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Abstract

The area of logic program synthesis is attracting increased interest. Most efforts
have concentrated on applying techniques from functional program synthesis to

logic program synthesis. This thesis investigates a new approach: Synthesizing

logic programs automatically via middle-out reasoning in proof planning.

[Bundy et al 90a] suggested middle-out reasoning in proof planning. Middle-
out reasoning uses variables to represent unknown details of a proof. Unifica¬
tion instantiates the variables in the subsequent planning, while proof planning

provides the necessary search control.

Middle-out reasoning is used for synthesis by planning the verification of an

unknown logic program: The program body is represented with a meta-variable.

The planning results both in an instantiation of the program body and a plan for
the verification of that program. If the plan executes successfully, the synthesized

program is partially correct and complete.

Middle-out reasoning is also used to select induction schemes. Finding an

appropriate induction scheme in synthesis is difficult, because the recursion in
the program, which is unknown at the outset, determines the induction in the

proof. In middle-out induction, we set up a schematic step case by representing
the constructors applied to the induction variables with meta-variables. Once

the step case is complete, the instantiated variables correspond to an induction

appropriate to the recursion of the program.

The results reported in this thesis are encouraging. The approach has been

implemented as an extension to the proof planner CUM [Bundy et al 90c], called
Periwinkle, which has been used to synthesize a variety of programs fully auto¬

matically.
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Chapter 1

Introduction

1.1 Overview

The research presented in this thesis focuses on the application of proof planning
and middle-out reasoning to problems arising in program synthesis. Program

synthesis is the process of deriving an executable program from a specification.

Here, a specification is a formal description of the problem to be solved: Proof

planning entails explicit reasoning about proofs and how to carry them out.
Middle-out reasoning allows the proof planning to continue even though an ob¬

ject being reasoned about has not yet been specified. We can thus reason about
and plan proofs while leaving certain elements of the proof to be filled in at a

later stage. In program synthesis via inductive proofs, there are two things that
are initially unknown: First, most obviously, the program to be synthesized,
but second also the type of induction of the proof. This is because the appro¬

priate type of induction depends on the type of recursion of the program to be

synthesized.

Middle-out reasoning represents unspecified objects in the proof with vari¬
ables and instantiates them via unification in the course of the planning. The
use of such variables causes several problems. First, it signifies a loss of inform¬
ation and thus a loss of search control. Additional means of search control are

7



therefore needed. Second, the variables can be higher-order. Hence, the issues
of higher-order unification and its intractability need to be addressed. We re¬

strict the use of of higher-order variables to higher-order patterns, for which
unification is decidable.

We synthesize programs by planning the verification of an initially unknown

program. In particular, we synthesize logic programs, and verify them by proving
the logical equivalence of specification and program. The proof planning yields
both a program and a plan for the verification proof. Providing the plan executes

successfully, the synthesized program is partially correct and complete.

Middle-out reasoning in proof planning for program synthesis has been im¬

plemented as an extension of the proof planning system CIAM. The extended

system, Periwinkle, has been used to synthesize a variety of programs.

1.2 Motivation

In software development, a major concern is ensuring that software meets its re¬

quirements. To make this task more manageable, the process of software develop¬
ment has traditionally been broken down into various phases, i.e., requirements

analysis, specification, design, implementation, testing (and/or verification) and
maintenance. Ideally, the end product of each phase would satisfy completely

the requirements of those of the previous ones, and there would be no need

for maintenance. In reality, however, this is not the case, and software main¬
tenance is the dominant cost factor of software development. If we were able

to automatically synthesize programs that would be guaranteed to meet their

specifications, errors in the design and implementation phases would be elimin¬

ated, and the maintenance costs of software drastically reduced. At the same

time, automated program synthesis would reduce software development efforts
in two ways. First, since we synthesize programs that are correct, programming
and verification collapse into the single task of synthesis. This is in contrast to

traditional software development, where programming and verification are two

8



separate tasks: Programs are coded, and only subsequently checked, either via

empirical testing or, more seldom, via formal verification. Second, when a spe¬

cification is changed and the corresponding program needs to be rewritten, it

may be possible to reuse parts of the synthesis process itself.

A second major source of errors is the specification phase, i.e., the process of

finding a formal specification that adequately reflects the informal description
of requirements. This can be subdivided into two tasks, writing the specific¬
ation and ensuring that the specification adequately reflects the requirements.
The latter is known as validation. Validation is easier if the specification is

executable, i.e., it serves as a prototype and provides touch-and-feel experience.

However, the price to pay for having executable specifications is a restricted

expressive power of the specification language, which makes the task of writing

specifications more difficult. [Hayes & Jones 89], for example, presents a num¬

ber of examples which can be expressed more naturally in a non-executable way.

If we were able to automatically synthesize programs from specifications, we

would no longer have to worry about specifications being executable and could
thus have a more expressive specification language and touch-and-feel experience

nonetheless, provided the synthesis is sufficiently fast.

We thus believe that the automatic synthesis of correct programs from spe¬

cifications is a worthwhile goal to pursue, and the aim of this thesis is to make

progress towards this ultimate goal.

1.3 Contributions

This thesis makes new contributions in two areas: Automatic logic program

synthesis and the selection of induction schemes. First, it demonstrates how
the combined techniques of middle-out reasoning and proof planning can be

exploited to automate logic program synthesis. To our knowledge, most logic

program synthesis systems still require some degree of interaction by the user.

The approach we present can equally be applied to logic program transformation,

9



since our programming language, pure logic programs, is a subset of our spe¬

cification language, first-order predicate logic. Hence, a given program, which is

perhaps easy to understand but inefficient, can simply be regarded as a specific¬

ation, and a new, more efficient program can be synthesized from the original

program.

Second, it demonstrates how the technique of middle-out reasoning can be
used to solve a difficult problem in automated theorem proving, namely the

selection of induction schemes for inductive synthesis proofs. The solution we

propose is a limited, but practicable one.

1.4 Organization

This thesis is organized as follows: Section 2 presents the general background

against which this thesis is set, by giving a brief introduction to logic program¬

ming, reasoning with logic programs and program synthesis, and by presenting
an overview of various program synthesis systems. Section 3 gives an over¬

view of automated inductive theorem proving, concentrating in particular on

the proof planning work carried out in the Mathematical Reasoning Group at
the University of Edinburgh, which is the foundation upon which this thesis is
built. Sections 4 and 5 form the heart of the thesis, presenting the application
of middle-out reasoning to logic program synthesis and to the selection of in¬
duction schemes. Section 6 presents extensions to the proof planning method
known as rippling that proved necessary for synthesis. Section 7 reports on the

implementation and on the practical results we have achieved. Finally, Section 8

presents ideas for further research and Section 9 draws conclusions.

The appendices include examples that have been synthesized using the sys¬

tem Periwinkle (Appendix A) and traces for some of these examples (Ap¬
pendix B). They also include listings of the methods extended or developed
in this thesis (Appendix C). Finally, Appendix D lists the logic, Appendix E
the unification algorithm we use.
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Chapter 2

Background

2.1 Logic Programming

Logic programming is the use of logic as a computational formalism. Logic is
used to express knowledge, and inference is used to manipulate knowledge. A

logic program is a set of axioms, and computation is the proof of a goal formula
from these axioms. [Kowalski 74] shows that a Horn clause

A <— B|,..., Bn

can be read not only declaratively, but also procedurally: To solve A, solve

Bi through Bn. The two main advantages of declarative programming over

imperative programming are that it favors mathematical accountability and that
it separates knowledge from its use [Hogger 90].

Logic and functional programming are both based on an abstract model of

computation. They differ in that functional programs are single-valued, whereas

logic programs are multivalued [Bundy et al 90b], returning alternate values on

backtracking. Logic programs are also often partial in that they may return no

value, i.e., fail.

In the following sections, we will briefly discuss the foundations of some logic

programming languages. For more details on logic programming, see [Lloyd 87,

Hogger 90, Sterling & Shapiro 86, Deville 90],
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2.1.1 Logic Programming Languages

A logic programming language is defined by two main elements: The program¬

ming logic and the inference system. In general, the programming logic is a

subset of first-order predicate logic, and the inference system is sound, complete

and sufficiently efficient for that subset. The language can be typed or un¬

typed. Most programming logics are based on Horn clauses, and most inference

systems are resolution-based [Robinson 65], Logic programming languages may

also contain non-logical primitives. Although there is much interest in parallel
and constraint-based logic programming languages, these are beyond the scope

of this thesis.

Programming Logics and Inference Systems

In this section, we follow the presentation of [Lloyd 87]. The logic program¬

ming languages discussed are definite programs (pure Prolog), normal pro¬
grams (pure Prolog with negation as failure) and programs (e.g., pure Godel

[Hill & Lloyd 92]).

Definite Programs Definite programs are finite sets of definite program

clauses. A definite program clause is a clause of the form

A <— Bi,..., Bn

where n > 0 and A,Bi,...,Bn are atoms. A commonly used semantics for
definite programs is the least Herbrand model. A commonly used inference

system that is sound and complete for definite programs is SLD-resolution. Pure

Prolog with the occurs-check is an implementation of definite programs with
SLD-resolution.

Normal Programs Normal programs are finite sets of program clauses. A

program clause is a clause of the form

A <- L,,.

12



where n > 0, A is an atom and Li,...,Ln are literals, i.e., atoms or negated
atoms. A commonly used semantics for normal programs is completions of pro¬

grams [Clark 78], A commonly used inference system that is sound and complete
for definite programs is SLDNP-resolution. Pure Prolog with negation-as-failure
and the occurs-check is an implementation of normal programs. Full Prolog is
an implementation of normal programs, with a number of non-logical primitives
added.

Programs Programs are finite sets of program statements. A program state¬
ment is a first-order formula of the form

A <— W

where A is an atom and W is empty or a first-order formula. A commonly

used semantics for programs is again completions of programs [Lloyd 87, page

109). Programs are translated into normal programs using the Lloyd-Topor
transformation [Lloyd 87, pp. 112-115). Pure Godel is an implementation of

typed programs. Full Godel includes some additional non-logical primitives.

2.2 Program Synthesis

Program synthesis is the process of obtaining a program from a specification.
There are many ways of going about program synthesis: It can be automatic or

interactive, provably correct or not; the specification can be partial or complete,
formal or informal. Here, we are concerned with the fully automatic synthesis
of correct programs from complete, formal specifications \ We regard program

transformation as a special case of program synthesis—one where the specifica¬
tion is already an executable program.

'A complete specification is one that describes all, a partial specification one that
describes some properties of a relation. A program satisfying a partial specification
therefore computes a subset of the specified values. Thus, for instance, the positive

13



Within synthesis from formal specifications, existing approaches are usually
described as constructive or deductive. The distinction between the two is some¬

what blurred, and whether an approach is classified as constructive or deductive

is mainly a matter of perspective.

Constructive approaches are usually called such either because they are em¬

bedded within the framework of a constructive logic, or because they emphasize
the actual construction of witnesses for existentially quantified variables in the

specification. Many constructive approaches fall within the proofs-as-programs

paradigm (see Section 2.2.1). Deductive approaches are called such because

they emphasize that the program can be deduced from the specification. That
the distinction is fuzzy is particularly apparent in the approach of Manna and

Waldinger [Manna & Waldinger 91], Although they themselves consider their
work to be deductive, since the program is synthesized in the course of a de¬

duction, it would be equally fair to call their approach constructive, since it

constructs a witness for an existential variable in the course of the deduction.

Manna and Waldmger prefer the term deductive, since they emphasize that the

logic in which they work is not constructive [Manna & Waldinger 92].

The approach we take in this thesis can also be viewed as either deductive
or constructive. It is deductive in that we prove the equivalence of specification
and program, which means that the program is a deductive consequence of the

specification. It is constructive in that the meta-variable we use to represent

the body of the program at the proof-planning level is implicitly existentially

integer square root relation is partially specified by

Vx:int, y :int. x2 < y < (x + I)2

and completely specified by

Vx:int,y :int. x2 < y < (x + 1 )2 A x > 0 .

Our approach could extend to partial specifications by weakening the proofs from partial
correctness and completeness to partial correctness only.

14



quantified. The successive instantiation of the meta-variable in the course of the

proof planning corresponds to the construction of a witness for an existential
variable.

Most program synthesis approaches have originated in the field of functional

programming. Recently, however, there has been an interest in applying ideas
from functional program synthesis to logic program synthesis. In the following

sections, we will give a brief overview of various functional program synthesis
and transformation systems, followed by a somewhat more detailed presentation
of logic program synthesis and transformation systems. This overview is not
meant to be complete, but representative of the various possible approaches.

We have limited ourselves to synthesis systems that synthesize correct programs

from formal specifications.

2.2.1 Synthesizing Functional Programs

Specifications of functional programs are usually of the form

Vx3y. Spec(x,y) .

This can be read as: For all input x, there exists an output y such that the

specified relation Spec holds. The task of functional program synthesis is to

provide a function f that computes a witness for the existential variable y. Thus,
we want a function f such that

Vx. Spec(x, f(x))

is true.

In the following sections, we present various approaches how to find such
functions.

Type-Theoretic Approaches

A number of systems incorporate the proofs-as-programs principle. This prin¬

ciple is based on the Curry-Howard, isomorphism and the propositions-as-
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types principle [Howard 80] [Curry & Feys 58]. The basic idea of the Curry-
Howard isomorphism is that each axiom and rule of inference of constructive lo¬

gic corresponds to a rule of term formation in the typed A-calculus and vice versa.

Every construction of a proof of a formula thus also corresponds to a construction

of a term in the typed A-calculus. The basic idea of the propositions-as-types

principle is that a proposition can be viewed as a type where the type inhabit¬
ants are the proofs of the proposition. Proving a proposition thus corresponds to

showing that the type of the proposition is inhabited. These ideas were taken up

in type theories such as [Martin-Lof 79] or [Coquand & Huet 88], and implemen¬
ted in systems such as Nuprl [Constable et al 86], LEGO [Luo & Pollack 92] or

Coq [Dowek et al 91]. Since the A-calculus is effectively a functional program¬

ming language, a term corresponding to a proof can be interpreted as a program

whose type is the formula proved.

In the Nuprl system [Constable et al 86], for instance, proving that a type is
inhabited requires specifying how to build an object of that type. A proof of a

specification theorem

P: (Vx: i. 3y : o. S(x,y))

corresponds to the construction of a term P which, applied to a given x, will

compute a witness for y in the course of its evaluation. This term is called

the extract term. Nuprl and its Edinburgh reimplementation Oyster [Horn 88]
are both interactive proof assistants for a variant of Martin-Lof type theory

[Martin-Lof 79] and can be used to synthesize functional programs from higher-
order V3-formulae. Both systems include a language in which tactics, i.e., pro¬

grams that apply a series of inference rules, can be built. Proofs can thus be

partially automated. The proof planning system CLAM. [Bundy et al 90c] gen¬

erates tactics that can be executed in Oyster. Thus, Oyster and CLAM can be

combined to synthesize programs automatically.

LEGO [Luo & Pollack 92] is a proof assistant for a variety of related type

systems, including the Edinburgh Logical Framework [Harper et al 87] and the
Calculus of Constructions [Coquand & Huet 88]. While Nuprl and Oyster con¬
struct sequent-style proofs, LEGO constructs natural deduction-style proofs.
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Coq [Dowek et al 91] is a proof assistant for the Calculus of Constructions.
It allows, among others, the extraction of ML [Harper et al 86] programs from

proofs. Coq, like Nuprl and Oyster, supports tactics.

Manna and Waldinger

The program synthesis work described in [Manna & Waldinger 91] is similar
to the proofs as programs approach in that every proof step is also a program

construction step. The main differences arc that Manna and Waldinger's system

uses tableaux, synthesizes programs expressed in a simple, functional if-then-
elsc programming language, uses an untyped first order classical logic and starts
from first-order V3-formulae as specifications. The system is interactive.

A synthesis tableau consists of a column of assertions, a column of goals and
a column of outputs for each output variable. Each rule application adds new

rows to a tableau while preserving certain of its properties. Rules are applied
until the tableau contains a row with the assertion false (or the goal true),
and outputs are expressed in the vocabulary of the programming language. The
rules include induction and several versions of resolution, and have been shown

to be sound.

Biundo

[Biundo 88, Biundo 80] is an example of synthesis of functional programs via
deduction. Specifications are V3-formulae of the form

= Vx.3y.Vz. $[x,y,z]

where is a quantifier free first order formula. The formula is skolemized to

= Vx.Vz. $(x, f(x),z].

Transformation rules are applied to the skolemized specification until a trans¬
formation tree is obtained where the leaf nodes form a set of formulae such that a

subset of these formulae forms a complete definition of the slcolem function f, and
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the remaining formulae can be proved using this definition. The programs are

functional programs expressed in first-order predicate logic. The rules include

evaluation, substitution, case analysis and induction. The system, which is a

component of the Inka theorem prover [Biundo et al 86] (see Section 3.1.2), is

fully automated.

Synthesis is broken down into four stages, within which a number of heur¬

istics guide the synthesis process. The four stages are induction, evaluation, ex¬

traction and elimination. The induction stage applies induction and brings the
formulae into a normal form. The evaluation stage applies symbolic evaluation.
The extraction stage uses equalities and the substitution axiom to extract the

skolem function from nested positions. Finally, the elimination stage eliminates

superfluous conditions from definition formulae.

KIDS

Transformation of functional programs goes back to [Burstall & Darlington 77],
which suggests various transformation rules to derive more efficient programs.
Of the many transformation-based systems (see [Partsch & Steinbriiggen 83]),
we have selected KIDS [Smith 90] as a powerful and general representative, in¬

corporating most known transformation techniques.

KIDS is a partially automated program transformation system. First, a do¬
main theory is created in which the specification is written. Then, a design
tactic is applied to determine the type of algorithm, e.g., divide-and-conquer or

global search. Next, a number of optimizing transformations can be applied,

including simplification, partial evaluation, finite differencing and data type

refinement. The main effort in using KIDS is building up the domain the¬

ory. The richer the domain theory, i.e., the more lemmas it contains, the more

powerful are the transformations that can be applied. Interaction is at a high
level—the user simply determines which transformation to apply to which part

of the program. The actual transformation is then carried out via tactics in a

theorem prover.
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2.2.2 Synthesizing Logic Programs

The specification of a logic program is a description of the relation which the

program is to compute, usually given as a first order formula. The precise format
of the specification varies from approach to approach.

Most of the work in logic program synthesis is an adaptation of existing
work in the fields of functional program synthesis. Whereas the adaptation of

deductive synthesis and program transformation is fairly straightforward, the ad¬

aptation of proofs-a3-programs raised a number of problems. The main obstacle
is that proofs-as-programs synthesizes total functions only. Logic programs, by

contrast, are partial and multivalued [Bundy et al 90b], They can return no

value, i.e., fail, or return alternate values on backtracking.

In the following, we present a representative, but not complete, overview
of logic program synthesis systems. For early work on the foundations of logic

program synthesis, see [Clark & Darlington 80, Clark 81, Hogger 81] For a more

detailed overview, see jDeville & Lau 93],

ExExE

In [Fribourg 90], one way of adapting the proofs-as-programs paradigm to logic

program synthesis is presented. Programs are synthesized in Prolog-style proofs.
A standard Prolog goal is of the form

3y. p(y) ,

where p(y) i3 a conjunction of atom3. Fribourg extends Prolog goals to those of
the form

Vx.ag. q(x,y) <*= r(x) ,

where q(x,y) and r(x) are conjunctions of atoms. The Prolog execution rule,
SLD resolution, is extended to the rules of definite clause inference, simphfic
ation and restricted structural induction. The rulc3 of definite clause inference

and structural induction are each associated with a program construction rule.
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Given a specification in the form of an extended goal, extended Prolog execution
will return a program to compute y in terms of x. The main disadvantages of
this approach are: The logic program will only be correct in the modes where

the variables corresponding to x are ground and the variables corresponding to y

are variable, and the program will return only one answer. It is thus a functional

program in the guise of a logic program. This approach has been implemented
in the interactive system ExBxE [Bouverot 91],

Whelk

Whelk [Wiggins et al 91, Wiggins 92, Wiggins 93] is an interactive proof editor
for logic program synthesis which also takes the proofs-as-programs approach,
but avoids the disadvantages of the previous approach. Whelk synthesizes pure

logic programs and translates them into Godel or Prolog.

In Whelk, specifications of logic programs are of the form

Vx. 3(Spec(x)) , (2.1)

where Spec(x) is an arbitrary first-order formula and 6 is a decidability operator,
read as: "It is decidable whether". The logic developed for the Whelk system

allows a logic program Prog(x) to be extracted from a proof of (2.1) in such a

way that

h Vx. 3(Spec(x)) iff h Vx". Spec(x)" <-* Prog(x")

holds, where Spec(x) is a formula specifying a program, Prog(x") is a program

which fulfills the specification, and " is a mapping from the logic of the spe¬

cification to the logic of the program. The Whelk system distinguishes between
the logic in which the specification is written, which contains functions and the
boolean type {true,false}, and the logic of the synthesized program, which is
similar to that of pure logic programs (see Section 4.1). The Whelk logic is a

sorted first-order logic with equality, extended with inference rules for the de¬

cidability operator 3. Each inference rule for 3 is associated with a program

construction rule.
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LOPS

LOPS [Bibel 80, Bibcl & Hornig 81] is a system that transforms first order spe¬
cifications into logic clauses. These clauses are not directly executable, but
can easily be translated into executable programs. LOPS is a deductive and

transformation-based system. Given a specification of the form

Vx3y. IC(x) —» OC(x,y)

where IC is the input condition and OC the output condition, a number of

strategies are applied to obtain an algorithm. These strategies are GUESS and

DOMAIN, GET-G, GET-DNF, GET-REC and GET-PE GUESS and DOMAIN

guess an answer belonging to the set of solutions of a subset of the output con

ditions OC. GET-G rewrites a given formula according to domain and goal-

dependent equivalence transformation rules, GET-DNF rewrites the goal into

disjunctive normal form, GET-REC finds a suitable recursion, and GET-BP
makes predicates recursively evaluable. Though [Bibel 80, Bibel & Hornig 84]
show that the resulting programs can easily be translated into Prolog, the
LOPS system synthesizes functional programs, since it uses V3 specifications.

[Neugebauer 93], however, has adapted the LOPS approach to logic program

synthesis.

Tanraki and Sato, Kanamori and Horiuchi

In the field of logic program transformation, [Tamaki & Sato 84] show how the

unfold/fold techniques of [Burstall & Darlington 77] can be applied to pure lo¬

gic program transformation in such a way that the least Herbrand model is

preserved. Their transformation rules are definition, unfolding, folding, dele¬

tion, goal merging and case splitting. [Kanamori & Iloriuchi 87] adapt the un¬

fold/fold transformation method of Tamaki and Sato to allow definitions which
are generalizations of definite clauses. The transformation of the more general
formula into definite clauses constitutes the synthesis of a program.
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Lau and Prestwich

The program synthesis system in [Lau & Prestwich 88b, Lau & Prestwich 88a,

Lau & Prestwich 90] is an interactive system that uses unfold/fold transform¬
ations to transform a first order specification into a partially correct program.

The desired recursive structure of the program is provided by the U3cr in the

form of a meta-goal. The initial meta-goal is repeatedly divided into subgoals
until all subgoals can be solved, and the overall solution is obtained by com¬

posing the solutions of the subgoals appropriately. The user is prompted for
assistance in setting up subgoals.

The overall strategy is to unfold only when it enables a subsequent fold.

Folding is done automatically using the strategies match, modus ponens, im¬

plication and definition. The match strategy checks whether the current folding

problem is trivial. The modus ponens strategy introduces new predicates. The

implication strategy is a decomposition strategy which uses known recursive

implications. The definition strategy is another decomposition strategy which

decomposes a definition by using its "if" part to unfold, and its "only if" part

to fold. The folds are found by setting up the appropriate fold subproblems.
The system synthesizes only the recursive clauses of the program, not the base
clauses.

2.3 Summary

In this section, we briefly introduced logic programming, and then presented
various approaches to program synthesis. In the following, we will be presenting
an alternative approach to logic program synthesis. Our main goals are to syn¬

thesize truly relational programs, i.e., to avoid mode-sensitivity, and to automate

the synthesis fully.

Approaches that avoid mode-sensitivity include Whelk (Section 2.2.2) and
Lau and Prestwich (see Section 2.2.2). Approaches that are partially or fully



automated include Biundo (Section 2.2.1) and Lau and Prestwich (Section 2.2.2).
A detailed comparison of our work with these approaches can be found in sub¬

sequent chapters.
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Chapter 3

Automated Theorem Proving
and Proof Planning

Automated theorem proving is a subdiscipline of Artificial Intelligence concerned

with the automatic derivation of proofs. The central problem within automated
theorem proving is controlling the large search space for proofs. At every step

in the proof, one must decide which inference rule to apply and how to apply it.
Since many inferences are normally possible at any stage in a proof, the branch¬

ing factor of the search space is large, and exhaustive search is prohibitively

expensive.

There are two principal approaches to controlling the search space of auto¬
mated theorem proving. One approach reduces the search space by using a uni¬
form representation, usually clausal form, and a uniform inference rule, usually

resolution. Even so, there is often a choice of possible inferences, and heuristics
are needed to guide the proof. However, the inference system is unnatural for

many humans, which makes it difficult to follow proofs and devise heuristics.

An alternative approach to automated theorem proving uses more traditional
inference systems. Though such systems generally have a higher branching

factor, the patterns of proofs are more readily understood by humans. This
makes it possible to devise heuristics which correspond to strategies humans use

when doing proofs. Among the best-known such systems is the theorem prover

NQTHM [Boyer & Moore 88], One problem with this type of prover is that
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the heuristics are often built-in and thus inflexible and difficult to understand.

To avoid this, [Bundy 88] suggests using a meta-logic to reason about and plan

proofs explicitly. This approach is known as explicit proof planning.

The remainder of this chapter is devoted to a brief overview of two

inductive theorem proving systems, NQTHM [Boyer & Moore 88] and Inka

[Biundo et al 86], and a more detailed presentation of the proof planning ap¬

proach underlying our synthesis approach.

3.1 NQTHM and Inka

3.1.1 NQTHM

NQTHM [Boyer & Moore 88] is a well-known heuristic theorem prover for

quantifier-free first-order logic with induction. The theorem prover uses six
basic proof techniques, namely simplification, destructor elimination, cross-

fertilization, generalization, elimination of irrelevance and induction. Each

technique is a program that takes a formula as input and returns a set of formu¬
lae as output. The programs are derived rules of inference: The input formula
is provable if each of the output formulae are provable. The techniques are tried
in turn, in the order listed, on each remaining formula until all formulae have
been proved (or all techniques fail). Users can guide the prover by providing
lemmas and selecting sets of rewrite rules.

Simplification is the only technique that can return an empty set of for¬

mulae, i.e., complete the proof of a formula. It is a complex technique that
uses decision procedures, term rewriting and what are known as meta-functions.
Destructor elimination uses axioms and lemmas to rewrite destructive terms

as constructive terms, which are preferred by a number of heuristics in the sys¬

tem. Cross-fertilization exploits the induction hypothesis (see also Section 3.2.2).
Generalization generalizes formulae, usually by strengthening them in such a way

that they become amenable to induction. Elimination of irrelevancy identifies
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and removes irrelevant hypotheses that could complicate an induction. Finally,
induction finds and applies a suitable induction scheme (see also Section 3.2.2).

NQTHM is a powerful theorem-prover that is widely used. It has one draw¬
back for non-experts, however, which is that its heuristics are embedded dir¬

ectly in its derived rules of inference. Because the heuristics are implicit in the

code, they can be difficult to understand and extend. Proof planning, which is

presented in the following section, is an attempt to address this problem. Also,

NQTHM does not lend itself to synthesis very well, since its logic is quantifier-
free.

3.1.2 Inka

Inka (Biundo et al 86] is an inductive theorem-proving system that is based on

and extends the heuristics of NQTHM. Inka differs from NQTHM in several ways.

First, it is resolution-based. Second, it has a component which automatically

proves termination properties of recursive program. Such proofs often need to be

provided as lemmas in NQTHM. Finally, and most importantly, Inka uses a logic
which allows existential quantification. The program synthesis system of Biundo

[Biundo 89] (Section 2.2.1) is the component of Inka that proves existentially

quantified theorems.

3.2 Proof Planning

Proof planning is an attempt to make theorem-proving heuristics more explicit

by using a meta-logic to reason about and plan proofs. Proof plans are formed
in the meta-logic by successively applying methods to a conjecture until a com¬

bination of methods has been found that forms a complete plan of the proof.
Each method is a partial specification of a tactic [Gordon et al 79], which is
a program that applies a number of object-level inference rules to a goal for¬
mula. Explicit proof planning has been implemented in the proof planner CLAM
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[Bundy et al 90c]. CLAM constructs plans for inductive proofs in a variant of
Martin-Lof type theory [Martin-Lof 79]. The proof plans can be executed in

Oyster, a sequent-style interactive proof checker for the type theory.

The main advantages of the meta-logic approach are that the search for proofs
takes place at the meta-level rather than the object-level. This search is less ex¬

pensive, since methods capture the effects of the corresponding tactics, while

avoiding the possibly considerable cost of actually executing them. More im¬

portantly, however, the meta-level representation of the proof can be augmented
with additional information on the proof, which can be used to restrict the
search space. Since the information is passed on from method to method, this
also enables having a global rather than a local view of the proof.

3.2.1 Methods and Tactics

As mentioned in the previous section, the basic elements of proof planning are

methods. Methods are relations of the form method(Name, Sequentln, Pre-

Cond, PostCond, SequentsOut, Tactic), where

Name is the name of the method.

Sequentln is the pattern of the input sequent.

PreCond is a set of conditions that must be met by the input sequent for the
method to be applicable.

PostCond is a set of conditions that will hold for the output sequents if the

tactic succeeds.

SequentsOut is a set of patterns for the output sequents that will result if the
tactic succeeds.

Tactic is the name of the tactic associated with the method.
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Pre- and post-conditions are expressed in the language of the meta-logic. Al¬

though the tactic associated with a method often goes by the same name, this
is not necessarily the case. There are, for instance, methods that only have an

effect at the meta-level, not at the object-level. The tactic associated with these

methods is the trivial tactic that does nothing.

Methods are partial specifications of tactics in the following sense: If a se¬

quent matches the input pattern and the pre-conditions are met, the tactic is

applicable; if the tactic succeeds, the output conditions (or effects) will be true
of the resulting sequents. Each method captures a particular notion of progress
towards a complete proof, while leaving the tedious details of how to achieve the

progress to the tactic.

3.2.2 Proof Planning for Inductive Proofs

The proof planning work in Edinburgh has concentrated mainly on planning
inductive proofs. There are two challenges specific to automating inductive

proofs: The selection of an appropriate induction scheme and the exploitation
of the induction hypothesis in the step case of the proof.

The overall structure of inductive proofs follows the schema of Figure 3-1.

The first step is the selection of an induction scheme. Then, symbolic evaluation,

simplification and tautology checking are applied to the base case. In the step

case, the induction conclusion is rewritten in such a way that the induction

hypothesis can be exploited. This rewriting is called rippling and is explained
in detail in the following sections. Finally, the induction hypothesis is exploited

using a technique called fertilization, which is also explained below.

The proof planning methods presented in this section are those of CLMVl 2.0
for type theory. Some modifications of these methods are required to use CIAM
for first-order predicate logic. These are discussed as they arise in the following
sections. Section 7.1 contains some of the implementational details involved.

The central method for inductive proofs is ind.strat (see Figure 3-2), which is
a compound method embodying the overall structure of the family of inductive
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Induction

Base case

Symbolic evaluation

Simplification

Tautology checking

Step case

Rippling
Fertilization

Figure 3-1: General structure of inductive proofs

ind.strat =

induction then

base_case

step.case

Figure 3-2: The ind_strat method

proofs. The methods it is composed of, induction, base.case and step_case, are

discussed in the following sections. They are illustrated throughout using the

proof of the associativity of +

Vx.y.z. (x + y) + z = x + (y + z) . (3.1)

Induction

The purpose of the induction method is to select a set of induction variables and
an induction scheme for a given conjecture. Selecting an appropriate induction
scheme is one of the main challenges in inductive theorem proving: It is one
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of the first steps, yet it is crucial to the success of the proof planning. The

technique the induction method uses to select an induction scheme is known as

recursion analysis.

Recursion analysis is the rational reconstruction and extension of the heurist¬

ics of the induction technique of NQTHM (see Section 3.1.1) to select induction
variables and schemes [Boyer & Moore 88, Stevens 88, Bundy et al 89). Recur¬
sion analysis basically prefers induction variables which occur in the recursive

position of the function or relation dominating them and which can be rewritten

using an axiom or a lemma. It selects a scheme which corresponds to the re¬

cursion of the dominating function or relation. For example (3.1), the available
axioms are

Vu, v. s(u) + v = s(u + v) (3.2)

Vu,v. s(u) = s(v) <-> u = v , (3.3)

i.e., the recursive part of the definition of + and the replacement axiom for s.

Each of the universally quantified variables x,y,z in the conjecture is analyzed
with respect to these definitions. Both occurrences of the variable x are in

the recursive position of +, while only one occurrence of the variable y and

no occurrence of the variable z are in the recursive position of either axiom.
The variable z is labeled unsuitable as an induction variable. The variable y is
labeled as flawed because only one of its occurrences is in a recursive position.
The variable x is labeled unflawed:

Variable Definition Recursion Occurrences Status

total unflawed flawed

X + s(x) 2 2 0 unflawed

y + s(y) 2 1 1 flawed

z none none 2 0 2 unsuitable

On the basis of this analysis, the induction method selects induction vari¬

ables, preferring unflawed to flawed candidates.

In essence, recursion analysis is a look-ahead into the rewriting of the step
case. If, for instance, we choose one-step induction on x for (3.1), the step case
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becomes

(x + y) + z = x + (y + z)
h

(s(x) + y) + z = s(x) + (y + z) ,

to which we can apply at least two rewrites based on the definition of +. If we

choose one step induction on y, however, the step case is

(x + y) + z = x + (y + z)
b

(x + s(y)) + z = x + (s(y) + z)

to which we can apply only one rewrite based on the definition of +, namely on

the second occurrence of y.

This presentation of recursion analysis is an oversimplification in that recur¬
sion analysis also considers combinations of induction variables, combinations of

recursion schemes as well as subsumption between them.

The main disadvantage of recursion analysis is that it can only find schemes
that are dual to recursion schemes present in the conjecture. This is not always

sufficient, particularly not in the case of synthesis, because the appropriate in¬
duction may depend on the recursion of the program to be synthesized, which
is unknown at the outset. An alternative to recursion analysis that avoids this

restriction, and also avoids the look-ahead into the step case, is the technique of
middle-out induction (Section 5), which forms a central part of this thesis.

To summarize, the induction method applies recursion analysis to the input

sequent. It succeeds if the analysis suggests a suitable induction scheme, and fails
if all variables are labeled unsuitable. Its output are the base and step sequents
for the selected induction scheme. The induction method also annotates the step

sequents for the subsequent rippling method, which is described further down.
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base.case =

iterate(

synueval,

elementary

)

Figure 3-3: The base.case method

sym.eval =

iterate(

equal,

reduction,

evaLdef,

existential

)

Figure 3-4: The synueval method

Base Case

The base_case method is a compound method which iterates over a symbolic
evaluation method sym.eval and a simplification and tautology-checking method

elementary (see Figure 3-3).

Symbolic Evaluation The sym-eval method is again a compound method.
It iterates over the submethods equal, reduction, evaLdef and existential (see
Figure 3-4).

The equal method uses any existing equality to rewrite all hypotheses and

goals towards the alphabetically lower term.
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step_case =

ripple then
fertilize

Figure 3-5: The stepxase method

The reduction method rewrites the conclusion using a reduction rule. A re¬

duction rule is a rewrite rule that removes a constant expression or wave

rule (see below) where the wave front is a type constructor.

The evaLdef method rewrites the conclusion using defining equations.

The existential method deals with existentially quantified base case proof

obligations

Elementary The elementary method is a terminating method. It is a propos-

itional tautology checker, but also does some simple non-propositional simplific¬
ations.

Step Case

In the step case of inductive proofs, the main objective is to manipulate the
induction conclusion in such a way that the induction hypothesis can be ex¬

ploited. The stepxase method (see Figure 3-5) applies the ripple method to
rewrite the induction conclusion, and then the fertilize method to exploit the
induction hypothesis.

Rippling The ripple method embodies what is known as the rippling heur¬
istic [Bundy et al 93]. This heuristic uses rewrite rules to eliminate the differ¬
ences between the induction hypothesis and the induction conclusion so that

the induction hypothesis can be exploited. To visualize rippling, following



[Bundy et al 93], imagine a loch (a Scottish lake) which reflects the induction
hypothesis. The reflection, i.e., the induction conclusion, is not a perfect image
of the induction hypothesis, because where there are induction variables in the

hypothesis, there are induction terms in the conclusion. The terms that ap¬

pear in the induction conclusion, but not in the induction hypothesis, are wave

fronts. They are the ripples on the surface of the loch that spoil the reflection.

Initially, the wave fronts immediately dominate the induction variables. The

role of rippling is thus to move them outwards—just like ripples on a loch—

until they leave behind a perfect reflection of the induction hypothesis. The

rippling heuristic has been shown to terminate [Bundy et al 93],

We will represent wave fronts as boxes with holes. The holes are indicated

by underlinings. Thus, for example, for the step case of the proof of (3.1), the
induction method sets up the annotated sequent

(x + y) + z - x + (y + z)
F

(] s(x) | + y) + z = |s(x)|+ (tj + z) .

If we remove the structure in the non-underlined parts of the boxes from the

conclusion, we obtain what is called the skeleton, i.e., a copy of the induction

hypothesis. The skeleton is thus the part of the induction conclusion we want

to preserve.

Rippling now consists of applying annotated rewrite rules called wave rules.
The annotation on the wave rule ensures that applying it will move the wave

front up in the term tree of the induction conclusion, if the annotations in the

rule match those of the conclusion. The (simplified) schematic format of a wave

rule1 that moves one wave front outwards is

F[ S[U] | :=> T[F[U]]

The effect of applying such a wave rule is to move the wave front S on the
left-hand side outwards past the F, and to turn it into a wave front T on the

'We use the symbol :=> as the rewrite arrow.
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Figure 3-6: A wave rule for +

right-hand side, whose position is higher up the term tree. A simple example of
a wave rule is

s(M) + N :=> s(M + N1 ,

which is based on the recursive definition of +. Here, S and T happen to be the

same, i.e., the constructor s. Figure 3-6 shows this wave rule in terms of the
term trees of the left- and right-hand sides, emphasizing the upward movement
of the wave front. CLAM generates wave rules automatically from the axioms,

definitions, and lemmas it is given.

To apply a wave rule to a subexpression of the induction conclusion, the

following pre-conditions [Bundy et al 93] must hold:

• The left-hand side of the wave rule must match the subexpression.

• The subexpression must contain at least one wave-front.

• Bach wave front in the rule must match a wave front in the subexpression.
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To illustrate the rippling process, we will work through the step case of (3.1).
The wave rules we will use are:

s(M) +N s(M + N)

s(M) = s(N) M = N ,

(3.4)

(3.5)

where M and N are free variables. These wave rules are derived from the defin¬

ition of and the replacement axiom for s. Rippling applies wave rule (3.4)
once on the right side and twice on the left side and then applies wave rule (3.5)
once:

(x + y) + z = x + (y + z)

The applications of rules (3.4) successively move the wave fronts outwards, and
the application of rule (3.5) removes all wave fronts from the conclusion. The
induction conclusion is now identical to the induction hypothesis. The method
that exploits the induction hypothesis is called fertilization.

Before discussing fertilization, however, we present some variations on rip¬

pling. Rippling as presented so far is known as rippling out. It is an extension of
the ripple-out heuristic developed in [Aubin 76], We do not cover all variations
of rippling, but only the ones that occur in subsequent sections. For a complete

description of rippling, see [Bundy et al 93].

A first extension of rippling out is to allow conditional rippling. The format
of a simple conditional wave rule is

Cond -> F[ S[U] ] :=> T[F[U]]

A simple example of a set of conditional wave rules is

X = H —> count(X,|H::T| s(count(X,T)

X ^ H —> count(X,| H :: T | count(X, T)
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where count is a function which counts the number of occurrences of an element

in a list.

When we apply a conditional wave rule, we must ensure that the condition
holds. There are two ways this can be done: One is to try to prove the condition
of the wave rule from the current hypotheses, the other is to introduce an appro¬

priate case split. The method that introduces such case splits is called case_split.
The strategy that CLAM uses is to introduce the case split if the precondition
of the wave rule is not already present among the hypotheses and if there is a

complete set of rules for all conditions.

Until now, all wave fronts have been moving outwards. There are cases,

however, where it is better to direct the wave fronts not to the top of the term

tree of the induction variable, but towards a universally quantified variable.
In the induction hypothesis, universally quantified non-induction variables act

as free variables; thus, in the induction conclusion, we can wrap any amount

of structure around their eigenvariable2 counterparts. This type of rippling is
called rippling sideways. It is often useful in program verification when dealing
with accumulators. To ripple sideways, we need to allow a new type of wave rule
which moves wave fronts off of one variable and onto another. Such wave rules

are called transverse wave rules, as opposed to the wave rules we have seen so

far, which are called longitudinal wave rules.

We must extend our annotation to be able to distinguish the direction in
which a wave front is moving, and to be able to distinguish the eigenvariables
that correspond to universally quantified variables in the induction hypothesis,
which are called sinks. The direction of a wave front is indicated by an arrow

2Eigenvariables are new variables introduced by inference rules involving quantifiers.
For instance, y is the eigenvariable of the rule

T h A, A[y/x], A
T h A, Vx: s.A, A

The side condition of the rule, i.e., that y may not occur free in the conclusion, is known
as the eigenvariable condition.



superscript on the box3. The arrow indicates the direction the wave front moves

in the term tree. Sinks are annotated with [J-

The format of a simple transverse wave rule is

F[S(U] ,V] :=> F[U, m ] .

A simple example of a transverse wave rule is

rev(| H ::T[ ,A) :=> rev(T,

where rev is tail-recursive list reversal.

H:: A (3.6)

An example that requires rippling sideways is the following theorem on naive
and tail-recursive list reversal

Vk, I. app(naive_rev(k), I) = rev(k, I) .

Besides the transverse wave rule (3.6), we need the longitudinal wave rule
for naive list reversal and the transverse wave rule based on the associativity of

append

naivejrev( H:: T app(naive_rev(T), H:: nil)

app( app(U,V) ,W) :=> app(U, app(V,W) )

The step case for induction on k is

VI. app(naive_rev(t), I) = rev(t, I)
b

app(naive_rev( h::t ), [IJ) = rev( h::t , [IJ) .

We apply wave rules (3.6) and (3.7) to obtain

app( app(naiven-ev(t), h:: nil) , [lj) = rev(t h::l J)

(3.7)

(3.8)

3In the following, if there is no possibility of confusion because all wave fronts are

moving outwards, the arrows are omitted. Similarly, sinks may be omitted.
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and wave rule (3.8) to get

app(naive_rev(t), app(h::nil, I')j = rev(t, K:: 11J) .

The unblocking method (see below) simplifies the left wave front, app(h:: nil, I),
to h:: I. We can now complete the proof by instantiating the universally quan¬

tified variable I in the induction hypothesis to h:: I and appealing to the instan¬
tiated hypothesis.

A logical extension to rippling out and rippling sideways is rippling in. Rip¬

pling in is the reverse of rippling out—an inward-bound wave front is pushed
further down the term tree. Rippling in is useful in connection with rippling

sideways, when an inward-bound wave front introduced by a transverse wave

rule needs to be pushed further down. Rippling in, however, is also useful in
connection with weak fertilization (see below).

Rippling as portrayed so far applies to theorems containing universal quanti¬
fiers only, and cannot cope with existential quantifiers. To illustrate the problem
of existential quantifiers, we use a variant of the associativity of +

Vx, y, z.3w. w + z = x + (y + z) .

The induction conclusion for induction on x is

Vy, z.3vv. w + z = s(x) + (y + z) ,

which can be rippled to

Vy, z.3w. w + z = s(x + (y+z))

as in the earlier version of the associativity of plus. There, we then applied wave

rule (3.4) twice to the left hand-side. This is no longer possible here, since we
it

have an existentially quantified variable w instead of the wave term s(x) + y.

Clearly, however, we need to somehow apply wave rule (3.4). We can do this

by exploiting the fact that the existential variable w could actually stand for a

wave term.
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To allow wave rule (3.4) to apply here, we introduce existential versions of

wave rules. A simple wave rule of the form

F[ S[U] | :=* T[F[U]]

can be turned into an existential wave rule

3^n.G|FMH ■=> 3'u':.G[ '[Fjiujl
The existential version of wave rule (3.4) for the example is thus

+ z-3[w~|. fw1+ z = s(x) + (y + z) :=> 3\v':. s(fw'i) s(x) + (y + z) .

In essence, what existential rippling does is to allow a wave rule to partially
\W /

instantiate an existential variable to a wave term. To indicate that existential

variables can be instantiated to wave terms, they are annotated with dashed

boxes, called potential wave fronts.

Applying the existential wave rule to the appropriately annotated step case

Vy,z.3wi. :vv:+ z — s(x + (y + z))

yields

Vy,z.3Vl s([vv'j) + z = s(x + (y±z))
and the rippling can now be completed by applying wave rule (3.5).

Finally, rippling sometimes terminates before the induction hypothesis can

be exploited. If this happens, we say that the rippling is blocked. There are

various techniques to unblock the rippling. They generally modify the induction
conclusion in some way that makes a wave rule become applicable. The most

common unblocking step is symbolic evaluation of a wave front.

The ripple method (see Figure 3-7) implements the rippling heuristic as

described in the previous sections. It iterates over the methods wave, case.split
and unblock.

The wave method covers all the types of rippling discussed above, i.e., rip¬

pling out, rippling sideways, rippling in, conditional ripplmg and existential

rippling. The case.split introduces case splits to allow conditional wave rules to

apply, and unblock covers unblocking.
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ripple =

iterate(
wave,

case_split,

unblock ""

)

Figure 3-7: The ripple method

fertilization =

fertilization.strong or

fertilization,weak

Figure 3-8: The fertilization method

Fertilization Fertilization (see Figure 3-8) is the method that exploits the
induction hypothesis. If, after rippling, the wave front surrounds the entire in¬
duction conclusion, or has even disappeared, we use the method called strong
fertilization. If the wave fronts do not yet surround the entire induction conclu¬

sion, but we can still exploit the induction hypothesis by applying it as a rewrite

rule, we use the method called weak fertilization.

Fertilization is called strong if the entire induction hypothesis appears as

a subterm of the induction conclusion. Often, as in the example (3.1), the
induction conclusion is actually identical to the induction hypothesis. In this

case, we can appeal directly to the induction hypothesis, and strong fertilization
is a terminating method. If the induction hypothesis is a proper subterm of
the induction conclusion, we rewrite the subterm to true and prove the residual

conclusion.
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In some cases, rippling terminates before strong fertilization is possible. Sup¬

pose that wave rule (3.5) were not available in the proof of (3.1). Then, rippling
would have terminated with the sequent

(x + y) + z = x + (y + z)
h

s((x + y) + z) = s(x + (y + z))

Although we cannot appeal directly to the induction hypothesis, we can never¬

theless exploit the induction hypothesis by using it as a rewrite rule. If we use

the induction hypothesis as a rewrite rule from left to right to rewrite the wave

hole on the left-hand side of the conclusion, we obtain

(x + y) + z = x + (y + z)
h

s(x + (y + z)) = s(x + (y + z)) ,

which is proved by the reflexivity of equality. Fertilization by using the induction

hypothesis as a rewrite rule is called weak fertilization.

In some cases, the subgoal remaining after weak fertilization is not trivial, and

requires additional rippling in. This is explained in detail in [Bundy et al 93],

The discussion of fertilization completes the overview of the proof planning
methods of CIAM.

3.2.3 Middle-Out Reasoning

Proof planning is a meta-level reasoning technique and thus differentiates
between the problem (the object-level) and reasoning about the problem (the
meta-level). Middle-out reasoning [Bundy et al 90a] extends the meta-level reas¬

oning we have presented so far in that it allows the meta-level representation of

object-level entities to contain meta-level variables, i.e., meta-variables can be

used to represent unknown terms or formulae. This allows proof planning to pro¬

ceed even though an object-level entity is not fully specified, thus postponing a
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decision about the entity's real identity. [Hesketh 91] shows how middle-out reas¬

oning can be used to synthesize tail-recursive programs from non-tail-recursive

specifications and to generalize inductive theorems. [Madden et al 93] reports
on a generalization of middle-out reasoning for program optimization.

The advantage of middle-out reasoning is that it allows us to get on with
the proof planning even though some details are as yet unknown, and fill in the
details later. The disadvantage is that the use of meta-variables introduces a

larger degree of freedom in the subsequent search. Thus, there is often a need
for greater search control when using middle-out reasoning.

In this work, we use middle-out reasoning for two purposes: To synthes¬
ize logic programs (Section 4) and to select induction schemas (Section 5). In

synthesis, we use a meta-variable to represent an unknown program body in a

verification proof; in induction scheme selection, we use meta-variables to rep¬

resent the induction terms in the induction conclusion.

3.3 Summary

This section provided a brief introduction to automated inductive theorem prov

ing and a more detailed introduction to proof planning for inductive proofs. As
we show in the next section, our syntheses occur in the planning of induct¬
ive verification proofs. The proof planning methods presented here provide the
foundation for our cynthesis syGtem and are used and extended in the following
sections.
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Chapter 4

Middle-Out Synthesis

This chapter illustrates how the technique of middle-out reasoning can be used
to turn program verification into program synthesis. First, however, it deals
with some preliminaries: It presents the type of program we synthesize, i.e.,

pure logic programs, and the way we verify them (Section 1.1). It then illus
trates how logic program verifications are planned (Section 4.2), and how the
middle-out reasoning in verification planning can be U3cd for program 3ynthc3is.

(Section 4.3).

4.1 Pure Logic Programs

The programming logic we use consists of the completions of a restricted subset
of normal programs (see Section 2.1.1), which we call pure logic programs.

Pure logic programs as presented here are similar to the pure logic programs in

[Bundy et al 90b] and the logic descriptions in [Deville 90]. Formally, we define

pure logic programs as follows: They are finite sets of pure logic program clauses.
A pure logic program clause is a closed, typed formula of the form

Vx: t. A(x) *-> H

where x is a vector of distinct variables of type t, A(x) is an atom, called the
head of a clause, and H is a Horn body. A formula H is a Horn body if, in
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Backus-Naur notation,

H ::= A | H, A H; | H, V H2 | 3x.H ,

where A is an atom whose name is a known relation, such as = or yt, or whose
name is among the names of the heads of the clauses of the program.

An example of a pure logic program is

Vx, I. member(x, I) «-» 3h, t. I = h:: t A (x = h V member(x, t)) (4.1)

Vi, j. subset(i, j) <-> i = nil V

3h,t. 1 = h::tA member(h, j) A subset(t.j) .

The predicate member(x, I) is true if x is a member of the list I, the predicate

subset(i,j) is true if i is a subset of j. Translated into Prolog, for instance, this
becomes:

member (X, [X I _] ) .

member(X, [-IT]) member(X, T).

subset ( [] , _) .

subset([H|T], J) member(H, J), subset(T, J).

We have chosen to synthesize pure logic programs because they are a suit¬
able intermediate representation on the borderline between non-executable spe¬

cifications and executable programs. In particular, the definition of pure logic

programs guarantees that

Vx: t. A(x) <- H

corresponds to a set of definite program clauses.

Pure logic programs are very general: They capture the semantics of the

logic programming languages presented in Section 2.1.1. They also capture the
basic recursive structure of algorithms, while avoiding non-logical aspects such
as order of execution and non-logical primitives, which are normally specific to
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the implementation of a logic programming language. ThuSj pure logic programG

represent a kind of common denominator of pure logic programming languages.

We have seen that arbitrary first-order formulae can be regarded as logic

programs (see Section 2.1.1). Thus, the question arises why we bother with

synthesis at all. We do so mainly for two reasons. First, the Lloyd-Topor trans¬

formation, which is used to turn a first-order formula into a normal program,

does not change the recursive structure of the formula in any way. Changing
the recursion scheme of a program is often essential to achieve a gain in effi¬

ciency, and introducing an improved recursive structure is one of the main goals
of program synthesis. Furthermore, the Lloyd-Topor transformation sometimes
introduces negations, which in turn can produce floundering. For instance, if we
transform the subset program

Vi, j. subset(i,j) <— (Vx. member(x,t) —> member(x,j))

using the Lloyd Topor transformation, we obtain the program

VI, j. subset(i, j) <— —>p(i, j)

Vi,j.p(i,j) <— member(x,i) A ->member(x,j) ,

which flounders in any but all-ground mode. Thus, if our aim is to synthesize

programs that are less likely to flounder, the Lloyd-Topor transformation is not
sufficient. Because we do not allow negation in pure logic programs, except in
the form of inequality, the risk of floundering is minimized.

By synthesizing what is normally considered to be the semantics of an ex¬

ecutable program, we also break down the formidable task of synthesis into two

parts. First, we synthesize the basic structure of the algorithm in the form of a

pure logic program. Once we have the basic structure, we can translate the pure

logic program into a logic programming language of our choice and introduce

non-logical primitives as desired.

Synthesizing pure logic programs has another, decisive advantage: The inten¬
ded meaning of the program coincides with the logical meaning of the program.

Thus, we can reason about pure logic programs within the well-understood
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framework of predicate logic, and bring knowledge and experience in theorem-

proving to bear. Reasoning about logic programs, in particular program correct¬

ness, is discussed in the following section.

4.1.1 Program Correctness

Establishing the correctness of a program entails showing that everything the

program computes is described by the specification (partial correctness) and
that everything the specification describes is computed by the program (com

pleteness). One of the main advantages of logic programming languages is that,
because the program statements are logical statements, we can reason directly
with the program to establish properties such as partial correctness and com¬

pleteness.

Unfortunately, howovor, there is a serious difficulty: When reasoning with

impure programs, we must also capture the non-logical aspects of the programs.

This means we can no longer reason solely within the framework of logic, and
must find another suitable framework. This framework varies depending on the

non-logical primitives used and the properties that are to be preserved, and is
therefore necessarily language dependent and thus not generally applicable.

But even reasoning with pure programs presents some difficulties. This is be
cause the intended meaning of a logic program does not necessarily coincide with
the logical meaning of the program. Take, for instance, the member program

member(X, [XL])

member(X, [_IT]) <— member(X, T)

and the goal

<— memberd, [])

In the intended meaning of the program, the goal is false. However, this does not

correspond to the logical meaning of the program. This is why the semantics
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of logic programs is often taken not to be the logical meaning, but the least
Herbrand model, the completion or some other appropriate semantics. These

all correspond to some form of the closed world assumption. Depending on

which semantics we choose for the program, however, there arc many notions of

program equivalence (see, for instance, [Maher 87, Lever 91]).

If we reason with completions, on the other hand, we can exploit the fact
that the intended meaning and the logical meaning coincide, and we can reason

purely within the framework of predicate logic. Also, there is only one notion of

equivalence, namely logical equivalence.

Using pure logic programs, we can thus establish partial correctness and

completeness by proving that program and specification are logically equivalent,

i.e.,

Vx: t. A(x) «-» H h Vx:t. A(x) <-> S ,

where A(x) and H are as in Section 4.1 and S is the specified relation. For

instance, to verify the subset program with respect to the specification1

Vx. member(x,i) —► member(x,j) ,

we prove, in the standard theory of lists,

Vi,j. subset(i,j)«-»(Vx. member(x,i) —> member(x,j))

using the definitions of member and subset (4.1).

Such verification proofs form the basis of our synthesis approach. The plan¬

ning of verification proofs and how these verification proofs arc turned into

synthesis proofs is discussed in the following two sections.

1 Here, and in the following, we often omit noil information to avoid notational clutter.
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4.2 Proof Planning for Reasoning about Logic

Programs

Proof planning as presented in Section 3.2 is implemented in the proof planning

system CLAM (Version 2.0) [Bundy et al 90c], To use CLAM to reason about logic

programs, some changes need to be made. The main issue is to adapt ClAM to
the syntax of sorted first-order predicate logic with equality rather than that of
the Martin-Lof type theory for which it was designed. The implementational
issues involved in this adaptation are described briefly in Section 7.1.

On the conceptual level, most methods remain virtually unchanged. The one

conceptual adaptation that is necessary has to do with logical equivalence, which
occurs in first-order predicate logic but not in the type theory. ClAM for type

theory therefore generates rewrite rules from equalities and implications. ClAM
for first-order predicate logic, however, generates rewrite rules from equalities,

implications and equivalences. More importantly, care must be taken when

rewriting under equivalence in first-order predicate logic: Under equivalence,

only equivalence-preserving rewrites are correct, which eliminates rewrite rules
based on implications and also some existential versions of rewrite rules. The

problem of existential rippling under equivalence is discussed in Section 6.2.

4.2.1 Planning Logic Program Verification Proofs

As explained above in Section 4.1.1, our verification proofs involve showing that
the specification and the program are logically equivalent. The verification of
the subset program, for instance, consisted of proving the conjecture

Vi,j. subset(i,j) <-> (Vx. member(x,i) —+ member(x,j'))

using the definitions of member and su.bset (4.1) and the axioms for lists.

To illustrate what is involved in planning verification proofs, we work through
the verification of subset below.
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b PTog[Base] «-» Spec[Base]
symbolic evaluation

b Formula] -> Formula2

simplification
b true

tautology

Figure 4-1: Schematic base case in verification

First, recursion analysis (see Section 3.2.2) suggests structural induction on

the list i, since it occurs in the recursive position of both subset and member.

This yields a base case where i is the empty list and a step case where i is a

composite list.

Base case: The base case for induction on i is

I- subset(nU,j) «-» (Vx. member(x,riil) —> member(x,j)) .

Symbolic evaluation using the base cases of subset and member yields

b true «-> (Vx. false —> member(x,j)) ,

which simplifies to

b tnie .

The base case is thus complete.

This sequence of symbolic evaluation, simplification and tautology checking
is typical of the base cases of verification proofs. Figure 4-1 summarizes a

schematic base case of a verification proof.

Step case: The annotated step case for induction on i is:

subset(t,j) <-» (Vx. member(x,t) —» member(x,j))
b

subset( h:: t , j) <-> (Vx. member(x, h.:: t) —> member(x, j))
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For the rippling, we need the wave rules

subset( H:: J

member(X, H:: T

■ L) :=

) :=

P V Q R

Vx. P A Q

PAQ

member(H, L) A subset(T, L) (4.2)
X = H V member(j^t) (4.3)

P - R A Q -> R (4.4)

Vx. P A Vx. Q (4.5)

Q <-> R . (4.6)

While the first two wave rules are derived from member and subset, the remain¬

ing three are expressed in terms of logical connectives only. Such wave rules,

of which there is a large number, are called logical wave rules. The problem of

logical wave rules is discussed in Section 6.1.

The rippling of the subset example consists of consecutively applying wave

rules (4.2) through (4.5) to the induction conclusion

subset( h::t , j)

Vx. memberfx, h::t

member(h, j) A subset(t,j)

Vx. member(x,

) —> member(x, j)

> member(x,j)

and then simplifying the wave front on the right-hand side (this is done by the

unblocking method), so that we can apply wave rule (4.6)

subset(t, j)

Vx. member(x,t) —> member(x,j) .
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Note that wave rule (4.6) is not equivalence-preserving, since it is based on an

implication2. However, since we are no longer rewriting under the equivalence,
but are rewriting the entire conclusion, wave rule (4.6) is applicable. It removes
all wave fronts, and the induction conclusion is identical to the induction hypo¬
thesis. We apply strong fertilization (see Section 3.2.2), and the proof plan3 is

complete:

induction([h::t],[i:nat list]) then

[ sym_eval( [eval_def([2], program(subset(l))),
eval_def([1,2,1], program(member(l)))]) then

simplify(true <-+ Vx:nat. false —> member(x,j), tTue) then
tautology,

ripple(wave([2],[program(subset(2)),left],(]) then

wave([l,2,l],[program(member(2)),left],[]) then
wave([2,l],[distimpLor_r, left],]]) then

wave([l],[dist_all_and, left],]]) then
unblock(simplify,

Vx:nat. x = h —> member(x, j) A ...,

member(h, j) A ... ) then

wave([],[cnc_and_l, left],]])) then

fertilize(strong, [_,[]])
] •

This sequence of rippling both sides of the equivalence, applying a wave

2There is potential for confusion here in that the rewrite goes from left to right, but
the implication on which the rewrite is based goes from right to left.

3For details on the arguments of the methods, see [van Ilarmelen et al 93]. Note
that Periwinkle splits CL^M's method elementary (see Section 3.2.2) into two separate

methods, simplify and tautology.
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Prog[Arg] <-> Spec[Arg]
I- Prog[ ConstrjArg] ) <-> Specj Constr[Axg] )

Prog[Arg]
h

ripple under equivalence

Spec[Arg]

Front[Prog[Arg]] *-* Front[Spec[Arg]]

final ripple

Prog[Arg] <-> Spec(Arg)
h Prog[Arg] Spec[ArgJ

strong fertilization

Figure 4-2: Schematic step case in verification

rule that removes the wave fronts and strong fertilizing is typical of verification

proofs. Figure (4-2) summarizes a schematic step case of a verification proof.

4.3 From Verification to Synthesis

The concept of middle-out reasoning was presented in Section 3.2.3. In middle-
out reasoning, object-level expressions are represented with meta-variables.
With this technique, proof planning can progress even though an expression
at the object-level is not yet known. In the course of the proof planning, the
meta-variable becomes instantiated via unification, thus filling in the details of
the initially unknown object-level expression.

In this section, we show how middle-out reasoning can be used to turn veri¬
fication proof planning into program synthesis. This is achieved by planning
the verification of a program while leaving the program unknown. The proof

planning starts with a program whose body is represented with a meta-variable.
In the course of the planning, the variable becomes instantiated to a program.

The planning thus results both in an instantiation of the program body and in
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a plan for the verification of that program. If the plan executes successfully, the

synthesized program is partially correct and complete.

Representing the body of the program with a meta-variable obviously entails
a loss of information, and this loss of information affects the proof planning.
In the verification proof4 in Section 4.2.1, there were a number of steps that

crucially depended on the program, but also a number of steps that did not.

In particular, the symbolic evaluation of subset in the base case and the ripple
with the subset wave rule (4.2) depend on the program.

The main difference between the verification and the synthesis planning is
that in verification, the two types of steps tend to be interleaved (see Figure 4-

2). In synthesis, on the other hand, the part of the proof that does not depend
on the program is planned first, and any step that depends on the program is

postponed as long as possible. The reason for this is that, in synthesis, any step

that depends on the program partially instantiates, i.e., commits the program.

Thus, postponing such steps corresponds to a least commitment strategy.

To illustrate this, we redo the step case of the verification proof in Sec¬

tion 4.2.1, omitting any step that depends on the program. This rules out

rippling with the subset wave rule (4.2). The rippling progresses as follows,

using wave rules (4.3)-(4.5) and simplification.

subset([h::t |, j)
Vx. x = h V member(x.t) —► member(x, j)

subset( h::t ,j)

4There is potential for confusion between the terms verification and synthesis on

the object and meta-levels. In the following, verification proof is used to refer to the
verification proof at the object level, verification to refer to the planning of a verification

proof for a given program and synthesis to refer to the planning of a verification proof
for a program to be synthesized.
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Vx. x = h —> member(x, j) A member(x,t) —> member(x,j)

subset( K:: t , j)

Vx. x = h —> member(x, j) A Vx. member(x,t) —♦ member(x, j)

subset([h::t|,j)
member(h, j) A Vx. member(x, t) —» member(x, j)

The lack of wave rule for subset now prevents us from further rippling and

strong fertilization (see Figure 4-2). However, we can apply weak fertilization

(see Section 3.2.2). In weak fertilization, we use the induction hypothesis

subset(t,j) <-» (Vx. member(x,t) —> member(x,j))

as a rewrite rule. This results in

subset( h::t , j) «-» member(h, j) A subset(t, j)

Now, there is nothing we can do that does not depend on the program. In fact,
the residual conjecture is precisely the part of the proof that, in a verification,
would have been proved using the subset wave rule. By appealing to the as yet

uninstantiated program, we commit the program to correspond to this residual
conclusion. Thus, the actual synthesis, i.e., the instantiation of the program

body, takes place when the planner appeals to the program to justify the residual
conclusion. The details of this are presented in the following section. Figure 4-

3 shows schematically how a typical step case of a synthesis progresses: The

specification side of the induction conclusion is rippled until weak fertilization
is possible, and the proof is completed by appealing to the program.

The base case follows a similar pattern. In verification, symbolic evaluation
and simplification of specification and program usually yield a tautology that

something is equivalent to itself (see Figure 4-1). In synthesis, only the specific¬
ation is symbolically evaluated and simplified, and the residual conclusion again

corresponds to part of the program (see Figure 4-4). This is illustrated in detail
in the following section, which presents the synthesis of subset.

Figure 4-5, finally, contrasts typical verification and synthesis proof plans.
Some of the actual methods differ slightly from verification to synthesis, e.g.,
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Prog[Arg] «-» SpecjArg]
F- Prog[ ConstrjArg] ) «-> Specj ConstrjArg)

: ripple under equivalence

PTog[Arg] <-» Spec[Arg]
F Prog[ Constr[Arg| ) «-> Front[Spec[Arg]]

: weak fertilization

Prog[Arg] <-> SpecjArg]
h Progj ConstrjArg] ) <-> FrontjProgjArg]]

appeal to program

Figure 4-3: Schematic step case in synthesis

F- ProgjBase] *-> SpecjBase]

symbolic evaluation
and simplification

F ProgjBase] -> Formula

appeal to program

Figure 4-4: Schematic base case in synthesis

56



Verification Synthesis
Induction Induction

Step case:

Rippling

Strong fertilization

Step case:

Rippling
Weak fertilization

Appeal to program

Base case:

Symbolic evaluation

Simplification

Tautology

Base case:

Symbolic evaluation

Simplification

Appeal to program

Figure 4-5: Overview of verification versus synthesis

rippling. This is mainly due to a need for more search control in synthesis, as is

explained in the following sections.

4.4 An Example Synthesis

In this section, we illustrate the synthesis of the program we verified in Sec¬
tion 4.2.1. The by now familiar conjecture is

Vi,j. subset(i, j) <-> (Vx. member(x,t) —> membeT(x, j)) . (4.7)

For synthesis, the subset program is represented as

Vi,j. subset(i,j) <-+ "P(i,j) ,

where V is the meta-variable that stands for the program body.

Recursion analysis (now without the definition of subset), still suggests
structural induction on the list i. The type of induction immediately determines

the recursive structure of the body of the program: There is a base case where
i is empty, and a step case where i consists of a head and a tail

Vi,j. subset(i,j) «-» i. = nil A B(j) V (4.8)
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3h, t. i = h:: t A <S(h, t, j)

Each induction scheme has stored with it the corresponding recursive structure of
the program, and the program body is unified with this structure. The problem
of unifying such terms is discussed in Section 5.3.1.

Base case: The base case for induction on i is

b subset(nil,j) «-> (Vx. member(x,nil) —> member(x,j)) .

Symbolic evaluation using the base case of member yields

b subset(nil, j) <-» (Vx. false —> membeT(x,j)) ,

which simplifies to

b subset(nil, j) «-» true . (4.9)

After simplification, we are left with what will become the base case of the

program. In the previous section, we explained that this is the part of the base
case which would have been proved with the base case of the subset program in
the verification. By appealing to the as yet uninstantiated program definition,
we complete the base case of the proof and at the same time instantiate the base
case of the program. This is done by the synthesis method.

To appeal to the program definition (4.8), the synthesis method instantiates
it appropriately

subset(nil,j) <-> nil = nil A fi(j) V

3h',t'. nil = h'::t' A 5(h',t', j)

and simplifies it

subset(nil, j) «-» £>(j) . (4.10)

Finally, the residual conclusion (4.9) and the simplified program (4.10) are uni¬
fied (see Section 5.3.1), which yields the instantiation Au. true for £>. This step
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completes the base case. The (normalized) partially instantiated program so far
is thus

Vi, j. subset(i, j) <-> i = nilAtrueV (4.11)

3h, t. i = h:: t A <S(h, t, j) .

Step case: The annotated step case for induction on i is:

subset(tj) <-» (Vx. member(x,t) —> member(x,j))
h

subset( h::t ,j) <-» (Vx. member(x, h::t) —> member(x,j))
In the previous section, we showed that rippling with wave rules (4.3)-(4.5),
simplification and weak fertilization yielded the residual conclusion

subset( h::t] , j) member(h, j) A subset(t, j) . (4.12)

In order to complete the planning, we must again establish that this follows
from the program definition. The synthesis method instantiates definition (4.11)
appropriately

subset(h::t, j) ♦-+ h:: t = nil A true V

3h',t'. h::t = h'::t'A5(h',t',j)

and simplifies it

subset(h::t,j) <-> 5(h,t,j) . (4.13)

Unifying the conclusion (4.12) and the program (4.13) instantiates S with
Au,v,w. member(u,w)A subset(v,w). We thus obtain the (normalized) fully
instantiated program

Vi,). subset(i, j) <->

i = nil A true V

3h, t. i = h:: t A Vx. x = h —> member(x, j) A subset(t, j) .

The proof plan is now complete:
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induction([h::t],[i:nat list]) then

[ sym,eval( [ evaLdef([l,2,l], program(member(l)))]) then
simplify(.. .Vx:nat. false —> member(x, i), ...true) then

synthesis,

ripple(wave([l,2,l],[program(member(2)),left],[]) then
wave([2,l],[distimpl_or_r, left],]]) then

wave([l],[dist_alLand, left],]]) then
unblock(simplify,

Vx: nat. x = h —• member(x, j) A ...,

member(h, j) A ... ) then
weak_fertilize(right,<->,[2], _)] then

synthesis

] ■

Appealing to the program definition is embodied in a new proof planning
method called synthesis. This method can be summarized as follows:

Method: Synthesis

1. Retrieve the definition being synthesized from the hypothesis list.

2. Instantiate and simplify the definition.

3. Unify the simplified definition and the conjecture.

The synthesis method is a terminating method, i.e., produces no output se-

quents. The code is listed in Appendix C.1.3.
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4.5 Issues in Middle-Out Synthesis

4.5.1 Representation

Representation of Program Body

Middle-out reasoning uses meta-variables to represent as yet unknown object-
level entities. Further proof planning then instantiates these meta variables, via

unification, to object-level entities. Thus we must take care to ensure that the
meta-variables become instantiated only to legal object-level terms. Ensuring
this is non-trivial if meta-variables occur within the scope of quantifiers.

In middle-out synthesis, for instance, we represent the body of the program

with a meta-variable. This body occurs within the scope of the universal quan¬

tifiers binding the arguments of the program. If we simply represent the body
with a first-order metavariable

Vx.prog(x) <-» B ,

we will run into difficulties. Assume, for instance, that we have the sequent

Vx.prog(x) <-> B
h

prog(x') hx' = 0

where x' is an eigenvariable. To complete the proof, we need to apply universal
elimination on x' to the hypothesis, so that we can apply to the axiom rule. >
This universal elimination, however, is problematic, since we cannot properly
substitute x' for x in the program: The instantiation of B may actually contain
a reference to x, but since B does not, we have no way of substituting correctly
or avoiding capture unless B is fully instantiated. A straightforward solution is
to use not first-order, but higher-order variables ranging over functions. Then
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the body is represented as an application S(x):

Vx.prog(x) <-> B(x)
b

prog(x') <-> x' = 0

B now no longer needs to contain any reference to x. When it becomes instan¬
tiated with a function, we can perform a (3-reduction. With this representation,
we obtain the same result, whether we instantiate B and then eliminate on x',

or eliminate on x' and then instantiate B. Applying universal elimination on x'

now yields the correct answer:

prog(x') <-> B(x')
h

prog(x') h x' = 0 .

Applying the axiom rule then yields the unifier B = Au. u = 0, and B[x) reduces
to x = 0, as desired.

An alternative implementation of middle-out reasoning is to formalize terms

with holes. Such a calculus has been developed in [Talcott 93]. However, this
formalization seems much more unwieldy than the approach above and has there

fore not been used.

Representation of the Program Structure

Because of the duality between induction and recursion, the type of induction of

the verification proof corresponds to the type of recursion of the program. Thus,
in the example of the previous section, selecting one-step induction on the list i
meant that the program would be recursive in i, with a base case where i was

empty and a recursive case where i is decomposed into its head and its tail.
As mentioned earlier, each induction scheme is stored with the dual program
structure. Here, we discuss how to represent that recursive structure.

In Section 4.4, we represented the program structure as

i = nil A B(j) V 3h, t. i = hut A 5(h,t, j) .
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Originally, in [Kraan et al 93a], we suggested an alternative representation

= nil A £(j) V 3h,t. i = h::t A^(4trMvsubset(t,j)) .

Here, the recursive case contains an explicit recursive call as an argument. This

representation has the advantage of enabling us to derive a partially instantiated
wave rule for subset

subset( H ::!,))=> S(H, T, J, subset(T, I))

With this wave rule, the planning for verification and synthesis would be
identical. Thus the synthesis of subset, for example, would follow exactly the
verification of Section 4.2.1.

However, the disadvantages of this representation outweigh the advantages.
The first disadvantage is that it is not a least commitment representation. The
recursive call need not be of the given form at all—it could be of the form

subset(t, j'), where )' would be the result of some further computation on j (or
vice versa). This would be the case, for instance, if j were an accumulator.

Second, making the recursive call an explicit argument is slightly misleading, in
that it in no way ensures that the recursive call will actually appear in the final

program. It could simply be eliminated via a projection in unification. Finally,
it is of a form that would require full higher-order unification. The simpler

version, on the other hand, is the least commitment representation, and falls

into a class of terms for which full higher-order unification is not required (see
Section 5.3.1).

4.5.2 Auxiliary Syntheses

In the course of a synthesis, we need to prevent a meta-variable from becoming
instantiated with a program body that violates the definition of pure logic pro¬

grams (see Section 4.1). One way of doing this is to use a language which forces

any instantiation of a meta-variable to be of the correct form. This is a diffi¬
cult task, however, and would complicate our syntheses considerably. We have

therefore chosen a more pragmatic solution. We do not enforce the syntactic
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restrictions on pure logic programs via the meta-language, but via a mechanism
outside the logic.

Once the synthesis has been completed, Periwinkle parses the program and
marks any subformulae that violate the syntactic restrictions on pure logic pro

grams. Each such subformula is then taken as the specification for an auxiliary

synthesis, and the auxiliary syntheses are performed. In the initial program, any
subformula for which an auxiliary synthesis was run is substituted with a call to

the corresponding auxiliary predicate. Finally, all auxiliary predicates are ad¬
ded to the program. Note that an auxiliary synthesis may again require another

auxiliary synthesis, etc. Though the process is not guaranteed to terminate,
non-termination has not been a problem in practice.

An example where an auxiliary synthesis is necessary is the specification

Vm, I. max(m, I) <-» membeT(m, I) A (Vx. member(x, I) —» x < m) ,

which specifies that m is the maximum element of the list I. The initial syn
thesized program is:

Vm,l.max(m,l) <-+ I = nil A false V

3h, t. l = h::tA(m = h.AVx. member(x, t) —♦ x < m

Vh<mA max(m,t))

The subformula Vx. member(x,t) —> x < m in the program body violates the
definition of pure logic programs, since it contains a universal quantifier and an

implication. We therefore run the auxiliary synthesis:

Vm, I. aux(m, I) «-» (Vx. member(x, I) —> x < m)

The auxiliary specification states that m is greater than any element of the list
I. The final program, with the auxiliary predicate, is

Vm, I. max(m, I) <-> l = []AfalseV

3h, 1.1 = h.:: t A (m = h A aux(m,t) V

h < m A max(m, t))

Vm, I. aux(m, I) *-> I = [ ] A true V

3h,t. l = h::tAh<mA aux(m,t) .
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4.5.3 Controlling Synthesis

One problem in the planning is deciding when to apply the synthesis method,

i.e., the method that appeals to the program definition to justify the conclusion.
For example, given the initial sequent

Varg. Progjarg] <-> P(org)
h

Vofg. Progfarg] <-> Specjarg]

the synthesis method could be applied immediately, which would instantiate the

body of the program P(arg) to the specification Specjarg]. There is nothing
in the logic itself to prevent'this, i.e., the proof planning would succeed and the

plan would execute. In general, however, this is not likely to be the kind of

synthesis one is interested in. In order to synthesize programs that differ from
the specification, therefore, we need to find some mechanism outside the logic
to restrict the application of the synthesis method. This can be achieved by

controlling the order in which methods are applied5.

One heuristic to guide the application of the synthesis method would be to
instantiate eagerly, i.e., apply the synthesis method as soon as possible. This

generally leads to less efficient programs and a larger number of auxiliary syn¬

theses. A typical example of this is the synthesis of delete. The conjecture
is

Vx,t,j. delete(x,i,j) <-> (3k, I. append(k,l) = iA append(k,x:: I) = j)

Thus, i is j with the element x deleted. With an eager application of the syn¬

thesis method, the method is applied immediately, which generates two auxiliary

5Also, constraints could be defined at the proof level, for instance to force tail recur¬

sion, as shown in [Ilesketh 91].
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syntheses for the two equations. The synthesized program

Vx,l,j. delete(x,i,j) <->

3k, I. deleteauxl(k, l,i) A deleteaux3(k,x, I, j)
Vk,l,i. deleteauxl(k, L,i) <->

k = nil A deleteaux2(l,i) V
3k', k". k = k':: k" A 3i'. k'::i' = i A deleteaux1(k", I, i')

VI,i. deleteaux2(l,i) <-> I = i

Vk,x, l,j. deleteaux3(k,x, I, j) <->

k = nil A deleteaux4(x, I, j) V
3k', k". k = k':: k" A 3j'. k'::j' = j A deleteaux3(k",x, I, j')

Vx, I, j. deleteaux4(x, I, j) «-» x::I = j

is quadratic in complexity. The auxiliary predicates deleteauxl and deleteaux3
both represent a form of the append relation.

An alternative heuristic is to postpone the application of the synthesis

method as long as possible, i.e., until no other method applies. This tends
to generate simpler, more efficient programs with fewer auxiliary syntheses. For
the delete example, this strategy yields the linear program

Vx,i,j. delete(x,l,j) *-*

I = nil A j = x::nll V

31',I". I = t'::t" A j = nil A false V

3l',l".l= l'::l"A3j',j". j = j':: j" A

(x = )' A 1':: 1" = j" V V = j' A delete(x, I", j")) .

The main reason why the latter approach tends to produce more efficient pro¬

grams is that more work is done at synthesis time, leaving less work to be done
at runtime. This is a well-known tradeoff. The syntheses in Appendix A were

all done using the strategy that delays the application of the synthesis method
as long as possible.
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4.6 Comparison of Middle-Out Synthesis with

Other Approaches

Our approach to logic program synthesis automatically synthesizes truly re¬

lational, i.e., mode-insensitive logic programs. In this section, we compare

our work to the approaches presented in Section 2.2.2 that synthesize re¬

lational programs and are in the course of being automated [Wiggins 92,

Wiggins 93j or are semi-automatic [Lau & Prestwich 88a, Lau & Prestwich 88b,
Lau & Prestwich 90].

4.6.1 Comparison with Whelk

The main emphasis of the Whelk project is to develop a logic in which rela¬
tional programs can be synthesized via proofs-as-programs-style extraction (see
Section 2.2.2). Thus, in the Whelk system, synthesis takes place at the object

level, not the meta-level, and correctness and executability are ensured in the

object-level logic. By contrast, we synthesize and ensure executability at the

meta-level, while establishing partial correctness and completeness by a verific¬
ation proof at the object-level.

The following observation demonstrates how the two approaches are related.
In our approach, we prove

Vargs. Prog(args) <-» Spec(args)

where the definition of Prog is unknown. This is similar to proving the higher-
order specification

BProg.Vargs. Prog(args) <-> Spec(args)

constructively, since a constructive proof requires showing how a witness for an

existentially quantified variable can be constructed. This corresponds closely to
the meaning of

h Vx. 0(Spec(x)) ,

67



which is defined as

I- Vx*. Spec(x)" <-> Prog(x") ,

where Prog is the synthesized program (see Section 2.2.2).

The difference between the two approaches thus lies more in their emphasis.
While the Whelk project has focussed more on the logical issues of logic program

synthesis, we have put more emphasis on automation. We have therefore chosen

as our object-level logic a well-understood formal system, i.e., sorted first-order

predicate logic, and have taken a perhaps pragmatic approach by using middle-
out reasoning for synthesis and by ensuring executability via extralogical means.
In the Whelk project, on the other hand, a special logic with a decidability

operator 3 was developed to synthesize guaranteed executable programs, while
automation was a secondary priority.

The proof planning system CLAM is currently being adapted to plan proofs
in the Whelk logic. Many of the techniques developed here will be directly

applicable, in particular middle-out induction (see Section 5) and extensions to

rippling such as generating logical wave rules and unrolling (see Section 6). On
the other hand, results in the Whelk logic could be used to ensure executability
at the meta-level without extra-logical means, and thus improve our handling
of auxiliary syntheses. To illustrate how this could work, we take the subset

example as it would be expressed in ClAM for Whelk. The following sequent is
the one which would correspond to the situation prior to weak fertilization

3(subset(t, j))
h

3( member(h, j) A subset(t, j) )

The decidability operator 3 now prevents weak fertilization. Assuming, however,
that there is a wave rule for 3 of the form

3( P A Q ) :=> 3(P)A 3(Q) ,
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we could ripple the conclusion to

3(subset(t, j))
h

3(member(h, j)) A 3(subset(t, j)) .

Now fertilization is possible, which leaves us with the subgoal

I- 3(member(h, j)) .

Unless 3(member(h, j)) is a lemma known to the system, this subgoal would
force us to prove that member is decidable and thus synthesize a program for

4.6.2 Comparison with Lau and Prestwich

The system of Lau and Prestwich [Lau & Prestwich 88a, Lau & Prestwich 88b,
Lau & Prestwich 90] is a semi-automatic, unfold/fold-based approach to logic-

program synthesis (see Section 2.2.2). It synthesizes partially correct, but not

necessarily complete programs. In particular, the system synthesizes programs

such that

VaTgs. Prog(args) «-» Spec(args)

h Vargs. Prog(args) <— Body(args) . (4.14)

By contrast, our system synthesizes partially correct and complete programs. In

particular, we synthesize programs such that

VaTgs. Prog(aTgs) <-> Body(args)

h VaTgs. Prog(cfrgs) «-> Spec(args) .

Using the transitivity of <->, this is equivalent to proving

VaTgs. Prog(args) <-> Spec(args)

P Vargs. Prog(dTgs) <-> Body(args) ,

which is stronger than (4.14) in that it guarantees both partial correctness and
completeness.
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Lau and Prestwich solve a synthesis problem by decomposing it top-down
into subproblems until the subproblems are easily solved. The synthesized pro¬

gram is then composed bottom-up from the solutions of the subproblems. User

interaction is required to limit the search space, initially by specifying the de¬
sired recursive calls of the program, then by deciding which subproblems to solve

if there is a choice.

We have, in fact, borrowed the subset example used throughout this section
from [Lau & Prestwich 88a]; we can thus compare the two syntheses.

The input to the system of Lau and Prestwich are the subset specification

the definition of member6 , and a goal specifying the unfold/fold problem

where subset(h :: t,j) is the head of the program to be synthesized and

{subset(t,k)}) is the set of desired recursive calls. The representation here
differs from that in [Lau & Prestwich 88a] in that it omits their second argu¬

ment, an initially uninstantiated variable representing the body of the program

to be synthesized.

All definitions are brought into a normal form (right-hand sides consist of

conjunctions of literals, disjunctions of literals, an existentially or a universally

quantified literal). For subset, this yields

Vi,j. subset(i,j) «-»(Vx. member(x,i) —» member(x,j))

FOLD(subset(h:: t, j), {subset(t, k.)}) , (4.15)

subset(i,j) <-> Vx. sys(x,i,j)

sys(x,i,j) <-> ->member(x,i) V member(x, j)

(4.16)

(4.17)

6

member(x, x::t) <—

member(x,h::t) <— member(x,t)

->member(x,h::t) <— ->x = h A -imetnberjx,t)
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The definition strategy selects a definition p h q. It then uses the if part

p <— q to unfold, and the only if part q <— p to fold. Before folding, unfold/fold

subgoals for q need to be solved.

An application of the definition strategy to (4.15) using (4.16) yields the
unfold formula

subset(h:: t, j) <— Vx. sys(x, h.:: t, j) , (4.18)

the fold formula

sys(x, t, k) «— subset(t, k) (4.19)

and the subproblem

FOLD(sys(x,h::t,j), {sys(x, t, k))) . (4.20)

Applying the definition strategy again to (4.20) using (4.17), the unfold formula
is

sys(x,h::t,j) <— -'member(x, h:: t) V member(x,j) (4.21)

and the fold formula is

^member(x, t) V member(x, k) <— sys(x, t, k) . (4.22)

Possible subproblems are

FOLD(-imember(x,h::t), {->membeT(x, t)}) (4.23)

and

FOLD(inember(x, j), {member(x,k)}) (4.24)

It is now up to the user to determine which of these subproblems are to be
solved. Here, we select both.

We obtain a solution for (4.23) by applying the implication strategy. The

implication strategy exploits known recursive implications. In this case, it uses
the implication

-imember(x,h::t) <— ->x = h A -'member(x,t)
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We obtain a solution for (4.24) by applying the match strategy. The match

strategy solves trivial folding problems where the desired recursive calls unify

directly with the head of the folding problem.

Since there are no remaining subproblems, we proceed to compose the solu¬
tion. First, we unfold the unfold formula (4.21) using the solutions of (4.23)
and (4.24)

sys(x,h::t, j) <— ->x = HA ->member(x,t) V member(x,j) (4.25)

and bring this into conjunctive normal form

sys(x,h.:: t, j)«— (->x = h V member(x, j)) A (-'member(x, t) V member(x, j)) .

(4.26)
We fold using the fold formula (4.22)

sys(x,h::t,j) <— (-oc = h V member(x,j)) A sys(x,t, j)

to solve problem (4.20).

Next, to solve (4.15), we fold this solution into the unfold formula (4.18)

subset(h::t,j) <— Vx. (->x = hv member(x,j)) A sys(t,j)

and then fold using the fold formula (4.19)

subset(h::t,j) <— Vx. (->x = h V member(x,j)) A subset(t,j) .

To eliminate the quantifier, we distribute it

subset(h:: t, j) <— Vx. (->x = h V member(x, j)) A Vx. subset(t, j) (4.27)

and (presumably) simplify to

subset(h::t,j) <— member(h,j)A subset(t.j) ,

thus obtaining a solution for (4.15).

Though at first glance this synthesis seems not to be very similar to ours,

there is a close relationship between the two. Setting the initial fold problem
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corresponds to selecting the type of induction. The initial unfolding then corres¬

ponds to applying induction, and the last folding to fertilization. The remaining

decomposition and composition steps all correspond to rippling.

The similarities between the two approaches are somewhat obscured by two

things: First, the need for a normal form in the Lau and Prestwich approach,
which often requires the introduction of new definitions such as sys, and second,

the strict decomposition of a problem into subproblems, even if they can be
solved trivially. Thus, in the subset example, of the four folding problems,

only (4.15) corresponds to an induction and thus a synthesis in our approach.
Problem (4.20) stems from the introduction of the new predicate sys, which
is not necessary in our approach. Problems (4.23) and (4.24) are solved by

using existing knowledge. In middle-out synthesis, the former is "solved" by the

application of the member wave rule, the latter by fertilization.

The approach of Lau and Prestwich requires a substantial amount of rearran¬

ging before the fold steps in the composition phase. Examples of this arc bring

ing (4.25) into conjunctive normal form and distributing quantifiers in (4.27).
How the current formula needs to be rearranged to enable folding depends on

the normal form of the definition which was used in the corresponding unfold

step. Thus, for example, (4.25) is brought into conjunctive normal form because
the definition of sys was in disjunctive normal form. In middle-out synthesis,
this rearrangement of unfolded formulae to allow folding corresponds to the ap¬

plication of logical wave rules to allow fertilization. Thus, we can rely on the

rippling annotation to rearrange formulae, and do not need normal forms.

As explained above, one of the major differences between the approaches is
that Lau and Prestwich synthesize partially correct, but not necessarily com¬

plete programs, whereas we insist on partial correctness and completeness. Mot

requiring completeness has the advantage that the body of the program being

synthesized can always be strengthened. This occurs, for instance, in the prob¬
lem

FOLD(subset(i,h::t), (subset(k,t)}) ,
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which can be solved, given appropriate user guidance, in the system of Lau and

Prestwich, but is currently beyond the capabilities of Periwinkle. Although

strengthening allows greater flexibility in synthesis, it also increases the search

space considerably, which, in Lau and Prestwich, translates into a need for user

interaction.

In conclusion, we believe that the approach of Lau and Prestwich could be

improved by abolishing the need for normal forms and exploiting rippling to

guide the folding, as middle-out synthesis does. On the other hand, our approach
could well benefit from the strategies of Lau and Prestwich which strengthen
formulae to allow folding. This may well be essential when synthesizing larger,
more complex programs, or synthesizing programs from partial specifications.
We could then use middle-out synthesis in a partial correctness proof, rather

than a partial correctness and completeness proof. If desired, we could prove

the program complete in a separate, second step.

4.7 Summary

This section presented our approach to logic program synthesis and compared it
with similar systems. We have shown how middle-out reasoning can be used to
turn verification proofs into synthesis proofs, and how proof planning can auto¬

mate synthesis. This approach to logic program synthesis is a new application
of proof planning, and has proved successful. Proof planning, and in particular
heuristics like rippling, have made it possible to achieve full automation of the

synthesis process for a number of examples.
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Chapter 5

Middle-Out Induction

In the previous chapter, we illustrated how middle-out reasoning can be used
to synthesize logic programs. In this chapter, we present a further application.
Middle-out reasoning can be used to postpone the first, crucial step in the plan¬

ning of inductive proofs, namely the selection of an induction scheme. This was

first suggested in [Bundy et al 90a], but had not been elaborated or implemen¬
ted.

5.1 Outline

Determining the appropriate type of induction for a given conjecture is a difficult
task. The most widely used technique is recursion analysis [Boyer & Moore 79,

Bundy et al 89], which was described in Section 3.2.2. However, recursion ana¬

lysis works poorly in the presence of existential quantifiers, which are inherent in
V3 specifications of functions. This is because the appropriate induction scheme
is bound to the recursion scheme of the witnessing function—which is precisely
what we want to synthesize and therefore do not know. Using an inappropri¬
ate induction scheme may make it difficult to find a proof and may lead to an

unintuitive or inefficient program.
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A simple example where recursion analysis brcako down ia the specification
of a quotient and remainder function

Vx.y.Bq.r.xytO—»qxx + r = y A T<x.

Only x and y are available as induction variables, and, given the standard defin
itions of x, + and <, recursion analysis cannot find the appropriate induction,
which is induction on y, where the successor of y is y + x.

Recursion analysis works better for the relational conjectures in our approach.

The conjecture for a quotient and remainder relation qr is

Vx,y, q,r. qr(x,y,q,r) <->qxx + r = y A r<x,

where qr remains undefined. Since the conjecture is universally quantified over

all its arguments, we can choose any of them as induction variables. Thus,
instead of having to choose among x and y, we can choose among x, y, q and
r as induction variables. Hence, recursion analysis stands a somewhat better

chance of success. For this conjecture, recursion analysis indeed suggests an

appropriate induction, namely one-step structural induction on q.

However, recursion analysis is always limited to finding a type of induction
based on the recursion schemes present in the specification or in given lemmas.
Even for relational conjectures, the recursion of the program may not be among

them. An example of this is the conjecture

Vx. even(x) <-» (By. y x s(s(0)) = x) ,

where even again remains undefined. The natural recursion scheme for the

program would be two-step recursion, which is not suggested by the standard
definition of x. Therefore, we need a more powerful technique.

Middle-out reasoning (see Section 3.2.3) can provide such a technique. Using

meta-variables, we can set up a schematic step case representing many possible
inductions. This is achieved by using the meta-variables to represent construct¬
ors applied to potential induction variables in the induction conclusion. We can

then ripple this schematic step case. The application of wave rules successively
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instantiates the meta-variables. Once the rippling is complete and fertilization

has taken place, the meta-variables are fully instantiated and correspond to a

(possibly not unique) type of induction.

Schematically, this works as follows. For a conjecture

Vx.y. p(x,y) ,

we would represent the step case as

p(x,y) b p(C(x),X>(y)) .

The potential induction variables are x and y, and the meta-variables C and V

represent the constructors applied to them in the induction conclusion. If one of
the variables turns out not to be an induction variable, the meta-variable simply
becomes instantiated to the identity function. Since the meta-variables stand for

the constructors, i.e., the initial wave fronts, we annotate the terms by putting
the meta-variables in wave fronts and their arguments in wave holes.

p(x,y) b p(iC(x)j,jP(y)? • (5.1)
The dashed notation indicates that the wave fronts are only potential—if a

variable turns out not to be an induction variable and the meta-variable collapses

into the identity function, the wave front is spurious.

To prove (5.1), suppose that we have the wave rule

p(| s(U) |, V) :=> p(U, V) .

To apply it, we need to unify its left-hand side with the conclusion from 5.1

P(|s(U) |, V) = P(iC(xji,:P(y)i) •

Unification is discussed below in Section 5.3.1. This unification succeeds and

yields the substitutions

{Au. s(C'(u))/C, C'(x)/U, D(x)/V} .
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The interesting substitution is that of C, since it forms part of the induction
scheme. Applying the substitution to the right-hand side of the wave rule and

normalizing gives us

and applying the rewrite to the conclusion yields

P(x,y) h P(: C'(x) D• ■ ^(M) p •

Strong fertilization is possible when the induction hypothesis and the induction

conclusion are unified. In the example, this unification yields the substitution

{Au.u/C, Au.u/Z>} .

The meta-variables have now been fully instantiated. Propagating the substitu¬
tions to the original step case (5.1) and normalizing shows that we have

P(x.y) b P( s(x) ,y) ,

which corresponds to structural induction on x.

Once the meta-variables have been fully instantiated in this way, we need to

make sure that the induction is a valid one, i.e., that the induction ordering is
well-founded. If, for instance, we had unified the hypothesis and the conclusion
in (5.1), both C and V would have been instantiated to the identity function,
which is certainly not a valid induction.

The most general approach would be to prove that the order is in fact well-
founded. However, this is a difficult task, and beyond the scope of this thesis. We

have therefore restricted ourselves to a simpler task, which is to check whether
the ordering is among a set of orderings known to be well-founded.

Once we have determined that the induction scheme is in fact valid, we can

set up the corresponding base case(s) and complete the proof using the standard

proof planning methods (see Section 3.2).

Middle-out induction has two main advantages over recursion analysis: First,
it is a more general approach. It can find an appropriate induction in cases where

78



recursion analysis fails. Second, recursion analysis essentially performs a look-
ahead into the rippling process, whereas middle-out induction requires no such

look-ahead.

However, there are two issues in middle-out induction: First, it requires
some kind of higher-order unification. Second, rippling is no longer terminating.
These issues are discussed in Section 5.3. The following section contains an

example uniting the two uses of middle-out reasoning, for synthesis and for the
selection of induction schemes.

5.2 An Example Synthesis with Middle-Out In¬
duction

The example we present is the synthesis of a predicate that is true whenever a

number is even. The conjecture is

Vx. even(x) «-» (3y. double(y) = x) ,

where double is defined as

double(O) = 0

Vx. double(s(x)) = s(s(double(x))) .

The wave rules for double and the replacement axiom of equality for s are

double( s(U) ) :=> s(s(double(U)))

s(U) = s(V) :=> U = V .

The schematic step case is

even(x) <-> (3y. double(y) = x)
b

evendc^xjj)<-» (3y- doublefy j) = ;C(x)j) •

(5.2)

(5.3)

(5.4)
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where C is the meta-variable standing for the constructor applied to the poten¬

tial induction variable. The potential wave front around the existential variable

y indicates that it can be involved in the rippling (see Section 3.2.2 and Sec¬
tion 6.2). Note that, because we have no knowledge of the induction scheme until
we complete the step case, we cannot determine the structure of the program

yet as we did in Section 4.

We can apply an existential version of wave rule (5.2) to the induction conclu¬
sion. This instantiates the existentially quantified variable y with s(y'), where

y' is a new existentially quantified variable. Applying (5.2) yields the conclusion

The applications of wave rule (5.3) partially instantiate C to Au. s(s(C"(u))).

We can now weak fertilize, i.e., apply the induction hypothesis (5.4) as a

rewrite rule (see Section 3.2.2). This leaves us with

Weak fertilization has also instantiated C" to Au. u and thus C to Au. s(s(u)).
Hence, the induction scheme is two-step induction, and the program structure

Applying wave rule (5.3) twice results in

even(| s(s(C"(x)))|) <-> (By'. double(iy'j) = iC"(xjj) •

even(s(s(x))) «-» even(x) .

is

Vx. even(x) «-» x = OA0|V

x = s(0) A 62 V

By. x = s(s(y)) A S(y) .

We can now set up the base cases

h eveu(O) <-> By. double(y) = 0
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and

h even(s(0)) <-» 3y. double(y) = s(0) .

These and the step case are completed according to the general schema in Sec¬
tion 4, via symbolic evaluation, simplification and appealing to the program.

Middle-out induction is implemented as a strategy, i.e., a method that applies
other methods. It can be summarized as follows:

Method: Morinduction

1. Set up a schematic step case.

2. Ripple and fertilize.

3. Retrieve the induction/recursion scheme.

The output of the morinduction method are the base and the post-fertilization

sequents. The code is listed in Appendix C.l.l.

5.3 Issues in Middle-Out Induction

5.3.1 Unification

Given that we use higher-order meta-variables in our middle-out reasoning,
we are confronted with the problem of higher-order unification, which is semi-
decidable in general. Moreover, there is no unique most general unifier of higher-
order terms. When using higher-order terms, therefore, one either accepts this
and uses, for instance, the procedure of [Huet 75], or one restricts oneself to
a subset of higher-order terms which is tractable, e.g., higher-order patterns.
The former approach has been taken, for instance, by [Hesketh 91, Ireland 92,

Madden et al 93], The latter approach is taken here.

Higher-order patterns are expressions whose free variables have no arguments

other than bound variables. The class of higher-order patterns was first invest-
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igated by [Miller 90], and followed up among others by [Nipkow 91]. Formally,

following [Nipkow 91],

a term t in |3-normal form is called a (higher-order) pattern if every
free occurrence of a variable F is in a subterm F(ui,... ,un) of t
such that each Uj is r|-equivalent to a bound variable and the bound

variables are distinct.

Higher-order patterns are akin to first-order terms in that unification is de-
cidable and there exists a unique most general unifier of unifiable terms. Also,
the unification of two higher-order patterns is again a higher-order pattern. The

algorithm for higher-order pattern unification of [Nipkow 93] is given in Ap¬

pendix E. [Qian 92] shows that the unification of higher-order patterns can be
done in linear time. Higher-order patterns are thus as tractable as first-order
terms.

The main reason why we have chosen to restrict ourselves to higher-order

patterns for the terms in which we use higher-order meta-variables is that they
fall naturally into the class of higher-order patterns.

For synthesis proper, we are creating programs that represent relations and
that are therefore developed in the context of a collection of universally bound
variables. The distinctness requirement is already satisfied by the definition of

pure logic programs. Thus, what we start out with as our program is already a

higher-order pattern. Any step that further instantiates the higher-order pattern
does so via unification with another higher-order pattern.

For middle-out induction, we use meta-variables to represent the constructor

function applied to the induction variable. Since the variable on which we induce

must be universally bound to begin with, the expressions we obtain are again

higher-order patterns. Furthermore, the instantiation of the meta-variables oc¬

curs via the application of wave rules, which are also higher-order patterns.
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Exploiting Higher-Order Pattern Unification for Middle-Out Induc¬

tion

In this section, we discuss how higher-order pattern unification is exploited for
middle-out induction and synthesis by choosing an appropriate representation.

Suppose we have a conclusion

p(!C(x)i)

and a wave rule

P( s(U) ) :=> s(p(U)) (5.5)

To apply the wave rule, we need to unify the conclusion and the left-hand side
of the wave rule. To capture the notion that the potential induction variable x

is bound in the conclusion, we represent the (unannotated) conclusion

p(C(x))

as

Ax. p(C(x)) .

The (unannotated) wave rule

p(s(U)) :=> s(p(U)) .

on the other hand is represented as

Ax. p(s(U'(x))) :=> Ax. s(p(U'(x))) , (5.6)

i.e., it is lifted by replacing the occurrences of free variables with applications of
free variables to the bound variables of the conclusion and abstracting both sides.
This ensures that the conclusion and the left-hand side of the wave rule are of

the same type. This lifting is very similar to the lifting over universal quantifiers
in [Paulson 89], The remaining question is how to represent annotations. This
is discussed in the following section.
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Annotations in Higher-Order Pattern Unification

A major problem in representation in CUM is how to deal with annotations.

CUM uses a first-order representation, with functors to represent wave fronts,

wave holes and sinks. Thus, for instance, a wave term

f(x)

is represented as

wf(f(wh(x))) ,

and first-order unification is used to unify wave terms.

This representation is inadequate in the context of higher-order terms, since
the unification of higher-order wave terms using this representation can lead to

ill-annotated terms. For instance, the unification

Ax. s(U(x)) = Ax. C(x) (5.7)

represented as1

Ax. wf(s(wh(U(x)))) = Ax. wf(C(wh(x)))

yields the unification

Ax. wf(s(wh.(C'(wh(x))))) ,

which corresponds to the term

Ax. s(C'(x))

which is ill-annotated, having two nested wave holes in« wave front.

Finding a representation of annotations that behaves as desired under unific¬
ation is a topic of ongoing research. An approach that works well for higher-order
terms which contain at most one wave hole was first suggested in [Liang 92] and

'Note that the light-hand side expression, Ax. wf(C(wh(x))), is not a higher order

pattern.
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elaborated in [Gallagher 93). In this approach, wave terms are represented as a

binding construct wave/2. A wave term

f(x)

is represented as

wave(Au. f(u),x) .

As shown in [Gallagher 93], for a wave term wave(F, H), the unannotated term
is obtained simply via F(H).

In this notation, the unification problem (5.7) above would be represented
as2

Ax. wave(Au. s(u),U(x)) = Ax. wave(Au. C(u),x) ,

which yields the most general unification

Ax. wave(Au. s(u),x) ,

corresponding to the well-annotated

Ax. s(x)

Using this representation, we need to modify the representation of wave rules

slightly. Suppose we have a term of the form

ptus(|s(s(x))|,y) ,

which is represented as

Ax,y. plus(wave(Au. s(s(u)),x),y) ,

and the wave rule for plus,

plus( s(U) , V) :=h s(plus(U,V)) ,

2This time, the right-hand side expression, Ax. wave(Au. C(u),x), is a higher-order
pattern.
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which in the higher-order notation so far would be represented as

Ax,y. plus(wave(Au. s(u), U(x,y))), V(x,y)) :=>

Ax,y. wave(Au. s(u),plus(U(x,y), V(x,y))) .

Clearly, one would like the wave rule to apply to the term in such a situation.

However, the unification of the term and the left-hand side of the wave rule fails,

because the wave fronts Au. s(s(u)) and Au. s(u) do not unify. This problem
also occurs in the first-order representation of CLAM Version 2.0. There, the

problem is solved by splitting the wave front. Thus, the wave front of

y)

would be split into two

,y),

to which the plus wave rule would apply.

[Gallagher 93] shows that this effect can be achieved directly in the higher-
order notation, by introducing in the wave front of the left-hand side of the
wave rule a new variable, which then "absorbs" any "extra" wave front of the

conclusion into the wave hole of the wave rule. Thus, the left-hand side of the

plus wave rule becomes

Ax,y. plus(wave(Au. s(F(u)),U(x,y)), V(x,y)) .

where F is the new variable. Since F may become instantiated with a wave

front, all occurrences of the wave hole on the right-hand side must be annotated

appropriately, i.e., replaced with wave(F, U(x,y)). The entire wave rule then
becomes

Ax,y. plus(wave(Au. s(F(u)),U(x,y))),V(x,y)) :=>

Ax,y. wave(Au. s(u),plus(wave(F, U(x,y)), V(x,y))) .

In the more intelligible box-and-underlining notation, this corresponds to
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This representation has a further advantage in the context of quantifiers.

Using the first-order notation, a wave rule such as

Vx. P A Q(x) :=> PAVx. Q(x)

requires checking the side condition that x does not occur free in P. In the

higher-order notation, however, this condition can be encoded directly in the
wave rule

V(Ax. wave(Au. P A F(u), Q(x))) :=> wave(Au. P A u, V(Ax. wave(F, Q(x))))

In conclusion, Gallagher's higher-order representation allows us to ripple cor¬

rectly with annotated higher-order terms in an elegant way, without leaving the
realm of higher-order patterns. The representation is sufficient as long as we

have no wave fronts with multiple holes. These can occur when rippling towards
more than one induction hypothesis, as would be the case, for instance, when

inducing over trees. [Gallagher 93] contains some suggestions on how to extend
the representation to multiple holes.

5.3.2 A More General Representation of the Step Case

The representation of the schematic step case presented in Section 5.1 does not
cover more sophisticated induction schemes where the successor of an induction
variable is a combination of itself and another variable. This is the case, for

instance, in the quotient remainder example

Vx,y, q,T. qr(x,y, q,r) <->qxx + r = yAr<x,

where the successor of y is y + x. In the schematic step case in the previous

section, we represented the successor of a variable with a meta-variable applied to
the variable, e.g., the successor of y was represented as 2?(y). In Section 4.5.1, we

explained the rationale of using such applications. One reason was to ensure that
the instantiation of the meta-variable was a closed term, i.e., to avoid spurious

instantiations. This means, however, that the instantiation of the meta-variable
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cannot refer to any of the other potential induction variables. In terms of the

quotient remainder example, it means that the instantiation of V cannot refer to

x, q or r. To allow this, we must generalize the representation of the schematic

step case by representing the successor of a potential induction variable as an

application of the meta-variable to all potential induction variables. Thus, in
the example, the successor of y is represented as Z)(x,y,q,r), which, properly

annotated, becomes :D(x,y, q, r) L The entire schematic step case is then

qr(x,y,q,r)<->q xx + r = yAr<x
h

qT(iC(x,y,q,T)j,i^x,y,q,r)i,i£(x,y,q,rj|,[j:(x,y,q,i))j«-»
i^(x,y,q,rjix;c(x,y,q,rj| + i^(x,y,q,r): = i^(*,y,q,r):A
i T{\, y, q, r) i < jC(x,y, q, rjj •

While dealing with this representation is not a problem for Periwinkle, it is
not particularly fit for human consumption. In the current implementation,

therefore, both representations are available as separate methods (morinduction
and fancymrorinduction, resp.), and users can select the one they want. A future
version should use the more general representation, but suppress unwanted detail
in the user interface.

5.3.3 Controlling Rippling

Two of the main advantages of rippling are that it gives a tight control on re¬

writing and that it terminates. The termination proof in [Bundy et al 93] makes
some restrictions, i.e., existential rippling and meta-variables are excluded, pre¬

cisely because they can lead to nontermination. Since middle-out induction

inherently depends on meta-variables, and we do not want to rule out existen¬
tial quantification in our specifications, we must contend with the possibility of

non-termination and devise strategies to avoid it.

Non-termination is in fact more likely than not in the rippling in middle-out
induction. In terms of the rippling search tree in the schematic step case, where
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each node corresponds to the application of a wave rule, we can differentiate

between two basic types of non-termination:

1. Non-termination in branches that contain no solutions (failure branches)

2. Non-termination in branches that contain at least one solution (success

branches)

The subset example illustrates both sources of non-termination. The schem¬
atic induction conclusion is

subset(:c(x);,iX>(y)i) «-» Vz. m.ember(z,:c(x)i) —> member(z,iD(y)i) .

Initially, the conclusion contains only potential wave fronts. One wave rule, that
for member, is applicable

membeT(X, H:: T ) :=> X = H V member(X,T) (5.8)

However, it can be applied in two ways—to either occurrence of member. Sup¬

pose we apply it to the second occurrence, i.e., to member(z,iP(y)p. We get

subset(jc(xji, V ::D"(y) )
Vz. member(z,:c(x);) z — VM membeT(z,i X>"(y) i)

We could now easily apply wave rule (5.8) again to either occurrence of membeT,
and again ad infinitum. The reason for such infinite sequences is that every

application of a wave rule to a potential wave front generates a new copy of the

potential wave front nested in the new wave hole. Thus, if we have a potential
wave front

f(jc(x)j) ,

a wave rule application will lead to an instantiation

F[f(iC;(x)l)]

Thus, if we can apply a wave rule to a potential wave front at all, we can apply

it infinitely many times. This can occur both in success and failure branches. A
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simple strategy that helps avoid going down these infinite branches is to prefer
wave rules that ripple at least one definite wave front. In the following, we call
the application of a wave rule to potential wave fronts only a speculative ripple,
and an application of a wave rule to at least one definite wave front a definite

ripple. Using this strategy in the subset example means that preference is given
to a wave rule that ripples either

subset(:c(x)!, V::V"(y) )

member(r,:c(x)i) ; = V V member(z,i £>"(y) i)

In synthesis, we have no wave rule for subset and therefore cannot ripple the
former. There is, however, a wave rule that ripples the latter, namely the pro-

positional one (see Section 6.1)

Q V R O V P —> R

Applying it yields

Now, however, there is no wave rule that applies to a definite wave front. In

fact, although there is a way for the proof to continue, it involves a case split
on whether V is a member of C(x) or not. Finding this case split is currently

beyond the scope of the system. Thus, since we are on a failure branch, we should
not apply another speculative ripple. What we need to do is to go back to the
first application of a wave rule and try the alternative, namely applying wave

rule (5.8) to the other occurrence of membeT, i.e., member(z,;u(x)i)- Ignoring
for the moment how to detect this and achieve the backtracking, we go back to

the initial schematic conclusion and apply the member wave rule to the first

occurrence of member

subset(

Vz.

C'::C"(y) ,:Z>(y)^~
z — C'y member(z, C"(y)|)
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The propositional wave rule

P VQ —> R :=> (P -♦ R) A Q —> R

applies to the definite wave front on the right-hand side, and we get

subset( C'\:C"(y) ,iD(y):

Vz. z — C1 —► member(z,il>(y) i) A

member(z,iC"(y)i) —* meTn.beT(z,:Z>(y)i)

Now the logical wave rule

Vx. PaQ :=> Vx. P A Vx. Q

applies to the new definite wave front on the right-hand side, and we obtain

subset( C'::C"{y) ,i P(y)i)

Vz. z = C' —> member(z,il>(y)i,) A

Vz. member(z,iC"(y)i) —> member(z,iT>(y)i)

Again, there is no wave rule that applies to a definite wave front. Now, however,
we have a choice between a speculative ripple and weak fertilization. Similarly
to the situation in the failure branch, another speculative ripple would trigger
another cycle of wave rule applications. Weak fertilization, however, completes
the rippling, which constitutes success. It should therefore be preferred.

To summarize, some infinite branches of the rippling search tree can be
avoided by the simple heuristic of preferring definite rippling and fertilization to

speculative rippling. However, this heuristic does not avoid non-termination in
failure branches. If we knew that there is always at least one success branch in
the rippling search tree, breadth-first search would solve the termination prob¬
lem. Unfortunately, however, this is not the case. A simple example of a rippling
search tree with nothing but failure branches is a variant of the associativity of
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plus3
Vx. x + (x + x) = (x + x) + x .

What is needed to deal with this problem is a global control over speculative

steps such as speculative rippling, generalization and lemma conjecturing. Such

global control can be provided by the planning critics proposed in [Ireland 92], A

planning critic is a program that, given a failed proof planning attempt, analyzes
it and suggests ways of correcting it. In the case of middle-out induction, the
method and its critic would work together in the following way: The method
allows an initial speculative ripple to trigger the rippling. Then, it allows only
definite rippling and fertilization. If the rippling fails, the critic can analyze
the rippling and suggest the appropriate measure—another speculative ripple, a

lemma which would give rise to a wave rule, or a generalization. Implementing
such a critic is left as future work (see Section 8).

Rippling for middle-out induction is thus controlled as follows: It allows

only one speculative step (see Appendix C.2.1 for the code), which can be a

speculative ripple, an unrolling step (see Section 6.3) or a case split. It then
ripples (see Appendix C.1.2 for the code) while trying to fertilize as soon as

possible. Until a middle-out induction critic is developed, however, this means

that Periwinkle cannot find a proof for a theorem which depends on more than

one speculative ripple. This is in fact rare, so that it is not a severe limitation.

3IIere, we would need to generalize before doing induction. In the ordering of meth¬
ods, however, induction normally comes before generalization, and the depth-first plan¬
ner will select induction before generalization. This particular example can be solved

by a version of the best-first planner with an evaluation function to determine whether
induction or generalization should be preferred [Manning 92].
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5.4 Comparison of Middle-Out Induction with

Other Approaches

The most widely used technique to select induction schemes is recursion ana¬

lysis, which works well for formulae containing only universal quantifiers, but
not necessarily for formulae containing existential quantifiers. There has not

been much work on selecting induction schemes for formulae containing ex¬

istential quantifiers, except within the framework of the Inka theorem-prover

[Biundo et al 86, Biundo 89, Hutter 94], which is a resolution-based theorem

prover with destructor-style induction.

The program synthesis system of [Biundo 89] (see Section 2.2.1), which is

part of the Inka system, uses what is called the most nested function heur¬
istic. A most nested function is one that occurs at an innermost position in
the specification, i.e., has arguments that are variables, constants, or the skolem
term only. The recursive arguments of the most-nested function are selected as

the induction variables, and the recursion of the most-nested function as the

type of induction. The recursive arguments of the most-nested function should
also be among the set of variables that are arguments of the skolem function
as well. If there are several such most-nested functions, the function which has

the largest number of recursive arguments is chosen. The constraint that the
recursive arguments of the most nested function must correspond to arguments

of the skolem function serves to determine the recursion of the program. Thus,
the type of recursion of the program will always corresponds to the type of re¬
cursion of the selected most nested function. While this heuristic is sufficient

in simple examples, it performs as poorly as recursion analysis in more complex

examples. For example, for the (skolemized) quotient remainder specification

Vx,y. y / 0 -»

plus(times(cQT(f(x,y)),x), cdr(f(x,y))) = y A cdr(f(x,y)) < x ,
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the moat neatcd function heuriotic selects structural induction on y. While the

ayotcm doeo find a proof using this induction, the resulting program is unintuitive
and highly inefficient.

[Hutter 94], on the other hand, suggests a more sophisticated technique to

select induction schemes for V3 formulae. Hutter recognizes the close relationship
between the induction variables, the instantiation of the existential variables and

the type of induction. Instead of selecting the induction variable and type of
induction and then trying to find the instantiation of the existential variable,
Hutter picks an induction variable and an instantiation of an existential variable,

leaving the type of induction to be determined in the course of the proof. In doing

so, Huttcr is no longer limited only to recursions appearing in the specification,

Hutter's approach involves two steps: First, the selection of an induction
variable and an existential variable and second, the selection of the induction

scheme. The selection of the pair of variables is done in a preprocessing step

bearing some similarity to recursion analysis.

First, all available context-moving rules (wave rules), are abstracted in that
the only information retained is the dominating functor and the direction in
which the wave front moves—up, down, or across. These abstracted rules are

called labeled fragments. The term tree of the conjecture is then searched to

find a path of labeled fragments such that all instances of a universal and an

existential variable are connected, but none of the fragments overlap. Such a

path ensures that there is wave rule that can move a wave front in the desired
direction at every relevant node. It does not consider the actual form of the
wave front, however.

Once the variables have been selected, the actual proof is carried out. In the

base case, the existential variable is instantiated to the base of the corresponding

type. Then, symbolic evaluation is applied. The remaining formula is assumed
as the condition of the base case, which completes its proof. The negation of this
formula becomes the condition of the step case. In the step case, the existential
variable is again instantiated, now to the compound case of the type, and the
conclusion is rippled. Once the rippling has terminated, the structure that has
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accumulated around the induction variable determines its predecessor. As in our

approach, the well-ordering of the induction order remains to be established.

This approach and our middle-out approach are, in fact, closely related. Both

rely in a similar fashion on the rippling of the step case to determine the type of
induction. Both require a certain amount of search, Hutter's in the preprocessing

step, ours in the rippling. The main difference lies in the fact that Hutter's

approach is divided into two steps. The preprocessing in fact corresponds to a

lookahead into the rippling, albeit a simplified version. The trade-off between
our one-step and Hutter's two-step approach is thus that Hutter's approach does
some of the search in a simplified setting, which reduces the amount of search
in the actual rippling, but involves some duplication of effort. We search in the
actual rippling, which is more expensive, but we have no duplication of effort.

Finally, the preprocessing step of Hutter simply fails if a lemma is missing,
since it cannot find a path. This would pose a serious problem in proofs requiring

propositional wave rules, when, as in our system, these wave rules are generated
on demand.

5.5 Summary

In this section, we have shown how middle-out reasoning can be applied to
solve another problem in program synthesis—the selection of induction schemes.
Middle-out induction is a good alternative to recursion analysis and similar

techniques, which aire inadequate in synthesis proofs. While the idea of using
middle-out reasoning to select induction schemes is not new [Bundy et al 90a],
the issue of search control had not been addressed before. We have presented
some simple heuristics which reduce the search space and avoid non-termination
of rippling.
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Chapter 6

Extensions to Rippling

The synthesis of logic programs is a new application of proof planning. As such,
it poses new problems to the proof planner. While many of the problems are

specific to program synthesis, a number of them can occur in proof planning
in general. The methods developed to solve these more general problems are

presented together in this section. They are applicable in the step cases of
inductive proofs, when the rippling has become blocked, i.e., when no wave rule

applies, but fertilization is not yet possible. In such situations, methods are

needed which make further rippling or fertilization possible. These methods are

generally called unblocking methods. Rippling can become blocked for several
reasons. Often, however, the reasons are missing wave rules or nested quantifiers.
Sections 6.1 and 6.2 address the problem of generating missing wave rules, while
Section 6.3 addresses the issue of nested quantifiers. Section 6.4 presents a

method which, in certain cases, allows fertilization even though the conclusion
is not fully, rippled.
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6.1 Generating Logical Wave Rules

Initially, Periwinkle used a library of around sixty wave rules based on schem¬
atic lemmas about logical connectives, including associative, commutative and
distributive laws for connectives or combinations thereof. The wave rules (4.4)
and (4.5) used in Section 4.4, are two examples of such wave rules. Considering
the large number of such wave rules, it would be preferable for Periwinkle to re¬

cognize the need for one and generate it on demand. A method that does this has
been implemented for a large subclass of logical wave rules, i.e., propositional
wave rules, which are wave rules expressed in terms of propositional connectives

only. Wave rules (6.1)-(6.4) are examples of propositional wave rules. Wave
rule (6.5) is an example of a logical wave rule that is not propositional, since it
involves quantifiers.

P A Q A R :=>

A R :=>

P A Q A R

p AQ P A R A 0

Q A P RAP

P A Q

VX. P

2PV-.Q

3X.

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

The idea underlying the generation of propositional wave rules is that we can

conjecture a partially specified lemma that gives rise to the desired wave rule.
We then try to fill in the missing part of the lemma by generating the truth
table for that part and finding a formula that satisfies that truth table.

In the synthesis of the riot_member program (see Appendix A), for instance,
the rippling is blocked in

not_member(x, h::t )<-»-■ x = h V member(x,t)

To ripple the right-hand side further, we need a wave rule that pushes the

negation down over the disjunction. The wave rule we want is thus of the
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form

PvQ :=► J"(^Q)

based on a lemma

-(PVQ)^^(-Q) ,

where T represents the missing part of the lemma. The truth tables for the

known expressions are
__

p Q -(PvQ) -Q

T T F F

T F F T

F T F F

F F T T

We now need to find an expression T that contains -■Q as a subterm and has

the same truth values as ->(P V Q).

First, we try the simple cases: ->Q itself and its negation —-Q. This fails,
and we therefore create a set of candidate expressions whose top-level connect¬
ive is some binary connective, with ->Q as its first argument and an unknown

expression E as its second argument. In this example, we consider only conjunc¬
tion and disjunction, though the implementation also considers equivalence and

implication.

We construct the candidate expressions and derive the truth tables for the
second argument of the top-level connective. In the column for E, T indicates
that E must be true for the given values of the variables P and Q, E indicates
that E must be false, and T/F indicates that E may be either true or false. A

*

notation of X indicates a conflict; no possible value is logically consistent. The

truth table for E in ->Q V E is

P Q -(PVQ) -Q E

T T F F F

T F F T X

F T F F F

F F T T T/F
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and the truth table for E in ->Q A E is

p Q ~'(P v Q) -Q E

T T F F T/F

T F F T F

F T F F T/F

F F T T T

Any formula with a conflict, here -iQ V E, is discarded. We then try to com¬

plete the surviving candidates, here -iQ A E, by finding a variable or a negation
of a variable that satisfies the derived truth table. In this example, the truth
table is satisfied by ->P.

P Q -.P -Q E

T T F F T/F

T F F T F

F T T F T/F

F F T T T

If no variable or negated variable had satisfied the truth table for E, we would
have constructed more complex expressions using binary connectives. To cut
down on the search space, we restrict the first argument of any binary connective
to a propositional variable or its negation, but allow the second argument to be
further expanded.

This straightforward approach to generating propositional wave rules sufficed
to generate all propositional wave rules in the original database of propositional
wave rules. Although the approach uses exhaustive search, the search rarely goes

beyond a depth of three, and is sufficiently efficient at that level.

Although this algorithm was able to generate all propositional wave rules
in our original database, it is not clear whether it is actually complete, i.e.
whether it will always find a wave rule if a wave rule exists. The problem lies
in the syntactic restrictions that were made to cut down the search space, i.e.,
the requirement that the wave hole is at depth one and that the first argument
of a binary connective is a variable or the negation of a variable. The question
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is thus whether there are wave rules that cannot be expressed in this syntactic
form.

The algorithm, while being entirely sufficient for the work presented here,
is not as general as we would like. Because it is based on truth tables, it can¬

not generate logical wave rules involving quantifiers, and it is applicable only in
classical logic, not in constructive logics. We are therefore currently investigat¬

ing an alternative approach that can deal with quantifiers and is applicable to

constructive logics (see Section 8.4.3).

The method that generates and applies propositional wave rules can be sum¬

marized as follows (see Appendix C.2.2 for the code):

Method: Prop_wave

1. Find a subexpression in the conclusion such that it contains at least

one wave front, the connective dominating the wave fronts is a pro-

positional connective, and the connectives in the wave fronts are pro-

positional.

2. Generate a lemma that gives rise to an appropriate wave rule.

3. Apply the wave rule.

The output of the prop_wave method is the rewritten sequent. The correspond¬

ing tactic proves the lemma and applies the rewrite.

6.2 Equivalence-Preserving Existential Rip¬

pling

The variation of rippling known as existential rippling was presented in Sec¬
tion 3.2.2. This section discusses some difficulties when applying existential

rippling in logic program synthesis. As pointed out in Section 4.2.1, wave rules
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used to rewrite a subexpression of an equivalence must be based on equivalence
or equality. Thus, for instance, to apply the wave rule

even( s(s(U)) ) :=> even(U)

under an equivalence, the lemma underlying the wave rule must be

Vu. even(s(s(u))) <-» even(u) .

Existential rippling allows one or more of the wave terms on the left-hand
side of the wave rule to match with existential variables annotated as potential
wave fronts. Given, for instance, the conclusion

Vy. 3xi. even(ixi) A double(:x:,y) ,

existential rippling allows :xi and s(s(U)) ) to match, and the term is rewritten
to

Vy. 3xi. even(jxi) A double( s(s(:x:)) ,y) .

The main problem with existential rippling for logic program synthesis proofs
is that the existential version of a wave rule is not necessarily equivalence-

preserving, even if the original version is. An example where the existential
wave rule is not equivalence-preserving is the synthesis conjecture specifying
that a list k occurs at the back of a list I

Vk, I. back(k, I) <-> 3x. app(x, k, I) .

Applying structural induction on I yields the step case

Vk. back(k, h::t) «-► 3xi. app(:x;,k, h::t

Now, we would like to apply the wave rule

opp( >L, H2::T2 ) :=> H, = H2 A Qpp(T,,L,T2)

in its existential version

30. app(0, K,I H::I) :=> :• 3ik'i ;• fxf • = H A app(; x2 j, K, T)

(6.6)

(6.7)
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While the lemma underlying (6.6)

Vhi,ti,l,h,2,t2. app(hi:: t,,l,h2::t2) "hi = h.2 A app^ , l,t2)

holds, the equivalence that would justify (6.7)

Vl,h,t. (3x. app(x, I, h:: t)) <-» (3xi,X2- xi = h A app(x2,1, t))

is a non-theorem (The left-hand side is true, but the right-hand side false for
I = h::t).

Thus, before we apply an existential version of wave rule, we must establish
that it is equivalence-preserving. (Dis-)Proving the underlying lemma, however,
is a difficult and expensive task and requires the full power of proof planning.
Instead of implementing a method for equivalence-preserving existential rippling,

therefore, we have developed a less expensive and more generally applicable

alternative, which is the unrolling method discussed in the following section.

6.3 Unrolling for Unblocking

The specification language we use is full first-order predicate logic. Therefore,

specifications may well contain quantifiers. This means that the synthesis con¬

jectures can contain quantifiers that are nested in the right-hand side of the equi¬
valence. This is the case, for instance, in the back specification of the previous
section. The theorems that have been proved by CLAM are normally quantified
at the front, i.e., are in prenex normal form1. Moving away from prenex normal
form creates some problems for proof planning in that the quantifiers may block
the rippling. The method presented in this section, unrolling, can, in many

'The reason for this is probably that many of the theorems were taken from the

Boyer-Moore corpus [Boyer & Moore 79], and the prover NQTIIM uses a quantifier-free

logic where all variables are implicitly universally quantified.
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cases, unblock the rippling by introducing a case split on the quantified variable

causing the blockage.

We illustrate this using the back example of the previous section. The in¬
duction conclusion is

Vk. back(k, h::t) <-+ 3x. app(x,k, h::t).

The rippling is blocked from the outset by the existentially quantified variable
x. As we showed in the previous section, the existential version (6.7) of the

app wave rule (6.6) cannot be applied because it is not equivalence-preserving.
However, applying wave rule (6.6) is clearly what is called for. Thus, we need to
find some other way to do so. For wave rule (6.6) to be applicable, x needs to be

brought into the form |xi:: Xg|- One way to do this is to introduce an appropriate
case split, i.e., one where one of the cases is x = Xi ::X2- The case split that lends
itself is the one where x is either the empty or a composite list.

When we apply the case split, we must make sure that the skeleton of the
conclusion is preserved and that any additional structure introduced by the case

split is put into a wave front. This is achieved by annotating the case split

accordingly. Schematically, a case split on x in Vx:nat. P(x) is annotated as

P[0] A Vx:nat. P[ s(x) | .

In the back example, introducing a case split on x leads to the conclusion

to which wave rule (6.6) applies, yielding

The step case can now be completed with a further ripple and weak fertiliz¬
ation.
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In the current implementation, only case splits on the structure of data types

are considered. Thus, for numbers, unrolling for existential quantifiers substi¬
tutes

3x:nat. P[x]

with

P[0] V 3x:nat. P[ s(x) |

and unrolling for universal quantifiers substitutes

Vx:nat. P[x]

with

P[0] A Vx:nat. P( s(x) |

while for lists, unrolling for existential quantifiers substitutes

3x:nat list. P[x]

with

Pfrtil] V 3h:nat. 3t:nat list. P[ hut

and unrolling for universal quantifiers substitutes

Vx:nat list. P[x]

with

P[nil] A Vh: nat. Vt :nat list. P[ hut

The method could be extended to cover more sophisticated case splits as well.

It is worth noting the relationship between equivalence-preserving existential
rippling and unrolling. Applying an equivalence-preserving existential wave rule
to a conclusion

3y :nat. P( s(x) ,y)

yields a conclusion

3y':nat. F(P(x,y')) (6.8)
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Unrolling initially yields

P(x,0) V 3y':nat. P( s(x) • s(y()

Now, however, because the existential rewrite was equivalence-preserving, the
case P(x,0) must be false. Thus, after we simplify the wave front and apply
the original version of the wave rule, we obtain the same conclusion as with the
existential rippling, i.e., (6.8).

Unrolling can cause looping. In fact, the looping problems are identical to
the ones that occur when rippling in middle-out induction. Therefore, unrolling
is controlled in the same way as speculative waves (see Section 5.3.3): Rippling
allows only one speculative step. This prevents looping, but also means that a

proof that depends on two or even more unrollings cannot be found.

The unrolling method can be summarized as follows (see Appendix C.2.3 for
the code):

Method: Unroll

1. Find a quantified subexpression in the conclusion that contains a

subexpression with the quantified variable as an argument, to which
a wave rule applies if a case split is introduced on that variable.

2. Apply the appropriate case split.

The output of the unroll method is the sequent with the case split.
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6.4 Very Weak Fertilization

The unblocking techniques presented so far are mainly devised to allow rippling
to continue. In some cases, however, the blockage does not prevent further

rippling, but fertilization. Very weak fertilization is a method that recognizes one

particular type of blockage that occurs frequently when synthesizing relations
from functions, and exploits the induction hypothesis in a way that takes the

blockage into account.

Very weak fertilization applies in particular in cases where we would like to

weak fertilize, but we cannot because the corresponding side of the conclusion
is an equality that is not yet fully rippled, i.e., where one side of the equality is
surrounded by a wave front.

A simple example where this occurs is the synthesis of a reverse relation from
a reverse function,

Vk, I. rrev(k, I) *-> frev(k) = I ,

where frev is defined as

frev(nil) = nil

Vh,t. frev(h.::t) = app(frev(t), h::nil) .

Prom the frev definition, we get the wave rule

frev( H::J ) :=> app(frev(T), H:: nil)

By structural induction on k, we obtain the step case

VI. Trev(t, I) <-> frev(t) = I
t-

VI. TTev( h:: t , I) <-» frev([h::t|) = I .

Applying wave rule (6.9) yields

(6.9)

rrev( h:: t , I) <-> Qpp(frev(t),h::nil) =1.
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The rippling is now blocked. However, the wave hole on the right-hand side of
the equivalence, i.e., frev(t), is identical to the left-hand side of the equation on

the right-hand side of the equivalence of the induction hypothesis. Thus, if we
can pull the wave hole out of its nested position and into an equality, we can

weak fertilize. This can be achieved by introducing a new existential variable as

a placeholder for the wave hole and adding the equality between the new variable
and the wave hole. Schematically, this corresponds to applying the rewrite

= y => dp'- 4>(\J') = V Aik(x) = y' (6.10)

which is almost, but not quite a wave rule. It does not quite preserve the
skeleton. The skeleton of the left-hand side is r|>(x) = y, that of the right-hand
side is i|j(x) = y'. The notion of rippling is currently being extended to allow
such rules as wave rules as well, provided the induction hypothesis counterpart

of y and y' is a sink, i.e., a universally quantified variable.

In the example, using the existential variable I', this yields

rrev( h:: t , I) <-> 31'. app(l', h:: nil) = IA frev(t) = I'

We can now exploit the induction hypothesis, since the variable corresponding
to I' in the induction hypothesis, I, is universally quantified. We rewrite the
induction conclusion to

rrev( h:: t ,1) «-+ El'. app(l', h::nil) = I A rrev(t, I')

Very weak fertilization deals with an instance of the problems that arise
from dealing with relations rather than functions. The need for this technique
stems from the fact that we are synthesizing a relational program from a non-

tail-recursive function. The recursive case of the reverse function frev is non-

tail-recursive, i.e., its value is defined by a function applied to the result of
the recursive call. The flat structure of relations makes such a nesting in the

corresponding relation impossible. In the relational case, such nestings can only
be expressed by letting the corresponding relations share existential variables.

Thus, in order to make progress in the synthesis of a relation, it is necessary to



unpack the nesting of functions by introducing existential variables. For a further
discussion of the problems arising from the use of relations, see Section 8.3.

The very weak fertilization method can be summarized as follows (see Ap¬

pendix C.2.4 for the code):

Method: Very.weak-fertilize

1. There is a subexpression in the conclusion such that it is an equality,
one side of the equality is a sink and the other side of the equality is

fully rippled.

2. Apply the schematic rewrite (6.10) and weak fertilize.

The output of the very .weak .fertilize method is the post-fertilization sequent.

6.5 Summary

In this section, we have presented several methods which proved necessary to

synthesize all but the most trivial programs. They are generally applicable
when rippling becomes blocked before fertilization is possible. The methods
that generate missing logical lemmas and that introduce case splits on quantified
variables are particularly promising in that they are useful in proof planning in

general. It would be useful to extend both methods, the propositional wave rule
method to quantifiers and constructive logics, and the unrolling method to cover

more sophisticated case splits.
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Chapter 7

Implementation and Results

This chapter gives an overview of the implementation of our system, Periwinkle,
as an extension to ClAM, and reports on some of the practical results achieved.
In particular, we discuss the respects in which Periwinkle outperforms other

systems, and we classify the programs it can synthesize in terms of the problems
their syntheses presented.

7.1 Implementation

Our system, Periwinkle, is an adaptation and extension of the CLAM-Oyster

system [Bundy et al 90c], Oyster is an interactive proof checker for a variant of
Martin-Lof type theory, based on NUPRL [Constable et al 86]. ClAM is a proof

planner that generates proof plans which can be executed in Oyster. Initially,
CLAM was meant to be a proof planner to plan inductive proofs in type theory.

Recently, however, there has been an increased interest in using CLAM for other

types of proofs, logics or proof-checkers. Therefore, there is an ongoing effort
into making CLAM less logic-dependent.

At the object level, OysteT is being replaced by an interactive proof check¬

ing shell called Mollusc [Richards 93], which, given a specification of a logic,
becomes a proof checker for that logic. Mollusc provides an interface to ClAM.
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Using Mollusc, we implemented a proof checker for many-sorted first-order pre¬
dicate logic with equality, following Gallier's presentation of the Gentzen System

G= [Gallier 86] (see Appendix D).

At the planning level, CUM needed to be adapted to first-order predicate

logic with equality. CUM was designed as a proof planner for Martin-Lof type

theory, and some of its code contained concrete syntax. This code was identified

and reimplemented. Concrete syntax also appeared in some of the methods,
which were therefore also rewritten. Code that was rewritten generally uses

constructor/destructor predicates rather than concrete syntax. This was partic¬

ularly emphasized in the new methods developed in this thesis (see Section 6).
Thus, for instance, a predicate strip/3 that strips leading universal quantifiers
is written as

stripC [] , Tl, Tl ) : -

not( universal_quantif ier C Tl, _ ) ).

stripC [ V I Vs ], Tl, T3 )

universaljquantifier( T3, . ),

bound_variable( T3, V ),

boundjformula( T3, T2 ),

stripC Vs, Tl, T2).

rather than

stripC [] , Tl, Tl )
not ( Tl = forall( ) ).

stripC [ X:Type I Vs ], Tl, forall( X:Type, T2 ) ) :-

stripC Vs, Tl, T2).

The predicates universal_quantif ier, bound-variable and boundjformula
are the constructor/destructor predicates. The parser generator of Mollusc can

110



be used to generate such predicates automatically from the syntax description
of the logic. The use of constructors/destructors rather than concrete syntax

has already proved useful, as a number of the methods presented here are being
used directly in other logics.

Beyond these syntax-related adaptations, CLAM was extended in a number of

ways. First, the middle-out reasoning presented here required higher-order pat¬
tern unification and a higher-order representation of annotations. Higher-order

pattern unification was implemented following the algorithm of [Nipkow 93] (see

Appendix E). Second, we implemented code to automatically detect the need
for and run auxiliary syntheses. Finally, we implemented the new methods (see

Appendix C) and auxiliary code related to these.

7.2 Synthesized Programs

One of the aims of this thesis was to improve on the results achieved by known

synthesis systems, particularly in terms of automation and selection of induc¬
tion schemes. Three examples from the literature are of special importance:
subset from [Lau & Prestwich 88a], delete from [Bundy et al 90b] and qr from

[Biundo 89]. For the first two examples, the aim was to fully automate the

synthesis, which, in the literature, was semi-automatic or interactive. For the
last example, the aim was to synthesize a better algorithm by finding a more

appropriate induction. We discuss these examples in more detail below.

The complete set of examples synthesized by Periwinkle is listed in Ap¬

pendix A, which shows the specification, the program synthesized, the defini¬
tions and lemmas used, and the planning and tactic execution times for each

example. Additionally, Appendix B contains traces of the planning for the ex¬

amples subset, even and rrev.

Our methodology used three classes of examples. We used a number of

simple examples as the basis for developing our methods. We then refined these
methods using the examples taken from the literature. Finally, we tested the
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system's robustness using a number of additional examples. These three classes

of examples are discussed in the following subsections.

7.2.1 Examples for Method Development

We used several simple examples as the basis for developing our synthesis ap¬

proach and the methods presented in the previous sections. These examples
were generally also the ones used as running examples. In particular, simple

program synthesis (i.e., requiring no auxiliary syntheses and none of the meth¬
ods of Section 6) was developed using between; auxiliary syntheses were de¬

veloped using max; middle-out induction using even; propositional rippling

using not_member; unrolling using back; and very weak fertilization using
rrev.

7.2.2 Examples from the Literature

The examples from the literature were chosen to present Periwinkle with a

number of challenge problems. Using these examples, the methods were refined
to address problems which arose out of these examples. The final version of
Periwinkle is able to automatically synthesize good programs for all of the

specifications and can thus be considered to have achieved its aims.

The problems taken from the literature can be summarized as follows: The
subset example from [Lau & Prestwich 88a]

Vx,y. subset(x,y) <-> (Vz.member(z,x) —» member(z,y)) ,

posed the problems of rippling using logical wave rules (see Section 6.1) and

controlling the rippling to avoid non-termination (see Section 5.3.3). While the

synthesis requires three instances of user interaction in [Lau & Prestwich 88a],
it requires none in Periwinkle.

The delete example from [Bundy et al 90b],

Vx,y,z. delete(x,y,z) <-> (3k, 1. fapp(k,l) = y A fapp(k,x::l) = z) ,
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contains nested quantifiers which block the rippling from the outset and thus

require unrolling (see Section 6.3). This example, which had not yet been auto¬

mated at all, is also done automatically by Periwinkle.

A remaining problem with the synthesis of delete is that it requires a lemma
about the append function fapp,

Vk, I. fapp(k, I) = nil <-> k = nil A I = nil ,

whose proof is beyond the current planning capabilities of Periwinkle. This is
because the proof is non-inductive, and Periwinkle is geared towards inductive

proofs.

Finally, the quotient remainder example qr from [Biundo 89],

Vw,x,y,z. qT(w,x,y,z) <-> plus(times(>v,x),y) = z A y < x

requires both middle-out induction (see Section 5) and auxiliary syntheses (see
Section 4.5.2). In (Biundo 89], structural induction on z is chosen, which leads to
an inefficient and unintuitive program. Periwinkle chooses a more appropriate

induction, namely structural induction on w and plus induction on z, which
leads to a simpler, more efficient program.

The synthesis of qr requires three lemmas, whose proofs can be automatically

planned by Periwinkle. The lemmas are the associativity of plus

Vx,y,z. plus(x,plus(y,z)) = plus(plus(x,y),z) ,

a variant of the cancellation of plus

Vx,y, z. plus(x,y) = plus(x, z) <-> y = z

and a lemma on < and plus

Vx,y,z. (z < x —> plus(x,y) = z) <-> false .

7.2.3 Test Examples

A number of additional examples were run to test the robustness of Periwinkle.
These are also included in Appendix A. The following table lists the test ex¬

amples, as well as the development and literature examples, categorized by the
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problems they posed. The test examples are marked with an asterisk. The

category "General synthesis" contains examples that do not fall into any other

category, while the category "Middle-out induction" contains only the examples

which would have failed or used an unsuitable induction with recursion ana¬

lysis instead of middle-out induction. All syntheses were run using middle-out
induction.

General synthesis between, rapp*, rplus*

Middle-out induction even, qr

Auxiliary syntheses add3*, app_length*, max, qr, rrev

Logical wave rules back, befoTe*, insert*, max, not_m.em.ber,
subset

Unrolling back, before*, delete, even, insert*

Very weak fertilization Trev, rtimes*

Appendix A contains one example, rcount, that has not been mentioned so

far. The synthesis of rcount requires a case split (see Section 3.2.2). While the
case split method of CLAM has been adapted and extended to suffice for this

example, it needs to be refined to interact properly with middle-out induction.

It would not be fair to omit examples that we would have liked to synthesize,
but failed to. These include sorting and partitioning lists. The former fails be¬
cause Periwinkle lacks relational rippling (see Section 8.4.2), the latter because
Periwinkle is not able to do the required case split. The case split is similar
to the one mentioned in the subset example in Section 5.3.3. Another example
that fails is the even example in Section 5.1

Vx. even(x) <-» (3y. y x s(s(0)) = x) .

This example is interesting in that Periwinkle finds the appropriate induction,

i.e., two-step induction on x, but fails on the auxiliary synthesis in the second
base case

Vx. auxeven(x) <-» (3y. y x s(s(0)) = s(0)) ,

since it is not able to determine that 3y. y x s(s(0)) = s(0) is false.
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7.3 Summary

This section discussed the implementation of the synthesis approach presented

in the previous chapters as well as its application to a number of examples. We

have tested the system Periwinkle on a representative selection of examples,

including difficult problems taken from the literature. The test results show
that Periwinkle has improved on the abilities of competitive systems for the

examples taken from the literature, in particular on the ability to do automatic

syntheses and the ability to select appropriate induction schemes.
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Chapter 8

Future Research

We have investigated how proof planning and middle-out reasoning can be ex¬

ploited for logic program synthesis. While the results we have presented are

encouraging, there is always room for improvement. A number of improvements
and extensions are discussed in the following sections. Immediate improvements
to the implementation are discussed in Section 8.1, issues related to middle-out

synthesis are discussed in Section 8.2, issues related to middle-out induction are

discussed in Section 8.3 and issues related to rippling are discussed in Section 8.4.

8.1 Immediate Improvements

Our approach is implemented in a system called Periwinkle, which should be

considered an experimental prototype. Many of its shortcomings are due to the
fact that it was built as an extension to the proof planner ClAM, and a number

of design decisions made in the implementation of ClAM are not suitable for the

type of middle-out reasoning we used.

First, CLAM does not have an explicit representation of the plan. This poses

a serious problem in middle-out reasoning, since the plan may well contain

multiple occurences of a meta-variable. When a meta-variable becomes instan¬

tiated, this instantiation needs to be propagated throughout the entire plan.
Since CIAM has no explicit representation of the plan, it is difficult to achieve
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this propagation by accumulating and applying a list of substitutions. There¬

fore, we decided to use Prolog variables to represent meta-variables, despite the

danger of spurious instantiations. The next release of ClAM will have an ex¬

plicit representation of the plan, which will make a ground representation of
meta-variables possible. Moving to a higher-order language such as A-Prolog

[Miller & Nadathur 88] at the same time would considerably ease the manipula¬
tion of the binding constructs inherent in middle-out reasoning.

Also, ClAM's first-order representation of annotations has proved flawed (see
Section 5.3.1), and much time was spent searching for a suitable representation.
It was not until the work in [Gallagher 93] became available that a satisfactory
solution was found. While the new representation is used in the unification,
there was not sufficient time to reimplement the existing annotation-dependent
code. The implementation is thus awkward in that CLAM's first-order notation
of annotations is used in all places except unification. Prior to unification, there¬

fore, we translate to the higher-order notation, and after unification, we translate
back to the first-order notation. This should be avoided by reimplementing the

annotation-dependent code in CLAM.

8.2 Synthesis

The work in this thesis has concentrated on the fully automatic synthesis of
recursive logic programs that are partially correct and complete. There is no

user interaction with the system beyond the user's entering of the specification.
The system currently tries to find a recursive program, but does not prefer any
one type of recursion over another.

A useful extension to the system would be to allow the user to specify the
desired type of the program, for instance by giving the complexity or type of
recursion of the program, or by requiring that the program be tail-recursive.
These requirements map either into a partial instantiation of the program body
or into constraints on the proof [Hesketh 91]. Allowing the user to determine the
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recursive structure of the program would shift the challenge to the proof planner
from finding appropriate inductions to finding wave rules, since the induction of

the proof is then determined from the outset. The induction, however, may well
be incompatible with the wave rules available. If so, the rippling will become
blocked. To find missing wave rules, one could ask the user for assistance or one

could use critics and middle-out reasoning, as shown in [Ireland 92], to speculate
lemmas giving rise to the missing wave rules.

8.3 Middle-Out Induction

8.3.1 Multiple Step Cases

In middle-out induction, we set up a schematic step case and then allow rippling
to instantiate it. In Section 5, we implicitly assume that the proof has only one

step case. Some types of induction, however, require more than one step case. If

a conjecture requires such an induction, a choicepoint will occur at some stage in
the rippling, i.e., more than one wave rule will apply and the subsequent rippling
for each of the wave rules will lead to different instantiations of the induction

meta-variables.

To deal with such inductions, the approach so far could be extended in the

following way: Rippling would pick one of the wave rules and pursue that branch
to fertilization. Then, this step case could be matched against the database of
induction schemes. Thus, after completing one schematic step case, we would
retrieve the induction scheme, and complete the proof by proving the remaining

step and base cases.

8.3.2 Unknown Induction Orderings

Once the schematic step case has been completed, the instantiation of the induc¬
tion meta-variables is used as an index into the database of induction schemes.
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Currently, the middle-out induction method fails if the ordering determined in
the rippling is not among the set of known orderings. However, it may be possible
to "salvage" the induction. For instance, the ordering may be a combination of
the known orderings. Alternatively, there may be an ordering corresponding to
the instantiation of a subset of the meta-variables. In the latter case, the step

case would have to be patched by introducing an appropriate case split on the

non-induction variable.

An example is the between proof

Vx,y,z. between(x,y,z) <->x<yAy<z.

Periwinkle proves this conjecture via a simultaneous induction on x, y and z. If
this type of induction is not available, the induction could be patched by doing
a simultaneous induction on x and y, and a case split on z = 0 V 3z'. z = s(z').
In the second case, z would be used as a sink rather than an induction variable.

Ideally, however, the proof planner would not have to rely on a set of known

induction schemes, but would use general well-founded induction and try to

prove (or disprove) the well foundedness of the ordering. Work in this direction
has been done for the type theory version of ClAM using what is known as

the Acc Type [Phillips 91). It would be worth investigating to what extent the

underlying ideas would carry over to first-order logic.

8.4 Rippling

8.4.1 Control

The control of rippling in middle out induction poses a considerable challenge.
Most importantly, rippling needs to be controlled in such a way that the search

space is kept within reasonable bounds and non-termination is avoided. In Sec¬
tion 5.3.3, this was achieved by a simple mechanism, i.e., allowing only one

speculative step. Even so, the search space for rippling in middle-out induction
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was large enough to require the rippling to be carefully controlled. The con¬

trol is currently achieved by carefully ordering the submcthodo of rippling, in

particular by fertilizing as soon as possible.

Although allowing no more than one speculative step ensures termination,
it also cuts the search space down too far—there are proofs which require more

than one speculative stop. An example of a proof that requires two speculative

steps is

Vw,x,y,z. plus(w,x) = plus(y,x) «-» plus(w.z) = plus(y,z)

Using only one speculative step, a blockage will occur that will prevent fcrtiliz
ation. For instance, if the speculative step applied to the schematic step case

plus(: c(w) 1; D(x)D = Plus(j E(y)D(x)j) «->
plus(;c(w)i,;F(z)i) = plus(;E(y):,;F(z)i)

is the application of the plus wave rule

plus( s(U) , V) :=> s(plus(U,V))

to plus(: C(wj;,!D(xji). we obtain

s(plus(: C'(vv)[D(x) i))
plus( s(C'(w)) ,:f'(z)

Once we ripple the right-hand side of the equivalence with the plus wave rule

= plus(i E(y) i,|D(xji)s(p lus(; C'(vv) ; D(x) ■))

s(plus( C'(vv) •!f(s)D)

the rippling is blocked unless we allow a further speculative ripple on the term

plus(: E(y)D(x)j) °r the term plus(i E(y) !,[f(z)])- Such analyses would again
best be carried out in the framework of critics [Ireland 92).
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8.4.2 Relational Rippling

The class of programs we can synthesize so far is mainly limited because rip¬

pling as presented in [Bundy et al 93] is based on nested functions. The idea of
a wave rule is precisely that it moves terms up from a nested position. To ex¬

tend the class of logic programs we can synthesize, the notion of rippling needs
to be extended to relations. Relations cannot be nested like functions, but a

similar effect is achieved by existentially quantified variables that are shared as

arguments by more than one literal. Take, for instance, the step cases of the
standard functional and relational definitions of list reversal

Vh,t. frev(h::t) = append(frev(t),h::nil) (8.1)

Vh,t. rrev(h::t,l) <-► 31'. rrev(t, I') A append(l', h:: nil, I) . (8.2)

While (8.1) gives rise to a wave rule

frev( H::T ) :=> append(frev(T), H:: nil)

(8.2) currently does not. The rule

rrev( H ::T , L) :=> 31'. rrev(T, I') A append(l',H::nil, L)

is not a wave rule in the traditional sense because the skeleton of the left-

hand side, rrev(T, L), and the skeleton of the right-hand side, rrev(T, I'), are not
identical. This "almost" wave rule is very similar to the schematic rewrite (6.10)
in Section 6 in that they both almost preserve the skeleton. Such rules are clearly

within the spirit of rippling, and the notion of rippling is being extended to cope

with them.

Preliminary results in relational rippling are reported in [Ahs & Wiggins 94],
Relational rippling would enable us to synthesize a large number of programs
that are currently beyond the capabilities of the system.

8.4.3 Logical Wave Rules

In Section 6.1, we presented a mechanism for generating wave rules expressed in
terms of propositional connectives. Since the method is based on truth tables,
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it cannot be applied to generate wave rules for constructive logics or wave rules
for quantifiers. We are currently investigating an approach, originally suggested

by Alan Smaill, to use inference rules rather than truth tables to generate wave

rules.

The basic idea is to take the partially specified lemma, and prove it as far

as possible without committing the unspecified part. Then, the remaining un-

proven nodes of the proof tree are analyzed to generate a set of constraints for
the unspecified part of the lemma. The example of Section 6.1 was to generate
a wave rule

P V Q :=> ^(-Q)

based on the lemma

-(PvQ)m^Q) ,

where T represents the missing part of the lemma. After applying all possible
inference rules without committing we obtain the three unproven nodes

H ^(-Q),P,Q

Jf(^Q),P 1- _L

/"(-Q).Q h 1 .

The first node can be completed if one of the conclusions were either ->Q or -T,
the second if one of the hypotheses were ->P and the third if one of the hypo¬
theses were -<Q. This knowledge, together with the restriction that IF(-'Q) must
contain -iQ, indicates that should be ->P A ->Q. A first implementation
shows that the approach is feasible, although as yet significantly slower than the

approach in Section 6.1. Whether it is possible to correct this through the use

of better heuristics is currently being investigated.



8.5 Summary

We have presented a number of topics where further research would increase the

power of middle-out synthesis and middle-out induction. The most rewarding
extension with a view to synthesizing more complex programs will be relational

rippling. With relational rippling, sorting algorithms, for instance, should be
within reach of the system. The most rewarding area for further research in
middle-out induction lies in improving the control of rippling. The synthesis
and verification proofs that we have used middle-out induction for are, from

the point of view of the induction, fairly simple, with perhaps the exception of
the qr example. To use middle-out induction in more complex theorems, better

control of the rippling will be necessary.
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Chapter 9

Conclusions

In this thesis, we have investigated the application of proof planning to the auto¬
matic synthesis of logic programs. The work developed out of existing work in

proofs-as-programs for logic program synthesis [Bundy et al 90b] and in middle-
out reasoning [Bundy et al 90a]. The main goals were to synthesize relational

programs and to automate the synthesis process. The work presented here has
made four principal contributions:

• It has led to new applications and a better understanding of middle-out

reasoning. It has shown how one source of choice-points in the search
for proofs, i.e., higher-order unification, can be avoided by restricting the

higher-order terms involved in middle-out reasoning to higher-order pat¬
terns. While higher-order patterns are not expressive enough for all ap¬

plications of middle-out reasoning, the restriction to higher-order patterns
is a natural and useful one in this context.

• It has shown that middle-out reasoning provides a mechanism through
which proof planning can be used to synthesize logic programs fully auto¬

matically.

• It has shown that middle-out reasoning provides an elegant mechanism
to select induction schemes. Middle-out induction has made the class of

synthesis theorems, for which existing techniques often fail, amenable to
automatic proof.
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• It has shown a number of ways in which rippling can be unblocked when
the blockage is caused by a missing wave rule on propositional connectives
or a nested quantifier.

In the following sections, we discuss these contributions in more detail.

9.1 Improving the Prospects of Middle-Out

Reasoning

The use of middle-out reasoning in proof planning is central to this thesis. While
middle-out reasoning was suggested early on [Bundy et al 90a], it has taken
some time for successful applications to appear. The first major investigation
and implementation of middle-out reasoning was [Hesketh 91], which uses it
for tail-recursion optimization and generalization. Ongoing research includes

[Ireland 92, Ireland & Bundy 92, Madden et al 93], The reasons for the delay
in applications to arrive have mostly been problems in search control.

One source of choice-points in middle-out reasoning is higher-order unifica¬

tion, which generates a set of unifiers rather than a unique most general unifier.
While [Hesketh 91, Ireland 92] have concentrated on heuristics to select a suit¬
able unifier, we have eliminated this search by restricting ourselves to higher-
order patterns. Higher-order patterns in proof planning have also been exploited
in [Gallagher 93], and we believe that other applications of middle-out reasoning
could exploit higher order patterns as well.

Another source of search is caused by middle-out reasoning itself, which is in¬

herently speculative. In middle-out reasoning, stronger guidance is needed than
in non-speculative proof planning to avoid going down unpromising branches of
the search tree. This is particularly important when the search tree contains in¬
finite failure branches. In this thesis, we have devised simple heuristics to avoid

non-terminating failure branches in rippling, at the cost of overly restricting the
search space. Better heuristics may well be achieved using critics [Ireland 92].
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One of the dangers ofmiddle-out reasoning is too much speculation. Though
we use middle-out reasoning simultaneously for synthesis and induction, this
does not cause an explosion of the search space. This is because the two uses

occur in isolated parts of the proof. It remains to be seen whether combinations
of middle-out reasoning that do affect each other are feasible. This may be

necessary, for instance, if the rippling in middle-out induction becomes blocked,
and we need to use middle-out reasoning to speculate a missing lemma. Again,
critics [Ireland 92] may well provide the answer.

9.2 Automating Logic Program Synthesis

The goal of this thesis was to synthesize logic programs fully automatic¬

ally. Most of the work in automated reasoning about logic programs has
been within the framework of program transformation and analysis tech¬

niques such as partial evaluation [Lloyd & Shepherdson 87], abstract interpreta¬
tion [Cousot & Cousot 77] and unfold/fold transformation [Tamaki & Sato 84],
rather than synthesis proper.

Our work is most closely related to work in the automation of un¬

fold/fold transformation and synthesis, in particular to [Lau & Prestwich 88b,
Lau & Prestwich 88a, Lau & Prestwich 90] presented in Section 2.2.2. While
Lau and Prestwich are able to synthesize more complex programs than we, e.g.,

sorting algorithms, their system is semi-automatic, relying on the user to provide
the recursive structure of the program and that of any auxiliary program. Auto¬

mating the selection of an appropriate recursive structure has been one of the
main emphases of this research. For instance, while we are able to synthesize
a subset program (see Section 4.4) fully automatically, the system of Lau and
Prestwich requires three instances of user interaction (Lau & Prestwich 88b] for
the same synthesis.

The LOPS system (Bibel 80, Bibel & Hornig 84] is often cited as synthesizing

logic programs, though, strictly speaking, it synthesizes functional programs (see
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Section 2.2.2). Nevertheless, it is worth noting that LOPS is able to cope with
an example on which Periwinkle fails, i.e., partitioning lists. Periwinkle fails
because it cannot yet find the necessary case split, whereas LOPS finds the case

split via its GUESS and DOMAIN strategies and their underlying knowledge
base.

The system of [Biundo 88] also synthesizes functional programs. One of
the main weaknesses of the system is the the most-nested-function heuristic it

employs to select induction schemes. In [Biundo 89], for instance, a quotient
remainder function is synthesized. The resulting program, however, is unintu¬
itive and extremely inefficient, due to a bad choice of induction. Middle-out
induction enables us to find a more appropriate induction scheme, which makes
the program easier to understand and more efficient.

Appendix A gives a representative sample of programs that can be synthes¬
ized with the approach presented here, as implemented in Periwinkle. The type

of programs we synthesize fall into three main categories:

• Synthesizing relations from functions. Such relational programs have the

advantage that they can be run in various modes. Thus, for instance, a

plus relation can also be used for subtraction. Examples programs are

Tapp, rcount, Ttimes and rrev.

• Synthesizing programs from specifications containing quantified and neg¬

ated relations. Examples programs are delete, subset and max.

• Synthesizing more efficient programs from executable but less efficient pro¬

grams. An example program is between.
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9.3 Induction Beyond Recursion Analysis

To date, most automated induction theorem provers use recursion analysis or

similar techniques to select appropriate induction schemes. As explained in
Section 5.1, however, recursion analysis often fails in the context of synthesis

conjectures. We have presented an alternative to recursion analysis, i.e., middle-
out induction. First results have been encouraging, and the class of theorems
which can be proved automatically via induction has been extended. Examples

that would fail with recursion analysis are even and qr (see Appendix A).

9.4 Unblocking

A major issue in rippling is unblocking when the rippling becomes blocked before

fertilization is possible. We have presented three unblocking techniques here:

Generating logical wave rules, unrolling and very weak fertilization (see Sec¬
tion 6). Without these techniques, the majority of the examples in Appendix A
would fail.

9.5 Summary

We have investigated the application of proof planning and middle-out reasoning
to the automatic synthesis of logic programs from formal specifications. Proof

planning has emerged as a viable vehicle for program synthesis.

In particular, we have established that middle-out reasoning can be used
to synthesize programs and that proof planning can be used to automate that

synthesis. Furthermore, we have established that middle-out reasoning can also
be used to select induction schemes in synthesis proofs.
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Although we are still far away from automatically synthesizing complex pro¬

grams from formal specifications, this thesis constitutes definite progress towards
that ultimate goal. We have succeeded in automating some of steps that are tra¬

ditionally considered Eureka steps, and are therefore normally left to the user.

Middle-out reasoning has played a crucial role in this success by providing a

elegant framework for speculation, and we believe that its potential, in program

synthesis and elsewhere, is far from exhausted.
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Appendix A

Examples

The following examples are the programs listed in Section 7, synthesized by

Periwinkle. For each example, we give the specification and the program and
list the definitions, programs and lemmas used. The axioms for natural numbers
and lists are used in all examples and are therefore not listed separately. Planning
time is listed for all syntheses, plan execution time for main syntheses only. Time
is measured as CPU time on a Sparc station 10 using Quintus Prolog Release
3.1.4 (average of three runs). Appendix B shows the traces (including plans)
for three of the examples, namely subset, even and rrev. All examples were

planned with a depth-first planner.

Example A.l (add3) Addition relation for three numbers

Specification Program

Vw, x,y, z. add3(w, x,y, z) <->

ptus(plus(w, x),y) = z

Vw, x,y, z. add3(w, x,y, z) <-<■

w = 0 A aux(x,y, z) V
3w'. w = s(w') A 3z'. z = s(z') A add3(w', x,y, z')

Auxiliary Specification Program

Vw, x,y, z. aux(x,y, z) <-►

plus(x,y) = z

Vw, x,y, z. aux(x,y, z) <-»

x=0Ay = zV

3x'. x = s(x') A z = 0 A false V
3x'. x = s(x') A 3z'. z = s(z') A aux(x', y, z')

Needs: Definition o/plus (plus function)
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Planning time: 9.5 sec (main) and 7.3 sec (auxiliary)

Plan execution time: 5.8 sec

Example A.2 (app-length) Combined length of two lists

Specification Program

Vx,y,z. app-length(x,y,z) <-<■

length(fQpp(x1y)) = z

Vx,y,z. app_length(x,y,z) «-»

x = nil A aux(l, x) V
3x', x". x = x':: x" A 3z'. z = s(z') A
app_length(x",y,z')

Auxiliary Specification Program

Vx,y. aux(x.y) <-+

length(x) = y

Vx,y. aux(x.y) «-»

x = nil A y = 0 V

3x',x". x = x'::x" A 3y'.y = s(y') A aux(x",y')

Needs: Definition of tapp and length (append and length of list functions)

Planning time: 10.9 sec (main) and 8.7 sec (auxiliary)

Plan execution time: 5.8 sec (main)

Example A.3 (back) Back of list

Specification Program

Vx,y. back(x.y) <->

3z.rapp(z, x,y)

Vx,y. back(x,y) <->

y = nil A 3z. rapp(z, x, nil) V
3y',y". y = y'::y" A (x = y'::y" V back(x,y"))

Needs: Definition of rapp (append relation)

Planning time: 14-0 sec

Plan execution time: 5.6 sec

Example A.4 (before) One element immediately precedes another in a list

Specification Program

Vx,y, z. before(x,y, z) <->

3k, I. fapp(k, x::y:: I) = z

Vx,y,z. before(x,y,z) »-»

z = nil A false V

3z', z". z = z' ::z" A

(31. x = z' A y ::l = z" V before(x,y,z"))
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Needs: Definition of fapp (append function) and lemma

Vk, I. fapp(k, I) = nil<-+ k = nil A I = nil

Planning time: 39.1 sec

Plan execution time: 19.3 sec

Example A.5 (between) A number lies between two other numbers

Specification Program

Vx,y,z. between(x,y,z) <-►

x < y < z

Vx,y,z. between(x,y,z) <->

x = 0Ay<zV
3x'. x = s(x') A y = 0 A false V

3x'. x = s(x') A 3y'. y = s(y') A z = 0 A false V

3x'. x = s(x') A 3y'. y = s(y') A 3z'. z = s(z') A

between(x,y, z)

Needs: Definition of leq (lesser-or-equal-to relation)

Planning time: 34.3 sec

Plan execution time: 4-9 sec

Example A.6 (delete) Delete an element from a list

Specification Program

Vx,y, z. delete(x,y, z)
3k, I. fapp(k, I) = y A

fapp(k, x:: I) = z

Vx,y,z. delete(x,y, z)«-►
y = nil A z = x::nil V

3y', y". y = y'::y" A z = nil A false V

3y',y". y = y'::y" A 3z',z". z = z'::z" A

(x = z' A y' ::y" = z" V

y' = z' A delete(x,y",z")

Needs: Definition of fapp (append function) and lemma

Vk, I. fapp(k, I) = nil «-► k = nil A I = nil

Planning time: 95.0 sec

Plan execution time: 31.3 sec



Example A.7 (even) Even number

Specification Program
Vx. even(x) «-►

3y. double(x,y)

Vx. even(x) <->

x = 0 A true V

x = s(0) A false V

3x'. x = s(s(x')) A even(x')

Needs: Definition o/rdouble (double relation)

Planning time: 7.2 sec

Plan execution time: sec

Example A.8 (insert) Insert an element before another in a list

Specification Program

Vw, x,y, z. insert(w, x,y, z) <-►

3k, I. fapp(k, x:: I) = y A

fapp(k,w::x:: I) = z

Vw, x,y, z. insert(w, x,y, z) <-►

y = nil A false V

3y',y". y = y' ::y" A z = nil A false V

3y',y". y = y'::y" A 3z',z". z = z'::z" A

(w = y' A w = z' A x::y' = z" V

y' = z' A insert(w,x,y",z")

Needs: Definition of fapp (append function) and lemma

Vk, I. fapp(k, I) = nil *-» k = nil A I = nil

Planning time: 124-8 sec

Plan execution time: 37.8 sec

Example A.9 (max) Maximum of a list

Specification Program

Vx,y. max(x,y) <-►

member(x,y) A
Vn. member(n,y) —» x > n

Vx,y. max(x,y) <-►

y = nil A false

3y',y". y = y'::y" A

(x > y' A x = y' A aux(y', x) V
x > y' A max(x,y"))
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Auxiliary Specification Program

Vx,y. aux(x,y) «->

Vn. member(n, x) — y > n

Vx,y. aux(x,y) <->

x = nil A true V

3x',x". x = x'::x" A y > x' A aux(x",y)

Needs: Definition of member and > (membership and greater-than-or-equal-to
relations)

Planning time: 30.4 sec (main) and 20.1 sec (auxiliary)

Plan execution time: 10.4 sec (mam)

Example A.10 (not_member) Non-membership in a list

Specification Program

Vx, I. not_member(x, I) <->

-imember(x, I)

Vx, I. not_member(x, I) <->

I = nil A true V

3h, t. h.::t = IA x / hA notmember(x, t)

Needs: Definition of member (membership relation)

Planning time: 9.1 sec

Plan execution times: 3.0 sec

Example A.11 (qr) Quotient remainder relation

Specification Program

Vw, x,y, z. qr(w, x,y, z) <-<•

plus(times(w, x),y) = z A less(y, x)

Vw, x,y, z. qr(w, x,y,z)
w = OAy = zAless(y,x)V
3w'. w = s(w') A less(z, x) A false V

3w'. w = s(w') A 3z'. auxl(x,z', z) A
qr(w',x,y,z')

Auxiliary Specification Program

Vw,x,y,z. aux(x,y,z) <-»

plus(x.y) = z

Vw,x,y,z. aux(x,y,z) <->

x=0Ay=zV

3x'. x = s(x') A z = 0 A false V

3x'. x = s(x') A 3z'. z = s(z') A aux(x',y, z')
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Needs: Definitions o/plus and times (plus and times functions) and less (lesser-
than relation) and lemmas

Vx,y, z. plus(x,plus(y, z)) = plus(plus(x,y),z)
Vx,y, z. plus(x, y) = plus(x, z) «-» y = z

Vx, y, z. (less(z, x) —► plus(x,y) = z) false

Planning time: 42.1 sec (mam) and 29.2 sec (auxiliary) Plan execution time: 12.9
sec (main)

Example A. 12 (rapp) Append relation

Specification Program

Vx,y, z. rapp(x,y, z) ^
fapp(x,y) = z

Vx,y, z. rapp(x,y, z) <-►

x = nil A y = z V

3x', x". x = x1:: x" A 3z'. x' ::z' = z A rapp(x",y, z")

Needs: Definition of fapp (append function)

Planning time: 9.4 sec

Plan execution time: 3.7 sec

Example A.13 (rcount) Counting occurences of an element in a list

Specification Program

Vx,y,z. rcount(x,y,z) «-»

fcount(x.y) = z

Vx,y,z. rcount(x,y,z)«-»
y = nil A z = 0 V

3y', y". y = y'::y" A (x / y' A rcount(x,y, z) V
x = y' A 3z'. z = s(z') A rcount(x,y", z'))

Needs: Definition fcount (count function)

Planning time: 22.2 sec

Example A.14 (rplus) Addition relation for two numbers

Specification Program

Vx,y, z. rplus(x, y, z) <-+

plus(x,y) = z

Vx,y,z. rplus(x,y,z) <->

x = 0Ay = zV

3x'. x = s(x') A 3z'. z = s(z') A rplus(x',y, z')
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Needs: Definition o/plus (plus function)

Planning time: 6.0 sec

Plan execution time: 3.6 sec

Example A.15 (rrev) List reversal

Specification Program

Vx, y. rrev(x,y)

frev(x)= y

Vx,y. rrev(x,y)«-»
x = nil A y = nil A true V

3x', x". x = x' ::x" A 3z. aux(z, x',y) A rrev(x",z)

Auxiliary Specification Program

Vx,y,z. aux(x,y,z) <->

fapp(x,y ::nil) = z

Vx,y,z. aux(x,y,z) <-»

x = nil A y ::nil = z V

3x', x". x = x'::x"Az = nil A false V

3x',x". x = x'::x" A 3z',z". z = z'::z" A

x' = z' A aux(x", y ::nil,z")

Needs: Definition of frev and fapp (list reversal and append functions)

Planning time: 8.4 sec (main) and 10.6 sec (auxiliary)

Plan execution time: 4 ■ 6 sec

Example A.16 (rtimes) Multiplication relation

Specification Program

Vx,y,z. rtimes(x,y,z)

times(x.y) = z

Vx,y, z. rtimes(x,y, z) <-»

x=0Az=0V

3x'. x = s(x') A 3z'. aux(y, z', z) A rtimes(x',y, z')

Auxiliary Specification Program

Vw, x, y, z. aux(x,y, z)

plus(x,y) = z

Vw, x,y, z. aux(x,y, z) «-►

x = 0Ay = zV

3x'. x = s(x') A 3z'. z = s(z') A aux(x',y, z')

Needs: Definition of times (times function)

Planning time: 6.8 sec (main) and 1.6 sec (auxiliary)

Plan execution time: 5.3 sec
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Example A.17 (subset) Subset relation

Specification Program

Vx,y. subset(x.y) «->

Vz.member(z, x) — member(z, y)

Vx,y. subset(x.y) «-»

x = nil A true V

3x', x". x = x':: x" A member(x',y) A
subset(x",y)

Needs: Definition of member (membership relation)

Planning time: 21.2 sec

Plan execution time: 5.0 sec
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Appendix B

Traces

This appendix includes the planning traces as produced by Periwinkle for the

examples subset, even, and rrev. The notational conventions in Periwinkle to

represent logical symbols in ASCII are summarised in the following table.

ASCII representation Description

/\ Conjunction
\/ Disjunction
=> Implication
<=> Equivalence
not Negation

exists(Var:Type.Formula) Existential quantification

forall(Var:Type.Formula) Universal quantification
Terml=Term2 in Type Equality

==> Sequent symbol

The notational convention for annotations in ASCII in Periwinkle is that

wave fronts are enclosed in quotes, wave holes in curly brackets. Thus, for

example, the wave front s(x) would be represented as ' 's({x})'

Meta-variables generally appear as uppercase letters, occasionally they may

appear as unbound Prolog variables, e.g., .123445. Applications of metavariables
are written as ((C, x), y). The outermost parentheses are sometimes omitted.

The traces are commented to ease reading, and comments are indented and

preceded by a '/. symbol.
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B.l Subset

DEPTH: 0

forall(x:nat list,forall(y:nat list,subset(x,y) <=>

(S,x) ,y

«>forall(x : nat list ,forall(y :nat list ,subset (x ,y)<3>forall (z : nat .member(z ,x)*>meraber(z ,y) ) ) )

X Hiddle-out induction sets up the schematic step case

X and ripples

The middle-out induction conclusion is:

subset(''A ,{x>'><out>, " B,{y}''<out>)<=>

foral l(z :nat,member (z ,' ' A ,{x} ' ,<out>)»=>member(z ,''B,{y}'*<out>))

X The member nave rule is applied to the first

X occurrence of member

Applying nave rule program(member(2)) speculatively ... lew goal is:

subset(' 'A ,{x> ' ' <out>,''C:: (D,{y}) ' '<out>)<*>

forall(z:nat.member(z,''A,{x}',<out>)=><' z=C in nat\/{member(z,''D,{y}''<out>)}''<out>)

'I A propositional nave rule is synthesized and

% applied

Applying synthesized propositional nave rule P=>Q\/R <=> Q\/ (Pa>R)... len goal is:
subset( ' ' A , {x} ' '<out>.''C:: (D,{y})' '<out>)<=>

forallCz:nat,''z=C in nat\/{member(z ,1'A,{x}''<out>)=>member(z,''D,{y}''<out>)}''<out>)

X Rippling fails. On backtracking, the member

X nave rule is applied to the second occurrence of

X member

Applying wave rule program(member(2)) speculatively ... lew goal is:

subset(''C:: (D,{x}),'<out>,<<B,{y},'<out>)<=>

forall(z:nat,''z=C in nat\/{member(z ,''D, {x} ' '<out>)}''<out> =>member(z,''B,{y}''<out>))

X A number of logical wave rules are applied

Applying synthesized propositional wave rule P\/Q=>R <=> (<notP)\/R)/\ (Q=>R).. . lew goal is:

subset(''C:: (D,{x})' '<out> ,''B,{y} ' '<out>)<»>

forall(z:nat,''((not z=C in nat)\/member(z,''B,{y}''<out>))/\

{member(z,''D,{x}''<out>)=>member(z,''B ,{y}''<out>)}''<out>)

Applying wave rule dist.all.and ... lew goal is:

subset(''C:: (D,{x>) ' '<out> ,''E,{y}' '<out>)<=>

''forall(z:nat , (not z=C in nat)\/member(z,''E,{y}''<out>))/\

{forall(z:nat,member(z,''D,{x}''<out>)=>member(z,''E,{y}''<out>))}'»<out>

X Weak fertilization succeeds. Hiddle-out

X induction checks the induction scheme and sets up the

X base and post-fertilization sequents

Applying weak fertilization ... lew goal is:

subset(C::x,y)<=><'forall(z:nat,(not z=C in nat)\/member(z,y))/\{subset(x,y)>''<in>
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SELECTED METHOD at depth 0: mor_induction([vO::x],[x:nat list],

speculative_step(spec_Bave([l,2,2],[program(member(2)).left]))then[ripple(...)])

X The base case. Symbolic evaluation and

X simplification apply

I DEPTH: 1

IvO:nat

|forall(x:nat list,forall(y:nat 1ist,subset(x,y) <=>

x=nil in nat list/\ (_S14576,y) \/

exists(vl:nat ,exists(v2:nat list,x=vl : :v2 in nat list/\ (((_514668 ,vl),v2) ,y)))

I ==>forall(y :nat list.subset(nil,y)<=>forall(z:nat.member(z,nil)=>member(z,y)))
I SELECTED METHOD at depth 1: sym_eval(...)

I I DEPTH: 2

I IvO:nat

I Iforall(x:nat list.forall(y:nat list,subset(x,y) <=>

x=nil in nat list/\ (_514576,y) \/

exists(vl:nat,exists(v2:nat list,x=vl::v2 in nat list/\ (((.514668,vl) ,v2) ,y)))

I I =*>forall(y : nat list,subset(nil,y)<=>forall(z:nat,false=>member(z,y)))

I I SELECTED METHOD at depth 2: simplify([y:nat list],

subset(nil,y)<=>forall(z:nat,false=>member(z,y)),

subset(nil ,yX=>true)

I||DEPTH: 3

I I IvO:nat

I I|forall(x:nat 1ist,forall(y:nat list,subset(x,y) <=>

x=nil in nat list/\ (.514576,y) \/

exists(vl:nat ,exists(v2:nat list,x=vl::v2 in nat list/\ (((.514668,vl),v2),y)))

I | |==>forall(y:nat list,subset(nil,y)<=>true)

I I ITERMIIATIIG METHOD at depth 3: synthesis

X The synthesis method completed the base case

X and partially instantiated the program. low, the

7. post-fertilization case. Simplifaction applies

I DEPTH: 1

IvO:nat

I ih:[USED,v0:subset(x ,y)<=>forall(z:nat.member(z,x)=>member(z,y))]

I

|x:nat list

|y:nat list

|forall(x:nat 1ist,forall(y:nat list,subset(x,y) <=>

x=nil in nat list/\true \/

exists(vl:nat,exists(v2:nat list,x=vl::v2 in nat list/\ (((.514668,vl),v2),y)))
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|==>subset(vO:: x,y)<=>forallCz:nat,Cnot z=vO in nat)\/memberCz,y))/\subsetCx ,y)

I SELECTED METHOD at depth 1: simplify([vO:nat,x:nat list,y:nat list],

subset(vO::x ,y)<=>forall(z:nat,(not z=vO in nat)\/raember(z,y))/\subsetCx,y),

subset(vO::x ,y)<=>memberCvO,y)/\subset(x,y))

I|DEPTH: 2

I|vO:nat

I Iih:[USED,vO:subset(x,y)<=>forallCz:nat,member(z,x)=>member(z,y))]

II

I Ix:nat list

I Iy:nat list

I|forall(x:nat list,forall(y:nat list ,subset(x,y) <=>

x=nil in nat list/\true \/

existsCvl:nat,exists(v2:nat list,x=vl: :v2 in nat list/\ (((_514668 ,vl),v2),y)))

I|==>subset(vO::x,y)<=>memberCvO,y)/\subsetCx,y)

I|TERMIIATIIG METHOD at depth 2: synthesis

I The synthesis method completed the post-fertilization case,

% and thus the proof and program

The initial program is:

forall(x:nat list,forall(y:nat list,subset(x,y) <=>

x=nil in nat list/\true \/

existsCvl :nat ,exists(v2:nat list,x=vl::v2 in nat list/\member(vl,y)/\subset(v2,y)))

lo auxiliary syntheses required.

The final program for subsetsynth is:

forall(x:nat list,forall(y:nat 1ist,subset(x,y) <=>

x=nil in nat list/\true \/

existsCvl:nat,exists(v2:nat list,x=vl::v2 in nat list/\memberCvl,y)/\subsetCv2,y)>)

Planning took 14.3l7 sec.

Tactic subsetsynth/O Csource file *unsaved*)

subsetsynth :-

mor_inductionC [vO::x],[x:nat list] ,

speculative_stepCspec_uaveC[1,2,2],[programCmeraberC2)).left]))
then [rippleCprop_naveC[2,2],CQ\/R=>S)<=> CCnot Q)\/S)/\ CRa>S))

then[uaveC[2],[dist_all_and.left])

then[fertilizeCueak,fertilize_then_rippleCfertilize_left_or_right(

right,[weak_fertilizeCright,<=>,[2],A)])))]])])
then [ sym_evalC[eval_defC[1,2,2].programCmemberCl)))])

then [ simplifyC [y:nat list],
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subset(nil ,y)<=>forall(z:nat,false=>meraber(z,y)),

subset(nil,y)<=>true)
then [ synthesis ] ],

simplify([vO:nat,x:nat list,y:nat list],

subset(vO::x,y)<=>forall(z:nat,(not z=vO in nat)\/meiaber(z ,y) )/\subset (x,y) ,

subset(vO::x,y)<=>member(vO,y)/\subset(x,y))

then [ synthesis ]

].

Plan stored as tactic subsetsynth; to execute, enter "apply(subsetsynth)"
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B.2 Even

DEPTH: 0

forall(x:nat ,even(x) <=>

S ,x

==>forall(x:nat,even(x)<=>exists(y:nat,rdouble(x,y)))

X Middle-out induction sets up the schematic step case

X and ripples

The middle-out induction conclusion is:

evenC'A ,{x} ''<out>)<=>exists(y:nat,rdouble(''A,{x}'' <out>,y))

X Unrolling is applied to y, enabling the

X save rule for rdouble to apply

Unrolling for wave rule program(rdouble(4)) ... leu goal is:

evenC 'A ,{x}' '<out>)<=>
' 'rdouble(''A,{x}''<out>,0)\/{exists(y:nat,rdouble(''A,{x}''<out>,1 ' s({y})''<out>))}''<out>

Applying save rule program(rdouble(4)) ... leu goal is:

evenC ' s(s ( (B, {x}) ) ) ' '<out>)<=>

1'rdouble('<s(s((B,{x}))) ' '<out> ,0)\/{exists(y:nat,rdouble(1 'B,{x}''<out>,y))}''<out>

Applying ueak fertilization ... leu goal is:

even(s(s(x)))<=>''rdouble(s(s(x)) ,0)\/{even(x)}''<in>

X Ueak fertilization succeeds. Middle-out

X induction checks the induction scheme and sets up the

X base and post-fertilization sequents

SELECTED METHOD at depth 0: mor_induetion([s(s(x))],[x:nat],

speculative_step(unroll([2],uave([2,2,2],[program(rdouble(4)).left] )))then[ripple(...)])

X The first base case. Symbolic evaluation and

X simplification apply

I DEPTH: 1

|forall(x:nat,even(x) <=>

x=0 in nat/\_493520 \/

x=s(0)in nat/\_493657 \/

exists(vO:nat,x=s(s(vO))in nat/\ (_493707,vO))

|==>even(0)<=>exists(y:nat,rdouble(0,y))
I SELECTED METHOD at depth 1: sym.eval(...)

I I DEPTH: 2

I Iforall(x:nat,even(x) <=>

x=0 in nat/\_493520 \/

x=s(0)in nat/\_493657 \/
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exists(vO:nat ,x=s(s(vO))in nat/\ (_493707,vO))

I l">even(0)<*>exiata(y :nat ,y=0 in nat)

IISELECTED METHOD at depth 2: simplify([],even(0)<=>exists(y:nat,y=0 in nat),even(0)<»>true)

I I I DEPTH: 3

I I |forall(x:nat,even(x) <=>

x=0 in nat/\_493520 \/

x=s(0)in nat/\_493657 \/

exists(vO:nat ,x-s(s(vO))in nat/\ (.493707,vO))

I I I">even(0)<s>true

I | ITERHIIATIIG METHOD at depth 3: synthesis

1 The synthesis method completed the first base case

7. and partially instantiated the program. Bob, the

7, second base case. Symbolic evaluation and simplifaction apply

I DEPTH: 1

Iforall(x:nat,even(x) <=>

x*0 in nat/\true \/

x=s(0)in nat/\_493657 \/

exists(vO:nat ,x=s(s(vO))in nat/\ (.493707,vO))

I ==>even(s(0)X=>exists(y :nat ,rdouble(s(0) ,y))

I SELECTED METHOD at depth 1: sym.eval(...)

I|DEPTH: 2

I Iforall(x:nat,even(x) <=>

x=0 in nat/\true \/

x=a(0)in nat/\_493657 \/

exists(vO:nat,x=s(s(vO))in nat/\ (.493707,vO))

I |«>even(s(0) )<=>exists(y :nat,false)

I I SELECTED METHOD at depth 2: simplify( [], even(s(0))<=>exists(y:nat,false),even(s(0))<=>false)

I||DEPTH: 3

I I|forall(x :nat ,even(x) <=>

x=0 in nat/\true \/

x=s(0)in nat/\_493657 \/

exists(vO:nat,x=s(s(vO))in nat/\ (.493707,vO))

I I I==>even(s(0))<=>false

I||TERHIIATIIG METHOD at depth 3: synthesis

7. The synthesis method completed the second base case

7 and partially instantiated the program. Iob, the

y, post-fertilization case. Symbolic evaluation and simplifaction

?. apply
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I DEPTH: 1

Iih:[USED , vO:even(x)<=>exists(y:nat,rdouble(x,y))]

I

Ix:nat

Iforall(x:nat,even(x) <=>

x=0 in nat/\true \/

x=s(0)in nat/\false \/

exists(vO:nat,x=s(s(vO))in nat/\ (_493707,vO))

|==>even(s(s(x)))<=>rdouble(s(s(x)),0)\/even(x)

I SELECTED METHOD at depth 1: syra.eval(...)

I I DEPTH: 2

I Iih:[USED,vO:even(x)<=>exists(y:nat,rdouble(x,y))]

II

I Ix:nat

I|forall(x:nat,even(x) <=>

x=0 in nat/\true \/

x=s(0)in nat/\false \/

exists(vO:nat ,x=s(s(vO))in nat/\ (_493707,vO))

I|S3>even(s(s(x)))<=>false\/even(x)

I I SELECTED METHOD at depth 2: simplify([x:nat] ,

even(s(s(x>))<=>false\/even(x),

even(s(s(x)))<=>even(x))

I|(DEPTH: 3

I I Iih:[USED,vO:even(x)<=>exists(y:nat, rdouble(x,y))]

III

I | |x:nat

I I Iforall(x:nat ,even(x) <=>

x=0 in nat/\true \/

x=s(0)in nat/\false \/

exi8ts(vO:nat,x=s(s(vO))in nat/\ (_493707,vO))

I I|==>even(s(s(x)))<=>even(x)

I|ITERMIIATIIG METHOD at depth 3: synthesis

X The synthesis method completed the post-fertilization case,

1 and thus the proof and program

The initial program is:

forall(x:nat,even(x) <=>

x=0 in nat/\true \/

x=8(0)in nat/\false \/

exists (vO: nat ,x=s (s( vO)) in natAeven(vO))
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lo auxiliary syntheses required.

The final program for evensynth is:

forall(x:nat ,even(x) <=>

x=0 in nat/\true \/

x=s(0)in nat/\false \/

exists(vO:nat,x=s(s(vO))in nat/\even(vO))

Planning took 6.933 sec.

Tactic evensynth/O (source file 'unsaved*)

evensynth

mor_induct ion([s(s(x))],[x:nat],

speculative_step(unroll([2],wave([2,2,2],[program(rdouble(4>),left])))

then[ripple(fertilize(weak,fertilize_then_ripple(fertilize_left_or_right(

right,[ueak_fertilize(right,<=>,[2],A)]))))])
then [ sym.eval([eval_def([2,2],program(rdouble(l)))])

then [ simplify( [] ,even(0)<=>exists(y :nat ,y=0 in nat) ,even(OX=>true)

then [ synthesis ] ] ,

8ym_eval([eval.def([2,2],program(rdouble(2)))])
then [ simplify([],even(s(0))<=>exists(y:nat.false),even(s(0))<=>false)

then [ synthesis ] ],

sym_eval([eval_def([1,2],program(rdouble(3)))])
then [ simplify([x:nat],

even(s(s(x)))<=>false\/even(x),

even(s(s(x)))<=>even(x))

then [ synthesis ] ]

Plan stored as tactic evensynth; to execute, enter "apply(evensynth)"
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B.3 Reverse

DEPTH: 0

forall(k:nat list,forall(lmat list,rrev(k , 1) <=>

(S,k) ,1

==>forall(k:nat list,forall(l:nat list,rrev(k,l)<=>frev(k)=l in nat list))

'/, Middle-out induction sets up the schematic step case

X and ripples

The middle-out induction conclusion is:

rrev(''A,{k>''<out> ,''B,{1}''<out>X=>frev(''A,{k>'»<out>)B<'B,{1}''<out>in nat list

X The uave rule for frev is applicable

Applying save rule def(frev(2)) speculatively ... leu goal is:

rrev(' ' D: : (C,{k}) ' '<out> ,''B,{1}''<out>)<=>
' ' fapp({frev(''C,{k)''<out>)},D::nil)'' <out> =''B,{1} ''<out>in nat list

Applying very weak fertilization ... leu goal is:

rrev(''C::{k}' '<out>,1)<=>exists(eO:nat list,fapp(eO,C::nil)=1 in nat list/\rrev(k,eO))

X Very seak fertilization succeeds. Middle-out

X induction checks the induction scheme and sets up the

X base and post-fertilization sequents

SELECTED METHOD at depth 0: mor_induction([vO::k],[k:nat list],

speculative_step(spec_Have([1,1,2],[def(frev(2)),left]))then[ripple(...)])

X The base case. Symbolic evaluation applies

I DEPTH: 1

IvO:nat

|forall(k:nat list,forall(l:nat list,rrev(k ,1) <=>

k=nil in nat list/\ (_423640,1) \/

exists(vl:nat .exists(v2 : nat list,k=vl::v2 in nat list/\ (((.423732,vl),v2) ,1)))

I ==>forall(l:nat list,rrev(nil,1)<=>frev(nil)=l in nat list)

I SELECTED METHOD at depth 1: sym.eval(...)

I|DEPTH: 2

I|vO:nat

I|forall(k:nat list,forall(l:nat 1 ist , rrev(k,1) <=>

k=nil in nat list/\ (.423640,1) \/

existsCvl:nat,exists(v2:nat list,k=vl::v2 in nat list/\ (((.423732,vl),v2),1)))

I |-=>forall(l:nat list,rrev(nil,l)<*>nilal in nat list)

IITERMI1AT1IG METHOD at depth 2: synthesis

X The synthesis method completed the base case
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X and partially instantiated the program. low, the

X post-fertilization case

I DEPTH: 1

|vO:nat

I

I ih: [RAW,vO:rrev(k ,1)<=>frev(k)=l in nat list]

|k:nat list

|l:nat list

I forall(k:nat list,forall(l:nat 1ist,rrev(k,1) <=>

k=nil in nat list/\nil=l in nat list \/

exists(vl:nat ,exists(v2:nat list,k=vl::v2 in nat list/\ (((_423732 ,vl),v2),1)))

I==>rrev(''vO::{k> ' ' <out> , 1)<=>exists(eO:nat list,fapp(eO,vO::nil)=1 in nat list/\rrev(k,eO))

ITERHIIATIIG METHOD at depth 1: synthesis

X The synthesis method completed the post-fertilization case,

X and thus the proof and the initial program.

X However, an auxiliary synthesis is required for

X fapp.

The initial program is:

forall(k:nat list,forall(l:nat list,rrev(k,1) <=>

k=nil in nat list/\nil=l in nat list \/

exists(vl:nat ,exists(v2:nat list,k=vl::v2 in nat list/\

exists(eO:nat list,fapp(eO,vl::nil)=l in nat list/\rrev(v2,e0))))

Auxiliary syntheses required for:

fapp(eO,vl::nil)al in nat list

DEPTH: 0

forall(eO:nat 1ist,forall(vl:nat,forall(1:nat list,auxlrrevsynth(eO,vl ,1) <=>

((S,eO),vl) ,1

==>forall(eO:nat list,forall(vl:nat,forall(1:nat list,auxlrrevsynth(eO,vl,1)<=>

fapp(eO,vl::nil)=l in nat list)))

'/, Middle-out induction sets up the schematic step case

7, and ripples

The middle-out induction conclusion is:

auxlrrevsynth(4 <A,{eO}''<out>,,<B,{vl},'<out>,'4C,{1}''<out>)<=>

fapp('1A,{eO} ' '<out>,1'B,{vl}''<out> ::nil) = '4C,{1}''<out>in nat list

X The wave rule for fapp applies

Applying save rule def(fapp(3)) speculatively ... lew goal is:

auxlrrevsynthC''D:: (E,{e0})''<out>,,'B,{vl}''<out>,,<C,{l}''<out>)<=>
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''D::{fapp(('E,{eO}'><out>,''B,{vl>''<out> ::nil)}''<out> ■''C,{1}' '<out>in nat list

Applying very weak fertilization ... lew goal is:

auxlrrevsynthC''D::{eO}''<out>,vl,1)<=>
exists(el:nat list,D::el=l in nat list/\auxlrrevsynth(eO,vl,el>)

X Weak fertilization succeeds. Middle-out

X induction checks the induction scheme and sets up the

X base and post-fertilization sequents

SELECTED METHOD at depth 0: mor_induction([vO::e0],[eO:nat list],

speculative_step(spec_8ave([l,1,2],[def(fapp(3)).left]))then[ripple(...)])

'/. The base case. Symbolic evaluation applies

I DEPTH: 1

IvO:nat

|forall(eO:nat list.forall(vl:nat.forall(1:nat list,auxlrrevsynth(eO,vl ,1) <=>

eO=nil in nat list/\ ((_462369,vl),1) \/

exists(v2:nat ,exists(v3:nat list,eO=v2::v3 in nat list/\ ((((_462478,v2),v3),vl) ,1)))

|==>forall(vl:nat,forall(l:nat list,auxlrrevsynth(nil,vl,l)<=>fapp(nil,vl::nil)*l in nat list))

I SELECTED METHOD at depth 1: sym.eval(...)

I|DEPTH: 2

IIvO.nat

I|forall(eO:nat list,forall(vl:nat,forall(l:nat list ,auxlrrevsynth(eO,vl,1) <■>

eO=nil in nat list/\ ((_462369,vl),1) \/

exists(v2:nat.exists(v3 : nat list,eO=v2::v3 in nat list/\ ((((_462478,v2),v3),vl) ,1) ) )

I |==>forall(vl:nat,forall(l:nat list,auxlrrevsynth(nil,vl,l)<»>vl::nil«l in nat list))

IITERHI1ATIIG METHOD at depth 2: synthesis

X The synthesis method completed the base case

X and partially instantiated the program. low, the

X post-fertilization case

I DEPTH: 1

IvO:nat

I

I ih: [RAW,vO:auxlrrevsynth(eO,vl,l)<=>fapp(eO,vl::nil)=l in nat list]

|eO:nat list

Ivl:nat

jl:nat list

|forall(eO:nat list,forall(vl:nat,forall(l:nat list,auxlrrevsynth(eO,vl,1) <a>

eO=nil in nat list/\vl: :nil=l in nat list \/

exists(v2:nat,exists(v3:nat list,eO=v2::v3 in nat list/\ ((((.462478,v2),v3),vl) ,1)))

I=*>auxlrrevsynth(''vO::{eO}''<out>,vl,1)<=>

exists(el:nat list,vO::el=l in nat list/\auxlrrevsynth(eO,vl,el))
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ITERHIIATI1G METHOD at depth 1: synthesis

X The synthesis method completed the post-fertilization case,

X and thus the proof and the initial auxiliary program.

X lo more auxiliary syntheses are required, and

X the final program is assembled.

The initial program is:

forall(eO:nat list,forall(vl:nat,forall(l:nat list,auxlrrevsynth(eO,vl ,1) <=>

eO=nil in nat list/\vl::nil=l in nat list \/

exists(v2:nat ,exists(v3:nat list,e0=v2::v3 in nat list/\

exists(el:nat list ,v2::el=l in nat list/\auxlrrevsynth(v3,vl ,el))))

lo auxiliary syntheses required.

The final program for auxlrrevsynth is:

forall(eO:nat list,forall(vl:nat.forall(1:nat list,auxlrrevsynth(eO,vl ,1) <=>

eO=nil in nat list/\vl::nil=l in nat list \/

exists(v2:nat,exists(v3:nat list,eO=v2::v3 in nat list/\

ex ists(el:nat list,v2::el=l in nat 1ist/\auxlrrevsynth(v3,vl , el))))

Planning took 8.467 sec.

The final program for rrevsynth is:

forall(k:nat list,forall(l:nat list,rrev(k , 1) <=>

k=nil in nat list/\nil=l in nat list \/

exists(vl:nat .exists(v2:nat list,k=vl::v2 in nat list/\

exists(eO:nat list,auxlrrevsynth(eO,vl ,l)/\rrev(v2,e0))))

Planning took 7.067 sec.

Tactic rrevsynth/O (source file eunsaved*)

rrevsynth

mor_induction([vO::k],[k:nat list] ,

speculative_step(spec_Have([1,1,2],[def(frev(2)),left]))

then[ripple(fertilize(very.weak,[right,left,[],[1]]))])
then [ sym_eval([reduction([1,1,2],def(frev(l)))])

then [ synthesis ],

synthesis

].

Plan stored as tactic rrevsynth; to execute, enter "apply(rrevsynth)"
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Appendix C

Methods and Submethods

C.l Methods

C.l.l Mor.induction

method( mor_induction( Scheme, Vara, speculative_step( S ) then

AllRippleTacs ) ,

y, sequent in

Hyp8==>Goal,

% preconditions

[

induction,

'/, strip universal quantifiers

matrixC UVars, Matrix, Goal ),

I construct schematic step case and do some

I pretty printing housekeeping

mor_induction_conclusion( UVars, Matrix, MORGoal, MORTerms,

Printlnfo ),

hfree( [IndHypVar], UVars ),

append( [ ih:[ihmarker(_,[]), IndHypVar:Matrix],

meta_var8:PrintInfo | UVars ], Hyps, lewHyps ),

format( 'The middle-out induction conclusion is:"n', [] ),

print_mor_conclusion( MORGoal , Printlnfo ),

% apply one speculative step
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applicable_submethod( lewHyps ==> MORGoal ,

speculative_step( S SpecSeqs ),

X ripple all resulting sequents

repeat(

SpecSeqs,

Goall :=> SubGoalsl,

ripple( RippleTac ),

applicable( Goall, rippleC RippleTac ), SubGoalsl ),

AllRippleTacs,

PostFertSeqs

),

'/. retrieve induction schema

induction_terms( UVars, HORTerms, Scheme, Vars ),

mor_scheme( Scheme, Vars, Hyps==>Goal, BaseSequents,

BodyScheme , leuVars )

].

X postconditions

[

append( BaseSequents, PostFertSeqs, AllSequents ),

X unify program body and program structure

instantiate_body( Hyps, BodyScheme ),

X Housekeeping: normalize

cleanup_sequents( AllSequents, CleanSequents ),

add_hyps_to_sequents( levVars, CleanSequents, lesSequents

].

X sequents out

leuSequents,

X tactic

mor_induction( Scheme, Vars, speculative_step( S ) then

AllRippleTacs ).



C.1.2 Ripple

method( rippleC SubPlan ),

% sequent in

H==>G,

I preconditions

[

wave_fronts( WFs, G ),

\+ WFs = [] ,

repeat( [H==>G],
Goal :=> SubGoals,

Method,

( member( Method,

[ fertilize( _, _ ),

Bave(.,_),

prop_wave(_,_),

unblock(_

] ).

applicable_submethod( Goal, Method, _, SubGoals )

),

[SubPlan],

SubGoals

) . ! ,

SubPlan " idtac

].

I postconditions

[

] ,

'/, sequents out

SubGoals,

% tactic

ripple( SubPlan )

) .
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C.1.3 Synthesis

method( synthesis,

X sequent in

Hyps==>WGoal,

X preconditions

[

X Housekeeping. Check that we are doing a

X synthesis, find the program and normalize it

synthesis,

hyp( synthesizing:(_.UglyHyp), Hyps ),

cleanup.formula( UglyHyp, Hyp ),

X Strip annotation from goal

wave_fronts( Goal, _, UGoal ),

7. Find appropriate instantiation of

X universal variables of program

matrixC GVars, GoalHatrix, Goal ),

universal.variable.names( Hyps==>Goal, UVars ),

universal_variables( Hyps==>Goal, UVarTs ),

clamaccess:left.formulaC GoalHatrix, GoalHalf ),

matrixC HVars, HypHatrix, Hyp ),

clamaccess:left_formula( HypHatrix, HypHalf ),

matrix( HVars, HypHalf, QHypHalf ),

instantiate( QHypHalf, GoalHalf, Vals ),

findall( lame, member( lame:., HVars ), lames ),

s( HypHatrix, Vals, lames, TempProgHatrix ),

matrix( HVars, TempProgHatrix, TempProg ),

X Simplify the program as far as possible

( ( applicableC Hyps ==> TempProg, sym_eval( S ), _, Concl ),
Concl = [_ ==> TempProg2] )

v

TempProg = TempProg2

),

matrix( _, TempProg2Hatrix, TempProg2 ),

simplifyl( Hyps, TempProg2Hatrix, TempProg3Hatrix ),

simplify( TempProg3Hatrix, Prog2, UVarTs ),

X and finally unify

match2( Prog2, GoalHatrix, UVars )

],

X postconditions

[

X Housekeeping, lormalize and save program for

154



X posterity

cleanup_formula( Hyp, Hypl ),

store_program( Hypl )

].

X sequents out

□ .

X tactic

synthesis

).
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C.2 Submethods

C.2.1 Speculativejstep

submethodC speculative_step( Type ),

% sequent in

Seq,

1, preconditions

[

( ( Type = spec_oave( _ ) ) v

( Type = unroll( _, _ ) ) v

( Type = casesplit( _ ) )

) ,

applicable_8ubmethod( Seq, Type , HewG )

3,

I postconditions

t

3.

y, sequents out

■ ewG ,

% tactic

speculative_step( Type )

).
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C.2.2 Prop_wave

8ubmethod( prop_wave( MatrixPos, LHS<=>RHS ),

X sequent in

Sequent,

X preconditions

[

X Housekeeping, lormalize sequent

cleanup.sequent( Sequent, Hyps ==> Goal ),
X Find a save term with a hard wave front

matrix( QVars, Matrix, Goal ),

universal_variable_narae8( Hyps==>Goal, UVars ),

wave_terms_at( Matrix, MatrixPos, WTerm ),

uave_fronts( Term, WFs, WTerm ),

findalK [A]-B/[C, D] , raember( [A]-B/[C, D] , WFs ), WFls ),

\+ WFls = [],

X and find a propositional nave rule

sort_it_out( Term, WFls, LHS, Hole.RHS, RemovedWFs ),

find_prop_lemma( LHS, Hole_RHS, RHS )

] ,

X postconditions

t

X find the right annotation and instantiation

wave_fronts( LHS, RemovedWFs, WLHS ),

varnumbers( ( LHS, WLHS, Hole.RHS, RHS ),

( LHS1, WLHS1, Hole_RHSl , RHS1 ) ),

WLHS1 = WTerm,

exp_at( RHS1, HolePos, Hole.RHSl ),

wave_fronts( RHS1, [[]-[HolePos]/[hard, out]], IWRight ),

X and apply the rewrite

replaceC MatrixPos, IWRight, Matrix, TempMatrix ),

X Housekeeping, lormalize and pretty print

cleanup.formula( TempMatrix, CleanMatrix ),

matrix( QVars, CleanMatrix, lenGoal ),

format(

'Applying synthesized propositional wave rule "p <=> "p.. . lew goal is:"n',

[LHS, RHS] ),

print_new_conclusion( Hyps, leuGoal, leuHyps )

],

X sequents out

[
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lesHyps ==> lewGoal

3.

X tactic

prop_save( HatrixPos, LHS<=>RHS )

).
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C.2.3 Unroll

submethod( unroll( Pos, navel PosW, [Rulelame,Dir] ) ),

I sequent in

Hyps==>Goal,

preconditions

[

X Pick a quantified subexpression of the goal

exp_at( Goal, Pos, Exp ),

nonvar( Exp ),

clamaccess:binding_operator( Exp, Op ),

X Pick a subexpression of the body of the quantified formu

clamaccess:bound_formula( Exp, Formula ),

clamaccess:bound_variable( Exp, Var ),

clamaccess:variable_name( Var, lame ),

clamaccess:variable.type( Var, Type ),

exp_at( Formula, SubExp ),

nonvarC SubExp ),

X Pick an argument of the subexpression that corresponds

X to the quantified variable

clamaccess:arguments( SubExp, Args ),

nthl( I, Args, lame ),

clamaccess:functor( SubExp, Functor ),

X Construct the pattern of the compound case

length( Args , H ),

lengthC lewArgs, H ),

unroll_util: step( Type, lame, Step, levVars ),

nthl( I, lewArgs, Step ),

clamaccess:functor( Schema, Functor ),

clamaccess:arguments( Schema, lewArgs ),

X And make sure there is a wave rule that is potentially

X applicable

wave_occ( Goal, lame, UavePos, PI, P2, P3, Rulelame:. ),

wave_rule( Rulelame, genw( ), [] => Schema :=> _ )

],

X postconditions

[

X Construct case split—similar to base and step cases

X First argument—replace lame with corresponding base

unroll.util:base( Type, Base ),

replace_all( lame, Base, Formula, Left ),
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X Second argument—replace Arg with corresponding compound

7. term, prepend any nee existential variables and annotate

X unroll.util:step( Type, lame, Step, lewVars ), X done already above

replace_all( lame, Step, Formula, RightHatrix ),

append( lewVars, [Var], AlllQVars ),

( ( clamaccess : existential.quantifier( Op ),

pw2clam:exmatrix( AlllQVars, RightHatrix, Right ) ) v

( clamaccess:universal.quantifier( Op ),

pw2c1 am:univmatrix( AlllQVars, RightHatrix, Right ) )
) ,

7. Warning: This works only as long as there are only

X numbers and lists

( lewVars = [_|_]

-> wave_fronts( Right, [[]-[[2]]/[hard,out]], WRight )

WRight = Right

),

( ( clamaccess:existential_quantifier( _, Op ),

clamaccess :disjunction( lew, _ ) ) v

( clamaccess:universal.quantifier( Op ),

clamaccess :conjunction( lew, _ ) )

),

clamaccess:right.formula( lew, WRight ),

clamaccess:left_formula( lew, Left ),

wave_fronts( lew, [[]-[[2]]/[hard,out]], lewExp ),

7. Do the rewrite

replaceC Pos, lewExp, Goal, lewGoal ),

matrix( _, Hatrix, lewGoal ),

7. Housekeeping. Pretty printing

format( 'Unrolling for wave rule "p ... lew goal is:"n',

Rulelame ),

print_new_conclusion( Hyps, Hatrix, lewHyps ),

X Finally, apply the wave rule you unrolled for

applicable_submethod( lewHyps—>lewGoal, wave( PosW , [Rulelame,Dir] ),

Seqs )

],

7. sequents out

Seqs ,

7. tactic

unrollC Pos, wave( PosW, [Rulelame,Dir] ) )

).
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C.2.4 Very_weak-fertilize

submethodC very_weak_fertilize( [Dirl , Dir2, EqPos , HolePos] ),

'/.sequent in

Hyps==>Goal,

I preconditions

[

matrix( QVars, GoalMatrix, Goal ),

X goal is an equivalence

universal.variables( Hyps==>Goal, Vars ),

clamaccess:equivalence( GoalMatrix, _ ),

clamaccess:left_formula( GoalMatrix, LeftGoalMatrix ),

clamaccess:right_formula( GoalMatrix, RightGoalMatrix ),

X alios for blockage on right or left side of equivalence

( ( Dirl 3 right,

GoalFertilizationSide 3 RightGoalMatrix,

GoalOtherSide = LeftGoalMatrix ) ;

( Dirl = left,

GoalFertilizationSide 3 LeftGoalMatrix,

GoalOtherSide 3 RightGoalMatrix ) ),

X fertilization side is surrounded

X subterm of fertilization side is equality

exp_at( GoalFertilizationSide, EqPos, GoalEquality ),

nonvar( GoalEquality ),

clamaccess:equality( GoalEquality, _ ),

clamaccess:left_term( GoalEquality, LeftGoalTerm ),

clamaccess:right_term( GoalEquality, RightGoalTerro ),

X allow for blockage on left or right side of equality

( ( Dir2 3 left,

LeftGoalTerro 3 WGoalTerm,

RightGoalTerm 3 UGoalVariable ) ;

( Dir2 3 right,

LeftGoalTerm 3 UGoalVariable,

RightGoalTerm 3 WGoalTerm ) ),

X and a wave front is blocking one side of the equality

wave_fronts( GoalTerm, UFs, WGoalTerm ),

hard.wave.fronts( WGoalTerm, HWFs ),

memberC []-[HolePos]/[hard,out], HWFs )

].

X postconditions

C

X the other side of the equality must be a sink and

X not a potential wave front—instantiate wave front
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X to identity function

wave_fronts( GoalVariable, WGoalVariable ),

GoalVariable = ( lambda( X, X ) , Sink ),

7. find an induction hypothesis

hyp(_:Hyp, Hyps),

raatrix(_, HypHatrix, Hyp ),

clamaccess:equivalence( HypHatrix, _ ),

clamaccess:left_formula( HypHatrix, LeftHypHatrix ),

clamaccess:right_formula( HypHatrix, RightHypHatrix ),

X alios for fertilization left-to-right or right-to-left

( ( HypEquality = RightHypHatrix,

HypOtherSide = LeftHypHatrix ) ;

( HypEquality = LeftHypHatrix,

HypOtherSide = RightHypHatrix ) ),
nonvar( HypEquality ),

X that is suitable because one side is an equality

clamaccess:equality( HypEquality, _ ),

clamaccess:left_term( HypEquality, LeftHypTerm ),

clamaccess:right_term( HypEquality, RightHypTerm ),

X and one side of the equality is the sink

( ( LeftHypTerm = WHypTerm,

RightHypTerm == Sink ) ; X test

( LeftHypTerm == Sink,

RightHypTerm = WHypTerm ) ),

X set up the unification problem

X fish out the wave hole

exp_at( GoalTerm, HolePos, Hole ),

7. find the position of the sink and the blocked term

exp_at( GoalEquality, VarPos, WGoalVariable ),

exp_at( GoalEquality, TermPos, WGoalTerm ),

X generate an equality between a new variable and the hole

clamaccess:equality( Equality, _ ),

once( utility:new_variable_name( e, Vars, lewlame ) ),

exp_at( Equality, VarPos, lewlame ),

exp_at( Equality, TermPos, Hole ),

clamaccess:type_expression( GoalEquality, Type ),

clamaccess:type_expression( Equality, Type ),

X update the context for new variable

universal_variable_names( Hyps==>Goal, lames ),

replace_all( Sink, lewlame, lames, lewlames ),

7. generate an appropriate application

applications( _, lewlames, Application ),

7. assemble equivalence in same way as induction hypothesis

exp_at( HypHatrix, EqualityPos, HypEquality ),
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exp_at( HypHatrix, HypOtherPos, HypOtherSide ),

clamaccess:equivalence( Equivalence, _ ),

exp_at( Equivalence, EqualityPos, Equality ),

exp_at( Equivalence, HypOtherPos, Application ),

t update induction hypothesis for nee variable

replace_all( Sink, lewlame, HypHatrix, RHypHatrix ),

% and finally unify. . .

match2( Equivalence, RHypHatrix, levlames ),

I now assemble the existentially quantified conjunction

clamaccess:existential_quantifier( lewSide, _ ),

clamaccess:bound_variable( leuSide , BVar ),

clamaccess:bound_formula( levSide, lewSideBound ),

clamaccess:variable_name( BVar, lewlame ),

clamaccess:variable_type( BVar, Type ),

clamaccess:conjunction( lewSideBound, _ ),

% right side is instantiated application

clamaccess:right_formula( lewSideBound, Application ),

1 update goal equality

'/. find position of wave hole relative to equality

exp_at( WGoalTerm, HolePos, WHole ),

exp_at( GoalEquality , HPos , Exp ),

Exp == WHole ,

y, replace old wave hole with new variable

replace( HPos, lewlame, GoalEquality, WlevTerml ),

cleanup_formula( WlevTerml, WlewTerm ),

y, and strip old wave fronts

wave_fronts( lewTerm, WlewTerm ),

clamaccess:left_formula( lewSideBound, lewTerm ),

'/. replace the old equality

replace( Pos, lewSide, GoalFertilizationSide , lewFertilizationSide ),

y, reassemble the matrix

clamaccess:equivalence( TempGoalHatrix, _ ),

exp_at( GoalHatrix, GoalOtherPos, GoalOtherSide ),

exp_at( GoalHatrix, FertPos, GoalFertilizationSide ),

exp_at( TempGoalHatrix, GoalOtherPos, GoalOtherSide ),

exp_at( TempGoalHatrix, FertPos, lewFertilizationSide ),

'/, Housekeeping: lormalize and pretty print

cleanup.formula( TempGoalHatrix, CleanGoalHatrix ),

matrixC QVars, CleanGoalHatrix, lewGoal ),

format( 'Applying very weak fertilization ... lew goal is:~n'l

[] >,

print_new_conclusion( Hyps, lewGoal, lewHyps )

],

sequents out
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t

■ewHyps ==> lesGoal

],

X tactic

very_weak_fertilize( [Dirl, Dir2, EqPos, HolePos] )
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C.2.5 Wave

X First for standard notation

submethod( save( HatrixPos, [ lame, Dir ] ),

X sequent in

Sequent,

X preconditions

[

X do the housekeeping

cleanup_sequent( Sequent, Hyps ==> Goal ),

universal_variable_names( Hyps==>Goal, UVars ),

X find a subterm of the conclusion containing save fronts

matrix( QVars, Matrix, Goal ),

save_terms_at( Matrix, MatrixPos, WTerm ),

X make sure at least one of them is a hard save front

hard_save_fronts( WTerm, [HWFTlHWFTs] ),

X find a save rule

save_rule( lame, genw( Dir, [_-[]-_-Pos] ), Cond => L :=> R ),

X make sure that at least one of the hard save fronts of the

X conclusion corresponds to a save front of the save rule

save_fronts( _, WFRs, L ),

member( F-_/[HWFTlHWFTs] ),

member( F-_/[_,_], WFRs ),

X undo AndresS's nifty encoding omitting save fronts

X from the right hand side--simplified version

save_fronts( R, [[]-[Pos]/[hard , out]], TempR ),

X match subexpression and save rule

match( WTerm, Cond, L :=> TempR, UVars, lesR, lesCond ),

X check that precondition holds

cleanup_formulaC Matrix, TMatrix ),

exp_at( TMatrix, MatrixPos, _, WSuper ),

( elementary( Hyps==>lesCond, _ )

v

( ( save_front_proper( WSuper, Super ),

clamaccess:conjunction( Super, _ ),

clamaccess:left_formula( Super, levCond ) )

v

( clamaccess:equality( WSuper in _ ),

NatrixPos = [_,_,_IP],

HesCond = [IC],

exp_at( TMatrix, [11P], IC ) )

)
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].

X postconditions

[

X execute the resrite

replace( HatrixPos, lewR, Matrix, TempMatrix ),

X do some more housekeeping

cleanup_formula( TempMatrix, CleanHatrix ),

matrixC QVars, CleanHatrix, lesGoal ),

formatC 'Applying save rule "p ... leu goal is:"n',

lame ),

print_neu_conclusion( Hyps, leuGoal, lesHyps )

],

X sequents out

[

lesHyps ==> leuGoal

3.

X tactic

uave( HatrixPos, [lame, Dir] )

).

X lou for Jason's notation

submethod( save( MatrixPos, [ lame, Dir ] ),

X sequent in

Sequent,

X preconditions

[

X do the housekeeping

cleanup.sequent( Sequent, Hyps ==> Goal ),

universal_variable_names( Hyps==>Goal, UVars ),

X find a subterm of the conclusion containing wave fron

matrix( QVars, Matrix, Goal ),

wave_terms_at( Matrix, HatrixPos, HTerm ),

X make sure at least one of them is a hard save front

hard_uave_fronts( WTerm, [HHFTlHHFTs] ),

X find a save rule in jason's notation

uavej( lame, L :=> R ),

matchj( UTerm, L :=> R, UVars, leuR )
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],

X postconditions

[

X execute the rewrite

replace( MatrixPos, lewR, Matrix, TempHatrix ),

X do some more housekeeping

cleanup_formula( TempMatrix, CleanMatrix ),

matrix( QVars, CleanMatrix, lewGoal ),

format( 'Applying wave rule "p ... lew goal is:"n',

lame ),

print_new_conclusion( Hyps, lewGoal, lewHyps )

],

X sequents out

[

lewHyps ==> lewGoal

],

X tactic

wave( NatrixPos, [lame, Dir] )

).

I If wave-front is nested inside identical terms we can simply moved the

X wave annotation outwards. Borrowed from original Clam, fixed such

X that meta-variables do not become instantiated spuriously.

submethod(wave(Path,ident),

X sequent in

H==>G,

X preconditions

L

matrix(Vars.Matrix,G),

wave_fronts( BareMatrix, Haves, Matrix ),

select( Pos-UaveVars/TypDir, Haves, RHaves ),

exp_at(BareMatrix, Pos, HaveTerm ),

replace_multiple(HaveVars,_,HaveTerm, HavePatt ),

X For efficiency: first check that terms are right ignoring waves

X then verify no waves get in the way.

\+ \+ surrounding_term( Pos, BareMatrix, UavePatt, Path ),

wave_fronts( BareMatrix, RUaves, LessOneHatrix ),

surrounding_term( Pos, LessOneMatrix, UavePattl, Path ),
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WavePattl " UavePatt

].

X postconditions

[

oave_fronts( LessOneHatrix, [Path-WaveVars/TypDir] , OneOutHatrix ),

matrix( Vars, OneOutHatrix, lewG ),

format( 'Hoving save front up... leu goal is:"n' ),

print_neH_conclusion( Hyps, lewG, BewHyps )

].

X sequents out

[

■eHHyps==>Be«G

].

X tactic

«ave(Path , ident)

).
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Appendix D

Gentzen System G= for
Languages with Equality

The object-level logic of Periwinkle is a many-sorted first-order logic with equal¬

ity. The rules are taken from [Gallier 86]. T, A and A denote sets of formulae.
A and B formulae.

r,A,B, A b A r b A, A, A TbA.B.A
(A : left) (A : right)

T, A A B, A b A r h A, A A B, A

r,A, A b A r, B, A b A T b A, A, B, A
(V : left) (V: right)

T, A V B, A b A r b A, A V B, A

r, A b A, A B, T, A b A A,T b B, A,A
(—»: left) (—»: right)

r, A —► B, A b A r b A, A —> B, A

r, A b A, A A,T b A, A
(-1 : left) (-1 : right)

r, -iA, A b A r b A, -iA, A

In the following quantifier rules, x is any variable of sort s and y is any

variable of sort s free for x in A and not free in A, unless y = x. In the

(V : right) and the (3 : left) rules, the eigenvariable y does not occur free in the
lower sequent.
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T, A[t/x],Vx:s.A, A h A rhA,A[y/x],A! i (V : left) " (V: right)
r, Vx: s.A, A h A THA.Vxis.A.A

r,A[y/x].A h A T h A,A[t/x],3x:s.A,A
(3 : left) — — (3 : right)

r,3x:s.A.A I-A T h A,3x:s.A,A

The following rules hold for every sort s, term t, function f and predicate P.

r,t =s 11- a

rh a

I"1» S1 —U] tl A ... A —Ui, tn * f(S],... i Sn) —s f(t|, . .. , tn) h A
r t- a

f\Si —uj tl A ... A Sn —Un t,i A P(s 1,. . . , Sn) * P(tl,...»tn)h A
rh a
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Appendix E

Higher-Order Pattern
Unification Algorithm

The algorithm for higher-order pattern unification of [Nipkow 93] is presented
as a set of transformation rules. The conventions are that s and t denote terms,

F, G and H free variables, x, y and z bound variables, a and b atoms (bound
variables or constants), and c constants. The rules are of the form

e-(E'.e') ,

which are read as: The unification problem e is reduced to the list of unification

problems E' under the new substitution 0'.

Ax.s = Ax.t —» ([s — t], {})
q(s^) = a(t]() -> ([s, = t,,...,sn = tn],{})
f(*m) — o(Srx) * ([Ell(Xm) — Si, • • • , Fln(xm) ^ Sn], {F I > Axm.Q(Ffn(xm))})

where F ^ J'V(sif) and a is a constant or a 6 {iw}
F(*T) = F(y^) ^ (0, {F AxiF.H(z^)})

where {z(i} = (xi | xt = yt}

F(x^) = G(yi7) -+ ([], {F t-» Axi^.Fl(z(:),G i-» Ayii".H(z^)})
where F / G and {z^} = {x^} f~l {yii}
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