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A B S T R A C T

Upper-limb myoelectric prostheses are controlled by muscle activity information

recorded on the skin surface using electromyography (EMG). Intuitive prosthetic con-

trol can be achieved by deploying statistical and machine learning (ML) tools to de-

cipher the user’s movement intent from EMG signals. This thesis proposes various

means of advancing the capabilities of non-invasive, ML-based control of myoelec-

tric hand prostheses. Two main directions are explored, namely classification-based

hand grip selection and proportional finger position control using regression meth-

ods. Several practical aspects are considered with the aim of maximising the clinical

impact of the proposed methodologies, which are evaluated with offline analyses as

well as real-time experiments involving both able-bodied and transradial amputee

participants.

It has been generally accepted that the EMG signal may not always be a reliable

source of control information for prostheses, mainly due to its stochastic and non-

stationary properties. One particular issue associated with the use of surface EMG

signals for upper-extremity myoelectric control is the limb position effect, which is

related to the lack of decoding generalisation under novel arm postures. To address

this challenge, it is proposed to make concurrent use of EMG sensors and inertial

measurement units (IMUs). It is demonstrated this can lead to a significant improve-

ment in both classification accuracy (CA) and real-time prosthetic control performance.

Additionally, the relationship between surface EMG and inertial measurements is in-

vestigated and it is found that these modalities are partially related due to reflecting

different manifestations of the same underlying phenomenon, that is, the muscular

activity.

In the field of upper-limb myoelectric control, the linear discriminant analysis (LDA)

classifier has arguably been the most popular choice for movement intent decoding.

This is mainly attributable to its ease of implementation, low computational require-

ments, and acceptable decoding performance. Nevertheless, this particular method

makes a strong fundamental assumption, that is, data observations from different

classes share a common covariance structure. Although this assumption may often

be violated in practice, it has been found that the performance of the method is

comparable to that of more sophisticated algorithms. In this thesis, it is proposed to

remove this assumption by making use of general class-conditional Gaussian models

and appropriate regularisation to avoid overfitting issues. By performing an exhaus-
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tive analysis on benchmark datasets, it is demonstrated that the proposed approach

based on regularised discriminant analysis (RDA) can offer an impressive increase in de-

coding accuracy. By combining the use of RDA classification with a novel confidence-

based rejection policy that intends to minimise the rate of unintended hand motions,

it is shown that it is feasible to attain robust myoelectric grip control of a prosthetic

hand by making use of a single pair of surface EMG-IMU sensors.

Most present-day commercial prosthetic hands offer the mechanical abilities to

support individual digit control; however, classification-based methods can only pro-

duce pre-defined grip patterns, a feature which results in prosthesis under-actuation.

Although classification-based grip control can provide a great advantage over con-

ventional strategies, it is far from being intuitive and natural to the user. A potential

way of approaching the level of dexterity enjoyed by the human hand is via contin-

uous and individual control of multiple joints. To this end, an exhaustive analysis

is performed on the feasibility of reconstructing multidimensional hand joint angles

from surface EMG signals. A supervised method based on the eigenvalue formula-

tion of multiple linear regression (MLR) is then proposed to simultaneously reduce the

dimensionality of input and output variables and its performance is compared to that

of typically used unsupervised methods, which may produce suboptimal results in

this context. An experimental paradigm is finally designed to evaluate the efficacy of

the proposed finger position control scheme during real-time prosthesis use.

This thesis provides insight into the capacity of deploying a range of computa-

tional methods for non-invasive myoelectric control. It contributes towards develop-

ing intuitive interfaces for dexterous control of multi-articulated prosthetic hands by

transradial amputees.
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L AY S U M M A RY

Upper-extremity myoelectric prostheses are electromechanical devices that aim to

partially restore the appearance and functionality of a missing limb. They are typ-

ically controlled by processing the user’s muscular activity information recorded

non-invasively on the skin surface using electrodes. Although sophisticated multi-

articulated hands are nowadays commercially available, their potential is not fully

exploited. Furthermore, they often exhibit control strategies that are non-intuitive

and can thus prove cumbersome for the user. A large body of work has been un-

dertaken to achieve naturalistic prosthetic control by deploying algorithms and tools

from the fields of statistics and artificial intelligence.

This thesis proposes ways of improving the dexterity and ease of control of my-

oelectric hands. Two main directions are explored. In the first paradigm, the user’s

muscular activity is used to decipher the intended hand grip in order to drive the

prosthesis into the desired posture in an automated fashion. For the end-user, the

ability to intuitively select and utilise 4-5 hand grips to grasp objects can offer a

tremendous benefit in performing activities of daily living. In the second paradigm,

it is proposed to provide the user with the ability to control each digit of the pros-

thesis individually, as they would naturally do with an intact limb. The latter scheme

has the potential to significantly improve the dexterity of prosthetic control.

The advancements proposed in this thesis are evaluated with laboratory experi-

ments including able-bodied and transradial amputee participants. Special attention

is given to relevant practical aspects in order to maximise the clinical impact of the

work. This thesis contributes to the long-term objective of developing dexterous and

intuitive interfaces for prosthetic hand control with the aim of improving the quality

of life of upper-extremity amputees.
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1
I N T R O D U C T I O N

The loss or congenital absence of an upper extremity can dramatically impair an indi-

vidual’s ability to perform functional movements and activities of daily living. More-

over, they can cause a significant psychological, professional, and socio-economical

distress on the affected person’s life.

Upper-extremity prostheses are electromechanical devices that aim to partially re-

store the appearance and/or functionality of a missing upper-limb. They typically

fall into one of the following three main categories: 1) passive/cosmetic; 2) body-

powered; and 3) externally-powered myoelectric. Passive, or cosmetic prostheses, are

only intended to substitute the physical appearance of the missing body part and,

thus, do not provide any practical functionality to the user. Body-powered prostheses

work by linking the user’s body movements (e.g. shoulder shrugging) to a terminal

device, such as a prosthetic hand or hook. Finally, myoelectric prostheses are con-

trolled by the user’s muscular activity, typically recorded non-invasively on the skin

surface using a specialised technique called electromyography (EMG).

The following four main strategies have been proposed for upper-limb myoelectric

control: 1) mode switching; 2) machine learning (ML) (or pattern recognition); 3) user

learning (or motor learning); and 4) musculoskeletal modelling. The mode switching

strategy allows the user to control a single degree of actuation (DOA) of the prosthesis

at a time (e.g. hand opening/closing or wrist pronation/supination) through agonist/

antagonist muscle contraction. To switch to a different control mode (e.g. from hand

to wrist control), the user has to produce a required biosignal, typically through mus-

cle co-contraction. This scheme has been proven robust, but lacks intuitiveness and

can also be cumbersome for the user. On the other hand, ML-based approaches al-

low for simultaneous access to multiple functions by creating a mapping between the

user’s muscular co-activation patterns and prosthesis control actions. One such exam-

ple is when the user can access different hand grips by activating their muscles in a

natural way, in the same way that they would do with an intact limb. The automatic

grip selection is in this case achieved by means of myoelectric signal classification.

One limitation of this strategy is that it may lead to prosthesis under-actuation, as

a result of exploring only a fraction of the multidimensional joint activation space

of the robotic device. Proportional control schemes based on regression methods of-

fer a promising alternative, whereby the user can control the prosthesis in the full
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joint kinematic space. The motor learning approach is similar to ML-based control,

except that the association between the user’s muscle activation signals and control

of prosthesis DOAs is not intuitive (i.e. natural); therefore, the user has to learn the

mapping from experience. Finally, the musculoskeletal modelling strategy defines a

full biomechanical model which is then employed to compute prosthesis activation

commands from muscle activations through forward-dynamical model simulation.

1.1 aim and objectives

The aim of this thesis is to advance the state-of-the-art in non-invasive, ML-based,

dexterous control of myoelectric hand prostheses targeted for use by transradial am-

putees. To achieve this goal, the following two objectives are established:

1. Improve the performance of classification-based myoelectric grip control.

2. Develop and evaluate a framework for continuous finger position control of

multiple joints.

Throughout this thesis, special focus is given to clinical and practical aspects of

myoelectric control, with the hope of making the research outcomes beneficial for

the end users, that is, the transradial amputee community. The advances proposed

in the thesis are evaluated by performing exhaustive offline analyses, as well as by

designing experimental protocols used to assess the efficacy of the proposed schemes

during real-time, closed-loop control of commercial and research prosthetic/robotic

hands.

1.2 thesis outline

The remainder of this thesis is organised as follows:

• Chapter 2 introduces the relevant to the thesis background information on

upper-extremity amputation, the history of development and use of upper-limb

prostheses, fundamentals of EMG and inertial measurement units (IMUs), and the

current academic and clinical state-of-the-art in myoelectric control.

• Chapter 3 proposes the concurrent use of surface EMG and IMUs for improving

the performance of classification-based, myoelectric grip control.

• Chapter 4 offers a thorough investigation on the performance of a broad family

of discriminant analysis (DA) models on the task of classifying myoelectric data

into hand motions and gestures.
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• Chapter 5 proposes a full framework for efficient, classification-based, real-time

hand grip control by using only two sensors. Several advancements are intro-

duced with regards to the deployed classification algorithm, hyper-parameter

tuning, and confidence-based prediction rejection.

• Chapter 6 features a systematic offline analysis on decoding finger joint angles

from surface EMG signals using regression methods.

• Chapter 7 proposes a supervised method for simultaneous input-output lin-

ear dimensionality reduction for joint angle reconstruction from EMG measure-

ments.

• Chapter 8 evaluates a continuous finger position control scheme for multi-

articulated hand prostheses.

• Chapter 9 summarises the work, considers its limitations, outlines proposals

for future work, and concludes the thesis.

The schematic diagram of Figure 1.1 illustrates the challenges addressed in this

thesis within the general context of upper-limb myoelectric control.

Myoelectric control

Machine learning

(pattern recognition)
Mode switching

User learning

(motor learning)

Discrete control
Continuous control

(proportional control)

Hand/wrist/elbow

motions

Hand grip selection

Chapters 3-5
Wrist Finger

Force control
Position control

Chapters 6-8

Musculoskeletal 

modelling

Classification Regression

Figure 1.1: Myoelectric control strategies. The highlighted boxes are discussed in this thesis.
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2
B A C K G R O U N D

This chapter introduces the relevant to the thesis background information. Rather

than presenting an exhaustive review, it aims at providing only a general overview of

the field of myoelectric control. In contrast, the introductory sections of subsequent

chapters provide extensive reviews of research aspects relevant to their content.

The current chapter is organised as follows: Section 2.1 provides an introduction to

upper-extremity amputation, briefly describes the history of upper-limb prostheses,

and discusses reasons for myoelectric prosthesis use abandonment; Section 2.2 intro-

duces the fundamentals of recording and processing electromyographic (EMG) signals;

Section 2.3 provides a brief introduction to inertial measurement units (IMUs); Section

2.4 presents the current industrial and academic research state-of-the-art in myoelec-

tric control; finally, Section 2.5 introduces a range of standardised procedures and

tests used for assessing the performance of myoelectric control systems.

2.1 upper-limb prostheses

2.1.1 Upper-limb loss

In Scotland alone, an estimated average of 458.7 ± 9.9 (mean ± standard error) upper-

limb amputations are reported every year (NHS Scotland, 2014). In the USA, the total

number of upper-limb amputees in 2005 was 541,000 and this figure is expected to

increase by 131% by 2050 (Ziegler-Graham et al., 2008). The most common causes of

upper-limb loss are trauma, neoplasia (i.e. tumours), infection, dysvascularity, neuro-

logical disorders (e.g. diabetic neuropathies), and birth defects.

Upper-limb loss can be classified according to the shape and length of the residual

limb, and can vary from partial removal of a digit to loss of an entire arm. Some

of the most common upper-limb amputation types are: forequarter amputation, that

is, loss of entire shoulder and arm structure; shoulder disarticulation; transhumeral

or above-elbow amputation; elbow disarticulation; transradial or below-elbow ampu-

tation; wrist disarticulation; partial hand amputation; and upper digit amputation.

Demographic data for upper-extremity amputations in the United Kingdom are pre-

sented in Figure 2.1. Amputation breakdowns by cause and type are shown in the

top and bottom panels of the figure, respectively. The demographic data correspond
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Trans-humeral
Upper digits
Trans-radial
Partial hand

Shoulder disarticulation
Double upper amputation

Forequarter
Wrist disarticulaion

Elbow disarticulation

26 %
23 %

19 %
16 %

5 %
3 %
3 %
3 %

1 %

Amputation level

Trauma
Neoplasia

Dysvascularity
No cause provided

Other
Infection

Neurological disorder

61 %
13 %

7 %
6 %
6 %

5 %
2 %

Amputation cause

Figure 2.1: Upper-limb amputation demographics in the United Kingdom. Data are acquired
from Luff, Forrest, and Huntley (2009) and correspond to the period 2004-2005.

to the chronological period from 2004 to 2005 and have been acquired from a survey

by Luff, Forrest, and Huntley (2009).

2.1.2 A brief history of upper-limb prostheses

Although the oldest surviving prosthetic device is an ancient Egyptian artificial toe

(Finch, 2011), the first documented user of a prosthetic hand is Marcus Sergius, a

Roman general during the Second Punic War (218-201 BC) (Romm, 1989). Significant

advancements in the development of artificial hands were made in the 16
th century

AD. One notable example is a mechanical prosthetic hand operated with catches and

springs designed by Ambroise Paré, a French barber surgeon (Thurston, 2007). Iron-

made prosthetic arms were also developed in the same period, some of which have

survived until today (see Figure 2.2).

The scientific and technological advancements achieved during the current and

previous centuries heavily transformed the field of prosthetics. The first myoelectric

hand was developed in the 1950s by Reiter (1948) and since then, the design and

functionality of this type of devices have undergone great improvement. Present-day

commercial myoelectric hands are anthropomorphic, lightweight, and can offer a

high level of dexterity, as a result of comprising multiple degrees of freedom (DOFs).

Representative examples of modern hand prostheses are shown in Figure 2.3.
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Figure 2.2: Historical prosthetic hands. (a) Mechanical hand designed by Ambroise Paré,
1564 (photograph by Wellcome Library, London); (b) iron prosthetic arm, 1560-
1600 (photograph by Science Museum, London); (c) iron prosthetic hand be-
lieved to be owned by German knight, circa 1504 (photograph by Wilhelm
Kratt). All photographs are distributed under a CC BY 4.0 International license
(https://creativecommons.org/licenses/by/4.0/).

Figure 2.3: Modern commercial prosthetic hands. (a) Touch Bionics i-limb™ (Touch Bionics,
Inc., 2003); (b) Ottobock bebionic (Ottobock, Inc., 1919); (c) Ottobock Michelangelo
(Ottobock, Inc., 1919); (d) Vincent Evolution 2 (Vincent Systems, GmbH, 2013). All
photographs have been provided and are used with permission from the respec-
tive manufacturers.

2.1.3 Prosthesis rejection

Biddiss and Chau (2007) carried out a thorough literature review and reported an

average rejection rate of myoelectric prostheses of 23% and 32% in adults and chil-

dren, respectively. The same figures for passive and body-powered prostheses were
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39% and 26% (adults), and 38% and 45% (children), respectively. A follow-up survey

revealed that 74% of non-prosthesis users would be willing to reconsider adopting a

prosthetic solution, should improvements in functionality occur at a reasonable cost

(Biddiss, Beaton, and Chau, 2007). Amongst the most commonly provided justifica-

tions for myoelectric prosthesis rejection are increased weight, excessive wear tem-

perature, and lack of comfort, functionality and durability (Glynn et al., 1986; Datta,

Kingston, and Ronald, 1989; Routhier et al., 2001). Myoelectric prostheses users have

indicated the following suggestions and preferences for improving their functional-

ity: individual digit movement, thumb abduction and adduction, wrist movement,

simultaneous control of multiple joints, greater intuitiveness and naturalness of pros-

thesis control, grip strength adaptability, and sensory feedback (Atkins, Heard, and

Donovan, 1996; Biddiss, Beaton, and Chau, 2007).

2.2 electromyography

Myoelectric prostheses are controlled by processing the user’s muscular activity in-

formation recorded on the skin surface with EMG. The following sections offer an

introduction to the physiology of EMG recordings and related signal processing tech-

niques for myoelectric control.

2.2.1 Neurophysiology of movement

Motor control is a complex process by which living organisms activate and coordinate

their limbs and muscles to perform actions. It is achieved through the interaction of a

large number of subsystems, which includes motor cortical areas (predominantly the

primary motor and premotor cortex), the brainstem, basal ganglia, cerebullum, and

spinal cord circuits (Purves, 2012).

The British neurophysiologist Charles Sherrington used the term motor unit to de-

scribe the relationship between a motor neuron located in the ventral horn of the

spinal cord grey matter, or in the motor nuclei of cranial nerves in the brainstem, and

the skeletal muscle fibres innervated by the neuron’s axon terminals. When an action

potential is generated by a motor neuron, all of the muscle fibres it contacts con-

tract. Muscle fibre contraction generates force that is applied to the skeleton, which

in the case of an isotonic contraction results in body movement. The amount of force

produced by a muscle is directly related to the number of active motor units and

their corresponding firing rates. In general, the number of muscle fibres per motor

unit can vary within and more widely across muscles (Buchthal and Schmalbruch,

1980). The number of motor neurons and fibres per muscle can also vary greatly, and
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are typically in the range of hundreds and tens/hundreds of thousands, respectively

(Feinstein et al., 1955). The total number of motor neurons innervating the human

upper-limb is approximately 22150 (Gesslbauer et al., 2017).

2.2.2 Neural information in electromyographic signals

The electromyogram is an electrical muscle signal recorded either non-invasively on

the surface of the skin or invasively (i.e. directly from the muscle tissue) using elec-

trodes. EMG signals convey information about the fibre neural activity of the targeted

muscle. Since an action potential generated by a motor neuron brings to threshold

all of the muscle fibres it contacts, there is a one-to-one correspondence between

the action potential activity of a motor neuron and that of its associated muscle fi-

bres; therefore, EMG signals convey information about the neural drive sent from the

spinal cord to the muscles (Farina et al., 2014).

The recorded EMG signal can be modelled as a superposition of the action poten-

tials of multiple motor units (De Luca, 1979). Using this model, it can be shown that

the power of the EMG signal is an approximation of the sum of individual motor unit

action potentials, each weighted by the corresponding firing rate; therefore, there is

a monotonic relationship between the power of the EMG signal and the neural drive.

Furthermore, the EMG power is related to the force exerted by the targeted muscle.

However, it is hard to establish a quantitative description of this relationship, as the

surface EMG signal is affected by various factors, including among others: anatom-

ical characteristics; changes in electrode positioning and electrode-skin impedance,

for example, due to sweating; and relative movement of the muscle with respect to

electrode due to fibre shortening and lengthening (known as movement artefact) (De

Luca, 1997; Farina et al., 2014).

2.2.3 EMG signal processing for prosthesis control

The monotonic relationship between EMG signal power and force exerted by the tar-

geted muscle has been exploited since the early days of myoelectric control in the

1950s, when the EMG power was proposed as a potential control signal for pros-

thetic devices (Battye, Nightingale, and Whillis, 1955). Another closely related and

commonly used approximation of the force exerted by a muscle can be obtained via

extracting the linear envelope of the EMG signal. This transformation involves full-

wave rectification of the signal followed by low-pass filtering (i.e. smoothing) using

a cut-off frequency in the range of 5 Hz to 20 Hz. An example of EMG linear en-

2.2 electromyography 9
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Figure 2.4: An example of EMG signal linear envelope extraction. The raw EMG signal (top
panel) is firstly full-wave rectified (middle panel) and subsequently smoothed via
low-pass filtering (bottom panel).

velope extraction is illustrated in Figure 2.4. For this example, a 4
th-order low-pass

Butteworth filter was used and the cut-off frequency was set to 10 Hz.

For prosthesis control, muscular activity recorded with EMG has to be analysed

in real-time. Since the EMG signal is stochastic (De Luca, 1979), instantaneous (i.e.

sample-by-sample) processing is not useful, as it cannot provide information about

the power in the signal. For that reason, a block processing approach is required; in

other words, a sliding window is used to analyse the EMG signal in batches of consec-

utive samples. Analysis windows can be either disjoint, that is, the starting point of

each window follows the end point of its predecessor, or overlapping, whereby the

signal samples are included in multiple consecutive window(s).

Surface EMG signals are inevitably contaminated by many sources of noise includ-

ing, but not limited to, power line interference, baseline noise, and movement artefact.

Typically, a combination of low-pass and notch filtering is required to remove noise

components from the EMG signal while preserving at the same time the desired

information. In commercial EMG sensors, this type of filtering is nowadays often

implemented in hardware (De Luca et al., 2010).

2.2.3.1 EMG feature extraction

One important aspect affecting the performance of machine learning (ML)-based my-

oelectric systems is the choice of EMG feature representation. Therefore, it should

come as no surprise that a large body of work has studied this relationship by carry-

ing out exhaustive EMG feature performance comparisons (e.g. Zardoshti-Kermani

10 background



et al., 1995; Englehart et al., 1999; Boostani and Moradi, 2003; Phinyomark, Phuk-

pattaranont, and Limsakul, 2012; Phinyomark et al., 2013). In general, EMG features

can be classified in three main categories: time-domain, frequency domain, and time-

frequency domain.

The current section introduces some of the most commonly used time-domain

EMG features in the myoelectric control literature. Let x = x1, x2, . . . , xN denote the

raw EMG signal within a processing window of length N, and

x̄ =
1

N

N∑
n=1

xn (2.1)

be the empirical mean of the vector x, which is typically close to zero. The following

EMG features are defined:

• Mean absolute value:

MAV =
1

N

N∑
n=1

|xn| . (2.2)

• Variance:

VAR =
1

N− 1

N∑
n=1

(xn − x̄)2 . (2.3)

• Log-variance:

LogVar = log

(
1

N− 1

N∑
n=1

(xn − x̄)2
)

. (2.4)

• Root mean square:

RMS =

√√√√( 1
N

N∑
n=1

x2n

)
. (2.5)

• Waveform length:

WL =

N−1∑
n=1

|xn+1 − xn| . (2.6)
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• Wilson amplitude:

WAMP =

N−1∑
n=1

f (|xn+1 − xn|) , (2.7)

where

f (x) =

1, if x > threshold,

0, otherwise.

• Slope sign change:

SSC =

N−1∑
n=2

f [(xn − xn−1) (xn − xn+1)] , (2.8)

where

f (x) =

1, if x > threshold,

0, otherwise.

• Zero-crossing:

ZC =

N−1∑
n=1

[sgn (−xnxn+1)∩ |xn − xn+1| > threshold] (2.9)

where

sgn (x) =

1, if x > 0,

0, otherwise.

• Kurtosis:

Kur =

1
N

N∑
n=1

(xn − x̄)4(
1
N

N∑
n=1

(xn − x̄)2
)2 . (2.10)

• Histogram with k bins: number of signal samples in equally spaced amplitude

segments determined by the number of bins (k).
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• Auto-regressive coefficients (order p): the EMG signal within the processing

window can be modelled as an auto-regressive time-series model

xn = c+

p∑
i=1

αixn−1 + en, (2.11)

where c is a constant, p is the order of the model, αi for i = 1, . . . ,p are the

parameters of the model (auto-regressive coefficients), and en is white noise.

The model parameters are estimated by means of ordinary least squares via

solving the Yule-Walker equations.

Frequency domain features include the mean frequency, median frequency, peak

frequency, mean power, total power, and spectral moments within the processing

window (Phinyomark, Phukpattaranont, and Limsakul, 2012). It is worth noting that

some time-domain features, such as zero-crossing, Wilson amplitude, waveform

length, slope sign change, and histogram also measure frequency-related information

of the EMG signal. Time-frequency domain features involve using frequency repre-

sentations of the signal within the processing window, such as the short-time Fourier

transform, the Wavelet transform, and the Wavelet packet transform (Englehart et al.,

1999).

2.2.4 Myoelectric classification

Classification-based myoelectric control is based on the principle that features ex-

tracted from multiple EMG electrodes (see Section 2.2.3.1) form motion-specific clus-

ters in high-dimensional space, which can be therefore used to discriminate different

classes of movement in order to control a prosthesis. A qualitative illustration of this

principle is depicted in the right column of Figure 2.5 and contrasted to the classical

method of mode switching control introduced in Section 2.4.1.1.

A plethora of classification algorithms have been proposed for myoelectric control

including, but not limited to, linear discriminant analysis (LDA) (e.g. Hargrove, En-

glehart, and Hudgins, 2008; Young et al., 2013); quadratic discriminant analysis (QDA)

(Scheme and Englehart, 2011; Phinyomark et al., 2013); K-nearest neighbours (k-NN)

(Nazarpour, Sharafat, and Firoozabadi, 2007); multi-layer perceptrons (MLPs) (e.g. En-

glehart et al., 1999; Castellini and Smagt, 2009; Ortiz-Catalan, Håkansson, and Bråne-

mark, 2014b); Gaussian mixture models (Huang et al., 2005; Ju et al., 2013); support

vector machine classification (e.g. McCool et al., 2014; Gailey, Artemiadis, and San-

tello, 2017); random forests (Li et al., 2013); and more recently, convolutional neural

networks (Atzori, Cognolato, and Müller, 2016; Geng et al., 2016; Du et al., 2017).
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Figure 2.5: Mode switching vs. classification-based myoelectric control. (Left column) an ex-
ample of amplitude-based mode switching myoelectric control paradigm. Based
on a figure by Parker, Englehart, and Hudgins (2006). (Right column) a qualita-
tive illustration of a three-class myoelectric control scheme using a linear classifier
(LDA) and two EMG features.

Among these algorithms, the two most commonly used have been the LDA and

MLP classifiers (Peerdeman et al., 2011). These are briefly introduced in the following

sections. A detailed description of the family of discriminant analysis (DA) classifiers,

which includes LDA as a special case, is given in Section 4.2.

2.2.4.1 Linear discriminant analysis

LDA is a statistical method for linear dimensionality reduction and classification.

Given a set of training instances {x(n),y(n)}n=1,...,N, where x(n) ∈ RD denotes the

nth input vector and y(n) the associated class label, LDA seeks to find linear input

projections that maximise class separability.

As a probabilistic classifier, LDA assumes class-conditional normal densities shar-

ing a common covariance matrix, called the pooled covariance or within-class scatter

matrix. This assumption leads to linear decision boundaries, as illustrated in the ex-

ample shown in the right column of Figure 2.5.

2.2.4.2 Multilayer perceptron

The MLP is a class of feed-forward artificial neural networks. An MLP consists of an

input, an output, and at least one hidden layer of nodes. Each node in the network,

except for the nodes in the input layer, receives as input a weighted sum of the activ-

ity of all the nodes in the previous layer and outputs a non-linear transformation of

this sum. The non-linear transformation applied at each layer is called the activation

function and typically belongs to the sigmoid family (i.e. logistic or hyperbolic tan-

14 background



x1

x2

x3

y

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 2.6: An example of an MLP architecture with three input units, three hidden layers
consisting of five hidden units each, and one output unit. Based on a figure by
Kjell Magne Fauske, distributed under a CC BY 2.5 Generic license (https://
creativecommons.org/licenses/by/2.5/).

gent), although other activation functions are also possible. An example of an MLP

with three hidden layers is shown in Figure 2.6

MLP classifiers are capable of performing highly non-linear function approxima-

tions and can thus be used for supervised learning problems, including both classifi-

cation and regression. Model training concerns selecting the weights of the network

with the aim of optimising a specified cost function. This can be achieved by using the

backpropagation method and an optimisation algorithm, typically gradient descent,

which iteratively updates the weights of the network until a convergence criterion is

met.

2.2.4.3 Myoelectric controller delay

In classification-based myoelectric control, class decisions cannot be generated instan-

taneously due to processing EMG signals in time windows (see Section 2.2.3). Many

studies have shown that an increase in the length of the window is associated with

improved classification performance (e.g. Englehart and Hudgins, 2003). However,

Farrell (2011) demonstrated that the response delay of the system is also directly

related to the processing window length in a proportional manner. Other factors in-

fluencing the response delay are the computational complexities associated to feature

extraction and classification, the length of sliding window increment in the case of

overlapping windows, and the number of votes required to trigger a control action

when a majority-voting scheme is used to smooth the class prediction time-series

(Englehart and Hudgins, 2003). Farrell and Weir (2007) have shown that the optimal

delay for myoelectric control is in the range of 100 ms to 175 ms. Moreover, Smith
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et al. (2011) demonstrated that a window length in the range of 150 ms to 250 ms

offers a good compromise between classification performance and controller delay.

2.3 inertial measurement units

An IMU is an electronic device that measures acceleration, angular velocity, and

magnetic field using, respectively, accelerometers, gyroscopes, and magnetometers

(Woodman, 2007). IMUs are commonly used as navigation sensors for aircraft, space-

craft, satellites, and aerial robots.

IMUs are embedded in many commercial prostheses to provide information about

the orientation of the device. Additionally, they have been recently used to allow the

user to select a desired grip through arm movement trigger signals (Touch Bionics,

Inc., 2003, see Section 2.4.1.2). The use of inertial measurements for myoelectric con-

trol is thoroughly investigated in this thesis (see Chapter 3). The following section

provides a brief introduction to the basic components of IMUs and their operational

principles.

2.3.1 IMU components and operational principles

An IMU typically comprises a combination of accelerometers, gyroscopes, and mag-

netometers. An accelerometer is an electromechanical device measuring static and

dynamic forces of acceleration, due to gravity and vibrations/movement, respectively.

It measures proper acceleration, that is, acceleration relative to free fall, in one, two,

or three axes. Accelerometers have a wide range of applications in engineering, navi-

gation, and industry.

A gyroscope is conceptually a spinning wheel in which the rotation axes are free to

assume any orientation. During rotation, the spinning wheel resists changes in orien-

tation due to the law of conservation of angular momentum; therefore, a gyroscope

can measure orientation and its rate of change (i.e. angular velocity).

A magnetometer is a sensor measuring the strength and direction of the local mag-

netic field. The measured signal is a combination of the earth’s magnetic field and

that of any nearby objects. The simplest example of a magnetometer is the compass,

which measures the direction of an ambient magnetic field.
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2.3.2 Inertial navigation and bias effects

In navigation systems, the raw data recorded with the different types of inertial sen-

sors, that is, accelerometers, gyroscopes, and magnetometers, are fused and trans-

formed into measurements of orientation, velocity, and displacement with respect to

a global reference frame. This is achieved by using a combination of integration oper-

ations and filtering techniques, such as Kalman and particle filters (e.g. Mourikis and

Roumeliotis, 2007).

One major disadvantage of inertial sensors, especially accelerometers and gyro-

scopes, is that they suffer from constant bias errors. Such biases when integrated

cause “drifts” in velocity and position which grow over time. Several methods have

been proposed for drift correction and are typically based on sensor fusion algorithms

or domain specific assumptions (Woodman, 2007).

2.4 state-of-the-art in upper-limb myoelectric control

2.4.1 Industry

2.4.1.1 Mode switching

The most commonly deployed control strategy in commercial myoelectric hands is

mode switching (Atzori and Müller, 2015). In this scheme, two (or more rarely three)

EMG sensors are placed on the residual limb surface of the user targeting the remnant

flexor and extensor muscle groups. In this way, the amplitude of each EMG signal

can be used to control a specific function, for example, hand opening and closing.

This can be achieved in either of the following two ways: by defining user-specific

amplitude thresholds and using an on-off (or bang-bang) controller; or in a proportional

way (see Section 2.4.2.2), whereby the degree of performed action is related to the

amplitude of the associated control signal. One main disadvantage of this regime is

that it can only allow the user to control a single function at a time. Other functions

can be accessed by mode switching, which is typically achieved through muscle co-

contraction. Additionally, the control of the hand is not natural; in other words, it

relies on the user learning the underlying control principle of the device through

training. The working principle of this scheme is illustrated in the left column of

Figure 2.5.
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2.4.1.2 Trigger signals

A different strategy for myoelectric prosthesis control is based on non-intuitive trigger

signals that can be activated by the user to access multiple functions. One example

of this approach is a system recently made available for the i-limb™ Quantum hand

(Touch Bionics, Inc., 2003). In this paradigm, a set of pre-defined hand grips are

associated with specified arm movement triggers. The latter are recognised by the

controller via an IMU (see Section 2.3) embedded in the hand. Alternatively, the

wearer may use muscle activation triggers, such as a double/triple impulse or co-

contraction. It is worth noting that although this strategy can enable the user to

get quicker access to a desired grip than with mode switching, the control of the

prosthesis is still far from natural.

2.4.1.3 Machine learning

Natural and intuitive prosthetic control can be achieved by making use of ML and

pattern recognition methods, such as classification and regression. Recently, the first

myoelectric system using ML has appeared on the market (Coapt Engineering, LLC,

2013). The Coapt Complete Control™ is a classification-based myoelectric interface

(see Section 2.2.4), which is compatible with a range of upper-extremity prostheses.

The system comprises eight EMG electrodes and a micro-processor. It can be used

to discriminate classes involving movement of the hand, wrist, and elbow. A typi-

cal configuration includes six classes of movement, that is, elbow flexion/extension,

wrist pronation/supination, and hand opening/closing.

Moreover, some prostheses manufacturers, for example, Ottobock, Inc. (1919) and

Touch Bionics, Inc. (2003), have announced plans of incorporating ML in the control

of their devices in the future; however, at the time of writing, such interfaces have not

yet been made commercially available.

2.4.2 Academic research

2.4.2.1 Myoelectric classification

The use of classification methods for myoelectric control was first proposed in the

early 1990s (Kelly, Parker, and Scott, 1990; Hudgins, Parker, and Scott, 1993). These

two seminal studies demonstrated the feasibility of using artificial neural networks to

classify surface EMG signals from a single electrode into multiple limb movements.

Since then, a great amount of work has investigated ways of improving classification

performance by increasing the number of EMG sensors (e.g. Englehart and Hudgins,

2003); using a variety of classifiers (e.g. Chan et al., 2000; Englehart and Hudgins,
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2003; Chan and Englehart, 2005; Huang et al., 2005; Oskoei and Hu, 2008; Ju et al.,

2013; Atzori, Cognolato, and Müller, 2016; Geng et al., 2016); suggesting novel EMG

features (e.g. Zardoshti-Kermani et al., 1995; Englehart et al., 1999; Englehart, Hud-

gins, and Parker, 2001; Boostani and Moradi, 2003; Phinyomark, Limsakul, and Phuk-

pattaranont, 2009; Phinyomark, Phukpattaranont, and Limsakul, 2012; Phinyomark

et al., 2013); and using pre-processing (e.g. Hargrove et al., 2009; Liu et al., 2013) as

well as post-processing techniques (e.g. Englehart and Hudgins, 2003; Hargrove et al.,

2010; Scheme, Hudgins, and Englehart, 2013; Scheme and Englehart, 2013b; Amsüss

et al., 2014).

Classification-based myoelectric control has been applied to a variety of decoding

tasks, including classification of coarse hand, wrist, and elbow movements (e.g. Engle-

hart and Hudgins, 2003; Chan and Englehart, 2005; Fougner et al., 2011); grasp types

and gestures (e.g. Fligge, Urbanek, and Smagt, 2013; Liu et al., 2014; Batzianoulis et

al., 2017); individuated-finger movements (e.g. Tenore et al., 2009; Al-Timemy et al.,

2013); and various combinations thereof (e.g. Hargrove et al., 2009; Atzori et al., 2014).

Most of these studies, however, have been concerned with sequential classification;

that is, one function (i.e. class of movement) can be active at a time. To address this

issue, a few research groups have recently demonstrated the feasibility of simultane-

ously classifying hand and wrist movement independently, thus resulting in greater

flexibility and dexterity (e.g. Young et al., 2013; Fougner, Stavdahl, and Kyberd, 2014;

Wurth and Hargrove, 2014; Ortiz-Catalan, Håkansson, and Brånemark, 2014b).

2.4.2.2 Proportional myoelectric control

While the use of classification methods can increase the intuitiveness of myoelectric

control as compared to mode switching, this approach can only offer a discrete con-

trol scheme which is fundamentally different to the natural continuous movement

exhibited by living mechanisms.

Fougner et al. (2012) defined proportional control as the paradigm where “the user

can control at least one mechanical output (of the prosthesis) within a finite, useful, and essen-

tially continuous interval by varying his/her control input within a corresponding continuous

interval”. The authors commented that the term “proportional” in this definition is

not used in the strict mathematical sense; it essentially means continuous. In compu-

tational terms, this translates into making use of regression rather than classification

algorithms with the aim of estimating a scalar or multidimensional continuous target

variable, such as kinematics (e.g. position, velocity) or kinetics (e.g. force). Arguably,

transitioning from classification-based discrete control schemes to proportional myo-

electric control is challenging, due to the finer (i.e. continuous) nature of the target

signals and the greater bandwidth of prosthesis control commands.
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Proportional myoelectric control has been mainly investigated with regards to the

following three applications: 1) wrist position control (e.g. Muceli and Farina, 2012;

Jiang et al., 2014a; Ameri et al., 2014b; Smith, Kuiken, and Hargrove, 2016); 2) finger

position control (e.g. Smith et al., 2008; Ngeo, Tamei, and Shibata, 2012; Cipriani et

al., 2011; Pistohl et al., 2013); and 3) finger force control (e.g. Castellini et al., 2009;

Castellini and Koiva, 2012; Gijsberts et al., 2014b; Gailey, Artemiadis, and Santello,

2017). An extensive review of this topic is given in Chapters 6 and 8.

A different approach to proportional (i.e. continuous) control is via using an upper-

limb musculoskeletal model and directly mapping muscle activations into control

signals for the prosthesis degrees of actuation (DOAs) through forward-dynamic simu-

lation of the system (e.g. Blana et al., 2017). A significant challenge of this approach

is that musculoskeletal function is largely dependent on the executed motor task,

pathology, and training of an individual. Additionally, it typically varies widely

across subjects (Sartori, Llyod, and Farina, 2016).

Alternatively, proportional control can be achieved by using a non-intuitive (i.e.

abstract) mapping between muscle activations/co-activations and prosthesis DOAs.

Since the association between the two domains is in this case not intuitive, this strat-

egy relies on user adaptation (i.e. motor learning) mechanisms taking place during

closed-loop myoelectric control. It has been demonstrated that humans can learn such

non-intuitive mappings in order to control cursors (Nazarpour, Barnard, and Jackson,

2012; Barnes, Dyson, and Nazarpour, 2016; Dyson, Barnes, and Nazarpour, 2017),

prosthetic hand digits (Pistohl et al., 2013), virtual helicopters (Ison and Artemiadis,

2015), and multi-DOF robotic arms (Ison et al., 2016).

2.4.2.3 Intramuscular EMG recordings

Many factors influence the surface EMG signal, including, but not limited to, elec-

trode shift (Hargrove, Englehart, and Hudgins, 2008; Young, Hargrove, and Kuiken,

2011), differences in contraction levels (Scheme and Englehart, 2013a), muscle fatigue

(Kumar, Pah, and Bradley, 2003), and crosstalk among muscles. Crosstalk refers to the

phenomenon where a surface EMG electrode targeting a specific muscle also records

the activity of muscles in its vicinity. Although crosstalk needs not necessarily be

detrimental for myoelectric control, on several occasions it might be desirable to iso-

late the activity of specific muscles (Farina et al., 2014). One such example is direct

control schemes, whereby the activity of each muscle is associated with the control of

a specified DOA of the prosthesis (e.g. Cipriani et al., 2014a). For this reason, several

studies have investigated the performance of myoelectric controllers receiving input

from intramuscular fine-wire electrode recordings. The use of intramuscular EMG

electrodes has been proposed both in the context of classification-based (e.g. Har-
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grove, Englehart, and Hudgins, 2007; Kamavuako et al., 2013; Kamavuako, Scheme,

and Englehart, 2014b; Kamavuako, Scheme, and Englehart, 2014a), as well as propor-

tional control (e.g. Cipriani et al., 2014a; Smith, Kuiken, and Hargrove, 2014; Smith,

Kuiken, and Hargrove, 2016).

2.4.2.4 Multi-modal prosthetic control

A wide range of sensing technologies have been proposed for movement intent de-

coding and prosthetic control beyond EMG electrodes. Some examples include ac-

celerometers (e.g. Fougner et al., 2011; Geng, Zhou, and Li, 2012; Radmand, Scheme,

and Englehart, 2014; Khushaba et al., 2016, see Section 3.1 for a detailed discussion);

mechanomyography (Silva, Heim, and Chau, 2005); near-infrared spectroscopy (Chi-

anura and Giardini, 2010); and force myography (Radmand, Scheme, and Englehart,

2016; Cho et al., 2016). A detailed review of this topic is given by Lobo-Prat et al.

(2014). Computer vision-based systems have also been recently used for automatic

grasp pre-shaping with promising results (Dosen et al., 2010; Markovic et al., 2014;

Ghazaei et al., 2017).

2.4.2.5 Targeted muscle reinnervation

Targeted muscle reinnervation is a surgical procedure invented by Kuiken et al. (2004),

by which residual nerves originally innervating a muscle of an amputated limb are

redirected to spare muscle regions, usually on the stump or chest of the patient. In

this way, the target muscle can act as a biological amplifier of afferent neural signals

originally controlling the activation of the muscles, and consequently, the movement

of the missing limb. The activity of target muscles can then be recorded using surface

electrodes and used as a control signal for myoelectric prostheses. Originally invented

in 2004, this technique has demonstrated proof-of-principle for dexterous prosthetic

control by amputees of all levels, including shoulder disarticulation (e.g. Huang et al.,

2008; Kuiken et al., 2009; Tkach et al., 2014; Young, Kuiken, and Hargrove, 2014).

2.4.3 Discrepancy between academic research and industrial adoption

Despite recent scientific and technological advancements in the field of myoelectric

control, the rejection rate of upper-extremity prostheses remains relatively high (see

Section 2.1.3). Moreover, a remarkable gap between academic achievements and clin-

ical adoption can be observed in the recent years (Jiang et al., 2012b); while many re-

search studies have demonstrated the feasibility of deploying ML methods to decode

movement intent for prosthesis control (see Section 2.4.2), conventional mode switch-
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ing schemes are almost exclusively used in commercial systems (see Section 2.4.1.1).

The main advantage of ML-based myoelectric systems over conventional schemes is

the greater intuitiveness and naturalness of prosthesis control. However, their com-

mercial adoption has been rather limited due to insufficient control reliability and

robustness under realistic conditions, as opposed to the controlled nature of labo-

ratory experiments and purely offline analyses (Ortiz-Catalan et al., 2015; Vujaklija

et al., 2017). Nonetheless, the first commercial system employing ML for prosthesis

control has recently appeared on the market and is currently being clinically tested

with amputees (see Section 2.4.1.3).

2.5 assessment protocols for myoelectric control

A plethora of assessment tools have been proposed for evaluating the control per-

formance and dexterity of prosthetic hands. The following sections briefly introduce

some of the most commonly used protocols in the myoelectric control literature.

2.5.1 Southampton hand assessment procedure

The Southampton hand assessment procedure (or simply SHAP) is a test designed

to assess the function of natural and prosthetic hands (Light, Chappell, and Kyberd,

2002). It comprises grasping and relocating six abstract objects of various shapes

and weights, and additionally performing 14 activities of daily living, such as coin

picking, simulated food cutting, object lifting, zip opening/closing, jug pouring, etc.

To complete the test, the participant is required to perform the following six grip

patterns: lateral, cylindrical, tripod, pinch, spherical, and extension.

Each task is timed by the participant by pressing a button at the start and end

of the trial. Timings from all tasks are then taken into account to compute a single

performance score. A complete assessment lasts approximately 20 min.

2.5.2 Clothespin relocation test

The clothespin relocation test (Lipschutz et al., 2006) requires the prosthesis user to

move clothes pegs from a horizontal bar to a higher vertical bar, or vice versa. The

time taken to relocate a fixed number of pegs can then be used as a measure of

prosthesis control performance.
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2.5.3 Box and Block test

The Box and Block test (Cromwell, 1960; Mathiowetz et al., 1985; Radomski and

Latham, 2008) is an assessment tool used by occupational therapists to evaluate mo-

tor function and manual dexterity. The test comprises a board (i.e. the “Box”) split

into two compartments of equal size which are divided by a partition and 150 small

wooden cubes (i.e. the “Blocks”) initially lying in one of the two sides. The participant

is given 60 s to transport as many blocks as they can to the initially empty compart-

ment. The count of transported blocks within the given time frame is then used as a

measure of manual dexterity.

2.5.4 Fitts’ law test

In a seminal study, Fitts (1954) quantified human motor performance in terms of

information theoretic principles (Shannon, 1948). Fitts’ law predicts that the time

taken to rapidly point to a target area is a function of the ratio between the target

distance D and the target width W. Fitts defined the index of difficulty (in bits) as

follows:

ID = log2

(
2D

W

)
. (2.12)

Using the above definition, Fitts also defined an index of performance, also called

throughput (bits/sec):

IP =

(
ID

MT

)
, (2.13)

where MT denotes the time taken to reach the target.

In myoelectric control, the Fitts’ law test has been used as a measure of user perfor-

mance in virtual target reaching tasks. The throughput metric has been used to evalu-

ate target control performance in one (e.g. Scheme et al., 2014), two (e.g. Kamavuako,

Scheme, and Englehart, 2014b; Wurth and Hargrove, 2014), and three dimensions

(e.g. Scheme, Hudgins, and Englehart, 2013; Ameri et al., 2014b; Smith, Kuiken, and

Hargrove, 2016). In the latter case, the first two dimensions correspond to the Carte-

sian co-ordinates of the target cursor, whereas the third dimension is visualised by
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varying the cursor diameter. In the myoelectric control literature, a modified model

is often used for the index of difficulty, defined by MacKenzie (1992) as follows:

ID = log2

(
D

W
+ 1

)
. (2.14)

2.5.5 The motion and target achievement control tests

The motion test was introduced by Kuiken et al. (2009) to quantify the performance

of real-time classification-based myoelectric control. In this test, the participant is

presented with a target motion for a virtual limb and is required to select the desired

movement and maintain it until it has been executed by the virtual prosthesis.

The following three performance measures are defined for the motion test: selec-

tion time, that is, is the time taken to select the correct target motion; completion time

(CT), which is defined as the time from movement onset to the 10
th correct classi-

fication of the target motion; and completion rate (CR), which is the percentage of

successfully completed motions.

The motion test lacks two important features: firstly, it does not consider propor-

tional control, as it assumes a fixed speed of movement for the virtual prosthesis, and

more importantly, it does not take into account incorrect classifications.

To address these two issues (Simon et al., 2011) introduced the target achievement

control test. In this paradigm, the participant is required to select the desired motion

of each controllable DOF, as well as the correct level of activation. That is, if the sub-

ject overshoots the desired posture, they have to correct that motion to successfully

accomplish the trial. In addition to CR and CT, the target achievement control test

uses the path efficiency metric to quantify performance, which is defined as the ratio

between the distance of the shortest path to the target and the total distance trav-

elled by the virtual limb. It is worth noting that the target achievement control and

Fitts’ law tests are closely related (Scheme, Hudgins, and Englehart, 2013; Wurth and

Hargrove, 2014).
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3
C O N C U R R E N T U S E O F S U R FA C E E L E C T R O M Y O G R A P H Y A N D

I N E RT I A L M E A S U R E M E N T S F O R P R O S T H E T I C C O N T R O L

Despite recent advances in the research community, machine learning (ML)-based pros-

thetic control is currently not adopted in the majority of clinical/commercial systems

(see Section 2.4.1). The main reason behind this discrepancy is believed to be the lack

of robustness of pattern recognition systems under realistic conditions (Vujaklija et

al., 2017), which is mainly due to the non-stationary nature of the surface electromyo-

graphic (EMG) signal (Amsüss, 2014).

The surface EMG signal is inherently noisy (Reaz, Hussain, and Mohd-Yasin, 2006)

and, thus, not always a robust source of input information for prosthetic systems.

This is especially true for altered conditions such as sweat (Jiang et al., 2012b), fatigue

(Kumar, Pah, and Bradley, 2003), and electrode displacement (Hargrove, Englehart,

and Hudgins, 2008; Young, Hargrove, and Kuiken, 2011). One of the main issues

associated with the use of surface EMG signals is the limb position effect (Fougner

et al., 2011; Geng, Zhou, and Li, 2012; Jiang et al., 2013), which states that a system

trained on a single arm position is likely to fail to generalise to novel arm postures.

In order to achieve reliable and robust pattern recognition-based prosthetic control

under realistic conditions, there is an increasing need to move towards multi-modal

solutions (Jiang et al., 2012b). The study presented in this chapter investigates the

concurrent use of surface EMG and inertial measurements for movement intent de-

coding and prosthetic hand control. The benefit of including inertial measurements

in myoelectric control is initially demonstrated by performing an exhaustive analy-

sis on benchmark datasets, and subsequently validated with a real-time prosthetic

control experiment.

3.1 introduction

3.1.1 The limb position effect

The term limb position effect was first introduced by Fougner et al. (2011) and refers to

the performance decrease experienced by myoelectric decoders due to variations in

limb positions. The authors recorded EMG data from 17 able-bodied subjects whilst

they performed 8 wrist and grasp movements under five different limb positions:

25



straight arm hanging at side; straight arm reaching forward; straight arm reaching up;

humerus hanging at side, forearm horizontal; and humerus hanging at side, forearm

reaching up. The authors observed that although the average classification error when

decoders were trained and tested under the same limb posture was 3.8%, the same

figure increased to 18% when they tested the generalisation of the classifiers to novel

postures.

Geng, Zhou, and Li (2012) performed a similar analysis on five transradial am-

putees and replicated the findings of Fougner et al. (2011); 7.3% and 29.9% average

errors were reported for intra- and inter-position classification, respectively.

Cipriani et al. (2012) investigated the effect of weight and inertia on the perfor-

mance of a decoder that classified individual finger movements. Eight able-bodied

subjects performed a series of finger motions under different limb and payload condi-

tions. The reported decrease in performance was dramatic, with average classification

errors increasing from 2% for ideal, static conditions, to 43% when subjects combined

finger with shoulder/elbow movements.

Jiang et al. (2013) demonstrated that the limb position effect also affected the task

of using EMG measurements to reconstruct three-dimensional (3D) kinematics of wrist

movement. The prediction accuracy decreased from 62.9% to 34.0% for able-bodied

subjects, and from 61.3% to 46.1% for amputees. The authors concluded that “chang-

ing arm position adversely influences the performance of the algorithm for both subject groups,

but that this influence is less pronounced in amputee subjects with respect to able-bodied

subjects”, and this observation was attributed to differences in anatomical structure

between amputees and normally-limbed subjects.

Finally, Yang et al. (2017) tested the generalisation of support vector machine clas-

sifiers when training data were collected under the following four conditions: static

posture, steady muscular contraction level; dynamic posture, steady muscular con-

traction level; dynamic posture, dynamic muscular contraction level; and dynamic

posture, dynamic muscular contraction level with force disturbance. The authors re-

ported that the highest generalisation was achieved when training data were collected

with dynamic postures and various levels of muscle contraction and proposed this

training data collection paradigm as the most appropriate for real-life applications.

3.1.2 Use of accelerometers and other means of resolving the limb position effect in prosthetic

control

Fougner et al. (2011) proposed the following two means of addressing the limb po-

sition effect: 1) collect EMG data and train classifiers under multiple limb positions,

and 2) use accelerometers to disambiguate limb position. These two approaches re-
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sulted in a decrease in inter-position classification error from 18% to 5.7% and 5.0%,

respectively. Two different strategies were investigated for combining the two input

data sources: two-stage position-aware classification, where the accelerometer data

were firstly used to classify limb position and the EMG data were subsequently used

to classify motion class; and single-stage position-aware classification, where the two

sources of data were concatenated and fed as inputs to a single classifier. Fougner

et al. reported that the performance of these two strategies was comparable.

In a similar fashion, Geng, Zhou, and Li (2012) collected data under multiple limb

positions and employed a two-stage position/motion classifier. The authors reported

a decrease in average inter-position classification error from 29.9% to 9.0%.

Boschmann and Platzner (2013) used a slightly different approach and proposed re-

solving the limb position effect by using high-density EMG recordings and collecting

training data under various limb postures. The authors reported an increase in clas-

sification accuracy (CA) of approximately 16% when 96 EMG channels were included

in decoding, as compared to the case where only 4 channels were selected.

Gijsberts et al. (2014a) classified 40 hand, wrist and functional movements and

demonstrated that by using solely accelerometry information a higher classification

performance was achieved than with surface EMG data. Nevertheless, the highest

decoding performance was achieved when the two sources of information were com-

bined. It is worth noting, however, that this study included only static motions, that

is, the participants’ forearm was kept fixed throughout the course of the experiments.

Khushaba et al. (2016) investigated the combined effect of forearm orientation and

muscle contraction level on the decoding accuracy of six motion classes. They demon-

strated that the use of time-domain power spectral descriptors (Al-Timemy et al.,

2016) yielded the highest decoding performance across different forearm orientations

and contraction levels. They also demonstrated that the inclusion of an accelerometer

measuring wrist orientation improved EMG decoding performance.

While many studies have proposed the use of accelerometers for resolving the

limb position effect, Radmand, Scheme, and Englehart (2014) have been somewhat

critical of this approach. They demonstrated that integrating accelerometry data into

myoelectric decoders can potentially decrease decoding performance, unless training

data are collected under most of the possible configurations in 3D space. They also

showed that classifiers trained with static motions generalise poorly when used to

decode hand gestures during dynamic movement. To overcome this limitation, and

since collection of static training data in all possible positions would be practically

impossible, they proposed a method for collecting training data with dynamic mo-

tions covering the regions of interest. By using this approach, they reported an im-
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provement in CA as compared to static training in multiple positions, as it had been

suggested by earlier studies (e.g. Fougner et al., 2011; Geng, Zhou, and Li, 2012).

Betthauser et al. (2017) recently proposed a different approach to address the limb

position effect by using solely EMG data and an extreme learning version of adaptive

sparse representation. Instead of estimating class decision boundaries, this method

tries to reconstruct a test input vector as a linear combination of training data stored

in class-specific dictionaries. Test inputs are then assigned to the class whose dictio-

nary yields the smallest reconstruction error. The performance of this method was

compared to standard linear discriminant analysis (LDA) classification during offline

and real-time experiments with both able-bodied and amputees, and it was found

that it achieved higher accuracy when tested on novel limb postures.

Finally, it is worth noting that accelerometers have been also used in the context of

lower-limb prosthetic control (e.g. Antonelli, Beomonte Zobel, and Giacomin, 2009;

Spanias et al., 2015).

3.1.3 Motivation

Despite that many studies have proposed the use of accelerometers as a potential

means of resolving the limb position effect and improving CA (Fougner et al., 2011;

Geng, Zhou, and Li, 2012; Gijsberts et al., 2014a; Radmand, Scheme, and Englehart,

2014; Khushaba et al., 2016), they have all been limited to purely offline analyses. Yet,

there has been increasing evidence that an observed boost in offline CA is not nec-

essarily associated with a performance improvement during real-time, task-oriented

myoelectric control (Jiang et al., 2014b; Ortiz-Catalan et al., 2015). These observations

make imperative the validation of any proposed advancements in the field with real-

time prosthetic control experiments. Moreover, most commercial inertial measurement

units (IMUs) nowadays incorporate additional sensors, such as gyroscopes and mag-

netometers. The potential benefit of using these additional modalities for prosthetic

control has not been previously investigated.

The goal of the work presented in this chapter is threefold: 1) investigate whether

classification performance can further benefit from the use of additional inertial sen-

sors, such as gyroscopes and magnetometers; 2) assess whether an increase in offline

CA can be translated into a performance improvement during real-time prosthetic

control; 3) investigate whether the inclusion of inertial measurements can help re-

duce the number of sensors required to achieve robust classification performance.

This last aspect is particularly important for real-life applications, where it is desir-

able to minimise the number of sensors used by the prosthesis.
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3.2 offline experiment

In the first part of this study, a large dataset was collected with 20 able-bodied and

two transradial amputee subjects. For data collection, a standardised procedure for

recording EMG data was adopted, namely the Ninapro protocol (Atzori et al., 2012;

Atzori et al., 2014; Gijsberts et al., 2014a; Atzori et al., 2015). The following sections

provide information on the behavioural task and signal acquisition protocol followed

for data collection.

3.2.1 Behavioural task

Twenty able-bodied (17 male, 3 female; 16 right-hand, 4 left-hand dominant; median

age 25.5 years) and two transradial amputee subjects were recruited. Both impaired

subjects were right-hand amputees and right-hand dominant prior to amputation.

The medical records of the amputee participants are presented in Table 3.1 and pho-

tographs of their stumps are shown in Figure 3.2.

The participants sat comfortably on an office chair and were asked to reproduce

a series of 40 motions, including various individuated-finger, hand, wrist, grasping

and functional movements instructed to them on a computer screen. The movements

corresponded to exercises B and C in Atzori et al. (2014), and are shown in Figure 3.1.

Each movement was repeated six times and trials were interleaved with 5 s resting

periods. The two amputee participants were instructed to perform bilateral imag-

inary mirrored movements. Data collection with one of the amputee subjects was

interrupted early due to a power supply failure; as a result, the participant did not

perform the final two movements (i.e. 22 and 23 in exercise C).

3.2.2 Signal acquisition

Myoelectric and inertial data were collected by using the Delsys® TrignoTM IM Wire-

less EMG System (see Section A.1.1). The sampling frequency was set to 2 kHz for

myoelectric signals and 128 Hz for inertial data. Readings from IMUs were used in

their raw format; therefore, no calibration was required. Typical raw EMG and iner-

tial data recorded from a single sensor are shown in Figure 3.3 and correspond to

an able-bodied participant. The number of signals recorded with each sensor was 10

(each column in Figure 3.3, see Section A.1.1).

For sensor placement, the NinaPro protocol (Atzori et al., 2014) was followed,

which uses 12 sensors. Eight sensors were equally spaced around the forearm (placed
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Figure 3.1: Ninapro protocol exercises. Two exercises were included comprising a total of
40 movements. (Left column) exercise B, finger and wrist movements; (middle-
right columns) exercise C, grasp and functional movements. The rest position is
also shown at the bottom of the right column. Figure has been adapted from
Atzori et al. (2014) and is distributed under a CC BY 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

3cm below the elbow), two targeted the extrinsic hand muscles extensor digitorum

communis and flexor digitorum superficialis, and the remaining two were placed on
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Table 3.1: Amputee participant medical records

Age
Cause of
amputation

Years since
amputation

Prosthesis
use

28 Car accident 6 Split hook

54

Cancer
(epithelioid sarcoma)

18 Split hook

Figure 3.2: Amputee participant stumps.

Table 3.2: EMG-IMU sensor placement

Sensor Location

1-8
Equally spaced around forearm
(3 cm below elbow)

9 Targeting extensor digitorum communis
10 Targeting flexor digitorum superficialis
11 Biceps brachii
12 Triceps brachii

the biceps and triceps brachii muscles (see Table 3.2). Prior to electrode placement,

participants’ skin was cleansed using 70% isopropyl alcohol. Adhesive latex-free elas-

tic bandage was used the keep the sensor positions fixed throughout the experimental

sessions. Representative pictures showing electrode placement for two participants

(one able-bodied and one amputee) are shown in Figure 3.4.

3.2.3 Signal pre-processing

Following Gijsberts et al. (2014a), power line interference was suppressed from the

myoelectric signals by applying a Hampel filter (Allen, 2009). The post-hoc relabelling

procedure introduced by Kuzborskij, Gijsberts, and Caputo (2012) was used to iden-

tify and refine the exact motion timings for each subject and trial. This was done

to avoid introducing label-related “noise” in the classifiers due to discrepancies be-

tween stimulus presentation and movement execution timings. Such discrepancies
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Figure 3.3: Raw EMG and inertial data. Traces of raw signals associated with a
single EMG-IMU sensor are shown for four movements (top panel).
Raw EMG, 3D accelerometer (acc), gyroscope (gyro), and magnetome-
ter (mag) readings are shown in the four bottom panels. Photographs
showing movements (top panel) have been reproduced from Atzori et
al., 2014 and are distributed under a CC BY 4.0 International license
(https://creativecommons.org/licenses/by/4.0/).

arise from the natural variability introduced when subjects replicate movements in-

structed to them on a screen (i.e. reaction times, variability in trial lengths, etc.). The

relabelling method uses the recorded EMG data and an onset detection algorithm

(Staude and Wolf, 1999) to extract the precise timings of movement execution. This is

achieved via using a generalised likelihood ratio algorithm that maximises the likeli-
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Figure 3.4: Sensor placement. Eight EMG-IMU sensors were equally spaced around the par-
ticipants’ forearm (3 cm below the elbow), two targeted the extensor digitorum
communis and flexor digitorum superficialis muscles, and two were placed on
the biceps and triceps muscles. Elastic bandage was used to keep the sensor po-
sitions fixed. Sensor placement shown for an able-bodied (left) and an amputee
subject (centre, right).

hood of a rest-movement-rest sequence. It was verified during preliminary analyses

that making using of the relabelling transformation leads to substantially improved

classification performance. An illustration of the outcome of this procedure is pro-

vided in Figure 3.5.

Myoelectric and inertial signals were synchronised via linear interpolation. By us-

ing a sliding window approach (see Section 2.2.3), four EMG features were extracted

from each channel; namely, the mean absolute value, waveform length, 4
th-order auto-

regressive coefficients, and log-variance (see Section 2.2.3.1). The selection of these fea-

tures was based on previous studies demonstrating their efficacy in decoding hand

motion intention (Hargrove, Englehart, and Hudgins, 2007; Hahne et al., 2014). Bear-

ing in mind the need for low computational requirements during real-time control,

only time-domain EMG features were considered (Boostani and Moradi, 2003). The

length of the sliding window was set to 256 ms and the increment to 50 ms (80%

overlap). It has been previously shown that this selection offers a good compromise

between classification performance and controller delay (Smith et al., 2011). In order

to match EMG features, inertial data were also binned in 256 ms windows by extract-

ing the mean value of the signals within the processing window. The total number of

features contributed by each sensor was thus 16 (7 EMG, 9 inertial features.)

The columns of the design matrix (i.e. input features) were standardised by sub-

tracting the mean and dividing by standard deviation. Mean subtraction and feature

scaling followed cross-validation (CV) splitting (see Section 3.2.5), which ensured that

there was no information leakage from the test set to the training set. Datasets col-

lected for both types of experiments were included unchanged in the subsequent

analyses steps; that is, no segments of activity were manually removed.
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3.2.4 Classification algorithm

To decode movement intent from myoelectric and inertial data, LDA classification

was used. The LDA classifier has arguably been the most popular choice in the my-

oelectric control literature (e.g Al-Timemy et al., 2013; Scheme, Hudgins, and Engle-

hart, 2013; Young et al., 2013). Details about the working principle of the classifier

are presented in a following chapter (see Section 4.2.1). The purpose of the current

study was to investigate and compare the performance of different sensing modal-

ities; hence, algorithmic comparisons were not performed at this stage. A detailed

investigation of the decoding performance of various classifiers is carried out in Chap-

ter 4.

The extracted EMG and/or inertial features were fed as input(s) to the classifiers

and the vectors containing the stimulus time-series (i.e. grip performed) were used as

the target signals. All types of classifiers were trained and tested by using data from

individual subjects.

3.2.5 Cross-validation and decoding performance assessment

Participants performed six repetitions of each movement out of which five were used

to train the decoders and the left-out repetition was used to assess decoding perfor-

mance. The procedure was iterated six times by using a different evaluation fold in

each iteration, hence resulting in 6-fold CV (see Figure 3.6).

Following classification, the class distribution of the test folds was balanced by re-

moving a large proportion of the instances corresponding to the “rest” class. This

step was necessary to prevent performance scores from being biased by the large

number of samples in that class. The identity of test samples to be removed was de-

termined by their temporal distance from the nearest segment of muscle activity; that

is, samples located nearest movement execution were retained, whereas the majority

of intermediate samples were discarded. The class balancing procedure is illustrated

in Figure 3.7. Using such a deterministic approach ensured that the repeatability of

the analysis was not affected and was thus preferred over randomly sub-sampling

the “rest” class. Finally, to evaluate decoding performance, the standard CA metric

(see Section B.2) was applied on the balanced dataset.
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Figure 3.6: Cross-validation for evaluation of movement intention decoding. Five repetitions
of each movement (blue) were used to train decoders and the left-out repetition
(red) was used to evaluate classification performance. The procedure was iterated
six times, hence resulting in 6-fold CV.

3.2.6 Sequential forward sensor selection

One of the aims of this study was to assess whether the use of inertial data measured

with the same sensor packs that record EMG signals could help reduce the number of

channels required to achieve high-level myoelectric control. In this direction, it was

investigated whether the use of an optimally selected subset of EMG-IMU sensors

could achieve the same level of decoding performance attained by the decoders when

all available sensors were used.

A sensor selection method was developed which was based on the classical sequen-

tial forward feature selection (SFFS) algorithm (e.g. Nazarpour, Sharafat, and Firooz-

abadi, 2007; Li, Schultz, and Kuiken, 2010; Adewuyi, Hargrove, and Kuiken, 2016).

The adapted algorithm was initialised with an empty sensor set. In each iteration,

the sensor that yielded the highest performance improvement was added to the pool.

Decoding performance was assessed by including all input signals from the associ-

ated sensor, that is, 7 EMG and 9 inertial features. To increase the robustness of the

method, CV was used in each iteration and the sensor selection decision was based

upon a majority vote across the CV folds. For consistency, the CA metric was used

for assessing decoding performance at each iteration. The algorithm terminated ex-

ecution once all sensors were included in the set. Finally, the sensors the addition

of which yielded an improvement in CA larger than 1% were selected. The sensor
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Figure 3.7: Post-hoc class balancing procedure. (Top panel) target signal time series before
(left) and after (right) removing a large proportion of the samples corresponding
to the “rest” class; (bottom panel) the target signal class distribution before (left)
and after (right) class balancing. Note different scale on y-axis.

rankings varied across subjects; thus, the selected subsets were subject-specific. The

size of the subsets also varied across participants.

3.2.7 Statistical tests

No prior assumptions were made about the distribution of CA scores; therefore, the

non-parametric Friedman test (Friedman, 1937) was used to compare the classifica-

tion performance of the different sensing modalities. Post-hoc pair-wise comparisons

were performed using the Wilcoxon signed-rank test (Wilcoxon, 1945) with Šidák

correction for multiple comparisons (Šidák, 1967).
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3.2.8 Results

The aim of this study was to assess the predictive performance of different modalities,

that is, surface EMG, accelerometer, gyroscope, and magnetometer measurements, as

well as various combinations of these data sources. A systematic comparison was

performed on the balanced CA achieved by various decoders on a large pool of

gestures and hand movements (40 classes). The case of including both EMG and

inertial information from an optimally selected subset of sensors was also examined

as a special case. The results of this analysis are presented in Figure 3.8, separately

for the able-bodied and amputee populations.

For both populations, the performance of the EMG-IMU classifier was significantly

higher than that of any other decoder (median CA for this condition was 82.7%

for able-bodied and 77.8% for amputee subjects). The second best performance was

achieved by the IMU decoder (81.7% able-bodied, 77.7% amputees), followed by the

EMG-IMU subset condition (81.2% able-bodied, 76% amputees). All pairwise differ-

ences were significant except for the comparison between the EMG-Acc and Mag

classifiers.

One of the motivations of this study was to identify whether the additional inclu-

sion of gyroscope and magnetometer data beyond accelerometry would be beneficial

for hand movement decoding. The offline analysis provided evidence supporting this

hypothesis, since it was found the EMG-IMU decoder performed significantly better

than EMG-Acc (median CA 76.4% able-bodied, 63.9% amputees). That was also the

case when myoelectric data were completely discarded; that is, the IMU decoder

significantly outperformed the Acc classifier (median CA 73.4% able-bodied, 58.5%

amputees). All comparisons were consistent across the able-bodied and amputee pop-

ulations.

Average confusion matrices are shown in Figure 3.9 for four out of eight decoding

conditions, separately for the able-bodied and amputee groups. To estimate confusion

matrices, results were averaged across CV folds and participants in the respective

groups.

3.3 real-time prosthetic control experiment

In the previous section, an exhaustive offline analysis on decoding hand movement

intention from surface EMG and inertial data was presented. This section aims to

investigate the benefits of incorporating inertial measurements for prosthetic hand

control. For this purpose, an experiment was designed in which participants modu-

lated their muscular activity to control a commercial prosthetic hand in real-time.
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Figure 3.8: Offline decoding performance comparison. Balanced CA scores shown for the
able-bodied and amputee populations. Data shown for all subjects (20 able-bodied,
two amputees) and CV folds (k = 6). Straight lines, medians; solid boxes, in-
terquartile ranges; whiskers, overall ranges of non-outlier data (1.5 IQR); dia-
monds, outliers. EMG, electromyography; Acc, accelerometer; Gyro, gyroscope;
Mag, magnetometer; IMU, inertial measurement unit (accelerometer, gyroscope,
magnetometer).

3.3.1 Experimental setup

Eleven able-bodied male subjects (8 right-hand, 3 left-hand dominant; median age

26.5 years) and one male amputee (first row in Table 3.1) were recruited. For sensor

placement, the procedure described in Section 3.2.2 was followed (see also Figure 3.4).

Participants were fitted the Touch Bionics® robo-limb™ prosthetic hand (see Section

A.2.1) on their right arm by using a custom-made socket. For able-bodied participants,

a splint was fabricated which accommodated the prosthesis on the distal side, such

that its movement was not obstructed by the native limb. The fingers of the partici-

pants’ right hand were constrained in a fist formation by using elastic bandage in an

effort to mimic the amputee case as closely as possible. For the amputee participant,
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Figure 3.9: Offline classification. Confusion matrices shown for the able-bodied (left) and am-
putee (right) populations for four types of decoders. Results were averaged across
participants (20 able-bodied, 2 amputees) and CV folds (k = 6). Colour intensities
indicate normalised prediction scores for each class.

a specific socket was designed which fitted exactly the stump of the subject. The two

arrangements are shown in Figure 3.10.
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Figure 3.10: Socket fitting for real-time experiment. Customised sockets were built for able-
bodied subjects (left) and the amputee participant (right).

Figure 3.11: Real-time control pick and place experiment. Participants were instructed to use
a prosthetic hand to grasp, relocate, and release three objects and finally press
the “space” key on a computer keyboard. Five grip types were used: power/
cylindrical (water bottle), lateral (credit card simulator), tripod (CD), index finger
pointer (computer keyboard), and hand opening.

Table 3.3: Real-time experiment objects used and associated grip types

Class Object Grip

0 - rest pose
1 bottle power grip
2 credit card simulator lateral grip
3 compact disc (CD) tripod grip
4 keyboard key index pointer
5 - hand opening

Participants were instructed to use the hand to grasp, relocate, and release a series

of objects and finally press the “space” button on a computer keyboard. Three objects
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were used and participants were required to lift each object with an associated grip

type which was instructed to them. In total there were six classes, including the hand

opening and rest (i.e. no action taken) poses. The objects used and associated hand

grips are presented in Table 3.3. The experimental task is illustrated in Figure 3.11.

Each session comprised a training and a testing phase separated by a short interval.

During the training phase, participants were required to perform five reach-to-grasp

repetitions of each of the five poses/grips (classes 1-5 in Table 3.3). Throughout this

stage, participants were instructed to move their arm at a steady pace and activate

their muscles in a natural way without exerting excessive tension. The objects cor-

responding to the different poses were placed on a computer desk, however partici-

pants were not able to physically grasp them due to their fingers being constrained

by the elastic bandage. During this phase, which was required to collect training data,

the prosthetic hand was kept inactive. To indicate the motion being performed, par-

ticipants were asked to press down with their contralateral hand a corresponding key

on a computer keyboard, with each key (i.e. 1-5) corresponding to a different pose.

The amputee participant performed ten repetitions of each movement.

During the testing phase, each trial consisted of picking and placing the three ob-

jects approximately 50 cm away from their initial position. A trial ended by pressing

the “space” button on the computer keyboard using the index pointer grip. Able-

bodied subjects were given 60 s to accomplish the trials with the prosthetic hand and

the amputee participant was given 75 s. The objects were presented to the subjects

in a pseudo-randomised order, so that the sequence of required grasping motions

varied across trials. Able-bodied subjects performed four trials for each decoding

condition (see Section 3.3.2) and the amputee participant performed six. When the

prosthetic hand performed a different movement than the one intended by the user,

for example due to a motion misclassification, participants were asked to open the

hand and try performing the intended movement again. The total duration of each

experimental session was approximately 90 min, which included skin preparation,

sensor placement, training data collection, and testing.

3.3.2 Classification and prosthesis control

In the interval between the training and testing phases participants were given a 5

min rest. During this break, four different LDA classifiers were trained. The clas-

sification schemes corresponded to the following four conditions, according to the

source(s) of input data that were used for decoding:

I. EMG data from all sensors;
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Table 3.4: Real-time experiment decoding conditions

Condition Input
Number of
sensors

Input feature
dimensionality

I EMG 12 84

II IMU 12 108

III EMG-IMU 12 192

IV
EMG-IMU
(subset)

3-7 48-112

II. IMU data from all sensors;

III. EMG and IMU data from all sensors; and

IV. EMG and IMU data from a selected subset of sensors.

The presentation order of the four decoders was counterbalanced across the able-

bodied population to avoid favouring certain conditions over others, given the learn-

ing mechanisms taking place during prosthetic control (Pistohl et al., 2013; Jiang et

al., 2014b; He et al., 2015). For condition IV, sensor selection was performed by us-

ing the training data only and the sensor subset for each participant was kept fixed

throughout the testing phase. The four decoding conditions are summarised in Table

3.4.

A finite-state machine implementation was used for the real-time control of the

prosthetic hand. A movement predicted by the classifier was triggered only if the

most recently performed movement had terminated execution. An alternative would

have been to provide participants with an “escape” function used to abort the execu-

tion of an initiated non-desired grip, however this feature was not included to avoid

increasing the cognitive load for participants. Furthermore, a control command was

triggered only when it was predicted with high confidence, that is, when the pos-

terior probability of the corresponding class exceeded a cut-off threshold. For this

experiment, the threshold was set empirically during pilot trials to θ = 0.995. A data-

driven approach for selecting class-specific thresholds in a principled way is later

investigated in Chapter 5.

Signal acquisition, pre-processing, and control of the prosthetic hand were imple-

mented in C++ and integrated into the Robot Operating System (Quigley et al., 2009).

The average controller delay was 170 ms (Farrell, 2011), which falls within the accept-

able range for the purposes of upper-limb myoelectric control (see Section 2.2.4.3).
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3.3.3 Performance assessment

To evaluate prosthetic control performance in the real-time experiment, two task-

related metrics that are commonly used in the literature (e.g. Ortiz-Catalan, Håkans-

son, and Brånemark, 2014b; Rasool et al., 2016) were adopted; namely, the completion

rate (CR), which is defined as the ratio of successful to total number of trials; and

completion time (CT), which is defined as the time taken to accomplish a successful

trial (see Section 2.5.5). A trial was considered successful only if it was completed

within the given time frame (60 s for the able-bodied subjects or 75 s for the amputee

participant).

3.3.4 Statistical tests

Experimental trials could only take two possible outcomes: success or failure; there-

fore, the Cochran’s Q test (Cochran, 1950) was used to compare CR scores achieved

with the different decoding conditions. For post-hoc pair-wise comparisons, the same

test was used together with the Bonferroni correction to account for multiple compar-

isons (Dunnett, 1955). The non-parametric Kruskal-Wallis test (Kruskal and Wallis,

1952) was used to compare CTs, as these cannot follow normal distributions due to

the upper-bound at 60 s (or 75 s for the amputee participant).

3.3.5 Results

The working principle of the real-time classification system is illustrated in Figure

3.12. The time series of the real and predicted classes with each of the tested classifiers

(see Table 3.4) are shown in the left column of the graph. The temporal evolution of

the posterior probability distribution for each classifier is also shown in the same

figure (right column). Evidently, for this segment of activity, the inclusion of inertial

data increased the robustness of the classifier. For the subject used in this example,

six sensors were used in condition IV (EMG-IMU subset).

Performance results for the real-time control experiment are summarised in Fig-

ure 3.13. Analogous to the precedent offline analysis (see Section 3.2.8), the highest

average CR for the able-bodied group was achieved with condition III (EMG-IMU

classifier). The average CR in this case was significantly higher than that of condition

I, that is, when solely EMG information was used (p < 0.01). The observed pattern

was consistent across 10 out of the 11 able-bodied participants (see Figure 3.14) No

significant differences were identified among conditions I, II, and IV, although CRs
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Figure 3.12: Real-time classification. (Left column) the real and predicted classes with the
four different decoders; (right column) the evolution of the posterior probability
distribution for each classifier. Representative traces shown for one subject using
training data and 3-fold CV.

for II and IV were on average 13-14% higher than for condition I. In terms of CTs,

the performance of the four conditions was comparable (p > 0.05). Nevertheless, con-
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Figure 3.13: Real-time experiment decoding performance comparison. Average CRs and CTs
presented for four decoding conditions. Data shown for all subjects (11 able-
bodied, one amputee) and trials. Bars, medians; error bars, 95% confidence inter-
vals estimated via bootstrapping (1000 iterations); double asterisk, p < 0.01.

dition III achieved marginally better results (i.e. lower average CT) than the other

three.

For the amputee participant, a slightly different pattern was observed. The best

decoding performance both in terms of CR and average CT was achieved with con-

dition IV, that is, when EMG and inertial data were used from a subset of sensors.

Three sensors were used in this condition, one of which targeted the flexor digito-

rum superficialis muscle, whilst the other two captured the activity of the extensor

muscle group (sensors 1, 2 and 10 in Table 3.2). Error bars in Figure 3.13 represent

95% confidence intervals estimated via bootstrapping (1000 iterations). Since there

was only one amputee participant in this experiment, there was a single sample for

CR (defined as the fraction of successful to total number of trials); therefore, no con-
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Figure 3.14: Real-time experiment individual subject results. The average CRs achieved with
the four types of decoders are presented for each subject. AB, able-bodied; Amp,
amputee.

fidence interval was estimated for this measure. Similarly, for condition II there was

only one successful trial, hence no confidence interval was estimated for the associ-

ated CT. Two video recordings from the experiment with the amputee participant

(SV1 and SV2, corresponding to conditions I and IV, respectively) are provided in the

supplementary material (see Appendix E).

Average confusion matrices for the real-time experiment are shown in Figure 3.15.

These correspond to all subjects and four decoding conditions. Inspection of the con-

fusion matrices suggests that inclusion of inertial data helped disambiguating the

“lateral” from “tripod” classes. The average CA of condition III (EMG-IMU classifier)

was 8.41% higher than that of condition I (EMG classifier). To estimate the confusion

matrices, training data were used by applying 3-fold CV. Estimating confusion ma-

trices during the testing phase of the real-time experiment is not possible, since the

ground truth, in other words the participant’s intention is not known. This is due

to the sequential nature of the trials; within a single trial subjects were required to

produce a series of motions (see Figure 3.11), the exact timings of which are neither

known, nor can be inferred.

A typical example of the SFSS procedure for selecting the subset used in condition

IV is shown in Figure 3.16. The selection of EMG-IMU sensors for all participants is

presented in Figure 3.17. The number of selected sensors varied from 3 to 7, but was
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Figure 3.15: Real-time experiment confusion matrices. Predictions shown for all subjects (11

able-bodied, one amputee). Annotated scores represent normalised CA. Confu-
sion matrices have been computed by using training data and 3-fold CV.

typically in the range of four to six (for 10 out of 12 subjects). The average selection

frequency of individual sensors is also shown in the same graph (rightmost column).

3.4 discussion

3.4.1 Impact

The study presented in this chapter has investigated whether the performance of my-

oelectric decoders can benefit from the inclusion of additional information as mea-

sured by IMUs integrated within the EMG sensors. For this purpose, a large dataset

comprising surface EMG and inertial recordings from 22 subjects performing a va-

riety of movements was collected. Furthermore, a pick and place experiment was

conducted to validate the findings during real-time prosthetic control.
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Figure 3.17: Sensor selection for individual subjects (real-time experiment). The selected
EMG-IMU sensors are shown column-wise as red boxes for 11 able-bodied sub-
jects and the amputee participant. The rightmost column represents the average
selection frequency of individual sensors. The reader is referred to Table 3.2 and
Figure 3.4 for details on sensor placement.

The experimental results suggest that both offline CA as well as real-time perfor-

mance can be improved when inertial measurements are integrated in the decoding

process. The main contribution of this work has been threefold; firstly, it has shown
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that including information from additional inertial sensors beyond accelerometers

can further increase CA; secondly, it has confirmed that such increase in offline CA

can lead to improved real-time prosthetic control; thirdly, it has demonstrated that by

combining multiple sensing modalities within a single sensor pack, it is possible to re-

duce the amount of sensors required for movement intent decoding. This last aspect

is of significant relevance for clinical applications, where it is desirable to keep the

number of used sensors at a bare minimum. For this reason, it is further investigated

in Chapter 5.

3.4.2 Offline decoding of hand gestures with surface EMG and inertial data

In the offline experiment (Section 3.2), the large number of classes makes gesture

recognition a challenging task. It was found that by including inertial data the CA

increased by a significant factor. For the able-bodied group, the median CA was

82.7%, which was increased by 22.6% as compared to the EMG-only case. For the am-

putee group, the same measure was 77.8% and the observed increase in performance

was 37.1%. Remarkably, CA for the amputee group almost doubled when inertial

measurements were included in the decoders. This score is higher than previously

reported for amputee subjects, given the large number of motions in the dataset (i.e.

40 classes). For comparison, Atzori et al. (2014) reported an average CA of 48% for

the same set of movements.

3.4.3 Real-time prosthetic control experiment

Many studies have suggested that an observed increase in CA attained with purely

offline analysis does not necessarily translate into performance improvement during

real-time myoelectric control (Jiang et al., 2014b; Ortiz-Catalan et al., 2015). In order

to validate findings from the offline analysis, a real-time experiment was conducted

in which participants modulated their muscular activity to control a state-of-the-art

commercial prosthetic hand. Comparing the real-time performance of all decoding

schemes explored in the offline analysis would have been impossible due to time

constraints. By taking into account the results from the offline analysis, it was de-

cided to test the real-time performance of the four conditions presented in Table 3.4.

Moreover, it is not practical to include 40 classes in a real-time experiment, and per-

haps not necessary from a clinical point of view. Thus, only six classes were included

(see Table 3.3 and Figure 3.11), which have been previously identified as being the

most useful from a user’s perspective (Peerdeman et al., 2011). It is worth noting

that the proposed experimental protocol bears strong similarities to the “object task”
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of the SHAP test that is commonly used in clinical environments (see Section 2.5.1).

Although six classes were only included in the real-time experiment, comparisons

with all 40 classes were reported in the precedent offline analysis in order to compare

the results of the current work to those previously reported by other researchers (see

Section 3.4.2).

In comparison with similar studies which previously employed the target achieve-

ment control test (e.g. Simon et al., 2011; Ortiz-Catalan, Håkansson, and Brånemark,

2014b; Young et al., 2014; Rasool et al., 2016), the designed experimental task was

more challenging. Participants were required to trigger a sequence of control signals

(seven in total including the required intermediate hand opening commands), rather

than performing a single grasp motion. Additionally, participants were given a rather

short time to accomplish trials: 60 s for the able-bodied group and 75 s for the am-

putee subject. This paradigm was chosen because it was considered as a more realistic

experiment that closely matches real-life applications.

Results from the real-time experiment were mostly in accordance with observa-

tions from the precedent offline analysis. It was found that the inclusion of inertial

information resulted in significant improvement in CRs for the able-bodied group

(median increase of 25%). One notable difference was that while offline analysis sug-

gested that the use of inertial data alone could achieve comparable CA to EMG-IMU

classifiers (0.9% median difference), in the real-time experiment the hybrid decoders

outperformed, although not significantly, IMU classifiers (75.0% and 100.0% median

CRs; 48.0 and 37.5 s median CTs for conditions (II) and (III), respectively). Such dis-

crepancies between offline CA scores and task-related metrics have been previously

reported (e.g Jiang et al., 2014b; Ortiz-Catalan et al., 2015). It has been commonly

accepted that the latter should be regarded as more important than the former, since

task-related metrics measuring the performance of real-time prosthetic systems are

of greater clinical relevance than offline accuracy (Vujaklija et al., 2017).

The best performance for the amputee participant both in terms of CR and CTs

was achieved when EMG and inertial measurements were combined but a smaller

subset of the available sensors was used. The performance was inferior when the

whole set of sensors was used. One possible explanation for this observation is that

the participant was able to develop a more efficient control strategy in the former

case due to the lower dimensionality of the input space (Nazarpour, Barnard, and

Jackson, 2012). Nevertheless, the chance of observing a statistical error due to the

small sample size cannot be neglected.
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3.4.4 Dynamic training data collection

Radmand, Scheme, and Englehart (2014) demonstrated that integrating accelerome-

try data into myoelectric decoders can potentially decrease decoding performance

unless training data are collected under most of the possible configurations in 3D

space. They also showed that classifiers trained with static motions generalise poorly

when used to decode hand gestures during dynamic movement. To overcome this

limitation, and since collecting static training data in all possible positions would be

practically impossible, they proposed a method for training classifiers with dynamic

movements covering the regions of interest.

Since the offline experiment involved static hand motions, it was considered imper-

ative to further validate any findings during real-time prosthetic control. During the

training phase of the real-time experiment, participants were instructed to move their

arms within a constrained workspace (60 cm × 50 cm × 30 cm) whilst performing the

different grips. This was inspired by the work of Radmand, Scheme, and Englehart

(2014). Although this approach helped disambiguate muscle activity patterns under

different postures, its potential to generalise to postures not present in the training

set remains to be investigated. In practice, acquisition of large and versatile datasets

may be required to capture arm posture-related variability, and thereby ensure clas-

sification robustness.

3.4.5 On the relationship between surface EMG and inertial data

A previous study reported high offline CA by discarding the EMG signal and us-

ing solely acceleration signals (Gijsberts et al., 2014a). This finding was replicated in

the offline analysis (see Figure 3.8), and it was additionally found that a high CA

can be also achieved by using magnetometer data only. Importantly, it was further

demonstrated that efficient real-time control is feasible by using exclusively inertial

measurements (see Figure 3.13). It is worth noting, however, that the achieved CTs

were slightly worse (i.e. increased) for this condition. The first commercial system

using inertial data as sensory input has recently appeared on the market (see Section

2.4.1.2), although its working principle is fundamentally different to the one proposed

here. To the best of the author’s knowledge, this is the first study to demonstrate that

real-time prosthetic control can be achieved using exclusively inertial measurements

and a biomimetic approach. This finding cannot be solely attributed to a potential

association of arm postures to grips, since in the real-time experiments, participants

mainly employed two arm postures each of them associated with two different grips;

for the “cylindrical” and “lateral” classes the palm of the prosthesis was required to
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Figure 3.18: Surface EMG envelope reconstruction from inertial measurements. (Top panel)
EMG envelope reconstruction accuracy with accelerometer, gyroscope, and mag-
netometer data using LR models; (middle-bottom panels) EMG envelope re-
construction examples from accelerometer and magnetometer data for an able-
bodied subject and an amputee.

be perpendicular to the surface, whereas for the “tripod” and “index pointer” classes

it was required to be parallel to the surface. Furthermore, following each object re-

location, the hand opening motion was required to be triggered in either postures,

depending upon the object being relocated (see Figure 3.11).

A different explanation is proposed for this rather surprising finding; since ac-

celeration is recorded on the skin surface, the associated measurement could be an

alternative manifestation of the underlying muscular activity process that also gives

rise to the electric field measured over the skin with EMG sensors. This may also

be true for magnetometer data, which by measuring the magnetic field around the

muscle area could indirectly provide an alternative measurement of muscular activ-
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ity. The relationship between the two fields stems directly from the Maxwell–Ampère

law that states that a changing electric field, due to muscle contraction in this case,

generates a respective magnetic field.

This speculation was validated with the following experiment; it was hypothesised

that if such relationship exists between EMG, accelerometer and magnetometer data,

then it should be possible to use one type of signal to estimate another, and vice-versa.

Simple linear regression (LR) models were trained to reconstruct the envelopes (i.e.

mean absolute value) of the EMG signals from accelerometer, gyroscope, and mag-

netometer measurements. This process was performed individually for each sensor,

that is, the reconstruction of each EMG signal was achieved by using accelerometer,

gyroscope, or magnetometer data from the same sensor only. The results of this anal-

ysis are shown in Figure 3.18. The accelerometer and magnetometer data were able

to capture on average 25%-30% of the variance of the EMG envelopes. Conversely,

it was not possible to decode EMG activity by using gyroscope data. Examples of

EMG envelope reconstruction with accelerometer and magnetometer measurements

are shown in the same graph, both for able-bodied and amputee subjects.

Certainly, there is no reason to expect that the relationship between EMG, ac-

celerometer, and magnetometer data should be linear; therefore, one would expect

to achieve higher decoding accuracies by using non-linear regression models. Never-

theless, the results from this experiment demonstrate that surface EMG and inertial

signals are indeed closely related, which provides evidence that they might reflect dif-

ferent and perhaps complementary aspects and impacts of the same underlying phe-

nomenon, that is, the muscular activity. Consequently, it should come as no surprise

that the combined EMG-IMU decoder yielded more accurate hand gesture recogni-

tion (see Figures 3.8 and 3.13). The fact that gyroscope data alone failed to decode

both hand gesture and EMG envelopes provides further support for this hypothesis.

It is worth noting that the use of magnetometers has been previously proposed for

measuring skeletal muscle contraction (Cohen and Givler, 1972; Egeraat, Friedman,

and Wikswo, 1990; Garcia and Baffa, 2015); however, this is the first study to demon-

strate that the measured magnetic field arising from muscle contraction can be used

as a source signal for myoelectric control.

Taking everything into consideration, it seems likely that the added benefit of using

inertial measurements can be attributed to their ability to both capture dynamic spa-

tial information, as well as to increase the robustness of muscular activity estimation

which is subsequently employed to decode movement intention.
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3.4.6 Limitations and future work

Throughout this chapter, raw sensor values from IMUs were used, which correspond

to proper acceleration for accelerometers, angular velocity for gyroscopes, and mag-

netic field for magnetometers, respectively (see Section 2.3.1). An alternative would

have been to perform sensor fusion and work with a different representation, such

as quaternions or Euler angles (Madgwick, Harrison, and Vaidyanathan, 2011); how-

ever, such representations are informative of the orientation of the sensors only, and

as a result, any muscular activity-related information encoded in raw accelerometer

and magnetometer readings (see Section 3.4.5) might get lost. On the other hand,

accelerometers measure proper acceleration that is affected by gravity (Woodman,

2007), and which might negatively affect the performance of the proposed method.

One possible solution would be to adopt a dual approach; that is, use a quaternion

representation to subtract the gravitational component from raw accelerometer read-

ings and subsequently make use of the transformed accelerometer and raw mange-

tometer readings for movement intent classification. Another promising future di-

rection would be to optimally combine the different modalities using multiple time

scales and a Bayesian approach (Bishop, 2006); in other words, exploit the temporal

structure in inertial measurements (e.g. 3D acceleration) to encode prior information

about grasping timings which can be then updated in the light of muscle activity

information recorded with both EMG and inertial (i.e. instantaneous accelerometer

and magnetometer) measurements.

With regards to training data collection, it was shown that efficient myoelectric

control could by achieved by acquiring data with dynamic movements covering the

regions of interest, as was previously proposed by Radmand, Scheme, and Englehart

(2016) and Yang et al. (2017); however, the generalisation ability of the decoders under

novel postures was not tested. One possible direction for future research would be

to test the generalisation of EMG-IMU decoders while including arm postures and

orientations not present in the training dataset.

Additionally, it was demonstrated that by using multi-modal prosthetic control it

is possible to reduce the number of sensors required for accurate hand movement

classification; however, the number of sensors identified by the proposed SFSS al-

gorithm was on average five, which might still be regarded as a large number for

clinical solutions. Finally, the effect of using different classification strategies on de-

coding performance was not investigated. The latter two issues are addressed in the

following two chapters of the thesis.
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4
D I S C R I M I N A N T A N A LY S I S F O R H A N D M O V E M E N T

C L A S S I F I C AT I O N

In the previous chapter, it was shown that the use of inertial measurements can offer

a remarkable boost in decoding performance of myoelectric classifiers. To this end,

a standard classification method was employed, namely linear discriminant analysis

(LDA), and no further algorithmic comparisons were performed.

The LDA algorithm is perhaps the most commonly used classification method in

myoelectric control (e.g Englehart and Hudgins, 2003; Hargrove, Englehart, and Hud-

gins, 2008; Al-Timemy et al., 2013) and there are good reasons for that; ease of imple-

mentation, short training times, and minimal computational/memory requirements

at testing time. All of the above, in combination with a demonstrated high decoding

performance, make LDA very attractive for use in this context. Nonetheless, in the

heart of LDA lies a strong probabilistic modelling assumption that is almost always

violated. Despite that, it has been demonstrated that it can achieve high classification

accuracy (CA) which is often comparable to that of more sophisticated algorithms,

such as multi-layer perceptrons (MLPs) and support vector machines (e.g Scheme and

Englehart, 2011; Ortiz-Catalan, Brånemark, and Håkansson, 2013; Al-Timemy et al.,

2013).

In this chapter, a thorough investigation of the performance of various discriminant

analysis (DA) classifiers on hand movement recognition is performed. It is demon-

strated that by using a DA variant that generalises a family of class-conditional Gaus-

sian models, namely regularised discriminant analysis (RDA), it is possible to achieve

significant improvement in decoding accuracy for hand movement classification. By

performing an exhaustive analysis on datasets comprising recordings from 60 able-

bodied and 12 transradial amputee subjects, it is shown that via careful tuning of the

RDA hyper-parameters it is possible to achieve a median increase in CA of 13.5% as

compared to LDA.

The findings of the study presented here are subsequently exploited in the follow-

ing chapter, in which it is demonstrated that by employing RDA in conjunction with

a confidence-based rejection strategy it is feasible to achieve robust machine learning

(ML)-based prosthetic control with only two surface electromyography (EMG)-inertial

measurement unit (IMU) sensors.
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4.1 classification algorithms for myoelectric control

A wide range of classifiers have been proposed for myoelectric decoding and control

(see Section 2.2.4). Undoubtedly, among them the two most popular have been LDA

and MLP classification (Peerdeman et al., 2011). The LDA method offers some advan-

tages over MLPs, such as ease of implementation, existence of an analytical solution,

fast training times, and computational efficiency. For all the above reasons, the LDA

algorithm has been the preferred choice for myoelectric classification (e.g. Englehart

and Hudgins, 2003; Hargrove, Englehart, and Hudgins, 2008; Hargrove et al., 2010;

Simon et al., 2011; Smith et al., 2011; Young et al., 2013; Young, Kuiken, and Hargrove,

2014; Naik, Al-Timemy, and Nguyen, 2016; Vidovic et al., 2016).

Many studies have carried out comparisons of the decoding power of various

classifiers, often with contradictory results. For example, a few studies have shown

that LDA can achieve comparable or even higher performance than other methods

(Huang et al., 2005; Hargrove, Englehart, and Hudgins, 2007; Scheme and Engle-

hart, 2011; Kanitz et al., 2011; Phinyomark et al., 2013; Kamavuako et al., 2013; Ortiz-

Catalan, Brånemark, and Håkansson, 2013; Al-Timemy et al., 2013; Ortiz-Catalan,

Håkansson, and Brånemark, 2014b), while others have shown that LDA classifiers

are outperformed by MLPs, support vector machines, K-nearest neighbours (k-NN),

and convolutional neural networks (Atzori et al., 2014; Atzori et al., 2015; Atzori,

Cognolato, and Müller, 2016; Geng et al., 2016; Du et al., 2017). Nevertheless, taking

into consideration the diversity in behavioural tasks, pre-processing steps, feature en-

gineering, and implementation differences such discrepancies should not be entirely

surprising.

4.2 discriminant analysis

DA is a family of supervised generative models that assumes class-conditional mul-

tivariate Gaussian densities (Friedman, Hastie, and Tibshirani, 2001). In the general

case, the probability density function of a data point x generated by class c is given

by:

p (x|y = c) = N (x;µc,Σc) , (4.1)

58 discriminant analysis for hand movement classification



where N (x;µ,Σ) denotes the multivariate normal distribution with mean vector µ

and covariance matrix Σ. For classification, the posterior probability of a data point

x? being assigned to class c is estimated by using the Bayes’ rule:

p (y = c|x?) =
p (x?|y = c)p (y = c)

p (x?)

=
N (x?;µc,Σc)p (y = c)

C∑
c′=1

N (x?;µc′ ,Σc′)p (y = c′)

, (4.2)

where p (y = c) is the prior probability for class c, and C denotes the number of

classes.

4.2.1 Linear discriminant analysis

LDA is a special case of the DA family that assumes a common covariance matrix

shared across classes. This is usually referred to as the pooled covariance, or within-

class scatter matrix. This assumption leads to linear decision boundaries (i.e. hyper-

planes) (Friedman, Hastie, and Tibshirani, 2001). With LDA, a test data point x? is

assigned to the class c for which the linear discriminant function δc (x?) is maximised:

δc (x?) = x
>
? Σ

−1µc −
1

2
µ>c Σ

−1µc + logπc, (4.3)

where πc and µc, for c = 1, . . . ,C are the class prior probabilities and means, respec-

tively, and Σ is the pooled covariance matrix. The prior probabilities, mean vectors,

and pooled covariance matrix can be estimated from the training data:

π̂c =
Nc

N
, (4.4)

µ̂c =
1

Nc

∑
yn=c

xn, (4.5)

Σ̂ =
1

N−C

C∑
c=1

∑
yn=c

(xn − µ̂c) (xn − µ̂c)
> , (4.6)
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where Nc is the number of training instances in class c and N is the total number of

training samples. The posterior probability for class c is then given by the softmax

function:

p (y = c|x?) =
eδc(x?)

C∑
c′=1

eδc′(x?)

. (4.7)

4.2.2 Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) is a general-case class-conditional Gaussian

model that does not make the LDA assumption (i.e. shared covariance matrix); there-

fore, a separate covariance matrix has to be estimated for each class. In this case, the

decision boundaries are quadratic in feature space and the discriminant functions are

given by:

δc (x?) =−
1

2
x>? Σ

−1
c x? + µ

>
c Σ

−1
c x?

−
1

2
log |Σc|+ logπc −

1

2
µ>c Σ

−1
c µc,

(4.8)

where Σc is the covariance matrix of class c, which can be estimated from the training

data:

Σ̂c =
1

N− 1

∑
yn=c

(xn − µ̂c) (xn − µ̂c)
> . (4.9)

4.2.3 Gaussian naive Bayes

The Gaussian naive Bayes (GNB) model is another special case of DA which assumes

diagonal covariance matrices, that is, Σc takes the form:

Σc =


σ21,c

σ22,c
. . .

σ2D,c

 , (4.10)

where σ2i,c denotes the variance of feature i for class c, and D is the dimensionality

of the input space. The GNB model is more rarely referred to as diagonal quadratic

discriminant analysis (DQDA).
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4.2.4 Diagonal linear discriminant analysis

Diagonal linear discriminant analysis (DLDA) is an extreme case of DA which assumes

that a common diagonal covariance matrix is shared across classes. In other words, it

combines the LDA and GNB assumptions. In this case:

Σc = Σ =


σ21

σ22
. . .

σ2D

 . (4.11)

4.2.5 Regularised discriminant analysis

RDA is a method that generalises LDA and QDA and provides a continuum of mod-

els between the two (Friedman, 1989). As with QDA, the class covariance matrices for

this model are separate; however, they are regularised towards the pooled covariance

matrix and, thus, take the form:

Σ̂c (α) = αΣ̂c + (1−α) Σ̂, 0 6 α 6 1. (4.12)

The parameter α controls the amount of regularisation. A different form of regularisa-

tion occurs when the estimated covariance matrices are regularised towards diagonal

matrices, that is:

Σ̂ (γ) = (1− γ) Σ̂+ γdiag(Σ̂), 0 6 γ 6 1, (4.13)

and

Σ̂c (γ) = (1− γ) Σ̂c + γdiag(Σ̂c), 0 6 γ 6 1. (4.14)

The two regularisation approaches are orthogonal, so they can be combined into:

Σ̂c (α,γ) =α (1− γ) Σ̂c + (1−α) (1− γ) Σ̂

+αγdiag(Σ̂c) + (1−α)diag(Σ̂).
(4.15)
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Figure 4.1: Sketch of DA family of classifiers. Classifiers such as LDA, QDA, DLDA, and
GNB/DQDA can be recovered as special cases of RDA via appropriate selection
of regularisation hyper-parameters α and γ.

The model described by Equation (4.15) leads to a general family of models which

treats as special cases all the DA models introduced in the previous sections, that is,

LDA, QDA, GNB, and DLDA. In other words, all these models can be recovered by

RDA via appropriate selection of the model hyper-parameters α and γ. A schematic

representation of this family of models is shown in Figure 4.1.

4.2.6 Toy example

In this section, we use a toy example to illustrate the differences between LDA, QDA,

and RDA. A small artificial dataset is created consisting of two two-dimensional

clusters, each one containing 50 samples generated from two normal distributions

with two variables and the following parameters:

µ1 =

0.5
−1

 ,

µ2 =

−0.5
1

 ,
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Σ1 =

 1 0.2

0.2 1

 ,and

Σ2 =

 0.3 −0.1

−0.1 0.4

 .

Figure 4.2 shows the estimated class-specific marginal probability density functions

of one of the variables, by using LDA, QDA, and RDA with α = 0.5 and γ = 0.

Because of the shared covariance matrix assumption, LDA estimates the same vari-

ance σ̂21 for both classes; with this model, the difference between the class density

functions lies only in their means. The QDA model does not make this assumption,

and as a result, the estimated probability distributions match more closely the true

distributions that generated the data. The RDA estimates lie in the space between the

ones provided by LDA and QDA; separate variances are estimated for each class, but

they are regularised towards the respective elements of the pooled covariance matrix.

The decision boundaries of the three classifiers are shown in Figure 4.2. Because of

the LDA assumption, the quadratic term x>Σ−1x vanishes from the decision bound-

ary solution, and as a result, the latter becomes linear in feature space (see Equation

4.3). Both RDA and QDA yield quadratic decision boundaries, but due to the regular-

isation applied in the case of RDA, the decision boundary is “pushed” towards the

linear solution provided by LDA.

4.3 comparison of discriminant analysis classifiers

4.3.1 Motivation

This section features an investigation of the performance of various DA models on

myoelectric data classification. It is hypothesised that the LDA assumption might

be often violated in practice, since there is no reason to expect that different hand

movements result in similar co-activations between muscle groups, and thereby, to a

common covariance matrix. For this reason, estimating separate covariance matrices

for each class might be more appropriate for this task.

As a first step towards validating this hypothesis, the dataset collected previously

(see Section 3.2) was examined. The feature extraction described in Section 3.2.3 was

used, hence the dimensionality of the input space was D=192 (12 sensors × 16 fea-
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Figure 4.2: Toy example: density estimation with DA models. The marginal probability dis-
tribution of one of the variables (x1) of a two-dimensional artificial dataset is esti-
mated with various DA models, separately for each class. The true distributions
that were used to generate the dataset are shown in the leftmost column. Due
to the common covariance matrix assumption, LDA estimates the same variance
σ̂21 for both classes. The variance estimate with RDA (α = 0.5) is a compromise
between the estimates obtained with LDA and QDA. Coloured points show the
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Figure 4.3: Toy example: decision boundaries for DA models. The common covariance matrix
assumption leads to linear decision boundaries for LDA (left column), as opposed
to quadratic solutions for QDA (right column). Although the decision boundary
for RDA (α = 0.5) is quadratic, regularisation “pushes” it towards the linear solu-
tion obtained with LDA (middle column).

tures/sensor). Data from all subjects were pooled together and both the shared (i.e.

LDA) as well as class-specific (i.e. QDA) covariance matrices were estimated. Features

were standardised to zero mean and unit standard deviation prior to covariance ma-

trix estimation. Covariance matrix estimates for a subset of the classes are shown in

Figure 4.4, along with the estimated pooled covariance matrix. As it was hypothe-
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Figure 4.4: Heatmap visualisation of pooled and individual covariance matrices for myoelec-
tric data. A subset of 8 out of 41 classes is shown. Covariance matrices were es-
timated by pooling data from 22 subjects (20 able-bodied, two amputees). The
dimensionality of the shown covariance matrices is 192× 192. Features were stan-
dardised to zero mean and unit standard deviation prior to covariance matrix
estimation. Note different ranges of colour bars.

sised, it was found that class-specific covariance matrices were not identical to one

another. Nevertheless, there were some distinct patterns shared across classes, which

were also apparent in the pooled covariance matrix. This observation provides fur-

ther motivation for considering DA models that do not make the LDA assumption

(i.e. RDA, QDA) for the purposes of myoelectric control.

4.3.2 Datasets and feature extraction

In this study, four datasets were used to evaluate and compare the performance of

the family of DA classifiers introduced in Section 4.2; namely, two publicly avail-

able released by Atzori et al. (2014), and the two datasets introduced in Section 3.2.

The two pairs of datasets were identical in terms of behavioural protocols, signal

acquisition, and data pre-processing. One difference was that for the first pair, the
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Table 4.1: Experimental datasets used for algorithmic comparison. AB, able-bodied; Amp, am-
putee; EMG, electromyography; Acc, accelerometer; Gyro, gyroscope; Mag, magne-
tometer.

ID
Number of
subjects

Medical
condition

Sensing
modalities

Input data
dimensionality

1 40 AB EMG, Acc 120

2 10 Amp EMG, Acc 120

3 20 AB
EMG, Acc,
Gyro, Mag

192

4 2 Amp
EMG, Acc,
Gyro, Mag

192

standard Delsys® TrignoTM sensors were used, which incorporate EMG electrodes

and accelerometers, whereas the Delsys® TrignoTM IM sensors were used for the lat-

ter, which also include gyroscopes and magnetometers (see Section A.1.1). The four

features introduced in Section 3.2.3 were extracted from EMG signals. Inertial data

were used in their raw format. For the first pair of datasets, the dimensionality of

the input space was lower than for the second pair, due to the lack of gyroscope and

magnetometer data. A summary of the four datasets, including information on num-

bers of participants, their medical condition, sensing modalities used, and input data

dimensionality is provided in Table 4.1.

4.3.3 Algorithms

In the following sections, the decoding performance of the whole family of DA clas-

sifiers introduced in Section 4.2 is investigated. Furthermore, the k-NN classifier is

considered (Fix and Hodges Jr., 1951), which is a non-parametric classification al-

gorithm that has been extensively used in the context of myoelectric control (e.g.

Nazarpour, Sharafat, and Firoozabadi, 2007; Scheme and Englehart, 2011; Kanitz et

al., 2011; Boschmann and Platzner, 2013; Atzori et al., 2015; Atzori, Cognolato, and

Müller, 2016; Du et al., 2017).

The k-NN algorithm belongs to the family of instance-based, also called lazy clas-

sifiers, which means that no training is required and all the computation is carried

out at testing time. Given a test point x?, we find the k training points x1, . . . , xk that

are closest in distance to x? and then classify by using a majority vote among the

k neighbours. The posterior probability of a class c can be estimated by using the

fraction of neighbours labelled as c over the number of neighbours k. Ties are broken

at random, although it is common to select k to be an odd number so that they are
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avoided. To compute the distance between two data points, any valid distance metric

can be used; some common choices include Euclidean, Manhattan, Chebyshev, and

Minkowski distances.

4.3.4 Cross-validation, hyper-parameter tuning, and performance assessment

The 6-fold cross-validation (CV) procedure described in Section 3.2.5 was used; five

repetitions of each movement were used to train classifiers, and the left-out repetition

was used to assess classification performance (see Figure 3.6).

To tune the regularisation hyper-parameters α and γ of RDA, a grid search was

performed in the range [0, 1] with a step size of 0.05. In this case, inner-fold CV was

used and the combination which yielded the highest average CA was selected. A

similar linear search in the range [0, 20] was used to select the k parameter for k-NN.

As in Section 3.2.5, the test dataset was balanced and classification performance

was finally assessed by using the CA metric (see Section B.2).

4.3.5 Statistical tests

As in Section 3.2.7, the non-parametric Friedman test (Friedman, 1937) was used to

compare the classification performance of the different algorithms. Post-hoc pair-wise

comparisons were performed using the Wilcoxon signed-rank test (Wilcoxon, 1945)

with Šidák correction for multiple comparisons (Šidák, 1967).

4.3.6 Results

A performance comparison of the five DA classifiers (LDA, QDA, GNB, DLDA, RDA)

and k-NN is shown in Figure 4.5. For all four datasets, RDA consistently outper-

formed all other classifiers and it was followed by LDA, GNB, QDA, and DLDA. The

average median difference in CA between RDA and LDA was 13.53%. All pairwise

differences were statistically significant (p < 0.001), except for the QDA-GNB pair

(p > 0.05).

Representative confusion matrices for one amputee subject (dataset 4) are shown

in Figure 4.6. The colour code in the graph represents normalised CA scores. A one-

to-one comparison between the performance of LDA and RDA is shown in Figure

4.7. For this graph, data from all datasets, subjects, and CV folds have been pooled

together and each dot in the scatter plot corresponds to one testing fold (total number
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Figure 4.5: Algorithmic performance comparison. (Top panel) CA results for pooled subjects
(ns=72) and datasets (nd=4); (bottom panel) results for individual datasets (see Ta-
ble 4.1). Straight lines, medians; solid boxes, interquartile ranges; whiskers, overall
ranges of non-outlier data (1.5 IQR); diamonds, outliers.

of folds nf = 432). It is evident from this graph that RDA consistently outperformed

LDA (98.8% of times).

The joint distribution of hyper-parameters α and γ for RDA as selected by inner-

fold CV is shown in Figure 4.8. The optimal selection for γ was almost consistently
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Figure 4.6: Representative confusion matrices for an amputee subject (dataset 4) with differ-
ent classifiers. Colour map indicates normalised CA scores. Number of classes,
c = 41.

0 (with very few exceptions where it was 0.05), whereas for α it varied in the range

[0.15, 1].

4.4 discussion

4.4.1 Comparison of models, overfitting, and regularisation

The RDA classifier consistently outperformed all other models. This was expected,

since the RDA model is flexible and can treat all other models as special cases (see

Equation 4.15 and Figure 4.1). The two hyper-parameters of the RDA classifier were
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Figure 4.7: One-to-one comparison between LDA and RDA. Results shown for all datasets,
subjects, and folds. Each dot in the scatter plot corresponds to one testing fold.
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Figure 4.8: RDA hyper-parameter tuning. The colour map encodes the normalised count of
selected pairs of values for RDA hyper-parameters α and γ. The marginal distri-
bution of selected α values is shown separately on the right. Results shown for all
datasets, subjects, and folds.

tuned such that the cross-validated CA was maximised; therefore, it was guaranteed

that its performance would be at least as good as that of any other DA model.
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The LDA model assumption, that is, classes share a common covariance matrix, is

very strong and most often violated (see Figure 4.4). One would expect that QDA

should outperform LDA as it is more flexible and does not make this assumption.

The reason why this is not often the case is because QDA is heavily prone to over-

fitting. The number of free parameters that have to be estimated in the general class-

conditional Gaussian model is C (D+ 1)D/2, where C is the number of classes andD

is the dimensionality of the feature space. In our case, C = 41 and D = 120 (datasets

1 and 2), or D = 192 (datasets 3 and 4). Thus, the number of free parameters was

approximately 2.86× 105, and 7.6× 105, respectively. Taking into consideration that

a typical CV fold included on average 3.6× 103 training samples, it is obvious that

this method suffered profoundly from overfitting; the number of fitted parameters

was orders of magnitude larger than the number of training samples. Consequently,

it should come as no surprise that the classification performance of QDA for datasets

3 and 4 was inferior to that for datasets 1 and 2 (see Figure 4.5), since overfitting was

exacerbated in the former case by the larger input dimensionality (see Table 4.1). As

was to be expected, the performance of the other classifiers was improved when the

additional sensing modalities (gyroscopes and magnetometers) were included in the

set of features (see Chapter 3).

In the limit of infinite amount of data, one should expect that QDA would always

outperform LDA. In practice, however, it is not feasible to collect vast quantities of

training data, especially with amputees. The benefit of using RDA lies in that it can

make use of the theoretical advantage of QDA over LDA without being susceptible

to overfitting, as a result of regularising the class covariance matrices towards the

pooled covariance matrix (α hyper-parameter).

The γ hyper-parameter is used in the RDA model to introduce a different form of

regularisation, that is, it shrinks the estimated covariance matrices towards diagonal

matrices. In the extreme case (i.e. γ = 1) the GNB model is recovered, which assumes

class-conditional feature independence. Nevertheless, such behaviour should neither

be desired nor expected, since many features originate from the same measurements

(i.e. we extract multiple features from the same EMG signals). Input features which do

not stem from the same measurements are still expected to exhibit strong correlations

due to, for example, muscle crosstalk (Farina et al., 2014), or the relationship between

surface EMG and inertial measurements (see Section 3.4.5). Thus, it should not be

surprising that the optimal value for γ was almost consistently 0 (see Figure 4.8).
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4.4.2 Benchmarking

The CA achieved with the RDA classifier was remarkably high, especially when tak-

ing into consideration the large number of classes (C = 41) included in the datasets.

For a comparison, Atzori, Cognolato, and Müller (2016) reported an average CA of

75.27% ± 7.89% (mean ± standard error) with random forests, and 46.27% ± 7.89%

with support vector machines, on datasets 1 and 2, respectively1. The same figures in

the current study were 83.34% ± 8.97%, and 72.52% ± 12.05%, an average increase

in performance of 8.07% and 26.25%, respectively, for able-bodied and amputee sub-

jects. Furthermore, Geng et al. (2016) used only a subset of 8 classes from dataset 1

and reported a best CA of slightly less than 80% by using convolutional neural net-

works. This figure is still lower than the average CA achieved in the current study

with RDA (83.34%) when the full set of 41 classes was considered. In agreement with

previous studies (e.g. Li, Schultz, and Kuiken, 2010; Atzori et al., 2014), it was found

that performance scores for amputees were moderately worse than for able-bodied

participants (see Figure 4.5).

4.4.3 Computational and memory requirement considerations

One strong advantage of the LDA model is that decision boundaries are linear in

feature space. As a result, the time complexity of assigning class probabilities to a

test sample is O (CD), that is, it scales linearly with the feature dimensionality. The

space complexity for LDA is also O (CD), since a weight vector of dimensionality D

is only required to be stored in memory.

For general class-conditional Gaussian models like QDA and RDA, covariance ma-

trix inverses have to be computed. Such operations require O
(
CD3

)
computational

time during training. If these algorithms are implemented efficiently, that is, if in-

verse covariance matrices are precomputed and stored in memory, the computational

complexity in testing time is O
(
CD2

)
and space complexity is O

(
CD3

)
. As we shall

see in the following chapter, for small to medium-sized feature spaces (i.e. orders of

hundreds), this does not pose a problem for real-time implementations.

4.4.4 Limitations and future work

The purpose of the current study was to demonstrate that although LDA is the pre-

ferred classifier in the context of myoelectric control, the violation of its fundamental

1 Denoted as datasets 2 and 3 in Atzori, Cognolato, and Müller (2016)
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assumption about a shared covariance matrix may negatively affect decoding per-

formance. For this reason, this study primarily focused on DA variants and did not

investigate the performance of various other algorithms commonly used in this con-

text, such as support vector machine and MLP classification. Moreover, although

ensemble methods such as random forests (Breiman, 2001) and gradient boosting

(Friedman, 2002) have been demonstrated to achieve high decoding performance on

various tasks, they were not considered here due to their associated high computa-

tional complexity which would make them unsuitable for real-time implementations.

It is worth noting that there exist other DA variants which were not considered in

this study. For example, penalised discriminant analysis (Hastie, Buja, and Tibshirani,

1995) applies a different form of regularisation that enforces coefficients to be smooth

over the spatial (e.g. images) or temporal (e.g. time-series) domain. In our application,

the temporal structure of the data is not taken into account when fitting classifiers,

except that myoelectric data are smoothed as a result of using an overlapping slid-

ing window approach. An interesting avenue to explore would be to use penalised

discriminant analysis to account for the smoothness properties of data in conjunction

with a much shorter time window. One potential benefit of this approach might be a

significant decrease in the controller’s delay without compromising performance. A

different variant is mixture discriminant analysis (Hastie and Tibshirani, 1996) which,

unlike QDA and RDA, allows classes to be modelled as mixtures of multiple Gaus-

sian clusters. As with Gaussian mixture models, an expectation-maximisation algo-

rithm can be used to train a mixture discriminant analysis model. The nature of this

classifier allows it to model well multi-modal distributions. Whether its use could

provide benefit in myoelectric data classification remains, however, to be investigated.

Huang et al. (2005) reported promising results in this direction by using a similar ap-

proach to classify wrist and hand motions.

It is also worth mentioning that algorithmic comparisons were performed for a

given feature representation. The mean absolute value, waveform length, 4
th-order

auto-regressive coefficients, and log-variance features were extracted from EMG data,

whereas for inertial data the mean value within the processing window was used (see

Section 3.2.3). It has been previously reported that the choice of features is of partic-

ular significance for myoelectric classification performance (e.g. Zardoshti-Kermani

et al., 1995; Englehart et al., 1999; Boostani and Moradi, 2003; Phinyomark, Limsakul,

and Phukpattaranont, 2009; Phinyomark et al., 2013). Nevertheless, by taking into

account that the benefit of using the RDA classifier lies in that it can treat other DA

models as special cases (see Equation 4.15 and Figure 4.1), it is reasonable to expect

that the findings presented here can generalise to arbitrary feature representations.
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As a final note, the current study was limited to offline analyses. The following

chapter addresses this limitation by deploying RDA classification for real-time pros-

thetic hand control.
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5
R E A L - T I M E FA U LT- T O L E R A N T P R O S T H E T I C H A N D C O N T R O L

W I T H O N LY T W O S E N S O R S

The previous two chapters proposed ways of improving hand motion intent decoding

and myoelectric control of prosthetic hands by using inertial measurement units (IMUs)

(see Chapter 3) and a regularised discriminant analysis (RDA) classifier (see Chapter 4).

It has been already pointed out that in the myoelectric control field there is a re-

markable gap between academic/research achievements and their commercial adop-

tion (Jiang et al., 2012b; Farina et al., 2014). Among the reasons causing this discrep-

ancy is the fact that machine learning (ML)-based algorithms require a relatively large

number of electromyography (EMG) sensors to produce accurate and robust predic-

tions. This requirement both increases the cost of the prosthesis and also reduces

the practicality of the system (e.g. increased weight, additional burden for the user).

As of today, most commercial prosthetic solutions incorporate a single pair of sur-

face EMG sensors, usually targeting the forearm extensor and flexor muscle groups.

Achieving classification-based myoelectric control with such minimal resources is a

great challenge, which has not been previously tackled.

Drastically reducing the number of sensors used for myoelectric control may in-

evitably lead to a decrease in classification performance. Additionally, it has been re-

ported that unintended prosthesis motions can lead to user frustration (Hargrove et

al., 2010), which in turn may increase the risk of prosthesis rejection. Thus, to ensure

user satisfaction, it is important to design fault-tolerant myoelectric controllers with

the ability to reject classification predictions estimated with low confidence. This may

come at the expense of increasing computational complexity (Hargrove et al., 2010;

Scheme, Englehart, and Hudgins, 2011; Amsüss et al., 2014), introducing a response

delay (Englehart and Hudgins, 2003), or even decreasing overall classification accuracy

(CA) (Hargrove et al., 2010).

In this chapter, a framework for real-time, robust myoelectric control of hand pros-

theses is proposed by using a single pair of sensors, in a similar architecture to that

of most commercial systems (see Section 2.4.1.1). Special attention is given to opti-

mising the parameters of the system in order to minimise the amount of unintended

performed motions. The efficacy of the proposed system is evaluated with experi-

ments involving both able-bodied and transradial amputee participants.
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5.1 introduction

5.1.1 EMG channel reduction in myoelectric control

The majority of studies investigating hand movement intent decoding have tradi-

tionally used a large number of surface EMG electrodes (e.g. Tenore et al., 2009;

Al-Timemy et al., 2013) or high-density electrode arrays (e.g. Ison et al., 2016; Geng

et al., 2016; Khushaba et al., 2017). Nevertheless, a large body of work has explored

potential ways of reducing the number of recording electrodes and analysed the re-

lationship between the amount of sensors used and classification performance. The

current section provides a literature review of this topic.

Hargrove, Englehart, and Hudgins (2007) classified 10 forearm and hand motions

in six normally-limbed subjects. The motions included wrist flexion/extension, fore-

arm supination/pronation, and hand opening/closing. The authors selected a set of

three optimal electrodes with respect to classification performance by using a brute-

force method (i.e. exhaustive search) and reported a CA of 97% for those six classes.

Huang et al. (2008) recorded muscular activity from four patients having under-

gone targeted muscle reinnervation (see Section 2.4.2.5) by using high-density EMG

arrays (116-128 monopolar electrodes). Their study included 16 classes comprising

forearm, hand, and finger motions. It was found that only 12 electrodes selected via

sequential forward sensor selection (SFSS) could achieve classification performance that

was comparable to that of the whole set.

Li, Schultz, and Kuiken (2010) recruited five unilateral transradial amputees who

were trained to control a virtual arm by modulating their muscular activity. Ten wrist

and hand movements were tested and it was found that average CA scores reached

a plateau after the inclusion of 4-6 EMG channels selected via exhaustive search.

Geng et al. (2014) used 56 EMG electrodes to record muscular activity of 12 mildly-

impaired subjects with traumatic brain injury whilst they performed 21 forearm and

hand movements. They proposed a method for channel selection based on common

spatial pattern analysis (Müller-Gerking, Pfurtscheller, and Flyvbjerg, 1999) and com-

pared their method to SFSS and a Fisher-Markov selector. The authors reported that

their proposed algorithm achieved the highest performance out of the three methods.

It was additionally observed that CA plateaued after the inclusion of 7-11 electrodes

on average.

Muceli, Jiang, and Farina (2014) used high-density EMG recordings from forearm

muscles of 10 able-bodied subjects to reconstruct 2-degree of freedom (DOF) wrist move-

ment trajectories. Performance was validated with real-time myoelectric control of

the position of an arrow on a screen. Interestingly, no significant differences were ob-
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served in performance when the number of electrodes was reduced from 16 to either

8 or 6 by using a uniform selection approach.

In a related study, Hwang, Hahne, and Müller (2014) compared the performance

of various EMG channel reduction techniques, namely least absolute shrinkage and

selection operator, SFSS, and uniform selection on the task of reconstructing 2-DOF

wrist kinematic trajectories. It was observed that SFSS outperformed the other two

methods, while on average 12 electrodes selected via SFSS could achieve comparable

performance to that obtained with the whole set of 64 electrodes.

Promising results in the same direction were also reported by Fougner, Stavdahl,

and Kyberd (2014) who used only five EMG electrodes to achieve simultaneous and

proportional control of two DOFs, namely wrist pronation/supination and hand

opening/closing. The efficacy of the method was evaluated with the SHAP and

clothespin tests (see Section 2.5.2).

Additionally, Naik, Al-Timemy, and Nguyen (2016) analysed myoelectric data

recorded from five transradial amputees who performed 11 finger motions. They

introduced a method for electrode selection which was based on a modified version

of independent component analysis (ICA). The proposed method provided a slight im-

provement in CA as compared to the benchmark methods, and it was also shown

that classification performance plateaued after the inclusion of 7-9 electrodes.

Adewuyi, Hargrove, and Kuiken (2016) investigated the potential benefit of com-

bining EMG recordings from extrinsic and intrinsic hand muscles on the task of

classifying 19 motion classes. The selected motions included various grasp types, in-

dividual finger movements, hand opening, and the rest pose. The authors used an

SFSS algorithm for channel reduction and found that when using only extrinsic hand

muscles, classification performance reached a plateau after the inclusion of 5-6 elec-

trodes. Not surprisingly, the performance increased further when activity of intrinsic

hand muscles was included in the decoders, thus suggesting that the latter can offer

complementary information which cannot be extracted from extrinsic muscles.

More recently, Clancy et al. (2017) recorded and analysed myoelectric data from

ten normally-limbed subjects and three transradial amputees whilst they performed

a series of wrist movements. By using sequential backward sensor selection they

demonstrated that it was feasible to accurately reconstruct wrist kinematic trajectories

of a single DOF by using only two electrodes, while four electrodes were required to

decode 2-DOF wrist kinematics.

Finally, Menon et al. (2017) investigated the interaction effect of processing win-

dow length, window overlap, and number of used electrodes on the classification of

seven hand gestures. Able-bodied subjects, transradial, and partial-hand amputees

were included in the study and their muscular activity was recorded with a pair of
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64-channel high-density EMG arrays. Although no interaction effect was identified

between the processing window length and number of electrodes, the authors found

that the amount of sensors required to observe a plateau in performance differed

across the three populations of participants; for the partial-hand amputee group the

plateau occurred when 12 electrodes were included in the decoders, whereas eight

sensors were only required in the case of transradial amputees.

5.1.2 Fault-tolerant myoelectric control

Pattern recognition-based prosthesis control cannot be seen as a mere ML problem.

Once an estimate of a discrete (i.e. classification) or continuous (i.e. regression) target

variable has been computed, there are several steps before it can be translated into a

control action for the motors of a terminal device, such as a prosthetic hand.

During prosthetic control experiments, it has been reported that unintended pros-

thesis motions can cause increased frustration to the user (Hargrove et al., 2010).

Furthermore, such errors require the user to perform compensatory motions and

might also lead to dropped objects, collisions and/or accidents (Scheme, Hudgins,

and Englehart, 2013). For all the above reasons, it is sensible to try to minimise the

amount of unintended prosthesis activations, even at the cost of failing to execute a

small proportion of correctly identified motions. The current section summarises the

several attempts that have been made towards designing fault-tolerant myoelectric

controllers. The reader is referred to Appendix B for an introduction to the various

classification metrics and types of errors mentioned throughout this chapter.

Englehart and Hudgins (2003) decoded four wrist motions, namely flexion, exten-

sion, radial and ulnar deviation in 12 normally-limbed subjects. They suggested us-

ing a majority voting scheme as a post-processing step for classification predictions,

whereby the control action at a given time step is affected by both previous and fu-

ture predictions (i.e. non-causal filter). The proposed method was found to improve

accuracy at the cost of introducing a response delay, in addition to that caused by

using a window processing approach (see Section 2.2.4.3).

Hargrove et al. (2010) instructed 12 able-bodied subjects to perform seven forearm

and hand motions in order to carry out a clothespin relocation task on a virtual envi-

ronment (Lock, Englehart, and Hudgins, 2005). The authors trained multiple binary

(i.e. one-vs.-all) linear discriminant analysis (LDA) classifiers and rejected classification

predictions that were not shared across all classifiers. The proposed control strategy

was compared to standard multi-class LDA classification without post-processing.

The authors reported that their method led to an increase in classification error, how-

ever the false positive rate (FPR) was decreased. As a result, the total number of pin
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drops was reduced when the rejection post-processing step was included in the con-

trol loop.

Scheme and Englehart (2011) extended the work of Hargrove et al. (2010) by train-

ing multiple one-vs.-one classifiers. In their proposed strategy, a class had to be unani-

mously selected by all classifiers it was part of, otherwise the algorithm would output

the “rest” class (i.e. no motion) as its final decision. This method was validated in a

follow-up study (Scheme and Englehart, 2013b) during real-time control by using a

three-dimensional (3D) Fitts’ Law test (see Section 2.5.4). The proposed control strat-

egy improved the efficiency, overshoot, stopping distance, and completion rate (CR)

as compared to standard multi-class LDA. However, the throughput, which implic-

itly represents the time taken to accomplish the task, was not improved. This led

the authors to propose an alternative strategy based on multi-class LDA followed by

confidence-based rejection (Scheme, Hudgins, and Englehart, 2013). In this paradigm,

a prediction would be rejected if the respective posterior probability did not exceed

a pre-defined threshold. This latter strategy outperformed LDA classification with-

out post-processing on all metrics, including throughput. One disadvantage of this

approach is that a single threshold is shared across classes and, additionally, it has to

be set empirically.

Menon et al. (2015) tried to extend the work of Scheme, Hudgins, and Englehart

(2013) by selecting class-specific thresholds in an automated fashion. They recruited

eight transradial and five partial-hand amputees and used a pair of 64-channel high-

density EMG arrays to record the subjects’ forearm muscular activity whilst they

performed a series of seven hand motions. The authors derived class-specific receiv-

ing operating characteristic (ROC) curves (see Section B.3) and suggested selecting the

thresholds so as to maximise the distance of the obtained ROC curves from that of

a random classifier (see Section B.3.2 and Figure B.1). They reported that their pro-

posed strategy led to an increase in true positive rate (TPR), but also increased the

classification error.

Amsüss et al. (2014) followed a slightly different approach. They trained a multi-

layer perceptron (MLP) that mapped EMG features and decisions made by a base LDA

classifier to a discrete binary target variable, encoding whether the prediction of the

base classifier was accurate. Their method was evaluated on a dataset comprising

recordings from seven normally-limbed and four transradial amputee subjects whilst

they performed seven forearm and hand motions. The authors compared their pro-

posed control strategy to standard multi-class LDA without post-processing, majority

voting (Englehart and Hudgins, 2003), and confidence-based rejection (Scheme and

Englehart, 2013b). It was reported that their proposed scheme achieved a higher CA,
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and also increased the TPR. Comparisons on the FPR scores were, however, not re-

ported.

Finally, Li et al. (2016) proposed to reduce the amount of unintended prosthesis

activations by creating an additional class consisting of several movements not in-

tended to be executed by the prosthesis. In this way, whenever the aforementioned

class was predicted by the classifier, the prosthesis would not respond. This approach,

however, requires collecting training data corresponding to an “unwanted movements”

class, which may not be practical from a clinical point of view.

5.1.3 Motivation

Although a large body of work has reported various ways of reducing the num-

ber of EMG electrodes required for ML-based myoelectric control, the vast majority

have suggested the use of 4-10 sensors, which can still be regarded as a high num-

ber. The purpose of the work presented in this chapter is to achieve robust pattern

recognition-based upper-limb myoelectric control with only two sensors, which are

usually available in commercial prosthetic systems (see Section 2.4.1.1). To address

this challenging problem, this study will heavily rely on the advancements proposed

in the previous two chapters of the thesis.

A significant reduction in the number of sensors would inevitably affect classi-

fication performance. To address this issue, it is sensible to design a fault-tolerant

controller that does not allow for the execution of decoded motions unless they are

estimated with high confidence. Such design will also allow to minimise the classifi-

cation FPR that leads to unintended motions, which have been described as a primary

cause of frustration for prosthesis users (Hargrove et al., 2010).

5.2 experimental setup and methodology

The experimental paradigm followed in this study bears strong similarities to the one

described in Section 3.3. The main aspects are summarised for completeness in the

following sections.

5.2.1 Participant recruitment

Twelve able-bodied (10 male, two female; 10 right-hand, two left-hand dominant; me-

dian age 28 years) and two right-hand amputee subjects were recruited. Some of the

able-bodied and both amputee participants had taken part in a previous myoelec-
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tric control experiment (see Section 3.3). The medical records of the two amputee

participants have been presented in Table 3.1.

5.2.2 Signal acquisition and socket fitting

For the able-bodied group, 16 EMG-IMU Delsys® Trigno™ IM sensors (see Section

A.1.1 and Figure A.1) were placed on the participants’ forearm arranged in two rows

of eight equally spaced sensors each (see Figure 5.1, top row). For the two amputee

participants, 13 and 12 sensors were used, respectively, due to limited space availabil-

ity. The sensors were placed on the able-bodied participants’ dominant hand, whereas

for amputees they were placed on the subjects’ phantom limb (right arm in both

cases). Prior to sensor placement, the participants’ skin was cleansed using 70% iso-

propyl alcohol. Elastic bandage was used to secure the sensor positions throughout

the experimental sessions. Following sensor placement, the quality of all EMG chan-

nels was verified by visual inspection. The sampling frequency was set to 2 kHz for

EMG signals and to 128 Hz for inertial data. Readings from IMUs were used in their

raw format.

Custom built sockets were used to accommodate the robo-limb™ prosthetic hand

(see Section A.2.1 and Figure A.2) that was used in this round of experiments. For the

able-bodied group, the same socket was used for all participants and was adjusted for

individual subjects using Velcro straps (see Figure 5.1, bottom left). Subject-specific

sockets were used in the case of amputee participants, which were designed by taking

into account the individuals’ stump anatomy (see Figure 5.1, bottom right).

5.2.3 Behavioural task

The participants sat comfortably on an office chair and were asked to reproduce

a series of motions instructed to them on a computer monitor. As in the real-time

experiment described in Section 3.3.1, six motion classes were included: power grip,

lateral grip, tripod grip, index pointer, hand opening, and rest pose (see Table 3.3).

As in the previous experiment, each session comprised a training and a testing

phase. During the training phase, subjects were instructed to perform 20 reach-to-

grasp repetitions of each of the five poses/grips. Two separate blocks of data were

collected (dataset A and dataset B), each one comprising 10 repetitions for each grip.

During the testing phase, the participants were required to use the prosthetic hand

to grasp, relocate, and release three objects and finally press down the “space” key on

a computer keyboard (see Figure 5.1, bottom left). Trials were considered successful

if all objects were relocated and the key was pressed within 75 s. In case an object was
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dropped, the trial would be interrupted and considered as unsuccessful. The number

of trials per subject was set to 10, and participants were given 45 s of rest in-between

consecutive trials.

5.2.4 Signal pre-processing

For signal pre-processing, the same procedure as the one described in Section 3.2.3

was used, except that the length of the processing window was reduced to 128 ms

with an increment of 50 ms (60% overlap). The total number of extracted features was

256 for able-bodied subjects (i.e. 16 sensors × 16 features/sensor), 208 for the first,

and 192 for the second amputee participant, respectively (i.e. 13 or 12 sensors × 16

features/sensor).

5.2.5 Sensor selection

For each subject, two EMG-IMU sensors were selected out of the full set by using

the SFSS method (Section 3.2.6). For sensor selection, LDA classifiers were trained by

using dataset A (training set) and performance was assessed on dataset B (validation

set). The objective function used for sensor selection was the cross-entropy loss (CEL).

In contrast to CA which only considers the percentage of correct classifications, CEL

also evaluates the accuracy of posterior probability estimates (see Section B.2.2 for

details). As before, prior to performance evaluation, the distribution of the validation

samples was balanced by removing a large proportion of the “rest” class (see Section

3.2.5).

5.2.6 Classifier training and optimisation

For hand movement intent decoding, the RDA classifier was chosen because of its

superior performance to other discriminant analysis (DA) models (see Figure 4.5). It

was shown in Section 4.3 that the optimal value for the γ hyper-parameter of RDA

was almost consistently equal to 0. Taking this observation into consideration, this

parameter was set a priori to 0 in an effort to reduce required training times; thus,

only the α hyper-parameter was optimised. To achieve this, a line search was used

in the range [0, 1] with a step size of 0.025 and the parameter value that yielded the

lowest CEL score on the validation set (i.e. dataset B) was selected. Following hyper-

parameter optimisation, the training and validation datasets were merged and used
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Figure 5.1: Experimental setup. Sixteen sensors were placed on the subjects’ forearm below
the elbow in two rows of eight equally-spaced sensors (top row). Custom built
sockets were used to accommodate the robo-limb prosthetic hand for able-bodied
(bottom left) and amputee (bottom right) subjects.

to train the final models. Model training and hyper-parameter optimisation were

performed in a subject-specific fashion.

5.2.7 Confidence-based rejection and threshold selection

For real-time control, a confidence-based rejection strategy was used. In other words,

classification decisions were discarded unless they were predicted with a posterior

probability exceeding a pre-defined, class-specific threshold. The rejection thresholds

were selected by using ROC curve analysis (see Section B.3) on the validation set

(dataset B). To achieve this, multiple one-vs.-all RDA classifiers were trained and the

corresponding FPR and TPR scores were computed for threshold values in the range

[0, 1] (see Section B.2).

The rejection threshold for each class was selected such that the TPR was max-

imised, while at the same time the respective FPR was constrained to be smaller than

a cut-off value, set a priori to 5 · 10−4. This was done in order to minimise the number

of false positives that would translate into unintended hand motions. It was observed
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Figure 5.2: Example of rejection threshold selection using ROC curves. The procedure for se-
lecting the rejection threshold for a single subject (able-bodied) and class (lateral
grip) is shown. (Left column) ROC curves for three classifiers (perfect, random,
RDA classifier); (right column) selection of the rejection threshold for the specific
class and the RDA classifier. The threshold is selected such that the TPR is max-
imised while the FPR is smaller than 5 · 10−4. For the specific threshold value, the
corresponding TPR was 0.439. Note, the right column is a zoomed version of the
the left column (x-axis).

during pilot trials that for well-separated classes this method would yield rejection

thresholds extremely close to 1, which would then dramatically reduce the TPR for

the same classes during real-time control. For that reason, an additional constraint

was included that required rejection threshold values to not exceed 0.995. In math-

ematical terms, the strategy for rejection threshold selection for each class can be

summarised as follows:

θ̂c = min
{

max
θc

TPR (θc) : FPR (θc) < 5 · 10−4, 0.995
}

, (5.1)

where θ̂c denotes the rejection threshold selection for class c. A typical example of

this procedure performed for one class and a single subject is shown in Figure 5.2.

For this example, the selected threshold value was 0.990, and the corresponding TPR

was 0.439.

5.2.8 Statistical tests

Offline CA comparisons were performed using the non-parametric Friedman test

(Friedman, 1937), followed by post-hoc pair-wise comparisons using the Wilcoxon

84 real-time prosthetic hand control with two sensors



signed-rank test (Wilcoxon, 1945) with Šidák correction for multiple comparisons

(Šidák, 1967).

To compare the performance between the able-bodied and amputee groups in the

real-time experiment, two different statistical tests were used: the Fisher’s exact test

(Fisher, 1922) was chosen in the case of CR, because the observations were unpaired,

the trials could take only two possible outcomes (i.e. success or fail), and the sample

size was small; for completion times (CTs), the non-parametric Wilcoxon rank-sum test,

also known as the Mann-Whitney U test (Mann and Whitney, 1947), was used, again

because observations were unpaired. The same test was additionally used to compare

CTs between early and late trials.

5.3 results

5.3.1 Offline analysis

An offline analysis was performed to evaluate classification performance with a vary-

ing number of sensors and three DA classifiers, namely, LDA, RDA, and quadratic

discriminant analysis (QDA) (see Section 4.2). To achieve this, 10-fold cross-validation

(CV) was performed on dataset B, by using a 90%-10% split. In other words, the

whole of dataset A was used to train models (training set), 9 out of 10 repetitions of

each motion from dataset B were used as a validation set for sensor selection and RDA

hyper-parameter optimisation, and the collection of left-out repetitions from dataset

B were used as a test set. Note, this procedure was only followed for the purposes

of offline analysis. During the experimental sessions, datasets A and B were used as

the training and validation sets, respectively; a test set was not required in this case,

as classification performance was subsequently evaluated during real-time prosthetic

control.

The results of the offline analysis are presented in Figures 5.3 and 5.4. Performance

was assessed by using both the CA and CEL metrics (see Section B.2). In general,

performance improved as new sensors were added to the decoders and reached a

plateau after the inclusion of 6-8 sensors. In terms of CEL (Figure 5.3, top row), RDA

outperformed LDA for small numbers of sensors, but the two algorithms yielded

comparable scores for more than five sensors. The performance of QDA was remark-

ably worse than that of LDA and RDA. Notably, the performance of QDA deterio-

rated when a large number of sensors was used, a clear sign of overfitting due to the

large number of fitted covariance parameters and lack of regularisation (see Section

4.4.1). The results were consistent across the able-bodied and amputee populations.
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Figure 5.3: Offline comparison of DA classifiers for varying number of added EMG-IMU sen-
sors. LDA, RDA, and QDA are compared with respect to CA and CEL metrics. The
α parameter for RDA was optimised by using the CEL objective function. Results
shown for 12 able-bodied (left column) and two amputee (right column) subjects.
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Interestingly, a different pattern was observed with respect to CA scores (see Fig-

ure 5.3, bottom row). The highest performance for this metric was achieved by QDA

followed by RDA and then LDA. Differences in algorithmic performance were mostly

noticeable when the number of used sensors was less than 10. Note, in this particular

case, RDA was not guaranteed to achieve the best performance across the three algo-

rithms, as a result of being able to treat LDA and QDA as special cases (see Section

4.4.1). This is because the objective function used for hyper-parameter optimisation

was in this case not CA, but the CEL metric. On the contrary, it can be verified that
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in terms of CEL, the performance achieved with RDA was at least as good as that of

the other two methods (see Figure 5.3, top row).

The results from using the optimal subset of two EMG-IMU sensors are presented

in more detail in Figure 5.4, separately for the able-bodied and amputee participants.

In terms of CEL, RDA significantly outperformed LDA and QDA. LDA performed

marginally better, although not significantly than QDA. On the other hand, the high-

est CA was achieved with QDA followed by RDA. For this metric, all pairwise differ-

ences were significant (p < 0.01).

Average confusion matrices for RDA classification with the two optimally selected

EMG-IMU sensors are shown in Figure 5.5. It can be verified that despite using only

two sensors, the six classes were highly separable.

Figure 5.6 shows the distribution of selected values for the RDA α hyper-parameter,

as a function of the number of included sensors. Not surprisingly, as the input dimen-

sionality grows larger due to more sensors being added to the pool, the median of

this distribution is moved towards lower values, hence implying that stronger regu-

larisation is required. When the number of included sensors exceeded 10, the median

of this distribution was exactly 0, which corresponds to the LDA model (see Figure

4.1).

5.3.2 Real-time prosthetic control experiment

The working principle of the real-time prosthetic control paradigm is shown in Figure

5.7. For the shown trial, the sequence of objects to be relocated was “bottle”, “CD”,

and “card”. Therefore, the optimal sequence of hand motions was “power grip”,

“hand open”, “tripod grip”, “hand open”, “lateral grip”, “hand open”, and “index

pointer”. It can be observed that there was a relatively large number of incorrectly

classified instances (blue line, top panel) in this trial; however, the confidence-based

rejection strategy discarded most of them, since the corresponding posterior probabil-

ities (bottom panel) were below the respective rejection thresholds (see Section 5.2.7).

Overall, there were two unintended hand motions (red ellipses, top panel), and the

trial was successful with a completion time of 24.45 s. A video recording showing one

trial of the experiment with an amputee participant is provided in the supplementary

material (SV3, see Appendix E).

Performance results for the 12 able-bodied and two amputee participants are shown

in Figure 5.8. Each subject performed 10 trials and the CR and CT metrics were used

to evaluate prosthetic control performance (see Section 3.3.3). Summary scores across

the two populations of participants are also shown on the right-hand side of the

graph. The median CRs were 95% and 85% for the able-bodied and amputee groups,
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Figure 5.5: Average offline confusion matrices with RDA and selected subset of two EMG-
IMU sensors. Data shown for all subjects (12 able-bodied, two amputees) and CV
folds (k = 10). Annotated scores represent normalised CA scores.

respectively. Median CTs for successful trials were 37.43 and 44.28 s, respectively.

Able-bodied subjects performed on average higher than amputees with respect to

both metrics; however, differences in performance between the groups were not sig-

nificant (p > 0.05).

The effect of user adaptation on prosthesis control was also investigated and the

results of this analysis are presented in Figure 5.9. In this graph, average CTs across

88 real-time prosthetic hand control with two sensors



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of added sensors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α

LDA

QDA

Figure 5.6: RDA hyper-parameter optimisation. Selections for the RDA α hyper-parameter
are shown for an increasing number of EMG-IMU sensors. Data shown for all
subjects (12 able-bodied, two amputees) and CV folds (k = 10).

subjects are plotted against trial numbers, separately for the two groups of partic-

ipants. It was found that the median CT significantly decreased from the first two

(“early”) to the last two (“late”) trials (median difference of 6.81 s, p < 0.05). The

average time elapsed between the initiation of the early (i.e. first) and late (i.e. ninth)

trials was 16.08 ± 1.39 min (mean ± standard error).

The optimally selected pairs of EMG-IMU sensors for all participants are presented

in Figure 5.10 using a matrix representation. Average (across-subject) selections for

individual sensors are shown in the rightmost column of the graph. As in Figure

3.17, no specific patterns of subset selection were identified, although some units

were selected slightly more frequently than others (e.g. sensors, 2, 6, and 8).

Finally, a summary of the thresholds selected for the different classes is provided

in Figure 5.11. While for three out of six classes (i.e. “power grip”, “lateral grip”, and

“tripod grip”) the threshold varied in the range [0.950, 0.995], the upper-bound (i.e.

0.995) was consistently selected for the remaining three classes.

5.4 discussion

5.4.1 Impact

The current study demonstrates the feasibility of using classification-based grip con-

trol for hand prostheses by using a single pair of surface EMG-IMU sensors. This

achievement, which to the author’s best knowledge has not been previously reported,
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can have a substantial impact in the field of upper-limb control, since it demonstrates

that ML-based prosthetic control can be potentially applied to currently available

commercial solutions, subject to minimal modifications. Minimising the number of

sensors used for myoelectric control is of significant importance for two reasons:

firstly, a large number of used sensors is associated with high computational, and

thus, power requirements; secondly, it is not practical from a user’s point of view.

The achievement presented in this chapter has been made possible by combining

a series of advancements introduced in the current and earlier chapters. First and

foremost, it has been exploited that RDA classification can attain higher decoding

performance than LDA (see Figure 4.5), especially when the number of used sensors

is small (see Figure 5.4). Notwithstanding this improvement, reducing the number of

sensors to only two inevitably leads to a higher classification error (see Figure 5.3).
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Figure 5.8: Real-time prosthetic control experiment results. CRs and CTs shown for 12 able-
bodied and two amputee subjects. Data shown separately for individual partici-
pants (left column) and populations of able-bodied and amputee subjects (right
column). Bars, medians; error bars, 95% confidence intervals estimated via boot-
strapping (1000 iterations); n.s., non-significant difference.

To compensate for this increase in classification error, confidence-based rejection was

deployed to discard predictions that were not made with high confidence.

5.4.2 Technical considerations

During offline analysis, it was found that the optimal number of sensors may actually

be in the range of five to seven (see Figure 5.3). This is in agreement with the results

obtained in the real-time control experiment presented in Chapter 3. The purpose of

the current study, however, was to investigate whether ML-based control would be

feasible with currently existing commercial architectures; therefore, it was decided

to only include two sensors. Contrasting CTs in the current experiment with those

corresponding to condition IV in Section 3.3.5, in which an optimal subset of EMG-
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Figure 5.10: Sensor selection for individual participants. The selected EMG-IMU sensors are
shown column-wise as red boxes for 12 able-bodied and two amputee subjects.
The rightmost column represents the average selection frequency of individual
sensors. Black boxes represent unavailable sensors due to limited space on am-
putee participants’ forearm. The reader is referred to Figure 5.1 for details on
sensor placement.

IMU sensors were used for a similar task, it can be noted that performance between

the two conditions was comparable. Nevertheless, a direct comparison is not possible
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due to differences in experimental design (e.g. number of trials, length of processing

window, confidence-based rejection strategy used).

Various algorithms have been proposed for optimal sensor selection (see Section

5.1.1). The standard SFSS method was used in this study, mainly because of its speed

and efficiency during training. It has also been demonstrated that despite its simplic-

ity, it can outperform more sophisticated methods, such as the least absolute shrink-

age and selection operator (Hwang, Hahne, and Müller, 2014). An alternative would

be to optimally select the pair of used sensors with a brute-force method (i.e. exhaus-

tive search), but this approach can cause a substantial increase in training times.

5.4.3 Clinical implications

This study demonstrates the feasibility of using ML-based hand grip control with

commercially available prosthetic hands, which are usually driven by a pair of surface

EMG sensors (see Section 2.4.1.1). One difference between commercial prostheses and

the setup used in this study is that in the latter case, the sensors incorporated IMUs

that are typically not available in commercial systems. Nevertheless, IMUs are cheap

units (average cost of £30) and their integration into an existing system should be

rather straightforward. In fact, some commercial devices already comprise IMUs to

monitor the orientation of the prosthesis, but these are usually embedded in the

prosthetic hand and not placed on the forearm of the user, as was the case in the

current study.
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With regards to sensor subset selection, there were no shared patterns identified

across the different participants (see Figure 5.10). From a clinical point of view, this

finding suggests that it might not be straightforward to identify the optimal sen-

sor placement locations for a specific patient a priori. One possible solution to this

problem is to use the approach followed in the current study; that is, record mus-

cular activity from many sites during an initial screening, and subsequently identify

the optimal locations based on a sensor selection algorithm. This procedure should

though precede the socket fabrication stage, which requires sensor positions to be

established.

It has been previously demonstrated on numerous occasions that myoelectric con-

trol performance can increase over time because of user adaptation (e.g. Pistohl et al.,

2013; Jiang et al., 2014b; Powell, Kaliki, and Thakor, 2014; He et al., 2015). In agree-

ment with previous reports, a significant decrease was observed in CTs between

early and late trials. Taking into consideration that the testing phase of the experi-

ment lasted on average 20 minutes, it is reasonable to expect that performance can

potentially further improve with daily use, provided that exogenous parameters such

as sensor positions are controlled. It could also be argued that the observed increase

in performance in such a short period of time validates the intuitiveness of the myo-

electric control interface.

5.4.4 Performance metrics

One of the most important aspects of the control scheme proposed in this study is

the decision-making element, which is based on confidence-based classification rejec-

tion. Without this component, a substantial number of incorrect classifications may

be executed by the prosthetic hand leading to performance deterioration, user frus-

tration, and potentially damage or injury during daily life use (Hargrove et al., 2010;

Scheme, Hudgins, and Englehart, 2013). Taking into consideration that many param-

eters have to be optimised during training, such as sensor location, classification algo-

rithm hyper-parameters, and rejection thresholds, a metric quantifying performance

with respect to the quality of posterior probability estimates is deemed necessary. To

this end, the CEL metric was chosen, which is typically used as loss function for

training artificial neural networks (see Section B.2.2).

The choice of metric is crucial for hyper-parameter optimisation; different metrics

may yield utterly different results. For instance, it was observed during offline analy-

sis that QDA achieved higher CA scores than RDA, but the latter method performed

better than the former with respect to the CEL metric (see Figure 5.3). This observa-

tion may be attributed to overfitting issues associated with QDA training (see Section
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4.4.1); the large uncertainty in estimating the covariance parameters in the case of

full Gaussian models (i.e. QDA) may yield inaccurate predictions of posterior prob-

abilities (see Equation 4.8), even though the classes may still be well-separated in

the projection plane which might explain the high CA scores. During pilot trials that

included the confidence-based rejection component, it was observed that despite the

high offline CA scores attained by QDA, the real-time performance of the algorithm

was particularly low, and also involved a large number of false positive activations.

This behaviour is a sign of the incapacity of the algorithm to produce accurate poste-

rior probability estimates, which was also reflected in the high CEL scores.

The observation described above is in accordance with previous studies report-

ing a discrepancy between offline CA scores and real-time prosthetic control perfor-

mance. For instance, Ortiz-Catalan et al. (2015) found no correlation between offline

CA scores and real-time accuracy when using the motion test (see Section 2.5.5). Ad-

ditionally, Vujaklija et al. (2017) found only a weak correlation between SHAP scores

(see Section 2.5.1) and offline CA for the same subjects.

To investigate whether the CEL metric could provide a better estimate of real-time

performance than CA, an analysis was performed on the relationship between these

two measures and average CTs during the real-time experiment. The results of this

analysis are shown in Figure 5.12, where each point in the graph corresponds to

a single subject. Average CTs exhibited a marginally stronger (positive) correlation

with CEL than with CA (negative correlation); however, neither of the two linear

relationships were significant. In both cases, the points corresponding to the amputee

participants lay quite far from the regression lines, hence suggesting that predicting

prosthetic control performance from offline metrics might be even harder for amputee

subjects.

Finally, it is worth stressing the importance of using a validation dataset for per-

forming sensor selection, hyper-parameter tuning, and rejection threshold selection.

All the aforementioned parameters can have a remarkable impact on final control

performance and, as such, it is crucial to select them by evaluating performance on

a different dataset to the one used to train the classifiers to avoid introducing biases

(Domingos, 2012).

5.4.5 Limitations and future work

One limitation of the current study is that, due to experimental time constraints, it

did not perform a comparison between the proposed methodology and the clinical

state of the art (see Section 2.4.1). It shall be, therefore, valuable to compare in the

future the proposed classification-based myoelectric control paradigm to clinical stan-
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Figure 5.12: Relationship between mean CTs and offline metrics (i.e. CEL and CA). Points,
individual observations (i.e. subjects); lines, linear regression fits; translucent
bands, 95% confidence intervals estimated via bootstrapping (1000 iterations).

dards such as myoelectric mode switching and body-powered prostheses (e.g. hooks,)

both quantitatively, that is, using performance scores such as CRs and CTs, and also

qualitatively using, for example, questionnaires and user satisfaction metrics.

With regards to sensor selection, the LDA classifier was used to assess the pre-

dictive performance of the set of candidate sensors within each iteration. Once the

SFSS algorithm was terminated, the RDA α hyper-parameter was optimised for the

selected subset of sensors. This approach might have produced slightly suboptimal

results, since the interaction effect of sensor selection and regularisation was not ex-

amined. Optimising for the two parameters at the same time would however incur

prohibitive training times and, for that reason, was not considered as an option. One

possible alternative could be to optimise for these two parameters simultaneously

by using sophisticated optimisation strategies. For instance, Bayesian optimisation

(Snoek, Larochelle, and Adams, 2012) is a probabilistic inference-based strategy for

optimising black-box functions without the need for computing derivatives. It can

prove very useful for optimising the hyper-parameters of ML models in arbitrary

search spaces for both continuous and discrete-valued hyper-parameters. Bayesian

optimisation has been successfully applied in a variety of tasks, including automatic

ML and hyper-parameter tuning for neural networks (Shahriari et al., 2016). It would

be, therefore, interesting to investigate whether it can be successfully applied to myo-

electric classification for simultaneous subset selection and hyper-parameter tuning.

For rejection threshold selection using ROC curve analysis, the most commonly

used strategies involve either maximising the vertical distance from a random classi-

fier, or minimising the distance from an ideal classifier (see Section B.3.2). However,
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neither of the two methods impose a constraint on the FPR. This was regarded as

a high priority in the current task, given the high associated cost of false positive

activations which, in turn, translate into unintended hand motions. To address this

issue, thresholds were selected such that the TPR was maximised, while at the same

time the FPR was kept below a cut-off threshold value (not to be confused with the

actual rejection threshold). However, this FPR cut-off value was selected empirically

during pilot trials. An interesting avenue for future research would be to attempt

to systematically identify the optimal FPR cut-off value during real-time myoelectric

control. One possible way to achieve this might be by giving the user control over

this value, for example, via a knob switch, and asking them to select it according to

their individual preference. It would be also interesting to assess whether a shared

pattern of preference can be observed across different participants.

As a final note, the focus of the current and earlier chapters has been on decoding

hand movement intent and driving prosthetic hands by using grip control, that is, by

using a pre-defined set of motions. Although this control scheme can offer a tremen-

dous benefit to the quality of life of an amputee, it still lacks the level of dexterity

enjoyed by the human hand. This is mainly due to the discrete and sequential nature

of the artificial hand motion. The following chapters attempt to address this limita-

tion by investigating hand joint angle reconstruction for individual digit prosthetic

control.
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6
R E C O N S T R U C T I O N O F F I N G E R J O I N T A N G L E T R A J E C T O R I E S

W I T H S U R FA C E E L E C T R O M Y O G R A P H Y

This thesis has hitherto investigated grip-based myoelectric control of upper-limb

prosthetic hands. In this approach, the most appropriate grip is selected via classifi-

cation of electromyographic (EMG) and/or other input signals (e.g. inertial measure-

ments), and subsequently transmitted to the prosthesis in the form of a discrete action.

Although this control scheme can offer a remarkable boost to the end user’s ability

to perform activities of daily living, it suffers from two main limitations: 1) it results

in severe under-actuation of the prosthesis which dramatically limits its functionality,

since the user can only have access to a set of pre-determined modules; and 2) it is

sequential in nature, that is, a single class of movement can be active at a time as

opposed to the natural continuous and asynchronous finger movement exhibited by

the human hand.

One way of enhancing the dexterity of powered myoelectric prostheses is via con-

tinuous and simultaneous control of multiple degrees of freedom (DOFs) (Fougner et al.,

2011, see Section 2.4.2.2). The majority of previous work on proportional myoelectric

control studied the decoding of wrist joint angle kinematics from surface EMG signals

(e.g. Jiang, Englehart, and Parker, 2009; Muceli and Farina, 2012; Muceli, Jiang, and

Farina, 2014; Jiang et al., 2014a). Additionally, a few research groups have addressed

the challenge of using upper-limb muscular activity to decode finger joint angles (e.g.

Smith et al., 2009; Hioki and Kawasaki, 2012; Ngeo, Tamei, and Shibata, 2012; Ngeo,

Tamei, and Shibata, 2014a; Xiloyannis et al., 2015) as well as fingertip forces (e.g.

Castellini et al., 2009; Nielsen et al., 2011; Gijsberts et al., 2014a), ultimately aiming to

achieve individual digit continuous prosthetic control.

In this chapter, a thorough investigation is conducted on reconstructing multidi-

mensional finger joint angle trajectories from surface EMG signals. Various decoding-

related aspects are considered, including feature selection, filter length, and choice

of regression algorithm. Special attention is given to ensure the feasibility of imple-

menting the proposed methodology in real-time. The latter aspect forms the basis

of Chapter 8, where a surface EMG-based, prosthetic digit position control scheme

is implemented on a robotic hand and evaluated by carrying out experiments with

able-bodied and amputee participants.
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6.1 background

6.1.1 Wrist kinematics decoding with surface electromyography

Numerous studies have demonstrated the feasibility of reconstructing wrist joint an-

gle trajectories from muscular activity signals. Jiang, Englehart, and Parker (2009)

proposed a semi-supervised method based on non-negative matrix factorisation (NMF)

to extract neural control information from surface EMG signals that was subsequently

used to reconstruct 3-DOF wrist movement. Wrist flexion/extension and radial/ulnar

deviation movements could be reconstructed with high accuracy; however, this was

not the case with pronation/supination. This issue was later addressed by Jiang et al.

(2012a) and Muceli and Farina (2012) who used multi-layer perceptrons (MLPs) to of-

fline reconstruct 3-DOF wrist movement in both able-bodied and amputee subjects.

The same authors later demonstrated that by using high-density EMG arrays and an

NMF-based algorithm, the performance of the decoding method was robust against

simulated electrode shifting (Muceli, Jiang, and Farina, 2014).

Ziai and Menon (2011) compared the offline decoding performance of various al-

gorithms, including ridge regression, least absolute shrinkage and selection operator,

support vector regression, artificial neural network regression, locally-weighted pro-

jection regression, and a physiological-based model. They found that all methods

achieved high accuracy when trained and tested on data from the same sessions;

however, the performance of all methods suffered when tested on datasets recorded

one and 24 hours after the training sessions. Change of limb posture and electrode

displacement were also found to negatively affect performance. Based on these obser-

vations, the authors concluded that in practice, frequent model retraining might be

required to preserve decoding accuracy to an acceptable level.

Hahne et al. (2014) compared linear and non-linear methods (i.e. linear regression

(LR), kernel ridge regression (KRR), MLPs, and mixture of linear experts) for recon-

structing 2-DOF wrist joint angles. Interestingly, they found that while LR was out-

performed by non-linear methods when the energy of the EMG signal was fed as

input to the decoders, the performance of the four methods was comparable when

the EMG signal energy was pre-processed through a log-transformation. The same

group also performed a comparison of electrode selection algorithms on the task of

decoding 2-DOF wrist movement (see Section 5.1.1).

More recently, a number of studies have demonstrated the feasibility of employing

real-time simultaneous proportional wrist control of multiple DOFs (e.g. Jiang et al.,

2014a; Ameri et al., 2014a; Ameri et al., 2014b; Smith, Kuiken, and Hargrove, 2014;
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Smith, Kuiken, and Hargrove, 2015; Smith, Kuiken, and Hargrove, 2016). These are

discussed in detail in Chapter 8 (see Section 8.1.1).

6.1.2 Finger joint angle reconstruction with surface electromyography

A small number of groups have addressed the problem of reconstructing individ-

ual finger joint angle trajectories from surface EMG signals. Promising results in this

direction were first reported by Afshar and Matsuoka (2004) who used the activity

recorded from seven muscles and a two-layer MLP to decode the index fingertip po-

sition in an able-bodied subject. The authors reported reconstruction accuracies of 0.6

- 0.8, as measured by the correlation coefficient between measured and reconstructed

signals (see Section C.2.2). The first proof-of-principle demonstration on transradial

amputees was reported in a study by Sebelius, Rosén, and Lundborg (2005), in which

an artificial neural network based on locally-weighted regression was used to de-

code finger joint angles from eight EMG channels. Ground truth kinematic data were

obtained from the participants’ contralateral hand with a data glove.

Smith et al. (2008) also used an MLP to estimate the five metacarpophalangeal (MCP)

joint angles in an able-bodied subject and reported an average correlation coefficient

of 0.74. The same group later used this methodology to produce estimates of the end

positions of five fingers that were used to control a virtual hand (Smith et al., 2009).

Ngeo, Tamei, and Shibata (2012) used an electromechanical delay model and an

MLP to estimate 14 joint angles in an able-bodied subject, which were used in a

follow-up study to control an exoskeleton (Ngeo et al., 2013). The same authors per-

formed a comparison of Gaussian process and artificial neural network regression

on data recorded from 10 healthy subjects by using a muscle activity model as the

input feature to the decoders (Ngeo, Tamei, and Shibata, 2014a). The authors later

explored the potential benefit of using a multi-output Gaussian process model, but

no improvement in performance was observed (Ngeo, Tamei, and Shibata, 2014b).

Various other methods have been proposed for the reconstruction of finger move-

ment kinematics, including recurrent neural networks (Hioki and Kawasaki, 2009;

Hioki and Kawasaki, 2012), state-space models (Pan et al., 2013), and auto-regressive

moving average models (Xiloyannis et al., 2015).

Alternative non-invasive recording methods have also been recently proposed for

reconstruction of finger movement. For instance, Kadkhodayan, Jiang, and Menon

(2016) used force myography to predict fingertip trajectories of the thumb, index, and

middle fingers in 10 normally-limbed subjects whilst they performed three different

grasps. The authors reported an impressive average squared correlation coefficient of

0.96. Finally, Nissler, Mouriki, and Castellini (2016) used visual fiducial markers to
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track forearm skin deformation, which was subsequently mapped to finger positions

by using ridge regression. Ten able-bodied subjects took part in the study and the

authors reported average normalised root mean squared errors (see Section C.2.2) of

0.05-0.22.

6.1.3 Force estimation

In the last decade, a small number of studies have investigated continuous decoding

of grasping and fingertip forces by using surface EMG signals. Grasp force estimation

in amputees was first reported by Castellini et al. (2009) by using surface electrodes

and support vector regression. Nielsen et al. (2011) used an MLP to reconstruct wrist

force trajectories in 10 able-bodied participants and a subject with congenital am-

putation. In both cases, training data were collected by instructing participants to

perform bilateral mirrored movements. Liu et al. (2011) used EMG electrode arrays

to record muscle activity from the forearm of a normally-limbed subject which was

subsequently mapped to fingertip forces of the four long fingers using LR. In the

same direction, Castellini and Koiva (2012) used support vector regression to decode

fingertip forces of the five fingers and the force exerted by the thumb during rotation.

Li et al. (2015) combined finger motion classification and fingertip force prediction

using MLP classifiers and polynomial regression, respectively. Recently, proportional

fingertip force prosthetic control has been implemented and tested in real-time (Gijs-

berts et al., 2014b; Patel, Nowak, and Castellini, 2017; Gailey, Artemiadis, and Santello,

2017). A detailed review is provided in Section 8.1.3.

6.1.4 Motivation

The current study considers the problem of finger joint angle reconstruction with sur-

face EMG signals for digit position prosthetic control. Although this topic has been

previously investigated (see Section 6.1.2), a systematic analysis of various decoding

aspects, such as feature selection and choice of algorithm is missing from the litera-

ture. The results obtained with the current analysis are taken into consideration for

the design and implementation of a continuous digit position controller, which is

presented and evaluated with real-time experiments in Chapter 8.
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6.2 finger joint angle reconstruction with electromyography

6.2.1 Datasets

Two datasets were used in the current study comprising recordings from a total of

60 able-bodied subjects (datasets 1 and 3 in Table 4.1). For both datasets, muscular

activity and hand kinematics were recorded from the participants’ right arm. A 22-

DOF CyberGlove data glove was used for dataset 1, whereas an 18-DOF model was

used for dataset 3 (see Section A.3.1). Amputee subjects were not included in the

current analysis, due to hand kinematic data being unavailable.

Each dataset comprised recordings from two groups of movements (see Section

3.2.1 and Figure 3.3). For exercise B, wrist movements (i.e. B9-B17 in Figure 3.3) were

discarded, as there was no finger motion associated with these exercises.

6.2.2 Decoding algorithms

To reconstruct finger joint angles from EMG signals, linear and non-linear regression

methods were considered. For the former, a regularised version of a multiple-input-

multiple-output linear system identification algorithm, namely the Wiener filter, was

deployed. For the latter, the standard KRR algorithm was chosen, which is a powerful

method for approximating non-linear functions by using the kernel trick.

6.2.2.1 Linear regression (Wiener filter)

Assume without loss of generality a zero-mean D-dimensional input variable x =

[x1, . . . , xD]
> and a zero-mean scalar output variable (i.e. target) z, and let z [n] denote

the output activity at time n. If either of the variables has non-zero mean, then it is

possible to estimate it from the training data and remove it (i.e. data centering). The

Wiener filter model assumes that each system input (i.e. feature) xd is convolved with

its finite impulse response function:

z [n] =

D∑
d=1

M−1∑
m=0

hd [m] xd [n−m] , (6.1)

where hd [m] accounts for the contribution of the input d at time instancem, xd [n−m]

is the activation of the input d at time n −m, M is the filter length, and we also
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assume a finite number of samples n = 1, . . . ,N. The linear system described by

Equation 6.1 can be written in matrix form as follows:

z = Xh, (6.2)

where z is the N-dimensional vector containing z [n] for n = 1, . . . ,N, h is the DM-

dimensional vector

h = [h1,h2, . . . ,hD]
> , (6.3)

with

hd = [hd [0] ,hd [1] , . . . ,hd [M− 1]]> , (6.4)

and X is a block matrix

X = [X1,X2, . . . ,XD] , (6.5)

where Xd are N×M matrices

Xd =


xd [1] 0 . . . 0

xd [2] xd [1] . . . 0
...

...
. . .

...

xd [N] xd [N− 1] . . . xd [N−M+ 1]

 . (6.6)

Equation 6.2 can be solved analytically by using the normal equation:

ĥ =
(
XTX

)−1
XTz. (6.7)

However, the inversion of the matrix XTX can become computationally expensive

for large number of inputs. An efficient solution to the multiple-input-single-output

system identification problem described above can be achieved by considering the

equivalent input-output relationship based on autocorrelation and cross-correlation

matrices. Let ΦXX and φXz denote the DM×DM input autocorrelation matrix and

the DM-dimensional input-output cross-correlation vector, respectively. Perreault,

Kirsch, and Acosta (1999) showed that the solution of the problem described by Equa-

tion 6.2 is equivalent to the solution of the following system:

φXz =ΦXXh. (6.8)
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The autocorrelation matrix ΦXX is symmetric and Toeplitz. If the input variable x is

wide-sense stationary, that is, if its mean and autocovariance do not vary with respect

to time, then ΦXX is also positive definite and, therefore, invertible. The solution of

Equation 6.8 is achieved through inversion of the autocorrelation matrix ΦXX:

ĥ =Φ−1
XXφXz. (6.9)

A regularised version (i.e. ridge regression) of the solution described by Equation 6.9

can be obtained as follows:

ĥ = (ΦXX + λIDM)−1φXz, (6.10)

where IDM denotes the DM×DM identity matrix, and λ is a hyper-parameter con-

trolling the strength of regularisation.

The solution described by Equation 6.10 can be extended to multiple-input-multiple-

output systems with K-dimensional output variables by replacing vectors z and h by

matrices Z and H of dimensionality N×K and MD×K, respectively:

Ĥ = (ΦXX + λIDM)−1ΦXZ, (6.11)

where ΦXZ is the DM×K input-output cross-correlation matrix.

6.2.2.2 Kernel ridge regression

Kernel ridge regression attempts to find the solution of the following system of equa-

tions:

Â = (G+ λI)−1Z, (6.12)

whereG represents the Gram matrix, whose elements are inner products in the kernel

feature space:

G
(
x, x′

)
= 〈φ̃ (x) , φ̃

(
x′
)
〉. (6.13)

The squared exponential kernel (also known as radial basis function or Gaussian

kernel) was chosen in the current study. This is defined as follows:

G
(
x, x′

)
= exp

(
−
||x− x′||2

2σ2

)
, (6.14)
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where σ is a hyper-parameter controlling the width of the kernel and ||x− x′|| denotes

the Euclidean distance between observations x and x′.

6.2.2.3 Cross-validation and hyper-parameter optimisation

As in Section 3.2.5, 6-fold cross-validation (CV) was used to assess decoding perfor-

mance. To optimise the hyper-parameters of the two methods, inner-fold CV was

used; four repetitions of each movement within the training dataset were used to

train models and accuracy was validated on the left-out repetition by using the coeffi-

cient of determination (R2) score (see Section C.2.2.2). The hyper-parameter values that

yielded the highest average accuracy were selected and used to train final models by

making use of the entire training set. Performance was finally evaluated on the test

set.

To optimise the λ hyper-parameter for LR, a search was performed in the log-space{
10−6, 10−5, . . . , 107

}
using a factor (i.e. multiplication step) of 10. Similarly, a log-

grid search was used to optimise the λ and σ hyper-parameters for KRR in the ranges{
10−6, 10−5, . . . , 107

}
and

{
100, 101, . . . , 104

}
, respectively, using the same factor as

above for both parameters.

6.2.3 Feature selection and comparisons

As a first step, a feature comparison was performed on the task of reconstructing fin-

ger joint angle trajectories from surface EMG data by using LR. The following time-

domain EMG features were considered (see Section 2.2.3.1): mean absolute value,

Wilson amplitude (θ=50 mV), log-variance, waveform length, variance, root mean

square, zero-crossing, slope sign change, 4
th-order auto-regressive coefficients, his-

togram (number of bins k = 5), and kurtosis. Frequency or time-frequency domain

features were not considered, due to their associated increased computational com-

plexity that might be prohibitive for real-time implementations (Boostani and Moradi,

2003).

In addition to performing one-to-one comparisons of individual features, sequen-

tial forward feature selection (SFFS) was used to identify an optimal set of features

for the current task. The inclusion of a new feature in the subset was based on the

overall decoding performance averaged across subjects, exercises, and CV folds. This

ensured that the algorithm would identify a single subset of features for all subjects

and exercises. Features that extract multiple attributes from a single EMG channel (i.e.

auto-regressive coefficients and histogram) could only be included all together. The

cost function used to assess the performance of a certain pool of features at each itera-

tion was the multivariate R2 (see Section C.2.2.2). The algorithm terminated execution
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Figure 6.1: Sequential forward feature selection. The average reconstruction accuracy (multi-
variate R2, see Section C.2.2.2) across all subjects (60 able-bodied) and CV folds
(k = 6) using LR is shown as new features are added to the pool. The grey dashed
line indicates the last feature to be included in the subset, as inclusion of fur-
ther features does not yield an average increase in performance greater than 1%.
Points, means; error bars, standard error. The reader is referred to Section 2.2.3.1
for feature definitions and abbreviations used.

when the inclusion of any additional feature resulted in a decrease in the overall de-

coding performance. However, the finally selected subset only included features that

yielded an increase in overall performance greater than 1%.

The results of the SFFS analysis are shown in Figure 6.1. Four features were se-

lected, namely Wilson amplitude, auto-regressive coefficients, waveform length, and

log-variance. The performance of individual features is reported in Table 6.1 and ad-

ditionally compared to that of the subset selected with SFFS. Accuracy scores (R2)

are not normally distributed due to being right-bounded only (see Section C.2.2.1);

therefore, median accuracies and median absolute deviations are reported.

6.2.4 Filter length

Next, the effect of filter length M (see Section 6.2.2.1) on decoding accuracy was

investigated. The size of the sliding window was kept fixed at 128 ms and the incre-

ment was set to 50 ms. The results of the analysis are shown in Figure 6.2, where the

multivariate R2 averaged across subjects and CV folds is plotted against the length

of the linear filters used for decoding. In general, it can be observed that reconstruc-

tion accuracy improved as the length of the linear filters was increased and reached

a plateau at approximately 800 ms. As with the precedent SFFS analysis, the filter
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Table 6.1: Feature comparison. MAD, median absolute deviation.

Median
R2MV

MAD

MAV 0.501 0.119

WAMP (θ=50 mV) 0.532 0.112

LogVar 0.510 0.110

WL 0.506 0.117

VAR 0.336 9.681

RMS 0.496 0.126

ZC 0.269 0.089

AR (4th-order) 0.451 0.100

Hist (k = 5) 0.259 0.082

Kur 0.157 0.065

SFFS selection
(WAMP, WL, LogVar, AR)

0.663 0.103
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Figure 6.2: Effect of filter length on decoding performance. The average reconstruction accu-
racy across all subjects (60 able-bodied) and CV folds (k = 6) using LR is plotted
against the length of the Wiener filter. The grey dashed line indicates the final
selection, as further increase does not yield an average improvement in accuracy
greater than 1%. The window increment was set to 50 ms, thus the selected filter
length (i.e. 300 ms) corresponds to includingM = 6 time lags. Points, means; error
bars, 95% confidence intervals estimated via bootstrapping (1000 iterations).

length was chosen such that further increase did not yield an average performance

improvement greater than 1%. This corresponded to using M = 6 time lags, which

translates into filter lengths of 300 ms.
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6.2.5 Reconstruction accuracy and algorithmic performance comparison

For the rest of the analyses, the features identified by the SFFS were used and the

filter length was set to 300 ms (i.e. M = 6). The total number of features extracted

from each EMG channel was seven, as the order for the auto-regressive coefficients

was set to four. With these settings, the input dimensionality was D×M = 504 (12

channels × 7 features/channel × 6 time lags). The output dimensionality was K = 22

and K = 18 for datasets 1 and 3, respectively, since different data glove models were

used to collect the two datasets (see Section 6.2.1).

Typical predictions of joint angle trajectories for MCP and PIP joints with LR and

KRR are shown in Figures 6.3 and 6.4, respectively. Overall decoding results for

individual DOFs are presented in Table 6.2. A statistical comparison between the

two methods was performed using the non-parametric Wilcoxon signed-rank test

(Wilcoxon, 1945), which showed that KRR significantly outperformed LR (p < 0.001).

A summary of the results is provided in Figure 6.5: the median performance differ-

ence between the two methods was 0.022 and 0.069, respectively, for exercises B and

C; the highest performance achieved in a test fold was R2=0.89 for LR, and R2=0.91

for KRR; finally, in both cases the median accuracy for all DOFs was higher than 0.4

(see Table 6.2).

6.3 discussion

6.3.1 Relation to previous work

In this chapter, a systematic investigation was carried out on decoding 22 joint angles

from surface EMG data in able-bodied subjects. In agreement with previous work

(e.g. Smith et al., 2008; Ngeo, Tamei, and Shibata, 2014a; Xiloyannis et al., 2015), it

was verified that it is feasible to reconstruct finger and wrist joint angle trajectories

from EMG recordings with decent accuracy. To the best of the author’s knowledge,

the quality of decoding accuracy achieved for finger joint angles was higher than

previously reported. For instance, Smith et al. (2008) decoded kinematics of the five

MCP joint angles during unobstructed individuated finger movement and reported

a mean correlation coefficient of 0.74 (see Section C.2.2). In the current study, the

decoding accuracy of the same parameter for the first exercise was 0.83 and 0.84 for

LR and KRR, respectively. Direct comparison to other studies is not straightforward

due to differences in electrode placement. For example, many studies have reported

high accuracy scores by recording from finger muscles located in the distal part of the

forearm close to the wrist (Ngeo, Tamei, and Shibata, 2012; Ngeo et al., 2013; Ngeo,
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Figure 6.3: Finger joint angle reconstruction example with LR. Measured and reconstructed
trajectories of the MCP and PIP joint angles are shown for a single subject. R2,
coefficient of determination (see Section C.2.2).
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Figure 6.4: Finger joint angle reconstruction example with KRR. Measured and reconstructed
trajectories of the MCP and PIP joint angles are shown for the same segment of
activity as in Figure 6.3.
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Table 6.2: Decoding algorithm performance comparison

Linear regression
Kernel ridge
regression

Median
R2

MAD
Median
R2

MAD

Thumb rotation 0.534 0.104 0.590 0.093

Thumb MCP joint 0.460 0.130 0.531 0.122

Thumb PIP joint 0.404 0.136 0.491 0.122

Thumb-index abbduction 0.541 0.105 0.605 0.093

Index MCP joint 0.608 0.152 0.671 0.113

Index PIP joint 0.555 0.149 0.626 0.122

Index DIP joint 0.444 0.169 0.498 0.182

Middle MCP joint 0.649 0.123 0.680 0.100

Middle PIP joint 0.623 0.133 0.662 0.114

Middle DIP joint 0.485 0.180 0.524 0.174

Index-middle abduction 0.697 0.103 0.751 0.082

Ring MCP joint 0.656 0.106 0.681 0.087

Ring PIP joint 0.639 0.129 0.666 0.113

Ring DIP joint 0.561 0.161 0.588 0.150

Middle-ring abduction 0.651 0.109 0.707 0.092

Little MCP joint 0.640 0.104 0.671 0.087

Little PIP joint 0.620 0.150 0.645 0.128

Little DIP joint 0.557 0.231 0.581 0.231

Ring-little abduction 0.587 0.112 0.645 0.101

Palm arch 0.490 0.133 0.559 0.116

Wrist flexion 0.614 0.110 0.660 0.104

Wrist abduction 0.680 0.158 0.708 0.149

Tamei, and Shibata, 2014a; Pan et al., 2013), but in the current study EMG data were

not recorded from this area of the forearm, as it is not available in the majority of

transradial amputations.

One limitation of previous work has been that joint angle decoding was only stud-

ied in the context of unobstructed, contact-free finger motion (e.g. Smith et al., 2008;

Ngeo, Tamei, and Shibata, 2014a; Xiloyannis et al., 2015). In comparison, the current

study included recordings during grasping of a variety of objects (exercise C, see Fig-

ure 3.1). It is worth noting, however, that decoding accuracy was worse in this case as

compared to exercise B, which only involved contact-free finger motion (see Figure

6.5).
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Figure 6.5: Decoding performance comparison of LR and KRR. Data shown for all subjects
(60 able-bodied) and CV folds (k = 6), separately for the two groups of exercises
(see Section 3.2.1 and Figure 3.1). Straight lines, medians; solid boxes, interquartile
ranges; whiskers, overall ranges of non-outlier data (1.5 IQR); diamonds, outliers;
triple asterisk, p < 0.001.

6.3.2 Feature representation

A few studies previously compared the decoding performance of EMG features with

regards to classification accuracy (CA) (e.g. Zardoshti-Kermani et al., 1995; Boostani

and Moradi, 2003). However, the selection of features for finger joint angle recon-

struction has been either arbitrary or based on classification results. This issue was

addressed in the current study in a systematic way by using an SFFS method. The

algorithm was tweaked such that it yielded a single subset of features for the whole

pool of 60 subjects, but this need not be restrictive; in practice, one could choose those

EMG features that yield maximal performance for a specific subject, task, electrode

configuration, or any other desired parameter.

6.3.3 Filter length

The length of the sliding window was set to 128 ms which is smaller than in previous

studies, e.g. 200 ms in Smith et al. (2008) and Pan et al. (2013), and 256 ms in Hioki

and Kawasaki (2009). It is well known, however, that a delay exists between the onset

of EMG activity and finger tension (Cavanagh and Komi, 1979). To account for this
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delay, embedding of muscle activity from previous time bins is required when a short

processing window is used. This was verified in the current analysis, where it was

found that decoding performance improved on average when the length of the linear

filters was increased (see Figure 6.2). Although the average performance reached a

plateau at approximately 800 ms, the rate of improvement slowed down for values

higher than 300 ms. Taking this observation into account, and to avoid increasing the

dimensionality of the input space further, it was decided to use 300 ms filters. This

corresponds to including M = 6 time bins in the decoders.

6.3.4 Linear vs. non-linear regression

A performance comparison between LR and KRR was carried out and it was found

that KRR significantly outperformed LR (see Figure 6.5). The median difference in ac-

curacy between the two algorithms was 0.05. Nevertheless, one should keep in mind

that the improvement in performance by using non-linear regression comes at the ex-

pense of increased computational complexity. The training and testing times for the

two algorithms are shown in Figure 6.6. All analyses were performed using MATLAB

R2015a (Mathworks, Inc.) on a SL7-operated machine with an eight-core Intel Xeon

E5 processor@2.60 GHz and 128 GB of RAM. Both training and testing was signifi-

cantly slower for KRR (p < 0.001, Wilcoxon signed-rank tests) by approximately an

order of magnitude. The long testing times for KRR (average 450 ms per fold) could

pose a significant challenge to real-time applications. Furthermore, in the context of

wrist joint angle decoding, it has been shown that small differences in offline regres-

sion accuracy can be compensated by user adaptation during real-time continuous

prosthetic control (Jiang et al., 2014b). For the above reasons, it was decided that LR

would be a more appropriate algorithm to be used for real-time continuous digit

control (see Chapter 8).

6.4 limitations and future work

There are two main limitations with the current study. Firstly, it was limited to able-

bodied participants. One of the main challenges in achieving continuous digit control

of hand prostheses with amputees is that they cannot provide ground truth kine-

matic data, a feature that is required for the supervised training of the decoders.

One potential way of overcoming this problem is by acquiring training data from

the subjects’ contralateral hand whilst they perform bilateral mirrored movements.

The second limitation is that the analysis presented in this chapter has been purely

offline. The importance of validating proposed control schemes with real-time exper-
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Figure 6.6: Computational complexity with LR and KRR. Training and testing times per CV
iteration are shown for all subjects (60 able-bodied) and CV folds (k = 6). Note
logarithmic scale on y-axis.

iments has been frequently advocated in the field of myoelectric control (Jiang et al.,

2014b; Ortiz-Catalan et al., 2015; Vujaklija et al., 2017) and has been also emphasised

throughout this thesis. The above two limitations are properly addressed in Chapter

8. The purpose of the current study was to provide insight into various decoding-

related aspects before proceeding with implementing the proposed methodology in

real-time and evaluating its potential by carrying out prosthetic control experiments

with amputee participants.

As a final note, the decoding strategy proposed in this chapter treats each DOF as

a multiple-input-single-output subsystem, that is to say, an independent estimate is

produced for each joint. There has been evidence, however, that the activations of the

human hand joints exhibit strong correlations (e.g. Santello, Flanders, and Soechting,

1998; Todorov and Ghahramani, 2004). In other words, the intrinsic dimensionality of

finger movement might be smaller than the number of decoded DOFs. This issue is

addressed in the following chapter, in which a simultaneous input-output dimension-

ality reduction method is proposed for synergistic joint angle decoding from EMG

measurements.
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7
S Y N E R G I S T I C D E C O D I N G V I A S U P E RV I S E D S I M U LTA N E O U S

I N P U T- O U T P U T D I M E N S I O N A L I T Y R E D U C T I O N

The previous chapter investigated the reconstruction of finger joint angles from sur-

face electromyographic (EMG) measurements. In such applications, the dimensional-

ity of the input space is typically large, e.g. in the order of hundreds. This may

prove problematic when the amount of available training data is limited. At the same

time, the number of accessible degrees of freedom (DOFs) in modern prosthetic/robotic

hands is currently increasing. As an example, the Shadow Dexterous HandTM

(Shadow, 1998) has 20 actuated DOFs. From a user’s perspective, it may not always be

necessary to independently control each one of them. Therefore, in many regression-

based myoelectric applications it may be desirable to reduce the dimensionality of

input and output variables simultaneously.

To generate intentional movement, the human central nervous system has to co-

ordinate a large number of DOFs. How this task is successfully accomplished from

a neurological perspective has been a standing question in the field of motor neu-

roscience for several decades. Based on experimental evidence, it has been specu-

lated that the central nervous system overcomes the complexity of motor control

co-ordination by recruiting a specific number of predetermined modules in a syn-

ergistic approach. These modules are often called muscle synergies (Lee, 1984) and a

plethora of computational methods (Tresch, Cheung, and D’Avella, 2006) have been

used to extract them from muscular activity data both in humans (e.g. D’Avella et al.,

2006; D’Avella et al., 2008) and other vertebrate species (e.g. Tresch, Saltiel, and Bizzi,

1999; D’Avella and Tresch, 2001; Brochier et al., 2004; Overduin et al., 2008).

With regards to grasping and manipulation, despite significant progress in the field

of robotics, the human hand still remains the “nature’s most versatile and dexterous end-

effector” (Liarokapis et al., 2016). The great dexterity of the human hand is largely due

to the high dimensionality of hand movement. A total of 31 muscles, 19 joints, and 18

tendons are involved, thus providing the human hand with at least 25 DOFs (Duinen

and Gandevia, 2011). Similar to the muscle synergy hypothesis, it has been speculated

that the activations of human hand joints exhibit strong correlation structure. In other

words, there may exist low-dimensional manifolds that explain a large fraction of

the hand movement variability observed in the high-dimensional joint space. Such

patterns of co-activation have been called postural synergies (Santello, Flanders, and
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Soechting, 1998) and their properties have been extensively investigated over the last

two decades (e.g. Mason, Gomez, and Ebner, 2001; Todorov and Ghahramani, 2004;

Todorov and Jordan, 2002; Weiss and Flanders, 2004; Vinjamuri et al., 2007; Vinjamuri

et al., 2010).

Recently, there has been a considerable effort in exploiting the principles related

to muscle and postural synergies for the purposes of myoelectric control (e.g. Jiang,

Englehart, and Parker, 2009; Matrone et al., 2010; Segil and Weir, 2013; Kent, Karnati,

and Engeberg, 2014; Konnaris, Thomik, and Faisal, 2016) and prosthetic/robotic hand

design (Konnaris, Thomik, and Faisal, 2016; Catalano et al., 2014). However, the large

majority of studies on synergy-based myoelectric control have used unsupervised

methods for transforming muscular and/or hand kinematic data before supervised

methods are deployed to decode a target variable. In supervised learning paradigms,

such as proportional myoelectric applications, it might be more sensible to perform

dimensionality reduction in a supervised fashion, that is, by ensuring that most of

the output predictive power is retained under the transformation.

This chapter proposes a supervised method for simultaneous input-output linear

dimensionality reduction with application to continuous decoding of finger joint an-

gles from EMG data. It is shown that methods seeking to identify projections that min-

imise output reconstruction error are more efficient than unsupervised approaches,

such as principal component analysis (PCA), when a small number of projection di-

rections is used. The proposed methodology has the potential to be applied in pro-

portional myoelectric control paradigms with high-dimensional input and output

variables.

7.1 muscle synergy hypothesis and evidence

7.1.1 Muscle synergies in vertebrate species

The idea of co-ordinated muscle activation for movement control dates back to 1947

(Sherrington, 1947), but it has only been quantitatively investigated in the last 30 years.

The term “neuromotor synergy” was first used by Lee (1984) where it was defined as

“a set of muscles which act together to produce a desired effect”. Bizzi, Mussa-Ivaldi, and

Giszter (1991) later proposed a model mechanism based on a coarse map of motor

outputs from which vectorial combinations are derived, thereby generating motor

behaviour.

Tresch, Saltiel, and Bizzi (1999) proposed the use of a non-negative linear decom-

position method to extract synergies from muscle activation patterns in frogs during

stimulation of the animals’ hindlimbs. They found that these synergies could explain
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some of the responses and, perhaps more interestingly, some of the synergies were

shared across different animals of the same species.

D’Avella and Tresch (2001) developed an algorithm based on non-negative matrix

factorisation (NMF) for extracting time-varying muscle synergies. The same algorithm

was later used to expand previous work on studying muscle activation patterns in

frogs (Tresch, Saltiel, and Bizzi, 1999). In a seminal follow-up study (D’Avella, Saltiel,

and Bizzi, 2003), muscle synergies consisted of temporal patterns of co-ordinated

muscle activation that could be combined to generate movement by amplitude scaling

and time shifting. Only three muscle synergies were found to account for 80% of the

variability of 13 recorded muscles, and it was also observed that some of the synergies

were shared across different types of behaviour.

By following a slightly different approach based on PCA, Brochier et al. (2004) used

EMG recordings from primates executing a grasping task in order to classify grasped

objects. By recording EMG activity from 10 to 12 digit, hand, and arm muscles they

showed that only three principal components (PCs) could account for 81% of the vari-

ability of the entire dataset. Additionally, the authors used the same three PCs to

classify the grasped objects and an average classification accuracy (CA) of 90% was

reported.

D’Avella and Bizzi (2005) compared synchronous (i.e. time-invariant) and time-

varying muscle synergies extracted from 13 hindlimb muscles of freely behaving

frogs during different types of behaviour such as jump, walk, and swim. Their results

provided evidence that three synergies were shared across all types of behaviour, but

task-specific synergies were also identified.

Flanders and Herrmann (1992) suggested that the EMG signal might be decom-

posed into two basic components: the tonic waveform, which corresponds to the

force element required to counteract gravity and hold the arm in a specific posture,

and the phasic waveform, which corresponds to the component related to movement.

D’Avella et al. (2006) recorded the activity of 19 shoulder and arm muscles in humans

during fast-reaching movements. By removing the tonic component, they showed

that time-varying synergies were able to reconstruct patterns of muscle activity, even

when the experimental conditions, such as mechanical load and arm trajectory, were

different to the ones present during the training period. Remarkably, high similarities

between synergies from different subjects were observed. The same group later sug-

gested a method for simultaneously extracting synchronous tonic and time-varying

phasic synergies and found that the synergy coefficients were tuned to direction and

speed of movement with a single or a double cosine function (D’Avella et al., 2008).

Later, they provided evidence that phasic muscle synergies extracted during point-
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to-point movements could generalise to target change movements induced by online

target correction (D’Avella, Portone, and Lacquaniti, 2011).

Overduin et al. (2008) used intramuscular EMG electrodes to record the activity of

15 to 19 forelimb muscles of two rhesus macaques as the animals grasped and trans-

ported 25 objects of variable shape and size. It was shown that synergy coefficients

were modulated by object shape and size, while synergies were found to be conserved

between animals. Additionally, synergies extracted from a small subset of the objects

could generalise to the entire dataset including all objects used in the experiments.

Ajiboye and Weir (2009) provided evidence that synchronous muscle synergies

extracted from 11 hand muscles could form a predictive framework of EMG activity

for American sign language gestures. Muscle synergies were extracted from a subset

of postures and later used to reconstruct EMG activity for unseen gestures. It was

observed that a subset of the extracted synergies were subject-specific while others

were shared across subjects, although the latter were dominated by one muscle.

Muceli et al. (2010) studied whether a synergistic framework could account for the

variability in muscle activity patterns during a multijoint reaching task. By recording

EMG data from elbow and shoulder muscles of eight healthy subjects they provided

evidence that a large set of multijoint movements can be generated by a synergy

matrix of limited dimensionality, provided that the synergies are extracted from a

large number of directions. In their study, a variation of the NMF algorithm was

used, namely non-negative reconstruction, which estimates the activation matrix by

keeping the component (i.e. synergy) matrix fixed.

Roh, Rymer, and Beer (2012) examined whether muscle synergies could account

for the variability in human muscle activity during isometric force generation. They

found that four time-invariant synergies could account for 95% of the variance of

8 elbow and shoulder muscles. Notably, these synergies were conserved across sub-

jects, biomechanical task conditions, and experimental protocols, such as various load

levels and hand positions in the three-dimensional (3D) workspace of the arm.

Finally, a study by Castellini and Smagt (2013) investigated the presence of muscle

synergies during human grasping. Muscle activity was recorded with five surface

EMG electrodes while six able-bodied subjects performed five different grasp types.

Muscle synergies were extracted via PCA and it was shown that they could be used

to classify grip types.

7.1.2 Evidence for synergistic muscle encoding in the cortex

A small number of studies have sought neural evidence of muscle synergistic encod-

ing in the motor cortical areas. Holdefer and Miller (2002) found evidence that the
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discharge of neurons in the primary motor cortex is more correlated with groups

rather than with individual muscles, hence suggesting that movement might be en-

coded in motor cortical areas in a synergistic fashion.

Additionally, Yakovenko, Krouchev, and Drew (2011) simultaneously recorded the

firing activity of pyramidal track neurons and muscle activity from contralateral fore-

limbs of three cats while the animals performed a reaching task. By extracting muscle

synergies from the group of recorded muscles, they provided evidence that groups of

pyramidal neurons were activated sequentially and coincidentally with each synergy.

The authors suggested that the sequential activation of pyramidal neurons might be

associated with the activation and modulation of synergistic modules.

Finally, Overduin et al. (2015) recorded forelimb muscular and primary motor cor-

tex spiking activity in rhesus macaques during object reaching and grasping. The

authors extracted spatio-temporal synergies using NMF and identified similarities in

the characteristics of synergy recruitment in the two domains, including their dimen-

sionality, timing, and amplitude modulation.

7.1.3 Controversy over muscle synergy hypothesis

The muscle synergy hypothesis has been somewhat controversial; indeed, a few stud-

ies have provided evidence against the hypothesis. Kutch et al. (2008) examined the

characteristics of fingertip force generation and found evidence for independent re-

cruitment of muscles. Similar findings were also independently reported by Valero-

Cuevas, Venkadesan, and Todorov (2009).

Tresch and Jarc (2009) reviewed the relevant literature and proposed an alternative

hypothesis suggesting that statistics of the musculoskeletal system and the external

world may affect the structure and control strategy of motor systems; in other words,

the observed structure in muscle co-activations may be task- and context-dependent.

A direct implication of this hypothesis is that patterns of synergistic muscle recruit-

ment may be flexible and adaptive to properties of the performed task and the envi-

ronment.

7.1.4 Algorithms for muscle synergy extraction

Tresch, Cheung, and D’Avella (2006) performed a comparison of muscle synergy ex-

traction methods on both simulated and real-world data. They compared the per-

formance of algorithms such as factor analysis, PCA, independent component analysis

(ICA), NMF, ICA on the PCA subspace, and probabilistic ICA with non-negativity

constraints. For simulated data corrupted with noise, factor analysis and ICA on the
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PCA subspace performed best; however, for real EMG data, all algorithms yielded

very similar results. It is worth noting that only synchronous, that is, time-invariant

synergies were examined in this study.

More recently, Steele, Tresch, and Perreault (2013) showed that the number and

identity of recorded muscles can influence the extracted synergies. By using a mus-

culoskeletal model to produce EMG data, they compared the similarity of extracted

synergies by means of correlation coefficient for a varying number of included mus-

cles. The authors concluded that the variance accounted for metric (see Section C.2.2),

which is typically used in this context, might not be appropriate for evaluating mus-

cle synergy decomposition performance for small numbers of included muscles. The

authors supported their argument based on the evidence that when a small number

of muscles were considered, this metric overestimated reconstruction performance.

Delis et al. (2014) proposed a sample-based non-negative matrix trifactorisation

algorithm to develop a muscle synergy framework based on space-by-time decom-

position. By extracting concurrent spatial and temporal modules, the algorithm can

be seen as a generalisation of time-varying synergies which can also account for syn-

chronous (i.e. time-invariant) synergies. The proposed algorithm was tested on an

EMG dataset comprising recordings from 9 human upper-body and arm muscles

during arm pointing movements. It was demonstrated that the proposed methodol-

ogy could provide an accurate low-dimensional, albeit task-relevant, representation

of muscle activity patterns.

7.1.5 Use of muscle synergies for myoelectric control

In the context of myoelectric control, several attempts have been made to exploit

low-dimensional manifolds in the muscle domain to increase decoding performance

and improve generalisation. An exhaustive review of this topic is given by Ison and

Artemiadis (2014).

Yatsenko, McDonnall, and Guillory (2007) used a PCA variant to decompose mus-

cle contraction activity corresponding to wrist flexion/extension and hand opening/

closing during isometric and unconstrained movement. Although they did not use

the extracted features to decode a target signal, the authors reported that component

activations for the same movements were consistent across trials.

Hargrove et al. (2009) used a variant of supervised PCA to pre-process EMG data

prior to feature extraction. By adopting this approach they reported a decrease in

classification error for both able-bodied and amputee subjects. Interestingly, pre-

processing the data by using standard (i.e. unsupervised) PCA was found to increase

classification error.
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Artemiadis and Kyriakopoulos (2010) used a framework based on low-dimensional

embeddings to control a robotic arm with EMG signals recorded from muscles act-

ing on the shoulder and elbow joints. The dimensionality of both spaces was re-

duced from three to two by using PCA. Motion decoding was performed on the two-

dimensional space and predictions were subsequently projected onto the original 3D

kinematic space of the robot.

Jiang, Englehart, and Parker (2009) proposed a generative model for surface EMG

and an algorithm based on NMF to estimate joint force functions from EMG signals.

The estimates were subsequently used as control signals for decoding the dynamic

movement of the three DOFs of the wrist joint. The performance of the algorithm

was also evaluated with simulated EMG data. The same group later deployed this

algorithm in an online experiment with both amputees and able-bodied participants

to achieve goal-directed simultaneous and proportional control of two DOFs of the

wrist joint (Jiang et al., 2014a). In another study, the same algorithm was used to

evaluate the robustness of the algorithm to the shifting of recorded electrodes (Muceli,

Jiang, and Farina, 2014). By using high-density grids of EMG electrodes, synergies

were firstly extracted offline during an initial experiment with 10 able-bodied subjects

and the extracted synergies were later used for online control of two DOFs of the

wrist joint. A similar study was performed by Choi and Kim (2011) who also achieved

proportional control of 2-DOF wrist movement by using NMF applied to EMG data.

Berger and D’Avella (2014) derived 4-5 time-varying synergies (D’Avella and Tresch,

2001) from 13 arm muscles that were subsequently used to estimate intended force

during a real-time bio-feedback experiment. It was found that to accomplish the task,

participants could learn how to modulate the recruitment of these synergies in the

same way that they learnt to modulate forces exerted by individual muscles.

Finally, it is worth noting that a few research groups have investigated the emer-

gence of artificial muscle synergies during closed-loop myoelectric control. It has been

demonstrated that users can “learn” task-specific muscle synergies (i.e. co-activations)

in a variety of tasks, including two-dimensional (2D) cursor position control (Nazar-

pour, Barnard, and Jackson, 2012; Pistohl et al., 2013; Barnes, Dyson, and Nazarpour,

2016; Dyson, Barnes, and Nazarpour, 2017), prosthesis digit position (Pistohl et al.,

2013), and high-dimensional robotic arm control (Ison and Artemiadis, 2015; Ison

et al., 2016). Notably, it has been found that such synergistic patterns can be learnt

even when they are not intuitive from a physiological perspective, for instance, due

to requiring the co-activation of antagonist muscles (Nazarpour, Barnard, and Jack-

son, 2012). These observations are in line with the proposal made by Tresch and Jarc

(2009) (see Section 7.1.3).
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7.2 postural synergies

Research on muscle synergies has been inspired by the hypothesis that the central

nervous system co-ordinates movement by recruiting groups of muscles with specific

activation profiles and, as a result, muscle activation patterns span only a subspace of

the multidimensional muscle space. Recently, a few research groups have addressed

similar questions with regards to the postural properties of the human hand. These

studies have mainly sought for evidence of low-dimensional representation in the

shaping of the human hand. In other words, they have tried to answer the fundamen-

tal question of whether hand shaping is coordinated by recruiting groups of specific

co-activations, often referred to as postural synergies.

Santello, Flanders, and Soechting (1998) used a data glove with 15 sensors to record

hand kinematics from five subjects performing imaginary grasps of 57 objects and

observed that not all joint angles were controlled independently. By using PCA, they

extracted “eigengrasps” and found that three PCs could account for 90% of the total

variance, while only two PCs could capture 84% of the variance. The first PC cor-

responded to flexion of the metacarpophalangeal (MCP) joints and adduction of the

thumb, while the second PC described the extension of MCP joints, flexion of proxi-

mal interphalangeal (PIP) joints, and adduction of the thumb. These first two PCs were

also found to be highly similar across subjects, as opposed to higher-order PCs that

were subject-specific. The authors suggested that during grasping the hand shape

might be controlled at two levels, with the first three PCs controlling coarse hand

shape and the higher-order PCs being responsible for fine-tuning. Mason, Gomez,

and Ebner (2001) later expanded this study by addressing the question of whether a

small number of postural synergies could describe the whole act of reach-to-grasp.

They used singular value decomposition to extract eigengrasps in five subjects per-

forming five different types of grasps of 16 different objects of various sizes. Hand

and wrist kinematics were reconstructed in 3D space by using a four-camera video

system. The first eigenposture captured 97% of the total variance, while higher-order

PCs contributed to the fine-tuning of the thumb and long fingers.

Todorov and Ghahramani (2004) recorded data from six subjects while they per-

formed a range of complex everyday tasks and found that the number of observed

postural synergies exceeded the ones previously reported during performance of sim-

pler tasks. Furthermore, the synergies were consistent across subjects, but they were

also task-dependent. The authors concluded that the biological origin of dimensional-

ity reduction might be more associated with a task-optimal control policy employed

by the central nervous system (Todorov and Jordan, 2002), rather than just emerging

from a need for “simplification” of movement.
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Weiss and Flanders (2004) recorded EMG activity from seven hand muscles as well

as kinematics from 17 joint angles while subjects held their hands statically in 52

grasping and American sign language spelling shapes. By performing PCA in both

the joint angle and EMG spaces, they found that three PCs accounted for 80% of

the variance in both cases. They subsequently used multiple linear regression (MLR) to

relate the EMG PCs to hand-shape PCs.

Vinjamuri et al. (2007) used time-varying synergies (D’Avella and Tresch, 2001) to

decompose the velocity profiles of MCP and PIP joints of five fingers of the hand

while five subjects reached and grasped for 28 different objects. The same group later

used a 2-step synergy decomposition method based on singular value decomposition

and gradient descent (Vinjamuri et al., 2010). In their implementation, one synergy

could be recruited more than once in a single block. The velocity of 10 MCP and

PIP joints from 10 subjects was reconstructed during grasp movements and Ameri-

can sign language finger-spelling, although the synergies had been extracted using

data only from the first task. Performance in the latter task was decreased and, for

that reason, the authors concluded that postural synergies might be task-dependent.

On that note, there has been evidence that during highly-complex tasks such as for

example, piano playing the movement of individual fingers is mostly independent

from one another (Furuya, Flanders, and Soechting, 2011).

Finally, Thomik, Fenske, and Faisal (2015) proposed a method for learning low-

dimensional finger kinematic manifolds based on sparse coding (Olshausen and

Field, 1996). They recorded bilateral movement from both hands of able-bodied partic-

ipants during daily life activities by using data gloves. They showed that by learning

an over-complete dictionary with sparse coding in the joint velocity space, the same

number of components could explain considerably more variance than PCA, which

was used as a benchmark for comparison.

7.2.1 Use of postural synergies in myoelectric control and robotics

Matrone et al. (2010) used two PCs to control a 16-DOF under-actuated artificial hand

that was used to grasp three different objects. The PCs were previously extracted from

a dataset comprising joint angle measurements of the DOFs of the hand while it was

used to grasp a series of objects of various shapes and sizes. The system was tested

in a follow-up study during real-time experiments with twelve able-bodied subjects

(Matrone et al., 2012). Participants controlled the activation of the two PCs using two-

dimensional wrist movement (flexion/extension and abduction/adduction). Muscle

activity was recorded with four EMG electrodes targeting the corresponding wrist

muscles.
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Segil and Weir (2013) adopted a slightly different approach to control a 15-DOF

virtual hand by using only the first two PCs extracted from Santello, Flanders, and

Soechting (1998). Four different linear maps were constructed from EMG signals to

the PC domain and the joint angles of the virtual hand were subsequently controlled

by an inverse PCA transformation. The authors reported promising results, with my-

oelectric control achieving similar performance to joystick control, which was used

as a benchmark.

Kent, Karnati, and Engeberg (2014) used a sinusoidal synergy approach to control

the human finger and thumb motions of an artificial hand during unscrewing and

screwing of objects. The synergy controller was used to drive four DOFs of the hand

and it was shown that it could achieve reduced completion times (CTs) as compared

to a range of commercial prosthetic hands.

Recently, postural synergies have been used for the design and control of robotic

and prosthetic hands. For instance, Konnaris, Thomik, and Faisal (2016) used four

eigenmotions derived by their proposed sparse coding-based approach

(Thomik, Fenske, and Faisal, 2015) to control an under-actuated 24-DOF hand driven

by only seven servo motors (Konnaris, Thomik, and Faisal, 2016). Catalano et al.

(2014) developed a single-motor robotic hand and used the first PC identified in the

original study of Santello, Flanders, and Soechting (1998) in combination with a vari-

able stiffness actuation mechanism. The authors demonstrated that despite using a

single motor, objects of various shapes and sizes could be grasped by the hand.

7.3 motivation

The algorithms used for muscle and postural synergy extraction are typically un-

supervised (e.g. Santello, Flanders, and Soechting, 1998; Todorov and Ghahramani,

2004; Tresch, Cheung, and D’Avella, 2006). In other words, their objective is to learn

a latent representation of the probability distribution of a variable of interest (i.e.

muscle activity or hand kinematics). On the other hand, a typical machine learning

(ML)-based myoelectric application is supervised, since the objective is to classify

or decode a target variable (e.g. hand posture, wrist/hand joint angles). In this con-

text, pre-processing the input and/or output data with unsupervised dimensionality

reduction algorithms may yield suboptimal results, since the latter are driven by

different optimisation criteria (e.g. maximisation of variance retained under linear

transformation in the case of PCA).

In the context of myoelectric control, only one study has so far explored ways of

identifying low-dimensional manifolds in the joint input-output space (Ngeo et al.,

2015). The authors used a modified version of the Gaussian process latent variable
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model (Lawrence, 2004; Lawrence, 2005) to learn a dynamical model of the input-

output joint probability distribution in a shared latent space (Shon et al., 2006). The

advantage of using such a probabilistic model lies in that it makes it possible to sam-

ple from the joint distribution and can thus be used to generate artificial hand kine-

matic data. In a different study, Hoffmann, Schaal, and Vijayakumar (2009) compared

local linear dimensionality reduction methods within the context of using locally-

weighted regression to reconstruct full human body kinematic data. The authors

reported that the highest performance was achieved by methods that optimise the

correlation between input projections and target variables, such as reduced rank regres-

sion (RRR) and partial least squares (PLS), as compared to methods that only model

input or joint input-output data distribution, such as factor analysis and PCA.

The current chapter proposes a methodology for supervised, simultaneous input-

output dimensionality reduction which is based on a generalised eigenvalue prob-

lem formulation of linear dimensionality reduction (Borga, Landelius, and Knutsson,

1992). The proposed methodology is presented in Section 7.4. A performance com-

parison of various linear dimensionality reductions is conducted in Section 7.5 on the

task of reconstructing finger joint angle trajectories from EMG signals.

7.4 supervised input-output linear dimensionality reduction

7.4.1 The generalised eigenvalue problem

Let A denote a Hermitian matrix. The simple eigenvalue problem considers finding all

vectors v (called the eigenvectors of A) and associated scalars λ (called the eigenvalues

of A), such that:

Av = λv. (7.1)

Given two Hermitian matrices A and B, the generalised eigenvalue problem is the

problem of finding the vectors v and associated scalars λ, such that:

Av = λBv. (7.2)

The generalised eigenvalue problem described by Equation 7.2 can be transformed

into a simple eigenvalue problem by making use of the Cholesky decomposition of B:

B = LL∗, (7.3)

where L∗ denotes the conjugate transpose of L.
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Note that the generalised eigenvalue problem of two Hermitian matrices A and B

is closely related to the generalised Rayleigh quotient, which is defined as:

R (A,B, x) =
x∗Ax

x∗Bx
. (7.4)

7.4.2 A generalised eigenvalue problem formulation of dimensionality reduction

Let X ∈ RN×D denote a design (i.e. feature) matrix, where N and D are the number

of observations and input variables, respectively, and Y ∈ RN×K denote the target

matrix, where K is the output dimensionality. We denote Cxx the input covariance

matrix and Cxy the input-output covariance matrix. By definition, Cxy = C>
yx.

Borga, Landelius, and Knutsson (1992) introduced a unifying approach to the for-

mulation of several linear dimensionality reduction methods, including PCA, PLS,

MLR, and canonical correlation analysis (CCA) based on the generalised eigenvalue

problem (see Equation 7.2). The square matrices A and B corresponding to the four

cases can be derived from their respective objective functions (i.e. optimisation crite-

ria) and are shown in Table 7.1. Given a single random variable x, PCA aims to find

directions of maximum variance. Given two random variables x and y, PLS looks for

directions of maximum data covariation, whereas CCA seeks directions of maximum

correlation. Finally, given an input variable x and an output variable y, MLR aims to

find directions that minimise the reconstruction squared error of y given x.

In all four cases, matrices A and B are symmetric, and B is also positive-definite,

as a block diagonal matrix whose diagonal elements are all positive-definite matrices;

therefore, all its eigenvalues are guaranteed to be positive. A is hollow symmetric,

that is, a symmetric matrix with zero diagonal elements. A basic property of hollow

symmetric matrices is that their eigenvalues are real and come in positive/negative

pairs. In other words, the sum of the eigenvalues of a hollow symmetric matrix is

equal to zero. Only in the case of PCA, A is also positive-definite, and as such, it has

only positive eigenvalues.

By extending the work of Borga, Landelius, and Knutsson (1992), the following

approach is proposed for simultaneous input-output dimensionality reduction with

PLS, CCA or MLR; firstly, we solve the generalised eigenvalue problem described by

Equation 7.2 by using the Cholesky decompositions of Cxx and Cyy. Then, we order

the eigenvalues in descending order and organise the normalised eigenvectors (i.e.

unit vectors) in a matrix W column-wise:

W = [w1, . . . ,wD+K] ∈ R(D+K)×(D+K). (7.5)
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Table 7.1: Dimensionality reduction via generalised eigenvalue problem (Borga, Landelius,
and Knutsson, 1992)

A B

PCA Cxx I

PLS

[
0 Cxy

Cyx 0

] [
I 0

0 I

]

CCA

[
0 Cxy

Cyx 0

] [
Cxx 0

0 Cyy

]

MLR

[
0 Cxy

Cyx 0

] [
Cxx 0

0 I

]

Note that in the general case, the columns of W are not orthogonal to each other.

The cumulative sum of the positive eigenvalues is computed and the largest L

eigenvalues are chosen, such that:

L∑
i=1

λ+i > α
(D+K)/2∑
i=1

λ+i , (7.6)

where λ+i are the positive eigenvalues of Equation 7.2, D+K is the joint input-output

dimensionality, and α is a threshold on the cumulative eigenvalue sum that it is

wished to be retained by the low-rank approximation. The input is then transformed

as follows:

X ′ = XW1:D,1:L, (7.7)

where W1:D,1:L ∈ RD×L is the matrix consisting of the first D rows and L columns

of W. The output is accordingly transformed as:

Y ′ = YWD+1:D+K,1:L, (7.8)

where WD+1:D+K,1:L ∈ RK×L. This procedure is summarised in Algorithm 1.
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Algorithm 1 Supervised input-output linear dimensionality reduction (PLS, CCA,
MLR) via generalised eigenvalue problem

Require: A, B (see Table 7.1), α
1: Compute Cholesky decompositions of Cxx and Cyy:
Lx ← chol (Cxx),
Ly ← chol (Cyy).

2: Use Lx, Ly to solve Equation 7.2:
Av = λBv.

3: Order eigenvalues and eigenvectors in eigenvalue descending order:
λ ′ = [λ1, λ2, . . . , λD+K], λ1 > λ2 > . . . > λD+K,
W ← [w1, . . . ,wD+K].

4: Normalize columns of W.
5: Choose L, such that:

L∑
i=1

λ+i > α
(D+K)/2∑
i=1

λ+i .

6: Project data:
X ′ ← XW1:D,1:L,
Y ′ ← YWD+1:D+K,1:L.

Algorithm 2 Unsupervised input-output linear dimensionality reduction (PCA) via
generalised eigenvalue problem

Require: Cxx, Cyy, α
1: Compute Cholesky decompositions of Cxx and Cyy:
Lx ← chol (Cxx),
Ly ← chol (Cyy).

2: Use Lx, Ly to solve Equation 7.2:
Cxxvx = λxvx,
Cyyvy = λyvy.

3: Order eigenvalues and eigenvectors in eigenvalue descending order:
λ ′x =

[
λ
(x)
1 , λ(x)2 , . . . , λ(x)D

]
, λ(x)1 > λ

(x)
2 > . . . > λ

(x)
D ,

λ ′y =
[
λ
(y)
1 , λ(y)2 , . . . , λ(y)K

]
, λ(y)1 > λ

(y)
2 > . . . > λ

(y)
K ,

W(x) ←
[
w

(x)
1 , . . . ,w(x)

D

]
,

W(y) ←
[
w

(y)
1 , . . . ,w(y)

K

]
.

4: Normalize columns of W(x), W(y).
5: Choose Lx, Ly, such that:

Lx∑
i=1

λ
(x)
i > α

D∑
i=1

λ
(x)
i ,

Ly∑
i=1

λ
(y)
i > α

K∑
i=1

λ
(y)
i .

6: Project data:
X ′ ← XW

(x)
:,1:Lx ,

X ′ ← XW
(y)
:,1:Ly .
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In the case of simultaneous input-output dimensionality reduction with PCA, the

procedure described above is followed for the input and output variables indepen-

dently, except that Equation 7.6 now takes the form:

Lx∑
i=1

λ
(x)
i > α

D∑
i=1

λi, (7.9)

and

Ly∑
i=1

λ
(y)
i > α

K∑
i=1

λi, (7.10)

where
[
λ
(x)
1 , λ(x)2 , . . . , λ(x)D

]
and

[
λ
(y)
1 , λ(y)2 , . . . , λ(y)K

]
are the eigenvalues of Cxx and

Cyy, respectively, sorted in descending order. Input-output dimensionality reduction

with PCA is summarised in Algorithm 2.

7.5 application to myoelectric data

In this section, an investigation on the performance of the four methods introduced

in Section 7.4 is carried out. The comparison of the four dimensionality reduction

algorithms is performed in the context of joint angle reconstruction from surface

EMG signals (see Chapter 6). The linear regression method introduced in Section

6.2.2.1 without dimensionality reduction, which will be hereafter referred to as full

rank regression (FRR), is used as a benchmark. The term RRR is used to describe

the same algorithm after MLR-based dimensionality reduction has been applied (see

Section 7.4).

7.5.1 Datasets and methodology

The same datasets that were used in Chapter 6 were considered (i.e. datasets 1 and

3 in Table 4.1). The features selected by the sequential forward feature selection (SFFS)

procedure introduced in the previous chapter, namely Wilson amplitude, 4
th-order

auto-regressive coefficients, waveform length, and log-variance were used (see Sec-

tion 6.2.3 and Figure 6.1). For performance assessment, 6-fold cross-validation (CV)

was used (see Section 3.2.5).

Following dimensionality reduction with any of the four methods introduced in

the previous section (i.e. PCA, PLS, CCA, MLR), regression was performed by using

LR (i.e. Wiener filter, see Section 6.2.2.1)) in the latent, that is, low-dimensional space.

The regularisation parameter for the Wiener filter was set a priori to λ = 10−5 and
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the number of time lags used for decoding was set to M = 6 (see Section 6.2.4); thus,

the input dimensionality was DM = 504 (12 channels × 7 features/channel × 6 time

lags). The output dimensionality was K = 22 for dataset 1 (22-DOF data glove) and

K = 18 for dataset 3 (18-DOF data glove).

7.5.2 Statistical tests

No prior assumptions were made about the distribution of coefficient of determina-

tion (R2) scores; therefore, the non-parametric Friedman test (Friedman, 1937) was

used to compare reconstruction accuracy scores between the different algorithms.

Post-hoc pair-wise comparisons were performed using the Wilcoxon signed-rank test

(Wilcoxon, 1945) with Šidák correction for multiple comparisons (Šidák, 1967).

7.5.3 Results

A systematic analysis on reconstructing finger joint angles from EMG data was per-

formed by applying the four dimensionality reductions methods introduced in Sec-

tion 7.4 followed by LR. The results of this analysis are presented in Figure 7.1. The

highest performance scores were achieved by CCA and RRR, followed by input-

output PCA. The worst performance was observed for PLS. Interestingly, the per-

formance obtained with CCA and RRR was marginally higher than with FRR, that

is, when no dimensionality reduction was applied. One-to-one comparisons between

FRR-RRR and PCA-RRR are shown in Figure 7.2.

The bottom panel of Figure 7.1 shows the average intrinsic dimensionality esti-

mated and used by each of the four dimensionality reduction methods. For PLS, CCA

and RRR, the intrinsic dimensionality was estimated from Equation 7.6 by choosing

a = 0.99. For input-output PCA, the dimensionality was estimated independently for

the input and output variables using Equations 7.9 and 7.10, respectively, and again

setting a = 0.99. Although the smallest number of components was used by PLS,

its performance was significantly worse than that of the other methods (p < 0.001).

Among the three methods that achieved comparable accuracy (i.e. CCA, RRR and

FRR), RRR used the smallest number of components (average L = 18).

As a next step, the performance of the four linear dimensionality reduction meth-

ods was compared whilst the number of used projection directions was varied from 1

to 50. It was hypothesised that the RRR optimisation criterion, that is, minimisation of

output reconstruction squared error given the input would allow the specific method

to perform best when using a small number of components. The results of this anal-

ysis are presented in Figure 7.3. As was to be expected, the performance of RRR was
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Figure 7.1: Comparison of input-output linear dimensionality reduction methods. (Top panel)
reconstruction accuracy (multivariate R2, see Section C.2.2.2) of different simulta-
neous input-output linear dimensionality reduction methods followed by LR. Re-
sults shown separately for two groups of exercises (see Section 3.2.1 and Figure
3.1). Straight lines, medians; solid boxes, interquartile ranges; whiskers, overall
ranges of non-outlier data (1.5 IQR); diamonds, outliers. (Bottom panel) intrin-
sic dimensionality estimated and used by each dimensionality reduction method
(α = 0.99, see Equations 7.6, 7.9 and 7.10). For PCA, intrinsic dimensionality esti-
mation was performed independently in the input and output domains. Original
input dimensionality, DM = 504; output dimensionality, K = 18 for dataset 1, and
K = 22 for dataset 3 (see main text). Bars, medians; error bars, 95% confidence
intervals estimated via bootstrapping (1000 iterations).

superior to that of CCA, PLS, and input-output PCA by a large margin when only

a few projections were used (i.e. less than 15). Remarkably, it was found that RRR

could achieve benchmark accuracy, that is, similar to FRR by using only nine input

and output projection directions. The same number was 22 for CA, whereas for PLS
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Figure 7.2: One-to-one comparisons of linear dimensionality reduction methods. Results
shown for all datasets, subjects, and folds. Each dot in the scatter plots corre-
sponds to one testing fold. Number of folds, nf = 720.
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Figure 7.3: Comparison of input-output linear dimensionality reduction methods for a vary-
ing number of projection directions. Average performance of the four linear input-
output dimensionality reduction methods is plotted against the number of used
components. The average benchmark performance, that is, without dimensional-
ity reduction is shown in grey (FRR). Points, medians; error bars, 95% confidence
intervals estimated via bootstrapping (1000 iterations).

and input-output PCA, 50 projections were not sufficient to approximate benchmark

accuracy.
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Figure 7.4: Joint angle reconstruction examples with dimensionality reduction. Predictions of
the trajectories of the middle MCP and PIP joints are shown for one subject with
input-output PCA, RRR, and FRR. For PCA and RRR, L = 10 projection directions
(i.e. components) were used.

Typical predictions of middle MCP and PIP joint angle trajectories with FRR, RRR,

and input-output PCA are shown in Figure 7.4. For this example, the number of com-

ponents used by RRR and input-output PCA was set to L = 10. It can be observed

from the graph that the accuracy achieved with RRR by using only 10 input and

10 output projections was comparable to the control case, that is, when no dimen-

sionality reduction was applied. Conversely, when using input-output PCA with an

equal number of components, the reconstruction accuracy for the same joint angle

was considerably worse.
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7.6 discussion

7.6.1 Application

The current study investigated and compared the performance of various linear di-

mensionality reduction methods within the context of finger joint angle reconstruc-

tion from surface EMG data. The proposed MLR-based methodology for supervised

simultaneous input-output dimensionality reduction has the potential to be applied

to continuous digit control of prosthetic hands with a large number of DOFs (e.g.

Shadow Dexterous HandTM (Shadow, 1998)). Depending upon the specifics of the

desired application, independent activation of each DOF may not be necessary and

could potentially increase the cognitive load for the user. It is likely that the control of

multi-DOF hands may be facilitated by a synergistic approach, although this remains

to be verified with psychophysical experiments.

7.6.2 Supervised vs. unsupervised dimensionality reduction

Previous attempts to capture synergistic activations in the muscle and finger kine-

matic domains almost exclusively used unsupervised methods (see Sections 7.1 and

7.2). The study presented in this chapter follows a different approach; rather than

seeking physiological evidence for low-dimensional manifolds that capture a large

fraction of movement variance in high-dimensional space, it looks for projection di-

rections that are optimal with respect to a regression-based decoding task. Although

little effort has been previously made to achieve simultaneous input-output dimen-

sionality reduction, at least two studies have proposed reducing the dimensionality

of the two domains independently in an unsupervised fashion (Weiss and Flanders,

2004; Artemiadis and Kyriakopoulos, 2010). This approach, however, can produce

highly suboptimal results, since the output predictive power captured by the input

variables may lie within non-maximal variance directions; thus, information relevant

to the decoding of the target variable of interest may be discarded during the dimen-

sionality reduction step.

In contrast, a supervised approach is proposed here for simultaneous input-output

dimensionality reduction. The method is based on the general eigenvalue problem

formulation of MLR and is closely related to RRR (Velu and Reinsel, 2013). Given

that the MLR objective function (i.e. optimisation criterion) is to minimise the output

reconstruction squared error given the input, this algorithm is guaranteed to find pro-

jection directions that retain as much of the output predictive power as possible. The

theoretical advantage of RRR over input-output PCA was verified with offline exper-
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iments. It was found that the performance attained by RRR with only nine input and

output projection directions was comparable to that of FRR (see Figure 7.3). On some

occasions, RRR even outperformed FRR (see Figure 7.2). This may be attributed to

the extra level of regularisation applied by RRR due to the low rank of the regression

model fitted. Conversely, input-output PCA performed worse than FRR, even when

50 input projection directions were used and no dimensionality reduction was ap-

plied to the output variable (see Figure 7.3). This finding provides further support to

the argument that input variance discarded by PCA-based dimensionality reduction

may convey useful information about the target variable.

The results of the current analysis are mostly in accordance with findings of a

previous study (Hoffmann, Schaal, and Vijayakumar, 2009) that investigated local

linear dimensionality reduction for non-parametric regression applied to full-body

kinematic data. One notable difference is that it in the current study, PLS achieved

inferior performance to RRR, as compared to the work of Hoffmann, Schaal, and

Vijayakumar, in which the performance of the two methods was comparable. This

discrepancy might be due to differences in implementation of the algorithm.

7.6.3 On the origins of correlations

The observed correlation structure in the input (i.e. muscle) domain might be only

partially attributed to physiological synergistic muscle activation patterns. One should

keep in mind that muscular activity is typically recorded from multiple neighbour-

ing sites on the skin surface, which produces signal crosstalk (Farina et al., 2014).

Moreover, multiple features are extracted from the same EMG sensors, a process that

unavoidably introduces correlations between the input variables. The latter aspect is

further intensified by the use of an overlapping sliding window approach (see Sec-

tion 2.2.3) and inclusion of input features from previous time steps (i.e. time delay

embedding, see Section 6.2.4). These factors do not, however, apply to the output

domain, that is, hand kinematic signals recorded with data gloves; therefore, it may

be argued that the observed correlation structure in the output domain may indeed

be primarily attributed to synergistic finger motion (i.e. postural synergies).

7.6.4 Limitations and future work

In an effort to keep computational complexity to a low level, which is essential for

real-time implementations, linear dimensionality reduction methods were only con-

sidered in the current study. Non-linear algorithms may, however, provide better de-

coding results, thanks to their potential to capture non-linear relationship between
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the observed and latent spaces. As an example, non-linear dimensionality reduction

could be achieved by using a neural network with a single hidden layer of size that

is smaller than the dimensionality of the input and output variables. A different

approach could be based on the use of autoencoders both in the input and output

domains. An autoencoder is a specific type of neural network that reduces the di-

mensionality of an input variable via defining an objective function based on the

reconstruction error of the variable itself from the latent space (i.e. hidden layers of

the network). The reconstruction error is then minimised via standard backpropaga-

tion and gradient-based optimisation techniques (Hinton and Salakhutdinov, 2006).

For each of the algorithms used in the current analysis, the intrinsic dimensional-

ity was estimated from Equations 7.6, 7.9 and 7.10 by selecting α = 0.99. Although

choosing to retain 99% of the cumulative sum of the positive eigenvalues may appear

sensible, this threshold was set somewhat arbitrarily. To select the threshold in a prin-

cipled way, knowledge about the noise variance in the system may be required which

is usually unavailable. An alternative solution would be to select the number of pro-

jection directions in a data-driven fashion, for example, by validating performance

on a held-out subset of the data or via cross-validation.

Finally, it is worth noting that previous studies have found evidence that muscle

and postural synergies may be conserved across different subjects (e.g. Santello, Flan-

ders, and Soechting, 1998; Todorov and Ghahramani, 2004; Ajiboye and Weir, 2009;

Roh, Rymer, and Beer, 2012). Investigating the generalisation of low-dimensional

input-output relationships across different subjects may provide further insight into

the physiology of human hand movement and principles of motor control, and is

thus regarded as a promising avenue for future research.
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8
R E A L - T I M E F I N G E R P O S I T I O N P R O P O RT I O N A L C O N T R O L

W I T H S U R FA C E E L E C T R O M Y O G R A P H Y

The previous two chapters demonstrated the feasibility of reconstructing finger joint

angle trajectories from muscular activity data recorded on the skin surface of able-

bodied subjects. However, all analyses presented so far have been purely offline.

Previous work on proportional control of the wrist joint has found evidence that

accuracy results obtained with offline analyses may not always correlate with metrics

quantifying the performance of real-time, goal-oriented prosthetic control (Jiang et al.,

2014b). Such discrepancies have been partially attributed to user adaptation mecha-

nisms taking place in the latter case, as a result of placing the human in the control

loop (Nazarpour, Barnard, and Jackson, 2012; Hahne, Markovic, and Farina, 2017).

Thus, it is imperative to validate the efficacy of the finger position control scheme

proposed in the previous chapters with real-time prosthetic control experiments.

A particular challenge related to deploying proportional finger control for amputee

subjects is the need for collecting ground truth kinematic data, which is required for

the supervised training of the decoders. One potential way of overcoming this issue is

by instructing users to perform bilateral mirrored movements, although this strategy

can only be used in the case of unilateral amputation. Moreover, this procedure in-

troduces noise to the system due to potential inconsistencies between the movement

performed by the healthy hand and the one imagined by the phantom limb, which

might negatively affect decoding accuracy. The level of this influence has not been

previously investigated and, therefore, is not yet clearly understood.

The main advantage of proportional over classification-based control is the poten-

tial to generalise to a continuous space of movement. Although a few previous stud-

ies have implemented and tested continuous finger position control in real-time, the

same motions were used in most cases for training and testing the performance of

the decoders; therefore, the generalisation ability of the control scheme has yet to be

assessed. Furthermore, previous studies were limited to contact-free movements. In

other words, the capability of using this approach to perform functional movements,

such as object grasping, has not been previously demonstrated.

The current chapter addresses the challenges outlined above by assessing the ef-

ficacy of continuous finger position control during real-time experiments involving

both able-bodied and amputee participants. Two different experimental protocols are
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tested. In the first experiment, participants are presented with various target postures

and are required to modulate their muscular activity to control five degrees of actua-

tion (DOAs) of a prosthetic hand in order to match the desired postures as closely

as possible. In the second experiment, participants are instructed to use their mus-

cular activity to control the prosthetic hand to grasp, relocate, and release a series

of objects, as in the classification-based experiments presented in Chapters 3 and 5.

Analysing the outcomes of these two experiments provides insight into the learning

mechanisms taking place during individual finger prosthetic control, as well as the

feasibility of deploying the proposed paradigm in clinical applications.

8.1 introduction

8.1.1 Proportional wrist control

Several research groups have achieved real-time proportional myoelectric control of

multiple degrees of freedom (DOFs) of the wrist. Jiang et al. (2014a) used an algorithm

based on non-negative matrix factorisation (NMF) (Jiang, Englehart, and Parker, 2009)

to control a virtual target on a screen. The study included both able-bodied and

upper-limb amputees and no significant differences in performance were observed

between the two groups. Importantly, the proposed algorithm was semi-supervised,

that is, it only required an initial calibration phase without the need for collecting la-

belled data. Of particular interest is another study from the same authors (Jiang et al.,

2014b) that compared the offline and real-time performance of linear and non-linear

algorithms (i.e. linear regression (LR), multi-layer perceptron (MLP), and NMF). It was

shown that while there were significant differences in the offline decoding accuracy

of the three algorithms, their real-time performance assessed with task-related met-

rics (i.e. completion rate (CR), completion time (CT), throughput, speed, overshoot, and

efficiency) was comparable. Furthermore, no correlation was found between offline

accuracy and real-time control metrics. It was thus concluded that user adaptation

induced by the continuous provision of visual feedback can compensate for decoding

inaccuracies during real-time proportional myoelectric control. In the same direction,

Hahne, Markovic, and Farina (2017) compared the effect of introducing a varying

level of white noise to electromyographic (EMG) recordings on both offline decoding

accuracy and real-time proportional wrist control performance. It was found that the

effect was significantly lower in the latter case, suggesting that subjects are able to

modulate their control strategy to compensate for decoding errors. Furthermore, it

was shown that the decline in performance due to the introduced disturbances was

larger in the case of classification-based than with proportional control. Based on
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this finding, the authors concluded that “regression allows for a better user correction of

control commands than classification”.

Additionally, Ameri et al. (2014a) provided a proof of principle for using MLPs

to reconstruct 3-DOF wrist movement (flexion/extension, abduction/adduction, and

pronation/supination) in able-bodied subjects. Participants were instructed to per-

form bilateral mirrored movements during the training data collection phase. A

follow-up study (Ameri et al., 2014b), which also included transradial amputee partic-

ipants, compared the real-time performance of artificial neural network and support

vector regression and reported significantly better results for the latter method. To

evaluate performance, the two studies used the target achievement control and a

Fitts’ law test (see Section 2.5.4), respectively.

Finally, it is worth noting that intramuscular recordings with fine-wire EMG elec-

trodes have also been used to decode 3-DOF movement of the wrist. Smith, Kuiken,

and Hargrove (2014) demonstrated that regression-based decoding outperformed se-

quential classification-based control in a Fitts’ law test. A follow-up study (Smith,

Kuiken, and Hargrove, 2015) proposed to use the outputs of three-class motion clas-

sifiers, one per DOF (i.e. no movement, or movement in either direction), to weight

the predictions of LR decoders. It was reported that this strategy resulted in a sig-

nificant increase in performance both for able-bodied and amputee subjects. In these

two studies, each DOF was controlled by a single pair of agonist/antagonist muscles

(i.e. one-to-one mapping). More recently, it was proposed to train LR models receiving

input from all pairs of recorded muscles (Smith, Kuiken, and Hargrove, 2016). It was

found that this method achieved higher performance during simultaneous activation

of multiple DOFs; however, for single-DOF motions, the former method based on a

one-to-one mapping between muscle pairs and DOFs performed better.

8.1.2 Proportional finger position control

A smaller number of studies have attempted to address the challenge of achieving

real-time continuous finger position control. Smith et al. (2009) recorded hand kine-

matics and surface EMG activity from the ipsilateral limb of two able-bodied subjects.

A mapping between muscular activity and the position of four fingers (thumb, index,

middle, and ring) was created by using an MLP. In the evaluation phase, the sub-

jects modulated their muscle activity to control the flexion of individual fingers of a

virtual hand in a target reaching task.

Ngeo et al. (2013) used a previously proposed method (Ngeo, Tamei, and Shibata,

2012) to control the flexion of the index finger of an exoskeleton. One able-bodied par-

ticipant was recruited and training data (EMG and finger kinematics) were recorded
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from the same limb. An MLP was used to decode the metacarpophalangeal (MCP),

proximal interphalangeal (PIP), and distal interphalangeal (DIP) joint angles of the index

finger and predictions were translated into control commands for the exoskeleton.

Cipriani et al. (2011) recruited five able-bodied and an equal number of transradial

amputee subjects and instructed them to perform bilateral mirrored movements that

included both individuated finger and synergistic motions. In the evaluation phase,

in which participants were asked to repeat the same motions as the ones used during

training, muscle activity was used to decode the joint angle of six DOFs (flexion of all

fingers and thumb abduction) using K-nearest neighbours (k-NN) regression. The joint

angle predictions were subsequently mapped into discrete classes of movement and

performance was evaluated by means of classification accuracy (CA), CRs and CTs.

By using a slightly different approach, Pistohl et al. (2013) recorded the activity

of intrinsic hand muscles and built non-intuitive one-to-one mappings between the

normalised activation of each muscle and an associated DOA of a prosthetic hand.

Despite the lack of intuitiveness of the deployed control scheme, it was shown that

users can rather rapidly adapt their strategy and learn novel muscle control schemes

to achieve dexterous prosthetic control.

As with proportional wrist control studies (Smith, Kuiken, and Hargrove, 2014;

Smith, Kuiken, and Hargrove, 2015; Smith, Kuiken, and Hargrove, 2016), the use of

intramuscular EMG recordings has been proposed as a potential means of achieving

proportional finger position control. Intramuscular recordings offer the advantage of

low level of muscle cross-talk (Birdwell et al., 2013). Hence, it is possible to create

multiple one-to-one mappings between specific muscles and prostheses DOAs. This

idea has been explored in the context of controlling both virtual (Birdwell et al., 2015)

as well as prosthetic (Cipriani et al., 2014a) hands.

8.1.3 Proportional finger force control

Proportional finger force control has received much less attention than wrist and fin-

ger position control. Gijsberts et al. (2014b) proposed a non-linear incremental learn-

ing method based on ridge regression and random Fourier features to control the

fingertip forces of the Touch Bionics i-Limb™ hand (Touch Bionics, Inc., 2003). In a

follow-up study, Patel, Nowak, and Castellini (2017) trained multiple context-specific

regression models to improve the performance of the algorithm. Celadon et al. (2016)

compared the reconstruction accuracy of different regression methods during tasks

that combined various force profiles and levels, as well as rates of change of force.

More recently, Gailey, Artemiadis, and Santello (2017) combined real-time hand pos-
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ture recognition and digit force control using support vector machine classification

and random forest regression, respectively.

8.1.4 Motivation

Although a few previous studies have evaluated the efficacy of proportional finger

position control from surface EMG recordings (see Section 8.1.2), several important

aspects are yet to be investigated. For example, despite deploying a proportional fin-

ger control paradigm, Cipriani et al. (2011) used the exact same postures for training

and testing; therefore, the generalisation ability of the control scheme to novel pos-

tures was not assessed. This aspect is of great significance, since it ranks among the

main motivations for choosing proportional finger position control over classification-

based methods. Moreover, the experimental design did not include any functional

tasks, for example, using the prosthetic hand to grasp objects; therefore, it is not clear

whether the proposed control scheme could enable users to perform activities of daily

living.

Another important aspect related to the control of intuitive myoelectric interfaces

is user adaptation and, as a consequence, performance improvement over time. Al-

though Pistohl et al. (2013) investigated this feature, their interface was non-intuitive

and not based on machine learning (ML). In other words, an arbitrary mapping was

created from the muscle space to the DOAs of the prosthetic hand and the users

had to learn that mapping from experience. For that reason, the learning curves re-

ported in their study might not be representative of the case where a subject-specific,

intuitive mapping is created by using initial training data from the same user.

The goal of the work presented in this chapter is twofold: 1) investigate and eval-

uate the efficacy of continuous finger position prosthetic control from surface EMG

data, including generalisation to novel postures and functional tasks; and 2) inves-

tigate the effect of user adaptation during intuitive, multidimensional, proportional

finger position control.

8.2 experimental setup and methodology

8.2.1 Participant recruitment

Ten able-bodied (nine male, one female; all right-hand dominant; median age, 26.5

years) and two right-hand transradial amputee subjects were recruited. Some of the

able-bodied and both amputee participants had taken part in previous myoelectric

8.2 experimental setup and methodology 143



control experiments (see Sections 3.3 and 5.2). The medical records of the two am-

putee participants have been previously reported in Table 3.1.

8.2.2 Signal acquisition

For the able-bodied group, 16 Delsys® Trigno™ sensors (see Section A.1.1 and Figure

A.1) were placed on the participants’ right forearm arranged in two rows of eight

equally spaced sensors each (see Figure 5.1, top row). For the two amputee partici-

pants, 13 and 12 sensors were used, respectively, due to limited space availability on

their phantom limb. Prior to sensor placement, the participants’ skin was cleansed

using 70% isopropyl alcohol. Elastic bandage was used to secure the sensor positions

throughout the experimental sessions. Following sensor placement, the quality of all

EMG channels was verified by visual inspection. The sampling frequency of EMG

data was set to 2 kHz. Data from the inertial measurement units (IMUs) incorporated

in the sensors were also recorded at 128 Hz sampling frequency, but were not used

for model training or real-time control.

A 18-DOF CyberGlove II data glove (see Section A.3.1) was used to record hand

kinematic data from the participants’ left hand. For each participant, the glove was

calibrated prior to data collection using dedicated software provided by the manufac-

turer. The sampling rate of glove data was set to 100 Hz.

8.2.3 Training data collection

The participants sat comfortably on an office chair and were asked to reproduce a

series of motions instructed to them on a computer monitor. Nine exercises were se-

lected for training data collection, which included both individuated-finger and full-

hand motions (see Figure 8.1). The following nine motions were included: thumb flex-

ion, thumb abduction, index flexion, middle flexion, ring/little flexion, index pointer,

cylindrical grip, lateral grip, and tripod grip. Participants were asked to perform

bilateral mirrored movements with both their arms resting on a table.

Three datasets (i.e. separate blocks of trials) were recorded for each participant:

the first two (datasets A and B) comprised 10 repetitions of each motion, and the

third one (dataset C), only two. The three datasets served, respectively, the following

purposes: A, training; B, validation; C, testing (see Section 8.2.5).

Each motion execution lasted approximately 7 s and at the end of each trial subjects

were instructed to go back to the rest pose which corresponded to muscle relaxation

(shown in Figure 8.1(a)). Succeeding trials were interleaved with intervals of 3 s and

participants were also given a 10 min break after the completion of each block.
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Figure 8.1: Training exercises. Subjects were instructed to perform bilateral mirrored move-
ments. (a) rest; (b) thumb flexion; (c) thumb abduction; (d) index flexion; (e) mid-
dle flexion; (f) ring/little flexion; (g) index pointer; (h) cylindrical grip; (i) lateral
grip; (j) tripod grip.

8.2.4 Signal pre-processing

As with previous experiments (e.g. see Section 5.2.4), a sliding window approach

was used. The length of the window was set to 128 ms with an increment of 50 ms

(60% overlap). Based on the results of the offline analysis presented in Chapter 6 (see

Section 6.2.3 and Figure 6.1), the following features were extracted from the recorded

EMG channels: Wilson amplitude, 4
th-order auto-regressive coefficients, waveform

length, log-variance, and slope sign change. The columns of the design (i.e. feature)

matrices were subsequently standardised by mean subtraction and unit variance scal-

ing. Feature means and variances were estimated using training data only.

For hand kinematic data recorded with the data glove, the mean value within the

processing window was computed for each DOF individually. The Prensilia IH2 Az-

zurra hand (see Section A.2.2) was used during the real-time control experiments.

The calibrated glove measurements were converted into digit positions for the pros-

thetic hand using a linear mapping (see Section A.3.1.1). The columns of the target

matrices were finally normalised in the range [0, 1], where yj = 0 corresponds to full

extension and yj = 1 to full flexion, respectively, of the jth DOA.

8.2.5 Model training, prediction post-processing, and hyper-parameter optimisation

It was shown in Chapter 6 that kernel ridge regression (KRR) can slightly outperform

LR in the task of reconstructing finger joint angles from EMG data (see Figure 6.5).

However, this comes at the additional cost of increased computational complexity

(see Figure 6.6). Given the small margin of performance improvement with non-linear

regression and, at the same time, the considerable increase in computational require-

ments, it was decided that between the two considered methods LR was the most

appropriate choice for real-time implementation. Thus, the regularised Wiener filter

method (see Section 6.2.2.1) was used to decode finger positions from muscle activity.
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The length of the linear filters was set to M = 6 (see Section 6.2.4). Given that the

output dimensionality was in this case small (i.e. K = 5), no dimensionality reduction

was performed.

To ensure smooth digit trajectories, predictions were post-processed using expo-

nential smoothing. This is a form of infinite impulse response filtering, implemented

in the time-domain as follows:

ỹj [n] = α · yj [n] + (1−α) · ỹj [n− 1] , (8.1)

where yj [n] and ỹj [n] denote, respectively, the raw and smoothed predictions of the

jth DOA at time step n, and α is the smoothing parameter, which is constrained by

0 6 α 6 1. Smaller values of α result in “stronger” smoothing, but also increase the

prediction response latency. An example of applying the post-processing smoothing

step to the time-series prediction of a single DOA is illustrated in Figure 8.2 for two

different settings of the smoothing parameter α.

Three types of model selection (i.e. hyper-parameter tuning) were performed for

each participant during the training phase: sensor selection, regularisation, and

smoothing parameter optimisation. Models were initially trained using data from

the training set only. Model selection was carried out by means of maximising per-

formance (i.e. multivariate R2, see Section C.2.2.2) on the validation set. Following

parameter optimisation, the training and validation sets were merged and used to

train final models. The test set was only used to evaluate the offline performance of

the final models.

For sensor selection, the standard sequential forward sensor selection (SFSS) method

was used (see Section 3.2.6). The algorithm terminated execution when the inclusion

of any remaining sensor caused a decrease in average performance. To optimise the

regularisation parameter λ of the Wiener filter (see Equation 6.11), a search was per-

formed in the log-space
{
10−6, 10−5, . . . , 101

}
using a factor (i.e. multiplicative step)

of 10. The exponential smoothing parameter α (see Equation 8.1) was optimised via

linear search in the range [0, . . . , 1] with a step size of 0.01. The three model selection

steps were performed sequentially in the following order: sensor selection, λ optimi-

sation, and α optimisation. In other words, the subset of sensors was firstly identified;

using the selected subset, the regularisation parameter λ was tuned; finally, using the

selected sensor subset and chosen value for λ, the smoothing parameter α was opti-

mised. An example of the three sensor selection steps is illustrated in Figure 8.3 for

an able-bodied participant.
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Figure 8.2: Exponential smoothing example. The post-processing exponential smoothing step
is demonstrated on a segment of activity of the index finger for an able-bodied
subject. The exponential smoothing parameter for the specific subject was set to
α = 0.18. The smoothed prediction time series is shown for an additional setting
of α = 0.05 (i.e. stronger smoothing effect).

8.2.6 Behavioural tasks and evaluation

Two experimental tasks were designed to evaluate the efficacy of real-time finger

position control: a biofeedback posture matching task and a prosthetic control pick and

place task, which was similar to the one previously described in Chapters 3 and 5.

For both tasks, two modes of control were used: in EMG control mode, participants

were required to modulate their muscle activity to control the prosthetic hand; in

glove control mode, participants teleoperated the hand using the CyberGlove II data

glove. The glove control mode was used in both tasks to provide an estimate of the

upper-bound of prosthetic control performance (i.e. benchmark).

All subjects took part in the posture matching task. Upon completion, they were

given a 10 min break. A screening trial was then carried out to assess whether partici-

pants were able to accomplish a full trial in the pick and place task with EMG control.

When the screening trial was successful, participants moved on to performing the

task. This was the case for only six out of ten able-bodied participants. The remain-

ing four able-bodied and both amputee subjects did not accomplish the screening

trial and, thus, did not perform the pick and place task.

The two experimental tasks are introduced in the following sections.
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Figure 8.3: Model selection and hyper-parameter tuning. An example of the three sequential
model selection steps (i.e. sensor subset selection, regularisation parameter op-
timisation, and exponential smoothing parameter optimisation) is shown for an
able-bodied subject. R2MV , multivariate coefficient of determination score (see Sec-
tion C.2.2.2) on the validation set. Dashed lines indicate final parameter selections.

8.2.6.1 Task 1: posture matching

During the posture matching task, participants were presented with a series of target

postures on a computer screen and were instructed to control the prosthetic hand to

match the desired postures as closely as possible. All participants performed the task

in both EMG and glove control modes. The presentation order of the two modes was
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Figure 8.4: Bilateral mirrored movement training. Two participants, an able-bodied (left) and
an amputee (right), shown during training data collection. Muscle activity was
recorded from the participants’ right forearm (i.e. the phantom limb for amputees),
whereas hand kinematic data were recorded from the participants’ left hand with
an 18-DOF data glove.

Figure 8.5: Target poses for posture matching task. (a) thumb abduction (half); (b) thumb
abduction (full); (c) thumb flexion (half); (d) thumb flexion (full); (e) index flexion
(half); (f) index flexion (full); (g) middle flexion (half); (h) middle flexion (full);
(i) ring/little flexion (half); (j) ring/little flexion (full); (k) index pointer (half); (l)
index pointer (full); (m) cylindrical grip (half); (n) cylindrical grip (full); (o) lateral
grip (half); (p) lateral grip (full); (q) tripod grip (half); (r) tripod grip (full).

Figure 8.6: Posture matching task. An able-bodied (left) and an amputee participant (right)
shown while they modulate their muscle activity to drive the robotic hand into
the desired posture. The target postures for the shown trials were full cylindrical
grip and half index flexion, respectively.
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Table 8.1: Target positions for posture matching task. DOA 1, thumb opposition; DOA 2,
thumb flexion; DOA 3, index flexion; DOA 4, middle flexion; DOA 5, ring/little
flexion. ID column refers to posture labelling used in Figure 8.5.

ID Posture DOA 1 DOA 2 DOA 3 DOA 4 DOA 5

a Thumb abduction (half) 0.5 0.0 0.2 0.2 0.2
b Thumb abduction (full) 1.0 0.0 0.2 0.2 0.2
c Thumb flexion (half) 0.0 0.5 0.2 0.2 0.2
d Thumb flexion (full) 0.0 1.0 0.2 0.2 0.2
e Index flexion (half) 0.0 0.2 0.5 0.2 0.2
f Index flexion (full) 0.0 0.2 1.0 0.2 0.2
g Middle flexion (half) 0.0 0.2 0.2 0.5 0.2
h Middle flexion (full) 0.0 0.2 0.2 1.0 0.2
i Ring/little flexion (half) 0.0 0.2 0.2 0.2 0.5
j Ring/little flexion (full) 0.0 0.2 0.2 0.2 1.0
k Index pointer (half) 0.0 0.5 0.0 0.5 0.5
l Index pointer (full) 0.0 0.96 0.0 1.0 1.0
m Cylindrical grip (half) 1.0 0.5 0.5 0.5 0.5
n Cylindrical grip (full) 1.0 1.0 1.0 1.0 1.0
o Lateral grip (half) 0.0 0.5 0.5 0.5 0.5
p Lateral grip (full) 0.0 1.0 1.0 1.0 1.0
q Tripod grip (half) 0.92 0.33 0.37 0.96 0.96

r Tripod grip (full) 0.92 0.66 0.76 0.96 0.96

counter-balanced across participants (both for the able-bodied and amputee groups).

During this task, the prosthetic hand was connected to a base stand placed on the

surface of a table and sitting in front of the participant (see Figure 8.6).

Nine hand postures were included, each of them with two variations: half, and

full motion; therefore, the total number of postures was 18. The included hand pos-

tures were: thumb abduction, thumb flexion, index flexion, middle flexion, ring/little

flexion, index pointer, cylindrical grip, lateral grip, and tripod grip. The target pos-

tures are shown in Figure 8.5, and the associated target values for the DOAs of the

prosthetic hand are given in Table 8.1.

At the beginning of each trial, participants were presented with a pair of pictures

providing front and side views of the desired posture. An audio cue (waveform,

sine wave; frequency, 400 Hz; duration, 500 ms) was used to signal the initiation of

each trial. Participants were then given 3.5 s to drive the prosthetic hand into the

desired posture. At the end of this period, a second audio cue (waveform, sine wave;

frequency, 800 Hz; duration, 500 ms) was used to signal the initiation of the evaluation

phase of the trial, which lasted 1.5 s. During the evaluation phase, participants were
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instructed to hold the hand in the performed posture. At the end of the evaluation

phase, the hand was reset to its initial posture (i.e. fully open) signalling the end of

the trial. Pictures illustrating the posture matching task are shown in Figure 8.6 for

two participants, one able-bodied and one amputee.

At the end of each trial, participants received a score characterising their perfor-

mance. This score was based on the average L1 distance between the target and per-

formed postures during the evaluation phase (i.e. the last 1.5 s) of the trial.

Let y and ŷ denote K-dimensional vectors in a real vector space. In our case, the

two vectors represent the target and performed postures, respectively, of the pros-

thetic hand at a given time step, and K = 5 is the number of DOAs of the hand. The

L1 distance is defined as follows:

d1 = ||y− ŷ||1 =

K∑
j=1

∣∣yj − ŷj∣∣ , (8.2)

where yi and ŷi denote, respectively, the target and true positions of the jth DOA.

The evaluation phase lasted for 1.5 s, and a finger position update was made every

50 ms, that is, the increment time of the sliding window. Thus, there were N = 300

distance samples associated with each trial. The average distance during the evalua-

tion phase of a trial was estimated by computing the median across the samples of

the population.

To provide the participants with an intuitive performance measure for each trial,

L1 distances were transformed into scores in the range of 0% to 100%. This transfor-

mation was achieved as follows: firstly, a baseline average L1 distance between the

target posture and random predictions was established by simulating 1 million ran-

dom predictions uniformly sampled in the range [0, 1]; the normalised score was then

computed as follows:

normalised score = max
{
0,
(
1−

L1

L1,r

)}
× 100%, (8.3)

where L1 denotes the average (i.e. median) L1 distance during the evaluation phase,

and L1,r is the pre-computed, average random prediction distance for the specified

posture. This transformation ensured that a perfect reproduction of the desired pos-

ture would correspond to a 100% score, whereas a randomly performed posture

would yield a score close to 0%. Negative scores were not allowed by the max op-

eration. The random seed was controlled during the experiments to ensure identical

random prediction distances for all participants.
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The posture matching task was split into several blocks. Within each block, all 18

postures were presented to the participants exactly once in a pseudo-randomised

order. Each participant performed six blocks for each control mode, that is, EMG

and data glove control. The execution of each block lasted approximately 3 min. The

stimulus presentation sequence was the same for all participants.

8.2.6.2 Task 2: object pick and place

The pick and place task was similar to the one previously presented in Chapters 3 and

5. Briefly, participants were instructed to use the prosthetic hand to grasp, relocate,

and release three objects, and finally press the “space” key on a computer keyboard.

The included objects were: a plastic water bottle, capacity 500 ml, half-filled with

water; a malleable foam ball (i.e. “stress” ball), 7 cm diameter; and a credit card simu-

lator, made of cardboard. Participants were instructed to grasp the three objects using

the cylindrical, tripod, and lateral grips, respectively. To accomplish a trial, subjects

were required to firstly relocate the three objects and finally press the “space” button

on a computer keyboard using an index pointer. A trial was considered successful if

it was accomplished within 75 s. To assess prosthetic control performance during the

pick and place task, two metrics introduced previously were used; namely, CR and

CT (see Section 3.3.3).

One difference between the experiment presented here and that reported in pre-

vious chapters was that participants were not required to fully open the prosthetic

hand between different grasps, as a result of using a continuous finger position con-

trol scheme. Moreover, during EMG control, subjects operated the hand with their

contralateral limb. In other words, muscle activity was recorded from the partici-

pants’ right forearm, whereas the prosthetic hand was attached to their left arm. This

simplification was introduced to avoid potential issues arising from the increased

weight of the Azzurra IH2 hand (approximately 800 g including the wrist connection

unit), which was used in this experiment. Therefore, the participants’ right forearm

was kept still on the table surface throughout the experiments. Conversely, during

glove control, the prosthetic hand was attached to the participants’ right forearm,

whereas finger kinematics were recorded from their left hand. The direction of object

relocation was in each case adjusted according to the employed control mode, that

is, right-to-left for EMG control, and left-to-right for data glove control. Pictures illus-

trating the pick and place task for EMG and data glove control are shown in Figure

8.7.
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Figure 8.7: Pick and place task. Two able-bodied participants shown while they use the pros-
thetic hand to grasp, relocate, and release the objects used in the experiments. (Top
row) EMG control mode; (bottom row) data glove control mode.

8.2.6.3 Statistical tests

No prior assumptions were made about the distributions of reconstruction accuracy

scores (i.e. R2, see Equation C.11), L1 distances (see Equation 8.2), and performance

scores (see Equation 8.3). Thus, the following non-parametric tests were used for sta-

tistical comparisons: the Wilcoxon signed-rank test (Wilcoxon, 1945) was used in the

case of paired observations (e.g. offline analysis); conversely, for non-paired observa-

tions (e.g. CTs in the pick and place task), the Wilcoxon rank-sum test, also known

as the Mann-Whitney U test (Mann and Whitney, 1947), was used.

8.3 results

8.3.1 Offline analysis

Typical predictions of the five DOAs of the prosthetic hand are shown in Figures

8.8 and 8.9 for an able-bodied and an amputee participant, respectively. Both graphs

show finger kinematic activity in the test set, during which participants performed

two repetitions (see Section 8.2.3) of each of the exercises shown in Figure 8.4.

Offline reconstruction accuracy results are summarised in Figure 8.10. The multi-

variate R2 is shown in the top panel for all participants on the three different sets, that

is, training, validation, and test sets. As was to be expected, performance on the vali-
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Figure 8.8: Offline joint angle reconstruction example for an able-bodied subject. Predictions
shown for all five DOAs of the prosthetic hand on the test set.
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Figure 8.9: Offline joint angle reconstruction example for an amputee subject. Predictions
shown for all five DOAs of the prosthetic hand on the test set.
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Figure 8.10: Offline reconstruction accuracy results. (Top panel) reconstruction accuracy on
different datasets (training, validation, and test) for individual subjects; (middle
panel) offline reconstruction accuracy of individual DOAs on test set for pooled
subjects; (bottom panel) reconstruction accuracy results on test set for individual
DOAs and participants. AB, able-bodied; Amp, amputee; R2, coefficient of deter-
mination (see Section C.2.2); Bars, medians; error bars, 95% confidence intervals
estimated via bootstrapping (1000 iterations); n.s., non-significant difference.

dation and test sets was slightly inferior to that on the training set. The middle panel

of the same figure provides a summary of the offline accuracy achieved on the test

156 real-time finger position proportional control



set for individual DOAs. The last column summarises the overall performance, sepa-

rately for the able-bodied and amputee groups. Differences in performance between

the two groups were not significant (p > 0.05, Wilcoxon rank-sum test). The highest

offline decoding accuracy was achieved for the ring/little fingers DOA, followed by

the middle finger DOA. The worst performance was observed for the thumb flexion

DOA. This pattern was generally consistent across participants in both groups. This

can be verified by inspection of the last row of the figure, where decoding results on

the test set are presented separately for each DOA and participant.

The EMG sensor subset selection for individual subjects is illustrated in Figure

8.11 using a matrix representation. The rightmost column of the graph shows the

average selection frequency of individual sensors. The number of used sensors varied

from eight (subject “Amp 2”) to 16 (subject “AB 9”) and had a median value of 12.

Finally, the tuning of the exponential smoothing and regularisation parameters for

each participant is shown in Figure 8.12.

8.3.2 Task 1: posture matching

Ten able-bodied and two transradial amputee subjects took part in the real-time pos-

ture matching task. Performance results for this task are summarised in Figure 8.13.

Two metrics are reported, namely the normalised score received by the participants

at the end of each trial (see Equation 8.3) and the average L1 distance between the

target and executed postures during the evaluation phase of the trials. As was to

be expected, glove control performance was significantly higher than that of EMG

control for both performance metrics (p < 0.001, Wilcoxon signed-rank tests). The

average normalised scores across all participants, blocks, and trials were 35.95% and

67.97%, respectively, for EMG and glove control. Able-bodied subjects performed

significantly better than amputees in both control modes (p < 0.01, Wilcoxon signed-

rank tests). The mean normalised scores with EMG control were 36.95% and 30.90%,

respectively, for the able-bodied and amputee groups. For glove control, the same fig-

ures were 68.37% and 65.94%, respectively. A video recording showing an amputee

participant performing six trials with EMG control is provided in the supplementary

material (SV4, see Appendix E).

Learning curves during the posture matching task are depicted in Figure 8.14, in

which average performance scores are plotted against the experimental block num-

ber (ranging from one to six). In all cases, an improvement in performance can be

observed as the block number increases. A statistical comparison between early (i.e.

1-2) and late (i.e. 5-6) blocks is further provided in Figure 8.15. For EMG control,

the normalised scores were on average higher in late as compared to early blocks,
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Figure 8.11: Sensor selection for individual subjects. The selected EMG sensors are shown
column-wise as red boxes for 10 able-bodied and two amputee subjects. The
rightmost column represents the average selection frequency of individual sen-
sors. Black boxes represent unavailable sensors due to limited space on amputee
participants’ forearm. The reader is referred to Figure 5.1 (top row) for details on
sensor placement.
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Figure 8.12: Hyper-parameter optimisation. The selection of the post-processing smoothing
parameter α and regularisation parameter λ is shown for all subjects (10 able-
bodied, two amputees). Points, individual samples; straight lines, medians; solid
boxes, interquartile ranges; whiskers, overall ranges of non-outlier data (1.5 IQR).

although this difference was not significant (p > 0.05). Conversely, the decrease in

average L1 distance between target and executed postures from early to late blocks

was significant (p < 0.05). For glove control, both metrics were significantly improved

in late blocks (p < 0.001). All statistical comparisons were performed using Wilcoxon

signed-rank tests (see Section 8.2.6.3).
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Figure 8.13: Posture matching task results. (Left column) performance scores shown for indi-
vidual subjects by means of normalised scores (top row) and L1 distances (bot-
tom row); (right column) summary results for able-bodied and amputee subjects
for EMG and glove control. Bars, means; error bars, 95% confidence intervals
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p < 0.01.

8.3.3 Task 2: object pick and place

Only six able-bodied subjects completed the pick and place task. The remaining four,

as well as both amputee participants, did not perform this task as they did not suc-

ceed in the initial screening trial (see Section 8.2.6). One common cause of failing the

screening trial was the inability to reliably execute one of the four required grips,

for example, the cylindrical grip which was necessary for grasping the water bottle.

Nevertheless, all participants were able to execute 2-3 grips. A video recording show-
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ing one trial of the experiment with an able-bodied participant is provided in the

supplementary material (SV5, see Appendix E).
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Performance results for the six able-bodied participants who completed the task

are presented in Figure 8.16, by means of CRs and CTs (shown in the left and right

columns of the graph, respectively). For EMG control, the median CR was 80%. The

median CT for successful trials was 42.04 sec. For data glove teleoperation, the me-

dian CR was 100% with a median CT of 22.00 s.

The average CT is plotted against the trial number in Figure 8.17. For both EMG

and glove control modes, the average CT decreased within the course of the exper-

iment. A comparison between early (i.e. 1-2) and late (i.e. 9-10) trials is shown on

the right-hand side of the graph. The difference in median CT between early and

late trials was 10.41 s and 13.59 s, respectively, for EMG and glove control. Statistical

analysis (Wilcoxon rank-sum tests) revealed that the decrease was significant in the

case of glove control (p < 0.001); however, for EMG control, the average decrease

was marginally above the significance level (p > 0.05), most likely due to the small

sample size.

8.4 discussion

8.4.1 Impact

The study presented in this chapter investigated the feasibility of achieving continu-

ous finger position prosthetic control by using muscle activity recorded on the surface

of the forearm. In agreement with previous work (e.g. Smith et al., 2009; Cipriani

et al., 2011; Ngeo et al., 2013), it was shown that it is feasible to use surface EMG

measurements to decode finger position and subsequently use predictions to control

individual digits of a prosthesis. The controlled DOAs included flexion of all fingers

and thumb opposition. The ring and little fingers were controlled together because

they are mechanically coupled in the prosthetic device.

During the posture matching task, participants were required to execute hand pos-

tures for which training data were not available (see Figures 8.1 and 8.5); therefore,

this study provides a first proof-of-principle demonstrating the ability of the pro-

posed scheme to attain prosthesis control in a continuous space of finger movement.

Furthermore, it is shown that the proposed approach can enable a prosthesis user

to accomplish functional tasks; for example, grasping, relocating, and releasing ob-

jects. Only six able-bodied participants performed the pick and place task, since the

remaining four able-bodied and both amputee subjects failed the initial screening

trial. Nevertheless, all participants were able to execute at least two of the four grips

included in the screening trial (i.e. index pointer, cylindrical, lateral, and tripod grips).
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8.4.2 Limitations and clinical implications

A number of simplifications were made in this study: firstly, the participants’ forearm

was kept still throughout the experiment; secondly, during the pick and place task,

the prosthetic hand was attached to the participants’ contralateral arm, so as to avoid

muscle fatigue due to the increased weight of the prosthesis used; thirdly, no wrist

movement was involved in the study. These simplifications would not occur in a real-

istic scenario and, thus, it is expected that myoelectric performance would deteriorate

given the non-stationarities that are likely to be induced by removing them (Amsüss,

2014). Even under ideal, lab-controlled conditions, only six out of twelve participants

were able to complete the pick and place task. Importantly, both amputees failed

the initial screening trial. Although offline analysis suggested that the performance

of able-bodied and amputee participants was comparable (see Figure 8.10), a signif-

icant difference between the two groups was observed during real-time prosthetic

control (see Figure 8.13). On the other hand, for participants who completed the

pick and place task, performance was only slightly worse than that achieved with

classification-based control (contrast Figures 5.8 and 8.16). This finding is encourag-

ing, taking into account that once the intended motion has been predicted in the case

of classification, the activation sequence of the fingers is hard-coded and, thus, opti-

mal. Taking all the above into consideration, it can be argued that the efficacy of a

proportional finger control scheme might depend on individual characteristics of the

user, and thus, be subject-specific. Additional experiments with a larger number of

amputee participants are required to validate the clinical viability of the proposed

method.

8.4.3 User adaptation

In agreement with previous work (Pistohl et al., 2013; Powell, Kaliki, and Thakor,

2014; Pistohl et al., 2015), it was found that the provision of continuous feedback

during real-time prosthetic control can result in performance improvement over time.

In this study, two types of feedback were provided: visual, since the prosthetic hand

was within the visual field of the participant and responded to their control input;

and a performance score, which was presented to the participants at the end of each

trial of the posture matching task. A learning effect was observed in both tasks (see

Figures 8.14, 8.15, and 8.17).

Pistohl et al. (2013) made use of a similar performance measure to the one used in

the current study and reported an increase from 0% to 40% after approximately 200

trials. In the present study, the average performance increased from 33.47% to 36.49%

8.4 discussion 163



after 108 trials (i.e. 6 blocks × 18 trials/block) with EMG control. This improvement

is smaller than the one reported by Pistohl et al., but this should not be surprising;

Pistohl et al. used a fixed and non-intuitive mapping from muscle activity to the

DOAs of the prosthetic hand, and thus, participants had to learn the underlying con-

trol principle of the interface from scratch. Conversely, the current study employed

a mapping that was based on a regression model trained with subject-specific data;

therefore, this mapping was intuitive for the user from the beginning of the task. In

the latter case, the improvement might be primarily attributed to participants getting

used to the protocol and fine-tuning their control strategy to increase their perfor-

mance. A similar improvement was also observed for the data glove control mode

(see Figures 8.14 and 8.15).

8.4.4 On the use of inertial measurements for finger position proportional control

It was shown in Chapter 3 that the use of inertial data can improve classification-

based myoelectric control. Although one might expect that the same could hold for

the case of proportional finger control, preliminary offline analysis provided evidence

for exactly the opposite; for that reason, only EMG recordings were considered in this

study.

The offline reconstruction accuracy of models trained by combining EMG and in-

ertial measurements is shown in Figure 8.18 and also compared to the case of EMG-

based decoding. It can be observed that while the inclusion of inertial data can im-

prove training accuracy, performance on the validation and test sets is severely deteri-

orated. One possible explanation for this finding is that the inclusion of inertial data

may result in model overfitting with regards to arm posture. Although the same has

been proposed for classification, it has also been shown that collecting training data

with dynamic motions can help overcome this issue (Radmand, Scheme, and Engle-

hart, 2014). For regression tasks, however, where the target signal is continuous, the

posture overfitting effect may be considerably more profound than with classification.

Another possible reason causing the lack of generalisation may be accelerometer and

gyroscope drifting over time (see Section 2.3.2). By using the same rationale as before,

it is likely that regression predictions are considerably more affected by such drift-

ing issues as compared to classification tasks. Properly addressing these challenges

might provide a means of achieving multi-modal finger proportional control, which

could potentially largely improve decoding accuracy, and is therefore regarded as a

promising direction for future research.
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Figure 8.18: Offline reconstruction accuracy with EMG and EMG-IMU data. Results shown
for all participants on training, validation, and test sets. Bars, medians; error bars,
95% confidence intervals estimated via bootstrapping (1000 iterations).

8.4.5 On the relationship between offline and real-time performance metrics

In the context of myoelectric classification, it has been shown that a discrepancy exists

between offline accuracy and real-time control performance metrics (see Section 5.4.4).

With regards to 2-DOF wrist proportional control, Jiang et al. (2014b) showed that

only a weak correlation exists between offline R2 and metrics characterising real-time

prosthetic control performance, such as CR, CT, overshoots, throughput, speed, and

efficiency coefficient (see Section 2.5.4).

To assess whether the same holds for proportional finger position control, offline

reconstruction accuracy scores were compared to performance metrics during the

posture matching task. The average L1 distance and performance scores were com-

puted for each subject across all trials and blocks and compared to the respective

offline reconstruction accuracy score for the same subject on the test set. The results

of this analysis are presented in Figure 8.19. In agreement with Jiang et al. (2014b),

a very weak correlation was found between offline accuracy and real-time perfor-

mance metrics. Contrasting the results of Figure 8.19 to those of Figure 5.12, in which

a similar analysis was performed for classification-based prosthetic control, it can

be deduced that for regression tasks it might be even more difficult to predict the

quality of real-time prosthetic control purely based on offline analyses. This finding

reiterates the need for testing ML-based prosthetic control methodologies in real-time

by designing and making use of realistic experimental paradigms (Jiang et al., 2012b;

Jiang et al., 2014b; Ortiz-Catalan et al., 2015; Vujaklija et al., 2017).
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Figure 8.19: Relationship between offline reconstruction accuracy (i.e. multivariate R2) and
real-time performance metrics in the posture matching task (L1 distance and nor-
malised score). Points, individual observations (i.e. subjects); lines, linear regres-
sion fits; translucent bands, 95% confidence intervals estimated via bootstrapping
(1000 iterations).

8.4.6 Future work

This chapter investigated and evaluated a non-invasive myoelectric scheme based

on continuous position control of individual digits. The proposed controller has two

main advantages: intuitiveness and dexterity. By training regression models using

muscle signals and glove data the mapping from muscle to finger domain is natural

and intuitive. In other words, the user does not need to learn a new mapping, unlike

some previous studies where different wrist movements were mapped into specific

digit functions (e.g. Matrone et al., 2012). Dexterity naturally arises from the fact

that the user can control individual fingers in a continuous space. One particular

advantage of this scheme over classification-based methods is the ability to move

from one type of grip to another without the need for executing an intermediate

hand opening action. The high level of dexterity, however, comes at a price; as it has

become evident from the experimental results presented in this chapter, decoding

individual finger positions is a much more challenging task than classifying EMG

activity into hand postures. In its current form, the proposed scheme is unlikely

to be suitable for adoption by amputees, as significant improvements are required to

ensure its clinical viability. Nevertheless, given the potential of this method to achieve

natural and truly dexterous prosthetic control, it is considered worthwhile to pursue

further research in this direction.

One possible avenue for future research is to attempt improving the performance

of the approach by using an alternative way of measuring muscle activity. It was
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found in this study that, unlike hand posture classification where good performance

can be achieved with a small number of sensors (see Chapter 5), a large number of

electrodes was typically selected by the SFSS algorithm (see Figure 8.11). Therefore,

it would be worthwhile exploring whether improved reconstruction accuracy can be

achieved by recording muscle activity with high-density EMG arrays, which have

been successfully used in hand posture classification (e.g. Geng et al., 2014), wrist

kinematics decoding (e.g. Muceli and Farina, 2012; Muceli, Jiang, and Farina, 2014;

Hahne et al., 2014), proportional finger force control (Celadon et al., 2016), and real-

time, high-dimensional robot control (Ison et al., 2016). Moreover, force myography

is a technique developed recently which uses force-sensing resistors to estimate mus-

cle activity. This technique has already been used for hand/wrist motion (Radmand,

Scheme, and Englehart, 2016) and hand grip classification (Cho et al., 2016; Ghataurah

et al., 2017), as well as for finger movement trajectory reconstruction (Kadkhodayan,

Jiang, and Menon, 2016) with promising results. Thus, it shall be interesting to inves-

tigate whether it can be also used to enhance the performance of proportional finger

position control.

Finally, it is worth stressing that an invasive approach might indeed be required

to achieve robust finger position control. Intramuscular EMG recordings have been

previously used for proportional finger control of both virtual (Birdwell et al., 2015)

and robotic (Cipriani et al., 2014a) hands. Both of these studies, however, had the

following two limitations: firstly, they used a one-to-one mapping from individual

pairs of muscles to DOAs of the hand; secondly, they were limited to able-bodied

participants. An interesting avenue for future research would be to investigate the

potential benefit of using regression models to map the activity of multiple muscles

into the activation of the prosthesis DOAs, as opposed to the previously proposed

one-to-one mapping scheme. Another compelling possibility would be to test the

performance of proportional finger control in patients having undergone targeted

muscle reinnervation (see Section 2.4.2.5). Kuiken et al. (2009) demonstrated that

hand/wrist movements can be classified in targeted muscle reinnervation patients

with high accuracy. Nevertheless, whether robust individual finger position control

can be achieved using a similar approach remains to be investigated.
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9
C O N C L U S I O N

This thesis presented several proposals aimed at advancing the state-of-the-art in

machine learning (ML)-based myoelectric control of upper-extremity prostheses. The

main body of work was centred around the two objectives established in Section 1.2:

1. Improve the performance of classification-based myoelectric grip control.

2. Develop and evaluate a framework for continuous finger position control of

multiple joints.

The following section provides an overview of the work addressing these two ob-

jectives (Chapters 3-5 and 6-8, respectively), and points out the contributions of the

thesis.

9.1 overview and contributions

9.1.1 Classification-based myoelectric grip control

The concurrent use of surface electromyography (EMG) and inertial measurement units

(IMUs) was proposed in Chapter 3 for improving the performance of myoelectric grip

classification. Although accelerometers had been previously used in offline decoding

of hand/wrist motions (e.g. Fougner et al., 2011; Geng, Zhou, and Li, 2012; Rad-

mand, Scheme, and Englehart, 2014), this was the first work exploiting additional

intertial sensors, such as gyroscopes and magnetometers. More importantly, it was

demonstrated for the first time, that the concurrent use of EMG and inertial signals

can significantly improve classification performance during real-time prosthetic hand

control. The relationship between the different sensing modalities was investigated

and it was suggested that they partially encode complementary information of the

same underlying phenomenon, that is, the muscular activity.

In the field of myoelectric control, the linear discriminant analysis (LDA) model is

regarded as the “gold standard” for classification, and with good reason; it is easy

to implement, extremely efficient in computational terms during both training and

testing, and can achieve top-level accuracy that is often comparable to that of more

sophisticated algorithms. Nevertheless, in its core lies a fundamental assumption that

is most often violated in practice. The work presented in Chapter 4 demonstrated that
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relaxing this assumption and adopting the regularised discriminant analysis (RDA) clas-

sifier can lead to significant improvement in classification accuracy (CA) of myoelectric

decoders. The offline CA achieved with RDA on a benchmark dataset (Atzori et al.,

2014) was superior to that reported previously (Atzori, Cognolato, and Müller, 2016;

Geng et al., 2016).

One factor limiting the clinical adoption of ML-based myoelectric systems is the

requirement for a large number of EMG electrodes. The work presented in Chapter

5 was the first to demonstrate that it is feasible to decode in real-time five hand

grips with high accuracy by using a single pair of surface EMG-IMU sensors. A

novel framework for hyper-parameter optimisation and confidence-based prediction

rejection was also introduced. The proposed strategy aims to minimise the rate of

unintended hand motions via controlling the false positive rate (FPR) of the decoder in

a class-specific fashion. The clinical implications of the specific study are of particular

importance, since it was demonstrated that ML-based grip control can be adopted in

existing commercial solutions subject to minimal hardware modifications.

9.1.2 Continuous finger position control

Although classification-based myoelectric control can offer a radical improvement in

the quality of life of upper-extremity amputees, the use of regression methods has

been suggested as a potential means of achieving more intuitive and dexterous myo-

electric control (Fougner et al., 2012). Earlier work in this direction primarily focused

on wrist movement, while finger position control has received less attention. In Chap-

ter 6, a rigorous analysis was carried out on reconstructing finger joint angles from

surface EMG measurements with the aim of controlling individual degrees of actuation

(DOAs) of a prosthetic hand, including thumb opposition and flexion of individual

fingers. An exhaustive EMG feature comparison was also performed, which had not

been previously reported for this particular task.

The concepts of muscle and postural synergies have been recently used in the con-

text of myoelectric control as a means of improving the generalisation of decoding

algorithms. However, the methods used in previous work have been almost exclu-

sively unsupervised which may lead to suboptimal results. A supervised, simultane-

ous input-output linear dimensionality reduction method was proposed in Chapter

7, which is optimal with respect to the task at hand, that is, joint angle reconstruction

from EMG measurements. The proposed methodology, which is novel in this context,

can be applied to regression problems with multidimensional inputs and outputs,

including, but not limited to, EMG control of multi-articulated prosthetic hands.
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A proof-of-principle of the proposed continuous finger control scheme was demon-

strated in Chapter 8 and the efficacy of the approach was evaluated with real-time

control experiments including both able-bodied and amputee participants. It was

shown for the first time that this scheme can allow users to execute postures not

present in the training dataset, as well as complete functional tasks, such as grasping

and releasing objects.

9.2 limitations and future perspectives

This section outlines the limitations of the thesis, proposes potential ways of address-

ing them, and finally presents general reflections on future research directions.

9.2.1 Prosthetic wrist control

Wrist control was not considered in this work. Wrist dexterity is of great significance

for efficient prosthetic control and has been a long-standing requirement of prosthe-

sis users (Atkins, Heard, and Donovan, 1996). Montagnani, Controzzi, and Cipriani

(2015) showed that a combination of a 2-degree of freedom (DOF) wrist (pronation/

supination and flexion/extension) with a single-DOF hand allows for overall limb

function comparable to that of a single-DOF wrist (pronation/supination only) with

a multi-DOF hand. Their study also demonstrated that the lack of dexterity in wrist

movement leads to additional, compensatory movements of other parts of the body

(e.g. arm, shoulder). Prosthetic wrist control has been extensively investigated in the

research community with promising results; many studies have demonstrated the

feasibility of accurately reconstructing 2-3 wrist DOFs in real-time (e.g. Jiang et al.,

2014a; Ameri et al., 2014b; Smith, Kuiken, and Hargrove, 2016; Hahne, Markovic, and

Farina, 2017, see Section 8.1.1 for a detailed review).

Although wrist movement was not considered here, it would be rather straightfor-

ward to integrate it into both frameworks investigated. The proposed scheme for grip

classification adopted a natural control approach. In other words, to select a desired

grip the user has to activate their muscles in the same way that they would natu-

rally do with an intact limb. It is worth noting that this is fundamentally different to

remapping wrist movements into grip types, which had been previously proposed by

some studies (e.g. Shenoy et al., 2008). Similarly, simultaneous control of wrist and

finger DOFs could be combined into a unified proportional control architecture. If

successful, this approach is expected to lead to a great level of dexterity and, thus, is

regarded as an avenue well worth exploring in the future.
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9.2.2 Decoder adaptation

One important limitation of this work was the lack of decoder adaptation over time.

In other words, all ML models considered here were initially fitted using a train-

ing dataset and subsequently kept fixed throughout the experimental sessions. This

strategy can prove problematic as it is well known, and has also been experimentally

verified, that the performance of ML-based myoelectric decoders degrades monoton-

ically with time (Kaufmann, Englehart, and Platzner, 2010; Amsuss et al., 2013). This

is attributed to various sources of non-stationarity present in EMG signals which can

be due to, among other things, the limb position effect (e.g. Fougner et al., 2011, see

also 3.1.1), electrode shift (Hargrove, Englehart, and Hudgins, 2008; Young, Hargrove,

and Kuiken, 2011), differences in contraction levels (Scheme and Englehart, 2013a),

and muscle fatigue (Kumar, Pah, and Bradley, 2003).

A significant amount of work has been carried out towards designing adaptive

myoelectric classifiers (e.g. Sensinger, Lock, and Kuiken, 2009; Chen, Zhang, and

Zhu, 2013; Zhang and Huang, 2015; Liu et al., 2016a; Liu et al., 2016b; Vidovic et al.,

2016; Zhu et al., 2017; Zhai et al., 2017). In their majority, the proposed algorithms are

unsupervised; in other words, decoder adaptation takes place by using unlabelled

data made available at test time. Such algorithms could be seamlessly integrated into

the classification-based grip control scheme proposed in Chapter 5. One possibility

of extending this work would be to start with a small training dataset and an LDA

model, that is, assume a pooled covariance matrix so as to avoid overfitting issues

due to the small size of the initial dataset. Then at test time, use classifier predictions

made with high confidence (Sensinger, Lock, and Kuiken, 2009) to update mean

vectors and covariance matrices in a class-specific fashion, thus shifting towards the

general case of the class-conditional Gaussian models (i.e. RDA/quadratic discriminant

analysis (QDA)).

For regression-based applications, such as wrist and/or finger proportional control,

decoder adaptation is more challenging, since in this case updating model parameters

requires access to ground truth (i.e. labelled) data. In other words, for every model

update, novel training data have to be collected in the form of a short recalibration

phase which can prove cumbersome for the user. Some initial work has been done in

this direction for proportional finger force (Gijsberts et al., 2014b) and wrist position

(Hahne et al., 2015), but not for finger position control.
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9.2.3 Towards minimal calibration for prosthesis use

Minimising calibration times for prosthesis users is one of the main challenges that

researchers in the myoelectric control community will need to address in the future.

For the real-time experiments presented in Chapters 5 and 8, training data collection

lasted 40 min and 45 min, respectively. This amount of training time may prove dis-

couraging, or even worse, prohibitive for many users, especially if the system needs

to be recalibrated frequently. Some previous work has attempted to tackle this issue

by proposing various methods for training classifiers capable of generalising to novel

subjects, including, but not limited to, bilinear models (Matsubara and Morimoto,

2013), decision trees (Gibson, Ison, and Artemiadis, 2013), adaptive support vector

machines (Tommasi et al., 2013), and canonical correlation analysis (CCA) (Khushaba,

2014). A promising research direction for addressing this challenge in the future

might be via using techniques from the fields of domain adaptation, which concerns

dealing with problems in which data distributions are different in the training and

test sets (Daumé III and Marcu, 2006). To this end, Du et al. (2017) proposed a con-

volutional neural network-based domain adaptation framework and demonstrated

promising results in achieving classification generalisation to novel users.

9.2.4 Sensory feedback

The use of artificial sensory feedback during prosthetic control was not considered in

this work. A great amount of previous research has proposed various means of pro-

viding sensory feedback to prosthesis users including both non-invasive (e.g. Saun-

ders and Vijayakumar, 2011; Cipriani et al., 2014b; Ninu et al., 2014; Pistohl et al., 2015;

Markovic et al., 2017) and invasive methods based on nerve stimulation (Rossini et

al., 2010; Marasco et al., 2011; Raspopovic et al., 2014; Tan et al., 2014; Ortiz-Catalan,

Håkansson, and Brånemark, 2014a; Schiefer et al., 2016).

There has been experimental evidence that provision of artificial sensory feedback

can enhance prosthetic control when visual information is not available (Ninu et al.,

2014; Pistohl et al., 2015; Schiefer et al., 2016), under uncertainty (Saunders and Vi-

jayakumar, 2011), or when executing complex tasks (Markovic et al., 2017). Moreover,

transradial body-powered prosthesis users have expressed a desire for artificial limbs

that “require less visual attention to perform certain functions” (Atkins, Heard, and Dono-

van, 1996). Although the functional benefit of artificial sensory feedback has been

debated (Farina and Aszmann, 2014), it is generally accepted that it can increase

the sense of ownership and embodiment of a prosthetic limb (Schiefer et al., 2016;

9.2 limitations and future perspectives 173



Marasco et al., 2011) and can also reduce the level of phantom limb pain experienced

by amputees (Dietrich et al., 2012).

With regards to the work presented in this thesis, an intriguing direction for future

investigation shall be the provision of multi-channel feedback conveying informa-

tion about individual digit forces during proportional finger control. To this end,

Raspopovic et al. (2014) inserted thin polyimide electrodes into the median and ul-

nar nerves of an amputee’s residual limb. These two stimulation sites were used

to provide feedback about the tension of the thumb/index fingers and little finger,

respectively, of a robotic hand that was controlled in real-time by the participant

using his EMG activity. The technique proposed by Raspopovic et al. is promising

for future use in proportional finger control paradigms, since it allows for selective,

multi-channel nerve stimulation. Whether providing force feedback for all available

digits can be beneficial for myoelectric control remains, however, to be investigated.

9.2.5 On bridging the gap between academia and industry

At the time of writing, the gap between academic research in myoelectric control and

industrial adoption, first pointed out by Jiang et al. (2012b), still remains. With the

only exception being the Coapt Complete Control™ system (Coapt Engineering, LLC,

2013, see Section 2.4.1.3), two-site EMG control with mode switching (see Section

2.4.1.1) remains the preferred choice of the majority of upper-limb prostheses man-

ufacturers. Thus, the question that naturally arises is: “what can researchers do to

bridge this gap?” The answer to this question is rather simple; ensure that their pro-

posed algorithms are reliable and robust under realistic environmental conditions (Jiang

et al., 2012b).

The first step in a researcher’s pipeline when proposing a novel ML-based method

for myoelectric control typically concerns experimenting with datasets offline and

evaluating performance based on standard metrics from the fields of statistics and

ML. However, it has been demonstrated that currently used offline metrics do not

correlate and, therefore, fail to predict myoelectric performance during real-time con-

trol (Jiang et al., 2014b; Ortiz-Catalan et al., 2015; Vujaklija et al., 2017). With this

discrepancy being established, researchers need to seriously reconsider their current

evaluation approaches and make significant progress towards developing appropri-

ate metrics that could bridge the gap between offline analyses and real-time control ex-

periments. One notable example was discussed in Section 5.4.4, where it was pointed

out that although the majority of real-time classifiers are implemented using some

sort of confidence-based rejection, little effort has been made in selecting algorithms

or tuning hyper-parameters such that the quality of estimated posterior probabili-
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ties is optimised. To this end, it was found that the cross-entropy loss (CEL), which

is closely related to the Kullback–Leibler divergence between a target and an esti-

mated probability distribution (see Section B.2.2), exhibited stronger correlation with

a real-time performance measure, in this case completion time (CT), as compared to the

typically used CA score. Note that these two metrics, that is, CA and CEL may often

yield contradictory results in the context of algorithmic comparisons (an example is

shown in Figure 5.4); therefore, it is evident that the choice of metric is crucial for

algorithm/model selection and/or hyper-parameter tuning.

In the case of regression, this problem may be even more challenging. It was shown

in Figure 8.19 that offline reconstruction accuracy and prosthetic control performance

metrics exhibit very weak correlation, if any at all. The problem of linking the two

types of measures is in this case exacerbated by the curse of dimensionality; the qual-

ity of predictions in a multidimensional space is characterised by a single scalar (e.g.

multivariate coefficient of determination (R2)), without taking into account the relative

effect of individual target variables (i.e. joint angles or forces) on prosthetic control

performance. To illustrate how this approach may prove problematic, consider an

imaginary scenario where one has to choose between two regression models for de-

ployment in a finger proportional controller. Suppose that both decoders achieve

very similar accuracy scores, with the only difference being that the former yields

poor predictions for the thumb opposition DOF and accurate estimates otherwise,

whereas the latter yields poor predictions for the little finger DOF, but achieves high

performance for decoding thumb opposition movement. These two models may be

characterised by almost identical offline accuracy scores, but it is evident that from a

functional perspective the latter model is clearly preferable given the importance of

thumb opposition in human grasping. A potential solution to this problem might be

weighting individual DOFs (i.e. dimensions) differently when calculating the overall

accuracy score; however, choosing the weights in an appropriate manner may not

always be straightforward.

On the other hand, despite the fact that real-time control experiments are to be

trusted more and prioritised over offline analyses, they often suffer from their own

limitations. Laboratory experiments typically take place under extremely controlled

conditions which do not reflect the challenges present in the real world. Moreover,

they often last only for a few hours —-although some studies do consider sessions

over a few consecutive days—, and as a result, it is impossible to assess the long-

term durability and robustness of the tested interface/controller. Ideally, prosthetic

control experiments should take place outside the lab, in the wild. Modern wire-

less technologies allow for signal acquisition, processing, and robotic hand control

using just a laptop computer and without the need for implementing prototype ap-
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plications into embedded systems. Furthermore, portable computing devices, such as

single-board microcontollers and computers (e.g. Arduinos and Raspberry Pis), are

nowadays available at a low cost. These could be used for prototyping myoelectric

control interfaces which could be then taken home by patients and used/tested over

extended periods of time.

9.3 epilogue

This thesis proposed computational methods for improving the control and func-

tionality of hand prostheses. While some aspects of this work are already applicable

to existing prosthetic solutions, others require further investigation and evaluation.

However, they all have the following in common; they, hopefully, make an infinitesi-

mal contribution towards the collective goal of developing dexterous and intuitively-

controlled prosthetic hands, which have the power to improve the quality of life of a

large number of upper-extremity amputees worldwide.
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A P P E N D I X





A
H A R D WA R E

This appendix introduces the hardware used in all experiments carried out in the

thesis. Section A.1 describes the system used for recording electromyographic (EMG)

and inertial data; Section A.2 provides details about the prosthetic and robotic hands

used in the experiments; finally, Section A.3 provides a description of the data glove

used to record hand kinematic data.

a.1 surface electromyography and inertial measurement units

a.1.1 Delsys Trigno IM Wireless EMG system

The Delsys® TrignoTM IM Wireless EMG System is a platform for recording, digitis-

ing, and transmitting EMG and inertial data. The system comprises a base station and

16 wireless sensors which are shown in Figure A.1. Each sensor incorporates an EMG

electrode and a 9-degree of freedom (DOF) inertial measurement unit (IMU), that is, a tri-

axial accelerometer, gyroscope, and magnetometer measuring three-dimensional (3D)

acceleration, angular velocity, and magnetic field, respectively; therefore, the number

of raw signals associated with each EMG-IMU sensor is 10 (e.g. see Figure 3.3).

Figure A.1: Delsys® TrignoTM IM system. (Left) the full platform including the base station
and sensors; (right) a single Trigno IM sensor incorporating an EMG electrode
and an IMU. The IMU comprises three tri-axial components, that is, an accelerom-
eter, a gyroscope, and a magnetometer providing 3D measurements of accelera-
tion, angular velocity, and magnetic field, respectively. Photographs provided by
and used with permission from Delsys, Inc. (Delsys, Inc., 1993).
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The EMG electrodes have an input range of 11 mV, 16 bit resolution, and a band-

width of 20-450 Hz. The electrodes use parallel bar technology comprising a total of

four contacts with a fixed 1 cm spacing. The EMG hardware sampling rate is 1111 Hz.

The IMUs also use 16 bit resolution and have hardware sampling rates of 148 Hz for

the accelerometers and gyroscopes and 74 Hz for the magnetometers. Access to the

raw data is obtained via dedicated software provided by the manufacturer that im-

plements a TCP/IP server (i.e. “Trigno Control Utility”). The Wi-Fi transmission range

of the sensors is 40 m (Delsys, Inc., 1993).

a.2 prosthetic and robotic hands

a.2.1 Touch Bionics robo-limb

The Touch Bionics robo-limb™ is an externally-powered, underactuated (11 DOFs, 6

degrees of actuation (DOAs)) anthropomorphic hand. It comprises 5 motors controlling

the flexion/extension of the digits and an additional motor controlling the rotation

of the thumb (see Figure A.2).

The hand operates under 7.4 V nominal voltage with a maximum current consump-

tion of 7 A. The robo-limb weighs 507 g and has a maximum load limit of 90 kg. It can

be powered by either a rechargeable set of batteries or an external power supply unit.

During all experiments, the hand was externally powered with a doubly-insulated

power supply unit which had been previously certified for medical experiments.

The robo-limb can be controlled by a computer via a CAN bus interface in an

open-loop fashion. The control commands take the following form:

ID - Action - PWM,

where ID specifies the desired DOA to be activated (0-6), Action indicates the desired

motion (open-close-stop), and PWM corresponds to the desired pulse width modula-

tion level to be applied to the specified motor (in the range [10, 127]) and controls the

velocity of movement. Whenever a motor current exceeds a pre-defined threshold set

by the manufacturer, the respective digit motion is suspended. This protects the mo-

tors from overheating and also prevents the hand from crushing objects it may come

in contact with (Touch Bionics, Inc., 2003).

a.2.2 Prensilia IH2 Azzurra hand

The Prensilia IH2 Azzurra hand is an externally-powered underactuated (11 DOFs, 5

DOAs) anthropomorphic hand. It comprises 4 intrinsic motors controlling the flexion

180 hardware



Figure A.2: Touch Bionics robo-limb™ prosthetic hand (right-hand model). Photograph pro-
vided by and used with permission from Touch Bionics Inc. (Touch Bionics, Inc.,
2003).

Figure A.3: Prensilia IH2 Azzurra hand (left-hand model). Palmar and dorsal views of the
hand are shown. Photographs provided by and used with permission from Pren-
silia S.R.L. (Prensilia, S.R.L., 2009).

and extension of five digits (the ring and little fingers are mechanically coupled) and

an additional motor controlling the rotation of the thumb.

Each finger has two phalanxes and is actuated by a tendon running inside them

(see Figure A.3). The hand includes various sensors and encoders measuring finger

positions, motor currents, and tendon tensions.

The hand weighs 640 g and operates under 9 V nominal voltage with a maximum

current consumption of 5 A. It can be powered by a standard power supply unit.

The communication between the IH2 Azzurra hand and a PC is achieved via an

RS232 serial protocol. The hand supports various control modes, including individ-

ual finger joint angle control, tension control, motor current control, and whole hand

posture control. For the latter mode, several grasps are pre-programmed in the hard-

ware, including cylindrical, tripod, bi-digit, lateral, and “thumb up“ grasps (Prensilia,

S.R.L., 2009).
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a.3 hand kinematics recording

a.3.1 CyberGlove Systems CyberGlove II

The CyberGlove Systems CyberGlove II is a motion capture system that uses resistive

bend-sensing technology to measure joint angles in the human hand. It comprises a

data glove and a wireless Bluetooth transmitter (see Figure A.4).

Two models are available comprising 18 and 22 sensors, respectively. The measured

angles include metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal

interphalangeal (DIP) (only for the 22-sensor model) joints, abduction between fingers,

palm arch, wrist flexion, and wrist abduction (see Table A.1). The data glove sensor

resolution is 1 degree and the hardware sampling rate is 90 Hz.

The CyberGlove II system operates under 8.4 V nominal voltage and is powered by

a rechargeable battery. The glove and interface unit weigh 70 g and 470 g, respectively.

The Wi-Fi transmission range of the system is 9.1 m (CyberGlove Systems, LLC, 1990).

a.3.1.1 Mapping data glove measurements to degrees of actuation of the IH2 Azzurra hand

A linear mapping between the measurements of the 18-DOF CyberGlove II and the

DOAs of the IH2 Azzurra hand was created for the purposes of the finger position

control experiment presented in Chapter 8. Due to cross-coupling between the data

glove sensors (Wang and Neff, 2013), the mapping was identified in a heuristic fash-

ion and its validity was subsequently verified with a test involving tele-operating the

robotic hand in real-time using the data glove.

Let x ∈ R18 denote the calibrated measurements returned by the data glove (see

Table A.1) and y ∈ R5 the digit position vector of the DOAs of the hand. The elements

in y are ordered as follows: y1, thumb rotation; y2, thumb flexion; y3, index flexion;

Figure A.4: CyberGlove Systems CyberGlove II data glove (right-hand model). The data glove
and interface unit are shown. Photograph provided by and used with permission
from CyberGlove Systems LLC (CyberGlove Systems, LLC, 1990).
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Table A.1: CyberGlove II sensors

18-sensor model 22-sensor model

Thumb rotation 1 1

Thumb MCP joint 2 2

Thumb PIP joint 3 3

Thumb-index abbduction 4 4

Index MCP joint 5 5

Index PIP joint 6 6

Index DIP joint - 7

Middle MCP joint 7 8

Middle PIP joint 8 9

Middle DIP joint - 10

Index-middle abduction 9 11

Ring MCP joint 10 12

Ring PIP joint 11 13

Ring DIP joint - 14

Middle-ring abduction 12 15

Little MCP joint 13 16

Little PIP joint 14 17

Little DIP joint - 18

Ring-little abduction 15 19

Palm arch 16 20

Wrist flexion 17 21

Wrist abduction 18 22

y4, middle flexion; y5, ring/little flexion. The calibrated data glove measurements

are then mapped into robotic digit positions via a linear mapping:

y = Ax. (A.1)
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The transformation matrix A was selected as follows:

A> =



0.639 0 0 0 0

0.383 0 0 0 0

0 1 0 0 0

−0.639 0 0 0 0

0 0 0.4 0 0

0 0 0.6 0 0

0 0 0 0.4 0

0 0 0 0.6 0

0 0 0 0 0

0 0 0 0 0.1667

0 0 0 0 0.3333

0 0 0 0 0

0 0 0 0 0.1667

0 0 0 0 0.3333

0 0 0 0 0

0 0 0 0 0

−0.19 0 0 0 0

0 0 0 0 0

0 0 0 0 0



(A.2)
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B
C L A S S I F I C AT I O N M E T R I C S

b.1 terminology

In statistics and machine learning (ML) classification is the process of assigning an ob-

servation represented by an input vector x to a category (i.e. class) cwhich is part of a

larger set of categories. In ML and pattern recognition, classification is a special case

of supervised learning. Usually, a training set containing examples whose class mem-

bership is known is required, which can be used to train a classification model before

the latter can be employed to generate predictions on a test set, which is a collection

of examples with unknown class membership. Binary classification is a special case

where there are only two possible classes. In the general case, the cardinality of the

class set can be an arbitrary natural number C (multi-class classification).

Assume a binary classification problem with a positive and a negative class. The

following terminology is introduced (Fawcett, 2006):

• Condition positive (P) is the number of real positive instances in the data.

• Condition negative (N) is the number of real negative instances in the data.

• True positive or hit (TP) is the number of real positive instances in the data

classified as positive.

• True negative or correct rejection (TN) is the number of real negative instances

in the data classified as negative.

• False positive, false alarm, or Type I error (FP) is the number of real negative

instances in the data classified as positive.

• False negative, miss, or Type II error (FN) is the number of real positive in-

stances in the data classified as negative.

b.2 metrics

In this section, some of the most common metrics used to characterise the perfor-

mance of a binary classifier are introduced:
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• True positive rate, sensitivity, recall, or hit rate:

TPR =
TP

P
=

TP

TP+ FN
(B.1)

• True negative rate or specificity:

TNR =
TN

N
=

TN

TN+ FP
(B.2)

• Positive predictive value or precision:

PPV =
TP

TP+ FP
(B.3)

• Negative predictive value:

NPV =
TN

TN+ FN
(B.4)

• False positive rate or fallout:

FPR =
FP

N
=

FP

FP+ TN
= 1− TNR (B.5)

• False negative rate or miss rate:

FNR =
FN

P
=

FN

FN+ TP
= 1− TPR (B.6)

• False discovery rate:

FDR =
FP

FP+ TP
= 1− PPV (B.7)

• False omission rate:

FOR =
FN

FN+ TN
= 1−NPV (B.8)

• Classification accuracy:

CA =
TP+ TN

P+N
=

TP+ TN

TP+ TN+ FP+ FN
(B.9)

• F1-score:

F1− score = 2 · PPV · TPR
PPV + TPR

=
2TP

2TP+ FP+ FN
(B.10)
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b.2.1 Confusion matrix

A confusion matrix is a table which can be used to visualise the performance of a

classifier. Columns and rows in the confusion matrix represent predicted and true

classes, respectively. The {i, j} cell of the matrix represents the number of instances in

class j predicted as class i. The structure of a confusion matrix for a binary classifier

is shown in Table B.1.

b.2.2 Cross-entropy loss

Most binary classifiers do not simply yield a classification prediction for a test exam-

ple (i.e. positive vs. negative class), but rather compute class posterior probabilities.

A typical example of probabilistic classification is logistic regression, wherein the prob-

ability of a test example being assigned to the positive class is modelled as follows:

p+ (x∗) = σ
(
w>x∗ + b

)
, (B.11)

where w and b are the model parameters, and σ (·) denotes the logistic function.

The cross-entropy loss (CEL), also called logistic loss, is used to evaluate the prob-

ability outputs of a classifier. It is closely related to the Kullback-Leibler divergence

between the empirical and estimated distributions of the examples in the test set. Let

y ∈ {0, 1} denote a binary target variable with a probability estimate for the ith exam-

ple p̂i = Pr (yi = 1). The CEL for a set containing N test examples is computed as:

CEL = −
1

N

N∑
i=1

(yi log (p̂i)) + (1− yi) log (1− p̂i) (B.12)

In the ideal case, that is, when all examples in a dataset are correctly classified and the

corresponding posterior probabilities are equal to 1, the CEL will be equal to 0. On

the other hand, there is no lower bound for CEL. That is, poor probability predictions

can yield arbitrarily low (i.e. large negative) scores.

b.2.3 Extension to multi-class problems

The extension of most classification metrics introduced in this section to the multi-

class case is not always trivial. Usually, the multi-class problem needs to be converted
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Table B.1: Confusion matrix for binary classification task

Predicted class
Positive Negative

True class
Positive TP FN
Negative FP TN

into multiple one-vs.-all binary problems, so that average metrics can be computed

across the set of binary classifiers.

Nevertheless, extensions of the CA and CEL metrics are rather straightforward.

Let y ∈ {1, . . . ,C} denote a discrete target variable which is encoded as a “one-of-K”

binary indicator matrix Y of dimensionality N×C, such that:

yi,c =

1, if sample i has label c,

0, otherwise.
(B.13)

The multi-class CA and CEL metrics are defined as follows:

CA =
1

N

N∑
i=1

C∑
c=1

yi,cŷi,c, (B.14)

and

CEL = −
1

N

N∑
i=1

C∑
c=1

yi,c log (p̂i,c) , (B.15)

where ŷi,c and p̂i,c denote the elements of the predicted indicator matrix Ŷ and their

respective posterior probabilities.

b.3 receiving operating characteristics analysis

b.3.1 The rejection option

In some applications it might be appropriate to avoid making classification decisions

unless they are predicted with high confidence. This can be achieved by setting a

rejection threshold θ for the class posterior probabilities such that a decision can only

be made if there is a class c whose posterior probability p̂c exceeds θ, i.e. p̂c > θ.
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Figure B.1: ROC curve example. ROC curves shown for three classifiers on the breast cancer
dataset (Street, Wolberg, and Mangasarian, 1993); logistic regression (blue), perfect
classifier (red), and random classifier (black). The optimal thresholds selected with
maximum distance from random classifier and minimum distance from perfect
classifier strategies are shown with a green and orange dot, respectively.

b.3.2 Receiving operating characteristic curves

The receiving operating characteristic (ROC) curve is a graphical plot that allows eval-

uating the trade-off between the TPR and FPR of a binary classifier as its rejection

threshold θ is varied. It is created by plotting the TPR against the FPR of the classifier

at various threshold settings. The area under the ROC curve is a classification metric

commonly used to summarise the curve information.

There exist various techniques for rejection threshold selection based on ROC anal-

ysis. Two common strategies are:

• Distance minimisation from perfect classifier selects the threshold with minimal

distance from the point (0,1), which corresponds to a perfect classifier.

• Distance maximisation from random classifier selects the threshold with maximal

vertical distance from the line x = y, which corresponds to a random binary

classifier.

An example of a typical ROC curve for a binary classification task is shown in Figure

B.1. Rejection thresholds selected with the two criteria introduced above are also

shown in the same plot.
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b.3.3 Extension to multi-class problems

Extension of ROC analysis to multi-class problems is not straightforward. Again, a

common strategy is to break down the multi-class problem into multiple one-vs.-all

binary classification tasks and perform separate ROC analyses within each of the

binary tasks (Landgrebe and Duin, 2007).
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C
R E G R E S S I O N M E T R I C S

c.1 terminology

In statistics and machine learning (ML) regression is a process of estimating the re-

lationship between a set of independent variables {x1, x2, . . . , xD} and a dependent

variable y, usually through a set of parameters θ = {θ1, θ2, . . . , θQ}:

y ≈ f (x,θ) . (C.1)

Linear regression (LR) is the simplest case where a linear relationship is assumed

between the independent and dependent variables. The model also assumes an error

variable ε that is unobservable and adds noise to the linear relationship:

y = θ01+ θ1x1 + . . .+ θDxD + ε = θ>x+ ε, (C.2)

where x = [1, x1, x2, . . . , xD] and θ = [θ0, θ1, θ2, . . . , θD]. The special case where there

is a signal independent variable x is called simple linear regression, as compared to

the general case where x is d-dimensional and which is called multiple linear regres-

sion (MLR) or multivariable linear regression. The target variable may be either single-

dimensional (i.e. scalar) or multidimensional (i.e. vector). The latter case is called

multivariate linear regression.

Nonlinear regression methods model the relationship between the independent and

dependent variables with nonlinear functions. Some examples of nonlinear regres-

sion include kernel ridge regression (KRR), Gaussian process regression, and support

vector regression with non-linear kernels.
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c.2 regression metrics

c.2.1 Sample mean and variance

Let x denote a single random variable and D = {x1, x2, . . . , xN} be a collection of

measurements of the variable (i.e. dataset). The sample mean and variance of x can be

estimated from the dataset as follows:

x̄ =
1

N

N∑
n=1

xn, (C.3)

and

σ2x =
1

N− 1

N∑
n=1

(xn − x̄)2 . (C.4)

c.2.2 Metrics

Assume a scalar target variable y and a dataset comprising N instances of the vari-

able with values y1,y2, . . . yN each associated with a predicted value by a regression

model ŷ1, ŷ2, . . . , ŷN. The following regression performance metrics are defined:

• Mean absolute error:

MAE =
1

N

N∑
n=1

|yn − ŷn| (C.5)

• Median absolute error:

MedAE = median (|y1 − ŷ1| , |y2 − ŷ2| , . . . , |yN − ŷN|) (C.6)

• Mean squared error:

MSE =
1

N

N∑
n=1

(yn − ŷn)
2 (C.7)

• Root mean squared error:

RMSE =

√∑N
n=1 (yn − ŷn)

2

N
(C.8)
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• Normalised root mean squared error:

NRMSE =
RMSE

ymax − ymin
=

√∑N
n=1(yn−ŷn)

2

N

ymax − ymin
(C.9)

• Variance accounted for, or explained variance score:

VAF = 1−
σ2y−ŷ

σ2y
(C.10)

• Coefficient of determination, or R2-score:

R2 = 1−

∑N
n=1 (yn − ŷn)

2∑N
n=1 (yn − ȳ)2

, (C.11)

• Correlation coefficient:

CC =

∑N
n=1 (yn − ȳ)

(
ŷn − ¯̂y

)√∑N
n=1 (yn − ȳ)2

√∑N
n=1

(
ŷn − ¯̂y

)2 (C.12)

c.2.2.1 Properties

The following metrics are non-negative by definition: MAE, MedAE, MSE, RMSE,

NRMSE, and CC. The CC metric is additionally right-bounded at 1. The metrics VAF

and R2 are right-bounded at 1, but can take arbitrarily large negative values.

The CC is scale and offset invariant. For that reason, its use as a regression perfor-

mance metric should be generally avoided.

c.2.2.2 Multivariate extensions

Various extensions exist for multivariate target variables. Some commonly used choices

include uniform or weighted averages across the target variable dimensions. In this

thesis, a multivariate version of R2 is extensively used, which is defined as follows:

R2MV = 1−

∑K
k=1

∑N
n=1 (yk,n − ŷk,n)

2∑K
k=1

∑N
n=1 (yk,n − ȳk)

2
, (C.13)

where K denotes the dimensionality of the target variable, yk,n and ŷk,n are the

nth observed and predicted values, respectively, of the kth output variable, and ȳk
denotes the sample mean of the kth output variable.
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D
E T H I C S P R O C E D U R E S A N D E X P E R I M E N TA L F O R M S

All experiments involving human participants were approved by the local Ethics

Committees of the School of Informatics, University of Edinburgh and School of

Electrical and Electronic Engineering, Newcastle University.

Prior to the experiments, all subjects read a participant information sheet and

signed an informed consent participation form. The forms used for one of the ex-

periments (Chapter 5) are attached in this appendix.
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Participant Information Sheet        September 2016 

 

 

 

 

 

 

Participant Information Sheet 
 

Study title: Prosthetic hand control with electromyography 

 

1. Aim of the study 

 

This study aims to analyse the different parameters of muscle activity and cognitive skills that allow a 

person to use their hands for daily life activities. The results of the study aim to enable amputees to 

learn how to control a prosthetic hand for functional movements. 

 

2. Execution of the study 

 

The data collection sessions will be conducted by researchers trained for this purpose. During the first 

part of the experiment, you will be instructed to perform a series of movements with your hand, while a 

set of electrodes (attached to your forearm with adhesive tape) will record muscular activity data and 

transmit them to a computer. During the second part of the experiment, a prosthetic hand will be 

attached to your forearm and you will be instructed to use it to perform the same series of movements 

as in the first part. Task completion rates and times will be monitored and stored in electronic format. 

In addition, you will be asked to fill in a consent form, a clinical and experimental data form and a 

payment receipt confirmation. 

 

3. Your participation 

 

The data acquisition session will last for approximately 150 minutes and will take place in room 1.30 of 

the Informatics Forum, University of Edinburgh. Participation in this study is entirely voluntary. You 

can refuse to take part or withdraw from the study at any time without having to give a reason. Such a 

decision has no adverse implications for you. 

 

4. Risk assessment 

 

Your participation to this study does not involve any risk. The electrodes attached to your forearm do 

not send any current. Slight discomfort might  be caused by the socket hosting the prosthetic hand. 

 

5. Privacy 

 

All data acquired will be treated confidentially. The data might be disclosed anonymously to third 

parties for the purposes of the study. Your personal information will be stored separately to ensure data 

protection. 

 

6. Contact 

 



If you have any questions or require further information please do not hesitate to contact Mr. 

Agamemnon Krasoulis (a.krasoulis@sms.ed.ac.uk). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

School of Informatics, 10 Crichton Street, Edinburgh, (City of) Edinburgh, EH8 9AB 



Informed Consent Form        September 2016 

 

 

 

 

 

 

 

Informed Consent Form 

 

 
Study title: Prosthetic hand control with electromyography 

 

 

 
1. I confirm that I have read and understood the Participant Information Sheet for the above study 

and there is no reason I should not take part. I have had the opportunity to consider the 

information and ask questions, and have had these answered satisfactorily. 

 

2. I understand that my participation is entirely voluntary and I am free to withdraw at any time 

without giving a reason. 

 

3. I certify that I have been informed that the data collected during the study will be shared with 

the scientific community in respect of anonymity, Only researchers directly involved with the 

data acquisition and storage will have direct knowledge of my identity, and they will be bound 

by professional secrecy. 

 

4. I understand that there are no risks involved in the participation of this study. 

 

5. I agree to take part in this study. 

 

 

….................................  ….................................  …................................. 

 

Name of participant   Date     Signature 

 

 

 

….................................  ….................................  …................................. 

 

Name of researcher   Date     Signature 

 

 

 

School of Informatics, 10 Crichton Street, Edinburgh, (City of) Edinburgh, EH8 9AB 



Clinical and Experimental Form        September 2016 

 

 

 

 

 

Clinical and Experimental Form 
 

Study title: Prosthetic hand control with electromyography 

 

 

To be completed by the researcher: 

 

Subject Number  

Forearm circumference (cm)  

Location  

Date  

Time  

Dash score  

 

To be completed by the participant: 
 

Personal information 

First name  

Family name  

Phone number  

E-mail address  

 

Clinical information 

Age  

Gender  

Weight  

Height  

Laterality (left or right handed)  

Job  

Hobbies related to use of hands  

 

School of Informatics, 10 Crichton Street, Edinburgh, (City of) Edinburgh, EH8 9AB 

 



Payment receipt confirmation        September 2016 

 

 

 

 

 

 

Payment receipt confirmation 
 

Study title: Prosthetic hand control with electromyography 

 

 
I certify that I was paid £ .... by Agamemnon Krasoulis for participating in this experiment. 

 

 

….................................  ….................................  …................................. 

 

Name of participant   Date     Signature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

School of Informatics, 10 Crichton Street, Edinburgh, (City of) Edinburgh, EH8 9AB 



E
S U P P L E M E N TA RY M AT E R I A L

Five video recordings are included in the provided supplementary material.

• SV1: Video recording from the real-time experiment presented in Chapter 3 cor-

responding to condition I (EMG). One trial shown for an amputee participant.

Format, MP4; size, 71.6 MB.

• SV2: Video recording from the real-time experiment presented in Chapter 3

corresponding to condition IV (EMG-IMU (subset)). One trial shown for the

same amputee participant as in SV1. Format, MP4; size, 37.6 MB.

• SV3: Video recording from the real-time experiment presented in Chapter 5.

One trial shown for an amputee participant. Format, MP4; size, 12.7 MB.

• SV4: Video recording from the real-time experiment presented in Chapter 8

(posture matching task). Six trials shown from one block for an amputee partic-

ipant. Format, MP4; size, 31.7 MB.

• SV5: Video recording from the real-time experiment presented in Chapter 8

(pick and place task). One trial shown for an able-bodied participant. Format,

MP4; size, 25.1 MB.
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