1,2,3 pure rotation,

€ ommn Jn <gMyn

The commutation relations now become

liﬁk’ Te

(7,5 X,]

[Kys K]

[ 7 2]
[3¢r 2]
[x, »,
[%ys ®,

Le

Conment
= i €em Jm Pure rotations form a subgroup.
= i skem.Km 'Boost' transformations form a
: vector under rotations.
= =i ekem Jm 2 boost transformations
= 1 rotation (Thomas
precession)
= i e P ‘5 behaves as a vector under
kim m rotations.
= O Po behaves as a scalar,
-, "3 Po 8k& ; By a pure Loggptz transg-
g formation, P <> Py
= =i Pk

t us now introduce the operator »

\/\/K: -2‘\:£KW j/k/v\{)\)

(134)

% See Bargmann and Wigner (1948), The definition of this operator

is a

ttributed to Pauli by Lubénski. For a recent review see

Fradkin and Good (1961).
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We may now easily convince ourselves that

Wy Py = 0 (14)
[wmeB] = o (15)
Also the operators
u? . P (16)
il 3
and 02 w, W
o g i

commite with gll the operators Jﬁ and Pu. They are the

Casimir operators. In addition

[wej‘/\}o*l = 5@&\)«/\,\ ("/Aﬁw

(17)

All this is quite general, Let us now make a few distinctions,

M° from equation (16) is not positive definite, so in general M
(its square root) is not hermitian, Physically, this means that a
particle may not have a real mass - we know from our childhood days
that exchanged particles have imaginary mass, According to the
values of M2 and Po’ we now divide Hilbert space into 3 parts, as
follows,

%i

. 9{14/ is that subspace of Hilbert space which contains
states for which M2 is positive definite (i.e, M is
hermitian) and P, is positive definite¥ki.e. momen tea
are time-like), This corresponds clearly, to states

for'"real® particles with mass,

# i.e., Po # O. Solutions to the wave equation for which Po < 0 may

be transformed to those with Po > O by a PCT transformation.
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QKZ . Is the subspace for which ¥° = 0 and P, > 0 (positive
definite), So momenta are light-like, This clearly

corresponds to massless particles,

[
/
7( . is the subspace for which M2 is negative definite,

This corresponds to virtual particles.

Note that the 3 different little groups we obtained above,
are Just the little groups corresponding to these 3 subspaces of

Hilbert space,

-

% WAlL nel¥ sensidsy JET  Furihey, e mosdyeis tust
follows, leading to the definition of spin, is taken from Gursey
(1965¢).

In X

= - ‘—"
¥ and P, 1 are both defined. (M + ) 1is

also well defined,

Let Lu\) be a set of quantities that commute with g,\ and
Wh, and let Luu form an orthogonal matrixs:-

L L =
125 I up

Lu.u is the Lorentz matrix that takes Pu to a particular frame, in
this case the rest frame.

Introduce
L
P/\ 2 Lhu P“'
W L, P (18)
A TOTA T
Comparing with equations (14) - (17) we now have
[Pi ¥ Pu'_]= 0 (19)

[Px'o Wu'}= 0 (20)



(21)

i
o™
=
P
o

L ] ]
Zj"p ’ wG;}
R ] — ~ :
P, ' W, = 0 (22)

since commutation relations are independent of any particular

frame,
Also M « P,’ Ph'
0 M (23)
C = W?\ Wl
In general, va is, of course, a function of Py
b
Since we are in ?e s We can choose
.—9
2} = 0 (24)
go from (24), (22) and (23) we see
L] = g
w, = 0 (25)
' *
r. = M (26)
2 - :
C = w, ! 2 2 '3
A wt= WTow't = W (27)
4 -l g
Define S = M- W (28)
2 -
then c « M 8% (29)

: -
Let us find the commutation of § , using equations (28),

(21) and (25):-

[wl', w2') = e, W' P

i
=
\N‘



]

But IJ.H.S. M2 [/Sl' 9 Sz'j
co [8yy 8,] = 18, and cyclic (30)

.—-9
and 8 defines the spin.

The operators 8, from an sU(2) group, which is the same

little group that we arrived at before for time-~like momenta,

Since S8 generate 8U(2), then

- - 3

S .8 = 8(s+ 1) where 8 =1%,1, /2,00e.
So from (29)

c = M2 s(s + 1) (31)

30 the two Casimir operators define mass and spin. Note

also that

Z/Sk' P¥}= 0 (32)

80 Sk is translationally invariant.,

We must now find an explicit expression for Si.

We write the elements of Lu° as

PP
k&‘)
L = +
k, k6T m(Mep,)
|
Loy = “Lyy = 15 (33)
P P
= =434 - _°
Ly, o i

Se



*T8e

Lkn Pn + Lkh Ph = 0

e Py

PL‘. = Lm Pn + LL‘J—‘- Pu = iM °

We may find S, from wk' as follows:=

-1'
Sk = M Wk
= M-lLk W
-1
= M (L, W, + Ly W)
P, (B.W) P, W
" (W + S - X095
M(M+Po) M
)
and now from equation (14) written as W, P = W, Pos we get
_ -
-5 ! X
s = #w - 2—) (34)
M+Po

— — —
We may also express W in terms of J and K, and so get,

using wi = P° Ji + eijk Kj Pk ’

o - P —> — e
3 - J =2 o _K_E..g - LJ—LI-)-LP— (}5)
M M M(M+P°)

Equation (34) is the usual form for the relativistic spin

operator (see, e.g. Macfarlane (1963)).

4., Spin and the Little Groups for Arbi trary Momentum,

Let us now sum up the situvation., First, we restrict our-

selves to that subspace of Hilbert space where M2 is positive
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definite and Po is positive, i,e., in terms of particles, to
positive energy particles of time=-like momentum, Having noted
this restriction, we can find a spin operator —§ defined by
equation (34), which obeys the commutation relations of sU(2),
equation (30), and is translationally invariant, equation (32).
These are all necessary requirements for a good spin operator.
In addition, our two Casimir operators, which are multiples

of the identity for a fixed representation of the group, Jjust
define mass and spin (or, more accurately, mass and mass X spin)
as we see from eguations (16) and (31).

Let us now define more exactly the relation to the little
groups, The Si of equation (34) generate the spin group that
induces the little group transformation on each state with
definite time~like momentum, Note that this little group
definition holds for each momentum separately. Normally the
little group is defined as a subgroup of L which leaves a
definite momentum invariant, so that other momenta are not
invariant; this transformation leaves each one invariant.

We shall now deal briefly with space-like momenta,

(a) Little Groups for Space-like Momenta.

Of course, we know what to expect -« the 2 + 1 Lorentz
group,

For a space~like momentum we can choose FPO = Pl = P2 =0
and the remaining component is non-zero,

Proceeding in the same spirit as before, we postulate the

existence of an Luu (Ph) such that

6
= = iM , (> o0) L35
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Now, as in equation (22),

Py W' = 0 Jeowg' =0
So Wh' has non=-zero components
Wh' antihermitian
wy' hermi tian
wz' hermi tian

and is time-like,

Now M2 < 0 e'e M 1is antihermitian, so iM
Let us define 3 hermitian operators

Nl’ N2, R3 such that
L
Wl = iMNl
L -
w2 = iMN2
* -
Wu = MR3

using equation (21), i.e.
] W !4 wl P'
[/wk g D } = *Kav p T
we get
~ ] L L] T
[ wi's W, ] = Eo0 wu P,

' '
W L P

=  Ejou3 3

= - Wu' ("1M)

using eguations (36) and (37), so (Va) is

(37)

is hermitian,

(38)

(389)



2 _ 2
-M[NI.NQ] = 1M Ry .
By a similar process with the other W''s, we find the

commutation relations

/¥y ¥,) e Ry
[RB. N, ] = 1N, (39)
[RB’ Nz] = =-1iN

S0 Nl’ N2 and R3 form a closed algebra under commutation,

They therefore can be made generators of a group, Further, since

[Wwe, Y = o0 (20) & (18)
then ZiNl’ Phj = 0 ’?
[¥p B] = © (10)

i
o

[R3. P.'J

17 N2 and R3 generate the 1little group for space-like

momenta, By comparing the commutation relations of N and R,

and N

.8+ (39) with those of K and J, equation (13), we see that N,

and N are boosts along the axes 1 and 2, and R is a rotation

2 -
in the 1-2 plane, They therefore generate the 2 + 1 Lorentz group,
as we saw before,

We have now arrived at a curious -conclusion, that the little
group for space=-like momenta is the 2 + 1 Lorentz group, and is
therefore non-compact. This means that its unitarity representa-

tions are infinite dimensional, and therefore we cannot associate

spin with these momenta; or we can say that this is a case of



"infinite spin%, in thé usual terﬁinology. This term gives us
no physical insight, though!

Having obtained the little groﬁps for states characterized
by time-like and space-like momenta, let us consider a scattering
process, in particular the simplest prototype whose Feynman graph

is drawn below,

t N My

/ Ts \\

If we look in the t-channel at physical energy, the particle

M i8 "real® and has time-like momentum, Its little group is
therefore SU(2) and corresponds to the faet that the particle
is in an eigenstate of s(s+l) and 85 = i.e, we may measure
its spin., This we all know = as the particle is  time-like,

80 of course we may measure its spin., But let us now cross
to the s -channel, Here, for physical energy, the particle M
has space=like momentum and since its little group, the 2 + 1
Lorentz group, is non-compact, we may not associate any discrete
eigenvalue with the particle, so we cannot measure its spin, Or,
rather, it is meaningless to talk about its spin as belonging to an
irreducible representation of SU(2), In general it will belong

to a mixture of representations of SU(2) « it can have any spin,

What do we mean, then, when we say that an exchanged particle
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has spin 0, or 1, or whatever else? Ve mean that by analytie
continuation from the s to the t channel, where the little group
now becomes SU(2), we may measure its spin. Crossing changes
the momentum of M from time-like to space-like (and vice versa);
and the corresponding little group from SU(2) to L(2,1)., If we
look at the commutation relations (39) for 1(2,1), we see that
they differ from SU(2) commutation relations (e.g. equation ( 30))
only by a sign. This indicates that 5U(2) and L(2,1) have the
same complex algebra, and this complex little group will be the
little group of the complex Lorentz group, which we get from the
Lorentz group by imposing locality, as we do in field theory,
Taking the real and imeginary parts of the little group, we get
su(2) and 1(2,1) and so from the complex Lorentz group we obtain
time- and space-like‘momenta on the same footing., We may obtain
the complex Lorentz group, for example, by letting the four-
momentum Py take on complex values, as in S-matrix theory and
2

Py, ph = em will then give energy and momentum conservation for

the intermediate states,

5. Spin-covariant Definition,

The operator S of equation (34) is hermitian, obeys sU(2)
commutation relations, is translationally invariant, but is not
covariant, This may be seen from the fact that its transformation

under pure Lorentz transformations is given by

[Kj’ 36] . 53& S.P = s;l »

M+P° .
But also the states '51 53)>, corresponding to the eigen-

_>
values of P and §3 do not transform simply under the homogeneous
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Lorentz group, since the K (boost) operators teke us from one

eigenvalue of 83 to another, The states which do transform simply
are those transforming like the representations (s, 0) or (0, S)

of the homogeneous Lorentz group. These are obtained from the

former states as follows,

3R
4@(?) = & ' %w C?) (41)

‘(/w (F) = 'F)5>

Py s=1>

are the Wigner states which transform simply (irreducibly) under
the 1little group (see Shaw 1964), The states ¥y (p) (L = left)

transform like the (S, 0) representation of the homogeneous Lorentz

group, while

> —SX(p
tlP) = < gup

_1 X))
= € ! Lh (f)

)
transform like (0, 8)e AMp) 4is given by

e - B ek I
Pemm

(L42)
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and so we see from the equations following equation (1) that
- >
exp(s.A (p)) 1is a pure Lorentz transformation,

To .g’ww(p) corresponds the covariant state

E?:g(i?) . . = .
= I 4y = X b (p)

where S
> SMF) g -5
X(7) = ¢ Se ()

It follows that
2y =2 '/7( v
. 2 —2 (
2\t EAP) 2 S
X) = e ¢
(L)
)

So we now have an operator X which trasnforms covariantly,
obeys SU(2) commuitation relations, is translationally invariant,
but is not hermitian, eguations (43) and (L4), at least not at
first sight, But we must be more careful, since we must always
define a scalar product with respect to which an operator is

S
hermitien, and although X , eq. (43) is not hermitian with
respect to the usual (7Wigner) scalar product, it is hermitian

with respect to the scalar product written below in eguivalent

(4,4) = [Wip)bu(p) 45
+ ,2?,?(/3”) S
S IAOK ulp) A

forms



$‘ZE?,X(7>)

=l e P 4

_ 3
-4 (e + et U

(45)

This was shown by Shaw (1964)., (See also Weinberg (1964)
and Joos (1962)).

Thus we have, for the expectation value of spin

L o | fix? S

=7 (%/,\X(/L"’ ¢, ‘L/()ﬂg/

| (L6)
which is hermitian with respect to the scalar product defined

_,9
by (45). Also the mean values (¥, S §) are constants of the
motion,
.-#)

Let us now evaluate X from equation (L43) explicitly.

First, from equation (13A), the orbital part of J does not

contribute to 7, so

S
" * 2%y



- e
Wy = 27 % s%u ¥
s
= - 51 Eijk Sij Pk
2 1 '
= -2 (8.P) = =% (5.P) (47)
_ D
Cooow, o= P, o= (8.P) (48)
where (47) follows because if Tem = Comn J, » then
Comk Yem = i ., )
= "
Let us put A = % tanh . g—
o
SN —
T
A= 5.0 (49)
—
where P = [IP/ ’ ® = tanh 1 P/Po
. (50)
e P O
S sinh & = “/M s cosh e = /M
-2 = i
> W
. S P - 92

So, from equation (L43)

Xiw op(350) St op(-576]
(i e ht o) s p ey )
= Coa %fwo,S )~ FL[wD,m)m
! gjfuo,fuo,m,s;w]

' F
> (52)
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We must now evaluate the commtators,

1 A
i [wo, W{_\ from equations (34) & (15)

1}

Ve
Gy =[Wy SJ

r [y W]

-i

=¥ uijk Wj P, from equation (17)

|

™
=
o

i Cigx 7y P (53)

Cp = [wo’ 01} " %[Wo' €13k 3 ij

ie
= 1k
. [Wo' Wj} P from equation (15)
181 Kk
- —td ie from above

Jjmn Nm Pn Pk

5 "9 2
-g(w.pr)P, - (P) wi}

i
=

- l[pzwi -W, P, ij from equation (14) (54)

M
03 = [WO, 02
2
P
. ﬁ_[wo’ wi]
2
= P C1 - (55)
Similarly,
¢, = P% ¢, = P, = Phc ete (56)
L'. 2’ 5 - 3 - 1’ . 5

Substituting (53) - (56) into equation (52) we get



i
w

1
+M01+

from equation (50),

- iﬁﬁi Py = W, Pi * Zwo’ wi]] (57)

using (53) and (54) .

Now let us evaluate

eijkz Wj, ‘i!i'k] .
From (17)

[w Y wk] W

€ P
Jkp B

egrel (WP = Ty Pp)

= i € yke (w& Py = W, P&)

80 €44 [ Wy W) = 1 oeggy ey, (W By =W, PY)

= =21 (W, P_ =W, Pi)

Jo (W P =W P) = -21- sijk[wj, wk] (58)

substituting (58) into (57) we get

L4

X3 = ﬁ?{% eyqe (Wys W) +1/Ws W) ] i (59)

= A1 o 4
Xy 515 Ciqc Ty Mg+ [Vis Wy, ]g
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We may now relate this to the self=-dual part of
w Lij as follows
[ w? \/7 ) B

é
Put Xuv = W i ¥ WHV

= WHV + % equG‘WPG‘ (60)
where W, = ;5 w o, Wv‘j (61)

then, in analogy with the electromagnetic field tensor Fu* ’
Xu\J will only have 3 independent components; the self=-dual
and anti-self-dual parts of Fuv are the electric and magnetic

fields, each three-vectors,

|

X gy 12?4[%, u:k] + %ejkpo‘[wp’ wé\j)z

=

" iff(wj’ Wk] * Cape Z/Wc’ Wu]i
80
X, o= Foeyg Xy
- ;"Eg 3 €53k F”;r W] o+ Wy, Wu]; (62)

x,* = ;%{ -% P [wj, ] + [y, wuﬁ) (63)

-
So from (59) and (62) we see that X 1is associated with

=+
the self-dual combination [Wu, sz + T € [Wp, Waf] while X

pvp o
corresponds to the antiself-dual combination,
It is tedious but straightforward to verify the commutation

relations



, R T - |
[NaB’ mej - L2 (eaprs Wy = Capop JPg (6h4)

where L is defined by equation (61), and equation {17) holds,

and for both X and x* we have
(Vi VY

(XK)\) XUA’} . X 5K'\) XML - ng, W 5‘)41 ey = gxy XK“) (65)

4+
and, for xi and Xi ’

[xi, xjj = ey X ( 66)

so that X does indeed define a covariant spin operator which
generates the little group, for time-like momenta, X transforms
covariantly like the (1, 0) representation of the homogeneous

Lorentz group, and X' 1ike (0, 1), while Wu transforms like

(2, %)

6. Eguivalent forms of the spin operator

Equation (59) is hardly in an immediately recognizable
form, end we will now evaluate X for the case of spin % particles,
and will notice that we have seen X around before, We have seen
that equation (59) is equivalent to equation (43), and for con=-
venience of calculation, we evaluate this expression,

We Tirst substitute

) —)

SN b
SA) _ (f XL,L)?,/ hrt\:fo——x)‘o*rp
. VL (n b pe) (67)

}

e
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soif § = ©/2, then X 1is given by

—2
X = —2—— (m + p Y'73)-%‘-(m+p°+Y5?‘-ﬁp) (68)
2m(m+p, )

which eventually and straightforwardly becomes

o Tt 28 TS - (R, p) = & 69)
X 3 rgs ¢+ (. p) 2m(m+p°) (< .p) (

Now we find the form of X when it acts on positive energy

states only, i.e, for which

= 5
Ge P + YL‘m = Po
- -
ji.e. Y59 e D = Y,m=-p, . (70)
We find
- Ef Y .3
X = ==Y, = dewe— (147,) (71)
2 L L
2(m+p,)

We note that this is the same as the Foldy=-Wouthuysen (1950)

mean=-spin operator, defined by

=
X =0 ——'U _
T = . ( 72)

"’7 m+D, + iY.p
U =
vap,(p +m)

This was pointed out by Gursey (1965a). In fact eq. (72)

is (Foldy-and Wouthuysen, 1950),

¥ = 22_ - 11)x, cxp_ px("xp) (73)
2p, 2p,( py+m)
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72 .Y % o 23 =
- _g:..ra_..g.:;y+ L5 P2, P + R{Z.p) (74)
Po 2p, 2p, 2p,(py+m)

Again, if we use the positive energy condition (70), (74) becomes

—

X = ¥, = w2 (1+07,) (75)
L 2 2(m+p°) L

which is the same as (71).

—_

X is also equal to the spin operator used in several places
in the literature, and which is discussed, for example, in Rose's

book (1961), p. 72.

—

— -2 5 > - o > — A A
S = Tugo\.el)el + (0\032)3%) + ( O\.p)p (76)
- A
where el, 32 and p form a right-~handed orthonormal triad, and
I - =3
p = p/(P|]. Using the relation
O’j - A A - 2 - =3 = =
= (0\ op)p + ( T el)el + ((T oezlez (77)
equation (76) becomes
—2 - —D A A
8 = 1," +(1-7)(c.p)p (78)

Now, using the positive energy condition (70), equation (78) is

=3 — Y,m = p -
8 » 0 ¢ (1 27) T, =t ]
b 4 's (poiz_mz) F
3 wipy 4T
= ¥, = - Y
L b’(ﬂH—Po) (79)

il
o
<



=Gl

The operator in equation (76) is used by Lipkin to define
*yegpin® (Lipkin and Meshkov, 1965), though the curious
selection rules they get are not éue to this operator, but due
to the fact that Y is an operator of 4!1/(12), which it is not
of su(6), so their selection rules do not apply to SU(6). Equation
(76) is also used by Baines et al, (1965).

It is easily seen, for example from egquation (75), that in
the rest frame, where ? = 0 and Yu = 1, that ; reduces to

(7\)/2. as it should,

Collecting together our results of this chapter, we conclude
by reasserting their relevance to sU(6). This group arises from
the combination of the approximete internal symmetry group su(3)
with a "epin group™ sSU(2) associated with the Poimarc/ group,

I1ts generators are the generalised operators for the little group
in the subspace %I of Hilbert space for which momenta are
time~like with positive energy and non-zero rest mess, For more
general momenta (such as those belonging to virtuel particles in
the perturbation treatment of field theory) the little group is
not compact in genersl, being isomorphic with the (2 + 1) Lorentz
group for space~like momenta or the two dimensional “uclidean
group for lightelike momenta and its combination with sU(3) would
lead to various subgroups of a non-compact group admitting ss its
subgroup SU(3) and a group isomorphic with the homogeneous Lorentz
group, This group G, & possible generalization of 3U(6) formally
resembles U(12) of Salam (1964, 5) and Gell-Mann (1965a, b) and
Feynman et al, (1964), but uniike U(12) admits the translationally

invariant 2U(6) as a subgroup,



Thus our philosophy of non-compact groups is different from
that of Gell=-Mann and Salam, Our group G¢ (see footnote 5 of
Gursey & Radicati (196L4) has as generators Ays Tin ByTss Ky
Pu ‘where A= lyessyls L= doieer 5 M = lyaeey b and A
generate SU(3). Thus on "boosting™ and on translation, our SU(3)
maltiplets preserve their form in the irreducible representation,
This philosophy is opposed to thaﬁ of Dothan, Gell-Mann & Ne'eman
(1965)., Also, the exact symmetry 1limit is the same as the exact
sU(3) symmetry 1limit, i.e, equal masses for all members of a
representation. We do not attempt to derive mass litting from
an exact symmetry.

The SU(2) operators 8§, for single particle states are

i
constants of motion like the SU(3) operators, since they commute

with P, . However, if we consider two particle states, unlike

the sum of SU(3) generators A = A{” + A{Pﬁ the sum
— -
£ (v L ac) . ol uili)
= 9 + S commutes with Pu = Pu + Pu for free

particles, but not in general if the two particles interact,
- =y

-
What does commute with P“ is the operator 8 = S8 + L12
ey
where le is a certain function of the Poincaré generators PJ“),

pr‘j . Pu“‘}. Jﬁ’j and is the relativistic version of the

relative orbital angular momentum of the two particles, So in

—_—
general, two representations of SU(2) cannot be multiplied; L

12
which has no counterpart in the internal symmetry space for exact
SU(3) 1imit, acts like a spurion. Thus, for example, in the
processes p — 2% and N33—° N + ®, we must insert a relativistic
spurion and assign it to a representation of SU(6)., This is one
way in which SU(6) symmetry is violated,

It is violated also in another, more fundamental, way, e

saw that crossing changes the little group from SU(2) to L(2, 1),
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Thus SU(6) does not allow crossing symmetry, But any local
interaction Hamiltonian contains crossing symmetry insofar as
it leads to different processes, some of which are related by
crossing., It follows that the locality of the interaction is
another source of ihe breaking of sU(6). We shall discuss this
further in Chapter 8, \

There is much to be said about SU(6), since it is a non-
trivial combination of SU(3) and spin. We leave most of this
unsaid, since there is already a wide and increasing literature
on the subject, Let us conclude this chapter, however, with the
remark, already made, but sufficiently important to repeat, that
5 U(6) is more than SU(3) x SU(2), It is because of this that
its Bsuccess is mysterious,

Let the generators of U(3) be Ti, 1=1,.005 9 and of

U(2) bve O\“ in the rest frame, p = ly..., U, oy = 1,

-
J° = Pauli matrix, then the generators of U(6) are Tio\u and
their commutation relations are '
[ ot J j . . I . .
/T ey Moy = e ey - Ty,
4 i -
+ & [}, Tﬂqu.ow} (80)

and it is just the presence of the anticommutator in equation (80)
that marks the difference between SU(6) and sSU(3) x sU(2). By
means of these, which go outside the SU(3) and sSU(2) algebra

respectively, we may make a transition involving a change of
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spin and unitary spin with one generator, in one step, involving
one meson, in diagram language., As far as the other generators
(Ka) of Lorentz transformations are concerned, they commate with

Ti, and so from

[Ja’ Kb] = 1 ¢ Ke

(ayby,e = 1,2,3)

we have

Z/Ti Ta? Kb] = T:“['Ta.’ ij

1
- A% e, K, (81)

zv\wkﬁrlch
and so SU(B)Apreserve their form on boosting, as remarked above,
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CHAPTER VI

SU{G) AND THE POMERANCHUK THEOREMS .
1. [The Pomeranchuk Theorems

The theoretical study of high energy scattering processes
has long been a field 6f great activity, since some of the readiest
data we have available are those of cross sections at high energy.
Also, some theoretical considerations are simpler at high energy,
for instance in group theory, the mass differences between particles
become small compared with the total energy, and one hopes that the
relevant group, if a good one, will display its virtues at higher
energies.‘rgsmeranchuk theorems are both relations at high energy

between cross-sections for different processes,

The Pomeranchuk conjecture, sometimes called Pomeranchuk's
first theorem, was suggested by Pomeranchuk and Okun (1956). They
suggested that in forward direction at very high encrgies, exchange
amplitudés, and in particular charge exchange amplitudes, become
negligible compared with the non-exchange amplitude, This hypo-
thesis was Justified in physical terms by arguing that exchange
scattering is to be regarded as a special case of inelastic
collision which at high energies is in competition with all
other inelastic processes, Non-exchange scattering a + b—a + b,
on the contrary, is truly celastic in the sense that each of the
two inecident particles remains identical to itself, so that
interference between incident and scattered waves is possible,
and scattering is bound to occur as the shadow of all inelastic

processes,
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The Pomeranchuk theorem (1958), (sometimes called his second
theorem), is simpler and, in general, not as restrictive. It
states that at high energies, the total cross section for ab
collision is equal to that for &b collision. By the optical
theorem, this is the same as saying that the imaginary parts of
the forward scattering amplitudes for the two processes, are equal.
Pomeranchuk considered the example of pp and pp scattering,
and the conditions under which.@‘\pp (2) = o= () are

PP
(1) the forward scattering amplitudes f and f=_ satisfy

P

once subtracted dispersion relations, anz (ii) thepiotal cross
sections approach constant values rapidly at high energy. This
theorem has very recently been proved rigorously by Martin (1965).

We wish now to investigate the consequences of both the
theorem and the conjecture, when higher symmetries are invoked
which place particles in multiplets. In general we shall find that
our result depends on whether a particle and its antiparticle

belong to the same or to different multiplets.

2. Examples of Symmetry Schemes and the Pomeranchuk Theorems.

(a) =N scattering.

According to the theorem

Tpop (87 B) = Ty (27 p) (1)
x transforms as {13 under the isospin group, and N
as [%) . So the direct product produces two invariant amplitudes
AJL and A3n, according to which state of total isospin the «lN is in.
Let A stand for the imaginary part of the forward scattering

amplitude. So from (1)
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2 (ay +4a;) = Ay,
i.e. % = A]/z (2)
According to the gonjecture
- +
AMlp+x > n+x) = 0
0.. Al = Ajh' . (3)
h

the same as (2)s In general the two statements are not equivalent,
but we shall see from what follows that where one particle and its
antiparticle (here =) belong to the same multiplet, then the

conjecture implies the theorem, but not necessarily vice versa.

(b) NK Secatteringe
Here N and N , and XK and K? all belong to different
I =% mltiplets. For NK scattering, we have amplitudes A, and

] L
A,s whereas for NK scattering, we have amplitudes A; and A, .

(i) Conjecture
A(pk®| nx*) = o
o.o Al = A'O (l")

Similarly for NK scattering

L ]

Al - Ao (5)

(ii) Theorem

(o* [ px*) = (pK7| pK7)
0.0 Al = llé(A.;. + A;) (6)
also (pk® pk°) = (pﬁb] pia)
Ceoay o= H(ag +AY) (7)
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These relations (4) and (5), and (6) and (7), are different.
since K and X belong to different SU(2) multiplets. The theorem
and conjecture together give

t ]

A = A&, = A = A

(¢) A and Z belong to the same multiplet.,

Let us now generalise our aN result to any symmetry. Let us
for convenience consider meson-baryon scattering (MB), and assume
that it is the mesons that belong to a self-conjugate representa-
tion, ises M apda W belong to the same representation. In this
case, the Pomeranchuk theorem takes on a very convenient form, which
was first pointed out by Amati, Prentki and Stanghellini (1962).
Referring to the absorption forward amplitude, we write the

Pomeranchuk theorem as

<wm|r|m> = W|7|T3> (8)
Now we cross to the t channel, and the above relation becomes
Qui (T BB> = (M| T | B> o (9)

e ol - W) [T B> = o (10)

i.e. only amplitudes connecting the baryons to a gymmetric combina-
tion of meéons contribute to the scattering. Sinee the crossing
matrix is square and non-singular, the number of independent
amplitudes is the same in the s and t channels, In terms of
group theory, this means we reduce MM and BB and select only

the terms arising from the product decomposition of MM which are
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symmetric with respeet to interchange of Mde In general, this

symmetry is seen from the Young diagram,

CeBe 1ls iSOBEin

For B x B we have

2x2 = 3+ 1

and for MW 8= 3 x 3 = 5 + 3 + 1

T

so in general there are two independent amplitudes AB_% 3 and
Ay 5 qs oF A3 and A, (denoted above as Ay and Ao). To see
how many independent amplitudes remain after imposition of the
Pomeranchuk theorem, we must investigate the symmetry properties
of the meson decomposition, Call the 2 boxes for each }3}
representation, a and b, and c¢ and d. Now perform the
interchanges (a <> ¢) (b« d), remembering that boxes in the
same row are symmetric under interchange, those in the same column
antisymmetric.

S0 we have

(s) (s) = (8)
(s) (a) = (a)
(4) (4) = (s)

in an obvious notation, showing that 1 is symmetrie, 3 is anti-

W
e oo

L X 2

symmetric. So from equation (10), only 1 contributes to the
scattering; there is now only 1 independent amplitude, and
moreover it corresponds to the exchange of a singlet, i.e. zero
quantum number, so we have also proved the conjecture, Ve saw

this before from equations (2) and (3).
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cege 2 SU(3)

Here the mesons and baryons both belong to {83 ,and so for the

decomposition we haves-

e 1 W A s, YO = = '\ \ . =
L x 1 - A ot 0 J_L\
! i = J; . — 1{ e S S

e L 59

BE ¢~ 8x8 = 27, + 10, + T0a * esu » P 8, *+ 14
M ¢= 8 x8 = 27, + 10, + Iﬁ; + 8, + 8, + 1

where the symmetry and antisymmetry are got the same way as before.
So normally we have 8 amplitudes, according to the arrows
marked, but under time reversal invariance (83 —> 88) = (BB—e»Ba)
so there are 7 independent. From equation (10), the number of
independent amplitudes with the P.m™ is 4 s leee  Anoy Aaes’

A8 : A

sa ,
When the baryons belong to flog , then we have for BE

and 1l

Y

- " ————

L -

0 =x 10 6l + 27 + 8 + 1

So for MB scattering, there are L amplitudes (27— 27), (85——+ 8)
(8a — 8), (1— 1) and this is reduced to 3 with the Pomeranchuk

theorem,
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Cele 3 SU‘62

Mesons now belong to §35'}, and we proceed exactly as before,

writing (see appendix)s-

MM - 35 x 35 = 405, + 280, + 280, + 35, + 35, +189, + 1

BB t~ 2695 + 405 + 35 4 1 ¢

so we have L independent amplitudes, reduced to 3 by the Pomeranchuk
theorem.(The symmetry and antisymmetry above comes, straight-—
forwardly from the corresponding Young's diagrams, drawn in the
appendix).

Note that this is a great reduction on SU(3), since there we
need 7 + 7 + 1 + L4 + L + 1 = 24 amplitudes to
describe all (0~ and 17)(%" and *~»*) reactions, which are here
deseribed by L amplitudes. So in principle we get many new
relations, one of which is the famous Johnson-Treiman relation (1965).

A word about the conjecture, This states that only the ginglet
is exchanged in the crossed channel. This is clearly consistent
with the theorem, but is only implied by it for the case of isospine.
Since only the singlet is exchanged, in the direct (s) channel
this means that all scattering amplitudes are equal, and so the
scattering is independent of the isospin, or unitary spin, or

"3U(6) spin". This is a general property of crossing matricese:

£ I am grateful to Professors B.lM. Udgaonkar and A.O. Barut for a
discussion of this point, whilst I was at Trieste, at the Seminar
on High Energy Physics, 1965,
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() Ay B, B and B all belong to different multiplets,

In thié case we may not apply the above reasoning. To see why,

let us consider again equations (4) - (7)e Altogether, we have, in
amplitudes
the case of NK scattering, 4 independentd{ The conjecture gives 2
relations between them, and the theorem also 2, but a different 2.
The conjecture and the theorem together give the result that all L
amplitudes are equal. In general neither the conjecture implies
the theorem nor vice versa, (Hovever, conjecture for (NK) + theorem
—> conjecture for (NK)).

Let us consider the statement of the theorem
+ . -
(pk* | pk*) = (pk~ | pK")

which lead to equation (6).
In the t channel, this reads

(0P (X" k%) = (oB[K* K (11)

and it may appear that this equation just states that only amplitudes
which are symmetric with respeet to K <> K’ interchange
contribute to the scattering. This is true, of course, but doecs
not give any new information, This is what we expect, since
equation (6) relates different amplitudes, and also the left and
right hand sides of (11) refer to different physical processes -
the seattering angle one observes is between different particles.

The essential reason that equation (11) gives no information
is that X' and X~ belong to different isospin multiplets.

Using the basis vectors

by = [ X7 by, = 1T
b= [ X0 By = - (X >
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Let us construct the isospin 1 and O Dbasis vectors,

using the normal Clebsch-Cordan coefficients, We get
{ -
761 = Ik*2(k°?

X =&/,u<+7\w‘> + /K°7lb?3>>

(12)

A = —kCHIKT
N = Lkt inmS> + 1K |i57)
X \/{(lw > | Vil

Compare this with the particle-particle (as distinet from
the above particle-antiparticle) states

Lo Kt kD,
[

U
7(( - L (‘K+7'|w‘>7_+ K> Lt )
X

-l | (13)
- S — 1K (kS kD ikt >

Under interchange |K* 7e> |x* 7 , (K° 7= | x° xS %{ is
symmetric and 2; is entisymmetric. This is a well-known result,
and can of course be seen straight away from Young's diagrams, where
the unit (singlet) is constructed by putting one box, or set of
boxes, under another, and so is antisymmetric with respect to

their interchange.
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In (13), though, there is no particular symmetry with respect
to K'¢2 X~ interchange, which is the interchange we are
concerned with, so we may draw no conclusions, for example, of the sort
that certain (symmetric or antisymmetric) amplitudes vanish.

8o if particles and antiparticles belong to different repre-
sentations, the conjecture and the theorem are independent. Let
us note in conclusion that the Pomeranchuk conjecture in SU(6)
implies vanishing of spin flip processes asymptotically, and also
inplies that spin and orbital angular momentum are conserved
separately, i.e. that SU(6) is exact. This has already been
conjectured by Serber (private communication with Glrsey) as

being true in the high energy limit.,
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CHAPTER VII
THE COVARIANT MAGNETIC MOMENT OPERATOR

AND SU(6).
l. Introduction

Very soon after SU(6) symmetry was proposed, it was realized
that it predicted, in the static limit,

wn)/ wlp) = - %3 (1)

for the total magnetic moments of proton and neutron. (Béé, Lee and
Pais (1964) and Sakita (1964b)). This is in remarkable agreement
with the experimental value of A~ - 0.684. In the following we
shall give a short review of magnetic moment predictions for SU(3),
and outline the derivation of equation (1) for static SU(6). We
shall then show that it is possible to find & covariant magnetic
moment operator such that equation (1) holds at all momentum
transfers. In fact, it has already been shown by Barnes et al,
(1965) how to generalise equation (1) tc arbitrary momentum
transfer, but their derivation was not manifestly covariant.

One's first reaction to the SU(6) prediction is to jump for
Jjoy, but one is arrested in mid-air due to two difficuliies, both
of which are non-trivial, First, if we assume minimal electro-
magnetic couplings, which is the usual convention, then
u(p) = 5%%» and u(n) = 0, so u(n)/u(p)=0.Wewould then
expect the ratio tobe zero. SU(6) is somehow taking into account
for us the Pauli (derivative) term corresponding to the electro-

magnetic interaction with other particles (mesons in this case).
But in any case we cannot assume both that SU(6) is valid and that
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local field theory with minimal electromagnetic interactions
applies to nucleons,

The second difficulty relates to quarks., One could say, in
prartial solution to the above difficulty that the gquarks do have
minimal electromagnetic interactions, and that the nucleons are
composed of physical quarks, But to account for the large anomalous
term in the nucleon magnetic moment, the quark would have to have
a small mass. As an order of magnitude calculation, let us note
that the physical proton (say) is composed of two "proton" quarks
and one "neutron" quark. If each of these has only a Dirac

magnetic moment, then we would have

LW\QC N LM@‘-’
L 0D e

which predicts a quark mass in such a region that it would almost

certainly have been observed.s If m, > 3 Gev, then the quark

Q
itself would have to have a large anomalous magnetic moment, This
problem is discussed by Freund (1965) and a relativistic model of
composite quark states, with the quarks having minimal inter-

action, is discussed by Bogolubov et al, (1965) and by Tavkhelidze (1965

where they obtain equation (1).

2o Magnetic Moments in SUS:}.

Electromagnetism violates SU(3) invarianeej; this is clear,
since it even violates SU(2)! But if we know exactly how it
violates the symmetry, then all is far from lost, and we can in

fact get some results. And in fact we do know how the electromagnetic
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interaction transforms. In the limit in which SU(3) is exact the
form factor

<B)3%|s >

of the baryons transforms like J Q, but this is just the

")
transformation law of @ itself., A mathematically identical way
of saying this is to say that the electromagnetic interaction
coupled to a charge (Q) "spurion", is SU(3) invariant. SU(3)
invariants are traces and there are two independent traces of
these matrices, so, for instance, the magnetic form factor is

given by the combination

wo= £ tr TV Q + £, trTQy (2)
where
)
p - +
.+ A Z p
V2 Vo
1] = == .—io A
Vi = 3 — n
VI 6
\ = = — N
P ot
Ve
= e e =
ve (6 | -
o - ”Zo .(,Z s
z* Y Ve =
p Ty
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qQ = % ol (3)
-l

In terms of fl and f2, we now have

w(h®) = (e, + £,)

r(77)

B(ey + 5)
M(P) » - f]. v 2f2

So we have the predictions

w(Z*) = u(p)

p(A) = % pn)

w(z) = un)

Wz) = w(Z7) = =[um) + um))

w(Z”) = =% upn) ()

The prediction p(A) = % u(n) is to be compared with the
Sakata model which gives u(A) = p(n)e In (4) the magnetie
moments (which are all anomalous) of proton and neutroh remain
unrelated. The two parameters fl and f2 are of course related
to f/a ratio, and it is known that SU(6) fixes this ratio, so we

expect now to determine numerieally the ratio wu(n)/ u(p).
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3 Magnetic Moments in Static SU(6).

We rederive the result we require to illustrate that it is
not necessary to use Clebsch-Gordan coefficients as is done in
the literature., All we need to know is our angular momentum
algebra.

It is easiest to consider the 3 quarks out of which the
baryons are made, it does not matter of course, here, whether
quarks exist or not. Let us call the three basic quarks p, n and
Ay, in small letters, and the physical nucleons P and N, in big
letters, The basic 6~dimensional representation of SU(6) has

as components

Py 51
¥
¥V = M = "3 (5)
P, ¥,
n, W5
1v Vg

where the suffix u = spin up, v = spin down. We consider the

rest frame of the particle where the spin matrices are just .
The physical baryons belong to the 56 dimensional representa-

tion. The highest state (highest weight, in mathematical language)

of this representation clearly has spin 3/2, isospin 3/2 and

I3 = 3/2, and so is
X+
Nw¢ = Py Py Py (6)

Remembering that
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J - la.m'> = \/n(m) - m(mal) [Jym-1>

we reduce (6) in charge space using [ -, and get

—_— + -4~
(3 NJ{/Z = {nu Py Puk
hf{:. = J:;—- i oy Py pu} (7)

where the curly brackets denote a completely symmetrical state, so

that the state in brackets above is short for

(nu PPy + Py By Py * Py Py nu) "

——

It is because there are 3 terms here that there is a 1/{ 3
outside in equation (7) == that is where Clebsch-Gordan coefficients |
come from,

Now do a spin reduction using 0 _ on eqguation (7) and get

NP

1

7 g’\r()u\‘ov\ } + /%fﬂwprug

\%[{r\u—pu\yu\} G-y gnupwpugj (8)

where there are now 3 terms inside the first curly bracket and

6 in the second. Now stz- of equation (8) has exactly the

1)

same 13, Y and 83 as the proton, they are degenerate on the

weight diagram. ©So they are orthogonal, and

P = J_-;-. @_2_ gnv P, pu2> - {n.u P, Pu\gj (9)

Similarly by taking the orthogonal state to that obtained
by applying T _ in equation (8), we obtain
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1
N = \)_-3;[- {nvnupu'} + zgnunupv3] (10)
for the neutron. ' ’
Converting into the notation of equation (5), and remembering

that indices appearing together, above or below, are to be

symmetrised, we write (9) and (10) as

- S
= (2 ¥ - Vo)
3 511 2h1
i | (11)
|3
Now we want the current which couples to PP anda TN, so
we write
_ 1 b O - THll i =241
= 3 2Py, -v2 Py, -2 P g,
+ -‘Fehl WZLLI ) (12)

As it stands, equation (12) corresponds to the highest
representation in the reduction of 56 x 56 s ie€s to 2695, with
tensor representation ng; e« The electromagnetic current trans-
forms as 35, the spin zero octet corresponding to the charge
form factor, and the spin one octet corresponding to the magnetic
moment form factor. So, to couple to 35 invariantly, we have to
reduce, c.ge (12) to a tensor of the form Tg » Which belongs
to 35. This we do by applying all possible combinations ofdelta
functions two at a time to equation (12). Clearly, then, the

only terms to give a non-zero contribution are those with 2 or

more indices equal, and so we get



(FP)35. = 2(T

5 1 b 1
. 1 2 5
= 5T, + T2 + TLL: + 21 (13)
Similarly
- 5 1
(ﬁN)35 = Tz + Tg + Ty o+ 2(2T§ + Tﬁ)
= T o+ 5T2 4 21{“ + T2 (1h)

From the way in which the spinor (5) was constructed, we see that

the "magnetic current" (or "charge-spin" current) matrix is

2
(15)

H
o 1
i
)

M =(F§‘@Q

where Q is given by equation (6). So, exactly as for SU(3), we

see that the magnetic moments of proton and neutron are given by

proton tr f 04 L X ( -1 =9
2
0

Neutron tr f 0

giving

u(p)/u(n) = -2/,
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L., The Covariant Magnetic Moment Operator.

Let us begin by stating our notations~-

YM' 75 all hermitian

xu = 1ix s X, real

-i0
p, = =19,

o)

The hermitian electromagnetic current is then written

F

= (Flpp )y 17, = - 1, 0, | ¥ (2y) > (16)

I

between states of momentum Py and Poe Fl and F2 are real

2

funections of q°, and g, = (p2 - pl)y .

The Dirac equations for the spinor and conjugate spinor are

oy ¢ = e=m
e, Y, 00 = m ¥

Ty ¥ =-%Lau*io\uv av]% (17)
and ¥ o = ny

7,79 » w¥y

V(o,-10,,9) = nm¥ry, (18)

where in both cases we have used the rélation

= 0o
Tu Yo wy F Ty (19)

(17) and (18) are



.} ,
LM v - E[au Y av:{ v
¥y, = g[ % * ioy, av}
e Vo, Vo= V) + (V¥
2
= '-;ﬁd(pg) [ 1oy + 2p),, = 7y, (21 = o), ¥(2y) >
= 1(""
= =<7 ’-ipu - 0 qV/ V> (20)
where Pu = (p1 + p2)u is the c.f.me momentum., So between

spinor states, we may write

P i
iy o= oo ZOwd
H 2m om

and substituting this in equation (16) gives

J

P
S =T | 7y - (7 2wy o, 01> (21)

This is in a covariant form now, since under the little
group, Pu is invariant, and the coefficient of the second term,
Fp # F2, is the total (Dirac + anomalous) magnetic moment, when

®, and F, are taken at g° = O.

We now cast 6\ into a form where its behaviour under

TRY ay
the little group is manifest. We must, at this stage, refer back

to equations in Chapter V. Substituting Jpv = %(T;v in the

definition V(13A) of Wp (since the orbital part of Juv does not

contribute), we have
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1
3T Sy Iapn By v (13A)

1
= IT Sawy O ap Py

)

= T Skvap 7 ap By (22)

Now let us use the relation
— bk z
2‘Y5 O\uv = Qm)ea\(féo\ (2J)

(23) substituted into (22) gives

w = -]
K 21 750-;( v Pv
o, 8 Yg Wy = Txy Py (24)

Now let us turn to the functions X defined towards the end of
Chapter V. From equations V(60) and V(17) we have

xﬂv . ;%([wu’ WV] ¥ %CMV(PO\[W(" ¥ Wo\jl

4 1
= F%euvkl WK » *t 5 cm’eo\ £€NB WG‘ PB
i
= F%cwﬂ W, Py o+ (ém ng SMB §,.) W, Psz

uy v F T (25)

'o W = 1X _ P (26)
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So from (24) and (26)

G... P = 2753(”13 (27)

Ky "y v

and, from (21)

v P i
L) [Py B - (e m) 2 X a | W) > (20)

The space part of this current is

=<'$(p2)l Fy %i,; - (Fy + F,) iY5(Xiqu)] ¥(py) >

and Xiqu = Xijqj d xi% q#

i

cijk Xk qj + 2Xi qQ,

= - @xq),; + 21% q (29)
So — . .
‘; =<7 Fl% + (Fy + Fp) 175[qu -  21q, x]|¢>(3o)

Under the little group, P is a constant, being the ce«f.m.

7
momentum, and “; transforms as a vector, _; of course is a vector,
so the coefficient of Fy is constant, and of (F1 + F2) transforms
as a vectore 72 is the covariant spin operator, and the above is
therefore manifestly covariant., We may then evaluate the ratios
of the coefficients of Fl and (F1 + FZ) in any frame, and so we

choose the rest frame, where we obtain precisely the results of the
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previous section, since as we saw in Chapter V, in the rest frame

Xy ™ Cuv .

80 the results of the last section are valid at all momentum
tranasfers, and also, the charge form factor, of, say, the neutron
2
(Fl(q )) is always zero., Notice that F, + F, gives the total

magnetic form factor, not Jjust the anomalous one,
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CHAPTER _VIII
Su(6) AND THE 3-POINT VERTEX

We shall now gather together our remarks on SU(6) to consider
how to form the Lagrangian for the interaction of a meson with a

baryon-antibaryon system in an SU(6) invariant way.

l. Choice of Lagrangisns

For simplicity, let us consider the SU(l4) subgroup of SU(6),
corresponding to non-strange particles. Here SU(6) boils down to
a symmetry between spin and isospin, or between o and z « We
may use this as a criterion to decide which Lagrangian to choose.
We will therefore take the vertex BBM where M is alternately
a meson with spin and no isospin (e ) and isospin and with no
spin (x), and expect to see here the o e z interchange
symmetry. For each meson there is a basic freedom, since we may
choose either direct or derivative interactions. This is a well-
known phenomenon in field theory, and we can easily see how it
comes about,

First, let us consider the operator Wu between spin 1,
particle states at arbitrary momentum. Starting from equation v (i'm_)

we have

Sy Tapn By (1)

1
2i
& 1 € P
= LT fawv Tap tv
1 € P
LT Swvapap v (2)

Using the identity
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We have
W —-175‘ P (’4')
T 21 57Ky vy
Substituting
- - §
ig@v Yqu By (5)

Equation (4) gives

W
7

1
2 vs(Y, v o+ SM)P,\

Bgly, 7 B + P)) (6)

When this acts on a spinor state of momentum p, we may substitute

the Dirac equation

-ivy P, ¥W(p) = m ¥ (p) (7)

so equation (6) gives

W, ¥Wp) = % ~r5(fumrNL + P“) ¥(p)
= % Y5(nw“ - au) ¥(p) (8)

We know already, but in any case it is clearly seen from
equation (8), that Wu transforms as a pseudovector under the
Lorentz group. We therefore couple V Wu ¥ to a pseudovector,

which we call du, and the invariant interaction is
im 4
= - 0
Tw, Ve, TV, vE, sV r “w“u (9)
which, by partial integration of the second term, gives
im i
= - o]
vw, v4, T Vv, V8, - 5V 5 ¥ 9, 6, (10)

In order that au ﬁu is non-gzero, ﬁu must transform as 0ux,

where ® is a pseudoscalar field. In this case



o, 6, - o 8 = 0 (11)

We note that equation (11) is three conditions, which
eliminate the spin 1 field from the field which transforms as
(%, ') under the homogeneous Lorentz group, and is known to
contain both spin O and spin 1 parts. Here we are left only

with the spin O part. ©So let us put

3 .
= = 0 12
“u s x | | (12)
where «® is the pion field, and p its mass, Substituting (12)

in (10) gives

im ipg -
Tw vd = 53Vrvr, v - Vv ¥x (13)

where we have used the fact that Uzn = uzx « Equation (13) gives

us the usual couplings of direct and derivative type. There is
nothing special about the relative coefficients of these two terms,
since each term separately is an invariant, In fact, one term may
be transformed into the other‘by the Foldy-Dyson transformation
(see e.gs Schweber (1961), p. 301), and sinee this transformation
is a unitary transformation on the Hamiltonian, the S-matrix will
remain unchanged, and the direct and derivative couplings are
equivalent to first order in the scatteringe This is the statement
of-the equivalence theorem, and it is'important that the coefficients
of the two terms in equation (13) are not related, otherwise the
equivalence theorem will not hold.

This has taken care of the pion field., To complete it, let
us give the pion isospin, and write equation (13) in generalised

form
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j Tv. T -5 7 )
Bx = igl Y5 c Woé + T 'Y5 YIJ. T Ve M é (14)
To find the corresponding interaction Lagrangian for a spin 1

T
the commutation relations of the wu (eas (i7) o page 74), we-see

= =i w
field, we consider, instead of W , Wuv = ggz{wu, Wv}. From

that

wi
o ™ n? Sy Tu By (15)

1

hmz €iapy su@rt'UET-PZPv
1

L

m Vv
) 2
- 2m2 (-m Tkn = Tuy By By = PKPv> (16)

and substituting 0, from equation (5) gives

WKK ¥(p) =//% 07(7\ - ﬁ (YK 67\ i O a;()) ¥(p) (17)

The invariant is now formed by taking the product of this with the
field J?‘Kﬂ , an antisymmetriec tensor of second rank. So the

invariani interaction is
. - 2
T wuv W‘Ll TRV V(Tpv W‘jzuv *m v wu avyaﬂzuv
which, by partial integration of the second term, becomes

» Ois w
Tw, v, = Vo, vl + &Ty, v \/u (18)

: 1
= 0
where VM = m vJZuv (19)

We again have our two familiar types of coupling for a spin 1

field, but let us note that the field is J .o ot v,
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so the first term in (18) is the direct coupling and the second one
is the derivative one. This is the other way round from what we
are accustomed to in electrodynamics. In that case, SL v becomes
Fuv and Vu becomes Au, the veector potentiales We may redefine
the fields this way as long as we are dealing with a vector field
of non-vanishing mass M. (For the freedom we have of defining
spin 1 fields, see the papers by Kemmer (1938) and (1960).) In

this case Proca's equations are

o, J2

v 2y MV,

1 ‘
M*fzquJ =)

To bring out the analogy with electromagnetism, we may redefine

(au v, ~ 9 Vu)

fields
o
G v, 3 w = i%Jz-uv

v oW K (201)
(3 vy =9 v) = o,
where now the second equation (20') is gauge invariant, but the
first is not unless M = O,

Hence the SU(6) interaction of spin 1 fields necessitates
non-zero mass for the field. If there were to be no other grounds
for ruling out electromagnetism, this would suffice, but in faect
we know that electromagnetic interactions do not respect su(3) in-
variance, and also the little groﬁﬁ for massless particles is not

su(2) but E(2), as discussed before.



~126~

We may write equation (18) generally, for the case of mesons

with spin but no isospin, as
i Vo, 4, + by v (21)
ABw = B3 VO, Vo, = VT, VY,

where the i's in equations (14) and (21) are arranged to make

the expression hermitian, using a real meson field.

2. Form of the Interaction

To write down the combined interaction Lagrangian corresponding
to the desired symmetry between spin O mesons with isospin and spin 1
mesons without isospin (5?&,9 T symmetry ) we combine equations
(14) and (21) term by term, taking the two direct and the two
derivative terms together. Let us do this in detail for the

derivative coupling
: ig ig
- —-—2- 7 0o -—E A

Taking now the representation in which y. is diagonal,
2

ie€e vy = Ca"\(: Y, = €10 s =€3, we pay set

'y
= L
‘s M
where : A
_ /Zﬁ_ (aeipx~+ b e—ipx)
L ~ m

is a left~ handed chiral spinor, a is the particle anninilation
operator, and
A x

P = 10\213

is the time-reversal antiparticle annihilation operator. WL
and WR are converted into each other by the parity operator Yh’
Writing out explieitly the bilinear forms, and separating their

space and time components gives



T ot G

P (1

[ ), = et ]
Pt ), = (i70 432 4)]

t

()

(23)
and

, </ , - T
L\%XT}&“% = E:C(/ZLM/L ”%/z‘f)l’lz)) (¢3¢, + ¢ "'5[R)Z (28)
So on putting g, = gu,l? of equation (22) becomes

‘ﬂ?’ (‘lLL‘h*“FK‘%R)V ~ (¢, ‘/’/e )V
T (‘hI‘fL“//z@fR)%{‘f’(‘& ~T ¢, wfﬂoz’x(,z)vq);

(25)

7

where Vh = iV, and ah =-iat. The expansion for the spinors
WL and Yp» 88 We may see from equation (41), page 84, is

/ / \
‘VL(p) = /Z Yh- ’ ape + bp ipx ] (26)
% 2 -ip
R = By Zap oiPx - Do ""] (27)
and so
g 1y
\];L+(p) = (% Y’-&>/ZZ&; e-ipx + bp ipx ] (28)

where a and b are annihilation operators for particle and

antipartiele, and



=128~
is the time reversed antiparticle annihilation operator.

Similarly for the mesons, we may write

- 3 = igex + _=igex
15u $(q) = q, (%,e + ﬂi e ) (29)
Vv (q) ? oy, X3 3
q - o ) QeX + =1QeX
‘ - 1%1 Y (ciéu " %2 ) (30)

where the sum is over the three polarisation states of a massive
spin one particle.

Now let us consider only the "ecreation" channel, i.e. let us
pick out of equations (26) -(30) only those terms corresponding

to the process

.,

Cc!, o 41

In the rest system of the meson, the only contributions
.’)
come from bt g = q, 4 and V , since we can eliminate V,

by the Lorentz condition. The overall exponentialis
o 1PX ~ ip'x + iqx

and so

and in the rest frame, qQ, = M (meson mass). For the vector

meson
(") (. ;
q, = 0 ql) = W P q_l(ll = 0
ay’ = © S’ = B Y, ete.
§eof  ove o)
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Picking out the terms in (26) - (29) marked with a red

cross, the expression (25) takes the form

‘-‘5 ol a"—ﬁ ({- Yu)% (Tof + ?r’.'é){z )4 (31)

since ; = -‘ﬁ', and where f = f-'d_zo’ ’c’=é’d=o. In
the frame B = 0, (31) is

+ e Wy
gua” (T ef + TC) D (32)
and (25) takes the form
% 1 = igia (Tof + 7uC) b + %*’(‘E.f + GoCt) a? (33)

where the second term corresponds to the annihilation channel,
and is the time reversed first term (Ryder, 1965).
Equation (33) exhibits the desired = s < interchange

symmetry, and under SU(2) transformations

¥(x) — eiiig ¥(x)

- —> =
then a — e Tew/2 a, b — gl T8 /2

and so (33) is invariant. But clearly terms in the Lagrangian

corresponding to processes

a Q
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are not SU(6) invariant since, if the momenta of a and at
are time-like, that of the meson is space-~like., This part of the

Lagrangian is called L p» and violates su(é6)e. It so happens
that in the static limit it gives zero contribution. (With
scalar mesons “{2 is invariant, and Zl breaks the symmetry ).
Since ¢ 1 and 8 , 8re related by crossing, 8U(6) symmetry
is not compatible with ecrossing, and therefore necessitates a
non-local field theory, such as that of the Zachariasen model
(1961), where (1 but not < o 1is present. This is discussed
by GHrsey (1965b) and Schroer (1964, 1965).
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APPENDIX

THE UNITARY GROUPS AND YOUNG'S DIAGRAMS

The group SU(n) is the group of all unitary n x n matrices,

with complex elements, Let us denote a vector in this complex

i

n-dimensional space by x and its complex conjugate by Xy b

*~
thus x = (xi). Under a transformation belonging to the group,

i

the vectors x~ and Xy get transformed into the vectors xi' and xi'

according to

xi' = a4 x9 {1)
X -
xi' = a34 Xy = aji Xy (2)

because unitarity of a implies

st = ¢t o = ?5 = agi (3)

(The symbol convention is = for hermitian conjugate and A for
complex conjugate; we use the Einstein summation convention).
In the vector space we can define mixed tensors Aggz::{

which transform according to

- E P
GBeece? - " ~| 0 A
Agtile = G Ggurereet bt g ATy

Very special tensors are 5% " gllecek and €5 4u0ek :
they are unchanged under a transformation of the group. (The e

symbol has n components). We have
i Y -,k - >
‘ = ~ A : 0< : - g'

g) - o<\k9</() gue ‘)<lf1 k'\‘)

and
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( ijoook)/ = IMesen
€ = ail Qjmooooakn &€

- det a eijo.ok

gldeeek

because of the restriction to unimodular transformations.

A representation by a mixed tensor will in general be
reducible because of the existence of the tensors 53’, sij"'k
and €5 deeok® For simplicity, let us deal first with SU(3),
where these tensors are now fj, cijk and eijk’

With the help of these ténsors, we can construect, from the
general mixed tensor A%g:::; with p wupper and gq lower
indices, the mixed tensors B, C and D, where

BooooY = ¢ i Gﬁoo;Y
BJ...lk - éG Aijoook

has (p-1) upper and (g=l1) lower indices

GBY..OS
CMGB Aij.oo.l

has (p-2) upper and (g+l) lower indices, and

Yesse$
Cuijoooz

m evsel mi oooof
Doneed = Al

is a tensor with (p+l) upper and (g~2) lower indices. The tensors
B, C and D are linear combinations of the elements of the tensor,
A, with p upper and q lower indices. The transformation properties
of B, C and D are however different from those of a tensor with p
upper and q lower indices. The tensor A is therefore reducible,
unless B, C and D are identicelly zero.

B = 0 when Aig:::; = 0, thus when the trace of A with
respect to the indices o and i is zero. C = O when A is symmetric

in the indices o and B; and D = O when A is symmetric in the

indices i and J.
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So, to construct bases for irreducible representations of
su(n), we take mixed tensors which are
(a) totally symmetriec in all p upper indices,
(b) totally symmetriec in all q lower indices,
(e) traceless.

For SU(3) this gives the well-known dimensionality formula

N = %(p+1)(q+l)(p+q +2).

It is clear that there is an intimate connexion between the
representations of SU(n) and the symmetric group, since irreducible
representations of SU(n) are obtained by symmetrising indices in
a space of n dimensions., The usual tool for dealing with the
symmetric group is the use of Young's diagrams, and we shall now
indicate, without proof, which can be found in the textbooks, how
to use Young's diagrams with SU(n).

A Young's diagram is a collection of boxes, and the number
of boxes is equal to the number of tensor indices. Corresponding

to a general tensor, we have a general diagram, say

= fl boxe/i
‘(2') L’OX%

1
€

i. | -FL }ao'xe-&
which is symmetriec with respect to interchange of boxes in the

same row, and antisymmetric with respect to interchange of boxes

in the same column. With our tensors, we see we have to symmetrise
in certain indices; but Hund's analysis (see, €.g., Hamermesh,
Group Theory, p. 231) shows us that symmetrising on a certain
combination of indices is eguivalent to antisymmetrising on a

"eonjugate" combination of indices; this is where Young's

diagrams become relevant.
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We write, for introduction, a correspondence between simple

diagrams and tensorss

] F
17 A“B a,B8 symmetric
\_;“x AG'B...Y a.,B,..‘Y u
b 7{ Aa conjugate to A%
OXeén
.;. 1 unit tensor
boxﬁz
alaB) antisymmetric in a,Be

l
B

We now state the rules for decomposing product diagrams into
their irreducible parts, and give examples for SU(3) and SU(6),
quoting the formulae for dimensionality. The behaviour of the

general case is evident from that of SU(6).

Diagram Multiplication

Consider the decomposition of the product representation

L benes N bees
LL"_-““""""“ Pt T | N S— ‘ Al
w ' ;@ (
| ' }
| A

To obtain the reduction of the product representation for U(n),

we add to the [u] Young diagram
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hl identical symbols a

?‘2 n " B

)\' " " Y
3

in this order, such that

(1) a regular scheme is formed with no two identical symbols in
the same column,
symbols
(2) if all the added/are read from right to left in consecutive
rows, starting at the top, we obtain a lattice permutation of
A
a 1 B Y seesce
i.es such that among the first r terms, the number of times a
occurs is not less than the number of times B occurs,; similarly
B does not occur fewer times than y, etc., for all r.

In SU(n), & column of n squares has dimension l. Also, we

may never have a column of >n boxes.

sU(3)

Dimensionality formulas-
i 7 _ f, boxe/}'
} - s o H

A ﬁ}

N = ‘%-!-(fl - £, 4+ 1)(f - £5 + 2)(£, - £5 + 1)
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Deco tio
— =
3 x 3 = 6 + 3

(o x O = éfg 4

™ R

+ g

su(6)

Dimensionality formulas-

g boxes

— 7 &
- 8

T .
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