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Schardinger Dextrins and the enzyme from Bacillus Macerans which
produce them will continue to serve, delight, teach and intrigue

the carbohydrate chemist for many years to come.

Dexter French (1957)



ABSTRACT

Cycloheptaamylose(C7A) and p-nitroacetanilide(PNA) were co-
crystallised to form the 1:1 complex(C7APNA). Crystals of this complex
were examined using X-ray diffraction. The cell dimensions are a = 15.20
Ab=15.67 A, ¢ = 15.70 A, alpha = 87.69, beta = 98. 15, gamma = 103.18
with Z = 2 and the space group is Pl. 5500 wunique reflections were
measured from Weissenberg photographs. The structure was solved by the
trial and error rotation and translation of a model of the structure in
the position and orientation that had been indicated by the Patterson
map. Inspection of the difference Fourier map after initial refinement
located both PNA molecules. The structure was further refined using
blocked matrix refinement to an R-factor of 0.132 for all the data. THe

PNA molecule is included in the cavity. The C7A molcules are hydrogen

bonded together to form a dimer which has approximately twofold

Symmetry.

Attempts were made to solve both the C7A complex with water
using trial and error methods and the C7A iodine complex using Patterson
maps to locate the iodine and then conventional heavy atom techniques.
Preliminary crystallogfaphic investigations of the C7A complexes with
p-bromoacetanilide, which was isomorphous with C7APNA, and m-nitroacet-

anilide are reported.

Structural data for C6A complexes were reviewed, and a new
classification scheme for these complexes was proposed. The binding
between the guest and the host molecule was examined, and a modified
torsion angle index(MTAI) was defined to simplify the analysis of the

distortion of the C6A molecule.
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A Brief Historial Survey Of Cycloamylose Chemistry.

Cycloamyloses, sometimes called Schardinger Dextrins or
cyclodextrins are a homologous series of cyclic polymers of D-glucose,
Figure 1.1, in the Cl chair conformation with the bridging oxygens being
X-1-4" linked [C4H, 0, 1, ,(n = 6-9). These compounds are formed by the
action of the Bacillus Macerans amylase on starch. This knowledge of the
chemistry of the cycloamyloses took almost sixty years to establish
conclusively. It was not until 1965 , almost seventy years after their
discovery by Villiers {1}, that a structure determination by Hybl,

Rundle, and Williams {2} confirmed the above information.

Figure 1.1 THE GLUCCSE RESIDUE,

Villiers{l}, discovered and co-crystallised cycloheptaamylose
(C7A) with n-propanol and water from a crude bacterial digest of starch.
Schardinger in 1903 {3} discovered '"crystallised dextrins A and B",
probably cyclohexaamylose(C6A), and C7A respectively. He found that in
addition to the substances discovered by Villiers the crystalline
dextrins could co-crystallise in an aqueous solution with iodine, ether
and chloroform. In 1904 he isolated the bacterium, Bacillus Macerans,
which formed the cycloamyloses{4}, and by 1910, he had suggested an

empirical formula for ChA{5}.



Pringsheim and his co-workers chemically analysed the cyclo-
amyloses in order to elucidate their structure, but as their work was
based on erroneous precepts the results were incorrect. Freudenberg
partially corrected this and showed that cycloamyloses were cyclic
polymers of glucose containing maltose type linkages{6-10}. It was not
until work dome by French that the correct number of glucose residues
per cycloamylose for C6A and C7A {11} and cyclooctaamylose,(C8A), {12}
was discovered using X-ray methods.

Freudenberg devised a scheme for separating cycloamyloses. He
knew that different cycloamyloses have markedly different solubilities
in aqueous solutions in the presence of small amounts of certain organic
substances. By making up concentrated solutions of the crude starch
digest he could selectively precipitate out specific cycloamyloses by
co-crystallising them with specific organic species. French improved and
refined this scheme, making the separation and purification much
easier{13}.

. French and his colleagues were responsible for the steady
increase in the knowledge of these compounds, and demonstrated the
existance of higher members of the homologous series{l14} . He showed
that above cyclononaamylose(C9A) the residues that resulted from the
bacterial action probably contained branched cycloamyloses rather than
cyclic polymers of glucose. C9A was especially difficult to separate as
it did not form complexes{15}. These results were confirmed by Beadle
using gas chromatographic methods{16}.

There was and still is no evidence for any lower members of
the series than C6A, the generally accepted reason being that the
structures would be too strained. Theoretical calculations done by

Sundararajan and Rao{l7} on the bonding energies of cycloamyloses



constructed from glucoses in the Cl chair conformation, showed that
cyclopentaamylose could not be formed because the structure would be
strained, and atoms on adjacent glucoses would collide. French{lg},
however, pointed out that the cis(boat) form of glucose would allow the
formation of a strainless set of rings which could be made up of any
number of glucose residues from three to infinity. There have been no
reports of the existance of cycloamyloses with the boat conformation
formed by the Bacillus Macerans amylase.

Cycloamyloses have properties that differentiate them from any
other carbohydrates with a comparable molecular weight{18}.

a)Due to their cyclic nature they have neither a reducing nor
a non reducing end group and are not decomposed by alkali.

b)They are more resistant to acid hydrolysis, the common starch
splitting alpha amylases(except microbial enzymes), and they are
completely resistant to yeast fermentation and beta amylase.

c)They crystallise well from water and aqueous alcohols.

d)They form an abundance of crystalline complexes with hydrophobic
organic substances, especially those with a low solubility in
water{19}.

e)They form a variety of inorganic complexes with neutral salts,
halogens, bases and inert gases.

From the late 1950°s there has been a rapid expansion in the
interest shown in the behaviour and properties of cycloamyloses. Many
fascinating facets of their nature have been recognized, including their
ability to catalyse reactions stereospecifically. In the presence of
cycloamyloses, the rate of hydrolysis of phenyl esters can be up to 300
times faster in aqueous solution{20}, and up to 13000 times faster in a
mixed solvent (Dimethyl sulphoxide, DMSO and water%&l}observations of

this type led to the proposal that they may behave as enzyme models{21}.



A Comparison Of The Solution And Crystallographic Structural Data.

There have been a large number of C6A complexes solved
crystallographically, and more recently the first C7A structures have
been reported{22,23}. A detailed analysis of the X-ray and neutron
diffraction studies will be presented in Chapter two. A large amount of
data is available from a variety of solution techniques including n.m.r.
o.r.d., and induced circular dichroism. A common criticism levelled
against crystallographic studies is that the results need bear little or
no relationship to the properties observed in solution. The aim of this
section is to show that this is not the case for cycloamyloses and that
the observed solution properties correspond well with the observed
crystallographic properties. This is especially important when one
considers that the catalytic properties of cycloamyloses are observeu at

low cycloamylose concentration, typically 0.001 to 0.0IM.

. Figures 1.2 shows the general form of C6A and C7A, the two
lowest members of the homeclogous series of cycloamyloses. In order to
simplify the diagrams, the hydrogen atoms have been omitted. Few of the
crystallographic studies of cycloamylose complexes have managed to
locate the hydrogen atom positions. There is a cavity in the cycloamy-
lose molecule. When a cycloamylose complex is formed it is believed that
the guest molecule is physically included into the cavity of the
cycloamylose molecule. One end of the molecule has a ring of secondary
hydroxyl groups surrounding the cavity, and at the other end there is a
ring of primary hydroxyls. These hydroxyl groups account for the

solubility of the cycloamyloses in water.

It has been chemically established that cycloamyloses are
cyclic polymers of between six and nine glucose molecules, joined

S
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together through an ®-(1-4°) linkage{6-10}. There are two conformational
aspects of the cycloamylose molecule that are not defined by the above
statement and may depend on the environment. These are the conformation
of the glucose residue, (i.e. is it in the boat or chair form?), and the

mode and interactions of any intramolecular hydrogen bonds.
Conformation of The Glucose molecule in cycloamylose.

Reeves studied the conformation of the glucose rings and
concluded that they prefer to exist in the chair rather than the boat
form{24}. The conformation of the glucose ring was investigated using !H
n.m.r. and was found to have the Cl chair arrangement{25,26}. This was
confirmed for C8A by Rao and Foster{27}. Casu suggested that thé energy
barrier between the chair and boat or skew boat forms of glucose may be
greater than was previously thought, and showed that the Cl chair
conformation is inherently more stable than the boat forms, and that the
glucose residue is not held in that conformation by the hydrogen bonding
{28,29}. A comparison of the o.r.d. spectra of methyl(D)glucopyranosides
with those of C6A and C7A shows that they have the Cl chair conformation
{30}. 1In all of the crystallographic studies so far published the

glucose residues are in the Cl chair conformation.
Intramolecular Hydrogen Bonds In The Cycloamylose Molecule.

Data about the nature and strength of the hydrogen bonding can
be obtained from three different sources, namely from n.m.r.,
theoretical and crystallographic studies. The interaction between

secondary hydroxyl groups on neighbouring residues of the cycloamylose



molecule is the most likely source of intra molecular hydrogen bonds,
the bonds being formed between 02 of one residue and 03 of the adjacent

one, in the manner shown in Figure 1.3.

Figure 1.3 Hydrogen bond +s indicated by the harched
Line.

026 _

Casu et al. investigated the hydrogen bonds between secondary
hydroxyl groups using‘H n.m.r. The retention of these bonds in dimethyl
sulphoxide (DMSO), which is a very polar solvent that effectively
competes for intramolecular hydrogen bonds{28}, shows that these
hydrogen. bonds are strong. The hydrogen bonding in glucose is broken
down in DMSO {28}, showing that cycloamylose has stronger hydrogen bonds
than glucose. Another indication of the strength of the hydrogen bonding
is the readiness with which the secondary hydroxyl groups undergo
deuterium exchange{31}. The stronger the hydrogen bond, the less firmly
bound the hydrogen atom, and hence these hydrogen atoms are more easily
deuterated. Furthermore it has been shown that the rate of exchange is
greater for C7A than C6A, which suggests that the C7A molecule is more

rigid, due to the stronger hydrogen bonds{31l}.

Sundararajan and Rao{l7} predicted from theoretical calculations
the conformation that C6A, C7A, and C8A would adopt by minimising the
steric interactions and maximising the energy derived from hydrogen

bonding.



Two major assumptions were made. Firstly, that all of the
glucoses are in the Cl(D) chair conformation, which is walid in the
light of the previous discussion, and secondly that all of the glycos—
idic linking oxygens are coplanar. The latter assumption, in light of
crystallographic information, discussed later (Chapter 2), is almost but
not exactly true. Their calculations showed that intramolecular hydrogen
bonds occur at the expense of a small increase in the angle strain,
while creating a very deep and narrow potential well for the minimum
energy conformation. The result of this strong hydrogen bonding
interaction is to confer a degree of rigidity on the C6A and C7A

molecules,

From their calculations it appeared that C6A was more stable
than C7A. Sundararajan{l7}, however, agrees with Casu{31} that C7A is
the most stable cycloamylose, and suggests that this apparent contra-

diction is probably due to the simplifying assumptions that were made.

The primary hydroxyl groups have a free rotation about the
C5-C6 bond and this allows good hydrogen bonding to occur between the
solvent and the cycloamylose molecule, There are three minimum energy

conformations when the C5-C6é bond is rotated(see Figure 1.4).

OH Hen H(;cu
Os C G C Os C
He 0 6a H
Hs H= Hs
gg gt tg
Figure 14

MINIMUM ENERGY CONFCRMATIONS FOR THE ROTATION OF THE
PRIMARY HYDROXYL GROUP ABOUT C5-Cé

o=



The first letter of the conformational symbol indicates the
relationship of 05 to 06 and the second Iletter refers to the
relationship of 06 to C4 (gauche or trans). In solution the proportion
of the gg form is higher in cycloamyloses than in glucose, probably due
to the potential steric interaction between either of the gt or tg
forms{32}. 1In the gg form the distance between hydroxyls on contiguous
residues is greater than four ingstroms. There 1is no evidence in
solution or in the solid state of hydrogen bonds between the primary

hydroxyls{2}.

The rigidity of the cycloamyloses, which is the result of the
hydrogen bonding was investigated by Rees{33}. Using o.r.d. techniques
he observed the optical rotations and calculated a parameter called the
"linkage rotation", which was correlated with the dihedral angle about
the glycosidic oxygen. He found that in going from C6A through to C9A,
the "linkage rotation" approached the value that is observed for the
corresponding linear polysaccharide. This deviation in the '"linkage
rotation", which 1s greatest for C6A, is related to the conformational
rigidity of the molecule which decreases as more glucose residues are

incorporated into the cyclic structure.

In all of the crystal structures so far determined there is
the clear potential for hydrogen bonding, with few exceptions, between
oxygens 02 and 03 in adjacent glucose residues. Crystals of cycloamylose
cémplexes normally contain water of crystallisation. There is the
possibility that some of the structured water molecules surrounding the
cycloamylose molecule in solution are included in the crystal lattice.
This, together with the observation that the crystal wusually
disintegrates when it loses its water of crystallisation, indicates that
the crystal structure has a dependance on water in the lattice,

-0-



and hence that the crystal structure has a relevance when discussing the

solution properties of cycloamyloses.

Structural information gleaned from n.m.r. studies showed a
time averaged view of the cycloamylose molecule. The crystal lattice
essentially "freezes" the molecule in to one particular conformation.
Taking this into account it is clear that there is no major conflict
between the structural information derived from crystallographic sources

and structural information derived from all other sources.

-10-



Complex Formation In Cycloamyloses.

A multiplicity of independant techniques all indicate that the
guest molecule is included in the cavity. The limiting criterion of the
inclusion of a molecule is that it should not be large. Before

discussing the inclusion process, the nature of the cavity should be

described.

FIGURE 1.5 CROSS SECTION OF THE CYCLOHEXAAMYLOSE MOLECULE

The diagram above shows the cross section of a C6A molecule.
The cavity is roughly cylindrical, and tapered with the maximum width
being level with the secondary hydroxyl groups and the minimum width
level with the primary hydroxyls. The glycosidic oxygens have one of
their lone pair of electrons(sp® orbital) normal to the cavity axis. The
two hydrogens,those attached to C5 and C2, act as a shield to reduce the
effect on any substrate of these orbitals. The sum total of these

interactions is to make the cavity hydrophobic {30}.

...1 l_



The Evidence For Complex Formation

The solubilities of a series of aliphatic and aromatic
carboxylic acids have been investigated in the presence and absence of
cycloamyloses{34}. It was found that their solubilities were increased
by factors of 1.2 to 30 in the presence of cycloamylose. Benzoic acid’s
solubility is i.creased by the presence of C6A, whereas the solubility
of 2,3,5,6-tetramethylbenzoic acid is unaffected by the presence of C6A.
These observations together with the fact that glucose, methyl-(D)
—glucoside, and maltose do not influence the solubilities of the
substrates suggest that an inclusion complex is formed in solution
{34}. Within a series of similar reagents the complexing tendencies
towards different cycloamyloses can be correlated with the size of the
reagent. Taking for example substituted benzenes, C6A forms the best
complex with benzene, C7A with bromobenzene, and C8A with anthracene.
Using® this® steric selectivity an effective separation scheme can be

devised to isolate the various cycloamyloses{18,35}.

The second technique confirming that the substrates are
included in the cavity is the spectroscopic investigation of cycloamy-
lose complexes in the visible and ultraviolet regions of the electro-
magnetic spectrum. When an azo dye, congo red, is dissolved in a cyclo-
amylose solution a Cotton effect is observed at the absorbtion band of
the azo dye. This dindicates that the non ultraviolet absorbing, but
asgmmetric cycloamylose and the UV absorbing but non asgmmetric azo dye
form a molecular entity{36}, which is probably an included complex {37}.
Circular dichroism also confirms this, as there is the induction of
optical activity due to an assymetric interaction with the formation of

a complex {38}.

-12-



VanEtten studied the spectra of p-t-butylphenol in a variety
of solvents, and concluded that the environment of the aromatic
chromophore in the presence of cycloamylose is similar to its
environment in dioxane. The only region with a similar chemical comp-
osition to dioxane in the cycloamylose molecule is the cavity, and this
further substantiates the evidence that there is an inclusion complex

formed{20}.

E.s.r. studies have shown that there is a definite association
between a spin labelled guest and a cycloamylose host due to the loss of

the rotational freedom of the guest{39}.

Crystallographic evidence also shows that the substrate, or a
substantial portion of the substrate, is included in the cavity. This is
direct evidence that, in the solid state at least, inclusion complexes

are formed.’

Equally direct evidence for the inclusion of the substrate in
the cavity in solution has been derived from n.m.r. studies. Demarco and
Thakkar{40,41}, complexed an aromatic moiety with C6A, realising that
should the aromatic substrate bind inside the cavity the hydrogen atoms
attached to carbons 3,5 and 6 on each glucose residue would be strongly
shielded by the aromatic ring. This was verified for a series of substi-
tuted benzoic acids and phenols. In cases where the cycloamylose guest
dissociation constants are known, the magnitude of the substrate induced
change in the chemical shift correlates well with the strength of
binding. Relaxation and dynamic correlation studies have been done, and
the results can only be interpreted by the the substrate being included

into the cavity{42}.

il



The final piece of evidence for the formation of inclusion
complexes was the kinetics of cycloamylose catalysed reactions. It was
found that cyclohexanol competitively inhibited rate accelerations in a
manner that was analagous to the competitive inhibition characteristic
of enzyme catalysis. This can only be the result of the inhibitor and
the substrate competing actively for a discrete site on the cycloamylose
molecule. The only such site is the central cavity of the cycloamylose
molecule {20}. The kinetic scheme also indicates complex formationm. This

will be discussed later in this chapter.

Rate of Inclusion.

The binding rate constants have been measured{37} for, amongst
others, p-nitrophenol, and a series of azo dyes with C6A. The rates are
in the order of 10s M sec™ , which is close to the diffusion 1limit.
Within a series of dyes, however, the binding rates decrzase as the
steric bulk of the dye increases{37}. In most cases, the stoichomet-
ries of complexes have been shown to be 1:1 from spectophotometric
titrations. More complex interactions have been found; for example
methyl orange apparently forms complexes with two C6A molecules. This is
consistent with the above data as the methyl orange molecule has two
aromatic rings at the opposite ends of the molecule, each of which is

capable of binding with a C6A molecule{37}.

N.m.r. studies on the interaction between the phenyl rings on
Pp-hydroxybenzoic acid and C7A show that every time the phenyl ring
enters the C7A molecule it does so in a different orientation about the
ring axis or/and it is spinning rapidly. There is also reversible

association between free and associated C7A on the n.m.r. timescale{40}.
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Catalytic Properties Of Cycloamyloses.

When it was realised that cycloamyloses formed complexes in
solution, it was proposed that the inclusion process may affect the
course of a reaction. This was first studied by Cramer and Dietsche{43},
who discovered that the rates of hydrolysis of several mandeleic acid
derivatives were accelerated in the presence of cycloamylose. The
inclusion process, in addition to causing rate accelerations, could also
cause a rate de_celeration when the reaction site of the substrate was

shielded from the reactant by the cycloamylose molecule{44,45}.

In order to exhibit the attributes of a really efficient
catalytic system, namely selectivity and speed, there must be the
formation of an intermediate complex{46}, which is a feature of the

cycloamylose catalysis.

. The system which has been most extensively studied is the
hydrolysis of substituted aryl esters in aqueous solution. This reaction
follows the normal Hammett trends (the reaction rate is dependant on the
nature and position of the substituent on the phenyl ring), both in the
presence and absence of methyl-D-glucoside. However, when cycloamyloses
are added, the pseudo first order rates of reaction are in some cases
dramatically increased{20} (see Table 1.2). These rate increases are
independent of the Hammett relationship, but are dependant on the

position of the substituent.
The rate accelerations must be due to an interaction of the
phenyl ester with the cycloamylose molecule, and in particular, to the

prior complexation of the ester by the cycloamylose molecule. This

o=



observation is supported by the fact that the rate acceleration is not
linearly dependant on the concentration of added cycloamylose. The
pseudo first order rate constant asymtotically reaches a maximum as the
cycloamylose concentration is increased, which is a characteristic of
reactions that undergo complexation prior to the rate determining
step{47}. The reaction can be competitively inhibited by the addition of
inert materials which form complexes with cycloamylose in preference to
the reacting substrate, thus effectively reducing the concentration of
the catalyst. This reinforces the theory that there is prior

complexation of the substrate.

K K
gxe L g e SER S BT P1 + CA.P2

Table 1.1 The dependance of catalysis on the phenyl ring substituent

position and its independance of the dissociation complex.

Acetate ka/kyn Kl * ka/kuw |
C6A C7A

p-nitrophenyl 3«5 1.3 (0.4) 9.1 0.61 (0.3)
m-nitrophenyl 300 1.9 (0.4) 96 0.80 (018)
p-t-butylphenyl Vil 0.65(0.4) 252 /
m-t-butyl phenyl 226 0.20(0.08) 250 0.013(0.003)
p-chlorophenyl 3.0 / 10 /
m-chlorophenyl 113 0.56 (0.03) 18 0.35 (0.09)

The pseudo first order rate of reaction is kun in the absence,
and k2 in the presence of cycloamylose, measured at pH 10.60 at 25C". The
error limits for the dissociation constant measurements are shown in
parentheses after the measurement. k, is the maximal rate acceleration,
which dis the rate of reaction in an large excess of cycloamylose.
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It is immediately apparent from the above table that the rate
enhancement is considerably greater for meta than for para substituted
phenyl esters. The independance of the binding constant and rate
constant may be explained on the basis that the binding constant
reflects the strength of binding, whereas the catalytic rate constant

depends on the stereochemistry of binding{4é6}.

In order to find out which functional group in the cyclo-
amylose molecule is responsible for the catalytic effect, VanEtten{47}
selectively blocked off first the primary and then the secondary
hydroxyl groups. The results showed that the catalytic properties of
cycloamyloses in the hydrolysis of esters were due to the secondary
hydroxyl groups{47}. When one examines the molecular disposition of the
P~ and m-nitrophenols{49,50} complexed with C6A it is apparent that the
m-nitrophenol molecule is considerably further out of the cavity than
the p-nitrophenol guest(Figures 1.6), and that the hydroxyl group on the
m-nitrophenol is in much closer proximity to the secondary hydroxyl
groups on the cycloamylose molecule. The substituted phenols have a
marked resemblance to the corresponding aryl acetates and it is likely
that the disposition of the aryl acetates within the cavity will be
similar, although the effect that the acyl groupwill have on the

complex cannot be predicted.

VanEtten et al.{47} also investigated the mechanism of the
reaction using substituted aryl benzoates. The inclusion of an aromatic
group in the acyl fragment allowed them to determine the.reaction path-
way. The rate of appearance of the substituted phenol followed similar
trends to that observed in the catalysis of aryl acetates, but the rate
of appearance of the benzoate ion was almost the same in each case. The
only explanation for the observations summarised in Table 1.2 is the

-1 7_



Figure 1.6a Cross section of the p-nitrophenol complex

Figure 1.50 Crose sect ion of the m-ni*rophenc! TBR complex.
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formation of a covalently bound post reaction adduct, namely, a benzoyl
C6A adduct. This has been isolated, and has the same rate constant for
hydrolysis as the benzoate C6A derivative in Table 1.l1. This is consist-
ent with the n.m.r. evidence which shows that the substrate undergoes
rapid association/dissociation{4o}. The rates k, and ky are defined in

Figure 1.7.

Table 1.2. Rate of hydrolysis of m-substituted aryl benzoates, and the
rate of release of the benzoate moiety, in the presence and

absence of cycloamylose.

benzoate kyn *¥1000 kg %1000 ka *1000
phenol formation CA benzoate hydrolysis
Sec™ sec™ Sec ”'
grni;;ophenyl 15.4 1400 4.6
m-chlorophenyl Sis D 390 4.6
=t bty phany) 1.2 140 hoh

The veaction pathway proposed by VanEtten, is dillustrated
schematically in Figure 1.7. E.s.r. evidence confirmed the reaction
scheme in Figure 1.7 by showing the presence of the pre-reaction
complexes(A in Figure 1.8){51}.

CAOH.I (I = Inhibitor.)

+] Ile

CAOH +RCOOR' =& CAOHRCOOR’
1 4 1

CAO™+ H+RCOOR' = H*+ CAO: RCOOR'E’ CAOOCR ~—k-3> CAOH +RCOC
+
¢

REACTION SCHEME FOR CYCLOAMYLOSE CATALYSE HYDROLYSIS OF ESTERS

Figure 17
_19_
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Illustration Of The Physical Mechanism Of Catalysis

Figyre 1.3
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VanEtten showed that the catalytically active secondary hydroxyl
groups on the cycloamylose molecule have a pK, of 12.1, which he noted
to be low for an aliphatic alcohol{42}. There are precedents for this.
Rao and Foster studied starch solutions at varying pHs using the optical
rotation method and concluded that the pH dependence of the optical
rotation was consistent with an hydroxyl group with a pK, of 12 {52}.
Other studies showed that the secondary hydroxyl groups had a pK, of
12.1 {53}. Similar studies showed that the pK, value of the two adjacent
secondary hydroxyl groups of the ribose mdiety in adenosine was 12.35
{54}. The enhanced acidity of these hydroxyl groups may be due to the
combined inductive effects of the relatively electronegative oxygen
atoms, and also to the stabilisation of the alkoxide ion by means of an
inter molecular hydrogen bond with a mneighbouring secondary hydroxyl

group{46}.
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Enantiomeric Specificity In Cycloamylose Catalysed Reactions.

Cycloamyloses can induce an assymetric interaction when they
form complexes with substrates{37,38}. The solubility of the substrate
host complex is wusually less than that of the host alone, thus in a
concentrated solution of cycloamylose the addition of a potential guest

has the effect of precipitating the complex.

This has been used to separate a racemic mixture where one of
the isomers complexes preferentially with the cycloamylose molecule and
is thus precipitated out{55}. This technique has been used to resolve a
racemic mixture, firstly by Cramer and Dietsche{56}, who obtained
optical purities w®f 2 and 12% for a series of carboxylic acid esteré.
Subsequent opical purities, reported by other workers, are 66% for

isopropyl methyl phosphinates{57} and 71.5% for chiral sulphoxides{58}.

.. The optical purities reported in the foregoing papers are the
result of repeated complexation, followed by separation of the complex
and the release of the substrate. This has subsequently been improved to
a 68% optical purity after one inclusion process for isopropyl methane
sulphinate{59}. It has also been suggested that the inclusion process
may fix the conformation of the phenyl group in cinnamic acid into the
R-(-)- configuration in the cavity{60}. These phenomena are the result
of specificity in the binding of the substrate; i.e. they are dependant

on the Kdms of the guest.

Preferential catalysis of one enantiomorph was first reported

by Cramer and Dietsche{57}, whilst investigating the hydrolysis of

-22-



esters of substituted mandeleic acids. More recently, however, the
release of the fluoride ion from Sarin (isopropyl methyl phospho-
nofluoridate), has been shown to exhibit a dramatic enantiomeric
specificity (Table 1.4) {60°}. An interesting point to note is that
although the rate of reaction(k,) of R-(-)-Sarin is much faster than
S§=(+)- Sarin the latter forms a more stable complex. The dissociation
constant for R-Sarin is less than that for S-Sarin, although the rate
acceleration is greater for the R-isomer. In this case there is a

specificity in catalysis (k,).

Table 1.3. Kinetic data for the hydrolysis of R- and S-sarin in the

presence of cycloamylose.

Sarin ka/kun K 4,gs *100 ()
R=(-)- 157 4.0 (0.60)
S=(+)- A 0.60 (0.04)

Flohr et al. showed that one of the critical factors in
enantiomerically specific catalysis is the size of the cavity. If Lhe
fit of the substrate in the cycloamylose is tight then there can be
enantiomeric specificity, but this specificity will be lost as the fit

of the substrate becomes more loose{&2}.
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Similarities Between Cycloamylose And Enzyme Catalysed Reactionms.

The catalytic effects due to cycloamyloses have been likened
to enzyme systems, as both form physical complexes, and exhibit speed
and selectivity. It was proposed at a very early stage that cycloamy-
loses could act as enzyme models {56,6/}. As the conditions of the
cavity and its environs are made more similar to an enzyme’s active

site, its catalytic powers improve {21}.

Bofh form 1:1 complexes prior to the reaction{64}. This has
been shown by e.s.r., which directly indicates the existance of a
complex prior to the reaction{64}. As has already been discussed the
scheme shown below is thought to be the mechanism by which cycloamyloses

catalyse reactions.

Ry

R
S+ CA., =— S.CA —— S’.CA —3- P2+ CA
+
Kdiss Pl
Figure 1.9

The above mechanism is similar to those found for chymo-
trypsin{34} and penicillinase{65}. The existance of the covalently
bound species S’.CA has been shown in solution{5/ }. Both cycloamylose
and enzyme catalysed reactions exhibit the same rate dependance on the

concentration of catalyst. As the concentration of the catalyst is
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increased there is a diminishing rate increase, in a manner which has

been shown to satisfy the Michaelis-Menten kinetic scheme{20}.

The degree of substrate specificity of enzyme catalysed
reactions is well known, and the substrate specificity of cycloamyloses
has already been discussed. Rate accelerations caused by cycloamyloses
are competitively inhibited by the addition of inert reagents such as
cyclohexanol. This phenomenon is frequently observed in enzymatic
catalysis. Stereospecific complexation in cycloamyloses is similar in
mode to the complex formation as proposed by Fischer in his “lock and

key’ theory of enzymatic catalysis{64}.
Cycloamylose As A Model For The Chymotrypsin System.

Cramer initially noted the possibility of using cycloamyloses
as models for chymotrypsin{66}. VanEtten summed up the similarities
between cycloamylose catalysed and chymotrypsin catalysed phenyl ester
hydrolysis as follows{47,67}. Both catalyses occur by similar mechanisms
which involves rapid association to form a complex. The ester substrate
then reacts with the catalyst to form an acylated intermediate, which
subsequently undergoes hydrolysis in a slow step. The dissociation
constants of the two systems are similar and favour apolar substrates.
Increasing the ionic strength of the solution tends to favour complex
formation, and making the solvent more apolar tends to decrease the
stability of the system. Both systems are subject to competitive
inhibition with the addition of small organic molecules of a comparable
size to the substrate. The maximal rate enhancements are unrelated to

the stabilities of the complexes, but depend on their stereochemistry.
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The secondary hydroxyl groups, which have a pK, of 12, act as nucleo-
philes in the acylation step in cycloamylose catalysed reactions. The
acylation step in chymotrypsin is dependant on a catalytic group of

PK,

o« /» probably an imidazole, which acts as a general acid base

catalyst{47}.

The deacylation step in the cycloamylose catalysed reaction is
much slower than the corresponding step in the chymotrypsin reaction. A
detailed examination of the enantiomeric specificity of both systems has
been carried out, and it was found that fof similar substrates the
enantiomeric specificity of the enzyme is only marginally better than
that for cycloamyloses{39}. The principal difference between
chymotrypsin and cycloamylose is the pH at which the catalysis takes
place, pH 8 and pH 12 respectively. If it were possible to make cycloam-
yloses react at pH 8, without the loss of any of their other properties,

then they would compare well with enzyme systems.

Cycloamyloses As A Model for Penicillinase.

The effect of C7A on a series of penicillins was studied by
Tutt and Schwarz{48,65}, who found that the rate accelerations for
penicillins followed the saturation kinetics that are observed for the

hydrolysis of phenyl esters.

The alkaline hydrolysis of penicillins is first order in
substrate and hydroxide ion, with the cleavage of the beta lactam ring

yielding penicillinoic acid as shown below.
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HYDROLYSIS OF THE BETA LACTAM RING OF PENICILLIN

Figure 110.

This suggests that the reaction proceeds with the prior
complexation of the R group with the C7A molecule before the nucleo-
philic attack by a C7A alkoxide. The rate of disappearance of penicillin
is greater than the rate of appearance of the acid product, which
suggests a mechanism similar to that found in the hydrolysis of phenyl
esters, as does the presence of a covalently bound guest/host intermed-

iate in the reaction pathway.

.. There is not the same degree of specificity with respect to
the R group as is observed with the cycloamylose catalysed hydrolysis of
phenyl esters. The catalytic rate observed for the hydrolysis of the

penicillin is in the region of 20 to 90.

The carbonyl carbon of the phenyl ester is only two atoms
removed from the phenyl ring, which is included into the cavity, whereas
the reactive centre in penicillins is four atoms away from the
directing group, which is the side chain. This suggests that the
inclusion process does not aid the reaction so effectively, as there is
more possibility for the penicillin to rotate in a manner which will

reduce the interaction between the cycloamylose and the substrate.
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Relatively 1little is known about the mechanism, action or
nature of the active site in penicillinase and the way in which the beta
lactam of resistant penicillins are rendered inactive to penicillinase.
This model system comes closer to the enzymatic specificity{48}, and is
the first model to show strong and specific binding of the side chain,

and can be used in the developement of new penicillin derivatives.
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Industrial And Pharmaceutical uses of cycloamyloses.

There are now a profusion of uses for cycloamylose through-
out the whole spectrum of technological developement. This section will

catalogue some of the more important uses of cycloamyloses.

The  pharmaceutical industry has been interested by the
behaviour of cycloamylose complexes. The initial research was carried
out by Lach and co-workers {68,69,70}. The benefits that accrue from the
use of cycloamyloses are all the result of complex formation. A
cycloamylose complex usually has a solubility intermediate between that
of the free host and the solubility of the free guest. This can be
important if a drug has a low solubility, as drugs with low solubilities
are not easily absorbed through the stomach wall(e.g. Barbiturate
derivatives{71}). Cycloamyloses, in effect, act as carriers for the
drug, due to their high solubility. When the cycloamylose complex enters
the blood. stream the host molecule is degraded enzymatically to release
the drug. Stability is also conferred on the drug by the cycloamylose
which protects it{72}. This is very important as a wide variety of
biologically active species are readily broken down by the enviromment
of the stomach. Other advantages include the formation of a solid
preparation from a liquid drug, and the improvement of a drug which is a
stimulant or irritant to the stomach{73}. Finally there is a decrease in
the wvolatility of a drug, which is the result of the formation of a
complex. The pharmaceutical use of cycloamyloses is extensively covered

by patent.
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Cycloamyloses have also been used as n.m.r. shift reagents. If
the species can be included into the cavity, then quite large spectral

changes can be observed{70}.

It has been claimed that cycloamylose can protect delicate
flavours from heat and light{75}, and can remove umwanted flavours from
tea and coffee. The C7A complex of carbon dioxide can be used as a
baking powder substitute. Cycloamyloses also make egg whites more

beatable!!

The nitroglycerine complex gf C7A can be used as an explosive
{76}. The chloropicrin derivative is effective as a bactericide and
insecticide{77}. The complex of methyl parathion with C7A has useful and
persistent activity against cotton insects{78}, whereas clatharates of
various pyrethroids prove more effective than the guest compound in its
free " state’ as an insecticide. The cyclohexylamine complex of C7A is

useful in rust prevention{79}.

Some Japanese vorkers have discovered a one step foarmation of
vitamins K1 and K2 using cycloamyloses as catalysts. This reaction has
advantages over other methods, which all suffer from side reactions

which yield undesirable coproducts. Furthermore the reaction has a very

high yield{80}.
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The Aim Q0f The Project

The introductory chapter has mentioned that cycloamyloses can
induce stereospecific hydrolysis in the hydrolysis of phenyl acetates.
There was, at the inception of this project, no crystallographic data on
the disposition of the meta- and para- substituted phenyl acetates in
the cycloamylose cavity. The aim of this project was to investigate the
geometry of the complexes, and their relationship to the catalytic
properties that are exhibited by cycloamyloses.

The reaction half lives for the hydrolysis of phenyl acetates
in the presence of cycloamyloses is usually measured in minutes{20}. For
this reason they are not suitable substrates for crystallographic
studies, the formation of crystals requiring elevated temperatures over
a period of days, and data collection taking at least a week. With
the reaction half lives previously mentioned there is very little chance
of there being any unreacted acetate left in the cycloamylose matrix.

.. On the other hand cycloamyloses can bind non—-productively with
substrates in much the same way as enzymes{39}. Cycloamylose complexes
were made with substituted acetanilides as they are much less labile
than aryl acetates. The C6A matrix actually protects the acetanilide
species from hydrolysis. The rates of hydrolysis are given in Table l.4.°
There are considerable structural similarities between acetanilides and

phenyl acetates, as is shown in Figure l.1ll.

N <
N Ny 07 cHy

X Figure 1l.l11 A

substituted acetanilides substituted phenyl acetates
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Table 1.4. Rates of hydrolysis pf p-nitro acetanilides and p-nitro-

phenyl acetates

Substrate pH Temperature k #10000 Reference
c Sec.
p-nitro phenyl acetate 10.01 25 14.0 20
prnitro phenyl acetatet+ C6A 10.01 25 243 20
p-nitroacetanilide 12.47 25 2.05 80,81
p-nitroacetanilide + C6A 12.30 70 0.90 82
p-nitroacetanilide 11.0 25 0.0113 81,82

As both temperature and pH are increased there is an increase

4
in rate. The data presented in Table 1.4 show that the base catalysed
hydrolysis of p-nitroacetanilide is considerably slower than the base

catalysed hydrolysis of p-nitrophenyl acetate.

. As the pH is reduced the rate of hydrolysis is significantly
reduced (see Table 1.4), and it is to be expected that at pH 7-8 the
complexes of p-nitroacetanilide with cycloamyloses will be relatively
stable, and hence suitable for a crystallographic study. The data only
refers to p-nitroacetanilide, but it is not unreasonable to suppose that

substituted acetanilides in general will be comparitively stable at

neutral pHs.
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Chapter 2 Crystallographic Structure Determinations Of C6A Complexes.

The last comprehensive review of cycloamylose structures
determined crystallographically was written in 1976 by Saenger{82}.
Structural data for a number of different complexes of C6A have since
been published, and this chapter is intended to summarise, extend and

update Saenger’s review.

In total nineteen C6A complexes have been solved and
published. Cyclohexaamylose complexes tend to crystallise from aqueous
solutions into one of a number of almost isomorphous groups.
Furthermore, it has been found that within each pseudo isomorphous group
the substrate has similar size and properties. Complete structure
determinations have shown that in their packing C6A coﬁplexes tend to
fall into one of six main groups or categories. Recently several C7A
structures have been solved {22.23}, and the first C6A structure from a
non-aqueous solvent {84} hGS been reported. The C7A complexes will be

discussed in depth elsewhere.

It is to be expected that the packing trends uf the C6A and
C7A molecules will be related, but it is impossible to transpose
structural information from the C6A to the CJA system due to the
inherently lower symmetry of the C7A molecule. The C6A complexes have a
much higher space group symmetry (usually orthorhombic) than those of
C7A , which wusually form crystals in a monoclimic or triclinic space

group.

A list of the C6A complexes that have been studied crystall-
ographically is given in Table 2.1. The fact that a number of structures
have the same space group and almost identical cell dimensions 1led
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Table 2.l. X-ray Crystallograpnic Data For C6A Complexes.
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Substrate

*Water
*Iodine
*Me thanol
*Rrypton (3 Atm.)
*rypton (14 Acm.)
%] -Propanol

Acetic acid
Propionic acid
Butyric acid
*c-Nitrophenol
*p-Iodophenol
*o-Hydroxybenzoic acid
*p-Todoanaline
*Lithium Polyiodide
Diethyl ether

1 Octanol(Laue)
Valeric acid(Laue)
3-Methyl-1-butanol

Barium Iodide/iodine

Potassium iodide/iodine

Sodium Perchlorate

*Sodium |-Propanesulphonate

*Sodium Methyl Orange

*Potassium Acetate

*Potassium Methyl Orange

Sodium Hexanoate

*Sodium Benzenesulphonate

*m—-Nitrophenol

*Cadmium Polyiodide

*C6A from a mixed solvent

Space Group a

P2,2:2,
£2,2,2,
£2,2,2,
2,22,
P2,2,2;
P2,2

!21

6/mm
P2,
P22

26,22

(Dimethyl sulphoxide/Water)

A
14.856

14.240

14.292

15.377
14.292
14.34
14.37
14.38
24,740
24.573

24,896

24,569

13.88
13.95
13.86
13.85
23.64
13.71
15.89
19.87
21.608
22.099
21.89
22.120
21.94

21.832

A
33.991

36.014
37.515
37.489
37.402
37.515
37.62
39.81
37.99
13.455
13.477
13.356
13.681
13.88
13.87

13.95

33.71
16.700
16.359
16.54
16.419
16.53
16.529
16.865
19.93

14.505

* Refers to a complete structure determinacion

—l

A
9.517

9.558

9.393

15.296
15.373
15.342
15.475
15.69
15.67
15.63
15.62
16.64
17.04
39,9
27.79
8.302
8.296
8.30
8.292
16.56
8.356
8.152
30.87

19.738

alpha

90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
95.10
91.3

4p-00

beta gamma

90.00 90.00
90,00 90.00
90.00 90,00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
90.00 90.00
87.8 119.90
85.5 120.29

9p.00 [20.00

90.00 90-00 (20.00
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4

4
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2

2

2

2

4

2

2
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1300

1308,
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28
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94
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89
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McMullan, Saenger, Fayos, and Mootz to divide the complexes into three
classes which are approximately isomorphous. Since then other struct-
ures have been solved, and the scheme proposed by McMullan has had to be
modified in order to take account of the new data. Complete structure
determinations are marked by an asterisk, the others are the result of

prelimininary crystallographic investigations only.

The packing of the C6A molecule has been found to fall into
one of two distinct types. In the first type the central cavity is
isolated by the packing of other C6A molecules. These are called cage
structures, and have a central cavity which is restricted in size. In
the second mode of packing the C6A molecules stack on top of each other
with their central cavities forming a long cylindrical channel. These

are known as the channel structures.

Recently several structure determinations have been carried
out with sufficient accuracy to determine the hydrogen atom positions.
They have shed some light on the hydrogen bonding systems existing in
crystalline cycloamylose complexes. The neutron diffraction study of the
CbA water complex has been carried out, but the results have yet to be
published in detail{85}. BHigh resolution X-ray studies of various C6A
complexes have been reported, and several have managed to find hydrogen

atom positions by the use of difference Fourier maps.

Before starting a detailed description of the molecular
packing, a reiteration of the importance of both inter- and intra-
molecular hydrogen bonding is in these systems required. There are four
main types of hydrogen bonds that are believed to exist in crystalline

cycloamylose complexes.
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The first and most important type of hydrogen bonding is the
intra molecular ring of hydrogen bonds that occur between the secondary
hydroxyl groups(see Chapter 1). These bonds contribute significantly to
the rigidity of the cycloamylose molecule, and their disruption reduces

the stability of the C6A molecule derived from these bonds{17, 85,87}.

The second type of hydrogen bond is believed to exist between
primary hydroxyl groups in the C6A molecule and any hydrogen bonding
moiety in the guest molecule. This is usually accompanied by a disorder
in the primary hydroxyl group and a weakening of the secondary hydroxyl

group’s hydrogen bonds.

The remaining two types of hydrogen bonding occuring in these
systems are intermolecular hydrogen bonding between cycloamylose mole-
cules, which only occurs frequently in channel type structures, and
hydrﬁgen bonding between hydroxyl groups in the cycloamylose and water

of crystallisation.
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Group 1 :- The Cage Structures.

Group la. Herringbone Cage Structures. (Nos. 1-9 in Table 2.1)

The complexes in this group are in the P2,2,2, space group
with cell dimensions in the order of a = 14.5(0.3) A , b =37.003.0) A 1
¢ = 9.4(0.2) A . The variations in cell edge length within this group
are enclosed in parentheses. The a and c axial lengths are not signif-
icantly altered by the substrate’s size. The tightness of packing along
the b axis can vary, and changes to accommodate the guest. When the
guest molecule is small the b axis tends to be short, and when the guest
is large the b axis tends to be long. These complexes have a low volume
per inclusion complex (1200-1290 ) Typical substrates in this class
are water, iodine, krypton, and low molecular weight alcohols. Only
small molecules can be included due to the restricted size of the
molecular cavity in the lattice, its dimensions being five Angstroms in

diameter and eight Angstroms high.

A schematic diagram of the packing of the C6A molecule in the
unit cell is given in Figure 2.1. The shaded portion of the diagram

represents the central cavity of the C6A molecule.

Saenger prepared crystals of C6A complexed with a series of
carboxylic acids differing only in the length of the alkyl group. He
found that when the guest was too large to fit into the cavity formed by
the herringbone arrangement of C6A molecules the packing of the host
changed in order to accomodate the larger guest{94}. Diagrams of the

water and n—-propanol complexes are given in Figures 2.2.
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It has been found that if there is the possibility of hydrogen
bonding between the substrate and the primary hydroxyl groups then those
hydroxyl groups are disordered, the disorder being between the gauche
gauche(gg), (Figure 2.3a), and the gauche trans(gt), (Figure 2.3b),
configurations. Primary hydroxyls in the gt configuration open out the
secondary hydroxyl end of the molecule, weakening or rupturing several
of the hydrogen bonds that are formed between adjacent glucose residues

at that end of the molecule (see Figure 1.2).

OH Hs

()5 O5
H5 H5
gg gt
23a 23b
Figure 2.3.

oo+ gt CONFIGURATION OF THE PRIMARY HYDROXYL
IN GLUCQSE
In the C6A water complex there are two primary hydroxyl (016
and 056) groups in the gt configuration. The oxygens are rotated in
towards the central cavity of the cycloamylose molecule, in order to
partially satisfy the hydrogen bonding requirements of the included
water molecules. The remaining primary hydroxyl groups are in the gg

configuration.

Table 2.2 shows the distance between the bridging oxygens

across the diameter of the C6A molecule. With the exception of the water
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complex most of the complexes are remarkably hexagonal, this being
indicated by the small values of delta, which is the difference between
the smallest and the largest diagonal. It is apparent that as the

substrate becomes larger the distortion of the hexagon decreases.

Table 2.2. Diagonal distances across the bridging oxygens for Group la

complexes
Substrate 014-044*  024-054 034-064 Delta Ref.
& i i A
Water 8.509 8.084 9.185 1.101 87
Iodine ‘ 8.406  8.488 8.795 0.389 88
Methanol 8.439 8.246 8.662 0.416 90
n-Propanol 8.435 8.353 8.572 0.219 93
Krypton{20atm.) 8.440 8.306 8.649 0.343 85

* The first letter is the atomic symbol of the atom, the first number is
the number of the glucose residue in the cycloamylose molecule, and the

last number is the number of the atom in the residue (see Figure 1.2).

Table 2.3 shows the 02-03°(The ® signifies that the atom is on
an ad jacent glucose residue) distance for those group la complexes which
have been published with coordinate lists. This is the distance between
the oxygens of the secondary hydroxyl groups on adjacent glucose resid-
ues., There is the potential for hydrogen bonding between these hydroxyl
groups if their separation is less than about 3.1 Engstroms{SS}. The
water complex has a hydrogen bonding potential between four of the
hydroxyl groups, and the rest of the complexes in this group have this

potential between five of the hydroxyl groups.

=4l



Table 2.3. Distance between 02 and 03 on contiguous glucose residues

group la complexes.

Substrate 012-023 022-033 032-043 042-053 052-063 062-013 Ref.

L] L] L L [ e

A A A A A A
Water 2.941 3.016 2.823 3.345 4.666 3.025 86
Iodine 2.83 3.22 2.74 3.00 3.83 3.00 82

Methanol 2.955 2.912 2.956 2.949 3.145 3.066 84
Krypton 2.920 2.882 2.922 2.943 3.143 3.016 86

n-Propanol 2.931 2.899 2.902 2.971 3.127 2.996 87

Due to the herringbone natur; of the packing there is no
regular array of intermolecular hydrogen bonding. The crystal lattice is
held together by hydrogen bonds between the primary and secondary
hydroxyl gioups on adjacent molecules, the bonds usually pass through a

water of crystallisation.
Group lb. Modified Cage Structure (Nos. 10-13 in Table 2.1)

The closing off of the cavity in the last group of structures
was achieved by the herringbone packing arrangement. The modified cage
structures have the C6A molecules arranged as in Figure 2.4 to close off
the cavity. The modified cage structure has two types of cavity im the
crystal lattice, one being the C6A cavity, which is indicated by the
widely spaced hatching. The other, which is between the cycloamylose
molecules, is occupied by three ordered water molecules and is indicated
by the closely spaced hatching. The part of the cycloamylose molecule

nearest to the viewer is outlined with a heavier line.
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These complexes are in the P2 2 2, space group, with cell
dimensions a = 24.5(0.3) & , b = 13.4(0.1) A , and ¢ = 15.4(0.1) A . The
variation din cell edge 1length is dincluded in parentheses after the
appropriate dimension. The volume per inclusion complex is marginally
higher than the previous class (1270-1300 Ef). The included molecules in
this class tend to be p-disubstituted benzene rings, which are too long

to fit into the cavity formed by the herringbone packing.

In this group of structures it is again found that ome of the
primary hydroxyl groups 1is disordered between the gg and the gt
configurations, stretching the hydrogen bond between the secondary

hydroxyl groups of that residue, thus destabilising the C6A molecule.

In group lb the shape of the C6A macrocycle is significantly
altered by the inclusion of these substrates. Unlike the small
substrates of group la, these substrates are wide and cause an eliptical
distortion of the hexagon formed by the bridging oxygens(04s). Table 2.4
shows the 04-04 distances across the ring for a variety of different
included species, and Figure 2.5 schematically shows this distortion in

the C6A p-lodoaniline complex.

Gl X

NAAAGAL AN

The elliptical distortion of the hexacon
ciearly Iollows the inserticn cf the bBenzene
Iing which 1is indicated by the hatching.

Figure 2.5.
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Table 2.4. Diagonal distances across the bridging oxygens

Group lb complexes.

Substrate 014-044 024-054 034-064 Delta
] -3 L] [
A A A A
p—Iodophenol 8.057 8.835 8.473 0.778
p-Nitrophenol 7 .984 8.902 8.457 0.918
p-Hydroxybenzoic Acid 8.055 8.923 8.418 0.868
p-Iodoaniline 8.163 8.842 8.458 0.679

Delta is the difference between the highest and lowest
diagonal distances. n—-Propanol has a delta value which is typical for
the Group la. complexes other than water and complexes where a phenyl

ring is not included into the cavity.

Table 2.5. Distances between 02 and 03 on contiguous glucose residues

Group lb complexes.

Substrate 012-023 022-033 032-043 042-053 052-063 062-013
A A A A A A

E-Nitrophenol 2.650 2.847 2.736 2.836 3.068 2.860

p-Todophenol 2.687 2.827 3.105 2.838 2.961 2.883

p-Hydroxybenzoiec Acid 2.674 2.897 3.114 2.845 2.878 2.824

p—Iodoaniline 2.967 2.875 2.697 2.757 3.045 2.923
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Where the included molecule is a substituted benzene ring, the
distances between the secondary hydroxyl group’s oxygen atoms are much
closer to a distance which is normally considered reasonable for
hydrogen bonding(Table 2.5), although the 0-0 distances of 3.1 Rngstroms

could correspond only to very weak hydrogen bonding{85}.

The molecular packing in this group of structures greatly
facilitates the inter-molecular hydrogen bonding by bringing the primary
and secondary hydroxyl groups into close proximity. There is a regular
and dense array of hydrogen bonds between the ends of the adjacent
molecules. Few of these hydrogen bonds pass through an imtermediate

water molecule,

Group 2 Channel Stuctures

.. There 1is a wide variation in space groups and cell dimensions
of group two complexes, but it has been found that the packing arrange-
ments break down into ome of four types. In all of these modifications
the C6A molecules stack vertically on top of one another a manner
analagous to the way that a stack of coins is formed. The C6A molecules
can pack head to tail or head to head, tail to tail to form the
molecular stack. The secondary hydroxyl end of the C6A molecule is
referred to as the head of the molecule and the primary hydroxyl end of
the molecule, the tail of the molecule. These stacks of C6A molecules
can either form a hexagonal close packed array, or that can adopt a

second more complex packing arrangement.
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Group 2a. (Nos 14-17 in Table 2.1.)

In this group the guests are typically large organic
molecules, e.g. valeric acid and l-octanol, which are too large to fit
into a cage type of structure. According to Saenger{88} C6A molecules
will stack head to tail and the molecular stacks are hexagonally close
packed as in Figure 2.6. No complete structure determination has been
carried out on any member of this class. The cell dimensions and space
groups of these complexes wvary considerably and there is no readily

apparent pattern.

Group 2b. (No. 20 in Table 2.1)

Only one complex of this sort has been reported for the C6A
system{99,100}. The complex is in space group Pl, with cell dimensions a
= 13.88 A4 ,b=13.88 A, c = 15.69 A ,X= 94.10 ,p= 87.8 J=119.90". The
volume per inclusion complex is 1308 Ra. There is head to head, tail to
tail stacking, with the C6A stacks hexagonally close packed. The packing

is illustrated in Figure 2.7. The guest molecule in this group is a

polyiodide ion, which runs up the central cavity of the C6A stack.

The primary hydroxyl groups are all in the gg configuration.
There 1is a complex arrangement of hydrogen bonds between the secondary
hydroxyl groups on adjacent molecules. These groups are directly
hydrogen bonded to each other, with the exception of several of the
secondary hydroxyl groups which are bonded to the lithium cation {100}.
The hydrogen bonding between the primary hydroxyl groups on adjacent
molecules is more complex and is usually indirect, passing through a

water molecule.
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The diagonal distances between the bridging oxygens are shown
in Table 2.6. There is very little distortion of the C6A molecules from
hexagonality. Table 2.7 shows the distances between the secondary
hydroxyl groups on adjacent glucose residues. The lengthening of one of
the bonds to 3.30 A probably results from the hydration of the lithium
ion. There are two molecules per assymmetric wunit, and the tables

tabulate the distances for each molecule.

Table 2.6. Diagonal distances across the bridging oxygens Group 2b

complexes.

041-044 042-045 043-046 Reference
-] [-] (-]
A A A
Molecule 1 8.31 8.53 8.53 100
Molecule 2 8.54 8.42 8.65 100

Table 2.7. Distance between 02 and 03 on contiguous glucose residues

Group 2b complexes

012-023 22-023 032-043 042-053 052-063 062-013
A A A A A A
Molecule 1 2.78 2.91 2.82 2.89 2.96 2.90
Molecule 2  3.05 2.90 3.01 2.86 3.30 3.11
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Group 2c. (Nos. 21-27 in Table 2.1.)

The complexes in this group are all in the P2,2,2 space
group with the exception of the sodium hexanoate complex, which is in
the P2, 2 2, space group with a cell dimension twice the ¢ axial length
of other members of this group. The cell dimensions in this group are
a = 21.8(0.5) A , b= 16.40(0.40) A , c = 8.30(0.20) A .The variation
in cell dimension within this group is shown in parentheses after the
appropriate dimension. The volume per inclusion complex of this group
lies in the range 1498-1523 ;?, which is much larger than that found

in the cage structures.

Either the cation, if the included species is ionic, or the
second guest molecule is included interstitially between the stacks.
The guest is included in the cavity and can wvary in size from the
acetate ionm in the potassium acetate complex to the large methyl

orange anion.

-éome of these guests are small enough to fit into the Group
la cage structure, but do not, probably due to the absence of a
favourable site for interstitial guest or cation coordination{94}. The
interstitial species is too large to fit into the gap between the
rings as 1in group 2b, so there is a modification of the packing to
allow the formation of a suitable small cavity outside the C6A
molecule. The 1lithium cation in group 2b is believed to be small
enough to fit into the region between cycloamylose molecules, and the
cations in this group are too large to fit into this space and must

lie between the cycloamylose stacks.

The packing in this group is more complex. The C6A molecules

are stacked head to tail, but these stacks are not in a hexagonal

oty hOATY
SHEMIETRY Libatil
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close packed arrangement. The columns of C6A molecules lie parallel to
the c¢ axis with centres on 0,0,Z, and 0.5,0.5,Z. The molecules in the
stack that lies on the origin have their heads pointing along the c axis
but those in the stack that 1is centred on X = 0.5 Y4 = 0.5 have their

heads pointing towards -c. The packing is illustrated in Figure 2.8.

Only the methyl orange and the m-nitrophenol complexes in
group 2c have a disorder in the primary hydroxyl group similar to that
found in types 1la and 1b, but there is still the potential for a good
ring of hydrogen bonding around the secondary hydroxyl groups. The
shape of the substrate can cause a distortion of the cycloamylose
molecule, but there is no distortion of the hydrogen bonding. Table
2.8 shows the 02-03" distances which indicate a good hydrogen bonding

arrangement.

Table 2.8. Distance between 02 and 03 on contiguous glucose residues

Group 2c complexes.

Substrate 012-023 022-033 032-043 Ref.
A A A

Sodium Propanesul phonate 2.83 2.94 2.88 101
Sodium Methyl Orange 2.84 2.87 28 101
Potassium Acetate 2.839 2..853 2.863 2
Potassium Methyl Orange 2.84 2.89 2.81 101
Sodium Benzene Sulphonate 2.83 2.94 2.88 101
m-Nitrophenol 2.788 2.821 2.858 50

The diagonal distance across the bridging oxygens is shown in
Table 2.9. As can be seen there is only distortion of the C6A molecule

when a phenyl ring is included in the cavity.
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Table 2.9. Diagonal distances across the bridging oxygens

Group 2c complexes.

Substrate 014-044 042-045  043-046 Delta Ref
° ° o o
A A A A
Sodium Propanesulphonate 8.45 8.40 8.59 0.19 96
Sodium Methyl Orange 8.56 8.08 8.82 0.74 96
Potassium Acetate 8.469 8.308 8.667 0.359 2
Potassium Methyl Orange 8.50 8.31 8.67 0.36 96
Sodium Benzene Sulphonate  8.52 8.19 8.81 0.62 96
m-Nitrophenol 8 444 8.346 8.745 0.399 99

The hydrogen bonding between the C6A molecules in this group
is good, with bonds being formed between the primary and secondary
hydroxyl groups in the stack. The hydrogen bonds are direct and do not

pass threugh a water molecule.

In the methyl orange complex the methyl orange anion is longer
than the ¢ axis with which it is parallel. This leads to the substrate
being disordered, which is readily apparent from the photographs, where
there is diffuse streaking superimposed on sharp reflections parallel to
the ¢ axis. This suggests an ordered CHA framework, and a disordered
substrate, with the disorder being parallel to the c axis. In this case
the disorder has been resolved by Harata {102}. This has been observed

for other channel type structures{94}.
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Group 2d. (No. 28 in Table 2.1)

Again only one complex of this sort has been reported for the
C6A system{94,95}. This complex is in the P4£5} space group with a = b =
19.93 A , ¢ = 30.87 A . The volume per inclusion complex is 1533 A
Again there is head to head stacking, but with a more complex packing of
the dindividual stacks. The packing is illustrated in Figure 2.9. The
guest molecule in this case is a cadmium polyiodide ion. The diagonal
distance between the bridging oxygens is tabulated in Table 2.10, and
the 02-03° distances between secondary hydroxyls on adjacent residues

are shown in Table 2.11.

Table 2.10. Diagonal distance across the bridging oxygens

Group 2d complexes.

014-044 024-054 034-064 Delta

(-] (-] (-] 3

A A A A
Molecule 1 8.45 8.42 8.65 0+23
Molecule 2 8.64 8.50 8.68 0.18

Table 2.11. Distance between 02 and 03 on contiguous glucose residues

Group 2d complexes.

012-023 022-033 032-042
A A i
Molecule 1 2.88 2.94 2.97
Molecule 2 2.98 3.00 3. 10
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between
direct.

primary

In this group there are strong intermolecular hydrogen bonds

the secondary hydroxyls on adjacent molecules. These bonds are

There are four direct inter molecular hydrogen bonds between

hydroxyl groups,

the rest of the hydrogen bonding between the

primary hydroxyls is through water molecules.
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The Glucose Residue in Cycloamylose Structures.

The average bond angles and distances within the glucose
moiety for the C6A methanol complex are displayed in Figure 2.10a. These
are close to the Scott and Arnott "Mean Glucose' Figure 2.10b {104}. 1In
unsubstituted ®#-D-glucose the angle C3-C4-04 is 108.7, which is close to
the tetrahedral angle, and the reduction of this angle to 105.6 in C6A
could be due to the steric strain effects caused by the annular
structure of the molecule{85}. The standard deviations of the bond
angles in Figure 2.10a is 0.3 and the standard deviation in bond length
is 0.005 E . The standard deviations of the Scott Arnott residue are

considerably lower than those quoted above.

There is a small deviation of the atoms C2,C3,C5,05 from their
least’ squares plane, typically less than 0.02 E, which shows that the
glucose molecules are in the Cl chair configuration{85}. Atoms Cl and C4

are on average 0.675 A and 0.629 A on opposite sides of this plane {85}.
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The Planarity Of The Glycosidic Linking Oxygens.

The displacement of the bridging oxygens(04s) from their least

square best plane is given in Table 2.12.

(3
Table 2.12. Deviation in Angstroms of the 04 atoms from their least

squares plane.

Substrate 014 024 034 044 054 064

Water 0.023 0.092 -0.136 0.057 0.057 =-0.094
Todine 0.001 0.166 -0.193 0.047 0.123 -0.144
Methanol -0.174 0.154 0.005 -0.144 0.128 0.032
Krypton -0.159 0.135 0.013 -0.138 0.117 0;033
n-Propanol -0.144 0.131 =-0.003 -0.113 0.128 0.026
p-Nitrophenol 0.121 0.040 -0.163 0.133 0.022 -0.152
E-Hydfoxy Benzoic acid 0.145 0.110 -0.154 0.145 0.004 -0.152
p-Iodoaniline 0.038 -0.046 0.010 0.034 -0.041 0.006

Sodium 1-Propanesulphonate 0.003 -0.017 0.0l14 0.003 -0.017 0.014
Sodium Methyl Orange -0.002 =0.002 0.004 0.004 0.006 0.006
Potassium Acetate 0.116 -0.116 0.000 ©0.116 =-0.116 0.000
Potassium Methyl Orange 0.012 0.012 -0.008 -0.008 -0.004 -0.004

Sodium Benzenesulphonate 0.024 -0.012 =-0.013 0.024 -0.012 -0.013

This table shows that there is only slight puckering of the
cycloamylose macrocycle. The distance between these oxygens is in the
region of 4.5 ingstroms, and the deviation from the plane is not more
than 0.16 anstroms. The substrate has no systematic effect on the

puckering of the cycloamylose macrocycle.
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Chapter Three The Formation And Crystal Data Of Some C7A Complexes.

Preparation Of Substituted Acetanilides.

Substituted acetanilides were prepared by refluxing the
corresponding aniline with acetic anhydride and glacial acetic acid in
the established literature manner{105}. These acetanilides were recrys-
tallised from toluene three times, and were treated with activated

charcoal.

The melting points of the acetanilides that were prepared are
listed in Table 3.1, along with the literature values{106}. 1H N.M.T.

spectra of the p- and m-nitro- and the p-bromo acetanilides were

consistent with their structure.

Table 3.1. Literature and observed melting points for the prepared

substituted acetanilides.

Acetanilide Literature Observed
M.P. {106} M.P.
e ojf
p-bromo- 168 168.5
m—chloro- 72=3 72
p-chloro- 178.4 178-9
m-nitro- 154 153
p-nitro- 215-6 213
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The Formation of Crystals Of Cycloamylose Complexes.

There are several ways of forming crystals for
crystallographic studies. Cycloamylose complexes are usually formed in
aqueous solutions which limits crystal formation techniques to solute
diffusion, vapour diffusion, slow evaporation, and the cooling of a

saturated solution.

Solute Diffusion.

Cycloamyloses have the ability to complex with almost any
small hydrophobic species. The solubility of the cycloamylose complexes
are, with few exceptions, much lower than the solubility of the free
cycloamylose. The diffusion of the guest molecule across the liquid
interface between an ethereal solution of the guest molecule and an
aqueous solution of the cycloamylose can produce good crystals, but
often forms the cycloamylose ether complex. The crystals formed in this

way are usually small{82}.

Vapour Diffusion

This technique is only possible where the guest molecules have
an appreciable vapour pressure. None of the substituted acetanilices
that were investigated had a high enough vapour pressure to successfully
use this method. Attempts to form an ethanol complex of C7A in this
manner were unsuccessful, the resultant complex having the form of a
fine powder rather than single crystals, This method has been

successfully used to form the C7A n—-propanol complex{23}.
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Slow Evaporation

A difficulty often encountered in slow evaporation is the
tendency for crystals to deposit as a microcrystalline crust on the wall
of the container just at the surface of the solution. As the solvent
evaporates the solution recedes leaving the crust in a position where it
is not effective in inducing good crystal growth{107}. This is the
problem that was encountered when attempts were made to form

cycloamylose complexes by this method.
Slow Cooling Of A Saturated Solution.

This is the most commonly used technique to form crystals of
cycloamylose complexes. A saturated solution of the cycloamylose guest
mixture is prepared at 100 ¢’ and this solution is cooled slowly in a
large insulated water bath over a period of three days. The substituted
acetanilides that were prepared above were complexed with cycloamyloses
by the slow cooling technique. Several of these complexes, the p-bromo-,
p-chloro-, p-nitro- and the m-nitro acetanilide C7A complexes were

investigated crystallographically.
Crystal Handling Techniques.

Crystals of cycloamylose complexes decompose if the water of
crystallisation is allowed to escape. In order to study the crystal in
the X-ray beam special handling techniques had to be used to avoid the

breakdown of the crystal lattice.

The standard protein crystallographic technique of sealing the
crystal in a fine (0.5mm diameter) Lindemannglass tube, which has a
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low absorbtion coefficient for X-rays was used. The system adopted is
illustrated in Figure 3.1. Araldite was found to be the most satisfac-
tory sealant at the plasticine end of the tube, as the solvent in plast-
icine tended to interact with the picein wax that is normally wused to
seal the tubes, which resulted in the tube sagging. This was more

pronounced in hot weather.

PLASTICINE
ARALDITE

GONIOMETER PICEIN wax
HEAD
CRYSTAIL

FIGURE 3.1 THE SEALING OF A CRYSTAL IN A LINDEMANN TUBE
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Cycloheptaamylose p-Substituted Acetanilide Complexes.

Cycloheptaamylose is believed to form a 1:1 complex with a
wide range of organic molecules{85}. Saturated equimolar solutions of
C7A with various meta- and para- substituted bromo-, chloro- and nitro-
acetanilides at 100 C°were'prepared and allowed to cool. At this ratio
of guest to host it was found that the guest molecule crystallised from
the solution and no complex crystals were formed. The proportion of host
to guest was increased to 2:1 and crystals of complexed C7A were formed.
Attempts to form complexes of these guests with C6A failed even at a
10:1 ratio of host to guest. Table 3.2 shows the results of the attempts

to form complexes with both C6A and C7A.

Typically 0.lg. of cycloamylose was used with the correspon-
ding number of moles of the guest molecule. A saturated solution of the

complex was then prepared at boiling point. This usually required 2-4 ml

for C6A and 6-8 ml for C7A.

Table 3.2. The results of crystallisations with different ratios of

guest to host.

Cycloamylose C7A C6A

Ratio of host:guest izl 2:1 ikl 5] 10:1
p-bromoacetanilide G G G G G/H
p-chloroacetanilide G C G G G/H
p-nitroacetanilide G c G G G/H
m-nitroacetanilide G C G G G/H
G - Guest molecule crystals formed

C Complex crystals formed

G/H Bath guest and host crystals formed
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The rationale behind increasing the guest to host ratio is as
follows. In the solution of guest molecule with cycloheptaamylose there

is an equilibrium{20},

C7A + Guest —_ C7A.Guest -—(1)

The equilibrium under normal circumstances lies to the right.
There is both free C7A and guest in the solution(K4$s is of the order
of 0.00IM. typically{20}). The solubility of the complex is usually much
less than that of the cycloamylose molecule. Acetanilides are insoluble
and in this system at 1:1 ratio of guest to host the concentration of
uncomplexed guest in the solution exceeds the saturation concentration
of the acetanilide before the saturation concentration of the complex is
reached. This disturbs the equilibrium in equation (1), and the guest
molecule is removed from the complex in order to restore the
equilibrium. This reduces the concentration of the complex, and thus
reduces the probability of the complex forming erystals. At a 1:1 ratio
of guest to host this process continues until the concentration of the
guest is less than its saturation concentration at room temperature.
Cooling the solution to 5 C° did not alter this. The only way of
combating this is to force the equilibrium further to the right by

increasing the concentration of the cycloamylose,

The problem is more acute for the C6A complexes as the solub-
ility of C6A is ten times that of C7A. The solubility of the complex is
usually less than that of the free cycloamylose, and greater than that
of the uncomplexed guest. This wusually means that the saturation
concentration of a C6A complex is several times that of the correspond-

ing C7A <tomplex, and hence the probability of the complex solution
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reaching the guest’s saturation concentration before the complex’s

saturation concentration is greater.

The crystals of the p-bromo- and the p-chloro- acetanilides
complexes were clear and colourless. The crystals of the p-nitroacetan-
ilide complex(C7APNA) were clear and pale yellow in colour. The size of
these crystals ranged from 0.6x0.2x0.2mm for C7APNA to 0.4x0.1x0.lmm for
the C7A p-bromoacetanilide complex(C7APBA) complex. The morphology of
the p-substituted acetanilide complex is illustrated in Figure 3,2.
Crystals of the C7A water complex(C7ANAT) complex were opaque and varied
in size up to 3x3%3mm The crystal morphology for the C7ANAT complex is

shown in Figure 3.3.

= :

FIGURE 3.2 THE MORPHOLOGY OF THE p-~SUBSTITUTED ACETANILIDE
COMPLEXES .

FIGURE 3.3 THE MORPHOLOGY OF C7ANAT CRYSTALS
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Chemical Analysis Of The C7APNA Complex.

The calculated and observed analysis figures for the C7APNA
complex are shown in Table 3.3. The crystals were dried in vacuo for 24

hours at 80 CY

Table 3.3. Chemical analysis of the C7APNA complex.

Calculated Calculated Observed
C7APNA. C7APNA.5H,0

Cso Hyp OggMNa  Cgo Hpgy O3 Na

cx 45.66 42.73 42 .65
HY 5.93 6.26 6.11
N 2.13 1.99 1.95
NG 1:21.43 1:21.87

The ratios of nitrogen to carbon for the calculated and obser-
ved analyses are, to within experimental error the same. This ratio is a
more sensitive indication of the degree of complexation than a direct
comparison of the observed and calculated percentages of carbon,nitrogen
and oxygen, as this ratio is independent any water of crystallisation
that may be present. Residual water of crystallisation would have the
effect of lowering the observed nitrogen and carbon percentages. Calcul-
ations show that there are probably five water molecules per cyc-

loamylose complex still present in the ‘dried’ sample.
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Crystal Data For The C7APNA And C7APBA Complexes.

Precession and de Jong Bouman photographs were taken of these
crystals in order to determine their space group and cell dimensions.
The C7APNA crystals, which were the largest, diffracted stromgly out to
the Weissenberg limit with Cu radiation. The C7APBA crystals diffracted
to a sin @ /lambda of 0.45. The C7APCA crystals ceased to diffract after
approximately 24 hours in the X-ray beam, and a full set of cell dimen-
sions was not collected. The zones that were photographed had identical
reciprocal dimensions to the C7APBA and C7APNA complexes. The cell

dimensions of the C7APNA and C7APBA are tabulated in Table 3.4.

Table 3.4. Crystal data for the C7APNA and C7APBA complexes.

(Cell edge lengths in ﬁngstoms.)

Complex C7APBA C7APNA
a 15.17 15.20(0.04)
b ) 15.58 15.67(0.05)
e 15.73 15.70(0.04)
Alpha 88.17 87.69(0.48)
Beta 97.88 98.15(0.15)
Gamma 103.46 103.18(0.38)
Space Group P1 P1
Z 2 2
Radiation Cu i Cu
Cell Volume 3579 A° 3604 A>
Calculated density 133

The cell lengths for the C7APBA crystal were measured from
precession photographs, and the interaxial angles were determined from
both precession and de Jong-Bouman photographs. These dimensions have an
errof of 0.3-0.4%, which is the result of a 0.1% error in the meas-
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urement process, the remainder being systematic errors, such as thick-
ness of film, incorrect crystal to film distance, and film shrinkage
{108}. The cell lengths for the C7APNA complex were taken from data that
was determined during the scanning of the intensity films(see later in
this chapter). The figures in parentheses after the crystal data are the

standard deviations of the measurements made during the scanning of the

films.

In the light of the preliminary investigations, a data set was
collected for the p-nitroacetanilide complex. The intensity data were
recorded on an equi-inclination Weissenberg camera. Layers hkO-hk3I§ and
h01-h31 were collected and scanned by the S.R.C. microdensitometer

service then at Chilton, which has subsequently moved to Daresbury.

The Scanning Of The Weissenberg Intensity Films.

.The films were scanned by an Optronics Photoscan P1000 rotat-
ing drum scanner. The optical density measurements were made on a 100um
raster. The top film of each pack is pre-scanned to locate regions of
optical density significantly higher than the background level, and to
separate genuine reflections from background or other spurious regions
of high density. The film is then rescanned carefully, and the optical
densities are integrated to obtain the reflection intensities. Subsequ-
ent films in the pack have a different prescan using information calcul-

ated during the top film’s prescan.

The reflections are then assigned indices. The main disad-
vantage of this method of scanning films is that weak and less than
reflections are not located. However, this method copes well with
photographs taken from a poorly aligned crystal.
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The interlayer scaling and the Lorentz polarisation
corrections were determined by the Shelx program suite{109}. which can
also do linear absorbtion corrections. Linear absorbtion corrections
were not carried out on any of the C7A complexes that were scanned at

Chilton, as none of these complexes contained atoms heavier than oxygen.

This program produced and refined cell dimensions which were
measured from the film for each layer. A mean of this data was taken,
and these are the cell dimensions for the C7APNA complex that are

tabulated in Table 3.4.

5800 Ungue he&leal'téf\s were wmeasured. The "“55‘39"

obser ved Sm& /3 e refleckion was 0:63. The l.m.w\ber of -

: : ssible  #may mun but most
obser ved r—eé leekions s ©O-6 n& e po :
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The Complex Of C7A With Water.

A saturated solution of cycloheptaamylose (C,, Hy O,5) at 100
¢ was cooled slowly and large opaque white crystals were formed.
Intensity data were recorded photographically using a Weissenberg camera
with nickel filtered Cu radiation. Layers hk0-hkl2 and h0l-h91 were
photographed, and the films were scanned by the S.R.C. microdensitomeéer
service. The cell dimensions that were determined by the scanning
process were averaged, and the standard deviations calculated. These are
tabulated, along with the cell dimensions that other workers have found
: {110}, in Table 3.5. All of the workers found that the crystals were in

the P2 space group.

Table 3.5. Measured and reported cell dimensions for the C7ANAT complex.
(Cell edge lengths in Angstroms.)
Obsérved D. French D. Rhorer H. Zacharias F. Takesagua

Towa Pittsburgh New Orleans  Prrrsburgh.

a 20.88 (0.06) 20.93 20.776 21.140 20.890
b 10.17 (0.07) 10.24 10.169 10.236 10.125
(o 15.12 (0.04) 15.27 15.106 15.109 15.096
Beta 110.3 (0.4 ) 112.0 110.7 111.88 111.16
Volume 3011 3034 2985 3033 2977
7 2 2 2 2 2

. v ".
2200 umelu.q_ reJ[e.«_hoMg were measured Eo a Sm % b’
°j 0o, and +his represeated 0.7 o| the Gotal nwmber of rgflections

£ Ehis Limit
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The Complex of Cycloheptaamylose With Jodine.

The slow cooling of a saturated solution of cycloheptaamylose
and iodine in a 1:2 molar ratio from 100 C° produced complex crystals
(C7AI). The crystals were dark brown in colour, similar to the C6A
iodine complex{82}. The data were collected on a Nonius Enraf CAD-4 four
circle diffractometer, using zirconium filtered molybdenum radiation.
Preliminary precession and de Jong-Bouman photographs indicated a
centered cell(C2). Table 3.6 shows the cell dimensions that resulted

from the least squares refinement of 13 reflections.

Table 3.6. Crystal data for the C7A iodine complex.

(Cell edge lengths in Angstroms.)

a 19.532(0.007)
b 24,499(0.007)
c” ; 15.744(0.006)
Alpha . 90.00

Beta 109.40 (0.03)
Gamma 90.00

Cell Volume 7106 A

Z 4

Space Group P2y

Table 3.7. Reflection statistics for the C7A iodine complex.

Number of Reflections.

Sigma>F 852
3Sigma>F>Sigma 899
F>3 Sigma 984
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The Complex Of Cycloheptaamylose With m-Nitroacetanilide.

Crystals of the cycloheptaamylose m-nitroacetanilide complex
(C7AMNA Cg, Hog Ogap N,) were prepared by the slow cooling of saturated
solution of guest and host in a 1:2 ratio from 100 C . These crystals
were not easily formed, and several attempts varying the ratios of guest
to host from 1:1.5 to 1:2.5 were required to grow crystals of a suitable

size for X-ray analysis.

Data were collected on a Nonius Enraf CAD-4 four circle diff-
ractometer wusing =zirconium filtered Molybdenum radiation. Data was
collected in the theta range 1-18° . Preliminary de Jong-Bouman and
precession photographs indicated that the crystal was in the monoclinic
P2, system. The cell dimensions are tabulated in Table 3.8. The crystal
did not diffract well and there was an indication of twinning, the
result of this was that each reflection was composed of three reflect-
ions that could not be resolved. An omega scan somewhat reduced this
problem, as the two smaller peaks were not scanned when this scan mode

was used.

Table 3.8. Crystal data for the C7AMNA complex.

(Cell edge lengths in ﬁngstroms.)

a 19.519 (0.015)
b 24.215 (0.009)
c 15.810 (0.008)
Beta 108.82 (0.06 )
Volume 7075 A®

z 4

Space Group P24
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Chapter 4 The Solution Of The C7APNA Structure.
The Solution 0f The Cyclohexaamylose Structures

The first cyclohexaamylose structure to be determined was that
of the potassium acetate complex{2}. The structure was solved by a comb-
ination of Patterson methods and a suitably generated starting model.
The wuv0 section of- the Patterson map was found to have a sixfold
arrangement of peaks similar to that expected from a benzene molecule,
which is consistent with the observation that the C6A molecule is to a
first approximation hexagonally symmetric. A molecule of C6A was
generated from a set of glucose coordinates arranged hexagonally with
the linkage that had been determined chemically, and with the 02-03°
distance between adjacent glucoses set at 2.85 3 . This model was then
placed in the orientation indicated by the Patterson map, and the

structure then refined relatively smoothly.

The first group la structure was solved using the heavy atom
method. The iodine complex of C6A was formed, and the structure was
solved by difference maps phased on the iodine atom positions. This teook
a number of years, the first data set being reported in 1957{111}, and
the final structure not being reported until 1972{88}. After this all of
the group lastructures were treated as being isomorphous with the iodine
complex, and simply refined using the least squares method, wusually
omitting the primary hydroxyl groups{87}. The first structure in each of
the other groups was solved using the heavy atom method, and subsequent
complexes in that group were solved on the basis that the C6A molecules

were isomorphous.
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The Solution Of The Cycloheptaamylose p-Nitroacetanilide complex.

The solution of a structure of the size of C7APNA is complex.
An ab initio solution by direct methods is not feasible at the present
moment due to . the large number of non hydrogen atoms in the unit cell
(approx. 180), and the absence of a heavy atom. Isomorphous replacement
initially looked promising, as it is feasible to replace the nitro group
on the acetanilide by a bromine, and this complex is in fact isomorphous
(Table 3.1). There is the possibility that the substrate may be seven-
fold disordered, each of the possible positions having a weight of 0.14.
Such a disorder has been reported for a C7A complex{22}. The fact that
the photographs of the p-nitroacetanilide extend out to a much higher
sin §/lambda than those of the B—bromoacetanilide complex suggests that
there is some disorder. The bromine atoms would certainly have a high
temperature factor. The iodine atoms in the C6A iodine complex{88} and
the “iodine atom in the C6A E—iodoaniline complex{96-8} both have higher
temperature factors than any other atom other than the oxygens in the
primary hydroxyl groups. This and the potential disorder of the subst-
rate would dramatically reduce the efficacy of the isomorphous replace-
ment technique.

The principal method of structure solution that remains is the
trial and error translation and rotation of a model of the structure in
the unit cell. On the basis of a CHA molecule having a diameter of 13.53
the diameter of the C7A molecule was calculated to be 15 Z » The cell
edges of the triclinic cell fall between 15.2 and 15.7 L (see Table 3.1)
which gives no direct indication of the packing of the C7A molecule. The
fact that there are two unrelated molecules of the complex in the unit
cell further complicates the solution of the structure. Two pieces of

experimental data greatly reduced the complexity of the problem.

T



The first observation was that the precession photographs of
the hkO zone showed a cell having pseudo C2 symmetry, with the inter-
axial angle close to, but not equal to 900, and the breakdown of the mm
symmetry only occuring at higher values of sin 8. The relationship
between the two cells is shown in Figure 4.1, a and b refer to the
triclinic cell, and a’ and b’ refer to the pseudo monoclinic cell. The
cell dimensions that have been calculated for the pseudo centred cell
are shown in Table 4.1, and these are compared with the cell dimensions
that have been reported for the complex with m-bromobenzoic acid{112},

which is in the space group C2.

Figure 41 Pseudo Centred Cell Of CTAPNA

Table 4.1. Cell dimensions of the pseudo centred cell of C7APNA.

(Cell lengths in Angstroms.)

Triclinic Pseudo Centred C2 cell {112}
C7APNA C7APNA m-Bromobenzoic acid
a 15.20 1901 19.23
b 15.67 24,1 24,58
(d 15.70 15.7 15.80
Al pha 87 .69 91.8 90.00
Beta 98.15 96.6 109 58 ==
Gamma 103.18 94.6 90.00

-77-



The most informative and direct indication of the packing of
the C7A molecules came from the Patterson map generated from the
Patterson series

2
P(x,v,z) = 1/VEELIFhkll Cos(2n (hx + ky + 1z))

hkl

The Ovw section of the map is shown in Figure 4.2. The peaks
have a considerable weight, the peak heights being 99 at the origin, 16
at the 2.5 ; vector and 11 at the 8 R vector. As there are no heavy
atoms in the structure these peaks must be the result of a vector which

occurs often in the structure, a high multiplicity vector.

Figure 4.3. Tha 2.5 Angstrom vector n Glucoss

There is such a vector in the glucose molecule with a high
multiplicity. This vector is illustrated in Figure 4.3. A model of the
C7A molecule was examined and it was found that the 2.5 A vectors were
almost parallel to the C7A macrocycle’s sevenfold axis. As this vector
is parallel to the sevenfold axis an approximate orientation for the
host molecule with respect to the unit cell axes can been determined.

This peak was reported for the C6A potassium acetate structure, 2.35 A

{2} from the origin.
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The approximate height of the C7A molecule has been calculated
as approximately 7.0 A {46}, so it is quite reasonable to expect that
the 8 R peak is the result of the C7A-C7A vector. This shows that the
C7A molecules are stacked in a channel type structure, similar to the
group two structures. The spread of the 8 ; vector peak also suggests a
two fold relationship between the C7As as the &irect stacking of one C7A
on top of the other would result in a much less diffuse peak, and would

affect the intensities of the 1 = 2n + 1 reflections.
The Generation Of A Model Of Cycloheptamylose.

Cycloamyloses are comparitively rigid molecules by virtue of
hydrogen bonds between the secondary hydroxyl groups (see Chapter 2).
The hydrogen bonds in the C7A molecule have been shown to be stronger
than those in the C6A molecule by n.m.r.{25}. The average length of the
hydr&gen bond in C6A was estimated as 2.85 E by Sundararajan and Rao
{17}. They suggested in the same paper that a reasonable distance for
the hydrogen bonds in C7A would be 2.70 A. The knowledge of the hydrogen
bond length greatly increases the accuracy of the model by restricting
he configurations that the cycloamylose molecule can adopt, and thus

simplifies the generation of such a model.

The first data required to generate a model of a cycloamylose
molecule is a set of the glucose molecule’s molecular coordinates. In
chapter 2 it was shown that there is a distortion of each of the glucose
rings from the ideal geometry as suggested by Arnott{104}, where these
residues go together to form a CHA molecule. An average of the coordin-
ates of each of the glucose rings in the CHA n-propanol, and the C6A
iodine structures was taken, as these were, at the time, the best
structure determinations. This model would take into account the gg gt
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configurational change that can occur in the primary hydroxyl groups, as
the model would have its primary hydroxyl groups in a position
intermediate between the gg and the gt configuration, thus allowing them
to move into the correct conformation in later refinement. A diagram of

the average glucose residue is shown in Figure 4.4.

figure 4.4 Tha glucese residue gereratad From | C6A structures.

This glucose residue was then built up into a C7A molecule by
assuming sevenfold symmetry. The distances between the 02s and the 03s
on adjacent glucoses was set at 2.75 R , which is longer than was
predicted. theoretically(2.70 2 {17}), and considerably shorter than the
average 02-03° distances for C6A(chapter 2). The C7A molecule that was
generated in this way is illustrated in Figure 4.5, and the coordinates

are tabulated in Table 4.2.

-



Figure 4.5 Model of the C7A molecule.
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The Solution Of The Structure By Trial And Error Methods.

This model of the C7A molecule was combined with the data
derived from the Patterson map to form the starting point of a system—
matic search of the unknown parameters that would specify the C7A
molecules’ positions in the wunit cell, and their orientations with

respect to one another.

The orientation and position of a rigid body with respect to a
given origin and axial system can be specified by six parameters. These
are the three translational parameters Tx,Ty,Tz, where the subscript
refers to the direction of the translation, and Rx,Ry,Rz, the three
rotational parameters, the rotations being about x,y and z(as

illustrated in Figure 4.6).

The origin of the unit cell in Pl is not specified by the
symmetry .elements of the space group, and an adjustment of all of the
atomic coordinates by =x/a,y/b,z/c, simply alters the phase values for
all of the reflections by an amount which depends on xyz and hkl. As the
origin is indeterminate in Pl the translational parameters required to
locate the centre of gravities of two objects is reduced to three,
Tx,Ty,Tz, where Tx is the separation of the centres of gravity in the =x
direction, Ty their separation in the y direction, and Tz, their
separation in the z direction. Each rigid body has three rotational
parameters that define its orientation with respect to the axial system.
Therefore to uniquely define two rigid bodies in the Pl space group nine
parameters must be specified,(Tx,Ty,Tz,Rxl,Rx2,Ryl,Ry2,Rz1,Rz2). The
model that has been generated of the C7A molecule is treated as a rigid

body.
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Each molecule was positioned with its centre of gravity on the
origin before the rotations were carried out. The rotations were carried
out on the molecule as illustrated in Figure 4.6. The Rz rotation was

the first rotation that was applied, followed by Ry and Rx.

5

it '/R_-‘

R,

¥
X

Figure 4.6 The axes of the C7A model that were used
for the rotations and translations.

. The Patterson map suggests that, for the orthogonal coordinate
system illustrated in Figure 4.6 the rotations Rxl = Rx2, and Ryl = Ry2
due to the sharpness of the 2.5 A peak, and the absence of any other
peak in the 2-3 B region of the vector map. There is one ambiguity that
can not be resolved directly from the Patterson, namely the method of
stacking. This means that Rxl can be equal to BRxl or Rxl + 180 .
Therefore the number of totally unknown parameters is reduced to two
(Rz1,Rz2), which are the rotations about the sevenfold axis. As the
model is sevenfold symmetrical the values of these rotations need only
be explored in the range 0 - 2n/7. There is also the parameter Rxl,
which has one of two possible values. There are two enantiomeric
possibilities, corresponding to a C7A molecule made up of D- and L-
glucoses. These two are non-equivalent, and both of these possibilities
were searched.
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Using a low resolution data set( 50 seleﬁted high and 1low E
reflections with a sin@/lamda<0.2) an R-factor search of the two rota-
tions in the range 0 - 51 was carried out. The values of Rzl and Rz2
were altered in five degree increments. The results are shown for the
head to head, stacking in Figure 4.7. Similar calculations were carried
out for head to tacl stacking, but the R-factors were much higher. At
Rzl = 21°and Rz2 = léothere is a large minimum in the map, which corr-
esponds to the most likely solution of the structure. This region was
then searched on a finer grid, allowing the other =seven parameters to

vary until a minimum was reached.

At this stage higher resolution data was introduced (500
reflections with sin@/lamda <0.25), and the refinement process about the
minimum was then repeated. The final R-factor was 0.43 for 500

reflections.

This model of the structure was not sufficiently accurate to
allow a meaningful least squares refinement of the atomic parameters.
The step refinement program in the X-ray program package{l13} was used
at this stage to further refine the atomic coordinates. After several
cycles of refinement this program reduced the model to an almost unrec-
ognisable collection of atoms. Thus step refinement was alternated with
Modelfit{114}, which is a program that takes rough model coordinates and
restores them to a stereochemically more reasonavle representation of
the C7A molecule. The resolution was increased again at this stage to
1500 selected high and low E reflections with a sin §/lamda <0.3. The

resul ting R-factor for 1500 reflections was 0.30.

The alternation of refinement with the fitting of the refined
coordinates to a reasonable geometry was continued using least squares

refinement instead of step refinement. During these cycles of refinement
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the resolution was increased to include 3000 reflections with sin®/lamda
of less than 0.3, and the R-factor was reduced to 0.28. At this stage
difference maps were used to locate the first of the p-nitroacetanilide
molecules, along with 18 water molecules. Further cycles of modelfit and
least squares refinement reduced the R-factor to 0,23, when a careful
study of the difference maps revealed the second p-nitroacetanilide

molecule. Up to this stage an overall temperature factor had been used.

20
z2

30

4o

FIGURE 4.7 R-FACTOR MAP FOR TEHE RoTATrong
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Chapter 5 Attempts to solve the C7ANAT structure.

The solution of the C7APNA complex had been greatly facilita-
ted by the information gathered from the Patterson map. As the C7A
molecule in C7ANAT is likely to be similar in shape to the C7A molecule
in C7APNA the Patterson map was calculated. The Patterson function for
C7ANAT has four symmetry related peaks, at 2.5 R. In Chapter Four these
peaks were shown to define the orientation of the C7A molecule in the
unit cell. These peaks are shown in Figure 5.1 (the contours are in 5
unit intervals). The origin peak is 120 units high. The aligmment of the
C7A molecule along this wvector confirms the reports that the C7ANAT
structure has a herringbone packing arrangement{110}, around the 24 axis
in a manner similar to the Group la structures of the C6A system, but

with a different space group and cell dimensions.

CookDinN ATES ©F PEAK.
PEAK HEIGHT =14

u A 5 o . ;
4:0:06d 1/5-0 !Sng/c.—o 063

PEAKS THAT RESULT
FROM THE 2.5
ANGSTROM VECTOR C7A NAT

o |

w = 3M6ths — —

Figure 5.1

There are several large peaks in the uOw section of the
Patterson map, Figure 5.2, but these could not be ascribed to structural
or packing features that one would expect to find in this section. The
Harker section (u0.5w illustrated in Figure 5.2) could not be analysed

in terms of a projection of the structure.

In order to define a rigid body in space with respect to an
axial system, six parameters must be specified (Tx,Ty,Tz,Rx,Ry,Rz). The
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translations Tx,Ty and Tz are the translations along the cell edge of
the centre of gravity of the model, and Rz is the rotation of the C7A
model about its sevenfold axis. Ry and Rx are the two other rotations
orthogonal to this. 1In the space group P21, a translation up the ¥
axis(Ty) has no effect on the magnitude of the structure factor; i.e.
there is no need to vary Ty. The Patterson map reduces to four the
number of possible values of Rx and Ry. These are illustrated schemat-
ically in Figure 5.3. The space group symmetry reduces these four poss-
ibilities to two as 1 and 2 are equivalent as a result of the screw axis
as are 3 and 4. The head of the arrow is at the secondary hydroxyl end
of the molecule, and the primary hydroxyl end of the molecule lies
closer to the origin. These two non equivalent possible orientations of

the C7A molecule will subsequently be referred to as the “up’ and the

“down’ orientations.

===

FIGURE 5.3 FOUR POSSIBILITIES FOR THE ALIGNMENT OF
THE C7A MOLECULE

These two orientations also cover all of the enantiomorphic
possibilities, as a molecule of C7A made up of L-glucoses lying along
vector three is exactly equivalent to a molecule of C7A made up of
D-glucoses lying along vector one. This means that the six parameters
aforementioned are reduced to three(Tx,Tz,Rz), making a translation

rotation search feasible,
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The Translation Rotation Search.

The previous section analysed the parameters that must be
explored in a translation/rotation search. Before carrying this out,
however, a re-examination of the wvalidity of the starting model is
required. The model of C7A, which was generated with the sevenfold
sy.mmetry should bear a reasonable resemblance to the C7A molecule in a
complex. In Chapter 2 it was shown that the ‘“empty’ C6A (a CHA molecule
complexed with water) molecule is much more distorted than the C6hA
molecule with a non aqueous guest. This distortion of the host molecule
is likely to be repeated in the C7A system. N.m.r. evidence{40} has
shown that the conformation of the C7A molecule changes to accommodate
the guest. There is no way that the distortion can be estimated or
incorporated into a model. For this reason no alterations to the model
that was used in the C7APNA system could be made prior to wusing the
model- for "the translation/rotation search of C7ANAT, as no significant

improvement could be made to this model.

A low resolution data set was used, because the objective of
the translation/rotation search was to locate the position of the C7A
molecule, and not to resolve molecular details. Fifty reflections with a
sin@§/lamda < 0.15 were used for the search. Translation parameters were
searched on a 0.5 K raster within the area x= 0-0.5a and z= 0-0.5¢, and
the rotation about the ring axis Rz was searched in 5" intervals in the
range 0-50° , as the model is sevenfold symmetric (Chapter Four). In
order to check both the ‘up’ and the ‘down’ orientations of the model a

total of 4600 structure factor calculations had to be performed.
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The volume of calculation necessitated that a specific
structure factor calculation program be written both to generate the
displaced and rotated model and calculate the structure factors. Instead
of calculating conventional R-factors the following correlation factor

was measured in order to reduce the complexity of the calculation.

Correlation Factor =

The results of this search were mapped out for each value of
Rz, thus each map contained a plot of the correlation factors for a = 0
- 0.5 and ¢ = 0 - 0.5. An example of one of these plots is given in
Figure 5.4. there were over 100 minima located in the search. The
corrglation factor has been multiplied by 100, with the contour inter-
vals being at 5 unit intervals. Each of these minima were then searched
on a finer grid (0.1 A in translation and I in Rz). This reduced the
number of minima to 15 with a correlation factor of 0.55 or less. A
conventional R-factor was calculated for each of these, and the R-

factors varied between 0.36 and 0.32.

Attempts to further refine these 15 possibilities using the
rigid body refinement routine in the X-Ray System{113} , using data sets
of slowly increasing resolution failed, due to the inadequacy of the
initial model. The distortion of the C7A macrocycle from heptagonality,
probably due to the opening out of the glucose residues caused by the
primary hydroxyl groups altered conformation is the most likely

difference between the model and the real structure.
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Other Attempts To Solve The C7ANAT Structure.

The difficulties encountered in the translation/ rotation
search lead to a consideration of other methods that might give inform-
ation about the translational parameters of the model in the ac plane of
the unit cell. Any direct information about Tx and Tz would greatly

simplify the problem.

The translation of a model of C7A orientated with the correct
values of Rx and Ry along the a axis will have no effect on the magnit-
ude of the calculated structure factors of the Okl, O0kO, and the 001
reflections. The only factor that influences the magnitude of the h0OO
reflections is the displacement of the correctly orientated model along

the a axis. The displacement of the molecule along ¢ has no effect on
the h0O reflections. Thus a structure factor search using only the hO0O
reflections and translating the model along the a axis should indicate
likely values of Tx. A similar calculation on Tz and the 001 reflections
should indicate plausible values for Tz. This search was carried out for
both the ‘up’ and the ‘down’ models, with two different values of Rz(0
o SEE NE 0N PRLE 95,
and 25 )A The results of this search are shown in Figures 5.5. These

translational minima were then searched thoroughly using a low

resolution data set. Again none of these trial structures refined.

The Difference Patterson Function

The Patterson map contains peaks that correspond to the vector
displacements of every atom in the unit cell from every other atom in
the unit cell. Where there is a rotational symmetry element in the unit
cell, the vectors can be separated into two types, the intramolecular
vectors, vectors between atoms within the molecule, and intermolecular

vectors, vectors between atoms in symmetry related molecules.
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The C7A molecule is a rigid species, whose geometry is well
known. The orientation of the molecule has been determined from the
Patterson map. The rotation about the z axis(Rz) and the displacement of
the molecule with respect to the screw axis are unknown. If a model of
the C7A molecule is placed in the unit cell with a correct orientation,
but an incorrect displacement, then the intramolecular vectors of the
model and the real structure should be identical. The subtraction of

these vectors should leave a Patterson map with intermolecular vectors

only.
FD(XYZ) = 1/V§E§i§i [Fo'- Fc' Jcosfn(hx + ky + 1z)) m——==(1)
B2
The difference Patterson function, equation 1, is extensively
used in protein crystallography to locate the heavy atom positions

{115}. The importance of this technique in this field has long been
realised. Rotation and translation searches of unit cells using Patter-

son type functions have also been attempted, but so far have only

succeeded in solving simple structures{116-9}.

Figure 5.6 shows the situation that arises when a trial
structure is put into the unit cell in the wrong position in the unit
cell with respect to the screw axis. The diagram is a projection onto a
plane normal to the 2, axis, X is the position of the centre of gravity
of the molecule. T and T’ refer to the true position of the molecule, T’
being related to T by the screw axis. F and F’ are the trial input
positions of the molecule. Assuming that the model of the C7A molecule
is relatively accurate, then the intramolecular vectors that arise from

the model will be close to those of the true structure.

=ggs



The intermolecular vectors are different and are known for the model
structure, and unknown for the true structure. The difference vector map
should contain information about the relative displacements of the two

molecules.

()]
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FIGURE 5.6 THE DISPLACEMENT OF THE CENTRE OF GRAVITY

OF A MOLECULE WITH RESPECT TO THE ORIGIN
The difference map should contain a peak at two delta, where
delta is-.the separation of the true and false molecules, This is because
vectors between the atoms in symmetry related molecules in the correct
structure will differ by two delta from the corresponding vector in the
false molecule. As the vertical displacement is 0.5b in both cases this

peak should appear on the v = 0 section, at two delta from the origin.

The C6A DMSO complex{84} is in the same space group(PZl) as
the C7ANAT complex, and for this reason served as a convenient test of
the validity of this technique. Observed structure factors were gener-
ated from the coordinate list, and the structure factors were calculated
for reported coordinates displaced by a fixed amount, as shown in Figure
5.7. The difference Patterson map was calculated using IFg - F¢ | as the
coefficients in the Patterson synthesis. The results are shown in Figure
Sis s
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FIGURE 5.8 DIFFERENCE MAP FOR DISPLACED DMSO COMPLEX
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For the test case this method shows the displacement of the
trial structure from the real one. There is however an ambiguity caused
by the centre of symmetry in the Patterson map, but this can be resolved
by generating a second map from a second set of coordinates displaced
from the first by a known amount. The origin peak is 15 units high, and
the depth of the hollow is 7 wunits. There is no other peak of a

comparable size in the map.

This technique was applied to the C7ANAT structure. Structure
factors were calculated for two different displacements of each of a
number of trial orientations of the C7A molecule with respect to the
origin. Both the “up’ and “down’ orientations of the C7A molecule had Rz
varied in S'intervals in the range 0-50 to generate the trial orient-
ations. A difference Patterson map was calculated for each of the poss-
ible configurations detailed above, and no peaks were consistent with

the known displacement of the C7A molecule appeared on the two maps.

The only reason that can explain the failure of the above
attempts to solve the C7ANAT structure is that the structure is consid-
erably distorted from the model. The C7A iodine complex was examined in
the hope that it would be isomorphous with the C7ANAT structure, as had
been found in the ChA system{88}, but this was not the case. It was
reported in September 1978 {124} that the C7ANAT structure has been
solved by Saenger using the hydrogen iodide complex which is isomorphous
and solving this complex wusing the heavy atom method. Work in this

field was discontinued for this reason.
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Chapter 6 Attempts to solve the C7Adodine complex.

The initial motivation to investigate the C7A-iodine complex
was the failure of all of the attempts to solve the C7ANAT structure.
The CHA water complex had been solved by the isomorphous replacement of
the included water molecules by an iodine molecule{87}. The C6A iodine
complex was then solved using the conventional heavy atom method{88}. It
was hoped that the C7A iodine complex would be isomorphous with the
C7ANAT complex, and that the heavy atom method could be used to solve

first the iodine structure, and then the C7ANAT structure.

The crystal was found not to be isomorphous with C7ANAT and
the data was collected, as described in Chapter three. Preliminary
inspection of the precession photographs indicated that the space group
was C2, isomorphous with the 2,5-diiodobenzoic acid C7A(C7ADBA) complex
that has been solved by Hamilton, Steinrauf and VanEtten{l112}. There
were unfortunately no atomic coordinates published with the structural
report, and a request for the atomic parameters has yet to be acknow—

edged.

The crystals were small and diffracted weakly. The collection
of data (see Chapter 3) proceeded smoothly. A subsequent and careful
inspection of the photographs showed that three hk0 reflections with h +
k = 2n + 1 were present. The true space group must be P24, although the
symmetry is close to C2. In C2 symmetry the h+ k = 2n + 1 reflections
should be absent, here they are very weak. In his thesis{|0d0} Noltemeyer
confirmed this, saying that there were several weak refledions of the

type h+ k = 2n + 1, and the space group was P2.
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The sharpened Patterson map was calculated assuming c2
symmetry, and the most significant peaks, which are on the w=0 section
are shown in Figure 6.1. The peaks in the sharpened Patterson map could
only be interpreted as four iodine atoms related by a pseudo two fold
axis, as illustrated in Figure 6.2. The coordinates are listed in Table

6.1.

Table 6.1. The iodine atom coordinates before and after refinement.

Initial Refined Coordinates
x/a 0.0706 0.0616
11 y/b 0.0000 0.0000
z/c 0.0933 0.1043
x/a -0.0272 -0.0236
12 . v/b 0.0000 -0.0281
Zlic 0.2372 0.2332

The y coordinates of the iodine atoms, that were determined
from the Patterson map, were close to zero. This introduced a pseudo
mirror plame, normal to b, into the Fourier map phased on the iodine
positions. The iodine atom positions were refined wusing the least
squares refinement program in the X-Ray systemf{l113} wusing all of the
data. The final iodine atom coordinates are tabulated in Table 6.1. The
positional parameters of the atoms refined well, but the temperature
factors are wvery high, typically three times those reported by Saenger
in the C6A iodine structure. After the refinement there were no peaks in
the difference Fourier synthesis with magnitudes greater than 2 égs
which might correspond to other iodine atom sites.
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The cell dimensions of the C7A iodine complex are close to
those reported by Hamilton et. al. for C7ADBA{112}. Thus it is reason-
able to suppose that the structures will be almost identical(see Chapter
2). The ring axis of the C7A molecule in the C7ADBA structure is paral-
lel to the crystallographic ¢ axis. This is consistent with the coord-

nates of the iodine atoms that resulted from the refinement.

With the ¢two iodine atoms held in a fixed position with
respect to the origin, there are two enantiomeric possibilities, as the
iodine atoms define the enantiomorph. There are also two ways of placing
the C/A molecule in the unit cell with respect to the iodine atom
positions, either with the primary hydroxyl groups close to the origin,
or with the secondary hydroxyl groups close to the origin. The latter
two possibilities are shown in Figure 6.3. A search of the rotation and
translational parameters of the C7A molecule in each of the four trial
structures was carried out using a modified version of the structure
factor program that was written for the C7ANAT structure. The C7A
molecule positions were refined using a low resolution data set (sin 8/

lambda < 0.15) holding the iodine atoms fixed.

These four refined possibilities were then further refined in
the 1976 version of X-ray{113}. The C7A molecule was treated as a rigid
body and refined using the least squares method with a higher resolution
data set (sinQ/lambda < 0.2), again holding the iodine atoms’ atomic
coordinates invariant. The R-factors at this stage varied between 0.47
and 0.42 for the four possible structures. These four trial structures
were then refined further with the individual glucose residues being
treated as rigid bodies. This failed to yield a significant improvement

in the correlation between the observed and calculated structure
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factors. Step refinement of the four trial structures, followed by
Modelfit{114}, a method which had been successful in the C7APNA struc-
ture again failed to improve the R-factor. Difference Fourier maps based
on the phases calculated for the iodine atoms did not show a ring of
electon density surrounding the iodine atoms in a position that the C7A

molecule could be expected to be found.

The most disturbing feature of the refinement was the isotr-
opic temperature factors of the iodine atoms, which were very high(u =
L]
z
0.3@@. Anisotropic refinement of the temperature factors of the iodine

atoms did not significantly improve the R-factor, and the iodine atoms

did not exhibit significant anisotropy.

The only explanation for the difficulties encountered in the
attempts to solve the structure is that the iodine atoms are disordered,
and that the disorder is not systematic. The reflections of the type htk
= odd are so weak that the iodine atoms cannot make a significant
contribution to them. This suggests that the twofold symmetry of the

iodine atoms is preserved in spite of the disorder.

=11 0=



Chapter 7. The Structure Of The C7APNA Complex.

The alternation of Modelfit{114}, with block diagonal least
squares refinement (the X-Ray system) had reduced the R-factor to 0.23
for a structure with a reasonable geometry. Both guest molecules and
eighteen water molecules had been located using difference Fourier maps.
An overall temperature factor had been used up to this stage, and it
seemed appropriate to change from an overall to individual disotropic
temperature factors. Least squares refinement of the temperature factors
alone reduced the R-factor to 0.18. At this stage more water molecules
could be located on the difference Fourier map. Further least squares
refinement of both the isotropic temperature factors and the positional
parameters of the atoms reduced thé R-factor to 0.132. The p-nitroacet-
anilide molecules were treated as rigid bodies in these cycles of

refinement.

The isotropic temperature factors in the C7APNA structure are
comparabie with those found for C6A structures (typically U=0.05 51

). The highest temperature factors

found in the C7A molecule are those of the primary hydroxyl group, which

is the only group with free rotation about a single bond. The temperat-

ure factors for the atoms in substrate one are typically about 0.10. The

population parameters of both substrates were set to 0.75, after analy-

sing the peak heights of 0181 and 0182 and comparing them with the peak

height of a primary hydroxyl group with a similar temperature factor.

Blocked matrix least squares refinement was used in the above
refinement of the structure, with the positional parameters and the
temperature factors for five atoms forming a block. A larger block size
would have been desirable, but was not possible as the computers in

Edinburgh had restrictions placed on both core space and CPU time.
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The Geometry The C7A Molecule In The C7APNA Complex.

The coordinate list is shown in Table 7.1. Figures 7.1, 7.2,
7.3 show the general view of the C7APNA complex. Figures 7.4, 7.5, 7.6

show the packing of the molecule in the unit cell.

The numbering scheme adopted for this structure is as follows.
The letter denotes the atom type. The first number is 1 or 2, referring
to the two different C7A molecules in the unit cell. The second number
defines the residue number within that molecules, and the third number

defines the atom number within that residue.

The glucose residues in the C7APNA complex are all in the Cl
chair conformation. All other X-ray crystallographic, spectroscopic, and
o.r.d. data have shown that the glucose residues in cycloamylose are in

this conformation.

The bond lengths and angles are shown in Tables 7.2 and 7.3
respectively. Sigma, the estimated standard deviation (e.s.d.) of a bond
or angle, calculated from the e.s.d.s of atom positions derived from the
least squares correlation matrix dis 0.04 A for a C-C bond, 0.035A for a
C-0 bond and 1° for bond angles. Saenger reported that some of the cor-
responding bonds in different glucose residues in the C6A iodine complex
{85} varied by 5 e.s.d.s, which he attributed to the strain induced by

the cyclisation of the cycloamylose molecule{85}.

It has been noted in other cycloamylose and oligosaccharide
structures that the C1-05 and the Cl1-04" bond lengths are significantly
shorter than the C5-05 and C4-04 bonds. The average lengths of these
bonds in the C7/APNA structure do not follow this tremd, although the
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4.52204
4,12673
4 .4B280D
4.91690
4.61E31
4.21749
4.39E81
E.23416
6.32916
4.225B7
3.64097
3.14524
4.51950
€.,89311
4,E08E7
4.,50082
4.,47233
4.77840
€.79121
5.29475
4.,44983
5. 16288
4,27949
4.512€0
4.57910
5.14678
4.51581
2.39€03
3.39495
4.,55447

16.101

15,735

21.945

16.791

12,536

E.227
11,258
12.604

9.242
11.2597
12.291

P5E21

16,.B5

£5C

C.75
0.75
0.78
0.75
8.75
0.75
0.72
0,75
0.725
0.75
.75
0.75
D.75

c211
cz212
c213
Cz14
€215
cz216
0212
213
cz214
0215
az1é
Ce24
czzz
C223
Cz24
cazs
cz26
pz222
0223
0224
225
022¢&
£231
cz3z
£233
ca234
€235
c236
g232
G233
B234
0235
0226
L2461
caq2
c243
cz244
C245
Cz2a6
gzaz
02432
D244
0245
0246
cz51
gcas2
C253
ca2s54
255
czsé
pasz2
0253
G254
0255
p2se
ca2é1
czé&2
C2E3
ca2esd
caes
C266
0262
D2é3
c2eq
0265
0266
c271
ca72
c273
ca274
c275
C276
oz72
0273
0274
0275
G276
02E1
ozez
02E3
N2E1q
N2E2
cag
czez2
C2E3
C2B4a
C285
C2B6
c2e?
288

2L

0,.35548
0.34072
0.248137
C.1974C
0.20796
0.1&836
0,3E329&
0.23282
0.10518
0.310589
0,2CEpé
D.3EB15
0.41927
C.35559
0,37633
0.34330
0.36932
0.40500
0.38894
0.31387
0.39832
C.46402
0.12461
0.18€12
0:215%7
0,27266
0.21094
0.27377
0,13807
D.2E040
L.29375
0.,17620
0.34581%
=C.23277
-0, 1E930
-0,09356
-0.02855
-0,0875E
-D.04842
-0.20287
-0.05174
0.04627
-0.,18291
-0.04454
~0.40273
=0,41560
-0.32565
~-0.31139
-0.30281
-0.29E25
=0.432430
~-0.34158
-0.23117
=N.38437
-0.3E128
-C.2EB126
=0.33017
-0.3120¢C
=0,35029
-0.2991E
-0.34¢a2
-0.29639%
=0.36059%
=-C.32215
-C.31618
-0.44275
D.0€980
0.00E92
-0,06426
=D. 12423
-0.0£€335
-0,11604
0.07090
-C. 11991
-0.1B6238
0.00600
-C,15E89
-0.09418
-0.08696
0,DE9B2
-D.0B440
D.0B724
-0.04026
-0,02397
0.02063
0.04238
0.02B64
-0,01819
0.10819
0.1518¢€

Table 7.1 Parameter lisc for CTAPNA B = 0,13

Water molecules are listed

— =

overleaf

Iy
£.33247
0.37828
0,36452
0.407C3
0.2570¢E
0.39511
D.33528
0.41386
0.39433
0.36E31
0.4B427
D.00134
0.05287
£.11140
0.18217
0.12933
B 19919
=0.01360
D.16220
0.23912
0.06430
0.23197
=0.29079
-0.27679
-0.16301
-0,13312
-0,15497
~D.12243
-0,32€66E
-0.1€6774
-D.04318
-0,24474
-p.16122
=0.20633
-D.34985
-0,30051
=0.30401
-0.26080
-D.28360
-0.35251
-0.34184
-0.250E0
-0.,31117
-0.37463
-0.04207
-0.11963
-0.15C53
-0,15170
-0.10923
-0.147E9
-0.08754
-0.22440
-0.21677
-0.07718
-0.206C3
D.29696
0.23751
0.15241
D.10E84
0.17574
0.14228
0.27626
0.09525%9
b.egezo
0.25789
0.14126
0.46953
0.46466
D.37664
D.38353
D.39964
D.4 1096
0.46440
037688
0.29834
pD.47078
0.4B470
0.01408
p.17407
D 15751
0.0B567
0.02663
0, 06956
-0.01329
-0.026E9
g.p382¢0
0.12z220
0.14178
c.nE791
0.04737

ch

=-0.39931
~0.316BE
-0.31556
-L.292B6
-0.47429
-0.56102
-0,28391
=0,23915
~0.394E6
-0.47310
=0.56777
-0.40E46
~-0.322L9
=0.32150
=-0,3R993
-D.47833
-0.55761
=0.25404
-0.24053
-0,38975
-0.47737
~-0.54346
=0.47172
=0,38515
=0,36389
-0.42B1E
-0,52528
=0.59402
=-0.32190
-0.27962
-0.41516
=0.53447
-0.5B156
-C.51362
=0.43730
-0.41427
-0.4R5€E2
~0,56601
-0.,65045
-0.36678
-0,33680
-0.46571
-D.584E3
-0.651E7
-0.50838
-0.44197
-0.42372
-0.51002
=0.57418
-0.665E8
=0.26415
=0.36257
=0,49€54
-0.5E4B2
-0.68961
-0.45324
-0.385839
=0.3E242
-0.a7372
=0.53723
=0.63480
=0.3012¢9
-0,32181
~C.47699
-0.53305
-0.64449
=0.400814
-0.32565
-0.33342
-0.42046
=0.49277
=-0.5759E
-0,24152
-0.26636
=0.43129
-0.47B12
-0.57995
=0.£9717
-0.65074
-n.28102
-0.64171
-0.31490
=0.55734
-0.540B0
-0.45664
-0.39813
-0.4165¢2
-N.4%9626
=0,2624¢
-0.168419

D’—
\A+5oé.ﬂ

e i
£.18466
4.E450&
qo2B1EG
4.Mn1997
5.43472
6.,21664
&.70199
220740
5.41264
£.74610
3.95844
3.81416
4.41557
3.62270
3.75288
&.16175
4,11573
L Y2758
4.19454
3.83433
€.72351
4.0R692
4,47928
4.10003
3.71430
4.30673
6.C00357
5, 39599
5.61103
391252
4,E8005
9.40674
4.470LC
3.69427
4.43881
225161
4.5%9262
3,71980
4175757
4.41417
4.42447
3.57289
EL.ge135
3.284D0
5.0104%
4.28590
4.03078
S, T1633
6.48017
4,55497
5,25137
3.92385
4,221B6
7.44931
3.20990
4.56637
3.785E7
3.27702
3.84275
4.75E%6
&,51598
5.13358
3.57099
4.,17655
6.14050
3.16665
282751
2.78E48
3,31409
3.65112
4.24719
4.932E61
5.44060
3.50226
3L.59832
£.B3434
21.704
43,062
30,223
18,119
12.063
B.z200
10,900
11.340
7.674
15.734
15,611
1€, 191
22.585

p.p

0.75
0.75
0.75
0.75
0.75
0.75
0,75
075
0.75
0.75
0,725
L.7%
0,75



*/a Y % i ‘a =g

0501 -0.34322 0.46366 -0.63428 7.672 0.576
0502 -0,47840 0.45435 0.46042 8.579 0.169
0503 0.17756 0.16739 -0,18466 19.600 o211
0504 -0.46722 0.32468 0.29036 9.438 0.657
gses 0.04214 -0.15465 -0,24E29 11.431 0,507
0soé =-0,37810 0.30018 =-0.83740 a5 37 0.424
0507 -0.56329 -0.,23796 =0.18430 8.244 0.550
0508 -0.43999 0.25019 -0.1B8176 10,538 0.406
0509 -0.43508 0.2B969 -0.23015 4.913 0.381
0510 -0.45893 -0,43695 -0.28445 12.003 0.360
0511 -0.268B69 0.45451 -0.18019 74337 0. 79%
0512 0,06948 0.25367 =0.18593 11,968 0.497
0514 -0.55332 -0.16163 -0.,72035 6.276 0.792
0515 0.09593 -0.44470 -0.69716 6,055 1.000
0516 -0,48960 -0.36833 -0.33862 19.223 0,275
0517 -0.,55517 =0.37463 0.06242 9.174 0.444
0518 -0.47541 -0.39312 =-0.36789 18.339 0.246
0519 =0.45573 0.49709 -0.B6305 17.820 0.224
0520 -0.46128 0.41247 =0,51113 9.417 0,500
ps21 -0.65415 =-0.34538 -0.51537 15.915 0.500
p0s22 -0.61963 -0.33266 -0.768179 8,603 0.500
0523 =-0.34195 0.44144 -0.91711 10259 0.500

Coordinates for the PNA molecules from the electon density maps

0181 0.10504 0.04359 0.24404
0182 0.10570 -0.0B974 0.23979
0183 -0.11696 -0.15897 -0.14894
K181 0.09096 -0.02304 0.20851
N182 -0.10096 .0230E8 -0.11064
Cl1B1 —0.047B3 .05897 0.00000
C182 0.00400 0.05667 0.09085
ClE3  0.03913 -02538 0.13191
Cl84 0.00400 -0.09718 0.07836
C185 =0D.04348 -0.0B974 (.00000
Cisé -0.06087 .0205] -0.03181
C187 =0.13196 -0.07949 -0.17021
C188 -0.15696 -0.05385 -0.23830

Sddddood

0281 -0.11013 0.00513 -0.6702]
0282 -0.10643 0.14103 -0.68085
K281 =0.0B913 0.07692 -0.63830
€281 -0.05000 0.07179 -0.5531%
282 -—0.03043 0.13846 -0.51064
€265 0.0)J0B7 0.12821 -0.43617
C284 -0.02B2¢ -0.01538 ~0.51489
C285 0.010B7 -0.02564 -D.43617
C286 0.03261 0.04615 -0.39362
K282 0.07609 0.03B46 —0.30851]
0283 0.09783 0.17949 -D.26596
C287 0.10435 0.10256 -0.25532
C288  0.14130 0.05897 -0.1BOES

-
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Figure 7.1 C7APNA Projection onto the be plane
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tion onto the ac Plane

Figure 7.2 C74PNa Projec
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Figure 7.3a Projection of C7APNA molecule one on to the ab plane.
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Figure 7.3b Projection of C7APNA molecule two on to the ab plane.




Figure 7.4 Packing of the C7LPNA complex
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Figure 7.5 Packling of the C/ZAPNA complex
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Figure 7.6a Packing of the CTAPNA complex, molecule 1.

Figure 7.6b Packing of the C7APNA complex molecule 2.
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Tatle 7.2. Scnd lengths fur the C7A mclecules in the C7APNA cumplex;

c0Ong Molisculs Nummel Fesicue
1 2 3 4 5 (=) v
C1=C2 1 .26 1.49 TSl T 62 15 1:49
z 157 i fsketes Tru52 .53 157 1.56 1 .84
C2=E2 1 s 1872 b e ay 152 157 NsE
2 1.4E Aeas 126 o i 153 1.43 1-e5
CZ-C34 1 a5 Jea59 1257 465 1.54 158 153
156 52 ke 1S 1555 iy S 1
C4-C5 1 156 1.56 vl 1.54 S8 1.50 1.63
2 G2 1,58 62 1.5 155 1.56 iEeis
C5-Cé 1 1.53 1.62 i 1.52 1258 4R 55
2 1256 15E8 153 159 1.62 63 1546
C1-C5 1 15.52 1.41 42 NaES s 1= a5 1.56
2 e 1.42 41 1.44 e “ 13
C1-0a° 1 254 1941 143 1.44 i35 1.42 121
2 fa7 1.44 At 1.84 1.38 1.44 145
caz-c2 1 1.40 1.£2 148 1.45 142 1.48 1.42
2 1.43 12 1.42 g 1.42 1..44 1555
£3-03 1 1.46 1,45 1.50 155 1.42 1.50 1.45
1.49 1.48 tes3 1.49 i 1.486 1.44

Ce-04 1 1.45 1l e i 1527 1.46 e a6
z 1535 1.54 1.4 )i 177 135 1e2S 1.45
€C5-05 1 1.38 153 1.44 1.42 1226 1.4E .28
2 1.51 1.47 138 1.46 1.42 137 b
C&-0E 1 1.42 1.40 1.39. 1.24 1.43 1.61 1.44
2 1.29 -0 137 1.42 1.40 1.47 3
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gung anglies in the | CUmMBLEX,

B.nd Angle ¥coleculs Sssicue
Number 1 z 2 4 5 &
Ce-C1-C¢E 1 1Az e ARG UR. 85 e, 2 1Mil=.8 7.0
2 10EE | 167.45F 106.% 106.2 “pE,2 €.5
cz-c1-0a " 1 109,00 I8 A0Z2R2 1661 109 1B9LE
2 1858 4. eY JEss S S 106.C
§S-C1-C¢ "’ 1 gea pE.7  AGEVe fzcd  aA4eEl t10L8
2 TEO0A BELY TSy qiiLE ) THEsEr v
C1-€£2-C2 1 oL Z draee  1eak Ate.s  IDELEI T A0 L7
2 Rt Al I S I e B et S 192
C1=C2-CZ 4 Ahsan et O e SR T Ve i
z 107.6. 105.4 L10E.0 10B.9  10E.2 0dizS
c2=-Cz-C2 1 s L B ol R el = S TR Vb B s 2 o R e
2 T4 FE Mg e 11208 12.8  1eBLe 07.3
cz-Cz-Ca 1 FOELE SAAR NS o M9, E Wigi e (1500
2 18952 BHaZLS A4 10LE T Ra7m 0D,
c2-Cz~-C2 1 VT 7o Az = AR ZEE 12,85 MBELT 1062
: 2 104 B ERaCE 11 B = 16E.5 105.1 4208
C4-Cz-0Z2 1 IE75R N EA B AR ATE.Ss 1852 £5.1
z 10B.6 104.8° 103,74 oR.E A0SR EaAca
Cz-C4-Cs 1 TEeL7. MESE6T 1023 ae. e T A1al A 038
c 1G24 S ARE3 TE6:5 A0Ea BT 05
Cz-C&-C& 1 195,56 108%.2 109.4 106.9 10z.2 106.9
2 07,7 1CE.0 112.5 H0E.9" 4aBLg 11152
C5-Ca-Cca 1 10EL5 107,40  A8B.a 112:7 40Be5 R06S
2 187.4 NodLs Ae9n 1867 189.2 11245
C4-C5-CE 1 LA MIgG e AR A 078 0B I MRS
2 1 BN E TG AR E 2 RREs A nA LSS ETa
C4-C5-05 1 14856 TIBES?T .2 HORRLE UG e B e T
z 105,60 JBE,6 118.3  10E.7 11056 2B
C&é-C5-C& 1 107.5  A03.3% 103.5 109.1° H09.7 10159
z FoBL a3 RS €9 .2 105.4 104,33
Cs5-Cé=-06& 1 1683 D 2Lgl e L A1BLZ AREaT NEE
2 ki 6 1085 e R 1 b o IS L8735 1081
g4-0a-c1” 1 12,8 NI6.E by o TG el ol L 2 R B
z 1 248 R1EL2 el 116.1 TGN T 19E 1
C1-35-C5 1 116,46 113.¢% Ghied lilel i SRR e
z 18 B ALt ey e il e e s e SRR i (!
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C7APNA bond lengths are within 3 e.s.d.s of the usual values of these

bonds in the C6A structures{85}.

The average value of the angle Cl’-04-Cé4 (116°) in the C7APNA
structure is less than that found in the C6A system(119°) {2,85,88), and
close to that found in disaccharides(llsu) {104}. The e.s.d. for bond
angles in the C7APNA structure is such that no conclusions can be drawn
from this data., Sundarajan and Rao predicted that the bond angle across
the bridging oxygen would be 110°. The bond angles about the bridging
oxygens are significantly greater than this, suggesting that their model

may be inaccurate.

In other cycloamylose structures the angles C4-04-Cl° and
C1-05-C5 are significantly larger than 109', whereas the angles C3-C4-04
and C?—CA—O% are less than 109°. In X -D-glucose these angles are closer
to 109 (see Chapter 2). The difference of the values of these angles in
C6A and &rD-glucose is probably due to the steric strain effects that

’

result form the cyclisation of the molecule.

In conclusion, the bond lengths and angles in the C7APNA
structure are consistent with all other crystallographic studies of C6A
molecules within the 1imits of the accuracy of the structure

determination.
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The Planarity And Geometry Of The Bridging Oxygens.

The bridging oxygens are almost coplanar. The low deviations
of these atoms from their least squares best plane, Table 7.4, is also a
characteristic of the C6A system (see Chapter 2 Table 2.12). The best
planes of the 04 atoms of the two C7A molecules are close to being para-
llel, the angle between them being one degree. The best planes of the

O4s make angles of & with the b axis and 1 with the a axis.

Table 7.4. The deviation of the bridging oxygens from their least

squares best plane in Angstroms.

Molecule Residue
1 2 3 4 5 6 7
Molecule 1 -0.07 0.02 0.05 -0.04 0.04 0.07 0.01

Molecule 2  -0.03 -0.04 0.05 0.01 =-0.06 0.02 0.05

.The diagonal distances across the C7A molecule are distorted
in a symmetric manner due to the substrate, which causes an elliptical
deformation. The diagonal distance has been calculated by taking the
distance between On4 to the mid-point of O(m+3)4 and O(m+4)4. The subst-
rate lies between residue 7 and residue 3 for molecule 1 and between
residue 2 and residue 6 in molecule 2. The diagonal distances are shown

in Table 7.5.

Table 7.5. Diagonal distances across the C7A molecules in Angstoms.

Molecule Residue
Number 1 2 3 4 5 6 7
Molecule 1 9.87 10.09 9.62 9.63 10.09 9.86 Ol

Molecule 2 9,94 9,53 9.63 10.05 9.73 = 9.63 10.01
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The difference between the maximum and minimum diagonal
distance is 0.58 K , which is significantly less than that found for
group 1b complexes(Table 2.4 p45). The substrates do not cause as big a
distortion of the C7A molecule as do similar substrates in C6A compl-

exes, due to the large diameter of the C7A molecule,

The distances between 04s on adjacent glucose residues are
shown in Table 7.6, along with the angle between the bridging oxygens.

This angle should be 128.6 if the bridging oxygens form a heptagon.

o
Table 7.6. Distances, in Angstroms, and angles between the adjacent

bridging oxygens

Molecule Residue Number
1 2 3 4 5 6 7
04-04"° 1 4.28 4.43 4.44 4.38 4.26  4.42 4.39
¥ 2 4.41 4.39  4.38  4.33  4.45  4.37  4.31
04’ -04-04" 1 127.9 124.9 130.4 130.7 125.2 128.1 132.5
2 132.5 127.1 127.8 126.1 129.3 131.3 126.1

In all of the substituted benzene ring C6A complexes the guest
molecule lies parallel to the longest diagonal between the bridging
oxygens. In C7A this can not occur as the C7A molecule does not have two
fold symmetry. The PNA molecules are aligned towards 0164 and 0214 for

substrates one and two respectively.
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Endocyclic Torsion Angles In The C7APNA Complex.

The torsion angle A-B-C-D is zero if the bonds A-B and C-D are
cis coplanar, and positive if, looking along the central bond(B-C) from
B, the far bond(C-D) is rotated clockwise with respect to the near bond

(A-B).

The endocyclic torsion angles for the glucose residues in
C7APNA are shown in Table 7.7. Saenger noted that there could be variat-
ions in the value of a particular torsion angle in a C6A structure of up
to twelve degrees. The values of the torsion angles for the torsion
angles in C7APNA vary up to 18°between corresponding angles in differ-
ent residues, which can be partially attributed to the high standard

deviations in atomic parameters which can have a significant effect on

the value of the torsion angle.
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Takle 7.7. Endcocyciic and excoveiic cihecral ancles Tur “me C7A molecule
in the C7AFNA ccmpglex.

Dihecrsl ¥olecule Residue

Arigle Number 1 2 =) a 5 6 7
C1-C2-C2-C4 1 =58 -£3 -76 -66 &6 =65 €&
2 -61 =70 -£2 =£2 -£7 -62 -£5
C2-C2-C&-C5 1 57 =2 &2 59 55 E é5
= £ &S £ £a &5 L 57

C2-Ca-C5-C5 1 =57 =54 =5¢ -62 =5 -66 -A1
2 -61 61 -2g -58 -61 -59 -S4
C4-C5-05-C1 1 52 g 60 7C 62 & 54
2 3 £1 £a (=74d &5 €S al
C5-05-C1-C2 1 -53 -23 -7 -£2 -£6 -&2 -63
: 2 -0 -561 -z9 -£3 -€2 -£1 =52
05-C1-C2-C3 1 52 &1 é1 61 &g 63 b
z 57 3 55 &2 &2 &2 &4
05~-C5-C6-06 1 -67 -£6 -63 -63 -53 -6E -54
2 -1 -£2 -£3 -68 =54 -54 =61
C4-C5-Cé6-06 1 54 Sz 56 58 &7 ag &0
55 53 567 a5 63 60 &2
Cz-C2-~-C3-0a 1 &1 5e &5 65 69 67 &g
2 5 (] é1 58 64 64 67
C2-C1-0a°=Ca” 1 -122 -1232 -133 -131 -130 -122 -126
=121 =124 -126 -126 -125 -126 =133
05-C1-02 "-C4° 1 120 116 113 114 145 119 31 [
z 12E 111 118 116 117 11€ 114
C1-04°-Ca’'-c3" 1 125 123 130 132 iz 137 128
= 13§ 127 129 126 15 130 128
Ci-D2"-24°=C5° 1 =121 -124 =121 -111 -120 -112 -116
2 -111 -195  -118 -az24 -3 -113 ~-121
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Exocyclic Torsion Angles.

The exocyclic torsion angles can be divided into two groups,
those about the bridging oxygen, and those that define the conformation
of the primary hydroxyl group. The conformation of the primary hydroxyl
groups are defined by 05-C5-C6-06 and C4-C5-C6-06 and are tabulated in
Table 7.7. The values of these torsion angles show that the primary
hydroxyl groups in the C7APNA structure are gauche with respect to both
05 and C4. This is the gg conformation(Figure 2.3 page 42), which is the
most stable for the C6A system. In this conformation the primary hydr-
oxyl groups are pointing away from the molecular cavity. This was found
to be the case in most of the C6A complexes where the complexant is a

substituted phenyl ring(see Chapter 2).

The second group of exocyclic torsion angles are those about
the bridging oxygens(04). These torsion angles are shown in Table 7.7.
The averaée values of the torsion angles about 04 for tem CHA structures
{85}are shown in Table 7.8, along with the average torsion angle for the

C7APNA complex.

Table 7.8. The average values of the exocyclic torsion angles about 04

for ten C6HA complexes, and C7APNA.

Torsion Angle C6A{85} C7APNA
C2-C1-04"-C4' 107 .6 116
05-C1-04"-C4&" =132.7 =126
Cl-04’-C4"-C3’ 130.6 131
C1-04"-C4°-C5° -110.3 117
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C6A has the form of a truncated cone, with the maximum width
at the secondary hydroxyl group end of the molecule. Torsion angles of
120° and -120" would generate a cycloamylose molecule that is cyclindrical
{85}. The average values of the torsion angles for C7A are closer to 120
than those of C6A, which indicates that C7A is closer to being cylindr-
ical than C6A. The average values of the 04 torsion angles for each of
the C6A molecules are remarkably similar with a variation ‘of 6? although
the variation of these angles within each individual complex dis quite
high,:."'25° for group la complexes and *10°for Group 1b complexes. The
variation in 04 torsion angles for the seven residues in the C7APNA

complex is similar to that of the C6A when it is complexed with a

substituted phenyl ring.

Two other torsion angles involving the bridging oxygen are
ccmmoply reported. These are $ and ¢! (defined as 04-C4-04°-C4° and
Cl-04"-C4"-04" respectively). These torsion angles define the glucose
residues ﬁith respect to each other, and hence to the ring axis{96}. In
group la complexes these torsion angles vary considerably from residue
to residue within the molecule, indicating that there is a buckling of
the C6A molecule, which has been attributed to either molecular packing

forces {85} or to strain in the C6A molecule{85}.

When C6A is complexed with a phenyl ring the C6A molecule
becomes more regular(see Chapter 2). This is reflected both in the tors-
ion angles and in the completion of the secondary hydroxyl groups’ ring
of hydrogen bonds. The variation in ¢ and #lfrom residue to residue in

the C6A water complex is 50 whereas in the C6A p-iodoaniline complex the

-]
variation is 14 .
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The values of ¢rand 9‘1 in the C7APNA complex are shown in
Table 7.9. They show that although the bridging oxygens are almost
coplanar, the angle between the ring axis and each of the glucose resid-
ues changes. The guest molecule is at an angle with respect to the ring
axis, and the glucose residues that are close to the N-acetyl group are

moved slightly towards the ring axis.

Table 7.9. The dihedral angles ﬁ and 95/ 5

Torsion Molecule Residue.
Angle 1 2 3 4 5 6 7
1 178 162 131 139 163 149 149
¢ 2 178 161 152 147 147 145 116
,d" | =178 164 = ~=139° =124 =141 =156 =148
2 -166 -160 =154 =150 =142 -144 =124

When ';!‘ or ﬁa is greater in magnitude than ﬂ!or d'then the
n w n=-; ‘-t
secondary hydroxyl groups of residue n are closer to the C7A molecular

axis than those of n-1.
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Intramolecular Hydrogen Bonds.

The numerous crystallographic structure determinations of C6A
complexes have shown that there is hydrogen bonding between atoms 02 and
03 on adjacent glucose residues. In some group la complexes atoms 02 and
03 are too far apart for hydrogen bonds to form, but in these structures
there are at least three strong hydrogen bonds between the secondary
hydroxyl groups. In all other groups there is a complete ring of hydrog-
en bonds between the secondary hydroxyl groups of the molecule. Saenger
has examined several structures at high resolution, both with X-rays and
neutrons, and has conclusively shown that hydrogen bonds can form
between two hydroxyl groups that are separated by up to 3.15i {85}. He
also showed that the hydrogen atoms involved in these secondary hydroxyl

groups hydrogen bonds can be attached to either 02 or 03 {85}.

It has been predicted theoretically and spectroscopically that
the hydroéen bonds between secondary hydroxyl groups in C7A are stronger
than those in C6A(see Chapter 1). This is indicated by a shorter 02-03
distance. In the C7APNA complex there is a complete ring of hydrogen
bonds between the secondary hydroxyl groups in both molecules, which are
shorter, and hence stronger than those found in C6A. The 02-03 distances

are shown in Table 7.10.

Table 7.10. 02-03 distances between adjacent glucose residues.
Molecule Number Bond (A)

012-023 022-033 032-043 042-053 052-063 062-073 072-013
Molecule 1 2.80 2.70 207 2.82 2.79 2.78 2.90

Molecule 2 2.79 27l 2.82 2.77 2.85 2.78 2.74
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Intermolecular Hydrogen Bonds.

Intermolecular hydrogen bonds have been observed in the group
2 C6A structures, both between secondary and primary hydroxyl groups on
adjacent molecules and between either secondary or primary hydroxyl
groups on adjacent molecules. All of the C7A structural data with the
exception of the C7A water structure, that have so far been reported
have had strong hydrogen bonding between the secondary hydroxyl groups
on adjacent molecules, which are related by a two fold or pseudo two
fold axis. The difference between C6A and C7A structures in this respect
must be due to a more favourable geometric relationship between the

secondary hydroxyl groups.

The secondary hydroxyl groups can act as a donor for one hydr-
ogen bond and an acceptor for two hydrogen bonds{121}. The formation of
the intramolecular hydrogen bonds uses half of the donors at the secon-
dary hydrexyl groups end of the molecule. The rest of the donors form
hydrogen bonds with the adjacent C7A molecule. There are strong hydrogen

formed between 03s on adjacent molecules. The 03-03 bond lengths are

shown in Table 7.11.

Table 7.11. Bond lengths between 03s on adjacent C7A molecules.

Bond MMLmyhd)
0113-0213 2.99
0123-0273 2.85
0133-0263 2.80
0143-0253 2.87
0153-0243 277
0163-0233 2.83
0173-0223 2.85

=1 32=
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In all cases the angles between the intermolecular hydrogen
bonds are between 110°and 1250. There are other 02-03 inter—
molecular contacts of less than 3.1 & which have contact distances of
between 2.95 and 3.15 R . The angles between 02 and 03 on facing molec-
ules do not preclude hydrogen bonding between these atoms, although the
angles of the type 01N2-02M3-01N3 are in the order of 60-70° , which
precludes any simultaneous hydrogen bonds between these atoms. There is
no possibility of hydrogen bonding between 02s on neighbouring rings as
angular disposition of other atoms bonded to the 02s 13 incompatible
with a bond being formed. It is reasonable to suppose that there can be
hydrogen bonding either between 0IN3 and 02M3 or between 0IN2 and 02M3,
and that these bonds can not exist simultaneously but that the bonds

between 03s will predominate.
Inter Ring Hydrogen Bonds Between Primary Hydroxyl Groups.

Some primary hydroxyl groups have contact distances of less
than 3.1 A with primary hydroxyl groups on other C7A molecules in the
unit cell. The angle C6-06—-—-06° is in all cases reasonable for hydrogen
bonding, although in some cases the hydrogen bond would be weak. The

contact distances for these bonds are shown in Table 7.12.

Table 7.12 Inter ring primary hydroxyl hydrogen bonds.

Bond Bond Length(z) Bond Bond Length(i)
0146-0256 2.99 0176-0226 2.80
0126-0156 2.88 0136-0176 2299
0226-0266 2.88 0246-0276 2ca D

=1:383=



Hydrogen Bonding Of Included Water Molecules.

The water of crystallisation forms an extensive hydrogen
bonded network around the cycloamylose molecules. There are often two
sites for included water molecules close to each other, both in a sat-
isfactory position for hydrogen bonding with the host molecule. There
are a number of contacts between water molecules of less than 2.4 A. It
is probable that these sites cannot be simultaneously occupied, as this

distance is too short for hydrogen bonding{120}.

There are several clusters of ordered water molecules around
0504 and 0501, and a similar grouping is found around 0514 and 0515. The
former cluster joins 0276 and 0166 together and the latter joins 0246,
0216 and 0146 together. These are illustrated schematically in Figure

-molecular

7.7, and illustrated in Figures 7.8 and 7.9. All reasonable inter{hydro-
xyl distances having distances of less tham 3.1 3 are shown Table 7.13.
There aré distances of less than 3.1 ; which have poor angular
relationships with other hydrogen bonds or with bonds to the carbon atom
of the hydroxyl group. These have not been included in the table. The

location of the waters of crystallisation and their relationship with

the C7A molecule are shown in Figure 7.13.
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Table 7.13 Hydrogen bonded contacts of the water molecules of

crystallisation.
Bond Bond Length Bond Bond Length

A A
0501-0276 215 0501-0520 2.80
0501-0504 2.7 0504-0266 3.10
0504-0166 2.71 0504-0506 2.66
0506-0136 2570 0506-0523 2.49
0508-0133 2.61 0508-0262 2.58
0508-0233 2.70 0511-0122 2.95
0511-0153 295 0514-0256 2.85
0514-0522 2.80 0514-0236 2.83
0514-0176 2.76 0515-0246 2.80
0515—Q166 _ 2.80 0515-0216 /=82
0515-0126 2.72 0517-0146 2.81
0517-0519 2.89 0517-0522 2.91
0520-0226 2.83 0521-0236 3.01
0521-0216 3.05 0522-0166 2.67
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The Substrate.

The substrate was located using difference Fourier maps. The
electron density defining the substrate is almost planar, and sections
through this plane were inspected. These are illustrated in Figure 7.10
The p-nitroacetanilide(PNA) molecule is superimposed on this electron
density. The structure of PNA has not been published, so the coordinates
of the PNA molecule were calculated from two other structures (nitroani-
line{122}, and acetanilide{123}). The PNA molecules were assumed to be

planar, although small rotations of the N-acetyl group have been noted

{123}.

The orientations of the PNA molecule are illustrated in
Figures 7.1, 7.2, and 7.3. The phenyl rings of the guest molecule are at
a co@siderqble angle to the plane of the bridging oxygens, ol for subs-
trate 1 and éy‘for substrate 2. These angles are similar to those found
in the é?A_Rfiodophenol complex{23}, Edband 5ﬁurespectively.1n the C6A
structures this angle is in the range 80-90" (80.6 for p-nitrophenol{49},

and 85.6 for p-hydroxybenzoic acid{49}).

It is possible to rationalise the larger tilt of the guest
molecule in C7A complexes with forces causing the formation of the comp-
lex. Tilting the substrate with respect to the bridging oxygens has the
effect of concentrating the hydrophobic portion of the guest molecule in
the hydrophobic portion of the host molecule. From this result it would
appear that the hydrophobic forces stabilise the complex. The C7A
molecule has a larger diameter than the C6A molecule, thus allowing the
guest molecule more freedom to optimise the geometry of complexation. An

alternative explanation for the increased tilt is the strength of the
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intermolecular hydrogen bonds between the secondary hydroxyl groups. C7A
forms 1:1 complexes in solution. When the C7A molecules crystallise they
usually do so as dimers, and the only way to include both the guest
molecules in the cavity of the dimer is to tilt them so that they do not

collide.

The C7A p-iodophenol complex is much harder to understand in
terms of the forces causing complexation. The C7A p-iodophenol complex
{23} is wunusual in that there are three guest molecules per two C7A
molecules. The host molecules in this complex are hydrogen bonded in
much the same way as the C7APNA complex. The angles of two of the guests
with respect to the C7A’s molecular axis are much higher than those
found in the C6A complex of p-iodophenol and comparable with the angles
found in C7APNA. The phenyl rings are level with the primary hydroxyl
groups of the C7A molecule. The third p-iodophenol molecule is parallel
to the plane of the bridging oxygen molecules midway between the the
dimer’s s;condary hydroxyl groups. It is possible that the presence of
the third guest molecule causes the other two Pp-iodophenol molecules to
be forced away from it down the host’s molecular axis. The C7A struct-
ures so far have not elucidated or simplified the analysis of the driv-

ing forces of complex formation.
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Chapter 8 Complex Formation.

Cycloamyloses form complexes with such a bewildering variety
of substrates that it dis difficult to identify the interaction that
causes complexation. Any hypothesis seeking to explain complexation must
be able to explain the inclusion of compounds as different as Kr and

p-iodoaniline.

The following have been suggested as driving or stabilising

forces for complex formation{46}.

a) The release of energy by the reduction of steric strain in the
cycloamylose molecule.

b) London Dispersion/van der Waal’s forces.

¢) Hydrogen bonding between the guest and host, where possible.

d) Hydfophobic interactions.

The strength with which a variety of different guest molecules
bind to the host molecule has been examined in order to determine which
of the above forces is the most important in the guest host interaction.
It is now generally accepted that the stabilisation of the complex is
due to all of the above interactions, providing that the guest can
interact in a suitable manner. Recently a theoretical discussion of the

complexing forces in the cycloamylose system has been published{125}.

Steric Strain Release As a Driving Force In Complex Formation.

There is a wealth of structural information available for
complexed C6A, both with water and with other substrates{85}. Saenger
noticed that the conformation of the CHA molecule is much more regular

-142-



when it complexed with a guest molecule, than when it is complexed only
with water, and that there are better hydrogen bonds between the
secondary hydroxyl groups when there is a large guest molecule in the

cavity.

The conformation of the empty C6A molecule (the C6A water
complex) is referred to as the ‘tense’ state, and that of the complexed
C6A 1is referred to as the ‘relaxed state’. Diagrams of these tense and
relaxed states are shown in Figure 8.1. Saenger believes that, on the
inclusion of a guest molecule, the host molecule changes from a tense to
a relaxed state. This change in conformation with complex formation is
supported by spectroscopic evidence{28}. Saenger has proposed that there

are three possible routes between the tense and relaxed CéA,

%) The_substrate replaces the included water molecules directly.

b) The empty C6A molecule gains activation energy, transforming the
h;st molecule into an almost hexagonal state ( a low energy
conformation), while the water molecules pick up energy and
become disordered. These disordered molecules are then replaced
by the substrate.

c) The guest forms an intermediate complex with the empty C6A host

and enters the cavity after the complex has gained activation

energy.

The actual change in conformation is, according to Saenger,
the main driving force for complex formation. The relief of strain is
independant of the nature of the substrate, and this qualitative
approach can account for the large variety of substrates that form

complexes. His scheme is illustrated below in Figure 8.2.
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Figure 8.1la The C6A molecule in the 'tense' configuratif)n.
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Figure 8.2 Complex formation steric strain relief

Thg two water molecules in the C6A water complex are not
located of the toroidal axis of the C6A molecule, but are displaced by
0.6 R in order to achieve van der Waals contact with the wall of the
cavity. The contact point of these molecules on the interior of the
cavity is opposite to the most rotated glucose residue in the structure

{121}.

Saenger calculated that the included molecules in the C6A
water complex are ‘high energy’ water molecules, because they are unable
to have as full a complement of hydrogen bonds as the water in the bulk
solvent{121}. The release of these high energy water molecules into the
bulk solvent during complex formation is a favourable process as they
can then have their full quota of hydrogen bonds. The release of the
steric strain and the release of the high energy water molecules const-

itute the first type of driving force for complex formation.
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Evidence For Strain In The C6A Water Complex

Distortion And Strain Across The Linking Oxygen

Figure 8.la shows the physical shape of the tense molecule.
Saenger evaluated the Flory function, which is a plot of the potential
energy contours for the rotation of the bonds about the glycosidic
linking oxygens as a function of the torsion angles ¢ and ¢ “+ The
torsional angles $ and §’ are defined as the clockwise rotation about
the Cl to 04° bond from 04 Cl 04’ C4° and anticlockwise around C4’ to
04’ from 04" C4° 04’ Cl respectively. The definition of the torsion

angles are illustrated in Figure 8.3.

o
) :

Figure 8.3 The definition of the torsion angles

The Flory diagram(Figure 8.4) shows that there is a strained
configuration across one of the linking oxygens, which is the point that
is displaced from the potential energy minimum. When the molecule is
complexed the 1linkage angles are all close to the minimum energy
configuration. There is probably a further stability conferred upon the
host molecule by the formation of the remaining two hydrogen bonds
between the secondary hydroxyl groups. This analysis examines the strain
that exists across the bridging oxygens, but ignores the strain that is

absorbed by the rest of the glucose residue.
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Figure 8.4 The Flory diagram for the C6A water complex

The Distortion And Strain In The Glucose Residue.

A measure of the distortion of a glucose residue has been
developed by French and Murphy{126,127} for the modelling of amylose
structures. Equation 1 defines the Torsion Angle Index(TAI) that French

and Murphy developed.

Torsion Angle Index = Q1) + 1Q21 - IQ3l - IQ41 + Q5! + 1061 -—(1)

Ql = the torsion angle between 05-C1-C2-C3 see Figure 8.5
Q2 = the torsion angle between C1-C2-C3-C4 see Figure 8.5
Q3 = the torsion angle between C2-C3-C4-C5 see Figure 8.5
Q4 = the torsion angle between C3-C4-C5-05 see Figure 8.5
Q5 = the torsion angle between C4-C5-05-Cl see Figure 8.5
Q6 = the torsion angle between C5-05-C1-C2 see Figure 8.5
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Figure B.5 Definition of the torsion angles

The 04-04" vector is referred to as the virtual bond. As the
virtual bond becomes larger the torsion angles Q1-Q6 change system-
atically, Q1,02,Q05,Q06 decreasing and Q3 and Q4 increasing in value{l126}.
French and Murphy calculated the virtual bond length and torsion angle
index for glucose residues in a wide range of environments, and plotted
one against the other (Figure 8.6). They conclude that a change in the
virtual bond length is coupled to the TAI in a predictable manner, and
that it is é sensitive indication of the degree of distortion that is

present in the glucose moiety.

Whan a plot of the virtual bond length is made against the
torsion angle index for CAA complexes(Figure 8.7) it was found that many
of the points do not come close to the line that French and Murphy
constructed. In fact there seems to be little order in the cycloamylose
plot. Harata{78}, took a much larger sample of C6A complexes and found
that the resultant plot follows the general line of the French plot but
with a much larger scatter of points from the median line. Points that
deviate significantly from this median line show that strain across the
virtua; bond is not the sole cause of the distortion. This treatment
does not give an accurate picture of the strain in cycloamyloses which
seems to be more meaningfully analysed by investigating the strain
across the bridging oxygen than by examining the strain within the
glucose residue. The above results indicate that the part of the.cycloa-

mylose molecule under the most stress is the linking oxygens.
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Distortion And Strain Across The Linking Oxygen As A Function Of

Exocyclic Torsion Angles.

In light of the shortcomings of torsion angle analysis for the
cycloamylose system a more simple approach was adopted. It was found
that a significant result could be derived by analysing the exocyclic
torsion angles of the glucose residues in the C6A complexes. A modified

torsion angle index (MTAI), as defined in Equation 2, is used.

MTAI = Q1 + Q2 + Q3 + Q4 -=(2)

where Ql is the torsion angle between C2-C1-04'-C4’ see Figure 8.8
Q2 is the torsion angle between Cl-04°-C4°-C3’ see Figure 8.8
Q3 is the torsion angle between 05-Cl1-04°-C4° see Figure 8.8

Q4 is the torsion angle between C1-04°-C4°-05’ see Figure 8.8

Figure B.B Definition of the exocyclic torsion angles

The MTAI has been evaluated for four C6A complexes and the

results are tabulated in Table 8.1
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Table 8.1. Modified Torsion Angle Index For Some Complexes Of CHA.

Bridging oxygen 142 243 3+4 4+5 5+6 6+1

between residues

Water 18.4 -11.4 -12.5 =-69.9 39.6 =26.0
Krypton 3.6 g7 =2 F =501 45.8 =27.8
p-Ilodoaniline -3.8 Zalss =22, 120 S NTG .2 1.8 2.1
Sodium l-propanesulphonate 2.1 -2.3 3.0 2. 23 S0

A positive value of the MTAI indicates that the glucose
residue after the + sign in the above table has its secondary hydroxyl
groups closed in towards the centre of the cavity. This is clearly
illustrated in Figure 8.1. Where there is a large positive and a large
negative value of the MTAT on adjacent rings then there is little poss-
bility of hydrogen bonding between these rings. The large negative value
of thg‘MTAI for the linking oxygen in the water complex between residues
4 and 5 indicate clearly that there is a substantial distortion from
hexagonality. Residue 5 is opened out with respect to residue 4, as is

indicated by the large negative MTAT.

In the water complex of C6A Q2 and Q4 have positive values and Ql
and Q3 have negative values. The MTAT is a measure of the angle between
the cycloamylose ring axis and the glucose residues on either side of
the bridging oxygen(04”). The cycloamylose molecule would have the form
of a cylinder if the exocyclic torsion angles were close to =120 and

120 which would give a MTAI of 0{85}.

The MTAT index gives a more direct indication of the strain
that the C6A molecule is under. The sum of the magnitudes of the MTAIs
is an indication of the stability of the complex, as stable complexes
have a low value of this sum, and unstable compexes have a higher value

of this sum.
-152=



The Cause Of The Distortion In The C6A Molecule.

The distortion of the water complex of C6A is harder to
rationalise. The formation of the water complex requires the removal of
two water molecules from the bulk of the water. This is a very unfav-
ourable process due to the highly hydrogen bonded nature of water. On
purely steric grounds the C6A cavity could contain more than two water
molecules, but does not due to the inability of the cycloamylose cavity
to fulfil the hydrogen bonding requirements of an additional water{121l,
95}. There is thus no possibility of offsetting the energy required to
separate the water molecule from the bulk by forming hydrogen bonds with

the cycloamylose molecule.

The cycloamylose cavity is thus subject to a “partial vacuum’,
and the macrocycie is already distorted due to two of the primary
hydroxyl groups being in the gt configuration, in order to hydrogen bond
with the Encluded water moleculesJtis further distorted in order to
reduce the volume of the cavity. The hydrogen bonds between the
secondary hydroxyl groups, which are already weak, are fractured by this
and the rigidity of the cycloamylose molecule is lost, with the result
that the molecule becomes more easily distorted, and moves in such a way
to maximise the energy derived from hydrogen bonding with the included
water molecules, and minimise the volume of the cavity. The fracture of
the secondary hydrogen bonds is not an unfavourable process, as it is

likely that strong hydrogen bonds will be formed with the bulk solvent.
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The Mechanism Of Complex Formation Proposed By Saenger

Saenger proposed that steric strain release is the major driv-

ing force for complex formation between the empty and complexed cycloam-

ylose, and suggested that the following mechanism for the change of

bonding between the solute and solvent for complex formation.

1)

2)

3)

4)

5)

6)

The approach of the substrate to the cycloamylose molecule.

The breakdown of the water structure inside the cycloamylose
rings and the removal of one of the water molecules from the
ring interior.

The breakdown of the water structure around that part of the
substrate molecule that is going to be included into the cavity.
The interaction of the substituents on the substrate molecule
with the groups on the ring or interior of the cycloamylose
molecule.

The formation of hydrogen bonds, if any, between the substrate
and cycloamylose molecule. This is extremely fast and can not be
the rate determining step.

Reconstitution of the water structure around the exposed parts

of the substrate:cycloamylose complex after inclusion.

The water structure is modified around the partners of the

reaction in steps 2,3 and 6. Steps 1,2, and 6 are general steps, and

should

not give rise to substrate specificity within the same class of

compounds. When kinetic specificity with respect to substrates is found,

then steps 3 or 4 are much more likely to be rate determining{15,85}.
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(b) Energy derived from London Dispersion/Van Der Waals Forces.

London/van der Waals’ forces are weak attractive forces that
usually arise from dipole—dipole interactions. The size of these
interactions is dependent on the polarisability of the substrate. For a
series of structurally related substrates an approximately linear
correlation exists between the molar refraction of the substrate and the
cycloamylose/substrate dissociation constant {16}. In addition to this
tﬁe dissociation constants for a series of p-substituted benzoic acids

are correlated by a Hammett type relationship which is thought to be

related to the polarisability of the substrate{20}.

Bergeron maintained{128,9} that irrespective of how the guest
penetrates the cavity, provided that it releases the strain and displ-
aces the high energy water, it should bind. The more effectively that

the guest releases the strain, the more effectively it should bind.

Bergeron et al. {128,9} suggested that the following
observations constituted a flaw in the steric strain release system of
stabilising the complex. They observed that benzoic acid binds ninety
times more strongly than phenol, and suggested that the guest enters
from the secondary hydroxyl end, with the guest’s functional group being
in the proximity of the primary hydroxyl groups on the host. This, they
maintained, showed that a molecule with a larger dipole was bound more
firmly to the host, and hence that there was a dependance on a dipolar
interaction. This is contradicted by kinetic evidence{20}, which shows
that the hydrolysis of phenyl acetate is catalysed by the ChA molecule.
The catalysis is due fo the secondary hydroxyl groups, which sﬁggests
that the guest molecule enters the cavity phenyl ring first from the
secondary hydroxyl end of the host, as has been shown in the C7APNA

complex.

=155=



They also noticed that p-nitrobenzoic acid bound less strongly
than benzoic acid, and that p-nitrophenol binds more strongly than
phenol. They also noticed that the p-nitrophenolate anion binds more

strongly than the neutral p-nitrophenol molecule.

From these observations they concluded that a dipole dipole
interaction is resonsible for the formation of the complex. A hydrogen
bonding interaction between the guest and the secoﬁdary hydroxyl groups
on the host can explain all of the above data. It is possible that the
hydroxyl group in the benzoic acid could be in the optimum configuration
for hydrogen bonding with the host’s secondary hydroxyl groups, as the
guest’s hydroxyl group is directed away from its molecular axis. The
phenol molecule has its hydroxyl group pointing along its molecular axis

and away from the host’s hydroxyl groups.

The addition of a nitro group could bring the hydroxyl moiety
in the phenol molecule into a better hydrogen bonding configuration, and

reduce the effectiveness of the hydrogen bonding to the benzoic acid.

Recent n.m.r. studies{42}have shown that substrates bind more
effectively when they are charged; i.e. when the substrate is highly
polarised. These forces are contributary to the complex stability, but
are not likely to make a major contribution to the stabilisation of the
complex, as water is itself a very good solute of dipoles, and the
differences between the solute solute and the solute solvent interact-

ions is probably small.
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(¢) Bydrogen Bonding.

This is more likely to be a bonus which helps to further
stabilise the complex. This is because the hydrogen bonds between the
guest and host are not sufficiently in excess of the hydrogen bonds bet-
ween water and the separate guest and host molecules to account for the
observed strength of binding. Furthermore stable complexes are formed
with substrates such as benzene, for which hydrogen bonding is not
possible., Reducing the polarisability of the water should have the
effect of increasing the strength of the interaction, but this is not

found to be the case {43}.
(d) Hydrophobic Interactions.

Thgse interactions are thought to exist where the solvation of
the complex is energetically more favourable than the solvation of the
individuai-components. These forces are not the result of a strong
interaction between the component parts, but occur from the large

internal cohesion of the water.

In order to understand what happens it is necessary to look at
the way that the guest and host interact with water. The substrate,
which is usually non polar, must first of all make a cavity in the water
structure, which is an energetically unfavourable process. The water is
reoriented in forming the solvation shells, and becomes highly struct-
ured in the volume immediately around the substrate. The formation of
this, energetically favourable, structured hydrogen bonded entity balan-
ces out the unfavourable enthalpy terms associated with the formation of

the cavity in the solvent.
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The top and bottom of the cycloamylose molecule IS clustered
with hydroxyl groups, which can take up when solvated a structure
analagous to the bulk water structure. The solvation of the cavity is
not so easy to rationalise. The interior of the cavity of CHA contains
water which is strained as the result of not being able to have its
complete quota of hydrogen bonds. Thus the energy required to form the
solvent cavity can not entirely be recouped due to the unfavourable
solvation of the cavity. This was neatly illustrated by Schenk and Sand
{29}, who showed that the solubility of C6A was increased by the addit-
ion of relatively small amounts of ﬂeﬁipolar solvents such as ethanol,

which can be solvated by the cavity more favourably than water.

The displacement of water from the cavity and the subsequent
formation of the original water structure should decrease the energy
content of the system, and in part account for the stability of the
complexes. This hypothesis is supported by the fact that complex format-

ion is enhanced by hydrophobic substituents and hindered by hydrophilic

ones{33}.

Spectrophotometric measurements on the C6A and C7A complexes
with azo dyes indicate that a hydrophobic interaction is significant in
the formation of a complex{130}. Another direct indication of the
importance of hydrophobic interactions is found from chemical shift
changes that occur in the n.m.r. spectra when C7A and sulphathiazole
form a complex. These shifts to higher field indicate a predominantly

hydrophobic interaction{131}.
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Kamiyama and Bender{132} have shown that hydrophobic binding
similar to that observed in enzyme substrate interactions may be
possible, especially when the guest is too large to fit into the cavity.
They discussed the interaction of l-adamantane carboxylate with C6A and
C7A in terms of the entropy and enthalpy of formation. The guest is too
large to form an inclusion complex with C6A, and can just fit dinto the
C7A molecule’s cavity. An association complex was formed with C6A as
well as the inclusion complex with C7A. From this they concluded that
the association complex(a complex where the guest is outside the cavity)

was stabilised by a hydrophobic interaction.
Theoretical Examinations Of Complex Formation.

A theoretical examination of complex formation has been
carried out by Tabushi et al.{125}. Their conclusions are interesting
for two reasons. Firstly, they suggest that the C6A molecule is in a
more staﬁie conformation when it is in a tense state, and secondly they
conclude that the main driving force for complex formationm is a dipole

dipole interaction.

There are, however, several aspects of the treatment of their
model that are disquieting. In particular, they have optimised the
atomic coordinates of two of the C6A complexes, and have not treated the
C6A water complex in the same way. This would not be serious if direct
comparisons between the empty and complexed C6A had not been made.
Unfortunately direct comparisons have been made. They have investigated
the C6A methyl orange complex, and have calculated the energies of
complex formation for a 1:1 complex. However, it has been reported that

CbA forms a 2:1 complex with methyl orange{37}.
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Their method of analysis 4is basically sound, and the calc-
ulations are meaningful. They have considered both the enthalpy and
entropy of the various components that go to make up a complex. There
are however several parts of the system which will be extremely
difficult to assess accurately, e.g. the entropy associated with the

tense and complexed C6A molecules.
Conclusion i

It is likely that driving force for complex formation is a
combination of steric strain relief with a concomitant release of the
high energy water and hydrophobic interactions, with van der Waals
forces and hydrogen bonding between the guest and host molecules

stabilising the complex.

It is apparent from this section that there is a tremendous
variety éﬁd complexity in the interactions that occur between the guest
and the host molecules. When this is finally rationalised, the mechanism
and properties of cycloamyloses will be much more easily predicted and

explained.
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Chapter 9 The Effect Of Cycloamylose Size On Its Catalytic Properties.

There are three principal factors that affect the rate of
hydrolysis of substituted phenyl acetates in the presence of cycloamy-
loses. The first of these is the position of the directing group(the
substituent) on the phenyl ring. This was discussed in Chapter one. The
remaining two factors, which are interdependant, are the bulk of the
directing group and the size of the of the cycloamylose molecule. It is
obvious that C6A cannot complex efficiently with an aryl acetate which

has a large substituent.

The structures of the p-iodophenol complexes of C7A{23} and
C6A{95} have been determined. Unfortunately in the C7A case there is a
3:2 ratio of guest to host, which alters the disposition of the guest in
the cavity, and makes a direct comparison of the guest’s orientation in
the C7A and C6A complexes meaningless. The C6A Pp-nitrophenol complex has
been solvé& by Harata{49}. The directing group and its position on thé
ring is the same as that for PNA. A comparison of the disposition of the
guest molecules, the included portions of‘which are essentially the
same, may provide some insight into the difference in rate observed for
the same phenyl acetate in the presence of different cycloamyloses. The

two complexes are illustrated in Figures 9.1.

It is readily apparent from these diagrams that the guest mol~-
ecule in the C7A complex is included further into the cavity than the
guest in the CHA complex. It can be appreciated from these diagrams that
in the C6A case the p-substituted phenyl acetates will not come into the
close proximity of, and are held rigidly away from, the secondary hydro-
xyl groups in the host molecule. When the substrate is complexed with
C7A where there is a larger cavity there is more possibility of the
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Figure 9.]a Cross secrion of the CTAPNA complex (molecule 1)
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Figure 9.1b Crose secrion of the C6A p-nitrophencl complex
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substrate coming close to the secondary hydroxyl groups, and hence exp-
eriencing a larger rate enhancement than the C6A case. It is therefore
interesting to note that kinetic data{46} confirms this hypothesis with
the rate of hydrolysis of p-nitrophenyl acetate being three times faster

in the presence of C7A than in C6A.

The rate enhancement for m-nitrophenyl acetate is greater in
the presence of C6A than in the presence C7A. The disposition of m-
nitrophenol in the C6A cavity is shown in Figure l.6a (page 18). The
steric interaction of the guest molecule in this structure keeps the
substrate further out of the cavity. There will be a force pulling the
substrate into the cavity, which countered by the steric interaction
between between the secondary hydroxyl groups and the phenolic grouping.
In CJA the rate enhancement is lower than in C6A for the hydrolysis of
m-nitrophenyl acetate. This can be explained by the acetate group having
the room in the cavity to rotate away from the secondary hydroxyl groups

thus reducing the rate enhancement.

The effect of altering the size of directing group on cataly-
sis is shown in Figure 9.2. There are two balanced forces at play in the
formation of a complex. Firstly, the cycloamylose molecule wanting to
include as much of the substrate as possible in order to reduce the
volume of the substrate that is surrounded by structured water, which is
energetically unfavourable. Secondly there will be a resistance to this
caused by the steric interaction of the acetate group, and the secondary
hydroxyl groups. As the size of cycloamylose molecule is incrz  eased
there is a larger possibility of the substrate altering its dispo-
sition within the cavity, reducing the interaction of the substrate with
the secondary hydroxyl groups. This is illustrated in the graph in
Figure 9.2.
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The £ -bubyl subsriduted phenyl qroup s extremely bully, .4 th
size of the C6A cavity is not big enough to accomodate it, and does not
allow the optimum contact of the acetate group with the secondary hydro-
xyl groups. 1In C7A the tertiary butyl group can fit into the cavity

neatly, and the ester experiences a greater rate enhancement.

In conclusion the comparison of the p-nitrophenol C6A complex
and the C7APNA complex shows that the predictions of the physical nature
of catalysis on the basis of kinetic and spectroscopic data are

fundamentally correct.
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Observed and calculated structure factora for CTAPNA
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Observed and calculated structure factors for CTAPNA
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10*Fc

Observed and calculated structure factors for CJAPNA
Values given are h,k,1, 10*Po and
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structure factors for CJAPNA
10*Fc

Values given are h,k,l, 10*Fo and
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Observed and calculated structure factors for CTAPNA

10*Fc

Values given are h,k,1, 10*Fo and
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Structure of the complex
cycloheptaamylose—p-nitroacetanilide

THE cycloamyloses (CnA) are a-1, 4-linked cyclic oligomers of
D-glucopyranose, which have attracted considerable attention
as enzyme models'. These doughnut-shaped molecules have
the primary hydroxyl groups from the 6-position of the glucose
residues at one side of the torus, and the secondary hydroxyl
groups from the 2- and 3-positions at the other. On the inside
of the cavity there is a ring of CH groups, a ring of glycosidic
oxvgens, and a further ring of CH groups. resulting in a hvdro-
phobic ether-like interior. The ability of the cycloamyloses to
form stable complexes with a variety of organic compounds by
inclusion within the hydrophobic cavity has prompted their use
as models for the active sites of enzymes. Of particular interest
is the observation that they can accelerate the release of
phenols from a variety of aryl esters® and of anilines from
anilides® by a reaction pathway similar to that observed for the
hydrolytic enzyme a-chymotrypsin. Furthermore, a marked
degree of substrate specificity is observed: thus, the cleavage of
meta-substituted aryl acetates is accelerated more than that of
their para-analogues®. It has been suggested that this specificity
is due to the closer positioning of the nucleophilic secondary
hydroxyl group of the cycloamylose to the ester carbonyl in the
meta complex than in the para complex?. To test the vaiidity of
this hypothesis we have made an X-ray crystallographic study
of a series of meta- and para-substituted acetanilides and
report here on the 1: 1 complex of C7A with p-nitroacetanilide
(PNA).

NH.CO.CH,

Stezowski* has solved the structure of two other CTA
inclusion complexes, those of n-propanol and p-iodophenol,
and the structure of the 2,5-diiodobenzoic acid complex has
also been reported”. Cyclohexaamylose inclusion complexes
have been studied by Saenger® and Harzata”.

Crystais of C7TA-PNA were obtained by slow cooling of 2: 1
mixtures of C7TA and PNA in water; for X-ray photography
‘wet’ crystals were sealed in Lindemann glass tubes. The crys-
tals are triclinic, (C4H0Os)r .CsH3sN;O; nH;0, where n is
about 7, a=1513A b=1554A, c=1569A, a=88.65
B =98.16°, y=103.14° space group Pl, Z =2. The crystals
show pseudo-monoclinic diffraction symmetry (C2), similar to
several complexes reported by Hamilton and Steinrauf®, and
suggesting that the two C7A molecules in the Pl cell are related
by an approximate twofold axis.

Intensity data were recorded on Weissenberg films (CuK,
radiation) and measured by the SRC Microdensitometer
Service to give 5,500 independent reflections with maximum
sin §/A around 0.5. A model of the C7A molecule was con-
structed assuming seven-fold symmetry and using the geometrz
of individual glucose units as found in two C6A structures
The Patterson function suggested that the sevenfold axes of the
two C7A molecules in the unit cell are almost parallel (or
antiparallel) and close to the ¢ axis; it also gave an indication of
the displacement between the molecules. The antiparallel
arrangement, with approximate C2 symmetry, was used, and
structure factors were calculated for a series of models with

Fig.1 One molecule of C7A. with its inciuded molecule of PNA,

projected along the approximate sevenfold axis. The larger circles

represent oxygen 1toms and the smaller carbon. The atoms of the

PNA molecule are shaded. Dotted lines represent hydrogen
bonds.

each of the ring orientations (about the sevenfold axis) varied
in 5° steps. Trial and error adjustment of the ring separation
and tilt then led to an approximate solution with R = 0.40 for
500 reflections and sin 8/A <0.24.

Refinement involved many stages, mostly using the
XRAY72 system of programs’; we used step refinement, later
least-squares procedures, and at various stages Fourier and
difference Fourier summarions. The higher resolution data
were graduaily introduced, and bond lengths and angles were
maintained close to standard values by the program
‘Modelfit’'®, One molecule of PNA was found in the difference
Fourier calculated with 2,900 reflections (E>0.5 and
sin §/A <0.4) at R = 0.25; the second PNA molecule appeared
in a subsequent difference Fourier calculated with the full data
set; water molecules were also found.

Fig. 2 c¢-Axis projection of half the structure.
The other C7TA molecules lie immediately
above those shown here.



Fig. 3 b-Axis projection of one column of C7A molecules.
Seven hydrogen bonds link the O(3)'s of neighbouring molecules
up the stack.

At present, R =0.17 for 5,500 observed refiections (one
isotropic vibration parameter for all atoms). The PNA mole-
cules have been assigned a site occupancy of 0.73 on the basis
of the peak heights in the electron density maps, but it is
possible that the sites are fully occupied by atoms with higher
vibration parameters. In all. 194 non-hydrogen atoms have
been located, 77 in each C7A, 13 in each PNA, and 14 water
molecules. Figures 1-3, prepared with the program Pluto'!,
illustrate the structure. Formally estimated standard deviations
of atom positions are about 0.05 A in the C7TA molecules.
Further refinement is planned.

All glucose units have the C1 chair conformation and
dimensions which do not differ significantly from standard
values. Each C7A molecule has the expected torus shape with
the PNA molecule in the cavity. The PNA molecuie is tilted so
that its N-N axis makes an angle of 30° with the sevenfold axis
ot the C7A ring (see Fig. 3); in this way the oxveen atoms of the
nitro group are approximately in the plane of the seven primary
hydroxyl groups (O(6)'s) and the acetyl group is level with the
secondary hydroxyl groups (O(2)'s and O(3)'s). Each anilide
nitrogen makes a hydrogen bond with a water molecule within

the cavity. The C7A molecules are only slightly distorted from
sevenfold symmetry. The torsion angles & and &', (0(4),-
C(1),-0(4)p-=C#)ai and C(1)a—O(4)n+1~C(4)r-1-0(4), =,
n is the glucose residue number) have mean values of 173 and
—175° with variations around each C7A molecule of =10°. [n
cyclohexaamyloses® the mean values of & and ¢’ are 166 and
—169° with similar variations.

There are no hydrogen bonds or other contacts <3.2 A
between the C7A molecule and the PNA in its cavity; one of
the associated water molecules is very weakly hydrogen
bonded (3.2 A) with a glucose O(3). O(2) of each glucose unit is
hydrogen bonded to O(Z) of its neighbour; the mean distance is
2.79 A, the range 2.6-3.0 A. Very similar hydrogen bonding
oceurs in cyclohexaamyioses®.

Pairs of C7A molecules associate face to face with hydrogen
bonds between their O(3)'s (mean distance 2.80, range 2.7-
3.0 A). The closest approach between PNA molecules is 3.8-
4A (between acetyl groups; if the PNA molecules were not
tilted the acetyvl groups would be impossibly close). These
face-to-face pairs of C7A molecules are stacked along the ¢
axis (Fig. 3) to produce the characteristic ‘channels’.® One pair
of primary hydroxyl groups (O(6)’s) of neighbouring molecules
within a stack is directly linked by hydrogen bonds, and there
are additional links through water molecules. Such head-to-
head stacking is found in all other C7 A complexes** but only in
one C6A complex®. Neighbouring columns are close-packed
(Fig. 2) and there are several hydrogen-bonded links between
hydroxyl groups of neighbouring columns and others through
water molecules. O(4) and O(5) atoms are not involved in any
hydrogen bonds <3.0 A

The PNA molecule has been found, as expected, in the cavity
of the C7A. There are no specific interactions apart from very
weak hydrogen bonding through a water molecule, so we
conclude that van der Waals forces are responsible for holding
the PNA molecule in the cavity. The tilt (Fig. 4) was initially a
surprise, but it ailows the PNA molecule to occupy most of the
available space in the C7A cavity while keeping the polar nitro
and amide groups close to the hydroxyl groups of C7A and the
nonpolar benzene ring in contact mainly with CH groups. If a
molecule of m-nitroacetanilide were similarly held in the C7A
cavity its acetyl group would probably approach the secondary
hydroxyl groups; however, conclusions about this must await
the structure determination of the m-nitroacetanilide compiex,
which we are pursuing.
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