
Gene expression in early haematopoietic development. 

Ursula Rosa Menzel 

Ph.D 
University of Edinburgh 

1998 



"We are each at a point of our own transformation." 

(Opus d.13; 4/1994) 
ALAN DAVIE, painter * 1920 



ACKNOWLEDGEMENTS 

I would like to thank my supervisors Prof. John Ansell, Dr Nicholas Hole 

and Dr Lesley Forrester for help and support during the course of my project. 

I also would like to thank the British Leukaemia Research Fund for the awarded 

'Gordon Piller Studentship' to enable me to carry out this project. 

I would like to thank staff from the Centre of Genome Research and the 

Western General Hospital for allowing me access to their equipment. 

Many thanks to John for 'speed-reading'. 

Thanks to Helen for ... well, ... for just being herself. 

Thanks to Andrew for encouragement and help. 

Thanks to friends and colleagues from the Institute of Cell and Animal Population 

Biology and the John Hughes Bennett Laboratory for their support and the friendly 

working atmosphere. 

Thanks to Annie Lennox for producing her album 'Medusa'. 

(I will never be able to listen to the album without thinking of 'Gene expression in early...') 

Ich möchte mich bei meinen Eltern bedanken für ihre Zuversicht und UnterstQtzung, 

für die 'Uberlebenspakete' ... und vieles, vieles mehr. DANKE. 

Einige Erlebnisse und Begegnungen waren von besonderer Bedeutung während 

meiner PhD-Zeit in Edinburgh. Dank zu Freunden von der Han Wong Tae kwon do 

Academy in Edinburgh. Dank zu Freunden in Yokosuka in Japan. Dank zu lieben 

Freunden von der Universität Stuttgart für Trips nach Saas Fee in der Schweiz. 

Dank zu Freunden und Familie daheim in Brochenzell und Mecka am Bodensee. 

Some experiences and meetings were of special importance during my PhD time 

in Edinburgh. Thanks to friends from the Han Wong Tae kwon do Academy in 

Edinburgh. Thanks to friends from Yokosuka in Japan. Thanks to friends from the 

Universität Stuttgart for trips to Saas Fee in Switzerland. Thanks to friends and 

family from home in Brochenzell and Mecka, Bodensee. 



ABSTRACT 

The developmental origin of haematopoietic stem cells (HSCs) has been the focus 

of much interest because of their biological and clinical significance. Although our 

understanding of haematopoietic development has been advanced by the identification 

of an intraembryonic source of HSCs, the molecular events that control development, 

self-renewal and commitment of HSCs remain to be determined. The rarity of HSCs 

in vivo, their incompletely defined phenotype, their refractoriness to transgenesis, 

and the importance of understanding HSC biology in relation to the haematopoietic 

microenvironment, make purification of these cells difficult. Alternative approaches 

to their study have been sought. The study of murine embryonic stem (ES) cells is 

one such approach. Under appropriate culture conditions, ES cells will spontaneously 

differentiate in vitro into a range of embryonic lineages, including the haematopoietic 

lineage. All haematopoietic lineages can result from ES cell differentiation including 

transplantable HSCs. The relative ease of transgenesis in ES cells has been exploited 

for the analysis of gene function and the identification of novel genes, by the use of 

gene targeting and gene trapping methodology, respectively. Conventional analysis 

of mutated ES cells is based on the production of chimeric embryos for in vivo studies. 

However, in vitro differentiation of mutated ES cells can provide an alternative and 

complementary approach to in vivo analysis. In particular an in vitro strategy for the 

screening of ES cell gene trap libraries could restrict the number of gene trap clones 

to be analyzed subsequently in chimeric embryos in vivo. 

Based on an established ES cell system for in vitro haematopoiesis, part of the present 

project has been the assessment of an in vitro prescreening strategy of a gene trap library 

for the identification of genes that may be involved in early haematopoietic differentiation. 

This was achieved by monitoring the temporal expression of a 13-gal reporter gene in 

established gene trap lines after induction of haematopoietic differentiation by a 

morphogenic factor. The gene trap cell lines for use in this study were selected on the 

basis of their spatial expression patterns in chimeric embryos. The potential application of 

this strategy on a large scale has been tested by the simplification of the culture procedures 

that support haematopoietic differentiation. 

The integration of gene trap constructs into the ES cell genome facilitates the identification 

of the trapped endogenous gene but also allows the use of in situ hybridization for the 

analysis of reporter gene expression. Spatial analysis of the co-ordinate expression of 



reporter gene and haematopoietic marker genes e.g. globin, was attempted as an 

alternative in vitro screening strategy for the ES cell gene trap library, to that outlined 

above. The importance of the haematopoietic microenvironment is well accepted and 

temporal gene expression during haematopoietic differentiation of EBs has been 

extensively studied. However, these studies give no information about the spatial 

relationship of haematopoietic and microenvironmental cells expressing specific 

transcripts. Spatial expression of haematopoietic marker genes during the time course 

of haematopoietic differentiation of ES cells has been investigated by whole-mount 

in situ hybridization and in situ hybridization of sectioned EBs. In the first instance 

whole-mount in situ hybridization was combined with colorimetric signal detection. 

Data from these experiments demonstrated the need to obtain a more detailed picture of 

gene expression patterns. The attempt to take advantage of non-invasive optical sectioning 

by combining whole-mount in situ hybridization with fluorescent signal detection by 

confocal laser scanning microscopy was not successful but in situ hybridization of 

wax-sectioned EBs with haematopoietic marker genes did reveal details of spatial gene 

expression patterns at a cellular level. Furthermore, the opposing effects of DMSO and 

RA on haematopoietic differentiation were analyzed at the cellular level by investigating 

their effects on globin expression. 

The present study demonstrates the potential of in vitro differentiation combined with 

exposure to haematopoiesis inducing morphogenic factors as an in vitro prescreening 

strategy for gene trap cell lines, that should allow one to identify 'haematopoietic' trapped 

genes. The spatial analysis of gene expression in haematopoietic EBs clearly illustrates the 

importance of co-ordinate gene expression analysis for the reconstruction of the molecular 

sequence of expression which accompanies haematopoietic differentiation. 
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1. INTRODUCTION 

1.1 Development of mammalian embryos 

During mammalian development three consecutive developmental stages are classified; 

the embryonic, the fetal and the adult stage, each of which expresses distinctive 

features. Whereas the embryonic and the fetal stages are temporary, the adult stage is 

characterized by specialized, terminally differentiated cells that maintain the organism 

throughout adult life. 

Early post-implantation development proceeds by the establishment of the anterior-

posterior body axis and the process of gastrulation, which generates the three 

definitive germ layers - the ectoderm, the mesoderm and the endoderm. The 

subsequent development of the organism depends on the interactions between the 

three germ layers, which are determined for different fates in the organization of the 

organism. The principal body plan of the mouse is established with these early events, 

and the later stages of embryogenesis are characterized mainly by organogenesis, 

growth and differentiation processes. As a general rule of development, the body 

plan is first formed in miniature and then maintained as the embryo grows (Gossler 

and Balling, 1992). 

It is during the early stage of embryonic development where cells lose their 

individual totipotency and become determined for their fate, often long before overt 

differentiation occurs. As development proceeds cell-cell interactions become more 

complex and the cells differentiate in a precise pattern to a multicellular organism 

with the consequence that only few cells maintain pluripotent characteristics in the 

adult organism. In concert with the individual 'differentiation programme' of cells, 

cells change their pattern of gene expression during development. The major events 

of early mammalian development can thus be summarized as cell lineage specification, 

segmentation and regional specialization along the body axis. A detailed summary of 

mouse development has been described by Hogan et al. (1994). 



Tissue maintenance and renewal in the adult body is essential and is performed by 

the interaction of a variety of cell types of each tissue. New differentiated cells can 

be produced during adult life either by the simple duplication of existing differentiated 

cells, which divide to give pairs of daughter cells of the same type, or they can be 

generated from relatively undifferentiated stem cells, by a process that involves a 

change of cell phenotype. 

Stem cells, by general definition, are not terminally differentiated and have the ability 

to divide throughout the lifetime of the organism, yielding some progeny that 

differentiate to one of various lineages and others that remain stem cells. However, 

the assignment of stem cells is not to carry out the differentiated function but rather to 

produce cells that will. Consequently, stem cells often have a nondescript appearance, 

making them difficult to identify. Due to the inability of adult tissue to produce cells of 

such importance, the ontogeny and commitment of stem cells during embryogenesis is 

of particular interest. Somatic stem cells, e.g. epidermal stem cells, epithelium stem 

cells and haematopoietic stem cells, all play a critical role in the maintenance of organ 

systems in the adult mammal. One organ system in mammals that is studied 

intensively is the haematopoietic system with its self-renewal and differentiation 

properties. 

1.2 Mammalian Haematopoiesis 

1.2.1 The Haematopoietic System 

The established mammalian haematopoietic system can be viewed as a dynamic 

hierarchy of pluripotent, committed and maturing cell populations continually 

differentiating into at least eight different cell lineages: lymphocytes, erythrocytes, 

platelets, macrophages, neutrophils, eosinophils, basophils and mast cells. The 

haematopoietic system can be considered as a spectrum of progressive differentiation 

and self renewal with terminally differentiated cells at one extreme and pluripotent 

haematopoietic stem cells (HSC5) at the other (Figure 1.1). 

IP 



These cells are all located in a complex network of haematopoietic tissues. 

The stem cells are the foundation of the haematopoietic system and are responsible 

for replacing terminally differentiated cells throughout the life span of the animal, since 

terminally differentiated cells within the haematopoietic system have finite life spans. 

Much is known about the mature cell populations of the established haematopoietic 

system. However, little is known about the embryonic origin of the haematopoietic 

system and how or if the initiator cells of the embryonic blood system are related to 

those producing the adult haematopoietic system. 

Haematopoietic activity during early development is derived from cells of the 

mesodermal germ layer formed during gastrulation. The commitment of mesoderm 

cells to haematopoiesis results in the restriction of their differentiation potential to 

haematopoietic lineages (Hogan et al, 1994). 

The sequence of events leading from these committed mesoderm cells to the definitive 

haematopoietic system is a complex process and much is still a matter of debate. 

Furthermore, changing demands (spatial and temporal) of the developing embryo on 

the haematopoietic system during different developmental stages aggravate analysis. 

However, the understanding of haematopoiesis has significantly advanced in recent 

years by refined experimental technologies and the identification of an intraembryonic 

source of haematopoietic activity during mammalian embryogenesis (Godin et al, 

1993; Medvinsky et al, 1993). Nevertheless, many questions remain to be answered. 

An overview of the developmental processes leading to the establishment of the 

murine haematopoietic system, of the spectrum of cells in the haematopoietic system, 

of the molecular control of haematopoiesis, and of methods and models for studying 

haematopoiesis is outlined in the following sections. 
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Figure 1.1: The hierarchical order of the haematopoietic system. A model of lineage commitment and 
differentiation from HSCs in relation to haematopoietic tissues (Morrison et a!, 1995). 
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1.2.2 Ontogeny of the murine haematopoietic system 

In the mouse, the earliest site where haematopoietic activity can be observed is the 

yolk sac at day 7 of gestation. Primitive erythrocytes, derived from extraembryonic 

mesodermal cells of the yolk sac form aggregates, termed blood islands, which are 

the first morphologically recognizable haematopoietic cells (Moore and Metcalf, 

1970). Later at midgestation, haematopoiesis shifts into the embryo proper to the 

fetal liver, the thymus and the spleen, and shortly before birth, to the bone marrow. 

The fetal liver is the major source of haematopoietic activity in the embryo and the 

bone marrow becomes the major site of haematopoiesis during adult life (Johnson 

and Moore, 1975). 

This sequence of haematopoietic events has long been considered as a reflection of 

the migration of pluripotent HSCs from the yolk sac to the sites of definitive 

haematopoiesis. However, evidence in support of this notion was circumstantial 

and not conclusive to answer questions challenging the concept of a singular origin 

of the haematopoietic system within the yolk sac. 

Arguments in favour of the possibility of a more potent haematopoietic tissue within 

the mammalian embryo as a source of definitive HSCs were originally based on 

evolutionary and comparative studies of mammalian development to other vertebrate 

species (Zon, 1995). Similarities in mesoderm formation in many vertebrate species 

ranging from fish, amphibians and birds to the mouse have been well documented, 

suggesting valid comparisons of mammalian developmental haematopoiesis with 

that of non-mammalian vertebrates (Smith and Albano, 1993). 

Non-mammalian animal models are well acknowledged as useful models for the 

understanding of initial events in mammalian development and controversy of the 

yolk sac concept in mammals for definitive haematopoiesis was strengthened by 

progress in evolutionary studies. It was argued that if definitive haematopoiesis in 

mammals originates in the yolk sac, mammals would be strikingly distinct from other 

vertebrate species. Furthermore, considering the conserved mechanisms for other 



organ systems between different species e.g. the nervous system (Hogan et al, 1994), 

the mammalian haematopoietic system would be a remarkable exception from 

otherwise closely related organisms. 

Developmental studies of haematopoiesis in non-mammalian vertebrates revealed 

two sites of haematopoietic activity during embryonic development, an extraembryonic 

and an intraembryonic site. The relative accessibility of avian and amphibian embryos 

during development enabled the use of experimental strategies which are not suitable 

for mammalian embryos because of their in utero development. 

Grafting experiments in avian and amphibian embryos identified the yolk sac in birds 

and the ventral tissue, the yolk sac analogue in amphibians, as the source of primitive 

haematopoiesis, which is of transient nature, and an intraembryonic mesoderm 

derived region, containing the dorsal aorta, as the source of definitive haematopoiesis 

(Dieterlen-Lievre, 1975). Generation of chick-chick and chick-quail chimeras provided 

evidence that the initiation of definitive haematopoiesis exclusively arises from the 

dorsal aorta in avian embryos. 

Grafting experiments in frog, Xenopus, revealed similar findings, with adult 

haematopoiesis arising essentially from an intraembryonic region and not the ventral 

blood islands, which are functionally and positionally equivalent to the mammalian 

yolk sac and the amphibian and avian counterparts (Tavassoli, 1991). 

As a result of the restriction to functional assays for developmental studies in 

mammals, the origin of definitive haematopoiesis remained still obscure, long after 

the discovery of the haematopoietic origin in other vertebrate species. 

However, recent developmental studies in the mouse, re-examining the possibility of 

an analogous intraembryonic source of HSCs indicate that similar to avians, mammals 

possess a potent haematopoietic tissue within the embryo that is responsible for the 

initiation of definitive haematopoiesis (Godin et al, 1993; Medvinsky et al, 1993). 

Using functional colony assays and transplantation assays, it was shown that the 

ontogenetic origin of definitive HSCs is more likely to lie in the intraembryonic site 



of haematopoiesis, suggesting homologous migration of HSCs as known from other 

vertebrate species (Medvinsky and Dzierzak, 1996). The presence of two 

mesodermally derived haematopoietic regions functioning at pre-liver stages is 

suggestive that two different origins for HSCs exist, with two distinct classes of stem 

cells, that may or may not arise independently. Observations that early embryonic cells 

of the yolk sac are quite different from those differentiating from bone marrow cells, 

e.g. erythroid cells, led to the perception that an early embryonic (primitive) lineage 

is replaced by a later adult (definitive) lineage about the time fetal liver becomes a 

haematopoietic organ. 

1.2.3 Anatomical sites of haematopoiesis 

During mammalian development, several haematopoietic sites within the embryo 

are observed. Haematopoietic activity sequentially progresses during embryonic 

development from the yolk sac (Moore and Metcalf, 1970) and para-aortic mesoderm 

(Godin et al, 1993; Medvinsky et al, 1993) to fetal liver (Johnson and Moore, 1975), 

thymus and spleen (Moore and Owen, 1967), and bone marrow (Johnson and Moore, 

1975), which becomes the major site of haematopoiesis during adult life. These 

haematopoietic tissues serve as generators and/or reservoirs of haematopoietic activity 

with each tissue displaying a characteristic composition of haematopoietic cell types, 

as each tissue contains a distinct population of blood cells (Morrison et al, 1995). 

The following sections summarize some of the characteristic features of the 

haematopoietic tissues involved in the establishment of definitive haematopoiesis 

in the bone marrow of adult mammals. 

1.2.4 The yolk sac, extraembryonic site of haematopoiesis 

The yolk sac forms during gastrulation, which begins at 6.5 days post coitum (dpc) 

in mouse development and is an extraembiyonic tissue composed of endodermal 

7 



and mesodermal derivates. The endodermal cells of the yolk sac arise from primitive 

endoderm, whereas the mesoderm cells descend from primitive ectoderm which 

migrate beneath the visceral endoderm between 7 and 7.5 dpc (Hogan et al, 1994). 

The mesoderm of the visceral yolk sac is the first site within the developing embryo 

where morphologically discernible haematopoiesis in form of blood islands can be 

found (Moore and Metcalf, 1970). 

Blood islands begin to form at around 7 dpc and are cell aggregates consisting of 

primitive nucleated erythrocytes surrounded by a loose network of endothelial cells 

(Tavassoli, 1991). As the blood island develops, the haematopoietic progenitors 

ultimately differentiate into erythroblasts surrounded by the endothelial cell layer 

and supported for growth by an endodermal cell layer (Zon, 1995). 

The peripheral endothelial cells form the first vascular structures that surround the 

inner blood cells (reviewed by Wagner, 1980). The close developmental association 

of the haematopoietic and endothelial lineages within blood islands has led to the 

hypothesis that they arise from a common precursor the haemangioblast, since 

both lineages are mesodermal derivatives. 

Support for the concept of the existence of a haemangioblast comes from 

observations that the haematopoietic and endothelial cell lineages share expression 

of a number of different genes (Yamaguchi et al, 1993; Kallianpur et al, 1994; 

Young et al, 1995; Carmeliet et al, 1996). 

Targeted mouse mutants affecting both the haematopoietic and vascular system are 

indicative for the existence of a common precursor. Mouse embryos homozygous 

for disruption of theflk-1 gene, lacking a functional receptor tyrosine kinase FIk- 1, 

die between 8-9.5 dpc and lack vascular cells and blood islands in the yolk sac 

(Shalaby et al, 1995; 1997). These findings are consistent with a primary role for 

fik-] in maintenance/formation of embryonic blood cell production, although it has 

been suggested that the haematopoietic defect may occur secondary to the failure to 

produce endothelial cells for a vascular microenvironment. 



Another example are mice lacking the gene for transforming growth factor-131 

(TGF-B1). The yolk sac of homozygous TGF-Bl-' embryos displays defective 

endothelial differentiation and a much reduced number of erythrocytes (Dickson et a!, 

1995). Further evidence, indicating a dependence of blood island haematopoiesis on 

the endothelial and endodermal cell layers comes from in vitro studies (Auerbach et al, 

1996; Yoder et al, 1995). 

Co-culturing experiments suggest that endothelial and endodermal cell lineages 

provide a supportive microenvironment for haematopoiesis and vasculogenesis. 

Murine bone marrow progenitors co-cultured with yolk sac endoderm derived cell 

lines (Yoder et al, 1995) or yolk sac HSCs with a yolk sac endothelial cell layer 

(Auerbach et al, 1996) showed increased haematopoietic growth and proliferative 

potential. Visceral yolk sac explants from 7.5 dpc can give rise to haematopoietic 

cells in the absence of the endodermal layer, in an in vitro culture system, but a failure 

in angiogenesis was observed (Palis et al, 1995). Although consistent with the concept 

of a putative common progenitor for haematopoietic and endothelial lineages, these 

observations can not prove its existence. 

Yolk sac haematopoiesis in blood islands produces a limited range of haematopoietic 

cell lineages and consists almost exclusively of erythrocytes and some macrophages 

(Moore and Metcalf, 1970; Gordon et al, 1992). Embryonic erythrocytes are large 

in size, compared to their counterparts in definitive haematopoiesis, remain nucleated 

throughout their lifespan and express embryonic globins. In contrast, definitive 

haematopoiesis in fetal liver and bone marrow produces all cell types of the 

haematopoietic cell lineages, both lymphoid and myeloid, and the erythrocytes 

produced are enucleated and express adult type globins. Although primitive nucleated 

erythrocytes are the predominant cell type during primitive haematopoiesis, in vitro 

analysis showed that 7 dpc yolk sac progenitor cells can give rise to granulocytes and 

macrophages, as detected by colony-forming unit granulocyte/macrophage (CFU-GM) 



analysis. The number of CFU-GM progenitors has been found to grow in direct 

proportion, as the yolk sac increases in cellularity from 8-9 dpc (Moore and 

Metcalf, 1970). 

Similar to the morphological heterogeneity of primitive and definitive erythrocytes, 

it has been found that fetal macrophages show distinct ultrastructural characteristics 

depending on their developmental stage (reviewed by Naito et al, 1996). 

Although primitive haematopoiesis and committed progenitors can be detected in 

the yolk sac as early as 7-8.5 dpc, haematopoietic stem cell activity in yolk sac is 

not detectable until late 9 dpc, after circulation is initiated (Muller et al, 1994). This 

time discrepancy, committed progenitors being present in the yolk sac before primitive 

progenitors with HSC activity are detectable, added controversy to the hypothesis that 

the yolk sac is the site where definitive haematopoiesis originates. 

Experimental evidence which added to this debate was obtained from systematic 

analysis of the haematopoietic activity in yolk sac during mouse development 

(Medvinsky et al, 1993; MUller et al, 1994). Using the colony-forming unit-spleen 

(CFU-S) assay for the identification of early haematopoietic cells it was found that 

significant numbers of CFIJ-S progenitors are not detectable until late 9 dpc in yolk 

sac (Medvinsky et al, 1993) and long term repopulating (LTR) HSCs, as analyzed 

by haematopoietic reconstitution, can not be detected in the yolk sac until 11 dpc 

(MUller et a!, 1994). 

Reports of the presence of HSC at earlier stages than 11 dpc during development 

were diverse and not consistent from different groups. One group reported the 

presence of lymphoid precursors in 8-8.5 dpc yolk sac but not in the embryo proper 

by testing reconstitution of adult irradiated SCID mice or in vitro cultures on thymic 

endothelium for T cells or on fetal liver stromal cell lines for B cells (Palacios and 

Imhof, 1993). Others reported the detection of lymphoid and myeloid potential in 

both yolk sac and embryo proper at 9 dpc after in vivo and in vitro analysis (Huang 

and Auerbach, 1993). 
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A variety of experimental in vitro approaches, addressing the supposingly restricted 

differentiation potential of early haematopoietic yolk sac progenitors, found that 

culture requirements for in vitro differentiation of yolk sac progenitors differ for each 

haematopoietic lineage. For example, T cell differentiation of yolk sac progenitors 

was observed in fetal thymic organ culture; B cell differentiation by stromal co-culture 

assays; myeloid differentiation occurred best in a semisolid culture environment; and 

erythropoiesis occurred best in cultures provided with erythropoietin as the principal 

growth factor (reviewed by Auerbach et al, 1996). These conditional 

microenvironment requirements made it impossible to test individual cells for 

haematopoietic pluripotentiality prior to clonal proliferation, but allowed the 

characterization of different cell lineages derived from yolk sac progenitors. Despite 

the developmental potential of haematopoietic yolk sac progenitors in vitro, in vivo 

differentiation in yolk sac is mostly restricted to the erythroid lineage (Moore 

and Metcalf, 1970). The yolk sac becomes extensively vascularized and the 

extraembryonic circulation becomes directly linked to that of the embryo at 8.5 dpc 

(Cumano et al, 1996). With the connection to the intraembryonic sites established 

haematopoietic cells can circulate intravascularly between intraembryonic and 

extraembryonic sites. Haematopoiesis in the yolk sac continues until -13 dpc when 

the yolk sac begins to degenerate. It is thought that yolk sac embryonic haematopoiesis 

is no longer required as other intraembryonic sites of haematopoiesis are established 

(Dzierzak and Medvinsky, 1995) and that haematopoiesis in yolk sac serves for the 

growth and survival of the early developing embryo. 

1.2.5 Intraembryonic haematopoiesis 

Based on the presence of an intraembryonic source of definitive haematopoiesis 

in non-mammalian vertebrates, investigations searching for HSC activity associated 

with analogous mammalian dorsal regions were performed (Godin et a!, 1993; 

Medvinsky et a!, 1993). 
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Analysis of the intraembryonic mesoderm in mouse identified the dorsal region of 

the mesoderm, which includes the splanchnic mesoderm, dorsal aorta, genital 

ridges/gonads and pro/mesonephros, surrounding mesenchyme and some intermediate 

mesoderm, as a source of definitive haematopoiesis. At early stages of gestation 

(8.5 dpc) this haematopoietic region consists of the caudal splanchnic mesoderm and 

the endoderm of the developing gut end and endothelium of arteries, termed as the 

paraaortic splanchnopleura (P-Sp) (Godin et al, 1993; 1995). At a slightly later stage 

9 to 10.5 dpc, this region comprises the aorta, gonads and mesonephros, termed the 

aorta-gonad-mesonephros (AGM) region (Medvinsky et al, 1993). The AGM region 

is derived from the P-Sp and the relevant rudiments which have begun organogenesis. 

These intraembryonic haematopoietic sites (P-Sp and AGM) do not contain 

erythropoietic foci as observed in yolk sac and thus functional assays were used 

to identify their haematopoietic nature (Godin et al, 1993; Medvinsky et al, 1993). 

Using transplantation methodology and in vivo assays, the CFU-S assay and the 

long term repopulating HSC assay, the presence of definitive haematopoietic 

progenitors was detected (Godin et a!, 1993; Medvinsky et al, 1993; Muller et al, 

1994). Grafting intraembryonic splanchnopleura from 8.5 to 9 dpc (10 to 18 somites 

stage) mouse embryos under the kidney capsule of adult inmiuno deficient SCID mice 

and subsequent analysis of the host haematopoietic tissues showed the presence of 

donor derived lymphoid cells (Godin et al, 1993). Immunoglobulin M (1gM), 1gM-

secreting plasma cells and the B la cell subset (CD5 expressing B cells) were detected, 

thus demonstrating the existence of B-cell progenitors in the P-Sp. However, Bla 

lymphocytes are a primitive subset of B-cells and no maturation was detectable. 

Systematic examination of mouse embryos for CFIJ-S activity from 8 to 10.5 dpc 

was performed by Medvinsky et a! (1993). In the CFU-S assay, the cells to be tested 

are injected into lethally irradiated recipients and macroscopic colonies on the surface 

of their spleen counted after 8-15 days (Till and McCulloch, 1966). The numbers of 
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CFU-S colonies present in a cell population are a readout for early haematopoietic 

progenitor cells and are widely used as a reliable mean to measure haematopoiesis. 

CPU-S progenitors are rather immature cells within the haematopoietic hierarchy 

of the adult mouse with high proliferative potential but represent a nonhomogenous 

population. Although CFU-S are not pluripotent HSCs, HSCs can be separated from 

CFU-S colonies (Jones et al, 1990), the development of the CPU-S compartment 

during ontogeny is thought to reflect crucial steps in the establishment of the definitive 

haematopoietic system. 

Progenitor CFU-S activities in the AGM, yolk sac and fetal liver were compared 

for the production of in vivo macroscopic colonies on the spleen at 8 days (CFU-S8) 

and 11 days (CFU-S ii)  posttransplantation. Donor derived CFU-S8 colonies, rather 

mature progenitors in the haematopoietic hierarchy, were detected from 9 dpc AGM 

regions, which is reported to be the earliest time point where the AGM region can be 

accurately dissected from surrounding tissues. The frequency of CFU-S8 activity in 

AGM regions continued to rise to a maximum on day 10 of gestation, at a frequency 

equivalent to that found in the adult bone marrow, and then fell rapidly by 11 dpc. 

The decline in CFU-S8 activity in the AGM region coincided with an increase in 

CFU-S8 activity in fetal liver, where no detectable CFU-S8 activity occurs until 

the end of 10 dpc. 

Analysis for the presence of more primitive progenitors, CFU-S ii,  showed that 

donor-derived CFU-S ii  activity at statistically significant numbers can only be 

found in the AGM regions at day 10 of gestation. Significant CFU-Sii activity 

derived from yolk sac cells or fetal liver cells was detected only after 10 dpc. 

To test whether cells of the AGM region possess definitive HSC activity and to 

determine the order of appearance of HSCs in the developing embryo, experiments 

testing for the long term repopulation potential of cells of the AGM region were 

performed (MUller et al, 1994). It was found that the AGM region at 10 dpc is the 
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first site within the developing embryo where cells with HSC activity, capable of 

complete haematopoietic multilineage long term reconstitution of a lethally irradiated 

adult recipient, are present. Serial secondary and tertiary transplantation showed 

consistent high level repopulation of all haematopoietic lineages and proved that 

AGM derived haematopoietic cells bear characteristics of adult bone marrow HSCs 

(Muller et al, 1994). 

To further analyse the precise localization of the CFU-S activity in the AGM region 

of day 10 mouse embryos, dissection of the AGM region into their dorsal aorta and 

uro-genital ridges components was carried out (Medvinsky et al, 1996). This finer 

dissection of the AGM region showed the presence of CFU-S both around the dorsal 

aorta and in the uro-genital ridges but no significant differences in CFU-S activity 

was found. 

Comparative morphological analysis of CFU-S colonies revealed a close resemblance 

between AGM-derived CFU-S colonies and the more definitive colonies from fetal 

liver, but not yolk sac derived CFU-S. However, difficulties in obtaining pure 

tissues from the AGM region at earlier stages were reported to restrict the analysis 

of the CFU-S distribution inside this region, thus the identification of the origin of 

the HSCs found in the AGM region remained unclear (Medvinsky et al, 1996). 

In vitro experiments that analysed the differentiation potential of the P-Sp used a 

culture system that allows the proliferation of uncommitted precursors and their 

differentiation into the myeloid and lymphoid pathways (Godin et al, 1995). 

This study suggested the simultaneous emergence of multipotent haematopoietic 

progenitors in the yolk sac and the P-Sp, beginning at 8.5 dpc. However, since a 

set of in vitro culture conditions was used for analysis, suitable to assess specific 

lineage differentiation but not multilineage differentiation potential, it remained 

unclear whether these cells possess self-renewal and long-term repopulating potential. 

The identification of the haematopoietic pre-liver intraembryonic P-Sp/AGM region 
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in the mouse embryo was a major breakthrough for the study of mammalian 

haematopoietic development (Godin et al, 1993; Medvinsky et al, 1993). 

However, the site where definitive HSCs originate remained obscure since active 

interchange of cells between the yolk sac and the embryo proper via circulation could 

not be excluded. The blood connection between yolk sac and the embryo becomes 

established at the 8-somites stage (8.5 dpc), allowing haematopoietic precursors to 

pass through the circulation from one site to the other (Cumano et al, 1996). Although 

compatible when compared to the avian model for haematopoiesis, the observations 

of intraembryonic haematopoiesis in the mouse embryo were not conclusive, whether 

progenitors appeared in parallel in the AGM region and the yolk sac or whether the 

AGM region seeded the yolk sac or the opposite. To elucidate whether the AGM 

region is an intraembryonic site where HSC differentiate and proliferate on their 

migration to the developing fetal liver or whether it is an independent haematopoietic 

organ and source of HSCs further analysis was required. 

By investigating the haematopoietic progenitors in the pre-circulation embryo two 

recent studies largely advanced the search for the origin of definitive HSCs (Cumano 

et al, 1996; Medvinsky et al, 1996). A series of experiments which directly addressed 

the lymphoid differentiation potential before circulation between the yolk sac and P-Sp 

were performed by Cumano et al (1996). Yolk sac and caudal P-Sp were dissected at 

different stages before and after the onset of circulation at 8.5 dpc and cultured intact 

in organotypic conditions in vitro for two days. The cells were then dispersed and 

expanded for further three days, at which time portions of each clone were assayed 

in separate in vitro cultures optimized for the growth of B cells, T cells and erythroid 

and myeloid cells. It was found that before the onset of circulation, all the lymphoid 

progenitors resided in the P-Sp region, but erythroid and myeloid progenitor cells 

resided in both embryonic tissues. The differentiation potential of the progenitor cells 

was not altered when yolk sac and P-Sp cells were mixed together during culture, 
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indicating that the limitation of yolk sac cells is intrinsic and may result from possible 

environmental influences acting earlier at precursor emergence. Lymphoid potential 

in the yolk sac was only observed following the onset of blood circulation between the 

yolk sac and the embryo body. The number of yolk sac derived myeloid and erythroid 

progenitors was lower and multilineage differentiation occurred less frequently 

compared with clones of P-Sp origin. The cytological and culture analyses of yolk 

sac and P-Sp cells were confirmed by gene expression patterns. Lymphoid specific 

transcripts e.g. RAG-1 were not detectable in yolk sac cells. In contrast, P-Sp derived 

cells expressed RAG-i as well as B and T cell specific genes. HSCs activity as 

analyzed by CFU-S and LTR-HSC activity was not found in cultured cells from 

day 8.5 P-Sp or yolk sac. The failure to detect CFU-S and LTR-HSC activity was 

explained that very early progenitors might not be able to home and settle in the adult 

environment in which they were transferred. Previous reports had reported that 

CFU-S appeared in both intra- and extraembryonic locations only after the 27-somite 

stage (late 9.5 dpc) and LTR-HSC after 10 dpc (MUller et al, 1994, Medvinsky 

et al, 1996). 

Another approach, using a novel in vitro organ culture system, re-examined the 

presence of CFU-S and LTR-HSCs in day 9 to day 11 AGM region, yolk sac and 

fetal liver (Medvinsky and Dzierzak, 1996). Explanted organs and tissues were 

cultured intact for 2-3 days in novel in vitro organ culture conditions, dissociated 

and then assayed for CFU-S and LTR-HSC activity by injection of cells into lethally 

irradiated mice. The additional organ culture step allowed to culture isolated embryonic 

tissues separately from other tissues eliminating the possibility of cellular exchange 

between haematopoietic sites but preserved the potentially important cellular 

microenvironment of the explant. Largely enhanced numbers of CFU-S activity and 

donor-derived long term reconstitution, compared to previously performed similar 

studies without organotypic culture (Medvinsky et al, 1993), were observed from 
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10 dpc and 11 dpc AGM regions but not 9 dpc. Since the haematopoietic progenitors 

within the AGM regions were unable to emigrate and disseminate, it was thought they 

accumulate in situ and surpass the numbers that can be observed in uncultured AGM 

region (Medvinsky et al, 1996). The delay of onset and low numbers of CFU-S 

activity in isolated cultured yolk sac and fetal liver was thought to strongly indicate 

autonomous and exclusive initiation of definitive haematopoiesis within the AGM 

region at 10 dpc. Also suggesting colonization of yolk sac and fetal liver by AGM 

generated LTR-HSCs and CFU-S progenitors, which would be much like the 

colonization of haematopoietic organs observed in avian embryos. 

These observations of CFU-S development in 9 to 11 day mouse embryos led to 

the modification of the classical view of haematopoietic development, in which stem 

cells were thought to arise in the yolk sac and sequentially colonize the haematopoietic 

organs (Moore and Metcalf, 1970). The modified model suggested for mammalian 

haematopoiesis (Dzierzak and Medvinsky, 1995) proposes that fetal liver colonization 

occurs in two successive waves, with the first wave consisting of committed CFU-

culture (CFU-C) produced in the yolk sac entering at 9 dpc and the second wave at 

around 10 dpc containing primitive CFU-S and LTR-HSC derived from the AGM 

region. The reverse order of haematopoietic activity within the embryo, with 

differentiated cells and progenitors detected at 7-8.5 dpc and fully potent adult 

repopulating HSCs not found until 10 dpc, is thought to reflect a primitive embryonic 

hierarchy of haematopoietic development which is in reverse orientation to that of 

the adult. It was further postulated that these two waves of fetal liver colonizing 

haematopoietic cells may reflect primitive and definitive stem cell activities and might 

be analogous to the two separable activities observed in the avian and amphibian 

systems. This model is consistent with the conserved vertebrate mechanism, whereby 

the initial extraembryonic-derived haematopoietic progenitors are replaced by a second 

and stable population of definitive HSC derived from a dorsal mesoderm 

intraembryonic region (reviewed by Zon, 1995). 
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1.2.6 Definitive haematopoiesis 

The fetal liver develops into the major site of definitive haematopoiesis during 

mid- and late-gestation of mouse development and is responsible for the transfer 

of haematopoiesis into thymus, spleen and bone marrow (Morrison et al, 1995). 

The liver rudiment begins to form at late 9 dpc and by 10.5 dpc definitive fetal liver 

haematopoiesis is established (Johnson and Jones, 1973) resulting in a gradual shift 

of haematopoietic activity from the yolk sac and the AGM region to the fetal liver. 

The liver rudiment does not initiate haematopoiesis in situ but is colonized by founder 

haematopoietic cells generated at earlier haematopoietic sites within the conceptus 

(Moore and Metcalf, 1970; Johnson and Moore, 1975). 

Erythrocytes and haematopoietic progenitors first enter the liver at 9 dpc (Houssaint, 

1981). The developing erythroid lineage consists of small enucleated cells producing 

adult globins, which are characteristics for definitive haematopoiesis. Myeloid CFU-S 

appear also at 9 dpc and macrophages and B cells are present at 10-11 dpc (Dzierzak 

and Medvinsky, 1995). Although these differentiated haematopoietic lineages are 

found early in liver development, the more primitive cell types, CFU-S progenitors 

and LTR-HSCs are not detectable before 10.5 to 11 dpc (Medvinsky et al. 1996; 

Muller et al, 1994). Fetal liver colonization with definitive haematopoietic progenitors 

and HSCs occurs at 10.5 dpc and 11 dpc (Dzierzak and Medvinsky, 1995; Delassus 

and Cumano, 1996). 

The colonization of haematopoietic organs is thought to occur via circulation. This 

notion is supported by observations that fetal blood at 10 dpc is rich in progenitor 

cells, in contrast to circulating blood in adult animals which contains few immature 

haematopoietic cells (Delassus and Cumano, 1996). The fetal liver is thought to serve 

as a reservoir for LTR-HSCs derived from pre-liver haematopoiesis, which provides 

a supportive microenvironment for the expansion of LTR-HSCs required for 

subsequent initiating adult haematopoiesis in bone marrow. The expansion of 
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haematopoiesis in the fetal liver, which results in the presence of a relatively high 

frequency of LTR-HSCs, is associated with the decline of haematopoietic activity 

in the yolk sac and the AGM region (Medvinsky et al, 1996). Although the 

haematopoietic activity in fetal liver declines during postnatal life, the liver does not 

lose its haematopoietic potential entirely. The liver in adult mammals can regain 

haematopoietic activity in abnormal situations and compensate for diminished bone 

marrow haematopoiesis. Experimental evidence for the haematopoietic potential of 

adult liver has been obtained by the haematopoietic reconstitution of lethally irradiated 

recipient mice with cells derived from the liver of adult donor mice (Taniguchi et al, 

1996; Watanabe et al, 1996). During adult life, haematopoiesis takes place in the bone 

marrow. The embryonic thymus is colonized with haematopoietic precursors starting 

at 10.5 dpc, somewhat later than fetal liver colonization, and during late fetal and early 

postnatal life haematopoiesis moves to spleen and bone marrow (Moore and Owen, 

1975). The development of the fetal thymus and the fetal spleen mark the emergence 

of lymphoid cells. During adult life, the thymus is important for the generation of 

mature T-lymphocytes. In mouse, the spleen is initiated to haematopoiesis at 15 dpc 

of gestation and continues to be haematopoietic for the entire period of gestation and 

some weeks thereafter. Although the haematopoietic activity in spleen declines after 

the postnatal stage, in the murine system, the spleen never completely loses its 

haematopoietic function and remains a site of erythropoiesis throughout adult life. 

The colonization of bone marrow with haematopoietic progenitors begins to take 

place around 16 dpc of development (Ogawa et al, 1988), which is the last and final 

haematopoietic organ to be activated for haematopoiesis during development. During 

mouse development, bone marrow haematopoiesis is limited to granulopoiesis but 

gains full haematopoietic potential after birth and provides all the haematopoietic 

lineages during adult life (Tavassoli, 1991). In normal adult mammals almost all 

haematopoietic activity occurs in the bone marrow, which is the only site where 

myelopoiesis, erythropoiesis and lymphopoiesis proceed simultaneously. 
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1.2.7 Haematopoietic cells: Developmental stage dependent differences 

The haematopoietic system consists of a large spectrum of different cell types for 

each developmental stage. The haematopoietic cell population is a dynamic pool 

of cells, with constant morphological and functional changing cells and with each 

developmental stage having distinct cell types. Corresponding to the changing 

demands on the haematopoietic system in the developing embryo, distinct cell types 

exist for each ontogenetic stage until the permanent steady-state haematopoietic system 

within the adult bone marrow cavities is established. In mammals, the maternal 

haematopoietic system provides immune function and the supply of oxygen for the 

developing embryo and the developing haematopoietic system of the embryo only 

produces cells that serve its own need. 

Morphological and functional heterogeneity between embryonic/fetal and adult-type 

haematopoiesis has been described for different haematopoietic lineages. The most 

obvious example being the formation of nucleated erythrocytes in the yolk sac 

expressing fetal-type globin in contrast to enucleated erythrocytes in the adult animal. 

Morphological heterogeneity has also been observed for macrophages between the 

fetal and the adult stage (reviewed by Naito et al, 1996). 

The use of molecular biological techniques such as specific antibodies and cloned 

gene probes made it possible to analyse the molecular basis of ontogenetic differences 

between the various haematopoietic cell types and their precursors. Molecular 

differences for a variety of haematopoietic cell types have been uncovered, including 

the observations of a developmental switch in B-cell and T-cell lineages (Ikuta and 

Weissman, 1993). At the level of the HSCs, the expression of the surface antigen 

AA4. 1 has been recognized as an ontogenetic stage-specific marker. Yolk sac HSCs 

and fetal liver HSCs have been characterized as positive for AA4. 1 (Huang and 

Auerbach, 1993; Jordan et a!, 1990) whereas AGM-derived HSCs and bone marrow 

HSCs are negative for AA4.1 (Sanchez et al, 1996; Spangrude et al, 1995). 
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Although fetal and adult HSCs can be enriched by selecting for the same combination 

of surface markers, differences in their developmental potential can be observed at 

the level of molecular analysis (Spangrude et al, 1991). The differential expression 

of B-globin genes in the various erythrocyte precursor populations is among the best 

studied difference in gene expression between embryo-derived and adult 

haematopoietic cells (Bonifer et al, 1998). 

The molecular analysis between developmental stages of haematopoiesis has largely 

advanced with the establishment of the gene targeting methodology. Several knockout 

mice, deficient in a specific regulatory molecule have been described in which the 

mutation affects haematopoiesis at various developmental stages. For instance, mouse 

embryos homozygous deficient in the transcription factor gene c-myb initially develop 

normally but die by 15 dpc from severe anaemia (Mucenski et al, 1991). These 

knockout embryos produce primitive erythroid cells in the yolk sac but have defective 

haematopoiesis in the fetal liver. Other targeted mouse mutants that exclusively affect 

definitive haematopoiesis are core binding factor alpha2 (Cbfa2/AML1) and erythroid 

KrUppel-like factor (Ekil) (Okuda et al, 1996; Nuez et al, 1995). Mutation in either of 

these genes leads to a defect in definitive haematopoiesis, with mutation of the AIVIL1 

gene affecting all lineages of fetal liver haematopoiesis and mutation of Eklf gene 

blocking definitive erythropoiesis. 

Some mutations have been found to differentially affect yolk sac, fetal liver and bone 

marrow haematopoiesis e.g. Gata2 has profound effects on fetal liver haematopoiesis 

and some effects on yolk sac haematopoiesis (Tsai et al, 1994). Mutation of the Gata2 

transcription factor gene affects yolk sac and fetal liver haematopoiesis to a different 

degree. Whereas fetal liver contains virtually no multipotent progenitor cells some 

are present in yolk sac but at reduced numbers. 
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1.2.8 Cells of the established haematopoietic system 

Mammalian haematopoietic cells have finite life spans, considerably shorter than the 

life span of the organism and the maintenance of constant numbers of functional cells 

in the peripheral blood is achieved by the proliferation and differentiation of precursor 

cells which are located primarily in the bone marrow. 

At steady state, the cells of the haematopoietic system can be broadly divided into 

three types of cell populations: multipotent HSCs, committed progenitor cells and 

maturing/mature cells. The haematopoietic progenitor cells and mature cells are all 

derived from HSCs which are established during embryogenesis. HSCs are a cell 

population of limited number which remain quiescent until induced by signalling 

events for the production of mature blood cells which leads to the daily production 

of millions of blood cells (Ogawa, 1993). 

Figure 1.1 shows an schematic overview of the cells and the hierarchical structure 

of the adult haematopoietic system. 

1.2.9 Haematopoietic stem cells 

Haematopoietic stem cells (HSCs) are the foundation of the haematopoietic system 

and are responsible for the maintenance of the haematopoietic system throughout the 

life span of an animal. HSCs are defined as the cell population of the haematopoietic 

system with multilineage differentiation potential and self-maintenance ability. This 

circumscribes the ability of HSCs to give rise to all haematopoietic cell types and to 

self-renew for the subsistence of a steady-state in HSC numbers. HSCs are rare in 

numbers, occurring with a frequency of approximately 1 per 105  nucleated cells in 

whole bone marrow in the adult mouse (Micklem et a!, 1987; Harrison et ad, 1989). 

In steady-state haematopoiesis the majority of HSCs are thought to stay in the 

metabolically quiescent phase of the cell cycle, the G0  phase, and only a few stem cell 

clones contribute by clonogenic expansion to the daily blood cell production (Lajtha, 

1979). The concept of cell cycle dormancy of HSCs, thought to be responsible for 
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their indistinguishable phenotype and their radioresistance, is supported by 

observations that brief exposure of in vitro bone marrow cells to radioactivity does 

not reduce the number of multipotential progenitors (Hara and Ogawa, 1978). 

Furthermore longterm reconstituting HSCs were found to be refractory to retroviral 

infection (Williams et al, 1984). Examination of the cell cycle distribution of 

multipotent progenitors indicated that longterm reconstituting stem cells are generally 

not mitotically active (Morrison and Weissman, 1994). Due to the quiescent state of 

most HSCs during normal haematopoiesis and their rarity in cell number it has been 

difficult to characterize and isolate these cells. 

Many different in vivo and in vitro functional assays have been used to determine 

lineage potential of haematopoietic progenitors and HSCs. In vitro assays to detect 

committed single and multilineage progenitors include the colony forming unit, culture 

assay (CFU-C) (Metcalf, 1984), stromal co-culture assays (Godin et al, 1995) or fetal 

thymic organ culture systems (Liu and Auerbach, 1991). An in vivo assay for 

multipotent progenitors is the colony forming unit spleen (CFU-S) which was the 

original assay for the search of HSCs (Till and McCulloch, 1961). This assay 

involves transplantation of haematopoietic progenitors yielding macroscopic colonies, 

in form of nodules of haematopoietic cells in the spleens of lethally irradiated mouse 

recipients between 8 to 13 days after injection (Moore and Metcalf, 1970; Medvinsky 

et al, 1993). CFU-S progenitors are not HSCs but can give rise to myeloid and 

erythroid lineages, have some degree of self-renewal capability and were found 

to account for the initial haematopoietic reconstituting activity and short-term 

repopulation in lethally irradiated recipients (Jones et al, 1989). CFU-S progenitors 

and HSCs can be separated by centrifugal elutriation, which is based on differences 

in cell size and density (Jones et al, 1990). 

A two step in vitro culture system with stromal cells and growth factors, the single 

cell multipotential assay (SMA), was developed for measuring the multipotential 

activity of a single cell (Godin et a!, 1995). The first step of this culture system is 
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to induce clonal expansion of haematopoietic progenitors and in the second step clones 

of progenitors are tested for lineage differentiation capacity. In vitro CFU and co-

culturing assays generally detect cells nearing the final stages of differentiation. 

Haematopoietic progenitor cells in these assays are not required to migrate or home 

as they must in some in vivo assays. 

The ultimate assay for the most primitive HSCs measures the long-term multilineage 

repopulation of the haematopoietic system of lethally irradiated or genetically 

haematopoiesis deficient mouse recipients (Moore and Metcalf, 1970; Muller et al, 

1994). In this in vivo assay, the full potential of the HSC is analyzed but requires 

4-6 months before the stable engraftment by a stem cell can be measured. 

Many characteristics attributed to HSCs have been derived from studies using 

functional in vitro and in vivo assays as described above. Simultaneously to functional 

analysis, efforts have increased for the enrichment and isolation of HSCs in cell 

populations of haematopoietic progenitors. Although functional assays have proven 

an indispensable tool for the analysis of HSC characteristics they are of limited use for 

the isolation of HSCs. Functional capabilities of HSCs can only be assessed by testing 

the abilities of the cells, which itself alters their characteristics during the assay 

procedure, thus reflecting on the HSCs present at the beginning of the analysis. 

Many approaches for the enrichment and isolation of HSCs are based on the isolation 

of rare cells by fluorescence-activated cell sorting (FACS). Fluorescein-conjugated 

antisera were used to identify cell surface marker expression patterns and FACS 

analysis was used to enrich haematopoietic cells for HSCs. Spangrude et al (1988) 

isolated a phenotypically defined multipotent progenitor population which was shown 

to be highly enriched in HSCs. Bone marrow cells isolated by combination of Thy-1 

antigen expression at low levels, high level expression of the stem cell antigen-i 

(Sca-1) and the absence or low expression of specific lineage markers found on 

mature blood cells (Lin-110) were found to be a rich source of HSCs. 
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The Thy- 1l0Sca1+Lin-Il0  cell population was shown to be capable of long-term 

multilineage reconstitution of lethally irradiated mice. On average 1 out of 20 

intravenously injected cells from this population was found to give rise to multipotent 

progenitor activity (Spangrude et al, 1988; Smith et al, 1991). 

However, upon closer examination the Thy- 1l0Scal+Lin/l0  population was found 

to be heterogeneous with respect to functional activity and found to consist of 

longterm and transient repopulating cells (Smith et al, 1991). Further phenotypic 

analysis found that the Thy- 11°Sca-1 cell population can be divided into three 

subpopulations based on heterogeneity in low level of lineage specific marker 

expression (Morrison and Weissman, 1994). However, each of these subpopulations 

was found to be highly enriched for progenitor activity and despite being a 

heterogeneous population the Thy- 1l0Sca1+Lin/l0  cell population is used as the 

basic population for further HSC enrichment and analysis (Ikuta and Weissman, 

1992). For instance, a subpopulation of Thy- 1l0Sca1+Lin cells staining low for 

Rhodamine 123 (Rh12310)  has been found to be an apparently pure population of 

long-term repopulation progenitors (Spangrude et a!, 1995). 

Other surface antigen markers have been used for phenotypical characterization and 

identification of HSCs. Two antigens closely associated with HSCs are the receptor 

tyrosine kinase c-kit (Okada et al, 199 1) and the cell surface glycoprotein CD34 

(Krause et a!, 1994). Adult LTR-HSCs in bone marrow have been described to be 

Linckit+ScaftCD34Il0  (Osawa et al, 1996), whereas LTR-HSCs in the AGM 

region and fetal liver were reported to be ckit+CD34+ (Sanchez et al, 1996). The 

transient phenotype of HSCs during various developmental stages and transitory 

localization further complicates the isolation of HSCs. Observations have been 

reported that the level of antigen expression can be dependent on the developmental 

stage of the HSC. For instance, CD34 is reported to be selectively expressed within 

the haematopoietic system on stem and progenitor cells but expression of CD34 is 
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lost as the cells mature (Krause et al, 1994). Some surface antigens designated to 

HSCs are also expressed by non-haematopoietic cells, e.g. CD34 is also expressed 

in vascular endothelial cells (Fina et al, 1990). Expression of c-kit is broadly 

distributed within the hierarchy of haematopoietic cells and is also found in other 

tissues (Broudy, 1997). 

Currently, there are no specific phenotypic antigens unique to definitive HSCs. 

Thus, combinations of antigens combined with enrichment techniques which take 

advantage of physical characteristics of HSCs unrelated to antigen expression are 

used for the enrichment and isolation of HSCs. 

One of the many methodologies used for HSCs enrichment is based on the uptake 

of fluorescent dyes. Fluorescence dyes such as the nucleic acid dye Hoechst 33342 

or the vital fluorochrome Rhodamine-123 (Rh123) have been proven useful for HSC 

enrichment. Hoechst 33342 hardly stains the most quiescent HSCs (Neben et al, 

1991), whereas Rh 123 accumulates in mitochondria. It has been shown that enriched 

progenitor fractions can be further subdivided with respect to Rh 123 uptake 

(Spangrude and Johnson, 1990). The Rh12310  fraction has been observed to be more 

enriched for long-term multipotent progenitors than the Rh123med1I1  (Spangrude and 

Johnson, 1990) and it has been reported that long-term and transiently reconstituting 

multipotent progenitors can be separated based on Rh 123 uptake (Zijlmans et al, 

1995). Quiescent primitive HSCs have been shown to be resistant to cytotoxic agents 

such as 5-fluorouracil (5-FU) and this property has been exploited to enrich HSCs 

by exclusion of all other cells (Hodgson and Bradley, 1979). HSCs have also been 

enriched based on the level of wheat germ agglutinin binding (WGA) (Jurecic et al, 

1993) and on the basis of size and density by counter flow centrifugal elutriation 

(Jones et a!, 1990). Often two or more techniques are combined for the enrichment 

of HSCs, e.g. centrifugal elutriation of cells sorted on the basis of Rh 123 cell sorting 

resulted in a substantial enrichment of HSCs (Ploemacher and Brons, 1989). 
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The study of the fundamental mechanisms of self-renewal and differentiation 

ideally requires analysis either of an absolute pure population of HSCs or analysis of 

individual HSCs independently of the accompanying cells in the sample. It is therefore 

critical that HSC populations are pure or nearly pure, if population level characteristics 

such as cell cycle distribution and radioprotective capacity are to be interpretable. 

Retroviral labelling of individual stem cell clones allowed insight into clonal behaviour 

and systematic dynamics of stem cells and entire reconstitution of the haematopoietic 

system in vivo (Capel et a!, 1990; Jordan and Lernischka, 1990). Analysis of 

retrovirally marked haematopoietic progenitor clones in vivo found that molecular 

marking appears not to alter the behaviour of the stem cell population. Genetically 

marked cells with HSC properties such as ability to reconstitute lethally irradiated 

mice, contribution to haematopoiesis over a long-term, ability to give rise to CPU-S 

and CFU-C, and expression of haematopoietic surface markers, have been produced 

by retroviral labelling (Wong et al, 1994). Retroviral marking of HSCs makes it 

possible to uniquely mark and simultaneously follow multiple progenitor clones, 

based on retroviral integration sites. 

A number of models have been proposed for the conceptional organization of the 

haematopoietic system and although there are data supporting all aspects of these 

models non can be considered conclusive (Loeffler and Potten, 1997). Nonetheless, 

these models continue to provide the foundations for current concepts of HSC self-

renewal and differentiation. Whereas early model systems tended to view HSCs 

in isolation, as techniques for studying HSCs became more precise aspects of the 

influence of microenvironmental differences on self-renewal and differentiation 

were included. 

At present there is no experimental way to decide if a given haematopoietic cell in a 

functional mammalian tissue is a HSC or not, there are also no unique morphological 
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criteria to identify HSCs, thus most of the present knowledge of HSC commitment 

and self-renewal is based on the population approach. 

Two frequently used models based on a stochastic concept or a deterministic concept 

are applied for the description of self-renewal and differentiation of HSC. In both 

models regulatory influences of the haematopoietic microenvironment by its generation 

of cytokines are included. The first model suggests that self-renewal and commitment 

of HSCs and pluripotential progenitors are stochastic processes but survival and 

proliferation of committed progenitors is regulated by cytokines (Ogawa, 1993). 

This stochastic model is based on the formation of multilineage colonies with replating 

potential in methylcellulose. The production of secondary blast cell colonies was 

postulated as a self-renewal process and the generation of secondary multilineage 

colonies as differentiation. The distribution of colony types generated by multipotential 

progenitors was interpreted as consistent with stochastic mechanisms of stem cell 

renewal and commitment (Ogawa, 1993). 

In contrast, the second frequently used model suggests instructive processes for HSC 

self-renewal and differentiation. This deterministic model is based on the purification 

of three multipotent populations with distinct self-renewal potentials (Morrison and 

Weissman, 1994). These populations have been reported to form a lineage of 

multipotent progenitors from long-term self-renewing stem cells to the most mature 

multipotent progenitor population (Morrison et al, 1997). The fact that self-renewal 

potential of particular multipotent progenitors based on surface marker expression 

can be predicted is interpreted to indicate that self-renewal is deterministic. Although 

self-renewal is explained to be determined by intrinsic factors, microenvironmental 

factors are thought to influence proliferation and survival of committed progenitors. 

The necessity for new and well defined concepts that are amenable to experimental 

analysis is discussed to a great extent on concepts generally applicable to all stem cell 

systems by Loeffler and Potten (1997). 
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1.2.10 Haematopoietic progenitor cells and mature blood cells 

The immediate progeny of differentiating multipotent HSCs are haematopoietic 

progenitor cells which possess limited further differentiation potential. In contrast 

to HSCs which are quiescent under normal conditions, progeny of HSCs undergo 

significant clonal expansion. This expansion accounts for the majority of the 

functional cells of the haematopoietic system owing to the fact that the mature 

terminally differentiated cells have only a modest proliferative capacity. The 

commitment of haematopoietic cells to various cell lineages occurs as multipotent 

progenitors progress through an irreversible descending hierarchy of differentiation 

steps that eventually results in the production of mature haematopoietic cells. The 

sequential development of progenitor cells and mature cells from HSCs is illustrated 

in Figure 1.1 (Hierarchical model of haematopoiesis). 

Haematopoietic progenitors, also termed lineage-restricted or conmiitted progenitors, 

are detectable by their ability to give rise to colonies of morphologically recognizable 

haematopoietic cells in semisolid clonal cell assays. Relatively primitive progenitor 

cells with high proliferative and some renewal capability that can be cloned in soft 

agar or methylcellulose are the colony-forming unit-blast (CFU-blast) (Suda et a!, 

1983) and the high proliferative potential colony-forming cell (HPP-CFC) (Bradley 

and Hodgson, 1979). The long-term culture initiating cell (LTC-IC) is another 

primitive high-renewal cell that has been defined by its growth on irradiated adherent 

cells in long-term marrow cultures (Ploemacher et al, 1989). 

As progenitor cells mature they become restricted to a single cell lineage - 

erythrocytes, platelets, neutrophils, macrophages, eosinophils, basophils, mast cells 

or lymphoid cells. Functional in vitro assays, the colony forming unit (CFU) assays, 

for committed single- and multi-lineage progenitors lead to mature blood cell 

production. The progenitor cells are characterized by the cell lineage(s) they form 

in the colony forming unit assay, e.g. CFU-G, CFU-GEMM. These culture assays 

led to the identification of close cell lineage relationships between populations, 
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in some cases sharing a common progenitor cell, e.g. neutrophils and mononuclear 

phagocytes are closely related (Wright and Lord, 1992). Progenitor cells have little, 

if any, capacity to self-renewal but are committed to a programme of differentiation 

and maturation with any proliferative capacity serving to amplify the population 

prior to the terminal maturation of the cells. Most progenitors are unipotential cells, 

generating colonies of maturing/mature cells of a single lineage. The survival and 

proliferation of progenitor cells in vitro is dependent on the presence of cytokines 

(Han and Caen, 1994). 

Whilst differentiation can be defined as a qualitative change in the cellular phenotype, 

maturation can be regarded as a quantitative change in the cellular phenotype leading 

to functional competence (Loeffler and Potten, 1997). 

Maturing and mature cells of the haematopoietic system encompass the majority 

(-P95%) of the haematopoietic cells which reflects the proliferative amplification of 

the differentiated cells as they mature to become functional cells (Wright and Lord, 

1992). Mature haematopoietic cells have distinctive morphological characteristics 

and are responsive and adaptive to a variety of stress. 

Haematopoiesis - commitment of HSCs, differentiation of haematopoietic progenitors 

and maturation occurs in the bone marrow environment in association with the stromal 

cells of the marrow but when mature, cells leave the marrow and enter the peripheral 

blood circulation. Mature haematopoietic cells localize and function in varied 

microenvironments and are able to interact with a spectrum of non-haematopoietic 

cell types. 

1.2.11 The haematopoietic microenvironment 

The steady-state production of haematopoietic cells depends to a large extent on 

interactions between haematopoietic progenitors cells and their microenvironment. 

The haematopoietic microenvironment is a highly organized structure that influences 

the location and physiology of HSCs and all other haematopoietic cells. The stroma 
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in bone marrow is a network of stromal cells (endothelial cells, fibroblasts, 

macrophages, adipocytes) and extracellular matrix (collagen, laminin, fibronectin 

proteoglycans), whereas the stroma of other haematopoietic sites is less complex 

(Allen et al, 1990). Differentiation, proliferation and maturation of haematopoietic 

cells are regulated and influenced by interactions with non-haematopoietic cells, 

mediated directly by cell-cell contact and/or secreted regulatory molecules acting 

in a positive or negative manner (Clark et al, 1992). 

Haematopoietic cells removed from the body can be maintained for short periods 

of time in the presence of growth factors, but in the absence of growth factors the 

survival of these cells rapidly declines ex vivo. However, cultured in association 

with marrow-derived stromal cells, haematopoietic cells will proliferate and 

differentiate in vitro in the absence of exogenous factors (Dexter et al, 1977). 

These long term bone marrow culture (LTBMC) conditions maintain stem cell 

replication and commitment to differentiation for many weeks in vitro. The in vitro 

LTBMC system appears to closely reproduce the conditions observed in vivo and has 

been useful in defining cell populations and associations between haematopoietic and 

stromal cells. In LTBMC systems an adherent cell layer, consisting of different cell 

types provides both, the physical support and the haematopoietic cytokines (soluble 

and cell-associated proteins) necessary for the growth of haematopoietic progenitors. 

Separation of the haematopoietic cells from the stromal cells or the use of conditioned 

medium, harvested from LTBMC was found to result in reduced haematopoiesis 

in vitro, suggesting that close proximity or contact between haematopoietic and 

stromal cells is required for haematopoiesis (Clark et al, 1992). 

Haematopoietic cells can bind avidly to stromal cells via adhesion proteins and 

possibly via membrane cytokines and interactions occur via factors secreted by stromal 

cells and via cell-cell contacts (Ohneda and Bautch, 1997). Cells of the haematopoietic 

microenvironment are a major source of haematopoietic cytokines supporting growth 

and differentiation of haematopoietic cells. Microenvironmental cells have been found 
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to produce haematopoietic stimulators e.g. GM-CSF, G-CSF, M-CSF, SCF, 1L3, 

and inhibitors e.g. TNF-alpha, TGF-B and IFN. Some of these are produced only 

by activated microenvironniental cells; thus they have been postulated to play a major 

role on blood cell production under situations of acute stress, such as infection. 

Although haematopoiesis is recapitulated in vitro using stromal cells from the bone 

marrow in LTBMC, the heterogeneity of the stromal cells in these cultures complicates 

the dissection of the role of specific stromal cell types in haematopoiesis. 

1.2.12 The molecular control of haematopoiesis 

Haematopoiesis is controlled by the dynamic balance of co-operative actions 

of various regulators exerting positive and/or negative effects on cells of the 

haematopoietic system. The diverse mechanisms controlling stem cell self-renewal, 

proliferation, commitment, differentiation and maturation within the haematopoietic 

system are interactive and able to response to changing conditions. 

Whereas much is known about molecular control mechanisms in progenitor 

and mature cells, little is known how HSCs decide between self-renewal versus 

commitment. Lineage commitment occurs as a progressive lineage restriction of 

multipotent progenitors through an irreversible descending hierarchy of differentiation 

steps that eventually results in the production of mature haematopoietic cells. 

As haematopoietic lineage commitment proceeds there is a concomitant loss in 

the capacity of committed progenitors to differentiate to other cell lineages. 

Two main models to explain the controlling mechanisms of lineage commitment and 

haematopoietic differentiation have been proposed. One model suggests control of 

lineage commitment by extrinsic regulators such as haematopoietic cytokines and/or 

interactions with stromal microenvironment (Metcalf, 1991). Others propose that 

cytokines have only a minor role in determining cell lineage commitment and suggest 

a model, whereby intrinsic regulators direct self-renewal and lineage commitment 
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of HSCs and progenitor cells and cytokines regulate proliferation and survival of 

already committed cell types (Ogawa, 1993). 

Whichever model of haematopoietic lineage commitment is correct, cytokines 

and transcription factors play important roles in controlling mechanisms of the 

haematopoietic system. Analysis of both, cytokines and transcription factors 

has widely relied on in vitro studies. However, new insight and conceptional 

understanding of haematopoiesis has emerged using targeted mutagenesis in 

mice allowing functional analysis in vivo. 

Some of the recent understanding of the regulatory effects of cytokines, cytokine 

receptors and transcription factors is outlined in the sections below. 

1.2.13 Cytokines in haematopoiesis 

A variety of molecules recognized to have regulatory effects in the haematopoietic 

system have been identified, including the colony stimulating factors (CSFs), the 

interleukins (ILs) and haematopoietic growth factors, together generally referred to 

as cytokines. Cytokines are soluble molecules produced by haematopoietic cells and 

cells of the stromal microenvironment with a wide range of bioactivities for controlling 

the various pathways for lineage commitment, proliferation, differentiation and 

functional activity of the haematopoietic system. Many cytokines were originally 

identified as soluble mediators in LTBMC systems and subsequently isolated. 

LTBMC systems attempt to provide the required microenvironment of cell-cell 

interaction, as well as soluble and membrane-bound mediators necessary for 

haematopoiesis (Dexter et a!, 1977). Cytokines can be produced by multiple cell 

types, both haematopoietic and non-haematopoietic cells, however, stromal cells 

of the haematopoietic microenvironment have been identified as the main source of 

cytokines. Initially the CSFs were defined by their ability to induce clonal proliferation 

and differentiation, and characterized by the types of colonies formed from bone 

marrow cells in soft agar assays (Nicola, 1989). 
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Most cytokines are pleiotropic and have multiple biological functions at various 

levels of cell differentiation and on multiple lineages, however, some functions 

may predominant and be recognized as the main characteristic of a cytokine. 

Cytokines described to act in a relative lineage specific manner are erythropoietin 

(Epo) and macrophage-CSF (M-CSF). Epo is responsible for maintenance and 

control of erythropoiesis and induces erythrocyte production (Spivak, 1989). M-CSF 

is considered to be for specific macrophage/monocyte lineages (Bajorin et a!, 1991). 

Most cytokines acting at later stages of lineage development show lineage specificity 

of some sort, supporting proliferation and maturation of highly committed 

progenitors. In contrast, cytokines acting early in lineage development are relative 

non-specific factors e.g. IL-6, IL-3, SCF, GM-CSF. 

Functional pleiotropy (multiple biological actions) is observed for most cytokines. 

Examples for multilineage cytokines are IL-3, also referred to as multi-CSF, and IL-6. 

IL-3 stimulates the growth and differentiation of multipotent progenitors, B-cell 

precursors, and myeloid progenitors, including those of erythroid, mast cell and, 

granulocyte lineages. However, it has been reported that IL-3 acts best in synergy 

with a combination of other factors and IL-3 alone is less effective (Yonemura et al, 

1992). IL-6 is a cytokine with multiple activities that is produced by various types 

of lymphoid and non-lymphoid cells, e.g. B-cells, monocytes, macrophages, 

megakaryocytes, eosinophils, fibroblasts, stromal cells (Han and Caen, 1994). 

11L-6 induces B-cell maturation and immunoglobulin secretion but has also been shown 

to enhance megakaryocyte development and proliferation of multipotential progenitors. 

IL-6 also interacts synergistically with other cytokines to stimulate myeloid 

proliferation (Veiby et a!, 1997). 

Some cytokines have been found to be able to act in a direct and/or indirect manner 

by either affecting progenitor cells directly or by inducing the production of other 

cytokines. GM-CSF stimulates the proliferation of granulocyte, macrophage, 

eosinophil and basophil progenitors, but also exerts a variety of direct or indirect 
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effects on mature cells including neutrophils, eosinophils, monocytes and 

macrophages at concentrations below that required to promote proliferation of 

progenitor cells (Rapoport et al, 1992). Another cytokine able to act in a direct 

and/or indirect way is IL- 1. IL-i is reported to have direct effects on early progenitor 

cells, to act synergistically with many other cytokines and to induce the production of 

other cytokines. IL-i has also been reported to improve haematopoietic recovery from 

cytotoxic drug damage in vivo and the survival of mice after irradiation or bone 

marrow transplantation. However, these effects may be triggered by the ability of IL-i 

to induce the production of a range of cytokines, such as GM-CSF, G-CSF, M-CSF 

and IL-6, in monocytes, fibroblasts, endothelial and other cell types. The ability of 

IL-i to induce cells to produce cytokines makes the interpretation of direct effects of 

IL-i complex. Effects of IL-i are probably a result from acting directly on early 

progenitors and by interacting synergistically with other cytokines (Heyworth et al, 

1997). Some cytokines show highly conserved sequence homology between species, 

e.g. IL-5 and G-CSF. Mouse [L-5 and human IL-5 have a sequence homology of 

77% at the DNA level and 70% at the protein level. The amino acid sequences of 

mouse and human G-CSF exhibit more than 70% homology and have been reported 

to highly cross-react between species (Han and Caen, 1994). 

G-CSF acts primarily to stimulate proliferation, differentiation and maturation 

of committed neutrophil progenitor cells. However, in combination with IL-3, 

G-CSF can enhance the proliferation of multipotent haematopoietic progenitors 

and megakaryocyte progenitors (Ikebuchi et al, 1988). 

Stem cell factor (SCF) is a cytokine with its most prominent actions on HSCs 

and primitive haematopoietic progenitors (Williams et al, 1990). However, in vitro 

studies have shown that SCF can also act on precursor cells and mature cells, showing 

a broad range of activities. SCF alone has limited capacity to stimulate proliferation, 

however, in combination with other cytokines it has been found to have a potent 
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costimulatory effect. It enhances myeloid and erythroid colony growth when 

combined with GM-CSF, G-CSF, IL-3 or Epo and it acts in synergy with IL-3 

and GM-CSF to stimulate megakaryocytopoiesis (Han and Caen, 1994). 

Functional analysis of cytokines in vitro and in vivo has given a large amount of 

information about the regulatory effects of cytokines in haematopoiesis. Although 

it may appear that the haematopoietic system exhibits a high degree of redundancy in 

regulatory factors, with many similar or overlapping actions from different regulators, 

the complex interactions of cytokine influenced activities does not allow conclusions 

to be drawn about the direct effects of any cytokine. The most definitive approach to 

establishing the function of a particular regulator is by analysing animals in which 

the gene in question has been deleted or functionally inactivated. Naturally occurring 

mutations in the Si locus, which encodes SCF, were among the first in vivo models 

for cytokines. Mutations at the SI locus result in defective haematopoietic, melanocyte 

and gonadal development. The haematopoietic phenotype in homozygous mice is 

characterized by severe macrocytic anaemia. In vitro studies revealed that the defect 

in the Si mutation was due to a stromal cell microenvironment that could not support 

haematopoiesis, however, haematopoiesis can occur in the absence of functional 

SCF (Galli et al, 1994). Another mouse mutation in a cytokine gene that has arisen 

spontaneously results in a deficiency of M-CSF (Yoshida et al, 1990). Mice 

harbouring a homozygous mutation for the gene (op) encoding M-CSF exhibit a 

major deficiency in macrophage-derived osteoclasts and partial deficiencies in other 

macrophage populations. These abnormalities have been found to be correctable' 

by the injection of M-CSF (Wictor-Jedrzjczak et a!, 1991). 

A number of targeted mutations in cytokines has been produced, e.g. GM-CSF, 

G-CSF, IL-3 (Lieschke et a!, 1994a; Dranhoff and Mulligan, 1994; Hera and 

Miyajima, 1995) which were anticipated to produce definitive answers to their 

molecular function. However, this has not proved to be the case, since some 
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animal models produced for cytokines thought to be critical to haematopoiesis display 

relatively little or no haematopoietic phenotype, e.g. GM-CSF, IL-3 (Dranhoff and 

Mulligan, 1994; Hera and Miyajima, 1995). 

Nevertheless, animal models with phenotypes more in line with the predicted effects 

have also been obtained. For instance, G-CSF knockout mice have a deficiency in 

granulocyte and macrophage progenitors and impaired neutrophil mobility (Lieschke 

et al, 1994a). To address this apparent redundancy in cytokines on a genetic level, 

generation of mice deficient in two or more cytokines, double and multiple knockouts, 

will be required. For instance, a study has been reported analysing mice deficient in 

GM-CSF and M-CSF. These mice are osteopetrotic and have lung disease (Lieschke 

et al, 1994b). 

Not all cytokines involved in the control of haematopoiesis have stimulatory effects 

on haematopoietic cells. Inhibitory and bifunctional cytokines of haematopoietic 

precursors have been described and characterized on the basis of their inhibitory 

effects on progenitors at different stages e.g. transforming growth factor-B (TGF-B 1), 

macrophage inflammatory protein 1 alpha (MIP- 1 alpha) (Keller et al, 1988; Dunlop 

et al, 1992). The actions of TGF-B1 and MIP-1 alpha appear to be dependent upon 

the developmental status of the cell, cell type, growth conditions and presence of other 

factors. TGF-Bl is able to inhibit HSCs and primitive progenitors but stimulates or 

has no effect on more mature progenitors (Keller et al, 1990). MIP- 1 alpha protein 

was purified for its ability to inhibit haematopoietic progenitor cell proliferation 

in vitro, however, in combination with other cytokines MIP- lalpha has been reported 

to promote colony growth. TGF-B 1 and MIP- 1 alpha appear to inhibit the cell cycling 

of the primitive cells but can act in a growth stimulatory manner on the more mature 

progenitor cell. 
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It is apparent that a balance between stimulatory and inhibitory growth factors 

is essential for the maintenance of the homeostasis associated with normal 

haematopoiesis. The effect of cytokines is not only dependent on their concentration 

but also on the responsiveness of their potential target cells e.g. the presence of 

specific cytokine receptors for the initiation of responsive effects after cytokines 

bind to their specific receptor. 

1.2.14 Cytokine receptors in haematopoiesis 

Cytokines act by binding to their specific cytokine receptors expressed on the cell 

surface which determine the responsiveness of target cells to cytokines. Cytokine 

receptors are cell surface glycoproteins that serve the dual function of recognizing 

their cognate ligands among a variety of other factors and of initiating a series of 

cellular signals that ultimately lead to multiple cellular functions. 

Two distinct families of related receptors exist for cytokines with members of 

these superfamilies defined by structural criteria. Members of the cytokine receptor 

superfamily are defined by structural motifs in the exoplasmic domain and by the 

absence of catalytic activity in the cytosolic segment. Members include the receptors 

for Epo, G-CSF, GM-CSF, LW, IL-2, IL-3, IL-4, IL-5, IL-6, and IL-7 (Banzan, 

1990). Members of this superfamily are divided into subfamilies based on oligomeric 

structure and shared components of the receptors. 

Other cytokine receptors have classical transmembrane tyrosine kinase activity 

belonging to the receptor tyrosine kinase superfamily. These include the receptors 

for SCF, termed c-kit receptor (Chabot et a!, 1988) and for M-CSF, termed c-fms 

receptor (Sherr et al, 1985). The cytoplasmic domains of receptor tyrosine kinases 

contain a highly conserved catalytic kinase whereas the extracellular region is specific 

for their cognate ligands. Receptor tyrosine kinases dimerize upon ligand binding 

followed by auto-phosphorylation which is an essential step for the activation of 

signaling pathways. 
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In contrast to the tyrosine kinase-containing receptors, the cytoplasmic domains of 

members of the cytokine receptor superfamily lack a conserved motif associated with 

apparent enzymatic activity and do not show extensive similarity. These receptors 

participate in receptor signal transduction by interacting with and activating cytosol-

localized proteins. Cytokine receptor signal transduction is initiated by ligand-mediated 

receptor oligomerization, with some members of the family active as homodimers, 

e.g. EpoR and G-CSF-R, whereas others are active as heterodimers, e.g. IL-3R, IL-

5R, and GM-CSF-R, or as hetero-oligomers, e.g. IL-6R, LIF-R, IL-2R, and IL-4R. 

Receptor dimerization has been described to be essential for signal transduction 

(Watowich et al, 1994). Single chain receptors such as EpoR and G-CSF-R form 

homodimers in response to ligand binding, whereas the majority of cytokine receptors 

function as heterodimers or hetero-oligomers sharing common receptor signaling 

subunits within subfamilies. Receptors for IL-3, IL-5 and GM-CSF are hetero-dimers 

which share a common membrane bound chain, the common B-subunit (Bc), but have 

ligand-specific alpha-subunits. The alpha-subunits bind ligand in the absence of the 

B-subunit, but oligomerization with the B-subunit is required for high-affinity ligand 

binding and for cell proliferation. The high-affinity receptors for other cytokines also 

have distinct and common receptor components that oligomerize in response to ligand 

binding to initiate signaling e.g. IL-6, LW, IL-2 and IL-4. 

Signal transduction across the cytoplasm is dependent on the activation of catalytic 

regions associated to the receptors. Whereas receptor tyrosine kinases contain a 

catalytic activity in their cytoplasmic domains members of the cytokine receptor 

superfamily depend on intracellular catalytic molecules. Tyrosine phosphorylation 

of the cytokine receptors and cellular substrates is thought to be achieved by contact 

with and activation of intracellular tyrosine kinases after ligand binding and receptor 

dimerization. Cytoplasmically localized protein tyrosine kinases which play a major 

role in cytokine signaling include the Janus family kinases (JAK kinases) and src 

family-related kinases (Ziemiecki et al, 1994). 
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Although cytokine receptors activate similar intracellular signal transduction 

pathways, different receptors support the proliferation and differentiation in distinct 

haematopoietic lineages. Corresponding to cytokine studies, targeted mutagenesis 

in cytokine receptors has provided insight into the physiological roles of individual 

cytokine receptor subunits in vivo. Several cytokine receptors have been disrupted 

by targeted mutagenesis e.g. EpoR, TL-2R alpha, B, IL-3R (B-subunit) (Watowich 

et a!, 1994). 

Combined analysis of animal models for cytokine receptors and animal models for 

cytokines revealed understanding of the in vivo function of ligandlreceptor pairs. 

A classic example is the SCF/c-kit ligand/receptor pair. Mutations at the steel (Sl) 

locus, encoding SCF, and the white spotting (W) locus, encoding the receptor 

tyrosine kinase c-kit, arose spontaneously and study of these mutations provided 

important information about interactions between haematopoietic cells and their 

stromal microenvironment (Broudy, 1997). An example for a gene targeted 

ligandlreceptor pair is Epo and EpoR. The study of Epo-/- and EpoR-/- mice 

observed similar phenotypes in both models, exhibiting severe anaemia and 

embryonic lethality, thus indicating that the Epo function in vivo cannot be 

replaced by other cytokines or receptors (Wu et a!, 1995). 

1.2.15 Transcription factors in haematopoiesis 

Cytokines mediate their effects through signal-transducing pathways which results 

in the activation of gene expression by specific transcription factors. The activation 

of cell specific transcription factors mediates the variety of proliferation and 

differentiation signals to which cells are exposed into coordinated cell specific gene 

expression. The production of functional blood cells from HSCs is a highly regulated 

process with haematopoietic transcription factors involved as important regulators of 

the correct temporal and spatial gene expression patterns. 



Thus, an understanding of transcription factor function is essential to the study of 

haematopoietic development and commitment, differentiation and proliferation of 

haematopoietic cells. Similar to the arrangement of haematopoietic cell development 

and cytokines into a hierarchical system, with multi- or pluripotent progenitors and 

broadly acting cytokines at the top and lineage-specific progenitors and lineage specific 

cytokines at the bottom, transcription factors can be arranged along the haematopoietic 

hierarchy. A hierarchical relationship among haematopoietic transcription factors has 

been proposed (Orkin, 1995). Some transcription factors appear to function at an 

early stage of specification of HSCs and mutation of their genes affects a broad range 

of blood cells e.g. SCL, Rbtn2. Other transcription factors are limited in function to a 

later and more specific role e.g. GATA-1, Ikaros, PU.l (Orkin, 1995). 

Alike to functional cytokine studies, the advent of targeted mutagenesis has 

greatly advanced the study of haematopoietic transcription factors. The function 

of transcription factors within the haematopoietic system is implied from the range 

of cells that fail to develop in a mouse with a homozygous knockout mutation. 

Although speculative to some degree, the analysis of transcription factors on the 

basis of knockout phenotypes has provided much insight in their functional roles. 

Examples of some haematopoietic transcription factors and their main characteristics 

are described below. 

The transcription factor SCL (for stem cell leukemia), also known as TALI (for 

T-cell acute leukemia- 1), was originally identified as the product of a gene at the site 

of chromosomal translocations associated with acute T-cell lymphoblastic leukemia 

(Begley et al, 1989). SCL is a transcription factor of the basic helix-loop-helix 

(bHLH) DNA-binding domain family. During embryonic development, SCL is 

selectively expressed in extraembryonic and embryonic mesoderm (Kallianpur et al, 

1994) and during normal haematopoiesis in erythroid cells, mast cells and 

megakaryocytes (Green et al, 1991). Mice lacking a functional SCL gene die around 
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embryonic day 9.5 due to a complete block in haematopoiesis (Robb et al, 1995; 

Porcher et al, 1996). Both, embryonic and definitive haematopoiesis are affected and 

it was found that SCL is essential for the generation of all haematopoietic lineages 

(Shivdasani et al, 1995; Robb et al, 1996). The analysis of Sc!-!- mice and Sc!-!-

ES cells indicate a very early role for SCL, developmentally in the specification 

of haematopoietic cells from mesoderm and during normal haematopoiesis in the 

specification of HSCs with an additional role in regulating differentiation of erythroid, 

megakaryocytic and mast cells (Robb et al, 1996; Porcher et al, 1996; Elefanty et al, 

1997). 

Transcription factors influencing the proliferation and survival of haematopoietic 

multipotential progenitors are GATA-2, c-myb, and PU. 1. The transcription factor 

GATA-2 is a zinc-finger protein and a member of the GATA-family. GATA-2 is 

thought to be important for the expansion and/or maintenance of the haematopoietic 

progenitor/stem cell population. Null mutation of GATA-2 does not eliminate the 

generation of haematopoietic progenitors but significantly impairs their expansion 

and/or maintenance, resulting in severe fetal liver anaemia and embryonic death at 

around 10.5 dpc (Tsai et al, 1994). 

C-myb, a proto-oncogene encoded transcription factor is expressed at the highest 

level in immature haematopoietic progenitor cells (Weston, 1990). Mice lacking 

c-myb initially develop normally, but die of severe anaemia at the fetal liver stage of 

haematopoiesis (-15 dpc) (Mucenski et a!, 1991). In vitro studies indicate that c-myb 

regulates the expression of proliferation-promoting genes or inhibits the transcription 

of differentiation-promoting genes (Badiani et a!, 1994; Gonda et a!, 1989). Primitive 

yolk sac haematopoiesis in c-myb -/- mice appears normal, but the number of myeloid 

and erythroid precursors for definitive haematopoiesis in fetal liver is greatly reduced, 

whereas megakaryocyte differentiation is not affected. These findings in mutant 

phenotype have been interpreted that c-myb has a function in controlling proliferation 
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of multipotential progenitors. The selective effect on definitive haematopoiesis is 

thought to be suggestive that the genetics of primitive and definitive stem cells may 

be different. 

The transcription factor PU. 1 (the product of the Spi- 1 proto-oncogene) is a 

haematopoietic-specific member of the ets family. PU. 1 is widely expressed in the 

haematopoietic system, principally in monocytes/macrophages, and B lymphocytes, 

but also in erythroid cells and granulocytes (Scott et al, 1994). Mutation of the PU. 1 

gene causes a defect in generation of B lymphocytes, monocytes and granulocytes, 

as might be predicted from the expression pattern. However, development of 

T lymphocytes is also defective, whereas erythrocyte and megakaryocyte progenitors 

are normal (Baribault et al, 1996; Scott et al, 1994). The absence of functional PU. 1 

results in death around embryonic day 18 due to abolished myeloid and lymphoid 

development (Scott et al, 1994). It is thought PU.1 might function either by regulating 

the development of a multipotent lymphoid/myeloid progenitor cell or through 

independent function in distinct lineages (Scott et al, 1994; 1997). 

Transcription factors that appear restricted in their function to regulating the 

development of one or a few lineages are GATA- 1 and Ikaros. These transcription 

factors probably function downstream within the haematopoietic hierarchy regulating 

decisions within the erythroid or lymphoid progenitor population, GATA-1 or Ikaros 

respectively. 

Expression of the zinc finger protein GATA- 1 within haematopoietic cells is restricted 

to the erythroid, megakaryocyte, eosinophil and mast cell lineages and multipotential 

progenitors (Shivdasani and Orkin, 1996). An essential role for GATA-1 in erythroid 

cell differentiation was demonstrated by disruption of the single X-linked gene in 

mouse ES cells and analysis in cell culture and chimaeric mice (Pevny et a!, 1991; 

Simon et al, 1992). Lack of a functional GATA-1 results in the inability to complete 

the differentiation program of the erythroid lineage, due to arrest in maturation. 
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This is observed in both erythroid lineages, primitive and definitive (Pevny et al, 

1995). GATA-1 embryos are embryonic lethal at the yolk sac stage (Fujiwara et al, 

1996). These studies of targeted GATA-1 disruption provided strong evidence that 

GATA- 1 is a key regulator of erythroid differentiation with survival and terminal 

maturation of erythroid precursors critically dependent on functional GATA- 1. 

The transcription factor Ikaros is thought to play a role analogous to that of GATA- 1 

within the lymphoid lineage. The Ikaros gene encodes lymphoid-restricted zinc finger 

transcription factors, which can be produced in six isoforms owing to differential 

splicing. Ikaros is expressed exclusively within lymphocytes and early haematopoietic 

progenitors and is thought to regulate the expression of a number of lineage-specific 

genes (Georgopoulos et al, 1992). Gene targeting in the Ikaros locus resulted in a 

complete absence of mature T and B lymphocytes and natural killer cells and a lack 

of early lymphoid progenitors (Georgopoulos et a!, 1994; Wang et al, 1996; 

Winandy et a!, 1995). In addition, lymph nodes, Peyer's patches, lymphocyte follicles 

and a mature thymus were absent in mutant mice. Results from these studies implicate 

Ikaros as a pivotal mediator of cell differentiation operating at the earliest stages of 

maturation of all lymphoid lineages including natural killer cells. 

Although targeted gene disruption studies in mice provide considerable insight 

in haematopoietic transcription factor function and have led to the identification of 

critical transcription factors in the biology of HSCs, they have been less gainful 

for the identification and isolation of the HSC. Progress in order to understand 

haematopoiesis as a complete system in its entire complexity depends in part on 

complementary experiments using several different experimental strategies and 

methodologies. 



1.3 Model systems for studying haematopoiesis 

A variety of in vitro systems has been established by using haematopoietic precursors 

derived from various explanted adult or fetal tissues to complement in vivo studies of 

haematopoietic development and haematopoiesis (Medvinsky and Dzierzak, 1996; 

Yu et al, 1993). 

Various cell types e.g. long-term bone marrow cell cultures, Ieukaemic cell lines, 

cell lines derived from different embryonic tissues such as fetal liver or embryonic 

yolk sac and cell lines possessing a stable pluripotent embryonic phenotype, such 

as embryonic teratocarcinomas, primordial germlines and embryonic stem cells, have 

been successfully used for studying cellular and molecular events of haematopoiesis 

in vitro. 

Although very useful and amenable to various methodological techniques, most 

models are limited to certain sections and/or developmental stages of haematopoiesis 

and cannot recapitulate the process of haematopoiesis as a whole. Early developmental 

issues such as the regulation of mesoderm commitment to the haematopoietic lineages 

and the establishment of the haematopoietic system during embryogenesis are difficult 

to address due to the inaccessibility of mammalian embryos and difficulties to develop 

in vitro models that recapitulate the in vivo circumstances. Thus, most knowledge of 

the cellular and molecular processes during haematopoiesis is obtained from studies 

of the established haematopoietic system. 

In addition to these limitations, it is not sufficient to merely identify genes or factors 

that are expressed in a manner consistent with a role in haematopoiesis, systems in 

which normal and/or abnormal function can be addressed are essential for an in-depth 

understanding of haematopoietic development and haematopoiesis. A model system 

that allows to recapitulate early haematopoietic development, that allows to identify 

and study the function of genes involved in haematopoiesis in vivo and in vitro and 

offers a method for genomic manipulation has become available with the use of 

embryonic stem cells for studying haematopoiesis. 



1.3.1 Embryonic stem cells, in vitro model for haematopoiesis 

The derivation of embryonic stem (ES) cells and their use for studying haematopoiesis 

has greatly advanced the understanding of haematopoietic development. ES cells 

are relatively accessible, easy to manipulate and allow circumvention of many of the 

limitations encountered from other cell types used for haematopoietic studies. They 

provide an alternative strategy for the identification and functional analysis of 

molecular control mechanisms in haematopoiesis and for studying developmental 

processes, both in vitro and in vivo. 

ES cell lines are totipotent cell lines, derived directly from the inner cell mass (1CM) 

of preimplantation 3.5 dpc mouse blastocysts, and represent primary cultures with 

a high differentiation ability in vitro and in vivo (Evans and Kaufman, 1981; Martin, 

1981). During normal mouse development, the 1CM of a blastocyst develops into 

the embryo proper and the trophectoderm of the blastocyst gives rise to the 

extraembryonic membranes. When grown in vitro, 1CM cells can be kept in an 

undifferentiated state as ES cells. The establishment of ES cells from 1CM involves 

attachment of isolated blastocysts to tissue culture dishes, mimicking implantation 

and causing the trophectoderm to spread into a monolayer exposing the 1CM. The 

proliferating 1CM forms a cell clump which is disaggregated and the totipotent cells 

are cultured on fibroblast feeder cell layers to avoid differentiation (Robertson 1986, 

1987). ES cells can be maintained in vitro in their undifferentiated state for extended 

periods of time by co-culturing on fibroblast feeder cell layers or in a feeder-free 

culture system in the presence of leukaemia inhibitory factor (LIF), also known as 

differentiation inhibitory activity (DIA) (Williams et al, 1988; Smith et al, 1988). 

LIF is a glycoprotein, identified as the essential cytokine enabling ES cells to maintain 

in an undifferentiated state and to retain totipotent differentiation potential. ES cells 

closely resemble their normal in vivo counterparts and have a high differentiation 

potential in vivo and in vitro (Bradley et al, 1984). 

When reintroduced into mouse blastocysts the differentiation potential of ES cells 



can be seen in the high efficiency of ES cell chimera production and the contribution 

of ES cells to all three germ layers in resulting chimaeric mouse embryos, suggesting 

a high potential of ES cells to develop along all lineages of the embryo proper 

(Robertson, 1986). The ability of ES cells to contribute to the germline of a 

chimera allows to propagate the genome of ES cells through germline transmission. 

ES cell chimeras can be produced by injection of ES cells into host blastocysts 

(Hogan et a!, 1994) or by aggregation of ES cells with morula cells (Nagy et al, 

1990). The blastocyst injection method involves the injection of ES cells into 

pre-implantation embryos whereas the morula aggregation method involves the 

aggregation of 8-cell stage embryos with ES cells. 

Embryos that are entirely derived from ES cells can be produced when two tetraploid 

4-cell stage embryos are used for the aggregation with ES cells (Nagy et al, 1990). 

This results from observations that ES cells and tetraploid blastomers appear to have 

opposite developmental capabilities that can complement each other in aggregation 

chimeras, resulting in the formation of polarized chimeras in which the fetuses are 

ES cell derived and most of the extraembryonic tissues are provided by tetraploid 

components (Nagy et al, 1990, 1993). Mice entirely ES cell derived often die 

postnatally, with the viability depending on mouse strain and passage number of 

the ES cells used (Ueda et al, 1995; Carmeliet et al, 1996; Nagy et al, 1993). 

Although a limitation, this has not excluded further analysis of the haematopoietic 

development using entirely ES cell-derived embryos. Repopulation of the 

haematopoietic system of lethally irradiated recipients by transplantation of HSCs 

from the fetal liver of ES cell-derived embryos has been reported (Forrester et al, 

1991). Embryos entirely derived from ES cells demonstrated, ES cells can maintain 

the potential to develop into embryos without positional or developmental cues 

from viable endogenous embryonic cells after in vitro culturing. Furthermore, it 

suggested that differentiation in vitro might provide a useful tool for examination 

of developmental control mechanisms. 
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In vitro differentiation of ES cells results in the formation of embryoid bodies 

(EBs) with endodermal, mesodermal and ectodermal layers (Doetschman et al, 1985). 

When LW is withdrawn, ES cells will differentiate spontaneously into many different 

embryonic cell lineages including haematopoietic, endothelial, muscle and neuron 

lineages (Evans and Kaufman, 1981; Martin, 1981; Bradley et al., 1984; 

Doetschman et al, 1985). 

The spontaneous differentiation pattern of ES cells can be influenced by the addition 

of exogenous factors or chemical inducers such as retinoic acid (RA) and dimethyl 

suiphoxide (DMSO) or by interaction of ES cells with supportive stromal cells. 

RA has been found to induce in a concentration dependent manner neural and skeletal 

muscle differentiation (Bain et al, 1995; Wobus et al, 1994) but has also been found 

to inhibit haematopoietic differentiation (personal observation; Doostdar, 1997). 

DMSO has been found to induce haematopoietic differentiation of ES cells 

(personal observation; Doostdar, 1997). 

The capacity of undifferentiated ES cells to differentiate in vitro into terminally 

differentiated cell lineages makes them a valuable tool for studying early 

developmental processes. The appearance of terminally differentiated haematopoietic 

cells further indicates the intermediate presence of HSCs during ES cell differentiation. 

This suggests that some ES cells must commit to the haematopoietic system and 

become HSCs or cells with haematopoietic stem cell activity at some point between 

the undifferentiated state of being an ES cell with no direct haematopoietic potential 

and differentiating into an EB containing a range of mature haematopoietic lineages. 

Several laboratories have taken advantage of the ES cell in vitro model system to 

study the early development of haematopoietic cells and various methods have been 

developed to achieve ES cell differentiation into haematopoietic cells (Burkert et al, 

1991; Schmitt et al, 1991; McClanahan et al, 1993; Muller and Dzierzak, 1993; 

Keller et al, 1993; Hole et al, 1996). 

Differentiating ES cells can give rise to both lineages of the haematopoietic system, 



the lymphoid and the myeloid lineages, with all their mature cell types. Haematopoietic 

differentiation of ES cells in vitro is highly reproducible and provides access to 

populations of early precursors that are difficult, if not impossible, to access in vivo. 

Culture systems used to induce haematopoietic differentiation of ES cells include 

suspension cultures or cultures containing methyl cellulose medium, the formation 

of ES cell aggregates in hanging drop cultures prior to differentiation in suspension 

culture, and co-culturing of ES cells in direct contact with stromal supportive cells 

(Keller et al, 1993; Wiles and Keller, 1991; Hole et al, 1996; Nakano et al, 1994). 

These methods involve the removal of ES cells from contact with feeder cells or 

presence of LW and provide culture conditions were ES cells generate aggregates 

of differentiating ES cells, referred to as embryoid bodies (EBs). 

The appearance of haematopoietic cells during in vitro differentiation of ES cells 

in suspension culture is routinely observed as yolk sac like blood islands of 

haemoglobinised erythroid cells within developing EBs (Doetschman et al, 1985) 

and occurs spontaneously in the absence of exogenous growth factors, except those 

present in serum. The erythropoietic activity observed in EBs resembles the blood 

islands of embryonic yolk sac and contain erythroid cells and macrophages 

(Doetschman et al, 1985). However, EBs also contain progenitor cells capable 

of giving rise to myeloid and lymphoid cells (Burkert et al, 1991; Schmitt et al, 1991; 

McClanahan et al, 1993; Keller et a!, 1993; Hole and Smith, 1994; Wiles and Keller, 

1991; Gutierrez-Ramos and Palacios, 1992). 

Cellular interactions within developing EBs resemble in vivo events between 

haematopoietic cells and their microenvironment, with the three dimensional structure 

of EBs providing a supportive microenvironment for in vitro haematopoiesis. Similar 

to haematopoietic tissues, EBs are composed of a range of heterogeneous cell types. 

Haematopoietic differentiation of ES cells has also been reported from ES cells 

induced to differentiate as single cells, cultured directly on a stromal cell layer. 



ES cells differentiating on a cell layer of the stromal cell line 0P9, which is derived 

from M-CSF deficient op/op mice (Yoshida et al, 1990), are able to develop into 

erythroid, myeloid and B cell lineages (Nakano et al, 1994). 

Although in vitro differentiation of ES cells has the potential to allow the rapid 

analysis of cytokine effects, singly and in combination, most ES cell culture systems 

are supplemented with serum which complicates analysis. Nevertheless, addition of 

cytokines has been found to increase haematopoietic differentiation of ES cells. For 

instance, culture medium supplemented with Epo increases the number of erythroid 

cells in EBs. Addition of IL-3 has been found to increase erythrocytes, macrophages, 

mast cells and neutrophils (Wiles and Keller, 1991; Bigas et al, 1995). However, 

some factors lead to contradictory results. It has been argued that discrepancy 

between studies may, at least to some part, be due to the presence of serum in culture 

medium since serum contains variable amounts of factors and many other ill-defined 

substances. To overcome these problems a serum-free chemically defined medium 

for an ES cell culture system has been developed. ES cell differentiation to mesoderm 

in chemically defined medium was reported to be responsive to exogenously added 

factors (Johansson and Wiles, 1995). Although a promising approach, prolonged 

support of ES cell growth in an undifferentiated state was not achieved and 

spontaneous differentiation was observed. Although ES cell culture systems for 

the analysis of cytokine effects have been improved, it is important to note that 

EBs themselves produce cytokines and effects of added exogenous factor may result 

from direct and/or indirect action (Schmitt et al, 1991; McClanahan et al, 1993; Keller 

et al, 1993). 
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Haematopoietic differentiation within EBs, as defined by the onset of expression of 

haematopoietic specific genes and the appearance of specific haematopoietic precursor 

populations, has been found to follow an ordered sequence of events similar to those 

observed in the developing embryo (Schmitt et al, 1991; Burkert et a!, 1991; Keller 

et al, 1993; McClanahan et al, 1993). Evidence for haematopoietic gene expression 

has been revealed in undifferentiated ES cells and during differentiation into EBs. 

In undifferentiated ES cells expression of Thy-1, c-kit, SCF can be detected, 

however, after induction of ES cell differentiation temporal expression of genes 

involved in early haematopoietic development in the embryo can be detected in EBs. 

Genes involved in erythroid differentiation such as adult and fetal type 8-globin and 

GATA- 1 are among the first lineage specific genes expressed. Expression of cytokines 

such as IL-4, IL-6, G-CSF, M-CSF and their cognate receptors is detectable at later 

time points, with cytokine receptor transcripts in general expressed before cytokine 

transcripts (Schmitt et al, 1991; Keller et al, 1993; McClanahan et al, 1993; Hole 

et al, 1996). These gene expression studies are further supported by the kinetics 

of development of haematopoietic cell lineages within EBs. 

The primitive erythroid lineage (nucleated erythrocytes) appears as the earliest 

haematopoietic population followed by the development of the definitive erythroid 

(enucleated erythrocytes) and myeloid lineages. This pattern of haematopoietic 

development within EBs strongly suggests that the molecular mechanisms involved 

in the establishment of the haematopoietic system in vivo also function within EBs 

in vitro (Schmitt et al, 1991; Keller et a!, 1993; McClanahan et al, 1993). 

Precursors with lymphoid potential defined by the expression of lymphocyte 

specific surface molecules, e.g. B220 and Thy-1 and by the ability to rearrange 

immunoglobulin (Ig) and T-cell receptor (TCR) genes have been observed later 

in EB differentiation, indicating that the lymphoid developmental programme 

is established following the development of the erythroid and myeloid lineages 

(Nakano et al, 1994; Potocnik et al, 1994). 
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Analysis of the haematopoietic characteristics of ES cells by colony forming assays 

demonstrated the ability of ES cells to give rise to primitive haematopoietic progenitors 

as observed by the formation of haematopoietic colonies (Bigas et a!, 1995; Hole et al, 

1996). Although ES cell-derived haematopoietic progenitor and mature blood cells 

and the temporal sequence of their appearance suggest the presence of ES cell-derived 

HSCs within developing EBs, efforts to identify and isolate such primitive cells have 

not been successful to date. 

Reconstitution of imrnunodeficient SCID or RAG-2-1-  mice or lethally irradiated 

mice with ES cell derived haematopoietic cells has been reported from a number of 

studies (Palacios et al, 1995; Nisitani et a!, 1994; Muller and Dzierzak, 1993; Hole 

et al, 1996). However, observations of the lymphoid potential and the longterm 

repopulating potential of ES cell derived cells in recipient mice varied. When 

transplanted into RAG-2' recipients, ES cell-derived cells have been shown 

to generate both B lymphocytes expressing surface immunoglobulin and CD3+ 

T lymphocytes (Nisitani et al, 1994). Multilineage repopulation of SCID recipients 

with haematopoietic cells of ES cell origin has been reported on the basis of MHC 

class I antigen expression (Palacios et al, 1995). Limited lymphoid reconstitution 

potential of ES cells was observed after transplantation into lethally irradiated 

recipients and analysis by CFU-S assays (Muller and Dzierzak, 1993). Generation 

of primitive longterm repopulating and transiently engrafting stem cells in an ES cell 

culture system was demonstrated by the longterm survival and multilineage 

reconstitution of lethally irradiated mice by ES cell derived haematopoietic cells (Hole 

et al, 1996). Despite some discrepancy in observations between studies it is apparent 

that extensive haematopoietic differentiation can be achieved in ES cell culture systems 

which provides a unique model for studying haematopoietic development and 

haematopoiesis. 

While identification and isolation of primitive haematopoietic stem cells/progenitor 

cells within differentiating EBs on morphological characteristics is not currently 
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possible, separation of these cells on a temporal basis has been achieved (Hole et a!, 

1996). The ability to clearly identify the time point of emergence of very primitive 

haematopoietic stem cells within an ES cell system allows to concentrate efforts 

and studies on EB cells containing HSCs and haematopoiesis supporting cell types. 

The use of such an exceptional model of haematopoiesis for molecular and mutagenic 

analysis is at present one of the most promising approaches for understanding 

haematopoiesis. 

1.3.2 Insertional mutagenesis using ES cells 

One strategy toward understanding haematopoietic development and haematopoiesis 

is to identify and functionally analyze genes required for these processes. 

In vitro mutagenesis in ES cells is a powerful alternative approach to classical 

in vivo mutagenesis, which enables the characterization of mutations in cell culture 

prior to the generation of mutant mice for studying gene function in vivo. 

Before the availability of ES cells for mutagenesis most mutations in mice arose 

spontaneously or were induced by radiation or chemical mutagens. Analysis of 

these 'anonymous' mutations was largely dependent on phenotype-driven screening 

strategies which require a large investment of manpower and resources. 

ES cells are applicable to a large number of mutagenic strategies, including analysis 

of spontaneous mutations, chemical mutagenesis and insertional mutagenesis 

(reviewed by Hill and Wurst, 1993). However, it is insertional mutagenesis, 

employing gene targeting or gene trapping methodology, which has proved to be 

the most advantageous strategy for analyzing developmental processes. The ability 

to efficiently mutate the mouse genome in a directed and subtle manner by combining 

insertional mutagenesis and ES cell systems has revolutionised transgenic analysis 

of mammalian development. Gene targeting in ES cells by homologous recombination 

enables the introduction of specific mutations into the mouse germ line in virtually any 

gene, whereas the gene trapping strategy randomly targets genes providing the means 
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for identifying novel genes. Both strategies produce defined tagged mutations and 

allow screening for the genetic alteration and characterization in vitro before the gene 

expression and gene function is studied by mutational analysis in vivo. Genetically 

altered ES cells are able to retain their differentiation potential and normality in vivo 

when reintroduced into the mouse blastocyst and establish themselves in the mouse 

germ line (Robertson et al, 1986; Robertson 1991). 

1.3.2.1 Gene targeting using ES cells 

Gene targeting by homologous recombination provides the highest possible level 

of control over producing mutations in cloned genes and has become a standard tool 

in the molecular dissection of function in developmental processes (Capecchi, 1989; 

Ramirez-Solis, 1993). In principle, gene targeting by homologous recombination 

involves the introduction of exogenous DNA with sequence homology to the gene 

of interest and a selectable marker gene. Depending on the design of the targeting 

vector, the homologous recombination event can yield a deletion, replacement, or 

insertion in the targeted genomic locus. 

The vast majority of initial gene targeting strategies were designed to inactivate genes 

and produce null (knock-out) mutants for testing where and when in development a 

gene is required. Although the generation of knock-out animals has been very useful 

in the dissection of the function of some genes and has confirmed previous studies 

e.g. for the control of haematopoiesis by transcription factors such as PU. 1, GATA- 1, 

SCL, assessing the phenotypes of other gene knock-out animals has not been so 

straightforward as was assumed (Olson et al, 1995; Pevny et al, 1995; Shivdasani 

et al, 1995). For instance, in some cases the disruption of a gene can result in no 

discernible phenotype for the organ system analysed e.g. the cytokine GM-CSF 

(Dranhoff and Mulligan, 1994). Many developmental or regulatory processes are 

controlled by overlapping often highly plastic interactions, which makes it unlikely for 
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single gene disruptions to reveal their full involvement and function in development 

and regulation. A strategy to address these observations is the production of mice 

with multiple gene deletions. The other extreme of phenotypes are gene knock-out 

models which result in early embryonic lethality, e.g. receptor tyrosine kinase P1k-i 

(Shalaby et a!, 1995). Embryonic death of knock-out models hinders any attempt to 

study the role of these genes in downstream events or the role in other developmental 

processes. Strategies to overcome restrictions for analysis caused by embryonic 

lethality include molecular approaches by the generation of more subtle mutations 

and/or tissue-specific gene disruptions and in vitro differentiation and chimera 

production with knock-out ES cells. 

In general, four complementary approaches are used to analyse the consequences 

of targeted mutations in genes suspected of functioning in haematopoiesis: (1) analysis 

of homozygous and/or heterozygous knock-out embryos and mice; (2) analysis of cell 

lineage contribution and distribution of homozygous and/or heterozygous knock-out 

ES cells in chimeric embryos and mice (3) analysis of haematopoietic chimeras 

generated by transplantation of homozygous and/or heterozygous knock-out ES cells 

into immunodeficient SC1D or RAG-2' or lethally irradiated recipients and (4) 

in vitro differentiation of homozygous and/or heterozygous knock-out ES cells. 

These complementary approaches have identified several genes that function in various 

aspects of haematopoietic development. For instance gene targeted animal models 

have been produced for haematopoietic transcription factors, for cytokines and 

cytokine receptors, and for haematopoietic adhesion molecules. Some examples 

have been described in this chapter. 

Gene targeting strategies have greatly advanced the analysis of gene function in 

haematopoietic development and haematopoiesis, however, the gene targeting 

methodology cannot easily be adapted to a large scale approach. Each targeting 

vector has to be individually constructed, is dependent on the availability of genomic 

DNA sequence information of the target gene to be cloned and/or sequenced, and each 



targeting event must be individually verified, with each of these steps requiring 

comprehensive efforts to be achieved. In contrast, random insertional mutagenesis 

of ES cells is relatively easy to achieve and could provide the basis for rapid and 

functional analysis of the murine genome. 

1.3.3.2 Gene trapping using ES cells 

Gene trapping is an alternative approach for the identification and functional 

characterization of genes that randomly targets genes but can be used to detect 

genes potentially important in a developmental process of interest by specific 

screening strategies. Gene trapping does not depend on the availability of genomic 

DNA sequence information, thus can be used in large-scale screens of the genome 

in order to detect novel genes involved in developmental processes. This strategy 

applies the rationale that developmentally regulated genes may code for 

developmentally important molecules. Evidence for the success of applying random 

mutagenesis to dissecting developmental pathways is ample demonstrated by studies 

of Drosophila or C. elegans development (Cooley et al, 1988; Hope, 1991). 

Unlike random mutagenesis by chemical mutagens or X-rays, the gene trapping 

strategy produces random mutations by the insertion of a gene trap construct into 

the genome and allows insertions into transcribed loci to be detected from among 

a large group of random insertions. Gene trap constructs are designed so that the 

only possibility of activating a reporter gene is if the construct integrates into the 

proper position to be transcribed under the transcriptional control of a genomic locus. 

This causes a tagged mutation and allows the regulation of the locus to be studied by 

assaying the activity of the reporter gene. 

A number of vector constructs for gene trapping have been described (Friedrich and 

Soriano, 1993; Hill and Wurst, 1993). Basically two types of gene trapping vectors 

that differ in their requirements for reporter gene activation have been developed, the 
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promoter trap vectors and the gene trap vectors. A schematic description of the two 

basic gene trapping vectors is represented in Figure 1.2. 

Promoter trap vectors simply consist of a promoterless reporter gene the expression 

of which requires insertion of the vector into an exon of a gene to generate a fusion 

transcript between the trapped endogenous gene and the reporter gene. Gene trap 

vectors contain a splice acceptor sequence upstream of a promoterless reporter gene, 

thereby forcing the reporter construct to be processed as a separate exon. Integration 

of this type of vector into an intron results in the generation of a fusion transcript 

between the endogenous gene and the reporter gene through the use of the splice 

acceptor. Since introns rather than exons are the targets of a gene trap vector, the 

number of target sites in the genome is much greater than for a promoter trap vector. 

Both vector types are likely to act as an insertional mutagen by disrupting the 

endogenous function of the trapped gene. Promoter trap vectors by being an additional 

sequence fragment to an endogenous exon and gene trap vectors by acting as an 

'artificial' additional exon. Although the vector constructs randomly target different 

integration sites, exons for promoter trap vectors and introns for gene trap vectors, 

both must be trapped into a transcriptional active gene in order for a clone to survive 

in the presence of a drug selecting for positive clones. 

Conventional gene trap constructs commonly utilize the neomycin resistance gene 

(neoR) as the selectable marker and a promoterless lacZ gene (B-galactosidase or 

13-gal) as the reporter which is easily assayed for monitoring the transcriptional activity 

of the endogenous gene. Since f3-gal activity is not a selectable marker the addition of 

a selectable marker in a gene trap construct is essential. However, the addition of a 

selectable marker gene with separate promoter elements produces a background of 

total random insertions without 6-gal activity. Thus, screening for 13-gal activity is 

performed on numerous random integrants without a trapping event. To circumvent 

this limitation, a selectable reporter gene, B-geo, which is a translational fusion 

between B-gal and neo and encodes a protein with both activities has been developed 
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(Friedrich and Soriano, 1991). The use of the B-geo reporter gene thus allows direct 

selection of gene trapping events while maintaining the ability to detect patterns of 

endogenous gene expression by monitoring B-gal activity. However, it must be noted 

that the use of a selectable reporter with combined selection and reporter activity 

results in a gene trap clone population for genes expressed in undifferentiated ES cells 

and possible later during development. Genes not expressed in undifferentiated 

ES cells but later in development are not included in this population since survival 

of the clones is dependent on the expression of the gene for drug resistance which 

is under the transcriptional control of the trapped gene. 

Gene trap constructs are routinely inserted into ES cells by electroporation, which 

is a simple means to deliver DNA, or by retroviral infection. ES cell clones that 

contain gene trap events are selected by drug resistance and expanded as 

undifferentiated clones in vitro. The in vitro and in vivo expression of the trapped 

gene can easily be assayed by staining ES cells or ES cell derived embryos for B-gal 

activity. Using a chromogenic substrate (X-Gal), the spatial and temporal activity of 

the trapped locus in ES cells or tissues expressing B-gal can be monitored by a blue 

precipitate. 

Generating numerous ES cell lines containing gene trap constructs is relatively simple 

and requires only basic tissue culture and molecular biological skills. However, it is 

the subsequent screening strategy of gene trap clones that determines the efficiency 

and success of an experimental approach employing the gene trapping methodology. 

Initial screening procedures of gene trap clones for mutations affecting early 

embryogenesis concentrated on the establishment and phenotypic screening of 

mutant mouse lines or as a prescreening strategy, on the production of ES cell chimera 

embryos (Friedrich and Soriano, 1991; Gossler et a!, 1989). In vivo screening of gene 

trap clones thus involves the production of a large number of chimeric embryos which 

requires considerable technical expertise, as well as being very demanding on time and 

resources. The rate limiting step for a large scale gene trap screen is therefore the 



in vivo analysis and not the isolation of ES cell lines containing gene trap integrations 

(Friedrich and Soriano, 1991; Wurst et al, 1995; Joyner, 1991). 

Recently, several modified trapping strategies have been introduced that allow specific 

selection for integrations in particular subsets of genes (Skarnes et al, 1995; Forrester 

et a!, 1996, Baker, 1997). General strategies that can be used to achieve specificity 

of a gene trapping approach for the field of interest include (1) the design of gene trap 

constructs that rely on the integration in certain sequences of endogenous genes for 

reporter gene expression or (2) the use of 'conventional' gene trap constructs 

combined with a very specific and stringent prescreening strategy prior to analysis 

in chimeric or transgenic animals. 

The use of a 'secretory trap' vector which relies on capturing the N-terminal signal 

sequence of an endogenous gene for reporter gene expression was reported as a 

prescreen strategy for trans-membrane or secreted proteins in ES cells (Skarnes et al, 

1995). Others developed an induction gene trap screen that preselected gene trap 

clones in vitro for integrations into genes that lie downstream of receptor/ligand-

mediated signalling pathways. By monitoring the reporter gene expression of gene 

trap clones after exposure to retinoic acid, gene trap integrations induced, repressed 

or non-responsive to retinoic acid were identified (Forrester et al, 1996). 

A preselection for developmentally regulated genes that are not constitutively 

expressed but expressed in selected cell types was based on in vitro differentiation 

of ES cell gene trap clones into EBs in conditions supporting differentiation into 

neuronal cell lineages. The differentiated ES cell gene trap clones were than assayed 

for co-expression of B-gal and antigens present within neuronal cell lineages. 

Four gene trap clones with single copy integrations were chosen for generating 

chimeric embryos and found to be expressed in the developing tissues as indicated 

from in vitro analysis (Baker et al, 1997). In addition to screening based on 13-gal 

expression the generation of fusion transcripts facilitates to directly clone the 

transcribed region upstream of the insertion site using the 5' RACE protocol (5' rapid 
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amplification of cDNA ends) (Skarnes et al, 1992). The cDNA sequence information 

allows identification of homologies to known sequences and novel sequences and can 

be used as probes to examine the expression pattern of their cognate genes. 

In vitro prescreening strategies for gene trapping events have proven to be powerful 

alternative approaches to enhance the utility of this technology. Identification of 

genes that might be important in early developmental processes is clearly indicated 

with much effort directed toward improving prescreen strategies and refining in vitro 

differentiation of ES cells. Combining gene trapping and in vitro haematopoietic 

development in ES cells may prove to be one of the most promising avenues in 

identifying HSCs and molecular mechanisms of haematopoietic development. 
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2. AIMS AND OBJECTIVES 

The in vitro differentiation properties of ES cells are widely utilized for the study 

of developmental processes. The ES cell system (EFC-l), on which this project is 

based has previously been used to investigate the cellular and molecular control of 

early haematopoietic differentiation and to establish the culture conditions required 

for the development of transplantable in vitro HSCs. A highly reproducible ES cell 

culture system has been developed in which the temporal pattern for the presence of 

multilineage long-term repopulating HSCs has been defined (Hole et al, 1996). 

These features of the ES cell system make it a valuable foundation for the present 

project, (1) as a basis and standard for culture conditions and haematopoietic 

differentiation of gene trap cell lines, and (2) as a source for the study of HSCs 

in relation to their microenvironment. 

The aim of the present project has been to characterize the molecular events 

which accompany the haematopoietic differentiation process by the means of 

the identification and characterization of novel genes and by the refined analysis 

of expression patterns of known haematopoietic genes. 

Various strategies can be applied for the identification of novel genes involved 

in developmental processes, one of which is the gene trapping approach in ES cells. 

In order to ensure effective and efficient use of resources, in vitro pre-screening and 

characterization of gene trap clones used for analysis in vivo by chimeric embryo 

production would be advantageous. Therefore part of this project seeks to design 

an in vitro pre-screening strategy specific for the enrichment of gene trap cell clones 

with trapped haematopoietic genes from a gene trap clone library. 

The ability of ES cells to form complex, three-dimensional developmental aggregates, 

EBs, during in vitro differentiation allows the study of haematopoietic cells in relation 

to their haematopoietic microenvironment. The temporal pattern of the presence of 
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transplantable HSCs in the ES cell system used in this study provides a powerful 

model system for the identification and isolation of HSCs. Although EBs develop 

morphological features, they do not display a morphological organization as identified 

in mouse embryos, thus making it difficult to identify specific areas within the EB. 

The detection of specific haematopoietic transcripts within intact EBs can give crucial 

clues about the morphological organization and localization of haematopoietic cells. 

The identification of haematopoietic areas within EBs will be the starting point for the 

analysis of the spatial relationship of haematopoietic cells and their microenvironment. 

It is also likely to provide information to devise a strategy for the isolation of the 

HSCs present during the in vitro differentiation of ES cells. The temporal gene 

expression pattern during in vitro differentiation of ES cells can be studied by 

standard methodologies such as RT-PCR analysis, however, the analysis of 

spatial gene expression is more complicated. Means must be used to maintain 

the morphological structure of the EBs but also for the analysis of gene expression 

within an EB. 

This project seeks to develop conditions suitable for the spatial analysis of gene 

expression in EBs, based on non-isotopic in situ hybridization methodology, in 

order to identify and analyse the co-ordinate gene expression during haematopoietic 

differentiation in vitro. 
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3. MATERIAL AND METHODS 

3.1. Embryonic Stem Cell Culture Procedures 

3.1.1 Solutions and Media for Embryonic Stem Cell System 

All solutions and media used for the embryonic stem cell system were prepared 

with autoclaved tissue culture grade water. 

3.1.2 General Solutions for Embryonic Stem Cell System 

Phosphate Buffered Saline (PBS) 

One litre of PBS solution in tissue culture grade water contained 10 PBS tablets. 

This solution was autoclaved. 

Trypsin Solution (TVP) 

TVP solution consisted of 250 mg trypsin, 372 mg EDTA disodium dissolved in 

1 litre PBS supplemented with 10 ml chicken serum. This solution was filter sterilized 

and stored in aliquots at -20°C. 

Gelatine Solution 

A 1% (w/v) gelatine stock solution was prepared with tissue culture grade water, 

autoclaved and stored at 4°C. Stock solution was diluted with PBS to obtain 

0.1% (w/v) gelatine solution. 



3.1.3 Preparation of Media for Embryonic Stem Cell System 

Freshly prepared media were tested for steriliziation by adding 5 ml of medium 

to 5 ml tryptose phosphate broth and incubation at 37°C for 24-48 hours. 

Culture medium (FCS-Medium) 

FCS-medium consisted of lx Glasgow's Modified Eagle's Medium (GMEM), 

0.2% Sodium bicarbonate, 1% non-essential amino acids, 2% L-Glutamine/Pyruvate 

(stock solution 1:1, L-Glutamine (200 mM) : Pyruvate (100 mM)), 0.1 mM 

2-mercaptoethanol supplemented with 10% fetal calf serum (culture medium). 

Differentiation medium (DIF-Medium) 

DIF-medium consisted of lx Glasgow's Modified Eagle's Medium (GMEM), 

0.2% Sodium bicarbonate, 1% non-essential amino acids, 2% L-Glutamine/Pyruvate 

(stock solution 1:1, L-Glutamine (200 mM) : Pyruvate (100 mM)), 0.1 mM 

2-mercapto-ethanol supplemented with 10% fetal calf serum (differentiation medium). 

3.1.4 Embryonic Stem Cell Lines and 'Gene Trap' Cell Lines 

The embryonic stem (ES) cell lines used were EFC-1 (Nichols et al, 1990), R  (Nagy 

et a!, 1993), and CGR8 (Mountford et al, 1994). ES cell lines containing a gene trap 

integration are referred to as 'gene trap' lines in this study. Gene trap cell lines 1114 

and R68, both derived from the ES cell line RI, contain conventional gene trap vectors 

with a splice acceptor sequence fused to the reporter gene lacZ and the bacterial 

neomycin-resistance gene driven by the phosphoglycerate kinase-1 (PGK1) promoter. 

In vivo expression of 1114 was found to be restricted to yolk sac (YS) and fetal liver 

(FL), R68 was found to be expressed in foetal heart and various other areas (Forrester 

et al, 1996). Gene trap cell line ST598, derived from the ES cell line CGR8, contains 

a 'secretory trap' vector with the reporter gene B-geo, which is a lacZ-neomycin 

phosphotransferase fusion gene linked to a splice acceptor sequence, a signal sequence 
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and a transmembrane domain, which relies on capturing the N-terminal signal 

sequence of an endogenous gene to generate an active B-gal fusion protein. In vivo 

expression of this gene trap cell line has been found to be restricted to YS and FL 

(Skarnes et al, 1995; Skarnes W, personal communication). Gene trap cell line Zin40 

contains a gene trap construct with a splice acceptor sequence linked to the B-geo 

reporter gene and is ubiquitous expressed in vivo (Smith A, personal communication). 

Gene trap cell line Zin40 was derived from the ES cell line CGR8. 

3.1.5 Embryonic Stem (ES) Cell Maintenance 

Unless stated otherwise, the centrifuge used was a MSE Mistral 1000 containing a 

61080-147 swing out rotor. ES cell lines and 'gene trap' lines were routinely passaged 

and maintained in an undifferentiated state under feeder-free culture conditions in the 

presence of leukaemia inhibitory factor/differentiation inhibiting activity (LIF/DIA), as 

described (Smith, 1991; Hole and Smith, 1994). All experiments described used cell 

lines of less than 30 passages. Unless specified, the term ES cells used for describing 

culture procedures covers ES cell lines without and with gene trap integration. 

Undifferentiated ES cells were maintained on gelatinized tissue-culture flasks in FCS 

medium supplemented with LIF at a concentration of 100 U/mi (Smith et a!, 1988). 

LIF was obtained from the supernatant of Cos-7 cells transfected with a LW 

expression plasmid. All of the solutions used were prewarmed to 37°C in a waterbath. 

25 cm2  tissue-culture flasks were coated with gelatine by adding 5 ml of 0.1% (w/v) 

gelatine solution and incubation at room temperature for at least 15 min before 

thorough aspiration. The ES cells were passaged every 2 days by trypsinization, up 

to a maximum number of 30 passages. The spent culture medium was aspirated and 

the confluent ES cells were washed gently with 5 ml PBS. 2 ml of TVP was added to 

cover the cell layer and incubated at 37°C for 2 mm. To release the cells, the flask was 

knocked several times. The resulting cell suspension was collected into a 15 ml plastic 

centrifuge tube and 8 ml FCS medium added before the cells were pelleted by 



centrifugation for 5 min at 1 000 rpm. After the supernatant was aspirated, the cells 

were resuspended in 10 ml FCS medium. The number of cells was determined using a 

haemocytometer. From a confluent 25 cm2  flask the typical total cell number was —5 to 

8x 106. lx 106  ES cells were added to each of two 25 cm2  gelatine-coated flasks in a 

volume of 10 ml FCS medium. LW was added to a final concentration of 100 U/mi. 

One of these flasks was used for the next passage after inspection for contamination 

and appropriate cell density using a microscope. The ES cell culture was incubated at 

37°C in a 5% CO2 atmosphere. 

3.1.6 Formation of Embryoid Bodies (EBs) 

3.1.6.1 Formation of Undifferentiated ES Cell Aggregates 

Three different methods were used to form undifferentiated ES cell aggregates 

prior to differentiation into embryoid bodies (EBs). For all procedures using 

ES cell aggregates and EBs wide-bore plastic pipettes were used. 

3.1.6.2 Non-gelatinized Method 

The non-gelatinized method was used to obtain rapidly a large number of ES cell 

aggregates for preliminary in situ hybridization experiments and B-gal analysis of gene 

trap cell lines. ES cells form aggregates that are only loosely attached to the substrate 

when cultured at high-density on non-gelatinized tissue culture flasks. ES cells were 

generated as a single cell suspension, as described above for ES cell maintenance. 

2x 106  ES cells in 10 ml of FCS medium were seeded into a 25 cm2  non-gelatinized 

tissue culture flask and LW added to a final concentration of 100 U/mi. 

After two days incubation at 37°C in a 5% CO2 atmosphere, the ES cell aggregates 

were harvested. The spent medium was carefully aspirated and the ES cell aggregates 

were gently washed off the substrate with 10 ml FCS medium by using a wide-bore 

plastic pipette. The wash medium was transferred to a 20 ml plastic universal tube 
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and the ES cell aggregates were allowed to settle. The medium was aspirated and the 

ES cell aggregates were resuspended in 10 ml of DIF medium. 

3.1.6.3 Celiform-coated Plate Method 

Formation of ES cell aggregates on ceilform-coated plates was performed using a 

modified protocol as described (Folkman and Moscona, 1978; B. Rosen, personal 

communication). The ceilform-coated plate method was applied to assess the 

practicability of the rapid and simultaneous production of uniform ES cell aggregates 

from a large number of different ES cell and gene trap cell lines for large-scale 

screening. Different plastic ware and variations in cell numbers plated were tested 

to obtain information for optimal conditions for ES cell aggregate formation. Tissue 

culture grade plastic plates and bacteriological plastic plates were coated with a diluted 

solution of cellform poly (2-hydroxyethyl methacrylate) (poly(HEMA)). 3 g of 

celiform poly(HEMA) powder was dissolved overnight in 25 ml 95% EtOH. The 

viscous solution was centrifuged for 5 min at 2 500 rpm to remove particulate matter. 

This stock was then diluted 1/10 with 95% EtOFI and approximately 100 t1 per 1 cm 

plate diameter was pipetted into the plates. The plates were allowed to dry for 48 hours 

with the lids in place at 37°C. Uncoated plates were used as controls. Single cell 

suspensions of ES cells (see above 3.1.5; ES cell maintenance) of various 

concentrations (-3-10 x 104  cells/ml) were plated into the dishes and LTF added 

to a final concentration of 100 U/mi. After 2 days incubation at 37°C in a 5% CO2 

atmosphere, the ES cell aggregates were harvested into a 20 ml plastic universal tube 

and were collected by centrifugation at 800 rpm for 3 mm. The supernatant was 

aspirated and the ES cell aggregates were resuspended in DTF medium. 



3.1.6.4 Hanging Drop Method 

The hanging drop method was used for time-course experiments. This method is 

time consuming but provides pre-differentiated ES cell aggregates of uniform size. 

Figure 3.1 illustrates this method. A single cell suspension of ES cells was generated 

as described above. 6x 105  ES cells in 20 ml FCS medium (-3 x 104  cells/ml) were 

placed into a 20 ml plastic universal tube and a final concentration of 100 U/mi of LIF 

added. Eight square plastic plates (10 cm diameter) were taken and 8 ml distilled water 

added to the base of each. Using a Biohit multi-channel pipette, 10 tl aliquots of cell 

suspension were pipetted onto the upturned underside of a square plate lid. 

Approximately 200-250 discrete 10 tl aliquots were placed on each lid, ensuring a 

reasonable distance between drops to avoid coalescence. The lid was replaced on to 

the base with a smooth, swift action to avoid confluence of the drops. After the cell 

suspension was dispensed on the square plate, they were placed in a humidified 

5% CO2 atmosphere at 37°C and the hanging drops were cultured for two days. Each 

10 p1 aliquot contains -300 ES cells which settle at the bottom of the hanging drop and 

multiply to form a smooth, spherical body of uniform size. After two days the drops 

from all of the plates were removed with a plugged pasteur pipette and placed in a 

20 ml plastic universal tube. The ES cell aggregates (- 103 aggregates/ 10 ml medium) 

were collected by centrifugation at 800 rpm for 3 mm. The supernatant was aspirated 

and the ES cell aggregates resuspended in 10 ml of DIF medium. 

3.1.7 Differentiation of ES Cell Aggregates in Suspension Culture 

10 ml of DIF medium was placed into a petri dish and 200 il of a mixture of the 

antibiotics penicillin/streptomycin, each at 200 U/mi, were added. The ES cell 

aggregates, either formed using the non-gelatinized method, the ceilform-coated 

plate method or the hanging drop method and resuspended in 10 ml DIF medium 

were transferred to the petri dish containing DIF medium and penicillin/streptomycin. 

The suspension was cultured at 37°C in a 5% CO2 atmosphere. The day on which 



the ES aggregates were harvested and transferred to DIF medium was assigned as 

day 0 of differentiation. The medium was changed every two days by allowing the 

embryoid bodies (EBs) to settle in a 20 ml plastic universal tube and aspirating the 

supernatant. EBs which had adhered to the substrate were gently washed off using 

a wide-bore plastic pipette. 10 ml of DIF medium were placed into a new petri dish 

and a further 10 ml of DIF medium was used to resuspend and to transfer the EBs 

to the petri dish. The suspension culture was then incubated as above. In time course 

experiments, operations were carried out as shown in Figure 3.2 over a period up to 

8 days. On the final day of a time course, EBs which had undergone various days of 

differentiation were obtained. 

3.1.8 Exposure of Undifferentiated ES Cell Aggregates to Morphogen 

ES cell aggregates formed by the hanging drop method (see above) were exposed 

to 1.0% DMSO or 10-8  M of all-trans RA for the first 48 hours of differentiation 

and allowed to differentiate for a further period before being assayed (Doostdar, 1997; 

personal observations). The appropriate volume of DMSO was directly added to the 

petri dish containing DIF medium and penicillin/streptomycin. Retinoic acid was 

dissolved in 100% ethanol at a stock concentration of 10-2  M and stored in the dark 

at -70°C. The retinoic stock solution was serially diluted in DIE medium to 10-6  M 

and the appropriate volume of this dilution was added to the DIE medium and 

antibiotics containing petri dish. The EBs were harvested after the exposure to 

1.0% DMSO or 10-8  M retinoic acid as described and washed through 15 ml of 

PBS before transferring into suspension culture. 
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3.1.9 Harvesting and Counting of Embryoid Bodies 

EBs were harvested by allowing them to settle in a 20 ml plastic universal tube as 

described above. The supernatant was removed and the EBs resuspended in 2 ml 

PBS. This was placed on a petri dish of 3 cm diameter which was placed on a grid. 

The EBs within a 1 cm2  area were counted and this multiplied by 7 to obtain the 

total number of EBs. 

3.1.10 CFU-A Assay 

A CFU-A (colony-forming unit-A) assay is an in vitro assay that detects primitive 

haematopoietic progenitors (CFU-A). The in vitro CFU-A assay was set up as 

described previously (Pragnell et al, 1988; Lorimore et al, 1990). Briefly, a feeder 

layer consisting of 0.6% agar in alpha MEM with conditioned medium from two cell 

line (AF 1-19T, a source of GM-CSF and L929, a source of CSF-l) was poured 

in 3 cm diameter tissue culture grade dishes (1 ml per layer). EBs were added to 

0.3% agar in alpha MEM and formed the upper layer. All EB samples were assayed 

in triplicates. Approximately 50 EBs were plated into a dish. To estimate the volume 

needed per EB sample three 10 j.tl aliquots were placed onto a microscope slide and 

the EBs counted. Means per EB sample were used to calculate the required volume 

for the CFU-A assay per sample. The dishes were incubated for 11 days at 37°C in 

a humidified atmosphere with 5% 02/10%  CO2. Quantification of positive CPU-A 

colonies was performed visually using a microscope. 
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3.1.11 8-Galactosidase Expression Patterns in Embryoid Bodies 

13-Galactosidase activity can be assayed by in situ staining since the action of 13-gal 

on the exogenously added substrate X-gal produces an insoluble blue cleavage 

product which precipitates at the site of enzyme activity. The 13-gal staining assay was 

performed essentially as described previously (Beddington et al, 1989). In brief, EBs 

from ES cell lines containing gene trap integrations allowed to differentiate for various 

periods of time were transferred into separate wells of a 24-well plate and fixed for 10 

min at 4°C in 1 ml fixation solution (0.2% glutaraldehyde in PBS, pH 7.3, containing 

2 mM MgCl2, 5 mM EDTA). After fixation, the EBs were washed twice in wash 

solution (PBS pH 7.3 containing 2 mM MgCl2, 0.1% DOC, 0.02% Tween-20, 

0.005% bovine serum albumin) for 10 minutes each. The wash solution was replaced 

by staining solution and the EBs were incubated at 37°C overnight (12-16 hours). 

25 ml of staining solution consisted of 25 ml PBS, pH 7.3, containing 0.25 mg/ml 

spermidine, 41 mg K3Fe(CN)6,  52.5 mg K4Fe(CN)6,  0.34 mg NaCl and 1 mg/ml 

X-gal colour substrate (Boehringer Mannheim). The staining reaction was stopped 

by 3 washes in PBS, pH 7.3, and the 13-gal expression patterns were assessed by 

microscopy. 

3.1.12 Quantitative B-Galactosidase Activity Assay 

The detection of 13-gal activity in EBs from ES cell lines containing gene trap 

integrations was performed using a colorimetric assay as described (Eustice et al, 

1991). Briefly, EBs were lysed by three freeze/thaw cycles and the protein 

concentration of cell lysates was determined measuring the optical density at 

280 nm. 13-Gal activity assays were performed with equivalent amounts of protein 

(40 tg) using o-nitrophenyl-B-D-galactopyranoside (ONPG) as substrate. Samples 

were incubated at 37°C over night and the absorbance at 405 nm was determined 

using an Elisa reader. 
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Figure 3.1: Summary of in vitro differentiation procedures and molecular characterization. 
Aliquots of a single cell suspension of ES cells in FCS medium supplemented with LIP were 
pipetted onto bacterial dish lids. The hanging drops were cultured for two days. ES cell 
aggregates were harvested into a petri dish containing DIP culture medium without LIF and 
allowed to differentiate. DIP medium was replaced every two days. EBs were characterized 
by molecular biological methods and haematopoietic differentiation was assessed by the 
CPU-A assay. 
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Figure 3.2: Schematic description of the performance of an ES cell differentiation time course. The ES cell line was maintained in 
an undifferentiated state in medium supplemented with LIF. ES  cells were passaged and ES cell aggregates were formed using the 
hanging drop method every two days. ES cell aggregates were harvested into petri dishes containing culture medium lacking LIF 
and allowed to differentiated into EBs for varying periods of time. 



3.2 In Situ Hybridization of Embryoid Bodies 

All procedures for in situ hybridizations on EBs, whole mount and on sections, 

were performed at standards for RNA work. All solutions used were treated for 

possible contaminating RNase activity with 0.1% DEPC overnight (-16 hours) at 

37°C and autoclaved or DEPC treated H20  was used for preparations. Glass-ware 

was baked at 180°C overnight (- 16 hours) before use and sterile plastic-ware from 

previously unopened bags was used. All chemicals used were kept separate from 

routine laboratory work. 

3.2.1 RNA Probe Synthesis 

Single stranded riboprobes were synthesized as run-off transcripts from linearized 

plasmid templates using bacteriophage RNA polymerases (T3, T7, SP6) under 

standard conditions essentially as described by the manufacturer (Boehringer 

Mannheim). 

Plasmid DNA was prepared by the standard alkali lysis method followed by 

phenol/chloroform purification and subsequent EtOH precipitation (see Sections 3.3.2 

and 3.3.8). Plasmid DNA was linearized by restriction endonuclease digestion as 

described in Section 3.3.4. However, the incubation time for the linearization digest 

was prolonged since initial riboprobe synthesis did not lead to the expected yield of 

riboprobe. To further ensure pure transcript and to reduce possible contamination of 

uncut plasmid DNA electrophoretic separation of the linearization mixture was 

performed. The appropriate band with linearized plasmid was cut from the gel and 

then phenol/chloroform extracted. 

All reagents for the transcription reactions were supplied by Boehringer Mannheim. 

Transcription was carried out in sterile 1.5 ml eppendorf tubes which were kept on 

ice during the preparation set up. The reagents were mixed in the following order 

as described below. Transcription mixtures consisted of —1 jig linearized and purified 

template DNA in DEPC-treated water, 2 pJ of lOx NTP labelling mixture, 
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2 pA lOx supplied transcription buffer, 20 units RNase inhibitor and DEPC-treated 

water to give a total volume of 20 tl when 40 units of appropriate bacteriophage RNA 

polymerase was added. The reagents were mixed gently and incubation was carried 

out at 37°C for 2 hours. 2 il of RNase free DNase (10 units/pd) were added to the 

reaction mixture to digest the plasmid DNA template. The template digest reaction 

was incubated at 37°C for 15 min and then stopped by adding 2 tl of 200 MM EDTA, 

pH 8.0. Ethanol precipitation of labelled RNA transcripts in the presence of LiC1 was 

carried out by adding 2.5 p1 of 4 M LiCl and 75 j.il of pre-chilled 100% ethanol. This 

mixture was placed at -70°C for at least 2 hours or overnight. The precipitated RNA 

probes were collected by centrifugation for 15 rnin at 13,000 rpm in an Eppendorf 

microfuge at 4°C and rinsed with 50 tl ice-cold 75% ethanol (made with DEPC-treated 

water). The RNA pellet was dried briefly under vacuum and resuspended in 25 p1 of 

DEPC-treated water by heating for 10 min at 65°C. Labelled riboprobes were stored 

at -70°C until used in hybridization experiments. 

The RNA probe synthesis reaction was checked on an formaldehyde agarose gel 

followed by northern transfer and colorimetric staining of bands (Sections 3.3.11; 

3.3.12; 3.3.14) and by dot detection of spotted RNA on a nylon membrane for the 

estimation of the yield of labelled RNA (see below). 

3.2.2 Estimation of Labelled RNA Probe Concentration 

Estimation of riboprobe yield was performed in a side by side comparison of 

DIG-labelled sample riboprobe with a DIG-labelled control RNA sample provided 

by Boebringer Mannheim. The procedure was essentially performed as described 

in the manufacturer's application manual 'The DIG-System User's Guide for Filter 

Hybridization', Boehringer Mannheim. 

Briefly, prediluted DIG-labelled control RNA (20 ng/jil) was serially diluted in RNA 

dilution buffer (DEPC-treated H20,  20x SSC and formaldehyde mixed in a volume 

ratio at 5+3+2) to obtain samples at 1 ng4.tl, 100 pg/pd, 10 pg/pd and 1 pg/pd. 
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A ten-fold serial dilution of each newly synthesized DIG-labelled or Fluorescein-

labelled riboprobe sample was made with RNA dilution buffer. 1 j.il of each 

concentration of the diluted control RNA was spotted in a row on a nylon membrane 

(Boehringer Mannheim). In subsequent rows, 1 .tl of the corresponding dilutions of 

experimental riboprobes were spotted (Figure 3.3). The membrane was left to dry 

for 5 min before the RNA samples were fixed to the membrane by cross-linking 

with UV-light for 30 sec. 

The solutions used for signal detection varied depending in which hybridization 

procedure the riboprobes were applied. Therefore general terms for the solutions 

are used to describe the signal detection procedure. Details of solution components 

are listed in Table 3.1. 

The membrane was placed into a sterile petri dish plate, washed briefly (-I mm) in 

5 ml washing buffer before incubated in 10 ml blocking solution for 30 min at room 

temperature. Anti-DIG-AP-conjugated antibodies were diluted at 1:50 000 and Anti-

Fluorescein-AP-conjugated antibodies were diluted at 1:20 000 in blocking solution. 

The membrane was incubated in 5 ml of diluted antibody solution for 1 hour at room 

temperature. The membrane was then washed twice in 10 ml wash buffer for 15 mm 

each before equilibrated for 2 min in detection buffer. The colour substrate solution 

for signal development was prepared freshly immediately prior use. The detection 

buffer was removed and 5 ml of colour substrate solution was added to the membrane. 

The colour development was allowed to occur at dark for 3 to 16 hours. After spots 

appeared in sufficient intensity, the reaction was stopped by washing the membrane 

three times in sterile H20  for 5 min each. The spot intensity of the control and 

experimental dilutions were compared to estimate the concentration of the experimental 

riboprobes. 
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Figure 3.3: Estimating the yield of DIG-labelled or fluorescein-labelled riboprobe. 
Dilutions of labelled control RNA and the newly labelled experimental RNA were 
spotted on, fixed and directly detected on a nylon membrane with colorimetric 
detection. 
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Table 3.1: Solutions for colorimetric signal detection of labelled RNA spotted 
on nylon membrane 

Solution Hybridization protocol Hybridization protocol 

established for mouse established for chicken 

embryos embryos 

Wash buffer 0.1 M TrisHCl pH 7.5, 0.1 M maleic acid, 0.15 M 

0.15 M NaCl NaCl, pH 4.5 with NaOH 

Blocking solution 3% (w/v) bovine serum 1% (w/v) BBR in wash 

albumin in wash buffer buffer 

Detection buffer 0.2 M TrisHCl pH 9.5, 0.1 M TrisHCl pH 9.5, 

0.01 M M902 0.1 M NaCJ 

Colour substrate solution 2.3 pJIml BCIP, 3 j.illml 3.5 j.tIJml BCIP, 4.5 jilJmI 

NBT in detection buffer NBT in detection buffer 



3.2.3 Whole Mount In Situ Hybridization of Embryoid Bodies 

Initial in situ hybridization experiments on EBs were performed following procedures 

as described for non-isotopic in situ hybridization on mouse embryos (Rosen and 

Beddington, 1993). Because of limitations in the suitability of this protocol for 

in situ hybridization on EBs, in particular in combination with confocal microscopy, 

a protocol established for chicken embryos was used (Graham A; personal 

communication). Ultimately procedures combining both protocols were found to 

be most suitable for the EBs. The main features of these protocols are summarized 

in Table 3.2. 

The following sections describe the protocols followed for in situ whole mount 

hybridization of EBs and modifications introduced, control experiments for 

optimization of conditions and procedures and the establishment of in situ 

hybridization procedures most suitable for EBs. Guidelines for modifications 

were obtained following manufacturer's recommendations for the use of reagents 

and the Boehringer Mannheim manual 'Non radioactive in situ hybridization 

application manual', second edition. 

Unless stated otherwise, the procedures were carried out according to the respective 

protocol. Pretreatments were performed in batches in sterile 50 ml centrifuge tubes. 

Washes were carried out by allowing EBs to sink to the bottom of the container and 

carefully removing the liquid with a sterile glass pasteur pipette connected to a vacuum 

aspirator. Great care was taken to always leave a small volume of liquid on the EBs to 

prevent drying. Prehybridization and hybridization reactions were performed in sterile 

5 ml universal tubes. The tubes were closed with the lid during incubations to avoid 

evaporation of the solution. Incubation of samples was performed using a waterbath 

at the appropriate temperature. Tween-20 was used as a substitute for Nonidet-P-40. 
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3.2.3.1 In situ Hybridization of Whole Mount EBs following 

Procedures Originally Established for Mouse Embryos 

Fixation of Embryoid Bodies 

EBs were harvested by allowing them to settle in a 50 ml centrifuge tube as described 

in Section 3.2.9 and washed twice with 10 ml cold PBS. The EBs were resuspended 

in 10 ml freshly prepared 4% paraformaldehyde in PBS and stored overnight 

(16-18 hours) at 4°C. The fixed EBs were washed twice with 10 ml cold PBT before 

being dehydrated on ice by washing once with each of 25%, 50%, and 75% methanol-

PBS and twice with 100% methanol. 10 ml of solution was used for each wash. 

One wash took 5-10 mm. The EBs were resuspended in 15 ml of 100% methanol and 

stored at -20°C. 

Pretreatments: Permeabilization and Postfixation 

The EBs were rehydrated on ice by washing once with each of 75%, 50%, and 

25% methanol-PBS, as described above for dehydration. The following wash and 

incubation steps were carried out at room temperature. The EBs were washed three 

times with 10 ml PBT for 5-10 min before treated in three changes of 10 ml RIPA 

for 30 min each. Post-fixation of the EBs was performed by resuspension in 10 ml 

PG-PBT and incubation for 20 mm. The EBs were then washed three times with 

10 ml RIPA for 5 min and three times with 10 ml PBT for 5 mm. 

Prehybridization and Hybridization 

The EBs, resuspended in 3 ml of PBT, were divided into equal volume samples 

by transferring them to sterile 5 ml universal tubes. The number of samples was 

dependent on the number of different probes used for hybridization. The EBs were 

split into the same number as that of the different probes used, plus two controls. 



These controls were, one of EBs incubated only with antibody conjugate without 

probe and one sample incubated neither with antibody conjugate nor with probe. 

The samples of EBs were washed with 2 ml of 1:1 hybridization buffer to PBT 

at room temperature and allowed to sink. They were then washed with 2 ml of 

hybridization buffer for 5-10 min at room temperature before prehybridization for 

1-3 hours at 70°C in 1 ml hybridization buffer containing 100 tg/ml tRNA and 

100 ig/ml sheared, denatured herring sperm DNA (ssDNA). Both tRNA and ssDNA 

were phenol/chloroform extracted before used as blocking reagents in prehybridization 

and hybridization reactions. The prehybridization solution was removed and 0.5 ml 

of hybridization buffer containing 100 tg/ml tRNA, 100 tg/ml ssDNA and a 1:100 

dilution of denatured digoxigenin labelled RNA probe was added (see Section 3.2.1 

for RNA probe synthesis). 

The RNA probe was denatured by heating to 80°C for 5 min and placing on ice for 

5 mm. The EBs in this hybridization mixture were incubated overnight (16-18 hours) 

at 70°C. After hybridization, the samples were washed once with 3 ml hybridization 

buffer for 10 min at 70°C, once with 2x SSC-FT for 5 min at 65°C and twice with 

3 ml 2x SSC-FT for 30 min at 65°C. The EBs were allowed to cool to room 

temperature, before being washed twice with 3 mlix TBST for 10-15 mm. 

Antibody Binding 

The EBs were blocked by incubation for 1 hour at room temperature in 2 ml 10% heat-

inactivated sheep serum in lx TBST. The blocking solution was then replaced with 

1 ml 1% heat-inactivated sheep serum in ix TBST containing 375 mU/mi (1:2000 

dilution) anti-digoxigenin Fab-alkaline phosphatase conjugate (Boehringer Mannheim) 

and incubated overnight (16-18 hours) at 4°C. 



Heat-Inactivation of Sheep Serum 

A two-fold dilution of sheep serum in DEPC-treated water was heated to 70°C 

for 30 min and placed on ice for 5 mm. The denatured protein was pelleted by 

centrifugation for 2 min at 1 000 rpm (microfuge) and the supernatant was used 

in reaction solutions. 

Washing and Colour Development 

The antibody conjugate solution was removed and the EBs were washed four times 

with lx TBST at room temperature. Three wash steps with 3 ml lx TBST for 5 mm 

were followed by one with 5 ml lx TBST for 30 mm. The EBs were then washed 

twice with freshly prepared APB, each with 3 ml for 10 mm. They were then 

transferred to alternate wells of a sterile 24 well titre plate. 1 ml of freshly prepared 

staining solution containing 3.375 jil nitro blue tetrazolium chloride (NBT) (stock 

100 mg/mi in dimethyl formamide (DMF), 70% (v/v)) and 2.33 j.tllml 5-bromo-4-

chloro-3-indoyl-phosphate (BCIP) (stock 50 mg/ml in DMF) (Boehringer Mannheim) 

in APB was added and the dishes were placed in dark at room temperature. The 

progress of the reaction was observed for brief intervals under a binocular magnifier 

(300x magnification). Signals corresponding to the RNA species used were visible 

within 15 min. Incubations were continued for 1 to 24 hours. The staining reactions 

were stopped by adding 2 ml PBT containing 1 mM EDTA and rinsing the EBs five 

times in 2 ml PBT containing 1 mM EDTA. The EBs were transferred to alternate 

wells of a new 24 well titre plate and stored in the dark at 4°C, before photographed 

for documentation. 

In some in situ hybridization experiments, diamino-benzidine (DAB) stain was used 

for colour development. For this all procedures were performed as described for 

NBT/BCIP or Fast Red colour substrate with the exception that peroxidase (POD) 

conjugated anti-DIG antibodies were used for the detection of hybridized riboprobe. 

For the subsequent colour development DAB Fast-tablets (Boehringer Mannheim) 

were used according to the manufacturer's instruction. 



3.2.3.2 Two-Colour Whole Mount In situ Hybridization of EBs 

Two-colour in situ hybridization of whole EBs was performed using riboprobes 

labelled with DIG or fluorescein simultaneously in hybridization conditions as 

described above (Section 3.2. 1). Visualization of hybridization events was carried 

out sequentially using two different enzymatic detection systems. 

After posthybridization washes in TBST, the EBs were incubated in blocking-buffer 

and then with AP conjugated anti-fluorescein antibodies (1:2000) as described in 

Section 3.2.3.1. The signal was developed by using Fast Red tablets (Boehringer 

Mannheim) as colour substrate according to the manufacturer's instructions. The 

staining reaction was stopped by three washes in TBST, 5 min each, before the 

EBs were incubated overnight with peroxidase-conjugated anti-DIG-antibodies. The 

signal was developed using DAB Fast-tablets (Boehringer Mannheim) according to 

the manufacturer's instruction. The staining reaction was stopped by three washes 

with PBT, 10 min each, before evaluation of signal patterns using a microscope. 

When two alkaline phosphatase conjugated antibodies were used for the detection 

of hybridized riboprobes, AP-conjugated anti-fluorescein antibodies and AP-

conjugated anti-DIG antibodies, Fast Red and NBT/BCIP (both Boehringer 

Mannheim) were used as colour substrate. Signal for DIG-labelled riboprobes was 

detected following exactly the procedure for single probe hybridization as described 

in Section 3.2.3.1. The colour reaction was stopped with 2 ml PBT +1 MM EDTA, 

which effects the inactivation of any remaining AP activity from AP-conjugates from 

the first signal detection step. The EBs were then washed 3x in TBST before incubated 

with AP-conjugated anti-fluorescein antibodies at 4°C overnight. Colour development 

of signals from fluorescein labelled riboprobes the colour substrate Fast Red was 

used following the manufacturer's instructions. The colour reaction was stopped with 

3x washes in PBT, 5 min each, and the EBs were then evaluated using a microscope. 



Solutions for whole mount in situ hybridizations 

PBS 	Phosphate buffered saline 

PBT 	Phosphate buffered saline, 0.1% Tween-20 

RIPA 	Detergent mix: 

150 mM NaCl, 1% Tween-20, 0.5% sodium deoxycholate, 

0.1% SDS, 1 mM EDTA, 50 mM Tris pH 8.0 

PG-PBT 	4% paraformaldehyde, 0.2% EM grade glutaraldehyde in PBT 

Hybridization buffer: 

50% ultrapure formamide, 5x SSC pH 4.5 (from 20x SSC 

stock solution, acidified with citric acid), 50 jig m14  heparin, 

0.1% Tween-20 

SSC-FT 	2x SSC pH 4.5, 50% formamide, 0.1% Tween-20 

TBST 	Diluted from a IN stock solution: 

100 ml of stock solution consisted of 8 g NaCl, 0.2 g KC1, 

25 ml 1 M TrisHCl pH 7.5, 10 ml Tween-20 

APB 	Alkaline phosphate buffer: 

100 mM NaCl, 50 mM MgCl2, 0.1% Tween-20, 

100 mM TrisHCl pH 9.5 



3.2.3.3 In situ Hybridization of Whole Mount EBs Following 

Procedures Originally Established for Chicken Embryos 

Fixation of Embryoid Bodies 

EBs were harvested as described in Section 3.2.9 and washed twice with 10 ml cold 

PBS containing 2 mM EGTA. The EBs were resuspended in 10 ml freshly prepared 

4% formaldehyde in PBS +2 mM EGTA, pH 7.5 adjusted with NaOH, and stored 

for fixation overnight (16-18 hours) at 4°C. The fixed EBs were washed twice in 

10 ml PBT before being dehydrated on ice by washing with 50% methanol-PBT and 

twice with 100% methanol for 10 min each. The EBs were resuspended in 15 ml of 

100% methanol and stored at -20°C. 

Pretreatments: Permeabilization and Postfixation 

The EBs were rehydrated on ice by washing once with each of 75%, 50%, and 25% 

methanol-PBS and washed twice with 10 ml PBT for 5-10 min at room temperature 

before being treated with 2 ml proteinase K (10 tg/m1) in PBT at 37°C for 10 mm. 

The proteinase K solution was prewarmed at 37°C for 30-60 min prior to use. 

Proteinase K solution was removed and the EBs were rinsed briefly with PBT 

before post-fixation in 5 ml freshly prepared 4% formaldehyde + 0.1% glutaraldehyde 

in PBT for 20 min at room temperature. The EBs were then washed twice with 10 ml 

PBT for 5 mm. 

Prehybridization and Hybridization 

The EBs, resuspended in PBT, were divided into equal volume samples by 

transferring them into sterile 5 ml universal tubes. The samples of EBs were rinsed 

once with 2 ml of 1:1 hybridization buffer to PBT at room temperature and the EBs 

were allowed to sink. They were then washed with 2 ml of hybridization buffer for 



5-10 min at room temperature before prehybridization for 1-3 hours at 70°C in 1 ml 

hybridization buffer. After prehybridization, 0.5 ml of prewarmed hybridization mix 

containing denatured labelled nboprobe was added. The EBs in this mix were 

incubated overnight for 16-18 hours at 70°C. The following rinse and wash steps 

were carried out at 70°C using prewarmed solutions. After hybridization, the samples 

were rinsed twice with 2 ml hybridization buffer, twice washed for 30 min with 2 ml 

hybridization buffer and once washed with 2 ml 1:1 hybridization buffer to MABT 

for 20 mm. The EBs were allowed to cool to room temperature, before being rinsed 

three times with 3 ml MABT and washed twice with MABT for 30 mm. 

Antibody Binding 

The EBs were blocked by incubation for 1 hour at room temperature in 2 ml of MABT 

buffer containing 2% Boehringer Blocking Reagent (BBR) followed by incubation 

for 30 min in 2 ml 20% heat inactivated sheep serum in MABT +2% BBR. The 

blocking solution was then replaced with 1 ml 20% heat-inactivated sheep serum in 

MABT +2% BBR containing appropriate antibody conjugate (Boehringer Mannheim) 

and incubated overnight (16-18 hours) at 4°C. 

Heat-Inactivation of Sheep Serum 

Sheep serum was heat-treated at 60°C for 30 min and placed on ice for 5 mm. 

The denatured protein was pelleted by centrifugation for 5 min at 1 000 rpm 

(microfuge) and the supernatant was used in reaction solutions. 

Washing and Colour Development 

The antibody conjugate solution was removed and the EBs were rinsed three times 

with MABT at room temperature and then washed three times for 1 hour each with 

MABT. The EBs were then washed twice with 3 ml NTMT before being transferred 
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to alternate wells of a sterile 24 well titre plate. 1 ml of freshly prepared staining 

solution in NTMT was added and the dishes were placed in dark at room temperature. 

The progress of the reaction was observed for brief intervals under a binocular 

magnifier (300x magnification). Signals corresponding to the RNA species used 

were visible within 15 mm. Incubations were continued for 1 to 24 hours. The 

staining reactions were stopped by adding 2 ml PBT containing 10 mM EDTA and 

rinsing the EBs three times in 2 ml PBT containing 10 mM EDTA. The EBs were 

stored in the dark at 4°C, before being photographed for documentation. 

Solutions for whole mount in situ hybridizations 

PBS 	Phosphate buffered saline 

PBT 	Phosphate buffered saline, 0.1% Tween-20 

Hybridization buffer: 

50% ultrapure formamide, 1.3x SSC pH 4.5 (from 20x SSC 

stock solution, acidified with citric acid), 5 mM EDTA pH 8.0, 

50 jig m1' yeast RNA, 0.2% Tween-20, 0.5% CHAPS, 

100 jig rnt heparin 

MABT 	Maleic acid buffer: 

100 mM maleic acid, 150 mM NaCl, 0.1% Tween-20, pH 7.5 

BBR 	Boebringer blocking reagent 

Blocking buffer 	2% (w/v) BBR in MABT 

NTMT 	100 mM NaCl, 100 mM TrisHCl pH 9.5, 1% Tween-20 

Staining solution: 	4.5 jilIml NBT and 3.5piJml BCIP (Boehringer Mannheim) 

in NTMT buffer 

M. 



3.2.3.4 In Situ Hybridization of Whole Mount EBs Combining 

Procedures of Protocols Established for Mouse Embryos or Chicken 

Embryos 

Following considerable effort to optimize the in situ hybridization procedures on 

EBs a combination between the hybridization described above was used. 

Fixation of embryoid bodies 

EBs were harvested by allowing them to settle in a 50 ml centrifuge tube as described 

in Section 3.2.9 and washed twice on ice with 10 ml cold PBS containing 2 MM 

EGTA. The EBs were resuspended in 10 ml freshly prepared 4% paraformaldehyde 

in PBS + 2 mM EGTA, pH 7.5 adjusted with NaOH, and stored for fixation overnight 

(16-18 hours) at 4°C. The fixed EBs were washed twice on ice with 10 ml cold PBT 

before being dehydrated on ice by washing once with each of 25%, 50%, and 75% 

methanol-PBS mixtures and twice with 100% methanol. All solutions were used cold 

and one wash took 5-10 mm. The EBs were resuspended in 15 ml of cold 100% 

methanol and stored at -20°C. 

Pretreatments: Permeabilization and Postfixation 

The EBs were rehydrated on ice by washing once with each of 75%, 50%, and 25% 

methanol-PBS and washed twice with 10 ml PBT for 5-10 min at room temperature 

before being treated with 2 ml proteinase K (10 jig/ml) in PBT at 37°C for 10 mm. The 

proteinase K solution was prewarmed at 37°C for 30-60 min prior use. Proteinase K 

solution was removed and the EBs were rinsed briefly with PBT before postfixation in 

5 ml freshly prepared 4% paraformaldehyde in PBT for 20 min at room temperature. 

The EBs were then washed twice with 10 ml PBT for 5 mm. Subsequent procedures, 

prehybridization and hybridization, the detection of hybridized riboprobe by antibody 

binding and colour development was performed as described above in hybridization 

procedures established for chicken embryos (Section 3.2.3.3). 



Table 3.2: Summary of main features of the whole mount in situ hybridization 
protocols used for hybridization of EBs 

Hybridization protocol Hybridization protocol 

established for mouse established for chicken 

embryos embryos 

Fixation 4% paraformaldehyde 4% formaldehyde 

Pretreatments  

Permeabilization 'cocktail' of ionic and Proteinase K treatment 

non-ionic detergents  

Postfixation 4% paraformaldehyde + 4% formaldehyde + 
0.2% glutaraldehyde 0.2% glutaraldehyde 

Hybridization buffer 50% ultrapure formamide, 50% ultrapure formamide, 

5x SSC pH 4.5, 1.3x SSC pH 4.5, 

50 tg ml-1  heparin, 5 mM EDTA pH 8.0, 

100 jig/ml tRNA, 100 pg m1 	heparin, 

100 pg/m1 ssDNA, 50 jig m1 4  yeast RNA, 

0.1% Tween-20 0.5% CHAPS, 

0.2% Tween-20, 

Hybridization temperature 70°C 70°C 

Riboprobe concentration - 1jtg/mi - 1tg/m1 

Posthybridization washes TBST MABT 

Blocking reagent bovine serum albumin Boehringer blocking 

reagents 



3.2.4 Signal Detection by Confocal Fluorescence Microscopy 

Fluorescence labelled EBs were analyzed using a Zeiss LSM 410 invert laser scanning 

confocal microscope according to the manufacturer's instructions. EBs were labelled 

with fluorescence, either by hybridization with fluorescein labelled riboprobes or 

by hybridization with DIG-labelled riboprobes detected by anti-DIG-antibodies 

conjugated with fluorescein or rhodamine. When direct fluorescein labelled riboprobes 

were used, the hybridization procedures were followed up to the posthybridization 

washes, according to one of the hybridization protocols described above. 

When fluorescence labelled antibodies were used, the procedures were followed 

as described up to antibody staining and washes, with the difference that the sample 

EBs were kept dark from the use of antibodies onwards. Prior to analysis by confocal 

microscopy three additional wash steps with the appropriate wash buffer were 

performed. 

The samples were mounted using an anti fading mounting medium (Sigma). 

The laser scanning microscope was equipped with a laser lamp for excitation 

wavelengths of 488 nm and 543 nm, which were used to detect signal from 

fluorescein labels or rhodamine labels, respectively. Confocal images were stored 

as graphic files using the manufacturer's proprietary LSM software based on 

Microsoft Windows. Images of optical sections of whole-mount in situ hybridized 

EBs obtained by confocal microscopy analysis are shown in Section 3.2.5.4 

(Determination of hybridization specification) in Figures 3.6.3 and 3.6.4. 
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Figure 3.4: Flow diagram of procedures for whole mount in situ hybridization of EBs 
(see Sections 3.2.3.1, 3.2.3.2 and 3.2.3.4 for whole-mount in situ hybridization 
protocols).  

H SYNTHESIS OF RIBOPROBES 

[ (Section 3.2.0 	 ____________________ 

DETERMINATION OF 

DETERMINATION OF H 	FIXATION OF EBs 	 PRETREATMENTS 

PROBE QUAUTY 	 Section 3.25.I 

PRETREATMENTS 

OF FIXED EBs 

Pcrmeahil i7ation 

Postfixation 

Prehybridization  

Denaturation of riboprobes DETERMINATION 

HYBRIDIZATION 

H 	CONDITIONS HYBRIDIZATION 

(Section 32.5.2 

POSTHYBRIT)TZATION 

TREATMENTS 

rtinrv wht 



3.2.5 Determination of Whole Mount In situ Hybridization Procedures 

suitable for EBs 

The procedures used for in situ hybridization can be broadly divided into four sections: 

1) synthesis of labelled probes; 2) sample preparation - fixation and pretreatments; 

3) hybridization with labelled probes; and 4) signal detection of hybridized probes 

(see Figure 3.4: Flow diagram for whole mount in situ hybridization). Although 

different whole mount in situ hybridization protocols follow a common concept 

many alternatives exist for each process required for this experimental methodology. 

Many criteria that can influence the quality of the result may need to be individually 

optimized for each experimental system. Thus, to find a workable balance, if any, 

between the resolution and sensitivity of RNA detection in samples and the retention 

of sample morphology, various conditions may have to be tested. The measures taken 

to obtain applicable conditions for the detection of specific mRNA in EBs by whole 

mount in situ hybridization combined with colorimetric or fluorescence signal detection 

are described below. 
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3.2.5.1 Determination of Pretreatment Conditions 

Effects of postfixation treatment 

Difficulties in signal detection associated with fixation procedures and the type 

of fixative used in in situ hybridization procedures have been reported (Guiot and 

Rahier, 1995; Carmo-Fonseca et al, 1991). To assess the influence of fixation 

procedures on the morphology of EBs and the sensitivity of signal detection, various 

fixatives were used for postfixation treatment and their effects on EBs compared. The 

fixatives tested have been reported to be adequate for in situ hybridization of a variety 

of tissue and cell types and were tested at concentrations and incubation times as 

recommended by manufacturers for in situ hybridization consumables (application 

manuals: 'In situ hybridization: A guide to radioactive and non-radioactive in situ 

hybridization systems', Amersham Life Science, 1994; 'Nonradioactive in situ 

hybridization: Application manual, second edition', Boehringer Mannheim, 1996). 

Crosslinking fixatives, 4% paraformaldehyde in PBS, 4% paraformaldehyde and 

0.1% glutaraldehyde in PBS, or 2% glutaraldehyde in PBS, and precipitating fixation 

mixtures (v/v), ethanol/acetic acid (95/5) or methanol/acetone (50/50) were used for 

postfixation of EBs after proteinase K treatment. Day 6 EBs were prepared for 

hybridization as described in Section 3.2.3.4 and split into aliquots for postfixation 

in different fixatives. Postfixation was carried out as described except that substitute 

solutions and varying incubation times were used (see Table 3.3 for incubation times). 

The effects on autofluorescence levels and morphology of EBs of each fixative was 

examined by confocal microscopy (see Table 3.3 for summary). 

In general, autofluorescence levels measured at the excitation wavelength 488 nm 

compared to 543 nm were higher in all EB samples, with the exception of 

glutaraldehyde treated EBs which showed high autofluorescence at both wavelengths. 

Precipitating fixatives influenced autofluorescence levels in EBs less compared to 

crosslinking fixatives. However, morphology preservation of EBs was higher after 

incubation in crosslinking fixatives (data not shown). 
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Effects of fixation and postfixation on EBs after incubation in 

hybridization solution 

Spectra of autofluorescent molecules are very broad compared to the relatively 

narrow spectra of fluorescence probes. This makes it difficult to avoid 

autofluorescence by simply choosing a fluorescence probe out of the range of 

the autofluorescence occurring in an experimental system (Van de Lest et al, 1995). 

However, tests using various fixatives for postfixation to investigate the cause of 

autofluorescence in EBs (see above) indicated that the use of the fluorescence label 

rhodamine may result in improved conditions for the signal detection of hybridized 

riboprobes. The maximum emission of rhodamine label is at 555 nm and 

autofluorescence in EBs at the 543 nm laser wavelength was relatively moderate 

compared to autofluorescence levels observed at 488 nm. 

The standard procedures for fixation of EBs included overnight incubation in 

4% paraformaldehyde and dehydration in methanol to allow the storage of EB 

samples at -20°C. This meant that EBs were exposed to fixative solutions for 

prolonged periods of time. The duration of fixation has been reported to have an 

important impact on the sensitivity of in situ hybridization conditions (Guiot and 

Rahier, 1994). Furthermore, enhanced autofluorescence by preincubation in 

formaldehyde has been observed in sectioned specimens (Van de Lest, 1995). 

To assess the influence of this prolonged fixation on the sensitivity of the in situ 

hybridization method combined with confocal microscopy, the first fixation time 

of EB samples was varied. Day 6 EBs fixed as described (Section 3.2.3.4) and 

EBs harvested on the day of use and fixed for 30 min in freshly prepared 

4% paraformaldehyde were examined for the effects of fixation treatments 

on autofluorescence levels and morphology. The fixed EBs were incubated in 

proteinase K and each sample was split into 4 aliquots for various postfixation 

conditions. Fixatives used for postfixation were 4% paraformaldehyde, 

0.4% paraformaldehyde, EtOHlacetic acid (95/5) or methanol/acetone (50/50). 



These pretreated EBs were then subjected to a mock hybridization without added 

riboprobes in order to examine the effect of all procedures required for whole mount 

in situ hybridization of EBs. The procedures were carried out as described (see 

Section 3.2.3.4) except that postfixation solutions were substituted as described 

above. Samples of EBs were taken after each treatment step and autofluorescence 

levels and morphology examined. A summary of the influences from preparative 

treatments is listed in Table 3.4. 

After exposure to hybridization conditions all EBs showed very high autofluorescence 

levels at both wavelengths, 488 nm or 543 nm, irrespectively of the fixation conditions 

used. This observation indicated that the prolonged incubation in organic conditions 

(hybridization mix contains 50% formamide), required for hybridization is the limiting 

step for signal detection by fluorescence confocal microscopy. 

Morphology preservation of EBs fixed in paraformaldehyde was higher compared 

to EBs fixed in EtOH/acetic acid or methanol/acetone. EBs postfixed in precipitating 

fixatives were disrupted into sticky cell clumps (data not shown). 



Table 3.3: Influence of postfixation solutions on autofluorescence levels and 
morphology of EBs. Day 6 EBs were fixed with 4% paraformaldehyde and 
pretreated with proteinase K. For postfixation crosslinking and precipitating 
fixatives were compared. 

Autofluorescence I Morphology 

488 n 543 n 

Before proteinase K treatment 	 + 	+ 	++ 

	

+ 	+ 
After proteinase K treatment without postfixation 

Postflxation in crosslinking fixatives 

(20 min at RT) 

	

4 % paraformaldehyde 	++ 	+ 	+ 

	

4 % paraformaldehyde and 0.1% glutaraldehyde 	++ 	+ 	+ 

	

2% glutaraldehyde 	++ 	++ 	+ 

Postfixation with precipitating fixatives 

	

EtOH/acetic acid (15 min at RT) 	+ 	- 	-- 

	

Methanol/acetone (4 min at -20°C) 	+ 	- 	-- 

Morphology: ++ well-preserved structure; + fairly well-preserved structure; 
complete loss of strutcture; -- severe loss of structure; - some loss of sturcuture; 

Autofluorescence: ++ very high level of autofluorescence; + high level of 
autofluoresence; - low level of autofluorescence; 



Table 3.4: Influence of fixation and postfixation solutions on autofluorescence levels 
and morphology of EBs. Day 6 EBs were fixed with 4% paraformaldehyde overnight 
or for 30 min and treated with proteinase K. For postfixation crosslinking and 
precipitating fixatives were compared. These EBs were then subjected to a mock 
hybridization without added riboprobes. 

Autofluorescence I Morphology 

488 nm 543 nm 

Before proteinase K treatment after fixation 

	

4% paraformaldehyde overnight 	nr 	nr 

	

4% paraformaldehyde for 30 min 	nr 	nr 

	

without fixation 	nr 	nr 

After proteinase K treatment before postfixation 

	

4% paraformaldehyde overnight 	nr 	nr 

	

4% paraformaldehyde for 30 min 	nr 	nr 

	

without fixation 	* 	* 

Postfixation in 4% paraformaldehyde (20mm at RT) 

	

4% paraformaldehyde overnight 	++ 	+ 
4% paraformaldehyde for 30 mm 	++ 	+ 

Postfixation in 0.4% paraformaldehyde (20 min at 
RT) 

	

4% paraformaldehyde overnight 	++ 	+ 
4% paraformaldehyde for 30 mm 	++ 	+ 

Postfixation in EtOHlacetic acid (15 min at RT) 

	

4% paraformaldehyde overnight 	+ 	- 
4% paraformaldehyde for 30 mm 	+ 	- 

Postfixation in methanol/acetone (4 min at -20°C) 

	

4% paraformaldehyde overnight 	+ 	- 
4% paraformaldehyde for 30 mm 	+ 	- 

Morphology: ++ well-preserved structure; + fairly well-preserved structure; 
complete loss of strutcture; -- severe loss of structure; - some loss of sturcuture; 

* EBs were disrupted after treatment and could not be recovered 
Autofluorescence: ++ very high level of autofluorescence; + high level of 
autofluoresence; 
- low level of autofluorescence; nr not relevant; 
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3.2.5.2 Determination of Hybridization Conditions 

Effects of riboprobe concentration during hybridization 

To determine whether the riboprobe concentration influences the sensitivity of 

hybridization reactions and/or is the cause for background staining hybridization 

of EBs with different probe concentrations were performed. The probe concentration 

has been reported to influence the sensitivity of signal detection, though the influence 

can reach a plateau with further increased probe concentrations having no effect or 

resulting in background staining. However, the optimal concentration for probes 

also depends on the size of the probe and on the sensitivity of the detection system 

(Guiot and Rahier, 1995). 

Day 6 EBs were hybridized with anti-sense probes specific for actin mRNA or globin 

mRNA following the protocol described in Section 3.2.3.1. Riboprobe concentrations 

used were either at the recommended concentration (1:100 dilution) or at a 8 fold 

increased concentration. Subsequent colorimetric signal detection produced from 

both probe concentrations the expected specific staining patterns for globin or actin. 

No obvious difference between low or high probe concentration was observable thus 

confirming a high sensitivity and a high stringency of the hybridization conditions 

used. 

W. 



Comparison of whole mount in situ hybridization protocols 

Initial whole mount in situ hybridizations on EBs were performed following a protocol 

established for mouse embryos (see Section 3.2.3.1; Rosen and Beddington, 1993). 

This protocol utilizes alternative pretreatment conditions for the permeabilization of 

EBs prior to hybridization, which have been described as mild but efficient. EBs 

are cell clusters with very fragile structures and are prone to disruption when handled 

under rough conditions. Thus, the in situ hybridization protocol mentioned above was 

the protocol of choice. Although suitable in combination with colorimetric signal 

detection of hybridized probe, in combination with fluorescence confocal microscopy 

the hybridization conditions appeared to be the cause for limited sensitivity for signal 

detection. Therefore, the suitability of a more conventional whole mount in situ 

hybridization method was tested (see Section 3.2.3.3; Graham A, personal 

communication). The main difference between these hybridization protocols are 

the pretreatment conditions for the permeabilization of EBs prior to hybridizations 

(Table 3.2). The former protocol uses a'cocktail' of ionic and non-ionic detergents, 

the latter uses proteinase K treatment. 

Two samples of EBs, day 6 and day 4, were hybridized with fluorescein labelled 

antisense probes specific for actin or globin according to the respective procedures 

described above (Section 3.2.3.1 and 3.2.3.3), and used for signal detection by 

confocal microscopy. The detection of specific hybridization events by confocal 

microscopy was hampered in all samples by autofluorescence background (Figures 

3.6.3 and 3.6.4). However, combined with colorimetric signal detection the protocol 

utilizing proteinase K appeared to provide higher sensitivity. It was mentioned in the 

original protocol, that the use of a detergent mix for pretreatments may be intrinsically 

less sensitive than protocols that use proteinase K (Rosen and Beddington, 1993). 



3.2.5.3 Determination of Signal Detection Conditions 

Direct and indirect signal detection 

Confocal laser scanning fluorescence microscopy for detection of specific 

hybridization events was attempted for its reported high sensitivity in signal 

detection, three-dimensional analysis by non-invasive sectioning, and for the 

possible quantitation of fluorescence signal (Shotton, 1989). Initial efforts to combine 

whole mount in situ hybridization of EBs with confocal microscopy used anti sense 

riboprobes directly labelled with fluorescein. The use of probe with fluorochromes 

directly conjugated to the ribonucleotide sequence, could allow visualization of probe-

target hybrids by fluorescence microscopy immediately after the hybridization reaction. 

However, when direct labelled riboprobes were used for the hybridization of EBs 

difficulties in signal detection were encountered due to autofluoresence background. 

In a protocol for Drosophila embryos using directly labelled riboprobes, it was 

reported that the fluorescein in the RNA probe itself did not appear to contribute 

to the signal. However, the use of an anti-fluorescein antibody to detect the 

fluorescein-tagged RNA probe and a secondary antibody conjugated with fluorescein 

isothiocyanate (FITC) was reported to be successful (Biotechniques, 20, 748-750). 

Indirect signal detection in EBs employing confocal microscopy was attempted by 

hybridization of EBs with DIG labelled riboprobes and subsequent incubation with 

anti-DIG antibodies conjugated with a fluorochrome label, fluorescein or rhodamine. 

A schematic description of this approach is shown in Figure 3.5. Colorimetric signal 

detection was performed as a control for the hybridization reactions. The hybridization 

procedures were carried out as described in Section 3.2.3.4. 

Although, the distinct expression patterns for actin and globin could be detected 

in control samples by colorimetric signal development, signals for actin or globin 

expression from confocal microscopy analysis did not produce reliable images due 
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to interfering autofluorescence background (Figures 3.6.3 and Figures 3.6.4). 

Problems in the use of fluorescence detection of non-radioactive probes, caused 

by background autofluorescence in cells and tissues has also been acknowledged by 

a manufacturer of products for application in hybridization experiments (application 

manual: In situ hybridization: A guide to radioactive and non-radioactive in situ 

hybridization systems', Amersham Life Science, 1994). 
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DIRECT SIGNAL DETECTION 
	

INDIRECT SIGNAL DETECTION 
Embryoid bodies 

(day 4, day 6) 

HYBRIDIZATION 

Antisense-Actin-Fluorescein 
Sense-Actin-Fluorescein 

Antisense-globin-Fluorescein 
Sense-globin-Fluorescein 

FLUORESCENCE SIGNAL DETECTION 

Confocal microscopy 
(488 nm) 

Antisense-Actin-DIG 
Sense-Actin-DIG 

Antisense-globin-DIG 
Sense-globin-DIG 

ANTIBODY INCUBATION 

Fluorescein conjugated 	Rhodamine conjugated 	Alkaline phosphatase 

anti-DIG antibodies 	anti-DIG antibodies 	 conjugated 
anti-DIG antibodies 

ANTIBODY INCUBATION 
(Control for the h bridization reaction) 

Alkaline phosphatase conjugated 
anti-Fluorescein antibodies 

FLUORESCENCE SIGNAL DETECTION 

Confocal microscopy 
	

Confocal microscopy 
(488 nm) 
	

(543 am) 

COLORIMETRIC 
SIGNAL DETECTION 

COLO METRIC 
SIGNAL DETECTION 

Figure 3.5: Schematic description of the comparison of direct and indirect signal detection systems after whole-mount in situ hybridization of EBs. 



3.2.5.4 Determination of Hybridization Specificity 

Control reactions for hybridization reactions 

Controls for the specificity of the hybridization procedures were performed using: 

(1) anti-sense riboprobes for actin mRNA for hybridization which served as positive 

control; (2) antibody conjugate without probe, as control for unspecific antibody 

binding; (3) neither probe nor antibody added, as control for endogenous alkaline 

phosphatase activity; (4) corresponding sense-sequences of anti-sense probes 

as specific controls for particular riboprobes, addressing non-specific binding 

of probes. These control reactions were performed for each hybridization protocol 

used. Figures 3.6.1-3.6.2 shows images of these 'general' controls. Specific 

controls using corresponding sense-sequences to particular anti-sense riboprobes 

are shown with their respective anti-sense image in Results Section 4.3. 
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Positive signal for actin expression in day 6 EBs. 

Background level for actin expression by exposure of 
day 6 EBs with sense probes for actin. 

Figure 3.6.1: Positive control hybridizations for whole-mount in situ hybridization experiments. 
Day 6 EBs were hybridized with DIG-labelled antisense riboprobes specific for actin expression (top) 
or exposed to DIG-labelled riboprobes with corresponding sense sequences to actin sequence(bottom). 
Alter hybridization, riboprobe-target RNA hybrids were detected by immunoenzymatic colorimetric 
signal detection (Magnification 300x). 
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Background level from non-spcecific antibody binding during immunoenzymatic 
colorimetric signal detection in whole-mount in situ hybridization reactions. 

Background level from non-specific alkaline phosphatase activity during 
immunoenzymatic colonmetric signal detection in whole-mount 

in situ hybridization reactions. 

Figure 3.62: Negative control reactions for whole-mount in situ hybridization experiments. 
Day 6 BBs were incubated in hybridization solutions without riboprobe but exposed to alkaline-
phosphatase conjugated anti-DIG antibodies and incubated in colorimetric signal detection solutions 
(top). Day 6 BBs were incubated in hybridization solutions without riboprobe and in antibody 
incubation buffer without antibody added incubated in colorimetric signal detection solutions 
(bottom) (Magnification 300x). 
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Sequence of optical sections through an EB hybridized with fluorescein- 
labelled antisense riboprobes specific for actin expression. 

Sequence of optical sections through an EB incubated in 
hybridization solutions without riboprobe. 

Figure 3.6.3: Whole-mount in situ hybridization of EBs combined with confocal microscopy for 
signal detection. Day 6 EBs were hybridized with fluorescein-labelled antisense riboprobes specific 

for actin expression (top) or incubated in hybridization solution without added riboprobe (bottom) 
as control sample for autoiluorescence levels. The hi11 gh autofluorescence level in control EBs 

demonstrates the difficulties in combining in situ hybridization with confocal microscopy. 
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Sequence of optical sections through an EB hybridized with fluorescein- 
labelled antisense riboprobes specific for globin expression. 

Sequence of optical sections through an EB incubated with fluorescein- 
labelled sense riboprobes corresponding to globin sequence. 

Figure 3.6.4: Whole-mount in situ hybridization of EBs combined with confocal microscopy for 
signal detection. Day 6 EBs were hybridized with fluorescein-labelled antisense riboprobes specific 
for globin expression (top) or incubated with fluorescein-labelled sense riboprobes corresponding 
to globin sequence and conlocal microscopy was used to assess signal. High autofluorescence levels 
hampered the assessment of specific expression patterns. 
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3.2.6 In situ Hybridization of Sections of EBs 

Procedures for in situ hybridization of EB sections were derived from hybridization 

protocols for mouse embryo sections (Wilkinson and Green, 1990; Nichols et al, 

1996), from whole mount in situ hybridization protocols used for zebrafish 

(Broadbent, J; Graham, A, personal communication) and from whole mount 

in situ hybridization procedures on EBs as described in this study (see Section 3.2.3). 

The following sections are a detailed description of the procedures used to perform 

in situ hybridization on sectioned EBs. Contents of solutions that are specific for 

this hybridization protocol are listed below. A schematic description of the procedures 

required for in situ hybridization of sectioned EBs is illustrated in Figure 3.8. 

Preparation of sectioned embryoid bodies 

Fixation of embryoid bodies 

EBs were harvested by allowing them to settle in a 50 ml centrifuge tube as 

described in Section 3.2.9 and washed twice with 10 ml cold PBS. The EBs 

were resuspended in 10 ml freshly prepared 4% paraformaldehyde in PBS and 

fixed overnight (16-18 hours) at 4°C. The fixed EBs were washed twice with 

10 ml cold saline (0.83% NaCl) before being dehydrated on ice by washing with 

ethanol-saline mixtures: once with 50%, twice with 70%, once each of with 85%, 

95% ethanol-saline and twice with absolute ethanol. 10 ml of solution was used 

for each wash. One wash took 15-30 mm. The EBs were resuspended in 15 ml 

of absolute ethanol and stored at -20°C. 

Embedding of EBs for wax sectioning 

Embedding was performed in a chemical resistant 50 ml plastic centrifuge tube 

(Coming). Fixed EBs, stored at -20°C in EtOH were used for embedding. The ethanol 

solution was replaced with 10 ml histoclear, three times for 30-45 min each at room 



temperature. The EBs were then incubated for 30 min in a 1:1 histoclear: paraffin wax 

mix at 60°C, followed by three changes of paraffin wax, each for 30 min at 60°C. 

The EBs were transferred to a prewarmed mould placed on a heater block at -60°C 

using a prewarmed 5 ml plastic pipette. The mould was placed on an even surface 

after the EBs had settled to the bottom and allowed to set overnight (-16 hours) at 

room temperature. These wax blocks with embedded EBs were stored at 4°C until 

used for sectioning and in situ hybridization. Moulds were formed by wrapping 

aluminium foil around a small object to obtain a mould with relative small diameter 

(-1 cm) and flat bottom area. Since EBs are relatively small in size and samples 

consisted of a population of EBs it was important to use moulds with a relative small 

diameter that allowed to embed a large number of EBs in a small area. However, the 

size of the wax block had to have a large enough surface for sectioning. EBs do not 

display an obvious anterior and posterior structure, therefore it was not required to 

orientate the EBs during embedding in wax. 

Subbing of slides (TESPA-slides) 

Subbing of slides, to enable cell adherence and maintenance during in situ 

hybridization procedures, was essentially performed as previously described 

(Wilkinson and Green, 1990). Standard sized glass slides (BDH) were placed 

in a metal rack and immersed for 10 sec each in 10% HCIJ70% ethanol, followed 

by distilled water and 95% ethanol. The slides were dried in an oven at 150°C for 

5 min and then allowed to cool to room temperature. Subsequently, the slides were 

dipped in 2% TESPA (3-aminopropyl-triethoxysilane) in acetone for 10 sec, washed 

twice with acetone and then distilled water for 10 sec each before being dried at 42°C. 

TESPA coated slides were wrapped in plastic foil and stored desiccated at 4°C. 

109 



Sectioning of wax embedded EBs 

The wax block with embedded EBs was mounted on an 'empty' wax block in 

a standard cassette used for automatic embedding. This was required to be able 

to use a Jung Multicut 2045 Leica microtome. 

The mounted wax block was trimmed into a rectangle shape and 7 jim sections 

were cut using disposable blades. Sections were placed on slides flooded with 

sterile DEPC-treated H20  at —40°C and allowed to expand. Subsequent sections 

were placed on subsequent slides and sets of 5 slides with 3-4 single sections in 

following order were prepared (Figure 3.7). Excess water was carefully removed 

using a sterile pasteur pipette and the sections were dried overnight at 37°C. 

The slides with sections were stored desiccated at 4°C until required for in situ 

hybridization with riboprobes. 

Figure 3.7: Schematic diagram of serial sections of EBs 
Slides were labelled with date and sample information and records of each section 
were taken. The sections were preferably placed at the lower half of the slide to ensure 
complete immersion during handling in coplin jars. 

Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 

sections sections sections sections sections 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

110 



Pre-treatment of sections prior to hybridization 

The appropriate number of slides with adherent wax sections of EBs were placed 

into glass coplin jars, except for acetic acid treatment and the hybridization reaction, 

and handled in sets for all procedures required for in situ hybridization of sections. 

The maximum number of slides handled in a set was 10 slides/coplin jar. Solution 

volume for incubations in coplin jars was 25-30 ml. Slides were dewaxed in 30 ml 

Histoclear, twice for 10 min and than washed with 100% EtOH for 2 mm. 

Subsequently, the slides were washed quickly through 30 ml of 100 % ethanol, 

95%, 85%, 70%, 50% and then 30% ethanol: saline solutions, followed by one 

wash with saline for 5 min and then three washes with PBS for 5 min each. 

Proteinase K treatment was performed by incubation with 20 jig/ml proteinase K 

in TE buffer, pH 8.0 for 5 min at 37°C. The proteinase K solution was freshly 

diluted from a frozen stock solution (10 mg/nil) and prewarmed for at least 30 mm 

prior to use. After proteinase K treatment, the slides were washed twice with PBS 

for 5 min before fixed with freshly prepared 4% paraformaldehyde in PBS for 20 mm. 

Postfixation washes were twice with PBS for 5 min each. For acetic anhydride 

treatment, 250 ml of sterile 0.1 M tri-ethanolamine HC1, pH 8.0, solution were added 

to a histology glass container and a glass rack to hold the slides was placed into the 

solution. This was set up with a rapidly rotating stir bar and the slides were then 

transferred into the glass rack. 

0.63 ml acetic anhydride was added and the slides were incubated for 10 min with 

constant stirring. The slides were then transferred back into a Coplin jar and washed 

twice in PBS for 5 min each. Subsequent dehydration of the slides was performed 

by washing them quickly through ethanol/PBS solutions with increasing ethanol 

concentrations. Solutions of 30%, 50%, 70%, 85%, 95% ethanol-PBS and 100% 

ethanol were used. The slides were drained after dehydration, transferred to a glass 

rack and placed at a dustfree area to air-dry for approximately 10 min at room 

temperature before being hybridized with riboprobes. 
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Prehybridization of sectioned EBs 

Prehybridization was performed by placing the slides in a coplin jar and adding 

25 ml of hybridization mixture without probe and subsequent incubation at 65°C 

for 2-3 hours. 

Hybridization of sectioned EBs 

For hybridization -2.5 jil hybridization mix containing riboprobe was applied 

per square centimetre of coverslip. The appropriate volume of riboprobe (5-7.5 tl), 

depending on probe concentration, was pipetted into a 0.5 ml eppendorf tube and 

a complementing volume of prewarmed hybridization mix was added to make up 

the total volume. The mixture was carefully applied to cover the sections on a slide. 

Care was taken that the sections did not dry whilst applying the hybridization mixture. 

To spread the hybridization mix, a coverslip was lowered carefully on top of the 

sections to avoid trapping of air bubbles and sealed to the slide with nail varnish. 

The slides were then placed horizontally in a plastic container containing tissue soaked 

with 50% formamide, 5x SSC and sealed by wrapping with cling film and foil and 

then incubated overnight (16-20 hours) at 65°C for hybridization. 

Posthybridization treatment 

For posthybridization washes the slides were transferred into a coplin jar with 

25 ml wash solution I. One slide after the other was carefully removed from the 

65°C incubator and using a pair of tweezers the solid nail varnish was carefully 

peeled off to release the coverslips. After the coverslips were removed, the slides 

were quickly placed into a coplin jar containing 25 ml of prewarmed wash solution I 

to avoid drying of the sections. The slides were washed twice in wash solution I at 

65°C for 30 mm each. Followed by two washes in wash solution II at 65°C for 30 mm 

each. Ribonuclease treatment as recommended by other protocols was omitted since 

no background from non-specific riboprobe binding was encountered. 
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Colorimetric detection of labelled riboprobe hybridized to target mRNA 

After the posthybridization washes at 65°C, the slides were washed twice in lx TBST 

buffer for 10 min each. Residual remains of the nail varnish or hybridization solutions 

were carefully removed using tweezers and the slides were then transferred into a new 

coplin jar containing MABT washing buffer. The slides were equilibrated for about 

2 min in MABT before being incubated in blocking buffer for 1-2 hours. This was 

performed at room temperature. 

Incubation with alkaline phosphatase conjugated antibodies (Anti-DIG-AP at 1:5000 

or Anti-Fluorescein at 1:2000) occurred at 4°C overnight (16-20 hours) in antibody 

solution containing antibodies specific for the riboprobe label. The antibody incubation 

was followed by washes at room temperature. Three washes with MABT for 15 mm 

each and three washes with NTMT solution for 5 min each. The NTMT solution was 

always prepared freshly from stock solutions on the day of use. Colour development 

of bound antibodies for hybridized riboprobe was performed by incubation overnight 

(16-20 hours) in NTMT buffer containing 4.5 jtl NBT/ml buffer and 3.5 j.tl BCIP/mJ 

buffer. The slides were kept dark at room temperature. 

Depending on the specificity of the riboprobe signal for hybridization events started 

to appear after 5-6 hours and was completed after overnight incubation. Prolonged 

incubation in colour development solution did not cause background staining. The 

colour reaction was stopped by 5-7 washes in PBT, 5 min each. 

For some staining reactions signal amplification was performed by using alkaline 

phosphatase conjugated anti-alkaline phosphatase antibodies (APAAP-complex, 

Boehrmger Mannheim). For this, normal colour development and washes was 

followed by incubation with APAAP-complex (250 mU/ml) in antibody solution 

at 4°C overnight (-16 hours) and subsequent colorimetric signal development as 

described above. 

The slides can be kept for several weeks in PBT at 4°C without changes or loss 

in staining patterns. To increase staining intensity and to remove sedimented stain 
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from the slides, the slides were passed through increasing methanol/PBS solutions 

(50%, 75%, 100%) prior to mounting. The developed slides were mounted with 

Aqua mount (BDH) mounting medium and the staining patterns were assessed using 

a microscope. 

3.2.7 Two-Colour In Situ Hybridization of Sections 

Two-colour in situ hybridization of sectioned EBs was performed to investigate 

co-expression patterns of genes. Riboprobes labelled with DIG or fluorescein 

were hybridized simultaneously to sectioned EBs as described in Section 3.2.6; 

'Hybridization of sectioned EBs'. The labels of hybridized probes were detected 

by using alkaline phosphatase conjugates (Anti-DIG-AP and Anti-Fluorescein-AP) 

and two different colour substrates (NBTIBCIP and Fast Red). The detection reactions 

were carried out consecutively. After hybridization and posthybridization washes, the 

DIG-labelled probe was detected as described above in Section 3.2.6; 'Colorimetric 

detection of labelled riboprobes hybridized to target mRNA'. After development of 

signal for DIG-labelled probe, the colour reaction was stopped by 5-7 washes with 

PBT, 5 min each. To inactivate any remaining AP-activity of bound antibodies four 

washes, 5 min each, in 0.1 M glycine pH 2.2 (acidified with HC1), 0.1% (vlv) 

Tween-20 were performed. This inactivation step was followed by three washes 

in MABT for 5 min each. The sections were then blocked for 1-2 hours in blocking 

buffer before incubation with Anti-Fluorescein-AP (1:2000) overnight at 4°C. The 

antibody incubation was followed by three washes in MABT, 15 min each, and 

equilibration in 0.1 M TrisHCl, pH 8.3, 0.1% Tween-20 for 5 mm. This solution 

was replaced by Fast Red colour substrate solution (1 Fast Red tablet dissolved in 

2 ml 0.1 M TrisHCl pH 8.3) and the sections were kept dark for colour development 

overnight. The colour reaction was stopped with 3-5 washes in PBT, 5 min each. 

The slides were then passed through increasing methanol/PBS solutions (50%, 75%, 

100%), mounted with Aqua mount solution before evaluated using a microscope. 
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Solutions for in situ hybridization of sectioned EBs 

PBS 	Phosphate buffered saline 

TE buffer 	10 mM TrisHCl pH 8.0, 1 mM EDTA pH 8.0 

Hybridization Mix: 

50% formamide, 5x SSC, pH 4.5 (acidified with citric acid), 

50 tg/m1 tRNA, 50 jig/ml heparin, 1% SDS (sodium dodecyl sulphate) 

Solution I: 

50% formamide, 5x SSC, pH 4.5 (acidified with citric acid), 1% SDS 

Solution II: 

50% formamide, 2x SSC, pH 4.5 (acidified with citric acid) 

TBST 	Diluted from a IN stock solution: 

100 ml of stock solution consisted of 8 g NaCl, 0.2 g KCI, 

25 ml 1 M TrisHCl pH 7.5, 10 ml Tween-20 

MABT 	Maleic acid buffer: 

100 mM maleic acid, 150 mM NaCl, pH 7.5, 0.1% Tween-20 

BBR 	Boehringer blocking reagents 

Blocking buffer 	MAB buffer with 2% BBR 

Antibody solution: 

MAB buffer with 2% BBR and 1% heat-inactivated sheep serum 

NTMT 	100 mM NaCl, 100 mM TrisHCl pH 9.5, 1% Tween-20 
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Figure 3.8: Flow diagram of prodcedures for in situ hybridization on sectioned EBs. 
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3.3 Molecular Biological Methods 

Procedures Involving Molecular Biology Techniques 

Unless stated otherwise, all molecular biological procedures were standard 

techniques and carried out essentially as described by Sambrook et al, (1989); 

Ausubel et al, (1994); and Davis et al, (1986). 

3.3.1 Solutions and Media for Molecular Biological Procedures 

All solutions and media used for molecular biological procedures were prepared 

according to sterile routine standards. Distilled water was used for the preparation 

of solutions and media. 

General Solutions for Molecular Biology 

PBS 

One litre of PBS solution, in distilled water contained 10 PBS tablets. 

This solution was autoclaved. 

TBE Buffer 

TBE buffer was made up at lOx concentration. One litre of this buffer, 

in distilled water contained 108 g Tris base, 55 g boric acid and 7.4 g EDTA. 

Preparation of Media for Bacterial Strains 

LB Medium for E. coli 

One litre of LB medium, in distilled water contained 10 g tryptone, 

5 g yeast extract and 5 g NaCl. 

LB Plates for E. coli 

One litre of medium consisted of LB medium and 1.5% (w/v) nutrient agar 

and the antibiotic Ampicillin (100 g/ml). 
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3.3.2 Plasmid Extraction 

3.3.2.1 Plasmid Mini-preparation 

The plasmid mini preparation was performed with cultures grown at 37°C in 

3 ml LB medium containing the selective compound ampicillin, for 6-18 hours 

using the alkaline lysis method as described (Sambrook et al, 1989). 

3.3.2.2 Plasmid Preparation Using Magic Maxipreps DNA Purification 

System (Promega) 

Large-scale plasmid preparation was performed with cultures possessing the 

recombinant plasmids which were used for RNA probe synthesis. The procedure 

was carried out according to the manufacturer's instructions. See Table 3.5 for 

recombinant plasmids used for in situ hybridization of EBs. 

Table 3.5: Recombinant plasmids used for in situ hybridization of EBs. 

Plasmid/Vector 
	

Source 

actin in pSP64 
	

Gift of Dr Barry Rosen, Edinburgh, UK 

BMP-4 in pSP72 
	

Gift of Dr Brigid Hogan, Nashville, USA 

brachyury in pBluescript 
	

Gift of Dr Nicholas Hole, Durham, UK 

CD34 in pBluescript 
	

Gift of Dr John Brown, London, UK 

c-kit in pPECE 
	

Gift of Dr Lesley Forrester, Edinburgh, UK 

FLK-1 in pGEM7 
	

Gift of Dr Janet Rossant, Toronto, Canada 

alpha-globin in pUC 18 
	

Gift of Dr Nicholas Hole, Durham, UK 

SCL in pGEM3 
	

Gift of Dr Anthony Green, Cambridge, UK 

SCF in pBluescript 	 Gift of Dr Nicholas Hole, Durham, UK 

TGF in pBluescribe 	 Gift of Dr Dickson, Glasgow, UK 

vav in Ml3Mpl9 	 Gift of Prof. Adams, Melbourne, Australia 

goosecoid in pBluescript 	Gift of Dr Nicholas Hole, Durham, UK 

pBluescript SK(+/-) 	 Stratagene, UK 
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3.3.3 Preparation of DNA for Subcloning 

Manipulations of DNA were carried out as described (Sambrook et al, 1989). 

Subcloning was performed to obtain a recombinant plasmid consisting of a 

cDNA insert and a vector with two promoters. This was carried out with full 

length cDNA encoding the gene product actin, c-kit, globin, vav, and the cloning 

vector, pBluescript SK +1-. 

3.3.4 Restriction Endonuclease Digestion 

Digestion of DNA by restriction endonucleases was performed, to obtain 

appropriate DNA fragments for DNA subcloning or for the synthesis of radiolabelled 

DNA probes, and for the linearization of DNA templates for riboprobe synthesis. 

Restriction endonuclease reactions typically consisted of 1-2 jig plasmid DNA, 

2 units restriction enzyme(s) (Boehringer) and lx appropriate reaction buffer in 

a total volume of 20-50 jil, made up with sterile DEPC treated H20.  The reaction 

mix was incubated at 37°C for DNA digestion for at least 1 hour up to 16 hours. 

The restriction endonuclease digestion products were then resolved by agarose 

electrophoresis (see 3.3.6). 

3.3.5 Transformation of Competent Cells (E. coli) 

Competent cells were prepared using the CaC12 method as described (Davis et ad, 

1986). Transformation was used to obtain bacteria possessing the vector plasmid 

or the recombinant plasmids which were used for subcloning, RNA probe synthesis 

and [alpha-32P] dCTP labelling of DNA probe. 

Competent cells, stored in aliquots of 1 ml in eppendorf tubes at -70°C were thawed 

at 4°C. 100 pA of cells were transferred to a sterile eppendorf tube and a solution of 

DNA (5 p1) containing 50-100 ng DNA was added. This transformation mix was 

gently mixed and placed on ice for 30 min followed by 5 min at 37°C. 1 ml LB 

medium was added and the solution was transferred to a 15 ml sterile plastic 

119 



universal tube. Following incubation in a 37°C shaker for 1 hour, the cells were 

collected by centrifugation for 5 min at 3 000 rpm (MSE Mistral 6L centrifuge 

containing a 59563 swing-out rotor). Most of the supernatant was removed. 

The supernatant left in the tube (-100 jil) was used to resuspend the pellet and 

the solution was used for plating out onto plates with the selective compound 

ampicillin. The cells were grown at 37°C for at least 16 hours before clones 

were picked and used for plasmid mini preparations. 

3.3.6 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to check plasmid DNA preparations 

and to separate restriction endonuclease digest fragments. This was performed 

essentially as described (Sambrook et al, 1989). The gels consisted of 1.0% (w/v) 

agarose in 0.5x TBE, containing 0.5 jtg ethidium bromide per ml. Running buffer 

was TBE buffer (0.5x). The DNA sample volume loaded on a gel varied between 

3 p1 and 25 j.tl. Before loading onto a gel, the DNA sample was mixed with 2 tl 

loading buffer (50% (v/v) glycerol, 1 mM EDTA (pH 8.0), 0.25% (w/v) bromophenol 

blue in water). DNA was detected by illumination with UV light after electrophoresis 

for 1 to 4 hours at 80 mV. The gels were then photographed for documentation. 

3.3.7 Recovery of DNA Fragments from Agarose Gel 

Linearized plasmid DNA or restriction endonuclease digest fragments, separated 

by agarose gel electrophoresis, were recovered for riboprobe synthesis or labelling 

with 32P dCTP, respectively. After electrophoresis, the appropriate DNA fragment 

was cut from the gel using a clean scalpel blade and placed into a 0.5 ml eppendorf 

which had been pierced with a 26G needle and plugged with siliconized glasswool. 

The small eppendorf tube was placed into a 1.5 ml Eppendorf tube and then 

centrifuged for 10 min at 10 000 rpm. Centrifugation effected the separation of 
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DNA fragments from agarose and allowed the collection of DNA into the 1.5 ml 

Eppendorf tube. Transfer of the DNA was checked using a UV transilluminator. 

Recovered DNA samples were then phenol/chloroform extracted (see below) before 

used for riboprobe synthesis or radio-labelling by nick translation manipulation. 

3.3.8 Phenol/Chloroform Extraction of a DNA Sample Followed by 

Ethanol Precipitation 

Phenol/chloroform extraction was performed to purify DNA samples from protein 

or from agarose gel remains. Subsequent ethanol precipitation allowed concentration 

of the DNA sample. The phenol/chloroform extraction was carried out by adding 

about one sample volume of phenol plus one sample volume of chloroform: isoamyl 

alcohol (24:1) to the DNA sample and vortexing the mixture for 1 mm. The organic 

and aqueous phases were separated by centrifugation for 5 min at 13 000 rpm in an 

Eppendorf microfuge. The aqueous solution of DNA (upper layer) was removed 

into a new eppendorf tube with a pipette. The extraction procedure was repeated with 

chloroform: isoamyl alcohol (24:1). The aqueous solution of DNA was then ethanol 

precipitated with 2 volumes 100% ethanol and 1/10 volume 3M NaAc. This was 

carried out for at least 30 min at -70°C. The precipitated DNA was collected by 

centrifugation for 15 min at 13 000 rpm in an Eppendorf microfuge. After washing, 

by adding 1 ml of 70% ethanol, centrifugation at 13 000 rpm for 5 min and drying 

in a vacuum concentrator for at least 5 mm, the DNA was dissolved in 20-100 tl 

DEPC-treated water. 
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3.3.9 Procedures Involving RNA 

For manipulations involving RNA, sterile plasticware from previously unopened 

bags was used. Glassware was baked at 180°C for at least 16 hours before use. 

Solutions were maintained as free of RNase by DEPC treatment or by using (0.1%) 

DEPC-treated water. DEPC treatment of solutions consisted of the addition of 0.1% 

DEPC and incubation for 16 hours at 37°C before sterilization. Eppendorf tubes 

were centrifuged in a MSE Micro Centaur microfuge. 

3.3.10 Total RNA Extraction 

Extraction of total RNA from fetal liver, fetal brain, posterior region tissue from 

129/OLA or CBA mouse embryos and spleen, bone marrow and thymus from 

CBA or 129/OLA mice was performed using the RNAzo1 B method (Biotecx). 

The RNA extraction was carried out according to the manufacturer's instructions, 

as follows. Isolated mouse tissue cells, were resuspended in 1 ml DEPC-treated 

PBS and transferred to a sterile 1.5 ml eppendorf tube. The solution was then 

centrifuged for 1 min at 10000 rpm and the supernatant removed. The cell pellet 

was lysed in 0.8 ml RNAzo1 B and the lysate passed through a 23G needle. 80 j.i1 

of chloroform was added and samples were mixed thoroughly by agitation for 15 sec 

(but not vortexed). The samples were placed on ice for 5 min and centrifugation was 

performed for 15 min at 13 000 rpm. The aqueous phase (upper layer) was transferred 

to a new eppendorf tube. A volume of the aqueous phase was about 50 % of the 

initial volume of RNAzo1 B used. An equal volume of isopropanol was added and 

the samples incubated at 4°C for 5-16 hours to precipitate RNA. The tubes were 

centrifuged as described above and the supernatant removed. The RNA pellet was 

washed with 75% Ethanol (made with DEPC-treated water) and centrifuged at 4°C 

for 10 min at 13 000 rpm. After removal of the ethanol, the pellet was dried at room 

temperature for 5-10 mm. It was resuspended in an appropriate volume (50-100 p1) 

of 1 mM EDTA by incubation at 65°C for 5 mm. 1 j.tl was used to measure the 
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A260 and A280, as described in Section 3.3.16.2. The RNA extraction procedure 

was repeated from the RNAzoI addition steps for preparations which had an 

A260/A280 ratio less than 1.5. 

3.3.11 Formaldehyde/Agarose Gel Electrophoresis 

Total RNA samples or riboprobe samples were resolved by denaturing 

formaldehyde/agarose gel electrophoresis as described (Ausubel et al, 1994). 

A 1% (w/v) formaldehyde/agarose gel was prepared by dissolving the appropriate 

amount of agarose in DEPC treated H20,  cooling it to 60°C, and adding 

1 O formaldehyde gel running buffer (0.4M MOPS pH 7.0, 0. 1M sodium 

acetate, 0.01M EDTA) and formaldehyde to give final concentrations of lx and 

2.2M, respectively. The RNA samples were prepared by adding 0.5-10 p.g RNA 

in DEPC treated H20,  1/10 of the total volume of lOx formaldehyde gel running 

buffer, 50% formamide and formaldehyde to give a final concentration of 2.2 M. 

The samples were then incubated at 65°C for 15 mm, chilled on ice for 3 min and 

1/5 of the total sample volume of formaldehyde loading buffer (0.25% bromophenol 

blue; 0.25% xylene cyanol; 1 mM EDTA pH 8.0; 50% glycerol in DEPC treated H20) 

was added and mixed. The samples were loaded and electrophoresed at 5 V/cm for 

2-3 hours. The gels were then photographed and used for northern blotting. 
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3.3.12 Northern Blot 

Capillary transfer of RNA fractionated by denaturing formaldehyde/agarose 

electrophoresis, onto a nylon membrane (Boehringer Mannheim) was performed 

according the manufacturer's instructions. 

The formaldehyde/agarose gel was placed in a glass dish and rinsed 3 times for 

10-15 min with DEPC-treated H20  to remove formaldehyde. The capillary transfer 

apparatus was prepared as follows. A plastic dish was filled with DEPC-treated 

20x SSC and a plate was placed over the dish. Three pieces of 3MM Whatman 

paper were cut, wet with 20x SSC and draped over the plate with overhanging 

ends hanging into buffer to act as wick. Possible air bubbles were smoothed out 

by rolling a sterile 10 ml plastic pipette over the paper. The top right-hand corner 

of the gel was cut off to assist orientation during succeeding operations and then 

placed upside down on the filter paper avoiding air bubbles. The gel was surrounded 

with strips of parafilm to avoid short-circuiting of the buffer. A piece of nylon 

membrane, which was handled with forceps, was cut the same size as the gel and 

wet by placing it into water for 3-5 mm. The wetted membrane was then placed onto 

the gel avoiding any air bubbles between the membrane and the gel. The surface of 

the membrane was flooded with 20x SSC and three pieces of 3MM Whatman paper, 

cut to exactly the same size as the gel, were placed on top of the membrane. A stack 

of paper towels were placed on the 3MM paper and a weight of -500 grams was 

placed on top. The transfer of RNA to membrane by capillary action was allowed 

to proceed overnight (16-18 hours). The paper towels and the 3MM papers above 

the gel were then removed and the positions of the gel slots were marked with a 

pencil on the membrane. The membrane was rinsed in 2x SSC for 3 min and the RNA 

UV-crosslinked before hybridized with non-isotopic riboprobes or alpha-32P labelled 

DNA probes. 
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3.3.13 Non-Isotopic Filter Hybridization 

Non-isotopic hybridization of filters with RNA or DNA was performed to 

check labelled riboprobes used for in situ hybridization of EBs. The procedure 

was essentially performed according to the manufacturer's instructions (Boehringer 

Mannheim, The DIG system user's guide for filter hybridization'). Hybridization 

was performed in sterile strong chemical resistant 50 ml plastic centrifuge tube 

(Corning). Each membrane was placed in such an universal tube and hybridization 

mix without riboprobes (5 mlIlO cm2) was added. The tube was then placed in a 

standard hybridization roller tube (Hybaid) and prehybridized for 2-3 hours at 65°C. 

Riboprobes used for hybridization were denatured by incubation at 65°C for 10 mm 

and placed on ice for 5 mm. The prehybridization solution was replaced by 

hybridization mix (0.5 mIllO cm2) containing riboprobe (100 ng/ml). Great care 

was taken that the membrane did not dry during solution exchanges. Hybridization 

occurred at 65°C under constant rotation for 12-18 hours. The membrane was washed 

at 65°C, twice in 5 ml 2x wash solution for 5 min each and twice in 0.5x wash 

solution 15 min each. The hybridization reaction was followed by colorimetric signal 

detection of hybridized labelled riboprobe. 

Solutions for non-isotopic hybridization of membranes 

Hybridization Mix: 

5x SSC, pH 7.0 (acidified with citric acid), 50% formamide, 

0.1% sodium-lauroylsarcosine, 0.02% SDS (sodium deoxycholate), 

2% Boehringer blocking reagents 

2x Wash solution: 

2x SSC, pH 7.0, 0.1% SDS 

0.5% Wash solution: 

0.5x SSC, pH 7.0, 0.1% SDS 
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3.3.14 Colorimetric Detection of Non-Isotopic Labelled Riboprobes 

on Membranes 

Colorimetric signal detection was performed with membranes with RNA, hybridized 

with DIG-labelled and/or fluorescein-labelled riboprobes or membranes with newly 

synthesized riboprobes for size and quality check. The membrane was placed into a 

sterile petri dish plate, equilibrated briefly (-1 mm) in 5 ml in MABT washing buffer 

(100 mM maleic acid, 150 mM NaCl, pH 7.5, 0.3% Tween-20) before incubated in 

10 ml blocking solution (1% Boehringer blocking reagents in MAB) for 1-2 hours at 

room temperature. Anti-DIG-AP-conjugated antibodies were diluted at 1:50 000 and 

Anti-Fluorescein-AP-conjugated antibodies were diluted at 1:20 000 in blocking 

solution. The membrane was incubated in 5 ml of diluted antibody solution overnight 

(12-16 hours) at 4°C. The membrane was then washed twice in 10 ml wash buffer for 

15 min each before equilibrated for 2 min in detection buffer (0.1 M TrisHCl pH 9.5, 

0.1 M NaCl) which was prepared from stock solutions on the day of use. The colour 

substrate solution for signal development was prepared freshly immediately prior 

to use. The detection buffer was removed and 5 ml of colour substrate solution 

(4.5 tl/ml NBT, 3.5 .tl/ml BCIP in detection buffer) was added to the membrane. 

The colour development was carried out in the dark for 3 to 16 hours. After signal in 

sufficient intensity appeared, the reaction was stopped by washing the membrane three 

times in sterile H20  for 5 min each. The spot intensity of the control and experimental 

dilutions were compared to estimate the concentration of the experimental riboprobes. 
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3.3.15 Radiolabelled Filter Hybridization 

Filters with RNA were hybridized with radiolabelled DNA probes as controls 

for plasmids used for in situ hybridization of EBs. 

DNA probes labelled with [alpha-32P] dCTP (Amersham) were prepared using 

a NICK translation system (Promega) according to the manufacturer's instructions. 

The hybridization procedures were performed as described (Sambrook et a!, 1989) 

using Church/Gilbert buffer as hybridization mix. After hybridization, the filters 

were exposed overnight to a phosphoimager screen for detection of specific 

hybridization events. The screen was then scanned using a Molecular Dynamics 

laser scanner and analysed using Molecular Dynamics software. 

3.3.16 Southern Blot 

Capillary transfer of DNA fragments separated by agarose electrophoresis was 

carried out as described for RNA with the exception that the gel was submerged 

in denaturation solution (0.5 M NaOH, 1.5 M NaC1), twice for 15 mm, rinsed 

with H20  and then neutralized in neutralization buffer (0.5 M TrisHCl, pH 7.5 

with HCl, 3 M NaC1), twice for 15 min before placed on a capillary transfer apparatus 

as described above (see Section 3.3.12; 'Northern Blot'). These incubations were 

carried out on a shaker. 
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3.3.17 Optical Density Measurement 

The concentration of DNA or RNA in a sample was determined using an 

Unicam Helios UV-Vis Spectrometry spectrophotometer. 

3.3.17.1 Determination of DNA Concentration 

The absorbance at 260 nm of a DNA solution is directly proportional to the amount 

of DNA in the sample. An absorbance at 260 nm of 1.0 corresponds to 50 jig of 

double-stranded DNA per ml. To obtain the DNA concentration of a sample, the 

following formula was applied: 

DNA (mg/jil) = 0.05 x A260  x dilution factor 

Sterile distilled water was used as a reference and also to dilute the DNA sample 

appropriately. The absorbance was measured in 1 ml solution using a quartz cuvette 

of 1 cm path length. To determine the purity of DNA in a sample the ratio of the 

absorbance at 260 nm and 280 nm (A260/A280) was calculated. Pure preparations 

of DNA have A260/A280  values of —1.8. 

3.3.17.2 Determination of RNA Concentration 

The absorbance at 260 nm of a RNA solution is directly proportional to the amount 

of RNA in the sample. An absorbance at 260 nm of 1.0 corresponds to 40 jig of RNA 

per ml. To obtain the RNA concentration of a sample the following formula was 

applied: 

RNA (mg/jil) = 0.04 x A260  x dilution factor 

Sterile distilled water was used as a reference and also to dilute the RNA sample 

appropriately. The absorbance was measured in 1 ml solution using a quartz cuvette 

of 1 cm path length. To determine the purity of RNA in a sample the ratio of the 

absorbance at 260 nm and 280 nm (A260/A280) was calculated. Pure preparations 

of RNA have a A260/A280  values of —2.0. 
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4. RESULTS 

4.1 	In vitro differentiation of ES cell lines containing gene trap 

construct insertions and their 'parental' ES cell lines 

Haematopoietic in vitro differentiation of four ES cell lines containing gene trap 

construct insertions (thereafter referred to as 'gene trap' cell lines), selected on the 

basis of their spatial expression patterns in chimaeric embryos (11 14, R68, ST598, 

Zin40), their respective parent ES cell lines (R I, CGR8) and a control ES cell line 

(EFC-1) was assessed. Three of these gene trap lines (1114, R68, ST598) had been 

shown to have a restricted expression pattern in vivo, one gene trap line (Zin40) had 

been found to be expressed ubiquitously in vivo (see Material and Methods Section 

3.1.4; Forrester et a!, 1996; Skarnes et al, 1995; Smith A, personal communication). 

The experiments were designed to assess the effect of gene trap construct insertions on 

haematopoietic lineage development and the correlation of in vitro and in vivo reporter 

gene expression as a pilot study for the potential use of in vitro differentiation as a 

large scale prescreen of a gene trap library. All experiments were performed in sets, 

i.e. ES cells with gene trap insertions, their parental cell lines, and the ES cell line 

EFC- 1 as an internal control were assayed at the same time. 

4.1.1 CFU-A analysis of gene trap cell lines and ES cell lines 

The haematopoietic differentiation potential in vitro of the gene trap cell lines (ST598, 

Zin40, 1114, R68), their parent ES cell line (CGR8, Ri) and the control ES cell line 

(EFC- 1) was assessed by CFU-A analysis. ES cell aggregates of each cell line were 

produced by the hanging drop method, and were allowed to differentiate in vitro over a 

time course of 8 days before CFU-A analysis. The emergence of CFU-A colonies in 

all cell lines tested, indicated the presence of primitive haematopoietic progenitors 

within these developing EBs (Figure 4.1). 
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CFU-A colonies are essentially composed of macrophages derived from a clonogenic 

primitive progenitor cell (termed CFU-A). The CPU-A shares properties in common 

with the CFU-S (colony forming unit, spleen), such as responsiveness to stem cell 

regulators and self renewing potential as observed by replating analysis. The CFU-A 

can be considered as an in vitro equivalent to the CFTJ-S (Lorimore et al, 1990; 

Hole et al, 1996). ES cells have the potential to differentiate into haematopoietic and 

other lineages and it has been reported that ES cell lines containing gene trap constructs 

can maintain their differentiation potential despite the integration of foreign DNA 

(Robertson, 1986; 1991). Comparison of temporal CFU-A profiles showed that in 

all cell lines analyzed the first appearance of CFU-A colonies was around day 4-6 of 

in vitro differentiation. The consistency of onset of the emergence of CPU-A colonies 

in different cell lines suggested a common' developmental programme for in vitro 

haematopoiesis, induced by the removal of conditions that prevent ES cell 

differentiation. Undifferentiated ES cell aggregates were unable to form haematopoietic 

colonies in the CFU-A assay. This and the absence of substantial numbers of CPU-A 

colonies prior to 4 days of in vitro differentiation indicated the need for differentiation 

within the EB to enable the development of primitive haematopoietic progenitors. 

The cloning efficiency in the CPU-A assay is defined by the percentage of EBs plated 

that form haematopoietic CPU-A colonies. Each sample was assayed in triplicate and 

the number of CFU-A colonies were scored after 8-12 days incubation. The numbers 

expressed in graphs showing data from time course studies of haematopoietic 

differentiation represent the means of 3 assay plates for each time point. The error 

bars for each time point describe the standard deviation. Variations in the onset of 

emergence and cloning efficiency of CPU-A colonies between different experiments 

were within the consistency of this in vitro assay. Variations between experiments as 

observed for the ES cell line EFC-1 (Fig. 4.1 A and B) are most likely derived from 

batch differences of components (conditioned medium AF 1-1 9T, a source of GM-CS F 

and L929, a source for CSF- 1 was a gift from the Beatson Institute in Glasgow) used 
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to set up the assay, differences in passage numbers of the ES cells, and technical 

variation. For instance, the consistency of the upper agar layer, which contains 

the EBs, affects the formation of CFU-A colonies. If the agar layer is too soft the 

supportive culture conditions for the formation of CFU-A colonies is not provided. 

The number of EBs/plate should not be more then 50. Plating of> 50 EBs results 

in a decrease in CFU-A colonies due to depletion of factors in the medium. When 

used as a rapid screen for haematopoietic differentiation the size and structure of the 

CFU-A colonies are scored by eye. This may also be a source of variation. In a 

qualitative analysis of colonies derived from EBs in CFU-A assay conditions, the 

diameter of colonies produced was reported to be a measure of the multipotency of 

the clonogenic cell. Large CFU-A colonies (>2mm in diameter) were derived from 

more primitive haematopoietic progenitors (Hole et al, 1996). The insertion of gene 

trap constructs into ES cells may have mutagenic effects. Since the procedure for 

gene trap construct integration involves subcloning steps these mutagenic effects 

may be different between different clones. Comparisons of the temporal CFU-A 

profiles of gene trap cell lines to their respective parent ES cell lines revealed 

different differentiation characteristics. Each gene trap and ES cell line, displayed 

a characteristic temporal CFU-A pattern (Figure 4. 1), which may have reflected 

different clonal mutagenic effects. 
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Figure 4.1; Time course analysis of the emergence of CFU-A colonies within differentiating EBs. 
The number of EBs forming CFU-A colonies is expressed as a percentage of plated EBs (clonal 
efficiency). Time is expressed as a number of days EBs were allowed to differentiate in suspension 
culture in the absence of LW. Each time point represents the mean of three plates assayed. The error 
bars express ±standard deviation. (A) Comparison of the parental ES cell line CGR8 and derived 
'gene trap' lines ST598 and Zin40 with the control ES cell line EFC- 1. (B) Comparison of the 
parental ES cell line RI and derived 'gene trap' lines 1114 and R68 with the control ES cell line EFC-1. 
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4.1.2 Effects of morphogenic factors on haematopoietic 

differentiation of gene trap cell lines and ES cell lines 

To further characterize the differentiation potential of the different gene trap and 

ES cell lines, the effects of exogenous factors on the haematopoietic differentiation 

of ES cells was analyzed. Previous studies using the ES cell line EEC-i in the 

described culture conditions have shown that the haematopoietic commitment of this 

ES cell line can be influenced by the effects of morphogens. The morphogenic factors 

dimethyl sulphoxide (DMSO) and retinoic acid (RA) have been found to influence 

haematopoietic differentation of the ES cell line EFC- 1 in a dose-dependent manner, 

as measured by CFU-A analysis. DMSO has been observed to increase the numbers of 

CFU-A colonies formed by differentiating EBs, whereas RA decreases haematopoietic 

differentiation (Doostdar L, 1997). The exposure of ES cell aggregates from the 

ES cell line EFC- 1 to 1% DMSO for the first 48 hours of in vitro differentiation 

and further differentiation in suspension culture can result in a 2 fold increase in 

the percentage of CFU-A colonies. Contrary to this increase by DMSO, the exposure 

of ES cell aggregates to 10-6  M RA results in the inhibition of haematopoietic 

differentiation in EBs (Figure 4.2.1). 

The opposing effects of these two morphogenic factors on haematopoietic commitment 

were investigated on the gene trap lines and their parent ES cell lines to assess whether 

the effects of DMSO and RA are cell line specific or act in a general manner on ES cell 

lines. 

The possible utilization of these two morphogenic factors as a strategy for the design 

of a specific in vitro prescreen of gene trap insertions was examined. Identification of 

trapped genes potentially involved in early haematopoietic commitment may be likely, 

if the response to DMSO and RA could be used as a general indicator for 

haematopoietic development. These experiments would also allow insight in the 

correlation of the in vivo and in vitro expression patterns of the reporter gene. 
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The influence of DMSO and RA on gene trap lines and different ES cell lines was 

investigated by incubating undifferentiated ES cell aggregates of each cell line with 

either of the morphogenic factors for the first 48 hours of differentiation. After the 

exposure to the morphogenic factor, the developing EBs were allowed to differentiate 

for various periods of time in the absence of added factors. Time course studies over 

6 days of differentiation comprised three samples of each cell line for each time point. 

DMSO induced ES cell aggregates, RA induced ES cell aggregates and control ES cell 

aggregates which were not exposed to any morphogenic factors but cultured under 

haematopoietic commitment supporting culture conditions. CFU-A analysis of the 

developing EBs revealed that DMSO and RA can influence the haematopoietic 

differentiation potential of gene trap cell lines and ES cell lines (Figures 4.2.1-4.2.4). 

Whereas the three ES cell lines (CGR8, Ri, EFC-1) displayed a 'common' response 

to the morphogenic factors DMSO or RA, the gene trap lines showed an individual 

response to these morphogenic factors. An increase in CFU-A colony numbers after 

exposure to DMSO was observed in the original ES cell lines, with the increase 

starting at around day 4 of differentiation, the earliest day when CFU-A colonies 

emerge under standard conditions. Suppression of haematopoietic differentiation 

was observed in the three original ES cell lines after the exposure to RA (Figures 4.2.1 

and 4.2.2). The resemblance of the temporal CFU-A profile between DMSO induced 

ES cell aggregates and their untreated counterpart ES cell aggregates suggested that 

DMSO may act predominantly on the haematopoietic differentiation potential of 

ES cells. The observed changes in haematopoietic commitment during ES cell 

differentiation after exposure to DMSO or RA can most likely be attributed solely 

to these morphogenic factors, since the ES cell culture system used was a feeder-free 

system, without cytokine supplementation or conditioned medium. This temporal 

and quantitative analysis of haematopoietic commitment in gene trap and ES cell lines 

by CPU-A formation indicated that the opposing effects of DMSO and RA are not 
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ES cell line dependent but a common response of some ES cell lines to these two 

morphogenic factors. 

Each gene trap line showed an individual characteristic CFU-A profile compared to 

their parent ES cell line (Figures 4.2.3 and 4.2.4). The diverse responses to DMSO 

and RA on haematopoietic commitment of the gene trap lines are likely to be caused 

by clonal variation in subclones of ES cells and/or by the mutagenic effect of the 

inserted gene trap construct(s). However, recessive mutagenic effects of gene trap 

constructs may be compensated for by the second allele. 

With the exception of the gene trap line Zin40 (Figure 4.2.3), the effects of DMSO 

or RA on haematopoietic commitment were not detectable directly after the exposure 

to these factors. This emphazises the necessity of in vitro differentiation within EBs 

as a prerequisite for the emergence of primitive haematopoietic progenitors. The 

haematopoietic differentiation potential of the gene trap line ST598 (Figure 4.2.3) 

was negatively affected by both morphogenic factors. DMSO reduced the number 

of CFU-A colonies and RA inhibited the formation of CFU-A colonies during in vitro 

differentiation of ST598. The gene trap line Zin40 showed an increase in the number 

of CFU-A colonies after DMSO exposure and reduction after RA treatment 

(Figure 4.2.3). The gene trap lines 1114 and R68 showed similar responses to the 

morphogenic factors with the number of CFU-A colonies increasing after exposure 

to DMSO and inhibition of haematopoietic differentiation after exposure to RA 

(Figure 4.2.4). 

The individual responses after exposure of ES cell aggregates to morphogenic factors 

may allow confident preselection of gene trap lines that could be of interest in terms of 

haematopoietic development. Combined with information of the corresponding 13-gal 

activity during in vitro differentiation of gene trap lines it may be a promising strategy 

for the identification of genes involved in early haematopoietic development. 
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Figure 4.2.1: Time course analysis of the emergence of CFU-A colonies from the internal 
control cell line EFC-1 after induction with DMSO or RA. EScell aggregates were induced 
with DMSO and RA, respectively for the first 48 hours of differentiation and allowed to 
differentiate for up to 6 days before being assayed by CFU-A analysis. Each time point 
represents the mean of three plates assayed. Error bars express ± standard deviation. P-values 
are calculated from a paired 2-tail T-test comparing means at each time point between control 
EBs and induced EBs. 
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Figure 4.2.2: Time course analysis of the emergence of CFU-A colonies from 
the parental cell lines CGR8 and RI after induction with DMSO or RA. 
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Figure 4.2.3: Time course analysis of the emergence of CFU-A colonies from 
the gene trap cell lines ST598 and Zin40 after induction with DMSO or RA 
(parental ES cell line CGR8). 
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4.1.3 Quantitation of the B-galactosidase activity in gene trap 

cell lines during in vitro differentiation 

B-Galactosidase (B-gal) is a commonly used marker in gene trap constructs and its 

activity can easily be detected by utilizing a colorimetric assay (Eustice et al, 1991). 

The activity of functional B-gal fusion protein reflects the expression pattern of the 

trapped endogenous gene and can be used to monitor changes in gene expression 

levels. Monitoring the B-gal activity of EBs derived from gene trap lines during 

in vitro differentiation allows the assessment of temporal reporter gene expression. 

However, no details about spatial expression patterns, cell types and numbers of 

cells expressing active 13-gal fusion proteins can be obtained by this approach since 

pooled EB populations are used. For the analysis of spatial expression an X-gal 

staining assay can be used (Beddington et al, 1989). 

Haematopoietic commitment of ES cell and gene trap lines can be influenced by 

exposure to morphogenic factors, suggesting that 6-gal activity at around day 4 

of in vitro differentiation after exposure to DMSO or RA may allow in vitro 

pre-screening of gene trap events potentially interesting for early haematopoietic 

development. Increase in B-gal activity of differentiating gene trap line derived 

EBs after exposure to DMSO, detected in a time period between day 3 and day 6 

of differentiation, could be used as indication for the possible involvement of the 

trapped endogenous gene in early haematopoietic development. Together with 

suppression of 13-gal activity in the same time period, after exposure to RA, this 

strategy should allow the preselection of developmentally regulated gene trap clones. 

Using the gene trap lines 1114, R68, ST598, and Zin40 time course studies 

monitoring B-gal activity during in vitro differentiation and after exposure to 

morphogenic factors were performed. Results presented show data from time 

course studies and induction studies with DMSO and RA which are representative 

data from an individual experiment (Figures 4.3, 4.4.1, 4.4.2, and Table 4.1). 
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All experiments were repeated 3 times, however, complete consistency between 

individual experiments was difficult to achieve since pooled EBs were used. 

Although routine culture procedures were employed throughout ES cell culture 

studies, slight variations in differentiation of EB populations have to be taken in 

consideration. In addition, possible differences in stability of lacZ fusion transcripts 

and 13-gal fusion protein can complicate a temporal and quantitative analysis of 13-gal 

activity. The quantitative assessment of temporal reporter gene expression in gene trap 

lines over an 8 day time course of in vitro differentiation revealed a characteristic 13-gal 

activity pattern for each gene trap line, reflecting the individuality of gene trap cell lines 

which emerges through the random integration of gene trap constructs into the ES cell 

genome (Figure 4.3). Parental ES cell lines (Ri and CGR8) and ES cell line EFC-1 

were included as controls for the definition of background activity in this 13-gal activity 

assay. No significant background activity was observed in these controls. 

Temporal changes in 13-gal activity during differentiation indicating developmentally 

regulated expression of the trapped genes were observed in gene trap lines R68 and 

5T598. Constitutive 13-gal activity was detected in gene trap lines Zin40 and 1114. 

Corresponding to its constitutive and ubiquitous expression in vivo, 13-gal activity 

in gene trap line Zin40 was found to be at a high level. The gene trap line 1114 

displayed low level of 13-gal activity above background levels. 
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4.1.4 Effects of morphogenic factors on B-galactosidase activity 

in gene trap cell lines during in vitro differentiation 

Influences of morphogenic factors DMSO or RA on B-gal activity in gene trap 

cell lines are shown in Figures 4.4.1 and 4.4.2 and summarized in Table 4.1. 

ES cell aggregates of each gene trap cell line were exposed to DMSO or RA for 

the first 48 hours during in vitro differentiation and allowed to differentiate for a 

further time in suspension culture before used for the analysis of B-gal activity. 

B-gal activity observed in gene trap line ST598 derived EBs was suppressed after 

exposure to DMSO and a changed pattern in temporal B-gal activity was observed 

after exposure to RA. In gene trap line Zin40, the high 13-gal activity observed in 

control EBs (note extended scale) was increased after exposure to DMSO and RA. 

A change in the temporal pattern of 13-gal activity was detected after exposure to 

DMSO, with a decline to levels from untreated EBs at day 4 of differentiation 

followed by a repeated increase of B-gal activity at day 6 (Figure 4.4.1). 

The gene trap cell line 1114 showed no responsiveness in 13-gal activity to exposure 

of DMSO or RA. Gene trap line 1114 was originally identified in an inductive gene 

trap screen as being induced by RA, however, this screen assayed undifferentiated 

ES cells and did not monitor 13-gal activity during in vitro differentiation of ES cells 

into EBs (Forrester et al, 1996). Similarly, the gene trap line R68, was originally 

identified as a cell line whose B-gal activity is reduced after exposure to RA (Forrester 

et al, 1996).13-gal activity during in vitro differentiation of R68, after exposure of 

ES cell aggregates to RA, showed an initial 3-fold increase in 13-gal activity and 

maintained at an increased level during further differentiation, compared to the 

untreated counterpart EBs. A changed temporal pattern of 13-gal activity in R68 line 

derived EBs was also observed by DMSO, with initially high B-gal activity declining 

to standard levels of untreated EBs after further differentiation (Figure 4.4.2). 

If the gene trap lines used for these experiments had been included in a gene trap 

screen of 'anonymous'  gene trap clones none of these gene trap lines would have 
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been chosen for further analysis after applying the preselection criteria. The expected 

characteristics of a gene trap clone for further analysis would have been temporal high 

B-gal activity in a time window at around day 4 of in vitro differentiation, induced after 

exposure to DMSO and suppressed after exposure to RA. These B-gal activity features 

in conjunction with the appearance of primitive haematopoietic progenitors, as defined 

by CFU-A analysis, were thought to be characteristics of a trapped gene potentially 

involved in early haematopoietic development. 

The spatial in vivo reporter gene expression patterns of the gene trap lines 1114 

and ST598 indicated involvement of their trapped genes during early haematopoietic 

development. However, continuing investigations of in vivo reporter gene expression 

patterns of 1114 and ST598 confirmed that both lines are not involved/restricted to 

haematopoietic development during embryogenesis, despite spatial expression in 

yolk sac and fetal liver (Forrester et al, 1996; Skarnes et al, 1995; Skarnes W, 

personal communication). 
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Table 4.1: Summary of morphogen exposure on ES cell lines and gene trap cell lines. 

in vivo Effect of morphogens on Effect of morphogens on 

Expression CFU-A profile B-gal activity (OD 405nm) 
Cell line  

DMSO 	RA DMSO 	RA 

EFC-1(1) --- nr 	 nr 

CGR8(2) --- nr 	 nr 

R1(3) --- nr 	 nr 

1114 YS, Fl, --- = 	 = 
R68 fetal heart + 	 --- * 	 + 

5T598 YS, Fl,  

Zin40 ubiquitous * 	- - - * 	 + 

(1) Control ES cell line; (2) Parental ES cell line for 5T598 and Zin40; 

(3) Parental ES cell line for R68 and 1114; 

+++ Enhanced; + Enhanced; - Reduced; --- Inhibited; = No effect; 

nr, Not relevant; * Changed, see text; 



4.1.5 Spatial B-galactosidase expression patterns during 

in vitro differentiation of gene trap cell lines 

The spatial B-gal expression in whole EBs derived from gene trap lines was assessed 

by qualitative X-Gal staining. Time course EBs of each gene trap line were stained 

using X-Gal as a colour substrate for active B-gal fusion protein which results in a 

blue precipitate. The individual staining patterns between time points and gene trap 

lines were compared visually using an inverted microscope (Beddington et al, 1989). 

An example of a B-gal expression pattern during in vitro differentiation is shown in 

Figure 4.5. 

Each gene trap line displayed an individual staining pattern for X-gal (summarized 

in Table 4.2) and subpopulations of EBs with various 13-gal protein expression 

patterns could be identified within an EB population. This may be seen as evidence 

for the heterogeneous differentation of EBs into different lineages. 

Analysis of 13-gal activity (see Sections 4.1.3-4.1.4) made it possible to detect 

temporal changes, however, information about the spatial expression patterns is 

required to obtain comprehensive information about the expression pattern of a 

trapped gene. With the exception of the gene trap line 1114, all gene trap lines 

showed temporal and spatial changes in their staining patterns for 13-gal protein. 

Down regulation of staining for 13-gal may indicate that the trapped endogenous 

gene is of importance during early development but not at later stages. Morphological 

identification of cells expressing 13-gal fusion protein within an EB could indicate 

possible expression patterns of the trapped gene in vivo. 

X-gal staining of gene trap line EBs, exposed to either DMSO or RA during in vitro 

differentiation was difficult to assess since quantitative analysis of the spatial staining 

pattern was not possible (data not shown). 
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Figure 4.5: LacZ expression pattern in EBs derived from the gene trap cell line Zin4O. A time course 
covering 8 days of in vitro differentiation was produced (Sections 3.1.6.4 and 3.1.7) and stained with 
X-Gal (Section 3.1.11). All undifferentiated ES cell aggregates (day 0) show ubiquitous staining for 
active 8-gal fusion protein. Upon differentiation (day 2-day 8) varying staining patterns for individual 
EBs within an EB population are detected, with some EBs staining ubiquitous, some EBs staining 
partially and some EBs showing no X-Gal staining (summarized in Table 4.2) (Magnification lOOx). 
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Table 4.2: Summary of the spatial X-gal staining patterns in time course EBs 
from gene trap lines. 

Percentage of EBs showing X-gal staining for 13-gal fusion protein 

Subpopulations of EBs defined by number of cells stained within an EB 

Gene trap line 	All cells 	Half of cells 	Some cells 	No visible 

Ae of EBs 	stained 	stained 	stained 	staining 

Odays 	>90 	 - 	 - 	 - 
2 days 	30 - 60 	30 - 60 	 - 	 - 
4 days 	30 - 60 	 - 	 30 - 60 	 - 
6 days 	30-60 	 - 	30-60 	 - 
8 days 	30 - 60 	 - 	 30 - 60 	 - 

1114 

0 days 	- - 	 10-30 60-90 
2 days 	- - 	 10-30 60-90 
4 days 	- - 	 10-30 60-90 
6 days 	- - 	 10-30 60-90 
8davs 	- - 	 10-30 60-90 

Odays 	>90 	 - 	 - 	 - 
2days 	>90 	 - 	 - 	 - 
4 days 	20-40 	20-40 	20 - 40 	 - 
6days 	- 	 - 	 - 	 >90 
8davs 	- 	 - 	 - 	 >90 

Zin 40 

Odays >90 	 - 	 - 	 - 
2 days 20-40 	20-40 	20-40 	 - 
4 days 20-40 	20-40 	20-40 	 - 
6 days 20-40 	20-40 	20 - 40 	 - 
8 days 20-40 	20-40 	20-40 	 - 
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4.2 Comparison of ES cell aggregate formation methods 

Criteria for the practical aspects of a prescreen included the possible number of 

samples and the input of time and labour required for performing the screening 

procedures on a large scale. The routine culture techniques used for EFC-1 

ES cells employed the hanging drop method for the formation of ES cell aggregates 

(Section 3.6.4; Figure 3.2). This allowed the production of an uniform population 

of aggregates and ensured a synchronized differentiation pattern during time course 

studies. However, the hanging drop method is a time consuming and labour intensive 

method which requires skillful cell culture procedures. 

Simplification of the ES cell aggregate formation procedures for the initial screening 

of gene trap clones was examined by comparing various ES cell aggregate formation 

conditions to the hanging drop method, using the established ES cell line EFC- 1. 

The practicability of simultaneous culture and production of ES cell aggregates from 

a large number of different gene trap clones (approximately 100 cell clones at the same 

time) was tested by using multi-well cell culture plates rather than tissue culture flasks. 

4.2.1 The use of 'cellform'-coated plates for the formation of 

ES cell aggregates 

When seeded at a high density in suspension culture, ES cells tend to aggregate 

rapidly by cell-cell collision and adhesion and form ES cell aggregates, rather than 

attaching to the plate substratum and spreading. However, the resulting ES cell 

aggregates tend to be heterogeneous in size and shape since the aggregation under 

these conditions takes places spontaneously, influenced only by the cell numbers 

seeded. To control and direct the spontaneous aggregation of undifferentiated ES cells 

towards the formation of an uniform ES cell aggregate population, plates coated with 

Cellform (poly (2-hydroxyethyl methacrylate)) were tested. Cellform had previously 

been shown to reduce adhesiveness of plastic plates when applied as an alcoholic 

solution (Folkman and Moscona, 1978). The preparation of Cellform-coated plates 
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was performed as described and used by others (B. Rosen, personal communication; 

Folkman and Moscona, 1978). The conditions for ES cell culturing, however, 

were adapted from cell culture procedures used routinely for the maintenance and 

haematopoietic differentiation of the ES cell line EFC-1 (see Sections 3.1.5 

and 3.1.7). The maintenance of the haematopoietic differentiation potential of the 

ES cell line EFC- 1, using the high density method in combination with Celiform 

(poly (2-hydroxyethyl methacrylate))-coated plates for the formation of ES cell 

aggregates, was assessed by CFU-A analysis. Comparison of size and shape of 

developing EBs and CFU-A colonies was performed visually using an inverted 

mircoscope. 

The influence of cell density on the ability of ES cell aggregate formation was 

addressed by plating various concentrations of ES cells into plates. The suitability 

of plasticware for ES cell aggregate formation was tested by using tissue culture 

grade plastic plates or bacterial grade (non-tissue culture) plastic plates, coated with 

Celiform or uncoated. Single cell suspensions of undifferentiated ES cells were 

seeded at various cell densities, ranging from 0.3 x105  cells/ml to 1.0 x105  cells/ml, 

into tissue culture grade plastic dishes or bacterial grade plastic dishes, coated or not 

with Celiform. The ES cells were kept in FCS culture medium supplemented with 

LIF during this initial step of ES cell differentiation to provide conditions that support 

the formation of undifferentiated ES cell aggregates rather than culture conditions that 

induce ES cells to differentiate. Subsequent culturing of the ES cell aggregates was 

performed using procedures routinely used for hanging drop ES cell aggregates. 

CFU-A analysis of EBs, developing from ES cell aggregates produced by either 

of the different methods and allowed to differentiate for 4 or 6 days in suspension 

culture, revealed that the ES cell line EFC- 1 can maintain the ability to differentiate 

into haematopoietic lineages irrespective of the method that has been used to produce 

the ES cell aggregates (summarized in Table 4.3). However, comparison of EBs 
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and CFU-A colonies derived from ES cell aggregates formed by either of the different 

methods, showed distinct differences from EBs produced by the hanging drop 

method. 

Whereas the hanging drop method provides well defined conditions for the 

production of ES cell aggregates (approximately 300 cells in an aliquot of 10 tl 

medium are allowed to settle in the hanging drop and form an aggregate) conditions 

for the formation of ES cell aggregates by either of the other methods is less well 

controlled. Thus, the hanging drop method allows the production of populations 

of ES cell aggregates with uniform size and shape and synchronized differentiation 

patterns. The high density method combined with or without Ceilform-coated plates 

produced ES cell aggregates that varied in size and shape and showed less synchrony 

in differentiation depending mainly on the cell numbers plated. Apart from 

heterogeneity in size of ES cell aggregates it was noticeable that the suspension 

culture of high-density ES cell aggregates contained a large number of single cells 

and cell debris compared to the clear suspension culture medium from hanging drop 

ES cell aggregates. 

Comparison of ES cell aggregates from Ceilform coated and uncoated plates showed 

that the coating of plastic plates with Ceilform supports the formation of ES cell 

aggregates that are similar in shape to ES cell aggregates produced by the hanging 

drop method. No significant differences between tissue culture grade and bacterial 

culture grade plastic plates were observed when plates were coated with Celiform, 

indicating that the Cellform coat effectively reduces the adhesiveness of plastic 

plates. Furthermore, no cytotoxic effects of the Celiform coat on ES cell viability 

was observed. Uncoated bacterial grade plastic plates appeared to have a lower 

adhesiveness than uncoated tissue culture grade plates and were therefore slightly 

more effective in preventing ES cells from attaching to the plate and spreading, 

compared to tissue culture grade plates. 
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The ES cell aggregates produced in either of these different conditions and allowed 

to differentiate for 4 to 6 days in standard differentiation conditions, were compared 

visually using a microscope, before their haematopoietic differentiation potential 

was assessed by CFU-A analysis. For the assessment of the ES cell aggregate 

formation conditions and the suitability of cell number density, characteristics such 

as size and shape, number and relative homogeneity of ES cell aggregates and EBs 

as well as the structure and size of positive and negative CFU-A colonies were taken 

into consideration and compared to 'hanging drop ES cell aggregates, EBs and 

CFU-A colonies. 

All sets of ES cell aggregates and EBs showed variations in size compared to those 

produced by the hanging drop method at the same time point during a time course 

of differentiation. Although differences in size were observed, the shape of ES cell 

aggregates formed on Celiform coated plates were round and compact, similar as 

observed from 'hanging drop' ES cell aggregates. However, many of the EBs formed 

on coated plates did not maintain their compact and dense structure. ES cell aggregates 

from uncoated plates showed a high tendency to attach to the plate substratum and 

developing EBs had uneven and rough shapes and surfaces. This was observed 

in all samples using uncoated plates and little influence of cell density was noticed. 

High cell density (1.0 x  105 cells/ml) combined with coated plates resulted in a 

large number of very small ES cell aggregates that were able to develop into EBs, 

though size increase appeared to be slower than from ES cell aggregates that were 

formed from lower cell densities on coated plates. CFU-A analysis revealed the 

haematopoietic differentiation potential of an ES cell line can be maintained, 

independent of the method that was used for the formation of ES cell aggregation, 

although some conditions appear more suitable than others. 

A general feature observed was the differences in size of positive CFU-A colonies 

from EBs, developing from 'high cell density' ES cell aggregates compared to 
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EBs from 'hanging drop' ES cell aggregates. Positive CFU-A colonies from 

'hanging drop' derived EBs were on average —2 mm larger and formed by whole 

EBs (data not shown) compared to positive CFU-A colonies of EBs developing 

from ES cell aggregates formed on plates. These appeared to be derived from small 

cell clusters or individual cells rather than from whole EBs, resembling the CFU-A 

profile obtained from disrupted EBs. 

The production of ES cell aggregates using Cellform coated plates involved two 

simple steps; applying the alcoholic Cellform solution to plates and seeding of cells. 

This led to the formation of ES cell aggregates that were sufficient enough to be used 

for initial analysis of differentiation characteristics. Compared to this procedure, the 

hanging drop method is relatively time consuming and labour intensive, however, 

with the advantage that an uniform population of ES cell aggregates with high 

differentiation synchrony is obtained. The examination of different conditions for 

the formation of ES cell aggregates showed that ES cell aggregates can be produced 

by relatively simple culture procedures, which are suitable for the simultaneous 

production of ES cell aggregates from a large number of different cell clones. 

Though the ES cell aggregates and the developing EBs are heterogeneous and 

show less synchrony in differentiation than observed with the hanging drop method 

this method appears to be sufficient for monitoring 13-galactosidase expression of 

gene trap lines during a large screen. Nevertheless, the Cellform coated plate method 

was good enough to obtain preliminary information on the differentiation potential 

of respective cell clones. However, for studies that required homogeneous and 

synchronously developing EBs the hanging drop method should be the method 

of choice for the production of ES cell aggregates. 
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Table 4.3: Summary of CFU-A data from EBs derived from different conditions 
for ES cell aggregation. Data are from two independent experiments and are means 
from 3 plates at each timepoint. The data are expressed as the percentage of plated 
BBs forming positive CFU-A colonies. 

Coated plates Uncoated plates 
Cell density and 

days of differentiation Experiment I Experiment II Experiment I Experiment H 

Tissue culture grade plastics 

1.0 x105  cell/ml 
4 days 22.0 ±6.9 28.1 ±4.6 10.9 ±8.5 4.9 ±2.2 
6 days 10.1 ±7.6 111 4.1 ±2.2 rid 

0.5 x105  cell/ml 
4 days 20.1 ±8.1 18.8 ±3.7 21.0 ±8.0 22.0 ±6.0 
6 days 13.5 ±3.9 11.3 ±3.3 14.2 ±6.3 23.8 ±4.3 

0.3 x105  cell/ml 
4 days 27.9 ±9.4 n1 10.7 ±2.8 rid 
6 days 10.7 ±3.9 nd 16.3 ±1.9 rid 

Bacterial grade plastics 

1.0 x105  cell/ml 
4 days 12.9 ±10.0 7.8 ±2.2 8.9 ±6.8 7.3 ±1.0 
6 days 6.1 ±1.7 rid 1.6 ±1.6 10.7 ±3.1 

0.5 x105  cell/ml 
4 days 15.4 ±1.6 9.9 ±1.3 9.3 ±7.9 4.2 ±1.5 
6 days 9.8 ±4.5 23.4 ±5.0 0 ±0 8.5 ±2.5 

'Hanging drop' EBs 

4 days nr nr 26.9 ±0.8 13.6 ±4.0 
6 days nr nr 15.6 ±8.2 9.1 ±3.1 

± standard deviation; nd not done; 	nr not relevant; 
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4.3 Spatial analysis of gene expression in embryoid bodies 

by whole-mount in situ hybridization 

Temporal and spatial gene expression analysis is an important approach for the 

study of developmentally regulated genes. Spatial information of gene transcripts 

within a cell can provide evidence for cellular heterogeneity within a tissue, or identify 

domains of expression that subdivide otherwise uniform regions of a developing 

embryo. For instance, localization of brachyury transcripts in mouse embryos gave 

critical clues as to how embryonic mesoderm develops (Herrman, 1991). 

Until the establishment of whole-mount in situ hybridization techniques for 

widespread application, most information about embryonic gene expression has 

come from RT-PCR analyses or two-dimensional sections. However, embryos 

are complex three-dimensional entities and analysis of unsectioned embryos is 

clearly a more advantageous approach for the analysis of gene expression patterns. 

Non-isotopic in situ hybridization to whole embryos has become a useful and 

informative alternative for localizing transcripts. 

The application of such a methodology to an in vitro model could form the basis 

for gene expression studies in particular differentiation systems. ES cell differentiation 

in vitro resembles in vivo development and has been shown to be a useful model 

for the study of haematopoietic development (Schmitt et al, 1991, Wiles et al, 1991; 

McClanahan et al, 1993; Keller et al, 1993; Hole et al, 1996). 

The ES cell culture system used in this study has been shown to harbour cells 

with long-term reconstitution potential in lethally irradiated mice, indicating that 

primitive HSCs arise during in vitro differentiation (Hole et al, 1996). Analysis of 

the expression of genes known to be involved in haematopoiesis during a time course 

of in vitro differentiation revealed well defined expression patterns (Hole et al, 1996; 

Menzel U, Diplomarbeit, 1994). However, RT-PCR analysis uses pooled RNA 

from a population of cells from single EBs or a population of EBs which prevents 

the analysis of gene expression patterns in individual cells. 
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Analyses from a number of studies have also presented evidence of haematopoietic 

gene expression, both in undifferentiated ES cells and during the process of 

differentation (Schmitt et al, 1991, Wiles et a!, 1991; McClanahan et al, 1993; 

Keller et al, 1993). 

Spatial analysis of the expression of these haematopoietic genes during in vitro 

differentiation of ES cells has not been reported to date. Whole-mount in situ 

hybridization of EBs from various time points during the in vitro differentiation 

of ES cells was performed to obtain information of the spatial expression patterns 

and to complement RT-PCR analyses. 
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4.3.1 Spatial localization of globin transcripts in EBs analyzed 

by whole-mount in situ hybridization 

Previously carried out RT-PCR analysis of the ES cell system has revealed that 

globin expression can be detected at high levels from day 4 of differentation which 

coincides with the presence of primitive cells with potential for long-term survival 

and multi-lineage reconstitution of lethally irradiated mice. Since it was not possible 

to conclude from RT-PCR analysis whether the high signal was the result from a 

large number of cells expressing low levels of globin transcripts, or from few cells 

expressing high levels of globin transcripts whole mount in situ hybridization for 

globin transcripts was performed. 

Embryoid bodies, day 4 or day 6, were hybridized with fluorescein-labelled 

riboprobes and hybridized probes were detected by alkaline phosphatase conjugated 

anti-fluorescein antibodies. The colour substrate NBT/BCIP was utilized for the 

colorimetric visualization of target mRNAlriboprobe hybrids, which develops into 

dark blue/brown signal. 

Figure 4.6.1-4.6.2 shows day 6 EBs hybridized for globin expression. Globin 

expression appears localized within a small domain of an EB and differences in 

colour intensity indicate differing levels of transcript levels within cells. However, 

it was very difficult to distinguish and identify EBs stained for globin expression 

since the relatively large size of EBs only allowed the use of low magnification 

(160x, 300x). Approximately 2% of day 6 sample EBs (2 EBs out of 115 EBs) 

were identified to be stained for globin expression. This is much less than was 

expected from CFU-A analysis and from the high level of globin expression from 

RT-PCR analysis. In day 4 sample EBs, no EB could be identified for globin 

expression. 
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Figure 4.6.1: Whole-mount in situ hybridization analysis for globin expression in EBs. EBs allowed 
to differentiate for 6 days were fixed and hybridized with antisense riboprobes specific for globin 
transcripts. Signal was detected by incubation with alkaline-phosphatase conjugated antibodies against 
the probe label fluorescein and NBT/BCIP staining. Globin expression was detected in a discrete area 
within EBs. Images show the same EBs at different magnifications (top, 160x; bottom, 300x). 
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Figure 4.6.2: Whole-mount in situ hybridization analysis for globin expression in EBs. Day 6 EBs 
were processed as described in Figure 4.6.1. Two images of the same EBs are shown to illustrate the 
difficulties encounterd when EBs were assessed alter colorimetric signal detection. The large size of 
the EBs made focus adjustment difficult and limited the assessment to the use of low magnification 

(Magnification 300x). 
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4.3.2 Two colour whole-mount in situ hybridization of EBs 

Two colour whole-mount in situ hybridization was attempted for the analysis of 

co-expression patterns of haematopoietic genes and the intended use of whole-mount 

in situ hybridization methodology for the screening of ES cell lines containing gene 

trap constructs. Co-expression and co-localization in gene trap ES cell lines of the 

inserted reporter gene lacZ and a gene, known to be involved in haematopoiesis 

and expressed during ES cell differentiation, was thought to be suggestive for 

the potential involvement of the trapped endogneous genes in early haematopoietic 

development. Co-expression of known haematopoietic genes in EBs, was anticipated 

to reveal information about possible interrelationships during development, 

e.g. the receptor-ligand pair c-kit/SCF. 

EBs, allowed to differentiate for 4 days or 6 days, were hybridized with DIG-labelled 

riboprobes specific for SCF transcripts and fluorescein-labelled riboprobes specific 

for c-kit transcripts. The hybridization solution used for each EBs sample contained 

both riboprobe types. Colorimetric signal detection utilized peroxidase-conjugated 

anti-DIG antibodies with the colour substrate DAB for SCF transcripts and alkaline 

phosphatase-conjugated anti-fluorescein antibodies with the colour substrate Fast Red 

for c-kit transcripts. 

Figure 4.7.1 shows EBs hybridized with riboprobes specific for c-kit or SCF 

transcripts. Expression of c-kit and SCF is indicated by light redish colour for 

c-kit and brownish colour for SCF. Previously carried out time course studies 

of EBs using RT-PCR analysis detected transcripts for SCF in undifferentiated 

ES cells and throughout differentiation. Signal for c-kit expression by RT-PCR 

analysis was detected from day 5 of differentation onwards (Hole et a!, 1996; 

Menzel U, Diplomarbeit 1994). However, it was not possible to obtain detailed 

information of the likely co-expression and possible co-localization of c-kit and 

SCF transcripts due to limitations of the microscopic equipment available for 

experimentation and the assessment of hybridized samples. 
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EBs hybridized with single riboprobe type specific for c-kit transcripts are shown 

in Figures 4.7.2. Some EBs hybridized with c-kit specific riboprobes showed 

staining indicating the presence of transcripts. Whole-mount in situ hybridization 

for SCF transcripts did not result in a staining pattern that indicated the presence 

of transcripts (data not shown). A possible interpretation for the lack of observable 

signal could be that cells expressing c-kit and/or SCF transcripts are located 

within EBs, thus not identifiable by normal microscopy. However, methodological 

shortcomings are also likely to account for the limited information possible to gain 

from whole-mount in situ hybridization experiments of EBs. Attempts to detect 

transcripts for the haematopoietic transcriptions factors SCL or vav by whole-mount 

in situ hybridization using appropriate specific DIG-labelled riboprobes did not result 

in identifiable signals (data not shown). 

Non-invasive sectioning using confocal microscopy was thought to be a method 

for the three-dimensional analysis of gene expression patterns in EBs. Although 

comprehensive efforts and much time were expended to improve the whole-mount 

in situ hybridization conditions to be able to combine this technique with confocal 

microscopy, these attempts were not successful (see Material and Methods, 

Sections 3.2.5-3.2.5.4). Specimens used for in situ hybridization as a whole are 

often subsequently sectioned to obtain detailed information of the gene expression 

patterns. Thus, a possible alternative approach could be sectioning of specimens 

prior to in situ hybridization. 

Whole-mount in situ hybridization of EBs using colorimetric signal detection made 

it possible to gain information for globin expression but was not so successful for 

the analysis of other haematopoietic genes, which were expected to be expressed 

in EBs. Since EBs do not display morphological orientation compared to mouse 

embryos, sectioning prior to hybridization was the strategy of choice to further analyze 

spatial gene expression in EBs. Successive sections were taken for the possibility to 

compare and overlap expression patterns and to obtain details of co-expression. 
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4.3.3 Whole-mount in situ hybridization of EBs derived from 

ES cell lines containing gene trap insertions 

As mentioned above, two colour in situ hybridization of EBs derived from 

gene trap ES cell lines was considered as a methodology for the screening of 

a gene trap clone library. Studies addressing the correlation of B-galactosidase 

expression and activity during in vitro differentiation and in vivo development 

of gene trap lines are described in Sections 4.1.3-4.1.5. To assess whether 

corresponding transcript levels to B-galactosidase expression can be detected, 

whole mount in situ hybridization with EBs derived from the gene trap lines 

Zin40 and 5T598 was attempted with riboprobes specific for lacZ transcripts. 

Day 4 or day 6 EBs of each gene trap line were hybridized with DIG-labelled 

antisense riboprobes for lacZ transcripts and alkaline phosphatase conjugated 

anti-DIG antibodies with NBT/BCIP as colour substrate were used for signal 

detection. Control samples for the hybridization conditions included EBs hybridized 

with labelled antisense riboprobes specific for actin transcripts (Figure 4.7.3). 

For both gene trap lines, it was expected to obtain corresponding staining patterns 

as observed with in situ 13-galactosidase staining (see Section 4.1.5). However, 

no obvious staining for lacZ transcripts was observed in both gene trap lines 

(Figure 4.7.4). This unexpected inability to detect transcripts for lacZ could arise 

from low numbers and/or low stability of fusion transcripts from the lacZ reporter 

gene and the trapped endogenous gene. However, methodological shortcomings 

can not be excluded. 
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Day 4 EBs simultaneously hybridized with antisense riboprobes specific for c-kit and SCF. 
c-kit expression is indicated by light red staining. SCF expression is indicated by brown staining 

Day 6 EBs simultaneously hybridized with antisense riboprobes specific for c-kit and SCF. 
c-kit expression is indicated by light red staining. SCF expression is indicated by brown staining 

Figure 4.7.1: Whole-mount in situ hybridization analysis for c-kit and SCF expression in EBs. EBs 
were simultaneously hybridized with fluorescein-labelled riboprobes specific for c-kit expression and 
DIG-labelled riboprobes specific for SCF expression. DAB colour substrate was utilized for the 
detection of SCF expression and FastRed for c-kit expression (Magnification I OOx). 
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Day 6 EBs hybridized with antisense riboprobes specific for c-kit. c-kit expression is indicated 
by the red staining. 

Day 6 EBs exposed to labelled sense riboprobes corresponding to sense sequence of c-kit to 
address background caused by non-specific binding by probes. 

Figure 4.7.2: Whole-mount in situ hybridization analysis for c-kit expression. EBs were hybridized 
with fluorescein-labelled antisense riboprobes. FastRed colour substrate was utilized to detect signal 
for probe-target hybrids (top). A control reaction for unspecific probe binding was performed by 
incubating EBs with labelled sense riboprobes corresponding to c-kit sequence (bottom) 
(Magnification lOOx). 
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Day 6 EBs hybridized with antisense riboprobes specific for actin. Actin expression is indicated 
by the red/purple staining. 

9 
Day 6 EBs exposed to labelled sense riboprobes corresponding to sense sequence of actin 
to address background caused by non-specific binding of probes. 

Figure 4.7.3: Whole-mount in situ hybridization analysis of Actin expression in EBs derived from 
the gene trap cell line ST598. EBs were hybridized with DIG-labelled antisense riboprobes. NBT/BCIP 
colour substrate was utilized to detect signal for pore-target hybrids (top). A control reaction for non-
specific probe binding was performed by incubating EBs with labelled sense riboprobes corresponding 
to actin sequence (bottom) (Magnification lOOx). 
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Day 4 EBs hybridized with antisense riboprobes specific for 6-gal. Staining patterns of EBs 
were expected to be similar to X-Gal staining for B-gal fusion protein (Table 4.2). 

Day 4 EBs exposed to labelled sense riboprobes corresponding to sense sequence of B-gal to 
address background caused by non-specific binding by probes. 

Figure 4.7.4: Whole-mount in situ hybridization analysis of 13-gal expression in EBs derived from the 
gene trap cell line ST598. EBs were hybridized with DIG-labelled antisense riboprobes. NBT/BCIP 
colour substrate was utilized to detect signal for probe-target hybrids (top). A control reaction for 
unspecific probe binding was performed by incubating EBs with labelled sense riboprobes 
corresponding to 13-gal sequence (bottom) (Magnification lOOx). 
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4.4 Spatial analysis of gene expression in EBs by 

in situ hybridization of sectioned EBs 

To make a fuller assessment of the spatial expression of haematopoietic genes 

during commitment to haematopoietic lineages in vitro, in situ hybridization was 

performed on sectioned EBs. Whole mount in situ hybridization of EBs (described 

in Section 4.3. 1) demonstrated spatial restricted expression for globin. Although the 

whole mount in situ hybridization methodology was not as informative as anticipated 

when combined with confocal microscopy, colorimetric signal detection illustrated 

that in order to permit a more precise analysis of expression, sectioning of the EBs 

would be required. Whole mount in situ hybridization with subsequent sectioning 

for more precise analysis has been reported to work best for strong signals, however, 

a higher overall sensitivity is provided by in situ hybridization on sectioned specimens 

(Decimo et al, 1995). 

Three time courses of EBs, each covering 8 days of differentiation, were used for 

gene expression analysis. One time course consisted of EBs allowed to differentiate 

under standard conditions, the other two time courses consisted of EBs exposed to 

morphogenic factors. In one time course, the EBs were induced with DMSO, in the 

other with RA. The EBs were embedded in wax and 7 gm sections were cut using a 

standard rotary microtome. Cryostat sectioning, attempted as an alternative approach 

to obtain sections of EBs without invasive pretreatment, was found not to be suitable 

for the experimental analysis intended. The expression of haematopoietic genes was 

studied by in situ hybridization with specific DIG-labelled antisense riboprobes and 

subsequent colorimetric signal detection. This was carried out by utilizing alkaline 

phosphatase conjugated anti-DIG antibodies with NBT/BCIP as colour substrate. 

In addition to routine time points, covering two day periods, EBs differentiated for 

3 days or 5 days were included in these studies. The transient presence of primitive 

multilineage haematopoietic precursors at day 4 of in vitro differentiation in this 
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ES cell system was previously detected by long term reconstitution of lethally 

irradiated recipients (Hole et al, 1996). It was therefore of special interest to 

analyze the gene expression during this temporal window. 

Furthermore, a subtractive cDNA library produced from day 5 and day 3 EBs 

identified novel genes with developmentally regulated expression patterns. The 

use of these genes as riboprobes for in situ hybridization could allow precise analysis 

of their spatial expression patterns and comparison to expression patterns of known 

haematopoietic gene (Graham G, Hole N, and Ansell J; personal communication). 

4.4.1 Effects of DMSO or RA on the spatial expression of 

globin during in vitro differentiation 

The temporal expression pattern of globin in this ES cell system had previously 

been analyzed by qualitative RT-PCR analysis. Fetal and adult type B-globin were 

detectable in EBs with a sharp onset of fetal 13-globin expression at day 4. Adult 

type 13-globin transcripts were detected at very low level at day 3 but from day 4 

onwards high levels were detected (Hole et al, 1996; Menzel U, Diplomarbeit 1994). 

In a semi-quantitative RT-PCR analysis B-globin transcript levels of untreated EBs 

were compared to transcript levels in DMSO or RA induced EBs. A marked increase 

in 13-globin transcript levels was observed in DMSO treated EBs (Doostdar L, 1997). 

Since these changes described above were observed during or around day 4 of 

in vitro differentiation it was of particular interest to investigate how the signal 

for globin expression is composed on a cellular level. 

Time course EBs of untreated or induced EBs were sectioned, hybridized with 

antisense riboprobes specific for alpha-globin expression, and riboprobe-globin 

mRNA hybrids were detected by a colorimetric signal detection assay. Adult 

alpha-globin transcripts have been observed to be co-expressed with embryonic 

zeta-globin transcripts within the same cells from the onset of erythropoiesis 
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in vivo (Leder et al, 1992). The use of riboprobes specific for alpha-globin transcripts 

therefore made it possible to follow globin expression during in vitro differentiation 

using one type of probe. However, to distinguish between embryonic and adult type 

globin expression within EBs further analysis using embryonic and adult types of 

globin probes are required. 

The results from these globin expression studies are illustrated in Figures 4.8.1-

4.8.4 and 4.9, and summarized in Table 4.4. The temporal signal pattern for globin 

expression by in situ hybridization was in accordance to globin expression patterns 

found in this ES cell system using other experimental means. At day 2 of differentation 

no globin expression was detected in untreated or induced EBs. However, by day 3 

signal for globin was detectable in EBs from standard or induction culture conditions. 

About 20% of untreated or DMSO induced EBs showed staining for globin expression 

and —9% of EBs exposed to RA were found to express globin. In most of these 

positive EBs only few cells (<10 cells) were found to express globin. After 4 days 

of differentiation the effects of DMSO on CFU-A formation in EBs, routinely 

observed as an increase in CFU-A colony numbers, appeared to be mirrored in a 

corresponding increase in EBs expressing globin. The number of EBs expressing 

globin was two-fold increased in EBs induced by DMSO compared to untreated EBs. 

The effects of RA during in vitro differentiation of EBs when analyzed by the CFU-A 

assay result in a reduced number of CFU-A colonies. The percentage of day 4 EBs 

staining positive for globin expression after induction with RA was at a similar level 

as observed in untreated EBs (-30%). However, it must be noted, EBs exposed to 

RA during in vitro differentiation contained very few globin expressing cells per EB 

compared to untreated EBs (Table 4.4; Figure 4.9). 

A constant increase in the number of EBs with globin expressing cells was observed 

in untreated EBs over the time course of in vitro differentiation analyzed. In DMSO 

induced EBs, a peak in numbers of globin expressing EBs was observed at day 5, 
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with -80% of EBs staining positive for globin expression, which was reduced to a 

level (-60%) below that of untreated EBs at day 8 of differentiation. The number of 

globin expressing EBs in RA induced EBs remained at a similar level (-30%) over 

the period of 4-6 days of differentation and showed an increase at day 8 (-50%). 

The opposing effects of the morphogenic factors DMSO and RA on haematopoietic 

in vitro differentation of EBs, as observed by CFU-A analysis are reflected in numbers 

of globin expressing EBs. This is well illustrated in Figure 4.9 where data obtained 

from these time course studies display the opposing effects of DMSO and RA on the 

percentage of EBs that contain globin expressing cells. 

Especially the differences between these time courses over the time period of day 3 

to day 6 are very illustrative. In untreated EBs a constant increase in numbers of EBs 

with globin expressing cells was observed with -20% positive EBs at day 3 and -70% 

positive EBs at day 8 of differentiation. In DMSO induced EBs a peak more than two-

fold increased to untreated EBs was observed at day 5 with 80% positive EBs. In RA 

induced EBs a stagnation in numbers at -30% was observed, during the time period 

when significant changes in globin expression were observed in untreated and DMSO 

induced EBs. The effects of DMSO on globin expression in EBs were not obvious 

until day 4, whereas EBs exposed to RA showed a reduction in globin expressing EBs 

from the onset of detectable globin expression. These observations are suggestive that 

DMSO does not alter the temporal pattern of haematopoietic differentiation of ES cells 

in vitro but influence the number of cells that commit to the haematopoietic lineage. 

Effects of RA exposure appear to be exerted earlier during in vitro differentiation. 

The effects of DMSO and RA on globin expression during haematopoietic 

differentiation in vitro suggest that changes in globin expression may correspond 

to observed changes in CFU-A numbers. 
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4.8.1: In situ hybridization analysis of globm expression in EBs during in vitro differentiation. 

A time course of EBs (Section 3.1.6.4) was wax-sectioned and hybridized with DIG-labelled antisense 
nboprobes specific for alpha-globin. Signal was visualized with alkaline-phosphatase conjugated anti-
DIG antibodies and NBTIBCIP colour substrate. Globin positive EBs are identified by blue/purple 
colour change. Globin transcripts were detectable from day  of differentiation onwards with the 
number of globin expressing EBs increasing over time (Magnification 160x). 
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4.8.2: In situ hybridization analysis of globin expression in EBs induced by DMSO during 
in vitro differentiation. A time course of DMSO induced EBs (Section 3.1.6.4) was wax-sectioned 
and hybridized with DIG-labelled antisense riboprobes specific for alpha-globin. Signal was visualized 
with alkaline-phosphatase conjugated anti-DIG antibodies and NBT/BCIP colour substrate. Globin 
positive EBs are identified by blue/purple colour change. Globin transcripts were detectable from 
day 3 of differentiation onwards with the number of globin expressing EBs increasing over time 
(Magnification 160x). 
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4.8.3: In situ hybridization analysis of globin expression in EBs induced by RA during in vitro 
differentiation. A time course of RA induced EBs (Section 3.1.6.4) was wax-sectioned and hybridized 
with DIG-labelled antisense riboprobes specific for alpha-globin. Signal was visualized with alkaline-
phosphatase conjugated anti-DIG antibodies and NBT/BCIP colour substrate. Globin positive EBs are 
identified by blue/purple colour change. Globin transcripts were detectable from day 3 of differentiation 
onwards (not obvious in day 3 image presented) with the number of globin expressing EBs increasing 
over time (Magnification 160x). 
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Signal for globin expression stained with NBT/BCIP colour substrate. 
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Signal for globin expression stained with FastRed colour substrate. 

Figure 4.8.4: In situ hybridization of sectioned day  EBs with antisense riboprobes specific for 
alpha-globin transcripts demonstrating the possible use of different colour subtrates. Wax-sectioned 
EBs were hybridized with DIG-labelled globin riboprobes and probe-target hybrids were detected by 
incubation with alkaline-phosphatase conjugated anti-DIG antibodies. Signal was developed by 
utilizing NBT/BCIP colour substrate (top) or FastRed colour substrate (bottom) (Magnification 
1000x). Corresponding hybridizations using Fluorescein labelled riboprobes showed similar staining 
(data not shown). 
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Figure 4.9: Time course analysis of globin expression in sectioned EBs from 
untreated EBs and induced EBs. The number of EBs staining positive for globin 
expression is shown as percentage of screened EBs (>100 EBs were screened for 
globin expression for each time point). Time is expressed as number of days EBs 
were allowed to differentiate in suspension culture. The graph shows a comparison 
of untreated EBs, DMSO induced EBs and RA induced EBs. 
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Table 4.4: Summary of EBs staining positive for globin expression in untreated 
and induced time course EBs of sectioned EBs hybridized for globin expression 

% of EBs staining positive for globin expressing cells 

% of positive EBs having >10 cells stained for globin Time course type 

% of EBs with >10 cells stained 
Age of EBs for globin having cells located in 

a restricted area 

CFU-A data 
normal EBs 

2 days 0 - - 	 9.79±4.3 # 
3 days 18.36 6.38 100 	 20.0±1.8 
4days 25.30 15.48 100 	 13.55±4.0 
5 days 42.26 36.60 75.59 	 6.0±4.8 
6days 57.46 44.48 86.13 	 9.09±2.8 
8 days 71.23 59.62 100 	 25.12±8.9 

DMSO induced EBs 
2 days 0 - - 	 17.53±4.3 
3 days 19.51 6.94 100 	 17.21±6.0 
4 days 62.04 37.31 98 	 28.76±17.7 # 
5 days 78.60 68.3 94.54 	 29.34±7.7 
6 days 66.67 78.9 96.67 	33.13±3.6 # 
8days 62.81 68.0 100 	 36.54±6.9# 

RA induced EBs 
2days 0 - - 	 0 
3 days 8.6 - - 	 4.43±1.4 
4 days 28.26 17.95 * 100 	 7.76±1.8 
Sdays 30.88 11.11 100 	 1.55±2.2 
6days 29.89 12.07 100 	 1.26±1.8 
8 days 47.19 20.23 100 	 0 

Numbers were obtained from sectioned EBs with a minimum sample size of 100 EB sections from each 
time point. 
* non of these positive EBs had > 35 cells stained for globin expression 
CPU-A data: The number of EBs forming CPU-A colonies is expressed as a percentage of plated EBs 
(clonal efficiency) 
# total number of EBs <50 
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4.4.2 Spatial expression of haematopoietic genes during 

in vitro differentiation 

A number of haematopoietic genes were used for in situ hybridization of sectioned 

time course EBs covering 8 days of in vitro differentiation to study the spatial 

expression pattern of these genes. The temporal expression of most genes analyzed 

in this study has been studied by RT-PCR analysis or northern blot analysis, however, 

studies regarding the spatial expression have not been reported to date (Schmitt et a!, 

1991; Wiles et al, 1991; McClanahan et al, 1993; Keller eta!, 1993; Hole et a!, 1996). 

In order to obtain details of the genetic events that may control mesoderm and 

haematopoietic commitment during early in vitro differentiation, genes known to be 

involved at various stages during haematopoietic development and/or haematopoiesis 

were chosen for analysis. Genes used for time course studies by in situ hybridization 

included the mesoderm marker gene brachyury, the receptor tyrosine kinase Fik-] 

as developmental marker for endothelial and haematopoietic development, the 

haematopoietic transcription factor SCL and the haematopoietic surface antigen 

CD34 as early haematopoietic markers, and the haematopoietic receptor/ligand pair 

c-kit/S CF . Genes used for in situ hybridization on sections of day 6 and/or day 8 EBs 

were the haematopoietic transcription factor vav, the mesoderm markergoosecoid, 

and the growth factors BMP-4 and TGF-J31. A novel zinc finger protein (gfi-lb), 

identified by subtractive cDNA analysis of day 3 and day 5 RNA from EBs of this 

ES cell system, was used for in situ hybridization on sections of day 5 and day 6 EBs 

as preliminary analysis (Graham G, Hole N and Ansell J; persona! communication). 

In situ hybridizations with actin riboprobes were included as positive control for 

experimental procedures. The results of these in situ hybridization experiments are 

summarized in Table 4.5. Images of spatial expression during in vitro differentation 

of some genes are shown in Figures 4.10.1-4.10.8. 

Signals for gene transcripts of the mesoderm marker brachyury, a putative 

transcription factor, were observed throughout the time course analyzed. The 

179 



signal intensity differed between time points and appeared heterogeneous within EB 

populations from day 4 of differentiation onwards (see Figure 4. 10.1 and Table 4.5). 

These observations are consistent with RT-PCR analysis carried out with this ES cell 

system (Doostdar, 1997) and a study using whole-mount in situ hybridization to 

detect brachyury expression in EBs (Johansson and Wiles, 1995). Varying levels 

for brachyury transcripts have also been observed in a study in which single EBs 

were analyzed by RT-PCR (Kennedy et a!, 1997). 

Hybridization with antisense riboprobes specific for the receptor tyrosine kinase 

Fik-], a kinase expressed during early haematopoietic development in vivo, resulted 

in stained EBs at each time point analyzed, however, at various intensities. A low 

signal intensity was observed in day 2 EBs and increased intensity was found in day 

3 EBs. A slightly weaker signal was observed in day 4, day 5 and day 6 EBs. The 

signal for Elk-i expression appeared down regulated in day 8 EBs (Figure 4.10.2 

and Table 4.5). The temporal expression levels detected for Flk-i during in vitro 

differentation of ES cells is consistent with findings in previous studies (Kabrun 

et al, 1997; Vittet et al, 1996). Using RT-PCR analysis, Flk-i was not expressed 

in undifferentiated ES cells but expressed after 3 days of ES cell differentiation. 

RT-PCR analysis of single EBs identified variations in FLK-i expression within 

an EB population (Kennedy et a!, 1997). 

The helix-loop-helix transcription factor SCL has been reported to be essential for 

haematopoietic development (Kallianpur et al, 1994, Shivdasani et a!, 1995; Robb 

et al, 1995). Signals for SCL expression in EBs were observed throughout the time 

course analyzed (Figure 4.10.3 and Table 4.5). The staining intensity for SCL 

transcripts was consistently high in all time points with a transient lower signal in 

day 3 EBs. The signal intensity appeared heterogeneous within the EB populations. 

In a previous study, analysis of SCL expression during in vitro differentiation of 

ES cells by RT-PCR was detected from day 4 of differentiation onwards (Keller et a!, 

1993). Differences in culture systems and/or sensitivity of the experimental approach 



adopted for analysis may explain the differing observations for the onset of SCL 

expression during ES cell differentiation in vitro. RT-PCR analysis of single EBs 

found variations in SCL transcript levels and EBs were identified which did not 

express SCL (Kennedy et al, 1997). 

The CD34 cell surface antigen, is a stem cell-associated glycoprotein and has 

been used for the enrichment of HSCs in humans and mice (Krause et al, 1994). 

CD34 expression has been recognized to diminish as haematopoietic cells mature and 

is thought to have an important role in early haematopoietic development (Young et al, 

1995; Wood et al, 1997). Signals for CD34 expression during ES cell differentiation 

were found at high intensity in day 2 EBs and with diminished intensity in day 5 and 

day 8 EBs. Transcripts for CD34 could not be detected in day 3 and day 4 (Figure 

4.10.4, Table 4.5). This is contrary to a previous study were CD34 expression 

was analyzed by RT-PCR and found to be consistently expressed in undifferentiated 

ES cells and during a time course of EB development (McClanahan et al, 1993). 

The expression of the haematopoietic receptor/ligand pair c-kit/SCF has been 

associated with HSCs and/or early progenitors but both genes are also widely 

expressed in non-haematopoietic cells (Ikuta and Weissman, 1992, Fleischman, 

1993). During ES cell differentiation, signals for the expression of the receptor 

tyrosine kinase c-kit were detected throughout the time course analyzed, however, 

at low levels from day 4 of differentiation onwards (Figure 4.10.5, Table 4.5). 

The signal intensity found for the expression of the c-kit ligand SCF was low in 

day 2 EBs and was slightly increased in day 3 EBs. Signals for SCF transcripts 

were undetectable in day 4 EBs but were present again in day 5 EBs and then 

throughout the time course analyzed (Figure 4.10.6, Table 4.5). The expression 

patterns for c-kit and SCF have previously been analyzed in this ES cell system by 

RT-PCR. No transcripts were detectable for c-kit before day 8 of differentiation by 

RT-PCR analysis and SCF transcripts were detected throughout ES cell differentation 

(Hole et al, 1996; Menzel U, Diplomarbeit 1994). 
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The differing findings for c-kit and SCF expression patterns may be due to 

differences in methodological sensitivity. In other ES cell systems, c-kit was found 

to be expressed in undifferentiated ES cells and consistently during in vitro 

differentiation (McClanahan et al, 1993; Keller et al, 1993; Schmitt et a!, 1991). 

Corresponding expression patterns for SCF were found in these studies at later 

stages of in vitro differentiation (> day 8) but observations during early events of 

differentiation varied between ES cell systems (McClanahan et al, 1993; Schmitt 

et al, 1991; Keller etal, 1993). 

Labelled riboprobes specific for the haematopoietic transcription factor vav or the 

mesoderm marker gene goosecoid, were used for in situ hybridization on sections 

of day 6 and day 8 EBs. Evidence for the expression of vav transcripts was indicated 

in both time points analyzed. Signal for goosecoid expression was not detectable in 

day 6 EBs but indicated in sections of day 8 EBs (Table 4.5). Expression of the 

growth factor BMP-4 was investigated in day 6 and day 8 EBs and expression of 

TGF-J31 in day 6 EBs. Expression of both growth factors were indicated in the time 

points analyzed (Table 4.5). The indicative signals for vav, goosecoid, BMP-4, and 

TGF-J31 expression in day 6 and day 8 EBs require further analysis for confirmation. 

Preliminary in situ hybridization analysis for the spatial expression pattern of a novel 

zinc-finger protein encoding gene (gfi-lb), which was identified by the use of 

subtractive cDNA methodology, was performed on sections of day 5 and day 6 EBs. 

The gfi-lb gene had been found to be strongly expressed in day 5 EBs but not in 

day 3 EBs (Graham G, Hole N, and Ansell J; personal communication). 

Signals for the presence of gfi-lb transcripts at very high levels, similar to the 

signal intensity for the mesoderm marker brachyury, were detectable in both time 

points analyzed. Similar to brachyury expression, signal for gfi-lb was found at 

a high intensity in almost all cells within an EB section. However, control 

hybridizations of EBs sections with labelled ribonucleotides corresponding to the 

sense sequence of the gfi-lb gene produced a high background signal (Figure 4.10.7). 
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No problems, caused by background staining in control hybridizations, were 

encountered for any of the other riboprobes used in this in situ hybridizations 

analysis. An example for a control hybridization with sense riboprobes is shown 

in Figure 4.10.8. Sections of day 6 EBs were hybridized with antisense riboprobes 

for actin or incubated with sense riboprobes corresponding to the actin sense 

sequence. A possible cause of the unspecific hybridization events in control 

experiments for gfi- lb expression may derive from the specific sequence structure 

of the gfi-lb gene. Further analysis of the expression pattern of the gfi-lb gene over 

a time course of in vitro differentiation is required to confirm observations from 

preliminary northern blot analysis. 
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4.4.3 Two colour in situ hybridization of sectioned EBs 

The spatial expression of the haematopoietic gene globin displayed a distinctive 

pattern during in vitro differentiation (see Section 4.4.1). The well-defined onset 

of globin expression, which coincides with other haematopoietic characteristics in 

this ES cell system, may have the potential to be explored for further examination 

of the genetic control mechanisms of haematopoietic development during in vitro 

differentiation. To assess whether co-expression and co-localization patterns of 

novel and/or known genes with globin can be utilized to obtain information about 

haematopoietic differentation in vitro, two colour in situ hybridization experiments 

on sectioned EBs were performed. 

For initial two colour hybridization experiments sections of day 6 EBs were used 

for the simultaneous hybridization of DIG-labelled riboprobes specific for globin 

and fluorescein-labelled riboprobes specific for actin. Hybridization events for globin 

transcripts were detected by alkaline phosphatase conjugated anti-DIG antibodies and 

signal developed by the NBT/BCIP colour reaction. Signal for actin expression was 

subsequently detected by using alkaline phosphatase conjugated anti-fluorescein 

antibodies with Fast Red as colour substrate. The staining pattern obtained for 

globin and actin co-expression is shown in Figure 4.11. Whereas signals for 

globin expression were corresponding to previous expression patterns obtained 

from hybridization experiments with one riboprobe type, the signal intensity for 

actin expression was reduced. Signal intensity for actin expression obtained with 

DIG-labelled riboprobes with NBT/BCTP as colour substrate is shown in Figure 

4.10.8. However, the two-colour staining pattern obtained indicates that two-colour 

in situ hybridization may be a feasible approach for co-expression analysis. 

Alternatively in situ RT-PCR may provide a means to analyze co-expression. 



Table 4.5: Summary of signal intensity for haematopoietic gene expression in BBs. 

Intensity of colorimetric signal after in situ hybridization 

of differentiation 

2 days 3 days 4 days 5 days 6 days 8 days 

Controls 

actin (1) ++++ ++++ ++++ ++++ ++++ ++++ 	- 

globin *(2) - + ++ - 

brachyury (3) ++ +++ ++++ ++++ ++++ +++++ 	- 

Flk-1 (4) ++ +++ +++ +++ ++ 	- 

SCL (5) ++ +++ +++ +++ ++++ 	- 

CD34 (6) - - ++ rid + 	- 

c-kit(7) ++ + + + + + 	- 

SCF(8) + ++ - + + ++ 	- 

vav(9) iii nd iii nd ± ± 	- 

gsc('°) rj nd iii nd - ± 	- 

BMP-4 nd nd nd nd ± ± 	- 

TGF-81 (12)nd nd nd  nd ±nd -  

gfi-lb (13) iii rid nd ++++ ++++ iii 	 +++ 

globin* see Section 4.4.1 for data of induced time course studies 
nd 	not determined 
Individual controls for each riboprobe consisted of a labelled ribonucleotide sequence 
corresponding to the sense sequence of the particular gene. This labelled sequence was 
used for in situ hybridization on sections of day 6 or day 8 EBs. 
Results are expressed as a qualitative measure of riboprobe/target mRNA hybrids as 
measured by colour intensity after colorimetric signal detection 

(1) Biben et a!, 1996; (2) Leder et al, 1992; (3) Wilson et al, 1995; (4) Yamaguchi et a!, 
1993; (5) Kallianpur et al, 1994; (6) Wood et al, 1997; (7) Keshet et al, 1991; (8) Keshet 
et al, 1991; (9) Ogilvy et a!, 1998; (10) Blum et a!, 1992; (11) Jones eta!, 1991; (12) Dickson 
et a!, 1995; (13) Graham, G., Hole, N. and Ansell, J., personal communication. 
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4.10.1: in situ hybridization analysis of brachyury expression in EBs during in vitro differentiation. 
A time course of EBs was wax-sectioned and hybridized with DIG-labelled antisense riboprobes 
specific for brachyury. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies 
and NBT/BCIP colour substrate. Signal for brachyury transcripts in EBs is visible by blue/purple 
colour change (Magnification 160x). 
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4.10.2: In situ hybridization analysis of FLK-1 expression in EBs during in vitro differentiation. 
A time course of EBs was wax-sectioned and hybridized with DIG-labelled antisense riboprobes 
specific for FLK-1. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies 
and NBT/BCIP colour substrate. Signal for FLK-1 transcripts in EBs is visible by blue/purple colour 
change (Magnification 160x). 
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4.10.3: In situ hybridization analysis of SCL expression in EBs during in vitro differentiation. 
A time course of EBs was wax-sectioned and hybridized with DIG-labelled antisense riboprobes 
specific for SCL. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies 
and NBT/BCIP colour substrate. Signal for SCL transcripts in EBs is visible by blue/purple colour 
change (Magnification 160x). 
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4.10.4: In situ hybridization analysis of CD34 expression in EBs during in vitro differentiation. 
A time course of EBs was wax-sectioned and hybridized with DIG-labelled antisense nboprobes 
specific for CD34. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies 
and MBT/BCIP colour substrate. Signal for CD34 transcripts in EBs is visible by blue/purple colour 
change (Magnification 160x). 
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4.10.5: In situ hybridization analysis of c-kit expression in BBs during in vitro differentiation. A time 
course of BBs was wax-sectioned and hybridized with DIG-labelled antisense riboprobes specific for 
c--kit. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies and NBT/BCIP 
colour substrate. Signal for c-kit transcripts in EBs is visible by blue/purple colour change 
(Magnification 160x), 
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4.10.6: In situ hybridization analysis of SCF expression in EBs during in vitro differentiation. A time 
course of EBs was wax-sectioned and hybridized with DIG-labelled antisense riboprobes specific for 

SCF. Signal was visualized with alkaline-phosphatase conjugated anti-DIG antibodies and NBT/BCIP 
colour substrate. Signal for SCF transcripts in EBs is visible by blue/purple colour change 

(Magnification 160x). 
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Singal obtained for gfl  -1 b expression after hybridization with 
antisense riboprobes for gfl-lb. 

4 C71Y 
Background signal caused by unspecific binding of sense riboprobes 

corresponding to sense sequence of gIl-lb. 

Figure 4.10.7: In situ hybridization analysis for the expression of zinc finger protein gfi-lb. 
Sectioned day 5 EBs were hybridized with DIG-labelled antisense riboprobes specific for gfi- lb (top) 
or with sense ribopbrobes corresponding to sense sequence of gfi- lb (bottom). Signal was visualized 
with alkaline-phosphatase conjugated anti-DIG antibodies and NBT/BCIP colour substrate 
(Magnification 160x). 
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Singal obtained for actin expression after hybridization 
with antisense riboprobes for actin. 

Figure 4.10.8: In situ hybridization analysis for actin expression. Sectioned day 6 EBs were hybridized 
with DIG-labelled antisense riboprobes specific for actin (top) or with sense ribopbrobes corresponding 
to sense sequence of actin (bottom). Signal was visualized with alkaline-phosphatase conjugated anti-
DIG antibodies and NBT/BCIP colour substrate. In situ hybridization with actin antisense probes and 

sense probes corresponding to actin sense sequence served as positive controls for in situ hybridization 

experiments (Magnification 160x). 
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Figure 4.11: Two-colour in situ hybridization for globin and actin expression. Sectioned day 6 EBs 
were simultaneously hybridized with DIG-labelled antisense riboprobes specific for globin transcripts 
and with Fluorescein-labelled antisense riboprobes specific for actin transcripts. Signal for globin 
was detected with alkaline phosphatase conjugated anti-DIG antibodies and NBT/BCIP colour substrate 
and actin signal was subsequently detected with alkaline phosphatase conjugated anti-Fluorescein 
antibodies and FastRed colour substrate. Signal for globin transcripts is indicated by brown colour 
and for actin transcripts by red colour. (Magnification: top 160x; bottom 300x) 
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5. DISCUSSION 

5.1 In vitro differentiation, an alternative approach for the preselection 

of developmentally regulated genes in gene trap clones 

In the present study an in vitro gene trap prescreening approach for the identification 

of genes that may be involved in mesodermal and early haematopoietic commitment 

was assessed. The prescreening strategy involved in vitro differentiation of ES cell 

lines containing gene trap insertions and their exposure to morphogenic factors 

during differentiation. This approach was based on observations of the properties 

of an established ES cell system for in vitro haematopoiesis which has been 

reproducibly shown to produce transplantable HSCs (Hole et al, 1996). Although 

spatial identification and isolation of these HSCs within the EBs has not been achieved 

to date, they can be 'separated' on a temporal basis since the developmental pattern of 

haematopoietic commitment in this ES cell system is well defined. Characterization 

of the haematopoietic differentiation potential in this system has also demonstrated that 

the morphogenic factors DMSO and RA have an opposing influence on haematopoietic 

commitment (Doostdar, 1997). These effects were investigated on ES cell lines 

containing gene trap integrations to assess whether the exposure to morphogenic 

factors may be of use in vitro as a directed screen for a gene trap library. 

Efforts to establish alternative screening strategies prior to in vivo analysis have 

increased with advances in gene trap vector design and the possibility of using a 

gene trapping approach as a routine methodology (Evans et al, 1997). Various 

in vitro strategies have been devised to improve the efficiency of the identification 

of gene trap clones of interest. Some are based on refined gene trap vector design to 

direct the vector insertion into particular classes of genes (Skarnes et al, 1995), some 

on in vitro induction assays (Forrester et a!, 1996) and some on in vitro differentiation 

195 



(Baker et a!, 1997). Furthermore, in vitro screening of gene trap clones based on 

sequence information has been reported (Zambrowicz et a!, 1998; Holzschu et al, 

1997). By using culture conditions optimized for in vitro haematopoiesis it was 

expected to determine whether these conditions are widely applicable on various 

ES cell lines or restricted to the ES cell line for which they were optimized. To 

address the correlation of in vitro and in vivo reporter gene expression and the 

reliability of this screening strategy, gene trap cell lines previously characterized 

for their tissue-specific in vivo expression were used for this pilot study. 

The general applicability of this prescreening strategy for haematopoietic genes 

was demonstrated by using the CFU-A assay to assess haematopoietic commitment 

combined with an assay to monitor f3-gal activity during in vitro differentiation. Time 

course studies with various ES cell lines and gene trap cell lines revealed that all cell 

lines contained haematopoietic differentiation potential as defined by the CPU-A 

analysis (Figure 4.1). The first appearance of primitive haematopoietic progenitors 

was consistently at around day 4-6 of in vitro differentiation. This suggested a 

common pattern for haematopoietic commitment in ES cell lines and demonstrated 

that the culture conditions used to support in vitro haematopoiesis were not restricted 

to the ES cell line EFC- 1. It also indicated that monitoring f3-gal activity in a time 

window between day 3 and day 6 may potentially allow genes involved in early 

haematopoietic commitment to be identified. The induction studies with DMSO 

and RA indicated that these morphogenic factors exert their opposing effects on 

haematopoietic commitment in a relative common fashion under the culture conditions 

used (Figures 4.2.1-4.2.4). The selection of DMSO and RA for the use in a 

prescreening strategy for haematopoietic genes was entirely based on induction studies 

previously carried out on the ES cell system EFC-1 (Doostdar, 1997). Therefore, the 

analysis of the effects of DMSO and RA on ES cell lines and gene trap cell lines was 

limited in the present study to the influences on CFU-A numbers and f3-gal activity. 

The analysis of haematopoietic commitment by CPU-A analyses during in vitro 
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differentiation and after exposure to DMSO and RA was completed by monitoring 

temporal B-gal activity in the gene trap cell lines to examine how the reporter gene 

expression patterns corresponded to CFU-A data (Figures 4.3, 4.4.1 and 4.4.2; 

Table 4.1). Potentially interesting gene trap integrations for haematopoietic 

development were expected to show onset of B-gal activity or increase from low 

level B-gal activity at around day 4 of differentiation. This would then coincide with 

the appearance of primitive haematopoietic progenitors as defined by CFU-A analysis. 

Further indication of their involvement in haematopoietic development would be a 

significant increase in B-gal activity after exposure to DMSO and suppression after 

exposure to RA during this time period. 

Although the gene trap cell lines used in this pilot study were selected on the basis 

of their spatial in vivo reporter gene expression pattern, and two lines were thought 

to be potential positive controls for involvement in haematopoietic development, 

none of the gene trap cell lines would have been chosen for further analysis if included 

in a pre-screen of 'anonymous' gene trap clones. However, continuing investigations 

that analyzed the gene trap cell lines which displayed in vivo reporter gene expression 

patterns restricted to yolk sac and fetal liver identified the trapped genes as not being 

involved in haematopoiesis (Forrester et al, 1996; Skarnes et al, 1995). 

Thus, the indications in this in vitro analysis that the gene trap cell lines 1114 and 

ST598 are not involved in haematopoietic development are consistent with results 

from in vivo studies. 

The spatial B-gal expression patterns during in vitro differentiation were examined 

by an in situ X-gal staining assay (Figure 4.5; Table 4.2). Although changes in 

B-gal expression over time and/or between gene trap lines could be observed, the 

evaluation of these expression patterns was limited. In situ staining for B-gal protein 

allows the location of functional B-gal fusion protein expressing cells within EBs to 
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be identified but does not provide the means to determine the cell type(s) of these cells. 

Therefore, only limited information was obtained for the spatial in vitro reporter gene 

expression patterns from individual gene trap cell lines. 

Although lacZ is the most commonly used reporter gene, with the temporal and 

spatial expression patterns in cells being easily monitored by the 13-gal activity and 

the X-gal in situ staining assays, limitations occur (Figures 4.3, 4.4.1, 4.4.2 and 4.3; 

Tables 4.1 and 4.2). For instance, enzyme activity cannot be used as a direct measure 

of transcript levels. This restricts quantitative analysis of reporter gene expression 

levels to relative comparisons within groups of samples assayed in sets. Furthermore, 

possible differences in the stability of lacZ fusion transcripts and proteins make 

temporal and quantitative analysis complicated (Forrester et al, 1996). Translational 

repression of fusion transcripts may further obscure the analysis of transcriptional 

activity of trapped endogenous genes (Baker et al, 1997). An early widespread 

13-gal expression pattern that becomes restricted at later stages during differentiation 

has been observed as a common pattern in gene trap screens (Friedrich and Soriano, 

1991; Skarnes et al, 1992; Wurst et al, 1995; Baker et al, 1997). Thus, in a screen 

for genes involved in early haematopoietic development a large 'background' of 

non-haematopoietic gene traps may reduce the efficiency of such a screen. 

In addition to assay related limitations, the heterogeneity of an EB population 

further complicates the evaluation of results from 13-gal expression assays. 

Because 13-gal activity is assayed from a pooled population of BBs, it is not possible 

to distinguish between for example, many cells expressing low levels of 13-gal or 

few cells expressing high levels of 13-gal. Although these short-comings of the 

3-gal activity assay can be partially overcome by the in situ X-gal staining assay, 

some limitations remain since cell type distinction on the basis of morphological 

characteristics is not possible during early in vitro differentiation of ES cells. 



In vitro differentiation of ES cells has been exploited for the in vitro preselection 

of gene trap clones with novel genes expressed in neurons, glia cells, myocytes, 

and chondrocytes (Baker et a!, 1997). Selection criteria for further analysis were 

non-constitutive reporter gene expression during differentiation but expression 

in selected cell types after a certain period of differentiation. In these experiments 

gene trap cell lines were allowed to differentiate and then assayed for co-expression 

of 8-gal and antigens specific for neurons, glia cells, myocytes, and chondrocytes. 

Three novel genes, potentially specific for the cell lineages of interest, were identified 

by this screen, clearly demonstrating the success of the applied screening strategy. 

However, other methods of isolating differentially-expressed genes, e.g. cDNA 

subtraction (Lee et a!, 1992) and differential display (Liang and Pardee, 1992) have 

been reported to be more efficient. For instance, a subtractive cDNA library derived 

from EB RNA at different time points of differentiation has isolated >100 novel 

clones related to haematopoietic differentiation (Graham G, Hole N, and Ansell J; 

personal communication). 

There are obvious similarities between the in vitro pre-screen for neurogenic and 

myogenic genes (Baker et al, 1997) and the screening strategy employed in the 

present study. However, a crucial difference, apart from screening for different 

cell lineages, are the developmental stages analyzed. Baker et al. concentrated on 

the identification of genes expressed in differentiated neuronal cell lineages with 

overt morphological phenotypes, at a relatively late stage in development. The 

screening of differentiated cells allowed the use of qualitative B-gal analysis 

which make co-expression studies feasible. In the present study the focus was 

on the identification and characterization 

of genes involved in the very early haematopoietic commitment of differentiating 

ES cells. Whilst terminally differentiated cells are relatively easy to identify by 

morphological and/or antigenic characteristics, primitive progenitor cells are more 

difficult to identify. For instance, to date there is no specific phenotypic marker 
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known to be unique for HSCs. In addition to the lack of an overt phenotype, 

primitive progenitors are rare in numbers compared to differentiating and mature 

cells. Since the aim in this study was to design an in vitro pre-screen to identify 

gene trap cell lines potentially involved in early haematopoietic development, screening 

of co-expression patterns utilizing X-gal staining and labelled antibodies was not 

feasible. However, for the identification of genes expressed in terminally differentiated 

haematopoietic cells, co-expression of 8-gal and haematopoietic antigens could have 

been assessed by the analysis of cells composing haematopoietic CFU-A colonies. 

Two aspects that have to be considered when deciding on a pre-screening strategy 

are specificity and practicability. Often a workable compromise between specificity 

and practicability has to be found. Specificity for haematopoietic differentiation was 

addressed in the present study by using culture conditions that have been established 

for in vitro haematopoiesis of ES cells and by using the CFU-A assay. Practicability 

for the simultaneous screening of a large number of gene trap cell lines was assessed 

by testing different methods of forming ES cell aggregates. 

Culture conditions can have a great influence on the differentiation potential of 

ES cells which is also dependent on the number of cells differentiating within an 

EB (Maltsev et al, 1993). Therefore, the simplification of cell culture procedures 

was tested using the well characterized ES cell line EFC- 1 and compared to standard 

culture procedures established for in vitro haematopoiesis. 

The significance of the three-dimensional structure of EBs in providing an 

appropriate microenvironment for haematopoietic progenitors is implied by 

the importance of the haematopoietic microenvironment during haematopoietic 

development in vivo. Recently, a dominance of the developmental stage of 

the haematopoietic microenvironment over the developmental stage of injected 

HSCs has been demonstrated in transplantation studies in mice (Geiger et al, 1998). 

Experimental evidence for the importance of the microenvironment in vitro has 
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been obtained by examining the haematopoietic differentiation potential of disrupted 

EBs using the CFU-A assay. Disrupted EBs appear to lose the ability to form 

CFU-A colonies, indicating the dependency of haematopoietic progenitors on 

an appropriate stromal microenvironment during in vitro differentiation (Hole et al, 

1996). The ES cell aggregates formed by culturing on Celiform-coated plates were 

critically assessed for their morphological structure and their haematopoietic potential 

after in vitro differentiation. Although the developing EB population was not as 

uniform in size and differentiation synchrony than 'hanging drop' EBs, the ES cell 

aggregates produced on Cellform-coated plates were able to develop into EBs that 

could form CPU-A colonies (Table 4.3) and were sufficient for initial characterization 

of gene trap cell lines. The use of Celiform-coated plates for the formation of ES cell 

aggregates would therefore allow the simultaneous analysis of a large number of gene 

trap cell lines compared to in vivo screening in chimeric embryos. 

As mentioned before, the feasibility of using a large number of gene trap clones 

for analysis is one of the most important requirements for a successful screening 

strategy. This has been achieved for gene trap screens assaying undifferentiated 

ES cells for 13-gal activity, for which the analysis of several thousand gene trap 

cell lines has been reported (Wurst et al, 1995; Forrester et al, 1996). However, 

screens that utilize in vitro differentiation are at a comparably small scale with a 

few hundred gene trap cell lines used for screening (Baker et al, 1997; Scherer et al, 

1996). Using the culture procedures described in this study it would have been 

feasible to screen a few hundred gene trap cell lines by in vitro differentiation. 

The insertion of a gene trap construct mutates and tags the genes for subsequent 

cloning, making identification of the endogenous gene possible by rapid amplification 

of QDNA ends (RACE) (Townley et al, 1997). The relative ease identifying the 

endogenous sequence in gene trap cell lines has been exploited in a gene trapping 

approach for the automated identification of sequence tags from the mutated genes 

(Zambrowicz et al, 1998). In an attempt to have all genes in ES cells as potential 
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targets a vector construct that traps and mutates genes regardless of their expression 

status was used. This expression-independent method for sequence identification 

has been used to produce a library of ES cell gene trap clones in which sequence-

tagged mutations are described. In another gene trap study a library was generated 

for sequence information in the form of expressed sequence tags (ESTs) and cDNA 

sequences (Evans et al, 1997). Gene trap clone libraries represent a functional 

genomic resource, as they contain sequence information of already mutated genes 

and thus provide opportunity to rapidly produce mouse mutants for gene function 

analysis (Evans et al, 1997; Zambrowicz et ad, 1998). 

Expression patterns of novel sequences can be examined by molecular analysis, 

for instance, northern blots or in situ hybridization to wild type embryos. The 

successful use of sequence-based gene trap screens has recently been reported 

(Chowdhury et al, 1997; Townley et al, 1997; Holzschu et al, 1997). 

Despite the application of the gene-trapping approach by a number of groups, 

mentioned above, some reservations about its overall advantages still apply. 

For instance, selective pressures generated by vector design, vector delivery, 

target size and gene accessibility are likely to produce some level of bias in the 

relative representation of trapped genes (Skarnes, 1993). Furthermore, limitations 

associated with reporter gene expression assays also complicate the analysis of 

gene trap clones. Several reports have been published that assess the potential of 

in vitro differentiation for pre-screening of gene trap libraries, however, the successful 

application of such screens on a large scale (>1000 gene trap clones) has to be awaited 

(Baker et al, 1997; Gajovic et ad, 1998; Voss et ad, 1998). To date it may appear that 

the most successful application of gene trapping is the production of ES cell gene trap 

libraries as a data bank for sequence information and potential source of ES cell clones 

for functional studies. 

Although the effects of DMSO and RA had shown opposing effects on haematopoietic 

differentiation of ES cells (Doostdar, 1997) it is likely that these factors may also 
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exert other effects on ES cell differentiation, which could confuse the 'readout' of 

this screen. Furthermore, the generalized rationale behind the prescreening strategy 

that developmentally regulated gene expression may code for developmentally 

important molecules may be too simplified. Widespread and/or constitutive expression 

of a gene does not preclude tissue-specific functions. For instance, the transcription 

factor SCL has been identified as essential for haematopoiesis, however, expression 

was observed in the developing nervous and skeletal systems and in the vascular 

endothelium (Robb et al, 1996; Kallianpur et al, 1994; Green et a!, 1992). 

In summary, the experiments performed in the present pilot study to assess 

the feasibility of an in vitro pre-screening strategy of gene trap cell lines for 

the identification of genes important during haematopoietic development has 

the potential for a large scale screen. Clearly an identified haematopoietic gene trap 

integration would be the most convincing proof for the applicability of this in vitro 

screening strategy. The evidence presented in this study indicates that this screening 

strategy may be used to enrich for gene trap integrations involved in early 

haematopoietic commitment. However, given the amount of work it would take 

to screen even 1000 gene trap clones by this method, it is doubtful whether enough 

data could be generated to make meaningful conclusions about the haematopoietic 

involvement of gene trap clones. 

Previous studies on the ES cell line used in the present study demonstrated that 

globin expression may serve as a marker for haematopoietic activity during 

ES cell differentiation in vitro (Hole et al, 1996; Menzel U, Diplomarbeit, 1994) 

and furthermore, it was found that the effects of DMSO and RA were reflected in 

globin expression levels (Doostdar, 1997). Thus, co-expression analysis of reporter 

gene and globin may provide a more sophisticated and efficient strategy to screen a 

gene trap library for haematopoietic genes. A screen specific for haematopoietic gene 
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trap integrations would thus involve analysis of co-ordinate temporal and spatial 

expression of globin and the reporter gene by two-colour in situ hybridization. 

This in situ hybridization approach could also be effectively used to screen 

for candidate genes involved in haematopoiesis generated by cDNA subtraction. 

Using the precise time window of in vitro differentiation of the ES cell system 

used, a subtractive cDNA library was produced from BBs at day 3 and day 5 

of differentiation. This approach has produced >500 differentially expressed 

clones over the 3 to 5 day differentiation period which coincides with the onset 

of haematopoietic differentiation and has been found to be a rich source of known 

and novel haematopoietic genes (Graham G, Hole N, and Ansell J; personal 

communication). 
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5.2 Analysis of the spatial expression of haematopoietic genes in EBs 

The temporal expression pattern of haematopoietic genes during in vitro differentiation 

of ES cells has been extensively studied by a number of groups (Schmitt et a!, 1991; 

Wiles et al, 1991; Keller et a!, 1993; McClanahan et al, 1993; Hole et al, 1996). 

In these studies methods such as RT-PCR and northern analysis were used to 

detect transcripts specific for haematopoietic genes. Although the application of these 

techniques allows one to follow temporal gene expression patterns during in vitro 

differentiation the cells expressing the genes and their spatial relationships cannot 

be identified by methods that analyse RNA from total cell populations. Such studies 

have not been reported to date. 

In order to identify areas of haematopoiesis within EBs and to assess the possible 

feasibility of cellular co-expression analysis in EBs, whole-mount in situ hybridization 

experiments were performed utilizing riboprobes. As described in Section 4.3.1, 

whole-mount in situ hybridization of EBs using riboprobes specific for the detection 

of globin transcripts combined with colorimetric signal detection demonstrated that 

globin expressing cells are localized in small discrete areas within an EB (Figures 

4.6.1-4.6.2). Differences in transcript levels within individual cells was identified 

(Figure 4.6.2), which may indicate differences in developmental stages of the 

erythroid lineage. However, preliminary investigations were unable to detect 

globin protein at this stage of in vitro differentiation (Hole N and Ansell J, personal 

communication). Although globin transcripts were readily detected, the number of 

EBs staining positive for globin expression was unexpectedly low (2%). 

Previous observations in this ES cell system suggested an association between 

globin expression and the formation of CFU-A colonies (Hole et al, 1996). It was 

therefore expected that globin expression would be observed in 40-60% of EBs. 

EBs developing in suspension culture have been found to have an outer rind of 

endodermal cells and an inner core of ectodermal cells that develop into mesoderm 
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(Bradley, 1990). Thus, the localization of haematopoietic cells should be expected 

within an EB rather than in the outer cell layer. This localization of mesodermal 

cells within an EB (Bradley, 1990) may explain the low proportion of EBs with 

globin transcripts when using whole mount in situ hybridization as a detection 

method. The three dimensional complex structure and the relative large size of EBs 

hampered the spatial analysis of gene expression in whole EBs. For instance, day 6 

EBs are —80 gm in size which limited the examination of hybridized EBs to the use 

of low magnification (300x) (Figure 4.6.1-4.6.2). 

Whole-mount in situ hybridization of EBs without subsequent sectioning was 

performed in a study to monitor mesoderm conmiitment during differentiation of 

ES cells cultured in chemical defined medium (Johansson and Wiles, 1995). These 

investigators analyzed brachyury expression by whole-mount in situ hybridization 

to confirm RT-PCR studies and to determine the number of EBs differentiating into 

mesoderm lineages. Transcripts specific for brachyury were reported to be localized in 

clusters of cells within the EBs and signal intensity was described as heterogeneous. 

Depending on culture conditions, the number of EBs staining positive for brachyury 

expression varied. Approximately 90% of all EBs grown in medium containing 

serum showed signal for brachyury expression, compared to 5-10% of all EBs grown 

in chemical defined medium. No detailed analysis of the brachyury expressing cells 

within EBs was reported (Johansson and Wiles, 1995). 

The in situ hybridization experiments on whole EBs emphasized the need to section 

the EBs to obtain more detailed information about the spatial gene expression patterns. 

In a study analyzing gene expression during endoderm differentiation, embryoid 

bodies derived from an embryonic teratocarcinoma cell line were used as an in vitro 

model (Becker et al, 1992). In order to establish whether a position-dependent 

differentiation pattern existed within embryoid bodies, whole-mount in situ 

hybridization was performed. Evidence in support for the assumed position-dependent 
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endoderm differentiation during early lineage commitment in differentiating embryonic 

teratocarcinoma cells was obtained only after the hybridized embryoid bodies had 

been sectioned (Becker et a!, 1992). 

In situ hybridization can be combined with colorimetric or fluorescent signal detection 

for labelled probe-target RNA hybrids. The use of fluorescence molecules as probe 

labels provides the means for the potential use of confocal microscopy for signal 

expression analysis. In order to take advantage of non-invasive optical sectioning 

by confocal laser scanning microscopy in the present study, attempts were made to 

combine whole-mount in situ hybridization of EBs with fluorescent signal detection. 

As described in Section 3.2.5, the use of confocal microscopy for the analysis of 

spatial gene expression in EBs was hampered by the high autofluorescent background. 

Confocal laser scanning microscopy has been reported to have become a practical 

research tool with increasing applications for the studies of tissue and cellular 

organization (Bacon et a!, 1991). However, the use of confocal laser scanning 

microscopy requires complex adjustments for each experimental system and may 

be more suitable for some systems than for others. To the author's knowledge there 

has been no report to date in which whole-mount in situ hybridization and confocal 

laser scanning microscopy has been combined for spatial gene expression analysis 

during in vitro differentiation of ES cells. 

In a study using in vitro differentiation of ES cells as an in vitro model for early 

erythropoiesis, confocal laser scanning microscopy was used to analyze the viability 

of cells within an EB (Gassmann et a!, 1995). Lethal cell staining of EBs was 

performed using a fluorescent dye which stains only dying or dead cells and a series 

of consecutive optical sections were analyzed for fluorescence. Some weak staining 

was observed, but it was reported that almost all cells within the EB were viable. 

In contrast to gene expression analysis by whole-mount in situ hybridization as 

described in the present study, lethal cell staining does not require fixation and 

prolonged incubation in inorganic solutions of EBs. 
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These analytical and methodological differences may explain for the different 

experiences in applying confocal laser scanning microscopy to EBs. 

Analysis of gene expression patterns by whole-mount in situ hybridization with radio-

isotopic probes was reported for EBs differentiated under culture conditions optimized 

for ES cell differentiation into neuronal and skeletal muscle cell lineages (Rohwedel 

et al, 1994). ES cell aggregates allowed to differentiate under such specific culture 

conditions grow in a relative two-dimensional fashion by spreading on the plate 

substratum. Thus, cell samples for the analysis by whole-mount in situ hybridization 

were comparable to monolayers of cells or sectioned samples without the complication 

of complex three-dimensional structures. In situ hybridization of EB outgrowths was 

reported to detect corresponding expression of myogenic factor genes as observed 

in vivo (Rohwedel et a!, 1994). 

Culture conditions optimized for ES cell differentiation into haematopoietic cell 

lineages as used in the present study (described in Sections 3.1.5-3.1.9) support 

the growth of individually intact EBs in suspension culture. EBs grown under these 

conditions form three-dimensional structures which makes whole-mount in situ 

hybridization with radio-isotopic probes unsuitable as a method for gene expression 

analysis. Radio-isotopic hybridization has been described as only appropriate for 

monolayers of cells or sectioned material (Rosen and Beddington, 1993). 

Information about the precise localization of gene transcripts in cells and tissues 

can give crucial clues for the identification of molecular mechanisms during 

differentiation. Since the spatial gene expression analysis of whole EBs was limited, 

efforts were concentrated on using the alternative approach of in situ hybridization 

on sectioned EBs over a time course of differentiation. The results obtained from 

in situ hybridization experiments of sectioned EBs revealed unique details of the 

spatial expression pattern for globin transcripts and identified an earlier onset of globin 

expression than detected by RT-PCR analysis (Figures 4.8.1-4.8.4, 4.9; Table 4.4). 



In situ hybridization experiments with riboprobes for other haematopoietic genes 

provided information of their expression patterns during in vitro differentiation 

of ES cells (Figures 4.10.1-4.10.7; Table 4.5). 

The distinctive signals for the localization of globin transcripts within EBs clearly 

illustrates the discrepancy between the number of EBs expected to express globin 

and the number of EBs expressing globin by whole-mount in situ hybridization 

as a methodological shortcoming (Figure 4.6.1-4.6.2) and confirms the mesoderm 

localization within EBs. In contrast to globin expression detected by whole-mount 

in situ hybridization, in situ hybridization on sections detected the expected proportion 

of globin expressing EBs. Most globin expressing cells were localized within an 

EB (Figures 4.8.1-4.8.3) which is in accordance to the observed organization of 

EBs with an outer rind of endodermal cells and an inner core of ectodermal cells 

(Bradley, 1990). 

The analysis of globin expression over a time course of 8 days of EB differentiation 

demonstrated the localization of globin transcripts within EBs and provided evidence 

for the presence of globin transcripts at day 3 of differentiation (Figures 4.8.1-4.8.3; 

Table 4.4). The ability to detect globin transcripts in day 3 EBs illustrated the relatively 

higher sensitivity of the in situ hybridization approach compared to RT-PCR analysis 

for the detection of rare transcripts. Previous RT-PCR analyses for globin expression 

in this ES cell system in association with the temporal characterization of 

haematopoietic gene expression, the effects of exposure to DMSO and RA on 

haematopoietic commitment and the transplantation of EBs into lethally irradiated 

recipients, detected globin transcripts at day 4 of ES cell differentiation but not 

day 3 (Hole et al, 1996; Menzel U, Diplomarbeit, 1994; Doostdar, 1997). 

This lack of sensitivity is most likely related to the 'dilution effect' of transcripts 

in total RNA samples and the heterogeneity of the EB cell population used for 

RNA extraction. 



In situ hybridization for globin expression in sectioned EBs from either DMSO 

or RA induced EBs produced for the first time evidence of the effects of these 

morphogenic factors at a cellular level. The opposing effects of DMSO and RA, 

respectively, on haematopoietic commitment, have been studied by semi-quantitative 

RT-PCR and differential protein expression analysis (Doostdar, 1997). Although 

some changes in gene and protein expression patterns, which could be attributed 

to the exposure to morphogenic factor were detected, these studies used pooled total 

RNA or protein extract samples from a heterogeneous EB population. This experiment 

therefore did not allow identification of the effects of DMSO or RA at a cellular level. 

The detection of globin expressing cells in untreated and induced day 3 EBs is 

remarkable since previous studies suggested day 4 of differentiation as the concurrent 

onset of globin expression, CFU-A appearance and transient presence of 

transplantable HSCs. Transplantation studies identified day 4 of differentiation as 

the critical time point in which multilineage long-term repopulating HSCs are present 

in EBs. Transplantation of cells from day 3 EBs resulted in death of recipients. 

Cells from EBs at day 5 of differentiation were able to support long-term survival 

of irradiated animals but did not result in detectable reconstitution with ES cell derived 

progeny (Hole et al, 1996). The detection of globin transcripts in day 3 EBs, 

however, indicates the presence of primitive progenitors committed to the erythroid 

lineage (Figure 4.8.1; Table 4.4). Although the detection of transcripts does not 

necessarily indicate the presence of functional protein, it is however likely. 

The appearance of primitive progenitors prior to transplantable HSCs closely 

resembles the temporal order of appearance of haematopoietic cells within the 

embryo in vivo. A reverse hierarchical order for haematopoietic cells during 

embryogenesis has been proposed which was based on the observations that 

differentiated haematopoietic cells and progenitors can be detected between day 7 pc 

and day 8.5 pc, whereas fully potent adult repopulating HSCs are not found until 
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day 10 Pc (Dzierzak et a!, 1998). The first detectable haematopoietic cells in vivo 

are primitive erythrocytes at day 7.5 pc. The presence of globin expressing cells 

within EBs at day 3 of differentiation in vitro suggests these EBs may correspond 

to developmental stage day 7.5 pc in vivo. The absence of adult repopulating 

HSCs in day 3 EBs further supports the correspondence between the sequence 

of developmental events in vitro and in vivo. The appearance of transplantable 

HSCs in day 4 EBs would therefore correspond to the presence of HSCs in the 

AGM region in vivo at day 9 pc. The indication from the temporal order of appearance 

that ES cell derived HSCs may be similar to AGM-HSCs is supported by observations 

from transplantation studies. The earliest HSCs in the AGM region are inefficient at 

long-term multilineage haematopoietic reconstitution (Medvinsky et al, 1996). 

ES cell-derived HSCs are able to provide long-term reconstitution albeit at low level 

(Hole et al, 1996; Ansell J; personal communication). The haematopoietic activities 

observed during day 3 and day 4 of in vitro differentiation may therefore resemble 

the temporal development of primitive and definitive haematopoiesis in vivo. 

The absence of adult repopulating HSCs but presence of survival supporting 

progenitor cells in day 5 EBs may indicate that EBs are not able to provide a fully 

competent microenvironment for the expansion of HSCs as observed in the AGM 

region. The number and efficiency of repopulating cells in the AGM region increases 

significantly by day 11 pc (Medvinsky and Dzierzak, 1996). However, although 

a deficiency in expansion of ES cell-derived HSCs appears to occur in day 5 EBs, 

an expansion of haematopoietic activity at the level of committed progenitors can 

be detected in globin expression and in CFU-A numbers (Table 4.4, Figure 4.8.1). 

This lack of potential in EBs to expand the number of ES-cell derived HSCs may 

possibly be overcome by co-culture of EBs and AGM regions or the use of 

conditioned medium from AGM cultures. 

Globin gene expression has been widely used in ES cell systems as a molecular 

marker to monitor developmental stages and cell-lineages during haematopoietic 
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differentiation in vitro (Nakano et al, 1996; Hole et al, 1996, Keller et a!, 1993; 

Schmitt et al, 1991; Wiles et al, 1991; Doetschman et al, 1985). Members of the 

13-globin gene family are often used to distinguish between fetal and adult stages, 

since these globin types are regulated in a tissue-specific and developmentally specific 

manner. The alpha globin cluster consists of the embryonic zeta-gene and two adult 

alpha-genes. In the present study, specific alpha-globin riboprobes were used for the 

analysis of globin expression. Adult alpha-globin gene transcripts have been found 

to be co-expressed with embryonic zeta-globin gene transcripts. The co-expression 

of embryonic zeta-globin and adult alpha-globin occurs in the same cells and from the 

onset of erythropoiesis (Leder et al, 1992). Therefore the use of alpha-globin specific 

probes in this study allowed the use of one type of probe to follow the globin 

expression pattern during haematopoietic differentiation of EBs. The relevance of 

globin as a differentially expressed gene during in vitro differentiation is emphazised 

by the isolation of the zeta-globin gene in the cDNA subtraction library mentioned 

above. 

The CFU-A data that correspond to these globin expression analyses (Table 4.4) 

somewhat contradict the suggestion that globin expression marks the onset of 

haematopoietic activity during ES cell differentiation. Although CFU-A colonies 

were detected at day 2 of differentiation, it must be noted these CFU-A data do 

not give any qualitative information about the type of colony. The CFU-A assay 

was used in the present study as a rapid screen for haematopoietic differentiation 

and colonies were scored by eye on size and structure. In a qualitative analysis 

of colonies formed in the EB-derived CPU-A assays three colony types have been 

observed (Hole et al, 1996). It may be possible the early colonies detected were 

not necessarily derived from primitive haematopoietic progenitors. CPU-A progenitors 

have been found to share many properties with CFU-S progenitors. A definitive 

description of CFU-A progenitors would require more detailed morphological 
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analysis, replating assays and an assessment of responsiveness to MIP-laipha 

(Lorimore et a!, 1990). 

Comparison of globin expression patterns from untreated and DMSO or RA 

induced EBs demonstrated differences in the numbers of globin expressing EBs. 

However, no obvious changes in the arrangement of the globin expressing cells 

within EBs was observed (Figures 4.8.1-4.8.3, 4.9; Table 4.4). This observation 

is consistent with previously carried out CFU-A analyses on untreated and induced 

EBs, which suggested that DMSO and RA do not alter the temporal pattern of 

haematopoietic differentiation but influence the number of EBs that commit to 

haematopoiesis (Doostdar, 1997). Although no common pattern for globin expression 

could be deduced from these sectioned EBs it was interesting to observe that globin 

expressing cells were located within EBs either as clusters of cells or isolated, 

scattered cells. The arrangement of globin expressing cells in clusters may resemble 

blood islands in yolk sac during embryogenesis in vivo. The scattered globin 

expressing cells may indicate the location of primitive progenitors or may be an 

in vitro artefact. The understanding of these globin expression patterns is complicated 

because EBs do not display 'morphological landmarks' as do developing embryos. 

Due to the lack of morphological clues other means need to be used to gain 

information from these spatial globin expression patterns about the molecular 

events during in vitro haematopoiesis. One approach by which this could be 

achieved is the analysis of 

co-expression of globin with other haematopoietic genes and/or markers associated 

with stromal cells of the haematopoietic microenvironment. The first haematopoietic 

cells to appear during embryogenesis in vivo are erythrocytes which reflect the 

commitment of mesoderm to an haematopoietic fate. Thus these haematopoietic cells 

can provide an avenue by which to examine the development of the haematopoietic 

system. The resemblance of haematopoietic in vitro differentiation of ES cells to 
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in vivo development and haematopoiesis is well documented (Doetschman et al, 1985; 

see for review Keller, 1995). Therefore, the globin expression patterns in EBs may 

provide a promising route for the examination of haematopoietic differentiation and 

the identification of the HSCs in vitro. 

The quantitative comparison of globin expressing EBs between untreated and induced 

EBs shows some prominent features (Table 4.4; Figure 4.9). As mentioned before, 

no globin transcripts were detectable in day 2 EBs but from day 3 onwards in each 

time course. It is noteworthy that in untreated EBs and DMSO induced EBs similar 

levels (-20%) of globin expressing EBs were detected at day 3, whereas in RA 

induced EBs the number is reduced to about half (-10%) that of untreated BB s. 

This observation suggests that RA acts at an earlier stage of ES cell differentiation 

than DMSO. The similarity in numbers of globin expressing EBs between untreated 

and DMSO induced EBs is also maintained when the positive EBs are subdivided 

into EBs with scattered globin expressing cells and EBs with clusters of globin 

expressing cells (>10 cells). As mentioned above, the most prominent feature that 

could be distinguished in the spatial expression patterns of globin in EBs was the 

arrangement of globin expressing cells in clusters or scattered single cells. Since this 

difference may hold some significance, positive EBs were subdivided into EBs with 

>10 globin expressing cells and EBs with <10 positive cells (Table 4.4). The precise 

meaning of these observations remains to be determined. By day 4 of differentiation, 

the numbers of globin expressing cells in DMSO induced EBs is two-fold increased 

over untreated EBs, clearly illustrating that DMSO exerts its effect between day 3 

and day 4 of differentiation (Table 4.4). Changes in numbers of globin expressing 

EBs between later time points are at similar ratios in untreated and DMSO induced 

EBs. The observed increase in haematopoietic activity of EBs after exposure to 

DMSO are consistent to observations made in other cell systems. DMSO has been 

shown to induce erythropoiesis in murine erythroleukaemia (MEL) cells, which 
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represent plastic erythroid progenitors (Elefanty et al, 1996). On the basis of these 

observations it can be concluded that DMSO enhances globin expression within 

an EB population by the recruitment of progenitors to the erythropoietic lineage. 

Although the numbers of globin expressing EBs do increase in RA induced EBs 

over time, most positive EBs (>80%) have less than 10 cells expressing globin 

(Table 4.4). The reduction in haematopoietic activity in RA induced EBs in 

comparison to untreated EBs may result from inductive effects of RA for 

differentiation into other cell lineages. For instance, RA has been reported to 

induce the differentiation of neural lineages from ES cells (Wobus et al, 1994; 

Bain et al, 1995). Alternatively, RA may act on certain primitive progenitors 

and reduce the number of cells that commit to the haematopoietic lineage. 

In order to confirm the haematopoietic identity of the globin expressing cells and 

to investigate whether a certain order in the location of globin expressing cells exists, 

co-localization studies of haematopoietic genes and globin need to be performed. 

For instance, at day 4 of differentiation, the time point when transplantable HSCs 

are present, only -15% of EBs staining positive for globin expression have more 

than 10 cells expressing globin (Table 4.4). It will be of interest to investigate 

whether position-dependent differentiation for haematopoiesis in EB exists. To 

be able to reconstruct the molecular sequence of expression during haematopoietic 

differentiation temporal and spatial co-expression analyses will have to cover a 

wide range of haematopoietic genes including transcription factors, receptor kinases, 

cytokines, covering early and/or late developmental stages and early and/or late 

involvement in haematopoiesis. Preliminary experiments using globin and actin 

probes (Section 4.4.3) to explore the feasibility of two-colour in situ hybridization 

experiments suggest co-expression analysis as a promising approach to further 

unravel the haematopoietic organization within EBs. 
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Expression patterns of some genes known to be involved in mesoderm or 

haematopoietic development were analyzed by in situ hybridization with 

specific riboprobes (summarized in Table 4.5; Figures 4.10.1-4.10.7). 

Although all genes used for these in situ hybridizations on EBs are known to 

be involved in haematopoiesis in vivo, most have also been found to be expressed 

in non-haematopoietic cells in vivo, e.g. FLK- 1, SCL, CD34, c-kit, SCF. This 

relatively wide spread expression in various cell lineages in vivo appears to be 

reflected in the expression patterns in sectioned EBs after in vitro differentiation. 

None of the genes analyzed produced a distinguishable staining pattern as detected 

for globin expression. Furthermore, the relative disorganized structure of EBs 

without obvious morphology makes interpretation of these staining patterns very 

difficult. Although broadly consistent with gene expression studies in EBs using 

RT-PCR analysis (Keller et al, 1993; Schmitt et al, 1991; McClanahan et al, 1993, 

Kennedy et al, 1997; Hole et al, 1996), whole mount in situ hybridization (Johansson 

and Wiles, 1995) and flow cytometric analysis for immunophenotypic characterization 

(Ling and Neben, 1997; Kabrun et al, 1997) direct comparison of the spatial 

expression pattern with these studies is difficult not only because of the different 

methodologies used but also because of variations in culture systems. 

In order to be able to integrate the data for spatial expression of haematopoietic 

genes in EBs into the presently known molecular events occurring during 

haematopoietic differentiation further analysis will be required. Co-expression 

analysis of haematopoietic and microenvironmental genes by in situ hybridization 

or in situ RT-PCR techniques combined with analysis of their corresponding 

proteins is likely to provide more conclusive information for the haematopoietic 

structure within EBs. 
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6. Summary and Perspectives 

In summary, the studies outlined for the analysis of molecular events during 

haematopoietic differentiation demonstrate the potential of the in vitro prescreening 

strategy of gene trap clones assessed and illustrate spatial gene expression analysis 

as a promising approach for the reconstruction of the molecular events. 

The assessment of the in vitro prescreening strategy for the identification of 

genes potentially involved in haematopoiesis proved the applicability of the 

tested approach (Chapter 4.1). Although monitoring B-gal activity during in vitro 

differentiation after exposure to DMSO or RA indicated its usefulness as a measure 

of whether a gene trap clone may be of interest and should be included for further 

studies, some objections remained. The strategy was based on observations with the 

ES cell line EFC- 1 in which the temporal pattern of the appearance of haematopoietic 

progenitors has been well defined by CPU-A analysis and transplantation studies 

(Hole et al, 1996). Haematopoietic differentiation in this ES cell system has been 

found to be induced by exposure to DMSO and reduced by exposure to RA 

(Doostdar, 1997). Although the generality of these observations were shown 

on other ES cell lines (CGR8 and Ri) in the present study (Figures 4.2.1-4.2.3; 

Table 4. 1), given the considerable amount of time and work it would need to perform 

a large-scale screen (>1000 gene trap clones) some doubts about the value of this 

screen remain. Specificity for haematopoiesis was introduced in this prescreening 

strategy by the exposure to DMSO and RA. An increase of B-gal activity after DMSO 

exposure and a reduction after RA exposure during the time period of 3 days and 

6 days of differentiation would have resulted in the selection of the gene trap clone 

for further characterization by CPU-A analysis. However, the question that remained 

is how much information about the involvement in haematopoiesis can be gained from 
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B-gal reporter gene expression patterns and whether alternative approaches for the 

prescreening of gene trap clones in a more direct manner are possible. The use of 

gene trap cell lines, selected on the basis of their spatial expression patterns in chimeric 

embryos confirmed the correctness of the rationale of the tested in vitro prescreening 

strategy. However, the use of a quantitative assay for reporter gene expression of a 

heterogeneous EB population caused limitations. As mentioned in Section 5. 1, most 

in vitro prescreening strategies, employed and assessed on gene trap clone libraries, 

are based on qualitative reporter gene assays or on sequence information based 

techniques (Baker et al, 1997; Chowdhury et al, 1997; Townley et al, 1997; 

Holzschu et al, 1997; Gajovic et al, 1998; Voss et a!, 1998). 

RT-PCR analysis of gene expression during in vitro differentiation of the ES cell 

system EFC- 1 identified globin as a potential marker for the onset of haematopoietic 

differentiation (Hole et a!, 1996; Menzel U, Diplomarbeit, 1994). Therefore an 

alternative approach for the screening of gene trap clones, which is based on a 

qualitative measure, can be co-expression analysis of gene trap transcripts with 

globin. This was attempted by whole-mount in situ hybridization experiments. 

Based on the observations in the present study assessing a in vitro prescreening 

strategy for gene trap clones having a 'standard' gene trap construct inserted, a 

splice acceptor site and a lacZ reporter gene (Section 4. 1), an alternative gene trap 

strategy has been devised using a refined gene trap construct. In order to be able to 

identify trapped endogenous genes co-expressed with globin, the gene trap construct 

contains the globin locus control region (LCR) unit driving a more accessible reporter 

gene, the green fluorescence protein (GFP). This enables identification of 

differentiating cells that express GFP in a viable state and does not rely on enzymatic 

colour substrate assays. Preliminary studies have identified ES cell clones that show 

temporal GFP expression corresponding to the globin expression identified in the 

ES cell system EFC-1 (Cunningham A, and Ansell J; personal communication). 
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Parallel to the use of gene trap technology for the identification of genes involved 

during haematopoietic differentiation a cDNA subtraction approach has been used 

to identify genes that are differentially expressed during the onset of haematopoietic 

differentiation in EBs. cDNA of day 3 and day 5 were subtracted from each other 

and a cDNA library produced which has been shown to be a rich source of known 

and novel genes involved in haematopoietic differentiation (Graham G, Hole N, and 

Ansell, J; personal communication). This cDNA subtraction approach proved to be a 

more efficient and superior methodology for the identification of novel haematopoietic 

genes than gene trapping. 

Therefore further investigations in the present study were concentrated on the analysis 

of spatial gene expression in EBs during haematopoietic differentiation (Section 4.4). 

Analysis of the globin expression pattern on sectioned EBs by in situ hybridization 

revealed unique details at the cellular level. Furthermore evidence for the effects of 

DMSO and RA at the cellular level is presented (Section 4.4.2). However, in order 

to fully understand the identified expression pattern for globin further analysis will 

be required. Although DMSO has effectively been shown to increase haematopoietic 

differentiation in vitro, parallel to molecular analysis further efforts should be made 

to optimize culture conditions to achieve 100% haematopoietic differentiation within 

an EB population. 

The interpretation of the spatial expression pattern of other known haematopoietic 

genes was difficult, since most genes are also expressed in non-haematopoietic 

cells and due to the lack of 'morphological landmarks' within EBs. However, 

these analyses provide information to explore various possibilities to analyze the 

interrelation between haematopoietic and microenvironmental cells. For instance, 

co-expression analysis by in situ hybridization or in situ RT-PCR technology or 

immunophenotypic methodology. 

Based on results from the present project it is proposed that a promising avenue 

to identify and characterize novel genes during haematopoietic development will 
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be by combining the cDNA subtraction approach for the isolation of genes 

differentially expressed during haematopoietic differentiation in vitro with the analysis 

of spatial expression in 'wild-type' EBs. This molecular in vitro characterization will 

provide information by which identified clones can be chosen for functional analysis 

in vitro and in vivo by a gene targeting approach. The use of gene targeting techniques 

will allow the production of a range of transgenic models by the use of varying vector 

constructs, e.g. knock out mutations, conditional gene mutations. 

The results presented and the techniques explored in this project will be advantageous 

in devising further strategies for the identification and characterization of HSCs and 

the definition of molecular events involved in their establishment. 
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ABSTRACT 

Most screening strategies for integrations of gene trap constructs in embryonic stem (ES) cells 

employ in vivo techniques such as the production of chimaeric embryos and transgenic mice. 

Using an established ES cell system for in vitro haematopoiesis the design of an jn vitro 

prescreen for 'gene trapping' events that may identify genes involved in mesodermal and early 

haematopoietic commitment has been investigated. Exposure of'gene trap' lines to 

morphogenic factors such as dimethyl suiphoxide (DMSO) and retinoic acid (RA) which induce 

and suppress haematopoietic differentiation of ES cells respectively has shown that 

haematopoietic commitment in ES cell lines with gene trap integrations can be reproducible 

influenced. Changes in haematopoietic commitment can be detected using a colony forming 

assay for primitive progenitors in vitro (the CFU-A assay) and changes in IacZ expression can 

be detected with a simple li-galactosidase activity assay. Coincidence in temporal patterns from 

these assays can be used to enrich for potential haematopoietic gene trap clones. These studies 

demonstrate the potential of this in vitro screening strategy for a large-scale prescreening assay 

that should allow us to enrich for the number of 'haematopoietic' genes to be studied in vivo. 



INTRODUCTION 

The Haenialopoietic System 

The mammalian haematopoietic system is a complex developmental system which can 

be viewed as a hierarchy of pluripotent, committed and maturing cell populations differentiating 

into lymphoid, myeloid and erythroid cell types. Terminally differentiated cells within this 

system are short-lived and must be continually replaced from pluripotent haematopoietic stem 

cells (HSCs) throughout the lifespan of the animal. The definition of HSCs is based on 

characteristics such as self-renewal capability, inultilineage differentiation and the competence 

to rescue recipient animals from lethal irradiation and repopulate the entire host haematopoietic 

compartment. Both, differentiative and proliferative processes of HSCs are regulated and 

influenced by interactions with non-haematopoietic stromal cells providing a haematopoietic 

inducing microenvironment, also described as a stem cell niche' (I). Cells of the 

haematopoietic microenvironment are a major source of haematopoietic cytoktnes supporting 

growth and differentiation of haematopoietic cells. The importance of interactions between 

haematopoietic cells and their respective microenvironment is widely accepted. However, little 

is known of the precise nature of the inter- and inlra-cellular signals involved in control of 

haematopoietic differentiation of HSCs. 

l-laematopoietic development remains difficult to analyse for a number of specific reasons: (i) 

HSCs exist in a very low frequency in haematopoietic tissues (2) and lack the expression of 

specific markers (3). (ii) HSCs display transient phenotypes during their various developmental 

stages and occur as resting and activated subsets in the haematopoietic system (3). (iii) HSCs 

migrate through diverse sites of haematopoiesis during their development before 

haematopoiesis is established in the bone marrow (BM) of the adult mouse. The mouse 

haematopoietic system derives from ventral mesoderm of the developing embryo, which is 

formed at day 6.5 post coitum (pc). During mouse embryogenesis diverse anatomical regions 

of the developing embryo show successive haematopoietic activity beginning at approximately 

day 7 of gestation in the yolk sac (YS) with the first visible differentiated haematopoietic cells 

of the erythroid lineage. Haematopoiesis shifts at midgestation to the fetal liver (FL) and later to 

the spleen and BM which becomes the major site of haensatopoiesis in the adult. While the bone 

marrow of adult truce is clearly a major site for HSCs it is still undetermined where the stem 

cells arise during embryogenesis. Until recently it had been generally accepted that all llSCs its 

mammals originate from the YS and consecutively migrate to the sites of definitive 

haematopoiesis (4). This view was based on in vitro studies showing that YS cells can 

differentiate into various haematopoietic lineages and in vivo studies showing that YS contains 

spleen colony-forming units (CFU-S) from day 8 of gestation. However, although primitive 

haetnatopoiesis and committed haematopoietic progenitors can be detected in the YS as early at 

days 7-8.5 pc, the lack of definitive CFU-S progenitors and long term repopulating (LTR) 

FISCs in the YS until late day 9 pc and day II pc respectively has brought this widely held 

dogma into controversy. 

In non-mammalian vertebrates the ontogenic source of the definitive adult haematopoietic 

system has been determined by orthotopic embryo grafting experiments. Two sites of 

haematopoiesis have been found to exist early in the embryonic development of birds and 

amphibians. In the avian and amphibian systems, the YS gives rise only to early, transitory 

haematopoiesis whereas the definitive adult HSCs in these vertebrates are exclusively of intra-

embryonic origin derived from the mesodermal region containing the dorsal aorta (5). 

Experiments with the analogous area of the mouse embryo have been performed by two groups 

(6, 7). Godin et at. (6) investigated for a possible non-yolk-sac source of stem cells by grafting 

intra-embryonic paraaortic splanchnopleura from 10-to 18-somite (day 8.5-9.5 pc) mouse 

embryos under the kidney capsule of adult immunodeficient SCID mice. Lymphoid cell clones, 

which could differentiate into mature B cells, were obtained from YS and paraaortic 

splanchnopleura cell preparations but not from other tissues of the embryonic body. Their initial 

minute numbers increased in parallel in the YS and the paraaortic splanchnopleura, suggesting 

that their emergence in the two sites was simultaneous. The detection of multipotent HSCs in 

the body of the mouse embryo prior to liver colonization (between the stages of 8.5 - 9.5 days 

of gestation) by this in vitro approach led to the suggestion that llSCs appear in parallel in the 

paraaortic splanchnopleura and in the YS, where they represent a new generation of primitive 

HSCs (8). Medvinsky et al. (6) directly compared the CF1J-S activity of the aorta, gonad, 

tnesonephros (AGM) region with the YS and FL during embryogenesis and found that this 

intra-embryonic region contains CFU-S activity at a higher frequency than that in embryonic 

YS and that such activity appears in the AGM region before the FL. Furthermore, the AGM 

region has been shown to harbour adult type multipotenl haetnatopoietic progenitors (CFU-S) 

and plutripotential LTR-HSCs at late day 10 pc, a time slightly earlier than in the YS and FL. 

While the results presented by Medvinsky em al. (6) indicate that the inlra-embryonic AGM 

region is the most potent pre-liver site of definitive haemaiopoietic activity, the direct 

measurement of CFU-S and LTR-ltSCs within different parts of the embryo as a means of 

identifying the primary source of definitive haematopoietic activity cannot exclude the active 

interchange of cells via the circulation and possible interstitial migration of embryos. Therefore, 

to examine the source of the definitive HSC in the mouse embryo, Medvinsky ci at. (10) have 

developed a novel ut vitro organ culture approach. By using isolated organ cultures they 

demonstrated that CFU-S progenitor activity is not only maintained btit autonomously 

generated and increased in AGM cultures at day 10 and II pc while YS supports only weak 

CFU-S activity. At day 10 pc the AGM region exclusively initiates abundant LTR-HSC activity 

and is totally independent of influences from the YS and the FL at this time. This evidence 

suggests that the AGM region is the pre-fetal liver source of the adult definitive haematopoiesis 

its the mouse and strongly supports the view that the FL is seeded by HSCs generated in the 

AGM region (10). 

Although the identification of an inmra-embryonic source of haematopoietic activity in mice in 

the paraaortic splanchnopleura or AGM region has greatly advanced our knowledge of 
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haetnatopoietic development in mainnials their in utero development still prohibits ortlolopic 

embryo grafting experiments as performed in non-nianimalian vertebrates. Therefore alternative 

methods are required to investigate the origin of the most primitive l-ISC and the order of 

appearance of embryonic (primitive) HSCs and adult (definitive) IISCs in mammals. A variety 

of suitable in vitro systems have been established by a number of groups using haemnatopoiettc 

precursors derived from various explanted adult or fetal tissues to study haematopoieiic 

development (10, II). Various cell types e.g. long-memt bone marrow cells, fetal liver cells and 

cell lines possessing a stable pluripotential embryonic phenotype have been demonstrated to he 

useful in studying cellular and molecular events of haematopoiesis in vitro. Although most of 

these in vitro systems do not allow the study of the complete developmental process of 

lmaematopoiesiS they are usually very specific for certain sections of the developmental pathway. 

Taken together it should be possible to obtain a comprehensive knowledge of the cellular and 

molecular processes occurring during haemnatopoietic development in vim. 

Embryonic Stem Cells and Gene Trapping 

Cell lines of an early developmental stage list possess a stable pluripotenttal embryonic 

phenotype can be obtained from early mouse blastocysts, embryo-derived teratocarcinomas and 

primordial germ cells (12). Embryonic stem (ES) cells are totipotent cells derived directly from 

the inner cell mass of preimplantation 3.5 day mouse blastocysts (13, 14) and represent primary 

cultures with a high differentiation ability in vitro and in vivo. They closely resemble their 

normal counterparts and are able to form derivatives of till three germ layers when reintroduced 

into mouse blastocysis (13, 15). By co-culturing with feeder cells or in a feeder-free system in 

the presence of leukaemia inhibitory factor/differentiation inluhitory activity (LIF/DIA) (16) ES 

cells can be kept in their undifferentiated state. However, if I_IF is withdrawn ES cells will 

differentiate spoilt aitcously into many cell types including those of the hiseniatupuietic system 

(13-15, 17). The in uiuo dilTerentiatioti of ES cells results in the forntaimun oh emuibryumid bodies 

(EBs) with endoderirmuul, mesodermal, and ectodermal layers (17). Several laboratories have 

taken advantage of this in vitro model systeni to study the early development of haeniatopoiet mc 

cells (18-23). 

The capacity of ES cells to differentiate in vitro and the appearance of terminally differentiated 

haemaiopoiciic cells indicates the intermediate presence of l-ISCs during ES cell differentiation. 

Identification and amplification of these ES cell-derived l-lSCs may provide an abundant Source 

of hiaemaiopoiemic cells for analysis and modification. The appearance of haematopoieuc cells is 

routinely observed as islands of liumemTmughobinised eryihiroid cells or blood islands within the 

developing EB5 (17). 1 however, EBs also contain progenitor cells capable of giving rise to 

myeloid, erythroid and lymphoid cells (18-20, 22-25). The structure of EBs seems to provide 

an appropriate microenvironment for ES cell-derived liaemaiopoieimc differentiation and it can he 

assumed that interactions occuiTing in Ells resemble events between haensatopoteimc tissues and 

I lSCs in vivo. 

Reconstitution experiments using differentiated ES cells have been shown that bug-term 

repopulation can be derived from ES cells (21, 25-28). However, results reported by these 

groups are not correspondent. Some workers reported lineage restricted ES cell-derived 

repopulation (21, 25) whereas others observed multi-lineage reconstitution (26-28). These 

contradictory reports demonstrate that the reconstitution of lethally irradiated mice by ES cell-

derived haematopoietic cells is very  much depending on the respective ES cell system used and 

long-term multi-lineage repopulation may be cell line and/or passage number dependent. Data 

presented by groups who report multi-lineage repopulation (26-28) indicate that one 

prerequisite for appropriate haemaiopoietic commitment by ES cells is the presence Of 

exogenous stromal cells or intact EB fonnation providing an appropriate microenvironment for 

the emerging HSCs within EBs. Two groups (26, 27) using an ES cell stronsal cell co-culture 

system and conditioned medium argue thai the isolation of IISCs from differentiated ES cells 

appears to be dependent on these siromal cell co-culture conditions. Ilowever, Hole ci al. (28) 

present evidence that ES cell differentiation in vitro in mite absence of stronial cell culture or 

conditioned medium can give rise to multi-lineage haematopoieitc progenitors capable of long- 

term reconstitution. Using an in vitro assay for the detection of primitive haemaiopoueue 

progenitors (the CFIJ-A assay) they have characterised the earliest time points at which 

huaeivatopoietic commitment can be detected in their system and concentrated reconstitution 

studies around this critical time point. These authors present data suggesting the transient 

presence of muhlipoteni, long-term repopulating hacniumiopoicimc progenitors within their ES cell 

system and argue that time transient and early presence of the primitive progenitors (luring ES 

cell differentiation may be a reason for the limited lineage reconstitution seen in oilier studies. 

By relying on the internal differentiation programme provided by the EBs themselves they may 

limive identified more clearly the time point at which the cmii liest hmuicniaiolsucuic progenitors cmiii 

be detected The idemutificuutiun and aniplihication of tIns assunnuply transient I ISC phenotype 

derived during in vitro differentiation of ES cells may provide an alternative strategy for genetic 

analysis and modification of time early hiaemmsaiopoietic development and provide a potential 

source of I lSCs. 

One of the most  powerful tools to study developmental processes is the application of genetics. 

Although genetic manipulation techniques are commonly used in model invermehrames it has been 

very difficult and demanding to apply similar techniques ill usamimsahs. Thus, itiost initiations in 

once have arisen either spontaneously or were induced by radiation or chemical iimui.sgenesmS. 

The ability to imitate the moose genomne in mm itiore diiected and subtle manner has been 

revolutiomuised by the use of ES cells. ES cells have Proven useful for the successful application 

of a number of nuumagenic strategies, including analysis of spontaneous mutations, chemical 

itiuimmigemiesis, and insertional mumagemiesis (reviewed in 29). It has been demonstrated that ES 

cells mire mimeitable to genetic mmsanipulmui ion in vitro and that these genetically altered cells retain 

their differentiation Potential and normality in trio when transferred into the permit line of 

chtimnaeric mice (30). Genetic ntmumui puhat moms of ES cells in vitro (reviewed in 31,32) provides file 
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means to mulagetlize populations of ES cells, which can be screened for specific genetic 

alterations and characterized in vitro prior to transfer into the mouse germline. Furthermore, in 

vitro differentiation enables examination of the phenotype of for example targeted 

haematopoietic genes without the need to go through the germline and to identify novel genes 

involved in haematopoietic development. 

Gene trapping provides a method to identify and functionally characterize novel genes and 

involves the transcriptional activation of promoterless reporter gene constructs after appropriate 

integration into the genome. It does not depend on the availability of sequence information. 

Gene trap approaches have been successfully used to trap genes expressed in undifferentiated 

ES cells (33-35). The design and uses of the many different gene trap constructs has been 

reviewed by Skames (36) and Hill and Worst (29). The two main types of gene trapping 

vectors differ in their requirements for reporter gene activation. Promoter trap vectors simply 

consist of a proinoterless reporter gene the expression of which requires insertion of the vector 

into an exon of a gene. Gene trap vectors contain a splice acceptor sequence upstream of the 

reporter and integration of this type of vector within an intron of an endogenous gene is 

predicted to generate fusion transcripts through the use of the splice acceptor. Conventional 

gene trap vectors generally contain the IacZ gene which encodes for the bacterial B-galactostdase 

(B-gal) protein as a reporter and neomycin as a selectable marker, or the B-geo gene which 

encodes for a directly selectable reporter protein, the lacZ-neomycin phosphotransferase fusion 

protein (33,34). The subsequent expression of the reporter gene in both cases is under the 

control of the transcriptional regulatory elements of the endogenous trapped gene and the active 

form of a functional 13-gal fusion protein in !acZ expressing cells can he easily identified 

employing various standard assays for B-gal expression. By creating a fusion transcript with 

the endogenous gene, promoter trap and gene trap insertions have the potential to he mittagenie. 

As a portion of the interrupted endogenous gene is included in the fusion transcript, the mutated 

gene is accessible to molecular cloning using the 5' rapid amplification of eDNA ends (RACE) 

strategy (35). Gene trapping in ES cells offers a rapid method to identify and simultaneously 

mutate genes expressed during mouse development (33). In a random gene trapping approach 

the ES cell clones are selected on the basis of reporter gene expression in undifferentiated ES 

cells and then screened for expression in the developing embryos. Integrations that result in the 

expression of the reporter gene it) the tissue or developmental pathway of interest can then be 

selected for further study. However, this is a particularly time consunuing and expensive in vivo 

screening strategy (37) and clearly an in vitro prescreen that could select for integrations into 

genes expressed in cell lineages of interest would he very useful. Various approaches 

addressing in vitro prescreening of ES cell clones with gene trap insertions have been 

performed and two general strategies have been reported (38, 39). One strategy is a directed 

gene trap screen where gene trap integrations were selected ill vitro on the basis of their 

response of the addition of the morphogetu retinoic acid (RA) (39). As ES cells can differentiate 

into a large number of different lineages in trim it should be possible to adapt this screening 

strategy for any endogenous trapped gene that is expressed in a cell lineage of interest after they 

have been exposed to various experimental environments - growth factors, morphiogens or 

specific feeder cells, for example. Generally, this screening strategy should allow the 

identification of genes that act downstream of any ligand-mediated pathway. Another strategy 

for in vitro prescreening of gene trap integrations in ES cells involved the design of a specific 

gene trap construct which will integrate into particular sequence sites to generate active B-gal 

fusion proteins. The 'secretory trap' used by Skarnes et al. (38) relies on capturing the N-

terminal signal sequence of an endogenous gene to generate an active 13-gal fusion protein. 

In this manuscript we discuss a novel approach for the in vitro preselection of gene 

traps for integrations into genes important for the development of the haematopoietic system. 

The strategy being the induction of haematopoietic in vitro differentiation of ES cells by 

morphogens that have been shown to induce or suppress haematopotesis respectively. Using 

established ES cell culture procedures which are suitable for haenuatopoietic differentiation in 

vitro and enable ES cells to maintain their potential of ill vivo differentiation we have used ES 

cell lines containing gene trap integrations to design an in vitro prescreen specific for 

haematopoietic events. To address reproducibility and correlation of ill vitro and in vivo 

reporter gene expression of this approach ES cell lines containing gene trap insertions selected 

on the basis of their spatial expression patterns in chinsaerie embryos have been used for this 

study. Haematopoietic development in vitro was determined by CFU-A analysis and reporter 

gene activity was detected by a quantitative 13-gal assay. We have found that the ES cell lines 

containing gene trap insertions can maintain their potential of haematopoietic development in 

vitro and that responsiveness to haematopoiesis inducing titorphogens can be monitored by a 

quantitative 13-gal assay. 



MATERIAL AND METHODS 

Embryonic Stem Cell Lines and 'Gene Trap' Lines 

ES cell lines used were EFC-1 (40), RI (41), and CGR8 (42). Gene trap lines 1114 

and R68 contain conventional gene trap vectors with a splice acceptor sequence fused to the 

reporter gene !acZ and the bacterial neomycin-resistance gene driven by the phosphoglycerate- I 

(PGKI) promoter. in vivo expression of 1114 was found to be restricted to YS and FL, R68 

was found to be expressed in fetal heart and various other areas (43). 'Gene trap' line ST598 

contains a 'secretory trap vector with the reporter gene B-geo, which is a IacZ-neomycin 

phosphotransferase fusion gene linked to a splice acceptor sequence, a signal sequence and a 

transmembrane domain, which relies on capturing the N-terminal signal sequence of an 

endogenous gene to generate an active 6-gal fusion protein. in viva expression of this gene 

trap' line has been found to be restricted to YS and FL (38, Skarnes, W., personal 

communication). 'Gene trap' line Zin40 contains a gene trap construct with a splice acceptor 

sequence linked to the B-geo reporter gene and is ubiquitous expressed in viva (Smith, A., 

personal communication). 

Embryonic Stem Cell Culture and Embryoid Body Formation 

ES cell lines and 'gene trap' lines were routinely passaged and maintained in an 

undifferentiated state under feeder-free culture conditions in the presence of leukaemia 

inhibitory factor (LIF), as described by Smith (44). All experiments described used cell lines of 

less than 30 passages. Enibryoid bodies (EBs) were formed by using the hanging drop method 

as described (23, 28). In brief, ES cells were cultured as hanging drops (101.11) at a 

concentration of 3xl04 cells/ml  in the presence of LIF for 48 hours in a humidified 5% CO') 

atmosphere, ES cell aggregates were harvested into peiri dishes (10 aggregates/10 ml medium) 

containing ES cell culture medium lacking LW and allowed to differentiate into EBs for varying 

periods of time (up to 8 days). Medium was replaced every two days. 

Exposure of Einbryoid Bodies to Morpliogen 

ES cell aggregates formed by the hanging drop method (see above) were exposed to 

1.0% dimethyl sulphoxide (DMSO) or 10-8  M of all-trans retinoic acid (RA) for the first 48 

hours of differentiation and allowed to differentiate for a further period (up to 8 days) before 

being assayed (Doostdar, L., Ansell, J.D. and Hole, N., personal communication). 

The CFU-A Assay 

The CFU-A assay is an in vitro assay that detects primitive hacmatopoielic progenitors 

(CFU-A) and was set up as described previously (45, 46). Briefly, a feeder layer consisting of 

0.6% agar in alpha MEM with conditioned medium from two cell lines (AFI-19T, a source of 

GM-CSF, and L929, a source of CSF-l) was poured in 3 cm diameter tissue culture grade 

dishes (I ml per layer). EBs (50 EBs/plate) were added to 0.3% agar in alpha MEM and added 

to the culture dish to form an upper layer. The dishes were incubated for I  days at 37°C in a 

humidified atmosphere with 5%02/10%CO2. 

Quantitative It-Galactosidase Activity Assay 

The detection of 8-gal activity in EBs from ES cell lines containing gene crap 

integrations was performed using a calorimetric assay as described by Eustice ci al. (48). 

Briefly, EBs were lysed by three freeze/thaw cycles and the protein concentration of cell lysates 

was determined measuring the optical density at 280nm. B-Gal activity assays were performed 

with equivalent amounts of protein (40 pg) using o-nitrophenyl-B-D-galaclOPYraflOSide (ONPG 

as substrate. Samples were incubated at 37°C over night and the absorbance at 405nm was 

determined using an Elisa reader. 
fi-Galactosidase Expression Pattern in Ensbryoid Bodies 

B-Galactosidase activity can be assayed by in situ staining since the action of B-gal on 

the exogenously added substrate X-gal produces an insoluble blue cleavage product which 

precipitates at the Site of enzyme activity. The B-gal staining assay was performed as described 

previously (47). In brief, EBs from ES cell lines containing gene trap integrations were fixed in 

0.2% glutaraldehyde for 10 minutes and stained with X-gal (1mg/mI X-gal) for B-gal 

expression. 
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RESULTS 
Four ES cell lines with gene trap insertions selected on the basis of their spatial expression 

patterns in chimaeric embryos (1114; R68; ST598; Zin40), their respective parent ES cell lines 

(CGR8; RI) and a control ES cell line (EFC- I) were used to assess in vitro differentiation. 

Emphasis was laid on development into haernatopoictic lineages and correlation of in vitro and 

in vivo reporter gene expression. All experiments were performed in sets, i.e. ES cells with 

gene trap insertions, their parental cell lines and the ES cell line EFC-1 as an internal control 

were assayed at the same time. 

CFU-A analysis and responsiveness to morphogen factors. 

The ability of EBs from gene trap lines, their parent ES cell lines and a control ES cell 

line to form CPU-A colonies was followed over a time course of 8 days of in vitro 

differentiation (Fig. I). The CFU-A analyses revealed that all cell lines used possess the ability 

to form CFU-A colonies indicating the presence of primitive haematopoietic progenitors within 

these developing EBs. Comparison of CFU-A profiles from these different cell lines showed 

that CFU-A colonies started to appear at around day 4-6 of in vitro differentiation which was 

consistent for all cell lines, suggesting a common developmental programme for 

haematopoiesis induced by the removal of LIF. No substantial numbers of CFU-A colonies 

were detectable prior to day 4 of differentiation. Undifferentiated ES cell aggregates were 

unable to fonts haematopoietic colonies in the CPU-A assay, indicating the need for 

differentiation in an appropriate microenvironment within the EB prior to the appearance of 

primitive haematopoietic progenitors. The temporal pattern for the first appearance of primitive 

haematopoietic progenitors within the differentiating EBs from these different cell lines was 

precise and reproducible. Variation in onset of appearance and cloning efficiency of CFU-A 

colonies within cell lines between different experiments were within the consistency of this in 

vitro assay. Cloning efficiency was defined by the percentage of EBs plated that formed 

haematopoietic CFU-A colonies. Each cell line displayed a characteristic CFU-A pattern with all 

lines, except one (ST598), showing a continuous increase of CFU-A numbers over the 8 day 

time course followed. 
Responsiveness to morphogenic factors dimethyl ssilphoxtde (DMSO) and rciinoic acid (RA) 

respectively was assessed by exposure of ES cell aggregates to morphogenic factor for the first 

48 hours of in vitro differentiation and further differentiation in suspension culture for up to 6 

days before using these induced EBs for assaying. Previous studies have shown that 

haematopoietic commitment of the ES cell line EFC-I can be influenced by the effects of 

morphogenic factors such as DMSO and RA which respectively increase or decrease tite 

proportion of EBs which contain primitive haematopoietic progenitors forming CPU-A colonies 

(Doostdar, L., Ansell, J.D. and Hole, N.; personal communication). The opposing effects of 

these two morphogenic factors on different ES cell lines and cell lines with gene trap insertions 

were being exploited as a strategy for the design of a specific in vitro prescreen of gene trap 

insertions to identify genes which may he involved in controlling haettsatopotettc differentiation. 

Results from CPU-A analyses assessing the inductive response of EBs to morphogenic factors 

on haematopoietic commitment during ES cell differentiation are shown in figures 2.1 and 2.2. 

These studies revealed differences between original ES cell lines and 'gene trap' lines to 

exposure to morphogenic factors. Whereas the three ES cell lines (CGR8, RI, EFC-l) 

displayed a 'common response, the cell lines with gene trap insertions (1114, R68, ST598, 

Zin40) showed individual responses to morphogenic factors. Temporal and quantitative 

analysis of CFU-A formation from time course studies revealed that the opposing effects of 

DMSO and RA respectively are not ES cell line dependent (Fig. 2.1). All three original ES cell 

lines showed increased numbers of CFU-A colonies after exposure to DMSO (generally by 10-

20%) with the increase starting at around day 4 of differentiation, 2 days after removal from 

exposure to morphogenic factor. However exposure of ES cell aggregates to RA suppressed 

haematopoietic commitment within differentiating EBs. EBs of ES cell lines exposed to DMSO 

not only showed an increase in haematopoietic commitment defined by the number of CPU-A 

colonies but also resembled the temporal CFU-A pattern of their untreated counterparts. No 

significant differences in CFU-A numbers between treated and untreated EBs were detected 

directly after exposure to morphogenic factor at 2 days of differentiation suggesting 

differentiation within the EBs is a prerequisite for the appearance of primitive haematopoietic 

progenitors. ES cell lines with gene trap insertions (11 14, R68, ST598. Z1n40) showed varying 

responses to exposure to morphogenic factors such as DMSO and RA respectively. This 

diversity is more likely to be caused by clonal variations in subclones of ES cells than by the 

insertions of gene trap constructs since integration of gene trap constructs in the genome results 

in heterozygousity at the site of insertion which can be compensated by the second allele. 

Although the 'gene trap lines displayed no common response to exposure to DMSO or RA the 

temporal pattern of emergence of haetssatopoietic progenitors within EBs appeared unchanged 

suggesting 4 days ass crucial time point for haematopoietic commitment during in vitro 

differentiation. With the exception of DMSO treated Zin40 ES cell aggregates no significant 

numbers for CPU-A colony formation were detected in gene trap lines treated or untreated prior 

to day 4 of in vitro differentiation (Fig. 2.2). Time course studies of the temporal CPU-A 

formation pattern of EBs derived from Zin40 cells showed an earlier onset and increase in 

CPU-A colonies after DMSO treatment. however suppression of haematopoietic commitment 

in Zin40 EBs was detected after exposure to RA (Fig. 2.2 D). The 'gene trap' lines 1114 and 

R68 followed their parental ES cell line RI in their response to exposure to morphogenic 

factors with the numbers of CFU-A colonies increasing after exposure to DMSO and inhibition 

of haematopoietic commitment after exposure to RA (Pig. 2.2A,B). Negative effects on CFU-

A colony formation of both morphogenic factors DMSO and RA were observed when ES cell 

aggregates derived from ST598 cell were exposed to these morphogenic factors. Exposure to 

DMSO reduced the number of CFU-A colonies and exposure to RA inhibited the formation of 

CPU-A colonies during differentiation of EBs derived front ST598 cells (Pig. 2.2 C). The 

changes in haematopoietic commitment during ES cell differentiation after exposure to 
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morphogenic factors detected by CFU-A analyses can most likely be attributed solely to the 

morphogenic factors DMSO and RA respectively since the ES cell culture system used for these 

studies was a feeder-free system without supplementation of cytokines or conditioned medium. 

Quantitation of the Ft-Gal activity and responsiveness to morphogenic factors 

Monitoring 9-gal activity of EBs derived from gene trap lines allows the assessment of 

temporal reporter gene expression during in vitro differentiation. However, no information 

about spatial expression patterns, cell types and numbers of cells expressing active B-gal fusion 

proteins can be obtained by this approach. Given the results from CFU-A analyses suggesting 

that day 4 is a crucial time point for haematopoietic commitment during ES cell differentiation in 

vitro and furthermore that haematopoietic commitment of ES cells can be influenced by 

exposure to morphogenic factors it was reasoned that B-gal activity at around day 4 of 

differentiation after exposure to DMSO and RA respectively will most likely enable in vitro pre-

screening of gene trap events potentially interesting for early haematopoietic development. 

Results shown from time course studies (Fig. 3) and from induction studies with DMSO and 

RA (Fig. 4 and Table I) are representative data from an individual experiment. All experiments 

were repeated 3 times, however complete consistency between individual experiments was 

difficult to achieve since pooled EBs were used. Furthermore possible differences in stability of 

IacZ fusion transcripts and protein can complicates temporal and quantitative analysis of B-gal 

activity. 
Temporal reporter gene expressionover an 8 day time course in 'gene trap' lines, 1114, R68, 

ST598, Zin40 was assessed using a quantitative 13-gal assay (Fig. 3). Parental ES cell lines (RI 

and CGR8) and ES cell line EFC-1 were included as controls for definition of background 

levels in this B-gal activity assay. Non significant background levels of B-gal activity were seen 

in these controls. All four 'gene trap lines showed individual patterns of B-gal activity. 

Changes over time in B-gal activity during differentiation were observed in 'gene trap lines 

R68 and ST598 where B-gal activity decreased after initial high activity indicating 

developmentally regulated expression of the trapped genes. Constitutive B-gal activity was 

detected in 'gene trap' lines Zin40 and 1114. However B-gal activity in line Zin40 was found to 

be significant higher than in line 1114, where detected B-gal activity was only little above 

background. 
Influences of morphogenic factors DMSO and RA respectively on B-gal activity in 'gene trap' 

lines are shown in Figure 4 and summarized in Table I. Gene trap' line 1114 showed no 

responsiveness in B-gal activity to exposure to DMSO or RA. Unresponsiveness to RA was 

surprising since line 1114 was originally identified in an inductive gene trap screen as being 

induced by RA (43). However this gene trap screen used undifferentiated ES cells and did not 

allow differentiation of ES cells into EBs. Differences in assay system conditions may also he 

the reason for the unexpected positive response to exposure to RA of EBs derived from line 

R68 'Gene trap' line R68 originally identified as a line whose B-gal activity is reduced after 

exposure to RA (43) showed a 3-fold increase in 13-gal activity after exposure of ES cell 

aggregates to RA. Temporal induction of B-gal activity in R68 line derived EBs was observed 

by DMSO before reaching similar B-gal activity levels as obtained from EBs not exposed to 

morphogenic factor. Activity of B-gal observed in ST598 derived EBs showed complete 

repression of B-gal activity after exposure to DMSO and a changed temporal 8-gal activity 

pattern after exposure to RA. In 'gene trap' line Zin40 high B-gal activity was observed in 

control EBs (note extended scale) and was induced after exposure to DMSO and RA 

respectively however, there was also a change in temporal B-gal activity after exposure to 

DMSO. 

Temporal high fl-gal activity in a time window at around day 4 of in vitro differentiation, 

induction of B-gal activity by exposure to DMSO and suppression after exposure 10 RA in 

conjunction with appearance of primitive haematopoietic progenitors as defined by CFU-A 

analysis were thought to be the characteristics of a potential candidate gene involved in early 

haematopoietic development trapped by a gene trap vector. Although the spatial in vivo reporter 

gene expression patterns of two 'gene trap' lines (1114 and ST598) indicated involvement of 

their trapped gene during early haematopoietic development non of the 'gene trap' lines showed 

the anticipated 'ideal' B-gal activity pattern and responsiveness to DMSO and RA. However, 

continuing investigations of in vivo reporter gene expression pattern of 1114 (43) and ST598 

(38, Skarnes, W., personal communication) confirmed that both lines are not 

involved/restricted to haematopoietic development during embryogenesis despite spatial 

expression in YS and FL. 

Ft-Gal expression patterns in embryoid bodies derived from 'gene trap' lines. 

Spatial locZ expression in EBs derived from 'gene trap' lines was assessed by 

qualitative X-Gal staining (data not shown). Disperse lacZ expression was observed in EBs 

derived from lines 5T598 and R68 respectively. Whereas ES cell aggregates of both 'gene trap' 

lines showed intense blue staining for active B-gal 'spread' over the whole ES cell aggregates 

staining patterns for these lines changed after induction of differentiation by withdrawal of LW. 

Almost all day 2 ST598 EBs showed 'global' reporter gene expression however at day 4 of 

differentiation spatially restricted reporter gene expression was observed with one third of EBs 

displaying 'global' reporter gene expression, one third showing small spots of restricted 

reporter gene expression and one third showing no staining for B-gal. At day 6 and day 8 of 

differentiation none of the ST598 derived EBs showed obvious staining for 8-gal indicating that 

lacZ reporter gene expression was reduced. At day 2 of differentiation one half of EBs derived 

from line R68 displayed global reporter gene expression whereas the oilier half of EBs showed 

spots of restricted expression. From 4 days of differentiation onwards only EBs with 'global' 

reporter gene expression showing an increase in intensity on X-Gal staining and unstained EBs 

were present. In EBs derived from line 1114 1scZ expression observed was restricted to very 

few EBs displaying small distinctive spots of blue stain for !acZ expression in defined regions 

of the EB. This expression pattern for lacZ was observed throughout the time course. All EBs 
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derived from Zin40 showed ubiquitous reporter gene expression resulting in intensely stained 

blue Efis throughout the time course consistent to in vivo expression patterns. 

Although it was difficult to obtain specific details for spatial and temporal lacZ expression since 

this approach does not allow the identification of cell types and cell numbers expressing active 

B-gal fusion protein such microscopical observation of B-gal expression has confirmed temporal 

changes in 0-gal activity detected by quantitative B-gal analysis. 

DISCUSSION 

In this study an established ES cell system for in vitro haematopoiesis was used for the design 

of an in vitro prescreen for gene trap events that may identify genes involved in mesodermal 

and early haematopoietic commitment. Morphogenic factors such as DMSO and RA 

respectively have been used as inducing agents to investigate if the opposing effects of these 

factors on hacmatopoietic commitment during in vitro differentiation of ES cells are effective on 

ES cell lines with gene trap integrations and therefore may be of use for a directed gene trap 

screen. 

Using ES cells in gene trapping approaches has allowed the establishment of thousands of 

random reporter gene insertions. However, conventional screening strategies (reviewed in 37) 

which employ prescreening in chimaeric embryos prior to characterisation of gene trap 

insertions in transgenic animals are time consuming and technically demanding, restricting the 

number of clones potentially available for analysis. Thus, the rate limiting step for a gene trap 

approach is not the isolation and establishment of lines with gene trap insertions but subsequent 

screening and analysis. Although reporter gene expression in chimaeric embryos directly 

reflects expression patterns in transgenic animals (33) and is therefore considered to be the most 

convincing screening strategy to date an in vitro prescreening step prior to production of 

chimaeric embryos would be desirable. In a directed gene trapping screen conventional gene 

trap constructs are used for integration and established gene trap clones are then screened by 

induction to a specific factor for the identification of genes that lie downstream of 

ligandlreceptor mediated signalling pathways. In one such directed gene trap screen (39) gene 

trap integrations were selected in vitro on the basis of the response of undifferentiated ES cells 

to the addition of the morphogen RA. Gene trap integrations responding in vitro to the inducer 

RA have been shown to be significantly enriched for integrations that displayed restricted 

reporter gene expression in vivo (43). Most in vitro screening approaches reported to date used 

undifferentiated ES cells containing gene trap integrations for the selection of clones to be used 

for further analysis in vivo, consequently not including a number of gene trap integrations 

which are not expressed in undifferentiated cells but are expressed during in vitro 

differentiation. Employing in vitro differentiation of ES cells for a screening approach enables 

gene trap integrations to be included that would not normally be identified in a screen using 

undifferentiated ES cells alone. Furthermore, such a screen would allow temporal changes of 

lcicZ reporter gene expression during in vitro differentiation to be monitored and thus provide 

critical indications for specific developmental processes. The ES cell culture system used in this 

study has been shown to be an established system for in vitro haematopoiesiS with a defined 

temporal pattern of haematopotetic activity within developing Ella (28). 

Little is known about correlation of reporter gene expression during in vitro differentiation of 

ES cell lines with gene trap integrations into EBs and their in vivo expression patterns. 

Correlation of in vitro and in vivo reporter gene expression patterns were addressed in this 

study by using gene trap integrations previously characterised for their tissue-specific in vivo 
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expression. Interpretation of results was centred on the applicability of ES cell differentiation in 

Vitro for large-scale selection of gene trap integrations expressed in haematopoietic lineages. By 

using the CFU-A assay for the detection of haematopoietic commitment combined with a 3-gal 

activity assay for monitoring reporter gene expression during in vitro differentiation the general 

applicability for screening of gene trap integrations in haematopoietic lineages was 

demonstrated. Time course studies investigating haematopoietic commitment of different ES 

cell lines and gene trap lines during in vitro differentiation revealed that all cell lines contain 

the potential to form CFU-A colonies and that the time point of appearance of primitive 

haematopoietic progenitors is consistently at around day 4-6 after inducing differentiation by 

withdrawal of LIF (Fig. I). The correspondence in the first appearance of CFIJ-A colonies 

suggests the presence of primitive haematopoietic progenitors within developing EBs for all cell 

lines tested. It is likely that these will be capable of long term rescue and multilineage 

reconstitution of lethally irradiated adult mice as it has been shown for the ES cell line EFC-1 

(28). Furthermore, it demonstrates that this culture system enables a variety of ES cell lines to 

maintain their potential to differentiate into haematopoietic lineages. Induction studies with 

DMSO and RA showed a common response in the parental ES cell lines: increased ui vitro 

haensatopoiesis and similar temporal CFU-A patterns after exposure to DMSO and suppression 

after exposure to RA suggesting a general 'developmental programme for haematopoiesis in 

ES cell lines (Fig. 2.1). In contrast, ES cell lines with gene trap integrations responded 

individually to DMSO and RA, however the general suppressive effect of RA on in vitro 

haematopoiesis was observed in all gene trap' lines used (Fig. 2.2). Since the gene trap lines 

are by definition highly selected sub-clones these differences are more likely caused by clonal 

variation of the original parents than by the integrations of gene trap constructs per Se, although 

the positional effects of random integrants can not be ruled out. The temporal pattern of the first 

appearance of primitive haematopoietic progenitors was unchanged in exposed and control EB5 

further supporting the need for appropriate microenvironment to effect differentiation. Since a 

feeder free culture system was used and no exogenous cytokines or conditioned medium was 

added the influencing effects on haematopoietic commitment are most likely be solely 

attributable to DMSO and RA. Monitoring temporal 6-gal activity during slime course of in 

vitro differentiation and after induction with DMSO and RA respectively was performed by 

using a simple 3-gal assay. Potentially interesting gene trap integrations for haematopoietic 

development were expected to show Onset of 3-gal activity or increase of low level 8-gal 

activity at around day 4-6 of differentiation which would coincides with the first appearance of 

primitive haematopoietic progenitors as defined by CFU-A analysis. Further indication for their 

involvement in haematopoietic development would be a significant increase in 8-gal activity 

after exposure to DMSO and suppression after exposure to RA respectively during this time 

period. Although the gene trap lines used for these studies were selected on the basis of their 

spatial in vim expression pattern and two lines were thought to be potential positive controls 

for involvement in haematopoiesis none of the 'gene trap lines showed the anticipated 3-gal 

activity expression pattern for haensatopoietic gene trap integrations. In fact both lines (1114 and 

ST598) which display to YS and FL restricted reporter gene expression in vivo have been 

identified as not being involved in haematopoiesis (38, 43, Skarnes, W., personal 

communication). Therefore the indication obtained from in Vitro analysis that gene trap 

integrations 1114 and ST598 are not involved in haematopoietic development are consistent 

with results from in vivo studies. Clearly an identified haematopoietic gene trap integration 

would be the most convincing proof for the applicability of this in vitro screening strategy but 

the evidence presented in this study gives every reason to believe that this screening strategy 

will enable us to enrich for gene trap integrations involved in early haematopoietic commitment. 

Temporal and spatial reporter gene expression can be easily monitored by two simple assays, 

the 8-gal activity and the X-gal in situ staining assay. However, neither assay allows the 

identification of cells expressing the reporter gene. Although isolation of lcicZ expressing cells 

by FACS sorting would probably allow such cells to be identified the EB disaggregation 

required for such analyses precludes any spatial information. Results from CFU-A analyses 

and transplantation studies using this ES cell system (28) strongly suggested that interactions 

between haematopoietic progenitors and an appropriate microenvironment provided by the EB 

structure is essential for haematopoietic commitment. 

Current work involves a preliminary Study to explore co-ordinate expression of trapped genes 

with emerging haematopoietic structures over the time course of EB differentiation. RT-PCR 

analyses of differentiating EB5 (28) have identified haematopoietic candidate genes the 

expression of which maybe localised to well defined areas within the EB. Whole mount in situ 

hybridisation can be used to examine the cell structures surrounding foci of haematopoiesis 

within the developing EB. Co-localisation of the lacZ reporter gene expression with the 

candidate gene over the time course of EB differentiation will provide a powerful strategy for 

identication of genes involved in haematopoietic development. Furthermore this approach will 

also provide the rationale for investigating the interaction between haematopoietic progenitors 

and their stromal microenvironment. Data presented in this manuscript and preliminary 

experiments with whole mount in situ hybridisation suggest that a large-scale in vitro prescreen 

for gene trap events identifying genes involved in early haematopoiesis is indicated. 
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FIGURE LEGENDS 

Figure 1: Time course analysis of the emergence of CFU-A cells within differentiating EBs. 

The number of EBs funning CFU-A colonies is expressed as a percentage of plated EBs 

(cloning efficiency). Time is expressed as a number of days EBs were allowed to differentiate 

in suspension culture in the absence of LIF. (A) Comparison of the parental ES cell line CGR8 

and derived 'gene trap' lines ST598 and Zin40 with the control ES cell line EFC-l. (B) 

Comparison of the parental ES cell line RI and derived 'gene trap' lines 1114 and R68 with the 

control ES cell line EFC-l. 

Figure 2.1: Time course analysis of the appearance of primitive liaernatopoieuC progenitors 

within EBs differentiated from control ES cell line EFC-1, and parental ES cell lines CGR8, 

and RI as detected by CR1-A assay after induction for 48 in DMSO or RA. Controls are 

untreated EBs. 

Figure 2.2: Time course analysis of the appearance of primitive ltaematopoietie progenitors 

within EBs differentiated from 'gene trap' lines 1114, R68, ST598, and Zin40 induction for 48 

hours in DMSO or RA. Controls are untreated EBs. 

Figure 3: 13-galactosidaSe activity assay of the control ES cell line (EEC- 1), parental ES cell 

lines (CGR8, RI) and derived 'gene trap' lines (ST598. Zin40, 1114. R68). Results are 

expressed as OD 405nm from standardised amount of protein used for assay. Time is 

expressed as a number of days EBs were allowed to differentiate in suspension culture in the 

absence of LIF. 
Figure 4: B-galactosidase activity assay of 'gene trap' lines after induction with DMSO or RA, 

respectively; 1114, R68, ST598, Zin40. 

TABLES 

Table 1: Summary of the effect of morphogenic factors on ES cell lines and their subclones 

containing gene trap insertions. 
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A Limited Temporal Window for the Derivation of Multilineage 
Repopulating Hematopoietic Progenitors During Embryonal Stem Cell 

Differentiation In Vitro 

By N. Hole, G.J. Graham, U. Menzel, and J.D. Ansell 

Embryonal stem cells have been shown to differentiate in 
vitro into all hematopoietic lineages. This has been used 
successfully as one approach to the study of genetic events 
occurring during haematopoiesis. However, studies on the 
commitment of mesodermal precursors to the hematopoi-
etic lineage have been limited due to the inability to define 
a system in which embryonal stem (ES) cells will give rise 
to primitive hematopoietic stem cells in vitro. Using a colony 
forming assay (CFU-A), we determined that the earliest time 
point at which primitive multilineage hematopoietic precur-
sors can be detected during ES cell differentiation in vitro 
in the absence of exogenous conditioned medium or stromal 
cell culture is 4 days. Lethally irradiated adult recipient mice 
that received differentiated ES cells from this time point 

THE HEMATOPOTIC system is a complex develop-
mental system consisting of lymphoid, my !old, and 

ervthroid elements, which can be shown experimentally to 
be derived from a single multipotent stern cell.' Cells within 
this system are regulated by a range of growth factors that 
control both proliferative and differeritiative processes. Little 
is known of the precise nature of the inter- and intra-cellular 
signals involved in control of hematopoietic differentiation 
of the earliest hematopoietic stem cells.' These cells remain 
difficult to analyze because of their low frequency in hemato-
poieric tissues and their paucity of specific markers. For 
example. in the mouse long-term repopulating cells exist in 
the marrow at a frequency of 1 or 2 x 10 cells and are a 
small fraction of the progenitor population that is defined by 
the absence of lineage markers and expression of Thy-I Sca-
1 and lectin binding receptors.5  In the human, putative long-
term repopulating stem cells are similarly detined (but not 
exclusively) by the absence of lineage markers and the spe-
cific phenotype. CD34 CD38 FE..ADr.0 Highly plur-ioo-
tent human hernatopoietic stem cells (HSC) can be defined 
biologically by their ability to repopulate bone marrow ab-
lated recipients over the long term, but their presence is 
oniy inferred. In mice, groups of stem cells that have self-
renewing and more transient repoulation ability can be as- 
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survived for more than 3 weeks: and in two out three experi-
ments, peripheral blood from these animals contained ES-
derived progeny. Fluorescence activated cell sorting IFACSI 
found ES-derived C045 hematopoietic cells in both 
lymphoid and myeloid compartments at 12 weeks post. 
transplantation, suggesting that the population of day 4 dif-
ferentiated ES cells contains primitive hematopoietic precur-
sors. A preliminary RT-PCR analysis of gene expression 
around this time point suggests that there are very few he-
matopoietic cells present. This approach should prove useful 
in studies of genetic control of commitment to and mainte-
nance of hematopoietic lineages in vitro and in viva. 
© 1996 by The American Society of Hematology. 

sayed in vivo by the spleen colony assay or by a variety or 
equivalent in vitro clonal assays. which rely on addition of 
various growth factors and cytokines. 

The differentiation of hematopoteric stern cells from am-
brvonal stem (ES) cells in vitro may hold the key to the 
problem of generating sufficient and accessible numbers of 
highly piuripotent HSC to analyze the genetic control of 
their differentiation. ES cells are totipotent cells derived from 
the inner cell mass of 3.5 day murine blastocysts and main-
tained in their toupotent state in vitro in the presence of the 
cytokine DLAJLff.1  The capacity of ES cells to contribute 
to all embryologic lineages in the developing mouse"' is 
mimicked in vitro after removal of DLAjLIF. which stimu-
lates ES cell differentiation into a range of embryonic cell 
types including those of myogenic. neuronal. and hematopoi-
etic lineages. When ES cells are cultured as agerecates or 
embrvoid bodies (EEs) and then allowed to differentiate. 
hernatopoiesis is routinely obseried as islands of hemoslo-
binized erythroid cells, or blood islands, within the devel-
oping EBs.' These structures contain progenitor cells capa-
ble of giving rise to cell types from rnveloid. ervthroid. and 
lymphoid lineages."` PCR studies have also demonstrated 
the expression of a range of hernatoresulatory cytokines and 
their receptors within the developing EBs.'5'°  More recently 
a broad spectrum of mouse hematopoietic differentiation has 
been achieved by groth of ES cells on a feeder layer de-
rived from bone marrow stroma of the op/op (osteoperotic) 
mutant." It is reasonable to assume that during EB differenti-
ation. ES cells transit through an HSC phenotype. identifica-
tion and amplification of which may provide a target for 
genetic and physiologic analysis and modification. A more 
precise phenotypic examination of such manipulated stern 
cells would be made possible by their efficacy in the reconsti-
tution of the hematopoietic system of. for example. suble-
thally irradiated mice. Several workers have reported ES- 
derived repopulation in restricted lineages. 14, 	A recent 
report has suggested that HSC can be isolated from differ-
entiating ES cells. These workers demonstrated rnuitilin-
cage reconstitution at a relatively high level, which appeared 
to be dependent on stromal cell co-culture of differentiating 
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ES cells. °  However, the use of this co-culture system has 
two possible problems: identification of the time points criti-
cal to HSC commitment was not described, and the use of 
exogenous cytokines/stromal cell layers may or may not be 
more likely to perturb the normal differentiation program of 
the sotipotential ES cells. If it were possible to more closely 
define the time course of hernatopoietic commitment and to 
rely on endogenous ES cell driven differentiation, then this 
may be a more suitable system for identifying genes and 
gene products that could regulate the commitment to and 

differentiation from HSC. 
We report here evidence that ES cell differentiation in 

vitro in the absence of conditioned medium or so'omal cell 
culture can give rise to multilineage repopulating hematopoi-
etic prosenirors. Using an in vitro assay for the detection of 
primitive hematopoietic progenitors (the CFU-A assay) we 
have characterized the earliest time points at which hemato-
poietic commitment can be detected. On the basis of this 
information, a critical and transient time point was identified 
at which cells capable of multilineage hematopoietic recon-
stitution of lethally irradiated adult recipient mice were pres-
ent. Rescue of lethally irradiated mice could be uncoupled 
from reconstitution by injection of ES-derived progeny from 
different stages of differentiation. Analysis of gene expres-
sion at this time point has identified candidate genes that 
could be used to further characterize the molecular and cellu-
lar events occurring in early hernatopoietic commitment. 

MATERIALS AND METHODS 

ES Cell Culture and Embrvoid Body Formation 

The ES cell line EFC-12 ' was routinely passaged and maintained 
in an undifferentiated state as described.a  All experiments described 
used EFC-I cells of less than 30 passages showing no evidence of 
annuoloids. EBs were formed as described! In brief. ES cells were 
cultured in hanging drops (10 iL) at a concentration of 3 x 10 
cells/mL in the presence of leukemia inhibitory factor (LIF) for 48 
hours in a humidified 517c CO atmosphere. ES cell aggregates were 
harvested into a petri dish (10 aeeregates/lO mL ES cell culture 
medium lacking LIP) and allowed to differentiate for varying periods 
of time up to 35 days). Medium was replaced every 2 days. 

The CFU-A Assay 

The in vitro CFU-A assay was set up as described previously.2 
Briefly, a feeder layer consisting of 0.6% sear in a-modified Eagles 
medium (a-MEM) with conditioned medium from two cell lines 
IAFI-19T: a source of zranulocvte macrophage colony-stimulating 
factor [GM-CSF]: and L929: a source of CSF-I) was poured into 3 
cm diameter tissue culture grade dishes (1 mL per layer). Embiyoid 
bodies (intact or homogenized) were added to 0.35c agar in ni-MEM 
and added to form an upper layer. The dishes were incubated for 
II days at 37CC in a humidified atmosphere with 5% 0/1017o CO,. 
585 were plated out either intact (50 ER/plate) or following disrup-
tion with tt'ypsin (0.0517,c) in PBS/EDTA (I mmolfL) for.30 minutes 
at 37CC )l0 cellsiplate). 

Clonal analysis of CFU-A from the bone marrow of transplanted 
mice was carried out by plating into 96 well dishes at 400 cells/ 
well. using 50 uL/well of feeder and upper layers. Atom concentra-
tions were reduced to 0.3% and 0.15% for the feeder and upper 
layers, respectively. 

The responsiveness of the cells giving rise to hematopoiesis in  

the CPU-A assay to SCl/MIP-la. a previously described stem cell 
inhibitor. was tested by its direct addition to the underlay in the 
CFU.A assay plates. Inhibition was assessed by the ability of SCl/ 
MIP-la to block formation of hemnaiopoiettc colonies? 

Repiaring Studies 

Colonies forming from EBs in the CPU-A assay were picked at 
day 7 and disaggrecated by vigorous pipetnng in 100 mL of o-
ME.M. Single cell suspensions from both EB-derived hematopoteuc 
colonies and intact EBs were repiated under the same CFU-A culture 
conditions. One colony was replated in a single dish and the extent 
of disaggresation of the colonies assessed microscopically to ensure 
that no cell clumps could have mistakenly been scored as secondary 
colonies. Secondary colonies generated in this way were scored at 
day 11 as macroscopic colonies (>1 men diameter) and clusters 
consisting of >50 cells but with a diameter of <1 mm. 

Reconstitution of Irradiated Recipient Mice 

For reconstitution. EBs were harvested, and disaggregated with 
disoase (1 U/mL: Boehrineer Mannheim. Lewes. UK) in phosphate-
buffered saline (PBS). washed and injected intravenously (10 cells 
in 0.4 mL PBS: approx 200 ER equivalents) into lethally irradiated 
(10.5 Gy) female 129/Ola or CBAJI29 Fl mice after mixing with 
a limiting dose of auto)ogous female) spleen carrier cells (5 X 10). 
Mice were maintained on Neomycin sulphate ISigmna. Poole. UK)  
drinking water to control for opportunistic infection. After 3 weeks. 
retro-orbiial blood samples were collected at intervals. Selected sam-
ples were sorted into lymphoid and myeloid components on the basis 
of their forward and right angle scatter and/or their expression of 
lymphoid and myeloid markers on a Becton Dickinson FACstar Plus 
fluorescence activated cell toner as described.' The proportion of 
peripheral blood leukocytes from whole blood and after sorting that 
were derived from male ES cells was determined by PCR essentially 
as described.' with the exception that ZFY and Myogemn reactions 
were carried out in separate rubes for 25 cycles and that the PCR 
temperature profile for mvogenin was as follows: 94CC for 5 seconds. 
60CC for 30 seconds, and 72C for 30 seconds. PCR products were 
run on 217c agarose gels. Southern blottedi and probed with ZFY or 
myogenin 55P-labeled probes as appropriate. 52P label associated with 
bands on the blots was quantitated either directly using a pnospso-
imager (Molecular Dynamics. Chesham. UK) or bands were excised 
from the Not and label counted on a Packard fl-counter. Results are 

expressed as  tSp CPM ZF"s'/mvogenin ratios. In experiment 3. half 
of the recipient mice were CBA/129 Fl and half 129/01a. There 
was no obvious difference between these groups: results shown are 
pooled from both sets. 

PCR 

One microgram of total RNA. isolated using RNAz0I B (Biotecx). 
was reverse transcribed using AMV reverse transcnptase (Promeps 
according to the manufacturers instructions. Random oligo hexam-
em (Boehringer) were used as primers. PCR reactions were then 
carried out essentially as described" except for the variations listed 
in Table I. PCR products were run on 2% agamose gels and stained 
with ethidium bromide. Results were assessed on the presence or 
absence of the appropriately sized PCR products. RNA controls were 
included to monitor ceramic contamination. 

RESULTS 

Intact EB-Derived Colonies 

The ability of intact EBs to form colonies in the CFU-.A 
assay was followed over a 2-week time course (Fig 1). These 
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Table 1. PCR Primer Pairs  

Anneal Tern 

Gene 5' Primer 3' Primer '0 Procuct Size 

BCL-2 AGA.AUCAACCAGACt.TGCACETACC TAAGcTATGG0GAAGCC33GAGA4.CAG 57 597 

C2 GAGACA,ATGAGACCATCT0003 GAATcTGTcTGCOTGATGGAGC 63 850 

Ly-6 CCETTACCCTGATGGAGTCTG GGATTAGAGCACCTACETACCC 63 450 

545 
TNF TCTGTCC0T77C,C7CACTGGC GATAGOAAATCGGCTGACOGTG 63 

TNP.R ipES) CTCCTCCGCrTGCAAATGTCAC GGCGGAGTCTT000ATTTCTGA 63 4.58 

180 
LIP 7rATATGTCGACOAGATAGATGCAGG AATTGTCGACGCTCCAGTATATAAATC 60 

C05 CACAGGAGTGAACCAGAACA TATAGTCGACGTCCTTGTAAGTACCCAC 50 640 

GP130 cTCOTC3ACGTCCCTGCAAGAT GcTGGACAAcTGGAAAT1'CAGG 60 130 

299 
MIP10 CGCCATATGGAGCTGACACCCCGATGCC TCA000AATCAGT71 CCAGGTCAG7 65 

UPR ACGACATCACAGTAGAGC GCCAGTTCTTCTACGTATC 60 282 

Other primer pairs and conditions are as described elsewhere.me 

studies showed that CFU-A—like hematopoietic colonies 
started to appear around days 4 to 6 after removal from 
DIA/LIF. No substantial hernatopoiesiS as defined by colony 
formation was detectable before the 4 day ume point and this 
temporal pattern of emergence of hematopoietic progenitors 
within the differentiating EBs was precise and reproducible. 
In these experiments the cloning efficiency as defined by 
the percentage of plated EBs forming robust CPU-A—like 
hematopoietic colonies was often as high as 401/c to 50% 

and in subsequent experiments has been noted as being as 
high as 70% to 80%. Colony size varied but the majority of 
colonies were macroscopic with a diameter of 2 mm or 
greater. These large colonies appeared to radiate out from 
the emb'oid bodies and morphologic analysis revealed them 
to be essentially macrophage in composition. typical of the 
progenitor-derived colonies detected by this assay. 

Undifferentiated ES cells, either as aegregates or as cell 
suspensions. were unable to form hematopoietic colonies in 
the CFU-A assay, indicating both the need for differentiation 
within the EB before CPU-A formation and the inability of 
the cvtokines in the CPU-A assay to induce hematopoietic 

0 	 5 	10 	15 	20 	as 

D.ye at Dtfler.ntiatte., 

Fig 1. Time course analysis of the emergence of CPU-A cells 

within differentiating EBs. The number of EBs forming CFU.A colo-

nies is expressed as a percentage of plated EBs (cloning efficiency). 

Time is expressed as number of days EBs were in suspension culture 

in the absence of CIA/UP. 

commitment in EB5 where there were no pre-existing hema-
topoietic progenitors. EBs cultured in semisolid agar in the 
absence of added cytokines failed to produce any hematopoi-
eric colonies. Similarly, normal bone marrow cells could not 
autonomously produce CPU-A—like colonies? 

CFU-A Colony Formation by Isolated EB-Derived 
Hemaropoietic Cells 

CPU-A colony formation from intact EBs does not sive 
any qualitative information about the size of colonies pro- 
duced by individual clonogenic cells within the aggrecates. 
nor does it indicate how many clonogentc cells were present 
within each EB. In order to address this. EBs were prepared 
as described above. enzymatically disrupted into single cell 
suspensions and plated out in the CPU-A assay (Fig 2). Up 
to day 4 of differentiation, small tight colonies of residual 
undifferentiated ES cells were detected (data not shown). 
These colonies never went on to produce hematopoietic cells. 
Hematopoietic colonies were detected at 4 days of differenti-
ation, a result consistent with data from intact EBs (Fig 1). 
The diameter of colonies produced to the CFU-A assay is a 
measure of the multipotency of the clonogenic cell: small 
(<2 mm) colonies arise from committed progenitors. We 
found that large (>2 mm) CPU-A colonies were typically 
detected early on in the differentiation process. although in 
some experiments. CFU-A colonies could be detected as late 
as 15 days of differentiation. 

The number of colonies produced was relatively small in 
relation to the number of EBs plated out. When individual 
BBs were disrupted and plated out in CPU-A assay. those 
EBs that contained hematopoietic progenitors were shown 
to possess only one or two such cells day 4 EB: n = 1.3 = 

0.4: day 5 EB 'n = 1.5 	0.5: day 6 EB n = 1.6 	0.5). 

EB-Derived Hematopoieric Colonies Are the Progeny of 

CFU-A Like Cells 

To investigate the provenance of the cells within the BBs 
that were responsible for the development of macroscopic 
colonies in the CPU-A assay, a number of characteristics of 
these cells, which are known hallmarks of bone marrow 
derived CPU-A progenitors, were investigated. Days 4 to 6 

EBs were used for these studies. 
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Fig Z. Time course of emergence of clonogenic 
hematapoietic cells during E8 differentiation as de-
tected by CR1-A assay. ERa are disrupted and plated 
out at 10 cells/plate. Results are expressed as num-
ber of colonies/plate of ES cell (small, compact) solo-
flies and large and small hematopoietic (diffuse) col-

onies. 
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Replating efficiency. The ability of cells within colonies 
derived from primitive hematopoietic cells to produce sec-
ondary colonies on replating is well documented. Results 
from studies on the replaung efficiency of the EB-derived 
colonies are outlined in Table 2. These results show that the 
majority (78%l of primary colonies formed from the EBs 
were capable of forming secondary colonies following re-
plating under CFU-A assay conditions and that 307o to 4017c 
of these secondary colonies were macroscopic in nature and 
resembled the primary colonies. 

Responsiveness to a stem sell specific regzilaror. Results 
from a titration of SCIJMIP-lo (a potent inhibitor of stem 
cell proliferationJdifferentiation) in the CFU-A assay are 
shown in Table 3 and indicate that the majority of EB-
derived macroscopic colonies (70%) were inhibited from 
developing in the presence of this negative regulator, with 
a half maximal inhibition being achieved at approximately 
12.5 ng/mL. a value that is identical to that required to inhibit 
normal bone marrow derived CFU-A stem cells in vitro. 
There appears to be a resistant subpopulation of EB-derived 
colonies that presumably represent more mature progenitor 
cells and do not respond to concentrations of SCIJMJP-la 
as high as 100 ngimL. SCI!Mrp-la has no effect on the 
growth of nonhematopoietic EBs in the CFTJ-A assay and 
appears therefore to be specific for primitive hematopoieuc 
cells within the differentiating EBs. 

Repopulation of Lethally Irradiated Mice with ES-Derived 
Hernaropoieric Precursors 

Having used the CFU-A assay as a simple detection sys-
tem to define the time at which EBs contain primitive self-
renewing hematopoietic progenitors, we have investigated 
the ability of EB cells just before this time point fie. d4 EBs) 
to reconstitute the hematopoietic system of lethally irradiated 
adult mice. 

EBs were collected following 4 days of suspension culture 
after removal from DL-VLIF d4 EEl. dissaggregated. and in-
jected intravenously into lethally irradiated (10.5 Gy) female 
mice after mixing with limiting doses of carrier female spleen 
cells. ES progeny in the reconstituted mice were detected by 
a polymerase chain reaction (PCR) based assay for detection 
of the male ZFY gene (see Materials and Methods). A PCR 
assay to detect reconstitution has the advantage of speed and 
the small quantities needed for printing DNA. However, it can 
be poorly quantitative. Using 25 cycle PCR, we found that 
increasing the percentage of male cells in a female control 
sample increased the ZFY/Mvo ratio in a broadly proportional 
manner (Fig 3) and the quantity of priming DNA over a 100-
fold range had little effect on this moo (<10% variation: data 
not shown). These data demonstrate that this assay provides a 
semiquantitative measure of small proportions of male ES cells 
derived in female blood, which is sufficient to follow reconsn-
tution with confidence. 

In each of a series of three reconstitution experiments 
(Table 4) lethally irradiated mice that received both d4 EB 
cells and carrier spleen cells showed a substantial improve-
ment in post-irradiation survival over those receiving spleen 
cells alone. Peripheral blood from mice that received d4 EB 
cells were found to contain ES-derived leukocytes (Table 4 
and Fig 4A and B) although in one of the experiments (expi 
2), this was restricted to a single time point in one mouse. 
There was variation in the level of reconstitution between 
mice and over time within individual mice (Fig 4C) such 
that interpretation of any trends in level of hematopoieuc 
reconstitution has to be circumspect. However, such recon-
stitution may have increased from a very low level at 1 
month posru-anspiantation to as much as 20% to 3017c of 
peripheral blood leukocytes of surviving mice at 6 months in 
experiment 1. In experiment 3. although ES-derived progeny 

Table 3. Sensitivity of ES-Derived CR1-A 
Table 2, Replating Efficiency of ES-Derived CFU-A Colonies 

Colonies to MIP-la Inhibition 

Davy of ES 
Percent of Embrpoid Bodies Giving Rise 

Differentiation 
MIPIe inatrnLl to evil-A colonies laSDi 

5 6 s 24.5 a 3.5 

Colonies pluceed 18 18 2.8 15.8 a 4.6 

Original colonies forming ? colonies 14 14 12,6 14.0 a 4.0 

Cloning efficiency 78% 78% 25 6 a 2.0 

2 Colonies <1 mm 24 22 50 7.5 a 4.5 

2* Colonies >1 mm CPU-A like) 14 10 100 8.2 a 4.25 
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Fig 3. Relationship between the proportion of male cells in prim. 
ing DNA and ZFY/Myo ratio. PCR products (25 cycle) for ZFY and 
Myo were run on 2% agarose gals, blotted, and hybridized with'p-
labeled specific probes. Results were expressed as ratios of the signal 

from male ZFY FOR products to Myo PCR products (loading control). 
The ZFY/Myo ratio shows a good relationship with the proportion 

of male cell DNA. 

were detected over a 5-month period, the level of repopula-
hon was no more than 5% (Fig 4D). One interpretation of 
this data could be that ES-derived repopulating progenitors 
may be analogous to 'fetal" HSC in their ability to compete 
out "adult" type HSC over time.3°  Due to the greater pro-
pensity of fetal HSC to remain in quiescence.3  they can be 
present in greater numbers in bone marrow than the propor-
tion of their progeny in the periphery would indicate. In 
order to investigate this possibility, bone marrow from ES 
transplanted mice was plated Out at limiting dose in a 96 
well CFU-A assay such that colonies were present in 3917c 

of the wells. When DNA from colonies was tested with 
Y PCR. 6 of 80 (8.5%) were positive for male ZFY. 

Interestingly, the ZFY/MYO ratio for peripheral blood of 
that recipient suggested that ES-derived peripheral blood 
leukocytes were present at a level of 1% to 2% (data not 
shown). 

HSC have the properties of both long-term reconstitution 
and muitilineage repopulation. In order to determine in what 
lineages ES-derived progeny might be found, peripheral 
blood from transplanted animals was sorted into lymphoid 
and granulocyte populations by fluorescence activated cell 
sorting (FACS). In the first experiment this was on the basis 
of their forward and right-angle scatter characteristics:' and 
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the ES cell contribution to these populations was assessed 
by PCR. Contamination of one population by the other was 
<5% (data not shown). Peripheral blood from four of six 
recipient mice at 12 weeks posttransplantauon contained 
both lymphocytes and granulocytes that were ES cell derived 
(Fig 5). ES cell derived leukocytes were restricted to the 
lymphoid compartment in two of the animals. The possibili-
ties that male ES-derive± but nonhematopOietsc. cells were 
present in these gated populations or that gross contatruna-
tion of one population by the other were giving artifactual 
results was addressed by FACS sorting of peripheral blood 
from mice in experiment 3. In two animals, sorting was on 
the basis of cell surface expression of CD45 (expressed on 
all circuiating, nucleated bone marrow-derived cells) and the 
presence or absence of runulocvte markers (Fig 6). Figure 
6C and D shows that sorted cells that were either positive 
or negative for granuloc te markers were all CD45 and 
their forward and side scatter profiles were similar to those 
for granulocytes (high scattering) or lymphocytes, respec-
lively (Fig 6E and F) with between 98% and 99% purity. 
ES-derived hernatopoietic progeny were detected in both 
these populations (myeloid and lymphoid lineage, respec-
tively) at 9 weeks posttransnlantauon Fig 7). 

PCR Analysis 

It appeared that some EBs at day 4 of differentiation con-
tained cells that were capable of reconstituting at least two 
discrete hernatopoietic lineages. In order to make a prelims-
nary determination of the genetic events that may control 
commitment at or around this time point, qualitative PCR 
analysis was carried out on reverse transcribed mRNA ex-
tracted from EB5 at varsing stages of differentiation (Table 
5). Given that our results for the reconstitution of animals 
differed from those published by Muller and Dzierzak.' t  this 
RT-PCR analysis would further serve to highlight any differ-
ences in the differentiation processes described above and 
described elsewhere."-3:  Data in Table 5 show that markers 
of hematopoietic commitment tended to appear by day S of 
differentiation, with two notable exceptions: Thy-I and Ly-
6 were detected in ES cells and globin: although undetectable 
at day 2. they began strong and persistent expression by day 
4. Expression of several cvtokines (IL-3, IL-6. G-CSF. GM-
CSF, and M-CSF) was undetectable at the level of analysis 
adopted. but in contrast, the receptors for at least M-CSF. 

Table 4. Transplantation of EB-Derived Coils to Lethally Irradiated Recipient Mice 

Esot 1 Estt 2 E=t 3 

5 Transplanted Control Transalanred control Transoronred contro 
Mice Mice Mice Mice Mice Mice 

No. of mice irradiated 16 10 10 tO 20 tO 

No. of mice surviving >3 wk 10 3 8 4 13 2 

No. of mice surviving >3 no 10 3 ND NO 7 2 

No. of mice FOR positive for ES-derived progeny 10 0 1' 0 6 0 

Blood FACS sorted? Yes No Yes 

Abbreviation: NO, not determined. 

'Transient detection. No PCR signal detected from 5 weeks onward. 
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Fig 4. Analysis of the extent of ES-derived hematopoietic reconstitution in day 4 ES recipient mice. (A) PCR analysis of the peripheral blood 
of day 4 EB recipient mice; ethidium bromide staining of PCR products run on 2% agarose gels. For this example. PCR was carried out for 30 

rather than 25 cycles in order to visualize the bands. (B) Time course for PCR analysis of peripheral blood or day 4 EB recipient mice lexot 11. 
CI Time course for PCR analysis of peripheral blood of individual day 4 EB recipient mice ixot 1). DI Time course for PCR analysis of peripheral 

blood of day 4 ES recipient mice (expt 3). 

1-3. and G-CSF were present. The inhibitory cvtokines LIF 
and MT-la showed a reciprocal pattern of expression, with 
LW but not MW-la) being expressed in undifferentiated 
EBs, and early EBs with MT-la (but not LW) only detect-
able in late (d12) EBs. 

DISCUSSION 

We have used the CPU-A assay to define the point at 
which ES cells enter a hematopoietic stern cell like phase in 
vitro. Our results indicate that between 4 and 6 days after 
release from the differentiation inhibiting activity of DIAl 
LW. EBs contain within them cells capable of forming mac-
roscopic colonies in the CPU-A assay. Forty to sixty percent 
of differentiating EBs are capable of forming such colonies. 
Those that do not demonstrate hematopoietic activity in pri-
mary CFU-A cultures can be shown to frequently contain  

hematopoietic colony-forming cells after disruption and re-
plating into secondary CF-'-A assays. Intriguingly we have 
found that once the EBs are disrupted.. the component cell's 
ability to form colonies in primary CPU-A assays is very 
limited and in general, when colonies were formed they 
tended to be very small and diffuse. This is especially true 
of EBs that are disaggresated after 7 or more days of differ-
entiation. These tended to produce smaller hematopoietic 
colonies in the CFU-A assay more typical of those derived 
from more committed progenitors. whereas the few colonies 
produced from d4-d6 EBs were predominantly of the large 
CPU-A type. More robust colonies tended to be associated 
with EB framents that had escaped the homogenization 
process. Taken together these data suggest that both differen-
tiation inhibiting and hematopoietic stimulating cytok.ines 
and/or niches" may be essential within the EB for the main- 
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FigS. FACS sorting of lymphocytes and granulocytes from periph-
eral blood of animals from expt 1 on the basis of forward and side 
scatter properties: PCR analysis of lymphoid and myeioid populations 

of peripheral blood from experimental animals, FACS sorted on the 
basis of their forward and side scatter properties. Contamination of 

one population by the other was <5% (data not shown(. 

tenance and differentiation of primitive hematopoietic cells. 
These niches may include endogenous stromal or nurse cell 
types analogous to those provided exogenously in previous 
studies that have reported the derivation of multilineage he-

matopoiesis t  or HSC2°  from ES cells in vitro. An alternative 
explanation for this phenomenon is that compaction of the 
ES cells during EB formation allows the EB to act.as  a co-
ordinate unit and that disruption of this unit impairs "nor- 
mal" developmental processes. There is abundant evidence 
from compaction deficient ES and teratocarcinoma cell line 
studies that such mutations severely impair normal differen-
tiation.' 

Our EB replating experiments and the demonstration that 
the colony-forming elements within EBs are sensitive to the 
stem cell specific inhibitory cytokine (SCl/MIP-1a) provide 
further evidence that colonies derived from EBs are rela-
tively primitive self-renewing hematopoietic progenitors 
with considerable self-renewing potential. They are likely 
to be analogues of the CFU-AJCFU-S colony-forming cells 
identified by similar assays of mouse bone marrow. 

We reasoned that since the CFU-AJCFU-S cell is likely 
to have transient enerafting potential35  and that in our hands 
CFU-A were typically maximal in EBs by day 5. day 4 EBs 
were likely to be a source of hematopoietic progenitors that 
would have long-term repopulating ability. Repopulation 
studies were therefore concentrated on cells derived from 
EBs at around this time point, and they show that although 
control animals largely failed to survive the irradiation, sub-
stantial numbers of mice receiving the d4 EB cells were 
rescued from the lethal effects of the radiation treatment. 
regardless of the detectable presence or absence of ES-de-
rived progeny. This rescue suggests potentiation of either 
endogenous stem cells or those present in the carrier hemato-
poietic cells, normally capable of only transient engraftrnerit. 

Few ES cell derived hematopoietic progeny were detected 
in the peripheral blood for 3w 6 weeks after repopulation. 
The reasons why ES-derived hematopoietic reconstitution 
was not observed in the second experiment were unclear. 
However. CFU-A analysis of a sample of the ernbryoid bod-
ies used for this repopulation revealed a paucity of CFU-A 
compared with other experiments (data not shown). This. 
along with the observation that the number of hematopoietic 
precursors within each committed EB is likely to be low 
probably between I and 2, suggest that too small a number 

of repopulation-competent cells may have been transplanted. 
Irradiation survival of the mice in experiment 2, however, 
was similar to that seen in other experiments, even, in the 
absence of ES-derived reconstitution. Uncoupling of rescue 
from reconstitution in this way is reinforced by other experi-
ments. Although we report here only data from transplants-
ton of day 4 EBs, cells from day 6 EBs, although showing 
increased levels of hematoeoieSis in vitro (Fig I), similarly 
rescued mice from lethal irradiation but failed to contribute 
to detectable levels of hematopoiesis. The mechanisms un-
derlying these provocative observations are currently under 
investigation. The initial results examining numbers of do-

nogenic progenitors in the bone marrow would suggest that 
peripheral blood reconstitution may not be the most appro-
priate measure of the numbers of hematopoietic progenitors 
derived from ES cells in vitro. 

These data indicate the presence of long-term repopulating 
cells within day 4 EBs. Our detection of ES markers in both 
lymphocytes and granulocytes in peripheral blood further 
underlines the pluripoteni nature of the EB-derived hemato-
poietic progenitors. .Although the absence of clonal markers 
in these experiments do not rule out independent repopula-
tion with granulocytic progenitors or lymphocytic progeni-
tors, the short half-life of rranuiocytic precursors coupled 
with the increase in ES cell contribution over the time course 
of the experiment make it unlikely that two lineage restricted 
progenitors were co-injected. 

Evidence from RT-PCR analysis of gene expression dur-
ing EB differentiation suggests that there are no gross differ-
ences between the program of hematopoietic differentiation 
outlined here and that reported elsewhere."-" Markers of 

lymphoid commitment (ICD2. CD5) were detected consis-

tently from day S onward. This is supported by additional 
experiments that detected RAG-1 expression from day 6 
onward- 16 and is consistent with the detection of lymphoid 
cells at later time points of EB differentiation by other inves-
tigators. The sharp onset of globin expression at day 5 is 
remarkable, in part because ervthroid commitment as mea-
sured by red blood cell formation is detected much later 
on (>10 days differentiation). This phenomenon has brett 
confirmed by Northern blotting of mRNA (data not 5oVfll 

and a similar observation has been reported by Schmidt Ct 
al)6  The pattern of expression of these transcripts within 
embryoid bodies is currently under study by whole mount 
in situ hybridization. Hematopoietic stem cells have a char-

acteristic surface antigen phenotype. expressing both Th - 

and Ly-6.5  However, these antigens are also expressed by a 
variety of other cell types. In ihe RT-PCR analysis. Th1 
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Fig 6. FACS sorting of lymphocytes and granulo-

cytes from peripheral blood of recipient animals on 

the basis of expression of CD45 and granuloxvte 

markers. (A) Scatter profile of unsorted peripheral 

blood. (S) CD45/granulocyte marker expression in 

peripheral blood. CI Lymphocyte sort. (Dl Granulo-

cyte sort. Forward and side scatter properties of (E) 

lymphocytes and (F) granulocytes. 

0 	55 	100 	150 	205 	250 - 10- 	0 	0' 	0- 	'C' 

	

See Scatter 	 F'-! 

- 
o FL2. arm-C345 	 "1 0-2 an,,-cD85  

	

C 	 D 

161 Pr 	 c'J p, 

PL 

St 

io 	b 	itt 	 dtr -----10 r0' 
ELI Anhi-Cranuioc.le 	 F_I 

250 'orwax Statler 	

E 	
5W0 Scafler 	

F 

-- 	- 

50 	100 	150 	535 	250 	50 	ItO 	150 	200 
S,ae scatter 	 Sloe Scatter 

was expressed throughout the time course of differentiation. 
a result also seen by Schmidt et al." The relative level of 
Thy-I expression diminished from a peak in undifferentiated 
ES cells to a minimum at day 4. before increasing ilroz=s-
sivelv to day 12. consistent with the clearance of undifferen-
tiated ES cells by day 5 and the progressive appearance of 

progeny (such as T cells) from then onward. Ly-
6 transcripts were not so readily found, being present in 
undifferentiated ES cells, but only otherwise detectable at 
this level of analysis on day 4 of differentiation. The pres-
ence of both Thy-I and Ly-6 transcripts as markers of hema-
topoietic precursor cells in the EBs remains an interesting 
Possibility. Initial attempts to isolate such cells by FACS 
sorting of disrupted day 5 embryoid bodies proved unsuc-
cessful (data not shown), probably due in part to the presence  

of nonhernatopoietic Lv-6 or Thy-l± contaminating cells 
and the small numbers of clonogenic cells present in each 

EB. 
Both LIF and MW-la have been shown to influence main-

tenance of hematopoietic stem cells.3735  and were found in 
EBs in our program of differentiation. The possibility that 
these cytokines might influence the time course of hemato-
poietic commitment and/or numbers of hematopoietic pro-
genitors derived from ES cells in vitro could be addressed 
by differentiation of double "knock out" ES cells. Given 
reports that expression of M-CSF can directly influence the 
hematopoietic commitment of ES cells in vitro,' it is inter-
esting that although transcripts for M-CSF receptor were 
found, transcripts for ligand were undetected, although we 
cannot exclude the possibility of very low level expression. 
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Fig 7. ZFY/Myo ratios of peripheral blood samples taken from 
recipient mice in expt 3 sorted for expression of CD45 and the pres-
ence or absence of granulocyte markers as shown in Fig S. 

In conclusion, therefore, the data presented here suggest 
that multipotent. long-term, recou1ating hemaiopoietic pro-
genitors may be transient within the EBs and developing at 
or around day 4 postdifferent.iation initiation. This observa-
don may suggest one explanation for the limited lineage 
reconstitution seen in other studies where ES cells we-,-

allowed 

ere
allowed to differentiate for extended periods before traits- 
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piantation 9  and tends to negate the conclusions or Muller 

and Dzierzack 9  that ES cell derived hernatopoietic precur-
sors are qualitatively different from those found in the uouit. 
having the capacity to generate only the lymphoid lineage 
in transpianted adult mice. These workers used different ES 
cell lines to the one described here. Although we have seen 
reconstitution with other ES cell lines )E14T02a and ZLN.tO. 
data not shown) we cannot exclude the possibility that the 
differentiation of lons-temi repopulating cells is cell line 
artdior passage number dependent. Our work Supports the 
observations of others that have reported the derivation of 
multilineage repopulating hernatopoietic progenitors from 
ES cells in vitro, with substantial ES-derived reconstitution 
in a hematopoiesis-defective mouse strain.iO These workers 

reported the use of stromal cell lines and conditioned me-
dium to enhance ES-derived hematopoiesis. Our results. 
along with the work of others, indicate that in the absence 
of exogenous stromal cells. Intact embi oid body formation 
is a prerequisite for appropriate hematopoietic commitment 
by ES cells. It is entirely possible that the conditions of 
differentiation that we have used have allowed the differenti-
ation of appropriate stromal or support cell types within the 
embr old body. One approach to confirming this is to us.-

whole 

se

whole mount in situ hybridization to examine the cell ssruc-
tures surrounding foci of heniatopoiesis within the devel-

oping EB. 
By relying on the endogenous differentiation macdiner': 

provided by the EB itself, we may have more clearly 

Table S. 5. Gene Expression During ES Differentiation 

Days of ES Differentiation 

0 	 2 a 	 6 	 72 	 Thvns 

Gene 
.actin 	 --- 	 --- 

SCL-2 	 - 	 - 	-- 	-- 	 - 
Hema5000ietiC markers 

0045 	 - 	 - 	 - 	 - 	 - 	 - 	 - 	 - 
002 	 - 	 - 	 - 	 - 	 - 	 - 	 - 
ODE 	 -  

Ly-6 	 -  
Thy-1 	 -- 	-- 	= 	 - 	 -- 	-- 
d.globin 	 - 	 - 

Cytokines 
MIP-la 	 - 	 - 	 - 	 - 	 - 	 - 	 - 	 - 

UF - 	 -. 	- 	- 	- 	- 	- 
TNF-o 	 - 	 - 	 - 	 - 	 - 	 - 

Sea 	 - 	 - 	 - 	 - 	 .- 	 - 	 - 
scF 	 - 	 - 	- 	-- 	-- 	-- 	- 

Cytokine rocootors 

c-kit 	 - 	 - 	 - 	 - 	 - 	 -- 
M-CSF-R 	 - 	 - 	 -- 	- 	 - 
L-3R 3 	 - 	 - 	 - 	-- 	 - 
TNF-R 	 - 	 - 
G-CSF-R 	 - 	 - 	 - 	 - 	 - 
Sea-F 	 - 	 - 	 - 
UP-F 	 - 	 — 	 - 	 - 	 - 	 - 	 - 
gp 130 	 - 	 - 	 - 	 - 

Results expressed as a aualitative measure of RT-PCR prouuct as measured by ethidium bromice staining of agarose gels 
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fled the time point at which the earliest hematopoietic pro-
genitors may be detected, at the price of relatively poor 
reconstitution. We are currently exploring the use of defined 
ceokines as a means for expanding precommitted hernato-

poietic progenitors. an  approach that has proved useful for 
repopulation with limiting numbers of conventional hensato-

poietic stem cells.' 
We have identified a time point during the differentiation 

of EBs at which long-term muitilineage repopulating hems-
topoietic cells can be detected and we have reported prelirm-
nary data on some of the concomitant genetic events. Al-
though repopulation was not observed in all experiments. 
the identification of this apparently critical time point for 
hematopoiesis during ES cell differentiation should facilitate 

further investigation of the associated molecular events and 
the role of their perturbation on subsequent hematopoieuc 

pathology. Although this work reports data with murine ES 

cells, the isolation of ES cell types from other species, in-

cluding primates. 9  should allow invesugation of de novo 
derivation of potentially therapeutic hematopoietic progeni-

tors in vitro. 
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Introduction 
The hematopoietic system can be considered as a spectrum of differentiation and 

self renewal with at one extreme terminally differentiated calls such as erythrocytes 

or macrophages, and at the other, pluripofential hematopoietic stem cells (HSC) 

which can give rise to all the different lineages of the hematopoietic system, and 

due to their capacity for self renewal, persist throughout adult fife (Spangrude et al. 

1991) Introduction of limiting numbers of these cells into recipients whose own 

hematopoietic systems have been ablated (by, for example, irradiation) results in 

long-term reconstitution by the donor calls. These properties of HSC have make 

them tempting targets for gene manipulation, both for investigating the molecular 

and cellular biology of genes that are expressed in different lineages of the 

hematopoietic system and in somatic gene therapy. In the former case, gene 

manipulation of HSC would have particular benefit where the mutations, if 

transmitted through the germ line, would result in embryonic lethality. 	Gene 

manipulation in HSC has proved difficult, at least in part due to an inadequate 

understanding of the biology of these cells: addition of genes (transgeneSis) is 

dependent on retroviral infection (Fairbairn and Spooncer 1993). Gene targeting 

by homologous recombination in HSC has not yet been shown to be practical In 

contrast, there is considerable experience in specific and facile manipulation of the 
mouse genome using embryonal stem (ES) cells, which as totipotential cells, can 

give rise to all the different cellular lineages in the organism (Evans and Kaufman 

1981. Robertson 1986) . In particular, ES cells have proved to be amenable to 

CRC; Bealson Laboratories Garscube Estate Bearsden. Glasgow G6t ISO Scotland  

gene targeting by homologous recombination. Early work demonstrated the 

appearance of erythrocytes following differentiation of ES cell under specific 

conditions in vitro (Doetschman et al. 1985). Under conventional circumstances, 

these cells could only have arisen from differentiation of pluripotent hematopoietic 

precursors, themselves derived from the ES cells. ES cells are competent to 

produce HSC: using HSC isolated from fetal livers of mice derived in their entirety 

from ES cells are capable of rescuing and reconstituting secondary recipient mice 

(Forrester et al. 1991). The question of whether HSC can be derived from ES cell 

differentiation in vitro is currently an active area of research (Muller and Dzierzak 

1993, Hole et al. 1994) However, most mature hematopoietic lineages can be 

detected following in vitro differentiation of ES cells (Gutierrez-Ramos and Palacios 

1992, Keller et al. 1993, Wiles 1993, Nakano et at. 1994, Chen et al, 1993). As pan 

of our study of the hematopoietic potential of ES cells, we have examined the 

lymphoid commitment of ES cells differentiated in vitro The ability to isolate T 

lymphocytes from ES cells in vitro may offer an alternative strategy in the study 01 

thymocyte development and positive and negative T cell selection. 

Materials and Methods 

ES cell differentiation. 
This was carried out essentially as described (Hole and Smith 1994). In brief, ES 

cells were cultured as hanging drops in the presence of LIE for 48 hours prior to 

harvesting (day 0 of differentiation) and suspension culture. During this 

suspension culture, the ES cell aggregates differentiate into cystic structures 

known as embryoid bodies (Doetschman, at al. 1985). 

Flow cytometry 
Embryoid bodies of varying periods of differentiation were disaggregated into 

single cell suspension by digestion with Dispase (lu/mI) Primary rat monoclonal 
antibody )Pharmingen) binding was detected with either goat anti-rat FITC 

conjugated antibody (TAGO tissue culture services) or streptavidin-FITC/PE 

(Sigma) as appropriate. Fluorescence was determined on FACScan flow cylometel 

(Becton Dickenson). 

RT-PCR. 
Embryoid bodies from various time points were harvested and washed. mRNA was 

isolated using RNAz0I (Biotecs Lab) and cDNA reverse transcribed by AMV 

reverse transcriptase (Promega) according to the iespective manufacturers 



instructions, 	PCR reactions were as described (Schmidt at al, 1991) In brief, 

denaturation (95°C), anneal and extension (72°C) times were 20. 60 and 60 

seconds respectively for thirty cycles. Anneal temperatures and primers were as 

noted below. 

Gene 5 Primer 3 Pnisei Product 

size 

ee& 

Temp. 

FLK2 GCTGCTGCUGTfG1TtTG1'C. TTCAT.\C1'C11CTFGC6AGCTG 1060 62 

FLK2 CTGUACTICAGCCACAGTCCC CTTCUGCCC1TfGCCAGCGAA 560 62 

GCAGI-rGGGATCTrCTrC.AGG 520 62 

ccccTAcccTc,VrGGAGTcTGT GGATTAGAGCACCTACCTAC .  450 62 L GATGGGAAGTCA-AGCGAC,i.'rAG 

GAGAC.ATGAGACCATCTGGGG GAATCTGFGTGCCTGATGGAGC 850 62 

. ACCCTCATC 	TGGCCTGTGC TCAGTGGT.(;TGAC.AG 415 62 

CR5 CACAGGAGTGAACCAGAAC. 	0 
TATAGFGGAGGTCCTTGT\AGTAC 

CAC 

640 50 

Thy-i AC ;GCCTGCCTGGTGAACC.'W GGCCC UCCAGTC.ACAGAGAAA 423 68 

Actin GTGACGAGGCCCAGAGC.iAGAG AGGGGCCGGACTCATCGT.nICTC 934 62 

IC D45 G.;TATGAGTCAC1TCTCTFCC.A GATcAAGcAGcTGATG(A so 50 

PCR products from both reverse transcribed and mock-transcribed reactions were 

run on agarose gels and detected by ethidium bromide staining. 

Results 

Flow cytometry 
The expression of surface antigens by single calls liberated from the differentiating 

embryoid bodies is shown in figure la-c. HSC from mice are believed to have a 

characteristic phenotype, namely Ly6EVe, Thy1+ve (Spangrude, at al. 1991). 

Expression of these antigens was assessed individually (tig.la and b) and together 

(data not shown). Thy-1 was found on undifferentiated ES cells, the numbers of 

cells expressing the antigen decreasing over the first 5 days of differentiation and 

apparently increasing thereafter to approximately 30% of embryoid body cells over 

the time course studied. The numbers of cells expressing both antigens were less 

than 0.1*,,. of total cells at any time point examined. Thy-1 and Ly6E are not HSC-

restricted, and are expressed on other cell types, including T cells. In order to 

examine the total herriatopoietic commitment and T-cell commitment, expression of 

CD45, 	CD3 and ci(ITCR were examined (Figs lb and lc). CD45+ve  

hemalopoietic cells increase in number over the time course, from about 1°'o 01 

cells at day 7 to approximately 7% of cells after 20 days of differentiation. However 

a relatively small number of these cells are likely to be T cells: CD3 or u(f TCR +ve 

cells are first detected around day 10, again increasing over the time course to 

about 10% of the numbers of CD45+ve hematopoietic population. The small 

numbers of TCR +ve cells recovered precluded two-colour flow cytometry. 

However, CD4+ve and CD2+ve cells were also found around the time point when 

these T cell markers could be detected. 
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Figure 1. Surface antigen expression of ES derived cells after 

differentiation as embryoid bodies In suspension culture. 
Representativefiguresof2-3independentexperimentsshown 

These data suggested that in common with several other studies, we were able to 

derive lymphoid cells from ES cells by in vitro differentiation (in a separate study, B 

cell development was indicated by detection of lgM+ve, lgD+ve and/or B220+ve 

cells in differentiation at around 12 days (data not shown). To confirm these results 

and examine the transcription of developmentally regulated genes, we carried out 

a selected series of RT-PCR reactions. 

RT-PCR 
A schematic of the results obtained is shown in table 1. The integrity of the cDNA 

for PCR was confirmed by a positive result for actin transcripts in all of the samples. 

In brief, the results support the observation that lymphoblastoid cells are appearing 



later in the differentiation pathway, RAG-1 expression was detected as early as day 

6 alter initiation of differentiation, coincident with detection of CD2 transcripts. 

CD45 was detected by day 8. Thy-i and Ly-6E transcripts were detected early in 

differentiation in ES cells or day 2 differentiated cells respectively. Of interest was 

the relatively early appearance of a marker of another hematopoietic lineage, 1- 

globin However, no red blood cells were observed in embryoid bodies during this 

series of experiments. Detection of FLK2 ligand transcripts in differentiating ES 

cells was in contrast to its receptor, whose transcripts were not detected at the 

level of analysis adopted. 

Days of differentiation 	_J 
Transcript 0 2 4 6 8 10 16 

Rag-1 - - • + + + + 

CD2 - - + + - + 
CD5 - - - - + 

Thy-1 + + + + + + + 

CD45 - - - - + 
- ++ ++ ++ ++ 

FLK2 

ligand 

+ + - + + 

i-gIobinF

++  

FLK2 

Ly-6E + + +

Actin  ++ ++ ++ I ++ ++ ++ 

Table 1. RT-PCR detection of mRNA transcripts in differentiating ES 

cells Results expressed as either absence of detectable PCR product I-) or a 
subiective assessment of the intensity of the aoorooriatelv sized PCR product 
+4-). 

Discussion 
This works suggests that lymphoid commitment of ES cells can be demonstrated in 

vitro Detectable numbers of cells bearing lymphoblastoid characteristic markers 

can be detected at or around 10 days of differentiation in vitro, albeit at a low level. 

The presence of markers for CD5, CD2, CD3 all indicate that T cell development is 

detected Productive expression of illiTCA is dependent on the presence of the 

product of RAG-1 gene (Wayne et at. 1994). It is not surprising therefore to find that  

RAG-1 expression in these differentiating cells precedes the appearance of cells 
bearing ajlTCR (figi). The numbers of cells expressing the T cell markers Thy-1 

and Ly6E are dramatically higher than those expressing the markers listed above. 

This is indicative of one of the problems in this system; embryoid bodies contain 

cells of many different lineages, not just hematopoietic. Indeed undifferentiated ES 

cells contain already contain transcripts for Thy-1. Embryonal stem cells are clearly 

competent to produce the entire range of hematopoietic lineages; ES-derived fetal 

livers contain pluripotent repopulating HSC capable of repopulating the entire 

hematopoietic system of recipient mice (Forrester, at al. 1991). However, inducing 

ES cells to progress down all hematopoietic lineages in vitro has proved more 

elusive Myeloid lineage progenitors can be detected following in vitro 

differentiation of ES cells (Wiles 1993), yet reconstitution of the myeloid lineages in 

lethally irradiated mice by adoptive transfer of ES-derived progeny has proved 

more elusive. In contrast, in at least one report the lymphoid lineages of mice have 

been reconstituted with the in Vitro differentiated progeny of ES cells (Muller and 

Dzierzak 1993). Part of the problem with this system may the relatively low 

numbers of hematopoietic cells arising as a result of in vitro differentiation. In this 

study, although percentages varied between experiments, the numbers of 

rjITCR+ve cells were typically less than 5% at best. One approach to enhance the 

numbers produced may be to exploit cytokineS to enhance hematopoietic 

development. One cytokine that is thought to play a role in early hematopoietic 

development is FLK2 ligand (Zeigler et al. 1994). At least in this system, transcripts 

for FLK2 ligand can be detected within the developing embryoid bodies, allowing 

the possibly of paracrine regulation of hematopoiesis. However, the failure to 

detect its receptor at this level of analysis suggests that the numbers of cells that 

may express the receptor may be very low. An alternative, less well defined system 

would be to use stromal cell lines to support hematopoietic development. This 

approach has been used by others (Gutierrez-Ramos and PalacioS 1992, Nakano, 

et al 1994). The presence of certain cytokines may interfere with hematopoietic 

differentiation in vitro, as has been suggested for M-CSF (Nakano, et al. 1994) Of 

interest is that transcripts for M-CSF cannot be detected in the early differentiating 

embryoid bodies in our system (data not shown). The approaches of cytolrine 

enhancement and stromal cell support are currently under study.  

The detection of cells expressing productive u)tTCR suggests that these cells may 

be capable of positive and negative selection The relatively facile nature of 

lransgenesis of ES cells may allow us the opportunity to address issues not lust of 

the control of primitive hematopoietic commitment, but of T cell development. The 

development of these transgenic cells endogenously in embryoid bodies, in vitro in 



fetal thymus organ culture and in vivo in rescued and heamtopoieticallY 

reconstituted mice is currently under study 
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REAGENTS AND SUPPLIERS 

Water: Milli-Q purified 	 Millipore 

lOx Glasgow's Modified Eagle's Medium 	GIBCO-BRL 

Sodium bicarbonate 	 GIBCO-BRL 

Non-essential amino acids 	 GIBCO-BRL 

Glutarnine/Pyruvate 	 GIBCO-BRL 

2-Mercaptoethanol 	 Sigma 

Fetal calf serum (culture medium) 	 GlobePharm 

Fetal calf serum (differentiation medium) 	Advanced Protein Products 

Phosphate Buffered Saline tablets 	 Oxid 

EDTA 	 BDH 

Trypsin 	 GIBCO-BRL 

Chicken serum 	 GIBCO-BRL 

Gelatine 	 Sigma 

Tryptose Phosphate Broth 	 GIBCO-BRL 

CellformTM Polymer 

(poly (2-hydroxyethylmethaciylate)) 	 ICN Biomedicals 

Retinoic acid 	 Sigma 

DMSO 	 Sigma 

Ethanol 	 BDH 


