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Abstract

The purpose of this thesis is to efficiently solve real life problems. We study LPs. We study

an NLP and an MINLP based on what is known as the generalised pooling problem (GPP),

and we study an MIP that we call the cattle mating problem. These problems are often very

large or otherwise difficult to solve by direct methods, and are best solved by decomposition

methods. During the thesis we introduce algorithms that exploit the structure of the problems

to decompose them.

We are able to solve row-linked, column-linked and general LPs efficiently by modifying the

tableau simplex method, and suggest how this work could be applied to the revised simplex

method.

We modify an existing sequential linear programming solver that is currently used by Format

International to solve GPPs, and show the modified solver takes less time and is at least as

likely to find the global minimum as the old solver. We solve multifactory versions of the

GPP by augmented Lagrangian decomposition, and show this is more efficient than solving the

problems directly. We introduce a decomposition algorithm to solve a MINLP version of the

GPP by decomposing it into NLP and ILP subproblems. This is able to solve large problems

that could not be solved directly. We introduce an efficient decomposition algorithm to solve

the MIP cattle mating problem, which has been adopted for use by the Irish Cattle Breeding

Federation.

Most of the solve methods we introduce are designed only to find local minima. However,

for the multifactory version of the GPP we introduce two methods that give a good chance

of finding the global minimum, both of which succeed in finding the global minimum on test

problems.
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Chapter 1

Introduction

1.1 Overview

In this thesis we solve optimisation problems. These are problems with an objective function,

to be maximised or minimised, and a set of constraints on the decision variables. The nature

of the constraints of a problems determines its structure. It has long been known that the

structure of a problem is important, and that methods that exploit the structure of a problem

can solve it efficiently.

The first optimisation problems solved were the linear programs (LPs) introduced by Dantzig

[1947], and solved by his tableau simplex method. This was followed by decomposition methods

that allow a large LP, which is difficult or even impossible to solve directly, to be broken down

into several smaller problems. These methods include Dantzig-Wolfe decomposition, Dantzig

and Wolfe [1960], (and its dual, Lagrangian Relaxation) and Benders decomposition, Benders

[1962]. The introduction of the revised simplex method allowed faster solves of LPs, particularly

for problems with sparse constraints, which are common in practice. Hall and McKinnon [2005]

showed how sparsity can be exploited in the revised simplex method. With modern computers

problems can be solved a lot more quickly than in the days of Dantzig, but as computer speed

increases so does the size of the problems that are required to be solved, and so there is always

a need for efficient solvers.

Variants of LP have also been introduced. The addition of nonlinear constraints makes

LPs into nonlinear programs (NLPs), the addition of integer constraints makes LPs into mixed

integer programs (MIPs), and the addition of both at once makes LPs into mixed integer

nonlinear programs (MINLPs). All of these new problem types are nonlinear, and can have

multiple local minima. For each problem type special methods have been developed to solve

them. Very often these methods involve reducing a problem to an easier type. For example,

the method of sequential linear programming (SLP) solves NLPs by solving a series of LPs,

and similarly the method of branch and bound solves MIPs by solving a series of LPs. The
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advantage of such methods is that a hard problem can be reduced to a series of smaller problems,

much like the decomposition algorithms of Dantzig Wolfe and Benders. Indeed a MINLP can

be decomposed into a series of NLPs and MIPs, and the NLPs and MIPs each solved by solving

a series of LPs. Thus decomposition methods are powerful tools for solving difficult problems.

Just as with direct methods, some decomposition methods attempt to find the global minimum,

others simply try and find a good local minimum.

Optimisation problems occur naturally in many real world situations. In particular, there

are diet problems, which involve mixing ingredients to form a cheap but nutritious final product.

The simplest of these is known as the blending problem, and can be modelled as an LP. Blending

problems are routinely solved by linear programming in factories around the world. In practice

factories often have certain extra features that lead to problems which are much harder to solve

than the blending problem, such as the pooling problem. This is a blending problem with the

addition of mixing bins.

Another common optimisation problem is the assignment problem, where objects from one

set must be assigned to objects in another set, at minimum total cost. In its simplest form this

problem can be modelled as an LP. With compliciations to the model it can become significantly

harder to solve. In this thesis we develop new decomposition methods and improve existing

methods to solve such problems.

As the work in this thesis covers several areas, within each chapter we introduce that topic.

At the end of each chapter we also give a summary, and, where appropriate, suggestions for

further work.

1.2 Application

The work in this thesis is intended to be of practical benefit. In particular we have worked in

conjunction with several companies.

Format International currently use University of Edinburgh software to solve diet problems

on behalf of clients, and have an interest in solving further problems. They are an independent

software company specialising in recipe optimization, ingredient allocation and food and feed

formulation solutions for animal feed, pet food, human food, and other industries. For Agri-

cultural and aqua feeds Format’s programs are the most widely used advanced optimization,

ingredient and resource management software in this sector, responsible for the manufacture of

more tonnes on a global basis that any other provider (Format International [2009]).

Format International’s clients include Sloten International, who are based in the Nether-

lands. Sloten develop, manufacture and market special feeds for young animals (Sloten Inter-

national [2009]).

The Irish Cattle Breeding Federation (ICBF) is an organisation whose intention is to achieve

the greatest possible genetic improvement in the national cattle herd for the benefit of Irish
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Farmers (ICBF [2006]).

1.3 Contributions of the thesis

In Chapter 2 and Chapter 3 we study LPs. In Chapter 2 we explain the occurrence of a

phenomenon known as hyper-sparsity, which makes some LPs easy to solve. We use novel

tests to assess the impact of numerical and structural cancellation on LPs, and confirm the

widely held opinion that the most important attribute for determining the difficulty of solving

a problem is its structure. A new theorem is given to explain the limited increase in density of

block structured row and column linked problems. In Chapter 3 the knowledge from Chapter

2 is used to motivate several new modifications to the standard simplex method, that solve

row linked and column linked problems efficiently. The best of these algorithms is shown to

be effective on a large set of general LPs, and is also adapted for use with the revised simplex

method.

In Chapter 4 we describe the generalised pooling problem (GPP), an NLP that is an extension

of the pooling problem. This is a problem that is currently solved by Format International. We

give a new formulation of the model and offer fresh insight into how the mixing bins cause

nonlinearity in pooling problems. In Chapter 5 we find tight linear relaxations to the GPP. We

solve a test set of GPPs using SLP, a method which we confirm as being effective for pooling

problems, using an improved SLP solver. We then offer a new solution to the problem of how

many random start solves to do before being confident of having found the global minimum.

In Chapter 6 several GPPs are combined to form what we call the multifactory problem,

which is a large, but highly structured, NLP. This models the situation of one company who own

several factories, all of which are supplied from the same limited supply of raw materials. This is

a new problem Format International envision solving in the future. We exploit the structure of

this problem to solve it efficiently using a novel version of augmented Lagrangian decomposition.

This is shown to take less estimated work than a direct solve of the undecomposed problem.

We also introduce two new algorithms to find the global minimum of the multifactory problem,

exploiting the fact that the constituent factories of a multifactory problem are nearly separable.

In Chapter 7 we model an unstudied problem from Sloten International, of making milk

replacement fluid to be fed to young animals. This is done in a factory that can be modelled

by a GPP, with the additional feature of silos and weighing belts, which make the problem a

MINLP. We introduce a new algorithm to solve such MINLPs by decomposing them into NLP

and MIP subproblems.

In Chapter 8 we model the ICBF cattle mating problem, which is the problem of assigning

which bulls should be selected to mate with which cows in a farmer’s herd. This is an MIP

that we solve with a novel decomposition.
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1.4 Notation

A lot of notation is needed to introduce the different types of problem. Throughout the thesis

we tend to use lower case letters to designate variables, and upper case letters to designate

parameters. An exception is when defining a standard LP, where we use the conventional

notation of c and b being vectors of parameters. Occasionally it is convenient to designate

bounds on a variable by using bars above and below the variable name, for example bounds

bounds on ymn of y
mn

≤ ymn ≤ ymn. In the description of the diet problems Greek letters are

always used for variables measuring flow in the network.

The use of bold font (h instead of h), indicates a vector of values. If dimensions for such a

vector are not given it can be assumed to be of appropriate size. When we wish to refer to the

fixed value of a variable, for example the most recent value of t1, this is designated by t̂1. The

optimum value of a variable, such as t1 is designated by t∗1. We use x for a general variable.

An altered version of a variable or parameter that has already been defined is marked with a

dash, for example a basis matrix B may be altered to become B′.

We use the term method to denote an algorithm, for example the method of Benders de-

composition. A solve is one solution of each problem, for example Solve 1 could be a solve of

each of a given set of 10 problems with the method of Benders decomposition. A run is a series

of repeated solves of the same problem, for example Run 1 could be 50 different solves of a

given NLP, starting from different points.
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Chapter 2

Sparsity in the Simplex Method

In both Chapter 2 and Chapter 3 we study LPs. Chapter 2 serves as background for Chapter

3. In Section 2.1 we introduce some key concepts. In Sections 2.2 and 2.3 we investigate

properties of problems that affect their difficulty to solve. In Section 2.2 we use novel tests to

assess the impact of numerical and structural cancellation on LPs, and confirm the widely held

opinion that the most important attribute for determining the difficulty of solving a problem

is its structure. In Section 2.3 we study basis matrices in Tarjan form. We present some new

analysis of the link between the basis inverse and he tableau density, including a novel way to

view the nonbasis, and two simple observations relating to the basis inverse. Theorem 2 is given

to explain the limited increase in density of block structured row and column linked problems.

2.1 Introduction

Here we introduce linear programs, the simplex method, the Subnet problems and the concept

of Hyper-Sparsity.

2.1.1 Linear programs

A linear program (LP) is a problem that can be expressed in the form:

min
x

f(x) = cT x, (2.1)

s.t. Ax ≤ b,

x ∈ X,

where x is a vector of n continuous decision variables, c is a vector of n costs, A is an m by n

matrix, b is a vector of size m, and X is a set of n lower and upper bounds on x. The program
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is said to be linear, as the objective and all the constraints are linear functions of x, meaning

their graph in a Cartesian coordinate plane (of appropriate dimensions) is a straight line.

In order to make the inequalities into equalities (2.1) may be augmented with the addition

of extra variables:

min
x,z

f(x) = cT x (2.2)

s.t. Ax + Iz = b,

x ∈ X,

z ≥ 0,

where z is a vector of m further continuous decision variables and I an identity matrix of size

m. Let x′ be the concatenation of x and z, c′ be the concatenation of c and a vector of zeroes,

A′ be the concatenation of A and an identity matrix, and X′ be the concatenation of X and

bounds on the z variables. Then (2.2) may be rewritten as:

min
x′

f(x′) = c′T x′, (2.3)

s.t. A′x′ = b,

x′ ∈ X′.

We have now returned to a form that is almost identical to (2.1), but with equality instead

of inequality constraints and a larger vector of variables x′. We have shown that an LP with

inequalities may be rewritten as one with equalities only. Most LPs have data in the form (2.1),

but are converted to the form (2.3) to be solved.

2.1.2 Simplex method

We will solve LPs using the simplex method, introduced by Dantzig in 1947. We give some

definitions relevant the the simplex method. There are two main implementations of the simplex

method, the tableau simplex method and the revised simplex method. The definitions introduced

below are general to both implementations.

Consider the LP presented in (2.1). In the simplex method the variables x are known as

logical variables or logicals, and the matrix A as the tableau. During the solve of an LP by the

simplex method the tableau may be manipulated by row and column operations. The resulting

matrices that occur are still referred to as the tableau, with the original matrix A referred to

as the initial tableau.

We call the variables z from (2.2) structural variables or structurals. We call the matrix A′
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from (2.3) the initial extended tableau. Versions of A′ that may appear during a solve are all still

known as the extended tableau. The extended tableau always contains a (possibly permuted)

copy of the identity matrix, but is otherwise the same as the tableau.

The simplex method divides the columns of the initial extended tableau into a basic set,

which collectively form a square matrix known as the basis, and a nonbasic set, which collectively

form as matrix that we call the nonbasis. The nonbasic variables are always at a lower or upper

bound, this is not so for the basic variables. At iteration k we refer to the basis and nonbasis

as Bk and Nk respectively. The extended tableau can be written in terms of the basis and

nonbasis, using the relationship A′

k = Bk
−1Nk.

In each iteration of the simplex method one column moves from the nonbasis to the basis,

and one column moves from the basis to the nonbasis. The iterations continue until the optimal

basis is found and the problem is therefore solved. As the basis changes the initial costs c are

updated to form the reduced costs, which indicate the rate of change of the objective value at

each basis. The right hand side vector b is also updated each iteration, as it the objective value.

Any value of the variables that satisfies all the constraints is said to be a feasible point. The

feasible point with best objective value is said to be optimal. During a solve we may encounter

points where some constraints are violated. The number of violated constraints is referred to as

the number of infeasibilities, and the total violation of all constraints is referred to as the sum

of infeasibilities. The iterations of the simplex method can be broken down into two phases. In

phase one we minimise the sum of infeasibilities to find a feasible point. In phase two we retain

feasibility and minimise the objective value.

A tableau with few nonzeros in it is said to have a low density, and be sparse. Informally, a

problem with a sparse initial tableau may be referred to as a sparse problem. Many problems

begin sparse then become dense. We refer to the increase in nonzeros in the tableau as fill in.

The density of the tableau affects the density of the pivot column and row. As pivoting copies

the pivot column and row across the tableau the density of the pivot row and column affects

the amount of work required. It is therefore desirable to preserve sparsity of the tableau during

the solve. Variations of the simplex method which exploit sparsity can give orders of magnitude

improvements in solve time (see e.g. Hall and McKinnon [2005]).

The way each iteration is performed varies between the two main implementations of the

simplex method, called the tableau simplex method and the revised simplex method. The

tableau simplex method is simple to implement and the algorithm is easily manipulated, so is

what we use in this thesis. However the revised simplex method is much faster, so the purpose

of these chapters is to use the tableau simplex method to understand why some problems solve

easily, and use that knowledge to improve the revised simplex method.
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Tableau simplex method

Our solver, Simplex10, uses the tableau simplex method. The tableau simplex algorithm is well

described in e.g. Winston [2000]. An outline is given in Table 2.1.

1 Scan the reduced costs to find an attractive column. Call this the
pivot column.

2 Compare the pivot column and right hand side vector to find the row
limiting movement of the pivot column. Call this the pivot row.

3 Using the pivot column and pivot row update the tableau, reduced
costs, right hand sides and objective value by pivoting.

Table 2.1: An iteration of the tableau simplex method

In Step 1 we scan of the reduced costs, to find the most attractive column to increase or

decrease. Note that variables correspond to columns of the extended tableau, and the terms

can be used somewhat interchangeably. The chosen column is designated as the pivot column.

In fact it is not necessary to choose the very best column each iteration, and this freedom in

selecting the pivot column allows different versions of the algorithm.

In Step 2 the pivot column is compared to the vector of right hand sides, to indicate the

maximum feasible movement in the direction of the pivot column. The row which limits the

movement is known as the pivot row, and the element of the tableau at the intersection of pivot

column and pivot row is the pivot element. In fact it is possible to select a row other than the

one suggested, to allow some infeasibility, leading to several different possible rules for selecting

the pivot row.

In Step 3 the pivot column enters the basis, and a column determined by the pivot row leaves

the basis, in a process called pivoting. This alters the tableau by copying the pivot column and

row across the tableau. Note that the whole table is explicitly stored and updated in the tableau

simplex method. Iterations continue, as long as there are columns that are attractive to move.

The description above assumes the initial point to the problem is feasible. This is called

a phase two problem. If the initial point is not feasible then an enlarged LP can be formed

and solved to find a feasible point. This enlarged phase one LP can be solved in the same way

as the phase two LP. In phase one (and in phase two) we may allow greater flexibility in the

algorithm by picking pivot columns that are good for some given combination of objective value

and infeasibility, and picking pivot rows that allow the problem to become (more) infeasible.

The Markowitz count measured each iteration is the product of the number of nonzeros in the

pivot row, excluding the pivot element itself, with the number of nonzeros in the pivot column,

again excluding the pivot element. A good implementation of the tableau simplex method only

performs arithmetic operations on nonzero tableau values and for such an implementation an

approximate measure of the work required to solve a problem is the sum of the Markowitz

counts. In this thesis we measure the work using a slightly adjusted Markowitz count, which

is simply the product of the number of nonzeros in the pivot row and pivot column. This
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adjustment reflects the fact that as well as work being required each iteration to perform the

pivot, work is also required on the pivot row and column themselves.

Simplex10

We stated above that the tableau simplex method can be used with different row and column

selection rules. In this chapter we solve LPs using a tableau simplex solver called Simplex10,

written by the author. We now briefly describe the default pivot column and pivot row selection

rules used by Simplex10. In later sections these rules will be varied as we explore different

methods to solve LPs.

In Simplex 10 the pivot column is selected by steepest edge pricing. This gives each nonbasic

column i that is free to move in the appropriate direction a score si, calculated from the reduced

cost of the column divided by the size of the column. In our implementation the size of a column

is calculated by the Euclidean norm. The column i with the largest si becomes the next pivot

column.

Pivot row selection is more complicated. Once the pivot column is selected there are a

limited number of rows of the tableau that intersect that column. Among these rows there can

be bound swap rows, where pivoting on that row constitutes simply moving the pivot column

from one bound to another, and equality rows. When selecting the pivot row we consider only

those candidate rows that do not increase the sum nor the number of infeasibilities. A bound

swap row that strictly improves the sum of infeasibilities is automatically chosen. If none exists,

rows that lead to sums of infeasibilities close to the minimum available or are equality rows are

considered, and from these the row with the largest pivot element is chosen.

We also note that Simplex 10 begins with all logical variables basic, and all structural

variables nonbasic.

Revised simplex method

Nowadays the revised simplex method is usually preferred to the tableau simplex method. In

the revised simplex method the reduced costs and right hand sides are stored and updated as

in the tableau simplex method, but the tableau is not explicitly stored. Instead only the basis

inverse is stored (indirectly, as a product of several matrices), as well as the original nonbasis

N . The pivot column and pivot row are generated sparsely as needed. This makes the revised

simplex method more efficient (and numerically stable) than the tableau simplex method for

large sparse problems, which are common in practice. An outline of each iteration of the revised

simplex method is given in Table 2.2, adapted from Hall and McKinnon [2005].

For the revised simplex method an appropriate measure of work is the sum of the nonzeros

in the pivot row and column.
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1 Scan the reduced costs to find an attractive column, by CHUZC op-
eration.

2 Form this pivot column, by FTRAN operation.
3 Compare the pivot column and right hand side vector to find the row

limiting movement of the pivot column, by CHUZR operation.
4 Form this pivot row, by BTRAN and PRICE operations.
5 Update the representation of the basis, by UPDATE operation.
6 Update the reduced costs, right hand sides and objective value.

Table 2.2: An iteration of the revised simplex method

2.1.3 Subnet problems

In this chapter we explore properties of problems belonging to a new set of LPs we call the

Subnet problems. Although this is a new test set it consists of known problems taken from

other test sets. It contains many problems from the Netlib problem set with a few from the

Mittelmann and Kennington problem sets. The resulting set of 73 problems are mostly LPs

that have been derived from various real world problems. The problems range from a few dozen

rows and columns to thousands of rows and columns. The solve times, by the tableau simplex

method, range from less than a second to several minutes.

Because some of the Subnet problems are fairly large (to be solved with a tableau simplex

solver), not all of them can be solved by all of the methods that we use. Therefore in the

random simulation solves of Sections 2.2.2 and 2.2.3, and the work requiring what we call the

Tarjan form in Sections 3.4.4 and 3.4.5, we omit some problems from Subnet.

2.1.4 Hyper-Sparsity

Hyper-Sparsity is a property of some LPs. We categorise each of the LPs in Subnet as Hyper-

sparse or not, using the definition found in Hall and McKinnon [2005]. Hall calls a problem

Hyper-sparse if at least one of the FTRAN, BTRAN and PRICE operations of the revised

simplex method has no more than 10% nonzeros on at least 60% of the iterations. Any problems

that are not Hyper-sparse we classify as Densefill. In terms of the tableau simplex method,

Hyper-sparse problems are typically those that begin and finish sparse.

In this work the classification of each problem as Hyper-sparse or Densefill is for presentation

purposes only, and we apply the same analysis and solution methods to all problems. Tables A.1

and A.2 in Section A of the appendix section list the Hyper-sparse then the Densefill problems

in Subnet.

Table 2.1(a) shows the average density of the initial tableau and average density of the

optimal tableau for the Subnet problems. Hyper-sparse problems typically begin and finish

with sparser tableau than Densefill problems. In Figure 2.1(b) the problems are split into

Hyper-sparse and Densefill then ordered by the density of the initial tableau, within each set.

Problems 0-44 are Hyper-sparse, problems 45-72 are Densefill, with a vertical line between
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initial tableau optimal tableau
Hyper-sparse average 0.013 0.085
Densefill average 0.077 0.539
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Figure 2.1: Subnet tableau density. Averages in table (a) and values for each problem in graph
(b)

them. This problem ordering is used throughout the chapter. The graph shows that there is

much variation of initial and final tableau density within each set.

Using our definition of work above, based on the Markowitz counts, if at all iterations each

pivot is on a completely dense column and completely dense row the maximum possible work

is achieved. Figure 2.2 shows the total work as a proportion of this maximum for each Subnet

problem. Hyper-sparse problems on average have a much lower proportion of maximum possible

work than Densefill problems.
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Hyper-sparse average 0.013
Densefill average 0.220
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Figure 2.2: Subnet proportion of maximum possible work in solve process. Averages in table
(a) and values for each problem in graph (b)

2.2 Potential reasons for sparse tableau

We mentioned above that a sparse tableau leads to sparse pivot rows and columns. This means

less work to perform each pivot, hence less total work. Many problems begin sparse but become

dense. We now investigate reasons why Hyper-sparse problems stay relatively sparse. There

are three reasons identified within Section 2.2; solving in few iterations, numerical cancellation

and the structure of the initial tableau, where structure means the position of the nonzeros. In

Section 2.3 we look in more detail at a fourth reason, the structure of the basis. The analysis

in these sections confirms the widely held view that it is the structure of the initial tableau of

LPs that is the most important in preserving sparsity.

2.2.1 Solving in few iterations

Recall we begin each solve with an all logical basis. Almost all of the Subnet problems solve

in more pivots than there are rows in the problem, so there are therefore potentially enough

pivots to change the basis from being all logical to consisting of entirely structural variables,
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pivots bound swaps
Hyper-sparse average 0.343 0.071
Densefill average 0.544 0.079
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Figure 2.3: Subnet ratio of number of iterations compared to row-column size. Averages in
table (a) and values for each problem in graph (b)

leading to a very dense tableau. However, in practice not all pivots remove a logical and add

a structural to the basis. We refer to the number of rows plus the number of columns as the

row-column size of a problem. Figure 2.3 shows the ratio of number of pivots of each problem

to its row-column size, and the ratio of number of bound swaps to row-column size. On average

Hyper-sparse problems have fewer pivots and a greater proportion of bound swaps compared

to Densefill problems. A few problems are notable. Densefill problem BRANDY (number 58)

is the only one to solve in more pivots than its row-column size. The Hyper-sparse STAND

problems (numbers 18, 19 and 23) solve in very few iterations. The Hyper-sparse problem

STOCFOR1 (number 41) solves with 64% bound swaps.

We mentioned above that an all structural basis leads to an extremely dense tableau. In

general the proportion of structurals in the basis correlates with the tableau density. Figure 2.4

shows the proportion of structurals in the optimal basis in the Subnet problems. On average

Hyper-sparse problems have a lower proportion of structurals in the optimal basis than Densefill

problems.

Collectively the results of this section show that Hyper-sparse problems solve in fewer iter-
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Hyper-sparse average 0.698
Densefill average 0.818
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Figure 2.4: Subnet proportion of structurals in optimal basis. Averages in table (a) and values
for each problem in graph (b)

ations, with more bound swaps, and finish with fewer structurals in the basis.

2.2.2 Numerical cancellation

The next reason we consider for some problems staying sparse is numerical cancellation. Nu-

merical cancellation occurs when special values in the pivot rows and columns lead to pivots

that cause less fill in than expected. This most commonly occurs due to ±1s in the initial

tableau. Although other values also cause numerical cancellation, ±1s are significant as they

occur naturally in many constraints, and when they are chosen as a pivot element they preserve

the size of all other ±1s in the tableau (but may change their sign). Network problems model

flow in a network, and have initial tableaux with a large proportion of ±1s. Several of the

Subnet problems are partly or wholly network, such as the Hyper-sparse SHIP problems (num-

bers 4-5, 13-14, 20-21), SIERRA (number 7), SHELL (number 11) and the Densefill problem

DEGEN2 (number 51).

Figure 2.5 shows the proportion of the nonzero values in the initial and optimal tableau of

each problem that are ±1s. On average Hyper-sparse problems have a greater proportion of
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initial tableau optimal tableau
Hyper-sparse average 0.510 0.222
Densefill average 0.389 0.020
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Figure 2.5: Subnet proportion of ±1s in tableau. Averages in table (a) and values for each
problem in graph (b)

±1s in the initial tableau and in the optimal tableau than Densefill problems. Most problems

finish with many fewer ±1s than they started with. An exception is Hyper-sparse problem

RECIPE (number 42), where the proportion of ±1s increases due to certain pivots duplicating

rows of ±1s.

It is reasonable to wonder how much of an effect the ±1s, and other special numerical values,

have in preserving sparsity. To assess this we used a new technique that solved an alternative

version of each LP with an initial tableau that had the same sparsity pattern as the original

problem, but had random numbers in place of all the original tableau nonzeros. The optimal

pivot order from the original solve was then forced on the new tableau. Ten such solves were

done for each problem with different sets of random numbers. To avoid numerical difficulties,

on the rare occasions that a solve was forced to pivot on a very small pivot element, that solve

was aborted and retried with new random numbers. Small tableau values were rounded to zero

with the same tolerance as in the original solve. The use of random numbers meant that no

numerical cancellation was possible, so the optimal tableaux were at least as dense as in the

original solve. The density of the optimal tableau of the random number solves compared to the
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density of the optimal tableau in the original solve indicates the effect of numerical cancellation

on each problem.
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Figure 2.6: Tableau density with random number solve (rnd tab) and original solve (real tab)

Figure 2.6 shows the density of the tableau each iteration of the original solve and of a

random number solve of Hyper-sparse problem GANGES (number 7). The final density of the

original solve is 2.60% compared to 4.26% for the random number solve.

Figure 2.7 shows the effect of numerical cancellation on the Subnet problems. The vertical

bars in the graph go from the density of the optimal tableau of the original solve to the average

density of the optimal tableau of the random number solves. On average solving with random

numbers in the tableau has a larger effect on Hyper-sparse problems, indicating that they benefit

more from numerical cancellation. However the most drastic instance of numerical cancellation

is in Densefill problem DEGEN2 (number 51), which finishes 17% dense in the original solve

and 77% dense in the random number solve.

2.2.3 Tableau structure

The next reason we consider for some problems staying sparse is the structure of the initial

tableau, meaning the position of the nonzeros. Certain highly structured problems have been

well studied, for example network problems in e.g. Winston [2000], block structured problems

where the nonzeroes appear mostly within diagonal blocks in e.g. Kallio and Porteus [1977],

and staircase problems where the nonzeros appear mostly within diagonal bands in e.g. Fourer

[1983]. In this section we analyse the general structure of all the Subnet problems. We first

look at the presence of very dense or very sparse columns or rows in the initial tableau, then

look at the overall pattern of nonzeros.
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Times denser with random number solve
Hyper-sparse average 1.306
Densefill average 1.103
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Figure 2.7: Subnet effect of numerical cancellation. Averages in table (a) and values for each
problem in graph (b)

Some problems have singleton columns, that contain a single entry, in the initial tableau.

These columns never increase the density of the tableau when they are pivoted on. Similarly

doubleton columns, that contain two entries, can only increase the density slightly when they

are pivoted on. Collectively we call singleton and doubleton columns sparse columns.

Figure 2.8 shows the proportion of sparse columns in the initial tableau of the Subnet

problems. On average Hyper-sparse problems have a greater proportion of sparse columns,

though this varies greatly from problem to problem. There are some Hyper-sparse problems

with very many sparse columns. One of these, SEBA (number 25), has a large number of

singleton columns as the identity matrix is explicitly included in the initial tableau.

Figure 2.9 shows the density of the most dense column and the density of the most dense

row of the initial tableaux. A particularly dense row or column in the initial tableau can cause

a large increase in the tableau density when it is pivoted on. On average the most dense row

or most dense column of a Hyper-sparse problem is less dense than the most dense row or

most dense column of a Densefill problem. However there are both Hyper-sparse and Densefill

problems that have very dense rows or columns. In these graphs (and all the graphs of Subnet
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singleton singleton or doubleton
Hyper-sparse average 0.120 0.334
Densefill average 0.059 0.204
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Figure 2.8: Subnet proportion of sparse columns in initial tableau. Averages in table (a) and
values for each problem in graph (b)

problems), the problems are ordered by initial density. These graphs therefore also show that

the densest row is only loosely correlated with initial density (Figure 2.9(b)), whereas the

densest column is more strongly correlated with initial density (Figure 2.9(c)).

We now consider the overall effect of the structure of the initial tableau. This is done by

comparing the density of the optimal tableau from the original solve, the density of the optimal

tableau from random structure solves, and the density of the optimal tableau estimated from a

closed formula. The random structure solves and the closed formula are both new techniques.

We first compare the original solve to the random structure solve. The random structure

solve is similar to the random number solve above. We resolve each problem with an initial

tableau that contains the same set of values as the original initial tableau but has them scattered

randomly. The same number of pivots as in the original solve are performed on this tableau,

randomly choosing a pivot element from among the nonzeros each iteration. This is repeated

ten times with different initial tableau, often leading to very different final tableau densities.

The average density of these optimal tableau for each problem, compared with the final density

of the original solve, indicates whether or not the original sparsity pattern helps or hinders in
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Times denser with random structure solve
Hyper-sparse average 7.622
Densefill average 1.609
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Figure 2.10: Subnet effect of structure. Averages in table (a) and results for each problem in
graph (b)
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with random structure had a much larger effect on Hyper-sparse problems, indicating that

they benefit greatly from their structure. Nearly all problems finished denser on the random

structure solves, with many close to fully dense. The only problems that finished less dense

with the random structure solve were Densefill problems SC205 and SC105 (numbers 50 and

57), which have a staircase structure. Figure 2.11 shows the initial tableau of SC105. The

number of nonzeros is shown below the matrix.

We now also consider the closed formula estimate. In the closed formula estimate of the

density of the optimal tableau we make the assumption that at every iteration the tableau is

uniformly randomly distributed with nonzeros, so every pivot row and pivot column is of density

equal to the tableau. Although this is not expected to be true, the consequences of assuming it

are illustrative. For ease of calculation we also assume that no numerical cancellation occurs.

We begin with an all logical basis and perform a series of pivots that each add one structural

to the basis, up to the correct number of structurals.

Recall that m and n are the number of rows and columns of the initial tableau respectively.

Let C1, C2 and C3 be constant functions of m and n (which are not defined here). Let ak be

the average number of nonzeros per column of the tableau, where k is the number of pivots

so far, hence the number of structurals in the basis. a0 is the average number of nonzeros per

column of the initial tableau. k and ak are implicitly linked by the formula below:

k ≃ C1 log

(

ak − n

a0 − n

)

+ C2 log

(

ak − 1

a0 − 1

)

+ C3 log

(

akn − m

a0n − m

)

. (2.4)

The derivation of the formula is in Section B of the appendix. Our formula can be used to plot

the estimated density of a problem compared to the number of structurals in the basis. This

density can be compared to the density when using the original structure, and to the random

structure solve. Figure 2.12 shows these three densities, plotted against number of structurals

in the basis, for Hyper-sparse problem AGG (number 38). The original solve is the least dense

of the three, with the closed formula being by far the most dense. This result is typical for the

Subnet problems. For all but five of the Subnet problems the closed formula suggests that the

optimal tableau will be completely dense, often after very few pivots.

Each iteration of the original solves of Subnet problems typically has a Markowitz count of

about what is expected, given the tableau density at that iteration. But the amount of fill in

caused by each pivot is much lower than the Markowitz count suggests. This is partly due to

numerical cancellation, but more importantly a significant amount of fill in does not occur as

new nonzeros are created in the same position as old nonzeros. This is called superposition.

Superposition happens often with tableaux that come from real life problems. Suppose, for

example, there are some constraints that involve nearly all variables, leading to a dense row in

the initial tableau. A pivot on such a row makes copies of itself across the tableau. A later pivot
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Figure 2.12: Density of AGG, compared to number of structurals in basis

somewhere in one of the copies will have a large amount of superposition with the other copies.

The closed formula overestimates the density of the optimal tableau as it expects superposition

to occur as if the nonzeros are uniformly randomly distributed in the tableau. In any actual

simplex solve, including one with an initial random structure, there is more superposition than

that. Even if the initial structure is random dense areas of the tableau will soon be formed.

The fact that the Subnet problems have a more ordered structure than random explains why

they often stay sparser than the random structure solves.

Among the Subnet problems it is the Hyper-sparse problems that have a structure that leads

to the most superposition, hence the least fill in. For some Densefill problems the structure

makes it immediately clear that there will be a lot of fill in. The staircase structure of problems

like SC105 (Figure 2.11) means each pivot causes fill in outside the central band, leading to no

superposition, and a rapid increase in density.

2.3 Basis structure

We mentioned above that the extended tableau at iteration k is given by A′

k = Bk
−1Nk, where

Bk and Nk are the basis and nonbasis at iteration k. Hence the basis matrix, and its inverse,

directly affect the density of the tableau. In this section we look at what properties of the basis

matrix cause its inverse, and consequently the tableau, to remain sparse or become dense.

To analyse the Subnet problems we permute basis matrices into what we call Tarjan form,

introduced in Duff [1977]. This consists firstly of a symmetric permutation of the rows of the

basis (or alternatively the columns) to get a matrix with entries on the main diagonal (the one

from top left to bottom right). The existence of entries along the main diagonal is called a

transversal. This is followed by an unsymmetric column and row permutation to give an upper
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triangular block diagonal matrix. This is a matrix that has all entries permuted into the upper

right half, as far as possible, and the remaining entries permuted to be within square blocks

along the main diagonal. The Tarjan form is optimal, in that no diagonal blocks can be reduced

into smaller diagonal blocks. We denote a basis B in Tarjan form as B′.

0 50 100 150 200 250 300 350
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150

200

250

300

350

nz = 1114

Figure 2.13: Optimal basis permuted into Tarjan form for SCSD8

Figure 2.13 shows a matrix in Tarjan form. Although most entries have been permuted to

the upper right half of the matrix there are several diagonal blocks, of different sizes. These

blocks are not solid, but consist of square areas along the main diagonal where nonzeros can

occur. We call a diagonal block trivial if it is of size one by one, otherwise it is nontrivial. A

matrix in Tarjan form is called triangular if it has no nontrivial diagonal blocks.

With a basis matrix in Tarjan form an instructive way to represent the matrix is as a graph,

leading to the well known analysis below. Each row (or equivalently column) of the matrix

can represent a node. These nodes are linked by directed arcs corresponding to the nonzero

entries of the matrix, by forming an arc from node i to node j when element (i, j) of the basis

is nonzero. Figure 2.14(a) and Figure 2.14(b) show an example matrix in Tarjan form and the

representation of that matrix as a graph. As is customary when drawing the matrix as a graph

we do not display all the trivial arcs from each node back to itself. If a single arc connects node

i to node j we say there is a direct path from i to j, e.g. in Figure 2.14(b) there is a direct path

from node 2 to node 5. If a series of directed arcs connects node i to node j we say there is an

indirect path from i to j, e.g. in Figure 2.14(b) there is an indirect path from node 1 to node 4.
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Figure 2.14: An example matrix in Tarjan form (a), shown as a graph (b), and one of the closed
paths (c)

A nontrivial path from node i back to node i is called a closed path. Each closed path can

be associated with a nontrivial diagonal block of a basis in Tarjan form. Collectively the nodes

that make up a nontrivial diagonal block are known as a strong component. Figure 2.14(c)

picks out the main strong component of the matrix. An arc from i to j with i < j is called

a forward arc, and corresponds to an entry above the diagonal in the upper right half of the

basis. Similarly an arc from i to j with i > j is called a backward arc, and corresponds to an

entry below the diagonal in the lower left half of the basis. Each closed path must contain at

least one backward arc and one forward arc. In a triangular basis all arcs are forward arcs.

We are interested in the density of the basis inverse. We refer to the inverse of a matrix,

ignoring the effects of numerical cancellation, as the symbolic inverse. This is very easy to find

with a matrix in Tarjan form. Although in an actual simplex solve the numerical cancellation

does affect the sparsity (see Section 2.2.2), comparing densities of symbolic inverses still gives

a good indication of which basis matrices will have sparse inverses.

The theorem below can be found in Duff et al. [1986] and elsewhere:

Theorem 1. If a basis B′ contains a direct or indirect path from i to j then the symbolic

inverse B′−1
contains a nonzero at (i,j).

A matrix in Tarjan form that has no large diagonal blocks has an inverse that is relatively

31



 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25

in
cr

ea
se

 in
 d

en
si

ty

largest block

Figure 2.15: Increase in density when forming inverse

sparse. Figure 2.15 shows the increase in density when inverting each of a series of randomly

generated matrices in Tarjan form. Matrices with a largest block of size one are triangular

matrices. The graph shows that matrices with at least one nontrivial diagonal block have a

more significant increase in density when inverted than those without. To further illustrate

the correlation between block size and tableau density we look at two simplex solves. Figure

2.16(a) and Figure 2.16(b) show the sum of squares of nontrivial block sizes and the tableau

density each iteration during the solves of Hyper-sparse problem ETAMACRO (number 27)

and Densefill problem SC105 (number 57) respectively. The block sizes and tableau densities

correlate closely for both problems.

Almost all problems, including Hyper-sparse ones, have a nontriangular optimal basis. How-

ever, the optimal basis of most Hyper-sparse problems rarely has large diagonal blocks, and

instead often has many small diagonal blocks. Figure 2.17 shows the optimal basis of the Hyper-

sparse problem GANGES (number 8) as an example of this. Densefill problems often have large

diagonal blocks in the optimal basis, often of size about 50% of the basis. Problems in the SC

family, such as SC105, shown in Figure 2.11, quickly become dense. After a few simplex pivots

of SC105 over 90% of the columns of the basis are part of one very large diagonal block.

We now give an instructive way to view the nonbasis. This rearrangement of the nonbasis

is similar to the rearrangement that gave the Tarjan form for the basis. Our nonbasis form

is believed to be original, though a similar form is seen in Saunders [1976]. We first apply

to the nonbasis the same unsymmetric row permutation that was applied to the basis when

getting the Tarjan form. We then permute the columns, ordering them by the entry that has

the lowest placement in the column. We call the resulting form the permuted nonbasis, denoted

N ′. Figure 2.18 shows the basis in Tarjan form and permuted nonbasis, at the optimal solution

to Hyper-sparse problem LOTFI (number 35). The basis is triangular, though this is not the
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Figure 2.17: Optimal basis permuted into Tarjan form for GANGES

0 50 100 150 200 250 300 350 400 450

0

50

100

150

nz = 1231

Figure 2.18: Optimal basis and permuted nonbasis for LOTFI. This is a rearrangement of the
optimal extended tableau to give (B′ : N ′)

row of the sloped section, hence the profile is smooth.

To form the tableau the basis is inverted and multiplied by the permuted nonbasis, hence

the profile of the nonbasis is important in indicating the expected density of the tableau. In

particular when the basis is triangular, as in Figure 2.18, fill in can only occur in the sloped

section of the nonbasis. An example of this can be seen by comparing Figure 2.18 and Figure

2.19.

We saw above how the Subnet problems, and especially Hyper-sparse problems, preserve

sparsity better than random structure problems. It is also true that they have a more gently

sloped profile, and hence a smaller sloped section. In a real problem, with nonrandom structure,
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Figure 2.19: Identity matrix and optimal tableau of LOTFI, formed by premultiplying (B′ : N ′)

of Figure 2.18 by B′−1
, to give (I : B′−1

N ′)

there is a variation in row density. When forming the Tarjan form the dense rows tend to get

placed towards the top of the basis, as the Tarjan form attempts to form an upper triangular

basis. These dense rows are therefore also placed towards the top of the nonbasis, leading to a

gentle profile.

2.3.1 Inverting the basis

We now look in more detail at how the structure of the basis affects the density of the basis

inverse.
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Figure 2.20: Inverting triangular matrices

Figure 2.20 compares the basis density and the inverse density for several randomly gener-

ated triangular matrices. The graph shows that the relative initial density of a basis matrix is a

good indicator of the relative density of the inverse, as denser basis matrices tend to have denser

inverses. However the correspondence is not exact, as sometimes less dense basis matrices lead

to more dense inverses. The basis matrices that lead to the largest increases in inverse density

were those with an especially dense area, and those with many entries close to the diagonal.
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This leads to the following observation.

Observation 1. In a triangular matrix entries close to the diagonal cause a high level of fill

in in the inverse.

When the basis is viewed as a graph entries close to the diagonal correspond to direct paths

linking nodes that are adjacent (e.g. nodes 7 and 8) or close to adjacent (e.g. nodes 13 and 16),

which can therefore appear on a great many closed paths. Figure 2.21 demonstrates where fill in

is most likely to occur when inverting triangular basis matrices. Each of the four graphs shows

a random upper triangular matrix and its inverse. In all cases the inverses have the most fill in

far from the diagonal. This leads to the observation below, the counterpart of Observation 1:

Observation 2. In a triangular matrix elements far from the diagonal are likely to be filled in

in the inverse.

Indeed the probability of an element in the inverse being filled in depends only on its distance

from the diagonal. The criss-cross pattern in the inverses of Figure 2.21 occurs as certain sparse

rows (and columns) in the basis matrices remain sparse in the inverse. These rows (or columns)

can be thought of as nodes that are only loosely connected, or even unconnected, to the rest of

the graph.
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(b)
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Figure 2.21: Random upper triangular basis matrices of differing density and their inverses.
The basis matrices have 2 (a), 5 (b), 10 (c) and 50 (d) nonzeros per column
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2.3.2 Block structured problems

We now look at how the block structure of an initial tableau is to some extent preserved in

the basis matrix. We will show that the block structure of a problem has implications for the

maximum density of the tableau.

(a) (b)

Figure 2.22: Block structured initial tableau (a) and corresponding basis matrix (b)

Figure 2.22(a) shows an initial tableau with block structure, specifically row linked block

structure. All of the nonzeros appear in the diagonal blocks, apart from those in the rows across

the top of the problem. These rows are called linking rows, as they link together the otherwise

separable diagonal blocks. At the right hand edge of the linking rows is what is called the

private block. This is a section of the linking rows that has no diagonal blocks beneath it. Let

n be the total number of rows, l be the number of linking rows and b the number of diagonal

blocks. For simplicity we assume that l ≤ b, and that all diagonal blocks have the same number

of rows, specifically they all have n−l
b

. Since the basis matrix always consists of columns from

the initial tableau, and from the identity matrix, it may also be represented as having a block

structure. Figure 2.22(b) shows the basis, drawn to emphasise the similarity in structure with

the initial tableau. The darker areas in Figure 2.22(b) are either columns from the initial

tableau or identity columns, and the lighter areas are all identity columns.

At any time in a simplex solve each column of the basis corresponds to one row of the

extended tableau. We say that each row is basic in a column. Our implementation of the

tableau simplex method begins with an all logical basis, so every row is basic in the column of

a logical variable. During a solve a row can be pivoted on several times, changing the column

in which that row is basic.

For a row linked problem there are only three possibilities for where each linking row is

basic in the optimal solution. The first possibility is that the row is still basic in the logical

column. The second possibility is that the row is basic in a column of the private block. The

third possibility is that the row is basic in a column of a diagonal block. This third possibility
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only happens if there has been a pivot in the linking row above a diagonal block. These pivots

can have the effect of copying the diagonal block across the tableau, causing a large increase in

tableau density. At any time though the maximum number of linking rows that are basic in the

column of a diagonal block is the number of linking rows. This leads to the original theorem

below:

Theorem 2. The maximum tableau density outside the linking rows is approximately l
b
.

(a) (b)

Figure 2.23: Row linked block structured problem initial tableau (a) and example optimal
tableau (b)

We give a demonstration before a proof of the theorem. Figure 2.23(a) shows the initial tableau

of a row linked block structured problem. There are n = 13 rows, l = 3 linking rows, b = 5

diagonal blocks and a small private block. Figure 2.23(b) shows a possible optimal tableau. The

linking rows have all become dense, and there have been pivots in two of them above diagonal

blocks, causing the diagonal blocks to be copied across the tableau. The density of the optimal

tableau outside the linking rows is about 2
5 , less than the potential maximum of about 3

5 .

In order to prove Theorem 2 we first note that the optimal tableau is the result of the

partition of variables into basic and nonbasic, so any order of pivots that results in the same

partition as the optimal tableau is equivalent. We now consider constructing the optimal

partition, beginning with an all logical basis, and following a special pivot order. The special

pivot order is to perform all the diagonal block pivots, those within the diagonal blocks, before

all the linking row pivots, those within the linking rows but not in the private block.

The diagonal block pivots only cause fill in within the diagonal blocks, and within the linking

rows. The linking row pivots cause significant fill in, with each one causing at most one dense

band of n−l
b

rows across the matrix. As there are only l linking rows there can be only l dense
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bands created, leading to (n−l)l
b

nonzeros in the dense bands. Discounting the nonzeros in the

diagonal blocks themselves this gives a density in the n − l rows outside the linking blocks of

l
b
, proving the theorem. Pivots in the private block, whenever they occur, do not create fill in

outside the blocks and linking rows. Given specific block dimensions a more exact bound than

l
b

can be found.
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Figure 2.24: FIT1P initial extended tableau (a), optimal extended tableau (b), and optimal
extended tableau reordered (c)

Theorem 2 can also be applied to column linked problems, with l this time being the

number of linking columns. Figure 2.24(a) shows the initial extended tableau of the column

linked Hyper-sparse problem FIT1P (number 28) (which includes an identity matrix as this is
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the extended tableau). Apart from the first few columns of FIT1P, which are almost completely

dense, the remaining columns each have only one nonzero in them. There is no private block.

Figure 2.24(b) is the optimal extended tableau. This is the tableau produced at the end of

the simplex solve. It does not have a clear pattern of nonzeros. Figure 2.24(c) is a column

reordering of the optimal extended tableau. The first 627 columns of Figure 2.24(c), which

includes the first band of dense columns, are the basis. This is followed by the nonbasis, which

is ordered to first show the 1050 nonbasic structural variables then the 627 nonbasic logical

variables. The reordered optimal extended tableau shows that there are just a few bands of

dense columns, where the linking columns have been pivoted on, and the rest of the matrix is

still identity columns.

2.4 Summary

In this chapter we have created the set of Subnet problems, which is divided into Hyper-sparse

and Densefill problems. The Subnet problems were analysed to determine why some problems

stay sparse when solved with the simplex method, and can therefore be solved with compara-

tively little work. Hyper-sparse problems were found to typically solve in fewer iterations with a

greater proportion of bound swap iterations. They finished with fewer structurals in the basis,

and benefited more greatly from numerical cancellation.

Across both problem sets the density of the optimal tableau was markedly less than the

density predicted by solving with an initial tableau with random structure, or the density

predicted from using a formula that assumed random uniform distribution of nonzeros in the

tableau each iteration. This indicates that the position of the nonzeros in the initial tableau is

significant in preserving sparsity. Indeed the structure of the tableau was found to be the most

important indicator of whether or not sparsity was preserved. This underlines the importance

of the structure of a problem in choosing a solution approach.

The density of a tableau is linked to the density of the inverse of the basis matrix. When the

basis matrix is viewed in Tarjan form the number and size of diagonal blocks affects the inverse

density. Hyper-sparse basis matrices in Tarjan form were found to occasionally be triangular

and often have only a few small diagonal blocks. Densefill basis matrices often in Tarjan form

often had large diagonal blocks. A theorem was given to explain the limited increase in density

of block structured row and column linked problems.
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Chapter 3

Row and Column Linked LPs

In this chapter we look at using the tableau simplex method to solve row linked or column

linked LPs, while preserving the sparsity of the tableau. This follows on from Chapter 2, and

uses insights into why some problems become dense to motivate the algorithms. This is of

direct benefit to solving with the tableau simplex method, but more importantly offers insight

into reducing the work required when solving with the revised simplex method.

There are three new algorithms for solving columns linked problems, and four new algorithms

for solving row linked problems. We then combine the best new row and column algorithms to

effectively solve the whole Subnet set of problems, in Solve 5 below. This is all with the tableau

simplex method. In Solve 6 the algorithm of Solve 5 is adapted for the revised simplex method,

and in Solve 7 a further revised simplex method variant is proposed.

3.1 Introduction
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Figure 3.1: STORMG2-8 initial tableau. Columns 1 to 121 are linking
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Many real life problems, including several in Subnet, are block structured with linking rows

or linking columns. We divide the linking rows or columns into two types. Sometimes, as in

FIT1P of Figure 2.24(a), the linking rows or columns are relatively dense, and so pivoting on

them directly causes a large amount of fill in. In this case we refer to them as dense linking

rows or dense linking columns. If, as in STORMG2-8 of Figure 3.1, the linking rows or linking

columns are only undesirable to use as pivots as they link together otherwise separable parts

of the tableau, we simply refer to the them as linking rows or linking columns.

It should be noted that although we classify some problems as row or column linked, every

LP can be dualised resulting in a dual problem, which has the same optimal objective value

but a different structure. Dualising a row linked problem transforms it into a column linked

problem, and vice versa. For simplicity we only consider problems with their original structure,

and do not dualise them. Furthermore some problems without an immediately apparent row or

column linked structure may be rearranged to have one, see e.g. Ferris and Horn [1998]. This

means that the methods introduced below may be applicable to more problems than those that

are not immediately obvious as row or column linked.

In Section 3.2 we introduce methods for preserving tableau sparsity while solving column

linked problems. In Section 3.3 we introduce methods for preserving tableau sparsity while

solving row linked problems. In Section 3.4 we solve all the Subnet problems using some of

these methods. All LPs are solved with variations of the tableau simplex solver Simplex10.

Most of the solve methods described below are designed specifically for row or column

linked problems. They require the location of the linking rows or columns in the initial tableau.

Although this detection can be done by the user, this can also be done automatically to some

extent, see e.g. Robert E. Bixby [1988]. These solve methods also do not require explicit

knowledge of the tableau each iteration (only at the first iteration), so can be readily adapted

for the revised simplex method.

A few solve methods, specifically the methods of avoiding dense columns and avoiding dense

rows, do not require user input on the structure of the initial tableau. These two solve methods

can therefore be applied to all the Subnet problems, which we do in Sections 3.4.1 - 3.4.3.

However, these two solve methods do require explicit knowledge of the tableau each iteration,

so cannot be readily adapted for the revised simplex method. In Section 3.4.4 we show how

these solve methods could be adapted for use with the revised simplex method. In Section 3.4.5

we consider another new solve method suitable for the revised simplex method.

3.2 Column Linked Problems

In this section we look at solving column linked problems, in particular FIT1P and STORMG2-

8. FIT1P (shown in Figure 2.24(a)) has 24 dense linking columns and identity columns else-

where. STORMG2-8 (shown in Figure 3.1) has eight similar diagonal blocks loosely joined by

43



121 linking columns. The difference between the problems in the nature of their linking columns

affects which solution methods are effective on each problem. A general column linked LP, with

k blocks of variables, may be written in the form:

min

k
∑

i=1

ci
T xi, (3.1)

s.t. Ai1x1 + Aiixi ≤ bi i ∈ 1 . . . k,

x ∈ X,

where x1 are the linking columns, and Aij is a sub-block of the constraint matrix A. One

method to solve column linked problems is Benders decomposition (Benders [1962]), for which

an outline is given below.

1 Fix the value of the linking columns.
2 Solve the resulting series of LPs.
3 If all LPs are feasible add an optimality cut to the master problem,

else add a feasibility cut.
4 Solve the master problem, to find new values for the linking columns.

The linking columns are relaxed, leaving a series of small LPs. These small LPs are repeat-

edly solved, with each solve giving a linear constraint that is added to a master problem. The

master problem progressively finds the optimal value of the linking columns.

In this section we introduce three new methods for columns linked problems, that do not

relax the linking columns. Instead we leave them in the problem but steer the simplex method

away from pivoting on them. In the simplex method there is typically a wide choice of acceptable

pivot columns (see e.g. Terlaky and Zhang [1993]), and to a lesser extent a choice of acceptable

pivot rows. Most of the various rules given in the literature for selecting pivot columns are

motivated by trying to reduce the number of iterations. We instead try to select pivot columns

that preserve sparsity. Our work is similar to Lentini et al. [1995], where to preserve the sparsity

. . . a careful but heuristic choice of the pivot row and column is made.

Our three methods are each tested on only two column linked problems, but the most

promising of the methods is then tested on all Subnet problems in Section 3.4.

3.2.1 Avoiding linking columns

This method alters the pivot column selection rule to only pivot on linking columns when no

other columns are attractive.

This is similar in spirit to the basis suppression method of Patty [1989], where in a problem

with a single linking column that column is prevented from entering the basis. In the method

of avoiding linking columns a set of vetoed columns is created, and initialised with the linking
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columns. Depending on the type of problem solved this set may be kept constant or could be

updated each iteration. When choosing the pivot column the most attractive column not in

the vetoed set is chosen. If the only attractive columns are within the vetoed set the most

attractive of these is chosen.

Figure 3.2: Tableau with dense linking column

For problems with dense linking columns the vetoed set is updated during the solve, by

adding columns that become dense after a pivot from within the vetoed set. We call this

avoiding and updating. Figure 3.2 shows an example tableau with a pivot element on a dense

linking column, indicated by the square. The initial vetoed set is {1}. If we are avoiding and

updating after pivoting where indicated the vetoed set is updated to {4, 6}, since these columns

become dense after the pivot.

FIT1P STORMG2-8
pivots work pivots work

standard solve 1350 14.0M 4979 11.2M
avoiding linking columns 1375 13.0M 5140 8.6M
avoiding and updating 989 10.2M 5963 25.4M

Table 3.1: Results for avoiding linking columns

Table 3.1 shows results for solving FIT1P and STORMG2-8 by three different methods. We

compare the standard tableau simplex method solve, the solve avoiding linking columns, and

the solve avoiding and updating. For each method for each problem we give the amount of work,

defined as the total of the products of nonzeros in the pivot column and the pivot row each

iteration, and the number of pivots. For FIT1P, the solve avoiding linking columns takes more

pivots but less work than the standard solve. The standard solve pivots on a linking column

on the very first iteration. The solve avoiding linking columns postpones any pivots on linking

columns until the 628th iteration, then continues by optimising the rest of the problem, pivoting

on another vetoed column, optimising the rest of the problem, and so on until optimality. In

total 15 of the 24 vetoed columns are pivoted on. The solve avoiding and updating decreases

the number of pivots and further decreases the work for this problem. For STORMG2-8, the

solve avoiding linking columns also takes more pivots but less work than the standard solve.

However, as this problem has linking columns which are not dense, the solve avoiding and
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updating is not appropriate, and actually increases the work significantly. This is because it

vetoes a very large proportion of the columns, leading to a long series of dense pivots at the

end of the solve. Although it is usually good to postpone dense pivots until the end of the solve

in this case there were so many that the amount of work increased.

Although it showed promising results on the two test problems the method of avoiding

linking columns is only applicable to column linked problems, so is not tested on the whole

Subnet set of problems.

3.2.2 Avoiding dense columns

This method alters the pivot columns selection rule to be biased against dense columns.

As stated above the default pivot column selection rule in each iteration of Simplex10 is to

choose the column i with the largest score si, where the scores are calculated by steepest edge

pricing. With the method of avoiding dense columns we alter the scores by taking into account

the number of nonzeros in column i, referred to as the column nonzeros and denoted by zcol
i .

The effect of the column nonzeros is weighted by a parameter νcol. The new column score for

column i is:

s′i = si(z
col
i )−νcol

, (3.2)

where zcol is calculated from the initial tableau then updated each iteration. Updating zcol

can be done cheaply when using the tableau simplex method.

FIT1P STORMG2-8
pivots work pivots work

standard solve (νcol = 0) 1350 14.0M 4979 11.2M
νcol = 1 1162 11.1M 5728 9.2M
νcol = 2 1257 9.4M 6149 9.8M
νcol = 3 1224 8.3M 6306 11.2M

Table 3.2: Results for avoiding dense columns

Table 3.2 shows results for solving the two test problems. We compare the standard solve

with three solves varying the size of the parameter νcol. For FIT1P, the number of pivots and

work decreased for all nonzero values of νcol tested. The largest value of νcol reduced the work

most significantly. STORMG2-8 solved well for smaller values of νcol, increasing the number of

pivots but reducing the work. However for νcol = 3 STORMG2-8 did not solve as well, as at

the end of the solve there were very many dense pivots.

The method of avoiding dense columns is effective on both these test problems, and we will

see later (in Solve 4 of Section 3.4 and onwards), that this simple method is generally effective

across the whole Subnet set.
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3.2.3 Pushing columns

This method alters the way some pivots are performed so that pivots on linking columns do not

affect the tableau density. It can be viewed as an extension of avoiding the linking columns.

In this method a set of vetoed columns is created, and initialised with the linking columns.

If the linking columns are dense this set is updated each iteration, if they are merely linking

the set is not updated. When choosing the pivot column if there is no attractive unvetoed

column we choose the most attractive vetoed column. When this happens rather than doing a

normal pivot we instead push the column. Pushing a column means adjusting the value of that

variable by the amount suggested by the simplex method, but keeping the column nonbasic by

not performing the pivot. After we push a vetoed column we continue by pushing other vetoed

columns, until either an unvetoed column is made attractive, in which case the simplex method

resumes, or, if no progress can be made by attempting to push each vetoed column in turn,

a pivot is made on the most attractive vetoed column. We set a limit on the total number of

times an attempt can be made to push each column. Without this limit a very long series of

small pushes can occur towards the end of a solve which is often more time consuming than

just performing a pivot. In the tests below we set the limit to be 1000 attempted pushes per

column.

The method of pushing columns is more effective if we are able to push the columns further.

The default row selection rule in Simplex10 is to only allow pivots that increase neither the sum

nor the number of infeasibilities. To enable larger pushes we adjust the pivot row selection rule

so that it is possible to select a row that results in an increase in the number of infeasibilities

(as long as the sum of infeasibilities still decreases), and even allow pivot rows that increase

the sum of infeasibilities, if they give a good enough improvement in the objective value. To

prevent this rule causing cycling, the column selection rule is also slightly adjusted.

Pushing a column is like performing a bound swap, but involves moving a variable to a

bound that did not previously exist. Ideally after pushing columns a new non-vetoed nonbasic

column is made attractive, and the simplex method can continue without ever needing to pivot

on a vetoed column. But progress can also be made even if no new nonbasic columns become

attractive, as a series of pushes can move the solution towards optimality. Trying to find the

optimal values of vetoed columns, by pushing them and not performing a pivot, is a coordinate

axes search, meaning the variables are partitioned into sets and one set is optimised at a time

while the others are held fixed. Here we change the value of only one vetoed column at a time.

The effectiveness of the method therefore depends on how much the vetoed columns are able

to move relative to each other, and the method will not be effective if the vetoed columns are

closely linked and cannot move far independently.

Figure 3.3 shows an example LP where pushing would fail. The current vertex is not optimal,

but to get the optimal vertex both x1 and x2 must be moved simultaneously. Decreasing x1
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Figure 3.3: Example feasible region

independently leads to a worse objective value, and increasing x2 independently makes the

problem infeasible.
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Figure 3.4: Four response curves for FIT1P around the solution

Figure 3.4 shows the response curve for four of the linking columns of FIT1P close to the

optimal solution (f∗ = 9146). The response curve for each variable is the best objective value

for the problem as a function of that variable’s fixed value. In an LP all response curves are

piecewise linear and convex. A piecewise linear curve is one made up of sections, of which each

section is linear (a straight line). A function is said to be convex if it has nonnegative curvature

at all points, such as f(x) = x2. As their curvature is zero at all points, all linear functions are

convex. We call the points on the response curves where there is a sudden change in gradient

break points. The break points in the response curves correspond to situations, such as the one

shown in Figure 3.3, where a coordinate axes search can stall. However, the response curves

displayed in Figure 3.4 seem reasonably smooth, with only a small change in gradient between

each section, suggesting that the method of pushing may be successful on FIT1P.

Table 3.3 compares the standard solve (with the adjustments to the pivot row selection

rule suggested above), with the solve pushing columns (also with these adjustments of course).
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FIT1P STORMG2-8
pivots work pivots work

standard solve 989 10.2M 5085 8.5M
pushing columns 1074 8.1M 5077 8.2M

Table 3.3: Results for pushing vetoed columns

For FIT1P, which has dense linking columns, the set of vetoed columns was updated each

iteration. In this problem some pushing was possible, and sometimes progress was made from

several vetoed columns being pushed in turn. The pushes were often small though, particularly

towards the end of the solve. The optimal solution to FIT1P is degenerate, meaning there are

many possible optimal solutions. Because of this the solve pushing columns was also able to

finish with a less dense optimal tableau, as it pivoted on fewer vetoed columns. For STORMG2-

8, which does not have dense linking columns, the vetoed set was not updated each iteration.

On this problem very little pushing was possible, except for a small amount during phase two,

which had little impact on the solve. Thus pushing is effective on only one of our two test

problems.

Although pushing was shown to be effective on F1T1P, the method is only applicable to

column linked problems, so is not tested on the whole Subnet set of problems.

3.3 Row linked problems

In this section we look at solving row linked problems. We look in particular at the three

problems shown in Figure 3.5. Although these problems are all row linked, the row linked

structure of KEN-07 is not obvious without a rearrangement of the tableau. A general row

linked LP, with k blocks of variables, may be written in the form:

min

k
∑

i=1

ci
T xi, (3.3)

s.t.

k
∑

i=1

A0ixi ≤ b0,

Aiixi ≤ bi, i ∈ 1 . . . k,

x ∈ X,

where the first constraint defines the linking row or rows. One method to solve row linked

problems is Lagrangian relaxation, which is the dual of Benders decomposition. Lagrangian

relaxation relaxes the linking rows, by omitting them from the problem. As in Benders decom-

position the resulting LP decomposes into several smaller problems which are comparatively

easy to solve. As they have been omitted a method is needed to find the optimal value of the
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Figure 3.5: Row linked problems. DCP1 with linking rows 4895-4950, CZ-PROB with linking
rows 1-7 and KEN-07 with linking rows 2402-2426
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linking rows. This is done by adding costs on the variables in the rows into the objective of

each subproblem. These extra costs can be updated by subgradients, by the dual cutting plane

method, or by using an augmented Lagrangian framework. Lagrangian relaxation is introduced

in more detail in Section 6.2.2 of Chapter 6.

The methods introduced in Sections 3.3.1 and 3.3.2 do not omit the linking rows, but instead

modify the pivot row selection rule. The method of Section 3.3.3 omits the linking rows, then

reinstates them. These three methods are tested on the large row linked problem DCP1. The

method of Section 3.3.4 also omits the linking rows, and after some work reinstates them. It

is tested on the row linked problems CZPROB and KEN-07. As with our methods for column

linked problems, using these methods on such a small number of test problems only gives a

basic test of the methods. In section 3.4 we therefore consider solving the whole Subnet set of

problems.

3.3.1 Avoiding linking rows

This method is similar to the method of avoiding linking columns, introduced in Section 3.2.1

above. In the method of avoiding linking rows we alter the pivot row selection rule to only

pivot on linking rows when there are no other attractive rows. Results for this method and two

other methods are presented below, after all three methods have been introduced.

3.3.2 Avoiding dense rows

This method is similar to the method of avoiding dense columns, introduced in Section 3.2.2

above. In the method of avoiding dense rows the pivot row selection rule is adjusted to bias

against choosing dense rows. In order to do this, the number of nonzeros in each row of the

tableau, called the row nonzeros and denoted zrow , must be known each iteration. zrow is

calculated from the initial tableau then updated each iteration, which can be done cheaply

when using the tableau simplex method. We solve DCP1 with νrow = 1.

3.3.3 Omitting rows

This method omits the linking rows, resulting in several smaller problems. Solving all of these

is much easier than solving the original problem, and results in an approximate solution to

the original problem. The linking rows are then reinstated and solved using the approximate

solution as a warm start point. We can think of this method as similar to the method of

avoiding linking rows, with the difference being that here once the linking rows are reinstated

they are all available to be pivoted on.

Table 3.4 shows results for solving DCP1. We compare the standard tableau simplex solve

with the three alternative row selection rules that were introduced in Sections 3.3.1, 3.3.2 and

3.3.3. Two of the methods, avoiding linking rows and omitting rows, were successful in reducing
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DCP1
pivots work

standard solve 3418 1124M
avoiding linking rows 3282 896M
avoid dense rows 3348 1205M
omitting rows 3326 838M

Table 3.4: Results for different row selection rules

the amount of work, with little effect on the pivots. Avoiding dense rows was not successful on

this problem.

The method of avoiding dense rows can be applied to all problems, not just those that are

row linked. So although the method was not successful on DCP1, it is successfully applied to

all Subnet problems in Section 3.4.3.

3.3.4 Omitting rows and using heuristic

In the method of omitting rows, described above, the problem is solved with all the linking rows

omitted, then resolved with all the linking rows reinstated. Here we omit the linking rows and

solve a series of LPs with the aim of finding a close to feasible point. The linking rows are then

all reinstated and the original problem solved, warm starting from the close to feasible point.

soft upper boundsoft lower bound

original cost

x1

f

Figure 3.6: Response curve with soft bounds

Our method is a generalisation of the primal allocation heuristic of McBride [1998], which

is suitable only for LPs such as multi-commodity network flow problems, where the variables in

the linking rows all have positive coefficients and all have lower bounds of zero. An outline of

the algorithm is given below.

1 LP solved without linking rows.
2 For all linking rows that are violated upper bounds on variables in

those rows proportionally reduced.
3 LP resolved.

In Step 1 the LP is solved without the linking rows. After this the linking rows are typically

violated. In Step 2 the upper bounds on variables in the linking rows are reduced, and in Step

3 a new LP is then solved. Step 2 and Step 3 continue repeatedly, gradually forcing feasibility

in the linking rows.
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The main part of the algorithm is Step 2, where bounds are changed. So that the new upper

bounds don’t make the LP infeasible they are soft bounds, meaning that the LP can violate

them, albeit at the cost of a large objective value penalty. Figure 3.6 shows the response curve

of a variable, x1, with soft bounds. Consider an example of the primal allocation heuristic

applied to a problem with just one linking row:

linking row: x1 + 2x2 + 3x3 ≤ 1, (3.4)

variable values: x̂1 = 0, x̂2 = 0.5, x̂3 = 1,

row activity: 4,

variable bounds: 0 ≤ xi ≤ 1, i ∈ 1 . . . 3.

In this example the row activity of the linking row is four times the upper bound. To force

the row activity down the upper bounds on the variables in the linking row are reduced. Each

nonzero variable is forced down by a factor of four, i.e given a new upper bound of one quarter

its current value. A feature of the algorithm is that feasibility is not sought in one iteration,

so not all variables have their bounds adjusted. In particular, variables at their lower bound,

such as x1, do not have their bounds changed. Thus the problem is resolved with new bounds.

In our example the new bounds are:

new bounds: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0.125, 0 ≤ x3 ≤ 0.25. (3.5)

Because x1 has not had its bounds changed the next solution may also violate the linking row,

in which case tighter bounds are enforced. This continues until a near feasible point is reached.

The example above can be written generally as:

linking row: AT x ≤ b, (3.6)

row activity: AT x̂ = b̂,

variable bounds: 0 ≤ x ≤ x,

with A a vector of positive constants, b and x upper bounds on the row and variables respec-

tively and x̂ the current solution and b̂ the current row activity. If the row activity exceeds the

upper bound then any variable i with x̂i > 0 gets a new upper bound:
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new bound: min(xi, x̂i

b

b̂
). (3.7)

Thus the primal allocation heuristic reduces the feasible space of the x variables in towards the

origin. The primal allocation heuristic is not suitable for more general row linked problems,

as they can have linking rows containing variables with negative coefficients and nonzero lower

bounds. We therefore extend the method to form a new method that we call the extended

primal allocation heuristic, which attempts to force feasibility of the linking rows by adjusting

both lower bounds and upper bounds. The basic algorithm is the same, but we change how

bound are reduced in Step 2. Consider this example, also with only one linking row:

linking row: 0 ≤ x1 − 2x2 + 3x3 ≤ 1, (3.8)

variable values: x̂1 = 0, x̂2 = 0.5, x̂3 = 1,

row activity: 2,

variable bounds: 0 ≤ xi ≤ 1, i ∈ 1 . . . 3.

In the example above the variables in the linking row have a mixture of positive and negative

coefficients. The row activity is above the upper bound, so the variable bounds must be changed.

As in the primal allocation heuristic we do not change bounds on any variable that is at

an appropriate bound, such as x1. In the extended primal allocation heuristic lower bounds

and upper bounds can be moved. As the row activity is twice its upper bound we move an

appropriate bound on each of x2 and x3 halfway between the variable value and the current

bound. This means increasing the lower bound of x2, and lowering the upper bound on x3.

new bounds: 0 ≤ x1 ≤ 1, 0.25 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 0.5. (3.9)

In general, with the extended primal allocation heuristic, if the linking row activity is above

its upper bound (as in the example above), then a variable with a positive coefficient in the

row has its upper bound decreased, and a variable with a negative coefficient in the row has

its lower bound increased, and vice versa if the linking row activity is below its lower bound.

As before these bounds cannot be relaxed, but are soft. If the row activity is zero, leading to

dividing by zero when calculating the new bounds, we perturb the row slightly.

In the two examples above there was only one linking row. When there are several linking

rows there is the potential difficulty that each row may suggest different alterations to a vari-

able’s bounds. Indeed, it is possible that the lower bound for a particular variable suggested by

54



one violated linking row is above the upper bound suggested by another violated linking row.

In the extended primal allocation heuristic, after exploring different options, it was decided

to resolve this difficulty by updating the variable bounds using the average bound movement

suggested by all the violated linking rows. The algorithm continues until the linking rows are

all nearly feasible. We use a measure of feasibility that is approximately equal to the number

of linking rows that are violated, with rows that are nearly satisfied contributing less than rows

that are far from satisfied. When this measure falls below the parameter heurFeasTol the

linking rows are reinstated. Selecting an appropriate value of heurFeasTol is a difficulty of the

method.
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Figure 3.7: Cumulative work per iteration on standard solve, and with extended primal alloca-
tion heuristic, on CZPROB (a) and KEN-07 (b)
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The extended primal allocation heuristic was tested on the row-linked problems CZPROB

and KEN-07. In these tests we used a simplified version of the soft bounds, with a maximum

of two piecewise linear cost sections per variable (instead of three). Figure 3.7 shows the

cumulative amount of work for the standard solve and using the extended primal allocation

heuristic with different values of heurFeasTol. The sharp upturn in the amount of work for

each solve occurs when the heuristic reinstates the linking rows and switches to the normal

simplex method. For CZPROB, using the heuristic adds greatly to the number of iterations,

though of course these extra iterations are on an LP without the linking rows so are cheap

to perform. The most efficient solve is with heurFeasTol = 100. With such a high value of

heurFeasTol this solve immediately reinstates the linking rows after the first LP optimisation,

so is in fact equivalent to the method of omitting rows. For KEN-07, the most efficient solve

is with heurFeasTol = 1.5. With this small value of heurFeasTol an approximate solution is

found that is almost feasible. This solve had significantly less work than the standard solve.

Although it is successful on the two test problems, this method is not applicable to general

LPs. A potential improvement to the extended primal allocation heuristic is possible for row

linked block structured problems, such as KEN-07 (whose block structure is not visible without

a permutation of the tableau) and DCP1. This is to add extra block usage variables to the

problem, that represent the contribution to each linking row by each block. The heuristic could

then alter the bounds on this small set of block usage variables, rather than on every variable

that appears in the linking rows. This has not yet been implemented.

3.4 Solving Subnet problems

We now consider solving all the Subnet problems. Of the methods introduced in the previous

sections only the methods of avoiding dense columns and avoiding dense rows are applicable

to problems which are not row and column linked, so those are the only two of the previous

methods that we try on all Subnet problems. In Section 3.4.1 we look at altering the pivot row

selection rule to avoid dense rows, in Section 3.4.2 at altering the pivot column selection rule

to avoid dense rows, and in Section 3.4.3 at altering them both. In Section 3.4.4 we look at

how these alterations of the pivot selection rule can be applied to the revised simplex method.

In Section 3.4.5 we look at exploiting the Tarjan form to give a new method to solve LPs that

preserves sparsity.

3.4.1 Pivot row choice

The standard pivot row selection rule used in Simplex 10 was described in Section 2.1.2. In

summary, we select the row that minimises the sum of infeasibilities, subject to not increasing

the number of infeasibilities. Apart from the sum of infeasibilities the only other important row
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property was found to be the size of the pivot element, therefore in Simplex10 we tiebreak on

two otherwise equally good rows by choosing the row with the larger pivot element. In Section

3.3.2 we weighted row attractiveness by sparsity of the row, which was unsuccessful on DCP1.

We now consider using sparsity of the row as a tiebreak between otherwise equally good

rows, and compare this with tiebreaking on pivot size. Note this this is just a tiebreak on pivot

row choice using sparsity, and is not the same as picking sparse rows. Picking sparse rows was

done on DCP1 in Section 3.3.2, and will be done on all the Subnet problems in Section 3.4.3.

Solve row selection pivot ratio std.dev work ratio std.dev
0 pivot size tiebreak 1 0 1 0
1 sparsity tiebreak 0.971 0.028 0.877 0.087
2 sparsity tiebreak 0.988 0.033 0.960 0.113
3 sparsity and pivot size tiebreak 1.101 0.171 1.574 0.811

In the table above Solve 0 is the standard solve, where we tiebreak by pivot size. We choose

to compare solves by work rather than time. Solving all of the Subnet problems by Simplex10

takes around one hour.

In Solve 1 we tiebreak on row choice by row sparsity. In Solve 2 we also tiebreak on row

choice by row sparsity, but alter the other row parameters so that a great many rows have

the same score, so that the tiebreak by sparsity has a more pronounced effect. In Solve 3 we

tiebreak on row choice by both row sparsity and pivot size, also with the parameters that mean

a great number of rows are given an equal score before the tiebreak.

The final four columns of the table compare the average number of pivots and amount of

work of a solve to the standard solve. To generate the pivot ratio for a solve we first calculate

a ratio for each problem of pivots in the solve to pivots in the standard solve, then take the

weighted average of these ratios, weighting by number of pivots in the standard solve of each

problem. A similar method is used to find the work ratio (in which we also weight the problems

by number of pivots in standard solve). A pivot ratio or work ratio of less than one is an

improvement on the standard solve. The standard deviations of the ratios are also given.

The table shows that both Solve 1 and Solve 2 reduce the average amount of work, and

surprisingly also reduce the average number of pivots. Solve 1, where the tiebreak is only

among a small row choice, is the better of the two. In Solve 3, where we try to combine

the benefits of a large pivot size and a sparse row, the number of pivots and amount of work

increases, with high standard deviation on both measures. It is possible though that with fine

tuning of parameters and safeguards against very bad pivots being chosen, tiebreaking on rows

for both sparsity and pivot size could work well.

Solves 1-3 (and Solves 5 and 7 below) were repeated with different solve parameters that

increased the average number of rows that were attractive at each iteration, in the hope that

a greater row choice would mean better rows could be chosen. However this simply increased
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the number of pivots, and did not lead to less work.

3.4.2 Pivot column choice

Solve pivot selection rule pivot ratio std.dev work ratio std.dev
4 column by sparsity 1.101 0.051 0.797 0.073

We saw in Section 3.2.2 that selecting pivot columns by their sparsity is effective. In Solve

4 this method of avoiding dense columns is applied to all the Subnet problems. Although the

average number of pivots is increased in Solve 4 the amount of work is significantly less than

the standard solve.

3.4.3 Pivot column and row choice

Solve pivot selection rule pivot ratio std.dev work ratio std.dev
5 column and row by sparsity 1.1214 0.050 0.602 0.079

We now consider picking both sparse columns and rows. In Solve 5 at each iteration of the

simplex method we first choose a pivot column weighting column attractiveness by sparsity, as

in Solve 4, then choose a pivot row weighting row attractiveness by sparsity, as in Section 3.3.2.

This method of row selection was found to be more effective than merely tiebreaking on row

sparsity, as in Solves 1-3 above. Solve 5 has more pivots than the standard solve but about

40% less work.

Figure 3.8 shows the change in the number of pivots and amount of work using Solve 5

compared to the standard solve. On both graphs the x-axis is the number of pivots in the

standard solve (a good indication of the problem size) and the y axis the logarithm to the

base two of pivots or work compared to the standard solve. Any value below 0 indicates an

improvement on the standard solve, and a value of -1 for example indicates a problem took half

as many pivots (or half as much work).

3.4.4 Pivot column and row choice in the revised simplex method

In this section we attempt to adapt the methods of picking a sparse pivot column and a sparse

pivot row (Solve 5 above) for use with the revised simplex method. As described above these

methods requires explicit knowledge of the tableau each iteration, as we must know the number

of row nonzeros (zcol), and the number of column nonzeros (zrow). This information is not

available in the revised simplex method. To adapt Solve 5 for use with the revised simplex

method we must therefore estimate zcol and zrow . We assume that we start our solve with an
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Figure 3.8: Solve 5 pivots for each problem (a) and work for each problem (b), against number
of pivots to solve in standard run

all logical basis, and the initial row and column nonzeros are known. We update the estimates

of row and column nonzeros each iteration. We describe two possible ways to do this, of which

the second way is preferred.

Firstly, we can directly update the estimates using information from each pivot. We call

this the direct method. In the revised simplex method although the whole tableau is never

generated, the pivot column and row are generated each iteration, and can be used to give

exact values for the number of nonzeros in that column and row. Using the position of the

nonzeros in the pivot column and row we can estimate where fill in will occur in other rows
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and columns, and update all the estimates. We must also scale the increase in the estimates to

allow for numerical cancellation and superposition at levels other than what is expected from

a uniformly random tableau. The direct method works fairly well as long as each pivot adds

a structural to the basis in place of a logical, and so increases the density. However, if a pivot

removes a structural from the basis then structural cancellation occurs, and the tableau can

actually become less dense. Structural cancellation will not be detected by the direct method.

It is because of this difficulty that we introduce what we call the indirect method. In the

indirect method at each iteration of the simplex method we generate a minimal list of pivots

that lead from the initial, all logical basis, to the current basis. This list can, for example, be

generated by getting the Tarjan form of the current basis. This minimal list of pivots we call the

Tarjan pivots, to distinguish them from the simplex pivots which are the pivots actually used

to solve the problem. All the Tarjan pivots are of the type that add a structural to the basis

and remove a logical, in which there is no structural cancellation. We can therefore get row

and column nonzero estimates by applying the list of Tarjan pivots to a new copy of the initial

tableau, updating the estimates each Tarjan pivot as in the direct method. We can still use

the exact values of number of nonzeros in the pivot row and pivot column that came from the

most recent simplex pivot. We get exact values from some previous simplex pivots (including

the most recent), as long as they are for rows and columns that have not experienced any fill

in since they last featured in a simplex pivot.

Whether we use the indirect or direct method a great difficulty is predicting the amount

of numerical cancellation and superposition to allow for when updating the estimates. With-

out access to the tableau we cannot hope to know exactly where numerical cancellation and

superposition occur. Suppose we call the average rate of numerical cancellation K1, and the

average rate of fill in compared to what is expected from a uniformly random tableau K2. We

could try to calculate K1 by looking at the numerical values of the initial tableau. We could

try to calculate K2 by looking at the structure initial tableau. Depending on the structure of

a problem K2 could be greater or less than one, though considering the findings of Chapter 2,

in particular the results in Figure 2.10, we expect it to be less than one for almost all Subnet

problems. This is because real problems have more superposition than would be expected with

a random scattering of nonzeros in the tableau.

As both K1 and K2 simply affect the increase in the row and column nonzero estimates it is

only their combined effect that is needed. Therefore rather than trying to calculate K1 and K2

themselves, we instead estimate the cumulative effect of K1 and K2 after all iterations. This is

done by comparing exact values of number of row and column nonzeros, which are known for

some recent simplex pivot rows and columns, with our estimates for those rows and columns.

This gives a scaling factor which approximates the total effect of K1 and K2. This scaling factor

is then applied to all rows and columns.

The formula used for estimating the increase in row and column number of nonzeros is given
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and columns, using the estimates of row and column number of nonzeros. This is an attempt

to apply the successful Solve 5 in a way that can be used with the revised simplex method.

Rather than measure work as the sum over all iterations of the product of pivot row nonzeros

and pivot column nonzeros, as we did for the previous solves using the tableau simplex method,

we measure work as the sum over all iterations of the addition of the pivot row number of

nonzeros and pivot column number of nonzeros. This is because in the revised simplex method

the major effort each iteration is in forming the pivot column, which requires work proportional

to the number of nonzeros in the column, and in forming the pivot row, which requires work

proportional to the number of nonzeros in the row.

Solve 6 solves with more pivots but less work than the standard solve, although the saving

in work is less significant than in Solve 5. The work given for Solve 6 does not include the work

involved in finding the row and column estimates, which can be significant.

3.4.5 Exploiting Tarjan form

In this section we introduce a new method for selecting both the pivot column and row, that

could be applied directly to the revised simplex method. We presume throughout the section

we have access to the basis in Tarjan form and the permuted nonbasis.

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

column q

row p element
pivot

pth column of basis

Basis in Tarjan form Permuted nonbasis

pivot block

Figure 3.10: Pivot at row p and column q

Figure 3.10 shows an example basis in Tarjan form and permuted nonbasis. This form can

also be seen for the optimal solution to Hyper-sparse problem LOTFI in Figure 2.18. At a given

iteration we denote the pivot row as row p and the pivot column as column q of the permuted

nonbasis. The pivot makes the pth column of the basis becomes nonbasic, as it is swapped with

column q. Thus the choice of pivot column and row can be thought of as the choice of which

column should enter and leave the basis, respectively. We call the (possibly trivial) diagonal

block that contains the pth column of the basis the pivot block.

We saw above (Figures 2.15 and 2.16) that with a basis in Tarjan form the density of the

basis inverse, and hence the tableau, is heavily affected by the size of the diagonal blocks.

To preserve sparsity in the tableau we can therefore try and pick pivot rows and columns that
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minimise the size and number of diagonal blocks. We consider the choice of the entering column

to the basis (the pivot column), then the choice of the leaving column, which is determined by

the pivot row.

Entering Column

We choose an entering column q with the intention of forming no new diagonal blocks in the

Tarjan form of the basis.

The pivot column q always has an entry at position p. There are then three cases to consider.

The first case is if column q only has its other entries above row p. In this case the column

breaks up the pivot block, though the remaining columns of the block may still form a strong

component. The second case is if column q has some other entries above and below row p, but

with those below row p within the pivot block. Here the block structure of the basis is not

worsened, and may even be improved. The third case is if column q has some other entries below

the furthest extent of the pivot block where it enters the basis. We call this an overhang. Here

the block structure of the basis may be worsened, by linking the pivot block to other blocks.

To be sure that the entering column does not worsen the block structure it must therefore be a

column that has no overhang. However, the pivot block is determined by the pivot row, which

is not known when the pivot column is chosen. Therefore when picking the pivot column we

cannot be sure whether or not there will be an overhang.

It is clear though that it is best to pick an entering column as far left as possible from the

permuted nonbasis, to give the best chance of being in one of the first two cases. We therefore

introduce a column selection rule that favours columns from the leftmost side of the nonbasis.

We bias the column choice by altering the score of each column, in a similar manner to what

was used in avoiding dense columns and dense rows (see (3.2)). The column score si for row i

is altered to give:

s′i = si(qi)
−νpos

, (3.10)

where qi is the position of column i in the permuted nonbasis and νpos a parameter (typically

equal to one). To use this formula the permuted basis (which is cheap to find once the Tarjan

form is known) must be calculated every iteration. If this is not done then old values of q

can be used, and every column which has become nonbasic since the last time the permuted

nonbasis was calculated is given the mean value of q.

Leaving column

The choice of leaving column can help break up any existing block structure.
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Replacing a column from a diagonal block is desirable as it can break up the block structure.

The best columns to remove from the basis matrix are those on the right hand side. These

are often the columns with the most nonzeros, but more importantly when these columns are

replaced with the entering column it is unlikely new blocks will be formed as there is less likely

to be a significant overhang. We therefore weight the pivot row selection using a similar formula

to the pivot column selection in (3.10), to bias towards pivot rows that correspond to columns

on the right hand side of the basis. The rule is also adjusted to account for the fact that any

columns from within the same diagonal block, regardless of their position within the block,

are equally preferable to remove from the basis. As with the column selection rule out of date

information can be used if the Tarjan form is not available every iteration.

We have a new column selection rule, based on the analysis of the permuted nonbasis, and a

new row selection rule, based on the analysis of the Tarjan form. The intention of both rules is

to minimise the size and number of diagonal blocks in the Tarjan form of the basis, as diagonal

blocks are known to lead to dense basis inverses and dense tableaux.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  100  200  300  400  500  600

su
m

 o
f s

qu
ar

es
 o

f b
lo

ck
 s

iz
es

iteration

exploiting Tarjan form
std

Figure 3.11: Effect of new column selection rule

We can think of the column selection rule as intending to prevent diagonal blocks from

forming, and the row selection rule as intending to break up any blocks that have formed. As

an example of the potential effectiveness of the column selection rule consider Figure 3.11. It

shows the size of the diagonal blocks, with and without selecting pivot columns that exploit the

Tarjan form. The new rule is successful at preventing large blocks being formed for the first 300

or so iterations, though large blocks do then appear. For some problems, such as Hyper-spare

problem STANDMPS (number 17), with this new column selection rule the problem solves

without ever forming any diagonal blocks.
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is the problem number and the as in Figures 3.8(a) and 3.8(b) the y axis is the logarithm to

the base two of pivots or work compared to the standard solve. Any value below 0 indicates an

improvement on the standard solve, and a value of -1 for example indicates a problem took half

as many pivots (or half as much work). In general the Hyper-sparse problems take around the

same number of pivots as in the standard solve, and less work, though this varies greatly from

problem to problem. The Densefill problems take more pivots than the standard solve, and

about the same work, though again this varies greatly from problem to problem. One unusual

result is Densefill problem DEGEN2 (number 51), which takes 7.7 times less work. Overall the

method is shown to be effective, in particular for Hyper-sparse problems.

Solve 7 was repeated only calculating the Tarjan form and permuted nonbasis every five

iterations, so out of date information had to be used in the pivot column and pivot row selection.

This had a highly varied effect on different problems, but was generally worse than calculating

the Tarjan form and permuted nonbasis every iteration, and about equal with the standard

tableau simplex solve.

We now briefly consider four other ways that the Tarjan form could be used to influence

pivot row and column selection. Firstly we could try and pick a pivot row that is especially

suitable for the given entering column, for example picking a pivot row so that the entering

column enters into a diagonal block and has no entries below that diagonal block. Secondly it

may be beneficial to bias row selection to select leaving columns that have many entries close

to the diagonal, as these are known to make the inverse denser (Observation 1). Thirdly we

could use the rule that when the basis is viewed as a graph each diagonal block is a set of

interconnected nodes, and every block consists of some forward and some backward arcs. If a

block has only very few backward arcs (say) then removing the columns with backward arcs

could be prioritised. Fourthly we can evaluate the general importance of an arc in forming a

strong component by seeing how many closed paths it appears on. This can be done by solving

a maximum flow problem, sending flow round the graph from each node back to itself. Arcs

that are identified as appearing on many closed paths could be targeted for removal.

All the work in this section has considered a basis matrix in Tarjan form. Using a different

way of representing the basis, such as the Tomlin form, could lead to further methods for

choosing columns to enter or leave the basis.

3.5 Summary

In this section we have introduced several new methods for solving column and row linked

problems, then methods for solving all the Subnet problems.

On the column linked problems, the methods of avoiding linking columns, avoiding dense

columns and pushing columns all reduced the work by at least 20% on at least one of the two test

problems. On the row linked problem DCP1 avoiding linking rows and omitting rows reduced
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the work by about 20% and 25% respectively. The primal feasibility heuristic of McBride and

Mamer was extended to general row linked problems. The new heuristic, with the best value

of heurFeasTol for each problem, reduced the total work by 35% and 65% for the row linked

problems CZPROB and KEN-07 respectively. Although these methods for row and column

linked problems show potential they have not been tested on a large number of problems.

When solving all the Subnet problems tiebreaking on pivot row choice by row sparsity (Solve

1) saved work. Trying to select both sparse columns and rows (Solve 5) reduced the total work by

an average of about 40%. For the tableau simplex method, this is the recommended algorithm.

A method was developed to estimate the row and column number of nonzeros each iteration,

for use with the revised simplex method. Using these estimates, instead of the actual row and

column number of nonzeros, Solve 5 was repeated as Solve 6, and now gave a 10% reduction in

work, ignoring the work required to estimate the row and column number of nonzeros. Finally

we developed new pivot column and row selection rules based on putting the basis in Tarjan

form and forming the permuted nonbasis (Solve 7). This solve also saved work, ignoring the

work required to get the Tarjan form, and can be easily adapted to the revised simplex method.

Solve 6 and Solve 7 were not as successful as Solve 5, but may be able to be successfully

incorporated into a revised simplex method solver.

3.5.1 Further work

The methods for solving row and column linked problems could be tested on several other

suitable problems, and adapted so that they can be used in the revised simplex method.

The methods for solving all the Subnet problems could be directly incorporated into a

revised simplex algorithm, to try to realise some of the gains in work suggested.
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Chapter 4

Diet Problems

The following four chapters are about diet problems. In this chapter we introduce the blending

problem, the pooling problem and the generalised pooling problem (GPP). The GPP is a fairly

new problem. The company Format International solve diet problems on behalf of various

clients. They are interested in being able to quickly solve the GPP and its variants. In Chapter

5 we look at solving the GPP, in Chapter 6 at a multifactory GPP and in Chapter 7 at solving

a GPP with the addition of silos to the model, which add integer constraints.

In this chapter we introduce a new formulation for the pooling problem, called the extended

q-formulation, which we use to model GPPs. We consider some relaxations of the new formu-

lation on a test set of GPPs (and consider other, linear, relaxations in Chapter 5). Based on

observations of Grothey et al. [1999], we examine the pooling problem as the geometric problem

of where to place the mixing bins in the nutrient space, and this new analysis shows how the

mixing bins affect the feasibility and objective of a pooling problem.

4.1 Introduction

The most basic diet problem is the blending problem. In a blending problem raw materials,

often called simply raws, are combined to form a product. Each raw has a known cost and

known concentrations of each of several nutrients. The nutrient concentration is the amount

of the nutrient, in whatever units are relevant for that nutrient (grams, joules, etc.), per tonne

of the raw. The product has a given mass and a range of acceptable concentrations for each

nutrient.

Solving the problem means finding the mass of each raw that should be combined to make

the product at minimum cost. The first blending problem was posed in Stigler [1945], and

shortly afterwards was modelled and solved as the first LP by Dantzig.
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min
t,z

R
∑

r=1

Crtr (4.1)

s.t.
R

∑

r=1

Xrntr = zn ∀n ∈ 1 . . .N, (4.2)

zn ≤ zn ≤ zn ∀n ∈ 1 . . .N, (4.3)

tr ≥ 0 ∀r ∈ 1 . . . R. (4.4)

The mathematical model of the blending problem is given above. There are R raws, indexed

with r, and N nutrients, indexed with n. The parameters of the model are Cr, the cost of raw

r, Xrn, the nutrient concentration of nutrient n in raw r, and z and z, the lower and upper

bounds on zn. The variables are tr, the mass of each raw r used, and zn, the concentration of

nutrient n in the product (z could be eliminated from the model but we prefer to leave it in).

The objective, (4.1), is to minimise the total cost, which is the sum of cost times mass

for all raws. Constraint (4.2) defines the concentration of each nutrient in the product, which

is the sum over all raws of nutrient concentration times mass. Constraint (4.3) bounds the

concentration of each nutrient in the product. Constraint (4.4) ensures that a non-negative

mass of each raw is used.

4.1.1 Size extensions

A blending problem may be enlarged by adding more raws or more nutrients. This is increasing

the value of R or N in the model above. An example of enlarging a blending problem is Stigler’s

Diet Problem Revisited (Garille and Gass [2001]). Stigler’s original diet problem had just nine

nutrients. In the revisited problem (among other changes) the number of nutrients is increased

to 31.

Raw 1

Raw 2

Raw 3 Prod 3

Prod 2

Prod 1

Figure 4.1: Network of possible flow of example diet problem

Other diet problems can be formed by extending the blending problem. It can be extended

by making multiple products from the raws, combining multiple factories (each factory being

one blending problem), or by modelling multiple time periods, with a blending problem solved
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in each time period. Figure 4.1 shows the network of possible flow for an example diet problem

which has multiple products. In a network like this possible flow between raws and products is

represented by an arc between the raw and the product.

Models with extra products, factories or time periods require more variables and constraints

than a simple blending problem, but are still LPs. They can lead to a model that is more

accurate representation of the real situation. Williams and Redwood [1974] state that the ideal

problem they would like to solve includes multiple products, multiple factories and multiple time

periods. Solving an extended problem like that is advantageous compared to solving many small

problems as the user does not have to assign resources between products/factories/time periods

in a heuristic way. However, the extended problem is typically much larger and consequently

harder to solve.

4.1.2 Difficulty extensions

Some real life situations require a model that is a nonlinear program (NLP) or even integer

linear programs (ILP). Both NLPs and ILPs are much harder to solve than LPs. The extensions

that make a problem an NLP or ILP arise naturally when modelling diet problems. All linear

functions are convex, meaning that they have non-negative curvature throughout. Nonlinear

functions may also be convex, or may be nonconvex. When they are nonconvex there is the

possibility of having multiple local minima. The best of the local minima is called the global

minimum. This is illustrated in Figure 4.2.

local 
minimum

global minimum

linear function nonlinear function nonconvex function

Figure 4.2: Example linear, nonlinear and nonconvex functions

Nonlinear programs can be formed from the blending problem in a variety of ways. One

assumption made when solving the blending problem is that the nutrients in different raws

combine additively, so that we can define z by constraint (4.2). If this assumption is not true

constraint (4.2) must be replaced by a nonlinear constraint. A nutrient that often does not

combine additively is metabolisable energy, in e.g. feed of broiler as described in Guevara

[2004]. Similarly Hertzler et al. [1988] find that the energy requirement of cattle is nonlinear

with respect to weight gain, leading to nonlinear objective functions that include weight gain

terms as well as cost terms. In Munford [1996] the standard deviation of a particular nutrient
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concentration is a variable, which depends on the product composition in a nonlinear way. This

also requires a nonlinear constraint in the model.

In an integer program extra constraints are needed forcing some variables to take integer

values. These programs can be formed from the blending problem if, for example, the mass of a

particular raw must be a discrete value, or if the mass of a particular raw must be above some

minimum amount if it is used at all. Logical conditions in the model (if-then constraints) also

cause integer programs. All integer programs are nonconvex.

4.1.3 Pooling problem

In this section we introduce the pooling problem, which originated in Haverly [1978]. It can be

thought of as a blending problem with both size and difficulty extensions. The size extension in

the pooling problem is the introduction of multiple products. In Chapter 6 there is a further size

extension to the pooling problem where we consider multiple factories. The difficulty extension

in the pooling problem is the introduction of mixing bins, which can make the problem an NLP.

In Chapter 7 there is a further difficulty extension to the pooling problem of adding silos with

associated integer constraints, leading to a MINLP.

Raw 1

Raw 2

Raw 3

Prod 1

Prod 2

Mix 1

Figure 4.3: The first reported pooling problem, by Haverly [1978]

The mixing bins of the pooling problem allow raws to combine into intermediate mixes

before combining again to form the products. Although strictly we think of a mix as the

foodstuff and a mixing bin as the container holding the mix, we use the terms mix and mixing

bin may be used more or less interchangeably. Figure 4.3 shows a pooling problem with one

mixing bin. The mixing bin has inputs from two of the raws and output to both products. Thus

the raws may combine in the mixing bin, and (identical) output can be sent to both products.

Collectively raws, mixes and products are known as bins. In problems with mixing bins some

raws may still flow directly into the products. These raws are known as straights. In Figure 4.3

there is one straight, Raw 3, flowing directly into Product 2. Pooling problems may have any

number of nutrients, though Haverly’s example problem of Figure 4.3 has only one.

Audet et al. [2004] showed that any mixing bins that do not have both multiple inputs and

multiple outputs can be removed from the network, by merging them with another bin. A
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pooling problem with no mixing bins is simply a blending problem. As pooling problems are

nonlinear, and blending problems linear, it is the mixing bins that causes nonlinearity in the

pooling problem. As well as being potentially nonlinear pooling problems are nonconvex (apart

from trivial instances), meaning they can have multiple local minima.

There are several different formulations used to model the pooling problem. The formu-

lations each lead to a different mathematical model of the problem. These models are all

equivalent though, in that they all have the same global optimal solution. Haverly used what

has become known as the p-formulation. Since then the q-formulation has been introduced by

Ben-Tal et al. [1994], the pq-formulation (which is just the q-formulation with some redundant

constraints added) by Quesada and Grossman [1995] and Tawarmalani and Sahinidis [2002],

and the hybrid-formulation by Audet et al. [2004].

In Haverly [1978] the problem described is for combining oils. For other examples of the

pooling problem applied to oil refineries see e.g. Simon and Azma [1983], Baker and Lasdon

[1985], Ben-Tal et al. [1994] or Amos and Ronnqvist [1997]. In pooling problems from the oil

industry the total mass of each product is typically a variable, whose value is to be determined

by the solver. This can cause highly nonconvex problems with an infinite number of local

minima, which can vary greatly in objective value. Because of this much of the recent work

in pooling problems has been on finding the global minimum. Although the pooling problem

originated in the oil industry, like us both Grothey et al. [1999] and Stokes and Tozer [2006]

solve pooling problems from the food industry.

formulation mixes nutrients global
Haverly [1978] p single single
Lasdon and Waren [1980] p single single
Baker and Lasdon [1985] p single single
Floudas and Aggrawal [1990] p single single
Foulds et al. [1992] p multiple multiple y
Fieldhouse [1993] p single single
Visweswaran and Floudas [1993] p multiple multiple y
Ben-Tal et al. [1994] q multiple multiple y
Quesada and Grossman [1995] pq multiple single y
Amos and Ronnqvist [1997] p multiple single
Adhya and Tawarmalani [1999] p multiple multiple y
Grothey et al. [1999] q multiple multiple
Tawarmalani and Sahinidis [2002] pq multiple multiple y
Audet et al. [2004] hybrid multiple multiple y
Meyer and Floudas [2006] hybrid multiple multiple y
Liberti and Pantelides [2006] p multiple multiple y
Stokes and Tozer [2006] q multiple multiple

Table 4.1: Summary of published work on the pooling problem

Table 4.1 is a summary of published work on the pooling problem. This is based on Table

2.1 and Table 2.2 in Almutairi [2008]. The second column of the table shows what formulation

is used. The third column shows whether or not the problems considered have a single mix,
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like the problem in Figure 4.3, or multiple mixes. The fourth column shows whether or not the

problems considered have a single nutrient, like the problem in Figure 4.3, or multiple nutrients.

The final column shows whether or not any solution methods detailed are designed to find the

global minimum to the problem.

For purpose of comparison with the work in this table we mention that the pooling problems

we solve in this thesis are all modelled with what we call the extended q-formulation, and have

multiple mixes and multiple nutrients. Most of our solve methods seek only local minima,

though some introduced later in Section 6.3 aim to find global minimum.

4.2 Generalised Pooling Problem

A generalised pooling problem (GPP) is a pooling problem where flow is possible from mix

to mix. We call pooling problems without this feature standard pooling problems. Although

it is suspected that many real life problems are GPPs, almost all of the literature focuses on

standard pooling problems. GPPs are however described in Audet et al. [2004] and Meyer and

Floudas [2006].

We now describe the two main formulations to model pooling problems, the p-formulation

and q-formulation, and introduce the new extended q-formulation. The formulations differ

in the extent to which proportional flow variables are used to measure flow in the network,

compared to total flow. Figure 4.4 illustrates the difference schematically.

Total flow Total flow

y

(a)

Proportion Total flow

(b)

Proportion Proportion

(c)

Figure 4.4: Summary of three formulations for the pooling problem; p-formulation (a), q-
formulation (b), extended q-formulation (c).

4.2.1 p-formulation

The p-formulation is a natural way to model pooling problems. It is also called the total flow

model. It originated in Haverly [1978]. In the p-formulation all flow volumes are explicitly

measured, with variables for total flow between any two bins. Although the p-formulation

is intended for standard pooling problems it could be easily adapted for generalised pooling
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problems.

4.2.2 q-formulation

A different formulation for the standard pooling problem was introduced by Ben-Tal et al. [1994].

This is called the q-formulation. In this formulation the variables measuring flow of mass from

raws to mixes are replaced with flow proportion variables, that measure the proportion of a

mix’s input that comes from each raw. Although the q-formulation is also intended for standard

pooling problems it could also be easily adapted for generalised pooling problems.

4.2.3 Extended q-formulation

In the extended q-formulation all the variables measuring total flow of raws or nutrients between

bins are replaced with flow proportion variables. This formulation was first seen in Grothey

et al. [1999], for standard pooling problems. Here we extend it in the natural way to generalised

pooling problems, with flow between mixes also measured with flow proportions. The model

presented below also has a few other minor features; we have chosen not to eliminate any

variables, and have modelled with only equality constraints (with inequalities imposed by simple

bounds on variables).

The table above shows the parameters used in defining a problem network.

R, M , P , N number of raws, mixes, products and nutrients
Xrn nutrient n concentration in raw r

ymn nutrient n concentration in mix m

zpn nutrient n concentration in product p

Cr raw r cost per unit
tr mass of raw t

um mass of mix m

Vp mass of product p to be made
αmr proportion of mix m input direct from raw r

βm′m proportion of mix m′ input direct from mix m

γpr proportion of product p input direct from raw r

δpm proportion of product p input direct from mix m

Table 4.2: Structural parameters and other parameters (all upper case) and variables (lower
case) of extended q-formulation

Table 4.2 shows the parameters and variables used in the model. The parameters R, M , P

and N that give the dimensions of a model we call the structural parameters. Note that only

Greek letters are used for flow proportion variables. In the description of the variables, and

in the constraints below, we assume that there is a fully interconnected network, where flow is

possible between any bins. If flow is not possible between raw r and mix m for example, we

can use the simple bounds αmr ≤ αmr ≤ αmr to stop this flow. In practice when modelling

problems we form various sets to indicate where flow is possible in the network, and only define
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Figure 4.5: Factory3 network

variables and constraints on those sets. But here when presenting the model we prefer not to

involve these sets (though they do appear later in equation (4.12).

Figure 4.5 shows an example problem labelled with the parameters and variables. Recall

that upper case letters are used for parameters. We represent raws as squares, mixes as circles

and products as triangles. Above each bin is the letter used to index it; r for raws, m for mixes

and p for products. Each raw has parameters for cost per unit and for nutrient concentrations

and a variable for mass. Each mix has variables for mass and for nutrient concentrations.

Each product has a parameter for mass and variables for nutrient concentrations. The flow

proportion variables measure the input proportion that a bin gets from the bins that precede

it in the network. We therefore refer to this model as backward measuring. Apart from in

exceptional circumstances (such as drying, see later), the flow proportion variables take values

between zero and one.
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min

R
∑

r=1

Crtr (4.5)

s.t.
R

∑

r=1

αmrXrn +
M
∑

m=1

βm′mymn = ymn m′ ∈ 1 . . .M, n ∈ 1 . . .N, (4.6)

R
∑

r=1

αm′r +

M
∑

m=1

βm′m = 1 m′ ∈ 1 . . .M, (4.7)

R
∑

r=1

γprXrn +

M
∑

m=1

δpmymn = zpn p ∈ 1 . . . P, n ∈ 1 . . .N, (4.8)

R
∑

r=1

γpr +

M
∑

m=1

δpm = 1 p ∈ 1 . . . P, (4.9)

R
∑

m=1

αmrum +
R

∑

p=1

γprVp = tr r ∈ 1 . . . R, (4.10)

M
∑

m′=1

βm′mum +

M
∑

p=1

δpmVp = um m ∈ 1 . . .M. (4.11)

The main mathematical model of this formulation is given above. Note that these are all

equality constraints. Any inequalities are then expressed as simple bounds on these variables

(not shown). For example, a nutrient concentration bound on a product is contained in simple

bounds on z.

In the objective of (4.5) the total cost is minimised, by minimising the sum of the cost of all

the raws. Constraint (4.6) defines the nutrient concentration in each mix, by considering the

flow into that mix from raws and the flow from other mixes. Constraint (4.7) says that the sum

of proportional flows into each mix is one. Constraint (4.8) defines the nutrient concentration

in each product, by considering the flow into a product from raws and from mixes. Constraint

(4.9) says that the sum of proportional flows into each product is one. Constraint (4.10) defines

the mass of each raw, by considering the flow of that raw into mixes and products. Constraint

(4.11) defines the mass of each mix, by considering the flow of that mix into other mixes and

into products.

Constraints (4.6), (4.8), (4.10) and (4.11) are all potentially nonlinear. These constraints can

all contain terms with a flow proportion variable multiplied by either a nutrient concentration

or mass variable. Where one variable is multiplied by another this is called a bilinear term.

Bilinear terms are the only type of nonlinear term in the model of the extended q-formulation,

We call a variable nonlinear if it may appear in a nonlinear term, otherwise we call it linear.

The nonlinear variables of the extended q-formulation are therefore u and y, α, β and δ. By

considering Figure 4.5 again we note that all the nonlinear variables are involved with the mixing

bins. Typically not many of the variables of a pooling problems are nonlinear. Figure 4.6 shows

the location of each of the variables in the constraint matrix of a linearisation of a GPP called
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Figure 4.6: Sloten1relax linearised constraint matrix

Sloten1relax. From left to right the columns represent u (12 columns), y (876), α (144), δ

(302), t (132), z (9198) and γ (1978). The majority of the variables in the problem are of the

type z, and overall nearly 90% of the variables are linear. For this problem a large proportion

of the constraints are of type (4.8), where the row defines a z variable which appears nowhere

else in the model. Such rows could be reformulated by eliminating z. Eliminating variables is

considered in Section 5.2.1.

In the extended q-formulation there are nonlinear constraints (4.6) and (4.8), for the nutrient

concentrations in mixes and products respectively, and nonlinear constraints (4.10) and (4.11),

for the masses of raws and mixes respectively. Let the sets Sα, Sβ and Sγ contain all the

nontrivial variables of type α, β and γ respectively. Then totalling the number of nonlinear

terms in the extended q-formulation gives:

N |Sβ| + N |Sδ| + |Sα| + |Sβ|, (4.12)

where each of the four expressions in the sum corresponds to constraints (4.6), (4.8), (4.10) and

(4.11) respectively.

We define a splitting network as one where few raws supply many products, so the raws are

split between the products. In a pure splitting network there is always only one input to each

bin. We define a collecting network as one where many raws are collected into few products.
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An example of a collecting network is H prob, shown later in Figure 4.8. In a pure collecting

network every bin always has only one output.

As it is backward measuring the extended q-formulation is good for modelling splitting

networks. In particular:

Theorem 3. For a pure splitting network, a backward measuring formulation like the extended

q-formulation is entirely linear.

As each mix and product in a pure splitting network has only one input all of the flow pro-

portions variables must be equal to one. Hence the flow proportion variables are all constants,

and all the bilinear terms in the model become linear. This proves the theorem. Conversely it

can be shown that a forward measuring formulation is linear for pure collecting networks. This

perhaps explains why the p-formulation, which is forward measuring, is popular for problems

from the oil industry, which can be close to pure collecting networks.

As well as the extended q-formulation we also modelled some GPP test problems with the

p-formulation. In this limited comparison the extended q-formulation was found to have far

fewer bilinear terms than the p-formulation, and was much better at finding feasible solutions

when solving with SLP. The extended q-formulation is used for the rest of the thesis.

4.2.4 Drying

A novel feature of some of our test problems is that drying may occur. In a problem that

allows drying some mixing bins do not have the normal role of mixing ingredients, but instead

dry the mix they are given, by reducing the amount of the water raw material. The possibility

of drying is represented in the model by allowing a negative flow proportion of the water raw

material into some bins, and allowing a maximum flow proportion of greater than one for the

other inputs.

1

2

3

1

2
  water

[0 , 1.2]

[−0.2 , 0]

Figure 4.7: Network with possible drying

Figure 4.7 shows part of a GPP where drying can occur. We use the notation [l, u] for lower and

upper bounds on a variable, here the flow proportion variables for input into Mix 2. Raw 1 and

Raw 2 combine to form Mix 1. To represent the fact that Mix 1 can be dried the dummy Mix 2

has been included in the network. Mix 2 has its only input Mix 1 and Raw 3 (water). If drying
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R M P N drying possible multiple local minima
Factory3 3 4 3 2 y
H prob 39 21 1 20 y
Sonoco97 32 6 25 8 y
Global data 69 86 16 48 y
G1b 69 8 2 48 y
Plant1a 55 62 10 43 y
Sloten1relax 132 12 126 73 y y
Sept98 33 7 27 11 y
Jan99 32 6 32 14 y
Gns 58 7 18 17 y
Nville 62 7 40 17 y
Hen040304 177 287 134 65 y

Table 4.3: Dimensions and features of GPP test problems

occurs then there is a negative flow proportion to Mix 2 from Raw 3, and a flow proportion to

Mix 2 from Mix 1 of greater than one. Mix 2 would then contain a more concentrated version of

Mix 1. The bounds in this example reflect the maximum observed proportion of drying allowed

in any of the test problems, of 20%.

4.2.5 GPP test problems

We now present our GPP test problems. Apart from the tiny test problem Factory3 all these

problems are based on real factories, and are supplied by Format International. The problems

come from different Format clients, for example Sonoco97 is a problem from 1997 supplied by

the global packaging company Sonoco. The real problems typically have several dozen bins.

The largest, Hen040304 has several hundred raws, mixes and products. Using our extended-p

formulation this problem has over 30,000 variables and over 30,000 constraints. Details such as

the actual size of each factory, how frequently the factories are optimised, and the true costs

involved are not known to us.

Table 4.3 gives the number of raws, mixes, products and nutrients, as well as whether or

not each problem allows drying and if we have ever found multiple local minima. Although the

problems are all nonlinear, several problems, especially the smaller ones, appear to have only

one local minimum. We call the first seven problems test set GPP1. The six problems with

multiple local minima, and the large test problem Hen040304, we call GPP2.

All problems will be modelled and solved with the standard model, which is the extended

q-formulation. In these test problems each mass variable tr usually has a lower bound of zero

and may have an upper bound. Each mass variable um is usually unbounded. The nutrient

concentration and flow proportion variables have lower and upper bounds, for example the mix

nutrient concentration of mix m and nutrient n, ymn, is bounded by y
mn

≤ ymn ≤ ymn. A few

of the problems have specific extra conditions, which need extra constraints to model them.

For example, a condition may exist that one product must have more of Raw 1 than Raw 2.
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Although a condition such as this is linear, to model it might need extra nonlinear constraints,

to track the flow of Raw 1 and Raw 2 through the network.

Factory3

Factory3 is a very small problem whose network was shown in Figure 4.5.

H prob

3
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13

19
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1

2,18

 1

(add many raws)

Layer 1 Layer 2 Layer 3

(add Raw 26) (add Raw 38)

(add two raws)

4

9

17

Figure 4.8: H prob

H prob is a small problem with tightly constrained flow between bins. It is a collecting

network, where many raws are collected into few (in this case one) products. Figure 4.8 shows

the network, omitting the raws. There are three layers of mixes flowing into the single product.

Most of the raws are added at Layer 1. One raw is added at Layer 2. Layer 3 is for drying,

where potentially negative amounts of Raw 38 (water) may be added. Two raws are added

directly to the product.

Sonoco97

Figure 4.9 shows a schematic of the network of Sonoco97. This is a standard pooling problem

(as opposed to a generalised pooling problem), with no flow possible from mix to mix. There

are sixteen distinct raws, but these are duplicated to make two sets. The first set reaches the

products via a bottleneck of six mixes. The second set are straights that flow directly into the

products, at double the usual price. The presence of straights guarantees that the problem is

always feasible. The products have lower and upper bounds on nutrient concentrations of 0.9z∗

and 1.1z∗ respectively, where z∗ is a given target value. No drying is possible.
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Figure 4.9: Sonoco97

Each arc from raws to mixes and from mixes to products has a lower bound on flow pro-

portion of zero, and an upper bound of one. There are also no bounds on mix composition.

We call a problem with these properties, implying unbounded flow in and out of mixes, free

flowing. Free flowing problems, such as Sonoco97, are typically highly nonlinear. Furthermore,

in Sonoco97 the duplication of the raws and presence of many identical mixes means many local

minima exist. The nonlinearity of Sonoco97 is considered again in Section 6.3.

Global data

Global data is a large problem with many mixes. Figure 4.10 shows the network, omitting

the raws. At Layer 1 most of the raws are added to the network. A few are added at later

layers. At Layer 2 the mixes combine. At Layer 3 a few more raws are added. Layer 4 is

for drying. A few raws go directly into the products. Several pairs of products have identical

inputs, hence they are shown in the same position in the network. We call these product groups.

The products in different product groups have no mixes in common, although they may share

raws. As there are no upper bounds on raw mass the problem is in fact decomposable by

product group. Subsections of this factory can therefore be treated and solved as if they were

separate factories, which is much more efficient than solving them together. If raw mass bounds

are added the problem no longer decomposes.

In Chapter 6 a multifactory problem, G, is formed, using subfactories of Global data. The

component factories of G are the first three product groups of Global data, each with their

associated mixes and raws. A transport problem links the factories and imposes upper bounds

on total raw mass used between them.

G1b

The first product group of the decomposition of Global data consists of Product 1 and Product

14. The subfactory consisting of just the first product group, and the associated mixes and

raws, is called G1b. G1b has the same number of raws and nutrients as Global data, but far

fewer mixes and products.
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Figure 4.10: Global data

Plant1a

Plant1a is a large problem that is similar to Global data. It is also possible to decompose

Plant1a into distinct product groups. In Chapter 6 a multifactory problem, R, is formed by

combining twelve different versions of Plant1a, each with different raw costs, and adding a

transport problem imposing upper bounds on total raw mass used between the factories.

Sloten1relax

Sloten1relax is a large diet problem with many bins. It is the continuous relaxation of a

diet problem called Sloten1, which has integer constraints. The original Sloten1 problem is

introduced and solved in Chapter 7.
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Sept98,Jan99,Gns,Nville

Sept98, Jan99, Gns and Nville are all standard pooling problems with a similar network to

Sonoco97. They all have a huge number of local minima, which makes the global minimum of

these problems hard to find.

Hen040304

Hen040304 is a complicated problem with a network containing many layers of mixes. The

model has over 30,000 variables and over 30,000 constraints. It is the largest diet problem that

we solve.

4.3 Role of the mixes

In this section we look in more detail at the effect of having mixing bins in the model. Although

it is well known that it is the presence of the mixing bins that makes GPPs nonlinear, in this

section we explore the role of the mixing bins more closely. In Section 4.3.1 (and partly in

Section 4.3.2) we see that the mixing bins can have a large effect on the objective value, in

Section 4.3.2 we see that they can lead to infeasible problems, and in Section 4.3.3 we see how

they create local minima.

4.3.1 Mix relaxations

We first consider what we call mix relaxations. Mix relaxations are relaxations of bounds

on the variables that are involved with the mixes. These are the variables for mix nutrient

concentration (y), mix mass (u) and flow proportion in or out of mixes (α, β and δ). Note that

these are all the nonlinear variables. These relaxations are different to those in the literature, as

they are for the new extended q-formulation, and are applied to a generalised pooling problem

with flow from mixing bin to mixing bin.

All the mix relaxations we consider result in problems which are still nonlinear. Indeed, all

the mix relaxations we consider are harder to solve than the original problems. Four different

mix relaxations that are applied to GPP are described below. We use the notation [l, u] for

lower and upper bounds on a variable.
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rm1 All mix nutrient concentration bounds relaxed to [0,∞].

rm2 Bounds on flow proportion from raws to mixes and from mixes to

products relaxed to [0, 1] wherever bounds were not previously [0, 0].

rm3 Relaxations rm1 and rm2 combined.

rm4 Relaxations rm1 and rm2 combined, and furthermore all mix nutri-

ent concentration bounds relaxed to [0,∞], and all bounds on flow

proportion to mixes from rows and to products from mixes relaxed

to [0, 1].

In practice if drying can occur flow proportion bounds of wider than [0, 1] are used. The four

mix relaxations get progressively tighter from rm1 to rm4, apart from rm1 and rm2, where

neither relaxation is tighter than the other for all problems. rm3 and rm4 are similar, but in

rm3 only some raws can flow into mixes, and only some mixes can flow into products, whereas

in rm4 there is unlimited flow from raws to mixes and mixes to products. In fact as it removes

any nutrient concentration bounds on the mixes rm4 results in a free flowing problem.

Factory3 H prob Sonoco97 Global data G1b Plant1a
rm1 0.982 0.952 1.000 0.995 1.000 1.000
rm2 0.975 0.711 1.000 0.873 0.992 0.929
rm3 0.958 0.697 1.000 0.865 0.991 0.928
rm4 0.942 0.697 1.000 fail fail fail

Table 4.4: Ratio of mix relaxation best objective value to standard model best objective value

Table 4.4 compares the objective value of the mix relaxations to the objective value of the

standard model. We solve with an sequential linear programming (SLP) code that we call

Slp5. The purpose is to discover how much the presence of the mixes, and their associated

constraints, is limiting the objective value. For the results in this table we are therefore only

interested in the objective value and not the speed of the SLP solve (the speed of different

solvers is considered in the next chapter). For each mix relaxation we solve at least three times

and use the best objective value of the three solves. A small ratio in the table indicates the mix

relaxation had a much lower objective value than the standard model solve. Some problems

failed to solve with rm4. For Sonoco97 the standard model is already free flowing, so all mix

relaxations are equivalent to the standard model (though different local minimum may be found

on different solves).

On all problems that could be solved rm2 has an equal or lower objective value than rm1.

This shows that relaxing the flow proportion bounds has a more significant impact than relaxing

the mix nutrient concentration bounds. This may simply be because for these test problems

the flow proportion bounds were added by the problem modellers to implicitly constrain the

nutrient concentrations.
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Where rm4 solved there was only a small difference between the rm3 and rm4 solutions,

indicating that the objective value is not greatly constrained by only allowing few raws to flow

into mixes and few mixes to flow into products. This may be because the problem modellers

placed bounds of zero on flows that were anticipated to be zero.

For the Global data and especially H prob problems the mix relaxation objective values

are significantly lower than the standard model objective values. This could indicate that

the bounds in the standard model imposed on variables involved with the mixes are highly

detrimental to the profitability of the factory. However, in practice these bounds may have

been used to implicitly model conditions on the products, as is known to be the case for

Sloten1relax. In this case the mix relaxations are in fact implicit product relaxations.

4.3.2 Composition of mixes

Grothey et al. [1999] attempted to solve standard pooling problems (those with no mix to mix

flow) using the observation that fixing the mix compositions makes a problem linear, and in

fact decomposes it into M LPs to form the mixes and P LPs to form the products. Fixing the

mix compositions also makes a GPP linear. Solving a GPP can therefore be considered to be

the problem of what composition to make the mixes, as once the mixes are fixed the problem

is an LP and so is easy to solve. Although most of what follows applies equally to standard

and generalised pooling problems, for simplicity we consider only standard pooling problems

for the remainder of this chapter, and furthermore assume no drying is possible.

r2

r3

nut 2

     r1

 

p3 range

nut 1

p2
p3 m2

m1/p1

raw  

mix

product 

raw convex hull

Figure 4.11: Nutrient space of 3-2-3 problem

Fixing the mix compositions can be thought of as placing each mixing bin in a multi-

dimensional space spanned by the nutrients. This new approach, based on the observations of

Grothey et al. [1999], is somewhat similar to the graphical view a problem included in Haverly

[1978], where he considers where to place the single mix in the multi-dimensional space spanned

by proportions of input from the different raws. Figure 4.11 shows the nutrient space for a small

example problem, with two nutrients spanning the horizontal and vertical axes. We call this a

3-2-3 problem, meaning there are three raws, two mixes and three products. In the diagram we
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abbreviate names, with e.g. m1 standing for Mix 1.

It is useful to introduce some terminology at this stage. A bin that has identical lower and

upper bounds for each nutrient concentration is called fixed, and can be represented by a single

point in the nutrient space (e.g. r1 or p1 in Figure 4.11). An unfixed bin is represented by an

appropriately dimensioned rectangle (e.g. p3 in Figure 4.11). In pooling problems all raws are

fixed, and mixes and products are either fixed or unfixed.

The raw convex hull is the smallest convex shape in the nutrient space that contains all the

raws. In Figure 4.11 there are three raws, r1, r2 and r3, spanning the raw convex hull, which

contains all the mixes and products. In a feasible solution all mixes and products must lie inside

the raw convex hull. For any given composition of each product the product convex hull is the

smallest convex shape in the nutrient space that contains all the products. If some products

are not fixed there are several possible product convex hulls. In Figure 4.11 the product convex

hull depends on the position of Product 3.

For a problem with N nutrients we denote the dimension of the space spanned by the

nutrients as N ′. This may be less than N , if some nutrients are redundant so do not add

to the dimensionality. This can happen, for example, if all raws have equal concentration of

a nutrient, or if all mixes and products have ranges for a nutrient which contain all possible

nutrient concentrations. The dimension of the smallest space that spans at least one of the

product convex hulls is denoted N ′P . Where there are many products it is usual for N ′P to be

equal to N ′, else it may be less. In Figure 4.11 neither of the two nutrients is redundant, hence

N ′ = N = 2.

We refer to bins with compositions near the centre of the nutrient space as central. A bin

whose output flows into another bin is called an input bin, hence bins that flow into products

are called product input bins, or simply product inputs.

Observation 3. For a feasible solution the number of product input bins should normally be

at least N ′P + 1.

We say normally as, in exceptional circumstances, for example if a product can be made directly

out of one raw, fewer product inputs will suffice. However, usually there must be enough product

inputs to span the dimensionality of the products in the nutrient space. With this observation

in mind we now reconsider Figure 4.11. As there are no straights the only product inputs are

the mixes, m1 and m2. By Observation 3 if the problem is to be feasible the dimensionality

of the products, N ′P , must be only one. This implies that the three products, p1, p2 and p3,

must be degenerate in the nutrient space, so the unfixed product p3 must be placed in a line

with the fixed products p1 and p2. Such a placement of p3 is shown in the diagram.

We now consider where to place the mixes in the nutrient space to give the solution with

lowest objective value. For simplicity we further restrict ourselves to only considering free

flowing problems (those where flow from raws to mixes and mixes to products is unconstrained,
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and there are also no bounds on mix composition) which have no straights and no raw mass

upper bounds. First some cases are trivial:

Theorem 4. In a free flowing problem if there are as many mixes as raws, or as mixes as

products, the problem reduces to the blending problem.

If there are enough mixing bins then the problem is equivalent to directly making each

product out of the raws, as in the blending problem. Specifically if there are at least as many

mixes as raws it is clear that placing one mix directly over (i.e. at the same composition as)

each raw is optimal, and so the problem reduces to the blending problem. Similarly if there are

at least as many mixes as products placing one mix directly over each product is optimal, and

again the problem reduces to the blending problem. This proves the theorem.

In these simple cases the price of the products is cheap. If there is a limited number of

mixing bins the cost of making each product is more expensive. We refer to the premium of a

product as the difference between its cheapest cost when it is made directly from raws, and its

cost in the actual solution. Solving a pooling problem can be viewed as minimising the total of

the premiums for all products, weighted by the mass of each product to be made.

cost

p1 p2 p3 p4
m4m3m1 m2 nutrient

response curve

response curve

premium on products

produce nutrient concentration

mix nutrient concentration 

Figure 4.12: 6-4-4 problem showing premiums on products

Figure 4.12 shows the premiums on products for a given mix placement on an example free

flowing 6-4-4 problem with one nutrient, where all products are fixed. Each mix is made out

of raws. The price of a mix depends on the nutrient concentration of the mix, and is given by

the mix nutrient concentration response curve. This curve also gives the minimum price of a

product, were the product also to be made directly out of raws. The actual product nutrient

concentration response curve is determined by the position of the mixes in the nutrient space,

and lies above the mix nutrient concentration response curve in some places. The difference

between the two response curves is the premium paid for making a product out of mixes,

instead of directly out of raws. In Figure 4.12 the products are all fairly central, so for this

problem placing a mix at each of the four turning points of the mix nutrient concentration

response curve lets the products be made at zero premium, so is the optimal solution for this

87



problem. With fewer mixes the optimal product curve is more expensive than the mix curve,

but in a good solution will be close to the mix curve at the nutrient concentrations where the

products are positioned. By increasing the number of mixes the premiums can be reduced,

until eventually there are as many mixes as raws or products, and by Theorem 4 there are no

premiums, wherever the products are situated in the nutrient space.
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product
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Figure 4.13: Nutrient space of a free flowing 10-4-6 problem

We now consider where to place the mixes to minimise the premium. The mixes should

usually be placed to span a small convex hull around the products. However, there are excep-

tions. In Figure 4.13 the four mixes must be placed to supply the six products. For a feasible

solution three of these mixes should go directly over products p1, p2 and p6 (as shown). This

leaves the final mix spare, it can occupy a range of possible positions and still give a feasible

solution. The optimal placement of the spare mix depends on the raw costs, and for certain

costs is outside the product convex hull.

p2 p3 p4 nutrient

cost

p1
m1 m2

  p5

product nutrient concentration
response curve

premium on
products

ramge for
product p5

mix nutrient concentration
response curve

Figure 4.14: Mix nutrient concentration response curve of a free flowing 3-2-5 problem

In the optimal solution unfixed products are usually placed at the position in their nutrient

concentration range that allows them to be made most cheaply. As before there are exceptions
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though. Figure 4.14 shows the mix nutrient concentration response curve of an example prob-

lem. For a feasible solution the two mixes must each be placed directly over one of the outer

products, p1 and p5. p5 is unfixed, and at the optimal solution (shown in the diagram) is placed

at the expensive end of its range.

When there are fewer mixes than products there are two strategies of placing each mix. The

first is to place the mix directly over one of the products. With this strategy some products

are made very cheaply, and some are expensive. The second is to place the mix close to several

products, but not directly over any of them. With this strategy all products are made reasonably

cheaply. We now consider which of these two alternatives is better, by summing the premiums

on products costs for each strategy. This is done for two example problems.
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m1 nutrient
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cost

p4p3

k k
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premium on products

mix nutrient concentration
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ǫ

Figure 4.15: Mix nutrient concentration response curve and product nutrient concentration
response curve of an R-3-4 problem

Figure 4.15 is one of a family of problems, parametrised by curvature ǫ of the mix nutrient

concentration response curve and distance k between the origin and p2 or p3. The four products

all have equal masses. For a feasible solution one mix each is required for the two outer products,

p1 and p4, leaving one mix spare. This spare mix should be placed so that products p2 and p3

can be made as cheaply as possible. This means either placing the mix directly over p2 or p3,

or placing it centrally between them, at the origin. Which of these two alternatives is better

depends on the values of k and ǫ. For this example an analytic solution can be found, that

shows when ǫ is small, or when k is small, the better solution is to place the spare mix centrally,

which is the solution shown in the diagram.

1−k

k

convex hull
raw

product

Figure 4.16: Nutrient space of one of a family of 6-4-6 problems
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Figure 4.16 is one of a family of two dimensional problems, parametrised by distance k from

the origin to the three inner products. The six raws (not shown) are in the same positions as the

products, with three cheap inner raws and three expensive outer raws. For a feasible solution

three of the four mixes are placed directly over the outer three products, leaving one mix spare.

As in the problem above, the question is whether this spare mix should be placed directly over

one of the central products, or placed centrally between them. For small k the best solution is

again to place the spare mix centrally. This example problem and the one above collectively

suggest that if and only if the products are clustered, it is best to place a spare mix centrally

between them. This leads to the observation below:

Observation 4. If products requiring similar nutrient concentrations are being made it is best

to place the mixes between them, if product with different nutrient concentrations are being made

it is best to make some of them exactly with the mixes.

4.3.3 Local minima

We saw above that the pooling problems are nonlinear because of the mixing bins. We now look

at three new example problems that illustrate how the mixing bins cause local minima. We first

consider an example based on the problem shown in Figure 4.16, but with the raw placements

perturbed slightly from that problem. This makes the problem asymmetric and so creates local

minima with different objective values. The resulting problem is named Ex1. In the solution to

Ex1 three of the four mixes are again placed directly over the outer three products, leaving one

mix spare. Each of the three inner products is made from the spare mix and two of the outer

mixes, which two depending on where the spare mix is placed. The placement of the spare mix

therefore affects the cost of the products, as well as affecting its own cost.

linear faces from
mix

raw convex hull 

local minima

nonlinear faces from  
products 

Figure 4.17: Overhead view of mix nutrient concentration response surface for spare mix of Ex1
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Figure 4.18: Central triangle of mix nutrient concentration response surface for final mix of
Ex1, inverted

The 2D surface of the mix nutrient concentration response curve for the spare mix is made

from the combination of nonlinear faces which come about from the placement of the spare mix

affecting the cost of the products, and linear faces which come about from the placement of the

spare mix affecting its own cost. Figure 4.17 shows a plan view of this surface. The four local

minima of this problem are contained within a central triangle, that consists of four faces, all of

which are concave. Three of the local minima are at the corners of the central triangle, which

corresponds to placing the spare mix directly over one of the three inner products. This central

triangle is shown in more detail in Figure 4.18. For display purposes the graph is inverted so

that the four local minima now stand out as maxima. Also for display purposes outside the

central triangle the surface is shown as dropping away steeply.

Figure 4.19 shows the nutrient space of a second example problem. There are six products

in a central ring, which must all be spanned by the three mixes. For this problem N ′P = 2, as

the products are all in a 2D plane. Hence by Observation 3 for a feasible solution all three mixes

are needed. There are in fact infinitely many feasible solutions, the cost of each one depending

on the cost of placing mixes in different areas of the nutrient space, which is determined by the

raw costs. Example solution 1 is an example of what is expected to be a cheap solution, as the

91



    solution 1
example example

solution 2

convex hull
product  

convex hull
raw 

raw

mix

product

convex hulls
example mix

Figure 4.19: Nutrient space of an R-3-6 problem. Two possible feasible mix placements are
shown

mixes fit tightly around the products. This means the mixes are central so can be made out

of central raws, which are expected to be cheap. Example solution 2 is expected to be more

expensive as the mixes do not fit tightly around the products. For a feasible solution all three of

three mixes must be placed outside the product convex hull. This leads to a highly nonconvex

feasible region for each mix. Extra mixes, or straights, would make the problem easier to solve.

raw

product

raw convex hull
(and product convex hull)

Figure 4.20: Nutrient space of a 4-4-4 problem

Figure 4.20 shows the nutrient space of a third example problem. This problem has extreme

nonconvexity. There are four products to be made and four mixes available. All four products

are on the edge of the raw convex hull, and consequently also on the edge of the mix convex

hull. There are therefore two very different solutions; either the four mixes are placed directly

over the four products or alternatively the four mixes are placed directly over the four raws.

Any intermediate placement of the mixes, such as a convex combination of the two feasible

solutions, is infeasible. This problem demonstrates the extent of nonconvexity that is possible

with pooling problems.

The decomposition method of Grothey et al. [1999] required fixing the mix compositions,

using an approximation of the feasible region for each mix. The method struggled, because of
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the nonconvexity of these regions.

4.4 Summary

In this chapter we have described the GPP as an extension of the blending problem. The GPP

will be the basis for the problems solved in the following three chapters. A new formulation,

the extended q-formulation, is used to model the problem.

Nonlinearity in the GPP is caused by multiple inputs and outputs to the mixing bins. The

mixing bins lead to highly nonconvex feasible regions and multiple local minima. By relaxing

bounds on the variables that apply to the mixing bins a much better objective value is possible

on some problems.

Solving a GPP can be seen as the problem of where to place the mixes in the nutrient space,.

This gives insight into where to place the mixes to give a feasible solution, and one with good

objective. Minimising the objective can be thought of as minimising the premium of making

products out of mixes rather than directly out of raws. We showed how the feasible region for

each mix can be highly nonconvex, which explains the difficulties of solving a pooling problem

by decomposition.

4.4.1 Further work

In this chapter we have introduced a geometrical insight into solving diet problems. It is possible

that this could insight could form the basis of an algorithm, to solve or at least presolve a GPP.

It would also be interesting to adapt some of the existing work on standard pooling problems

(formulations, relaxations. etc.) to the generalised pooling problem, and compare it to the

work in this thesis.
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Chapter 5

Solving the Generalised Pooling

Problem

In Chapter 4 we introduced a diet problem called the generalised pooling problem (GPP). In

this chapter we look at solving that problem.

In Section 5.1 we review existing methods to solve GPPs, including using an SLP solver

named Integra 1. We confirm that SLP is effective for solving pooling problems, in particular

we show it is effective for GPPs. In Section 5.2 we describe improvements to Integra 1 that go

into forming a new solver, named Integra 2. We also suggest possible further improvements,

that are not included in Integra 2. In Section 5.3 we give results comparing the performance of

Integra 1 and Integra 2.

When solving diet problems we sometimes resolve the same problem from different random

start points, to try and find the global minimum. The multiple solves of one problem are

collectively known as a run of the problem. At the end of a run the solve that finds the best

local minimum is presented as the solution. In Section 5.4 we give a new method for determining

how many solves to do in one run of a problem.

5.1 Introduction

The GPP is similar to the standard pooling problem, therefore many of the methods applicable

to solve the standard pooling problem are still relevant.

Early attempts to solve the standard pooling problem, such as in Haverly [1978], involved

recursion. Complicating variables involved with the mixing bins were fixed and the resulting

linear problem solved, then the complicating variables adjusted and the process repeated until

convergence. This process leads naturally to sequential linear programming (SLP), used by Shell

Oil since Griffith and Stewart [1961] and shortly afterwards by Exxon. Lasdon and Waren [1980]
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showed SLP is superior to recursion for standard pooling problems. SLP can also be used to

solve GPPs.

The standard pooling problem can be represented as a bilinear program. A bilinear program

is a problem where the variables can be partitioned into two subsets, such that when each set

is fixed the remaining problem is comparatively easy to solve. Special methods exist for solving

bilinear programs. Thieu [1986] showed how a bilinear program can be converted to a concave

program, and then solved using methods for concave programs. Audet et al. [2004] showed that

the GPP can also be represented as a bilinear program.

Much of the recent effort in solving the standard pooling problem has been to find the

global minimum. There are several methods for doing this, such as generalised Benders (e.g.

Geoffrion [1972]), the global optimisation algorithm (Visweswaran and Floudas [1993]), spatial

branch and bound (e.g. Ben-Tal et al. [1994], Quesada and Grossman [1995]) and heuristic

methods (e.g. Audet et al. [2004]). Many of these methods involve solving a linear relaxation

of the standard pooling problem, where the original problem is simplified to make it linear. In

Section 5.1.3 we consider linear relaxations of the GPP, so that these methods can be used for

the GPP too.

5.1.1 NLP solvers

The GPP is an NLP, hence it can also be solved by a general purpose NLP solver. An NLP can

be written in the form below, where x is a general variable, f(x) the (linear) objective, h(x)

the (nonlinear) constraints and x ∈ X the simple bounds on x.

min
x

f(x) (5.1)

s.t. h(x) = 0,

x ∈ X.

The table below gives the average time in seconds for solving a subset of the GPP1 problems

with several different NLP solvers. The solvers are all local solvers which are not guaranteed to

find the global minimum. Ipopt is an interior point solver. Lancelot and PENNON solve NLPs

using augmented Lagrangians. MINOS implements a sequential linearly constrained algorithm

that is similar to Lagrangian relaxation.

Factory3 H prob Sonoco97 Plant1a Sloten1relax
Ipopt 0 0 19 35 >1000
Lancelot 0 >1000 >1000 >1000 fail
Minos 0 0 6 fail fail
Pennon 0 fail fail fail fail
SQPFilter 0 1 62 91 >1000
Slp5 0 0 5 5 377

95



SQPFilter is a sequential quadratic programming (SQP) solver, described in Fletcher and

Leyffer [1999]. Slp5 is based on SQPFilter, but instead of using quadratic approximations to

the NLP it uses linear approximations. SQPFilter was first adapted to be an SLP code by

Andreas Grothey, then further changes were made by the author to form Slp5. Slp5 is similar

to the Integra 1 code that we describe later. The major difference is that Slp5 is a general

purpose SLP solver, designed to solve any problems, whereas Integra 1 is specifically designed

for pooling problems. This means Integra 1 recognises the constraint types in pooling problems

and can find the gradients automatically, making it faster than Slp5 on these problems, as

Slp5 always finds gradients by differentiating. An outline of an SLP algorithm is given when

describing Integra 1 in Section 5.1.4.

In each case the GPP was modelled in AMPL and solved via the NEOS server. The times

given are the average time of three solves. For problems that failed, or took more than 1000

seconds, this happened on all three solves. The fails were due to the solver (erroneously)

declaring the problem infeasible, or just crashing. All solvers easily solved Factory3, but even

the relatively small H prob and Sonoco97 problems caused difficulties for some solvers. The

large Sloten1relax problem was only solved by Slp5. Note that these solves are all done using

the default settings, and it is possible that with adjustment of solve parameters the times could

improve. For example, with different preprocessing to the problem data MINOS is able to solve

all the problems.

The table included results for an SQP and an SLP solver. The advantage of using SQP to

solve an NLP is that it enables quadratic convergence, which can be much faster than the linear

convergence of SLP when the solution is not at a vertex. Fletcher and Leyffer [1997] mention

that SQP performs particularly well compared to SLP in solving a system of n nonlinear

equations with n unknowns, where it is essential to use second order information to get good

convergence. The advantage of using SLP is faster convergence on tightly constrained problems,

where the feasible region is small (Vanderplaats [1984]). In a version of SQPFilter described

in Chin and Fletcher [2003], it is mentioned that for very large problems SLP can be a lot

faster than SQP, partly due to the difficulty in SQP of finding global solutions to nonconvex

QP subproblems, because of indefinite Hessians.

The GPPs that we solve are typically quite tightly constrained and not very nonlinear,

hence SLP should perform well. This is indeed the finding of the table, and also the finding

of Grothey [2001] on standard pooling problems. Grothey et al. [1999] attribute the relatively

poor performance of SQP on GPPs to second order information misleading the solver.

There is some evidence that interior point may be effective for solving the LPs formed

by the SLP algorithm. When solving one of the LPs for Sloten1relax (in particular, the LP

whose sparsity pattern was shown in Figure (4.6) it was found that an interior point solver

was significantly faster than a simplex method solver. However, the advantage of using interior

point to solve each LP could be offset by the inability of interior point to effectively warm
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start. A hybrid solver which solved the first few difficult SLP iterations with interior point then

switched to the simplex method may outperform both methods.

We mentioned above that in one run of a problem there may be many separate solves from

different random start points, in an attempt to find the global minimum. Each of these solves is

almost completely independent, as the only coordination involved is in collecting the solutions

and deciding when to stop doing new solves. It is therefore possible to perform several solves of

one problem in parallel. Ideally when n computers are used the problem can be solved n times

faster, but in practice the speedup is often less. Bolton et al. [2000] solve diet problems using a

parallel computer, and report that there was very little loss in speedup. The Sloten1relax GPP

was solved with a dual core machine, that allows two simultaneous solves. This also achieved

a good speedup, of 1.9 (2.0 is perfect speed up).

5.1.2 Tightening Bounds

Before a problem is solved it is common to apply some preprocessing to the problem data.

Preprocessing for Integra 1 is described in Section 5.2.1, here we give a general introduction to

one important part of processing, tightening bounds. This means adjusting the simple lower and

upper bounds on each variable before the solve starts. Tightening bounds can help to provide

more feasible initial solution points, and can give better linearisations when solving with SLP.

The reason for describing the tightening methods here, before the description of Integra 1, is

that some of the tightening methods are used in the linear relaxations of the next section.

In feasibility based bound tightening (FBBT) bounds are tightened by considering all the

equality constraints. Each equality constraint is examined and the minimum and maximum

possible values of the row are compared with the row bounds, after which the row bounds can

be tightened. For example if both β12 and y21 are bounded in the constraint

β12y21 = y11, (5.2)

then the minimum and maximum possible values of the row are β
12

y
21

and β12y21. These

values can be used to tighten bounds on y11. See Brearly et al. [1975] or Belotti et al. [2008]

for more on FBBT. Two particular new types of FBBT are introduced below.

Network tightening is a type of FBBT that we have developed specifically for pooling prob-

lems. It uses knowledge of the network of a problem to tighten the bounds on some variables.

If any of the bounds suggested by network tightening is tighter than the original bound on

a variable it replaces the original bound. Network tightening can lead to substantially more

feasible initial solution points. Figure 5.1 shows an example network, where as before the flow

proportion bounds on input are given on each arc. Note the possibility of a negative flow pro-

portion (drying) from Raw 1 to Mix 2. We apply network tightening to Mix 2, to determine

97



Raw 1

Raw 2

Mix 1

nutrient level:

0.3

0.1

0.2−0.5

 Mix 2

bounds on
flow proportion

[−0.2, 1.0]

[0.0, 1.0]

[0.4 ,0.5]

Figure 5.1: Example network

the maximum nutrient concentration that can be supplied to Mix 2. The maximum is 0.44,

from taking a flow proportion of 0.5 at nutrient concentration 0.5 from Mix 1, a flow propor-

tion of -0.2 at nutrient concentration 0.1 from Raw 1, and a flow proportion of 0.7 at nutrient

concentration 0.3 from Raw 2.

Large bound tightening is also a type of FBBT specifically introduced here for pooling

problems. Very large (possibly infinite) bounds are replaced with reasonable bounds. This

tightening is necessary on our test problems, as in some of them the raw masses have bounds

of ±999999999 (effectively infinite), and the mix masses and mix costs are usually not given

bounds at all.

lower bound upper bound
nutrient n 0 2 maxr Xrn

mass 0 2
∑P

p=1 Vp

cost 0 2 maxr Cr

We suggest new bounds for the pooling problem that are often quite loose, but are often

still substantially tighter than the original bounds. As an example the table above shows the

new lower and upper bounds suggested for mix m. If any of these bounds is tighter than the

original bound on a variable they replace the original bound. For the nutrient concentration

of nutrient n in the mix the upper bound is twice the maximum nutrient concentration in any

raw. For the mass of the mix the upper bound is twice the sum of all the product masses. For

the cost of the mix the upper bound is twice the cost of the most expensive raw. All the lower

bounds are set to zero. The reason that large bound tightening gives upper bounds above what

might be considered the maximum possible, is to allow for drying. Although the maximum

level of drying observed in the test problems is 20%, here we conservatively cater for up to

100% drying.
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Optimality based bound tightening(OBBT) gets bounds on each variable in turn by solving

a linear relaxation of the problem with the objective each time to minimise or maximize that

variable. It is described in e.g. Nowak and Vigerske [2007] or Belotti et al. [2008]). In one

iteration of OBBT two LPs are solved for each variable, one maximising and one minimising,

and for each LP solve the tightest bounds found so far are used on all variables. In multiple

iterations of OBBT the bounds can be progressively reduced.

Just one iteration of OBBT is hugely time consuming, as it requires solving two LPs for

every variable. In Nowak and Vigerske [2007] OBBT is only performed for certain variables

where it is expected to be most beneficial. The method applied here is not intended to be a

practical presolve, just an effort to find bounds that are as tight as possible.

Factory3 H prob Sonoco97 G1b Plant1a
variables 34 592 782 608 3582
bounds moved by OBBT 48 641 392 892 5220
average bound distance 0.346 0.120 0.504 0.064 0.159

We now show that OBBT is effective on GPPs. The table above shows the effect of one iteration

of OBBT, applied to a linear relaxation of the pooling problem (specifically linear relaxation rl5,

described later, which already has some FBBT). The first row of the table shows the number

of variables in each problem. The second row shows the number of bounds (lower and upper

bounds) that were improved by one iteration of OBBT. The number of bounds moved varied

between an average of 1.47 bound moves per variable in G1b, to only 0.50 bound moves per

variable in Sonoco97. We refer to the average bound distance as the average distance between

lower and upper bounds among all (scaled) variables in a problem. The third row of the table

shows the ratio of average bound distance after one iteration of OBBT to before. The ratios

are significantly less than one, indicating the average bound distances have fallen greatly. Thus

OBBT is effective, though as stated above is not practical except in very rare cases.

5.1.3 Linear relaxations

Linear relaxations are formed and solved in several of the algorithms that solve the standard

pooling problem. If the linear relaxation is sufficiently similar to the original NLP, the objective

value at the LP solution can give a good lower bound on the NLP objective value, and the linear

relaxation solution can be used as a warm start point for the NLP.

Two types of linear relaxation have been applied to the standard pooling problem. In La-

grangian relaxation complicating constraints, in this case the nonlinear constraints, are relaxed,

and added to the objective function. This results in a model that is still nonlinear. In linear

programming relaxation each nonlinear constraint is replaced by its linear convex hull to give a

linear model (see e.g. Foulds et al. [1992] or Meyer and Floudas [2006]. This resulting model can

be strengthened by multiplying together linear constraints and bounds to form new (redundant)
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constraints, then adding the convex hull of some of these new constraints to the model (see

e.g. Sherali and Alameddine [1992], Liberti and Pantelides [2006]). For the pooling problem

the lower bound from Lagrangian relaxation is often tighter than the lower bound from linear

programming relaxation (see e.g. Ben-Tal et al. [1994], Adhya and Tawarmalani [1999], Almu-

tairi [2008]). However Tawarmalani and Sahinidis [2002] showed that the linear programming

relaxation of the pooling problem modelled with the pq-formulation (see Section 4.1.3) gives

even tighter bounds than the Lagrangian relaxation.

As GPPs can have multiple layers of mixing bins they can have more nonlinearity than the

standard pooling problem, and it is expected that finding tight linear relaxations will be harder.

Below we introduce several different linear relaxations for the GPP. The best of these, rl5, is

fairly tight on all test problems.

We first consider a linear relaxation where the mixes, and their corresponding nonlinear

constraints, are removed from the model. However unlike Lagrangian relaxation the nonlinear

constraints are not placed in the objective. Instead a series of new linear constraints is added

to the model, limiting the flow from raws to products. These constraints attempt to capture

the limitations imposed by the nonlinear constraints, but are of course not as tight and are

only outer approximations. We call this Lagrangian-style relaxation, as it has in common with

Lagrangian relaxation that the complicating constraints are removed from the model. In our

first linear relaxation, called rl3, the mixes are omitted and flow from raws to products is only

permitted where flow was possible in the original model, and only at levels that were possible.

1

1

2

1[0, 0.1] [0, 0.2]

[0, 0.1] [0, 0.5]

(a)

1
1

(b)

Figure 5.2: Nonlinear network (a) and linear network after relaxation (b)

Figure 5.2 shows how a nonlinear network becomes a linear network with the removal of the

mixes. In rl3 flow would be permitted between Raw 1 and Product 1 with bounds of [0, 0.07].

This 0.07 upper bound is calculated using the bounds on flow proportion in the original model,

where there is flow from Raw 1 to Product 1 via Mix 1 and via Mix 2, at a maximum total rate

of 0.1(0.5) + 0.1(0.2) = 0.07.
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In rl4a the mixes are retained, and a linear relaxation is formed by replacing each nonlinear

constraint by its convex hull. This is therefore a linear programming relaxation. In order to

find these convex hulls the problem is first reformulated, in a method similar to Belotti et al.

[2008]. To reformulate the problem extra variables are introduced that are each equal to one

of the bilinear terms in a nonlinear constraint. As an example consider the product nutrient

constraint (4.8) for Product 1 and Nutrient 1:

R
∑

r=1

γ1rXr1 +

M
∑

m=1

δ1mym1 = z11. (5.3)

This says that the Product 1 concentration of Nutrient 1 is the total of all the inputs from raw

materials to the product and all the inputs from mixes to the products. In the reformulation

we define new variables for the bilinear terms:

R
∑

r=1

γ1rXr1 +
M
∑

m=1

zlin
1m1 = z11, (5.4)

zlin
1m1 = δ1mym1, m ∈ 1 . . .M. (5.5)

Constraint (5.4) is now linear, as all the nonlinearity is contained in the simple bilinear con-

straint (5.5). Reformulations like this are applied to all nonlinear constraints, so that all the

nonlinearity is contained in simple bilinear constraints. These have a straightforward convex

hull, given by four linear constraints known as the McCormick relaxation, see McCormick [1983].

For (5.5) the linear constraints are (omitting subscripts and superscripts):

z ≥ δy + δy − δy, (5.6)

z ≥ δy + δy − δy,

z ≤ δy + δy − δy,

z ≤ δy + δy − δy.

where δ, δ, y and y are lower and upper bounds on δ and y. The first two constraints define two

linear faces beneath the nonlinear constraint, and the second two constraints define two linear

faces above the constraint. The convex hull relaxation is then strengthened with the addition

of the linear constraint below:
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R
∑

r=1

tr =

P
∑

p=1

Vp. (5.7)

This constraint says that the total mass of raws must be equal to the total mass of products. It

makes the relaxation considerably tighter, without having any significant impact on the solve

time.

In rl5 the linear constraints from rl3 are used in addition to the linear constraints of rl4a,

combining the Lagrangian-style relaxation with the linear programming relaxation. This creates

a relaxation tighter than either of them.

In rl3, rl4a and rl5 the bounds on each variable are also tightened, which makes the re-

laxations tighter. Bounds on variables are tightened using both network tightening and large

bound tightening. These are both described above in Section 5.1.2. In rl6 the linear relaxation

of rl5 is further strengthened by applying one iteration OBBT. OBBT is also described in

Section 5.1.2.

Factory3 H prob Sonoco97 Global data G1b Plant1a Sloten1relax
rl3 0.968 0.699 0.998 0.856 0.954 0.928 0.866
rl4a 0.963 0.925 0.229 0.810 0.857 0.884 0.395
rl5 0.990 0.994 0.998 0.951 0.996 0.985 0.949
rl6 0.998 1.000 0.998 1.000 1.000

The linear relaxations have more constraints then the original NLP, but can be solved by

one LP solve rather than with the many LP solves of SLP. They are therefore typically faster

than an original NLP solve.

The table above gives the ratio of the objective value of the linear relaxation to the objective

value of the original NLP. The gaps in the able occur as relaxations rl6, which involves OBBT,

was only applied to some of the small test problems. Neither of rl3 and rl4a dominates the

other. Relaxation rl5, which combines constraints from the Lagrangian-style relaxation rl3,

and the linear programming relaxation rl4a, is of course tighter than both, and had ratios close

to 0.95, or greater, for all problems. Although where tested they are even tighter rl6 takes an

impractically long time, so rl5 is the recommended linear relaxation.

Using as warm start

The best of the linear relaxations was rl5, as it was the tightest relaxation that did not take an

excessive time. We now look in more detail at the time to solve this linear relaxation, compared

to the total time to solve an SLP, and whether it is practical to solve GPPs by warm starting

from the solution to rl5.

The first row of the table below shows the ratio of initial infeasibility of an SLP warm started

with the solution to linear relaxation rl5, to the average initial infeasibility of SLPs warm started
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Factory3 H prob Sonoco97 Global data G1b Plant1a Sloten1relax
initial inf 0.063 0.008 0.009 0.001 0.005 0.015 0.030
LP iterations 0.802 0.667 0.807 0.703 0.985 0.766 0.380

from random points. The second row shows the ratio of LP iterations of the warm started SLP

to the random started SLPs. The table shows that when using the warm starts the initial

infeasibility is significantly less for all problems. With the warm start all problems also solve in

fewer LP iterations. However when the time to solve the linear relaxation is taken into account

only the large Sloten1relax problem benefits from this warm start.

5.1.4 Integra 1

We now introduce a specialised GPP solver called Integra 1. Integra 1 is an SLP solver based

on the SQPFilter solver of Fletcher and Leyffer [1999], that uses linear approximations to the

NLP instead of quadratic approximations. Integra 1 is currently used by Format International

to solve GPPs. It is similar to the SLP solver Slp5, but is specialised to recognise the constraints

of pooling problems so it can find the derivatives immediately. Integra 1 solves GPPs that are

modelled with a formulation very similar to the extended q-formulation, that was described in

Section 4.2.3. The one difference is that in Integra 1 the objective function is defined not as

the sum of the costs of the raws, but as the sum of the costs of the products. This requires a

few extra variables and nonlinear constraints to calculate the cost of the products. However,

in Integra 1 the variables and nonlinear constraints to define the masses of the raws are only

included when needed (when a raw mass is bounded), so depending on the particular problem

either formulation can be larger. Before the solve begins there is some preprocessing of the

problem data. Changes to the preprocessing of Integra 1 are discussed in Section 5.2.1.

1 NLP linearised about trial point, and trust region added.
2 Resulting LP minimised to give a trial solution point, with objective

value (in the original NLP) of f and infeasibility of h.
3 If (f ,h) values are acceptable a step is taken to a new trial point.
4 Trust region size varied depending on last LP solve.

Table 5.1: An iteration of the Integra 1 SLP algorithm

Table 5.1 gives an outline of an iteration of the SLP algorithm employed in Integra 1. In

Step 1 the NLP is linearised about an initial point, using the Taylor expansion, and in Step 2

this LP is minimised. We assume for now that the LP is feasible. We consider what happens

when an LP is infeasible later on in this section. The linearisation is only expected to closely

model the NLP close to the point of linearisation. Hence it is common in an SLP algorithm

to limit the size of the step, either with a trust region or linesearch. A trust region is a set of

constraints that limit the maximum movement by any variable each LP solve. In a linesearch

the LP is solved and then various points are sampled along a line from the old LP solution point

to the new LP solution point, and a step taken to the best one. In Integra 1 a trust region is
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used. Changes to the trust region of Integra 1, and the possible introduction of a linesearch,

are discussed in Section 5.2.2.

Each solution point x has an NLP objective, f(x) or simply f , and an NLP infeasibility,

h(x) or simply h. Any point with small enough infeasibility (in practice below 10−5), is called

feasible.The solution point is tested for how close f and h are to the f and h values predicted

by the LP solve. This is called the ratio test. If the linearisation is locally accurate then f and

h will be close to those predicted by the LP, and the ratio test will be passed. Changes to the

ratio test of Integra 1 are discussed in Section 5.2.3.

Ideally successive iterations will lower both objective value f and infeasibility h, though

this does not always happen. Integra 1 employs a filter, where each LP solution point is either

accepted or rejected depending on the values of f and h. A point is said to be dominated by

another point if that other point has both lower f and lower h. If a point is not dominated

by any other point it is accepted by the filter, else it is rejected. In Step 3 if the new point is

accepted a step is made from the old point to the new point and a linearisation formed about

the new point. If the new point is accepted, and the ratio test is passed, and at least one

variable has moved to the edge of the trust region boundary (implying that the previous trust

region was active), then in Step 4 the trust region is enlarged, by doubling it. If the new point

is rejected then for the next LP solve the same linearisation is used and the trust region is

shrunk, to one quarter of the largest movement in any variable in the last LP solve. See e.g.

Fletcher and Leyffer [1997] for more on filters. Changes to the filter of Integra 1 are discussed

in Section 5.2.4.

We now consider what happens if the LP is infeasible. The iterations described above are

discontinued and a new problem is solved to find a feasible point. This is also done by an SLP

filter algorithm. The Integra 1 algorithm therefore consists of two types of iteration. We use

the term phase one to refer to an SLP iteration that has the primary objective of reducing

infeasibility, and phase two to refer to an SLP iteration that has the primary objective of

reducing the objective value. Integra 1 begins with a phase two iteration, and remains in phase

two as long as each LP is feasible. The details of the phase one SLP algorithm are similar to

those of phase one.

min
x

cT x (5.8)

s.t. l ≤ Ax ≤ u,

− ρs ≤ x − x̂ ≤ ρs,

x ∈ X.

Recall the NLP model of (5.1). In phase two we solve a linearisation of this given by the model

104



above. The objective is the general variable x, multiplied by the costs c. The first constraint

says that the constraint matrix A multiplied by x must be between the bounds of l and u. The

second constraint applies a trust region of size ρ. s is a vector of scaling parameters and x̂ the

last value of x, so the constraint forces x to be within ρs of its last value. The final constraint

applies simple bounds on x. The solution to this LP has objective value that estimates the true

NLP objective of f . At the solution to the LP we estimate that the infeasibility h = 0, as we

assume being LP feasible implies the NLP is close to feasible.

min
x,y

eT y (5.9)

s.t. l ≤ Ax + Iy,

Ax − Iy ≤ u,

− ρs ≤ x − x̂ ≤ ρs,

x ∈ X,

y ≥ 0.

In phase one the original problem is reformulated to have objective of minimising constraint

violation. The linearised phase one problem is given above. y is a new vector variable, known

as an artificial variable, which measures the amount of constraint violation. In the objective it

is weighted by eT , a vector of ones, so that the goal of the phase one problem is to minimise

the sum of the artificial variables. This is achieved when y = 0.

In the constraints I is an identity matrix. The first constraint on x in the phase two model

of (5.8) has been relaxed into two inequalities in (5.9). If neither of these two inequalities can

be satisfied normally then part of the vector y must become nonzero, increasing the objective

value. The solution to this LP shows how infeasible the LP is, and so estimates h. Once phase

one is successful the SLP returns to phase two. Changes to phase one of Integra 1 are discussed

in Section 5.2.5.

Integra 1 solves all the LPs using EMSOL (Hall [1997]). EMSOL is a revised simplex

method solver that uses Harris Devex pricing. Each iteration of EMSOL is referred to as an

LP iteration. Changes to the LP solve of Integra 1 are discussed in Section 5.2.6.

The phase two iterations terminate once a suitable solution point has been found, or the

trust region becomes sufficiently small. Changes to the convergence criteria of Integra 1 are

discussed in Section 5.2.7.
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5.2 Developing Integra 2

Integra 2 is our improved version of Integra 1. It has changes to Integra 1 in preprocessing,

the trust region, the ratio test, the filter, phase one, the LP solver and convergence criteria.

In the following subsections we discuss each of these seven areas. In each subsection we begin

by outlining what is done in Integra 1, then describe the changes implemented in Integra 2.

In some cases we then suggest further improvements, which have not yet been included in

Integra 2.

5.2.1 Preprocessing

Before a problem is solved it is common to apply preprocessing, to make the problem easier to

solve. This is especially important for a difficult nonlinear problem like the pooling problem.

Two common methods of preprocessing are scaling and bound tightening. Bound tightening

has already been introduced in Section 5.1.2. Scaling a problem can reduce numerical errors,

and when a trust region is used can reduce the number of iterations taken. In Integra 1 instead

of directly scaling the coefficients on variables in the constraint matrix, the size of the trust

region in the direction relating to each variable is scaled. The scaling is such that a movement

in any variable equal to the width of its trust region causes a similar change in the constraints.

The bounds on a variable xi are such that:

−siρ ≤ xi − x̂i ≤ siρ, (5.10)

where ρ is the trust region size, x̂i the last value of xi and si the scaling parameter on the

variable. For each nutrient concentration variable si is set to the average concentration of that

nutrient among all the raws. For all mass variables si is set to the average mass of the products.

For all cost variables si is set to the average cost of the raws. For all flow variables si is set to

1. There is also scaling in Integra 1 by the LP solver, as at the start of each LP solve EMSOL

performs row and column scaling. This is very effective in improving the solution time to the

LP problems.

Integra 1 tightens the bounds on some variables before starting the solve. There is FBBT

on some, but not all, the constraints. In Integra 1 the FBBT only tightens bounds on variables

which are the right hand side of equality constraints, such as y11 in (5.2). Examining the model

constraints in (4.6)-(4.11) reveals that the flow proportion variables do not appear as right

hand sides of equality constraints, hence they are not tightened in Integra 1. Furthermore the

Integra 1 FBBT goes through the constraints in the order that they appear in the model, so

if, for example, a bin labelled with a high number flows into a bin labelled with a low number,

tightening does not occur.
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As well as scaling and bound tightening a third aspect of preprocessing is the selection of the

initial solution point. In Integra 1 the initial solution point is selected by uniformly randomly

choosing a value for each variable between that variable’s bounds. However, to account for

cases where a variable is not bounded at all, initial values for all variables are forced to be

within M of the origin, where M is a given large integer (and M a vector with all elements

equal to M). Let x again be a general variable with bounds x ≤ x ≤ x, and let p be a vector

of uniform random variables, with 0 ≤ p ≤ 1. Then the initial solution point for x is given by:

x̂ = pT max(x,−M) + (1− p)T min(x, M), (5.11)

where the min and max operations are done for each component of the vectors. In Integra 1

M is set to 10,000, meaning that all variables are initialised with values between -10,000 and

10,000.

Integra 2

We now consider improvements to the preprocessing that go into Integra 2. In Integra 2 as

well as the FBBT described above for Integra 1 we also perform large bound tightening, as

described in Section 5.1.2.

The effect of the changes to the preprocessing of Integra 1, combined with all the other

changes, is considered when we compare Integra 1 and Integra 2 in Section 5.3.

Further improvements

We now consider further improvements to the preprocessing of Integra 1. At present these are

not included in Integra 2.

The constraints (4.6), (4.8), (4.10) and (4.11) are all equality constraints that define a

variable, which can be eliminated from the model. For some problems, such as Sloten1relax

(see Figure 4.6), such an elimination drastically reduces the problem size. Eliminating all these

constraints means the only variables left are flow proportion variables, which are enough to

completely describe the solution. These variables are automatically bounded between zero

and one (or slightly wider for a GPP where drying is possible), so when all variables are flow

proportion variables no scaling is needed.

Recall that in Integra 1 the initial solution point is selected using (5.11). Using this formula

after first eliminating some variables, as described above, leads to more feasible initial solution

points. In (5.11) the initial value of each variable is generated independently. For an equality

constraint, such as (5.2), it is better to fix β12 and y21 say, and then solve for y11. The resulting

value for y11 may still be outside its bounds, but at least the equality constraint is satisfied.
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Using a smaller value of M in (5.11) can give more feasible initial solution points. For all

GPPs tested using M = 1 gave more feasible initial solution points and a typical saving in

solution time of 20%. For the problem Sloten1relax using M = 1 had a drastic effect, saving

90% of solution time. However, there are concerns that using a small value of M means all the

randomly generated start points are close to each other, and multiple solves will not find a full

range of local minima. This would need to be further investigated before adopting a smaller

value of M in Integra 2.

We showed above in Section 5.1.3 that we can solve a linear relaxation to give a warm

start point that is close to feasible. We can also heuristically find good values for the nutrient

concentration variables by considering the bounds on nutrient concentration in the mixes and

products. Suppose, for example, that some raws have a very high concentration of nutrient n,

but most products have low requirements of that nutrient. Although it is possible to supply a

mix with a high concentration of the nutrient, that is unlikely to be optimal. A heuristic that

initialises mix nutrient concentrations based on this observation was able to find good initial

solution points.

5.2.2 Trust region

In Integra 1 there is a trust region of size ρ that limits the movement in any variable in each

LP solve, as shown in (5.10). The initial size of the trust region is ρ = 5. The trust region can

shrink or grow between LP solves, though we do not treat any variables specially and they all

get given the same size (scaled) trust region.

Integra 2

In Integra 2 we reduce the effect on the trust region for the first few iterations, allowing the LP

to take larger steps. This is done by having an initial trust region size of ρ = ρmax, defined as:

ρmax = max
i

xi − xi

si

i ∈ set of variables, (5.12)

so ρmax is large enough that so that all variables can move all the way between their bounds

(hence with ρ = ρmax the trust region is inactive). x, is a general variables with bounds x and

x and s is the scaling parameter. When the trust region is shrunk it is still reduced to one

quarter of the largest movement in any variable in the last LP solve, so however large ρmax is

the trust region can still quickly become small, and starting with ρ = ρmax does not inhibit

convergence of the algorithm.

f h |d| LP iterations
Initial ρ = 5 2205 1423 5 4564
Initial ρ = ρmax 1204 322 143 4888
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The table above compares the SLP objective value, f , infeasibility, h, largest movement in

any variable in last LP solve, |d| and LP iterations so far, after two SLP iterations of a solve of

Sloten1relax. The first row is the solve beginning with ρ = 5, as in Integra 1. The second row

is the solve beginning with ρ = ρmax. With ρ = ρmax the objective value and infeasibility are

both considerably better than the solve beginning with ρ = 5, with a comparable amount of

LP iterations. This is typical, starting with a larger trust region means larger steps are taken

and feasible points are found more quickly. There is a danger that given a large initial trust

region the same local minimum will be found regardless of the initial solution point, so less of

the solution area will be explored, and so the global minimum will be less likely to be found.

This was not found to be the case though (as we discuss in the results of Section 5.3).

Further improvements

We now consider possible further improvements to the use of the trust region by Integra 1.

These are not included in Integra 2. We mentioned above that SLP algorithms commonly use

either a trust region or a linesearch method. We now consider adding a linesearch to Integra 1

on top of the existing trust region.

A linesearch evaluates the f and h values for several points along the direction from the

old solution point to the proposed new solution point. These evaluations are simple to do, and

may find a better solution point. Let x̂ be the old solution point, d be the proposed step and p

the proportion of the step to take. New points, x, are generated by varying p in the equation

below.

x = x̂x + dp, p ∈ P, (5.13)

where P is the set of possible step sizes to choose. Choosing p = 1 corresponds to taking

the standard solution point, other values of p correspond to taking a different solution point.

Recall one point is said to dominate another point if it simultaneously has better f and h

values. Figure 5.3 shows the points generated by a linesearch during an iteration of Sonoco97,

with P = {0.4, 0.8, 1.0, 1.2, 1.6, 2.0}. The old solution point (which corresponds to p = 0) is also

shown. Although none of the points in P dominate the old point, which has the best objective

value, one point (p=0.8) dominates the standard solution point (p=1.0).

When using a linesearch a method is needed to select which point to adopt, based on the f

and h values of the points. In the following test we use a conservative rule that adopts a point

with p other than 1 only if that point dominates all others found by the linesearch.

The table shows the effect of the linesearch on a solve of Sonoco97 by Integra 1. For each

solve we give the number of SLP and LP iterations in phase one, the final objective value and

infeasibility at the end of phase one, and the number of SLP and LP iterations in phase two.
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Figure 5.3: Points generated by linesearch on an iteration of Sonoco 97

Phase one Phase two
SLP its LP its f h SLP its LP its

Standard solve 7.5 1192.0 4761 78.8 92.0 7682
Linesearch 7.7 1216.7 4557 50.9 40.7 5516

The numbers in the table are the averages of ten solves from different random start points.

In phase one the two solves take about the same number of SLP and LP iterations, though

the solve with a linesearch finishes phase one with a more feasible point, and then takes fewer

iterations in phase two. This suggests the addition of a linesearch could be beneficial.

5.2.3 Ratio test

One of the conditions for increasing the trust region size is that the ratio test is passed. The

ratio test determines how well the LP model matched the NLP in the last LP solve. In Integra 1

phase one the ratio test is passed if the infeasibility reduction achieved in the NLP is sufficiently

similar to the infeasibility reduction predicted by the LP. In phase two the ratio test is passed

if the reduction in infeasibility, and the reduction in objective value, achieved by the NLP are

sufficiently similar to the reductions predicted by the LP.

Integra 2

In Integra 2 the ratio test in phase two is altered so that, if a point is feasible (recall any point

with infeasibility below 10−5 is considered feasible), only the reduction in objective value is

considered. This prevents a point failing the ratio test when the reduction in the objective

value is good, but the infeasibility is increased from one feasible point to another feasible point.

We also correct a sign error and numerical error in the ratio test of Integra 1.
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5.2.4 Filter

Integra 1 employs a filter to control the size of the trust region. Each LP solution point has its

f and h values compared to the other points in the filter and if it is not dominated by any of

them it is accepted, else it is rejected. If a point is accepted, and other conditions are met, the

trust region is enlarged. If the point is rejected the trust region is shrunk.

Integra 2

In Integra 2 we strengthen the ratio test to reject a feasible point if there exists any other

feasible point with better objective, regardless of whether or not that other feasible point has

lower infeasibility. Rather like the change to the ratio test above, we are removing the distinction

between the infeasibility of feasible points. This means fewer points are accepted. This can

save iterations towards the end of a solve, where instead of accepting a series of points that

slightly decrease the infeasibility of an already feasible point, a point is rejected and the trust

region is shrunk.

5.2.5 Phase one
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Figure 5.4: Factory3 Integra 1 phase two LP constraint matrix (a) and Integra 1 phase one LP
constraint matrix (b)

Consider the phase one problem solved by Integra 1, given in (5.9). This model has two

copies of the constraint matrix A. Where A has m rows and n columns the model (5.9) has

2m rows and n + m columns. This makes it considerably larger than the phase two problem.

Figure 5.4 shows the increase in size from the phase two LP constraint matrix to the phase one

LP constraint matrix, for the problem Factory3.
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Integra 2
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Figure 5.5: Integra 2 phase one LP constraint matrix for Factory3

min
x,y,z

y + z (5.14)

s.t. l ≤ Ax − Iy + Iz ≤ u,

x ∈ X,

y, z ≥ 0.

Integra 2 uses a more compact model for the phase one problem, given above. y and z

are artificial variables and as before I is an identity matrix. This model is equivalent to the

Integra 1 phase one, but is easier to solve. Figure 5.5 shows the Integra 2 phase one constraint

matrix for Factory3, which has just m rows and n + 2m columns. Another improvement in

Integra 2 is to warm start the first iteration of phase one, calculating the basic or nonbasic

status of the columns of (5.14) based on the last phase two solution.

5.2.6 LP solver

In Integra 1 most of the time spent solving a GPP is in solving the LPs, using EMSOL. Like

the SLP algorithm the LP has two types of iteration, which we call LP phase one and LP

phase two. LP phase one attempts only to make the problem feasible, with no consideration

of objective value. Once a feasible point is found EMSOL switches to LP phase two, which

minimises the objective value while maintaining feasibility.

Integra 2

In Integra 2 we alter LP phase one so that as well as seeking a feasible point a good objective

value is sought. This is done by adding a (scaled) multiplier µ of the phase two costs into the

phase one objective. Thus the objective of (5.14) is replaced by minx,y,z y + z + µcT x, where

c are the original objective costs of the phase two model. We use a small value of µ, meaning

that the priority in LP phase one is still to find a feasible point. However adding in a multiplier
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of the original objective can mean that phase one finishes with a feasible point with better

objective value, and so reduce the overall number of LP iterations.

5.2.7 Convergence

Suppose we have a general NLP as in (5.1). The Lagrangian of the objective function, L(λ),

and its derivative with respect to x, are given by:

L(λ) = f(x) − λrh(x)− λcx, (5.15)

∇xL(λ) = ∇xf(x) − λr∇xh(x) − λc, (5.16)

where λr are the row duals, from h(x) = 0, and λc the column duals, from x ∈ X. These duals

can be estimated from the last LP solve. ∇xL(λ) is referred to as the KT residue. Under the

assumption that constraint qualification holds any feasible point that has zero KT residue is a

stationary point (Winston [2000]), which in practice when minimising means a local minimum.

The convergence criteria for Integra 1 are that both the current point is feasible, and that

either the KT residue has fallen below 10−6 (at which point a local minimum is declared), or

that the trust region is sufficiently small (at which point we stop anyway).

Integra 2

In Integra 2 we alter the definition of the KT residue in (5.16), so that we do not include column

duals λc from variables that are at the trust region boundary. This means that if the last LP

solve had variables pushing against the edge of the trust region the KT residue is nonzero, so

that point cannot be declared a local minimum.

In Integra 2 rather than terminate with a feasible point with KT residue below 10−6, we

terminate when the KT residue falls below the parameter Kres. Kres has a value proportional

to the size of the largest objective cost, and is often larger than 10−6. Using a larger tolerance

on the KT residue can save SLP iterations, and was not found to adversely effect the accuracy

of the SLP solutions.

5.3 Integra 2 results

The Integra 2 code is based on Integra 1. It has all the improvements described in the Integra 2

subsections above, but not those described in the further improvement subsections. Some of

the improvements to Integra 1 have been added because they improved the solution time when

added individually, some were added as they give theoretical improvements. We now show that

our solver Integra 2 is an improved version of Integra 1.
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Sonoco97 Sept98 Jan99 Gns Nville Sloten1relax Hen040304
Successful solves 20 18 19 13 19 20 20
BestObjVal 296.451 122309 186356 119017 2925.3 1848576 106242
Average SLP its 65.5 129.0 115.8 263.3 151.3 18.7 18.9
Average time 3.7 10.9 14.6 17.5 74.1 371.7 563.0
Successful solves 20 18 20 17 19 17 18
BestObjVal 296.451 122304 186097 119023 2925.4 1848576 106242
Average SLP its 53.1 122.0 87.5 238.0 106.2 16.8 7.9
Average time 2.3 7.3 10.5 13.3 67.8 229.9 416.2

Table 5.2: Results for Integra 1 (first four lines) then Integra 2 (second four lines)

Table 5.2 compares Integra 1 and Integra 2 on the test set GPP2. This shows the combined

effect of using all the improvements. Each problem is solved 20 times from different random

start points with each solver. The first four rows of the table are for Integra 1. The first row

of the table gives the number of successful solves, out of 20. The second row gives the best

objective value found in any of the solves. The third row gives the average number of SLP

iterations and the fourth row the average time. The next four rows repeat these statistics for

Integra 2.

For number of successful solves, and for best objective value found, neither solver is better

on all problems. The best objective value found by Integra 1 and Integra 2 was the same or

similar for all problems. For average number of SLP iterations and average time Integra 2

is better on all problems. Note that the Slp5 code we introduced earlier is slower than both

Integra 1 and Integra 2, as it takes an average of 5 seconds on Sonoco97 and 377 seconds on

Sloten1relax (from Table 5.1.1).

We now look in more detail at the quality of all the different local minima found by Integra 1

and Integra 2. This is in response to concerns that since Integra 2 starts each solve with a large

trust region, the effect of a random start point could be lost, and the same local minimum

repeatedly found. For the problems Sonoco97, Sept98, Jan99 and Sept98, all of which have

multiple local minima, we solved each problem 100 times by each code. For the four problems

Integra 1 found what we believe to be the global minimum 7, 0, 2 and 1 times respectively,

and Integra 2 found the suspected global minimum 6, 1, 4 and 4 times respectively. Figure 5.6

and Figure 5.7 plot all the objective values found by each code for each problem, ordered by

increasing objective value. When comparing the Integra 1 and Integra 2 lines on one of the

graphs, a lower line indicates that the solver found more points close to the global minimum.

The leftmost entry of each line indicates the best objective value found, and how far each line

stretches to the right indicates the number of successful solves.

The graphs show that for all four problems there are many local minima, all of which have

similar objective values. Both solvers find many different local minima, and Integra 2 typically

finds local minima at least as good as those found by Integra 1. Combined with the results in

Table 5.2 these graphs indicate that Integra 2 is a faster solver than Integra 1, which is at least
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Figure 5.7: Comparison of ordered objective values for Jan99 (a) and Sept98 (b)

5.4 Stopping condition on number of solves

This section is about choosing an appropriate number of solves to do in one run of a problem, to

be confident of having found the global minimum within some probability. Methods to actually

increase the chance of finding the global minimum on any one solve are discussed in Section 6.3.

Currently when solving GPPs Format International simply perform a fixed number of solves
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of each problem. We consider other options here. The following analysis applies to the use of

Integra 1 or Integra 2 as the solver.

We classify the different local minima to a problem into classes, based on their objective

value. For problems which have very many local minima a class may consist of any local

minimum whose objective value falls within a given range. The probability of any one solve

finishing in a particular class we call the class probability, and the probability of any one solve

finishing in the global minimum class we call the global minimum class probability.

The idea of classifying sample points from a population into classes is common in the

literature, and applies to all sorts of different samples. Based on the sizes of the classes found

in the sample the following three things can be estimated:

Case 1 The total number of classes in the population, which we call K.

Case 2 The probability that the relative sizes of the classes found in the

sample is correct for the population.

Case 3 The probability that we have found the global minimum class, which

we call P (g).

Most of the literature concentrates on Case 1. Here we are interested in Case 3. To be confident

of having found the global minimum we can do as many solves as are needed to make P (g)

sufficiently high. The following definitions will be useful to determine P (g):

n number of solves completed so far,

r number of times the best class found so far has been found,

k number of different classes found so far,

h1 number of classes that have been found exactly once,

K total number of classes,

α global minimum class probability,

µ mean of distribution of K,

v variance of distribution of K,

E parameter indicating how spread out the class probabilities are.

Note that n, r, k and h1 are data that we generate during each run. K, α, µ, v and E are

actual properties of each problem that may need to be estimated.

5.4.1 Literature review

Snyman and Fatti [1987] develop a criteria for when to stop doing new solves based on n and

r. They make the key assumption that the global minimum class is as likely to be found as any

other class. Although this assumption does not sound unreasonable it turns out to be quite

strong. For example, if the same class is found in all of the first five solves, that class is thought

117



to almost certainly be the global minimum class. They also assume that α is a β-distribution,

with known parameters a and b. Under these assumptions the probability of having found the

global minimum class is:

P (g|n, r) = q1(n, r) =
Γ(n + a + b)Γ(2n − r + b)

Γ(2n + a + b)Γ(n − r + b)
, (5.17)

where Γ is the gamma function. Bolton et al. [2000] uses this formula with suitable, but

unspecified, values of a and b. Each test problem is solved until q1(n, r) goes above a certain

threshold. If this threshold is raised then more solves are performed and it is more likely the

global minimum class is found.

Boender and Rinnooy Kan [1983] assume that all the class probabilities are equal. This

leads to the probability of each new solve finding a new class of:

q2(n, k) =
k(k + 1)

n(n − 1)
n ≥ k + 2. (5.18)

Although this formula does not directly estimate P (g), it can be used as a stopping rule by

terminating a run once q2(n, k) is sufficiently small.

Good [1953] estimates the proportion of classes that are undiscovered, using h1, the number

of classes that have been found exactly once:

q3(n, h1) ≃
h1

n
. (5.19)

This formula does not depend on the class probabilities being equal. It does not directly estimate

P (g), but can be used as a stopping rule by terminating a run once q3(n, h1) is sufficiently small.

5.4.2 New method

Any of the test statistics q1(n, r), q2(n, k), and q3(n, h1) can be used to give a stopping condition

on a run of a problem. We now develop a new formula, which is similar to the Snyman Fatti

formula q1(n, r), but depends no n and k instead of n and r. The formula has three simplifying

assumptions, and ends up requiring the estimate of three priors.
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q4(n, k) = P (g|n, k) =
∑

K

P (g|K, n, k) P (K|n, k), (5.20)

=
∑

K

P (g|K, n, k)
P (k|K, n) P (K)

P (k|n)
, (5.21)

=
∑

K

P (g|K, n, k)
P (k|K, n) P (K)

∑

K P (k|K, n) P (K)
, (5.22)

≃
∑

K

(

1 − (1 −
1

K
)n

)

P (k|K, n) P (K)
∑

K P (k|K, n) P (K)
, (5.23)

≃
∑

K

(

1 − (1 −
1

K
)n

)

Po(λ) P (K)
∑

K Po(λ) P (K)
, (5.24)

≃
∑

K

(

1 − (1 −
1

K
)n

)

Po(λ) E(K, µ, v)
∑

K Po(λ) E(K, µ, v)
. (5.25)

Our formula is derived above. Throughout the derivation an expression like P (g|K, n, k)

means the probability of g given all of K, n and k. Also note that the sums over K are infinite

sums over all possible values of K, and K could in theory could be any positive integer. However

in practice the contribution to each sum from large values of K is minuscule, so in practice each

summation is truncated after something like K = 100.

In (5.20) we rewrite P (g|n, k) using the discrete form of the law of total probability, summing

over all possible values of K. In (5.21) we rewrite P (K|n, k) using Bayes theorem, and using the

fact that P (K|n) = P (K). In (5.22) we rewrite P (k|n) using the discrete form of the law of total

probability, again summing over all possible values of K and again using that P (K|n) = P (K).

We now break down (5.22) further by considering each part, beginning with P (g|K, n, k).

We make the first simplifying assumption that if there are K classes the probability α of finding

the global minimum on any one solve is 1
K

. Thus the basic probability formula P (g|K, n) =

1 − (1 − α)n evaluates to 1 − (1 − 1
K

)n. We make the second simplifying assumption that

P (g|K, n, k) = P (g|K, n), so P (g|K, n, k) = 1 − (1 − 1
K

)n also. In (5.23) we therefore replace

P (g|K, n, k) with 1 − (1 − 1
K

)n.

Next we consider P (k|K, n). An exact form for P (k|K, n) is given in Emigh [1983], under

the assumption that the class probabilities are all known. For large K, if the class probabilities

are equal, K − k approximately follows a Poisson distribution (see e.g. Feller [1968]). If the

class probabilities are unequal, K − k can still be modelled as a Poisson distribution, but to

account for the unequal class probabilities we must replace the sample size n with the effective

sample size, denoted En, with E ≤ 1. This leads to the estimate:

P (k|K, n) ≃ Po(λ), λ = (K − k)e−
En

K−k . (5.26)
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If the class probabilities are known to be equal then we use E = 1, else we must estimate a

value for E less than 1. Thus in (5.24) we substitute P (k|K, n) with Po(λ), with λ as defined

above. Note that λ depends on the index K, the problem data k and n, and the parameter E.

Finally we consider P (K). This is the probability distribution of the total number of classes.

Our third simplifying assumption is that this follows an Erlang distribution. This is not a strong

assumption, as the Erlang distribution is quite general. The use of an Erlang distribution is in

fact not crucial to the formula, and any other proper distribution could also be used. In (5.25)

we substitute P (k) with E(K, µ, v), where E(K, µ, v) is the Erlang distribution of K with mean

µ and variance v.

We are now in a position to use the formula for q4(n, k) in (5.25). This formula has three

simplifying assumptions, given above. q4(n, k) depends directly on data from each run, n

and k, and also requires three prior estimates, µ, v and E. When solving large families of

problems these prior estimates could be got from looking at the distribution of class sizes from

previously solved problems. It is possible that in practice many of the GPPs solved will be very

similar to previous GPPs, with the general structure of a family of problems determined by the

layout of a factory, and only the raw costs, raw availability and product demands changing in

different versions of a problem that occur over time. In this case the number of local minima is

expected to be fairly constant for each solve, and it will be possible to get good estimates for

the distribution of K. In this case q4(n, k) can be used to accurately predict the likelihood of

having found the global minimum.

If the priors are not well estimated though, it is possible that the data from the run could

be inconsistent with the prior estimates. For example, we may have a very small prior estimate

of v, suggesting that the total number of classes is close to the estimated total µ, but find that

k ≫ µ so already many more classes than estimated have been found. In this case q4(n, k) may

give misleading results.

Application of new method

Figure 5.8 plots q4(n, k) against k for different values of µ and v with n = 20. For these results

we suppose that E = 1. Although the summation in (5.25) required to evaluate q4(n, k) is large

enough to be impractical to evaluate by hand, it is more or less instant in a program like Maple.

There is a lot of information on the graph, and we now pick out some features. For all values

of µ and v as k increases q4(n, k) decreases, because when many classes have been found it is

less likely that the global minimum class has been found. When v is large k has a greater effect

on q4(n, k) than when v is small, because when v is large the prior estimate for K is paid less

heed than the actual number of classes found. When µ and v are both small q4(n, k) is high,

because in this case we are very confident of there being a small number of classes, hence it is

likely we have already found the global minimum class.
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Figure 5.8: Probability of having found the global minimum, for different values of µ and v.

The wide range of probabilities in Figure 5.8 shows that q4(n, k) depends heavily on the

priors µ and v. The test was repeated with n = 50. For all values of k, µ and v q4(n, k) was

correspondingly higher than with n = 20, because once more solves are completed we are more

confident of having found the global minimum.
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Figure 5.9: Probability of having found the global minimum

Figure 5.9 plots q4(n, 1) against n for a problem which is suspected of having only one class,

and indeed only one was found on all trials. These problems are not uncommon in practice.

Each of the three curves has expected number of classes µ = 1 and a different variance. It can

be seen that after 15 solves we are certain that we have the global minimum, even for the curve
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with large variance.

Conclusion

We have shown there are several ways of calculating the probability of having found the global

minimum. Which of q1(n, r), q2(n, k), q3(n, h1) and q4(n, k) is best to use depends on how valid

the assumptions that go into each formula are, and what prior estimates are available. q2(n, k)

and q3(n, h1) have the advantage of both being easy to calculate, whereas q1(n, r) and q4(n, k)

require prior estimates of problem data.

Our formula q4(n, k) requires an estimate of the mean and variance of K, and the parameter

E which indicates how varied the class probabilities are. We make simplifying assumptions

about the probability of finding the global minimum and about the distribution of the total

number of classes.

5.5 Summary

This chapter was about solving GPPs. We showed that SLP is an effective method for solving

GPPs. For the GPP tight linear relaxations exist, by combining constraints from a Lagrangian-

style relaxation with a linear programming relaxation. Solutions to the linear relaxations can

be used as a warm start point for the solve of the original problem.

The solver Integra 1 is currently used by Format International to solve GPPs. Several

improvements to this solver were suggested, affecting the preprocessing, trust region, ratio test,

filter, phase one solve, LP solver and convergence. These improvements go into a new solver

named Integra 2. Integra 2 solves the test problems more quickly than Integra 1, and is just

as effective in finding the global minimum. Thus Integra 2 may be of commercial benefit to

Format International.

We addressed the problem of how many random start solves to do in a run. After a review

of the literature three existing methods were described, and a fourth method introduced and

demonstrated. This method relies on a prior estimate for the distribution of the number of

classes. This information could be found when solving many problems from the same family.

5.5.1 Further work

It is believed Format International are planning to adopt many of the changes suggested in

Integra 2. As suggested above an interior point and SLP hybrid may be even better. It may

also be of benefit to analyse whatever stopping rule Format currently use for determining the

number of random starts to do, and perhaps suggesting an alternative rule.
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Chapter 6

Multifactory Problem

In this chapter we introduce the multifactory problem. Several GPPs are combined to form

what we call the multifactory problem, which is a large, but highly structured, NLP. This models

the situation of one company who owns several factories, all of which are supplied from the

same limited supply of raw materials. This is a new problem Format International envision

solving in the future.

The problem is introduced in Section 6.1. In Section 6.2 we look at using decomposition to

solve it. We show that by reformulation the problem can be decomposed into either a row linked

or column linked problem. We attempt to solve it by Benders decomposition, the dual cutting

plane method, and a modified augmented Lagrangian method. The augmented Lagrangian

solve, with three innovations to the algorithm, is shown to take less estimated work than a

direct solve of the undecomposed problem.

In Section 6.3 we introduce two new algorithms to find the global minimum of the multifac-

tory problem, exploiting the fact that the constituent factories of a multifactory problem are

nearly separable.

6.1 Introduction

Figure 6.1 shows an example multifactory problem named Ex1. Note that throughout this

thesis example numbers are specific to the chapter they appear in, so the first example of each

chapter is always Ex1. The problem consists of three factories. Each of these is a nonlinear

general pooling problem, with mixing. The three factories are linked by a transport problem,

which provides some of the raw materials for each factory from depots. The transport problem

is a small linear problem where no mixing occurs, it simply sends the raw materials from the

depots to the factories.

Collectively the transport problem and the factories are known as subproblems. In the

multifactory problem we think of each factory as a general NLP, rather than specifically a
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two depots

Factory 2

Factory 3

Factory 1

Figure 6.1: Multifactory problem Ex1

GPP. We label the transport problem with index 0 and the F factories with index i ∈ 1 . . . F .

The variables of the transport problem are denoted x0, and are described further in Section

6.1.1. We use xi for the general variables of factory i and ti for the subset of xi that are

the raws that are used by several factories, known as the shared raws. We denote the (linear)

objectives of the transport problem and factory i as f0 and f i respectively. We can then write

the multifactory problem as the program F below:

F : f∗ = min
x

f(x), (6.1)

s.t. x ∈ X, (6.2)

h(x) = 0. (6.3)

This problem may be referred to as the primal problem, to distinguish it from the dual problems

that will come later. The objective, (6.1), can be separated into f0(x0)+
∑F

i=1 f i(xi), the sum

of the objectives of the transport problem and the factories respectively. Constraints (6.2) can

be separated into x0 ∈ X0 and xi ∈ Xi, i ∈ 1 . . . F . These are the local constraints of the

transport problem and the factories.

Constraint (6.3) is the linking constraint between the transport problem and the factories.

It ensures that the total amount of each shared raw supplied by the transport problem to each

factory is equal to the amount used by that factory. The exact form of the linking constraint

depends on the model formulation, and is discussed in more detail later. The constraint can be

written as h(x0, t1, . . . , tF ) = 0 to highlight the contribution to the linking constraint from the

transport problem and factories respectively. However this constraint cannot be rewritten as
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separate constraints for the transport problem and the factories. Without the linking constraint

the transport problem could be removed and the costs of supplying each shared raw absorbed

into the factories. The problem would then decompose by factory. In some model formulations

part of the linking constraints can be associated with each factory, in which case we refer to vi

as the linking constraint violation of factory i.

In the remainder of this section we will describe the transport problem more fully, describe

the multifactory test problems to be solved, consider how the multifactory problem can be

decomposed and look at the structure of possible subproblems resulting from decomposition.

6.1.1 Transport problem

F number of factories, each indexed with superscript i

R number of shared raws, each indexed with subscript j

D number of depots, each indexed with subscript k

Ci
jk cost of flow wi

jk

wi
jk total mass flowing to factory i of shared raw j from depot k

yjk total mass of shared raw j leaving depot k

zi
j total mass that factory i is supplied of shared raw j

Table 6.1: Structural parameters and other parameters (all upper case) and variables (lower
case) used in transport problem

total depot
raw use

flow

at cost

D depots R shared raws F factories

k=1

total factory

j=1

i=1

raw input

wi
jk

Ci
jk

zi
j

yjk

Figure 6.2: Ex1 transport problem and factories

Table 6.1 defines the parameters and variables used in the transport problem. Note that

the transport problem is modelled with mass flow variables, not flow proportion variables as

are used to model each factory. Figure 6.2 shows the Ex1 transport problem, which is a typical
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transport problem. We can think of the shared raws flowing along arcs from the depots to the

factories. Raws other than the shared raws have their costs absorbed into the factories and do

not feature in the transport problem.

The transport problem is not a self contained problem, as it is linked to the factories by the

linking constraints. If the multifactory problem is decomposed in the natural way (which we

will later define precisely as decomposition with Split 1), the linking constraints are replaced

by functions f i
j , which reward supply of the shared raws to the factories. We can then give the

full model of the transport problem after decomposition:

min
w,y,z

F
∑

i=1

R
∑

j=1

D
∑

k=1

wi
jkCi

jk +

R
∑

j=1

D
∑

k=1

fjk(yjk) +

F
∑

i=1

R
∑

j=1

f i
j(z

i
j) (6.4)

s.t.

F
∑

i=1

wi
jk = yjk j ∈ 1 . . . R, k ∈ 1 . . . D, (6.5)

D
∑

k=1

wi
jk = zi

j i ∈ 1 . . . F, j ∈ 1 . . . R. (6.6)

The objective, (6.4), contains three terms, each a large summation. The first is the total cost

of flow along all arcs. The second is the sum of any cost terms applied to the use of the shared

raws in the depots, and depends on how each function fjk charges for yjk, This depends on

the type of transport problem, and is explained further in Section 6.1.2. The third is the sum

of any cost terms applied to supply of shared raws to each factory, and depends on how each

function f i
j , charges for zi

j , which may be varied during a decomposition algorithm. This is

explained further in Section 6.1.4.

Constraint (6.5) defines the depot use y and constraint (6.6) defines the amounts supplied to

the factories z. As well as the constraints shown there are also non negativity bounds on flow,

w ≥ 0, and simple upper bounds on shared raw use in depots, y ≤ y. All the constraints are

linear hence the transport problem is linear whenever the objective is. The transport problem

can always be decomposed by shared raw, though in practice the problem is easy enough to

solve that decomposition is not necessary.

6.1.2 Test problems

We now introduce the multifactory problems that are solved in the later sections. These are

all new problems, and consist of multiple factories linked by an appropriately sized transport

problem. The two main multifactory problems are G and P. G consists of three small factories,

each of which is a part of the decomposable factory Global data (introduced in Section 4.2.5),

linked by two shared raws. P consists of twelve large factories, each of which is similar to

the Plant 1a factory (also introduced in Section 4.2.5), linked by four shared raws. These
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multifactory problems were created as examples of the type of multifactory problems that

could occur in real life.

0.4

(a)

0.8

(b)

0.4

(c)

0.8

(d)

Figure 6.3: Cost of raw in transport problem (y-axis) against total amount of each raw stored
in depots (x-axis), as a proportion of the amount desired by factories. For problem G (a), Gl

(b), Ge (c) and Gle (d)

To form problem variants we vary the transport problem, either by varying y, the maximum

mass of the shared raws available, or by varying the functions fjk that determine the cost of

shared raws in the depots. Figure 6.3 shows pictorially the costs on the raws the four different

variants used.

In a standard problem (one with no subscript on the problem name, for example G or Pe)

the total mass of each shared raw that can be supplied by the transport problem is about 40%

of the total wanted by all the factories, after which no more is available. The price per unit

of the raw is constant. In the problem variant Gl the amount of raw available is increased to

80%. In both G and Gl each function fjk makes the price per unit supply of shared raw j from

depot k constant. To form the problem variant Ge or Pe the limit on shared raw mass in each

depot of the transport problem is replaced with a soft upper bound, so extra shared raw can be

bought by the transport problem at an increased price. This is believed to better model the real

life situation, and also has the effect of limiting the range of the dual value of the shared raws,

which is of benefit when solving the multifactory problem with dual algorithms. To implement

the soft upper bound we alter the function fjk to give piecewise linear costs. The price per unit

supply of shared raw j from depot k is constant up to the soft upper bound yjk, at which point

it doubles. The further problem variant Gle combines the variants Gl and Ge by having a soft

upper bound on the total shared raw mass of 80% of the total wanted by all the factories.

We call a transport problem with identical transportation costs on all arcs (for example no

costs at all) a simple transport problem. A simple transport problem may be reformulated to

have only one depot, as if all depots have similar characteristics we can coagulate them into

one large depot. This can lead to a more effective decomposition approach. This reformulation

is done in both the multifactory problems that have simple transport problems, called Gs and

Ps.
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We have so far described the features of problem G, Gl, Ge, Gs, P, Pe and Ps. The problems

He and Je are variants of Ge which have similar factory subproblems, but vary the number of

shared raws or factories. Similarly Qe and Re are variants of Pe.

There are five further multifactory test problems, each made up of three different versions of

a highly nonlinear factory, combined with a transport problem. The different factory versions

differ in raw prices (all raws, not just shared raws), which simulates the local variations in price

of raw materials. These five problems are named according to the factories that constitute them

and the number of shared raws, so for example Sonoco97 1 is made up of versions of Sonoco97

linked by one shared raw.

problem name F R D approx total columns approx total rows
G, Gl, Ge, Gle 3 2 3 1800 1900
Gs 3 2 1 1800 1900
He 3 4 3 1800 1900
Je 6 2 3 3800 3700
Pe 12 4 4 45000 41900
Ps 12 4 1 45000 41900
Qe 12 2 4 45000 41900
Re 3 7 4 11600 10900
Sonoco97 1 3 1 3 3700 800
Sonoco97 5 3 5 3 3700 800
v1v 1 3 1 3 50 40
G1bConc 2 3 2 3 2200 2200
Sept98 5 3 5 3 2400 1400

Table 6.2: Multifactory test problems

Table 6.2 gives the number of factories, shared raws, depots in the transport problem and

approximate columns and rows in the entire multifactory problem. A similar numerical scaling

is applied to all problems.

6.1.3 Decomposition

In Section 6.2 we will solve multifactory problems by three different decomposition methods.

There is one primal method, for which we must view the multifactory problem as column-linked,

and two dual methods, for which we must view the multifactory problem as row-linked. Figure

6.4 demonstrates two ways of splitting the multifactory problem. Both of these can each lead

to either a column-linked or a row-linked form.

Split 1

Split 1 is the natural way to decompose the multifactory problem. The split comes just before

the factories, resulting in a relatively large transport problem, which was seen in model (6.4)-

(6.6) given above. With this split what ties together the transport problem and the factories

is that the mass of each shared raw supplied to a factory must be equal to the mass of the
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#cuts = FR  #cuts = RD

D=2 R=2 F=3

Split 2 Split 1

Figure 6.4: Two ways to decompose Ex1

shared raw used by that factory. This gives the linking constraints below, which are added to

the existing transport model:

zi
j = tij i ∈ 1 . . . F, j ∈ 1 . . . R, (6.7)

where zi
j is mass to factory i of raw j supplied, and tij is the mass that factory i uses of raw j.

Note that these linking constraints are separable by factory.
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1
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z3
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Figure 6.5: Constraint matrix of Ex1 with Split 1
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Figure 6.5 shows the structure of the constraint matrix of Ex1 after decomposition by

Split 1. There are three factories and a transport problem. For presentation purposes we

separate each subproblem into different parts, to draw attention to some of the variables. For

example for the first factory, F1, we have the vector of variables x1 then the shared raw usage

variables t11 and t12. For the transport problem we have the vector variables for flow and depot

use, w and y respectively, then the individual z variables for supply to each factory. The

problem has been slightly reformulated with duplication of z into new rows in the transport

problem. This is an example of goal coordination (see e.g. Wagner [1997]), where the problem

dimensionality is slightly increased so that the linking constraints are simple equalities. By

considering Figure 6.5 we see that the problem may be seen as column linked, with FR linking

columns, tij i = 1 . . . F, j = 1 . . . R, enforcing (6.7). It may also be seen as row linked, with the

FR linking rows , zi
j i = 1 . . . F, j = 1 . . . R across the bottom of the figure enforcing (6.7).

Split 2
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F3

x1 x2 x3
t1
1
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2
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11
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12
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w2

12
w2

22
w3

12
w3

22

y11y21y12y22

Figure 6.6: Constraint matrix of Ex1 with Split 2

Split 2 also breaks the multifactory problem into transport and factory subproblems, but

results in a small transport problem, that only contains the y variables (as can be seen from

the position of the split in Figure 6.4). The z variables are not needed at all in this formulation

and the shared raw flow variables w are now included in each factory instead of the transport

problem. Figure 6.6 shows the structure of the constraint matrix of Ex1 decomposed with Split

2. There is a reformulation with y duplicated into new rows in the transport problem.
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Using this split the multifactory problem may be viewed as having FRD linking columns,

wi
jk i = 1 . . . F, j = 1 . . . R, k = 1 . . .D, or RD linking rows, yjk j = 1 . . . R, k = 1 . . .D.

For problems with few depots compared to factories RD linking rows is fewer than the FR

linking rows of Split 1. In particular, for problems with a simple transport problem where all

depots are equivalent the transport problem can be reformulated to have only one depot so

the formulation shown in Figure 6.6 can be simplified to a multifactory problem with only R

linking rows. In this case the linking constraints can be written as:

yj =

F
∑

i=1

tij j ∈ 1 . . . R. (6.8)

Note that these linking constraints are also separable by factory. When solving most multi-

factory problems we use Split 1, and solve either a column linked problem with FR linking

columns or a row linked form with FR linking rows. For multifactory problems with a simple

transport problem we use Split 2, resulting in a row linked problem with D linking rows.

6.1.4 Subproblems

Decomposition by either Split 1 or Split 2 results in a (linear) transport problem and several

(nonlinear) factories. During a solve the objective to all these subproblems may be altered.

Recall that t is the subset of the x variable denoting the mass of the shared raws. The general

form of a subproblem, omitting the factory superscript i for clarity, is given below:

min
x

f(x) = cT x + λT t + f t(t) (6.9)

s.t. x ∈ X,

where c and λ are appropriately sized constant vectors, f t is a general cost function, x ∈ X are

general constraints on x. λ will later be identified as the vector of dual variables on the linking

constraints. In the objective function the first term, cT x, is the (linear) private objective of the

subproblem. The second term, λT t, (linearly) penalises or rewards use of shared raws at rate λ.

The third term, f t(t), is a general function of the use of shared raws. For the subproblem that

is the transport problem, with objective shown in (6.4), the use of the shared raws is denoted

by z, so f t can thought of as corresponding to f i
j .

Together λ and f t control how use of the shared raws affects the cost of a subproblem.

Their nature is determined by the decomposition algorithm used. Figure 6.7 shows three ways

that λ and f t can affect the cost function, for a problem with one shared raw. With Pen 1 λ

is nonzero and there is no f t term. λ alters the gradient of the raw mass response curve so the
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f

Figure 6.7: Raw mass response curve for a factory (solid line representing cT x) with three
examples of penalties that could be added to the objective (dashed lines representing λT t +
f t(t)).

minimum value of t is at t1. With Pen 2 λ = 0 and f t is a convex penalty on deviation of t from

some target t′. With this penalty the optimal value of t is at t2. With Pen 3 λ = 0 and f t is

an infinite penalty forcing the solution t = t3. In the following sections we will see subproblems

with each of Pen 1, Pen 2 and Pen3, as well as with both Pen 1 and Pen 2 together.

6.2 Solving by decomposition

In this section we introduce three solve methods for the multifactory problem, all using decom-

position. Although the solve methods are not unusual, they have not previously been applied

to the multifactory problem. The methods all assume to some extent that the subproblems are

convex, which is highly unlikely in practice. When applied to nonconvex problems there is no

guarantee of finding the global minimum, or even a local minimum. However, when applied to

problems that are only slightly nonlinear, such as G and P, the methods still give an excel-

lent chance of finding the global minimum in any one solve. In Section 6.3 we look at specific

methods for finding the global minimum of multifactory problems.

We have seen above that the multifactory problem may be viewed as either row or column

linked. This means that there are many possible approaches to solve the problem. Using the

column linked form Benders decomposition is possible. Using the row linked form we may use

dual cutting plane or augmented Lagrangian. These three solve methods are explored in the

sections below.
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6.2.1 Benders decomposition

Benders decomposition is one of a class of primal methods that can be applied to column linked

problems. An outline of Benders decomposition is given in Section 3.2. Benders decomposition

iteratively fixes the values of the linking variables to give separable subproblems, which is like

applying a penalty of type Pen 3 to each subproblem.

We applied Benders decomposition to the multifactory problem decomposed with Split 1,

which can be viewed as a column linked problem with FR linking columns. Note that here

after relaxing the linking columns the subproblems are still NLPs, so Benders decomposition

may fail. In each outer iteration of our algorithm all the cuts from each subproblem were added

together to form an aggregated cut, which was then added directly to the transport problem.

Thus the transport problem, with the addition of cuts from the factories, played the role of the

master problem.

G Gl Ge Gle H J Gs P Ps

Benders 13 17 fail

We tested the algorithm on two small and one large problem. G and Ge are almost linear

problems so Benders decomposition was able to solve them well, in 13 and 17 outer iterations

respectively, where one outer iteration is a solve of all factories and the enhanced transport

problem. P is a much larger and more nonlinear problem and did not solve well with Benders

decomposition. It failed after 67 iterations due to the nonconvexity of the problem producing

conflicting feasibility cuts in the master problem.

6.2.2 Lagrangian relaxation

In section 3.3 we introduced Lagrangian relaxation as one of the ways of solving row linked

problems. Lagrangian relaxation removes the linking rows from the problem and places them

in the objective, with costs on them. The resulting problem decomposes into subproblems that

can then be solved to update the costs on the linking rows. There are different ways of updating

the costs. In Section 6.2.3 we consider updating them by the dual cutting plane method. In

Section 6.2.4 and 6.2.5 we use augmented Lagrangian.

The Lagrangian program L(λ) is formed from the primal program F by relaxing the linking

constraint h(x) = 0 from (6.3) and placing it in the objective with penalty λ.

L(λ) : l∗(λ) = min
x

l(x, λ) = f(x) + λh(x), (6.10)

s.t. x ∈ X.

We refer to the surface caused by varying λ in l∗(λ) as the dual response curve. As the linking
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constraints are separable by factory the problem is now decomposed into separate factories and

the transport problem. These are known as the subproblems. The dual program of L(λ) is:

LD : l∗D = max
λ

l∗(λ). (6.11)

Theorem 5. l∗D ≤ f∗.

where, l∗D is the dual objective and f∗ is the global minimum of the primal problem F . From

Lemarechal [2001] page 114. The theorem says that the dual objective value is always an

underestimate of the primal objective value. If l∗D < f∗ it is said there is a duality gap. If

l∗D = f∗ then there is no duality gap and we may find the optimal objective value of F by

solving LD.

6.2.3 Dual cutting plane method

In the dual cutting plane method we solve LD by finding the λ that maximise the dual response

curve. The dual cutting plane method builds up cuts from the subproblems and places them

in a master problem, in a similar way to Benders decomposition. An outline of the method is

given in the Table below.

1 Fix the costs λ on the linking rows.
2 Solve the resulting series of smaller NLPs.
3 Add a cut to the master problem.
4 Solve the master problem, to find new costs for the linking rows.

Table 6.3: An outer iteration of the dual cutting plane method

The aim each iteration is to solve (6.10). In Step 1 we fix λ and in Step 2 solve all the

subproblems. Each subproblem i gives a dual objective li(λ) and use of shared raw j of tij .

Fixing λ like this can be thought of as applying a penalty of type Pen 1 to each subproblem. In

Step 3 summing the objective value and use of shared raws from all the subproblems provides

a linear cut which overestimates the dual response curve. The linear cuts from all iterations

form the master problem. The master problem after K iterations is shown below.

min
λ,z

z, (6.12)

s.t.z ≤ l(λ̂k) + (λ − λ̂k)ĥk k = 1 . . .K, (6.13)

λ ∈ Λ. (6.14)

We introduce a variable z to represent the objective value. The objective (6.12) is to maximize

z. The constraints (6.13) limit z to be below all the linear constraints that have been generated
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by each cut. λ̂k is the value of λ at iteration k, and ĥk the value of the constraint violation at

iteration k. When λ has dimension greater than one the constraints of (6.13) will be planes,

hence the name dual cutting plane method. The constraints (6.14) are optional constraints on

λ which are discussed further in the section below on the master problem.

In Step 4 maximising the master problem gives a new value of λ to be used in the next iter-

ation, and the process repeats. Eventually the dual response curve is well enough approximated

to find l∗D to given accuracy.

l1(λ)

λλ1 λ2

Figure 6.8: Example factory Ex2

Figure 6.8 shows the dual response curve (solid line) approximated by one linear cut (dashed

line) for the small linear factory Ex2. This problem has just one shared raw. We think of Ex2

as being the first factory subproblem of a multifactory problem.

Theorem 6. l∗(λ) is concave, regardless of whether or not f is convex.

This is Theorem 10 in Lemarechal [2001]. The theorem implies that the linear cuts that ap-

proximate the dual response curve in the master problem always give upper bounds on it.

Furthermore, as the dual response curve is concave, any cuts from suboptimal points (those

with objectives above l∗(λ)) will still be valid, though not tight. This leads to the corollary

below:

Theorem 7. Any feasible (but not necessarily optimal) solution of the subproblems gives a cut

that is an upper bound on l∗(λ).

This theorem is important as it says that even when the subproblems are not solved to global

optimality a valid cut is still generated, which may be added to the master problem. This gives

an advantage to a dual method such as this to a primal method like Benders decomposition. In

Benders decomposition it is possible that the subproblems do not provide valid cuts, even if they

are solved to global optimality. This is believed to be the reason that Benders decomposition

could not solve the large GPP in Chapter 3.
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Master problem

In each outer iteration of the dual cutting plane method the master problem is solved to find

a new value of λ. The master problem is a simple linear maximisation problem. However

the values of the λ variables suggested from one solve can be very different to the λ from the

iteration before. This can lead to slow convergence and many outer iterations. Because of

this it is common to modify the master problem to stabilise movement in λ from iteration to

iteration. This modification can also have the effect of preventing the master problem from

being unbounded, which can be a problem on early iterations when there are few cuts in the

master problem. It can also make warm starting subproblems more effective, as with little

movement in λ each subproblem is similar to the previous one solved. We give some of the

methods to stabilise λ below.

One method is to take a convex combination of the suggested λ from the most recent

iteration with the λ from the iteration that has lead to the best solution values so far (see e.g.

Wentges [1997]). Another method is to make λ the analytic center of all the cuts so far that

are considered good cuts (see e.g. Boyd and Vandenberghe [2003]). Agarwal et al. [1989] uses

simple bounds on λ to limit it to be within a range that is anticipated to contain the optimal

solution. In trust region methods these simple bounds can be moved if they become active, so

are guaranteed to contain the optimal λ. In some algorithms if a measure of progress is met

the trust region can be increased. See e.g. Marsten [1975], Kallehauge et al. [2001] or Lim and

Sherali [2006]. Ben-Amor and Desrosiers [2006] uses stabilised column generation, which when

applied to the dual stabilises the λ variables. In this method a quadratic penalty (or any other

convex penalty) is added to the master problem to penalise movement in λ away from the value

at the previous iteration (see also Lemarechal [2001], Frangioni [2002]).

Modifying the master problem to stabilise λ can be done using the general λ ∈ Λ constraint

of (6.14), and by modifying the objective. In what we call algorithm ACP1 we solve multifactory

problems using the dual cutting plane method, and stabilise λ with a fixed size trust region.

This is a constraint of the form λ − λ̂ ≤ ρ, where λ̂ is the old value of λ and ρ is a vector of

constant entries giving the trust region size. The stabilisation of ACP1 does not introduce any

curvature, so at the solution it is likely the solution found will not be primal feasible. However,

we will see that in most cases it is easy to rectify this.

In algorithm ACP2 we stabilise λ using a fixed size trust region and a quadratic penalty.

Constraint (6.14) becomes λ− λ̂ ≤ ρ and the objective (6.12) becomes min
λ,z

z +ǫ(λ− λ̂)2 where

ǫ is a vector of constant entries giving the amount of curvature. Because of this curvature

ACP2 is usually able to find a primal feasible point at the solution. Note that in ACP2 the

trust region is retained, as even with the quadratic penalty present having a trust region was

found to save iterations.
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Primal and dual response curves

The primal violation response curve for subproblem i shows how the objective value, f i(x),

varies with the violation of the linking constraints, v. The dual response curve, introduced

above, shows how the dual solution, li(λ) varies with the dual variable, λ.

f1(x)

v1v1
1 v1

2 v1
3

(λ1)

(λ2)

(a)

(v1
1)

(v1
2)

(v1
3)

l1(λ)

λλ1 λ2

(b)

Figure 6.9: Primal violation response curve (a) and dual response curve (b) for example factory
Ex2

Figure 6.9 shows the primal violation response curve and dual response curve for an example

factory Ex2, which has one shared raw. Symbols in brackets are gradients. The position of the

break points in the primal graph correspond to the gradients in the dual graph, and vice versa.

Such graphs are called conjugate graphs.

The primal graph is piecewise linear if the problem is an LP and convex if the problem is

convex. At the break points of the primal graph λ is degenerate. The feasible point, v1 = 0,

corresponds to a unique λ.

The dual graph is linear if the primal problem is linear, and is always concave, by Theorem

6. At the break points of the dual graph v1 is degenerate. The solution of the dual problem is

the highest point on the the dual response curve, which usually occurs at a break point. This

is the case in Figure 6.9(a), where the solution is at λ2. Therefore whenever the apex of the

dual graph is linear, as can commonly happen even on nonlinear problems, the primal problem

is degenerate.

Figure 6.10 shows the relationship between λ and the constraint violation v1 in Ex2. This

graph can be deduced from Figure 6.9(b). For different values of λ there is a different amount

of primal violation in the primal problem. In Figure 6.10 the optimal λ is the one that allows

v1 = 0, at which point v1 is again degenerate.
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Figure 6.10: (λ, v1) graph for the Lagrangian formulation of Ex2

Primal degeneracy

When looking at the primal and dual response curves above we saw that the primal problem

can be degenerate with the optimal λ. In this case it is almost certain that the primal solution

found will not satisfy the linking rows. This is a weakness of the dual cutting plane method.

As there is a large amount of linearity in the pooling problems primal degeneracy is expected

to occur often when solving with a standard dual cutting plane method, like ACP1. However,

in methods that a quadratic term to the objective, such as ACP2, it is possible that the dual

response curve will be strictly concave at the solution, and so degeneracy will be avoided.

Lemarechal [2001] shows that if there is no duality gap (and certain other regularity condi-

tions are met) the primal feasible solution x∗ can be extracted directly from the dual solution

after solving with dual cutting plane. If there is no duality gap it is also possible to recover

the primal feasible solution by simply adjusting some primal values in each of the subproblems

that has been made degenerate by the optimal λ.

A third method for recovering primal feasibility is to add a quadratic (or other strictly

convex) penalty to each subproblem, penalising the contribution to constraint violation from

that subproblem. With the optimal λ the subproblems are likely to be degenerate, with many

solutions with equal objective value, and a quadratic penalty can gently nudge the primal values

towards feasibility without worsening the objective value. The quadratic penalty can in fact

be added from the start of the dual cutting plane method, and included in each solve of the

subproblems while we are still finding the optimal λ. This is done by adding the term ǫ(hi)2 to

the objective of subproblem i, where ǫ is a constant parameter for the size of the penalty, known

as the curvature. With the existing λ penalties and the quadratic penalty each subproblem

now has penalties of both type Pen 1 and Pen 2.

Although we have approached it from another angle, such a quadratic penalty is identical

to a quadratic penalty added to the master problem to stabilise λ, such as in our algorithm

ACP2. With this term when ǫ is large the cuts generated at each iteration can be different to

those that would have been generated from solving with no quadratic penalty. In ACP2 we
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therefore calculate for each cut what λ would have given the resulting l∗(λ) and v without a

quadratic penalty, and add the resulting cut to the master problem.

l1(λ)

λλ1 λ2

Figure 6.11: Dual response curve to factory Ex2 (solid line), with example cuts generated by
ACP2 (dashed lines)

Figure 6.11 shows some of the cuts that could be generated when solving Ex2 using ACP2

with a large value of ǫ. The cuts are tangential to the dual response curve, so while valid are not

tight. With an algorithm like ACP1 the cuts will all be tight on the dual response curve, as in

Figure 6.8. The advantage of being able to produce all the cuts of Figure 6.11 is that the dual

response curve is no longer degenerate with the optimal λ, so there is no primal degeneracy.

The disadvantage, as we will see below, is that because the cuts are not all tight more cuts are

generally needed, so extra iterations are taken.

Results

As the dual cutting plane method is a row linked method we will therefore apply it to the row

linked form of Split 1 for most problems, using the row linked form of Split 2 for problems with

a simple transport problem. These problems have FR and R linking rows respectively.

G Gl Ge Gle H J Gs P Ps

|λ| 6 6 6 6 12 12 2 48 4
ACP1 34 25 27 43 69 64 8 >500 25
ACP2 43 28 34 41 86 91 14

Table 6.4: Results for dual cutting plane method

Table 6.4 gives the number of outer iterations to solve test problems using either algorithm

ACP1 or ACP2. Note that ACP1 does not find a primal feasible solution, though as stated

above it is easy to find a feasible point from the dual solution when there is no duality gap.

The first row of the table gives the number of λ variables, which is equivalent to the number

of shared raws and to the dimension of the master problem. The second and third rows give

the number of outer iterations to solve the problems. Problems with many λ variables took

significantly longer to solve with both algorithms. This is clear when comparing results for

G with Gs, and especially when comparing results for P with Ps. ACP1 consistently takes

fewer outer iterations than ACP2, and in fact also takes fewer total SLP and LP iterations (not
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shown). In ACP2 with the quadratic penalty the subproblems generate less cuts that are tight

in the master problem, so more iterations are needed to find the correct λ.

The dual cutting plane method (either ACP1 or ACP2) is slower than Benders decompo-

sition on the problems that Benders could solve(G and Ge). However the dual cutting plane

method was able to solve many more problems, and ACP1 was very effective in particular at

solving problems with few linking variables, namely Gs and Ps.

6.2.4 Augmented Lagrangian introduction

We now look at solving the multifactory problem by the augmented Lagrangian method. In

this section we introduce the method. In Section 6.2.5 we describe its application to the

multifactory problem. Like the dual cutting plane method the augmented Lagrangian method

is a dual method for solving row linked problems. It was introduced independently by Hestenes

[1969] and Powell [1969].

W(λ, ǫ) : w∗(λ, ǫ) = min
x

w(x, λ, ǫ) = f(x) + λh(x) + ǫh(x)2 (6.15)

s.t. x ∈ X.

Above we given the augmented Lagrangian problem derived from relaxing the linking equal-

ity constraints of F of (6.3) and placing them in the objective with a linear penalty weighted

by λ, and a quadratic penalty weighted by ǫ. The resulting objective, w(x, λ, ǫ), is called the

standard augmented Lagrangian function. When the linking constraints are instead inequalities,

g(x) ≤ 0, they must be converted to equality constraints by the addition of an extra variable.

This leads to the resulting augmented Lagrangian function, given in e.g. Rockafellar [1974] and

Fletcher [1981]:

w1(x, λ, ǫ) = f(x) + λmax(g(x),−
λ

2ǫ
) + ǫ max(g(x),−

λ

2ǫ
)2. (6.16)

Sun et al. [2005] give four different types of augmented Lagrangians for inequality constraints.

These are the essentially quadratic (w1(x, λ, ǫ), shown above), the exponential-type, the mod-

ified barrier and the penalised exponential-type. Rockafellar and Wets [1998] define a general

augmenting function as any well behaved function that has zero value when constraint violation

is zero and has greater values than this elsewhere. Huang and Yang [2003] show that the general

augmenting function has no duality gap.

From now on we consider only the standard augmented Lagrangian function w(x, λ, ǫ) from

(6.15). With this objective after decomposition all the subproblems have linear and quadratic

penalties, so the augmented Lagrangian method can be thought of as applying a penalty of
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type Pen 1 and Pen 2 to each subproblem.

The augmented Lagrangian dual program is:

WD(ǫ) : w∗

D = max
λ

w∗(λ, ǫ). (6.17)

It has been shown (see e.g. Grothey [2001] Theorems 6.1-6.4) that as long as certain conditions

hold the (global) solution to F is a (global) solution to WD(ǫ), and that the converse holds,

namely that a (global) solution of WD(ǫ) is a (global) solution to F . Thus we can solve the

original problem by solving WD(ǫ).

With the standard augmented Lagrangian function the objective is not separable, even

when h(x) is separable, due to the quadratic penalty term ǫh(x)2. When h(x) is written

in full (either as (6.7) or (6.8) depending on the decomposition) and squared there are cross

terms involving variables from different subproblems. To be able to solve the problem by a

decomposition method the subproblems must be made separable. This can be done by diagonal

quadratic approximation as in Ruszczynski [1995], or disaggregated simplical decomposition as

in Larsson and Yuan [1994]. A more common method, and the one we will use, is the coordinate

axes search, also seen in e.g. Cohen and Li Zhu [1984], Gunn [1988], Kontogiorgis and Meyer

[1998] or Nishi et al. [2005]. In this method we linearise the cross terms in h(x) around a

tentative guess at the optimal solution, for which the last solution value is used. When solving

subproblem i all shared variables ti′

, i′ 6= i, are held fixed at their last values. The method is

therefore similar to the coordinate axes search from pushing individual columns in the simplex

method, from Section 3.2.3.

We showed in Section 3.2.3 how a coordinate axes search can stall if there are break points

in the response curve. Here we are using a shared quadratic penalty that is smooth and convex,

so the coordinate axes search will not stall. The global minimum is found each settling iteration

if the subproblems are convex, else a local minimum is still found (Cohen and Li Zhu [1984]). In

Section 6.2.5 we look at replacing the shared quadratic penalty with piecewise linear sections.

These sections are dynamically updated so that they smoothly model the quadratic and the

coordinate axes search does not stall. This is motivated by the fact that SLP has proved more

effective than SQP for solving GPPs (see Section 5.1.1 of Chapter 5), hence we would like to

keep the problems linear rather than quadratic to maintain this efficiency.

The coordinate axes search may require many solves of each subproblem to settle. This

is necessary due to the non-separability of the augmented Lagrangian objective function. To

distinguish it from overall convergence, we call solving W(λ̂, ǫ) for a given (but perhaps not

optimal) λ̂, settling. Before a solve starts ǫ is set to a positive constant value. However we will

see later that it can be beneficial to vary ǫ during a solve. The problem is then solved by a

series of settling iterations. Table 6.5 gives one settling iteration of the augmented Lagrangian
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algorithm. Note that in Step 2 there are potentially many solves of each problem, before the

subproblems have settled. For purposes of comparison with Benders decomposition and the dual

cutting plane method we still refer to each solve of all the subproblems as an outer iteration.

1 Fix the costs λ.

2 Solve W(λ̂, ǫ) by minimising x. This involves solving the NLP sub-
problems, until they have settled. Each solve of all subproblems once
each is called an outer iteration.

3 Update λ, by an augmented Lagrangian update formula.

Table 6.5: A settling iteration of augmented Lagrangian method

Alternative implementations to the one given in Table 6.5 exist where x and λ are adjusted

simultaneously (see e.g. Mangasarian [1975]), and where λ is refined before the optimal x is

found (see e.g. Tripathi and Narrendra [1972]) for that λ.

In Step 3 λ is updated by any of the possible augmented Lagrangian update formulas. At

the solution to W(λ, ǫ), h will often be nonzero, despite the quadratic penalty. The value of

h in the solution indicates how λ must be moved to create zero violation. If h is being held

at the solution by the quadratic penalty, and the dual response curve is linear with no break

points between the old value of λ and the proposed new value, then the optimal λ is equal to

µHP , defined in the formula below:

µHP (x, λ̂, ǫ) = λ̂ + 2ǫh. (6.18)

This formula is well known as the standard augmented Lagrangian update formula. It can be

used to update λ using only information from the last settling (i.e. the value of h), and takes

the place of the master problem that was used in the dual cutting plane method. This form

is shown in e.g. Rockafellar [1976], Glad [1979], and Bertsekas [1982] to lead to the optimal

λ with at least linear convergence for a suitable starting point and large enough ǫ. Of course,

sometimes h is not being held at the last solution by the quadratic penalty, or the dual response

curve is nonlinear or has break points. In this case several updates using µHP are required to

find the optimal λ. We will use a modified version of this formula to update λ. Note that

the dual cutting plane with quadratic penalty method of Section 6.2.3 may be thought of as a

special case of the augmented Lagrangian method, which updates λ using information from all

previous settlings.

The standard update is repeated along with several other possible update formulas below,

the origins of which are all documented in Tapia [1977]. λ̂ is the current value of λ, hx is

the gradient of h, fx is the gradient of f(x), and H = (∇2
xxw(x, λ̂, ǫ))−1, the inverse of the

Hessian of w(x, λ̂, ǫ).
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µHP (x, λ̂, ǫ) = λ̂ + 2ǫh,

µP (x, λ̂, ǫ) = −[hx
T hx]−1hx

T fx, (6.19)

µB(x, λ̂, ǫ) = λ̂ + [hx
T Hhx]−1h,

µ∗(x, λ̂, ǫ) = [hx
T Hhx]−1[h − hx

T H(fx + 2ǫhxh)].

Tapia [1977] shows that all these update formulas can be written in the form below, where A

and D are general matrices and wx is the gradient of w(x, λ, ǫ).

µGUF (x, λ̂, ǫ) = λ̂ + [hx
T Dhx + A−1[h − hx

T Dwx].

Dual response curve

The augmented Lagrangian dual response curve is relevant for two reasons. Firstly under-

standing why dual solutions to the augmented Lagrangian are primal feasible. Secondly it gives

motivation for the proposed new λ update formula of Section 6.2.5.

(v1
1)

(v1
2)

(v1
3)

l1(λ)

λλ1 λ2

Figure 6.12: Augmented Lagrangian dual response curve of Ex2

Figure 6.12 shows the augmented Lagrangian dual response curve of example factory Ex2,

for comparison with the Lagrangian dual response curve of Figure 6.9(b). The positions of λ1

and λ2 in each graph correspond. In the augmented Lagrangian dual response curve the linear

sections, labelled v1
1 , v1

2 and v1
3 , are now separate from each other, as due to the addition of the

quadratic penalty it now requires a greater λ to have the same effect on the primal violation.

Note that in Figure 6.12 at the optimal value of λ (where v1 = 0), v1 is not degenerate.

Between each linear section is a curved section. On the curved sections the quadratic penalty

is active in affecting the constraint violation. A small shift in λ results in a small shift in v,

therefore also a shift in h and ǫh2. Thus a change in λ changes the quadratic penalty, which

is the normal state of affairs for an augmented Lagrangian method. In this case the size of h

indicates how far λ must be moved to make h = 0, so the standard λ update of (6.18) works

well.
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On the straight sections of Figure 6.12 the quadratic penalty is not active in affecting the

constraint violation. A small shift in λ will not immediately change ǫv or ǫh or ǫh2. Thus

a change in λ does not affect the quadratic penalty, so applying the standard update formula

does not work well.

Let us define the rate of curvature as the speed of turn of a curve, example x2 has a rate of

curvature of 2. by that definition the rate of curvature of each curved section is 1
2ǫ

. So increasing

ǫ has the effect of lessening the rate of curvature, hence widening the curved sections, meaning

the standard update is effective more often, and fewer settling iterations are needed to find the

optimal λ. This leads to the observation below, and gives the motivation for the proposed new

λ update formula of Section 6.2.5.

Observation 5. Augmented Lagrangian requires few settlings with a large value of ǫ.

Recall the total number of outer iterations is the number of settling iterations times the

average number of outer iterations per settling. This observation does not say anything about

the total number of outer iterations, only the number of settling iterations.

Having seen the augmented Lagrangian dual response curve we have a new interpretation

for cuts generated by the dual cutting plane with quadratic penalty method. When non tight

cuts, such as those shown in Figure 6.11, are shifted down by ǫv2, they are tangential to points

on the curved sections of the augmented Lagrangian dual response curve.

v1

v1
1

v1
2

v1
3

λλ1 λ2

Figure 6.13: (λ, v1) graph for augmented Lagrangian formulation of Ex2

Figure 6.13 shows the relationship between v1 and λ in the augmented Lagrangian for-

mulation of Ex2, for comparison with their relationship in the standard Lagrangian shown in

Figure 6.10. In the augmented Lagrangian graph there are diagonal slopes where there were

vertical sections before. Each slope has gradient proportional to 1
ǫ
. On these sloped sections,

including the one with the optimal λ, h is not degenerate. The absence of primal degeneracy

is an advantage of augmented Lagrangian over standard Lagrangian.
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Size of quadratic penalty ǫ

The quadratic penalty is what separates augmented Lagrangian from standard Lagrangian. We

consider first the effect of adding a quadratic penalty, then the importance of the size of the

penalty.

There are the three benefits to having a quadratic penalty. Firstly, as we saw above when

considering the dual response curves, a quadratic penalty can mean that the primal solution is

not degenerate. Secondly, the linking constraint violation is an indicator of the pressure against

the quadratic penalty, which indicates how to update λ.

f

f∗

l∗D

h

(a)

f

f∗

W ∗

D

h

(b)

Figure 6.14: Primal-dual response curve (solid lines) and Lagrangian approximations (dashed
lines) for example problem

Thirdly, as mentioned by Hestenes [1969], Rockafellar [1974], Mangasarian [1975] and Bert-

sekas [1982], by choosing ǫ above some constant a problem can be made convex around the

solution, removing the duality gap. We call this constant ǫmin. Figure 6.14, adapted from

Grothey [2001], shows the relationship between f and h, which we refer to as the primal-dual

response curve, for an example problem. In Figure 6.14(a) a standard Lagrangian penalty

has been applied. At the optimal value, where h = 0, there is a duality gap between the

Lagrangian penalty and the primal-dual response curve. In Figure 6.14(b) an augmented La-

grangian penalty is applied to the same problem. If ǫ ≥ ǫmin, as it is here, there is no duality

gap. The diagram shows pictorially that the more concave the relationship between f and h

is at the solution the larger a value of ǫ is needed. In Bertsekas [1982] ǫmin is shown to be the

size of the largest negative eigenvalue of the Hessian of l(x∗, λ∗).

We now consider the importance of the size of ǫ. Although it has no effect on theoretical

convergence (as long as ǫ ≥ ǫmin), the size of ǫ can have a large effect on speed of convergence.

Many augmented Lagrangian algorithms heuristically increase ǫ every settling iteration, see

e.g. Miele et al. [1971], Tapia [1977], Gunn [1988], Kontogiorgis and Meyer [1998] and Larsson
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and Yuan [1994]. In Glad [1979] and Conn et al. [2000] after each settling iteration either λ is

updated, or ǫ is increased.

By Observation 5, large values of ǫ can lead to fewer settling iterations, as each time λ is

moved it is moved more substantially. However, in Hestenes [1969] a large value of ǫ is shown

to be undesirable when working by hand as it causes rounding errors. In modern solves a large

ǫ is also undesirable as it can cause ill conditioning leading to numerical errors. Furthermore,

when using a coordinate axes method, a large quadratic penalty constrains each subproblem

to be close to its previous solution, causing small steps and slow settling (recall settling is

solving W(λ, ǫ) for a given λ). This leads to the observation below, which can be seen as the

counterpart to Observation 5.

Observation 6. Each settling iteration takes many outer iterations with a large value of ǫ.

Observation 5 suggests a large value of ǫ should be used, as it means few settlings are

required. Observation 6 suggests a small value of ǫ should be used, as each settling iteration

then requires few outer iterations. This conflict is the motivation for the new augmented

Lagrangian update formula of Section 6.2.5.

6.2.5 Augmented Lagrangian algorithm

This section describes the algorithm, called AAL1, that we use to solve the multifactory prob-

lem. We use the standard augmented Lagrangian function and a modified form of the standard

update for λ. Although augmented Lagrangian is not a new solution approach we use some

novel modifications here.

For most multifactory problems we use the row linked form of Split 1, and linking constraints

of the form of (6.7). For multifactory problems with simple transport problems we use the row

linked form of Split 2, and linking constraints of the form of (6.8). In this case each linking

constraint features variables from all the factories, so each settling iteration may take many

outer iterations.

We solve the transport problem then we solve all the factories, then repeat this cycle of

1 + F problems until settling, at which point λ is updated. We solve each subproblem by the

SLP solver Slp5, with a fairly loose tolerance on convergence. λ is initialised by setting it to

the smallest value that could ever be optimal. t is initialised by sharing out the maximum use

of each shared raw equally among the factories. ǫ is typically initialised at a value of 1, and

increased by a factor of 1.2 each outer iteration.

There are three innovations in the algorithm, compared to a standard augmented Lagrangian

algorithm. The first two concern updating λ, the third one is to replace the quadratic penalty

in the subproblems with piecewise linear sections. These innovations are explained in the two

subsections below. We then analyse the efficiency of the algorithm and present results.
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Updating λ

The first innovation that we use in algorithm AAL1 is a new update formula for λ. This is a

change to Step 3 of the algorithm given in Table 6.5. This aims to get the benefit of few settling

iterations that occurs with a large ǫ, without any of disadvantages.

min
t

− 100t1 + 80t2 (6.20)

s.t. t1 − t2 = 0

s.t. 0 ≤ t1, t2 ≤ 1.

To motivate the new update we give an example where the standard update does poorly.

Ex3, shown above, is a simple linear problem with two variables, each with objective costs

and simple bounds. The only constraint is one that links the two variables, h = t1 − t2 = 0.

In keeping with the notation of the multifactory problem we distinguish the variables with

superscripts, rather than subscripts, so we can think of t1 and t2 as being two variables from

different subproblems. We form the augmented Lagrangian model of Ex3 by relaxing the

constraint and adding both a linear and quadratic penalty on its violation to the objective.

The resulting problem is:

min
t

− 100t1 + 80t2 + λ(t1 − t2) + ǫ(t1 − t2)
2

(6.21)

s.t. 0 ≤ t1, t2 ≤ 1.

The optimal solution to (6.21) is t1 = t2 = 1, with λ anywhere between 80 and 100 giving this

solution. We consider solving Ex3 using augmented Lagrangian, starting with λ = 0.

Firstly, suppose we use the standard update and a fixed value of ǫ = 1. In the solution

to each subproblem t1 = 1, t2 = 0, so the simple bounds, not the quadratic, are active in

constraining h. Thinking of Figure 6.12, this is finishing on a straight section of the dual

response curve, where we have seen that the standard update does not do well. On successive

updates λ goes 0, 2, 4, 6, . . . , 76, 78, 80, taking 40 iterations to converge.

Secondly suppose we instead use the standard update and a fixed value of ǫ = 50. The

optimal λ is found in one iteration. At the solution to the first t2 subproblem t2 = 0.2, away

from its simple bounds as it is being held by the large quadratic penalty. Thus h has been

constrained by the quadratic penalty. Using a large value of ǫ has widened the curved sections

of the dual response graph, so the start point λ = 0 now falls on a curved section, for which

case the standard update works well.

Thirdly we consider using a new update formula, µHP2, that uses hD, the dual of the linking
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constraint. For the decomposition of Ex3 hD is given by the smaller of the dual costs on t1 and

t2.

µHP2(x, λ, ǫ) =λ + 2ǫh + hD. (6.22)

hD is zero when at least one variable is being held by the smooth quadratic penalty, in which

case the standard update formula will already work well. However, when neither variable is

being held by the quadratic penalty, hD is a substitute for measuring what the pressure would

be on the quadratic penalty if it was active. In this case using the dual cost replicates the

effect of large ǫ, allowing µHP2 to move λ further and improve the speed of the solve. If we

use µHP2 then even with a fixed value of ǫ = 1 the optimal λ for Ex3 is found in one iteration.

Solving the multifactory problem G takes 19 outer iterations using AAL1 with µHP , and 16

outer iterations using AAL1 with µHP2.

It is a feature of some decomposition algorithms to solve some early subproblems only

approximately, as long as some measure of progress is made (see e.g. Ruszczynski [1995],

Larsson and Patriksson [1995]). This is a reasonable approach as in early settling iterations

when λ is not close to optimal the exact value of the subproblem solves is not so important. Thus

the second innovation in AAL1 is to limit each settling iteration to just one outer iteration,

regardless of whether or not x has settled. This is a change in Step 2 of the augmented

Lagrangian algorithm of Table 6.5. Although there is a potential risk that in doing so we may

not make a good update of λ, in practice this innovation worked well. For example, solving

the multifactory problem G takes 39 outer iterations using AAL1 without limiting the settling

iterations, and 16 outer iterations when settling iterations are limited to one outer iteration

each.

Modelling quadratic penalty

Each subproblem is an NLP, which we solve by repeatedly linearising the NLP in an SLP

algorithm. With each linearisation the quadratic penalty of the augmented Lagrangian becomes

just a single tangent line, which only has the correct gradient at the point of linearisation.

The third innovation in AAL1 is to replace the quadratic penalty in each subproblem with a

piecewise linearisation (PL), which can model the quadratic penalty more accurately than a

single tangent line. We use a PL with five sections, spanning the trust region from xi − ρ to

xi +ρ for each variable xi. The sections are of equal size, and the central of the five sections has

the same gradient as the quadratic at the point where the linearisation is formed. Using a PL

with more sections will more accurately model the quadratic curve, and decrease the number

of SLP iterations, but will also increase the number of LP iterations.

An interesting alternative spacing of the sections, that is not yet used in AAL1, is to place
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Figure 6.15: Solution at break point of PL sections

a break point at an estimate of t∗, the optimal value of t. This means that in the next LP solve

t can go directly to what is believed to be the optimal value. Consider the PL shown in Figure

6.15. If t finishes at the edge of the linearisation, then the best estimate for t∗ is simply t̂, the

last value of t. However, if t finishes at a break point between two sections, as in the diagram,

t∗ can be estimated from the mid points of the sections adjacent to the solution, m1 and m2,

and the size of the duals on those sections, d1 and d2.

t∗ ≃
−d1m2 + d2m1

−d1 + d2
. (6.23)

Using a spacing of sections that has a break point at the estimate for t∗ allows rapid convergence

of the SLP when the estimates are correct, as was often found to be the case in limited testing.

This spacing of sections can also be useful in algorithms that terminate the SLP after only a

few iterations, as it can be used to improve the values of the shared raws found at the end of

each SLP solve.

Results

We now present results for solving multifactory problems by the augmented Lagrangian algo-

rithm AAL1, described above. For the large Pe problem we also look in more detail at the

progress of a solve, and compare the total work required with the total work required by a

direct solve by SLP with no decomposition.

Table 6.6 gives results for the small test problems (before the line), then the large test

problems (after the line). For each problem we restate the problem dimensions, including the

size of λ, which is equivalent to the number of shared raws. We give the number of outer

iterations of AAL1, the final objective value and the error in this objective value. These errors

are due to the large quadratic penalty that is present at the end of the solve, which force the

linking constraints to become satisfied and the problem declared optimal without having found
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F R |λ| outer iterations objective value error
G 3 2 6 16 45.179 0
Gl 3 2 6 19 43.067 0
Ge 3 2 6 11 45.033 -0.002
Gle 3 2 6 18 43.067 0
Gs 3 2 2 18 42.408 0
He 3 4 12 31 45.993 0.005
Je 6 2 12 30 65.251 0.002
Pe 12 4 48 35 239.18 0.02
Qe 12 2 24 13 228.55 0.02
Re 3 7 21 25 64.794 0.02

Table 6.6: Results for AAL1

the absolutely correct λ. Although it is possible to modify AAL1 so it continues until the

errors are reduced, this takes many more outer iterations. Note that only the outer iterations

are given, because of the quadratic penalty making the problems more nonlinear AAL1 tends

to take slightly more SLP and LP iterations per outer iteration than the other methods.

The problem versions that are the same size as each other, but have different ways of

supplying the shared raws (G, Gl, Ge and Gle), all solve in a similar number of outer iterations.

Among all problems the ones with more λ variables tend to take more outer iterations, though

the number of outer iterations is not much longer for the larger problems, which suggests that

AAL1 scales well with problem size.

We now summarise results for the three decomposition methods that we have used on

the multifactory problem. Benders decomposition was unable to solve large the problems.

The dual cutting plane method solved all problems, and was very fast for problems with few

linking variables, namely Gs and Ps. But for large problems with many shared raws augmented

Lagrangian was by far the best method.

Figure 6.16 shows more details of the AAL1 solve of Pe. Figure 6.16(a) shows the dual

objective l∗(λ) initially increasing as λ is optimised, then decreasing fractionally as the problem

becomes primal feasible. Figure 6.16(b) shows the infeasibility, defined as the maximum distance

between transport supply and factory use for any shared raw. The tolerance of infeasibility of

linking constraints before we declare optimality is 10−3 (with infeasibility of −0.710−3 at the

solution). Figure 6.16(c) shows the value of λ for the first factory. The λ variable for the

second shared raw (labelled as f1t2) is the largest and takes the longest to converge, which is

typical across all twelve factories, In fact solving Pe without this shared raw takes only eight

outer iterations, compared to 35. Figure 6.16(d) shows the supply and demand of Raw 1 (top

two lines) and Raw 2 (bottom two lines) from transport problem to Factory 1. Raw 2, which

corresponds to the large λ variable in Figure 6.16(c), takes a long time to get feasible. As it

becomes feasible the values for the other shared raw also move.

We now wish to compare the time taken to solve the multifactory problem by augmented

Lagrangian with the time taken to solve by a direct solve. We focus on the largest and most
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Figure 6.16: AAL1 solve of Pe, showing objective l∗(λ) (a), infeasibility h (b), λ for factory
one (c), t for factory one (d)
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significant test problem, Pe. In order that we can properly compare the augmented Lagrangian

and direct solve we must estimate the time in each solve that is spent in overheads, such as

reading in and out of files. Although some overheads are unavoidable almost all of the time

of a solve should be spent solving LPs, so as a guide to the efficiency we calculate the amount

of time of each solve in EMSOL. By isolating the time for EMSOL for the whole solve time

we arrived at the figures of 8% approximate efficiency for the augmented Lagrangian solve and

70% approximate efficiency for the direct solve. The reason the augmented Lagrangian solve

is so inefficient is because the SLP solver spends a significant amount of time in each SLP

solve calculating the gradients of the nonlinear constraints, and there are many (small) SLPs

to be solved in the decomposition. A specialised solver like Integra 1, which recognises the

constraints of the pooling problem and automatically calculates the gradients, would be much

more efficient. Although Slp5 is also used for the direct solve as there is only one (large) SLP

to solve here the proportion of time getting gradients is much smaller.

outer iterations SLP iterations LP iterations (adjusted) time
Direct solve - 10 70,000 390
AAL1 35 1,300 57,000 87

All the small multifactory problems solve quickly with a direct or decomposed method, so

no comparison of times is given. In the table above we compare the solve of Pe with a direct

solve and with AAL1. AAL1 takes many more SLP iterations than the direct solve, though

almost all of these are warm started, so require very few LP iterations. In total AAL1 takes

about as many total LP iterations as the direct solve. This indicates that in fact AAL1 is doing

considerably less total work, as each LP iteration in AAL1 is on a far smaller LP than an LP

iteration in the direct solve, as it is on a subproblem and not the whole multifactory problem.

The times, adjusted to reflect the efficiency estimates for each code, reflect this, with AAL1

much faster than the direct solve.

6.3 Finding global minimum

All of the previous methods we have seen to solve multifactory problems; Benders decompo-

sition, dual cutting plane method, augmented Lagrangian and direct solve by SLP, work best

when the problems are convex. When the problems are nonconvex there is a danger of the

solution finding only a local minimum, or even failing to converge. These local minima could

have considerably worse objective than the global minimum (though we found all the local

minima were close in objective value in the GPP test problems of Chapter 5 shown in Figure

5.6 and Figure 5.7).

In Chapter 5 we discussed how many solves from random start points are needed to give a

good chance of finding the global minimum of a GPP. In this section we give two new algorithms

that actively attempt to find the global minimum of multifactory problems.
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The GPP and multifactory problems are both NLPs. There are various methods to find

the global minimum of an NLP, outlined in Archetti and Schoen [1984]. In space covering

techniques (also called spatial branch and bound) the solution space is subdivided and local

solves are done on many of the the subdivisions, which eventually guarantees to find to global

minimum. In a scatter search method the chance of finding the global minimum is increased by

generating many random start points and performing local optimisation from the best of these.

Rotondi and Drappo [1995] describe a scatter search method as having four stages. In the

sampling stage initial sample points are generated. In the classification stage sample points are

classified as either promising or not. In the local search stage a local optimisation is performed

from promising sample points. The stopping stage determines when to stop the algorithm.

As an aside, we can view the Integra 1 algorithm as a sort of degenerate scatter search,

with the four stages above. Sampling consists of generating random start points for each of the

many solves in a run. Classification is trivial in Integra 1; all random start points are selected

to be locally optimised from. Local search is by SLP, and stopping is after a fixed number of

solves are completed, though alternative stopping rules were discussed in Section 5.4.1.

We now introduce two new algorithms to find the global minimum of a multifactory problem.

These are both scatter search methods, that categorise sample points using the idea of clustering

(Torn [1976]). The purpose of clustering is to recognise which start points in the solution space

lead to the same local minimum, to avoid having to do random starts from all of them. Similar

methods to avoid redundant solves are seen in Rinnooy Kan and Boender [1987] and Locatelli

and Schoen [1999].

Cluster

A cluster, in the context of the multifactory problem, is a section of the solution space for a

factory. We can think of each cluster as being a factory local minimum and all the point close to

that local minimum. A representation is a particular instance of a cluster, so is a specific value

for the variables of the factory. A cluster combination is a choice of one of the possible clusters

for each factory. The clusters are so defined so that a multifactory solve from a given cluster

combination will lead to a given local minimum, independent of the choice of representations

for each cluster.

We make two assumptions; firstly that we can group the different factory solutions into

clusters based on solves of the multifactory problem, and secondly that a solve warm started

from a cluster combination will finish with each factory in the same cluster it started in. If these

assumptions do not hold our methods may still have value, and by using them we may still see

an improvement on simply doing repeated random start solves of the multifactory problem. We

think of the clusters for each factory as equivalence classes that partition the solution space, so

every solution point is a member of one and only one cluster. Figure 6.17 gives a (hypothetical)
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Figure 6.17: Example 2D solution space broken divided into clusters

division of the solution space into clusters for a problem with only two variables. Depending

on where the start point is in the space a different local minimum will be reached.

Both the algorithms we introduce algorithms are novel in relying on the near separability

of the multifactory problem into factories, so that it can be decomposed. In Section 6.3.1 we

describe an algorithm intended for problems with few shared raws. In Section 6.3.2 we describe

a less exact algorithm intended for problems with many shared raws, which are therefore more

difficult.

6.3.1 ILP model algorithm

The ILP model algorithm attempts to find the global minimum of multifactory test problems.

Although effective on small test problems this algorithm is not very practical, and is intended

mostly as an introduction to the more useful algorithm of the next section.

We attempt to identify all the clusters of each factory, and find the associated shared raw

response curve for each of them. We call these the local response curves (LRCs) of a factory.

These can then be combined (as we will see below) to form what we call the global response curve

(GRC) of a factory, which completely describes the factory. When the GRCs of all the factories

are combined with the entire transport problem it gives a model for the entire multifactory

problem. This model can then be solved, and may give the global minimum to the multifactory

problem, or at least suggest the correct cluster of each factory, which can then be used as a

warm start point for a new NLP solve. Table 6.7 gives an outline of the algorithm.

1 Find LRCs for each factory.
2 Combine these to find GRC for each factory.
3 Add GRCs of each factory to transport problem, and solve this ILP

to find a cluster combination.
4 Warm start the original NLP from this cluster combination.

Table 6.7: ILP model algorithm
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In Step 1 finding all the clusters and their associated LRCs can be time consuming, so is

worthwhile only when there are relatively few shared raws. For some factories the LRCs may

be known in advance, if for example similar problems have been solved in the past. If they are

not known one method to find them is to solve the factory many times, each time fixing the

values of the shared raws at different sample values, and record the objective value and basis

at each points. Joining up points with similar bases gives a linearised approximation of the

LRCs, which is used in practice. If the LRCs are convex they can be modelled linearly, if they

are concave then integer variables are used.
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Figure 6.18: Five LRCs (a) and GRC (b) for Sonoco97 from using algorithm ALC1

In Step 2 we combine the LRCs. We developed an algorithm, ALC1, to find the GRC for

a factory out of the LRCs, for problems with one shared raw. Figure 6.18(a) shows five LRCs

for Sonoco97 (for one shared raw). Each LRC has a different local minimum. There are points

on each of the LRCs that are never optimal, as the other response curve uses the same amount

of raw with lower objective value. Figure 6.18(b) shows the GRC, formed from taking sections

from each of the LRCs. The GRC model will contain any integer variables that were required

to model concave LRCs, as well as possible extra integer variables for new concavity that has

been introduced. The GRC model is an ILP approximation of the actual NLP response curve.

If it is accurate a GRC like Figure 6.18(b) is an excellent model for a factory. The factory

is reduced to being of dimension equal to the number of shared raws (one in the case of Figure

6.18(b)). The GRC is similar to the master problem of Benders decomposition, but here we

have the distinct advantage that our small model of each factory can be nonlinear.

In Step 3 we combine the ILP model for each factory with the entire transport problem

to give an ILP that approximately models the whole multifactory problem. The value of the

integer variables at the solution to this ILP gives a cluster combination for the multifactory

problem. In Step 4 we warm start the original NLP from this combination. This can lead to

the global minimum, if the clusters are well modelled and so the approximate ILP solution is
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Figure 6.21: LRC for one factory of G1bConc 2

Test problems

For three multifactory problems we modelled the LRCs of each factory, then modelled and

solved the whole multifactory problem as an ILP. In each case the LRCs were found by a

heuristic examination of each problem (not our algorithm ALC1). Figure 6.19 shows two LRCs

for each of the three factories of Sonoco97 1. For each factory we show only the two LRCs that

are not dominated by any others. The GRC is therefore made out of these two LRCs for each

factory. Figure 6.20 shows the concave response curves to all three factories of v1v 1. Each

response curve can be divided into two linear sections, which each correspond to one LRC.

Figure 6.21 shows the two dimensional response curve to one of the factories of G1bConc 2.

This multifactory problem has two shared raws. Although not apparent in Figure 6.21, the

response curve is concave in both directions. As there are two shared raws for this problem we

model the LRCs with linear panels, rather than linear sections.

Results

For all three of these problems solving the ILP gave the correct cluster combination, and when

the original NLP was warm started from this combination the global minimum was found. The

NLP solve warm started from the chosen cluster combination was very quick compared to an

NLP solve from a random start point. Rather than just warm starting from the chosen cluster

combination, the ILP can also be forced to generate other cluster combinations, which can also

be warm started from to see if they give a better solution to the NLP.
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6.3.2 Recombination algorithm

The recombination algorithm is a second new algorithm to find the global minimum of multifac-

tory problems. In the recombination algorithm we do not attempt to identify all the clusters for

each factory. Instead we find just a few of the clusters by performing some number of random

start NLP solves of the multifactory problem, and extracting the factory solutions each time.

Further solves of the multifactory problem are then done, warm starting from distinct cluster

combinations. Table 6.8 gives an outline of the algorithm.

1 Solve multifactory problem several times from random start points.
This is the sampling stage.

2 Extract factory clusters from multifactory solves and give them scores.
This is classification.

3 Warm start multifactory problems from promising cluster combina-
tions. This is the local search stage.

Table 6.8: Recombination algorithm

This method should have two advantages over simply doing repeated random start solves.

Firstly warm starting from distinct cluster combinations saves on redundant multifactory solves

which lead to the same local minimum. Secondly with a good merit function for choosing which

cluster combinations to start from good local minima can be found. The potential disadvantage

of this method is that by combining a limited selection of clusters we may only cover a small

portion of the total solution space.
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Figure 6.22: Best objective value found so far on example runs of Sept98 5

Figure 6.22 shows the decrease in best objective value for three example runs of a test

problem. In each case there are six random start solves followed by 24 warm start solves. Two

of the three runs finish with a point close to the known global minimum of 36.5691, and one

does not.

In the recombination algorithm Step 1, the sampling stage, consists of several random start
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solves of the multifactory problem, to find some of the different clusters for each factory. Any

solver can be used, here for convenience we use a direct solve, applying SLP to the undecomposed

problem. For larger test problems a decomposed solve might be necessary.

Step 2, the classification stage, extracts the individual factory solutions from each multifac-

tory solve and assigns them to a cluster based on their similarity to previous solutions to that

factory. We must therefore test each factory solution to see if it belongs to the same cluster

as any previous factory solutions. To classify the factory solutions we first get a minimal char-

acterisation of them. There are many equality rows in each factory, which define redundant

variables. In fact the flow proportion variables, which measure the proportion of flow each

bin gets from its inputs, completely describe a factory solution (see Section 5.2.1 where we

eliminate all but the flow proportion variables). When comparing two different solutions to the

same factory it is therefore only necessary to look at the values of the flow proportion variables.

Some factories have symmetry in the bin network, for example in Sonoco97 the six mixing bins

can all substitute for each other. Therefore before comparing factory solutions we permute the

variables so that the mixes are in a standard order, ordering them from heaviest to lightest.

This makes it possible to detect a similar factory solution that is merely a permutation of a

previous solution. The alternative to ordering the variables to a solution is to add symmetry

breaking constraints to the multifactory model before solving, to ensure the mixes finish in the

standard order. This is less desirable than ordering the solutions, as the symmetry breaking

constraints can lead to problems that are harder to solve. Symmetry breaking constraints are

used in the silo problem of Chapter 7.

The permuted flow proportion variables give a minimal characterisation of the factory solu-

tion. There are then three tests to see if a factory solution is of the same cluster as a previous

factory solution. These tests compare each factory solution with all the previous solutions to

that factory. If any of the three tests is passed we declare the factory solution to belong to a

previously seen cluster. If the factory solution does not match any previous solutions it becomes

the first member of a new cluster.

The first classification test is comparing the values of the flow proportion variables. Any

time flow proportion variable xi
j from factory solution i and xi′

j from factory solution i′ are

not both zero or not both nonzero that is counted as one difference. If there are few enough

differences between them the solutions are deemed to be from the same cluster. This test gave

decisive results on the problems tested; typically when factory solutions were from different

clusters there were 50 to 100 differences, when they were the from the same cluster there

were only 0 to 10 differences. The second classification test is measuring the size of the sum of

differences between factory solutions i and i′,
∑

j |(x
i
j − xi′

j )|. If the sum is small enough factory

solutions i and i′ are deemed to be from the same cluster. The results of this test are usually

closely correlated to the results of the first test. The third classification test is comparing the

contribution to the objective value, and the mass of each of the shared raws, of each factory
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solution. If there is a small enough difference between the objective value to factory solutions i

and i′, and a small enough difference between the mass of shared raws of factory solutions i and

i′, then the solutions are deemed to be from the same cluster. For multifactory problems with

only one shared raw this test was able to group many factory solutions into the same cluster.

For each of the classification tests there are user defined parameters for the thresholds of

when to declare two factory solutions to be from the same cluster. If the parameters make

it very easy to put factory solutions into the same cluster, there is a risk of overclassifying,

which leads to a few clusters each of which is large. Similarly the parameters can lead to

underclassifying, which leads to many clusters each of which is small. Consider the solution

space of Figure 6.17. An example of overclassifying is if points from Clusters 5 and 6 and 7 were

mistakenly believed to all be from the same cluster. An example of underclassifying is if several

points all from Cluster 1 were thought to belong to different classes. Rotondi and Drappo [1995]

mention that creating many small clusters tends to give a greater chance of finding the global

minimum, but requires more local searches.

In clustering algorithms there is a tendency for sample points (in our case factory solutions)

near the edge of the feasible region to be underclassified. This is called the edge effect (see e.g.

Ripley [1988], Rotondi and Drappo [1995]). The edge effect is not expected to be a major issue

for the recombination algorithm, and we do not account for it.

Step 3, the local search stage, comes after classification. We consider which combinations

of clusters to locally search from. In the scatter search algorithm of Ugray et al. [2007] they

choose points to locally search from based on a distance filter and merit filter ; points must be

reasonably far from other points and have reasonably promising objective values. We can view

our algorithm as having a distance and merit filter too. The distance filter is simply that we

always locally search from a cluster combination that has not yet been used as a warm start

point, and has not yet been found as a solution point (these are different tests as sometimes the

NLP solves have different cluster combinations at the solution to their start points). The merit

filter is that we only locally search from combinations with at least reasonably good scores.

The score for a cluster combination is made from the sum of the scores of each cluster.

Each cluster has a score based on the factory objective value for all the factory solutions that

were in that cluster, and the multifactory objective value for all the multifactory solutions

of which it was a part. There is a bonus to the cluster score if the cluster is part of the

current best multifactory solution found, and a penalty if the cluster is part of any infeasible

multifactory solutions. High scoring clusters from each factory are then combined to give the

next cluster combination. However, we do not always choose the clusters with the very highest

score. The most effective method found was to have some randomness in the cluster choice, so

sometimes clusters which do not have the highest scores are chosen. For a given factory there

are potentially many representations known to belong to the chosen cluster, any of which can

be used as a warm start point. In practice we take the specific warm start values from the first
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representation that was detected from the chosen cluster.

When choosing which clusters to recombine we do not consider the gradients of shared raw

use in the factory solutions, though this information is available. These gradients could be used

to determine which factory solutions will combine well in the multifactory solve, but due to the

nonlinearity of the factories the gradients are often misleading.

As we mentioned above the warm started local searches may have factory solutions of

different clusters to their warm start points. This can make the selection of good clusters less

effective, as the desired cluster combination may not be seen in the solution. However, it also

means that new clusters can be found throughout the run.

Test problems

The algorithm was used to solve the multifactory problems Sonoco97 1 (that was solved before

in Section 6.3.1 by the ILP model algorithm), Sonoco97 5 and Sept98 5. These each consist

of three highly nonlinear factories joined by a transport problem and have one, five and five

shared raws respectively. In each multifactory problem there is a limit on the mass of shared

raws in the transport problem that is less than the total masses desired by each factory, and

there is no way to buy extra of the shared raws. In terms of the four cost functions given in

Figure 6.3 these costs are similar to those shown in Figure 6.3(b).
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Figure 6.23: Mass of the shared raw in 50 random start solves of Sonoco97 1

We saw in Figure 6.19 that each of the Sonoco97 subfactories uses more than 0.5 units of

raw material one at all the local minima. However when three Sonoco97 factories are combined

and given a maximum collective allowance of 1.5 units of raw material one, they frequently do

not use the full allocation. This is the case even with very cheap costs on flow in the transport

problem. This indicates the extent of the nonlinearity of Sonoco97, and the prevalence of local

minima. Figure 6.23 shows the mass of the shared raw used in each factory and in total in 50
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random start solves of Sonoco97 1, by a direct SLP solver.
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Figure 6.24: Frequency of clusters found in 200 random start solves of Sonoco97 1 (a) and
Sonoco97 5 (b)

We now compare Sonoco97 1 and Sonoco97 5 to see the difference between problems with

different numbers of shared raws. We first look at the random start solves. For Sonoco97 1

in 200 random start solves 137 distinct cluster combinations were found, with about 30 dif-

ferent clusters for each factory. Figure 6.24(a) shows the frequency of these clusters for each

factory. The (suspected) global minimum was found twice in these 200 solves. An approximate

probability of finding the global minimum is also given by multiplying the probabilities of each

cluster finishing at the cluster of the global minimum (approximate as it assumes the factories
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are independent). For Sonoco97 1 this gives the probability of finding the global minimum as

19
200

95
200

91
200 = 2.05%

For Sonoco97 5 in 200 random start solves 195 different cluster combinations were found

with about 70 different clusters for each factory. Figure 6.24(b) shows the frequency of these

clusters for each factory. The global minimum was found once. Multiplying together the

probabilities of the clusters of the global minimum gives 17
200

17
200

54
200 = 0.20%. In conclusion the

problem with more raws has more clusters, hence the global minimum is harder to find.

Results

Sonoco97 1 Sonoco97 5
overclassifying 7 4
underclassifying 5 16

The table above shows the number of classification errors when classifying the factory clus-

ters in 200 random start solves of Sonoco97 1 and Sonoco97 5. Overclassifying is detected when

two multifactory solutions were thought to be from the same cluster combination, but were not,

as two representations were found to have different objective value or raw use. Underclassifying

is detected when two different clusters for a factory were discovered to actually be from the same

cluster. For example suppose for a given factory Solution A belongs to Cluster 1 and Solution

B belongs to Cluster 2, but that solutions A and B are determined by the classification tests

to be different enough not to be in the same cluster. A new solve of the multifactory problem

might produce Solution C, which is close to both solutions A and B (perhaps it is the midpoint

of the two). This is recorded as an underclassification error and Cluster 1 and Cluster 2 are

merged.

The table shows there are fairly few classification errors of either type. With more shared

raws underclassifying is a greater problem. This is expected as with many shared raws it is

harder to identify that two solutions belong to the same cluster.

random start solve warm start solve
SLP its LP its time SLP its LP its time

Sonoco97 1 53.8 41,249 24.7 33.8 9,325 5.8
Sonoco97 5 71.0 54,966 42.5 39.2 15,013 11.4
Sept98 5 75.2 196,403 277.2 37.7 43,342 59.3

It is hoped that using the recombination algorithm will allow warm started solves that are

quicker than random start solves, and have a better chance of finding the global minimum.

The table above compares solves with a random start and with a warm start from a cluster

combination, averaged over ten solves. For all three problems the warm started solve was about

four times quicker than the random start solve. The reduction in time is roughly proportional

to the reduction in LP iterations.
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For both Sonoco97 1 and Sonoco97 5 using the recombination algorithm with 20 random

start then 30 warm started solves found the global minimum. This suggests that the recombi-

nation algorithm is better than just doing random starts, where the global minimum was found

just twice and once in 200 runs of Sonoco97 1 and Sonoco97 5 respectively.

We now consider the larger problem Sept98 5, and how many random start solves should be

done for this problem before recombining solutions. As an example we assume there is a total

of around 4000 seconds available.

Using random starts with this time allowance about 15 solves can be done. In the table

below we give the likelihood of the best local minimum found being within a given range of the

global minimum, using information from a sample of 200 random start solves. Sept98 5 has

a huge number of local minima (see Figure 5.7), therefore for presentation purposes we group

solves in bands by objective value. The different bands are for objective values less than 0.001%

above the global minimum, between 0.001% and 0.01% above the global minimum, between

0.01% and 0.1% above the global minimum, and above 0.1% above the global minimum.

<0.001% 0.001%-0.01% 0.01%-0.1% >0.1%
Random starts 0.000 0.072 0.294 0.633

Using the recombination algorithm a good use of 4000 seconds is to perform a cycle of just

four random start then four warm start solves, then repeat this cycle twice. The table below

shows that the probability of finding good local minima is greatly increased.

<0.001% 0.001%-0.01% 0.01%-0.1% >0.1%
Recombination algorithm 0.271 0.217 0.485 0.027

6.4 Summary

In this chapter we described the multifactory problem and showed it can be decomposed as either

a row linked or column linked problem. Three decomposition methods were tested. Benders

decomposition could solve only small test problems. The dual cutting plane method could

solve larger problems, but was only competitive in number of outer iterations on multifactory

problems with simple transport problems.

Augmented Lagrangian was shown to have theoretical advantages over standard Lagrangian,

in coping with nonconvexity and degeneracy. We developed an augmented Lagrangian algorithm

AAL1 which used frequent updating of λ by a new update formula, and used piecewise linear

sections to approximate the quadratic penalty. For most problems this algorithm required

fewer outer iterations than the dual cutting plane method. For the large Pe test problem AAL1

required less estimated work than a direct SLP solve.

We developed two algorithms to find the global minimum of multifactory problems, both

exploiting the near separability of the problem. The first was able to find the global minimum
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exactly for small test problems. The second was shown to be superior to performing repeated

random start solves for finding the global minimum of larger test problems.

6.4.1 Further work

As it is likely an effective algorithm will be to some extent tailored to the problem classes

encountered, it is essential to test the proposed dual cutting plane and augmented Lagrangian

algorithms on more test problems, as they arise. The algorithms can then be improved and

eventually used to solve real problems.
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Chapter 7

Silo pooling problem

Sloten International is a company in the Netherlands which makes milk replacement fluid for

young animals. Their factory can be modelled by a silo pooling problem. Silo pooling problems,

or simply silo problems, are a new type of pooling problem that we introduce in this chapter.

They are generalised pooling problem that includes silos. The presence of silos adds integer

constraints to the already nonlinear factories and so makes them MINLPs.

In Section 7.1 we introduce the the Silo model. In Section 7.2 we introduce a new algorithm

to solve such MINLPs by decomposing them into NLP and MIP subproblems. In Section 7.3

we consider two possible extensions to the model, the silo grouping model and the unrestricted

model. These are both modelled and approximately solved.

7.1 Introduction

Raw Mix Silo Weighing Belt Product

Figure 7.1: Example silo problem Ex1

Figure 7.1 shows an example silo problem, based on the GPP Factory3 shown first in Figure

4.5. Throughout this chapter Ex1 will be used as an example silo factory. The problem
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features raws, mixes and products, all of which were previously introduced in the description

of the pooling problem in Chapter 4. Because of the mixing that occurs in the silo problems

they are nonlinear problems. The problem also features silos and weighing belts. The silos are

bins which are fed from raws and mixes, and feed into the products, via the weighing belts.

Each silo has a single fixed input, of either a raw or a mix. We call this the silo allocation. We

call the arrangement of the silos into groups the silo groupings. During the production of each

product each weighing belt can be attached to only one of the silos in each silo group, which

implies that each product can only be fed by one silo from each group. We call the choice of

silos for each product the product allocation. To enforce the conditions on product allocations

the model needs variables that can only take integer values. We call the constraints restricting

variables to be integer integer constraints. The standard version of the problem is the one

described above. In it the silo groupings and the silo allocations are fixed. More complicated

versions of the problem, where silo groupings and silo allocations can be varied, are considered

in Section 7.3.

In Figure 7.1 the silos are explicitly shown as separate bins from the raws and mixes. It is

possible that, in some factories, the weighing belts are applied directly to the raws and mixing

bins, and there are no physical silos. However, we always model silo problems with an explicit

layer of silo bins, whether or not one really exists in the factory. Silos are added specifically as

inputs to the products. Each silo has just one fixed input, so modelling in this way is not likely

to make the model any harder to solve. The advantage of modelling all problems like this is it

means the same representation can be applied to all silo problems.

The weighing belts are not included in the actual model, and are drawn in Figure 7.1 just

to highlight the silo groupings. Note that the bottom weighing belt has only one input. A silo

group consisting of only one silo like this does not cause any integer constraints. The input to

the silo, in this case a raw, can be freely chosen by all the products.

In the remainder of this introduction we give the full MINLP model of the the silo problem,

look at possible methods to solve MINLPs, then introduce the particular silo problems known

as the Sloten problems.

7.1.1 Mathematical model

Each silo problem is a GPP, with the addition of silos. We therefore model it as far as possible

using our extended q-formulation for pooling problems developed in Chapter 4. Table 7.1 gives

the structural parameters of the silo model.

R, M , S, G, P , N number of raws, mixes, silos, silo groups, products and nutrients
Gsize

g number of silos in silo group g

Gstart
g position of first silo in silo group g

Table 7.1: Structural parameters of the silo model
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Xrn of nutrient concentration n in raw r

ymn nutrient concentration n in mix m

hsn nutrient concentration n in silo s

zpn nutrient concentration n in product p

Cr cost of raw r per unit
es cost of silo s per unit
fp cost of product p per unit
tr mass of raw t

um mass of mix m

ws mass of silo s

Vp mass of product p to be made
αmr proportion of mix m input direct from raw r

βm′m proportion of mix m′ input direct from mix m

θR
sr binary indicator equal to 1 if silo s has input of raw r, else 0

θM
sm binary indicator equal to 1 if silo s has input of mix m, else 0

κpr proportion of product p input direct from raw r

ζps proportion of product p input direct from silo s

ζI
ps upper limit on proportion ζps (binary variable)

qsr proportion of silo s input direct or indirect from raw r

Table 7.2: Parameters (upper case) and variables (lower case) of the silo model

nut z
mass V
cost f

r

nut X
mass t
cost C

m

mass u
 nut y

s
cost e
nut h
mass w
raw q

p

αmr

βm′m

γpr

ζps

Figure 7.2: Silo problem Ex1 fully labelled

Table 7.2 gives the parameters and variables used in our model, and Figure 7.2 shows a

labelled example silo problem. As in the model of the GPP, for simplicity we define variables

for all possible flow between bins, even though in reality many of these flow proportion variables

will be zero. We also do not explicitly show the weighing belts here in the factory here, instead

they will be implicitly modelled by bounds on ζ.

Concerning the flow proportion variables flow into silos does not require a variable, as each

silo has only one input. The parameters θR and θM are used to indicate which is the input to

each silo. With the introduction of silos there is no direct flow from raws or mixes to products.

However, in the case of a single silo, like the bottom one in Ex2, there are no limitations on

the input of that silo going to products. Thus we consider the flow going direct from the silo
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input, here a raw, to the product, and use the label κpr. This is similar to the variable for

flow proportion to a product from a raw of γpr used in the GPP model. In real problems the

direct flow to products is always from adding of a few extra raw ingredients (not mixes) into a

product, so we only need to consider direct flow to products as coming from raws.

We state the complete silo model below in (7.1)-(7.11), omitting the simple bounds on

variables. We think of constraints (7.2)-(7.6), which describe how the silos are made out of

the raws and mixes, as being in the first part of the model, and constraints (7.7)-(7.11), which

describe how the silos are made out of products, as being in the second part of the model.

min

R
∑

r=1

Crtr (7.1)

s.t.

R
∑

r=1

αmrXrn +

M
∑

m=1

βm′mymn = ymn m′ ∈ 1 . . .M, n ∈ 1 . . .N, (7.2)

R
∑

r=1

αm′r +

M
∑

m=1

βm′m = 1 m′ ∈ 1 . . .M, (7.3)

R
∑

r=1

θR
srXrn +

M
∑

m=1

θM
smymn = hsn s ∈ 1 . . . S, n ∈ 1 . . .N, (7.4)

M
∑

m=1

αmrum +

S
∑

s=1

θR
srws = tr r ∈ 1 . . . R, (7.5)

M
∑

m′=1

βm′mum +

M
∑

m=1

θM
smws = um m ∈ 1 . . .M. (7.6)

The objective and constraints here describe the manufacture of silos from raws and mixes. This

is therefore fundamentally the same model as the GPP model for maxing products out of raws

and mixes, introduced in (4.5)-(4.11). The model here is slightly simpler though, as each silo

has one fixed input.

The objective (7.1) is to minimise the total cost, which is the sum of raw cost per unit times

raw mass. Constraint (7.2) defines the nutrient concentration in each mix, by considering the

flow into that mix from raws and the flow from other mixes. Constraint (7.3) says that the sum

of proportional flows into each mix is one. Constraint (7.4) defines the nutrient concentration

in each silo. The nutrient concentration in each silo is the same as the nutrient concentration

in whichever raw or mix supplies the silo (only one value of the binary parameter θR
sr and θM

sm

is nonzero for each silo s). Constraint (7.5) defines the mass of each raw, by considering the

flow of that raw into mixes and products. Constraint (7.6) defines the mass of each mix, by

considering the flow of that mix into other mixes and into products.
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R
∑

r=1

Xrnκpr +

S
∑

s=1

hsnζps = zpn p ∈ 1 . . . P, n ∈ 1 . . .N, (7.7)

R
∑

r=1

κpr +
S

∑

s=1

ζps = 1 p ∈ 1 . . . P, (7.8)

P
∑

p=1

Vpζps = ws s ∈ 1 . . . S. (7.9)

Constraints (7.7)-(7.9) describe the production of products from silos. Constraint (7.7) defines

the product nutrient concentration z. Constraint (7.8) is a convexity constraint on the silo

input and Constraint (7.9) defines the silo mass w.

Gstart
g +Gsize

g −1
∑

s=Gstart
g

ζI
ps ≤ 1 g ∈ 1 . . . G, p ∈ 1 . . . P, (7.10)

ζps ≤ ζI
ps p ∈ 1 . . . P, s ∈ 1 . . . S. (7.11)

Constraints (7.10)-(7.11) enforce the integer conditions. Recall that ζI is a binary variable.

Constraint (7.10) says that only one silo per silo group can feed into each product. Constraint

(7.11) bounds the flow ζ from silos to products to be less than ζI .

We refer to the silo model above as the standard silo model. Later we will introduce the

relaxed standard silo model of (7.1)-(7.9). This is the standard silo model without the inclusion

of the two integer constraints above.

7.1.2 MINLP

The silo problem is a MINLP. A survey of methods for solving MINLPs can be found in

Abramson [2002], Leyffer and Linderoth [2005] or Letchford [2009]. We give only a brief overview

here, focusing on methods that are relevant to the new solve methods we will introduce later,

which rely on the near separability of the silo MINLP into NLP and ILP parts.

Some MINLPs can be represented as bilinear programs, where the variables can be parti-

tioned into two subsets, such that when each set is fixed the remaining problem is comparatively

easy to solve. Here the partition would make the MINLP into an NLP and ILP. Yuceer and

Berber [2004] approximately solve a MINLP by heuristically fixing a subset of variables to make

the problem an ILP, which is then solved. El-Samahy [2006] approximately solves a MINLP

by first tentatively fixing all the integer variables to make the problem an NLP. He solves this,

then heuristically adjusts some of the values of the integer variables.

An interesting decomposition algorithm to solve ILPs is the feasibility pump algorithm of

Fischetti et al. [2005]. Although this is a method to solve ILPs, it is relevant to the solver
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ASR1 that we will introduce later to solve MINLPs. Feasibility pump can be viewed as a

decomposition of an ILP into the integer constraints and the noninteger constraints. In the

following description of their algorithm we use integer feasible to refer to a point that satisfies

all the integer constraints, and constraint feasible to refer to a point that satisfies the noninteger

constraints. The aim of the algorithm is to find a point which is both integer and constraint

feasible, or at least find a point which is close to feasible, that can then be used as a warm start

point for the original ILP solve.

1 Find a constraint feasible point x∗

1.
2 Round this to nearest integer point, xI

1.
3 Solve an LP to find constraint feasible point x∗

2.
4 Continue alternating between constraint feasible but integer infeasible

points x∗

k, and integer feasible but constraint infeasible points xI
k.

Table 7.3: Feasibility pump algorithm

An outline of the algorithm is given above. In Step 1 the algorithm is initialised by solving

the LP formed from relaxing the integer constraints in the ILP, to give a solution point that is

constraint feasible but typically integer infeasible. Let this point be called x∗

1. In Step 2 x∗

1 is

rounded to the nearest integer feasible point, called xI
1, at the expense of constraint feasibility.

In Step 3 the integer constraints are again relaxed and point x∗

2 is found by solving an LP to

find the closest constraint feasible point to xI
1, which is then rounded to form xI

2. This method

continues indefinitely in Step 4 until a satisfactory point is reached.

In Fischetti and Lodi [2005] they consider how the first constraint feasible point, x∗

1, is found

in Step 1. This can be solving an LP that is relaxed by augmenting each constraint with an

artificial variable multiplied by a binary variable, that measures the constraint violation. The

new objective is simply the sum of the binary variables. If any constraint cannot be satisfied

with just the original variables the artificial variable in that constraint, hence the corresponding

binary variable, becomes nonzero, and the objective increases by one. The addition of the binary

variables turns this LP (back) into an ILP. This ILP is solved using another feasibility pump,

until all integer constraints are satisfied. The artificial and binary variables are then dropped

and the resulting LP solved to find the point x∗

1, and the feasibility pump continues.

Some MINLPs can be decomposed into NLPs and ILPs, as is done in ASR1. If this is

possible the NLP can be solved by any of the methods for solving NLPs detailed in Chapter 5.

Several methods to solve ILPs are discussed in Lee [2007]. The most common (global) method

is branch and bound, which works by efficiently enumerating the solutions of many (but far from

all) of the LPs that result from fixing the integer variables. These LPs can be strengthened by

various cuts that to some extent replicate the integer constraints. Branch and bound is a global

method, meaning it is guaranteed to find the global minimum of an ILP. Versions of branch

and bound, or the similar method of branch and cut, or branch and price, can also be applied

directly to MINLP problems. If each NLP is solved to global optimality these methods can find
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the global minimum of the MINLP. We consider the solve of the ILP formed during algorithm

ASR1 in Chapter 7.2.2.

Because of their difficulty MINLPs are often solved by heuristic methods. These methods

try to generate good solutions quickly, without a guarantee of success. Heuristic methods

for MINLP include scatter search, simulated annealing, genetic and evolutionary algorithms,

pattern search and tabu search. These are all described in Abramson [2002]. Several of the

methods, such as scatter search, are extensions of methods developed to solve NLPs. An

example scatter search algorithm for MINLPs is Ugray et al. [2007], which repeatedly fixes the

integer variables at randomly generated values, then solves the resulting NLP from the most

promising integer assignments. Often heuristic methods are complemented by local improvement

methods. These attempt to refine the solution found, or at least show its local optimality,

typically by attempting to change small parts of the solution.

By converting integer constraints to nonlinear constraints an MINLP becomes an NLP. As

an example, the constraint forcing exactly one of the binary variables x1 and x2 to be nonzero

can be converted to:

x1x2 = µ,

x1 + x2 = 1,

0 ≤ x1, x2 ≤ 1,

where x1 and x2 are now continuous variables, and µ a parameter of how exactly the integrality

must be enforced, with strict integrality when µ = 0. The new nonlinear constraint is regrettably

highly concave.

For solving specific MINLPs heuristics that exploit knowledge of the problem are often used.

Current (2008) attempts by Sloten International to solve silo problems rely on the relaxed

solution being close to the optimal solution. Sloten International solve the relaxed model (an

NLP) by SLP using Integra 1, then manually allocate silos to each product to try and minimise

weighing belt conflicts. A weighing belt conflict occurs when constraint (7.10) is violated, i.e.

when for a particular product one weighing belt feeds the product more than one silo from

its silo group. This manual allocation of silos may not be able to find a product allocation

that has no weighing belt conflicts, indeed one might not exist for the given silo compositions.

Furthermore, there is a risk that after the manual allocation the products will collectively use

more than the upper bound on mass for some raws.
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R M S G P N

Ex2 11 3 6 3 8 5
Sloten1 132 12 26 6 126 73
Sloten5 128 11 31 8 101 69

Table 7.4: Silo problems

7.1.3 Test problems

Table 7.4 gives the dimensions of the problems solved in this chapter. These are all new

problems. For each problem we give the number of raws, mixes, silos, silo groups, products and

nutrients. When counting the number of silos and silo groups we consider only nontrivial silo

groups, meaning those groups with more than one silo in them. Trivial silo groups automatically

have the weighing belt allocated to the only silo, so do not require integer constraints.
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Figure 7.3: Ex2 silo problem

Figure 7.3 shows the small example silo problem named Ex2. We now look in more detail

at the real problems Sloten1 and Sloten5.

Sloten factory

Figure 7.4 shows a schematic of the Sloten factory, located in the town of Sloten in the Nether-

lands. Details such as the actual size of the plant, how frequently it is optimised, and the true

costs involved are not known to us.

Although we model and solve it as one factory, Figure 7.4 shows that it is actually made up

of two linked factories. In the preliminary factory some raws are blended into mixes, which are

then used in the main factory along with other raws to make the products. Three sets of raws
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Figure 7.4: Sloten factory

are shown. Raws in RMixSet are mostly fats. They form the mixes in the preliminary factory.

Raws in R50Set are mostly ingredients used in small quantities, such as nutrient supplements.

These raws all feed into the products via Silo 50. Silo 50 is unlike the other silos. Multiple

raws can feed into it, become mixed and feed into the products, and a different combination

can be chosen for each product. There is no mass limit and no weighing belt. This silo does not

need integer constraints, so is considered a trivial silo group. Raws in R50Set can be thought

of as feeding directly into the products. Raws in RBinSet feed into the products via several

different silos. There are a small number of raws that appear in more than one set.

2

1

(a)

1

2a

2b

(b)

Figure 7.5: Silo with multiple inputs (a) reformulated to standard form (b)

The Sloten factory has a few silos with multiple possible inputs, of which at most one can be

used by each product. This is not the standard form, so we reformulate, by duplicating silos. A

silo with k possible inputs is reformulated as k silos, each with one input. Figure 7.5(a) shows

an example problem where Silo 2 has two possible inputs. Each product can select either Silo

1, or either of the inputs to Silo 2. This is reformulated to become Figure 7.5(b), where the

three possible inputs to the weighing belt are now labelled as Silo 1, Silo 2a and Silo 2b.
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Figure 7.6: Sloten1 nontrivial silo groups

There are different versions of the Sloten problem, which have slightly different solve data.

We look at two versions called Sloten1 and Sloten5. Figure 7.6 shows the nontrivial silo groups

and weighing belts, and the inputs to the silos, for Sloten 1. When solving this problem the

silos with multiple inputs are reformulated to give multiple equivalent silos (see Figure 7.5), so

for example there are in total 13 possible inputs to the products from weighing belt five. The

six silo groups have sizes {2, 2, 13, 3, 3, 3}.

Sloten5 is a harder version of the problem. There is more flow possible between bins,

meaning there is more nonlinearity. Furthermore there are more silo groups, hence more integer

constraints. The eight nontrivial silo groups have sizes {2, 3, 13, 2, 3, 3, 2, 3}.

Weighing belt limits

When it was first described to use the Sloten problem had the additional feature of weighing belt

limits, which have since been dropped. Weighing belt limits are bounds on the flow proportion

to each product from each weighing belt. Typical weighing belt limits were something like 4%-

80%, meaning each product could only get between 4% and 80% of its mass from the selected

silo (whichever it was) on that weighing belt. The size of the lower and upper limits came

from comparing the physical speed restrictions of the weighing belt with the speed that the

products can be produced, and varied slightly between belts, but always had the twenty times

ratio between lower and upper limit. An upper limit of less than 100% meant that no product
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could get all its mass from one weighing belt. A lower limit above 0% meant that each silo

must be used either 0%, if not selected, or above some minimum threshold, if selected. This

discontinuity in allowable percentage use of silos required extra integer variables in the model.

In an early version of the Sloten problem two particular products were linked to only one

silo each. The given weighing belt limits gave an upper bound of flow proportion to the

products from any one silo of just 80%, hence the problem was infeasible. In practice 100% flow

proportion to those products was achieved by slowing the physical speed at which the product

was produced. By a similar change of relative production speeds the lower bounds on flow

proportion could be set to 0%. These changes in relative production speed are always possible,

hence the weighing belt limits were removed.

In preliminary trials we solved some versions of the Sloten problem with and without the

weighing belt limits. It was found that the weighing belt limits hardly affected the problem

difficulty, or optimal objective value. This may be at least partially because the problems had

been designed with flow proportion bounds that in many cases implicitly forced satisfaction

of the weighing belt limits. In the remainder of the chapter there is no further discussion of

weighing belt limits, which we assume have been permanently removed.

7.2 Decomposition

It was mentioned above that the first part of the model is determining the silo compositions,

and the second part is determining the product allocations. We now formally define these two

parts of the problem. This is a novel decomposition that we will later use to solve the silo

model.

Part 1

αmr

βm′m

γpr

δpm

Figure 7.7: Part 1 of silo problem Ex1

In Part 1 we drop the silos and weighing belts, and simply make products directly out of

raws and mixes. Figure 7.2 shows the first part of the problem Ex1. The silos and weighing

belts are not included. This problem is a standard GPP problem, and so has the standard GPP
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constraints of (4.5)-(4.11). Note that in Figure 7.2 flow is only possible from some mixes and

raws to some products. Which raws and mixes are accessible to each product can be controlled

in a GPP by changing the simple bounds on variables γ and δ.

We gave the full standard silo model above in (7.1)-(7.11). The Part 1 solve plays the role of

determining the silo compositions, so is like the constraints (7.2)-(7.6). Constraints (7.2)-(7.3)

are for supply to mixes. These are explicitly included in the Part 2 model. Constraints (7.4)-

(7.6) define the silo nutrient concentrations and define the raw and mix masses in terms of silo

masses. These are implicitly modelled by the Part 2 model with a similar trio of constraints

that refer to the products instead of the silos.

Part 2

κpr

ζps

Figure 7.8: Part 2 of silo problem Ex1

Figure 7.2 shows the Part 2 model. Part 2 is just the problem of choosing product allocations,

so omits the whole supply network to the silos, and consists of just the product inputs. These

inputs are the silos, through flow ζ and the associated integer constraints, and raws that can

go direct to products, with flow κ. Thus as well as the silos we include the raws that flow

directly to products. We must also include any raws in the model that have mass bounds. This

is because the product allocations could end up using a combination of silos in a manner that

violates raw mass bounds. However, not all raws need to be included in the model, only those

with mass bounds. This is indicated in Figure 7.2 by showing one of the raws with a dotted

outline, meaning it is not included in the Part 2 model.
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min

P
∑

p=1

Vpfp (7.12)

s.t.

R
∑

r=1

Xrnκpr +

S
∑

s=1

hsnζps = zpn p ∈ 1 . . . P, n ∈ 1 . . .N, (7.13)

R
∑

r=1

κpr +

S
∑

s=1

ζps = 1 p ∈ 1 . . . P, (7.14)

P
∑

p=1

Vpζps = ws s ∈ 1 . . . S, (7.15)

Gstart
g +Gsize

g −1
∑

s=Gstart
g

ζI
ps ≤ 1 g ∈ 1 . . .G, p ∈ 1 . . . P, (7.16)

ζps ≤ ζI
ps p ∈ 1 . . . P, s ∈ 1 . . . S, (7.17)

R
∑

r=1

Crκpr +
S

∑

s=1

fpζps = es p ∈ 1 . . . P, (7.18)

P
∑

p=1

Vpκpr +

S
∑

s=1

qsrws = tr r ∈ 1 . . . R. (7.19)

The full Part 2 model is given above, excluding the simple bounds on each variable. The

objective (7.12) is again to minimise the cost, defined here by the total cost of the products.

The reason for using this objective, rather than the standard objective of raw cost times mass,

is because we are not calculating all of the raw masses here, only the masses of those raws

which have mass limits. Constraints (7.13)-(7.14) are for the product nutrient concentrations.

Constraint (7.15) calculates the mass of each silo, for use in constraint (7.19). Constraints (7.16)

and (7.17) are the integer constraints. All of these first five constraints are also in the full silo

model, as (7.7)-(7.11). There are two further constraints in the Part 2 model. Constraint (7.18)

defines the price of each product (indirectly), for use in the objective function. Constraint

(7.19) defines the masses of the raws, to check that they are within bounds.

Because the silo compositions are taken as fixed in Part 2, the variables for silo nutrient

concentration, h, silo cost per unit, e and of silo input direct or indirect from raws q, are all

taken as fixed. Thus the Part 2 model (7.12)-(7.19 is linear. Because of the integer constraints

it is an ILP.

We now develop a heuristic algorithm, ASR1, that solves standard silo problems. It works

by decomposing the MINLP into the NLP of Part 1 and the ILP of Part 2. In Section 7.2.1 we

describe the algorithm. In Section 7.2.2 we look in more detail at solving the ILPs. In Section

7.2.3 we give results for solving silo problems with ASR1.
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7.2.1 Algorithm ASR1

Algorithm ASR1 is a new algorithm designed for the standard silo model. It is based on the

decomposition into Part 1 and Part 2. The Part 1 solve can be forced to follow a particular

product allocation, by imposing bounds on the flow proportions into products. So if Part 1 is

given a feasible product allocation, it can then be solved to try and improve the objective by

changing the flow into the silos, while retaining the given product allocation. Similarly the Part

2 solve can be forced to obey given silo compositions, by having the nutrient concentration, price

and proportions of each raw in each silo fixed. So if Part 2 is given feasible silo compositions

it can be solved to improve the objective by changing the product allocations, while retaining

the given silo compositions

1 Solve Part 1 NLP.

2 For the solution calculate silo compositions ĥ, silo costs w and pro-
portion of each raw in each silo q. Fix these three variables at their
current values.

3 Solve Part 2 ILP.
4 For the solution calculate maximum flows from products to raws and

mixes γ and δ. Fix these bounds.

Table 7.5: One iteration of a solve of the silo problem by algorithm ASR1

Table 7.5 gives an outline of an iteration of ASR1. We assume for now that each NLP

and ILP solve is feasible. The possibility of infeasibility, and how to start each iteration, are

discussed in the subsections below.

In Step 1 we solve Part 1. At the solution we have an objective value, and a value for the

mix compositions. As each silo has a unique input of either one raw or one mix, once the mix

compositions are known we know what the silo compositions must be. In Step 2 we fix these

silo compositions. Given the flow in the network we can also calculate the price of each silo,

and the amount of each raw directly or indirectly in each silo. These are also fixed.

In Step 3 we solve the Part 2 ILP. At the solution we get a new objective value, and a value

for the flow proportion variables between the silos and products. These flows limit each product

to receive input from at most one silo per silo group. In Step 4 we fix these product inputs. As

each silo has a unique input, limiting the flow from silos to products must also limit the direct

flow from any raws or mixes to products. We enforce this by bounding the γ and δ variables

to be zero where there is no flow allowed. Once these flows are bounded we know that the next

solve of Part 1 will continue to respect the current product allocations.

The algorithm is a coordinate axes search, alternately adjusting mix compositions in Part

1 and product allocations in Part 2. In each part 1 solve the product allocations are fixed,

and the solution reduces the objective value while retaining an integer feasible solution. The

result of a Part 1 solve is new mix compositions, hence silo compositions, for Part 2. In each

Part 2 solve the silo compositions are fixed, and the objective value is reduced while retaining
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feasible silo compositions. The result of a Part 2 solve is new product allocations, hence new

flow bounds for Part 1.

Convergence to a local minimum occurs when either part fails to produce a new solution

point. In practice this usually occurs because the ILP does not modify the product allocation,

rather than the NLP not modifying the mix composition, as product allocation is discrete

and mix composition is continuous. Once a local minima is found it is common in MINLP

algorithms to try to improve on the solution, by local improvement methods. Because ASR1 is

a coordinate axes search it is possible that the local minimum found could be improved on by

simultaneously changing both axes, i.e. simultaneously changing the mix composition and the

product allocation. Although local improvement methods were found to be effective for solving

versions of the small test problem Ex2, for the large Sloten problems it was more effective to

simply perform multiple random starts. There are therefore no local improvement methods in

ASR1.

Feasibility

We noted above that, given a feasible solution, solving each part will retain feasibility. To

ensure that we can still proceed when either part is not feasible we relax the simple bounds

on the product nutrient concentration z, by the addition of artificial variables. This technique

is similar to the one used to start the feasibility pump algorithm, discussed above, and is also

similar to the relaxation in SLP phase one, shown in (5.14). We add nonnegative artificial

variables zL and zU , that relax the original product nutrient constraints z ≤ z ≤ z:

z ≤ z + zL − zU ≤ z, (7.20)

zL, zU ≥ 0.

We add penalties in the objective for the artificial variables being nonzero. In both parts the

objective value is now the total cost of the factory, plus the penalties on artificial variables.

The penalties are sufficiently high that the artificial variables are only nonzero when there is

no other way of getting feasibility. This is reminiscent of the big M penalty method sometimes

used in the simplex method, which prioritises minimising infeasibility while also minimising

objective value. This is in contrast to the feasibility pump algorithm, where the original costs

are discarded. Each solve of either part will reduce the artificial penalty if possible. Once the

penalty is zero, it will remain zero, and a feasible solution will be retained.

It is theoretically possible that ASR1 can fail to find a local minimum when one exists. All

ILPs can always be solved if the products can have any nutrition concentration. However, it is

possible that an NLP will be infeasible even with the relaxed product nutrient constraint. This

can happen if the product allocations lead to mix conditions which cannot be satisfied even with
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use of the artificial variables. It is also possible that ASR1 can fail to converge if different local

minima are found each NLP solve. In testing though neither of these two problem situations

ever arose, and ASR1 always terminated with a local minimum.

Multiple solves

ASR1 is only a local solver, so is not guaranteed to find the global minimum. To increase the

chance of finding the global minimum we can perform multiple starts from different points. In

terms of notation we talk about doing several solves in one run of a problem. We now consider

how to generate different random start points for each solve.

If just one solve is required we can simply begin in Step 1 by solving a Part 1 model with no

restriction on the flows. This is a solve of the relaxed model, which consists of (7.1)-(7.9). This

solve gives a lower bound on the final objective value (assuming the NLP finds the same local

minimum each iteration). For other solves in the run we must find other random start points.

To do this we solve a preliminary NLP with random costs on the raws, then solve a preliminary

ILP to find the best product allocation for these random costs. These product allocations are

then fixed in the first proper NLP solve. This gives a wide range of start points.

7.2.2 Solving ILP subproblem

ASR1 requires an NLP and ILP solver. As the NLPs are GPPs the Integra 1 solver of Chapter

5 can be used. This is an efficient algorithm to find local solutions.

We now consider the solve of the ILP. An ILP is a problem that is linear, but has the

addition of integer constraints. Most solve methods exploit this similarity to LP to try and

solve the ILP by solving a series of LPs. For certain classes of ILP specialised solvers exist

(see Chapter 8). For general ILPs the most effective method to solve them is often branch and

bound, discussed briefly above in Section 7.1.2.

In this section we apply the branch and bound solvers CPLEX and BAB to the silo ILP.

CPLEX is a leading commercial solver, and BAB is a University of Edinburgh code that is

only suitable for solving small problems. Because of the expense of commercial solvers there

is interest from Sloten International in being able to solve MINLPs without ever having to use

CPLEX. We therefore consider both solving the ILP directly, with CPLEX, and using the dual

cutting plane method (introduced in Section 6.2.3) to create a series of smaller ILP problems

of the size that BAB can solve. A further motivation for using the dual cutting plane method

is that decomposition methods, such as this, can be superior for very large problem instances,

which may need to be solved in the future.

Recall the ILP model consists of the objective and constraints (7.12)-(7.19). Of these only

(7.15) and (7.19) link the products. We therefore propose decomposing the problem by product,

relaxing these two constraints. As there are lots of products there will be a large number
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of subproblems, each small ILPs consisting of the original ILP constraints with the relaxed

constraints in the objective. For each subproblem rather than summing over p each constraint

will be formed for just one value of p, call it p̂. As constraint (7.19) is only formed for raws

that have bounds, which may be only a small number of the raws, there may be few linking

constraints. This is therefore an attractive decomposition, as we expect many subproblems

with few linking constraints.

LP iterations B&B branches time
Sloten5 ILP CPLEX 2000 10 6

BAB fails
Sloten5 ILP subproblem CPLEX 14 0 0.02

BAB 29 5 0.02

Table 7.6: Comparison of CPLEX and BAB

Table 7.6 compares CPLEX and BAB on the Sloten5 ILP and on one of the Sloten5 ILP

subproblems resulting from decomposition (all the Sloten5 ILP subproblems are very similar).

The Sloten5 ILP has about 27,000 variables of which about 3,000 are integer variables. It is

solved by CPLEX in around 6 seconds, and does not solve by BAB. The CPLEX solve has

10 branch and bound branches, meaning in total just 11 LPs are solve. The quick solve of

CPLEX is attributed to the small silo groups limiting the number of possible optimal integer

allocations that need to be explored, hence limiting the number of branches. To illustrate this

we attempted to solve a version of the Sloten5 ILP where the silo group sizes were increased to

{6, 7, 2, 9, 3, 4, 2, 4, 2, 3, 2, 2}. CPLEX failed to find the solution after 600 seconds.

The Sloten5 ILP subproblems each have about 300 variables of which about 30 are integer

variables. The table shows they solve easily using either CPLEX or BAB. The total time to

solve an ILP by the dual cutting plane method is the time per subproblem solve, multiplied

by the number of subproblems, multiplied by the number of dual cutting plane iterations. The

solve of the Sloten5 ILP takes around 0.02 seconds per subproblem, has 101 subproblems, and

requires about 30 iterations. Hence the total time is about 60 seconds, which is considerably

slower than the 6 seconds required by the direct solve. However, it is possible that the dual

cutting plane method could be sped up, by warm starting the subproblems. Also it is expected

that for larger problems CPLEX may struggle, whereas the decomposition will scale well.

In this decomposition each subproblem is itself a (nonconvex) ILP. This means that it is

very likely there is a duality gap. If a duality gap does occur the integer allocation found by

the ILP may be suboptimal. A duality gap was observed on some Sloten problem versions,

and meant that a lot of work had to be done after the decomposition to find a primal feasible

solution. In ASR1 we therefore prefer the direct ILP solve by CPLEX.
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7.2.3 Results for ASR1

We solved the three new silo problems using our algorithm ASR1; Ex2, Sloten1 and Sloten5.

Note that the MINLP solvers Bonmin, FilMINT and MINLP-Fletcher were all able to (locally)

solve Ex2, but not the Sloten problems.

Ex2

This small problem can be solved to local optimality by the MINLP code MINLP-Fletcher in a

few seconds. ASR1 also solved this small problem easily. We actually solved many versions of

it with various costs and bounds in the problem data, with these costs and bounds designed to

create problems with relaxed model solutions that were very different from the integer feasible

solutions. With multiple random starts ASR1 was still able to find the global minimum of each

version, which typically had objective value about 20% above the best relaxed model solution.

Sloten1

The Sloten problems could not be solved by the MINLP code MINLP-Fletcher. Solving the

relaxed problem NLP by SLP typically took around a minute. We will see that solving to find

the integer solution by ASR1 took only a few times longer than this.

Each solve of Sloten1 with ASR1 took a small number of outer iterations, typically two to

four. With multiple random starts the best solution value found was 1.887,349, just 0.002%

above the best relaxed model solution found, which was 1,887,306.

iteration Part 1 solution Part 2 solution
1 1,887,306 1,887,351
2 1,887,349 1,887,349

The table above shows the output of the first solve of a run of solves of Sloten1 by ASR1.

The significance of this being the first solve of the run is that the first Part 1 solve is simply

the relaxed model. At the solution to this first Part 1 solve, 6 out of the 126 products have

at least one infeasible product allocation, mostly due to conflicts on weighing belt five. This

is the weighing belt with the most silos on it (recall a weighing belt conflict occurs when for a

particular product one weighing belt feeds the product more than one silo from its silo group).

The first Part 2 solve has higher objective value than the first Part 1 solve, due to the

addition of the integer constraints, then in the subsequent iteration the objective value falls.

ASR1 terminates after the ILP solve fails to find a new integer allocation. The final objective

value in this example solve was the best one found.

Sloten5

Each solve of this problem with ASR1 typically took between three and five iterations. With

multiple random starts the best solution value found was 1,831,959, 0.279% above the best
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relaxed model solution found, which was 1,826,863. Sloten5 is a harder problem to solve than

Sloten1, which is reflected in the fact that each solve by ASR1 took more iterations, and there

is a greater difference between the relaxed and integer feasible solution.

iteration Part 1 solution Part 2 solution
1 1,826,863 78,859,725
2 1,843,253 1,832,546
3 1,832,009 1,832,009

The table above shows the output of the first solve of a run of Sloten5 by ASR1. The first

Part 2 solve has a very high objective value, as to get a feasible solution 27 of the products

use artificial variables. The second Part 1 solve is feasible though and ASR1 quickly converges.

The objective value in this example solve was above the best one found.

We may make Sloten5 infeasible by including Product 36, which is usually omitted. When

this new problem version is solved by ASR1 the infeasibility is decreased each iteration, termi-

nating with what is believed to be the global minimum of infeasibility, 0.04970. This example

shows how ASR1 can be used to find the minimum of infeasibility for infeasible problems.

Overall effect of integer constraints

We now summarise how the addition of the integer constraints made the silo problem harder

than a standard GPP.

Firstly, concerning objective value, we saw above that the objective values of the Sloten

problems are very similar to the relaxed model solves. This indicates that the integer constraints

have little effect on the solution. This may in part be because some of the nutrient concentration

and flow proportion bounds given in the problem data are designed to implicitly force the

solution to the relaxed model to be close to integer feasible.

Secondly, we consider the time to solve the MINLP once with ASR1, compared to the time

to solve the relaxed model once. One solve by ASR1 includes a solve of the relaxed model,

then a few further NLP and ILP solves. The relaxed model solve is actually the most expensive

part of ASR1. The other NLP solves are all warm started, and the ILP solves are consistently

fast when using a direct solve with CPLEX. The total time to solve using ASR1 is therefore

typically only two or three times greater than the time to solve the relaxed model. The exact

ratio of times depends on how fast the relaxed model solve is, which for the Sloten problems is

highly sensitive to the solve parameters.

7.3 Model extensions

The model we have described and solved is the standard silo model. In it both the silo groupings

and the silo allocations are fixed. We now consider two possible extensions to that model.
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7.3.1 Changing silo groupings

We can form a new variant of the silo model by relaxing it such that the silo groupings can

be changed, while keeping the group sizes and the number of weighing belts the same. Each

silo still has a unique input. The advantage of changing the silo groupings is that it may allow

better product allocations. For example, consider the three possible silo groupings for Ex1

shown in Figure 7.9. Perhaps with the original grouping of Figure 7.9(a) the objective value is

hindered as many products want to use Silo 1 and Silo 2, but cannot. In the new groupings of

Figure 7.9(b) or Figure 7.9(c) they can. Note that although they appear different silo groupings

7.9(b) and Figure 7.9(c) are functionally equivalent.
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Figure 7.9: Original (a) and new (b),(c) silo groupings for Ex5

To properly model the ability to change the silo groupings involves forming the standard silo

model and adding further integer constraints. Instead we use an approximate method here. We

start with the relaxed model solution, which does not have any integer constraints so typically

has several weighing belt conflicts, and try to adjust the silo groupings to make this solution

integer feasible. We take the silo compositions as fixed and form what we call the silo grouping

ILP to minimise weighing belt conflicts. This ILP is then solved by CPLEX.

Table 7.3.1 shows the parameters and variables of the model. The parameter M is a grid

of binary variables that indicates which products want to use which silos. This determines how

the silos should be grouped to avoid weighing belt conflicts. The variable x records where each

silo moves to. We use the index s for the original silo position and s′ for the new silo position,

so for example if x14 = 1 it means the silo in original position 1 moves to position 4. The

integer variable y records the resulting number of weighing belt conflicts. Note that y is not a

binary variable, as the number of weighing belt conflicts for a given product and silo group can

be greater than one.
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S, P , G number of silos, products, and silo groups
Gsize

g number of silos in silo group g

Gstart
g position of first silo in silo group g

Mps binary parameter that is equal to 1 if product p uses silo s in relaxed
solution.

xss′ binary variable that is equal to 1 if the silo in position s moves to
position s′.

ypg integer variable that records the number of weighing belt conflicts for
product p in group g.

Table 7.7: Structural parameters and other parameters (all upper case) and variables (lower
case) of silo grouping ILP

min
x,y

P
∑

p=1

G
∑

g=1

ypg, (7.21)

s.t.

S
∑

s′=1

xss′ = 1 s ∈ 1 . . . S, (7.22)

S
∑

s=1

xss′ = 1 s′ ∈ 1 . . . S, (7.23)

Gstart
g +Gsize

g −1
∑

s=Gstart
g

Mpsxss′ ≤ 1 + ypg p ∈ 1 . . . P, g ∈ 1 . . .G. (7.24)

The silo grouping ILP model is given in (7.21)-(7.24). There are also simple bounds limiting

each variable to be nonnegative. The objective (7.21) measures the number of weighing belt

conflicts. In a perfect solution this is zero. Constraint (7.22) ensures that each silo moves

into exactly one position, and constraint (7.23) ensures that each position has exactly one silo

moving into it. The left hand side of constraint (7.24) counts the number of silos used in each

silo group by each product. If this is greater than one then on the right hand side the variable

y must become nonzero and the objective increases.

Nontrivial silo groups total
Silos on belt 2 3 13 2 3 3 2 3 31
Weighing belt conflicts 9 0 18 0 5 3 0 0 35

We solve the silo grouping ILP for Sloten5. The table above gives information about the

relaxed solution, showing for each of the eight nontrivial silo groups the number of silos on the

belt and the number of weighing belt conflicts. There are weighing belts conflicts on belts 1, 3,

5 and 6, with most of the conflicts on Belt 3. The solution to the silo grouping ILP provides

a silo grouping for which the relaxed model has no weighing belt conflicts, so is in fact integer

feasible. Thus for Sloten5, by allowing a change in the silo groupings, the objective value has

dropped 0.279% from the best standard model objective value of 1,831,959 to the best relaxed

model objective value of 1,826,863 (numbers taken from Section 7.2.3), so the whole previous
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loss which was due to weighing belt conflict has been eliminated.

We also formed a hard version of Sloten5, with the addition of 5 extra products. We call this

problem Sloten5hard. The standard silo model of Sloten5hard was found to be integer infeasible

when solved by ASR1. However, by changing the silo grouping an integer feasible allocation

can be found. Indeed, the solution to the silo grouping ILP again gives a silo grouping for which

the relaxed model was integer feasible.

When changing the silo groupings it may be beneficial to leave as many silos as possible in

their original positions, while still minimising the weighing belt conflicts. For example, of the

two equivalent groupings shown in Figure 7.9(b) and Figure 7.9(c) the second one is better, as

it moves only two silos from their original positions instead of five. We can model the number

of silos moving by adding extra integer variables to the ILP model, that detect if a silo has

moved from its original position. The objective is altered to have the twin goals of minimising

conflicts and minimising number of silos that move. These two objectives are weighted so

that the priority is still minimising conflicts. We call this the extended silo grouping ILP. The

Sloten5hard problem can be solved with the standard silo grouping ILP and the extended silo

grouping ILP. Both solves find a silo grouping with no weighing belt conflicts. The standard

ILP solve takes 0.3 seconds by CPLEX (with no branch and bound branches), but moves all 31

silos. The extended ILP solve takes 52.0 seconds by CPLEX (with 1,924 branches), but moves

only 12 of the silos.

7.3.2 Unrestricted model

Another new variant of the standard silo model is known as the unrestricted model. In this the

condition that each silo has a fixed input is relaxed. Each silo can now choose its single input

from several alternatives. This leads to further integer constraints. Note that whichever input

is chosen for a silo must be used for all of the products. In terms of the silo model given above

in (7.1)-(7.11) in the unrestricted model the indicators of silo input, θR and θM are no longer

fixed parameters but variables, with a certain θR
rs or θM

ms equal to one for the chosen input of

silo s. We call the choice of input bins for each silo the silo allocation. The unrestricted model

has a set of integer constraints for both the silo allocations and the product allocations.

Figure 7.10 shows an example unrestricted problem. All the flow proportion variables have

been labelled. α and β describe the production of the mixes. ζ determines the product allo-

cations, and is bounded by the integer variable ζI . θR and θM determine the silo allocations.

κ are the flow proportion variables for flow direct to the products from the raws. These flows

are still possible in the unrestricted model.

The relaxed unrestricted model is the unrestricted model with the omission of all the integer

constraints. Thus each silo may have multiple inputs, and each product may draw from several

silos in each group.
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Figure 7.10: Unrestricted version of silo problem Ex1

In the following subsections we attempt to solve the unrestricted model. We first try with the

branch and bound MINLP solver MINLP-Fletcher. In order to speed up the solve we create and

add symmetry breaking constraints. We then consider applying a decomposition method. We

then exploit the fact that integer constraints can be converted to (concave) nonlinear constraints

to convert the MINLP to an NLP.

Solving with MINLP-Fletcher

We noted above that commercial MINLP solvers were able to (locally) solve the standard silo

problem Ex2, but not the Sloten problems. Most MINLP solvers, such as MINLP-Fletcher, use

branch and bound, to explore different integer allocations. In silo problems many of the mixes

have identical properties, and so are interchangeable. Thus multiple different solutions can

occur, which have identical objective value and raw use but appear different as they interchange

the use of mixes. This is called symmetry. Sherali and Smith [2001] state that symmetry can

cause difficulties for branch and bound solvers, as it is inefficient for the solver to enumerate all

of the equivalent solutions.

The unrestricted problem is even harder than the standard silo problem, due to the extra

integer constraints. As well as symmetry with equivalent mixes there can be symmetry due to

equivalent silos, each with the same set of potential inputs and outputs. Furthermore there can

be symmetry between the silo groups.

Figure 7.11(a) shows the first half of an example unrestricted silo problem Ex3 with five

raws, two mixes, and four silos arranged in two groups of two. In this problem each silo can

have any input from Raw 4, Raw 5, Mix 1 or Mix 2. We denote the silo allocation in Figure

7.11(a) as (m1r4)(m2r5), meaning that Mix 1, Raw 4, Mix 2 and Raw 5 are allocated to Silos

1, 2, 3 and 4 respectively. The silo allocation in Figure 7.11(b) is (m1r4)(r5m2), which is

clearly equivalent, as the two silos in the second group have just been swapped round. The

silo allocation in Figure 7.11(c) is (m2r5)(m1r4), which is also equivalent, as this time we have

just swapped the two silo groups around. Changing the order of silo inputs within a group, like
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Figure 7.11: First part of unrestricted problem Ex3 with example silo allocation (a) and two
equivalent alternatives (b), (c)

in Figure 7.11(b), always gives equivalent allocations. Changing the inputs between two silo

groups, like in Figure 7.11(c), gives equivalent allocations as long as the groups are the same

size. If two mixes happen to have the same properties, as happens for example in free flowing

problems where there are no bounds on the mixes, an allocation like (m2r1)(m1r5), which just

swaps the mixes, is also equivalent to (m1r4)(m2r5).

In this section we will reduce all these types of symmetry in unrestricted silo models by

adding symmetry breaking constraints to the model. There is good evidence for the effec-

tiveness of symmetry breaking constraints. Sherali and Smith [2001] solve an ILP machine

assignment problem (for more on assignment problems see Chapter 8), and show that for this

problem a reformulation that avoids symmetry solves much more quickly. Margot [2008] shows

how symmetry can be detected in ILPs, and suggests several different methods to avoid it; per-

turbation of the problem, fixing variables, static or dynamic symmetry breaking constraints,

and pruning of the branch and bound enumeration tree.

We assume here that all silo groups are of the same size, else a separate rule is needed for

each collection of silo groups of a given size. We also assume the problem is free flowing, so

all mixing bins are equivalent, else separate rules are needed for each collection of equivalent

mixing bins. We also use the fact that there is no cost for using a mix or a silo, so assume that

all silos will have some input (even if no product chooses that silo).

In order to keep track of the input to each silo a new variable, IS , is defined below. We call

IS
s the rank of silo s.

IS
s =

R
∑

r=1

(M + r)θR
sr +

M
∑

m=1

mθM
sm s ∈ 1 . . . S. (7.25)

189



These variables are naturally integer valued. Exactly one of the θR and θM variables is nonzero

for each silo, as each silo has exactly one input. If silo s has input from a mix then for some

m flow proportion variable θM
sm 6= 0 and 1 ≤ IS

s ≤ M . If silo s has input from a raw then for

some r flow proportion variable θR
sr 6= 0 and M + 1 ≤ IS

s ≤ M + R.

We also define variables IG, for the rank of each group:

IG
g =

Gsize
g

∑

s=1

IS
(Gstart

g +s−1)(M + R)s g ∈ 1 . . .G. (7.26)

These variables are also naturally integer valued. For each group g the constraint sums up a

contribution from each silo in the group. This contribution is the IS
s of each silo s in the group,

each multiplied by the constant formed by (M + R) raised to the power s. These constants are

sufficiently large so that each combination of silos in a group gives a different IG.

Rule Applies to
A within silo group all mixes placed before all raws

(e.g. (m1r1), not (r1m1))
B within silo group all mixes numbered in order order

(e.g. (m1m2) not (m2m1)
C within silo group all raws are placed in lexicographic order

(e.g. (r1r2) not (r2r1)
D between silo groups silo groups are ordered by the silos they con-

tain
E mixes mixes ordered by weight

(e.g. m1 the lightest and so on )

Table 7.8: Rules for stopping equivalent solutions

Table 7.8 details five rules that limit the number of silo allocations to a minimal, canonical

set. Rules A-C govern the ordering of mixes and raws within each silo group. Rule D governs

the ordering between groups. Rule E applies to the mixes, and prevents symmetries that can

occur from equivalent mixes. We consider the three sets of rules (A-C, D and E) in turn.

We can force the solution to satisfy Rules A-C with the linear constraint below, which orders

the silos by rank from low to high within each group. Note that this inequality does not apply

to silos at the start of each group, so only enforces an ordering of silos within each group, and

not between groups. We use a strict inequality to forbid two silos in the same group having the

same rank, as having two silos in a group with the same input is never optimal.

IS
s−1 < IS

s g ∈ 1 . . .G, Gstart
g + 1 ≤ s ≤ Gstart

g + Gsize
g . (7.27)

We can force the solution to satisfy Rule D with the linear constraint below, which orders

the group by their ranks. We use a non strict inequality here as it may sometimes be optimal
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to have several identical silo groups.

IG
g−1 ≤ IG

g g ∈ 2 . . .G. (7.28)

Finally to account for mixing bin equivalence and so satisfy Rule E we add the linear

constraint below. Recall that u is the mass of the mixes. This constraint orders all the mixes

by weight, forcing the lowest numbered mix to be the lightest, and so on. Rule E could

alternatively be enforced by comparing characteristics of the mixes other than the weight, for

example nutrient concentration of a given nutrient.

um−1 ≤ um m ∈ 2 . . .M. (7.29)

We solve the unrestricted silo problem Ex3 with the addition of constraints (7.25)-(7.26) to

define the rank of each silo and group, and constraints (7.27)-(7.29) to limit symmetry in silo in-

put, group input and mix equivalence. With the addition of the symmetry breaking constraints

there are only nine canonical solutions to Ex3, (m1m2)(m1r4), (m1m2)(m1r5), (m1m2)(m2r4),

(m1m2)(m2r5), (m1m2)(r4r5), (m1r4)(m2r4), (m1r4)(m2r5), (m1r5)(m2r4) and (m1r5)(m2r5).

Note that only one of the three equivalent solutions shown in Figure 7.11, (m1r4)(m2r5), is

included in this list.

variables constraints B&B branches time
Standard solve 101 67 44.0 0.36
With symmetry breaking constraints 107 77 14.4 0.23

The table above shows the results for solving Ex3 with and without the addition of the

symmetry breaking constraints that we developed above, using the branch and bound MINLP

solver MINLP-Fletcher. The first two columns give the number of variables and constraints.

There are slightly more variables and constraints with the addition of symmetry breaking

constraints. The final two columns give details of the solve, averaged over five runs. With

the addition of the symmetry breaking constraints there were on average fewer branch and

bound branches and a shorter average solve time. This methods has not been tried on larger

problems, such as the Sloten factories. For these problems it is anticipated that, due to the

expected saving in number of branches, solves with symmetry breaking constraints will be a lot

faster than those without. However larger unrestricted problems may be too hard to solve at

all with branch and bound, even with symmetry breaking constraints.
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Decomposition

We may attempt to solve the unrestricted model by solving a simpler series of MINLPs, in which

either the silo allocations or the product allocations are fixed. Fixing the silo allocations gives a

standard silo model, which could be solved by ASR1, to give new product allocations. Fixing the

product allocations gives a MINLP similar to the standard silo model, which could be solved by

a modified version of ASR1, to give new silo allocations. The resulting algorithm of alternately

solving these two types of simpler MINLP is a decomposition, where each subproblem is of the

same difficulty as a standard silo model.

Replacing integer constraints with concave costs

We now attempt to solve unrestricted problems using a new heuristic algorithm that we call

AUR1. This algorithm is motivated by the potential difficulty of using branch and bound solvers

on the unrestricted model, due to the very large number of integer variables in these problems.

Algorithm AUR1 works by solving the relaxed unrestricted model, which is an NLP with

no integer constraints. We then solve multiple NLPs each with the addition of concave costs

in the (minimisation) objective that attempt to force integrality in the binary variables (and

in our formulation of the unrestricted model all integer variables are binary variables). This

method is an attempt to find a good local minimum, rather than to efficiently enumerate all

solutions, so does not need the symmetry breaking constraints developed above. An outline of

the algorithm is given in Table 7.9.

1 Solve relaxed unrestricted NLP.
2 Solve a series of NLPs with concave costs instead of integer con-

straints.
3 Fix silo allocations.
4 Solve a series of NLPs with concave costs instead of integer constraints

(for product allocations only).
5 Fix product allocations.

Table 7.9: Algorithm AUR1 for unrestricted silo problem

In Step 1 we solve the relaxed unrestricted model. This is an NLP, and in fact all the solves

of this algorithm are just NLP solves. At the solution to the relaxed unrestricted model it is

likely that there are several fractional binary variables, so the problem is integer infeasible.

In Step 2 we therefore add concave costs to the NLP objective that push the fractional binary

variables towards integrality, by rewarding these variables for their distance from 0.5. Let x

represent a general vector of all the variables of the problem, and ǫ be a scalar parameter that

determines the relative magnitude of the concave costs for different fractional binary variables.

We refer to it as the curvature. The concave cost added to the objective for each fractional

binary variable is:
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−ǫi(xi − 0.5)2. (7.30)

ǫ is a scalar parameter that determines the relative magnitude of the concave costs for different

fractional binary variables. The potential danger of using concave costs is that when the

curvature is large it does not allow different integer allocations to be explored. The curvature

must therefore be correctly weighted so that the NLP is only gently guided by the concave costs.

After one solve with the addition of concave costs if the resulting solution is still not integer

feasible the curvature is increased on any fractional binary variables that are still fractional, and

curvature is added to any new fractional binary variables. When a fractional binary variable

becomes integer we do not remove the the concave cost for that variable, to prevent cycling.

There may be several NLP solves in Step 2, with the curvature gradually increasing after each

one.

If the curvature across all variables gets sufficiently high without forcing an integer feasible

solution Step 3 is entered. We reset ǫ to zero and instead fix every binary variable in the first

part of the problem to be either 0 or 1. Recall that the fractional binary variables in the first

part correspond to silos with multiple inputs. To fix these variables to either 0 or 1 the largest

input proportion to each silo (which may be less than 0.5) is fixed at 1, and the other inputs

to that silo are fixed at 0. After fixing all the integer variables the NLP may be infeasible, in

which case the algorithm has failed, and must be restarted with a different random start point.

If the NLP is still feasible we enter Step 4, and repeatedly resolve an NLP with curvature

added to fractional binary variables in the second part. If after repeatedly resolving the NLP

with increased curvature no integer feasible solution is found Step 5 is entered. ǫ is again set to

zero and all integer variables in the second part of the problem are also fixed, using a similar

method to the one used in the first part. This may also make the NLP infeasible, in which case

the algorithm has failed.

Figure 7.12(a) shows the solution to the relaxed model of Ex3, at the end of Step 1. These

are labelled with the actual flow proportions. There are integer violations in Silo 4, which is

fed from a mix and a raw, and Product 1, which uses both silos from the first silo group. In

Step 2 AUR1 adds concave costs to the objective for these two fractional binary variables and

resolves the NLP. This gives a new solution that is also integer infeasible. The curvature is

repeatedly increased until after three iterations we get an integer feasible solution, shown in

Figure 7.12(b). This is in fact the global solution for Ex3. AUR1 is therefore successful on

Ex3, finding the optimal solution in Step 2 of the algorithm, before having to fix any integer

variables in either part of the problem. AUR1 has not been tested on larger problems.
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Figure 7.12: Ex3 relaxed model solution (a) and final solution (b)

7.4 Summary

In this chapter we have introduced the silo problem, an MINLP based on the Sloten factory.

Algorithm ASR1 was developed to solve the standard silo model. It decomposes the MINLP

into an NLP and ILP. The ILP can be further decomposed by the dual cutting plane method,

though this is problematic due to the duality gap. Solving the Sloten problems using ASR1

was found to take only two or three times longer than solving without the integer constraints.

Furthermore the objective values were also only slightly affected by the integer constraints.

The silo grouping problem allows the grouping of the silos to be altered. This was approx-

imately solved for the Sloten problems, and was able to make the relaxed standard silo model

integer feasible.

The unrestricted model is a generalisation of the standard model, that allows each silo to

choose one of several possible inputs. We introduced symmetry breaking constraints which

enabled an example unrestricted problem to be solved more quickly by branch and bound.

An algorithm AUR1 was developed to solve unrestricted problems by adding concave costs to

fractional binary variables, which was able to solve a small example problem.

7.4.1 Further work

For the standard silo model ASR1 has only been tested on the Sloten problems. If they become

available it would be beneficial to test ASR1 on other problems, or even other versions of

the Sloten factory. There is also the potential for much more work on the silo grouping and

unrestricted model, if Sloten International decide that these are the problems that they wish

to solve.
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Chapter 8

Cattle Mating Problem

The cattle mating problem (CMP) first came to our attention with the MSc thesis of Horgan

[2007]. The thesis reports work with the Irish Cattle Breeding Federation (ICBF) on deter-

mining the values of some parameters that appear in the problem. The ICBF then requested

further work on solving the CMP.

In Section 8.1 we introduce assignment problems, of which the CMP is a special case. Briefly,

the CMP is the problem faced by a farmer of choosing which cows in the herd to mate with

which bulls (though actually all breeding is done by artificial insemination). Different versions

of the CMP arise depending on the specific objectives of the farmer, and how realistically the

problem is modelled. In Section 8.2 we describe the various versions of the CMP that can occur,

including what we call the standard CMP model, which is an ILP. This is the problem that the

ICBF wish to solve. In Section 8.3 we develop a new solver named Cowculus, that heuristically

solves the standard CMP model by decomposing it into a series of LPs.

8.1 Assignment problems

We now introduce assignment problems. It is convenient throughout this chapter to use the

language of the CMP to describe all problems, rather than the original terminology of each

problem. We therefore always think of cows to bulls, rather than jobs and machines or anything

else. We refer to assigning a cow to a bull (and not the other way round), to produce a particular

calf. Typically all the cows are used exactly once in the solution, and bulls may be used any

number of times (including not at all). We use the term selected to refer to any bull that is

used at least once in the solution.
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Figure 8.1: Example solutions to basic assignment problem (a) and generalised assignment
problem (b)

max
x

B
∑

b=1

C
∑

c=1

Sbcxbc (8.1)

s.t.

B
∑

b=1

xbc = 1 c ∈ 1 . . . C, (8.2)

C
∑

c=1

xbc = 1 b ∈ 1 . . . B, (8.3)

0 ≤ xbc b ∈ 1 . . . B, c ∈ 1 . . . C. (8.4)

The simplest assignment problem is the basic assignment problem (BAP), for which the

mathematical formulation is given above. Bulls are indexed by b ∈ 1 . . . B and cows by c ∈

1 . . . C. The variable xbc records if bull b mates with cow c, and Sbc is the score for the calf

resulting from such a mating (or, equivalently, we can consider it the score for the mating itself).

The objective, (8.1), is to maximize total profit, which is the sum of the scores of all calves

that are produced. Constraint (8.2) is here referred to as the cow use constraint and enforces

the condition that each cow is assigned to exactly one bull. Constraint (8.3) is here referred to

as the bull use constraint, and enforces the condition that each bull must be assigned exactly

one cow. These two constraints seem to imply that BAPs can only be solved when there is the

same number of bulls and cows. However, with reformulation by the introduction of dummy

bulls or cows, problems with unequal numbers of cows and bulls can also be modelled as BAPs.

If there are too many bulls (say) then dummy cows are created and assigned to the spare bulls

with zero scores. Constraint (8.4) ensures that x is non negative. With the equalities (8.2) and
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(8.3) changed to inequality form (with ≤ instead of =) the model is fundamentally unchanged,

and we still refer to it as the BAP.

Figure 8.1(a) shows an example solution to a BAP. Cow 1 is assigned to Bull 3, Cow 2

is assigned to Bull 1 and so on. It is a feature of assignment problems that often there are

a great number of feasible solutions, and finding an integer feasible solution can be relatively

easy. This is in contrast to the silo problem of Chapter 7, where feasible solutions are hard to

find. In the solution to a BAP x must be integer valued, though there is no constraint directly

enforcing this. However, the model has a constraint matrix that has the property of being

unimodular, and has integer right hand sides to the constraints. These two properties mean

that the solution to the linear relaxation of the BAP model (8.1)-(8.4) has integer solutions (see

e.g. Winston [2000] page 525). BAPs can therefore be solved as LPs by the simplex method,

without explicitly enforcing integrality of x, and the resulting solution is optimal. Other solve

methods include the transportation simplex method and the Hungarian method.

The generalised assignment problem (GAP) was introduced by Ross and Soland [1975]. It

is a generalisation of the BAP, or, equivalently, the BAP is a special case of the GAP. The

mathematical formulation of the GAP is given below.

max
x

B
∑

b=1

C
∑

c=1

Sbcxbc (8.5)

s.t.
B

∑

b=1

xbc ≤ 1 c ∈ 1 . . . C, (8.6)

C
∑

c=1

Abcxbc ≤ Ub b ∈ 1 . . . B, (8.7)

xbc ∈ {0, 1} b ∈ 1 . . . B, c ∈ 1 . . . C. (8.8)

Abc is a coefficient for the weighting of bull b with cow c (in the cattle mating problem it is

usual that Abc = 1, but this may not be the case when other types of matching are considered).

Ub is the upper bound on uses of bull b (typically integer in the cattle mating problem, but

may be noninteger when other types of matching are considered). Most of the model is the

same as the BAP. The objective (8.5) is unchanged. The cow use constraint (8.6) is now an

inequality as not all cows must be used. The bull use constraint, (8.7), has been generalised to

say that the sum of cows assigned to bulls, each weighted with a real coefficient, must be less

than some other real number. This means that potentially several cows can be assigned to one

bull. Figure 8.1(b) shows an example solution to a GAP, which demonstrates this.

In the model of a GAP the constraint matrix is no longer unimodular, hence the solution of

the linear relaxation is typically fractional. Integrality of x must therefore be explicitly enforced

by the model, which is done by (8.8). A GAP is therefore an ILP. Section 7.1.2 contained a brief

197



discussion of ILP solvers, in particular branch and bound. There are also many ILP methods

specialised for GAPs. These are summarised in e.g. Osman [1975] or Wilson [2005]. We now

describe some of them which are relevant to Cowculus, using the language of the CMP. They are

all heuristic methods, which typically solve the problem approximately. Like the MINLP solve

methods given in Section 7.1.2, the first solution found is often then refined local improvement

methods.

Foulds and Wilson [1997] solve GAPs with a regret minimisation algorithm and also with a

greedy algorithm. In the regret minimisation algorithm they first order the cows by the difference

between the mating scores of the best bull for that cow and the second best bull. Starting with

the cow with the largest difference in mating values each cow is assigned the best available

bull, which approximately solves the problem. The solution is then improved by using what are

called 2-opts. In the language of the CMP a 2-opt swaps the bull assignments of two cows. For

example, looking at Figure 8.1(a) after a 2-opt Cows 1 and 2 might be reassigned to Bulls 1

and 3 respectively. he greedy algorithm begins by solving a relaxed version of the GAP without

the bull use constraint (8.7). This usually gives a solution that has excellent objective value

but is infeasible by assigning too many cows to some bulls. This solution is then improved, in

feasibility, by using 1-opts. A 1-opt assigns a cow to a different bull. For example, looking at

Figure 8.1(a) after a 1-opt Cow 1 might be reassigned to Bull 1. The greedy algorithm was

found to be more effective than the regret minimisation algorithm.

Amini and Racer [1995] assign cows to bulls using a combination of a regret minimisation

algorithm and a greedy algorithm, then locally improve the solution using what they calls a

variable depth first heuristic.

Cohen et al. [2006] consider the bulls one at a time. They first assign some number of

cows to the first bull, by solving a small ILP known as a knapsack problem. Based on the

cows assigned to the first bull the objective costs on matings involving the unassigned cows are

adjusted. Using these new objective costs some number of cows are assigned to the second bull,

again by solving a knapsack problem, and so on through all the bulls.

Trick [1992] uses the linear relaxation of the GAP model, which omits the integer constraint

(8.8). In each iteration of the algorithm the linear relaxation is solved by LP, then based

on the solution some integer variables are eliminated from the problem and some are fixed.

In successive iterations more integer variables are eliminated or fixed until an integer feasible

solution is found, which is then improved by several local improvement methods; 1-opts, 2-opts

and even resolving small parts of the problem. Trick shows that the linear relaxation of a GAP

has a limited number of fractional integer variables in the solution, and so is not far from being

integer feasible.

French and Wilson [2007] solve a similar problem to the GAP, also with an algorithm based

on linear relaxation. As in Trick [1992] in each iteration an LP is solved and in successive

iterations more integer variables are fixed, until an integer feasible solution is found, which is
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then improved by local improvement methods.

The Cowculus solver is also based on linear relaxation, and also repeatedly solve linear

relaxations and fixes the value of integer variables as the solve progresses, but using a different

method for fixing integer variables to Trick [1992] and French and Wilson [2007]. Like Trick

for the GAP we found that for the standard CMP model, that we introduce later, the linear

relaxation solution was close to being integer feasible, and had many of the same matings as

in the optimal integer feasible solution. The work of Foulds, where a greedy algorithm is more

effective than a regret minimisation algorithm, is also encouraging for our Cowculus solver,

which solves in a similar way to the greedy algorithm.

8.2 Cattle mating problem

The cattle mating problem has many different versions. Section 8.2.1 describes three types of

model. The most complex of these, Model 3, is referred to as the standard CMP model, and is

the one solved by Cowculus. Section 8.2.2 describes the standard CMP model in detail. Section

8.2.3 introduces some example problems that we will later solve.

8.2.1 Types of model

Model 1

This is the most basic model. Each cow is assigned to at most one bull, and there are no other

constraints. This is therefore a simplification even of the BAP (and therefore also of the GAP),

with the same mathematical formulation as the BAP but with the inequality form of (8.2) and

without constraint (8.3). The model decomposes by cow, and can be solved by simply assigning

each cow to the best bull for that cow.

Model 2

This model is as Model 1 but includes a constraint limiting the number of uses of each bull,

with an integer valued upper bound Ub on uses of bull b. The resulting mathematical model

is a GAP, but with a simple form of the bull use constraint (8.7), where Abc = 1 for all b and

c. Problems of this type can be reformulated by making Ub copies of each bull b. With this

reformulation each new bull is used at most only once. This means that the bull use constraint

can be written in the inequality form of (8.3), and the problem represented as a BAP. Since the

problem can be reformulated as a BAP it can be solved to integer optimality by the simplex

method (without actually having to do the reformulation), or any of the other methods used

to solve BAPs.
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Model 3

This model includes lower and upper bounds, Lb and Ub, on the number of times each selected

bull b can be used (recall a selected bull is one that is used at least once). The lower bound is a

consequence of the bull semen being delivered in packets of size greater than one (typically five),

and the upper bound is included to minimise the risk to the farmer that one of the selected

bulls will produce unexpectedly poor offspring.

There are also lower and upper bounds, δ and δ, on the total number of bulls selected. The

lower bound δ is also to minimise the risk to the farmer from over-reliance on any one bull. It

is suggested in Nash and Rogers [1996] that the common recommendation is to select between

three and seven bulls, irrespective of the number of cows in the herd, and indeed that is also

their finding. The upper bound δ on number of bulls selected is to prevent the cost associated

with selecting many different bulls.

Because of the two extra sets of bounds Model 3 is neither a BAP or a GAP. It has a third

form, which we describe below. This new model is the one that is solved by Cowculus, and it

is henceforth referred to as the standard CMP model.

8.2.2 Standard CMP model

B number of bulls, indexed with b

C number of cows, indexed with c

L minimum number of bulls to be selected
U maximum number of bulls to be selected
Lb, Ub minimum and maximum number of times bull b can be used, if se-

lected

δ,δ lower and upper bounds on number of bulls selected
Sbc score of calf from mating of bull b with cow c

Wbc binary parameter permitting bull b mating with cow c

xbc binary variable for bull b mating with cow c

δb binary variable for selecting bull b

Table 8.1: Structural and other parameters (all upper case) and variables (lower case) used in
standard CMP model

In this section we define in full the standard CMP model, introduced as Model 3 above.

Table 8.1 shows the parameters and variables used in the solve.
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max
x,δ

B
∑

b=1

C
∑

c=1

Sbcxbc (8.9)

s.t.

B
∑

b=1

xbc ≤ 1 c ∈ 1 . . . C, (8.10)

δbLb ≤
C

∑

c=1

xbc ≤ δbUb b ∈ 1 . . . B, (8.11)

δ ≤

B
∑

b=1

δb ≤ δ. (8.12)

The model is defined in (8.9)- (8.12). The objective, (8.9), is the same as for the BAP and the

GAP.

The cow use constraint, (8.10), still says that each cow is assigned to a maximum of one

bull. The bull use constraint, (8.11), says that if bull b is selected (δb = 1) it must be used at

least Lb and at most Ub times, and if it is not selected (δb = 0) it must be used zero times. This

constraint is unlike the bull use constraint of BAP and GAP, as it has lower and upper bounds

on bull use controlled by a new integer variable. Constraint (8.12) is known as the bull selection

constraint, and says that the number of bulls selected must be at least δ and at most δ. As well

as these constraints we have simple bounds on the variables, in particular each mating xbc is

constrained to occur a maximum of Wbc times.
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Figure 8.2: Sparsity pattern of constraint matrix for Mininew for standard CMP model (a)

Figure 8.2 shows the sparsity pattern of the constraint matrix of the standard CMP problem

Mininew, which has B = 10 bulls and C = 12 cows. The constraint matrix has C +2B +1 = 33

rows; C = 12 for the cow use constraints of (8.10), then 2B = 20 for the bull use constraints

of (8.11), then one for constraint (8.12). There are BC + B = 130 columns; BC = 120 for

x, then B = 10 for δ. There are 3BC + 3B = 390 nonzeroes, all of which have values of 1,

apart from the nonzeros in the final 10 columns excluding the bottom row, which have values

corresponding to L and U .
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Figure 8.3: Sparsity pattern of constraint matrix for Mininew for δ-relaxed CMP model

δ-relaxed CMP model

The standard CMP model is an ILP, with two sets of integer variables, x and δ. We now

consider relaxing the model by dropping one set of integer variables. We call the standard

CMP model with δ variables dropped the δ-relaxed CMP model. In the δ-relaxed CMP model

constraint (8.12) is removed altogether, and bull use constraint (8.11) is relaxed to become:

0 ≤
C

∑

c=1

xbc ≤ Ub b ∈ 1 . . . B. (8.13)

In this new version of the constraint for all bulls the lower bound, δbLb, has been replaced with

its minimum value of 0, and the upper bound, δbUb, has been replaced with its maximum value

of Ub. The new constraint is linear. Figure 8.3 shows the sparsity pattern of the constraint

matrix to the δ-relaxed CMP model of MiniNew, which is slightly smaller than the constraint

matrix of the original problem.

The δ-relaxed CMP model is still an ILP due to the binary x variables. It is in fact a simple

instance of GAP, and were it not for (8.13), which has upper bounds which can be greater than

one, it could immediately be identified as an instance of BAP. It is indeed an instance of BAP,

as can be seen by reformulating the model in the same way that we reformulated Model 2 above

by duplicating bulls (though this reformulation is not necessary in a solve). As the δ-relaxed

CMP model is equivalent to the BAP we do not need to enforce integrality of x, and it can

be solved as an LP. This is of vital importance to Cowculus, as the solver works by repeatedly

solving the δ-relaxed CMP model with a simplex solver.

Advanced CMP model

A minor variant to the standard CMP model is known as the advanced CMP model. In this the

farmer specifies in advance some (or all) of the bulls that are to be selected. This variant does

not fundamentally change the model. If the farmer pre-selects all bulls then all that remains to

be done is assign each cow to a bull, and the model simplifies to being of type Model 2, which

can be solved by LP.
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Calf scores

Sbc Calf score of calf from bull b and cow c

EB
b ,EC

c European Breeding Index (EBI) of bull b and cow c respectively
Mb semen price of semen from bull b

Ibc inbreeding coefficient between bull b and cow c

Hbc heterosis coefficient between bull b and cow c

Pbc expected difference between production and fertility of calf from bull
b and cow c

Table 8.2: Parameters for determining calf scores

We now look in more detail at how the calf scores are generated. These scores are estimates

for the value of each calf. The scores are parameters in the model, and for the Cowculus

solver are assumed to have already been generated. However, how the scores are generated is

important, as it affects the difficulty of each of the problems solved.

In Europe the value of an animal is traditionally equated to the European Breeding Index

(EBI) of that animal. The EBI of an animal is made up of several weighted subindices. These

are; production, fertility, calving ease, beef and health. Of the subindices production and

fertility have the largest weighting. The EBI of a calf is the average of the EBI of its parents.

One way to calculate the score of a calf is to use the formula below:

Sbc =
EB

b + EC
c

2
− Mb b ∈ 1 . . . B, c ∈ 1 . . . C. (8.14)

where the score for a calf is the average of the EBIs of its parents minus the semen price. Using

these calf scores makes a problem trivial to solve, as the scores are separable by bull. In the

optimal solution the best bull is used the maximum number of times, then the second best bull

is used the maximum number of times, and so on, and any assignment of cows that uses these

best bulls is optimal.

In practice more complicated formulas for generating the calf scores are used. Nash and

Rogers [1996] in the USA estimate bull quality using a combination of semen price, expected

milk levels of fat milk and protein in daughters, and standardised transmitting abilities of foot

angle, udder depth and teat placement. Together these give the expected Net Revenue of a

bull. In Horgan [2007] the value of a calf is estimated as:

Sbc =
Eb + Ec

2
− Mb − 2.5Ibc + 0.24Hbc − 0.5Pbc, b ∈ 1 . . . B, c ∈ 1 . . . C, (8.15)

where I, H and P are further parameters for expected calf quality. I is the inbreeding, which

is a decrease in the robustness of a calf due to genetic similarity of the parents. The deleterious

effect of inbreeding increases nonlinearly as the level increases. If the inbreeding level of a calf
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is above a certain threshold (10% is suggested by Horgan) then it may be best to disallow

production of that calf in the model. In McParland et al. [2007a] and McParland et al. [2007b]

inbreeding in the Irish cattle population is shown to be at low levels but increasing. H is the

level of heterosis, also known as hybrid vigour, which is an increase in the robustness of a calf

from having unrelated parents. P is the expected difference between production and fertility

of calves. It is weighted negatively in (8.15), as a high difference in expected production and

fertility makes a calf score less reliable, and farmers are risk averse.

Due to the difficulty of generating inbreeding and heterosis levels it is known that the ICBF

sometimes use a simplified version of (8.15):

Sbc =
Eb + Ec

2
− 2Mb − 0.5Pbc b ∈ 1 . . . B, c ∈ 1 . . . C. (8.16)

In summary, it is believed that the calf scores that are normally used by the ICBF, including

in the test problems below, are dominated by the EBI component. However these calf scores

are not separable by bull, and so the problems do require a full ILP solve.

8.2.3 CMP test problems

B C variables constraints
Mininew 10 12 130 33
Advrunex 3 157 474 164
Prerunex 110 214 23,540 324
Prerunex2 110 214 23,540 324

Table 8.3: Dimensions of test problems

Table 8.3 gives the number of bulls and cows in the four standard CMP model test problems,

and the size of the ILP models, using the standard CMP model given above. For each problem

the minimum and maximum number of bulls that can be selected is equal, at 5, 3, 8 and 8 bulls

respectively.

Mininew is a small test problem invented for testing Cowculus. Advrunex is a real ICBF

problem which has only three bulls. These three bulls have been pre-selected by the farmer,

so this is an example of an advanced CMP model. It can therefore be solved by LP, though

Cowculus (and other solvers) still solve it as an ILP.

Prerunex is also a real ICBF problem, that has a large number of cows and bulls. Prerunex2

is identical to Prerunex apart from the calf scores. It is believed that the calf scores of ICBF

problems like Prerunex are dominated by the EBI component, so the best bulls will be best for

nearly all the cows. This means picking which bulls to select is fairly easy. In Prerunex2 the calf

score for bull b and cow c is generated by the quasi-random function Sbc = 2+sin(b)+cos(c), so

different bulls are better for different cows. This is done to make Prerunex2 a more challenging
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test problem.

The frequency and number of optimisations performed and costs involved to the farmers,

and the corresponding savings from an optimised solution, are not known to us.

Finding reserve bulls

As well as finding the optimal assignment of cows to bulls, the farmer may also require good

2nd and 3rd choice bulls for each cow, so if for some reason the 1st choice bull is unavailable a

reserve bull can be used. To solve the problem with the extension of finding reserve bulls we

could introduce extra integer variables to the model to determine if a calf is a 1st 2nd or 3rd

choice, and alter the objective function to include some weighting between the importance of

1st, 2nd and 3rd choice calves. However this would make the problem much harder to solve, so

is not done in Cowculus.

8.3 Cowculus solver

The motivation for the solver Cowculus is that the ICBF wish to be able to solve standard CMP

problems reasonably quickly, in no more than about ten seconds per problem, and reasonably

accurately. A very fine degree of accuracy is not required, as the calf scores in the data are only

estimates of quality and are not precise.

As the standard CMP model is an ILP it can be solved very quickly and accurately by

a commercial solver such as CPLEX. However, there are three advantages to instead using a

heuristic method such as Cowculus. Firstly, it avoids the cost of a commercial solver. Secondly,

by using a heuristic that gradually approaches the solution, we can guarantee to find a (ap-

proximate) solution within a given time frame. Although it is usually fast there is a possibility

that CPLEX will still be deep in calculation after ten seconds. Thirdly, with a heuristic like

Cowculus, we can easily adapt the algorithm to cater for further developments in the problem,

for example the problem of finding reserve bulls.

In Section 8.3.1 we describe the Cowculus algorithm. In Section 8.3.2 we give results for

solving the test problems with Cowculus, including comparing it with other ILP solvers.

8.3.1 Algorithm

Cowculus is a heuristic solver for the standard CMP model. In the main algorithm it solves the

standard CMP model. It then addresses the problem of finding reserve bulls.

Before starting the solve Cowculus analyses the problem data, and detects any anomalies.

Mild anomalies, such as a bull having a minimum number of uses of a negative number, are

merely flagged up. Serious anomalies, such as a bull having a lower bound on number of uses

greater than the upper bound, cause the code to abort with an error message.
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Main algorithm

1 Solve the δ-relaxed CMP model.
2 Solve a series of altered δ-relaxed CMP models to progressively lower

the number of bulls selected (call this Step 2a) or raise it (call this
Step 2b), until an acceptable number is selected.

3 Solve a final altered δ-relaxed CMP model that ensures each of the
selected bulls is used an acceptable number of times.

Table 8.4: Cowculus algorithm to solve standard CMP model

The standard CMP model has two sets of binary variables, x for the cow-bull allocations,

and δ for whether or not each bull is selected. The Cowculus algorithm works by relaxing the δ

variables, to form the δ-relaxed CMP model. While still an ILP, this model has the favourable

property that it can be solved by LP. However it does not include constraint (8.12), which

limits the total number of bulls selected, and uses a relaxed version of constraint (8.11), which

ensures that each selected bull is used an acceptable number of times. These two constraints

are not properly enforced in the δ-relaxed CMP model, so must be enforced heuristically by

Cowculus, which is done between the δ-relaxed CMP model solves. All these solves are LPs,

for which we use the LP solver EMSOL. We refer to forming and solving each δ-relaxed CMP

model as an iteration. All iterations apart from the first are warm started.

An outline of the algorithm is given in Table 8.4. There is just one iteration in Step 1,

potentially many in Step 2, and one in Step 3. In Step 1 we solve the original δ-relaxed CMP

model. In Step 2 we progressively enforce (8.12), by fixing some of the δ variable. By the end of

Step 2 δ is entirely fixed, and (8.12) is satisfied. With δ fixed (8.11) is now linear. Thus in Step

3 we restore (8.11) and solve once more, so the lower and upper bounds for all the selected bulls

are enforced (this step is not necessary if these bounds are already satisfied). Thus the final

solution at the end of Step 3 satisfies all the constraints of the standard CMP model. If after

any iteration in Step 2 the suggested time limit (typically 10 seconds) has been exceeded then

we immediately force the number of bulls selected to either δ or δ, and the algorithm moves to

Step 3.

use of each bull objective value
1: 2: 3: 4: 5: 6: 7: 8: 9: 10:

Iteration 1 Step 1 - - - - 1 1 3 2 1 2 122.0
Iteration 2 Step 2a - - - - 1 - 3 3 1 2 115.0
Iteration 3 Step 2a - - - - - - 3 4 1 2 109.0
Iteration 4 Step 3 - - - - - - 2 4 2 2 108.0

The example solve above shows how the use of each bull might change each iteration. In

this problem a maximum of four bulls can be selected, and each selected bull must be used at

least twice. Step 1 consists of one iteration, at the end of which too many bulls are selected, and

some of those that are selected are not used enough. Thus both (8.12) and (8.11) are violated.
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Step 2 consists of two iterations, at then end of which an acceptable number of bulls is selected,

so (8.12) is satisfied, but still Bull 9 is used too few times. Thus in Step 3 we perform one

iteration so that (8.11) is also satisfied. We then have a feasible solution, which hopefully also

has good objective value.

The crux of the algorithm is the method for lowering or raising the number of bulls selected,

in either Step 2a or Step 2b. In both cases we change the number of bulls selected by only

one each iteration, in the hope that the gradual move to an acceptable number of bulls gives a

better chance of selecting the best bulls.

In Step 2a we lower the number of bulls selected, by deselecting a bull b that is used the

least. It is possible that when choosing which bull to deselect two bulls are used the same

number of times. In this case we tie break on the contribution to the total profit from each

bull, deselecting the bull that gives the least total profit. Making the contribution to the total

profit from each bull the primary indicator of which bull to deselect was also tried, but was

found to be a worse indicator than the number of bull uses. To deselect bull b we set the upper

bound on use, Ub in (8.13), to zero. This can be thought of as setting δb = 0 in the original

constraint (8.11). All the bulls that were not selected in the last iteration also have their upper

bound on use set to zero, to guarantee that the solution to the next δ-relaxed CMP model

selects (at least) one fewer bull.

In Step 2b we raise the number of bulls selected, by permanently selecting one new bull. By

considering the dual information from the solution to the last LP we determine which unselected

bull b is expected to damage the total profit the least if that bull is selected, and used at least

its minimum Lb times. To permanently select bull b we set the lower bound on bull use to Lb in

(8.13). This is like setting δb = 1 in the original constraint (8.11). We also permanently select

any bulls that are currently selected, to guarantee that the solution to the next δ-relaxed CMP

model selects (at least) one more bull.

Cowculus is a heuristic solver. It may fail to find a solution (let alone the global maximum)

on some feasible problems. For problems where all calves are allowed, so Wbc = 1 for all

matings, then whichever bulls are selected by the end of Step 2 a feasible assignment of cows

to these bulls is possible in Step 3. If Wbc 6= 1 for some matings then it may not be possible to

assign cows in Step 3. However, in practice Wbc = 1 for nearly all calves so this is unlikely to

happen, and in fact Cowculus has never been known to fail to find a feasible solution.

Getting reserve bulls

In principle it would be best to consider reserve bulls at the same time as considering the first

choice bulls of the standard CMP model. However Cowculus does not attempt to model the

need for reserve bulls exactly, but instead uses an approximate method. We decompose the

overall problem into three completely separate problems, for 1st, 2nd and 3rd choice bulls, and
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solve these three consecutively. This makes the overall problem considerably easier to solve,

and avoids having to determine the relative importance of 1st, 2nd and 3rd choice bulls. It

is believed that finding the 1st choice bulls is far more important than finding reserve bulls,

so little is lost by using this decomposition instead of the original problem. Finding good 1st

choice bulls entails solving the standard CMP model, as described above. Finding good reserve

bulls is considered here.

When finding 2nd choice bulls we assume that only the subset of bulls selected by the 1st

choice solve are available, and that any calves that were produced by the 1st choice solve are

vetoed. When selecting 3rd choice bulls we also veto the calves produced by the 2nd choice

solve. As it is expected that the selected bulls will already by used plenty of times in the 1st

choice solve, and only rarely will the reserve choices be used, we do not impose the condition

that in the reserve solves each selected bull b must be selected at least Lb times. This relaxation

means a reserve solves may even have better (larger) objective value than a 1st choice solve.

Both the reserve solves are considered to be altered δ-relaxed models.

We give three different methods for finding the 2nd (and then the 3rd) choice bulls. In

Method 1 we solve the altered δ-relaxed CMP model of using EMSOL. The LP is likely to

be fairly easy to solve as the bulls are pre-selected, and several calves have been vetoed. In

Method 2 we solve the δ-relaxed CMP model using a regret minimisation algorithm, that awards

the popular bulls to the cows where they make the most difference. The regret minimisation

algorithm is a fast way to solve the δ-relaxed CMP model, that results in a good approximate

solution. In Method 3 we relax the condition that each bull b can be used only Ub times. This

results in a problem of type Model 1, which can be solved by simply assigning each cow to

the most attractive of the available bulls. The problem is very quick to solve, but may give

unacceptable solutions.

Method 1 Method 2 Method 3
2nd choice bulls 10,879 10,756 11,263
3rd choice bulls 10,601 10,394 10,605

The table above shows the objective value for finding 2nd choice and 3rd choice bulls on

problem Prerunex. The 1st choice objective value is 11,134. The three methods vary in speed

(not shown) and objective value. As expected Method 3, which allows unlimited use of each

bull, has the best objective values. Method 1 and Method 2 solve the same problem but the

LP of Method 1 gets better solutions than the heuristic of Method 2. The default method for

finding reserve bulls used in Cowculus is Method 1.

8.3.2 Results

Table 8.5 shows results for solving the four test problems with Cowculus, including finding

the reserve bulls, which occurs in the final two iterations. For each problem the first iteration
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total time iterations number of bulls selected each iteration
Mininew 0.04 4 4, 5, 5, 5
Advrunex 0.09 4 3, 3, 3, 3
Prerunex 2.23 4 7, 8, 8, 8
Prerunex2 2.48 6 5, 6, 7, 8, 8, 8

Table 8.5: Results for Cowculus

usually selects a number of bulls that is close to acceptable, here always equal or below the

minimum allowed. For Advrunex the three bulls are pre-selected so in all iterations exactly

three bulls are selected. The slowest problem, Prerunex2, still takes well under the suggested

time limit of 10 seconds.

In all iterations apart from the first the LP solves are warm started, which saves a lot of

time. On average the warm started LPs during the iterations spent finding 1st choice bulls

take 51% as many LP iterations as the first LP solve. The warm started LPs spent during

iterations to get reserve bulls take 63% as many LP iterations as the first LP solve. The reason

the warm start is less effective when finding reserve bulls is that the two LPs solved there are

somewhat different problems to the other LPs. Cowculus consists of an LP solver and a few

minor subroutines. If the solve is efficient most of the time should be spent solving LPs. The

remaining time will be spent either in overheads such as reading in and out of files, or very quick

subroutines required by Cowculus, such as counting the number of bulls selected each iteration

and comparing it with bounds. For the two small test problems, Mininew and Advrunex, the

LP solve is so fast that the overheads dominate the solve time. For the two large problems,

Prerunex and Prerunex2, an average of 84% of the time spent solving the problems is spent

solving LPs, which is a satisfactory level.

On all four problems Cowculus finds the global maximum for 1st choice bulls. Furthermore,

in Horgan [2007] Cowculus was tested on eight different problems, and found the global max-

imum in all cases. Thus on the twelve known CMP problems tested Cowculus has found the

global maximum every time.

Comparison with other solvers

Cowculus BONMIN CBC CPLEX FILMINT MINLP-Fletcher
Mininew 0.04 0.03 0.02 0.01 0.02 0.00
Advrunex 0.07 0.07 0.01 0.02 0.32 0.13
Prerunex 1.33 12.11 5.39 0.52 fail fail
Prerunex2 1.78 3.98 0.62 0.39 fail fail

Table 8.6: Standard CMP model solve times

Table 8.6 compares Cowculus to a range of other solvers, all designed to solve ILPs but not

designed specifically to solve the cattle mating problem. These other solvers all use branch and

bound or branch and cut, so are guaranteed to find the global maximum (as long as they can
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solve the problem). All solves are only to find 1st choice bulls for each cow, hence Cowculus

is truncated after Step 3 and its solve times are less than those given in Table 8.5. For solvers

other than Cowculus the ILP model was built in AMPL and solved via the NEOS server. The

two small problems were solved by all the solvers in less than a second. The two large problems

were not solved by FILMINT and MINLP-Fletcher, and were solved with varying speed by the

other three ILP solvers. The fastest of them was CPLEX, which was faster than Cowculus on

all problems.

Cowculus CPLEX
iterations LP iterations B& B branches LP iterations

Mininew 2 50 0 79
Advrunex 2 513 0 215
Prerunex 2 1073 0 582
Prerunex2 4 1143 0 706

Table 8.7: Results for Cowculus and CPLEX

Table 8.7 directly compares Cowculus and CPLEX, again only for finding the 1st choice bulls.

For Cowculus we give the number of iterations and LP iterations, for CPLEX the number of

branch and bound branches and LP iterations. For all problems CPLEX requires zero branches

hence just one LP solve, so takes few LP iterations. It was hoped that the quasi-random calf

scores in Prerunex2 would make a branch and bound solve difficult and so favour a heuristic

solver like Cowculus. CPLEX still solved Prerunex2 quickly though. Cattle mating problems

that are much larger than these test problems will not be significantly harder when solved by

Cowculus, as LP scales well with problem size, but may become significantly harder when solved

by CPLEX, as branch and bound ILP does not scale so well with problem size. Conversely,

there may exist problems for which the ILP solvers find the global maximum and Cowculus

does not.

In summary although it is not as fast as CPLEX, Cowculus solves the test problems ac-

curately, finding the global minimum on all test problems, and quickly, solving well within 10

seconds.

Cowculus is currently used at the ICBF, implemented by John McCarthy. As of May 2008

the ICBF have used Cowculus for about 36,000 solves for over 7,000 farmers, with no problems

with the solver.

8.4 Summary

In this chapter we introduced a type of assignment problem called the cattle mating problem.

We described different versions of it, including an ILP known as the standard CMP model.

The solver Cowculus was developed to solve this model. It relaxes one set of integer variables

to give a relaxed problem, which, though still an ILP, can be solved by LP. A series of these
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LPs are solved while altering the value of the relaxed integer variables, until an integer feasible

solution is found. Finally Cowculus heuristically finds reserve bulls for each cow.

Cowculus solves the four test problems described here, and eight other test problems, finding

the global maximum in all cases. The solve exploits warm starts and is fairly efficient, solving

all the problems in well under ten seconds. It is competitive with some ILP solvers but slower

than CPLEX. Cowculus is currently in use at the ICBF.

8.4.1 Further work

In Section 8.1 we mentioned that local improvement methods are often used to refine an ap-

proximate solution found by a heuristic solver. Local improvement methods could be added to

Cowculus. On all the test problems Cowculus currently finds the global maximum already, but

these methods could be useful for harder problems.

If the ICBF are resolving different versions of the same problem, which only differ in objective

costs, it may be possible to use the optimal LP basis of a previous solution to warm start a

new problem. For some problems, such as the advanced CMP model Advrunex, it may also be

possible to detect that all bulls must be selected and solve the problem as an LP.

There are several possible extensions to the standard CMP model that were discussed in

consultation with the ICBF. These could be implemented in a future version of Cowculus. They

include; equalising expected milk yield, catering for heifers, a new approach for factoring in the

effects of inbreeding and heterosis and retaining high value calves.

Equalising expected milk yield

It may be convenient for the farmer to have a herd where all cows produce about the same

yield of milk. Depending on the farmer this may simply mean the cows produce the same milk

yield as each other, or the same milk yield as a given constant. In either case if the expected

milk yield of potential calves is known this extension can easily be modelled with the addition

of a few extra linear constraints to the model.

Catering for heifers

Certain bulls are known to produce large calves, which are unsuitable to mate with heifers

(cows who have not given birth before). There are various methods considered to deal with

this.

Firstly we can simply veto matings between a bull b expected to produce large calves with

a heifer c, by setting Wbc = 0. If we only want to discourage production of a calf, but not veto

it, this can be done by giving the mating a low score Sbc. Secondly we could force Cowculus

to select some easy calving bulls, which are suitable to mate with heifers, even if this does

not appear optimal. Thirdly the farmer could split the cows into two subherds, with one
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subherd consisting of only heifers and easy calving bulls. Each herd could then be assigned

bulls separately.

Modelling inbreeding and heterosis

Two contributors to the score of each calf are the amount of inbreeding and the amount of

heterosis between the parents. If inbreeding and heterosis levels for each calf are known the

calf scores may be adjusted accordingly, such as in (8.15). However, finding the inbreeding and

heterosis levels for the calves is a time consuming process, as it involves looking up the ancestors

of every calf in a database, and for a typical problem such as Prerunex there are BC = 23540

potential calves.

We now suggest an approximate method to model inbreeding and heterosis, without having

to find the inbreeding and heterosis levels of all calves. This could be implemented with Cowcu-

lus, though has not been as far as is known. In the first step the model is solved with simple

calf scores involving no inbreeding and heterosis terms. In the solution to this solve some bulls

will be selected, typically considerably less than the total number of bulls. In the second step

we calculate revised calf scores for all potential calves parented by the selected bulls, including

inbreeding and heterosis terms. In the third step we resolve, pre-selecting those bulls selected

by the first solve. Providing that the bulls selected by the first solve remain among the best

bulls once inbreeding and heterosis levels are factored in, this method will give a good solution

to the original problem.

Retaining high value calves

Farmers tend to sell some proportion of their calves each year, and keep the rest in the herd.

The retained calves will breed and be the ancestors to future generations. There is thus an

incentive to make these calves of very high value. This can be modelled by introducing extra

integer variables to determine if a calf is to be retained or not, and altering the objective

function to prioritise selecting retained calves of high value. These extra integer variables could

make the problem much harder to solve.
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Appendix A

Hyper-sparse and Dense-fill

problems
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columns rows density of initial tableau density of optimal tableau
0 STORMG28 10193 4409 0.61022E-03 0.24464E-02
1 80BAU3B 9799 2262 0.94752E-03 0.49392E-01
2 STOCFOR2 2031 2157 0.19044E-02 0.61413E-01
3 SCTAP3 2480 1480 0.24177E-02 0.72997E-02
4 SHIP12S 2763 1151 0.25715E-02 0.66216E-02
5 SHIP12L 5427 1151 0.25887E-02 0.59922E-02
6 SIERRA 2036 1227 0.29229E-02 0.11374E-01
7 GANGES 1681 1309 0.31412E-02 0.26060E-01
8 CZPROB 3523 929 0.32598E-02 0.15489E-01
9 SCTAP2 1880 1090 0.32764E-02 0.13300E-01
10 GFRD-PNC 1092 616 0.35337E-02 0.27196E-01
11 SHELL 1775 536 0.37376E-02 0.35844E-01
12 CYCLE 2857 1903 0.38110E-02 0.91724E-01
13 SHIP08S 2387 778 0.38307E-02 0.83889E-02
14 SHIP08L 4283 778 0.38419E-02 0.85344E-02
15 WOODW 8405 1098 0.40606E-02 0.10080
16 SCRS8 1169 490 0.55551E-02 0.12500
17 SCFXM3 1371 990 0.57298E-02 0.68367E-01
18 STANDMPS 1075 467 0.73283E-02 0.31929E-01
19 STANDGUB 1184 361 0.73440E-02 0.94730E-02
20 SHIP04S 1458 402 0.74252E-02 0.13939E-01
21 SHIP04L 2118 402 0.74368E-02 0.13695E-01
22 FINNIS 614 497 0.75698E-02 0.32914E-01
23 STANDATA 1075 359 0.78539E-02 0.10212E-01
24 MAROS 1443 846 0.78753E-02 0.53965
25 SEBA 1028 515 0.82203E-02 0.94141E-02
26 SCFXM2 914 660 0.85919E-02 0.11784
27 ETAMACRO 688 400 0.87536E-02 0.16055
28 FIT1P 1677 627 0.93849E-02 0.28293E-01
29 SCORPION 358 388 0.10266E-01 0.58652E-01
30 SCTAP1 480 300 0.11750E-01 0.46931E-01
31 FFFFF800 854 524 0.13915E-01 0.66423E-01
32 SCFXM1 457 330 0.17167E-01 0.11175
33 CAPRI 353 271 0.18471E-01 0.25826
34 VTP.BASE 203 198 0.22590E-01 0.21548
35 LOTFI 308 153 0.22876E-01 0.76755E-01
36 TUFF 587 333 0.23124E-01 0.20940
37 BOEING1 384 351 0.25856E-01 0.15486
38 AGG2 302 516 0.27491E-01 0.92632E-01
39 AGG3 302 516 0.27594E-01 0.95693E-01
40 AGG 163 488 0.30298E-01 0.15058
41 STOCFOR1 111 117 0.34419E-01 0.37253
42 RECIPE 180 91 0.40476E-01 0.43223E-01
43 BOEING2 143 166 0.50383E-01 0.12731
44 BEACONFD 262 173 0.74461E-01 0.91404E-01

Table A.1: Size and density of Hyper-sparse problems
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columns rows density of initial tableau density of optimal tableau
45 SCAGR25 500 471 0.65987E-02 0.18161
46 BNL1 1175 643 0.67781E-02 0.58834
47 NESM 2923 662 0.68671E-02 0.21784
48 SCSD8 2750 397 0.78626E-02 0.58377
49 PILOT4 1000 410 0.12539E-01 0.80783
50 SC205 203 205 0.13240E-01 0.90191
51 DEGEN2 534 444 0.16778E-01 0.17264
52 BANDM 472 305 0.17324E-01 0.54256
53 BORE3D 315 233 0.19470E-01 0.28159
54 SCSD6 1350 147 0.21749E-01 0.18424
55 STAIR 467 356 0.23194E-01 0.93127
56 SCAGR7 140 129 0.23256E-01 0.20194
57 SC105 103 105 0.25890E-01 0.83403
58 BRANDY 249 220 0.39211E-01 0.55511
59 SCSD1 760 77 0.40807E-01 0.22779
60 E226 282 223 0.40995E-01 0.46416
61 SHARE1B 225 117 0.43723E-01 0.21918
62 SC50B 48 50 0.49167E-01 0.96000
63 SC50A 48 50 0.54167E-01 0.86917
64 GROW7 301 140 0.61984E-01 0.71592
65 ADLITTLE 97 56 0.70508E-01 0.36690
66 BLEND 83 74 0.79941E-01 0.40687
67 SHARE2B 79 96 0.91508E-01 0.39214
68 ISRAEL 142 174 0.91833E-01 0.71333
69 AFIRO 32 27 0.96065E-01 0.17477
70 KB2 41 43 0.16222 0.75156
71 FIT2D 10500 25 0.49150 0.99485
72 FIT1D 1026 24 0.54435 0.85551

Table A.2: Size and density of Densefill problems
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Appendix B

Estimating final tableau density

In Chapter 2 we stated formula (2.4) for the link between the number of structurals in the

basis, k, and the average number of nonzeros in each column at iteration k, ak. m and n are

the number of rows and columns of the initial tableau respectively, and C1, C2 and C3 are

constants. This formula assumes that the nonzeros in the tableau are distributed randomly

each iteration.

k = C1 log

(

ak − n

a0 − n

)

+ C2 log

(

ak − 1

a0 − 1

)

+ C3 log

(

akn − m

a0n − m

)

. (B.1)

We now derive this formula, and give explicit values for the three constants. Firstly the

Markovitz count each iteration is the product of the nonzeros in the pivot column, (ak −1), and

the nonzeros in the pivot row, (akm
n

−1). The proportion of nonzeros in the tableau is (1− ak

n
).

The increase in nonzeros per column each iteration is the Markovitz count, multiplied by the

proportion of nonzeros in the tableau, to account for superposition, divided by the number of

columns. Writing this difference in nonzeros as dak

dk
we get (B.2). This is separated into partial

fractions in (B.3) and the integration carried out in (B.4), yielding a constant C0. In (B.5) we

use the fact that at k = 0 ak = a0 to solve for C0.

dak

dk
≃

(ak − 1)(akm
n

− 1)(1 − ak

n
)

m
(B.2)

= −
mn

(a − n)(n − 1)(m − 1)
−

mn2

(a − 1)(n − m)(n − 1)
+

m3n

(am − n)(n − m)(m − 1)
(B.3)

k = −
mn log(ak − n)

(n − 1)(m − 1)
−

mn2 log(ak − 1)

(n − m)(n − 1)
+

m2n log(akm − n)

(n − m)(m − 1)
+ C0 (B.4)

= −
mn log(ak−n

a0−n
)

(n − 1)(m − 1)
−

mn2 log(ak−1
a0−1 )

(n − m)(n − 1)
+

m2n log(akm−n
a0m−n

)

(n − m)(m − 1)
(B.5)

We have now derived (B.1), with the constants defined as
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C1 = −
mn

(n − 1)(m − 1)
, C2 = −

mn2

(n − m)(n − 1)
, C3 =

m2n

(n − m)(m − 1)
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Appendix C

Estimating number of nonzeros

in rows and columns

In Section 3.4.4 we considered how to estimate the number of nonzeros in each rows and columns

after several iterations of the revised simplex method. We do this by first producing a minimal

list of pivots that take the tableau from the initial tableau to the current basis. We call these

the Tarjan pivots. The Tarjan pivots each add a structural to the basis, so are expected to

cause fill in in any rows and columns that intersect the pivot column and row.

m

n
pivot
column

piovt
row

Figure C.1: Example tableau with pivot row and column marked

Let m and n be the number of rows and columns of the initial tableau respectively, and K1

and K2 be constants to account for numerical and structural cancellation (so they are typically

less than one). Let er
i represents the estimated row density of each of the i ∈ I rows affected

by the pivot, and ec
j be the estimated column number of nonzeros in each of the j ∈ J columns

affected by the pivot. Then by considering Figure C.1, and using a similar line of reasoning to

that in Section B, formulas for updating both the row and column density can be derived in

(C.1) and (C.2).
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er
i = er

i + K1K2(|J | − 2)
(n − er

i + 1)

(n − 1)
, (C.1)

ec
j = ec

j + K1K2(|I| − 1)
(m − ec

i )

(m − 1)
. (C.2)

ec
j2

= ec
j1

, (C.3)

ec
j1

= 1. (C.4)

|I| and |J | are the number of nonzeros in the pivot column and row respectively. The

reason that the row and columns formulas differ slightly is that we imagine the identity matrix

explicitly included in the tableau, which means each row has an extra nonzero in it. Furthermore

we must consider two special columns; let j1 be the column entering the basis (so will become

an identity column), and j2 be the column leaving the basis (so will inherit the old number of

nonzeros of j1). This gives (C.3) and (C.4).

We now demonstrate the formula on the example tableau above. Note the identity matrix is

included. Here m = 5 and n = 4. Suppose the pivot is at the element marked with a square, so

I = {1, 4, 5} and J = {1, 2, 4, 9}. Then applying (C.1) to row one and assuming no numerical

cancellation (K1 = 1) and a standard amount of superposition (K2 = 1) we get that:

er
1 = er

1 + (|J | − 2)
(m − er

1 + 1)

(m − 1)
,

= 4 + (4 − 2)
(4 − 4 + 1)

(4 − 1)
,

= 4 +
2

3
.

Thus we expect the pivot to cause an extra 2
3 nonzeros in the first row. This can also be seen by

considering that there is one empty space in the first row, out of a maximum of three possible

empty spaces, and two extra nonzeros from the pivot row are going to be added. There is thus

a 2
3 chance of fill in (you can see that here there is in fact going to be exactly one element of

fill in in the first row)

Similarly for the first column:
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ec
1 = ec

1 + 1(|I| − 2)
(n − ec

1)

(n − 1)
,

= 2 + (3 − 1)
(5 − 2)

(5 − 1)
,

= 2 +
3

2
,

so we expect on average 1.5 extra nonzeros in the first column after the pivot (here there is in

fact going to be exactly two elements of fill in in the first column).
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