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Abstract

A nonredundant quantization system is extensively used in a noisy
communication system. However, the removal of redundancy can introduce a great

deal of sensitivity to the noise engendered by transmission and this can cause

performance to degrade. Index assignment is a way of combating this degradation of

performance. A good index assignment algorithm will minimize the channel
distortion caused by channel errors, but since the error rate affects the channel

distortion, the performance of an optimal index assignment will vary as the error rate
varies. Therefore, it is important to develop an index assignment algorithm that
minimizes the channel distortion and is robust against variation in error rate as well.

The thesis will look at robust index assignment algorithms which minimize
channel distortion for scalar and vector quantizations. An index assignment

algorithm EIA for a scalar quantization model when the error rate is fixed is

proposed. The idea behind the EIA is to use the Hadamard transformation and to

rearrange the quantizer as close to the linear eigenspace as possible. Technically, the
EIA depends on a regression calculation and sorting algorithm. Secondly, a

modification of EIA, SEIA is presented which is independent of the initial index

assignment. Thirdly, an algorithm VEIA which extends the EIA for scalar

quantization to vector quantization is proposed. As well as existing criterion, a new

criterion, the expected channel distortion (ECD) is defined on a beta-type prior

density function for error rate which is appropriate for situations where the error rate

varies over time. The above three algorithms are measured under this and the
criterion is shown to perform well.

To illustrate the performances of signal-to-noise ratio, efficiency and

robustness, the EIA is compared with the well-known algorithm BSA by using real
data - a voice digitization in North American Telephone Systems CCITT for scalar
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quantization. For vector quantization, VEIA is compared with the algorithm BSA by

using first-order Gauss-Markov data.

The signal-to-noise ratio performance between EIA and BSA or VEIA and BSA
are shown to be indistinguishable. The calculations involved in EIA, SEIA and VEIA
are very simple since only a sorting algorithm is required. EIA takes only 0.9
seconds for a 256-point real world scalar quantizer while BSA takes hours. VEIA

requires only 8 seconds for a two-dimension vector quantizer of size 256 when BSA

again takes hours. Also, EIA and VEIA are robust when the error rate changes. They

give the same optimal index assignment for error rate varying from 0.0001 to 0.1,
while the BSA algorithm leads to different assignments.
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INTRODUCTION

Chapter 1

Introduction

1.1 Background

A standard communication system can be thought of a source which sends

messages consisting of units of input, a transmitter which transmits the input message, a
channel through which the message is sent, with a noise being added to the message in
the channel, a receiver which receives the contaminated received message, and the
received message. The message at the source may be anything in conventional

alphabetic or numerical forms such as a notice and a report, or in continuous forms such

as voice or image. Figure 1.1 shows the standard communication system.

noise

Figure 1.1: Process of a Communication System

This thesis deals with problems in such standard communication system. The
transmitter encoding the message is called an encoder. The receiver decoding the

message is called a decoder. The encoder is composed of a quantizer and an index

assignment. A quantizer is defined as follows.
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Input
Message Encoder index BSC index

binary binary Output
Decoder Message

► ►

Quantizer Index

Assignment

Codewords Codewords

Figure 1.2: Process of Quantization System on a Binary Symmetric Channel (BSC)

Define an n-point quantizer to be a mapping from units of input into a finite set C

containing n points which are called codewords. The set C is called a codebook. The

index of a codeword is one of the integers from 0 to n-1. The binary representation of an
index is a sequence of l's or O's with length log2n which is the binary representation of
the corresponding number. The index assignment is a one-to-one mapping which assigns
the indices to the codewords. In a quantization system, the input message is converted to

its selected nearest codeword at the encoder. The binary representation of the assigned
index of the selected codeword is then transmitted through a channel to a decoder. The

corresponding received message can be decoded back to the input message by looking

up the codewords for that index in the codebook. When a channel is noisy, there is a

probability q that a transmitted 0 is interpreted as a 1 by the receiver, and vice versa. The

q remains unchanged during the course of a transmission. Such a discrete memoryless
channel (DMC) used for transmission of binary indices is called a binary symmetric
channel (BSC) with bit error rate (BER) q. If the chance of 0 being represented as 1 is
not the same as 1 being represented as 0, the channel is said to be non-symmetric. Figure
1.2 shows the quantization system of a binary symmetric channel.

2
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codewords

./I

Figure 1.3 : Scalar Quantizer

Figure 1.3 shows an example of a one-dimensional (scalar) quantizer which maps

each input value from a real line into one of eight codewords. To apply basic vector

quantization to images, a natural way is to decompose a image into rectangular blocks of
fixed size and then use these blocks as the vectors [Gersho and Gray, 1992], Figure 1.4

shows an example of an image vector quantizer which maps each input image vector

into one of eight codewords. For instance, in a colour picture we need the colour

3



INTRODUCTION

consisting of red, yellow, blue, so the colour is a three-dimensional vector. On the

picture image of Figure 1.4, the degree of brightness for each primary colour is measured
on a scale of 0 to 7 for each square of the grid.

1.2 Purpose

On a noisy binary communication channel, it can happen that a binary index

transmitted as a 0 is interpreted as a 1 by the receiver, and vice versa. The received

binary index differs from the transmitted one. There is thus a distortion between the

input message and the reconstructed output message and consequently degradation in

performance occurs.

An important question in quantization theory is how to overcome performance

degradation caused by noisy channels. One approach is to use redundant bits for error

control coding. That is, the transmitted bits sequence consists of more than the necessary

bits. The other approach is to improve the assigning of indices to codewords for a

nonredundant quantized codebook. This is the index assignment (IA) problem discussed
in this thesis.

In a nonredundant quantizer, the removal of redundancy can introduce a great deal
of sensitivity to the transmission. An index assignment is a rearrangement of the order in
which codewords appear in a quantizer codebook. This index assignment is the way that
we can combat the degradation of performance caused by channel noise. For a given

quantizer and a given channel, the object of an IA algorithm is to obtain an optimal
index assignment which minimizes the channel distortion between input message and

output message by rearranging the positions of codewords in a given codebook. Since
the bit error rate (BER) will affect the channel distortion, the performance of an index

assignment will vary as the BER varies. Therefore, it is important to develop an index

assignment algorithm, which is robust against variation in the BER.
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INTRODUCTION

The thesis will look at three robust index assignment algorithms that minimize the

effect of transmission errors on a discrete memoryless channel (DMC).

1.3 Organization of the Thesis

The rest of this thesis consists of three parts. Chapter 2 describes the notations of

quantization system used in the thesis and reviews the literature on the index assignment.

Chapters 3 and 4 propose three new index assignment algorithms for situations where
the bit error rate remains unchanged. Chapter 5 proposes a new measure of performance
as the bit error rate varies and describes how modifications of these new algorithms

perform under this measure. Finally, Chapter 6 draws some conclusions. The details are

organized as follows.

In Chapter 2, the different types of quantizers are reviewed. A quantizer design

algorithm which generates optimal codebooks and minimizes the distortion caused by
the quantization is reviewed. Based on the optimal codebook, index assignment

algorithms which minimize the distortion caused by noisy channels are discussed. The
most important of these is the Binary Switching Algorithm (BSA) which will be used to

benchmark the algorithms developed in Chapters 3 and 4. Other index assignment

algorithms are also reviewed. In Chapter 3, an efficient and robust eigenspace index

assignment algorithm, EIA, is proposed for the scalar quantization model. The sequential

eigenspace index assignment algorithm SEIA, a modification of EIA, is shown to be

independent of the initial index assignment. The results of CPU time, channel distortion

measure, and signal-to-noise performance measure are obtained for EIA, SEIA, and

BSA applied to real data - a voice digitization in North American Telephone Systems
CCITT. Also a comparison of EIA and the Linearity Increasing Swap Algorithm (LISA),
a commonly used algorithm, on simulated data is undertaken. Chapter 4 extends the EIA
for scalar quantization to VEIA for the vector quantization problem. Comparisons
between VEIA and BSA are made using a first-order Gauss-Markov codebook and

5
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VEIA turns out to be robust and efficient. Chapter 5 considers the channel mismatch

problem where the bit error rate (BER) in the communication channel varies over time.

A new criterion, the expected channel distortion (ECD) is defined using beta prior
distributions. The above three algorithms are measured under this and other criterion are

shown to perform well. Discussions and Conclusions are presented in Chapter 6.

6
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Chapter 2

Literature Review

In the chapter we recall the mathematical background, outline the notations of

quantization systems, and review the relevant literatures. Measures of performance,

probability density functions of input to quantization systems, various choices of

codebooks, a quantizer design algorithm, various choices of initial index assignments,
and the existing optimal index assignment algorithms are defined.

2.1 Mathematical Notations

Definitions 2.1 and 2.2 [Lint, 1992] recall some aspect of combinatorial theory.

Definition 2.1 Let In be the identity matrix of order n. A square matrix M of order n

with elements +1 and -1, such that MM1 = nln, is called a Hadamard matrix.

For instance, a square Hadamard matrix M of order 2 is M2 =
1 -1 1 1

'-1 O
1 1

and
' 1 0
-1 1

Definition 2.2 If A is a mxmmatrix with entries a., and B is a nxn matrix then the

Kronecker product A ® B is the mn x mn matrix given by

7



LITERATURE REVIEW

A ®B

a,,B a,2B
a21B a22B

amlB am2B

almB
a2mB

a-B

(2.1)

Note that the Kronecker product of Hadamard matrices is again a Hadamard matrix

'1 1
[Lint and Wilson, 1992], Starting from M2 = j _ j I we can find the sequence M2„ ,

for instance, M?, =M2®M2

1111
1-1 1-1
1 1-1-1
1-1-1 1

etc.

2.2 Probability Density Functions of Input

Two probability density functions (pdf) used in the thesis for input xe R are listed
below.

Uniform pdf with parameters a, be R, a<b:

p(x)=l/(b-a), for xe [a,b] e R.

Gaussian pdf with parameters p., ae R, a>0, denoted by N(|i,cf):

p(x)=(2Tta2)_1/2exp(-(x-p)2/2a2), xe R.

A k-dimensional random vector x-|xu X2, ... , Xk] eRk is independent and

identically distributed (iid) Gaussian input, if it has independent components Xj with

identical N(p,a2). Thus the k-dimensional pdf is given by

p(x)=riP(xO= (27ta2)"k/2exp(-^(xi -p)2/2a2).
i=l i=l

2.3 Quantization Systems

A typical quantization system contains an encoder, a decoder, and a distortion

8
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measure. The notations used in scalar quantization system and vector quantization

system are described first in subsections 2.3.1 and 2.3.2, respectively, and performance
measures are discussed in Section 2.4.

2.3.1 Scalar Quantization System

The scalar quantization system on a noisy channel and the notations used in this
thesis are shown in Figure 2.1. Basically, the system consists of an encoder and a

decoder. An encoder consists of a quantizer and an index assignment.

Input
Message

Codebook Assignment Vector
C={y0,...,yn-i} zT=[z0,...,zn.i]

(i.e. set of codewords yO

Encoder
index

►
BSC

index
Decoder

Message

Quantizer
F(x)

Index

Assignment

i j
►

zi

X
Assignment Vector

T
Z -[z0,...,Zn-l]

Figure 2.1: Process of Scalar Quantization on a Binary Symmetric Channel (BSC)

A scalar quantizer F of size n is a mapping from units of input xeR into a finite

set C of real number containing n points y; e R. That is F: R —> C, where

C = {y0'yiyn-i} is called a codebook and e R for each ie I={0,l,...,n-1} is called

a codeword. In a non-redundant binary system, the size n is a power of 2, say n = 2b and

b is a positive integer. A quantizing partition S = {S0,S,,...,Sn_!} of R has n cells

associated with n points such that S; = {x e R : F(x) = y;}. Hence, the scalar quantizer F

is completely described by the codebook C together with the partition S. Let p(x) denote

9
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the probability density function of an input x, then p; = | p(x)dx is the occupancyJSj

probability of the ith cell. If every codeword satisfies =E[XIXeSi] = | xp(x)dx/pj?S;

for i=0,l,...n-l, then the centroid condition holds. We will show that the centroid

condition is a necessary condition for an optimal codebook [Gersho and Gray, 1992],
The details are described in subsection 2.5.4.

In the thesis, we assume the input and the quantizer form a matched equiprobable

source-quantizer pair in which all cells are equiprobable and all codewords are cell

centroids, that is pi=l/n and y; = E[XIXeSj] for all i. A quantizer of this type is also

called a maximum-output entropy quantizer (defined in detail in 2.3.3). Without loss of

generality, we also standardize the elements in a codebook by changing the definition of
n-1

the origin point 0 in R such that ^ Y; = 0 without affecting performance.
i=0

The codewords in a codebook are mapped one-to-one onto the indices

ie 1 = {0,1,...,n — 1}, each of which is a b-bit binary representation of the corresponding

number i. This is called the index assignment problem. Given an input xeSj, an

encoder converts it to the selected nearest codeword and delivers its b-bit binary index i
to a decoder through a noise, memoryless, binary symmetric channel (BSC). However,
due to the effect of channel noise during transmission, the received binary index j is not

necessary the same as the transmitted index i and cause a significant performance

degradation in decoded codewords. The received codeword becomes y. for an input

x e Sj, and its distortion is measured by d(x,yj).

An index assignment can combat performance degradation caused by channel noise.
T

Let z = [z0,Z[,...,zn_|] be an index assignment vector, where each zs is one of the

codewords in C and i e I is its associated index. Thus, for each permutation of
codewords in a codebook, there is a corresponding assignment vector z. The choice of

10
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permutation of codewords in a codebook is referred to as the index assignment of a

quantizer. Thus, given an input signal x e S; the resulting distortion is then measured by
•)

a given distortion measurement d(x, z j), where z j is the codeword in a decoder

corresponding to x.

Since rearranging the positions of codewords in a given codebook C results in

different distortion between x and zj, the object of an index assignment algorithm is to

minimize the distortion d(x,Zj) between the quantizer input x and the received
codeword zj.

2.3.2 Vector Quantization System

In a vector quantization system, the notation generalizes straightforwardly from

scalar quantization. Define a vector quantizer F:Rk —>C, where C = {y ,y]5...,y (} is
called a codebook and y. e Rk for each ie I = {0,1,...,n -1} is called a codeword. A

quantizing partition S = {S0,S,,...,Sn_,} of Rk has n cells associated with n points such

that Sj ={xe Rk :F(x) = y.}, where xT = [x,,x2,--,xk] denotes an input vector. As

in scalar quantizer, the vector quantizer F is completely described by the codebook C

together with the partition S. Let p(x) denote the probability density function of x , then

Pi = Js P(x)dx is the occupancy probability of the ilh cell. As in the case of scalar

quantization, if the centroid condition holds, then y. =E[XIXeSJ= [ xp(x)dx/pj.
— 1 Js,

n-1

The zero-mean codebook assumption ^y =0 is also assumed.
i=0 '

Let Z denote a nxk assignment matrix with distinct ordering of y.'s in C as

Z = [z1,z2,...,zk] = [g,^,..„£_i]r, (2.2)

11
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where is the k-dimensional codeword (i.e. one of the y. 's in C) that is assigned the b-

bit binary expansion of i. As in scalar quantizer, given an input vector xeSj, an

encoder then converts it to the selected vector and delivers its b-bit binary index i

through a binary symmetric channel (BSC) to a decoder. Let be the codeword that

arises at the decoder when x is an input vector. The resulting distortion is then

measured by a distortion measure d(x,^ ). This measure of performance is further

discussed in the Section 2.4.

2,3.3 Maximum-output Entropy Quantizer

One way of describing the structure of the output of a quantizer is to use an entropy

function 4>(.). Messerschmitt [Messerschmitt, 1971] stated that the entropy at the output

of a quantizer is equal to the average mutual information between unquantized and

quantized random variables which is made precise in definition 2.3. Thus, for a fixed

number of codewords, output entropy is a reasonable information-theoretic criterion of

quantizer fidelity. Messerschmitt [Messerschmitt, 1971] also showed that, for a class of

input distributions, the quantizers with maximum-output entropy and minimum

quantization error are the same up to a multiplicative constant.

A quantizer is represented by a partition of n cells and a codebook with n

codewords. Let Y denotes the random output from the quantizer. The concept of the

entropy of a quantizer is obtained by measuring the average amount of information per

codeword y, of the quantizer output Y as follows.

Definition 2.3: The entropy of a quantizer output Y is defined by

<E>(Y) = Xp(yi)log-^—, (2.3)
m p(y.)

where p(yO is the probability of codeword y\ at ith partition cell occurring from a random

12
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input and n is the number of codewords.

As noted, the entropy function has the following properties [Hamming, 1980]:

(1) 0<«t>(Y)<log2n.

(2) <3>(Y)=0, if only one codeword.

(3) <E>(Y)=log2n is maximal, if all the codewords are equally likely. That is, p(yj)=—, for
n

alii.

Therefore, a maximum-output entropy quantizer is one which is equiprobable, i.e. in

which all codewords are used with equal probability, say p(yO= —. So the assumption in
n

the thesis that all the cells are equiprobable is equivalent to saying that the quantizer has

maximum-output entropy.

2.4 Measures of Performance

2.4.1 Mean-squared Distortion

The distortion between an input message and its output message is defined as their
Euclidean distance from each other. The Euclidean length and distance are recalled first
as follows. For convenience, k-dimensional vectors are assumed.

Definition 2.4: The Euclidean length of a vector x = (x,,x2,---,xk) in k-dimensional

k • II II T 1/2 / 2 2 2real Cartesian space R is defined by ||x|| = (x x) = -^xj" + x2 + ...+ xk .

Definition 2.5: The squared Euclidean distance between two k-dimensional vectors

x = (x,,x2,-",xk) and y = (y,,y2,---,yk) is defined by

!=i>,-y,)2. (2-4)
i=l

13
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For statistical averaging of the distortion, the input probability density function as

well as the specific quantizer characteristic are taken into account. One of the most

popular measurements in use is the Mean-squared-error (MSE) as follows:

Definition 2.6: The mean-squared distortion D of assignment matrix Z is defined as

follows. Suppose the input is a k-dimensional vector x = (x, ,x2,---,xk) and the

corresponding codeword of the quantizer is F(x)=£. = » and the

corresponding received codeword at the decoder is Z, = ,^j2,---,^jk), then

D(Z) = E[d(X,E )] = E[IIX-E ll2] = fEZ<)«J||s-^-> -J kfrfr Jsiil -J

2

p(x)dx, (2.5)
k i=0 j=0

where p(x) is the probability density function of x; qi| is the transition probability that
the channel output is j given that its input is i. For scalar quantizations, a mean squared

distortion is D(z )=E[(x-zj)2], where x is the input symbol and Zj is the received

codeword at the decoder corresponding to x.

Since the mean-squared-error (MSE) criterion is used, (2.5) can be decomposed

into the sum of a quantization distortion (Ds) due to quantization effects only, a channel
distortion (Dc) caused by misinterpretation of the received codewords and the mixed

term (DM). Let Pi = f P(x)dx, thenJS;

i n-1 n-1 I.

D(Z) = -SIq8I.KK i=0 j=0 111

2

p(x)dx (2.6)

p(x)dx
i n-1 n-1 ||

= ,1X1.^-4+4-5,K i=0 j=0 111

=17X ills - i, fp®ds+rX p.X1 - !,f +7XX illi (s -1, )T <4 - !, )P®dsk i=0

DS+Dc(Z) + DM

k i=0 j-0 i=0 j=0

or in the format of expectation, we have

14



LITERATURE REVIEW

D = E[ll X-|. II2] = E[llX-|. +|. II2]
=E[llX-|. Il2] +E[ll|. Il2] + 2E[(X-|.)t(|. -|.)] . (2.7)
= Ds +Dc +DM

Since the expectation of a constant, c, is that constant, and for a random variable X,

E[cX]=cE[X], (^. -1; ) can be moved out of the expectation so that

DM=2E[(X-|i)T(|i-|.)]=^2Pil!q1i(!.-|i)TE[(S-|,)IXsS1]. (2.8)K i=o j=0

If the codeword is the centroid of the partition cell Si for all i, i.e. £, . =E[XIXe SJ,

then

E[(X-|.)IXe SJ = (|. -|.) = 0 (2.9)

Therefore, The mixed term (DM) is zero if the centroid condition holds and

D(Z) = Ds +DC(Z). (2.10)

Totty and Clark [Totty and Clark, 1967] also showed the same result in the scalar

quantization case. They also emphasized the noise in the transmission is completely

arbitrary. No assumption regarding the independence of the quantization error and the

channel noise is made nor required. Rydbeck and Sundberg [Rydbeck and Sundberg,

1976] also showed the same result as (2.10) for scalar quantization with arbitrary
channels. For vector quantization, Farvardin [Farvardin, 1990] and Messerschmitt

[Messerschmitt, 1979] also found the same result as (2.10) for discrete memoryless
channels. Zeger and Gersho [Zeger and Gersho, 1990] summarized that the total

distortion with MSE criterion under a noisy channel can be written as D=DS+DC if the
centroid condition is satisfied. Zeger and Manzella [Zeger and Manzella, 1994] proved
that the mixed term DM decays to zero as the size of codebook n approaches infinity
even when the codewords are not positioned in the centroids for a binary symmetric

15
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channel.

In the thesis, we construct optimal codebooks which minimize Ds and in which the

centroid condition holds. Then the mean-squared distortion D is composed of Ds and Dc

with Dm=0. However our focus is on index assignment algorithms to minimize channel
distortion Dc for such optimal codebooks. The optimal codebook generated by the

quantizer design algorithm is discussed in Section 2.5.4.

2.4.2 Signal-to-noise Ratio(SNR)

The measure of performance is a real number which indicates the overall quality

degradation or distortion of a quantizer system. It should reflect the subjective
assessment of the message quality that is a human perception of the aural or visual

signals. The signal-to-noise ratio (SNR) is one of the most common measure, which tries

to do this.

The SNR is an assessment of performance, which is defined by normalizing the

input variance Var( X ) by the noise distortion D and taking a scaled logarithm:

Var(X)_1A1_ E(X-E(X))2 ,„11NSNR— 10log|Q
^ 10 log 10 ^ , (2.11)

which is measured in units of decibels (dB). For a zero-mean assumption of E(X) =0,

the input variance Var( X) is the same as the E(X ). When the total distortion is much

less than the input variance, i.e. D«Var(X), the term high resolution is used, where

resolution corresponds to the degree of discernible detail. Certainly, the real performance
measurement for a communication system is the subjective quality of the received signal.
In image processing, it is the quality of received picture that matters and high dots per

inch means high resolution. For a voice system, it is the quality of the received speech
that matters. Therefore, it is necessary to compare the theoretical results with subjective
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measurements [Yan and Donaldson, 1972], In general, the borderline between high and
low resolutions is taken to be a SNR value of 10 dB [Gersho and Gray 1992],

2.5 Choices of Quantizers

In this section, we introduce some quantizers that will serve as examples later for

verifying the performances of index assignment algorithms. The uniform quantizer and
the antipodal direct sum codebooks are used since their optimal index assignments are

known and thus can serve as benchmark examples. Also, a real world symmetric

piecewise uniform scalar quantizer of the voice digitization in North American

Telephone Systems (called CCITT) and a first-order Gauss-Markov quantizer are

included.

2.5.1 Uniform Quantizer

A uniform quantizer is a quantizer which satisfies two conditions: (1) the partitions
are equally spaced and (2) every codeword is the centroid of its associated partition if

that cell is bounded. In the case of scalar quantization, let C = {y0,yjyn_j}, where

y, e R, Xi and Xj+i are the endpoints of the ith partition cell. The first condition implies

that with step size A, yi-yui=A for i=l,2,3,...,n-l and the second condition implies that

yi=(Xi+Xj+i)/2 for i=l,2,3,...,n-2. For unbounded inputs, the quantizer has overload cells

(- oo ,x i ] and [xn_ i,+ oo) with y0=x \ -A/2 and yn_ i =xn_ i+A/2.

2.5.2 Antipodal Direct Sum Codebook

An antipodal direct sum codebook (APDS) with size 2b is the direct sum of the b

antipodal codebooks {-c0,c0}, {-c,,c,},•••, {-cb_i,cb_]} [Barnes and Frost, 1993].

That is, each codeword is a signed combination of the C;'s in the form of

{±c0±c, ± • • • ± cb_j}, where ci's are distinct real numbers so that no Cj can be obtained
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by adding or subtracting others [McLaughlin et ah, 1995]. Note that each codeword has

a unique decomposition as a signed combination of cx's so all 2b codewords are distinct.

For instance, a uniform scalar codebook is a special case of APDS codebook. For a

uniform scalar codebook with size n=23=8 and step size A, the codebook is

111" A -3.5A
— 1 1 1

ZA
-2.5A

1—1 1 2 -1.5A
1 1 ] -<f)2 -0.5A
1 1—1

—

0.5A
— 1 1—1 A , 1.5A

1 — 1 — 1
1

<N|JL<N1

1

2.5A
-1 -1 -1 3.5A

™ „ -n + 1 , -n +3. n-1 J
Therefore, in general, C~|—^^—A,--,——A> with [c0,c, ,...,cb_,}
= {—(A/2),—(A/2)2,...,—(A/2)2b_1}.

2.5.3 Piecewise Uniform Quantizer and CCITT

A piecewise uniform quantizer is a quantizer whose range consists of several

segments. Each segment contains several partition cells with codewords corresponding

to a uniform quantizer. Thus if (aj,bO is the ith segment with v>2 steps, then a; and b; are

the endpoints of the ith segment, in which each partition cell has size Aj=(bi-ai)/v, and

each codeword is the midpoint of the associated partition cell. Note that each segment

may have a different number of steps v and a different value of step size A;.

In the current North American standard for digital telephony, the Voice Digitization

Systems (CCITT G.711) [Gersho and Gray, 1992] is a symmetric piecewise uniform

quantizer with 8 bits. The CCITT is symmetric around zero with 8 positive and 8

negative segments, increasing in length by a factor of 2 for each successive segment in
order of increasing amplitude, respectively, and with v=16 steps on each segment. It has

codeword values given by the following formula
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y(P,S, B) = (1- 2P)[(2B + 33)(2S) - 33], (2.12)

where the parameters can take on the values of P=0,1, S=0,l,2,...,7, and B=0,l,2,...15.

The negative codeword values of the CCITT codebook are listed in Table 2.1. The

possible range of codeword values y* is from -8031 to 8031 and its variance is 6423572.

There are two zero's codeword values for both positive and negative segment, so it has

255 distinct codewords in 255 cells. The quantization distortion
m I

Ds = (S\— ) /12 =910, where m=16 denote the number of segments.
f=l m

Table 2.1: The negative codeword values of CCITT Codebook.

Segment i Values

Ai=(bi-ai)/16 yi
1 -8031 -7775 -7519 -7263 -7007 -6751 -6495 -6239

256=

(8159-4063)/16
-5983 -5727 -5471 -5215 -4959 -4703 -4447 -4191

2 -3999 -3871 -3743 -3615 -3487 -3359 -3231 -3103
128=

(4063-2015)/16
-2975 -2847 -2719 -2591 -2463 -2335 -2207 -2079

3 -1983 -1919 -1855 -1791 -1727 -1663 -1599 -1535
64=

(2015-991)/16
-1471 -1407 -1343 -1279 -1215 -1151 -1087 -1023

4 -975 -943 -911 -879 -847 -815 -783 -751
32=

(991-479)/16
-719 -687 -655 -623 -591 -559 -527 -495

5 -471 -455 -439 -423 -407 -391 -375 -359
16=

(479-223)/16
-343 -327 -311 -295 -279 -263 -247 -231

6 -219 -211 -203 -195 -187 -179 -171 -163

8=(223-95)/16 -155 -147 -139 -131 -123 -115 -107 -99

7 -93 -89 -85 -81 -77 -73 -69 -65
4=(95-31)/16 -61 -57 -53 -49 -45 -41 -37 -33

8 -30 -28 -26 -24 -22 -20 -18 -16

2=(31-(-l))/16 -14 -12 -10 -8 -6 -4 -2 0
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2.5.4 Quantizer Design and GLA for Vector Quantization

In this subsection, the quantizer design algorithm and the well-known generalized

Lloyd algorithm (GLA) are stated in details. For a given set of data, the quantizer design

algorithm seeks an optimal quantizer which will minimize the quantization distortion Ds.

In a vector quantizer F of size n, a k-dimensional input symbol x = (x,,x2,---,xk) has

the corresponding codeword F(x), then the quantization distortion is given by

Ds = E[d(X,F(X))], (2.13)

where p(x) is the probability density function of X- An optimal quantizer design is

defined as follows.

Definition 2.7: For given input message and a given size of quantizer n with k

dimension, a vector quantizer F* is said to be optimum if DS(F*)<DS(F), for all other

quantizers F. (When k= 1, it is the case of a scalar quantizer.)

Since a quantizer consists of a partition and a codebook, the principal goal of

quantizer design is to select the codewords and the partition cells so as to minimize the

quantization distortion Ds. Gersho and Gray [Gersho and Gray, 1992] summarized two

necessary conditions for an optimal quantizer as follows:

(1) Find the optimal partition for a given codebook (nearest neighbor condition)

(2) Find the optimal codebook for a given partition (centroid condition).
These two conditions and their proofs of optimality are summarized as follows.

Definition 2.8 (nearest neighbor condition): For a given codebook in vector

quantizations, the codeword is the nearest neighbor of an input point x if x is closer

to codeword % than to any other codewords. For scalar quantization, x is replaced by x

and is replaced by y,.
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Theorem 2.9: [Gersho and Gray, 1992] Given the codebook C = {^ ^ [} for a

vector quantizer F, the optimal partition S = {Sj;i = 0,...,n — 1} satisfies the nearest

neighbor condition

Sj = "jx: d(x,|.) < d(x,|.);Vj ^ ij. (2.14)

Proof of Theorem 2.9:

Given the given codebook C = {I; I; }, the nearest neighbor condition in

(2.14) is equivalent to F(x) = £., only if xe Sj = {x : d(x,£.) < d(x,£ ),Vj i], or

d(x,F(x)) = min(d(x,^)). Thus, the partition S has a minimum distortion as

Ds =E[d(X,F(X))] = §Js d(x,|.)p(x)dx
i=0 1 '

^Xjs min(d(x,|))p(x)dx
i=0 ' ¥c

This lower bound is attained when the nearest neighbor condition is satisfied. □

Definition 2.10 (centroid condition): For a given set T e Rk with nonzero probability,

the centroid of T, denoted by cent(xF), is defined as the vector y* which minimizes the
*

distortion between a point xef and y averaged over the probability distribution of x

given that x lies in T. Thus, y*=centOF) if E[d(X,y*) I Xe T] < E[d(X,y) I Xe T].

Theorem 2.11: [Gersho and Gray, 1992] Given a partition S = {Sj;i = 0,...,n-l} for a

vector quantizer, the codebook which minimizes the distortion Ds is given by

C = {cent(Sj);i = 0,...,n-1}.

Proof of Theorem 2.11:

Let F(x) = C denote the optimal quantizer such that F(x) = cent(Sj), where

xeS;. Considering any other quantizer F'(x) = C'={^.;i = 0,...,n-l} such that
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F'(x) = %., where xe Sj. By Definition 2.10,

Ds - E[d(X,F'(X))] = ^p.E[d(X,|;.) I Xe S, ]
(2.15)

> £piE[d(X,Cent(Si)) I Xe S, ] = E[d(X,F(X))].
i=0

Therefore, C is an optimal codebook given a partition S. □

For the squared error measure the centroid reduces to the mean of x as follows.

Corollary 2.12: [Gersho and Gray, 1992] The mean-squared error distortion measure,

Ds is minimized for a quantizer when the codeword for the ith cell Si is simply the mean

of x given that x in Si,

cent(Si)=E[XIXeSi]=|i. (2.16)
Proof of Corollary 2.12:

Let F(x) = C = {^.;i = 0,...,n-l} denote the quantizer such that F(x) = i;., where

xe Sj. Consider any other quantizer F'(x) = C'= ;i = 0,...,n-1} such that F'(x) = ,

where xe Sj. By (2.16), E[X—I Xe SJ = 0. Then, we have

E[d(X,F'(X)] = XPiE[ll X-|: 1I2I Xe S, ] = £p.E[ll X- ll2l Xe S,]
i=0 ' i=0 ill

= E[IIX-F(X)ll2] + Xp1E[H|i-|;il2] + 2Xpi(|i-|i')TE[(X-|i)IXeSi] ,
i=0 ' i=0

> E[ll X-F(X) II2]
since the mixed term is equal to zero and the second term is positive. Thus,

E[X I X g S= ] = £ is the centroid of the ith cell Si. □— 1 _i

Lloyd [Lloyd, 1957] proposed two methods for scalar quantizer design. The one

which involves a non-variational approach is known as Lloyd's Method I, and the other

one with a variational approach is called as Lloyd's Method n. The technique used in

Lloyd's Method II was also independently developed by Max [Max, 1960] and so is
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known as the Lloyd-Max quantizer. Max used it when he calculated the optimum non¬

uniform and the optimum uniform (equally spaced) quantizers for a noiseless channel.

The General Lloyd Algorithm (GLA) proposed by Lindo, Buzo and Gray [Lindo, et al.,

1980] is a direct generalization of Lloyd's Method I, which provides an efficient

algorithm for designing good vector quantizers that overcomes the problems of the
variational approach. The GLA algorithm is also known as the LBG algorithm after

Lindo, Buzo and Gray.

The GLA is used in this thesis because it can be used as an add-on to any other

design algorithm. That is, the GLA can improve (or at worst leave unchanged) the

performance of any given initial codebook. So any alternative vector quantizer design

algorithm can always be regarded as a way to generate an initial codebook. [Gersho and

Gray, 1992],

The GLA improves the codebook by iterating between partitions that satisfy the
nearest neighbor condition and codewords that satisfy the centroid conditions

alternatively. Define the training set to be a set of observations of the input to be

quantized. It is expected the training set has enough data to estimate the true probability

density function of the input effectively. The GLA initially randomly chooses n

codewords from the training set. The Lloyd iteration is performed by assigning each
vector in the training set to its nearest neighbor codeword using exhaustive search

method. Thus, the vectors assigned to the same codeword form a nearest neighbor cell.

Then, a calculation is performed which computes the centroids of these cells as the new

codewords [Gersho and Gray, 1992], The algorithm proceeds by performing this Lloyd
iteration repeatedly until the overall distortion error changes by a small enough fraction.

Since for a given set of codewords C, the optimal partition cells Sj satisfy the

nearest neighbor condition (i.e. any x in the training set has as its unique nearest

neighbor among the set of codewords. So, if d(x,^.) < d(x,^.), for all j, then xeSj). If
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the nearest neighbor is not unique, the convention chooses the codeword with the
smallest index among all the nearest neighbor codewords. If there is no training vector in
a partition cell, the cell with the highest number of training vectors is assigned to a

second code vector by splitting its centroid into two codewords and the empty cell is
deleted. The GLA is summarized as follows.

Generalized Lloyd Algorithm (GLA)

Input: A training set T={x,,x2,---,xm}.

Output: final locally optimal codebook C°'.

Step 0: Initialization:

(1) Choose codewords from the training set randomly as an initial codebook C(0)
with size n.

(2) Set the distortion threshold to be cp>0. Set j=l.

Step 1: Given a codebook C<J_1>={ %. ;i=0,...,n-l}, determine the optimal partition

S(j> = {Sj;i = 0,1,...,n -1} based on the nearest neighbour condition, where

sj = "[xe t: d(x,£.) < d(x,^..);ViV i), for i=0,l,...,n-l.
Step 2: Compute the centroid of Sj found in Step 1 to obtain the new improved

codebook Cw, namely, set C(j)={cent(Sj); i=0,...,n-l}, where

cent(Sj)= E(X I X e S,) =

Step 3: Test the stopping rule:

1 111
(1) Compute the average distortion D(J) =—Yd(xk,F(xk)), where F(xk)e C(j)

mk=i

(2) If

is the nearest neighbour of xk .

D(j-i) _D(j)
< cp, then output the final Clj) and stop;D(H)

otherwise set j=j+l and Goto Step 1.
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Note that each iteration in the GLA always reduces (or at least never increases)

quantization distortion.

2.5.5 Gauss-Markov Quantizer

In later chapters, some first-order Gauss-Markov quantizers will be generated from

the generalized Lloyd algorithm (GLA) using a training set. The training set is a set of
observations of the input to be quantized. The generating procedure for obtaining the
first-order Gauss-Markov quantizer is summarized as follows [Zeger and Gersho, 1990],

Step 1 : Generate a training set of size 7500 with k dimensions:

(1) Generate an initial random input x, from N(0,1).

(2) Generate the first-order Gauss-Markov inputs {xj of the form
Xj+i= p Xj+Wj> for j=l,...,7500k-l, where {wj} are identical independent

distribution (iid) Gaussian input and are generated from N(0, ct^=l). The

correlation coefficient p is between -1 and 1.

(3) Generate k-dimensional input vectors such as x, =[xi,...,Xk], x2=[xk+i,...,X2k],

... , x7500 =[x75oo-k+i,- •• ,X75oo]. This first-order Gauss-Markov training set has the

correlation matrix as

1 p P2 • Pk"
p 1 P • Pk"
p2 p

• i P

p"'-1 <N1M
Cl • P i

Step 2: Perform the GLA by minimizing the Ds to obtain a locally optimal codebook.

2.6 Choices of Initial Index Assignments

The performances of optimization algorithms often depend upon the choice of a
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good initial index assignment. Some well-known codes are introduced in this section,
and they will be served as initial index assignments in later chapters. Firstly, the Random
Code (RC) is a popular code in which indices are randomly assigned to the codewords.

Secondly, Rydbeck and Sundberg [Rydbeck and Sundberg, 1976] looked at the

importance of good index assignments by comparing the performances of the Natural

Binary Code, the Folded Binary Code, and the Minimum Distance Code in scalar

quantizations. These three popular codes are defined as follows.

(1) Natural Binary Code (NBC): Assume codewords are in ascending order so that

y0 < y, <...<yn_,. They are then assigned the respective indices lNBC={0,l,—,n-l}.

This is called the Natural Binary Code. The corresponding assignment vector is

z1 =[z0,z,,...,zn_l] = [y0,y1,...,yn_|]. Table 2.2 shows the 4-bit NBC and its

corresponding assignment vector.

Crimmins et al. [Crimmins et al., 1969] showed that the NBC is globally optimal
for a uniform input and a uniform scalar quantizer. McLaughlin et al. [McLaughlin et al.,

1995] provided a simpler proof of the results of Crimmins et al. We also give a proof in

Chapter 3.

Therefore, we will use uniform scalar quantizers as an example to verify the

performances of the proposed index assignment algorithms by comparing them with

NBC what is known to be optimal.

(2) Folded Binary Code (FBC): Assume the codewords are in ascending order such as

y0 < y, <„. <yn_j. If the first half of the indices are in reversed order so that

Ifbc={ — -1,...,0,— ,...,n-l] then it is called Folded Binary Code. The corresponding
2 2

T

assignment vector is z =[z0,z1,...,zn_l] = [y(n/,2)_1,...,y0,y(n/2),...,yn_1]. Table 2.2 shows

the 4-bit FBC and its corresponding assignment vector.
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Table2.2: The 4-bit NBC, FBC, MDC and Their Corresponding Assignment Vectors.
c NBC FBC MDC

y- z, decimal binary Zi decimal binary Zi decimal binary
yo yo 0 0000 y7 7 0111 y7 7 0111

yi yi 1 0001 ye 6 0110 ye 6 0110

y2 y2 2 0010 ys 5 0101 ys 5 0101

ya ya 3 0011 y4 4 0100 ya 3 0011

y4 y4 4 0100 ya 3 0011 y4 4 0100

ys ya 5 0101 y2 2 0010 y2 2 0010

ye ye 6 0110 yi 1 0001 yi 1 0001

y? y7 7 0111 yo 0 0000 yo 0 0000

ys ys 8 1000 ys 8 1000 ys 8 1000

yg yg 9 1001 y9 9 1001 yo 9 1001

yio yio 10 1010 yio 10 1010 yio 10 1010

yn yn 11 1011 yn 11 1011 yi2 12 1100

yi2 yi2 12 1100 yi2 12 1100 yn 11 1011

yi3 yi3 13 1101 yi3 13 1101 yi3 13 1101

yi4 yi4 14 1110 yi4 14 1110 y 14 14 1110

yi5 yie 15 1111 yis 15 1111 yis 15 1111

(3) Minimum Distance Code (MDC): The first half of the numbers start with a zero in

the index and the second half start with a one in the index. The code is symmetric around

the median. The median numbers have zeros in all places except the first. The number

outside these have a 1 in the last place, and zeros in all other places except possibly the
first place. Then come numbers with 1 in the last but one place and zeros elsewhere.

Keep moving the 1 forward until it is in the second position with a 0 or a 1 in the first

position and O's elsewhere. Outside these are numbers with two l's in the last b-1 places.
Start with the two l's as close to the end of the code as possible and moving the l's

lexicographically forward as the numbers move away from the median. Repeat the same

procedure until b-1 l's are filled. Table 2.3 shows the MDC of 2-bit, 3-bit, 4-bit, and 5-

bit. Rydbeck and Sundberg [Rydbeck and Sundberg, 1976] also presented MDC, NBC,

and FBC for n=64.
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Table 2.3: Minimum Distance Codes for two bits, three bits, four bits, and five bits.

two-bit three-bit four-bit five-bit
01 Oil 0111 01111

Zero 00 010 0110 OHIO
10 001 0101 01101
11 Zero 000 0011 01011

100 0100 00111

101 0010 01100
110 0001 01010
111 Zero 0000 00110

1000 01001
1001 00101
1010 00011
1100 01000
1011 00100
1101 00010
1110 00001
1111 Zero 00000

10000

10001

2.7 Literature Review on Index Assignments

In this section we review the literature of the index assignment problem for scalar
and vector quantizations. Crimmins et al. [Crimmins et al., 1969] showed that the NBC

is globally optimal for a uniform input and a uniform scalar quantizer if there is a binary

symmetric noisy channel. Rydbeck and Sundberg [Rydbeck and Sundberg, 1976]
showed that different index assignments such as NBC, FBC, and MDC do affect the

distortion of quantization if there are channel errors. Thereafter, there were many articles
devoted to finding optimal index assignment algorithms. Suppose one has devised an

optimal quantizer F which minimizes Ds. An index assignment algorithm is designed to

minimize Dc by rearranging the positions of the codewords.

Definition 2.13: For a fixed vector quantizer F and a given bit error rate, an assignment
matrix Z* is said to be optimum if DC(Z*) < DC(Z), for all Z defined in (2.2). Also, for a

fixed scalar quantizer F and a given bit error rate, an assignment vector z * is said to be
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optimum if Dc( z *) <Dc( z ), for all z .

The assignment of the codeword indices is referred to as the index assignment, it
can effectively control performance degradation caused by channel noise. The index

assignment problem is a NP-hard problem [Chiang and Potter, 1995] and there are n!

assignments of indices for n codewords, an exhaustive search for the globally optimal

ordering is not feasible.

2.7.1 Index Assignment Algorithms

In this subsection, index assignment algorithms are described as binary switch,
simulated annealing, and genetic. Another important approach using Hadamard

transformation is presented in the next subsection.

The problem of index assignment affects on the performance of vector quantization

system has received much attention in the last 10 years. DeMarca and Jayant [DeMarca

and Jayant, 1987] showed that a substantial reduction in channel distortion can be

obtained through a judicious assignment of indices rather than a random assignment.

Cheng and Kingsbury [Cheng and Kingsbury, 1989] presented an algorithm which

sought to minimize the Euclidean distance between all pairs of codewords with a relative

Hamming distance of one. Zeger and Gersho [Zeger and Gersho, 1987] published an

algorithm which operated by continually swapping codewords until those was

convergence to a local minimum but proved no convergence results. The corresponding

convergence result was published later [Zeger and Gersho, 1990] and was called the

Binary Switch Algorithm (BSA). To our knowledge, no other work has disputed that the
BSA is the best performance in minimizing distortion. Therefore, it will be used to

benchmark the algorithms proposed in Chapter 3 and 4. The detailed properties of BSA
will be discussed further later in subsection 2.7.3.

Some heuristic algorithms such as simulated annealing algorithm and genetic

algorithm have also been applied to the index assignment problem. Simulated annealing
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[Kirkpatrick et al., 1983] is a random search algorithm in which (1) the next

configuration is generated randomly, and (2) "hill climbing" is allowed. Thus,

configurations of higher distortion than the present one are accepted according to a

certain criterion that takes into consideration the state of the search process. Goodman
and Moulsley [Goodman and Moulsley, 1988] introduced simulated annealing

techniques to help find index assignment functions of vector quantizers. Farvardin

[Farvardin, 1990] proposed an simulated annealing algorithm (SAA) for the index

assignment problem with the same bit error rate on each bit and gave a modification of
SAA for the case of unequal bit error rates on different bits.

The genetic algorithms discussed by Goldberg [Goldberg, 1989] and Davis [Davis,

1991] are local search algorithms in which the fittest population of codewords is
obtained by the following three steps: (1) select the best parents, (2) crossover the

parents to produce the next generation, (3) randomly mutate some genetic codes of the

existing populations to add genetic diversity. Pan et al. [Pan et al., 1996] applied genetic

algorithms to index assignment. Ostrowski and Ruoppila [Ostrowski and Ruoppila,

1997] applied a combination of simulated annealing and genetic algorithms to the index

assignment for vector quantizations.

Other index assignment algorithms have also been developed. Wu and Barba [Wu

and Barba, 1993] proposed a multilevel structure for index assignment, which

outperforms the average results of the random assignment. Hall [Hall, 1970] proposed a

method based on the reciprocal of the Euclidean distance between codewords. Cawley
and Talbot [Cawley and Talbot, 1996] presented a fast index assignment algorithm based

on this method which was comparable to the simulated annealing algorithm but with

reduced computation time.
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2.7.2 Hadamard Transformation Approach

Some authors have applied Hadamard transformations to solve the index

assignment problem. Knagenhjelm [Knagenhjelm, 1993] suggested the quantizer can be

expressed as a linear transform of a hypercube to minimize channel distortion for

equiprobable quantizers on a binary symmetric channel. He suggested that the Hadamard

transformation could give an objective measure called the linearity index, which
indicates the dominance the linear transformation of the general nonlinear
transformation. The linearity index is a way of measuring the goodness of an index

assignment.

McLaughlin et al. [McLaughlin et al., 1995] used Hadamard transformation and the

Ei eigenspace to derive the globally optimal index assignments for the class of

equiprobable scalar and vector quantizers called antipodal direct sum codebooks

(APDS). Since a uniform source and uniform scalar quantizer is a special case of APDS,
the Natural Binary Code (NBC) is globally optimal on binary symmetric noisy channel.
For non-APDS codebooks, McLaughlin et al. [McLaughlin et al., 1995] suggested an

idea to rearrange the index assignment matrix so that its columns are as nearly in Ei as

possible. In other words, the linearity index is maximized.

Using the Hadamard transformation and maximizing the linearity index,

Knagenhjelm and Agrell [Knagenhjelm and Agrell, 1996] presented two index

assignment algorithms for equiprobable scalar and vector quantizers: the Full Linear

Search Algorithm (FLSA) and the Linearly Increasing Swap Algorithm (LISA). The
/ b-l

FLSA performs a full search among L=(n -3)!/]~[(n -21) classes with special/ i=2

characteristics to find the index assignment with maximal linearity. However, it is of
more theoretical than practical interest because of the rapid increase in L, as n increases.

By modifying FLSA, LISA examines just a subset of the L classes and performs a special

31



LITERATURE REVIEW

type of pairwise swaps. In summary, LISA repeatedly applies the Hamming-1 routine
and Remaining routine until the linearity index converges. The Hamming-1 subroutine

picks out all pairwise swaps for the b*2h"' neighbors with Hamming distance one. (There

are 12 such pairwise swaps for b=3.) The Remaining subroutine is applied to the

remaining 2b l(2b-b-l) pairwise swaps. (There are 16 such pairwise swaps for b=3.)

Overall, there are " ]=2b"'(2b-l) possible pairwise swaps for each cycle of Hamming-1
v J

and Remaining subroutines. Note that a swap is effective only when it results in

increasing the linearity index; otherwise, no swap is made. An example based on 8

codewords will be given in Section 3.7 to demonstrate the detailed binary swaps of the
LISA.

Knagenhjelm and Agrell [Knagenhjelm and Agrell, 1996] undertook a

computational comparison of LISA, SAA and BSA. All three algorithms are based on

pairwise swaps to improve a given index assignment and their results depend upon the
choice of the initial index assignment. For a small codebook with b=6 and k=6, the SNR

performance between the three algorithms is almost indistinguishable, their differences

being less than 0.13dB. However, for larger codebook with b=9, k=3, LISA does not

compare well with BSA since the difference is about 0.6dB. Overall, in term of SNR

performances, BSA is shown to be the best, LISA is the second best and SAA is the third
best.

Using the idea of arranging an index assignment vector to be as nearly in Ei as

possible (or maximizing the linearity index), we propose an eigenspace index

assignment algorithm (called EIA) for the case of scalar quantization by using regression
method and sorting algorithm in Chapter 3. The EIA is simple and efficient since

multiple swaps are allowed. Using the Hadamard transformation, the EIA is extended in

Chapter 4 to the case of vector quantization. This extension is called eigenspace index

assignment algorithm for vector quantizer (VEIA).
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2.7.3 Binary Switching Algorithm (BSA)

The Binary Switching Algorithm (BSA) proposed by Zegar and Gersho [Zegar and

Gersho, 1990] is designed for general vector quantizers (non-equiprobable or non-

APDS) and has the best performance in minimizing channel distortion. Since it will be
used to benchmark the algorithms proposed in Chapter 3 and 4, its procedure is stated

here for reference. The main idea of BSA is to iteratively switch the positions of paired
codevectors to reduce the channel distortion and to stop whenever one reaches a local

minimum. Each such switch constitutes a change in the index assignment, i.e. a new

assignment matrix. The BSA involves four major steps as follows.

Binary Switching Algorithm (BSA)

Input: An initial index assignment for codebook C (or assignment matrix Z)

Output: An Optimal index assignment for codebook C (or assignment matrix Z)

Step 1: Sort codewords based on a cost function:
1 n-l

(1) Assign value Cost(^ ) for all ^ , i = 0,...,n-l, where Cost(^ )=—Vq-d^ £ )
n^ -'-J

and qjj is the transition probability that the channel output is j given that its

input is i.

(2) Sort the codevectors ^ in decreasing order of their cost value Cost(^.).

Step 2: New switches are attempted.

Select yCandidate vector with the largest cost as the candidate, say , to be switched

first.

Step 3:

(1) Switch (ycandidate, ) temporarily for all i.

2 n-l

(2) Determine the channel distortion Dc = E[

each switch.

-i -J
] = ^Cost(^.) following

i=0
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(3) Swap yCandidate and with the greatest decrease in Dc or

set new ycandidate= the second highest cost vector when there is an unsuccessful

switching attempt which cannot decrease Dc.

Step 4: If every codeword is such that when switched with every other codeword no

decrease in Dc occurs, then the algorithm halts in a locally optimal state
else go to Step 1.

Although the BSA has the best performance of channel distortion, it is a time

consuming algorithm. Zegar and Gersho [Zegar and Gersho, 1990] reported it requires
25 CPU hours on a SUN-3/180 machine for a codebook of size 256 with the single bit
error assumption. In other words, the BSA requires many swaps in order to minimize the
distortion. This motivated us to develop an efficient and robust index assignment

algorithm.
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Chapter 3

Scalar Quantization Model

A scalar quantizer F of size n is a mapping from units of input xeR into a

codebook containing n=2b codewords, namely, F: R —»C, where

C = {yo, Yiyn-i} is a codebook and yi e R is a codeword. A quantizing partition

S = {S0,S,,...,Sn_j} of R has n cells associated with the n codewords such that

S; = {xe R : F(x) = y;}. Let p(x) denote the probability density function of the

quantizer input x, then P; = | p(x)dx is the occupancy probability of the ithJs,

partition.

In the thesis, we will study the matched equiprobable standardized source-

quantizer pair in which all cells are equiprobable, all codewords are cell centroids

and the codewords are standardized, that is pi=l/n, yt =E[XIXeSj] for all i, and
n-1

Xyi = 0 • (The latter condition can be obtained by changing the definition of the
i=0

origin point 0 in R.)

The operation of a quantization system is decomposed into a successive

encoding and decoding. The codewords in a codebook are mapped one-to-one onto

the indices ie I = {0,1,..., n -1}, which can be denoted by b-bit binary sequences

corresponding to their representation as binary numbers. This is called the index

assignment problem. Given an input xe Sp an encoder converts it to the selected

nearest codeword yi and delivers its b-bit binary index i to a decoder through a noisy,

memoryless, binary symmetric channel (BSC). However, due to effect of channel
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noise during the transmission, the received binary index j is not necessary the same

as the transmitted index i. Consequently the received codeword becomes yj for an

input xeSp and its distortion is measured by d(x,yj). Regarding channel noise, it is

called a single-error pattern if there is at most one bit error per transmitted index,
otherwise it is a multiple-error pattern. It is the latter we are concerned with in the
thesis.

An index assignment can combat the performance degradation caused by

channel noise. Let z = [z0,z,zn_!] be an index assignment vector in which each

Z; is one of the codewords in C and i e I is its associated index. Let Zj (X) be the
received codeword in a decoder when Zj(X) is the chosen codeword for a random

input X, the resulting channel distortion is then measured by the mean squared-error

distortion E[(Z; (X) - z- (X))2 ]. However, we will drop the dependence of X from our

notation. The object of an index assignment algorithm is to minimize the mean

squared-error distortion by rearranging the positions of codewords in a given
codebook.

This chapter is organized as follows. Section 3.1 presents the properties of
channel distortion. Sections 3.2 and 3.3 introduce the ideas of linear eigenspace and

type of codebooks, respectively. Then two efficient index assignment algorithms,
EIA and SEIA, are proposed in Sections 3.4 and 3.5, respectively. Section 3.6

presents some numerical results to illustrate the properties of the proposed

algorithms. There, EIA is compared to two index assignment algorithms, Linearity

Increasing Swap Algorithm (LISA) and the Binary Switching Algorithm (BSA), to
show the efficiency and robustness of its performance in Sections 3.7 and 3.8,

respectively.

3.1 Channel Distortion

For an optimal quantizer with the centroid condition, the mean-squared

distortion resulting from an assignment vector ? on a binary symmetric channel can
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be decomposed into the sum of a quantization distortion (Ds) without channel noise
and the channel distortion (Dc or Dc(z;q)) due to channel errors. The details are

discussed in Chapter 2. Therefore, for a given channel bit error rate q (0<q<0.5) on a

binary symmetric channel, the mean-squared distortion resulting from using the

assignment vector z representing the random input X is given as

n-1 n-1

D(z,q) = E(X-Zj)2 =XS(iijJ O-Zj) P(*)dx
i=0 j=0 '

= (x-zi)2p(x)dx + ^pi^qjj(zi -Zj)2 = Ds + Dc(z,q)
(3.1)

i=0 j=0

where qy = qh<1,j)(l-q)b h(1,j) is the transition probability that the binary symmetric
channel output is j given that its input is i and the Hamming distance h(i,j) is the
number of bit positions in which i and j are different. Let p=l-q, for the case of b=3,
Table 3.1.1 and 3.1.2 show the Hamming distances and the corresponding transition

probabilities, respectively.

Table 3.1.1: damming distance h(i,j)
h 000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3

001 1 0 2 1 2 1 3 2

010 1 2 0 1 2 3 1 2

Oil 2 1 1 0 3 2 2 1

100 1 2 2 3 0 1 1 2

101 2 1 3 2 1 0 2 1

110 2 3 1 2 1 2 0 1

111 3 2 2 1 2 1 1 0

Tab e 3.1.2: Transition Probability qij

Hij 000 001 010 Oil 100 101 110 in

000 p3 P2q p2q pq2 P2q pq2 pq2 q3
001 P2q P3 pq2 P2q pq P2q q3 pq2
010 P2q pq2 P3 P2q pq2 q3 P2q pq2
Oil pq p~q p2q P3 q3 pq2 pq p2q
100 P2q pq2 pq2 q3 p3 p2q P2q pq2
101 pq2 p2q q3 pq2 P2q p3 pq2 p2q
110 pq2 q3 P2q pq2 P2q pq P3 P2q
111 q3 pq2 pq2 P2q pq2 p2q p2q P3

Since the first term Ds is the distortion caused by quantization and is

independent of both 1 and q, we wish to minimize channel distortion Dc(z;q)

caused by misinterpretation of the received codeword by choosing a good index

assignment for a given codebook. Please note that minimizing Dc(z;q) depends
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upon q for the case where multiple bit errors may occur on each transmission.

However, if a single-error pattern is assumed, the value of q will not affect the
minimization of Dc. For a fixed i, we have

£qs =X qh(ij) (1 - q) b-h(ij) = i: qr (1 - q) b-rX1
j=° j=0 r=0

b *V '
=1

r=0 Vr J
5r(i~q) -1

where t[ is the set of all integers j satisfying h(i,j)=r and qy has a binomial

distribution. Its size I X- 1=
A,\

vr>
because there are r bits that can change and b-r that

can not. The set of all n=2b output codewords are partitioned into b sets such that
each set consists of all codewords whose indexes are a fixed Hamming distance from
the index i, then Lemma 3.1 is derived as follows.

Lemma 3.1: [Zeger and Gersho, 1990] For single-error patterns, the index that
minimizes Dc does not depend upon the value of the bit error rate q.

Proof of Lemma 3.1: For single-error patterns, only a single bit error can occur on

each transmission, namely qy=0 for h(i,j)>2. Hence the distribution of qy is

[k(l — q)b, if h(i, j) = 0 1
q= \ u , , where k= ——: becauseHlJ [ kq(l — q) , if h(i, j) = 1 (l-q)w(l + (b-l)q)

k(l-q)b+kbq(l-q)b l=l. The channel distortion in (3.1) can be rewritten as follows:

n-1 n-1

Dc(z,q) = XPiEqij(zi ~zj)2
i=0 j=0

= Xpi[k(l-q)b0 + kq,(l-q)b-1X(zi-zj)]2
(3.3)

i=° jet;

n-1

= kq(l - q)"-' [X P,£ <z, - zi )2] = kqd - q>" D,
i=0 jeti

Clearly, for a given q, minimizing Dc(z;q) is the same as minimizing Dj, which is

not a function of q. Therefore, the Lemma is proved. □
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Although it is less computationally demanding if the single-error pattern is

assumed, we would like to consider the general case of multiple-error pattern

throughout the thesis.

For an equiprobable scalar quantizer with p; = 1/n , Dc(z;q) in (3.1) can be

written in a matrix form as below:

Dc(z,q) = ^SXq„(z? + zf —2ziZj) ^(gzf -gjq^)
n i=0 j=0 n i=0 i=0 j=0

=—||z||2-—zrQ„z ' (3-4)
n n

where ||z|| is the Euclidean length of z and Qn = [q;,] is the nxn positive definite
n-1 n-1 2

matrix of channel transition probabilities with =X<lij =1- Since ||z|| is
i=0 j=0

independent of permuting the elements in z^ minimizing Dc(z;q) in (3.4) is the

same as maximizing the quadratic form of zTQn z.

3.2 Linear Eigenspace

To facilitate the development of the proposed index assignment algorithms,
some properties of linear eigenspace [Noble and Daniel, 1988] and the alternative

expression of channel distortion are explored in details in this section. Johnson and
Wichern [Johnson and Wichern, 1988] defined the spectral decomposition for a

square symmetric matrix as follow:

The spectral decomposition of a nxn symmetric matrix An can be factorized as

n-1

An = ^\),p p =PnVnPnT, where Vn =diag(t)0,t)1,---,Dn_l) whose elements are the
i=0

eigenvalues of An, and the orthogonal matrix Pn = {po,--,p has columns which
are the associated normalized eigenvectors, i.e., p^p.=l, for i=0,l,...,n-l and

p1 p =0, for i * j. Note that prAnp = vi >0, for all i=0,l,...,n-l.
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Since the nxn matrix Qn of channel transition probability is symmetric, the spectral

decomposition of an nxn positive definite channel transition probability matrix Qn
can be factorized as

n-l

Q„=5>,S,ef =M„AX , (3.5)
i=0

where An = diag(X.0,,—,A,n_,) whose elements are the eigenvalues of Qn and the

normalized Hadamard Mn = -{e0,whose columns are the associated

orthonormal eigenvectors of Qn. It is well known that the transition probability

matrix as well as its eigenvalues and eigenvectors have a simple recursive structure

[McLaughlin, et. al., 1995]. A size 2b x 2b matrix can be easily expressed by using b
successive Kronecker products as defined in Chapter 2.

When b=l, Q2 =
P q
q P.

p=l-q. Since IQ2 -XI 1=0, we have Ao=l and Ai=l-

2q>0 for 0<q<0.5, that is A2 = diag(l, (l-2q)). Then solving for the associated

eigenvectors in the equation Q2§i=A^§i, for i=0,l, we have

1 1

1 -1
/V2, thus Q,M2 =M2A2. Therefore, we have

Q2=M2A2M2. Besides, §oQ2§o-l-^o' §Tq2&=2[I -1

1 1 11

_q p. -1

1 - 2q = A,,. There are eigenvalues with the same value X- = (1 — 2q)j, j=0,1.

When b=2, the transition matrix and its eigenvalues and eigenvectors can be
obtained by Kronecker product such as:

=Q2®Q;
n p q n p q" "p2 pq qp q2

pQ2 qQ2" p
q p

q
q p pq p2 q2 qp

qQ2 pQ2. a p q n p q qp q2 p2 pq
_q p.

r

_q p. .q2 qp pq p2
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\2l = A2 ® A2 =

1 0

0 1 —2q
0 0

0 0

m22 = m2®m2 =

A, 0
0 (1 - 2q)A2

0 0

0 0

1 0

0 1 — 2q
(l-2q)

m2 m2
m2 -m2

/V2 =

1 0 0

0 1 — 2q 0
0 0 1 — 2q
0 0 0

1" "l 1" "
-1 1 -1

1" "l 1"
-1

-1 1 -1

1111

1-1 1-1

1 1-1-1

1-1-1 1

/ 2

0

0

0

/(V2?

T T r\then it is easy to verify that Q4=M4A4M4 and e0Q4e0 = 1 = A0,

§iQ4§i ~ —2Q4—2 =l-2q = X,,, e3Q4e3 =(l-2q)2 = X2. There are

with the same value = (l-2q)j, j=0,1,2.

In general, we have

eigenvalues

Q,k+, =Q7k ®Q2 =

A2k+1 = A2k ®A2 =

M2ktl = M2k ®M2 =

pQ2k qQ2k
qQ2k PQ2

<v2k 0
0 (l-2q)A2,

M,k Mokl r-2 2 /V2
M2k -M2,

Thus, Q2k+1 =M2k+lA2k+lM2k+1, and ei'Q2k+1ej = X- >0, i=0,l,...,2k+1-l, j=0,l,..,k+l.
(eV

If (k,e) is an eigenvalue-eigenvector pair of Q k, then
e
v-yj

and
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( e M
(1 - 2q)A.,

V-

-e
v -/J

are eigenvalue-eigenvector pairs of Q k+1. There are

^k + 1^

v J >

eigenvalues with the same value Xj=(l-2q)j, j=0,l,...,k+l. Therefore, the

following Lemma is easily deduced.

Lemma 3.2: [McLaughlin, et. al., 1995] The spectral decomposition of an nxn

positive definite channel transition probability matrix Qn can be factorized as

Q„ =2>ie1e?' =MnA„M:,
i=0

where An = diag(A.0,/^l,---,A,n_1) whose elements are the eigenvalues of Qn and the

normalized Hadamard Mn = {e0,---,en_,} whose columns are the associated

orthonormal eigenvectors of Qn. Note that e|rQnej = > 0, i=0,1, ,2b-1,
(u\

j=0,l,..,b. There are b: = . | eigenvalues with the same value X- = (1 - 2q)J,
U /

j=0,l,...,b.

Hence the associated eigenspace E f of Qn is spanned by those bj eigenvectors

corresponding to X-r Let Hb = [h0,...,hb_,] denote the nxb linear matrix whose

columns are the b eigenvectors corresponding to =(l-2q)' multiplied by Vn,

then the linear eigenspace E| is spanned by Hb. For instance, H, =
1

-1

H2 =
-1

-1

1

1

-1

-1

H,

and in general,
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Hb = [h0,h, ] =

1 -1
2 2

1 1-1 -1

. . 1 ^1
■^o 2°

l l-l -1

l-l -l

Lemma 3.3: [McLaughlin, et. al., 1995] For a matched equiprobable standardized
scalar source-quantizer pair, the channel distortion can be written as

Dc (z, q) = —X [ 1 - (1 - 2q)j |Proj j zll2, for 0 < q < 0.5 . (3.6)
j=i

Proof of Lemma 3.3:

The space of Qn can be decomposed into b eigenspaces, say Ej, j=0,l,...,b an<

the squared length of the projection of z onto the eigenspace Ej is given b;

Since II Proj0z ll = zTe0||Pr ojjz||2 =^(zTek)2 , where bj=(jl-
k=l V J

T V 1,-1[z0,z,,...,zn_,][l,l,...,l] ~2^Z;, the zero-mean codebook assumption Vzj —
i=0 i=0

implies that ||Proj0z|| — 0 and the j=0 term can be omitted. Therefore, fro

Qn=MnAnM: in (3.5),

n-1

zrQnz = zTMnAnM^z = £^(zTe,)2 =^^£(zTek)5
j=0 k=li=0

= I>j|Pro-MI =S(1-2q)j||Pr°jJz|
j=0 j=l

(3.7)

By the fact of ||z||2 = X||Pr°jj^| and (3-7), Dc(z,q) =— ||z||2 -—zTQnz in (3.4)
j=i n n

is rewritten as

Dc(z,q)=-J[l-(l-2q)J]||ProjJz||2,for 0<q<0.5. □
n j=,
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Note that Dc(z,q) is equal to 0 when q=0; Dc(z,q) is equal to 2||z||2 / n when

q=0.5, and is increasing in q for 0<q<0.5. For the case of 0.5<q<l, intuitively we can

convert 0 (or 1) to 1 (or 0) in the decoding process, consequently the new bit error
rate becomes q'=l-q which can be directly applied into (3.6). Therefore, the

following Corollary can be easily obtained.

Corollary 3.4: For a matched equiprobable standardized scalar source-quantizer pair,
the channel distortion can be written as

Dc(z,q) = -£[1—(2q-l)J]||ProjJz||2,for 0.5 < q < 1. (3.8)n j=i

Furthermore, minimizing Dc in (3.6) is the same as maximizing
b 2

^(l-2q)j ProjjZ . One tries to find an index assignment of z such that the
j=i

projection of z onto the eigenspace corresponding to the largest eigenvalue is as

great as possible. The zero-mean codebook assumption implies ||Proj0z|| = 0 that any
choice of z has zero projection onto eigenspace Eo corresponding to the largest

eigenvalue )i0 = 1. Thus we try to find an index assignment of z such that the

projection of z onto eigenspace Ei corresponding to the second largest eigenvalue
= 1 - 2q is as great as possible. Lemma 3.5 is then deduced as follows.

Lemma 3.5: [McLaughlin, et. al., 1995] For an equiprobable standardized scalar

source-quantizer pair, if an assignment vector z lies entirely in the linear eigenspace

Ei, then the index assignment implied by z is globally optimal and its channel

12 /n .

Proof of Lemma 3.5 :

Since [1 - (1 - 2q)b ] > [1 - (1 - 2q)b_1 ]>...> [1 - (1 - 2q)] for a given q, then

Dc(z,q)=-X[1-(1-2q)J]||ProjJz||2 >-X[i—d—2q)]||ProjjZ||2n j=1 n j=I
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n j=.

If an assignment vector z lies entirely in the linear eigenspace Ei, we have

||Projjz|| = 0, for j>2 and ||z||2 = ||Proj,z|2, then the channel distortion is given by
II II2

Dc(z,q) = 4q z I / n , which is the lower bound of channel distortion. Therefore, the
Lemma is proved. □

Knagenhjelm [Knagenhjelm, 1993] defined a "linearity index" to measure the

closeness between z and the linear eigenspace E, as follow:

r| = ||Pr oj,z|2 /||z||2. (3.9)

Lemma 3.5 implies that if T|=l, then an assignment vector z lies in Ei and is

globally optimal. Therefore, this linearity index indicates how good is an index

assignment.

For any two index assignment vectors with the same linearity index, they are

not necessarily identical since their projections on the jth eigenspace for j > 2 might

be different, and the difference of their channel distortions is given in the following
lemma.

Lemma 3.6: For any two index assignment vectors with the same linearity index, the

absolute difference of their channel distortions is bounded by

2[1- (1- 2q)b](l—r|)||z||2 / n .

Proof of Lemma 3.6:

Let Zj and z2 denote any two index assignment vectors with the same value of

2 2 b 9 2
r\, then we have ||Proj,z51|2 /||z||~ =rj and ^|ProjjZj /||z||" =l-rj so that

j=2
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IDc(z1,q)-Dc(z2,q)l/||zf
=1 —X [ 1 ~ (1 - 2q)j ] [||Proj j z, |2 -1|Proj j z 21|2 ] I /||z||2n j=2

<-[l-(l-2q)b]lX|Projjz1|2-2||Projjz2|2|/|y|2 < —[ 1 -(1 -2q)b](1 -ri)n j=2 j=2 n □

3.3 Types of Codebooks

Various codebooks will be used to demonstrate the proposed index assignment

algorithms in later sections. Codebooks can be categorized into antipodal direct sum

(APDS) and non-APDS codebooks by using the idea of the linear eigenspace Ei.
Their properties are discussed in this section.

McLaughlin, Neuhoff and Ashley [McLaughlin, et. ah, 1995] proposed an

antipodal direct sum codebook (APDS) whose codewords have the format of
combinations of { ±c0 ±c, ±---±cb_,}, where ci's are distinct real numbers where

no Cj can be obtained by adding or subtracting values of others. Namely, codewords
are generated from all combinations of plus and minus signs of cj. Equivalently,
APDS codebooks can be expressed by using Hadamard matrices. Recall that the
linear eigenspace Ei is spanned by b eigenvectors whose corresponding eigenvalues
are equal to (l-2q), and Hb = [h0,...,hb_,] is the nxb linear matrix whose columns

are the above eigenvectors multiplied by Vn. For instance, the normalized

Hadamard matrix Mg for n=8 is given by Kronecker products as follow:

8 [—0 ] —

1

1 -

-1 -

-1

-1 -

-1

/V8
(3.10)
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and the corresponding eigenvalues are (^0,...,X7) = (1,8,8,82,8,82,82,83), where

8 = 1 — 2q . Therefore, Ei is spanned by the linear matrix H , such that

H3- [hp jh] ,h2] — V8[e,5C25C4] — (3.11)

Now, the codewords in an APDS codebook can be rearranged in a matrix format
b-l

as £ = Hbc = Xcji!j , where h('s are the eigenvectors spanning Ei. Since z is a
j=o

linear combination of h■'s, clearly it is a member of Ei and is a globally optimal

assignment vector by Lemma 3.5. Hence, we have the following lemma.

Lemma 3.7: [McLaughlin, et. al., 1995] If a matched equiprobable source-quantizer

pair has an antipodal direct-sum codebook, there exists a globally optimal

assignment vector z, which lies entirely in the linear eigenspace Ei, and its

associated linearity index is equal to one.

Consider a special case of antipodal direct-sum codebook, a uniform scalar

. , , _ . ., . _ f-n + 1, -n + 3, n-1 ,]codebook of size n with step size A=Zj-Zi.i, C = < A, A,---, A).
1 2 2 2 J

Arrange codewords in ascending order so that y0<yi<-- - <yn-i - The corresponding

■n + 1 . -n + 3 . n-1 .

-A,—-—A,---,—Aassignment vector z=[z0,zi,...,zn.i]=[yo,yi,...,yn-i]=
^ , .

is a linear combination of eigenvectors hj's spanning eigenspace Ei, denoted as

z = Hbc = ^cjhj, where c = [c0,c1,...,cb_1]T = [-(A/2),-(A/2)2 -(A/2)2b"']T
j=o
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and Hb = [h0,h, ,...,hb_1] =

1 -1
oO ^0

1 1-1 -1
2°

1 1-1

21

1 -1

1-1

(3.12)

Since z is a linear combination of h ■ 's, clearly it is a member of Ei and is a globally

optimal assignment vector by Lemma 3.7. Also, the codewords yo<yi<...<yn-i is
ordered in the same way as the indices 0,...,n-l, NBC is an optimal index

assignment.

Hence, we have the following Corollary.

Corollary 3.8: [McLaughlin, et. al., 1995] Lor a uniform source on

n
A n AA,—A

2 2
matched to an n-point uniform scalar codebook and a binary symmetric

channel with bit error rate q<0.5, the NBC is a globally optimal index assignment.

Given any index assignment vector for a non-APDS codebook, its higher order

eigenspace projections are not all equal to zero's, namely, at least one |[Projjz||2 > 0,
for j=2,3,...,b. Hence, the optimal index assignment for a non-APDS codebook does

not lie entirely in Ej. In other word, the associated r| is not equal to one when z is

globally optimal. Table 3.2 summaries the relationship between codebook and

linearity index T| when z is globally optimal.

Table 3.2: The Maximal Value of Linearity Index for Different Types of Codebook
Codebook Linearity Index T| Optimal index assignment

APDS
Uniform tl=l NBC

Non-uniform B=1 -

Non-APDS 0<T|<1 -

48



SCALAR QUANTIZATIONMODEL

3.4 Eigenspace Index Assignment Algorithm (EIA)

The main purpose of the remainder of the chapter is to find the optimal index

assignment which minimizes channel distortion Dc for the case of a matched

equiprobable standardized scalar source-quantizer pair. Note that the optimal index

assignment which minimizes Dc depends on the choice of q, the designated bit error
rate qj.

In this section, we proceed to develop an eigenspace index assignment (EIA)

algorithm in which z is permuted so that its projection onto the linear eigenspace Ei
is as large as possible while Dc is kept as small as possible.

Regressing z 0n the linear matrix Hb, we have the regression equation as:

z = Hbp + s, (3.13)

where § is an error term including the projections onto all subspaces other than Ej.

Since the columns in Hb are mutually orthogonal, the statistical estimation of can

be simplified as

Pi =(hiTz)/n, (3.14)

and the predicted value of z is given by

z =Hj. (3.15)

It is clear that i isa linear combination of columns in Hb, hence it is a member of

Ei. Thus, the squared length of the projection of z onto Ei is equal to

||Proj1z||2=zTz = pTH^HbP = nXPj2. (3.16)
j=0

If the elements in z can be permuted as close to z as possible, then the permuted z

will lie nearly in Ej. To facilitate the permutation method, let Rank(x) denote the

ascending rank order of a given vector x = (x0,x1,...,xn_1), for instance,
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Rank(x) = {0,1,...,n -1} when xo<Xi<X2<...<xn-i, then the following lemma holds.

Lemma 3.9: Maximization of Inner Product: Let a = (a0,a1,...,an_1) and

b = (b0,b, ,...,bn_,) be any two given vectors. The sufficient condition for

maximizing the inner product of a and b without changing the values of their

elements is to sort a and b so that Rank(a) = Rank(b).
n-1

Proof of Lemma 3.9: Let J = a b = ^akbk denote the inner product of a and b.
k=0

It is invariant if (aj,bj) and (aj,bj) are pairwisely swapped. Hence, without loss of

generality, we assume that a0 < a, < ... < a^.. < ai < ... < an_j and

b0 < b[ < ... < b, < ... < bj < ... < bn_j, i.e. Rank(a) = Rank(b) = {0,l,2,...,n -1}. Now

b; and bj are swapped each other while a^s are kept the same, and let J(0) and J(1)
denote the inner product before and after this swap, respectively. Then

J(0) -J(,) =(aibi +ajbj)-(aibj +aJbi) = (ai-aj)(bi -bj) >0. (3.17)

This proves that J(l) is always less than J(0) if any two elements in a or b are

swapped each other. In other words, the inner product of a and b is maximized

when Rank(a) = Rank(b). It is quite easy to extend the result to the case of multiple

swaps. □

Since the inner product of a and b can be expressed as §rb = ||a||||b||cos(0),
maximizing the inner product is equivalent to minimizing the angle 0. This implies

that a and b are as close as possible to each other. For instance, consider a = (1,2,3)

and b = (5,6,4), then a b =29 and 0 = k / 6.4. Now, rearrange the elements in each

vector such as a = (1,2,3) and b = (4,5,6) so Rank(a) = Rank(b), then the maximal

inner product is obtained as 32 and the minimal angle is equal to 0 = % /13.7.

When Rank(z) =£ Rank(z), by applying Lemma 3.9 the elements in z can be

sorted into new order according to Rank(z). After sorting, the angle between the
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new z and I decreases, hence the new z is closer to z which lies in Ej, and

consequently T| must increase. However, by the regression model in (3.13) the new z

can produce a new z which again is another member of Ei, thus another sorting may

be performed so that another new z will be more closer to Ej. Therefore the sorting
can be repeated until Rank(z) = Rank(z), or equivalently r) stops increasing or

converges. This fact leads to the following Corollary.

Corollary 3.10: Sorting elements in z into new order according to Rank(z)

minimizes the angle between new z and z which is a member of Ei. This strictly
increases the value of the linearity index r|.

This result can be incorporated into an iterative procedure to obtain the optimal

solution by maximizing r|. In the proof of Lemma 3.5, when z is close enough to Ej,

ri is large and Dc is small. However, Dc is not necessarily strictly decreasing in r\ but

Knagenhjelm and Agrell [Knagenhjelm and Agrell, 1996] showed that Dc and r| have

a high correlation. They showed the correlation between Dc and r\ is -0.846 based on

100,000 samples for a 4-bit codebook with q=0.01.Thus maximizing r\ does not

guarantee minimizing Dc. So, the strategy in the proposed EIA algorithm is to

maximize r\ iteratively until Rank(z) = Rank(z), and then choose the smallest Dc

among iterations. Alternatively, the algorithm can be stopped whenever Dc increases.

The stopping rule for the EIA algorithm is to stop when the linearity index is

maximized or Rank(z) = Rank(z) while Dc is kept as small as possible. The EIA

algorithm can be summarized as follows:

Eigenspace Index Assignment Algorithm (EIA):
(0)

Input: An initial index assignment vector z .

Output: A locally optimal index assignment vector, also named z0).
Step 0: Set an iteration indicator i=0. Choose an initial assignment vector z<0; and

choose a designated bit error rate qd.
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Step 1: Regress z(1) 0n the linear matrix Hb, then compute r\, Dc(z(1),qd), and the
~ (i)

predicted value z .

(i)

Step 2: Record the minimal distortion of Dc( L ,qts) among all iterations, say

Dc(- ,qd).

Step 3: If Rank(z(1)) = Rank(z0)) then go to Step 4; else sort the elements in z0)
into new z0+1' according to Rank(z(l)), set i=i+l, and go to Stepl.

Step 4 : Obtain the locally optimal z with the minimal distortion among all

iterations; the algorithm is stopped.

The sorting algorithm required in Step 3 results in multiple swaps rather than binary

swaps, so EIA is relatively easy and fast. The program for implementing this

algorithm is to be found in Appendix B.

{-3.5,-2.5,-1.5,-0.5,0.5,1.5,2.5,3.5} with n=8, step size A=l, ^Z;=0, and

£z,2 = 42 . The detailed steps in each iteration for the EIA algorithm are presented
i=0

as below:

Iteration 0:

Step 0: Set i=0. An initial index assignment z(0)= [3.5,0.5,-1.5,1.5,-0.5,-2.5,-3.5,2.5]T
is randomly selected, and its associated rank order is given by

x(0)
Rank(z ) ={7,4,2,5,3,1,0,6}. Choose the designated bit error rate qd=0.01.

Step 1: Regress z(0) on Hb, so z<0) =Hbp(0) + e, and compute

Example 3.1: Consider a uniform codebook

n—1

i=0

n-1

i) K0)=(hiTI(0))/n,
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3.5
0.5

1-1 1-1 1-1 -0.5
-1-1 1 1-1-1 = 0.25

1 1-1-1 -1 -1 1

-3.5

2.5

ii) By (3.9) and (3.16), compute r|=8*[(-0.5)2+0.252+l2]=10.5/42=0.25.
iii) By (3.6), compute Dc=0.25*(42-(l-0.02)(10.5)-(l-0.02)2(31)-(l-0.02)3(0.5))
=0.3667 with qd=0.01.

iv) By (3.15), compute z(0) = HbP ,

111" 0.75
— 1 1 1 1.75

-1-1 1
r-o.51
0.25

1
=

0.25
1.25

-1.25

1-1 -1
-0.25
-1.75
-0.75

and its associated rank order is Rank(z<0))={5,7,4,6,l,3,0,2}.

Step 2: Record the minimal Dc=0.3667 and the associated z* = z<0).

Step 3: Since Rank(z(0)) * Rank(z(0)), i.e. {7,4,2,5,3,1,0,6} * {5,7,4,6,1,3,0,2}, sort

the elements in z' ' according to Rank(z(0))={5,7,4,6,1,3,0,2}, then we obtain

the new zU) =[1.5,3.5,0.5,2.5,-2.5,-0.5,-3.5,-1.5]T. Set i=i+l and go to Stepl.

Iteration 1:

Step 1: Regress z(1) on Hb, and compute

i) ft(I>=(hiV))/n,
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i(1) =
Po

_ 1
o

"1 -1 1 -1 1 -1 1 -1

p, 1 1 -1 -1 1 1 -1 -1

p2
8 1 1 1 1 -1 -1 -1 -1

1.5"
3.5
0.5 "-1"

0.5
2.5

-2.5
=

-0.5
z

-3.5
-1.5

ii) By (3.9) and (3.16), r|=8*[(-l)2+0.52+22]=42/42=l.
iii) By (3.6), Dc is equal to 0.21

m ~U)
iv) By (3.15), compute z = HbP ,

z(1) =

z0 i 1 1 1.5"
h -1 1 1 3.5

z2 1-1 1 "-1"
0.5
9

0.5

z3
Z4

— 1 — 1 1
=

2.5
-2.5

z5 -1 1-1
L

-0.5

1 -1 -1 -3.5

A. -1 -1 -1 -1.5

and its associated rank order is Rank(zn)) ={5,7,4,6,1,3,0,2}.

Step 2: Since 0.3667>0.21, record the minimal Dc=0.21 and the associated z * = z(1>.

Step 3: Since Rank(z(1)) = Rank(z("), i.e. {5,7,4,6,1,3,0,2}={5,7,4,6,1,3,0,2}, STOP
in Step 4.

Step 4: Obtain the optimal index assignment with minimal distortion among all

iterations, z* = [ 1.5,3.5,0.5,2.5,-2.5,-0.5,-3.5,-1.5]T with Dc=0.21. Then,

STOP the algorithm.

Referring to the hamming distance preserving index assignments discussed in

Appendix A and the results in Table A.2, the optimal z* = z0) with

Rank(z0)) ={5,7,4,6,1,3,0,2} is hamming distance preserving isomorphism to the

optimal z with NBC ={0,1,2,3,4,5,6,7}. This confirms the result proved by

McLaughlin, Neuhoff and Ashley [McLaughlin, et. al., 1995], that NBC is an
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optimal index assignment for a uniform codebook.

Lemma 3.11: The EIA algorithm must stop in a finite number of iterations.

Proof of Lemma 3.11:

The stopping rule of the EIA algorithm is that the linearity index T| converges

when Rank(z) = Rank(z). In the Step 3 of the EIA algorithm, a sorting procedure is

invoked whenever Rank(z) ^ Rank(z), by Corollary 3.10, r\ always strictly

increases. By equation (3.9), the possible value of r\ is between 0 and 1. Since there

are only a finite number of values of Rank(.) there certainly be a finite number of

values of T) and r| always increases and has an upper bound of 1. Then the EIA

algorithm must stop in a finite number of iterations. □

3.5 Sequential Eigenspace Index Assignment Algorithm (SEIA)

For the existing index assignment algorithms, their results depend upon the
initial index assignments [Zeger and Gersho, 1990][Knagenhjelm and Agrell, 1996].

Similarly, the EIA algorithm also leads to different locally optimal index assignments
for different initial index assignments. We observe that Step 1 in the EIA algorithm

uses the nxb linear matrix Hb = [h0,— ] in the regression. However, due to the

special structure of Hb, the EIA algorithm may be sequentially performed in such a

way that its final result will be independent of the initial index assignment. Consider
the regression model,

z = Rp + §, (3.18)

where R denotes the regressor matrix. Initially, set the b-th column of Hb as the

initial regressor, say R = hb_,. Then add vectors hj, i=b-2,b-3,...,0 one at a time into

R. This modified version of EIA is called the sequential EIA algorithm (or SEIA) and
is summarized as follows:

Sequential Eigenspace Index Assignment Algorithm (SEIA):
(0)

Input: An initial index assignment vector z .
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Output: A locally optimal index assignment vector, also named z( '.
Step 0: Set i=0 and j=0. Choose an initial assignment vector z(°; choose a

designated bit error rate qd. Set the initial regressor matrix to be the (b-j)th
column of the linear matrix Hb, say R(j) = hb_rl.

Step 1: Use linear matrix Hb to compute r|, Dc(z(1),qd). Regress z"' on the regressor

/v. (i)
matrix R , and compute the predicted value z .

Step 2: Record the minimal distortion of Dc(z(",qd) among all iterations, say

Dc(z* ,qd).
Step 3: If Rank(z(1)) = Rank(z(1)) then go to Step 4, else sort the elements in z(1)

into new z(' " according to Rank(zl"), set i=i+l, and go to Stepl.

Step 4: If Hb is not completely used, then j=j+l and add vectors hb_H into the

current regressor matrix R^, i.e. R®=[ hb_j_,, R(j_1)]; set i=i+l, let z(l) = z*
and go to Step 1,

*

else the algorithm is stopped and z is locally optimal.

The program for implementing this algorithm is to be found in Appendix B.

Example 3.2: The same example as in Example 3.1 is used here to demonstrate the

SEIA algorithm. Consider a uniform codebook j—'A,—n^+— a,---, ~a| =
n-1

{-3.5,-2.5,-1.5,-0.5,0.5,1.5,2.5,3.5} with n=8, step size A=l, ^Zj=0, and
i=0

n-1

Xzf = 42 , the detailed steps of each iteration are summarized as below.
i=0

Iteration 0:

Step 0: i=0. j=0. An initial index assignment z*0'=[3.5,0.5,-1.5,1.5,-0.5,-2.5,
-3.5,2.5] is randomly selected, and its associated rank order is given by
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Rank(z<0))={7,4,2,5,3,l,0,6}. Choose the designated bit error rate qd=0.01.

Set the initial regressor matrix to be R(|) =hb_H .

Step 1: Regress z(0> on the regressor matrix R<0), z<0) = R<0)p(0)+§, where

R(0) = hb_i =h2 initially. Compute

i) P<0' = (Hb z<0>)/n ,

Po
ft
p2

1 -1

1

1

1 -1

1 -1

1

1 1 1

3.5

0.5

-1.5
-1 1 -1"

1.5
1 -1 -1

-0.5
-1 -1 -1

-2.5

-3.5

2.5

-0.5

0.25

1

ii) By (3.9) and (3.16), ti=10.5/42=0.25.

) By (3.6), Dc=0.25*[42
=0.3667 with qd=0.01.

iii) By (3.6), Dc=0.25*[42-((l-0.02)*10.5+(l-0.02)2*31+(l-0.02)3*(0.5)]

iv) By (3.15), compute z

z,

z(0) =

(0) R(0)P2(0),

1 1
1 1
1 1
1

-1 [1] = 1

-1 — 1
-1 — l
-1 -1

and the associated rank order is Rank(z<0)) = {4,5,6,7,0,l,2,3} with

increasing order used when there are ties.

Step 2: Since Dc=0.3667<initial Dc=°°, record the minimal distortion

Dc(z ,qd)=0.3667 with the associated z - z
(0)

Step 3: Since Rank(z(0)) * Rank(z(0)), i.e. {7,4,2,5,3,1,0,6} * {4,5,6,7,0,1,2,3}, sort
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the elements in z<0) according to the Rank(z<0))={4,5,6,7,0,l,2,3}, then we

obtain the new zT<1) =[0.5,1.5,2.5,3-5,-3.5,-2.5,-1-5,-0.5], Set i=i+l and go to

Step 1.
Iteration 1:

Step 1: Regress z' ' on the regressor matrix R<0), z(l) = R(0)p(l)+£ , where

R(0) =h2. Compute

i) p(1) =(H^z(1>)/n,

Po
P,
P2

1-1 1-1 1-1

1 1-1-1 1

1111 -1

1 -1

1 -1 -1

0.5

1.5

2.5
-f -0.5

3.5
-1 =: -1

-3.5
-1 2

-2.5

-1.5

-0.5

ii) By (3.9) and (3.16), r|=42/42.

iii) By (3.6), Dc=0.25*[42-((l-0.02)*42+(l-0.02)2*0+(l-0.02)3*0]=0.21.
iv) By (3.15), compute z<u = R<0)P2(I),

z(1) =

V f 2"

21 1 2

z2 1 2

z3
—

1
[2]=

2

1 -2

z5 -1 -2

-1 -2

_^7 .

-1 _-2_

and the associated rank order is Rank(z(") ={4,5,6,7,0,1,2,3}.

Step 2: Since DC=0.21<DC=0.3667, record the minimal distortion Dc(z ,qd)=0.3667

with the associated z - z
(i)
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Step 3: Since Rank(z(I)) = Rank(z(1)), i.e. {4,5,6,7,0,1,2,3}={4,5,6,7,0,1,2,3}, go to

Step 4.

Step 4: Since Hb is not completely used, add the vector h, into the current regressor

matrix R(0), then R(1) =(h,, h2]; i=i+l; z<2) = z ; go to Step 1.

Iteration 2:

(2)
Step 1: Regress Jl ' on the regressor matrix R(l), and compute

- (2)

i)P = (Hb z<2))/n

P<2) =
Po
P,
P2

1-1 1-1 1-1 1-1

1 1 -1 1 1-1-1

1 1 1 1-1-1-1-1

0.5"
1.5

2.5
-1" -0.5

3.5
-1 = -1

-3.5
-1 2

-2.5

-1.5

-0.5

ii) r|=42/42.

iii) Dc=0.25*[42-(( 1 -0.02)*42+( 1 -0.02)2*0+( 1 -0.02)3*0]=0.21.

z(2) =

z(2) = R("P<2),
"z0" 1 1" 1"

Z, 1 1 1

z2 -1 1 3

Z3 -1 1 "-1" 3

z4 1 -1
_ 2_ -3

z5 1 -1 -3

z6 -1 -1 -1

7"! -

-1 -1 -1

/o\

and the associated ranking is Rank(z )={4,5,6,7,0,1,2,3}.

Step 2: Since minimal distortion Dc(? ,qd)=0.21 does not change, the associated

z — z does not change.
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Step 3: Since Rank(z(2)) = Rank(z(2>), i.e. (4,5,6,7,0,1,2,3}={4,5,6,7,0,1,2,3}, go to

Step 4.

Step 4: Since Hb is not completely used, add the vector h0 into the current regressor

matrix R(2), then R<2) = [h, ,h, ,h2]; i=i+l;Z< )=z ; go to Step 1.

Iteration 3:

(3)
Step 1: Regress ? on the regressor matrix R(2), and compute

i)P<3> = (Hb z(3>)/n

;(3)
Po
p,
p2

1-1 1-1 1-1

1 1

1 1

1 -1

1 -1

1 1 -

1 -1

1 -1

1 1 -1 -1

0.5"
1.5

2.5
-0.5

3.5
= -1

-3.5
2

-2.5

-1.5

-0.5

ii) r|=42/42.

iii) Dc=0.25*[42-(( 1 -0.02)*42+( 1 -0.02)2*0+( 1 -0.02)3*0]=0.21.

iv) Compute z(3) = R(2lp
; (3)

z(3) =

V 111" 0.5"

21 -1 1 1 1.5

z7 1 1 1 2.5
-0.5

z3 — 1 — 1 1
-1

3.5

z4 1 1—1
2

-3.5

z5 -1 1-1 -2.5

z6 1 -1 -1 -1.5

?1. -1 -1 -1 _-0.5_

and the associated ranking is Rank(z ' ) ={4,5,6,7,0,1,2,3}.
*

Step 2: Since minimal distortion Dc(z ,qd)=0.21 does not change, the associated
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*
_ (i)

z - z does not change.

Step 3: Since Rank(z(3)) = Rank(z(3)), i.e. {4,5,6,7,0,1,2,3}={4,5,6,7,0,1,2,3}, go to

Step 4.

Step 4: Since Rt2)=Hb is completely used, STOR The optimal z =

z(1)=[0.5,1.5,2.5,3.5,-3.5,-2.5,-1.5,-0.5]T and the minimum of Dc is 0.21.

Although the optimal assignment vector with index set {4,5,6,7,0,1,2,3}
obtained from SEIA differs from that with index set {5,7,4,6,1,3,0,2} obtained from

EIA, they are indeed hamming distance preserving isomorphism. Note that hamming
distance preserving index assignment is discussed in Appendix A and the results are

in Table A.2. In general SEIA needs more iterations to obtain an optimal assignment
vector than EIA does, but it is independent of an initial index assignment. The proof
is in the following Lemma.

Lemma 3.12: The SEIA algorithm is independent of an initial index assignment.

Proof of Lemma 3.12: In the SEIA algorithm, the initial regressor is

hb_, = [1,...,1,—1,...,—1] as in (3.12), in which the first half entries are l's, and all the

others are -l's. For any initial index assignment vector z, the regression model in

(3.18) has pb_, =(hb_,z)/n, and zT =hb_,Pb_, =[pb_,,...,pb_1,-pb_1,...,-pb_1]. After

sorting the elements of z in accordance with the ranking in z , the new z will be in

one of the two following cases:

(1) When (3b_, <0, then the ranking in z is in ascending order, and the ranking of

the new z is given by Rank(z)={0,l,...,n-1} which is the same as that of natural

binary code (NBC). The associated rank order is in increasing order when they
are ties. From now on, all the permutations give new rank followed the NBC are

represented as Rank(zNBC)={ro,ri,..,r(n/2)-irn/2,r(n/2)+i,---,rn-i}, ri=0,...,n-l. ^ is

represented as f$i(NBC), i=0,l,...,b-l. z is represented as z(NBC).

(2) When Pb_, >0, then the ranking in z is in descending order, and the ranking of

new z is given by Rank(z)={n/2,...,n-l,0,...,n/2-l} whose binary codes is equal
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to NBC by adding (1 0 ... 0) bit-wisely. We call this code NNBC. From now on,

all the permutations give new rank followed the NNBC are represented as

Rank(zNNBC). (3; is represented as Pi(NNBC), i=0,l,...,b-l. z is represented as

—(NBC)•

Therefore, for any initial index assignment vector L, the new 1± is either NBC

or NNBC after one iteration. In SEIA, p = (Hb z)/n in (3.13) and

Hb — [ho ,...,hb_2 ^ Sib—] ]~

1

-1

1

-1

1

-1

1 1

1

-1

-1 1

1 -1

1

-1

•1 -1

z = R(j)p in (3.18), where R0,=[ hb_H, R^] with R(0) =hb_, and R(b_1)=Hb. Sort
the elements of z in accordance with the ranking in z .

,t(dAs R = [hb_2,hb_,], since P = (R z)/nandlet zNBC =[z0,z,,...,zn_1],

Pb-l(NBC) =(Z0+Z| + . • .+Z(n/2)-2+Z(n/2)-l)-(Zn/2+Z(n/2)+l+ - • -+Zn-l) and

P b-1 (NNBC) =(zn/2+Z(n/2)+1+ • • • +Zn-1 )"(Zo+Z l+... +Z(n/2)-2+Z(n/2)-1) •

Thus, Pb_,(NNBC) =" Pb-l(NBC) • Also,
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Pb-2(NBC) -(z0+- • -+z(n/4)-l)-(Z(n/4). • •+ Z(n/2)-l)+(Z(n/2)+- • .+Z(3n/4)-l)-(Z3n/4+- • -+Zn-l)

and Pb_2(NNBC)= (Z(n/2)+---+Z(3n/4)-l)-(Z3n/4+---+Zn-l)+(Zo+-..+Z(n/4)-l)-(Z(n/4)...+ Z(n/2)-l).

Thus, Pb_2(NNBC) = Pb-2(NBC) '

Let Pb—2(nbc) =ab-2G R and j3b_1(NBC) =ab_ie R

— (NBC)

"

i r ab-2 + ab-l

i i a b-2 + a b-1

-i i ab-2 + ab-l

-i i P1 cr 1 to
_ ab-2 "t" ab-l

i -i Lab-i. ab-2 — ab-l

i -i a b-2 _ ab-l
-i -i _ ab-2 ~ a b-1

-i -i __ ab-2 — ab-I .

, and

i(NNBC)

"

i r ab-2 a b-1

i i ab-2 _ ab-l
-i i _ ab-2 _ ab-

-i i ab-2 _ ab-2 _ ab-
i -i L-ab-i_ ab-2 T ab-l

i -i ab-2 + ab-l
-i -i _ ab-2 + ab-

1 -i_ ab-2 + ab-

Sort the elements of z in accordance with the ranking in z . Let the rank order

of z with NBC is Rank(zNBC) ={r0,r],..,r(n/2)-irn/2,r(n/2)+i,...,rn-i}, it is easy to see
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Rank(ZNNBC) — {^nl2A{nl2)+\-> ■ ■ • 4n-l 4o4l v4(n/2)-l }.

In general, Rank(zNBC) ={r0,ri,..,r(n/2)-i rn/2,r(n/2)+i,.-.,rn-i} and

Rank(zNNBC)={rn/2,r(n/2)+i,...,rn-i,ro,ri,..,r(n/2)-i} is true for all R0)=[ hb_H, R0"15],
j=l,...,b-l. Since the first half entries of h; is the same as the second half entries of

h; for all i=0,...,b-2 and p = (Hbz)/n in (3.13) , Pi(NNBC) = Pi(NBC) for all i=0,..,b-2.

Since the second half entries of hb_, are the same as the second half entries of hb_[
A

rj, A A
with sign changes and jJ = (Hbz)/n, Pb.1(NNBC) = HVhnbc)• The values of all

components in z(NBC) =R(j)P NBC) are equal to the values of all components in

^(nnbo = ^(j)P(NNBC) kut ^ ^rst anc* ^e seconcl exchanged. This is
the initial regressor hb_, = [1,...,1,-1,...,-1], in which the first half entries are l's, and

all the others are -l's. Thus, the index sets followed NNBC are equal to the index
sets followed NBC for all iterations when (1 0 ... 0) is added bit-wisely. This
addition is hamming distance preserving index for all iterations. This proves that
SEIA is independent of an initial index assignment. □

3.6 Numerical Results

In this section, two codebooks are used to show the performances of EIA and
SEIA algorithms. Firstly, APDS codebooks are used to show the multiple swaps and

nearly global optimality of the EIA algorithm (Examples 3.3 and 3.4). Secondly,

Examples 3.5 to 3.8 take the real world case of the voice digitization in North
American Telephone Systems (CCITT) [Gersho and Gray, 1992] to illustrate the

properties of both EIA and SEIA algorithms.

An antipodal direct sum codebook (APDS) introduced in Chapter 2

[McLaughlin, et ah, 1995] has codewords in the format of {±c0±c, ±...±cb_j },

where Cj 's are distinct real numbers. The codewords can be rearranged in a format
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b-1

of z = Hbc = ^Cjhj, where hj's are eigenvectors spanning eigenspace Ej. Lemma
j=o

3.7 proved that, for an APDS, there is an optimal index assignment whose linearity

index r\ = |Proj,z|2 /||z||2 is equal to one. Also, from Lemma 3.5, the global

minimum channel distortion is equal to Dcmin = 4q||z|| / n . Since the optimal solution
is known for an APDS, it will serve as a nice example to check the performance of
the proposed algorithms.

Example 3.3: (Multiple Swaps)

The same antipodal direct sum codebook as in Example 3.1 is taken here. The
initial index assignment vector used there was randomly selected and its performance
is not good, however it reaches the global optimal index assignment after one

iteration. In Table 3.3, comparing iteration 0 and 1, we notice that -3.5 is the only
element which remains in the same position, and all the others are moved to different

positions. It shows that the EIA algorithm results in multiple swaps rather than binary

swaps, and hence is very efficient.

Table 3.3: The Multiple Swaps of EIA for an Antipodal Direct Sum Codebook.

Itrn z T|

0 3.5 0.5 -1.5 1.5 -0.5 -2.5 -3.5 2.5 0.25
1 1.5 3.5 0.5 2.5 -2.5 -0.5 -3.5 -1.5 1.00

Example 3.4: (Nearly Global Optimum)

Now consider an arbitrary APDS of size 256 with the coefficients c- 's being

equal to (14.77,6.01,4.24,5.49,4.61,2.51,-2.32,12.39). A natural binary code (NBC)
and a random code (RC) are used as the initial index assignment vectors. Let the

designated bit error rate q,j=0.001, then Dcmjn=4*0.001*488.837=1.9553. The EIA

algorithm is then applied to find a locally optimal index assignment. Table 3.4 lists

r)'s and Dc's for all iterations. The details of the EIA algorithm are summarized as

below:

(1) Both NBC and RC initial codes give good performances, i.e., both
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r|, = 0.999191 and r)2 = 0.999254 are very close to the global maximum value 1;

and the channel distortions Dcl =1.959794 and Dc2 =1.95909 are also very

close to the global minimum value Dcmin=l-9553. In term of channel distortion,
NBC and RC initial codes are only 0.2% and 0.19% worse than the global
minimum value, respectively.

(2) The assignment vector will be very close to Ej after the first iteration, but only
minor improvement is obtained after the second iteration. For example, the initial

assignment vector for random code has large Dc2 = 6.1712, and it is reduced to

Dc2 =1.9616 in iteration 1. Only minor reductions for channel distortion are

observed from iterations 2 to 12.

Table 3.4: The Performances of EIA Using Natural Binary Code and Random
Code as Initials Choices for an Antipodal Direct Sum Codebook with
n=256 and qd=0.001.
Natural Binary Code Random Code

Itrn til dc Itrn ^2 dc2
0 0.98781 2.0046 0 0.29410 6.1712
1 0.99214 1.9873 1 0.99866 1.9616
2 0.99455 1.9778 2 0.99881 1.9610
3 0.99600 1.9723 3 0.99891 1.9606
4 0.99703 1.9683 4 0.99899 1.9603
5 0.99772 1.9656 5 0.99908 1.9598
6 0.99814 1.9638 6 0.99911 1.9597
7 0.99842 1.9627 7 0.99912 1.95968
8 0.99860 1.9619 8 0.99917 1.9595
9 0.99876 1.9613 9 0.99922 1.9593
10 0.99892 1.9609 10 0.99924 1.9592
11 0.99902 1.9605 11 0.999251 1.95911
12 0.99905 1.9604 12 0.999254 1.95909
13 0.99909 1.9602
14 0.99912 1.9601
15 0.99915 1.96000
16 0.99916 1.95995
17 0.999175 1.95990
18 0.999184 1.95986
19 0.999191 1.959794
20 0.999193 1.959799
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The remaining examples use a different real data set. The Voice Digitization in
North American Telephone Systems (CCITT) [Gersho and Gray, 1992] is used to

show some properties of both the EIA and SEIA algorithms in examples 3.5 to 3.8.
Recall from Chapter 2, CCITT is a symmetric piecewise uniform quantizer with 8

bits, 8 positive segments, increasing in length by a factor of 2 for each successive

segment in order of increasing amplitude, and with 16 steps on each segment. The

output formula and levels are listed in the Table 2.1.

Example 3.5.1: (EIA may be terminated earlier)

Knagenhjelm and Agrell [Knagenhjelm and Agrell, 1996] pointed out the strong

negative correlation -0.846 between Dc and T| from 100,000 samples for 4-bit

codebook with q=0.01. However, Dc may not be strictly monotonic decreasing in T).

Empirically, Table 3.5.1 shows a typical pattern such that the values of Dc decrease

initially and thereafter increase for large values of r| with a few minor exceptions (for

instances, iterations 17 and 37). In other words, Dc is almost concave in r\ and

Dc=33848 is minimum when q=0.8438. Therefore, in order to save computational

effort for this particular case, the EIA algorithm can be easily modified so that it
terminates whenever Dc increases.

TABLE 3.5.1: The Performances of EIA using NBC for CCITT Example with
qd=0.001.

itrn V Dc itrn V Dc

0 0.8177 35055
1 0.8360 34108 16 0.8537 34799
2 0.8415 33880 17 0.8538 34794
3 0.8438 33848

4 0.8454 33900 36 0.857703 35368.4
5 0.8471 33979 37 0.857705 35368.2

Example 3.5.2: (EIA depends upon an initial index assignment)

The EIA algorithm is initialized by five codeword mappings: MDC, FBC, NBC,
and two random codes RC| and RC2. Let the designated bit error rate be equal to

qd=0.001. Table 3.5.2 shows the performances of the five different initial codes for
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the EIA algorithm, and the findings are summarized as below:

(1) Comparing different codes, the initial channel distortion Dc of NBC (35055) is
better than that of FBC (47507) or MDC (53891).

(2) At the first iteration, both MDC and FBC reduce to the same Dc=35055 and

r|=0.8177 as the initial NBC does. Thus, these three initial codes lead to the same

optimal results of Dc=33848 and r)=0.8438.

(3) For the index assignment which is locally a minimum, the distortion is reduced to

Dc4=34330 for RCi and to Dc5=33816 for RC2. Since Dc5=33816<33848<

Dc4=34330, it shows that neither NBC nor random codes will outperform each
other. Hence, the EIA algorithm depends upon the initial code. Moreover, the
EIA significantly improves the performance of channel distortion. For instance,
EIA reduces the distortion by 58% and 65% compared with that of RCi and RC2

initial codes, respectively.

(4) Since only a few iterations are required for getting the optimal index assignment,
the EIA algorithm is shown to be a very efficient algorithm. In this example, no
more than 5 iterations were required.

TABLE 3.5.2: The Performances of EIA using Five Different Initial Codes for
CCITT Example with qd=0.001.

MDC FBC NBc RCi rc2
Itrn Bi Dci B2 dc2 B3 DC3 B4 Dc4 B5 Dc5
0 0.3489 53891 0.3489 47507 0.8177 35055 0.2721 81453 0.1161 96045

1 0.8177 35055 0.8177 35055 0.8360 34108 0.8481 34330 0.8434 33816

2 0.8360 34108 0.8360 34108 0.8415 33880 0.8500 34432 0.8452 33852

3 0.8415 33880 0.8415 33880 0.8438 33848

4 0.8438 33848 0.8438 33848 0.8454 33900

5 0.8454 33900 0.8454 33900

Example 3.6: (SEIA is independent of an initial index assignment)

The SEIA algorithm is also initialized by five different codeword mappings:
MDC, FBC, NBC, and two random codes RC3 and RC4. Let the designated bit error
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rate be equal to qd=0.001. Table 3.6 shows the performances of these five initial

codes, and the findings are summarized as below:

(1) In the first iteration, all the other four initial codes except NBC reach r|=0.8177

and Dc=35054, which is the result of using NBC. All five initial codes have the

same final locally optimal index assignment with r|=0.8435 and Dc=33823. This

supports Lemma 3.12 that the SEIA algorithm is independent of the initial code.

(2) The resulting Dc (33823) is almost the same as the best one (33816) which is the
best result of 52 simulation studies with different random codes in Example 3.5.
Hence the performance of the SEIA algorithm is quite good.

(3) Although more iterations are required for SEIA compared to EIA, it is still very
efficient. It typically takes only 0.91 CPU seconds for EIA and 1.9 CPU seconds
for SEIA on a SUN Sparc 20 Workstation.

TABLE 3.6: The Performances of SEIA Using Five Different Initial Codes for
CCITT Example and qd=0.001.

mdc fbc NB c rc3 rc4
itrn Oi dei 02 dC2 03 dC3 04 DC4 05 DC5
0 0.3489 53891 0.3489 47507 0.8177 35055 0.2721 81453 0.1970 90618

1 0.8177 35055 0.8177 35055 0.8225 34803 0.8177 35055 0.8177 35055
2 0.8225 34803 0.8225 34803 0.8225 34803 0.8225 34803

13 0.8435 33823
14 0.8435 33823 0.8435 33823 0.8448 33862 0.8435 33823 0.8435 33823

15 0.8448 33862 0.8448 33862 0.8448 33862 0.8448 33862

Example 3.7: (Comparisons among EIA, SEIA, and NBC)

Since NBC is the most popular code, we are interested in comparing

performances of both EIA and SEIA against NBC by using the CCITT example with

qd=0.01. Table 3.7.1 lists the channel distortions of the locally optimal index

assignments obtained from EIA and SEIA and that for NBC for actual q's ranging
from 0 to 0.5. The results are summarized as below:

(1) In term of channel distortion, both EIA and SEIA algorithms outperform NBC for

0<q<0.5. For instance, when q=0.001, SEIA outperforms NBC by
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5, =3.458% while EIA outperforms NBC by 82 =3.441%, where

5, =100%*(NBC-SEIA)/NBC and 82=100%*(NBC-EIA)/NBC.

(2) SEIA slightly outperforms EIA when q < 0.05. For example, the channel
distortion of SEIA is 80, or 0.0005% less than that of EIA when q=0.05. In other

words, the difference between SEIA and EIA is almost indistinguishable.

Table 3.7.1: The Comparisons of Channel Distortions among NBC, SEIA and EIA
for CCIT example with qd=0.01.

q SEIA EIA SEIA-EIA NBC 5, s2
5.00E-01 1.28471E+07 1.28471E+07 0.00 1.28471E+07 0.000 0.000
4.00E-01 1.06640E+07 1.06634E+07 687.00 1.07274E+07 0.590 0.597
3.00E-01 8.38567E+06 8.38468E+06 994.00 8.49541E+06 1.292 1.303

2.00E-01 5.91551E+06 5.91477E+06 736.00 6.03884E+06 2.042 2.054
1.00E-01 3.15454E+06 3.15441E+06 126.00 3.24485E+06 2.783 2.787

5.00E-02 1.63307E+06 1.63315E+06 -80.00 1.68590E+06 3.134 3.129

1.00E-02 3.36190E+05 3.36239E+05 -49.00 3.48022E+05 3.400 3.386
5.00E-03 1.68714E+05 1.68741E+05 -27.00 1.74710E+05 3.432 3.417
1.00E-03 3.38426E+04 3.38484E+04 -5.90 3.50546E+04 3.458 3.441

7.50E-04 2.53866E+04 2.53910E+04 -4.40 2.62962E+04 3.459 3.442
5.00E-04 1.69275E+04 1.69305E+04 -2.90 1.75344E+04 3.461 3.444
2.50E-04 8.46533E+03 8.46681E+03 -1.48 8.76894E+03 3.462 3.445
1.00E-04 3.38651E+03 3.38710E+03 -0.59 3.50800E+03 3.463 3.446
7.50E-05 2.53992E+03 2.54037E+03 -0.45 2.63105E+03 3.464 3.447

5.00E-05 1.69330E+03 1.69361E+03 -0.30 1.75407E+03 3.465 3.447

2.50E-05 8.46673E+02 8.46822E+02 -0.15 8.77053E+02 3.464 3.447

1.00E-05 3.38673E+02 3.38733E+02 -0.06 3.50825E+02 3.464 3.447
7.50E-06 2.54005E+02 2.54050E+02 -0.05 2.63119E+02 3.464 3.447
5.00E-06 1.69337E+02 1.69367E+02 -0.03 1.75413E+02 3.464 3.447
2.50E-06 8.46687E+01 8.46837E+01 -0.01 8.77068E+01 3.464 3.447
1.00E-06 3.38675E+01 3.38735E+01 -0.01 3.50828E+01 3.464 3.447

Note: 51=100%*(NBC-SEIA)/NBC, S2 =100%*(NBC-EIA)/NBC.

Tables 3.7.2 and 3.7.3 list the 256 codewords of locally optimal index

assignment vectors for EIA and SEIA algorithms using NBC as an initial code,

respectively. There the bold case highlights differences in the order between EIA and
SEIA. Both tables list codewords z, by rows with index i=0 to 255 in the binary form
of ii denoting the first 5 digits and Q denoting the last 3 digits. In Table 3.7.2, -8031
is the value of codeword zq, -7775 is the value of codeword Zi, and 8031 is the value
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of codeword Z255, etc.

Table 3.7.2: The Locally Optimal Index Assignment of EIA for CCITT in Which
Codewords Are Arranged by Rows from zoto Z255. (ii - First 5 Digits of
Binary Index of z\, 12 - Last 3 Digits of Binary Index of Zj.)

ll \x
000 001 010 011 100 101 110 111

00000 -8031 -7775 -7519 -7263 -7007 -6751 -6495 -6239
00001 -5983 -5727 -5471 -5215 -4959 -4703 -4447 -3999
00010 -4191 -3871 -3743 -3615 -3487 -3359 -3231 -3103
00011 -2975 -2719 -2463 -2207 -1983 -1855 -1663 -1407
00100 -2847 -2591 -2335 -2079 -1919 -1791 -1599 -1343
00101 -1151 -975 -879 -783 -687 -591 -495 -423
00110 -439 -375 -327 -279 -231 -203 -171 -139
00111 -115 -93 -81 -69 -57 -45 -30 -20
01000 -1727 -1471 -1215 -1023 -911 -815 -719 -623
01001 -559 -455 -391 -343 -295 -247 -211 -179
01010 -195 -155 -123 -99 -85 -73 -61 -49
01011 -41 -24 -14 -6 0 8 16 26
01100 -37 -22 -12 -4 2 10 18 28
01101 33 53 65 77 89 107 131 163
01110 147 187 219 263 311 359 407 471
01111 527 655 751 847 943 1087 1279 1535
10000 -1535 -1279 -1087 -943 -847 -751 -655 -527
10001 -471 -407 -359 -311 -263 -219 -187 -147
10010 -163 -131 -107 -89 -77 -65 -53 -33
10011 -28 -18 -10 -2 4 12 22 37
10100 -26 -16 -8 0 6 14 24 41
10101 49 61 73 85 99 123 155 195
10110 179 211 247 295 343 391 455 559
10111 623 719 815 911 1023 1215 1471 1727
11000 20 30 45 57 69 81 93 115
11001 139 171 203 231 279 327 375 439
11010 423 495 591 687 783 879 975 1151
11011 1343 1599 1791 1919 2079 2335 2591 2847
11100 1407 1663 1855 1983 2207 2463 2719 2975
11101 3103 3231 3359 3487 3615 3743 3871 4191
11110 3999 4447 4703 4959 5215 5471 5727 5983
11111 6239 6495 6751 7007 7263 7519 7775 8031

*Bold case highlights differences in t re order between EIA and SEIA.
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Table 3.7.3: The Locally Optimal Index Assignment of SEIA for CCITT in Which
Codewords Are Arranged by Rows from z0 to Z255. (ii - First 5 Digits of Binary Index
of Zj; U - Last 3 Digits of Binary Index of z,.)

\ h
\Zi\
ii

000 001 010 011 100 101 110 111

00000 -8031 -7775 -7519 -7263 -7007 -6751 -6495 -6239
00001 -5983 -5727 -5471 -5215 -4959 -4703 -4447 -4191
00010 -3999 -3871 -3743 -3615 -3487 -3359 -3231 -3103
00011 -2975 -2847 -2719 -2591 -1983 -1919 -1855 -1791
00100 -2463 -2335 -2207 -2079 -1471 -1407 -1343 -1279
00101 -719 -687 -655 -623 -471 -455 -439 -423
00110 -219 -211 -203 -195 -155 -147 -139 -131
00111 -61 -57 -53 -49 -30 -28 -26 -24
01000 -1727 -1663 -1599 -1535 -975 -943 -911 -879
01001 -591 -559 -527 -495 -34 -327 -311 -295
01010 -187 -179 -171 -163 -93 -89 -85 -81
01011 -45 -41 -37 -33 -6 -4 -2 0
01100 -14 -12 -10 -8 16 18 20 22
01101 65 69 73 77 99 107 115 123
01110 231 247 263 279 359 375 391 407
01111 751 783 815 847 1023 1087 1151 1215
10000 -1215 -1151 -1087 -1023 -847 -815 -783 -751
10001 -407 -391 -375 -359 -279 -263 -247 -231
10010 -123 -115 -107 -99 -77 -73 -69 -65
10011 -22 -20 -18 -16 8 10 12 14
10100 0 2 4 6 33 37 41 45
10101 81 85 89 93 163 171 179 187
10110 295 311 327 343 495 527 559 591
10111 879 911 943 975 1535 1599 1663 1727
11000 24 26 28 30 49 53 57 61
11001 131 139 147 155 195 203 211 219
11010 423 439 455 471 623 655 687 719
11011 1279 1343 1407 1471 2079 2207 2335 2463
11100 1791 1855 1919 1983 2591 2719 2847 2975
11101 3103 3231 3359 3487 3615 3743 3871 3999
11110 4191 4447 4703 4959 5215 5471 5727 5983
11111 6239 6495 6751 7007 7263 7519 7775 8031

*Bold case highlights differences in the order between EIA and S :ia.
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Example 3.8: (Robustness)

Both EIA and SEIA depend upon the designated bit error rate qd, thus the choice
of qa deserves attentions. The values of qd are tested from 10~7 to 0.1 for both EIA
and SEIA algorithms using NBC initial code for CCITT example.

For the CCITT codebook, Table 3.8.1 shows the iterations of EIA for various

qd=0.11, 0.01, 0.001 using NBC as an initial code. All three cases follow the same

pattern of iterations since EIA seeks to maximize T|. However, the local optimal
solutions will depend upon the values of qd. For instance, the two cases of qd=0.01
and qd =0.001 lead to the same index assignment with r)=0.8438; the case of qd=0.11

has different index assignment with ri=0.8454. It is also observed that two Dc's differ

by only a small amount when their r|'s are close to each other. For instance between

iterations 3 and 4, the difference of Dc is only 72 for qd=0.11, 458 for qd=0.01, and 52
for qd =0.001, which are relatively small with respect to their final Dc 3446356,

336239, and 33848. Note that Lemma 3.6 gave a upper bound on the difference
between two channel distortions when their p's are the same. In general, the bound

is small when r| is large. For instance between iterations 36 and 37, the difference of

Dc is only 11 for qd=0.11, 2 for qd=0.01, and 0.2 for qd =0.001, which are relatively
small with respect to their Dc 3495927, 350246, and 35368 in iteration 37.

Table 3.8.2 shows that the EIA algorithm results in the same index assignment
with r|i=0.8438 for qd running from 0 to 0.1, which demonstrates a high degree of
robustness from a very noisy channel (q>0.01) to a low noisy channel. Also, the
SEIA algorithm shows its robustness and has the same index assignment with

r|2=0.84352 for qd running from 0 to 0.005. The other cases have similar results, with

r|2 between 0.84348 and 0.8448. In summary, both algorithms are quite robust

against the varying of designated bit error rate qd.
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Table 3.8.1 :The Iterations of EIA with Initial NBC for Various qd's Using CCITT.

Iteration Dc(z,q=0.11) Dc(z,qd=0.01) Dc(z,q=0.001)
0 0.8177 3542655 348022 35055
1 0.8360 3470384 338809 34108
2 0.8415 3451401 336567 33880
3 0.8438 3446428 336239 33848
4 0.8454 3446356 336697 33900

5 0.8471 3447522 337409 33979
6 0.8483 3448695 338002 34044
7 0.8493 3451529 338881 34140
8 0.8499 3453492 339433 34200
9 0.8506 3457176 340385 34303
10 0.8511 3459598 341001 34369
11 0.8516 3463187 341869 34463
12 0.8521 3466650 342701 34552
13 0.8526 3468650 343256 34613
14 0.8529 3469783 343578 34648
15 0.8533 3472298 344183 34713
16 0.8537 3475663 344980 34798
17 0.8538 3475330 344933 34793
18 0.8539 3476236 345130 34815
19 0.8540 3477833 345499 34854
20 0.8542 3479041 345797 34886
21 0.8544 3480463 346129 34922
22 0.8545 3481895 346469 34959
23 0.8546 3483503 346828 34997
24 0.8547 3484990 347160 35033
25 0.8549 3485838 347364 35055
26 0.8551 3488153 347888 35111
27 0.8553 3489983 348333 35159
28 0.8557 3490513 348500 35177
29 0.8557 3490978 348628 35191
30 0.8560 3491089 348756 35205
31 0.8563 3491165 348854 35216
32 0.8567 3493346 349404 35276
33 0.8572 3495225 349939 35334
34 0.8575 3495956 350182 35360
35 0.8576 3495983 350244 35367
36 0.857703 3495938 350248 35368.4
37 0.857705 3495927 350246 35368.2

NOTES: r) denotes linearity index; bold cases are locally optimal.
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TABLE 3.8.2: Robustness of EIA and SEIA using NBC Initial Code for Various qd's.
EIA SEIA

Id Bi Dei 9d 02 DC2
0-0.1 0.8438 0-3154410 0.09-0.12 0.8447 2858341-

3733957
0.08 0.8448 2558407

0.006-0.07 0.84348 202308-2254295
0-0.005 0.84352 0-168619

3.7 Comparison between EIA and LISA

In this section the EIA algorithm is compared to the Linearity Increasing Swap

Algorithm (LISA) proposed by Knagenhjelm and Agrell [Knagenhjelm and Agrell,

1996], Theoretically, both algorithms try to increase the value of the linearity index r\

that is derived from the Hadamard matrix and its linear eigenspace. However, LISA

attempts to maximize the linearity index r| alone, while EIA maximizes r| and keep

channel distortion Dc as small as possible. Since Dc is not monotone decreasing in r|,

maximizing T| can not guarantee a minimal Dc. Technically, EIA applies a sorting

algorithm which always increase the value of r|, while LISA uses a binary swap

technique in which some binary swap do not increase the value of r|.

The Linearity Increasing Swap Algorithm (LISA), which repeats the routines of

Hamming-1 Butterflies and of Remaining Butterflies until r\ is maximized, is stated

as follows.

Linearity Increasing Swap Algorithm (LISA)

Input: An initial codebook C(or assignment vector z )

Output: An Optimal index assignment for C(or assignment vector z )

Step 1: Compute the Hadamard transform of z , (Mn*nz )/n.

Step 2: Repeat following routines

Hamming-1 Butterflies

Remaining Butterflies
Until convergence
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The Hamming-1 Butterflies routine picks out b2b l hamming-1 neighbours to

perform pair-wise swaps. In the Remaining Butterflies routine, the remaining

(2b l)(2b-b-l) pair-wise swaps are considered. Figure 3.1 shows all the 12

Hamming-1 pair-wise swaps and 16 other pair-wise swaps for each cycle in LISA
with b=3.

I

0 1

binary code 000 001 010 011 100 101 110 111

Hamming-1
1

10

11

12

Remaining
13

14

15
16

17

18

19

20

21

22

23

24

25

26

27
28

A ►

A ►

A ►

A ►

A ►

A ►

A ►

A ►

A ►

A ►

A ►

Figure 3.1: All possible binary swaps in LISA for a 3-bit codebook.

76



SCALAR QUANTITATIONMODEL

For comparison, Example 3.1 is used again to illustrate the difference between
the multiple swaps of EIA and the binary swaps of LISA. Table 3.9 shows the

multiple swaps in each iteration for EIA and that only one iteration is required to

reach the global optimal index assignment. Moreover, every iteration is effective
since it always increases the value of r\. Table 3.10 shows the binary swaps in each

iteration for LISA, where the bold case indicates the permuted codewords in each

binary swap that increases the value of r\ and underline indicates the permuted

codewords in each binary swap that does not increase the value of rj. It is noteworthy

that 25 iterations are required to reach the global optimal index assignment. However

only 5 out of the 25 iterations increase T|. Furthermore, among the 25 iterations, the

first 12 iterations use the Hamming-1 Butterflies routine and the next 13 iterations
use the Remaining Butterflies routine and convergence occurs on the 25th iteration.
Note that the final codebook with index set {5,7,4,6,1,3,0,2} in Table 3.9 is hamming

distance preserving index set to that index set {3,7,1,5,2,6,0,4} in Table 3.10.

Hamming distance preserving index assignments are discussed in Appendix A and
the results are in Table A.2. In summary, each swap in EIA is effective, hence it takes
less iterations to obtain an locally optimal index assignment than LISA does.

Table 3.9: The Multiple Swaps in EIA for an Antipodal Direct Sum Codebook.
iteration z B

0 3.5 0.5 -1.5 1.5 -0.5 -2.5 -3.5 2.5 0.25
1 1.5 3.5 0.5 2.5 -2.5 -0.5 -3.5 -1.5 1.00
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Table 3.10: The Binary Swaps in LISA for an Antipodal Direct Sum Codebook.
effective

swaps

z

0 3.5 0.5 -1.5 1.5 -0.5 -2.5 -3.5 2.5 0.25
1 0.5 3.5 -1.5 1.5 -0.5 -2.5 -3.5 2.5 0.5
2 0.5 3.5 -1.5 L5 -0.5 -2.5 -3.5 2.5 0.25
3 0.5 3.5 -1.5 1.5 -2.5 -0.5 -3.5 2.5 0.78
4 0.5 3.5 -1.5 1.5 -2.5 -0.5 -3.5 2.5 0.21
5 05 3.5 -1.5 1.5 -2.5 -0.5 -3.5 2.5 0.78
6 0.5 3.5 -1.5 L5 -2.5 -0.5 -3.5 2.5 0.78
7 0.5 3.5 -1.5 1.5 -2.5 -0.5 -3.5 2.5 0.77
8 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.96
9 0^ 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.78
10 0.5 05 -1.5 1.5 -2.5 05 -3.5 -0.5 0.88
11 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.82
12 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.82
13 05 3.5 -1.5 L5 -2.5 2.5 -3.5 -0.5 0.91

14 0.5 05 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.25
15 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.91

16 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.25
17 0^ 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.91
18 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.25

19 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.91
20 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.25
21 05 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.58
22 0.5 3.5 -1.5 1.5 -2.5 2.5 -3.5 -0.5 0.58
23 0.5 3.5 -2.5 1.5 -1.5 2.5 -3.5 -0.5 0.98
24 0.5 3.5 -2.5 1.5 -1.5 2.5 -3.5 -0.5 0.96
25 IT)©I 3.5 -2.5 1.5 -1.5 2.5 -3.5 0.5 1.00

Note: Bold case indicates the permuted codewords in each binary swap that increases the value of
ti Underline indicates the permuted codewords in each binary swap that does not increase the
value of t|.

3.8 Comparison between EIA and BSA

Two examples of APDS codebook with known optimal solution and a real word

case CCITT are considered in this section to compare EIA with BSA ( refer to

Chapter 2 where BSA was defined ).
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Example 3.9: (APDS)

An antipodal direct sum codebook can serve as a good example to evaluate the

performances of EIA and BSA since its global minimum channel distortion is known

as Dcmin =4q||z||2/n. Consider an arbitrary APDS of size 256 with the coefficients
cCs being equal to (14.77,6.01,4.24,5.49,4.61,2.51,-2.32,12.39). Table 3.11

compares the channel distortion of EIA with that of BSA while the designated bit
error rate qd varying from 0.0001 to 0.1. In the last two columns, "over ratio"
indicates how much worse an algorithm will perform than the global optimal
solution. The over ratio is between 0.4% to 0.6% for BSA, while it stays within 0.2%
for EIA. In practical situation, one may consider the difference between BSA and
EIA is almost indistinguishable. However, EIA takes much less CPU time than BSA

does. On the Sun Sparc 20 Workstation, the average CPU time for obtaining an

optimal solution given qd=0.0001 to 0.1 is 0.70 seconds with standard deviation 0.21
seconds for EIA. However it is 64 hours (230,400 seconds) with standard deviation

47 hours (169,200 seconds) for BSA!

Table 3.11: The Performances of EIA and BSA Compared to Minimal Channel
Distortion for an Antipodal Direct Sum Codebook.

Dc Dcmin Over ratio

9d EIA* BSA** OPT (EIA-OPT)/OPT (BSA-OPT)/OPT
0.0001 0.1959 0.1968 0.1955 0.2% 0.6%

0.001 1.9598 1.9659 1.9553 0.2% 0.5%

0.01 19.5960 19.6303 19.5535 0.2% 0.4%

0.1 195.8196 196.3362 195.5348 0.1% 0.4%
* about 0.70 seconds on the average CPU time; ** about 230,400 seconds on the average CPU time.

Example 3.10: (CCITT)

Consider the voice digitization North American Telephone Systems (CCITT)
with n=256 and variance 6,423,572. We compare the SNR performance, robustness,
and CPU time between BSA and EIA. Recall from Chapter 2, the quantization

1 16
distortion Ds=910 is derived from —"Y A^/16, where A. is the width of ith

12tr 1 '
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quantization cell. Since the variance of the input signal is not known, we have
estimated it by taking the variance of the codebook namely 6423572. SNR is

, 6423572 ,n

computed as lOlogio (dB) by (2.11).
910 + DC

Let z*(qd) denote the locally optimal index assignment vector obtained from

EIA or BSA using a prespecified qd, and let Dc(z*(qd),q) denote the channel

distortion for a given q and z *(qd). Results are reported in Table 3.12:

(1) EIA is robust with respect to qd since the same index assignment is obtained for

1CT7 <qd <0.1.

(2) For BSA, different channel distortions in Columns 3-6 indicate that locally

optimal index assignments are different for various values of qd. Even a slight

change in qd, for instance from 0.0001 to 0.0002, will lead to different results.

Therefore, we conclude that BSA is more sensitive to qd than EIA.

(3) When qd=0.0001, Dc(z * (qd), 0.0001) = 3408 is greater than

Dc(z * (qd) ,0.0002)^3398, Dc( z * (qd) ,0.001)=3389 or Dc( z * (qd) ,0.01)=3387.

However, Dc(z*(qd),q) should attain its minimum when q=qd- Thus BSA can

only obtain a locally optimal index assignment. Unfortunately, EIA has the same

fault.

(4) EIA takes much less CPU time than BSA does. For instance, on a Sun Sparc 20
Workstation BSA requires average 268 hours (964,800 seconds) CPU time with
standard deviation 108 hours (388,800 seconds) for while EIA requires only 0.91
seconds with standard deviation 0.19 seconds!

SNR is often used to measure channel distortion. Table 3.13 shows the SNR

performance between EIA and BSA is almost indistinguishable, their differences is
less than 0.02dB for high resolution. For a high noise q>0.05, the performance is

quite bad for both algorithms since their SNR's are less than 10.
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Table 3.12: The Channel Distortions of Locally Optimal Index Assignments
Obtained from EIA and BSA Using Various Designated Bit Error Rates.

Dc(z*(qd),q)
qa

q

EIA BSA

0.0-0.1 0.0001 0.0002 0.001 0.01

0.00001 339 341 340 339 339
0.0001 3387 3408 3398 3389 3387
0.001 33848 34057 33954 33864 33851
0.01 336239 338390 337354 336500 336325
0.1 3154411 3180667 3169584 3164413 3159652
0.25 7179746 7246502 7220214 7213819 7198095
0.5 12847145 12847145 12847145 12847145 12847145

Table 3.13: The Comparison of SNR's Between BSA and EIA for CCITT Example.

9d

SNR
EIA* BSA** EIA-BSA

0.0001 31.746 31.725 0.021
0.001 22.667 22.665 0.002

0.01 12.800 12.798 0.002

0.05 5.945 5.944 0.001

0.1 3.087 3.090 -0.002

0.2 0.363 -0.001 0.364
0.3 -1.145 -1.379 0.233

0.4 -2.189 -2.317 0.127

0.5 -3.011 -3.011 0
about 0.91 seconds on the average CPU time; ** about 964,800 seconds on the average CPU time.

In summary, EIA is robust with respect to qj, but BSA is not. EIA takes much
less CPU time than BSA does for obtaining a locally optimal index assignment.

Moreover, EIA even has a slightly better performance than BSA has for both the
APDS codebook and the CCITT codebook. However the difference is

indistinguishable.

3.9 Conclusions

The eigenspace index assignment (EIA) algorithm and its extended version
called sequential EIA (SEIA) have been developed for obtaining an optimal index
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assignment. Numerical examples of the APDS codebook and a real world case of the
CCITT illustrate the proposed algorithms and compare their results with the existing

algorithms. The results are summarized as follows:

1. For both EIA and SEIA algorithms:
a. Multiple bit errors in each transmission are considered in both algorithms.
b. The object is to minimize channel distortion Dc.
c. The central idea of the algorithms is to rearrange an assignment vector z as

close to the linear eigenspace Ei as possible, while keeping Dc is as small as

possible. Technically, z is regressed on the linear matrix Hb, then z is sorted

in accordance with Rank(z) (Corollary 3.10). Overall, the computational

complexity of the algorithm relies only on a sorting algorithm.
d. Both algorithms result in multiple swaps rather than binary swaps (see example

3.3), hence they are very fast and efficient.
e. In the first iteration, the resulting Dc is improved considerably since the

resulting vector is close to Ej. Only minor improvements are obtained after the
first iteration (see example 3.4).

f. For an antipodal direct sum codebook, its linearity index r| is equal to one and

both algorithms can obtain nearly global optimal index assignments (see

example 3.4).

g. For the CCITT example, r\ is less than one and the overall effect of Dc is almost

concave in r\. Thus in order to save computation time, the algorithms can be

terminated whenever Dc increases, (see examples 3.5 and 3.6).

2. Comparisons among EIA, SEIA and NBC:
a. EIA depends on an initial index assignment vector since different initial random

codes yield different optimal index assignments. However, in the EIA algorithm,
MDC and FBC become NBC after the first iteration. Thus MDC, FBC, and

NBC give the same optimal index assignment (see example 3.5).
b. SEIA is independent of an initial index assignment vector. The index

assignment vector in the first iteration becomes the NBC (see Lemma 3.12 and
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example 3.6).
c. SEIA needs more iterations than EIA does. Using different initial random codes,
EIA occasionally has a better result than SEIA but normally these two

algorithms have indistinguishable results (see examples 3.5, 3.6, and 3.7).
d. Both EIA and SEIA outperform NBC code by about 3.4% for small q (see

example 3.7) and outperform random code by about 62% on the average (see

example 3.5).

3. Comparisons between EIA and LISA:
a. They both try to increase the value of the linearity index for obtaining a locally

optimal index assignment. However, LISA maximizes the value of linearity

index, but EIA minimizes the Dc for large value of linearity index.
b. All multiple swaps of EIA are effective to increase the value of linearity index
while LISA need two complicated formulae to test if a binary swap is effective.

c. EIA needs less iteration to obtain an optimal index assignment than LISA does

(see tables 3.9 and 3.10).

d. EIA gives the same result for different initial index assignments such as NBC,

FBC, and MDC (see table 3.5.2). LISA depends upon the initial index

assignment [Knagenhjelm and Agrell, 1996],

4. Comparisons between EIA and BSA:
a. The Dc or SNR performance of EIA is slightly better than BSA. However the
difference is indistinguishable (see examples 3.9 and 3.10).

b. EIA is robust against the designated bit error rates qd while BSA is more

sensitive to qd (see example 3.10).
c. EIA takes much less CPU time than BSA does (see table 3.13).

d. BSA depends upon the initial index assignment [Zeger and Gersho, 1990] but
EIA gives the same result for different initial index assignments such as NBC,

FBC, and MDC (see table 3.5.2).

In summary, both EIA and SEIA are very simple, efficient, and robust

algorithms for obtaining an optimal index assignment.
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Chapter 4

Vector Quantization Model

In this chapter the scalar case will be extended to the vector case, thus the basic
definitions and distortion measures are generalized straightforwardly from scalar

quantization to vector quantization. A k-dimensional vector quantizer F of size n=2b
is a mapping from units of input vector xT =[x1,x2,---,xk]e Rk into a codebook C

containing n codewords y e Rk. A quantizing partition S = {S0,S,,...,Sn_,} of Rk

has n cells associated with the n codewords {y ,y ,"*>y } such that

Sj ={xe Rk :F(x) = y.}. Let p(x) denote the probability density function of x,

then Pi - J. P(*)dx is the occupancy probability of ith cell. The codeword chosen is a

random output of the quantizing partition depending on the random message into

input. As in the scalar quantization, in the thesis, we will study the matched

equiprobable standardized vector source-quantizer pairs in which all cells are

equiprobable, all codewords are cell centroids and the codewords are standardized.
n—1

This means pi=l/n, y = j* xp(x)dx/pj and ^Yir = 0,r = l,2,...,k.
-1 Js< ' .=o

Let Z denote an nxk assignment matrix which represents the ordering of the n

codewords y.'s, i=0,...,n-l in C. Z has k dimensions, so it has k variables zr,

r=l,- • - ,k where zr is the rth component of each of the codewords.
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where codeword =[Zii,zi2,...,Zik]T , i=0,...,n-l (i.e. one of the codewords y,) is the

k-dimensional quantizer point that is assigned the b-bit binary expansion of i. From

now we will use to represent the codeword chosen. As in the scalar quantization

system, given a unit vector of input xe S,, an encoder then converts it to the selected

vector ^ and delivers its b-bit binary index through a binary symmetric channel

(BSC) to a decoder. Let be the received codeword corresponding to x in a

decoder, then the resulting mean squared error distortion is measured by

E[IIX-| II2].
This chapter is organized as follows. Section 4.1 presents the properties of

channel distortion. Then a simple, efficient, and robust algorithm VEIA is proposed
for the matched equiprobable standardized vector source-quantizer pair in Section
4.2. Section 4.3 presents some numerical results to illustrate the properties of VELA,
and VEIA is compared with the well-known index assignment algorithm, Binary

Switching Algorithm (BSA) to show its good performance of efficiency and
robustness. Finally, discussions are given in Section 4.4.

4.1 Channel Distortion

For a codebook with centroid condition, the mean squared error distortion

(Refer to Chapter 2.4.1) that results from using an assignment matrix Z on a binary

symmetric channel with channel bit error rate (BER) q (0<q<0.5) is given as
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D(Z, q) = E[ll X - £ II2 ] = fXX qJ I! x -^ H2p(x)dx
(4.2)

= iSi "X-i, "JP®dx+iSp,£q„ ll|, -I IPi=0 1 K i=0 j=0

= Ds+Dc(Z,q),

where qy = qh(,'j) (1 - q)b~h(lij) is the transition probability that the channel output is j

given that its input is i, and the hamming distance h(i,j) is the number of bit positions

in which i and j are different. Since the first term Ds is the distortion caused by

quantization and is independent of both assignment matrix Z and bit error rate q, we

wish to minimize channel distortion Dc(Z,q) by choosing a good index assignment

for a given codebook.

For an equiprobable quantizer problem, where the occupancy probabilities are

P; = 1/n , i=0,...,n-l. Dc(Z,q) in (4.2) can then be simplified as follows

n-1 n-1

Dc(z'q) = 7EPiXciijK i=0 j=0

n-1 n-1

n.j

5.-5j
i n-1 n-1

fSSbkn top 5.-5,
n-1 k n-1 n-1 k

K-U i=0 r=1 i=0 j=0 r=1

where II zr II is the Euclidean length of zr and Qn = [q,.] is a nxn positive definite
n-1 n-1

channel transition matrix with X^y =^4y -1 •
i=0 j=0

Similar to the Hadamard transformation of the scalar case in Lemma 3.2, the

spectral decomposition of a nxn positive definite channel transition probability matrix
n-1

Qn can be factorized as Qn =X^i®i§i' > where Vs are the eigenvalues of Qn and
i=0

86



VECTOR QUANTIZATION MODEL

ej's are the associated orthonormal eigenvectors of Qn. There are bj=P?)
eigenvalues with the same value = (l-2q)j, j=0,l,...,b, and hence its associated

eigenspace Ej of Qn is spanned by those b, eigenvectors corresponding to Xi. As the

scalar case in Lemma 3.3, the squared length of the projection of zr onto the

2 T 2
eigenspace E■ can be computed as ProjjZr = 2_,(zr §s) , where es, s=l,..,bj are

S=1

an orthogonal basis for Ej. Since the whole space of Qn consists of Ej, j=0,..,b, where

Ej's are mutually orthogonal, the second term of Dc(Z,q) in equation (4.3) can be

rewritten as the format of (3.7)

^Qnzr =X(1_2cl)J IIPr°jjZr l|2. (4.4)
j=i

b

and the first term in (4.3) is H zr II" = ^11 ProjiZr II" . The j=0 term is omitted due to
j=i

the zero-mean codebook assumption. Therefore, Dc(Z,q) in equation (4.3) can be

rewritten as

Dc(Z.q) = f5:2[1-(1-2q)J]||ftojJZr H2,for 0 < q < 0.5 , (4.5)KH r=1 j=1

k

Note that Dc(Z,q) = 0 when q=0, and is equal to 2^11 zr II2 /kn when q=0.5. It is
r=l

increasing in q for 0<q<0.5. Moreover,

Dc(Z,q) = — (2q i)j] H pr ojjZr II2,for 0.5 < q < 1. (4.6)kn r=1 j=1

For a given designated bit error rate qd, the main purpose of the chapter is to

find the locally optimal index assignment Z*(qd) which minimizes the channel

distortion Dc(Z,qd) for a matched equiprobable standardized vector source-

quantizer pair.
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4.2 EIA for Vector Quantizer (VEIA)

In this section, we proceed to develop an index assignment algorithm (called

VEIA) for a k-dimensional vector quantizer based on the scalar EIA. The key idea of

the VEIA algorithm is that the assignment matrix Z = [z,,...,zk] is orthogonally

transformed into T = [t,,...,tk] so that t, has the largest variance and t4's are

mutually orthogonal, then t, is treated as a scalar quantizer and the EIA can be

directly applied to obtain a proper index assignment.

Since the zero-mean and equiprobable codebook, the k by k positive definite

variance-covariance matrix of Z be

Iz = Cov(Z) = E(Zt Z)

<*11 G,2 alk <*11 P12 yjo 1 1 <*22
<*21 a 22 <*2k = P12 \/<*l 1 <* 22 <*22

°'kl <*k2 <*kk
.

Plk \/<*l 1 <* kk P 2k \j(5 22<*kk

kkPlk *\Z°H<*
P2k V(722CTkk

'kk

, (4.7)

j n-l
where aH = E(Zj Zj) =—^zjj , j=l, .. ,k is the variance of z];

n i=0

i n-I

Otf =E(zTzj-) = -Xzijzij., j,j'=l,...,k and Pjj,
n i=0

a-

Vajja/j'
are the covariance and

correlation of z- and respectively. The orthogonal transformation matrix G is

then derived from Ez by using spectral decomposition [Johnson and Wichern, 1988],

That is

2A =GQG (4.8)

where O = diag(co,,...,cok) with to, > oo2 >... > cok > 0, and G =[g1,g2,.--,gk ] is
the orthogonal transformation matrix and g. is the associated standardized

eigenvector with respect to eigenvalue (£>■. Now let us consider the orthogonal

transformation of an assignment matrix Z such that,

88



VECTOR QUANTIZATIONMODEL

nxk ^nxk^kxk — ttl »•••> Ik ] :

" 0

T

"n-1

(4.9)

where t;'s are mutually orthogonal and t, has the largest variance and each

codeword Uj, i=0,...,n-l is the k-dimensional quantizer point that is assigned the

b-bit binary expansion of i. By the property of an orthogonal matrix, we have

GT = G~'. Consequently, the variance-covariance matrix of T can be obtained as

Cov(T) = Cov(ZG) = GT Cov(Z)G = GT £ZG = GT GQGTG = Q, (4.10)

that isVar(tj) = coj, j = 1,2...,k with C0j > co2 >...> cok >0 and Cov(tj,tj) = 0 for
all i^ j. tj has the largest variance being equal to the largest eigenvalue C0j.

If z's are highly correlated, i.e. the correlation is close to one, then the data

points form a thin ellipsoid. Example 4.1 gives a clear example for correlation and

largest eigenvalue.

Example 4.1: (Two-dimensional quantizer with equal variance)

Assume that a two-dimensional quantizer has equal variance for each

dimension, say c?n=a22, so the variance-covariance of Z is given by

2z =
Pl2^1

Pl2<*l
. Consequently, the eigenvalues are co, = au(l + p12) and

co2 = Gn(l-p,2), and their associated eigenvectors are = [1/V2,l/V2] and

g2 = [1/V2,-1/V2], respectively. Now, if the correlation is close to one, then co2 is
close to zero while to, is relatively large. This indicates that the data points form a

thin ellipsoid, which lies along the major axis of g|? or the two-dimensional
quantizer can be treated as a scalar quantizer.
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Therefore, in general, the largest eigenvalue to, is relatively larger than the

others if the z's are highly correlated. Also, as CO, = Var(t,), this means that after

the orthogonal transformation, the elements of T lie along a thin ellipsoid in the k-

dimensional Euclidean space. In that case t j is a good approximation for the original

data and the problem can be treated simply as a scalar quantizer. Furthermore,

geometrically an orthogonal transformation rotates the axes without changing the

distance between any two points, and hence the channel distortion remains the same.

This leads to the following Lemma.

Lemma 4.1: Let Z denote a n by k assignment matrix which represents the ordering

of the n codewords , i=0,...,n-l and T = [t,,...,tk] be the n by k matrix considering

of codewords uj5 i=0,...,n-l, which is an orthogonal transformation of Z. For an

orthogonal transformation, the channel distortion remains the same, namely Dc(Z,q)=

Dc(T,q).

Proof of Lemma 4.1: Consider an orthogonal transformation G in (4.9) such that

= ^tG , then by (4.2) and GGT = I, we have

n-1 n-1 ..i 1 n-1 n-1
1 - 2 ]

Dc(T,q) = ^piXqij|ui —Mj|| —Mj)K i=0 j=0 K j=o j=0

7Sp,Zi1ift,-!))TGGT(|i-!j)=ifpi|:qij(|,-1/(1,-!,)K i=0 j=0 K i=0 j=0
n-1 n-1

=rEp.Ii
R i=0 j=0

—i -J

2

= Dc(Z,q)

Thus, the channel distortion remains the same. □

Therefore, for a matched equiprobable standardized vector source-quantizer

pair, the proposed VEIA algorithm can be summarized as follows:

Eigenspace Index Assignment Algorithm for VQ (VEIA)

Input: An initial index assignment assignment matrix Z

Output: An Optimal index assignment assignment matrix Z
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Step 0: Find the orthogonal transformation matrix G of a given assignment matrix Z.

Step 1: Perform the orthogonal transformation of T=ZG to obtain the t} with the

largest eigenvalue C0i. Sort the rows of T and Z according to the entries of

t, in accending order, namely using the natural binary code as the initial

code.

Step 2: Choose a designated bit error rate qd and apply the EIA algorithm to tt,

namely, to permute the rows of T, say k-dimensional codewords

Upi = 0,...,n-l so that the channel distortion Dc(T,qd) =Dc(Z,qd) is

locally minimized.

Since the VELA, algorithm is applying the EIA algorithm directly to the t, vector, it

must converge in a finite number of iterations. The program for implementing this

algorithm is to be found in Appendix C.

4.3 Numerical Results

Several examples in this section illustrate the performances of the proposed
VEIA algorithm versus the well-known Binary Switching Algorithm (BSA) at

qd=0.0001, 0.001, 0.01, and 0.1 in terms of robustness, CPU time, and signal-to-
noise ratio (SNR). In general, the borderline between high and low resolutions is a

SNR value of 10 dB [Gersho and Gray, 1992], Higher SNR values means higher
resolution. Note that the case of multiple-bit errors is considered throughout the
thesis.

All codebooks were produced by the GLA algorithm with a training set with
size 7500 which was randomly generated with an initial seed 99999 from the first-
order Gauss-Markov input {xj} of the form [Zeger and Gersho, 1990]

xj+i= p Xj+Wj, (4.11)
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where Wj is iid Gaussian input N(0,o^), and variance a2w is often chosen as unity

for convenience. Table 4.1 summarizes the detailed information of each codebook

adopted in this section.

Table 4.1: The list of codebooks produced by GLA algorithm with training set with
size 7500 generated randomly with an initial seed 99999 from the first-
order Gauss-Markov units of input.

Codebook b k P Ds MSE(x) co-,,i = 1,2,...,k
C669 6 6 0.9 0.395 5.485 (30.9,3.18,0.61,0.05,0.02,0.004)
C660 6 6 0 0.302 0.993 (1.179,0.835,0.709,0.662,0.615,0.357)
C639 6 3 0.9 0.162 5.481 (14.98,1.04,0.21)
C630 6 3 0 0.094 0.995 (1.203,1.158,1.074)
C629 6 2 0.9 0.064 5.598 (12.77,0.66)
C620 6 2 0 0.028 0.997 (1.389,1.355)
C729 7 2 0.9 0.034 5.598 (11.89,0.69)
C829 8 2 0.9 0.017 5.598 (11.04,0.68)
C929 9 2 0.9 0.009 5.598 (11.11,0.62)
CI029 10 2 0.9 0.004 5.598 (10.52,0.56)

Note: b:number of bits; k:number of dimensions;p:correlation of first order Gauss-Markov input;
Ds:quantization distortion; CO; :eigenvalues of orthogaonal transformation (or Variance of t;).

Table 4.2 shows the iterations of VEIA for three cases of designated bit error

rate (qd) using the codebook C660, and three interesting facts are observed:

(1) It is clear that the channel distortion Dc(Z,q) is not monotonic decreasing in the

linearity index q for all three cases. Knagenhjelm and Agrell [Knagenhjelm and

Agrell, 1996] also pointed out that the channel distortion is not a monotonic

function of the linearity index, but they do have very strong negative correlation.

It indicates that the linearity index is a potent parameter in the search for a good
index assignment.

(2) The linearity index q in the VELA is independent of qd, in other words, the

iterations are identical for different values of qd .

(3) The locally optimal index assignment depends upon a given qd. The locally

optimal index assignment occurs in the third iteration for qd=0.1 while in the
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first iteration for both qd=0.01 and 0.0001. Since a locally optimal index

assignment depends on qd as shown in Table 4.2, the channel mismatch problem

pointed out by Farvadin [Farvadin, 1990] will occur when the bit error rate is

dynamic.

Table 4.2:The Iterations of VEIA for Various qd's Using Codebook C660.

Iteration P Dc(Z,qd =0.1) Dc(Z,qd=0.01) Dc(Z,qd =0.0001)
0 0.985448 0.6507 0.07531 0.000772
1 0.988923 0.5853 0.07146 0.000731
2 0.989517 0.6102 0.07578 0.000777

3 0.990197 0.5837 0.07149 0.000732
4 0.990274 0.5966 0.07307 0.000748

NOTES: T) denotes linearity index; bold cases are locally optimal.

Table 4.3: The Channel Mismatch Patterns for Various qd in VEIA Using Codebook
C660. ( The entries are Dc(Z*(qd),q)'s • )

\ 9d
Dc(Z*(qd),q)\
q ^

0.01 0.1 sign

(a) (b) (a)-(b)

l.OE-6 0.7312E-5 0.7317E-5 -

0.5E-5 0.3656E-4 0.3658E-4 -

1.0E-5 0.7312E-4 0.7317E-4 -

0.5E-4 0.3655E-3 0.3658E-3 -

1.0E-4 0.7310E-3 0.7315E-3 -

0.5E-3 0.3652E-2 0.3654E-2 -

1.0E-3 0.7295E-2 0.7300E-2 -

0.5E-2 0.3614E-1 0.3616E-1 -

1.0E-2 0.7146E-1 0.7148E-1 -

0.5E-1 0.3265E+0 0.3261E+0 +

0.1 0.5853E+0 0.5836E+0 +

0.15 0.7903E+0 0.7871E+0 +

0.20 0.9529E+0 0.9482E+0 +

0.25 0.1082E+1 0.1076E+1 +

0.30 0.1186E+1 0.1180E+1 +

0.35 0.1271E+1 0.1265E+1 +

0.40 0.1341E+2 0.1336E+2 +

0.45 0.1400E+2 0.1397E+2 +

0.50 0.1452E+2 0.1452E+2 +
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Furthermore, Table 4.3 shows the channel mismatch problem for both qd=0.1 and

qd=0.01 in the VEIA using the codebook C660, where the entries are

Dc(Z*(qd),q) 's. We notice that two patterns intersects each other at q between

O.Oland 0.05. For q<0.01, the channel distortions for qd=0.01 are less than that for

qd=0.1, and vice verse for q>0.05. Namely, the index assignment for qd=0.01

outperforms that for qd=0.1 when q is small, and vice verse when q is large. Since

all index assignment algorithms using Dc(Z,q) as a measure have channel mismatch

problem in dynamic channel, a new measure will be proposed in Chapter 5 to solve
the channel mismatch problem.

However, the VELA, algorithm is quite robust as a designated bit error rate

varies, namely, the same index assignment will be obtained when qd varies at some

range. For the C660 codebook VEIA reaches the same index assignment when qd

varies from 0.0001 to 0.01. Table 4.4 shows the comparison of robustness between

VEIA and BSA algorithms. VEIA is quite robust as qd varies from 0.0001 to 0.1 for

C669, C639, C630, C629, and C620 codebooks while BSA is only robust against low

noisy channel (10~4-10 3) for C669, C660, C629, and C620 codebooks. As in the

scalar case, BSA is more sensitive to qd than VEIA is. For instance the results of

BSA for C639 and C630 are all different when qd varies between lO^-lO"1.

Table 4.4: The Comparison of Robustness Between VELA and BSA for qd within
10~4 to 10"' in different codebooks.

9d

C669 C660 C639 C630 C629 C620

VEIA 10"4-10"' oio 10~4-10~' oo 10"4-10"' 10"4-10"'
BSA 10~4-10~3 COoi

-3-o No No 10"4-103 10"4-10"3
Note: No- BSA is not robust from 10"4 to 10"'.
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Table 4.5 compares the SNR's between BSA and VEIA for different values of k

and p. Recall from Chapter 2, higher SNR values imply better resolution and high

resolution is taken to be a SNR value greater than KMB [Gersho and Gray 1992], For

those codebooks with high correlation p=0.9 (C669,C639,and C629), the SNR's of

VEIA and BSA are almost indistinguishable. The differences between these two

algorithms become slightly larger as k decreases and b is fixed. For instance the

differences increases from 0.036 to 0.107 dB when k decreases from 6 to 2 for b=6.

The results are similar for those codebooks with no correlation p=0.0

(C660,C630,and C620). In general, the differences are magnified when correlation

decreases, for instance the difference is 0.047dB for k=3 and p=0.9 while it is

0.200dB for k=3 and p=0.0.

Table 4.5: The Comparison of SNR's (in dB) Between BSA and VEIA for Various k
and p. (Given b=6, and qd =0.001.)

Codebook dimension (k) P BSA VEIA BSA-VEIA

C669 6 0.9 11.159 11.123 0.036
C639 3 0.9 14.715 14.668 0.047
C629 2 0.9 17.873 17.766 0.107

C660 6 0.0 5.100 5.066 0.034
C630 3 0.0 9.992 9.792 0.200
C620 2 0.0 14.660 13.992 0.668

In Table 4.6, the SNR performance is given as a function of bit error rate for

codebook C669 using qd=0.01. The results indicate the difference between BSA and

VELA is less than 0.13797dB for high resolution performance. For the same example,

Figure 4.1 shows the results of BSA and VEIA are almost indistinguishable.
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Table 4.6:The Comparison of SNR between BSA and VEIA for Codebook C669 and
qd =0.01.

9 BSA VEIA BSA-VEIA
1.0E-6 11.42552 11.42548 0.00004
0.5E-5 11.42442 11.42423 0.00019
1.0E-5 11.42304 11.42266 0.00038
0.5E-4 11.41203 11.41016 0.00187
1.0E-4 11.39831 11.39458 0.00373

0.5E-3 11.29009 11.27194 0.01814

1.0E-3 11.15852 11.12344 0.03508

0.5E-2 10.22966 10.09169 0.13797
1.0E-2 9.29478 9.07818 0.21660
0.5E-1 5.25674 4.89395 0.36278
0.1 2.84421 2.50134 0.34287
0.15 1.32596 1.03160 0.29435
0.20 0.21898 -0.02252 0.24150
0.25 -0.65125 -0.84146 0.19021
0.30 -1.36778 -1.51037 0.14259
0.35 -1.97663 -2.07615 0.09951
0.40 -2.50598 -2.56732 0.06134
0.45 -2.97427 -3.00246 0.02818
0.50 -3.39427 -3.39427 0.00000

■BSA

■VEIA

Figure 4.1: The Comparison of SNR between BSA and VELA for Codebook C669
and qd=0.01.
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Table 4.7 compares the SNfTs and CPU time's between BSA and VEIA given
that k=2 and qd =0.001 to show the effect of large number of bits. It is obvious that

VEIA gives similar SNR to BSA and is much faster to find an assignment than BSA
in all cases. The only time consuming part in VEIA is the sorting algorithm, hence,
the CPU of VEIA depends on which sorting algorithm is adopted, for instances,

0(n") for the bubble sort; O(nlogn) for the binary sort, where n is the size of a

codebook. Bubble sort reorders the sequence so that the elements are in

nondecreasing order by performing a series of passes over the sequence. In each pass,

the elements are scanned by increasing rank, from rank 0 to the end of the sequence

of unordered items. At each position in a pass, an element is compared with its

neighbour, and if the preceding element is larger than the succeeding one, then the
two elements are swaped. In Binary sort a binary search tree is constructed and its
elements visited in a nondecreasing order. In a binary search tree, each internal node

05 stores an element e such that the elements stored in the left subtree of 05 are less

than or equal to e, and the elements stored in the right subtree of 05 are greater than

e[Goodrich and Tamassia, 1998]. Note that 62 CPU hours (223,200 seconds) are

required for BSA when b=8 (or n=256) on a SUN Sparc 20 Workstation with clock

speed 75Mhz compared with 8.4 seconds for VEIA. Although VELA is very fast, its
SNIUs are still close enough to that of BSA. The difference of SNR is only 0.327 dB
when b=8 and that is almost indistinguishable. Note that SNR increases as b

increases. For the high bit rate such that b=10, only 461 seconds are required for
VEIA and its SNR is reasonable as large as 22.552 dB.
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Table 4.7: The Comparison of SNR's and CPU Time's Between BSA and VELA..
(Given k=2, p=0.9,qd =0.001.)

Codebook b

CIPU SNR(dB)
BSA VEIA BSA VEIA BSA-VEIA

C629 6 168s 0.3s 17.873 17.766 0.107

C729 7 1.8h 1.5s 19.734 19.537 0.197
C829 8 62h 8.4s 21.334 21.007 0.327
C929 9 >260h 38s 22.065
CI 029 10 >260h 461s 22.552

Note: s-seconds, h-hours, SNR = 101og10[MSE(x)/(Ds + Dc (Z (qd ),qd)].

4.4 Conclusions

For a vector quantization with centroid and equiprobable properties, the VEIA

algorithm has been developed to obtain a locally optimal index assignment. The
results are summarized as follows:

1. The case ofmultiple bit errors in each transmission is considered in the VEIA.

2. The key idea of the VEIA algorithm is to apply the EIA algorithm on the vector t,

which is the first dimension with the largest variance after an orthogonal

transformation is performed. In the VEIA algorithm, record Dc while maximizing

the linearity index, and the minimum Dc is selected at the end.

3. Technically speaking, only a sorting algorithm is required in term of computation

complexity.

4. The Dc(Z,q) is not monotonic decreasing in the linearity index rj, however, the

two means have high negative correlation (see Table 4.2).

5. The linearity index r| in the VEIA is independent of qd (see Table 4.2).

6. A locally optimal index assignment of VEIA depends upon a given qd (see Table

4.2).

7. It is possible that two performance curves in terms of Dc(Z*(qd),q) for different
values of qd will intersect each, thus a channel mismatch problem occurs (see

Table 4.3). This problem will be addressed in Chapter 5.
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8. Both VEIA and BSA obtain a locally optimal index assignment depending upon a

given qd, however, VEIA is quite robust for a certain range of q, namely, the

same index assignment will be obtained for qd ranging from 0.0001 to 0.1 for

most codebooks. While BSA is only robust at low noise ranging from 0.0001 to

0.001 for some codebooks (see Table 4.4).

9. The SNR performances for both VEIA and BSA are almost indistinguishable. The
differences between these two algorithms become slightly larger for low

correlations and low dimensions with fixed b (see Table 4.5 - 4.7, and Figure 4.1).

10.The VEIA is much faster than the BSA is in all cases (see Table 4.7).

In summary, for a matched equiprobable standardized vector source-quantizer

pair, the VEIA is very simple, efficient, and robust while its performance of
distortion is comparable with that of the BSA.
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Chapter 5

Channel Mismatch in Dynamic Channels

In many practical situations noisy communication channels are dynamic, thus
the actual value of the bit error rate q varies with time. Recall that the channel

distortion of scalar or vector quantizer (Dc(z,q) or Dc(Z,q)) is a function of q.

Therefore, because the bit error rate q varies with time, so does the channel

distortion. Up to now, all existing index assignment algorithms such as BSA, LISA,

EIA, etc. aimed to minimize Dc(z,q) for a prespecified q (called the designated bit
error rate qd). Hence it was important to know qd in order to design the optimal index

assignment, or equivalently the optimal assignment vector z*. The channel mismatch

problem occurs when the actual value of the bit error rate is not the same as the

designated bit error rate qd. There are difficulties in finding an optimal index

assignment under channel mismatch conditions since the distortion measure of

performance depends upon q. Hence, in this chapter, a new distortion measure of

performance which is independent of q is proposed which avoids the channel

mismatch problem. Let the dynamic bit error rate in a noisy dynamic communication
channels be taken as a statistical random variable denoted by Q. The choice of a

proper prior distribution for Q becomes a key issue for developing a new distortion

measure.

This chapter introduces the channel mismatch problem. In Section 5.2 we

suggest that a beta distribution gives a good description of the behavior of Q and
because it is the conjugate prior of binomial distributions it allows exact calculation

of the performance of different index assignments. The expected channel distortion

(ECD) based on a beta distribution is then developed and gives a new distortion
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measure of performance which is independent of q. By using ECD instead of Dc(z,q),
two mismatch-free index assignment algorithms called EIA-ECD and SEIA-ECD are

proposed in Section 5.3. Numerical results are discussed in Section 5.4. Finally,
conclusions are presented and in addition, the expected channel distortion based on a

beta distribution is presented for a vector quantizer.

5.1 Channel Mismatch Problem

Let Q denote the dynamic bit error rate in a noisy dynamic communication
channel. Let q denote the actual bit error rate, and qd denote the designated bit error

rate for which Dc(z,qd) was minimized to obtain an optimal assignment vector z*.
While the actual bit error rate q varies with time, q is not necessary the same as qa,

and the resulting optimal assignment vector is not guaranteed to be optimal for the
actual q. This demonstrates the channel mismatch problem, namely, that an optimal

assignment vector at qd, say z*(qd), may not be the optimal vector uniformly within

0<q<0.5. Recall from Chapters 3 and 4, that the distortion performance of one index

assignment is not consistently better than the other index assignments for different

qd's when q varies from 0 to 0.5. For the real world case of the voice digitization in

North American Telephone Systems (CCITT), Table 5.1 lists the Dc(z*(qd),q)

performances of the SEIA algorithm using qd=0.01 and qd=0.T and their

comparisons for actual q ranging from 0 to 0.5. The result shows that the two

performance curves for qd=0.01 and qd=0.1 intersect when q is between 0.01 and 0.1.

Knagenhjelm [Knagenhjelm, 1993] also reported the channel mismatch problem
when the bit error rate q varies from 0 to 0.05. Moreover, Farvardin [Farvardin,

1990] showed the channel mismatch problem by comparing different encoding
schemes when the actual bit error rate q varies between 0.001 and 0.1. He also

suggested that the value of qd can be set as the average dynamic bit error rate q

under following assumptions: (1) the bit error rate q is very small, say bq«l, where
b is the number of bits, (2) there is only a single-error pattern, and (3) q follows a

uniform distribution. However, we prefer to relax the above assumptions and
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consider a more general case where q has a multiple-error pattern, and is not

necessary uniformly distributed or small enough.

Table 5.1: The Comparison of Dc(z*(qd),q) Performances of SEIA Algorithm Using
CCITT Codebook for Different qd's to Show Channel Mismatch
Problem.

\ qd
Dc(z*(qd),q)\
q

0.1 0.01

(a)-(b)
(a) (b)

0.5 12847144.000 12847144.000 0.000

0.4 10661192.000 10664000.000 -2808.000

0.3 8381580.000 8385672.000 -4092.000

0.2 5912551.000 5915508.000 -2957.000

0.1 3154127.000 3154536.000 -409.000

0.01 336414.600 336190.230 224.370

0.001 33868.800 33842.559 26.241

0.0001 3389.170 3386.507 2.663

0.00001 338.940 338.673 0.267

0.000001 33.894 33.868 0.026

5.2 Beta Distribution for Bit Error Rate

To avoid the channel mismatch problem, the key issue is to find a new

distortion measure which is independent of q. For a given assignment vector z , the

channel distortion as defined in the Equation (3.1) is

Dc(z>q) = Ep,Sq,j(zi _zj)2' (5,1)
i=0 j=0

where q^ = qh(l'j)(l - q)b_h(1'b is the transition probability that the channel output is j

given that its input is i and the hamming distance h(i,j) is the number of bit positions
in which i and j are different. Note that qq has a binomial distribution with parameter

q-

A beta distribution is chosen to fit the dynamic bit error rate Q for the following
three reasons: (a) In mathematical statistics, a beta distribution is the conjugate prior
distribution for a binomial distribution [Lindgren, 1976], Therefore, if the dynamic
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bit error rate has a beta type distribution, then the expected channel distortion (ECD)

has a closed form formula, (b) A beta distribution with parameters a and (3 can fit

many types of data including uniform, linear, L-shape, J-shape, uni-mode and bath

tub shapes. In general, a dynamic bit error rate tends to small values with larger

probability. Therefore, a beta distribution [Johnson and Kotz, 1970] with L-shape

density function, say a=l and (3> 1, is a good description of the dynamic bit error

rate. Also, the choice of a=l can simplify the computation, (c) Since the expected

value of the dynamic bit error rate Q has the closed form of a/[2(a+(3)] for a beta

distribution, it would be easy to choose the value of [3 to fit the average value of Q.

Lemma 5.1, Lemma 5.2 and Theorem 5.3, present the underpinning for this new

distortion measure, ECD.

Lemma 5.1: Let the random variable Q denote the dynamic bit error rate, and 2Q

have a beta distribution with parameters a and (3, then the probability density

function of Q is given by

f1te)=^ -2q)p_1' 0< q < °-5' (5.2)
B(a,(3)

where B(a,[3) = r(a)r((3) / T(a + (3) is a beta function with parameters a and [3, and

T(a) = (a -1)!.

Proof of Lemma 5.1:

Let Y have a beta distribution, then the probability density function of Y is as

follows:

g(y) = r(a + ^ y«-i(1_y)P-i 0 < y < 1. (5.3)
r(a)T([3) y

Replace Y=2Q in (5.3), then the probability density function of Q is derived as

f(q) = p.'"* r, (2q)""' (1 -2q)p-'(^), 0 < q < 0.5r(a)r((3) dq
r(a + [3) (2q)«-i(1_2q)M
r(a)T((3)

(2q)a-1(l-2q)p-1
B(a,(3)
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□

Lemma 5.2: Let the random variable Q denote the dynamic bit error rate with a

density function given in (5.2), then the r"' moment of Q is equal to
a+(r-l)
n i

E(Qr) = 2-r^=iT- (5-4)
n i

i=a+p

Proof of Lemma 5.2:

E(Qr) = °jqrf(q)dq = °J qr ^ (1 -2q)p-'dq
o o r(a)r(P)

= 2~r f r(a + ^ (2q)a+r~'(l- 2q)p_1 d(2q)J0r(a)r(p)
= 2_r na + P)r(a + r) ' r(a + (3 + r) a+r_, _ p_, d

T(a)r(a + (3 + r) J T(a + r)r(p)
a+(r-l)

= 2-r (oc + [3 — 1) !(oc + r — 1)! = 2_r 2 1
(a-l)!(a + p + r-1)! «+P+<r-i)_

i=a+P

□

Let l-l in Lemma 5.2, the expected value of Q is equal to

E(Q)=cc/[2(a+P)]. (5.5)

The variance of Q is equal to Var(Q)=E(Q2)-E2(Q)= ap/[4(a+p)2(a+p+l)] and the

standard deviation of Q, Oq- ^/Var(Q) . The value of the ^-parameter can be varied

according to the actual situation. Note that increasing the value of (3 will decrease the

expected value of Q, thus a larger value of (3 is appropriate for the case where Q

tends to have a small average value. Figure 5.1 shows the density function of Q with

parameters a=l and P=20 within the interval of (0,0.5). Its expected value is equal to

1/42.
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Figure 5.1: The Density Function of Q with Parameters a=l and (3=20, and Its
Expected Value is Equal to 1/42.

Adopting a beta distribution with parameters a and [3 as a prior distribution for

2Q as in (5.3), the expected channel distortion (called ECD) is then calculated in

Theorem 5.3.

Theorem 5.3: Let the random variable Q denote the dynamic bit error rate, and 2Q

have a prior beta distribution with parameters a and (3, For a matched equiprobable

standardized scalar source-quantizer pair, the expected channel distortion (ECD) is

given by

E(Dc(z,Q))= 2 (56)

Proof of Theorem 5.3:

Recalled from Chapter 3, the channel distortion from Hadamard transformation
for a matched equiprobable standardized scalar source-quantizer pair can be rewritten
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as a function of bit error rate:

Dc(z,q) (l-2qV]||ProjJzf _ for 0< <0 5 (5 7)
j=l

The expected channel distortion (ECD) with respect to Q is derived using f(q) in

(5.2) and Dc(z, q) in (5.7):

E(D (z,Q)) =E(-y||Proj:Z 2(l-(l-2Q)j))=-f llProhz 2(l-E(l-2Q)j)
n H nH

=-X||Pr°jj^|2 ^ ~lo°5(1" 2ci)J' f(q)dq)n j=i

= -XK'fo "f' <1 - 21>J •2 r,(°,rfRl <1" 21>N d1>n Jo r(a)r(P)

= -V||projjZ ;(i_r<a + |3)r(P + j) |0.i2 r(a+p + j) I 2 )M-,d ,
" " J_ r<a+|3+j)r(P)« najnp+j)j=l

=-iiK,2(i-»^)n j=i B(a,(3)
□

Note that ECD is a real number and is not a function of q. Therefore, an index

assignment algorithm using ECD as the distortion measure is independent of bit error
rate q and thus can avoid the channel mismatch problem. However, ECD depends

upon the prior distribution and its parameters of a and (3. Section 5.4 will discuss the

properties of ECD as [3 varies.

5.3 Index Assignment Algorithms Using ECD

In this section, the index assignment algorithms proposed in Chapter 3 are

modified by using the distortion measure ECD instead of Dc(z,q). The corresponding

algorithms are the eigenspace index assignment algorithm based on ECD (called

EIA-ECD) and the sequential eigenspace index assignment algorithm based on ECD

(called SEIA-ECD), respectively. The purpose of these two algorithms is to minimize
the ECD and obtain an optimal index assignment for a matched equiprobable

standardized scalar source-quantizer pair.
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5.3.1 EIA-ECD

We proceed to develop the EIA-ECD algorithm in which z is permuted as

nearly into the linear eigenspace E, as possible while keeping ECD is as small as

possible. The EIA-ECD algorithm is summarized as follows:

Eigenspace Index Assignment Algorithm using ECD (EIA-ECD):

Input: An initial index assignment vector z<0>.

Output: A locally optimal index assignment vector, also named z(1>.

Step 0: Set an iteration indicator i=0. Choose an initial assignment vector z(1>.

Step 1: Regress z(" on the linear matrix Hb, then compute the linearity index r\

defined in (3.9), ECD, and the predicted value z(" .

Step 2: Whenever ECD increases, the algorithm is stopped and z(1) is a local

optimum; Otherwise go to step 3.

Step 3: If Rank(zu)) = Rank(z0>) then the algorithm is stopped and z'" is locally

optimal; else sort the elements in z(" into new z<1+l) according to Rank(z(l)),
set i=i+l, and go to Stepl.

Three properties deserve attentions: (1) Since there are only a finite number of values
of r\ and r\ is increasing with an upper bound of 1, the algorithm must stop. (2) The

EIA-ECD algorithm is independent of the bit error rate q and thus is a mismatch-free

algorithm. (3) Empirically, ECD is observed to be almost concave in r\, hence a

good heuristic is that if ECD starts to increase the algorithm can be stopped. An

example of the almost concavity is given in Table 5.2.1.

5.3.2 SEIA-ECD

Step 1 in the EIA-ECD algorithm uses the nxb linear matrix Hb = [ho>'">bb-i]
in the regression. However, due to the special structure of Hb, the EIA-ECD
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algorithm may be performed sequentially by using the bth column of Hb as the initial

regressor, i.e., the regressor matrix R contains hb_,. Then insert vectors hj, i=b-2,

b-3, ..., 0 one at a time into R until the linear matrix Hb is completely used. This

modified version of EIA-ECD is called the sequential EIA-ECD (or SELA-ECD) and

is summarized as follows:

Sequential Eigenspace Index Assignment Algorithm Using ECD (SEIA_ECD):
(0)

Input: An initial index assignment vector z .

Output: A locally optimal index assignment vector, also named z<0 .

Step 0: Set i=0 and j=0. Choose an initial assignment vector zll); Set the initial

regressor matrix to be the (b-j)th column of the linear matrix Hb, say

R'"=hk-H-

Step 1: Use linear matrix Hb to compute T|, ECD. Regress z(' on the regressor

lil A (i)
matrix R , and compute the predicted value z .

Step 2: Whenever ECD increases^ go to Step 4; Otherwise go to Step 3.

Step 3: If Rank(z0)) = Rank(z0)) then go to Step 4; else sort the elements in z(1)
into new z° " according to Rank(z(1)), set i=i+l, and go to Stepl.

Step 4: If Hb is not completely used, then j=j+l and add vectors hb_H into the

current regressor matrix R(J), i.e. R(J>=[ hb_H, R(J_1)] and set i=i+l, go to Step

1; else the algorithm is stopped and z(' is locally optimal.
As in the EIA-ECD algorithm, the bit error rate q will not affect the result of optimal
index assignment for the SEIA-ECD because the distortion measure of ECD is

adopted. Again, SEIA-ECD is independent of the initial index assignment vector.
Refer to previous proof of Lemma 3.12 in Chapter 3.
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5.4 Numerical Results

The voice digitization in North American Telephone Systems (CCITT) is

adopted to illustrate the proposed algorithms. The nature binary code (NBC) is used

as an initial code. Since a beta distribution in (5.2) with L-shaped density function

describes the true behavior of Q, a=l and (3>1 are taken as the possible values of

parameters throughout this chapter. Four points emerge from the calculations:

(1) The linearity index r\ is not necessary "the-bigger-the-better".

(2) Both EIA-ECD and SEIA-ECD algorithms are robust with respect to (3.

(3) The same algorithm using the two different criterion, Dc and ECD, for

stopping, stop at the same value of r\ for certain ranges of qd and (3.

(4) A good estimate of (3 is (3 =—^ -1, where q denotes the average dynamic
2q

bit error rates.

(1) The linearity index r\ is not necessary "the-bigger-the-better".

As was the case when Dc was used to measure EIA and SEIA algorithms, r\ is

not necessary "the-bigger-the-better" although the algorithm is designed to maximize

r). Table 5.2.1 shows the performance of the EIA-ECD in which (3=50 and the

algorithm is stopped when ECD increases. The values of ECD is almost concave in r\

(except iterations 17 and 37) and ECD=327452 is minimum when r|=0.8438.

Therefore, in order to save computational effort, the algorithm can be stopped

heuristically whenever ECD begins to increase. Table 5.2.2 shows the performance

of SEIA-ECD with (3=50. Again ECD is almost concave in T) with some minor

fluctuation, for example, ECD=332911 in iteration 27 is less than ECD=332930 in

iteration 26. However, ECD=327412 is the minimum when T|=0.84348 and that

indicates the algorithm can be stopped whenever ECD begins to increase. SEIA-ECD

gives a slightly better value of ECD than EIA-ECD does. These are similar results to

those in Chapter 3, EIA-ECD outperforms NBC by 3.33% and SEIA-ECD
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outperforms NBC by 3.34%. Compared to random codes, they both reduce the
distortion over 55%.

TABLE 5.2.1: The Performance of EIA-ECD using CCITT Codebook with P=50.
itrn B ECD itrn B ECD

O(NBC) 0.8177 338724

1 0.8360 329944 16 0.8537 335334
2 0.8415 327799 17 0.8538 335289
3 0.8438 327452
4 0.8454 327847 36 0.8577 340113
5 0.8471 328476 37 0.8577 340111
6 0.8483 329000

TABLE 5.2.2: The Performance of SEIA-ECD using CCITT Codebook with P=50.
itrn 0 ECD itrn B ECD

O(NBC) 0.8177 338724
1 0.8225 336399 26 0.8513 332930

27 0.8514 332911
11 0.84348 327412

12 0.8445 327734 53 0.8577 340113

54 0.8577 340111

(2) Both EIA-ECD and SEIA-ECD algorithms are robust with respect to p.

It is clear that the designated bit error rate qa is no longer needed for both
EIA-ECD and SEIA-ECD algorithms, instead a final index assignment now depends

upon the values of parameters a and P of a prior beta distribution. Therefore, we are

interested in how the parameter p affects the result of EIA-ECD or SEIA-ECD when

a is fixed as one.

For the CCITT codebook, Table 5.3.1 shows the iterations of EIA-ECD for

various P=5,20,50 using NBC as an initial code. All three cases follow the same

pattern of iterations since EIA-ECD seeks to maximize r|. However, the local optimal

solutions will depend upon the values of p. For instance, the two cases of P=20 and

110



CHANNEL MISMATCH IN DYNAMIC CHANNELS

(3=50 lead to the same index assignment with r|=0.8438; the case of [3=5 has different

index assignment with r|=0.8454. It is also observed that two ECD's differ by only a

small amount when their r|'s are large and close to each other. For instance between

iterations 3 and 4, the difference of ECD is only 102 for (3=5, 637 for (3=20, and 395

for (3=50, which are relatively small with respect to their final ECD 2563917,

780609, and 327452. Note that Lemma 3.6 gave a upper bound on the difference
between two channel distortions when their r|'s are the same. In general, the bound is

small when r| is large.

Table 5.3.1: The Iterations of EIA-ECD for Various (3 Using CCITT and Initial NBC.

Iteration r\ ECD((3=5) ECD([3=20) ECD((3=50)
0(NBC) 0.8177 2629728 806077 338724

1 0.8360 2580224 786439 329944
2 0.8415 2567424 781542 327799
3 0.8438 2564019 780609 327452
4 0.8454 2563917 781246 327847
5 0.8471 2564608

NOTES: T| denotes linearity index; bold cases are locally optimal.

For a given a=l the values of (3 are tested from 4 to 70000 for both EIA-ECD

and SEIA-ECD algorithms. In the left part of Table 5.3.2, for (3=4 or 5 EIA-ECD

results in the same value of ri=0.8454; it also results in the same ri=0.8438 when (3
varies from 6 to 70000. The right part of Table 5.3.2 shows that SEIA-ECD results in

the same value of r\ for (3 varying from 5 to 8, and then for [3 from 10 to 184, and

finally for (3 from 185 to 70000. Note that all the resulting r|'s are close to each other

for both EIA-ECD and SEIA-ECD, i.e. 0.84348 to 0.8469. These results show that

two algorithms are quite robust with respect to the values of parameter (3. The

advantage of this robustness is that if even the parameter (3 is estimated with bias, the

final index assignment will almost be insensitive to the bias.
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TABLE 5.3.2: Robustness of Parameter (3 for EIA-ECD and SEIA-ECD Using
CCITT and Initial NBC.

EIA-ECD SEIA-ECD

P B ECD P B ECD

4-5 0.8454 3032505-2563840 4 0.8469 3032818

6-70000 0.8438 2222173-0 5-8 0.8447 2563692-1756039
9 0.8448 1589809

10-184 0.84348 1452489-91172
185-70000 0.84352 90633-0

(3) The same value of r\ for certain ranges of qa and (3.

The channel distortion Dc(z,q) and the designated bit error rate qa are required

for both EIA and SEIA algorithms while the ECD and the parameter (3 are needed for

both EIA-ECD and SEIA-ECD algorithms when a is fixed. Although it is

meaningless to directly compare Dc(z,q) with ECD, it is interesting that the same

algorithm using the two different criterion for stopping, stop at the same value of r\

for certain ranges of qa and (3.

TABLE 5.4: Robustness of Parameter |3 for EIA-ECD, SEIA-ECD and Designated
Bit Error Rate qa for EIA, SEIA Using Initial NBC.

EIA EIA-ECD SEIA SEIA-ECD

9d P B 9d P B
0.11 4-5 0.8454 0.13 4 0.8469
0-0.1 6-70000 0.8438 0.09-0.12 5-8 0.8447

0.08 9 0.8448

0.006-0.07 10-184 0.84348

0-0.005 185-70000 0.84352

Using NBC as an initial code, Table 5.4 illustrates that EIA with qa varying
from 0 to 0.1 has the same r\ as EIA-ECD with (3 between 6 and 70000. In addition,

SEIA-ECD for (3 between 5 and 8 has the same r| as SEIA for qa varying from 0.09

to 0.12. Similarly as P varies from 10 to 184, SEIA-ECD has the same r\ as SEIA for
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qa varying from 0.006 to 0.07. Similarly as (3 varies from 185 to 70000, SEIA-ECD

has the same r\ as SEIA for qa varying from 0 to 0.005. These facts also show that

both EIA and SEIA are robust with respect to qa and they are compatible with EIA-

ECD and SEIA-ECD. Overall, the resulting r)'s are all large and similar, i.e., from

0.84348 to 0.8469 such that the resulting channel distortions are different in small

amount.

1
(4) Empirically, the value of (3 can be chosen as (3 =—3 -1, where q denotes the

2q

average value of the dynamic bit error rates.

In order to apply the proposed index assignment algorithms EIA-ECD and

SEIA-ECD, the parameter (3 for the beta distribution has to be determined when a is

fixed. The parameter (3 can be chosen as any positive value due to the property of

robustness. However using a standard statistical estimation method called the method

(X _

of moments, let E(Q) = be equal to q, where q is computed by the average
2(a + (3)

value of dynamic bit error rates. Then for a fixed a, P can be estimated empirically

by

P =~~a ■ (5.8)
2q

For example, if q is 0.01, then (3 is equal to 49 for a=l.

In Table 5.3, for the CCITT example EIA-ECD has the same index assignment

as p varies between 6 and 70000, while from (5.8) q is less than 1/14=0.0714. In

other words, for all q< 0.0714 EIA-ECD reaches the same index assignment. In

practice, q should be small and consequently the EIA-ECD is quite robust. In Table

5.3, P exceeding 10 is equivalent to q < 0.045, this again shows that SEIA-ECD is

quite robust since q is small in general.
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5.5 Conclusions

This chapter solved the channel mismatch problem with multiple-error pattern
in which the bit error rate varies with time. The key idea and approach are

summarized as follows:

1. In the channel mismatch problem, the actual bit error rate q may be different from
the designated bit error rate qd and thus its channel distortion Dc(z,q) or Dc(Z,q) is
not necessarily optimal.

2. The dynamic bit error rate is denoted by a random variable Q, and its behavior can
be described by the prior beta distribution in (5.2). Theorem 5.3 developed the

expected channel distortion (ECD), a new distortion measure which avoids the
channel mismatch problem.

3. Using the ECD instead of Dc(z,q), the EIA and SEIA index assignment algorithms

in Chapter 3 are modified to be the EIA-ECD and SEIA-ECD mismatch-free

algorithms. The key idea is to rearrange the assignment vector as close to linear

eigenspace E, as possible, while keeping ECD as small as possible (see Table

5.2.1 and Table 5.2.2).

4. For the CCITT example, both EIA-ECD and SEIA-ECD algorithms are robust

with respect to the values of parameter [3 when a is fixed (see Table 5.3.1 and

Table 5.3.2).

5. For the CCITT example, EIA-ECD, SEIA-ECD, EIA and SEIA all have similar

results (see Table 5.4).

6. Empirically, the value of (3 can be estimated by -4r -1, where q is the average
2q

value of the dynamic bit error rates.

Finally, the results for the scalar quantizer in this chapter can be easily extended

to the case of vector quantizer. Let Z = [z,,z2,...,zk] denote a k-dimensional

equiprobable vector quantizer, the expected channel distortion for vector quantizer

(VECD) is then given as
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E(Dc(Z,Q)) =^tt(l-M±i>)|projiarf. (5.9)

As in the case of scalar quantizer, a mismatch-free algorithm can be obtained by

modifying the optimal index assignment algorithm VEIA proposed in Chapter 4. This
uses distortion measure VECD instead of Dc(Z,q).
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Chapter 6

Conclusions

Index assignment rearranges the order of codewords appearing in a

nonredundant quantized codebook in a way that can combat the degradation of

performance caused by channel noise. The binary switch algorithm (BSA) has the
best performance in minimizing channel distortion Dc in the comparisons made up to

date. However, this algorithm is time consuming and is sensitive to the bit error rate.
We propose three fast and robust index assignment algorithms with indistinguishable

signal to noise ratio performance to BSA for the binary symmetric channel. The
channel mismatch problem is also addressed for dynamic channels where we propose

a new measure on performance.

In Chapter 3, the thesis introduces the scalar index assignment algorithm EIA
which arranges an index assignment vector to project as much as possible into the
linear eigenspace of the largest eigenvalue. Its Dc and SNR performance are shown
to be indistinguishable to the BSA on real scalar data - a voice digitization in North
American Telephone Systems (CCITT). EIA takes only 0.9 seconds to get an optimal
result for CCITT and is also shown to be robust against designated bit error rates

varying from low noise 0.0001 to high noise 0.1. Technically, the EIA only requires
a regression method and a sorting algorithm, consequently it is very simple, efficient,
and robust. Then a sequential eigenspace index assignment algorithm (SEIA), a

modification of EIA is proved to be independent of the initial index assignment, and
its performance is shown to be similar to that of EIA.

In Chapter 4, the EIA for scalar quantization is extended to a vector eigenspace
index assignmnet algorithm (VEIA) for the vector quantization problem. The key
idea is that the k-dimensional assignment matrix is transformed orthogonally such
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that the first dimension has the largest variance, which is then treated as a scalar

quantizer and the EIA is directly applied to obtain a proper index assignment. The
VEIA again shows indistinguishable SNR performance to BSA and uses much less

computational time in an example involving a first-order Markov-Gauss codebook.
The VEIA also shows its robustness in that the same Dc performance is obtained for

designated bit error rate from low noise to high noise.

In the dynamic noisy communication channels, the actual value of the bit error
rate varies with time and thus the channel mismatrch problem occurs when the
measure of performance depends on the bit error rate. The conventional measure Dc

depends on the bit error rate, so Chapter 5 proposes a new measure expected channel
distortion (ECD) which is independent of the bit error rate so that any index

assignment algorithm using ECD is mismatch-free. An ECD measure based on a

beta-type density function for channel bit error rate is proposed and tested with the

proposed EIA and SEIA algorithms, which are shown to perform well under this
measure.

The proposed algorithms and the new measure provide a potentially useful

approach for further developments in the source-channel quantization system.

Integrating VEIA into quantization systems specifically designed when noisy,

memoryless, channels is given by a Beta distribution is a task of the future. Another
future study for index assignment will remove the memoryless assumption on

channel errors.
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Appendix A

Hamming Distance Preserving
Index Assignments

For a scalar index assignment problem in Chapter 3, we permute the elements in a

codebook into different assignment vectors z. Hence there are n! possible assignment

vectors in arranging a set of n codewords. Alternatively, we may fix the order of

codewords in a codebook, say C = {y0,y,yn_,}, and assign an index to each

codeword and forms an index set for a codebook. Hence, there are also n! different index

sets. Let IA={a(i),i=0,l,...,n-l} denote an index set, where a(i) takes on the value of 0,

1,..., n-1. Each index may be denoted by a b-bit binary word, or by a decimal integer for
notational brevity. For instance, IA={ 11,01,10,00}={3,1,2,0}, where a(0)=3(ll),

a(l)=l(01), a(2)=2(10), a(3)=0(00). Let h(a(i),a(j)) be the hamming distance between a(i)

and a(j), which means the number of bit positions in which a(i) and a(j) differ. Let

HD(IA)=[h(a(i),a(j)), i,j=0,l,...,n-l] denote a Hamming distance matrix. For a codebook

C = {yPi = 0,1,...,n -1}, each transmitted codeword y; is assigned to a(i) and the received

signal is decoded to obtain codeword yj. Therefore, the channel distortion Dc(z,q) being

a function of z in (3.4) can be rewritten as a function of y and IA:

Dt(y.IA,q)=4XXqkl-('M»a-q)M<-<l«l,(y,-yi)!=-llIq,d(y„yi). (A.l)
n i=0 j=0 n i=0 j=0

From (A.l) we see that for a given codebook y and a given bit error rate q, the channel
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distortion is not changed if the hamming distance matrices for different index sets

remain the same. Thus, if two index sets preserve the hamming distance matrix, then the

channel distortion level is also preserved.

Definition A.l: Two index sets are hamming distance preserving if their associated

Hamming distance matrices are the same.

Lemma A.2: Two hamming distance preserving index sets have the same channel
distortion.

Proof of Lemma A.2: For any index set, d(yi,yj) in (A.l) remains the same for any i and

j since the order of the codewords in a codebook is fixed. By Definition A.l, two

hamming distance preserving index sets have the same Hamming distance matrix for all

i and j. Thus, by (A.l), it is easy to observe that is not changed and consequently the

channel distortions remain the same for the hamming distance preserving index sets. □

Lemma A.3: There are n*b! hamming distance preserving index sets which can be

obtained by applying two operations: (a) bit permutation (b) bit-wise modulo 2 addition.

Proof of Lemma A.3:

(a) Let the element in an index set IA be denoted by a b-bit binary word such as

a(i)=(aii,aj2,...,aib), ajj={0,l}, i=0,...,n-l. Let 7tSk denote the operation of permuting sth
and kth binary bits for an index set, say 7iSk[a(i)]= 7tSk[(...aiS,...,)]=(...aik,...,aiS...),

where s,k=l,2,...,b. For instance, 7t23[(010)]=001. Now, it is easy to observe that the

hamming distance between any two indices remains the same by performing a bit

permutation. For instance, h(7t23[(010)], 7t23[(001)])=h(001,010)=2=h(010,001). In

general, for all (i,j)th elements in a Hamming distance matrix, we have

h(a(i),a(j))=h(7rsk[a(i)], TCsk[a(j)]), namely, HD(IA) = HD(7tsk(IA)) for s,k=l,2,...,b.

There are b! possible bit permutations.

(b) A bit-wise modulo 2 addition is denoted by ©, for instance, (001)© (101)=(100).
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The hamming distance between any two indices remains the same by performing a bit¬
wise modulo 2 addition. For example, h[010©(101),001 ©(101)] = h[ 111,100] = 2 =

h[010,001]. In general, for all (i,j)th elements in a Hamming distance matrix, we have

h(a(i),a(j))=h(a(i)©k,a(j)©k), namely, HD(IA) = HD(IA ©k) for k=0,l,...,n-l. There

are n possible bit-wise modulo 2 additions.

Consider the representation of the possible indices as vertices of a hypercube in b
dimensions. For example the index (0100) is mapped into the vertex (0,1,0,0). The edges
of the hypercube connect vertices whose hamming distance is equal to 1. Thus any

transformation between two hamming distance preserving, index sets must correspond to

transforming the corresponding hypercubes into each other. Thus it is enough to find the
number of transformations of a hypercube into itself.

Take any vertex. It can be transformed into any of the n vertices of the hypercube.
There are b edges adjacent to this vertex and they can be mapped in b! ways into the b

edges adjacent to the transformed vertex. Once one vertex and all its edges are fixed, this
defines the hypercube exactly. Hence there are n*b! ways of transforming a hypercube
into itself. These are n*b! distinct hamming distance preserving index sets.

Therefore, the above two operations of 7t and © will not change Hamming distance

matrix, and hence there are n*b! hamming distance preserving index sets for a given
codebook. □

Table A.l lists all eight possible hamming distance preserving index sets for

Ia={0,1,2,3} with b=2 and n=4, namely Ia={0,1,2,3}, {1,0,3,2}, {2,3,0,1}, {3,2,1,0},

{0,2,1,3}, {1,3,0,2}, {2,0,3,1}, and {3,1,2,0} are all hamming distance preserving index

sets, and they all have the same hamming distance matrix HD(IA) =

0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0
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Table A.l: All Eight Possible Hamming Distance Preserving Index Sets for IA={ 0,1,2,3}
with n=4.

0(00) 0(01) 0(10) 0(11)
Binary Bit Binary Bit Binary Bit Binary Bit

i (1,2)* i (1,2) i (1,2) i (1,2)
0 00 1 01 2 10 3 11

1 01 0 00 3 11 2 10
2 10 3 11 0 00 1 01
3 11 2 10 1 01 0 00

i (2,1) i (2,1) i (2,1) i (2,1)
0 00 1 01 2 10 3 11

2 10 3 11 0 00 1 01

1 01 0 00 3 11 2 10

3 11 2 10 1 01 0 00

Note: * numbers in the parenthesis denote bit orders.

Therefore, for a codebook of size n, the n! possible index assignments in an

unconstrained search can be reduced by identify n*b! assignments yielding identical
distortion. Hence, there exits n!/(n*b!) possible index assignments which confirms the

conjecture of full-search index assignment by Knagenhjelm and Agrell [Knagenhjelm
and Agrell, 1996], Table A.2 gives another hamming distance preserving examples of
NBC with size n=8, which are obtained from various index assignment algorithms
described in Chapter 3. An optimal index assignment with IEia={5,7,4,6,1,3,0,2}
obtained from EIA, ISeia={4,5,6,7,0,1,2,3} obtained from SEIA, ILIsa={ 3,7,1,5,2,6,0,4}

obtained from LISA, and Inbc={0, 1,2,3,4,5,6,7} for NBC are mutually hamming
distance preserving because they have the same hamming distance matrix

HD(Ieia)=HD(Iseia)=HD(Ilisa)=HD(INBc)-
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Table A.2: Four Hamming Distance Preserving Index Sets and Their Hamming distance
Matirx of Size n=8.

HD
EIA 101 111 100 110 001 Oil 000 010

SEIA 100 101 110 111 000 001 010 Oil

LISA Oil 111 001 101 010 110 000 100

NBC 000 001 010 Oil 100 101 110 111

101 100 Oil 000 0 1 1 2 I 2 2 3

111 101 111 001 1 0 2 1 2 1 3 2

100 110 001 010 1 2 0 1 2 3 1 2

i 110 111 101 Oil 2 1 1 0 3 2 2 1

001 000 010 100 1 2 2 3 0 1 1 2

Oil 001 110 101 2 1 3 2 1 0 2 1

000 010 000 110 2 3 1 2 1 2 0 1

010 Oil 100 111 3 2 2 1 2 1 1 0
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Appendix B

EIA/SEIA

B.l EIA/SEIA Program

The following program is used in the EIA, SEIA, EIA-ECD, SEIA-ECD algorithms

presented in chapters 3, 4, and 5.

C EIA/SEIA, DC/EDC, INDEX ASSIGNMENT ALGORITHM USING EIGENSPACE El

C REGRESS Y ON El TO PRODUCE YHAT, AND SWAP CODEBOOK Y

C FILENAME NIND10.F, NATEIA.F UPDATE 22/7/97, 8/DEC/97

PROGRAM INDEX_ASSGN

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

PARAMETER (KBIT=8,NMAX=2**KBIT,NIN=5,NOUT=6)

DIMENSION HDM(NMAX,NMAX),INDX(NMAX)

DIMENSION Y(NMAX),YMEAN(NMAX),PROB(NMAX),YHAT(NMAX)

DIMENSION SY(NMAX),SYMEAN(NMAX),SPROB(NMAX)

DIMENSION IY(NMAX),IOPTY(NMAX),IYOPT(NMAX)

DIMENSION COEF(KBIT),IEl(KBIT),EJ(KBIT)

DOUBLE PRECISION G05DAF,G01FAF,G01EAF

DOUBLE PRECISION M01DAF

EXTERNAL G05DDF [NORMAL DSTN / GO 1FAF [INVERSE NORMAL

EXTERNAL MO1DAF [RANK

EXTERNAL MO 1CAF [SORT

IR=0 !IR=0 - DEFAULT/ =1 - RANDOM APDS

IA=I !IA=0 - NO IA / =1 - YES IA

IDIST=1 [=1 - GAUSSIAN(0,1) / =2 LAPLACIAN

NBIT=0

DO 1000 L=8,8 !@@@ NBIT AND N
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NBIT=NBIT+1

IBIT=L

ISEQ=1 !@@@ ISEQ= 1 - SEQUENTIALEIA/ =IBIT EIA

N=2**IBIT

WRITE(NOUT,5553)

IF(ISEQ .EQ. 1) THEN

WRITE(NOUT,5554)L,N
ELSE

WRITE(NOUT,5555)L,N

ENDIF

CALL HADAMA(IBIT,N,HDM,INDX,IE1)
c CALL BETADIST(IBIT,COEF)
C CALL APDS(IBIT,N,E 1 ,IR,Y,YMEAN.PROB.DQ)

CALL NAT(N,Y,YMEAN,PROB,DQ)
CALL NORM(N,Y,YMEAN,PROB,YVAR,SY,SYMEAN,SPROB,IY)

IF(IA .EQ. 0) GOTO 1000

SDC=1.0D+08

C

DO 500 INI=1, 2 !@@@ INI=1 -MDC 1=2 -FBC /=3 -NBC /=4 -RANDOM

CALL INITIAL! IB IT,N,Y,IY,INI)

ITRN=0

WRITE(NOUT,9998)

SUBDC=1.0D+08

DO 450 IREG = ISEQ.IBIT

100 IFNL=0

CALL REG(IREG,IBIT,N,HDM,INDX,IELCOEF,IELSY,Y,SYMEAN,
- YMEAN,YHAT,YVAR,ITRN,SUBDC,IYOPT,IY,ISTOP,IFNL)
IF(ISTOP .EQ. 0)GOTO 450 !STOP IF NO IMPROVEMENT OF SUBDC

CALL SWAP(N,Y,YHAT,IY,ISW)
ITRN=ITRN+1

IF(ISW .EQ. 1) GOTO 100

450 CONTINUE !IREG LOOP

CALL UPDATE(N,SY,Y,SDC,IYOPT,SUBDC,IOPTY) 1UPDATE OPTIMAL Y

500 CONTINUE MNITIALLOOP

ITRN=99 'FINAL OPTIMAL CODEBOOK

WRITE(NOUT,7777)

WRITE(NOUT,6666)(Y(I),I= 1 ,N)

WRITE(NOUT,9998)

IFNL= 1 IPRINT FINAL REPORT
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CALL REG(IREG,IBIT,N,HDM,INDX,IEl,COEF,IEI,SY,Y,SYMEAN,

- YMEAN,YHAT,YVAR,ITRN,SUBDC,IYOPT,IY,ISTOP,IFNL)

1000 CONTINUE I//IBIT LOOP

5553 FORMAT(/lX,'@@@ INDEX ASSIGNMENT:NIND10.F UPDATE 22/7/97 @@@*)

5554 FORMAT(/lX,'SEQUENTIAL EIA ALGORITHM CASE NUMBER',13,
- 'WITH N=',14)

5555 FORMAT(/lX,EIA ALGORITHM CASE NUMBER',13,'WITH N =',I4)

6666 F0RMAT(/1X,PINAL CODEBOOK WITH INDEX ASSIGNMENT FROM 1 TO N'

- /(8F9.0))

7777 F0RMAT(/1X,T15,'*** FINAL CODEBOOK REPORT ***')

9998 F0RMAT(/3X,TTRN',T14,F1 RATIO',T33,'DC',T47,'IBIT')

STOP

END

SUBROUTINE BETADIST(IBIT.COEF)

C COMPUTE COEFFICIENTS OF EXPECTED DISTORTION FOR BETA

C DISTRIBUTION

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION COEF(IBIT)

ALPHA=1.0

BETA=I0.0

COEF( 1 )=BETA/(ALPHA+BETA)

DO 10 1=1, IB IT

COEF(I+1 )=COEF(I)*(BETA+I)/(ALPHA+BETA+I)

10 CONTINUE

WRITE(6,7777)ALPHA,BETA,(COEF(I),I=l,IBIT)

7777 FORMAT(/1X,TRANSITION ERROR HAS A BETA(ALPHA,BETA) DISTRIBUTION

-, WHERE'/' ALPHA=',F5.1,' BETA=',F5.1,3X,

-'COEFFICIENTS OF EXPECTED CHANNEL DISTORTION ARE',/

- (8F10.4))

RETURN

END

SUBROUTINE HADAMA(IBIT,N,HDM,INDX,IE1)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION HDM(N,N),INDX(N),IE1(IBIT)
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M = 2 [GENERATE HADAMARD MATRIX

HDM(1,1) = 1.0

HDM(1,2) = 1.0

HDM(2,1)= 1.0

HDM(2,2) = -1.0

INDX(1)=0

1NDX(2)=1

DO 5 K=1,IBIT

DO 10 1=1,M

INDX(1+M)=INDX(I)+1

DO 20 J = 1,M

HDM(1,J+M) = HDM(I,J)

HDM(I+M,J) = HDM(I,J)

HDM(I+M,J+M) = -HDM(U)

20 CONTINUE

10 CONTINUE

M=M*2

5 CONTINUE

K=0

DO 30 J=1,N

IF(INDX(J) .EQ. 1) THEN

K=K+1

IE1(K)=J

ENDIF

30 CONTINUE

RETURN

END

SUBROUTINE REG(IREG,IBIT,N,HDM,INDX,IEl,COEF,EJ,
- Y,SY,YMEAN,SYMEAN,YHAT,YVAR,ITRN,SDC,IY,IYOPT,

ISTOP.IFNL)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION HDM(N,N),INDX(N),IY(N),IYOPT(N)

DIMENSION Y(N),SY(N),YMEAN(N),SYMEAN(N),YHAT(N)

DIMENSION EJ(IBIT),COEF(IBIT),IEl(IBIT)

DIMENSION QE(37),BT(N)

DATA(QE(I),I= 1,37)/0.5,0.475,0.45,0.425,0.4,0.375,0.35,
- 0.325,0.3,0.275,0.25,0.225,0.2,0.175,0.15,0.125,0.1,

- 0.075,0.05,0.025,0.01,0.0075,0.005,0.0025,0.001,
- 0.00075,0.0005,0.00025,0.0001,0.000075,0.00005,
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- 0.000025,0.00001,0.0000075,0.000005,0.0000025,0.000001/

QERR=0.13

DO 3 1=1,N

Y(I)=SY(IY(D)

YMEAN(I)=SYMEAN(IY(I))

3 CONTINUE

DO 5 J=1,N

BT(J)=0.0

DO 10 1=1,N

BT(J)=BT(J)+Y(I)*HDM(I,J)

10 CONTINUE

BT(J)=BT(J)/N

5 CONTINUE

DO 15 1=1, IB IT

EJ(I)=0.0

15 CONTINUE

DO 25 1=1,N

EJ(INDX(I))=EJ(INDX(I))+BT(I)*BT(I)

25 CONTINUE

DC=0.0

DO 35 1=1,IB IT

DC=DC+2.0*(1,0-( 1.0-2.0*QERR)**I)*EJ(I)

35 CONTINUE

ETA=EJ(1)/YVAR

WRITE(6,7777)ITRN,ETA,DC,IREG

IF(IFNL .EQ. 0)THEN
DO 45 1=1,N

YHAT(I)=0.0

DO 45 K=1,IREG

KJ=IBIT-K

YHAT(I)=YHAT(I)+HDM(I,IE1(KJ))*BT(IE1(KJ))

45 CONTINUE

IF(DC .LE. SDC)THEN

DO 55 1=1,N

IYOPT(I)=IY(I)

55 CONTINUE

SDC=DC

ISTOP= 1

ELSE

DO 65 1=1,N
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IY(I)=IYOPT(I)

65 CONTINUE

ISTOP=0

ENDIF

ELSE

WRITE(6,8887) IFINAL REPORT IFNL=1

TEN=10.0

D10=DLOG(TEN)

NQ=37

DO 75 1=1,NQ ICOMPUTE DC FOR EACH Q

DC=0.0

DO 85 J=1,IBIT

DC=DC+2.0*( 1,0-( 1.0-2.0*QE(I))**J)*EJ(J)

85 CONTINUE

SNR = -10.0*DLOG(DC)/D 10

WRITE(6,8888)1,QE(I),DC,SNR

75 CONTINUE

ENDIF

7777 FORMAT(1X,I5,F15.6,D20.8,I8)

8887 FORMAT(/5X,T,T13,'QERR',T30,'DC',T45)
8888 FORMAT( 1 X,I5,D 12.3,D20.8,F10.2)

RETURN

END

SUBROUTINE SWAP(N,YHAT,Y,IY,ISW)

C SWAP ELEMENTS IN Y ACCORDING TO THE THEIR RANKS IN YHAT

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION YHAT(N),Y(N),IY(N)

DIMENSION IRANK( 1024),OY(1024)

DO 5 1=1,N

IRANK(I)=I

OY(I)=Y(I)

5 CONTINUE

CALL SORT2(N,YHAT,IRANK)

CALL SORT2(N,Y,IY)

CALL SORTl(N,IRANK,Y,IY)

ISW=0

DO 15 1=1,N

IF(Y(I) .NE. OY(I))THEN

ISW=1
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GOTO 500

ENDIF

15 CONTINUE

500 CONTINUE

RETURN

END

SUBROUTINE SORTl(N,IRANK,Y,IY)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION Y(N),IRANK(N),IY(N)

DO 15 1=1,N-l

IND=0

DO 25 J=1,N-I

IF(IRANK(J) .GT. IRANK(J+1)) THEN

ITEMP=IRANK(J)

IRANK(J)=IRANK(J+1)

IRANK(J+1 )=ITEMP

TEMP=Y(J)

Y(J)=Y(J+1)

Y(J+1)=TEMP

ITEMP=IY(J)

IY(J)=IY(J+1)

IY(J+1)=ITEMP

IND=1

ENDIF

25 CONTINUE

IF(IND .EQ. 0) GOTO 500

15 CONTINUE

500 CONTINUE

RETURN

END

SUBROUTINE SORT2(N,X,IDX)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION X(N),IDX(N)

DO 35 1=1,N-l

IND=0

DO 45 J=1,N-I

IF(X(J) .GT. X(J+1)) THEN
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TEMP=X(J)

X(J)=X(J+1)

X(J+1)=TEMP

ITEMP=IDX(J)

IDX(J)=IDX(J+1)

IDX(J+1 )=ITEMP

IND=1

ENDIF

45 CONTINUE

IF(IND .EQ. 0) GOTO 500

35 CONTINUE

500 CONTINUE

RETURN

END

SUBROUTINE UPDATE(N,Y,SY,SUBDC,IYOPT,SDC,IOPTY)

C UPDATE OPTIMAL Y AFTER EACH NEW INITIAL

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION Y(N),SY(N),IYOPT(N),IOPTY(N)

IF(SUBDC .LT. SDC)THEN

DO 5 1=1,N

IOPTY(I)=IYOPT(I)

5 CONTINUE

SDC=SUBDC

ENDIF

DO 15 1=1,N

Y(I)=SY(IOPTY(I))

15 CONTINUE

RETURN

END

SUBROUTINE INITLAL(IBIT,N,Y,IY,INI)

C GENERATE INITIAL Y FOR EIA

C INI= 1 - MDC / 2 FDC / 3 - NBC / >4 - RANDOM CODE

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION Y(N),IY(N),R 1 (1 ),R2( I)

DIMENSION SY( 1024),IYS( 1024),IRANK( 1024)

DO 5 1=1,N

IRANK(I)=I
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SY(I)=Y(I)

IYS(I)=IY(I)

5 CONTINUE

CALL SORT2(N,SY,IYS)

IF (INI .EQ. 1)THEN

CALL MDC(IBIT,N,IRANK)

WRITE(6,555)

ELSE

IF(INI .EQ. 2) THEN

M=N/2

DO 10 1=1,M/2

ITEMP=IRANK(I)

IRANK(I)=IRANK(M+1-I)

IRANK(M+1 -I)=ITEMP

10 CONTINUE

WRITE(6,444)

ELSE

IF(INI .EQ. 3) THEN

WRITE(6,333)

ELSE

c A=0.0

c B=1.0*N

NSW=N/3

DO 15 1=1,NSW

R 1=G05DAF(A,B)+1.0

R2=G05DAF(A,B)+1.0

K1=RI(1)*N+1.0

K2=R2(1)*N+1.0

ITEMP=IRANK(K 1)

IRANK(K1 )=IRANK(K2)

IRANK(K2)=ITEMP

15 CONTINUE

WRITE(6,666)

ENDIF

ENDIF

ENDIF

DO 25 1= 1 ,N IOBTAIN Y AND IY FROM IRANK

Y(I)=SY(IRANK(I))

IY(I)=IYS(IRANK(I))

25 CONTINUE
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333 F0RMAT(/1X,'- INI=3, INITIAL IS NATURE BINARY CODE')

444 FORMAT(/IX,— INI=2, INITIAL IS FOLDED BINARY CODE')

555 FORMAT(/lX, - INI=1, INITIAL IS MINIMUM DISTANCE CODE')

666 F0RMAT(/1X,'- INI=4, INITIAL IS RANDOM CODE')

RETURN

END

SUBROUTINE NORM(N,Y,YMEAN,PROB,YVAR,SY,SYMEAN,SPROB,IY)

C NORMALIZE Y AND YMEAN, COMPUTE VAR(Y), AND MINIMUM

C CHANNEL DISTORTION GIVEN A QERR AS ZERO MEAN

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION Y(N),YMEAN(N).PROB(N),IY(N)

DIMENSION SY(N),SYMEAN(N),SPROB(N)

AVE=0.0 [COMPUTE MEAN AND VARIANCE OF CODEBOOK

YVAR=0.0

DO 5 1=1,N

AVE=AVE+Y(I)

YVAR=YVAR+Y(I)*Y(I)

5 CONTINUE

AVE=AVE/N

YVAR=(YVAR-AVE*AVE*N)/N

DO 10 1= 1 ,N [NORMALIZE CODEBOOK TO ZERO MEAN

SY(I)=Y(I)-AVE

SYMEAN(I)=YMEAN(I)-AVE

SPROB(I)=PROB(I)

IY(I)=I

10 CONTINUE

WRITE(6,7777)YVAR

7777 FORMAT(/lX,THE VARIANCE OF CODEBOOK =',D20.8)

RETURN

END

SUBROUTINE MDC(IBIT,N,1MDC)

C GENERATE MINIMUM DISTANCE CODE, USING HADAMARD INDX

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION IMDC(N),ICOUNT(8)

IB2=IBIT-2
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lB3=IBIT-3

IB4=IBIT-4

IB5=IBIT-5

N=2**IBIT

M=N/2

IMDC(M)=0

IMDC(M-1)=1

1=2

P=2

DO 5 K=1,1B2 !"**** ONE 1

IMDC(M-I)=P

1=1+1

P=P*2

5 CONTINUE

ISUM=0

II=IB2

DO 25 ID=0,IB2

ISUM=ISUM+II !lCOUNT()=C(IB2,1)... ,C( 1,1)

11=11-1

J=I-1SUM

DO 35 K=1,IB2-ID

IMDC(M-I)=IMDC(M-J)+2**ID

1=1+1

J=J+1

35 CONTINUE

25 CONTINUE

ICOUNT(0)=0 !** GENERATE FROM TWO 1 'S +2**()

DO 40 J=l, IB3 !ICOUNT( 1 )=C(IB2-2,2)=1, ICOUNT(2)=C(lB2-1,2)=3

ICOUNT(J)=ICOUNT(J-1 )+J !ICOUNT(3)=C(IB2,2)

40 CONTINUE

ISCOUNT=0

DO 42 J=IB3, 1,-1

ISCOUNT=ISCOUNT+ICOUNT(J)

DO 45 K= 1, ICOUNT(J)

IMDC(M-I)=IMDC(M-I+ISCOUNT)+2**(IB3-J)

1=1+1

45 CONTINUE

42 CONTINUE

ICOUNT(l)=l !C(IB2-2,3)

ICOUNT(2)=4 !C(IB2-1,3)

ICOUNT(3)=10 !C(IB2,3)
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ICOUNT(4)=20

ISCOUNT=0

DO 52 J=IB4,1,-1

ISCOUNT=ISCOUNT+ICOUNT(J)

DO 55 K=l,ICOUNT(J)

IMDC(M-I)=IMDC(M-I+ISCOUNT)+2**(IB4-J)

1=1+1

55 CONTINUE

52 CONTINUE

ICOUNT(l)=l !C(IB2-*,4)

ICOUNT(2)=5

ICOUNT(3)=15

ISCOUNT=0

DO 62 J=IB5,1,-1

ISCOUNT=ISCOUNT+ICOUNT(J)

DO 65 K=l,ICOUNT(J)

IMDC(M-I)=IMDC(M-I+ISCOUNT)+2**(IB5-J)

1=1+1

65 CONTINUE

62 CONTINUE

DO 88 K= 1, IBIT-1 !*** IBIT-2 1 'S

IMDC(K+1 )=M-1 -2**(K-1)

88 CONTINUE

IMDC(1)=M-1 !*** IBIT-1 US

DO 90 1=1,M

IMDC(I)=IMDC(I)+1

90 CONTINUE

DO 95 1=1,M

IMDC(M+I)=IMDC(M-I+1)+128

95 CONTINUE

RETURN

END

SUBROUTINE SORT3(IS,N,INDX,IMDC)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION INDX(N),IMDC(N)

M=N/2

IE=IS+M-1

K=0

DO 15 I=IS,IE-1

134



APPENDIX B

IND=0

K=K+1

DO 25 J=IS,IE-K

IF(1NDX(J) .GT. INDX(J+1)) THEN

ITEMP=INDX(J)

INDX(J)=INDX(J+1)

INDX(J+1)=ITEMP

1TEMP=IMDC(J)

IMDC(J)=IMDC(J+1)

IMDC(J+1 )=ITEMP

IND=I

ENDIF

25 CONTINUE

IF(IND .EQ. 0) GOTO 500

15 CONTINUE

500 CONTINUE

RETURN

END

SUBROUTINE APDS(IBIT,N,HDM,IEl,IR,Y,YMEAN,PROB,DQ)
C GENERATE ANTI-PODAL-DIRECT-SUM CODEBOOK

C IR=0 - DEFAULT APDS / IR=1 - RANDOM APDS

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION HDM(N,N),IEl(IBIT),Y(N),YMEAN(N),PROB(N)

DIMENSION ALPHA( 10),RANDA( 10),TEMP( 1024)

DATA(ALPHA(I),I=1,8)
- /14.77,6.01,4.24,5.49,4.61,2.51 ,-2.32,12.39/

ITRN=0

IF(IR .EQ. 0) GOTO 200

TOL=0.1

DO 5 1= LIB IT

RANDA(I)=ALPHA(I)

5 CONTINUE

100 ITRN=ITRN+1

IF(ITRN .GT. 50) THEN

PRINT *

PRINT *,WARNING: ITRN>50,A DEFAULT QUANTIZER IS ASSUMED'

GOTO 200

ENDIF
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A=-3.0D-00

B= 3.0D-00

DO 7 1=1,IB IT/2

RAND=G05DAF(A,B)

K=DABS(RAND)/B*IBIT+1.0

RANDA(K)=RANDA(K)+RAND

7 CONTINUE

DO 10 1=1,N

Y(D=0.

DO 15 J=1,IBIT

Y(I)=Y(I)+HDM(I,IE1(J))*RANDA(J)

15 CONTINUE

TEMP(I)=Y(I)

10 CONTINUE

IFAIL=()

DO 30 1=1,N-l

IF(TEMP(I+1 )-TEMP(I) .LT. TOL) GOTO 100

30 CONTINUE

WRITE(6,666)ITRN,(RANDA(I),I= 1,IB IT)

WRITE(6,444),TOL

GOTO 300

200 DO 35 1=1,N

Y(I)=0.0

DO 34.1=1,BIT

Y(I)=Y(I)+HDM(I,EE 1 (J))*ALPHA(J)

34 CONTINUE

TEMP(I)=Y(I)

35 CONTINUE

IFAIL=0

SMLD=1.0D+08

DO 40 1=1,N-l

DD=TEMP(I+1 )-TEMP(I)

IF(DD .LT. SMLD) THEN

SMLD=DD

ENDIF

40 CONTINUE

WRITE(6,555)(ALPHA(I),I=1,IBIT)

WRITE(6,444)SMLD
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IF(SMLD .LT. 1.0D-06) STOP

300 EQP= 1,0/N

DO 45 1=1,N

YMEAN(I)=Y(I)

PROB(I)=EQP

45 CONTINUE

DQ=0.0

WRITE(6,777)

444 FORMAT(lX,MINIMUM DISTANCE BETWEEN CODEWORDS IS .GT. TOL='
- ,F8.4)

555 FORMAT(/1X,'IR=0, A DEFAULT APDS WITH COEFFIdENTS'/(5Dl 3.4))

666 FORMAT(/lX,'IR=l, AN APDS WITH RANDOM COEFFICIENTSV(ITRN=',
- I2,y/(5D13.4))

111 FORMAT)IX,'*** DQ IS ASSUMED TO BE ZERO ***')

RETURN

END

SUBROUTINE NAT(N,Y,YMEAN,PROB,DQ)
C GENERATE PIECEWISE UNIFORM CODEBOOK USED BY NORTH AMERICAN

C TELEPHONE COMPANY

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION Y(N),YMEAN(N),PROB(N)

EQP=1.0/256.0

K=128

DO 5 IS=1,8

DO 5 EB=1,16

K=K+1

Y(K)=(2.0**(IS-I)*(2.0*(IB-l)+33.0)-33.0)

Y(257-K)=-Y(K)

5 CONTINUE

DO 15 1=1,N

YMEAN(I)=Y(I)

PROB(I)=EQP

15 CONTINUE

WRITE(6,444)

444 FORMAT)/IX,THIS IS THE CODEBOOK USED BY NORTH AMERICAN TELEPHONE

-COMPANY ')

C WRITE(6,555)(Y (I),I= 1 ,N)

C 555 FORMAT(8F9.0)

RETURN

END
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B.2 EIA Printout

The following is a printout of eigenspace index assignment algorithm for CCITT
with bit error rate=0.001. The program stops whenever Dc increases.

@@@ INDEX ASSIGNMENT:IND10.F UPDATE 22/7/97 @@@

EIA ALGORITHM CASE NUMBER 8 WITH N = 256

THIS IS THE CODEBOOK USED BY NORTH AMERICAN TELEPHONE COMPANY

VARIANCE OF CODEBOOK = 0.6423572D+07

TRANSITION ERROR = 0.1000D-02

THE MINIMUM EXPECTED CHANNEL DISTORTION (L.B.)= 0.256943D+05

INI=1, INITIAL IS MINIMUM DISTANCE CODE

ITRN El RATIO

1 0.348873D+00

2 0.817722D+00

3 0.836027D+00

4 0.841486D+00

5 0.843775D+00

6 0.845412D+00

DC IB IT

53890.7672 8

35054.5939 8

34107.5711 8

33879.8352 8

33848.3999 8

33900.3507 8

IN1=2, INITIAL IS FOLDED BINARY CODE

ITRN El RATIO

1 0.348873D+00

2 0.817722D+00

3 0.836027D+00

4 0.841486D+00

5 0.843775D+00

6 0.845412D+00

DC IB IT

47506.7752 8

35054.5939 8

34107.57 II 8

33879.8352 8

33848.3999 8

33900.3507 8

IN1=3, INITIAL IS NATURE BINARY CODE

ITRN El RATIO DC IBIT
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1 0.817722D+00

2 0.836027D+00

3 0.841486D+00

4 0.843775D+00

5 0.845412D+00

35054.5939 8

34107.5711 8

33879.8352 8

33848.3999 8

33900.3507 8

INI=4, INITIAL IS RANDOM CODE

ITRN El RATIO

1 0.272064D+00

2 0.848133D+00

3 0.850042D+00

DC IB IT

81452.7170 8

34330.4446 8

34431.5380 8

*** FINAL CODEBOOK REPORT ***

0 0.843775D+00 33848.3999 8

FINAL CODEBOOK WITH INDEX ASSIGNMENT FROM 1 TO N

-8031. -7775. -7519. -7263. -7007. -6751. -6495. -6239.

-5983. -5727. -5471. -5215. -4959. -4703. -4447. -3999.

-4191. -3871. -3743. -3615. -3487. -3359. -3231. -3103.

-2975. -2719. -2463. -2207. -1983. -1855. -1663. -1407.

-2847. -2591. -2335. -2079. -1919. -1791. -1599. -1343.

-1151. -975. -879. -783. -687. -591. -495. -423.

-439. -375. -327. -279. -231. -203. -171. -139.

-115. -93. -81. -69. -57. -45. -30. -20.

-1727. -1471. -1215 . -1023. -911. -815. -719. -623

-559. -455. -391. -343. -295. -247. -211. -179.

-195. -155. -123. -99. -85. -73. -61. -49.

-41. -24. -14. -6. 0. 8. 16. 26.

-37. -22. -12. -4. 2. 10. 18. 28.

33. 53. 65. 77. 89. 107. 131. 163.

147. 187. 219. 263. 311. 359. 407. 471.

527. 655. 751. 847. 943. 1087. 1279. 1535.

-1535. -1279. -1087. -943. -847. -751. -655. -527.

-471. -407. -359. -311. -263. -219. -187. -147.

-163. -131. -107. -89. -77. -65. -53. -33.

-28. -18. -10. -2. 4. 12. 22. 37.

-26. -16. -8. 0. 6. 14. 24. 41.

49. 61. 73. 85. 99. 123. 155. 195.

179. 211. 247. 295. 343. 391. 455. 559.

623. 719. 815. 911. 1023. 1215. 1471. 1727.

139



APPENDIX B

20. 30. 45. 57. 69. 81 . 93. 115.

139. 171. 203. 231. 279. 327. 375. 439.

423. 495. 591. 687. 783. 879. 975. 1151.

1343. 1599. 1791. 1919. 2079. 2335. 2591. 2847

1407. 1663. 1855. 1983. 2207. 2463. 2719. 2975

3103. 3231. 3359. 3487. 3615. 3743. 3871. 4191

3999. 4447. 4703. 4959. 5215. 5471. 5727. 5983.

6239. 6495. 6751. 7007. 7263. 7519. 7775. 8031

I QERR

1 0.500D+00

2 0.475D+00

3 0.450D+00

4 0.425D+00

5 0.400D+00

6 0.375D+00

7 0.350D+00

8 0.325D+00

9 0.300D+00

10 0.275D+00

11 0.250D+00

12 0.225D+00

13 0.200D+00

14 0.175D+00

15 0.150D+00

16 0.125D+00

17 0.100D+00

18 0.750D-01

19 0.500D-01

20 0.250D-01

21 0.100D-01

22 0.750D-02

23 0.500D-02

24 0.250D-02

25 0.100D-02

26 0.750D-03

27 0.500D-03

28 0.250D-03

29 0.100D-03

30 0.750D-04

31 0.500D-04

DC

0.12847144D+08

0.12304893D+08

0.11761164D+08

0.11214480D+08

0.10663357D+08

0.10106311D+08

0.95418492D+07

0.89684740D+07

0.83846782D+07

0.77889449D+07

0.71797458D+07

0.65555402D+07

0.59147729D+07

0.52558733D+07

0.45772538D+07

0.38773083D+07

0.31544107D+07

0.24069136D+07

0.16331467D+07

0.83141566D+06

0.33623963D+06

0.25264502D+06

0.16874138D+06

0.84526957D+05

0.33848400D+05

0.25391008D+05

0.16930479D+05

0.84668100D+04

0.33871011D+04

0.25403729D+04

0.16936134D+04
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32 0.250D-04 0.84682241 D+03

33 0.100D-04 0.33873273D+03

34 0.750D-05 0.25405002D+03

35 0.500D-05 0.16936700D+03

36 0.250D-05 0.84683655D+02

37 0.100D-05 0.33873500D+02

B.3 SEIA Printout

The following is a printout of sequential eigenspace index assignment algorithm for
CCITT with bit error rate=0.001. The program stops whenever Dc increases.

@ @ @ INDEX ASSIGNMENT:IND 10.F UPDATE 22/7/97 @ @ @

SEQUENTIAL EIA ALGORITHM CASE NUMBER 8 WITH N = 256

THIS IS THE CODEBOOK USED BY NORTH AMERICAN TELEPHONECOMPANY

THE VARIANCE OF CODEBOOK = 0.64235721D+07

TRANSITION ERROR = 0.1000D-02

INI=1, INITIAL IS MINIMUM DISTANCE CODE

ITRN EI RATIO DC IBIT

0 0.348873 0.53890767D+05 1

1 0.817722 0.35054594D+05 I

2 0.817722 0.35054594D+05 2

3 0.817722 0.35054594D+05 3

4 0.822580 0.34803808D+05 3

5 0.822580 0.34803808D+05 4

6 0.832489 0.34282223D+05 4

7 0.836703 0.34063089D+05 4

8 0.836703 0.34063089D+05 5

9 0.840297 0.33898017D+05 5

10 0.841945 0.33841181D+05 5

11 0.841945 0.33841181D+05 6

12 0.843480 0.33842559D+05 6

12 0.841945 0.33841181D+05 7

13 0.843523 0.33823124D+05 7

14 0.844706 0.33868823D+05 7
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14 0.843523 0.33823124D+05 8

15 0.844780 0.33861940D+05 8

-— IN1=2, INITIAL IS FOLDED BINARY CODE

ITRN El RATIO DC IB IT

0

1

0.348873

0.817722

0.47506775D+05

0.35054594D+05

1

1

2 0.817722 0.35054594D+05 2

3 0.817722 0.35054594D+05 3

4 0.822580 0.34803808D+05 3

5 0.822580 0.34803808D+05 4

6 0.832489 0.34282223D+05 4

7 0.836703 0.34063089D+05 4

8 0.836703 0.34063089D+05 5

9 0.840297 0.33898017D+05 5

10 0.841945 0.33841181D+05 5

11 0.841945 0.33841181D+05 6

12 0.843480 0.33842559D+05 6

12 0.841945 0.33841181D+05 7

13 0.843523 0.33823124D+05 7

14 0.844706 0.33868823D+05 7

14 0.843523 0.33823124D+05 8

15 0.844780 0.33861940D+05 8

-— INI=3, INITIAL IS NATURE BINARY CODE

ITRN El RATIO DC IBIT

0 0.817722 0.35054594D+05 1

1 0.817722 0.35054594D+05 2

2 0.817722 0.35054594D+05 3

3 0.822580 0.34803808D+05 3

4 0.822580 0.34803808D+05 4

5 0.832489 0.34282223D+05 4

6 0.836703 0.34063089D+05 4

7 0.836703 0.34063089D+05 5

8 0.840297 0.33898017D+05 5

9 0.841945 0.33841181D+05 5

10 0.841945 0.33841181 D+05 6

11 0.843480 0.33842559D+05 6

11 0.841945 0.33841181 D+05 7
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12 0.843523 0.33823124D+05 7

13 0.844706 0.33868823D+05 7

13 0.843523 0.33823124D+05 8

14 0.844780 0.33861940D+05 8

INI=4, INITIAL IS RANDOM CODE

ITRN El RATIO DC IBIT

0 0.272064 0.81452717D+05 1

1 0.817722 0.35054594D+05 1

2 0.817722 0.35054594D+05 2

3 0.817722 0.35054594D+05 3

4 0.822580 0.34803808D+05 3

5 0.822580 0.34803808D+05 4

6 0.832489 0.34282223D+05 4

7 0.836703 0.34063089D+05 4

8 0.836703 0.34063089D+05 5

9 0.840297 0.33898017D+05 5

10 0.841945 0.33841181D+05 5

11 0.841945 0.33841181D+05 6

12 0.843480 0.33842559D+05 6

12 0.841945 0.33841181D+05 7

13 0.843523 0.33823124D+05 7

14 0.844706 0.33868823D+05 7

14 0.843523 0.33823124D+05 8

15 0.844780 0.33861940D+05 8

INI=4, INITIAL IS RANDOM CODE

ITRN El RATIO

0 0.196989

1 0.817722

2 0.817722

3 0.817722

4 0.822580

5 0.822580

6 0.832489

7 0.836703

8 0.836703

9 0.840297

10 0.841945

DC IBIT

0.90617746D+05 1

0.35054594D+05 1

0.35054594D+05 2

0.35054594D+05 3

0.34803808D+05 3

0.34803808D+05 4

0.34282223D+05 4

0.34063089D+05 4

0.34063089D+05 5

0.33898017D+05 5

0.33841181D+05 5
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11 0.841945 0.33841181D+05 6

12 0.843480 0.33842559D+05 6

12 0.841945 0.33841181D+05 7

13 0.843523 0.33823124D+05 7

14 0.844706 0.33868823D+05 7

14 0.843523 0.33823124D+05 8

15 0.844780 0.33861940D+05 8

*** FINAL CODEBOOK REPORT ***

FINAL CODEBOOK WITH INDEX ASSIGNMENT FROM 1 TO N

-8031. -7775. -7519. -7263. -7007. -6751. -6495. -6239.

-5983. -5727. -5471. -5215. -4959. -4703. -4447. -4191.

-3999. -3871. -3743. -3615. -3487. -3359. -3231. -3103.

-2975. -2847. -2719. -2591. -2207. -2079. -1855. -1791.

-2463. -2335. -1983. -1919. -1599. -1535. -1215. -1151.

-719. -687. -655. -623. -527. -495. -407. -391.

-247. -231. -203. -195. -171. -163. -123. -115.

-61. -57. -53. -49. -37. -33. -22. -20.

-1727. -1663. -1471. -1407. -1087. -1023. -911. -879.

-591. -559. -471. -455. -375. -359. -311. -295.

-187. -179. -155. -147. -107. -99. -85. -81.

-45. -41. -30. -28. -14. -12. -2. 0.

-18. -16. -6. -4. 8. 10. 24. 26.

65. 69. 73. 77. 89. 93. 131. 139.

211. 219. 263. 279. 327. 343. 423. 439.

751. 783. 815. 847. 943. 975. 1279. 1343.

-1343. -1279. -975. -943. -847. -815. -783. -751.

-439. -423. -343. -327. -279. -263. -219. -211.

-139. -131. -93. -89. -77. -73. -69. -65.

-26. -24. -10. -8. 4. 6. 16. 18.

0. 2. 1 2. 14. 28. 30. 41. 45.

81. 85. 99. 107. 147. 155. 179. 187.

295. 311. 359. 375. 455. 471. 559. 591.

879. 911. 1023. 1087. 1407. 1471. 1663. 1727.

20. 22. 33. 37. 49. 53. 57. 61.

115. 123. 163. 171. 195. 203. 231. 247.

391. 407. 495. 527. 623. 655. 687. 719.

1151. 1215. 1535. 1599. 1919. 1983. 2335. 2463.

1791. 1855. 2079. 2207. 2591. 2719. 2847. 2975.

3103. 3231. 3359. 3487. 3615. 3743. 3871. 3999.
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4191. 4447. 4703. 4959. 5215. 5471. 5727. 5983.

6239. 6495. 6751. 7007. 7263. 7519. 7775. 8031.

ITRN El RATIO DC IBIT

99 0.843523 0.33823124D+05 8

I QERR

1 0.500D+00

2 0.475D+00

3 0.450D+00

4 0.425D+00

5 0.400D+00

6 0.375D+00

7 0.350D+00

8 0.325D+00

9 0.300D+00

10 0.275D+00

11 0.250D+00

12 0.225D+00

13 0.200D+00

14 0.175D+00

15 0.150D+00

16 0.125D+00

17 0.100D+00

18 0.750D-01

19 0.500D-01

20 0.250D-01

21 0.100D-01

22 0.750D-02

23 0.500D-02

24 0.250D-02

25 0.100D-02

26 0.750D-03

27 0.500D-03

28 0.250D-03

29 0.100D-03

30 0.750D-04

31 0.500D-04

32 0.250D-04

33 0.100D-04

34 0.750D-05

DC

0.12847144D+08

0.12305054D+08

0.11761476D+08

0.11214924D+08

0.10663906D+08

0.10106930D+08

0.95424988D+07

0.89691089D+07

0.83852518D+07

0.77894109D+07

0.71800617D+07

0.65556697D+07

0.59146902D+07

0.52555669D+07

0.45767306D+07

0.38765985D+07

0.31535729D+07

0.24060401D+07

0.16323694D+07

0.83091207D+06

0.33600698D+06

0.25246642D+06

0.16861953D+06

0.84464624D+05

0.33823124D+05

0.25372008D+05

0.16917784D+05

0.84604480D+04

0.33845528D+04

0.25384613D+04

0.16923387D+04

0.84618491D+03

0.33847770D+03

0.25385874D+03
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35 0.500D-05

36 0.250D-05

37 0.100D-05

0.16923947D+03

0.84619892D+02

0.33847994D+02
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Appendix C

VEIA

C.l VEIA Program

The following program is used in the VEIA algorithm presented in chapter 4.

C VQ:TRANSFOR TO Y, APPLY SEIA ON Y1(N), AND ROTATE THE Y(N,K)

c 1-st step markov gaussian source

c for 6 dimension scalar quantization
c FILENAME:VQIND11 .F.vqgla.f .vqgladc.f UPDATE 2/8/97,31/10/97

PROGRAM Vquantizer

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

PARAMETER (IBIT=6,NM=2**IBIT,QERR=0.0I)

PARAMETER (NIN=5,NOUT=6)

c PARAMETER (NDIM=6,LDA=IBIT,LWORK=16*IBIT) Inaglib
PARAMETER (NDIM=6,LDA=NDIM,LDEVEC=NDIM) !MDIM=NDIM !IMSL

c DOUBLE PRECISION YLIST(2048),YALIST(NM),WLIST(NM)

DOUBLE PRECISION SS(NDIM,NDIM),COR(NDIM,NDIM),COVM(LDA,NDIM)

DOUBLE PRECISION SYVECT(NM.NDIM)

DOUBLE PRECISION YVORI(NM.NDIM)

DOUBLE PRECISION TYMEAN(NDIM),YVMEAN(NDIM),TYVECT(NM,NDIM)

c DOUBLE PRECISION W(NM), WORK(LWORK) !nag
DOUBLE PRECISION EVAL(NDIM),EVEC(LDEVEC,NDIM) !IMSL

DIMENSION HDM(NM,NM),INDX(NM),IEl(IBIT),COEF(IBIT)

DIMENSION EJ(IBIT,NDIM),YHAT(NM)

DIMENSION IYOPT(NM),IY(NM),IOPTY(NM)

c EXTERNAL G05DDF INORMAL DISTRIBUTION-nag
c EXTERNAL G05CCF ! NONREPEATABLE NUMBER-nag

147



APPENDIX C

c EXTERNAL F02FAF, X04CAF ! EIGENVALUES AND EIGENVECTORS

c EXTERNAL UMACH

EXTERNAL DEVCSF,WRRRN 1IMSL EIGENVAL AND VEC,WRITE

EXTERNAL TDATE

C

ISEQ= IB IT

print*, ' first order markov gaussian: '

print*,'N= \NM, ' DIM: NDIM, 'Q(BER): ',QERR

WRITE(NOUT,5553) IPRINT HEADING EIA'

IF (ISEQ .EQ. 1 ) THEN

WRITE (NOUT,5554)L,NM

ELSE

WRITE (NOUT,5555)L,NM

ENDIF

C

CCCCCC VECTOR ( MULTIPLE DIMENSION )

C

c NM=N/NDIM Iread data from standard input file
DO 120 1=1, NM

READ(NIN,*)(YVORI(I,J),J= 1 ,NDIM)

120 CONTINUE

DO 125 J=l, NDIM

YVMEAN(J)=0.0

DO 1301= 1, NM

YVMEAN(J)=YVMEAN(J)+YVORI(I,J)

130 CONTINUE

YVMEAN(J)=YVMEAN(J)/NM

125 CONTINUE

DO 126 J=1,NDIM Inormalize to zero mean

DO 126 1=1,NM

SYVECT(I,J)=YVORI(I,J)-YVMEAN(J)

126 CONTINUE

c***** compute covariance matrix *****

DO 135 1= 1, NDIM Icorrelation
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DO 135 J= 1, NDIM

SS(I, J)=0.0

DO 135 K=l, NM

SS(I,J)=SS(I,J) + SYVECT(K,I)*SYVECT(K,J)

135 CONTINUE

DO 155 1=1, NDIM

DO 155 J=l, NDIM

COR(l,J) = SS(I,J)/ SQRT( SS(I,I)*SS(J,J))

155 CONTINUE

C

DO 156 1=1, NDIM Icovariance matrix

DO 156 J=l, NDIM !!nag- J=1,I!!

COVM(I,J) = SS(I,J)/NM

156 CONTINUE

PRINT*,' MULTIPLE DIMENSION: *

PRINT*, ' INPUT QUANTIZER; '

PRINT*,' COR(I,J):

DO 220 1=1, NDIM

WRITE (NOUT.9) (COR(I,J),J=l, I)

220 CONTINUE

c PRINT*,' VAR-COV MATRIX: '

c DO 221 1=1, NDIM

c WRITE (NOUT.9) (COVM(I,J),J=l, I)

c 221 CONTINUE

C

C***** COMPUTE EIGENVALUES AND EIGENVECTORS

CALL DEVCSF(NDIM,COVM,LDA,EVAL,EVEC,LDEVEC)

CALL DWRRRN(EVAL', 1 ,NDIM,EVAL, 1,0)

CALL DWRRRN(EVEC',NDIM,NDIM,EVEC,LDEVEC,0)
MAXJ=I

C

C

C************** TRANSFORMATION *****************

C

C

DO 310 1=1,NM

DO 310 J=l,NDIM

TYVECT(I,J)=0.0
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DO 310 K=1,NDIM

TYVECT(U) = TYVECT(I.J) + SYVECT(I,K)*EVEC(K,J)
310 CONTINUE

WRITE(NOUT,9)

£*#*******###********

DO 425 J=l, NDIM !corrclation

TYMEAN(J)=0.0

DO 4301= 1, NM

TYMEAN(J)=TYMEAN(J)+TYVECT(U)
430 CONTINUE

TYMEAN(J)=TYMEAN(J)/NM

425 CONTINUE

DO 435 1= 1, NDIM Icovariance matrix

DO 435 J= 1, NDIM

SS(L J)=0.0

DO 435 K=l, NM

SS(I,J)=SS(I,J) + TYVECT(K,I)*TYVECT(K,J)

435 CONTINUE

DO 437 1=1, NDIM

DO 437 J=l, NDIM

SS(I,J)=SS(I,J) - TYMEAN(I)*TYMEAN(J)*NM

437 CONTINUE

DO 455 1=1, NDIM

DO 455 J=I, NDIM

COR(I,J) = SS(I,J)/ SQRT( SS(I,I)*SS(J,J))
455 CONTINUE

C

DO 456 1=1, NDIM

DO 456 J=l, I

COVM(I,J) = SS(I,J)/NM

456 CONTINUE

c PRINT*,'YMEAN: '

c WRITE (NOUT.9) (TYMEAN(I),I= 1, NDIM)

c PRINT*,'SS(I,J): '

c DO 410 1=1, NDIM

c WRITE (NOUT,9)(SS(I,J),J= 1, NDIM)

c 410 CONTINUE

c PRINT*,'COR(I,J):'

c DO 420 1=1, NDIM
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c WRITE (NOUT.9) (C0R(I,J),J=1, NDIM)

c 420 CONTINUE

PRINT*,'VAR-COV MATRIX: '

DO 421 1=1, NDIM

WRITE (NOUT,9) (COVM(I,J),J=l, I)

421 CONTINUE

£********** ************

CALL EIA(NM,NDIM,TYVECT„MAXJ)

9 FORMAT(lX,6E13.6)

5553 FORMAT(/lX,'@@@ INDEX ASSIGNMENT:VQgladc.F UPDATE 28/3/98 @@@r)
5555 FORMAT(/lX,EIA ALGORITHM NUMBER',13,'WITH N =',14)

9998 FORMAT(/3X,TTRN',T14,ETA',T33,'DC',T47,'IBn")

END

C.2 VEIA Printout

The following is a printout of eigenspace index assignment algorithm for vector

quantizer. A 6-dimensional vector quantizer of size 64 from the first Gauss-Markov

Input with p=0 is used. Set bit error rate=0.0001.

first order markov gaussian:
N= 64 DIM: 6 Q(BER): 1 .OOOOOOOOOOOOOD-04

@@@ INDEX ASSIGNMENT:VQgladc.F UPDATE 28/3/98 @@@

EIA ALGORITHM NUMBER 6 WITH N = 64

MULTIPLE DIMENSION:

INPUT QUANTIZER;

COR(I,J):

0.100000E+01

-0.303239E-01 0.100000E+01

-0.107892E-01 -0.120151E-01 0.100000E+01

0.110548E+00 0.223040E-02 0.967525E-02 0.100000E+01

-0.290008E+00 0.120146E+00 0.279278E-01 -0.536969E-01 0.100000E+01

0.311937E+00-0.339808E+00 0.882775E-0I 0.652934E-02-0.537379E-01 0.100000E+01
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EVAL

12 3 4

1.179 0.835 0.709

5 6

0.662 0.615 0.357

EVEC

1 2 3 4 5 6

1 0.5460 0.3929 0.0945 -0.2407 0.4314 -0.5428

2 -0.4456 0.5517 0.2303 -0.3649 0.3517 0.4326

3 0.0529 -0.2537 0.7234 -0.4926 -0.3959 -0.1007

4 0.1322 0.3640 0.5561 0.7215 -0.1176 0.0799

5 -0.4264 -0.4604 0.3006 0.2131 0.6046 -0.3239

6 0.5488 -0.3638 0.1229 -0.0175 0.3927 0.6299

VAR-COV MATRIX:

0.117907E+01

-0.186483E-15 0.834783E+00

0.364292E-16-0.902056E-16 0.708833E+00

0.398986E-15 0.277556E-16-0.131839E-15 0.662034E+00

-0.304227E-15-0.110155E-15-0.346945E-17 0.442354E-16 0.614761E+00

0.211962E-15-0.119913E-15 0.659195E-16 0.555112E-16 0.119262E-17 0.356517E+00

ITRN ETA

0 0.985448D+00

1 0.988923D+00

2 0.989517D+00

3 0.990197D+00

4 0.990274D+00

ITRN ETA

99 0.988923D+00

DC IBIT

0.77200425D-03 6

0.73100426D-03 6

0.77677912D-03 6

0.73158907D-03 6

0.74759754D-03 6

DC IBIT

0.73100426D-03 6

I QERR

1 0.500D+00

2 0.475D+00

3 0.450D+00

DC

0.14519993D+01

0.14268250D+01

0.14001184D+01
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4 0.425D+00

5 0.400D+00

6 0.375D+00

7 0.350D+00

8 0.325D+00

9 0.300D+00

10 0.275D+00

11 0.250D+00

12 0.225D+00

13 0.200D+00

14 0.175D+00

15 0.150D+00

16 0.125D+00

17 0.100D+00

18 0.750D-01

19 0.500D-01

20 0.200D-01

21 0.100D-01

22 0.750D-02

23 0.500D-02

24 0.250D-02

25 0.100D-02

26 0.750D-03

27 0.500D-03

28 0.250D-03

29 0.100D-03

30 0.750D-04

31 0.500D-04

32 0.250D-04

33 0.100D-04

34 0.750D-05

35 0.500D-05

36 0.250D-05

37 0.100D-05

0.13715505D+01

0.13407530D+01

0.13073142D+01

0.12707735D+01

0.12306153D+01

0.11862632D+01

0.11370728D+01

0.10823246D+01

0.10212160D+01

0.95285342D+00

0.87624289D+00

0.79028125D+00

0.69374611D+00

0.58528557D+00

0.46340746D+00

0.32646794D+00

0.13970265D+00

0.71460710D-01

0.53902779D-01

0.36141500D-01

0.18174653D-01

0.72949420D-02

0.54743495D-02

0.36516632D-02

0.18268808D-02

0.73100426D-03

0.54828470D-03

0.36554414D-03

0.18278257D-03

0.73115549D-04

0.54836977D-04

0.36558194D-04

0.18279202D-04

0.73117061D-05
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