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On First Looking into Chapman's Homer 

Much have I travelled in the realms of gold, 
 And many goodly states and kingdoms seen; 

 Round many western islands have I been 
 Which bards in fealty to Apollo hold. 

 Oft of one wide expanse had I been told 
 That deep-browed Homer ruled as his demesne;  

 Yet did I never breathe its pure serene 
 Till I heard Chapman speak out loud and bold: 

 Then felt I like some watcher of the skies 
 When a new planet swims into his ken; 

 Or like stout Cortez when with eagle eyes 
 He stared at the Pacific – and all his men 

 Looked at each other with a wild surmise– 
 Silent, upon a peak in Darien. 

John Keats,1816. 
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Abstract 
 
The subject area for this thesis is detection of chromosomal regions or QTL causing 

complex variation at the phenotypic level. In particular, the differentiation of sources 

of additive and non additive variation. Unlike QTL mapping using divergent or inbred 

lines, this study aims to explore methods within populations, facilitating direct 

application of techniques such as marker assisted selection. Specifically, objectives 

were to evaluate a linear model or variance components (VC) approach to explore the 

existence and magnitude of variation caused by additive, dominant and imprinted 

QTL segregating in general pedigrees. This has been achieved by combining 

extensive simulation and analysis of real commercial poultry data. Linear models 

were constructed to simultaneously estimate fixed, polygenic and QTL effects. 

Different genetic models were compared by hierarchical extension to incorporate 

more variance components, and likelihood ratio test statistics derived from the 

comparison of full with reduced or null models. A range of additive, dominant and 

imprinted QTL effects were simulated within two-generation poultry, pig and human 

type pedigrees. Effects of family size and structure on power, accuracy of variance 

component estimation, and distribution of the test statistic, were evaluated. Empirical 

thresholds were derived by simulating populations under the null hypotheses for each 

type of simulated pedigree and permutation analysis in real data. In the commercial 

poultry data, dominant and imprinted QTL effects were found for bodyweight and 

conformation score. Under simulation, although power to detect QTL effects was high 

in two-generation livestock pedigrees, considerable variation was found in power and 

behaviour of test statistics. Power to detect dominance was greater in pig and poultry 

than human type pedigrees with theoretical thresholds increasingly conservative as the 

number of dams per sire decreased, highlighting the need for empirical derivation of 

the critical test statistic. The detection of variance caused by imprinted genes and in 

particular estimates of variance components were also heavily dependent upon the 

number of sire and dam families used to estimate them. Results showed that VC 

analysis can be used to routinely detect genetic effects including imprinting and 

dominance in complex pedigrees. The work presented is the most extensive 

evaluation of the detection of non additive QTL using VC methods to date. Results 

challenge standard assumptions made about power and null distributions and show 

that optimal use of methodology is dependent on pedigree structure. 
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1.1  Overview 
 

Current advances in genomics applied to the livestock sector, have enabled 

progression away from the black box procedure of phenotypic selection into the 

realms of DNA based technologies. Studies in livestock species have the advantages 

of large numbers, controlled breeding programs and variation segregating within and 

between populations. Furthermore, the results often have direct statistical and 

biological application in human genetics (De Koning et al., 2007). The ability to 

isolate, and explore genetic variants underlying traits of economic importance is an 

exciting prospect. There is potential for greater understanding of the underlying 

biological mechanisms and the ability to apply selection with much greater accuracy.  

 

New selection tools incorporating genomic information such as marker assisted and 

genomic selection (reviewed by Goddard and Hayes, 2007) must, however, be 

economically feasible and offer tangible benefits over phenotypic selection. 

Foreseeable drawbacks are that intense selection on specific variants might impede 

selection on other traits and that the complex interactions between genetic and 

environmental background could produce unpredictable results. The greatest barrier is 

likely to be the continuing success of phenotypic selection, thus marker based analysis 

is unlikely to be applied to traits, which are easily, cheaply and routinely measured. 

The ability to produce large families in a closely monitored commercial rearing 

environment enables the poultry industry to make rapid genetic progress (with 

conventional selection) utilising short generation times, intensive selection and low 

environmental variance. Scope for the application of genomic technologies lies in the 

identification of specific disease variants, or to select for livestock traits that are 

expensive to measure or only recordable in one sex. The poultry breeding structure 

offers good protection of any investments in MAS because the elite birds do not enter 

the open market. The sequencing of the chicken genome (Wong et al., 2004) and with 

it the discovery of over 2 million SNPs places the industry ideally to take advantage 

of, and to develop new technologies. This Chapter aims to review the methodology 

currently available for QTL mapping within general pedigrees.  
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1.2  QTL mapping.   

 

The general concept of QTL mapping is based upon linkage and the violation of 

Mendel’s principle of independent assortment. The basis of mapping functions is that 

alleles at loci in close proximity are less likely to recombine independently and the 

strength of linkage between two loci is a function of the distance between them. This 

concept of genetic distance is close but not equal to physical distance due to differing 

rates of recombination. If (co dominant) polymorphic DNA variants or ‘markers’ can 

be identified such that their inheritance pattern can be monitored they can be used to 

test for phenotypic associations with regions of the genome. QTL mapping is based 

on the likelihood of a marker being associated with a gene variant affecting the trait of 

interest. Power depends on the strength of linkage disequilibrium between the two and 

the ability to detect statistically the effect of QTL allelic substitution via the linked 

marker(s).  

 

Statistical methods to determine the association of phenotype and marker genotype 

assuming a fixed QTL effect include regression or least squares (Knott et al., 1992; 

Lander et al., 1989; Weller 1986), maximum likelihood (Heath 1997; Jansen et al., 

1998), and Bayesian analyses (Thaller et al., 2000; Uimari et al., 1997). Choice of 

method is largely dependent on the assumptions made and the parameters estimated. 

The main parameters of interest are means and variances of QTL genotypes and 

recombination fractions between markers and QTL. QTL mapping methods are 

reviewed by (Lynch and Walsh, 1998; Lui, 1997, Zheng et al., 1994; Ott,1999; 

Weller, 2001) and (Haley et al., 1994; Knott et al., 1996; Knott et al., 1996; Lander et 

al., 1989; Weller et al., 2002) 

 

1.2.1  QTL mapping in experimental populations 

 

In experimental populations linkage disequilibrium can be created relatively easily. 

Crossing inbred lines with alternate alleles fixed at marker and QTL (unobserved) 

creates the maximum amount of linkage disequilibrium with each locus heterozygous 

and fixed for alternate alleles hence the pattern of inheritance and phase of multiple 

loci is known. Data can be treated as if from a single family because all individuals 

share the same parental genotype. The additive and dominant effects of the QTL can 
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be estimated directly. Designs based upon inbred lines therefore have the greatest 

power to detect QTL. They can use relatively straightforward statistical techniques 

such as regression and various designs using multiple markers to estimate the mean 

effect and location of one or multiple QTL. More complex algorithms such as 

Composite and multiple interval mapping (Zeng 2005) facilitate the study of multiple 

QTL and complex interactions between loci.  

For line cross experiments in livestock or outbred plants, designs for inbred 

populations can be extended based on the assumption that the two lines although not 

inbred will be sufficiently different phenotypically to assume each line is fixed for 

alternative alleles. The analytical approach was developed by Haley et al (1994) and 

pioneered by Andersson et al., (1994)  

 

1.2.2  QTL mapping within outbred pedigrees 

 

In many livestock populations experimental crosses are impractical, unviable or 

uneconomical, and in many natural or human populations they are unfeasible. It is 

often more practical to explore QTL segregating within a population, particularly if it 

is to facilitate selection within that population. Most evolutionary important variation 

occurs within lines (Erickson, 2004) and despite intense selection there is evidence to 

suggest that there is still much variation that might be exploited within commercial 

populations. De Koning et al., (2004) found QTL previously identified in extreme 

crosses, explained considerable variation for production traits in a commercial poultry 

population. Andersson and Georges, (2004) describe as much variation between lines 

of white leghorn as present between white leghorn and its progenitor, red jungle fowl. 

 

Mapping QTL within an existing or commercial population structure is challenging. 

The number of QTL alleles segregating in the population together with marker phase 

is often unknown, and together with allele frequencies must be estimated. 

Informativeness and therefore power to detect a QTL effect is dependent upon the 

amount of missing genotype information, heterozygosity of parents at markers and 

QTL and the fraction of offspring for which the inheritance of the markers is known.  

 

Linkage equilibrium between markers and QTL may exist on a population level. If 

marker and QTL alleles are segregating independently, even if the marker and QTL 
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are linked within families or lines, the average effect of the marker segregation across 

the population will be zero. More recent linkage disequilibrium within families must 

therefore be utilized and QTL effects either estimated within parents, or phase known 

QTL genotypes inferred for each parent. Methods can be divided into two broad 

categories, those that divide the pedigree into sib-ships and estimate an effect within 

each parent or those that use all pedigree information simultaneously. The former 

tends to treat the QTL as a fixed effect and the latter as a random effect with variance 

to be estimated. These methods generally measure the variance of the QTL effect as a 

proportion of the within family variance (assumed to be constant across families) 

either by summing effects across families or by estimating variance components 

across the entire pedigree.  

 

1.2.3  QTL mapping in Livestock  

 

1.2.3.1  Sibship methods 

Methods involve dividing a pedigree into, and estimating fixed effects within, 

sibships, and summing over all families. This is commonly used in livestock species 

where large full or, more commonly, half-sib families are available. Siblings are 

sorted according to the haplotype inherited from a common parent for a given map 

position and phenotypic means of the resulting groups are compared. Scaled, squared 

or nested ANOVA can be used to combine results into an estimate of the genetic 

variance associated with the inheritance of parental alleles (Lynch and Walsh, 1998). 

The Haley-Knott regression has been adapted from inbred lines for the analysis of full 

and half sib pedigree structures (Haley et al., 1994; Knott et al., 1992; Knott et al., 

1996). It is implemented in the QTL Express software (Seaton et al., 2002) and 

described more fully in terms of a half-sib model in chapter 2. The method has been 

used extensively in livestock QTL mapping.  Assumptions include unrelated sires and 

dams, with a single progeny per dam. Despite these assumptions being commonly 

violated in commercial pedigrees, the method has proven to be robust and 

computationally straightforward. 

 

In dairy cattle, the daughter design, based on half sib contrasts has been extended to 

incorporate an extra generation. The resulting granddaughter design (Bovenhuis et al., 

1997; Weller et al., 1990; Weller et al., 2002) uses phenotypes from a third generation 
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to estimate breeding values for the second generation. Using breeding values or 

average effects lowers the residual variance associated with the phenotype providing 

greater power to detect QTL effects. These within family methods are approximate as 

heterogeneity may occur due to families with larger or more QTL segregating, 

maternally inherited QTL alleles, or the polygenic effects in the residual term 

 

Advantages of sibship methods are the transparency and robustness of design. 

Drawbacks are that in most livestock pedigrees, there are other relationships and 

inbreeding loops across pedigrees, which are not taken into account. Half sib designs 

only analyse segregation in one parent thus exploiting only half of the information 

available. In natural or human populations where large sib ships
 

are generally 

uncommon, mapping methods using all genetic relationships within complex 

pedigrees may be
 
a more powerful option.  

 

 

1.2.3.2  Variance Component methods 
 

An alternative to parameterized likelihood functions is to construct likelihood 

functions using the variance components (VC) associated with a QTL (or linked 

group of QTL’s) in a region of interest. This allows for arbitrary and potentially 

complex pedigrees.  

Variance component methodology is based on the assumption that individuals that are 

similar phenotypically are more likely to share alleles identical by descent or IBD. A 

linear model is constructed to partition phenotypic variance into components derived 

from fixed effects, and random effects of additive polygenic, additive QTL and 

residual variance simultaneously. A variance/covariance matrix is constructed for the 

average relationship for the polygenic effects and the relationship at the putative QTL 

position inferred by markers. For any pair of individuals the genetic covariance 

between them is a function of 2Θij where Θij is the coefficient of ancestry or the 

probability that an allele randomly drawn from individual i is IBD with an allele from 

individual j. This coefficient is obtained purely from pedigree data thus is an average 

across the genome. In the case of fitting a QTL, marker data are used to infer Rij, the 

proportion of alleles that the two individuals actually share IBD at a chromosomal 

location. Variance component methodology and IBD estimation is reviewed further in 

Chapter 2. 
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 The test for the presence of a QTL involves comparing the full model with a model 

that does not include a QTL effect using a likelihood ratio statistic. Advantages are 

that many alleles or allelic effects can be modelled, and relationships between 

families can be used to provide information, increasing power to detect QTL. The 

assumption that QTL effects are randomly distributed circumvents the estimation of 

QTL allele frequencies and is robust to violation (George, 2000). This provides a 

much less parameterised environment by assuming the QTL has an infinite number of 

alleles and that both the QTL and the polygenic variance are normally distributed. 

Statistical analysis of the subsequent linear model can be derived using regression, 

maximum likelihood, moments or Bayesian procedures;(Almasy et al., 1998; Bink et 

al., 1998; Hoeschele et al., 1997; Xu et al., 1995).  

 

1.2.3.3  QTL mapping in human pedigrees 

There are two broad approaches to QTL mapping in human populations within which 

either sampled pairs of relatives or large sets of relatives from extended or nuclear 

families are analysed. The most widely used non-parametric method for linkage 

analysis of quantitative traits is sib pair analysis based on the regression method of 

Haseman and Elston (1972). The squared difference between the trait values for a pair 

of relatives is regressed against the proportion of marker alleles IBD. A negative co-

efficient reflects a tendency for individuals to be more similar with respect to the trait 

as they share a greater proportion of the alleles IBD thus implying linkage between 

trait and marker.  

 

1.3  Development of variance component QTL mapping 

 

1.3.1  Humans 

 

Sib methods such as the Haseman Elston method were first developed to treat QTL as 

random effects based on a single marker with genetic variance and strength of linkage 

were confounded. Goldgar (1990) suggested a multipoint IBD method based on 

maximum likelihood, which was extended by Schork (1993) for several chromosomal 

regions and common environment effects. Fulker and Cardon (1994) extended this 

further to include sib pair interval mapping. Xu and Atchley (1995) showed that 

although regression was robust, a maximum likelihood procedure was more efficient 
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with greater power and flexibility due to its ability to take the distributional properties 

into account. Xu and Atchley furthermore developed extensions to Goldgars methods 

for interval mapping and used simulation to compare it with the regression methods 

described by Fulker and Cardon (1995). Xu and Atchley found ML more powerful 

and suggested that the use of the squared difference used in regression could not take 

advantage of the properties of the normal distribution therefore lost information. The 

regression method does have the advantage of speed. Fulker and Cherny (1996) 

showed variance components was a more powerful approach than regression or 

maximum likelihood and Almasy and Blangero (1998) extended the sib pair multi 

point mapping approach of Fulker et al., (1995)., to general relative pairs using a 

regression method to calculate IBD coefficients. Once calculated, these multipoint 

relative pair IBDs were utilised in VC linkage analysis, which considers the 

likelihood of the entire pedigree jointly using maximum likelihood. Table 1 shows the 

main software packages available for variance component mapping in human 

pedigrees.  

Variance component literature for humans is reviewed in a special issue of Behaviour 

Genetics (vol 34 2 March 2000) and includes papers on association tests, haplotype 

analysis adjusting for covariates and non-normality. Almasy and Blangero, (2004) 

discuss incorporating individual SNPs into the model as covariates in positional 

candidate gene approaches. 
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Table 1.1 Software Packages available for Variance Component Mapping  

in Human pedigrees 

Software Method reference 

Solar SOLAR allows for fairly flexible mean 

modeling and uses the regression method 

to calculate multipoint IBD matrices. ML 

for linear model 

Almasy and Blangero 

(1998) 

Merlin Multipoint Engine for Rapid Likelihood 

Inference The program uses sparse binary 

trees to represent patterns of gene flow in 

general pedigrees useful for analyses 

using dense SNP maps. 

(Abecasis et al., 2002) 

QTDT QTDT can be used for linkage and 

association analysis. It is an 

implementation of the Fulker et al (1999) 

family-based test of association using a 

variance components framework. QTDT 

will perform the Fulker et al (1999) test, 

for an arbitrary number of markers and 

alleles, in general pedigrees  

(Abecasis et al., 

2000) 

Genehunter uses HMM to estimate IBD matrices but 

does not handle the VCA as easily and 

flexibly as SOLAR and Merlin. 

(Kruglyak et al., 1995; 

Pratt et al., 2000) 

QTL Express Loki to estimate IBD using gibbs sampler 

and ASREML for variance component 

estimates 

(Seaton et al., 2002) 

Mx Based on Fulker case control (Neale et al., 1997) 
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1.3.2 livestock 

In livestock QTL mapping, random effects methodology is based around the variance 

component approach and builds upon the well-established animal model.  Fernando 

and Grossman (1989) proposed an extension to include random QTL effects by 

inclusion of the covariance structure of the QTL inferred by marker information. Each 

individual with unknown ancestors is assumed to have two unique QTL alleles 

sampled from an infinite population. The probability of receiving a specific parental 

allele for a QTL linked to the marker will be a function of the progeny marker 

genotype and the recombination fraction between them. Based on these probabilities 

Fernando and Grossman demonstrated how a variance/covariance matrix constructed 

for the QTL gametic effects could be included in the animal model to test for linkage 

to putative positions on the genome. This polygenic and QTL model returns estimates 

of the additive genetic variance, the variance due to the QTL at the test location and 

the likelihood value of the solution. It can also be used to provide breeding values for 

the QTL for all individuals in a population.  

 

Schork (1993) and van Arendonk (1994) showed that ML has no problem 

incorporating fixed effects under mixed methodology and postulated that for such a 

model VC could easily be estimated using restricted or residual maximum likelihood 

(REML) techniques. Patterson and Thompson (1971) developed a derivative free 

algorithm for REML, which maximizes the likelihood of error contrasts with respect 

to parameter estimates under assumption of joint multivariate normal distribution. 

 

The Fernando and Grossman model included a single marker effect with no 

inbreeding and assumed completely informative markers. They discussed expansion 

to multiple markers but this did not happen until Cantet and Smith (1992), Goddard 

(1992) and Hoeschele, (1993), Van Arendonk (1994) ( proposed methods to reduce 

the number of equations per animal. Cantet and Smith (1992) proposed the reduced 

animal model (RAM), which only models individuals who are parents. This method 

was used by Goddard to extend Fernando and Grossmans method to include many 

linked markers providing a single QTL was present within a marker bracket. In 

comparison to the allelic matrix used by Fernando and Grossman requiring the 

estimation of 2n +1 effects for each individual, Hoeschele (1993) proposed estimating 

the QTL at the animal level. The genotypic IBD matrix is the proportion of alleles 
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shared IBD and models the sum of the genotypic effects at the loci. This resulted in 2 

linearly equivalent mixed models estimating QTL effects at the gametic or genotypic 

level. Hoeschele also discusses including QTL effects only for genotyped animals and 

their tie ancestors, and incorporating missing marker information. Van Arendonk 

proposed reducing the gametic matrix to an additive effects matrix, thus reducing the 

number of equations necessary to m+1 and furthermore summing these additive QTL 

effects to create one equation per animal. Van Arendonk (1994) used matrix 

partitioning (Tier and Solkner, 1994) to construct the relationship matrix and include 

multiple unlinked markers each associated with a QTL whilst accounting for 

inbreeding. 

 

Van Arendonk (1994) showed using a half-sib design that the variance and position of 

QTL cannot be separated when using a single marker. Grignola et al., (1996a) used 

REML within a simulated granddaughter design to develop models for estimating 

position and variance of a single QTL separately. They developed interval mapping 

initially using flanking markers with known linkage phases in sires and no 

relationships between sires. This was extended for relationships across families. Using 

the reduced animal model and accounting for missing data Grignola et al., (1996a; 

Grignola et al., 1996b) went on to show that these methods were robust to the number 

of alleles at the QTL, regardless of whether relationships between sires and marker 

linkage phases of sires and ancestors were known fully. (Grignola et al., 1997) went 

on to look at linked QTL using variance component mapping. 

 

Other methods such as Bayesian and ML have been used to estimate parameters in 

livestock pedigrees (Bink et al., 1998; Hoeschele et al., 1997; Uimari et al., 1997; 

Uimari et al., 1996). Unlike ML and Bayesian methods, the VC method does not 

require number of alleles to be specified and has been shown to be quite robust to 

number of alleles at a QTL (Almasy and Blangero, 1998; (Xu et al., 1995); 

(Hoeschele et al., 1997). A further advantage of variance component mapping over 

Bayesian methods is that the IBD coefficients only need calculating once and 

therefore with many analyses on the same pedigree is much less computationally 

demanding. Ronnegard et al., (2008) increase computational efficiency using score 

statistics using flexible intercross analysis for the detection of QTL effects between 

and within lines. 
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Problems associated with ML and regression methods are accounting for more 

complex structures associated with several families, relationships across families, 

unknown linkage phases in parents, no of QTL in the population, and varying 

amounts of data on different QTL or in different families. REML handles any 

population structure, incorporates fixed effects easily and is robust to deviations from 

normality (Patterson and Thompson, 1971, Gilmour, 1995, George, 2000). 

 

George et al., (2000) describe a two-step process to map QTL based on estimating 

IBD coefficients with MCMC, and variance components within ASREML. Loki 

handles large pedigrees using an alternative sampling strategy developed by 

Thompson and Heath (1997) to calculate identical by descent (IBD) scores for the 

pedigree at each position, simultaneously estimating missing marker data and 

unknown haplotype information. Georges at al., (2000) used simulation to assess 

performance over unknown marker genotypes, inbred individuals, partially or known 

marker phases and multigenerational data. The difference between the method put 

forward by George et al and earlier methods calculating IBD probabilities (Fernando 

and Grossman, 1989; van Arendonk, 1994; and Wang, 1995) is the use of a Gibbs 

sampler. George et al., (2000) showed their two-step approach to
 
be capable of 

detecting QTL in simulated pig and sheep pedigrees varying in structure and
 
in 

completeness of genotypic information.  

 

To date, applications of variance component mapping to real data are limited. Most 

use the approach described by George et al (2000) and are reviewed in a further 

section. Examples of the use of this method in human pedigrees include analysis of 

neurological disorders, obesity, arthritis, alcoholism and bipolar disorder (Dong et al., 

2005; Nicholls 2000; Visscher et al., 1999b; Zhou et al., 2007) 

 

1.3.3  Linkage disequilibrium fine mapping 
 

The VC framework can also be extended to include linkage disequilibrium 

information in order to fine map QTL. LD fine mapping methods assume that LD is 

primarily due to the introduction of a variant on an ancestral haplotype via mutation 

(or migration) which is partially preserved in descendents of the current generation 



 28 

(Hoeschele, 2001). In livestock populations a high level of haplotype sharing reflects 

long range LD. If this is converted into an IBD probability between two haplotypes 

conditional on flanking marker data it would seem quite straightforward to include 

LD information in the REML/random effects framework to fine map QTL (Lee et al., 

2004; 2002; Meuwissen et al., 2001; 2000). Combined linkage disequilibrium and 

linkage can also be used in a variance components framework to apply genomic 

selection (Calus et al., 2008; de Roos et al., 2007; Goddard et al., 2007).  

 

1.4  Aspects of variance component mapping 

 

As discussed by George et al., (2000) the methodology can be split into a two-stage 

process. Firstly, IBD probabilities and the subsequent allelic or genotypic matrices 

can be calculated recursively or estimated using correlation and simulation based 

techniques, depending on the level of information available. IBD probabilities tend to 

be estimated at the allelic level in animals and the genotypic level in humans. 

Furthermore IBD probabilities can be estimated at marker locations only or in the 

case of multipoint mapping they are estimated at set points along the linkage map.  

The second step involves using the variance/(co) variance matrix to estimate QTL 

effects and breeding values based on the premise that individuals sharing more alleles 

identical by descent will be more alike phenotypically. Variations in the model and 

the fitting of effects on the gametic or animal level can be made in order to model 

dominance and epistasis. Finally, the model must be tested typically using a 

likelihood ratio statistic comparing the likelihoods of the models either fitting a QTL 

or not.  

 

1.5  IBD Probabilities 

 

1.5.1  Recursive algorithms 

IBD probabilities can be computed recursively from a chronologically ordered 

pedigree as described by van Arendonk, (1994), Wang et al., (1995), Pong-Wong et 

al., (2001), Liu et al., (2002) and Nagamine et al., (2004). A major problem faced by 

recursive algorithms is the inability to handle large amounts of missing information. 

These algorithms follow a top down strategy so that missing information in 

individuals early in the pedigree introduces estimation errors throughout the pedigree 
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due to inability to utilise information that is not otherwise passed down through the 

parents.  

  

1.5.2 Correlation-based algorithms 

Almasy and Blangero (1998) use the IBD correlation relationships of Amos (1994) 

between the proportion of alleles shared IBD at the fully genotyped marker and a 

putative QTL. The regression model was suggested by Goldgar, extended to two 

marker interval mapping by Fulker and Cardon 1994, for considering any number of 

markers proposed by Fulker 1995 for sib pairs and extended to include general 

pedigrees (Almasy and Blangero, 1998). Almasy and Blangero use the averaging 

method of Fulker et al., 1995 to extend this equation to allow the calculation of the 

gametic IBD matrix to be conditional on all of the marker information. The 

coefficients become increasingly difficult to estimate in a complex pedigree and with 

missing data.  

 

1.5.3 Simulation based algorithms 

For pedigrees with incomplete marker information direct application of recursive or 

correlation based IBD algorithms is unfeasible. A solution is to use MCMC 

approximation to calculate the expectation of the IBD matrix. MCMC methods have 

the advantage of coping with complex pedigree structure and missing information but 

are computationally intensive and slow to use. They also require certain expertise to 

assess convergence diagnostics often not easily apparent in software packages such as 

LOKI.  

 

Pong Wong et al (2001) get around the problem of missing information by using the 

first phase known flanking marker bracket in a recursive method. With the advent of 

denser maps utilising SNP technology this could be an effective alternative to MCMC 

methods and has been shown by Sorenson (2002) and De Koning et al., (2003) to 

perform well in both simulated and commercial data. Pong Wong’s method differs in 

that it is able to estimate IBD coefficients for all relatives. Pong Wong’s method 

builds on the recursive method described by Wang for calculating IBD at single locus 

combining it with a method to estimate IBD within sibs using multiple markers. 

Complicated calculation of haplotype probabilities are avoided by using the closest 

informative marker bracket with absolute certainty. Pong Wong partially reconstructs 
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haplotype phases and then recursively calculates IBD from oldest to youngest. 

Although this method fails to use information from marker brackets with incomplete 

information it is a fast approximation well suited to take advantage of the increasing 

number of markers and genome coverage available in livestock species. 

 

1.5.4  Model fitting in VC analysis - Imprinting, dominance, and 
epistasis  
 

Calculation of the gametic and genotypic relationship matrices facilitates the genetic 

dissection of complex traits. Linear mixed models assuming zero covariance between 

polygenic and QTL effects and between QTL can be extended to include IBD 

matrices modelling underlying genotypic effects such as imprinting, dominance and 

epistasis. 

 

The gametic relationship matrix has been used to construct a relationship matrix due 

to dominance effects (Schaeffer et al., 1989) and for the analysis of gametic 

imprinting effects (Gibson et al., 1998). Genomic imprinting is defined by Hanson et 

al., (2001) as ‘where the genomic segment inherited from one parent is inactivated 

such that the expression of an allele in one of these regions is dependent upon the sex 

of the parent from whom it was inherited’. Examples include Prader-Willi syndrome 

(Nicholls 2000b), and Beckwith-Wiedemann syndrome (Shete et al., 2007) in 

humans, Callipyge in sheep (Charlier et al., 2001) and Igf2 in pigs (Nezer et al., 

1999). Morison et al 2001 have compiled an imprinted gene database that contains 

more than 200 imprinted genes in humans and other organisms.  

 

Hanson et al., (2001) discuss parent of origin effects in linkage analysis of 

quantitative traits using the gametic relationship matrix where the estimated 

proportion of marker alleles shared IBD is partitioned into paternal and maternal 

components. Parent specific estimates of allele sharing can then be used in VC or 

Haseman Elston methods of linkage analysis so that the effect of the QTL on the 

maternally derived chromosome is potentially different from that of the paternally 

derived chromosome. If markers are not informative IBD coefficients need to be 

estimated and it is a straightforward extension to employ separate recombination 
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fractions for males and females reported to be on average 1.6 greater for females than 

males in mammals (Broman et al., 1998) 

Under simulation, power to detect an imprinted QTL using VC analysis was 

significantly increased when modelling separate parental contributions (Hanson et al., 

2001). The authors note that the splitting of the IBD matrix is expected to inflate type 

1 error rate due to multiple testing unless a correction such as the Bonferroni is 

applied (Ott, 1991). This was not found with data incorporating variable family sizes 

and missing data suggesting that these factors do not produce substantial inflation. 

Hanson et al conclude that the VC method was more powerful than sib pair based 

methods both for imprinting and linkage effects as noted by Pratt, (2000).  

 

Shete and Amos, (2002) proceeded with Hanson’s method to formalise the model and 

provide non-centrality parameters that can be used to determine sample sizes to attain 

specified power for a given significance level.  Shete and Amos decompose the total 

additive genetic variance into parent specific additive genetic variances and the 

dominance variance. The variance components approach was developed from sibship 

analysis to imprinting in extended pedigrees by the incorporation of an extra 

parameter to benefit from information from  relationships such as double first cousins 

(Shete et al., 2003). 

 

Epistasis is widely reported to play an important role in genetic variation (Carlborg et 

al., 2004a; Carlborg et al., 2004b; Kerje et al., 2003) and could play a key role in 

marker assisted selection as shown by introgression studies in maize and mice 

(Shimomura et al., 2001). Liu (2002) outlines an algorithm for computing the 

conditional covariance between relatives given genetic markers. Procedures are 

described for additive, dominance, additive by additive, additive by dominance, 

dominance by additive and dominance by dominance conditional relationship 

coefficients. Purcell and Sham (2004) review the inclusion of epistasis within a 

variance components framework concluding that power to detect these interactions is 

low as apparent variance components in sub models ‘soak up’ a large proportion of 

the variance due to epistatic effects in the main model.  

A new software program R’Tools’, has been developed by Ricardo Pong Wong. Pong 

Wong’s deterministic method is used to incorporate epistatic and dominance effects in 
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the manner described by Liu. In this way R’Tools calculates the IBD matrices 

necessary to estimate dominance and epistatic effects.  

 

1.6  Statistical analysis of the linear mixed model 

 

Once a linear model has been constructed and parameters estimated, a test statistic 

indicating the presence of a QTL can be obtained, from which size and position can 

be determined. Hypothesis testing for a ML approach is essentially performed by 

comparing the likelihood of the data under the alternative hypothesis (H1) postulating 

the presence of QTL at the examined location with the likelihood of the data under the 

null hypothesis of no QTL at that position. The latter is computed using a reduced 

model without the haplotype or genotype effects.  

A likelihood ratio statistic can then be obtained by twice the difference of the Log 

likelihoods from the two models. For a single point test, under the null hypothesis of 

no QTL the test statistic follows a 50:50 mixture distribution where one component is 

a point of mass 0 and the other is a χ
2

1 distribution. For testing an entire chromosome 

the LR can be approximated by a χ
2

1 distribution (Allison et al., 1999; Self et al., 

1987; Williams et al., 1999b). The empirical distribution of the test statistic under the 

null hypothesis has been empirically found to follow a chi-square distributed between 

1 and 2 df for chromosome wide tests by others (Hoescele, 1997; Xu and Atcley 

1995; Grignola, 1996).  

 

To account for the one sided nature of the test the P value for the LR test statistic is 

typically calculated by dividing the corresponding P value by 2. Such P values are 

valid providing that the assumption of multivariate normality is not violated. LR can 

also be converted to a LOD score by dividing the LR by 2loge(10) (~4.65).  

Simulations suggest that for sample sizes typical of linkage studies QTL need to have 

moderate effects accounting for at least 20-30% of the phenotypic variance in order to 

have reasonable power to detect a LOD greater than 3 (Hanson, 2001) 

 

Using simulated data, George et al., (2000) found the empirical distribution of H0 for 

a single test to agree with the theoretical 50:50 mixture and that this distribution was 

relatively unaffected by population structure. For testing an entire chromosome they 

found that the empirical distribution was more likely to follow χ
2

1 distribution 
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although this was more conservative at the 5% threshold than the empirical. They 

suggest applying the Bonferroni correction or permutation analysis. However, 

because each analysis took approximately one hour the anticipated computational 

demands are high. 

 

Proponents of the regression method claim that VC relies heavily on normality 

assumptions. Severe departures from multivariate normality e.g. kurtosis have been 

shown to inflate type 1 error rates (Allison 1999). Blangero et al., 2000 suggest 

overcoming this by adjusting the likelihood ratio by a correction factor based on 

heritability and kurtosis in order to provide a more robust LOD score. Shete et al., 

(2004) found that Winsorization of non-normal data increased power but did not 

greatly diminish type I error. Zeegers et al., (2004) have suggested that power could 

be increased by the use of covariates and explore various methods of doing so. The 

use of permutation tests to control type I error are an attractive but relatively 

unexplored option.  

 

1.7  Application of VC to livestock data 

 

The two step method described by George et al., (2000) has subsequently been
 
used to 

map a locus influencing bipolar disorder in a complex
 
human pedigree (Visscher et al. 

1999), growth and carcass traits in pigs (De Koning et al 2003, Nagamine et al., 

2004) and birth weight in red deer (Slate et al., 2002). Nagamine, de Koning and Slate 

all use VC methods after identifying candidate regions with a Least Squares approach.  

 

De Koning et al., (2003) used 10 pig lines and 10 chromosomal regions previously 

analysed by Evans et al., (2004; De Koning et al., 2003; 2003) and Knott et al., 

(1996) to compare VC and half sib methods. Nagamine et al., (2004) showed that 

QTL for growth traits and back fat were segregating within several commercial pig 

populations and Slate et al., (2002) used Georges two step approach of Loki and 

REML to compare half sib and VC analysis for putative birth
 
weight QTL on three 

separate linkage groups in a
 
wild population of red deer. 

 

All three studies found that IBD coefficients were similar regardless of method used.  

De Koning et al. found Pong Wongs deterministic method for IBD estimation was 9 
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times faster than LOKI using 10,000 iterations although the number of iteration was 

higher than recommended (10 times number of individuals in pedigree). Convergence 

diagnostics were not analysed. Similarly, Nagamine et al. (2002) (compared results 

using their simple deterministic method (SMD) with LOKI and found that SMD and 

MCMC had highly correlated test statistics of 0.95 and least squares analysis 

correlation with SMD and MCMC was 0.70 and 0.71 respectively. Slate et al., (2002) 

used SOLAR 1.7.3 (Almasy and Blangero, 1998) to perform QTL
 
analysis by VC. 

Although SOLAR uses a different
 
algorithm and was able to calculate only

 
single IBD 

coefficients at marker locations rather than multipoint
 
IBD coefficients LOKI and 

SOLAR provided similar
 

IBD estimates at the marker locations. SOLAR also 

provided
 
the same maximum-likelihood solutions (yielding a test statistic

 
of zero) as 

the REML software, even when handling IBD
 
coefficients derived from LOKI. Both 

LOKI and SOLAR were subsequently
 
used to conduct a VC analysis within the half-

sib ships where
 
the linear regression approach had found evidence for segregating

 

QTL. The VC methods found evidence (sometimes highly significant)
 
for segregating 

QTL within these families, but generally with
 
higher P values (i.e., less significant) 

than those obtained
 
by linear regression. 

 

Nagamine et al reported a large range of genotypic values across sires but more 

importantly in terms of marker assisted selection large differences between allelic 

values within sires, verified by large t-statistics within the respective sire families. 

High QTL heritabilities could have been due to selective genotyping and although 

optimistic in terms of possibility of marker assisted selection authors felt that a more 

complex model should be fitted such as one including dominance effects.  

 

Discrepancies between QTL detection using least squares and variance component 

analysis have been reported by multiple studies. (De Koning et al., 2003; Nagamine et 

al., 2004; Slate et al., 2002; Zhang et al., 1998). Differences range from the QTL 

being almost significant with one method and significant with another to completely 

undetected with one and very significant with another. In general least squares 

detected a greater number of QTL than VC. Slate et al., postulate that reduced power
 

due to missing marker data may mean that the VC method simply failed
 
to detect a 

genuine QTL i.e. type II error. De Koning et al, report that QTL significant at the 5% 

level tend to be detected by both methods and that the comparison was robust to the 
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choice of threshold suggesting differences amounted to more than merely type 1 error. 

Where QTL were segregating in the other parent in half sib analyses VC tended to be 

more powerful. 

 

To date applications of VC in livestock have been used as a comparison with or to 

verify results from more traditional methods. As methods have only been compared 

within structured sibships, perhaps it is unsurprising that sibship methods were more 

powerful. Intuitively, the VC method might be expected to have greater
 
power than 

the linear regression approach as more phenotypic
 
records are used. The different 

assumptions underlying
 
the linear regression and VC methods could be responsible 

for some inconsistencies. The HS model estimates an allele substitution fixed effect 

for every sire, with maternally inherited alleles assumed to be randomly distributed 

and used only to improve sire information. VC is a variance estimate across the entire 

population accounting for both maternal and paternal alleles assuming segregation in 

both. The VC
 
method assumes that QTL effects are additive and could be confounded

 

by maternal effects or QTL acting in a non additive fashion (e.g.,
 
dominance). For 23 

out of 46 QTL detected only by HS in the De Koning analysis only a single sire was 

heterozygous and for 5 others only 2 sires were heterozygous. Differences in allele 

frequencies in males and females could be sampling, selection, or imprinting. HS 

methods missed QTL when none of the sires were segregating, for example, the 

halothane mutation in Spanish Pietrain was detected by VC as none of the 5 sires 

tested were heterozygous in comparison to 13 out of 60 dams that were heterozygous. 

QTL segregating at low frequency could be missed by VC as power of detection 

depends on variance explained by QTL across the population.  

 

1.8  Conclusions  

 

Large enough QTL effects have been detected within commercial populations to 

make the implementation of MAS potentially worthwhile. Estimates of gene 

substitution or allelic effects and or QTL variance are important for MAS. 

Implementations of MAS for selection of young dairy sires before progeny testing and 

for selection in nucleus breeding schemes have been shown to potentially produce 

genetic and economic gains (Mackinnon et al., 1998; Meuwissen et al., 1997; Van 

Arendonk et al., 1994). The past decade has seen huge advances in the mapping and 
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identification of quantitative trait loci (QTL) in both experimental crosses and 

commercial populations of livestock. In order to successfully implement marker 

assisted selection (MAS) in future breeding programs it is important to identify QTLs 

segregating within lines as well as understand the interactions between the QTL that 

are being selected for and other genes. There is a need to model underlying effects 

and opportunity to dissect complex quantitative variation.  It is important to 

understand why theses alleles are segregating as there could be pleiotropic effects 

upon life traits.  

 

Methods that fully account for all relationships are expected to provide greater power 

to detect QTL (Almasy and Blangero 1998). This has been the case in human 

pedigrees  (Visscher et al., 1999; Williams et al., 1999) although is less clear cut 

within structured livestock populations  (Slate et al., 2002, George et al., 2000, De 

Koning et al 2003). Variance component mapping does provide a less parameterised 

statistical environment than traditional fixed effects models and can be used where sib 

structures are not available in human, natural, and commercial livestock populations. 

VC has been shown to be robust to number of alleles or QTL, and can estimate 

genotypic and allelic effects across an entire population. The methodology is less 

computationally intense than extending maximum likelihood and Bayesian methods. 

The method is based on that currently used within livestock production to identify 

individuals with greatest genetic merit and select them as parents for the next 

generation. It is, therefore, ideally suited for current livestock systems as despite high 

computational demands, much of the technology is already in place. 

MCMC iterative methods are available and efficient for estimating IBD coefficients 

with varying levels of missing genotypic and phase estimation. With the advent of 

SNP technology and cheaper genotyping, however, deterministic methods of IBD 

estimation look promising for fast efficient calculation of relationship matrices. 

REML has been shown to be efficient and robust in the estimation of variance 

components with software such as ASREML able to handle as many as six user 

defined matrices there is scope to extend models to incorporate higher order effects 

such as imprinting, dominance and epistasis.  

 

Questions of how missing marker genotypes, unknown marker phase, pedigree-size, 

map density and QTL size influence the distribution of the test statistic remain 
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unanswered. Permutation and bootstrapping methods employed within regression 

analyses seem at present too time consuming and computationally intensive to 

provide a feasible option. It remains that there is a clear need for more testing of the 

methodology within various population structures and whether there is enough power 

to detect interactions within and between loci in existing commercial population 

structures is not yet clear. 
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CHAPTER TWO 

 

 Theory of variance component mapping 
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2.0 Introduction 

 

The following chapter gives an account of the more general methods throughout the 

thesis underpinning variance component analysis. Relationships between relatives 

must be estimated conditional on marker information. The linear model is defined to 

indicate sources of variation. The mixed model equations are then constructed and 

solved by the partitioning the phenotypic variance proportional to the genetic 

covariances estimated in the relationship matrices. Likelihoods are estimates using 

residual maximum likelihood in the ASreml software package (Gilmour et al., 1995).   

 

2.1 IBD Estimation 

 

2.1.1 The numerator relationship matrix 

 

The probability of identical genes by descent occurring in two individuals is termed 

the coefficient of kinship thus фij is the probability that a random allele from i is IBD 

with a random allele from j. The additive genetic relationship between two individuals 

is twice the coefficient of kinship. 

 

The matrix indicating additive genetic relationships amongst individuals is termed the 

numerator or A matrix. A is symmetric with diagonal element for animal i (aii) equal 

to 1 + Fi, where Fi is the inbreeding coefficient of animal i (Wright, 1922). The 

diagonal element represents twice the probability that two gametes taken at random 

from animal i will carry identical alleles by descent. The off diagonal aij is twice the 

probability that a random allele from i is IBD with a random allele from j so aij = 2фij. 

and A = 2Ф.  

 

Elements of the A matrix are the expected proportion of alleles IBD in the genome 

between two individuals for example full sibs 0.5, half sibs 0.25, first cousins 0.125. 

When multiplied by the additive genetic variance in the population (σu
2
), Aσu

2
 is the 

covariance amongst breeding values (Mrode, 2005). 

 

The inverse of the A matrix (A
-1

)
 
is used to solve the animal model. There are fast 

algorithms to calculate A and its inverse (Henderson 1975; Quaas 1976).  
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Table 2.1 gives Hendersons method to obtain the inverse of the A matrix, which can 

be derived directly from pedigree information, by adding the elements of A
-1

 in 

sequence using the following rules.  

 

Table 2.1 Henderson’s rules for estimating the inverse of the A matrix 

   Add to element (and its transpose) in A
-1

 

Animal 

(a) 

Sire 

(s) 

Dam 

(d) (a,a) (a.s) (a,d) (s,s) (d,d) (s,d) 

 Known Known 2 -1 -1 1/2 1/2 ½ 

 Known - 4/3 -2/3  1/3   

 - Known 4/3  -2/3  1/3  

 - - 1      

 (Cameron, 1997)  

 

Best linear unbiased prediction or BLUP is a method developed by Henderson (1949) 

by which fixed effects and breeding values can be simultaneously estimated.   

Measurements on relatives of an individual are comparable with repeated measures of 

the individual and can therefore contribute information to that animals breeding value 

once account has been taken of the genetic relationship between the individual and its 

relatives. The covariance between relatives is r σ
2

A where r is the relationship 

coefficient and σ
2

A is the additive genetic variance of the population. 

 

2.1.2 IBD estimation for the QTL 

 

The QTL effect associated with each individual is considered as a random effect with 

a covariance structure proportional to the IBD probability at the QTL position. The 

predominant method used throughout the thesis was that of Pong-Wong et al., (2001) 

implemented in the R’Tools software package. The method is based on a recursive 

method of Wang et al., (1995) where the IBD probability between the gamete of an 

individual and ancestral gametes is function of the probability of descent and the IBD 

probability of the ancestor’s gamete with the two gametes of the parent. In the 

previous method (Wang et al., 1995), if the true haplotype phases for the nearest 
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informative marker bracket are uncertain IBD then estimation should be integrated 

over all possible phases across the whole population. With the R’Tools method the 

haplotype phase is estimated using the nearest marker bracket that can be used with 

absolute certainty. 

 

From Pong-Wong et al., (2001) the method assumes markers with n loci at known 

positions with recombination as expected from the Haldane mapping function. Similar 

to the numerator matrix described above, the Gametic IBD matrix (G) is a matrix 

containing IBD probabilities between the two gametes and the probability of these 

alleles being the same gamete originating from a common ancestor in the base 

population. The IBD probability between the gamete of individual i inherited from 

parent x (Ai
x
) and the gamete of an ancestor j inherited from parent y (Aj

y
) conditional 

on the linked marker genotypes (M) is equal to  

P (Ai
x
 ≡ Aj

y 
| M ) = P (Aj

y
 ≡ Ax

p 
| M ) * PDQ (Ai

x
 ← Ax

p 
| M )  

    + P (Aj
y
 ≡ Ax

m 
| M ) * PDQ (Ai

x
 ← Ax

m 
| M ) 

Where ≡ stands for the identity between alleles, and P (Aj
y
 ≡ Ax

p 
| M ) and  P (Aj

y
 ≡ 

Ax
m 

| M ) are the IBD probabilities between gamete Aj
y 

and the paternal (Ax
p
) and 

maternal (Ax
m

) gametes of parent x respectively.   

PDQ (Ai
x
 ← Ax

p 
| M ) and PDQ (Ai

x
 ← Ax

m 
| M ) are the probabilities of gamete Ai

x 

of individual i being the same as gamete Ax
p  

or Ax
m

 of parent x.  

The PDQ of the gamete is the probability that the gamete of an individual inherited 

from one of its parents is either the parent’s paternal or maternal gamete. When the 

parent is not inbred the PDQ is the same as the IBD between the individual’s gamete 

and the parents gamete. The probability of descent is calculated conditional on the 

closest marker genotype of the individual and its parents. Probability given 

inheritance of markers is given in table 2.2. 
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Table 2.2.  Probability of descent of QTL allele given parental inheritance 

of flanking markers  

Marker 

Descent 

M1 M2 PDQ (Ai
x
 ← Ax

p 
| M ) PDQ (Ai

x
 ← Ax

m 
| M ) 

P P (1-θ1) (1-θ2) / (1-θ) (θ1θ2 / (1-θ) 

P M (1-θ1) θ2 / (1-θ) θ1(1-θ2) / θ 

M P θ1 (1-θ2) / θ (1-θ1) θ2 / θ 

M M θ1θ2/ (1-θ) (1-θ1) (1-θ2) / (1-θ) 

P - (1-θ1) θ1 

M - θ1 (1-θ1) 

- P (1-θ2) θ2 

- M θ2 (1-θ2) 

- - 0.5 0.5 

θ1, θ2, θ recombination rate between the first marker and the QTL, the second marker and the 

QTL and the two markers, respectively (assuming the haldane mapping function. 

P the individual inherited the paternal allele from the parent 

M the individual inherited the maternal allele from the parent 

 

 When a marker genotype is missing for a given individual the method does not 

attempt to reconstruct the genotype (unless the genotype can be inferred with absolute 

certainty given its parents’ and offspring’s genotypes). The missing genotype is said 

to be uninformative and the next marker locus is used.  

 

To estimate the IBD between sibs whose common parent is a base individual for 

example in a two-generation pedigree, the method is combined with that proposed by 

Knott and Haley (1998) given in table 2.3. 
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Table 2.3. Probability of IBD at QTL between sibs given IBD state at 

flanking markers (a) 

 

IBD state at flanking 

markers 

IBD
(b)

 

M1 M2  

1
(c)

 1 ((1-θ1)
2 

+
 
θ1

2
)
 
((1-θ2)

2
 + θ2

2
 ) / ((1-θ)

2
 + θ

2
 ) 

1 0 ((1-θ1)
2 

+
 
θ1

2
)
 
((1-θ2)θ2 ) / ((1-θ)θ ) 

0 1 ((1-θ1)θ1)
 
((1-θ2)

2
 + θ2

2
 ) / ((1-θ) θ ) 

0 0 4((1-θ1)θ1)
 
((1-θ2) θ2 ) / ((1-θ)

2
 + θ

2
 ) 

1 -
(d)

 ((1-θ1)
2 

+
 
θ1

2
)
 
 

0 - 2((1-θ1)
 
θ1) 

a)
 from Knott and Haley, (1998) 

b)
 Formula is the IBD probability assuming that the common parent is non inbred 

c)
 Both sibs inherited the same/different marker from the parent 

d)
 No informative marker found (the parent is a homozygote or inheritance in sibs is 

unknown) 

 

2.1.3 Protocol 

The protocol therefore for the estimation of the gametic IBD relationship matrix using 

the method of Pong-Wong is as follows. 

1) Marker haplotype phases for all possible markers are reconstructed given the 

individual and the individual’s parents’ marker genotypes.  

2) IBD is calculated recursively starting from gametes with the oldest ancestors to the 

youngest descendents assuming that  

 a) The diagonal of the IBD matrix is always 1 

 b) If the individual is from the base population its IBD between its gametes 

and its ancestors is 0  

 c) If the individual is not from the base population the probability of descent 

for each gamete is calculated using the closest informative marker bracket with a 

known haplotype phase using (1) to calculate the IBD probability between parental 

gametes and gametes of previous ancestors, and if  IBD probability is to be calculated 
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between two gametes that originated from a common parent (i.e. sibs) using the 

formulae given by Knott and Haley (Table 2.3) including offspring of the base 

animals for which PDQ cannot be estimated. 

 

2.1.4 Genetic covariances between relatives conditional on genetic 

markers  

 

Liu et al., (2002) define genetic covariances of additive and non-additive effects and 

show how relationship matrices for additive and non additive effects can be simply 

derived from the gametic IBD matrix. 

 

The genetic covariance of two individuals i and j at a single locus is  

 

Cov (gi,gj) = rijσ
2

A + uijσ
2
D 

 

Where σ
2

A and σ
2

D  are the additive and dominance variance associated with the locus 

and g is the genotypic value. The relationship coefficients of r and u depend on the 

conditional probability of QTL allelic identities between individuals i and j.  

 

These allelic identities can be estimated at putative QTL positions based on observed 

flanking marker genotypes. Qi
l1 

and Qi
l2 

denote homologous alleles 1 and 2 of 

individual i at the lth QTL locus given M marker information. The symbol ≡ stands 

for the identity between alleles. 

 

 

 

 

 

 

 

Therefore from the gametic IBD matrix 
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=

2221

1211

PP

PP
Gij  

The additive covariance between i and j is )(2/1 22211211 PPPPrij +++=  

and the covariance due to dominance i.e. the inheritance of two alleles identical by 

descent is 21122211 PPPPuij +=  

 

2.2 Calculating the gametic IBD matrix and relationship matrices G 

and D needed for the mixed model analysis  

       

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 An example pedigree for a single sire (3) mated to two dams (1 & 2) each with four 

offspring, creating a nested full sib/half sib family structure. Figures in bold denote marker 

genotypes for each individual. The first allele is paternally derived and second is maternally 

derived i.e. individual 5 inherited marker allele 4 from its father and marker allele 3 from its 

mother.  

A matrix  
Individual 1 2 3 4 5 6 7 8 9 10 11 

1 1           

2 0 1          

3 0 0 1         

4 0.5 0.5 0 1        

5 0.5 0.5 0 0.5 1       

6 0.5 0.5 0 0.5 0.5 1      

7 0.5 0.5 0 0.5 0.5 0.5 1     

8 0 0.5 0.5 0.25 0.25 0.25 0.25 1    

9 0 0.5 0.5 0.25 0.25 0.25 0.5 0.5 1   

10 0 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.5 1  

11 0 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.5 0.5 1 

The A matrix is derived purely from the pedigree information i.e. ignoring 

information from markers and is based on the expectation or average degree or 

relatedness between relatives over all loci. 

 

1

64 5 7 108 9 11

23

23 14 32

13 43       12       12 42       12       42       12

1

64 5 7 108 9 11

23

23 14 32

13 43       12       12 42       12       42       12
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Gametic IBD Matrix from marker information 
 

    4 5 6 7 8 9 10 11 

    P M P M P M P M P M P M P M P M 

P 1                               

4 M   1                             

P 0.08 0 1                           

5 M 0 0.99   1                         

P 0.91 0 0.08 0 1                       

6 M 0 0.001 0 0.001   1                     

P 0.91 0 0.08 0 0.91 0 1                   

7 M 0 0.001 0 0.001 0 0.99   1                 

P 0.08 0 0.91 0 0.08 0 0.08 0 1               

8 M 0 0 0 0 0 0 0 0   1             

P 0.91 0 0.08 0 0.91 0 0.91 0 0.08 0 1           

9 M 0 0 0 0 0 0 0 0 0 0.99   1         

P 0.08 0 0.91 0 0.08 0 0.08 0 0.91 0 0.08 0 1       

10 M 0 0 0 0 0 0 0 0 0 0.99 0 0.99   1     

P 0.91 0 0.08 0 0.91 0 0.91 0 0.08 0 0.91 0 0.08 0 1   

11 M 0 0 0 0 0 0 0 0 0 0.99 0 0.99 0 0.99 0 1 

Where P and M denote paternal and maternal allele respectively.  

 

For the Gametic IBD matrix IBD probabilities are estimates of IBD between 

individuals at the position of a putative QTL based on information from the linked 

marker genotypes shown in the pedigree and taking into account the probability of 

recombination between marker and QTL.  

 

Table 2.4 Calculating additive, dominant, maternal and paternal  

 relationship coefficients from the Gametic IBD matrix 

 

Genetic 

covariance  
(4,5) (6,8) (8,10) 

A matrix 0.5 0.25 0.5 

Additive  

G 

0.5*(0.08+0.0+0.0+0.99) 

= 0.54 

0.5*(0.08+0+0+0) 

= 0.04 

0.5*(0.91+0+0+0.99) 

= 0.95 
Dominant 

D  

0.08*0.99 + 0*0 

= 0.08 

0.08*0 + 0*0 

= 0 

0.91*0.99 + 0 * 0 

= 0.91 

Paternal  

Gp 

0.08 0.08 0.91 

Maternal 

GM  

0.99 0 0.99 

 

G, GM, GP and D are the appropriate relationship matrices used to model the additive, 

maternal, paternal and dominant QTL effects at each position tested.  It can be shown 

that these relationship matrices are easily estimated from the gametic IBD matrix 

(Table 2.4). Here it can be seen that although the expectation of IBD between 

individuals 6 and 8 is 0.25, in fact they do not share any marker alleles in common 

and therefore the only probability of relatedness is based on the probability of 0.04 of 
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recombination between QTL and marker genotype. The Dominance coefficient is 

based on the probability of two individuals sharing both alleles identical by descent 

i.e. in this example where full sibs inherit both the same paternal and maternal alleles 

as seen for individuals 8 and 10. 

 

 The full additive and dominance matrices are given below.  

 

Additive matrix G 
 4 5 6 7 8 9 10 11 

4 1        

5 0.54 1       

6 0.45 0.04 1      

7 0.45 0.04 0.95 1     

8 0.04 0.45 0.04 0.04 1    

9 0.45 0.04 0.45 0.45 0.54 1   

10 0.04 0.45 0.04 0.04 0.95 0.54 1  

11 0.45 0.04 0.45 0.45 0.54 0.95 0.54 1 

 

 

Dominance Matrix D 
 4 5 6 7 8 9 10 11 

4 1        

5 0.08 1       

6 0.001 0.001 1      

7 0.001 0 0.91 1     

8     1    

9     0.08 1   

10     0.91 0.08 1  

11     0.08 0.91 0.08 1 

 

The R’Tools software uses this method to calculate the genotypic matrix by a linear 

transformation of the gametic IBD matrix G by  

Q = ½ KGK’  

where K is I*[1,1], I is an identity matrix of equal rank as the number of individuals 

and * denotes the Kronecker product of the two matrices. Hence the Q matrix is the 

overall IBD status between individuals i and j and is not the probability of all gametes 

among two individuals being inherited from a common ancestor but is twice the 

coefficient of coancestry among them. Elements of Q are not strictly probabilities as 

with inbreeding they can be greater than 1. The Q matrix is the equivalent of Wright’s 

numerator matrix described above with either no markers or completely informative 

markers. Paternal and maternal matrices to model imprinting are obtained by  

 

Qp = KGK’ K=I*[1,0] 

Qm = KGK’ K=I*[0,1] 
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2.3 Genetic variances 

Observed phenotypic value is derived from the genetic contribution at all loci and an 

environmental deviation often described using P = G + E.    

Considering a single locus with 2 alleles the genotypic values can be arbitrarily 

assigned. 

 

A2A2                         A1A1  

       A2A1 A1A2 

 

-a        0      d2        d1                                        a 

(Falconer and Mackay, 1996) 

The value d of the heterozygote depends upon the degree of dominance. Dominance is 

the deviation from the midpoint of the genotypic values and can be defined as an 

intralocus interaction where the genotypic value of the combination of alleles differs 

from the value of taking each gene singly. A further source of interaction is 

imprinting where the heterozygotes may take different values dependent upon 

parental inheritance. For example A1 may take a different value depending on whether 

it is paternally or maternally inherited. The dominance effect (d1+d2/2) and the 

imprinted effect (i) is equal to (d1-d2)/2.  

 

The relative magnitude of these components determines the genetic properties of a 

population and in particular the degree of resemblance between relatives. The 

variances of the genetic effects depend on the frequency of the alleles in the 

population, if frequency of A1 is p and A2 is q then V(a) = 2pq[a+d(q-p)]
2
, V(d) = 

(2pqd)
2
, and V(i) =  2pq[p

2
 + i

2
 -2ad(p-q) + p

2
d

2 
+ q

2
d

2
]. 

 

The variance of phenotypic values in a population can be divided into genetic and 

environmental components and furthermore the genetic components attributed to 

those due to additive genetic variance and those due to dominance or within locus 

interactions thus VP = VG + VE and VG = VA + VD + Vi.  In section 2.1 it was shown 

that the genetic covariance between 2 individuals was derived from additive and 

dominance components. The coefficients r and u for these genetic covariances can be 

obtained by using information from relatives see Falconer and Mackay, (1996) for an 

in depth description.   
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Relationship  Coefficient  

  r u 

MZ twins  1 1 

Offspring:parent ½ 0 First degree 

Full sib ½ ¼ 

Half sib 

Offspring:grandparent 

Uncle (aunt): nephew(niece) 

¼ 0 

Second degree 

Double first cousin ¼ 
 

1/16 

Offspring:great grandparent Third degree 

Single first cousin 

1/8 

 
0 

 (Falconer and Mackay, 1996) 

 

Furthermore with a nested sib design variation within dams also includes variation 

due to common environment and maternal genetic effects.  

 

Variance 

component 

additive dominance maternal Common 

env 

Environmental 

within sire  ¼     

within dam ¼ ¼ 1 1  

residual ½ ¾   1 

 

Thus it can be seen that the degree of resemblance or IBD coefficients can be used to 

divide phenotypic variance into genetic and non genetic components. In order to 

estimate dominance monozygotic twins, full sibs or double first cousins are needed.  

The following section shows how linear models can be used in general pedigrees to 

apportion phenotypic variance using covariance matrices derived from relationships 

between all individuals.  
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2.4  The Linear model and mixed model equations 

From Mrode (2005) 

For animal i in a population of (n), a linear model can be used to estimate fixed and 

additive genetic effects (ai). 

iiii eay ++= βx' (1) 

where yi is the phenotypic observation of individual i, xi is a known incidence vector, 

β is an unknown vector of fixed effects and ei is a random error.  

Information from relatives contributes to the prediction of ai through the covariance 

matrix of ai values. This covariance matrix is built by the use of the numerator 

relationship matrix A and the variance explained by the genetic effects.  

The model can be extended to include a QTL effect (Fernando et al., 1989). 

ii

m

i

p

iii euqqy ++++= βx '  (2) 

where p

iq and m

iq are the paternal and maternal additive gametic effects of individual i 

at the QTL and ui is the polygenic effect. Again this model uses the information from 

relatives to contribute to the predictors of the additive effects through the 

corresponding covariance matrices. For the polygenic term the covariance matrix is 

built by the use of the usual numerator relationship matrix among individuals as in (1) 

and the variance explained by this term. The covariance matrix of p

iq and m

iq  is 

determined by the gametic identical by descent (IBD) matrix of the alleles at the QTL 

(G) and the variance explained by the QTL. In matrix notation model (2) can be 

written as  

eZqZuXβy +++=  (3) 

where y is a vector of phenotypic observations for the trait under consideration 

(dimension n), β is a vector of fixed effects, u is a random vector with additive 

genetic effects of the polygenic terms (dimension n), q is a random vector with 
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gametic effects at the QTL (dimension 2 n), and e is a random vector of residuals 

effects (dimension n). 

The matrices X and Z are incidence matrices relating the phenotypic observation to 

the corresponding effects of the animals. The expectations of the random variables are  

Xβ(y)(q)(u) === EEE and,0,0  (4) 

The variance–covariance structure of the random variables is  
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var ˆ
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 (5) 

where I is an identity matrix and 222 and,, equ σσσ  are the variances explained by the 

polygenic term, the QTL and the residual variance, respectively. The total additive 

genetic variance ( 2

aσ ) is equal to 222

qua σσσ += . Because of (5)  

2

e

2

q

2

u σσσ IZGZZAZ(y) ++= ''var  

Let 222222 // qequeu and σσσσσσ ==  then the mixed model equations of (3) are  
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σ

σ  (6) 

The total breeding value for an animal i is the sum of the estimate for the polygenic 

term ui and the estimates of qi. because of (5) 

 2

q

2

u σσ GAa +=)(var (7) 

with expectation E(a) = E(u) + E(q) = 0. 
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2.5 Extensions 

 

This model can be extended further to incorporate breeding values for other genetic 

models providing the appropriate relationship matrices can be estimated.  

 

2.5.1 Common environment 

 

y = Xβ + Zu + Wc + Za + e      

 

2

eσIWZGZ'ZAZ'var(y) +++= 2

c

2

q

2
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Where W is an incidence matrix relating individuals to dam families and c is a 

common environment effect. G is the genetic covariance matrix for the additive QTL 

effects.   

2.5.2 Dominance 

 

For a model including dominance 

 

eZdZqZuXβy ++++=  

Where d is a random vector of dominant effects at the QTL and the matrices X and Z 

are incidence matrices relating the phenotypic observation to the corresponding 

effects of the animals. The expectations of the random variables are  

Xβ(y)d)(v)(u) ==== EEEE and0(,0,0  
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The variance–covariance structure of the random variables is   
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where I is an identity matrix and 2222 and,,, edvu σσσσ are the variances explained by the 

polygenic term, explained by the additive QTL, dominant QTL and the residual 

variance, respectively. G and D are the genetic covariance matrices for the additive 

and dominance QTL effects respectively.  
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Its expectation is E(a) = E(u) + E(v) = 0. 

 

2.5.3 Imprinting 

 

emZpZZuXy ++++= mpβ  

The matrices X, Z, Zp and Zm are incidence matrices relating to fixed, polygenic, 

paternal QTL and maternal QTL effects respectively. 
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The variance–covariance structure of the random variables is  
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where I is an identity matrix and 2222 and,,, empu σσσσ are the variances explained by the 

polygenic term, explained by the paternal QTL, maternal QTL and the residual 

variance, respectively. Gp and Gm are the genetic covariance matrices for the paternal 

and maternal QTL effects respectively. 
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Model Summary 

(1)   y = Xβ + Zu + Wc + e    (null or polygenic)  

(2)   y = Xβ + Zu + Wc + Za + e        (additive) 

(3)   y = Xβ + Zu + Wc + Za + Zd + e       (additive  + dominance) 

(4)   y = Xβ + Zu + Wc + Zmm + Zpp + e      (maternal + paternal) 

(5)   y = Xβ + Zu + Wc + Zpp  + e       (paternal) 

(6)   y = Xβ + Zu + Wc + Zmm + e       (maternal) 

Thus the polygenic model (1) uses the A matrix and average relationships between 

sibs to estimate the variance due to all genes. Model 2 also includes the additive 
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matrix modelling genetic relationships within the pedigree, ignoring dominance. 

Model 3 divides the genetic covariances into additive and dominant components by 

also estimating the probability of individuals sharing both alleles at a QTL locus IBD 

and the deviation of this from variance due to additive effects. Model 4 ignores 

dominance but divides the genetic variance into maternal and paternal components by 

attributing covariance coefficients to sibs sharing maternal and paternal alleles and 

allowing variance of alleles inherited maternally or paternally to differ. Models 5 and 

6 only incorporate relationships according to inheritance of the paternal or maternal 

allele respectively. 

2.6 Solving the mixed model equations 

 

Variance components for each model were estimated using REML (Patterson et al., 

1971) implemented in the ASReml package (Gilmour et al., 1995).  In order to 

estimate the variance components for the different models, ASReml requires the 

knowledge of the inverse of the relationship matrices. ASReml calculates the inverse 

of the A matrix directly from pedigree data, but a separate routine was used to invert 

G, GM, GP and D before using them in ASReml.  

 

The mixed model equations are solved in ASReml using residual maximum 

likelihood. The reml procedure maximises the joint likelihood of all error contrasts 

rather than of all contrasts as in ordinary maximum likelihood. It is based on a log 

likelihood of the form  

 

( ) ( ) ( ) ( ) ( ) }{ XVX'VXbyV'Xby 11 −− −−−−− logdetlogdet1/2Lα   

 

Where b is the generalised least square solution (GLS) and satisfies  

 

X’V
-1

Xb=X’V
-1

y 

 

Comparison of models and tests specific for each analysis are detailed in individual 

chapters. 
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CHAPTER 3 

 

QTL analysis of bodyweight and conformation score in 

commercial broiler chickens comparing variance component 

and half-sib methods 
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Summary 

 

The aim of the study was to investigate Quantitative Trait Loci in previously 

identified regions of chicken chromosomes 1, 4 and 5 relating to 40-day bodyweight 

and conformation score using a two-generation design. Half-sib analyses and variance 

component analysis were implemented and compared.  The data consisted of 100 full-

sib families (46 paternal half-sib families) with trait data for a total of 2,708 offspring. 

Both generations were genotyped for markers spaced approximately every 16, 14 and 

8 cM on chromosomes 1, 4, and 5, respectively. For QTL mapping the trait values 

were adjusted for fixed and random dam effects using a mixed linear model. Half-sib 

QTL mapping was performed using the regression method in QTL Express for both 

paternal and maternal families. Confidence intervals and significance thresholds were 

estimated using bootstrapping and permutation analysis. Variance component 

mapping was done testing a novel module in QTL Express using MCMC to estimate 

IBD coefficients and ASReml to estimate QTL effects.  Chromosome 4 showed 

nominal significance for QTL affecting bodyweight and conformation, and linkage 

was confirmed for both traits on chromosome 5. Results varied according to method 

of analysis and common parent in the half-sib method. Variance components analysis 

(VCA) tended to detect effects segregating from both parents. Analysis of dam 

families gave the strongest evidence for segregation of QTL. The results suggest that 

conformation score segregates as a separate trait in sires and dams.  

 

 

3.1  Introduction 

There is growing evidence to suggest that much of the segregating variation identified 

in line cross experiments can also explain variation within lines (Andersson et al., 

2004; De Koning et al., 2003; Evans et al., 2003; Wong et al., 2004).  Even after 50 

generations of selection, De Koning et al., (2003) detected QTL previously identified 

by line cross experiments between broilers and layers segregating within a 

commercial broiler population. An important advantage of within population methods 

of QTL detection is their immediate potential for use in marker-assisted selection. 



 58 

Using a three generation half-sib analysis De Koning et al., (2004) measured birds 

from a commercial broiler dam line (Cobb Breeding Co. Ltd., Chelmsford, UK) for 

many traits relating to bodyweight, conformation and carcass composition. QTL 

explaining a large proportion of phenotypic difference for bodyweight (p<0.001), and 

residual feed intake (p<0.01) were confirmed, and evidence found for QTL affecting 

the relative bodyweight of bone and muscle in the thigh p<0.05, carcass weight, and 

conformation score.  Previous experimental crosses in broilers  have located multiple 

QTL for bodyweight, growth and carcass traits on chicken chromosomes 1, 4 and 5; 

(Carlborg et al., 2003; Ikeobi et al., 2002; Sewalem et al., 2002; van Kaam et al., 

1999) reviewed by Hocking (2005) and Abasht (Abasht et al., 2006).   

 

Because a three-generation design detects QTL segregating in the grand parental 

generation, the relevance of the results in terms of selection in the current populations 

can be reduced. Marker assisted selection is most beneficial where phenotypes are 

difficult to measure and with the advent of much more cost effective genotyping it 

could be argued that the results of a two-generation design would provide marker-trait 

information that was closer to the selection line.  To fully exploit variation, there is a 

need to assess the efficiency of available methods for detecting QTL within general 

pedigree structures. 

 

Variance component analysis (VCA) is potentially a powerful tool for commercial 

pedigree structures enabling QTL analyses to take place within a population and 

without the need to construct sub pedigrees for analysis purposes. Half sib designs 

(Knott et al., 1996) only examine the segregation of alleles in the common parent 

assuming a single offspring per mating and that all parents are unrelated, therefore, 

potentially ignoring important information. George (2000) describes a two-step 

variance component mapping approach, simulating complex pedigree structures to 

detect QTL effects. Little work, however, has been done on VCA using real data. 

Comparisons between half sib and variance component designs have been made by 

Nagamine (2002), and De Koning (2003) in commercial pig populations and Slate 

(2002) using a natural deer population. Variance component designs were more 

powerful where QTL were segregating in the parent not used as the common parent in 

the half-sib analysis.    
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The aim of the current study was to use full-sib families from the same broiler dam 

line as De Koning et al., (2004) (i.e. a mostly independent sample of the same 

population) to re-examine previously identified candidate regions for QTL affecting 

bodyweight and conformation score using a two-generation design. Half-sib (HS) and 

variance component analysis (VCA) methods of analysis were implemented and 

compared. Comparisons were also drawn with results from the previous three-

generation design.  

 

3.2  Materials and methods  

 

3.2.1  Trait measurements 
 

Phenotypes were available for 40-day bodyweight and conformation score. Markers 

on chromosomes 1, 4 and 5 were used because these linkage groups explained the 

most variation for these traits in previous studies. The 100 largest dam families were 

selected from 10,286 population records, resulting in 2,708 offspring with phenotype 

records from 46 half-sib sire families. There were an average of 59 and 27 offspring 

per sire and dam, respectively. Progeny were from two flocks across 17 hatch weeks. 

Birds were genotyped for markers spaced approximately every 16, 14 and 8 cM on 

chromosomes 1, 4, and 5 respectively. Markers were selected from the consensus 

linkage map (Schmid et al., 2000) and tested for heterozygosity (see De Koning et al., 

(2004) for full details). Information content was generally high with 24 sires and 25 

dams on average being heterozygous at a given marker.  

  
3.2.2  Analysis of phenotypic data 
 

Variance components and fixed effects were estimated prior to QTL analysis with an 

animal model (1) using ASReml (Gilmour et al., 2000).  Variance components were 

estimated using 10,286 phenotypic records in the population, representing the birds in 

the QTL experiment as well as all their contemporaries.  Direct maternal effects were 

estimated by fitting Dam as a random effect. 

y = Xβ + Zu + Wc + e (1) 

 

where y is a vector of phenotypic observations, β is a vector of fixed effects of sex, 

hatch and dam age within flock, u, c and e are vectors of additive polygenic effects, 
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random maternal effects, and random residuals, and X, Z and Ware incidence 

matrices relating to fixed, polygenic, and maternal effects. 

 
3.2.3  Linkage maps 
 

Linkage maps were estimated and evaluated using CriMap (Green et al., 1990). 

Options build and flips were used to build and test alternatives for the consensus maps 

for chicken chromosomes 1, 4 and 5. Map distances given in Appendix 3.1 were 

referenced against, and found to be largely in agreement with, the previous study and 

existing published maps. The three linkage groups corresponded to the consensus map 

at approximately 128-205cM, 75 – 182cM, and 57-104cM for chicken chromosomes 

1, 4 and 5 respectively. The recently published map from the chicken genome project 

(Wong et al.,2004) was longer than the estimated linkage map by 12, 23, and 5 cM 

with published distances of 77, 108 and 47 cM for linkage groups on chromosomes 1, 

4 and 5 respectively.   

 

 
3.2.4 Half sib QTL analysis 
 

Prior to half sib analyses phenotypic values for bodyweight and conformation score 

were estimated using residual values from a mixed model in GENSTAT (Lawes 

Agricultural Trust, Harpenden, U.K.)  

 

y = Xβ  + Zd + e     (2) 

 

where y is a vector of observations,  β, d and e are vectors of; fixed effects  (sex, 

hatch and dam age within flock), random dam effects, and random residuals. X and Z 

are incidence matrices relating to fixed and random dam effects.  

Half sib families were analysed with Sire and Dam fitted independently as common 

parent. In each case information from the other parent was incorporated to improve 

phase estimation. Where possible, missing genotypes were inferred from pedigree 

information. 

 

Genotype, phenotype and map information were used to run single QTL analyses 

using 3.1 QTL express software at http://QTL.cap.ed.ac.uk/ (Seaton et al., 2002). 

QTL Express uses a multi marker approach to interval mapping in half sib families 
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(Knott et al., 1996). The probability of QTL genotype at 1 cM intervals was estimated 

conditional on marker genotypes and recombination fraction/distance from marker. 

Phenotype of offspring was then regressed onto QTL genotype using within family 

least squares analysis to test for a significant effect of allele substitution.  

 

yij = mi + bipij + eij          (3) 

 

Where yij is trait score for offspring j originating form parent i, bi is the substitution 

effect for a putative QTL, pij is the conditional probability for individual j of 

inheriting the first parental haplotype and eij is the residual effect. 

 

Within families, t-statistics were used to test the significance of the QTL effect at the 

overall best position of the QTL. Across families a test statistic was calculated as an F 

ratio for every map position obtained using the ratio of mean squares of a model 

fitting a QTL to not fitting a QTL. The within family analysis was combined across 

families to estimate variance of QTL effects. The proportion of within family variance 

explained by the QTL was estimated by:  

 

h
2

QTL = 4*[1-(MSEfull/MSEreduced)] 

following Knott et al.,(1996) 

 

Empirical significance thresholds were estimated by using permutation tests 

(Churchill et al., 1994) involving 1,000 randomisations to estimate the 5 and 1% 

thresholds. The confidence interval of the best position was determined using 1,000 

bootstrap replicates, sampling all individuals with replacement (Visscher et al., 1996). 

Confidence intervals obtained by bootstrapping are often large due to heterogeneity in 

best QTL positions amongst individual families (de Koning et al., 1998). In order to 

narrow confidence intervals, further bootstrap analyses were carried out using only 

families with significant allele substitution effects from (3). Heterogeneity of QTL 

position was also explored by estimating the putative position of the QTL indicated 

by each individual family in turn. Families showing a significant allele substitution 

effect for both traits were investigated as potential indicators of pleiotropic effects. 
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3.2.5 Variance component QTL analysis 

 

Variance component analysis (VCA) was carried out using a two–step approach 

following (George et al., 2000) based on Loki and ASREML (Gilmour et al., 2000) 

software as implemented within QTL express  

(http://latte.cap.ed.ac.uk/hkcServletLoki.html). Loki, as described by Thompson and 

Heath (1999), uses a Monte Carlo Markov Chain (MCMC) method to calculate 

identical by descent (IBD) scores for the pedigree at each position, simultaneously 

estimating missing marker data and unknown haplotype information. A Q matrix 

containing the proportion of alleles IBD at the QTL for each relationship in the 

pedigree, and an A matrix containing the average proportion of alleles identical by 

descent over all other loci is calculated. In the second step, ASReml uses the IBD 

proportions to model the phenotypic covariance for a putative QTL. The analysis is 

based on the premise that individuals sharing more alleles identical by descent will be 

more alike phenotypically. By fitting QTL and polygenic effects simultaneously, 

VCA generates the proportion of variance explained by the polygenic component, and 

by the QTL.  

 

y = Xβ + Zu  + e       (4)  

y = Xβ + Zu + Zv  + e                               (5) 

 

where y is a vector of phenotypic observations, β is a vector of fixed effects, u, v and 

e are vectors of additive polygenic effects, QTL effects and random residuals, and X 

and Z are incidence matrices relating to fixed and polygenic effects. 

 

Fixed effects used to estimate variance components in (1) were included in the 

ASReml step to model a putative QTL at 1 cM intervals. A test statistic for a given 

location was obtained by running the animal model without a QTL effect (4). Twice 

the difference between logarithms of the likelihood of (5) vs (4) was used as a log 

likelihood ratio (LR) test. Following (Self et al., 1987) it is assumed that LR will 

follow a mixture of a chi-squared distribution with 1 df and a zero-peaked 

distribution. This was attained by halving the p value for chi-square with one df to 

account for the one sided nature of the test, as discussed by (Allison et al., 1999). 
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3.3 Results 

 

3.3.1 Analysis of phenotypic data 
 

Summary statistics and heritabilities for bodyweight and conformation score are given 

in Table 3.1.  Bodyweight was normally distributed within males and females. 

Conformation score was approximately normally distributed and although slightly 

negatively skewed was treated as normal. The traits were correlated with a phenotypic 

correlation of r = 0.37. Results from the animal model (1) indicated a significant 

direct maternal effect. Possible dominance effects confounded with maternal effects 

were assumed negligible. 

 

Table 3.1. Variance component estimates for 40 day Bodyweight and 

Conformation Score  

Animal model  

Trait 

 

Mean
a
 

 

SD 

 

Range 
Heritability 

 

Heritability fitting dam 

effect 

Bodyweight 

(g) 

2514 298 820 – 3700 0.19 0.07 

Conformation 3.34 0.88 1.0  - 6.0 0.21 0.11 

a
 raw phenotypic means.

b
 Direct maternal effect from mixed model assuming no 

dominance. 

 

3.3.2 QTL analysis 
 

Results are given for the half-sib QTL analyses using residual phenotypic values from 

(2). In general, the fitting of fixed effects had a greater effect on the F ratios and the 

estimated QTL position than the direct maternal effect. Fixed effects for VCA were 

estimated using the ASREML step within QTL Express.  Fitting a random dam effect 

did not affect QTL heritability or power to detect an effect. It did affect putative 

position of the QTL and polygenic heritability reducing the polygenic heritability to 

almost zero, possibly indicating that the maternal effect was overestimated in the 

mixed model.  Results are shown for QTL analyses accounting for fixed effects only 

with the random dam effect omitted. 
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Figure 3.1. Log-transformed nominal P values along chromosomes for sire, dam and 

variance components analysis. Bodyweight on left, conformation on right, top to 

bottom chromosomes 1, 4 and 5. dashed line for P=0.05 and  dotted line for P=0.01 
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3.3.3 Evidence for QTL 
 

5% Significance thresholds based on permutation analysis are indicated in figure 3.1. 

VCA and HS analysis of sire families achieved nominal significance for conformation 

on chromosome 4. Analysis of dam families exceeded the threshold to confirm 

linkage on chromosome 5 for QTL affecting bodyweight and conformation score. 

 

Figure 3.1 compares evidence along the chromosomes for the VC and half sib 

analyses using a logarithmic scale. There was some evidence for a QTL affecting 

bodyweight on chromosome 1. However this does not reach significance and is not 

replicated in the half sib analyses. QTL for weight on chromosomes 1 and 5 were 

close to significance with P values of 0.06. VCA found significant QTL for 

bodyweight on chromosome 4 at 80 cM and conformation on chromosome 5 at 25 cM 

in agreement with the half-sib analyses. Conformation was significant at the nominal 

1% level to confirm linkage.  

 

3.3.4  QTL positions 
 

Putative positions for QTL varied between analyses. For the half-sib analyses position 

often appeared to vary according to common parent, for example conformation on 

chromosome 4. Bootstrapping, however, failed to estimate confidence intervals less 

than the entire chromosome. The VCA did not alter the putative position of the QTL 

and where it appears there are separate optima for sire and dam analyses, the VCA 

showed evidence at both positions. For QTL affecting weight on chromosomes 4 and 

5 the VCA was uninformative along much of the chromosome although did agree 

with the most significant position. 

 
3.3.5 Significant family analysis 
 

For the half-sib analyses using only families segregating with a significant QTL, there 

were on average 5 and 6 families segregating with 270 and 180 total progeny for sire 

and dam families, respectively. With the exception of body weight on chromosome 1, 

all analyses achieved genome wide significance under permutation analysis 

explaining between 16 and 80% of the within family variance.  
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 Table 3.3 shows that these families were useful for gaining more insight into the 

position of the QTL. Families segregating for conformation on chromosome 4 map to 

separate positions with discrete confidence intervals for sire and dam families. On 

chromosome 5 in the half-sib dam families there is a narrow confidence interval for 

conformation score compared with a large CI in sire families.  

 

Table 3.2 Proportion of within family variance explained by fitting a QTL 

for half sib families using different analyses 

 
Vw QTL (%) 

Trait Chr 
Sire Dam VCA De Koning et al (2004) 

1 0.003 0.003 0.04 0.07** 

4 0.03* 0.03 0.03
†
 0.24*** 

Bodyweight 

5 0.002 0.06** 0.03 - 

1 0.02 0.03 0.02 - 

4 0.03* 0.02 0.02 - 

Conformation 

Score 

5 0.02* 0.09** 0.04
††

 0.11** 

Sire and dam denote common parent, VCA refers to QTL heritability from variance 
component analysis and previous refers to three-generation analysis by De Koning et al., 
2004)  
*  pointwise significance P < 0.05, ** chromosome wide significance, *** genome wide 
significance 
† pointwise 5% significance assuming χ

2
0.5, ††

 
pointwise  1% significance assuming χ

 2
0.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 67 

Table 3.3. Confidence intervals (CI) obtained by bootstrapping for half-

sib analyses for 40-day bodyweight and conformation score using only 

families showing a significant allele substitution effect 

Trait  

 

Sire 

 

 

Dam 

 

 

Chr 

Putative QTL 

position  

(cM) 

Confidence 

Interval       

(cM) 

Putative QTL  

position  

(cM) 

Confidence 

Interval 

(cM) 

1 51 31-64 64 5.5-63 

4 85 38.5-85 79 59.5-85 

Bodyweight 

5 0 0-42 29 0-42 

1 64 50-64 0 0.0-0.0 

4 10 5-34.5 85 70-85 

Conformation 

Score 

5 36 0-42 29 21-29 

Sire and Dam denote common parent 

 

3.4 Discussion  

The largest QTL effects for both traits were observed within half sib dam families, 

achieving chromosome wide significance and confirming previously reported QTL 

for conformation score on chromosome 5 (Table 3.2).  

 

3.4.1 Body Weight 
 

All three analyses failed to confirm the bodyweight QTL explaining 7% of the 

variance on chromosome 1 in the three generation analysis (De Koning, 2004). VCA 

presented the strongest evidence with 4% of the residual variance explained at the 

linkage peak, ten fold greater than that explained by the HS analyses. De Koning et 

al., report considerable a QTL on chromosome 1, affecting the direct maternal effect 

on weight of 6%,  

 

On chromosome 4, the 2-generation analyses showed a putative weight QTL around 

80cM with nominal significance attained in sire families and VCA. Only 3% of the 

within family variance is explained in contrast to the genome wide significant QTL 
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with a large effect (24%) found by the three generation analysis. The three-generation 

analysis found most evidence close to marker ADL0194 whereas all analyses 

presented here suggest the QTL is linked to marker LEI0076 around 50cM away. 

There was considerable heterogeneity in the putative QTL positions for individual 

significant families particularly in sire families.  This is in line with evidence found 

by Wong et al., (2004) that two QTL affecting weight exist on chromosome 4.  

 

There was a tendency to find weight and conformation QTL in the same marker 

interval on chromosome 5. The 5 and 1% thresholds for chromosome wide 

significance set by permutation analysis were reached for weight and conformation 

respectively in dam families at 29 cM. The three-generation analysis found evidence 

for QTL affecting weight and conformation around 10cM. Sire and VCA found 

evidence for a weight QTL in the same marker interval at 0cM. Ruy et al (Ruy et al., 

2005) also found a significant weight QTL (P < 0.001) associated with marker 

MCW0090.  

 

3.4.2 Conformation-score 
 

A putative QTL for conformation score on chromosome 4 was found only using sire 

analysis. Sire families achieved nominal significance at 10 cM. When only significant 

families were analysed dam families indicated a putative QTL at around 80 cM whilst 

VCA found nominal significance for QTL at both positions. Effects segregating in 

dam families tended to be significant for both weight and conformation. Analysis of 

significant sire families, however, resulted in weight and conformation QTL in 

discrete confidence intervals indicating two QTL rather than pleiotropic effects of a 

single QTL affecting both traits.   

 

The QTL for conformation on chromosome 5 was in the same interval as the putative 

QTL for weight in the HS dam and three generation analyses. In the Dam analysis 

some families were showing a significant QTL effect for both traits. Nominal 

significance for a conformation QTL was also reached in the HS sire families and 

VCA. De Koning et al report the QTL for conformation score explained 11% of the 

within family variance with a direct maternal effect of 19%.  

 



 69 

There is evidence to suggest that conformation score is a slightly different trait in sire 

and dam lines. For the putative conformation QTL on chromosome 5, VCA found 

evidence at both putative positions indicating the possibility of two QTL. This might 

also explain the high variance ratio across the entire linkage group. There was a 

tendency for QTL in dam families to explain more of the within family variance of 

the trait and have narrower confidence intervals. This could be due to the full sib 

structure or the possibility of an unaccounted for maternal genetic effect for 

conformation. Greater power using dam families might also be a result of stronger 

selection in the sire lines, leading to fixation of favourable alleles. Where alleles are 

segregating only in the dams, the effect is diluted across the population making a 

specific dam family analysis more powerful than an analysis across the population. 

This would make dam families a better resource to detect QTL for traits traditionally 

selected for in sire lines as there are more likely to be alleles segregating. There is a 

possibility of imprinting where alleles inherited from the dam have greater expression. 

De Koning et al., (2002, 2003b) present evidence that differences in QTL allele 

frequencies between sexes cause discrepancies between VCA and HS analyses, 

postulating that these could reflect effects of selection when the parents originate from 

specific dam and sire lines, or that differences between paternal and maternal models 

could be explained by genomic imprinting.  

 

Figure 3.3 compares the empirical power of the present two-generation design with 

that of the previous three-generation design (De Koning et al., 2004). This shows that 

the three-generation design has the greatest power to detect an effect and that a 

smaller number of larger half sib sire families is more powerful than many small half-

sib dam families. If, however, the dam families consist of full sibs, power to detect 

QTL effects increases with effects greater than 0.2 phenotypic standard deviations. 

Differences are largest at intermediate effects. At 0.1 and 0.3 standard deviations, 

there is little difference between the full sib analysis and the three-generation design. 

 

Because VCA uses all genetic relationships in the pedigree it could detect effects 

from both the HS sire and dam analyses. The variance component method is more 

computationally intensive than the HS methods. However, given current breeding 

value estimation techniques, it would not require specialist software to integrate VCA 

QTL methods into existing genetic evaluation programs. The analysis would also 
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supply QTL breeding values for the population. For the purpose of comparing 

selection candidates, the half-sib analysis is more time consuming and disjointed with 

analysis repeated in its entirety for both sexes. Advantages of the HS methods are a 

greater insight into the difference between QTL segregating in the sire or dam and the 

influence of a maternal dam effect. This is only the case if the analysis can be carried 

out using both parents as common parent, which is impractical in many species where 

size of dam family limits power. 

 

3.4.3 Comparison with previous results  
 

It would appear that the two-generation analysis does not have sufficient power to 

detect effects of the magnitude previously reported or that the effects of the QTL are 

inflated in the previous analysis as suggested by the authors who note that the total 

within family variance explained by QTL and cofactors was unrealistic. 
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Figure 3.3 Estimated power to detect QTL based on three-generation pedigree of 15 

grandsires, with 40 daughters, each with 24 offspring (grand HS); two-generation 

pedigree half sib sire families of 59 (sire HS) and half sib or full sib dam families of 27 

(dam HS and dam FS). Using a heritability of 0.15, distance between markers of 16 cM, 

and QTL heterozygosity of 0.5   
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3.5 Conclusions  

Half-sib dam families achieved chromosome-wide significance for weight and 

conformation on chromosome 5 explaining 6 and 9% of the within family variance 

respectively. Analysis of significant families narrowed the confidence interval for a 

conformation QTL down to 9 cM but failed to narrow down the confidence interval 

for a weight QTL to less than the entire chromosome. These results are sufficient to 

confirm previously published QTL for weight and conformation on chromosome 5.  

Evidence was also found for QTL affecting weight and conformation-score on 

chromosome 4. 

 

This study confirms QTL segregating in a commercial population for traits that have 

been under intensive selection for > 40 years. Linkage under the two-generation 

design peaked at QTL positions found by the three-generation design but effects were 

much smaller and in most cases linkage was not confirmed. Further comparisons are 

needed to predict the consequences of design choice. It is clear that QTL detection is 

not confined to line crosses but can be studied in populations where they are directly 

relevant in terms of selection.  
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Appendix 3.1 Marker distances and corresponding position on the 

consensus map. 

  Size of interval (cM)  

Marker Interval Chr Female Male 
Sex 

Averaged consensus 

Position 
consensus 

(cM) 
ADL0307-
LEI0068 

1 19 15.3 17.1 23 128-151 

LEI0068-
MCW0297 

1 2.6 7.7 10.1 11 151-162 

MCW0297-
MCW0112 

1 35.8 38.6 37.4 42 162-205 

Total linkage 
group 

1 57.4 61.6 64.6 76  

ADL0241-
ROS0015 

4 6 8.9 7.6   

ROS0015-
ADL0194 

4 24.3 27.2 25.5 38 80-118 

ADL0194-
MCW0085 

4 9.1 7.6 8.2 2 118-120 

MCW0085-
ADL0266 

4 14.3 10.7 12.5 17 120-137 

ADL0266-
LEI0076 

4 31.3 32.5 31.9 45 137-182 

Total linkage 
group  

4 85 86.9 85.7 102  

MCW0090-
ROS0013 

5 23.6 19 21.4 21 57-78 

ROS0013-
ADL0292 

5 9.2 5.5 7.4 5 78-83 

ADL0292-
ROS0084 

5 8 5.8 6.8   

ROS0084-
ADL0023 

5 3.3 9.1 6.5  (77-104) 

Total linkage 
group 

5 44.2 39.4 42.1   
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CHAPTER 4 

 

Detecting dominant QTL with variance components analysis 

in simulated pedigrees 
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Summary 

 

Dominance is an important source of variation in complex traits. Here we have carried 

out the first thorough investigation of QTL detection using variance component 

models extended to incorporate both additive and dominant QTL effects. Simulation 

results showed that the empirical distribution of the test statistic when testing for 

dominant QTL effects did not behave in accordance with existing theoretical 

expectations and varied with pedigree structure. Extensive simulations were carried 

out to assess accuracy of estimates, type 1 error and statistical power in two 

generation human, poultry and pig type pedigrees each with 1900 progeny in small, 

medium and large-sized families, respectively. The distribution of the likelihood ratio 

test statistic was heavily dependent on family structure, with empirical thresholds 

lowest for human pedigrees. Power to detect QTL was high (0.84-1.0) in pig and 

poultry scenarios for dominance effects accounting for >7% of phenotypic variance 

but much lower (0.42) in human type pedigrees. Maternal or common environment 

effects can be partially confounded with dominance and must be fitted in the QTL 

model. Including dominance in the QTL model did not affect power to detect additive 

QTL effects. Also, detection of spurious dominance QTL effects only occurred when 

maternal effects were not included in the QTL model. When dominance effects were 

present in the data but were not in the analysis model this resulted in both spurious 

detection of additive QTL or inflated estimates of additive QTL effects. The study 

demonstrates that dominance can be routinely included in QTL analysis of general 

pedigrees, however optimal power is dependent on selection of the appropriate 

thresholds for pedigree structure. 

 

4.1 Introduction 

 

Historically dominance has often been ignored or treated as a nuisance parameter, for 

example in genetic evaluations of livestock and quantification of variance 

components. The importance of the detection and quantification of dominance effects 

underlying complex traits, however, is underlined by an increasing body of evidence 

for dominant QTL with major effects on human disease and agricultural traits of 

economic importance. Duong et al. (2006) found eight completely dominant QTL 

associated with hypertension in congenic rat lines and in agriculture examples of 
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dominant QTL include fertility and production traits in cattle (Cohen-Zinder et al. 

2005), chicken (Ikeobi et al. 2002; Hocking 2005), tomatoes (Semel et al. 2006), and 

maize (Zhang et al. 2006). Liu et al., (2007) performed a genome wide scan on an F2 

Duroc Pietrain cross and found 40 additive QTL and 31 QTL showing overdominance 

effects. Although definitions vary, overdominance is a phenomenon for which there is 

increasing evidence in plants as the underlying mechanism for heterosis (Xiao et al. 

1995; Frascaroli et al. 2007). Lippman et al. (2007) review detection and 

characterization of heterosis, overdominance and pseudo-overdominance.   

 

To date, the detection of these dominant QTL effects has predominantly involved 

model species or experimental crosses requiring inbred or genetically divergent 

populations. Reproductive constraints render these test crosses impractical for many 

agricultural species while for human and natural populations they are unethical, 

and/or untenable. In commercial livestock populations it is often more relevant, 

practical and cost effective to explore QTL segregating within a population, 

particularly if the objective is to facilitate selection within that population. There is 

evidence to suggest that much of the variation found between lines is segregating 

within lines (De Koning et al. 2004) and furthermore, most evolutionarily important 

variation appears to occur within lines (Erickson et al. 2004).  

 

There is, therefore, an increasing need for QTL methodology to routinely account for 

genetic interactions such as dominance within any population structure. Independently 

developed within human and livestock research, variance component (VC) based 

linkage methods (Fernando & Grossman 1989; Goldgar 1990; Amos 1994; Grignola 

et al. 1997; Almasy & Blangero 1998; Allison et al. 1999; George et al. 2000), have 

the advantage of simultaneously locating and estimating genetic effects within 

arbitrary pedigrees. Genetic parameters associated with the polygenic effect, and at 

specific loci using marker and pedigree information can be estimated simultaneously. 

The incorporation of many alleles or allelic effects and all relationships within a 

pedigree has been shown to increase power to detect QTL over sib based methods 

(Williams & Blangero 1999; Sham et al. 2000b; Kolbehdari et al. 2005; Rowe et al. 

2006). Furthermore, linkage disequilibrium and haplotype information can be 

incorporated to provide greater accuracy (Meuwissen et al. 2002; Lee & Van der 

Werf 2006). Most importantly there is the potential for flexibility to incorporate 
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random effects and their interactions, for example, dominance, epistasis and maternal 

effects, limited only by the size and structure of the experimental population. 

 

Although undeniably an important source of variation, non-additive effects are 

notoriously difficult to estimate due to confounding with other sources such as 

common maternal environment (Gengler et al. 1997; Misztal 1997). Computational 

complexity combined with the more generic problems of setting appropriate 

thresholds to account for multiple testing and lack of suitable data have inhibited the 

extension of variance component methodology to incorporate interactions such as 

dominance and epistasis. Although extensions to VC QTL linkage models to 

incorporate dominance are widely discussed (Sham et al. 2000a; Diao & Lin 2005) 

they have rarely been implemented, indicating a need for further investigation before 

the full potential of these methods can be unleashed. 

 

In the present study, extensive simulations have been used to explore the power and 

potential for partitioning QTL effects into additive and dominant components using 

VC methods for linkage analysis. Varying full sib and half sib population structures 

have been used to evaluate accuracy and power to detect additive and dominant 

genetic effects in pedigrees that are representative of commercial livestock and human 

scenarios.  
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4.2  Materials and methods 

 

4.2.1 Statistical Genetic Models for Variance Component Analysis  

 

Population wide linkage equilibrium between QTL and marker alleles was assumed 

for all analyses. Following the two–step approach described by George et al. (2000), 

for each putative QTL position, marker information was used to estimate IBD 

coefficients for all relationships in the pedigree. In the second step, different QTL 

models were fitted for given genome locations using the following models: 

 

(1)   y = Xβ + Zu + e    (null or polygenic)  

(2)   y = Xβ + Zu + Za + e       (null + additive QTL) 

(3)   y = Xβ + Zu + Za + Zd + e       (null + additive QTL + dominance QTL) 

(4)   y = Xβ + Zu + Wm + Za + Zd + e      (null + maternal + additive QTL + 

dominance QTL) 

where y is a vector of phenotypic observations, β is a vector of fixed effects, u, a, d, 

m and e are vectors of random additive polygenic effects, additive and dominance 

QTL effects at the putative QTL position, non genetic maternal effects and residuals 

respectively, and X, Z and W are incidence matrices relating records to fixed and 

random genetic and maternal effects respectively.  

 

Variances for polygenic and QTL effects are distributed as follows: Var(a) = Gσ
2

q, 

Var(d) = Dσ
2

d,  var(e) = Iσ
2

e, var(u) =Aσ
2

a. For the non-genetic maternal effect 

Var(m) = Iσ
2

m.  

where A is the standard additive relationship matrix based on pedigree data only, G is 

the QTL additive genetic relationship matrix based on marker information and D is 

the QTL dominance genetic relationship matrix representing the probability that two 

individuals have the same pair of alleles in common based on marker information. 

Variance components for each model were estimated using REML (Patterson & 

Thompson 1971) implemented in the ASReml package (Gilmour et al. 1995) 
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4.2.2 Calculating the relationship matrices A, G and D needed for the 

mixed model analysis  

 

The relationship matrices G and D for a given QTL position are calculated from the 

gametic IBD matrix as outlined by Liu et al (2002). The gametic IBD matrix is a 2n x 

2n matrix containing the probability of identity of descent between either of the two 

gametes of an individual with the gametes of the remaining individuals in the 

pedigree. In contrast to George et al. (2000) who used a Monte-Carlo method, the 

gametic IBD matrix was estimated with the recursive method of Pong-Wong et al., 

(2001), which uses the two first available fully informative or phase known flanking 

markers. The G and D matrices are conditional on flanking marker information and 

therefore unique for each position evaluated for a QTL, hence, the calculation of G 

and D requires the prior calculation of the gametic IBD  matrix conditional on linked 

marker information at the position of the putative QTL.  Here the matrices were 

calculated every 5 cM. In order to estimate the variance components for the different 

models, ASReml requires the inverse of the relationship matrices A, G and D. The 

version of ASReml used calculates the inverse of the A matrix directly from pedigree 

data, but the inverse for G and D were calculated from the gametic matrix, inverted 

using a separate routine then passed to ASReml. 

  

4.2.3 Test statistic  

 

A test statistic for a given location was obtained by comparing the likelihood of the 

full versus the null model. The log likelihood ratio test statistic (LRT) was calculated 

as twice the difference between the log likelihood of the full and the reduced model. 

Power was estimated both empirically using thresholds derived from 1000 

chromosome-wise replicates, and using tabulated values assuming that the test 

statistic is chi squared distributed with degrees of freedom equal to the number of 

extra parameters estimated in the full model compared with the reduced. This is 

conservative for a test at a single location in the genome as the test statistic under the 

null hypothesis is likely to be distributed as a complex mixture of distributions (Self 

& Liang 1987; Stram & Lee 1994; Allison et al. 1999; Visscher 2006). For QTL 

mapping, it has been suggested that the most straightforward method of achieving the 

critical null value is to halve the P value obtained for χ
2

k where k is the number of 
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extra variance components in the full model (Visscher, 2006). In practice this mixture 

of distributions χ
2

0-1 equates to using the 10% critical threshold for a 5% type 1 error 

rate. This result is only valid for one extra variance component. When k is greater 

than 1 the appropriate P value can be obtained from an appropriately weighted 

combination of P values corresponding to the LRT statistic. For example where k = 2, 

and LRT = 4, the appropriate P value is  a weighted mixture of 0, 1 and 2 degrees of 

freedom at ¼, ½, and ¼ respectively  which corresponds to a P value of 0.08. 

Three tests were carried out; (i) additive QTL (2) versus null (1) to test significance of 

the QTL variance component under a purely additive model (denoted 1v0); (ii) 

additive QTL + dominance QTL (3) versus null (1) to test significance of QTL 

variance components under a model including additive and dominance effects 

(denoted 2v0); and (iii) additive QTL + dominance QTL (3) vs. additive QTL (2) to 

test the significance of the dominance variance component (denoted 2v1). To estimate 

the effect of common environment the model including additive and dominance QTL 

effects was further extended to incorporate a random dam effect (4), representing a 

maternal or full-sib family effect.  

 

4.2.4 Population structure 

 

The method was implemented in three simulated populations, representative of 

poultry, pig and human pedigrees (Table 4.1). The parental generation was simulated 

by random sampling without replacement from an unrelated base population. Under 

each scenario, random mating of parents was simulated to obtain a second generation 

of 1900 progeny.  

 

Table 4.1  Population Parameters for simulated pedigrees 

 

 Sires Dams per sire no. of HS per sire no. of FS per dam 

Chicken 19 5 100 20 

Pig 10 19 190 10 

Human 633 1 - 3 
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A 20 cM chromosome was simulated with 5 markers spaced at 5 cM intervals and a 

bi-allelic QTL between the second and third marker at 7.5 cM. To simulate polygenic 

variance 10 unlinked additive effects of 0.2 were simulated each with an allele  

 

Table 4.2  Summary of scenarios 

QTL effect Heritability (h
2
) 

Scenario 

Additive  

(a) 

Dominant 

(d) 

Additive QTL 

σ
2

q/ σ
2

P 

Dominant QTL 

σ
2

d/ σ
2

P 

Total* 

σ
2

a + σ
2
q + σ

2
d/ σ

2
P  

1 0.00 0.00 0.00 0.00 0.11 

2 0.10 0.00 0.00 0.00 0.12 

3 0.20 0.00 0.01 0.00 0.13 

4 0.30 0.00 0.03 0.00 0.14 

5 0.00 0.50 0.00 0.04 0.15 

6 0.40 0.00 0.04 0.00 0.16 

7 0.00 0.60 0.00 0.05 0.16 

8 0.00 0.70 0.00 0.07 0.18 

9 0.50 0.00 0.07 0.00 0.18 

10 0.00 0.80 0.00 0.09 0.19 

11 0.50 0.50 0.07 0.03 0.21 

12 0.60 0.60 0.09 0.05 0.24 

13 0.80 0.40 0.16 0.02 0.27 

14 0.70 0.70 0.12 0.06 0.27 

15 0.80 0.50 0.15 0.03 0.28 

16 0.80 0.60 0.15 0.04 0.29 

17 0.80 0.70 0.15 0.06 0.30 

18 0.80 0.80 0.15 0.07 0.31 

σ
2
P = phenotypic variance. *total heritability includes polygenic variance (σ2

a) 

of 0.2, residual variance 1.5, expected additive QTL variance (σ2
q) estimated 

by (a2/2), and expected dominant QTL variance (σ2
d) estimated by (d2/4) 

 

frequency of 0.5 following Alfonso and Haley (1998). The phenotypes generated 

under a polygenic model were normally distributed indicating that these unlinked 

QTL were sufficient to provide a reasonably structured polygenic variance.  
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Dominance effects were simulated ranging from partial to overdominance over a 

range of additive effects. These are summarized in Table 4.2. The variances of the 

QTL additive (a) and dominance (d) effects were calculated as 0.5a
2
 and 0.25d

2
, 

respectively because allele frequencies were set to 0.5.For each individual, a residual 

effect was sampled from a normal distribution with mean 0 and a variance of 1.5. As 

the error variance was constant, phenotypic variance and overall heritability increased 

with genetic effects. In the base scenario with no QTL simulated, polygenic 

heritability was 0.11. Total heritability (polygenic and QTL) ranged from 0.1 to 0.31 

with dominance QTL effects ranging from 0 to 9% of the phenotypic variance. For 

each scenario where QTL were simulated, 100 replicates were analysed and the test 

statistics described above calculated at 2,7,12, and 17cM. 

 

4.2.5 Maternal effect 

 

Common environment or direct maternal effects are often, at least partially, 

confounded with dominance. To explore the effect on detection of dominance QTL, 

random maternal effects were simulated in the pig population. A maternal effect was 

simulated by sampling for each full sib family from a normal distribution with 

variance of 0.1 and assigning this value to each full-sib offspring.  A residual effect 

was sampled from a normal distribution with mean 0 and a variance of 0.75. The 

implication of potential maternal effects were evaluated in three different ways: a 

maternal effect was simulated with a range of dominance QTL effects. First, the 

maternal effect was not fitted in the model to test for spurious detection of dominance. 

Secondly, a maternal effect was included in the linear model to test whether the model 

correctly accounts for the maternal variance. Finally, no maternal effect was 

simulated but a maternal component was included in the linear model to test whether 

the dominance variance was correctly identified or incorrectly estimated as a maternal 

effect. 

 

4.2.6 Null distribution 

 

Chromosome-wise type 1 error rates were determined empirically for all three 

population structures. 1000 replicates were used to explore 1, 5 and 10% thresholds 
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under the null scenario (both additive and dominance QTL effects set to zero). Point-

wise test statistics were determined with 1,000 replicates at the QTL position.  

 

Empirical distributions for point-wise tests were compared to tabulated values for χ
2

k 

where k is equal to the number of extra variance components estimated using P values 

for 1, 5, and 10%. A 5% threshold was determined for empirical power calculations 

and comparisons based on the analysis of 1000 replicates. 

 

The empirical distribution of the LRT under the null scenario appeared to vary across 

pedigrees, in particular, differing between human and livestock. This could be due to 

the difference in number of full sibs per family (three for humans compared with ten 

or twenty for livestock) or the lack of half sib relationships in the human pedigree. To 

explore this, chromosome-wise null LRT distributions were determined for five 

additional pedigrees. The number of offspring remained constant at 1900 but 

pedigrees with 1 or 2 dams per sire and 3, 5 or 10 offspring per dam were compared 

with pig and poultry pedigrees to explore the effects of family structure on the 

distribution of the null test statistic.  

 

4.3. Results 

 

All results shown are based on 5% empirical thresholds from 1000 chromosome-wise 

replicates. Full results for all populations and scenarios can be found in Appendix 4.1 

for power to detect additive and dominant QTL effects, Appendix 4.2 for power in pig 

populations with maternal or common environment effects and Appendix 4.3 for 

estimates of variance components. 

 

4.3.1 Power to detect dominance effects 

 

Figures 4.1a, 4.1b and 4.1c give the proportion of replicates detecting dominance 

using 5% empirical and tabulated thresholds for χ
2

1 and a mixture χ
2

1-0.. Testing for 

dominance involved comparing the additive QTL model with the full model 

incorporating both an additive QTL and a dominant QTL effect (denoted 2v1).  For  
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Figures 4.1 a, b and c. Proportion of replicates where test for dominance (2v1) is 

significant (P < 0.05) when comparing full model vs additive model. 100 chromosome-

wise replicates in top to bottom (a) poultry, (b) pig, and (c) human pedigrees under 

partial to complete dominance.  Simulated additive effect fixed at 0.8. comparing 

tabulated 5% χ
2
1, χ

2
1-0 thresholds and 5% empirical threshold. Mixture threshold is 

estimated by using tabulated 10% χ
2
1 threshold 

 

the pig and poultry pedigrees power under empirical and the χ
2

1-0 mixture of 

distributions was in close agreement. For human pedigrees both χ
2

1 and χ
2

1-0.were 

conservative when compared to empirical thresholds. Power under the empirical 5% 

threshold  was  ~100% in the poultry scenario, ~84% for the pig scenario and ~ 42% 

for humans when the QTL dominance variance was around 7% of the phenotypic 

variance (dominant effect = 0.8, i.e. complete dominance). Under χ
2

1 thresholds this 

dropped to ~95, ~75 and ~25. Power to detect dominance was greater for all pedigrees 

using empirical thresholds. Although the ranking did not change when using tabulated 

values, power to detect dominance, particularly in humans was much lower and 

differences between models greater. When comparing the full model with the null 

model (denoted 2v0) all replicates detected a QTL for the pig and poultry scenarios, 

and 96% (84% under tabulated thresholds) of replicates detected a QTL for the human 

scenario (Appendix 4.1).  
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Figure 4.2. Estimates of variance components from simulated poultry data. Box plots 

showing the range of variance estimates. Full dominance is simulated. Variance 

estimates for single marker position (for 1000 replicates of each scenario) for additive 

and dominant QTL effects.  The black circles indicate the expected variance 

components. All replicates were significant for a QTL when testing under the full model 

(additive and dominance QTL effects vs null) 

 

Figure 4.2 shows the estimates for the additive and dominance QTL variance 

components from the comparison of the full model with the null model (2v0). In all 

replicates a QTL was detected at the 5% significance level. Scenarios shown were for 

complete dominance with effects ranging from 0.5 to 0.8 (also given in Appendix 
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4.2). These show that although estimates are wide ranging they appear to accurately 

estimate the mean.   

 

4.3.2 Over dominant, spurious additive and dominant QTL effects 
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Figure 4.3. Percentage of replicates detecting  additive QTL effects (p<0.05) using full 

model (add + dom), additive model (add) and testing difference between the two (dom) 

in simulated pig population. A dominance effect of zero is simulated 
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Figure 4.4. Over dominance. Percentage of replicates detecting over dominant QTL 

effects (p<0.05) using full model (add + dom), additive model (add) and testing 

difference between the two (dom) in simulated poultry population over a range of 

dominant QTL effects when an additive effect of zero is simulated. 

 

Figure 4.3 shows power to detect simulated additive effects ranging from 0.1 to 0.5, 

or 1 – 7% of phenotypic variance. Power reached 90% when the additive variance 

amounted to >4% of the phenotypic variance. In this case, no dominance effect was 

simulated and there was little spurious dominance detected. Furthermore, power to 

detect an additive effect was similar whether or not the extra dominance component 

was included in the analysis. This shows that a routine scan including dominance 

would not result in too great a loss of power even in the absence of any dominant 

effects. Although results are shown only for the pig population, the same pattern was 

seen for poultry and human scenarios. Figure 4.4, however, shows that spurious 

additive QTL effects were found when dominant QTL effects were not fitted. With 

dominant QTL effects ranging from 0.3 to 0.8 and simulated additive effects of zero 

i.e. overdominance, there is both spurious detection of an additive QTL effect if 

dominance was not included in the model and inflated estimates of additive variance 

(Table 4.3). 
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Table 4.3  Estimates of variance due to additive QTL and additive and 

dominant QTL effects under over-dominance when additive QTL effect 

of zero is simulated 

Expectation Additive QTL 

Vs null model  

(1v0) 

Additive + Dominant QTL Vs 

null model 

(2v0) 

Add Dom Add Add Dom 

0 0.06 0.02 0.01 0.07 

0 0.09 0.04 0.01 0.10 

0 0.12 0.04 0.01 0.12 

0 0.16 0.07 0.01 0.16 

Variances are mean estimates at highest chromosome-wise test statistic 

across 100 iterations in simulated pig population 

 

4.3.3 Maternal effects and dominance in pig scenario 

 

Table 4.4. Variance estimates for dominant QTL effect of 0.8 and 

maternal effects 

Maternal 

effect 

Simulated 

 

Maternal 

effect 

fitted 

Dom 

variance 

(0.16) 

Maternal 

variance 

(0.10) 

N N 0.17 - 

Y N 0.25 - 

Y Y 0.20 0.09 

N Y 0.17 0.02 

Figures in brackets are simulated or expected variance. Variances are mean 

estimates at highest chromosome-wise test statistic across 100 iterations in a 

simulated pig population 
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Figure 4.5. Effects of simulating and/or fitting direct maternal effects on proportion of 

replicates where test for dominance (2v1) is significant (P < 0.05) when comparing full 

model vs additive model. 100 chromosome-wise replicates in pig population under 

partial to complete dominance (additive QTL effect fixed at 0.8). No mat effect – no 

maternal effect simulated or fitted, mat effect – maternal variance of 0.1 simulated but 

not fitted, mat effect fitted – maternal variance of 0.1 simulated and fitted. 

 

Figure 4.5 clearly shows that a simulated maternal effect can masquerade as a 

dominant QTL effect. In the most extreme case when a dominance effect of 0 was 

simulated, ignoring common environment resulted in a type 1 error of 67%. When a 

maternal effect was fitted in the model, maternal effects and dominance appear to be 

successfully separated with little or no loss of power (Table 4.5). If a maternal effect 

was fitted when not present there was little loss of power (for results see Appendices 

2 and 3) indicating that a maternal component fitted in the absence of a maternal 

effect should not prevent detection of variance due to dominance.  
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4.3.4 Null distribution 

 

Table 4.5 Empirical 5% thresholds for LRT test statistic (and 

corresponding P value under χ2  distribution). 1000 replicates simulated 

for single point-wise and multiple chromosome-wise testing under null 

scenario of no QTL effects  

 Point-wise Chromosome-wise 

 Poultry Pig Human Poultry Pig Human 

2v0 3.18 (0.20) 3.30 (0.19) 3.00 (0.22) 4.86 (0.09) 4.94 (0.08) 4.58 (0.10) 

2v1 1.60 (0.21) 1.58 (0.21) 0.86 (0.35) 2.62 (0.11) 2.70 (0.10) 1.48 (0.22) 

1v0 2.20 (0.14) 2.08 (0.15) 2.62 (0.11) 3.78 (0.05) 3.46 (0.06) 3.78 (0.05) 

 

2v0 testing model including an additive QTL and a dominant QTL effect 

versus null model with P value in brackets assuming χ2
2 ;  2v1 testing model 

including an additive and a dominant QTL effect versus an additive QTL 

model with P value in brackets assuming χ2
1 and 1v0 testing a model 

including an additive QTL versus a null model with P value in brackets 

assuming χ2
1.  

 

Table 4.5 shows that the point-wise test statistic was conservative for all models when 

compared to tabulated χ
2
 values. This was also true if the mixture of distributions was 

taken into account by assuming a P value of 0.1 to derive a 5% critical threshold. 

Table 4.5 shows that for the test for dominance the equivalent P value under the χ
2

1 

distribution to a 5% empirical threshold was actually 0.21 for pig and poultry and 0.35 

for human pedigrees. The test for additive QTL effects although still conservative was 

much closer to tabulated values, particularly 10% thresholds with equivalent P value 

under the χ
2

1 distributions of 0.14, 0.15 and 0.11. for poultry, pig and human 

pedigrees respectively. 

 

Chromosome-wise type 1 error rates were close to tabulated thresholds for the 

additive model, for all three simulated pedigrees. Type 1 error rates for the full model 

and for dominance, however, remained conservative when compared to tabulated 

values. None of these type 1 error rates were corrected for multiple testing. 
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Figure 4.6. Distribution of empirical point-wise test statistic in pig, poultry and human 

pedigrees for top to bottom (a) additive and dominance effects, (b) dominance effects 

and (c) additive effects compared with χ
2
1 and χ

2
1-0 distributions. Top 300 values of 

1000 replicates are displayed. 

 

Figure 4.6 compares distributions of the empirical test statistic with χ
2

 distributions. In 

particular for the test for dominance the empirically derived null statistic appears to 

vary according to pedigree structure i.e. is lower in humans. This is apparent to a 

lesser extent in the model testing for both additive and dominance and somewhat 

reversed in the additive test.  
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Table 4.6 Empirical 5% thresholds for LRT test statistic when testing for 

dominance and corresponding P value under χ2
1  distribution. 1000 

replicates simulated for chromosome-wise testing under null scenario of 

no QTL effects  

Pedigree Sires 

Dams 

per 

sire 

Progeny 

per dam 

LRT 5% 

empirical 

threshold 

1 

(human) 

633 1 3 

1.46 

2 380 1 5 1.14 

3 190 1 10 1.38 

4 317 2 3 2.1 

5 190 2 5 2.02 

6 195 2 10 2.06 

7 (chick) 19 5 20 2.62 

8 (pig) 10 19 10 2.70 

 

 

Figure 4.7/Table 4.6 compares distributions of the test statistic under the null 

hypothesis of no QTL for 8 pedigree structures. These vary from human families with 

3 full sibs to more complex structures such as poultry with 20 full-sibs and 200 half 

sibs.  It is apparent that the three human pedigrees i.e. single dam families have very 

similar distributions seemingly regardless of the number of full sibs. Similarly the 

three pedigrees with two dam families have similar distributions to each other but 

clearly different from those of the human or larger livestock families. The pig and 

poultry distributions are similar to each other although the pig distribution appears 

slightly more conservative. The χ
2

1-0 distribution appears comparable with the pig and 

poultry although as these were chromosome-wise tests which are uncorrected for 

multiple testing they cannot be directly compared. 
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Figure 4.7. Comparison of distribution of empirical chromosome-wise test statistic for 

dominance effects under null hypothesis of no QTL in pedigrees with varying full sib 

(FS) and half sib (HS) structures. χ
2
1-0.is also plotted for comparison. All pedigrees 

have 1900 total offspring. Top 150 values of 1000 replicates are displayed for clarity. 

 

4.4 Discussion 

 

This study provides a comprehensive evaluation of the performance of variance 

component analysis over a range of dominant QTL effects. The method was 

successfully used to estimate and apportion variances due to polygenic, additive, 

dominant and non-genetic effects. Power > 95% was achieved when testing for 

dominant QTL effects accounting for 7% of the total variance for a simulated poultry 

population. Power to detect additive QTL was also high (~ 97% for an additive effect 
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explaining 7% of phenotypic variance. Although the upper range of the simulated 

QTL effects is high, these values are plausible in terms of published literature. 

 

Simulation results showed that, unlike the test for additive QTL effects, the empirical 

distribution of the test statistic when testing for dominant QTL effects did not behave 

in accordance with existing theoretical expectations. Theoretically, the asymptotic 

distribution of the LRT is a mixture of chi squared with different degrees of freedom 

when testing variance components under the null hypothesis that they are zero (Self & 

Liang 1987; Stram & Lee 1994). For example with one extra variance component the 

null distribution is a mixture of ½ χ0 (i.e.variance is zero) and ½ χ1 (i.e. variance is 

non-zero. With a model including two variance components, such as additive and 

dominant QTL effects the expectation of the distribution would be a mixture of ¼ χ0 

(both variance components are zero, ½ χ1 (one is non zero) and ¼ χ2 (both are non 

zero).  Visscher (2006) provides a thorough review.  

Problems with incorrect assumptions about the distribution include inflated type II 

errors leading to reduced power. Extending the linear model to include a dominance 

component resulted in a conservative test when imposing a χ
2

1 distribution for the 

likelihood ratio test statistic. The test remained conservative even if thresholds were 

halved under the assumption of a mixture of distributions. One explanation might be 

that additive and dominant QTL effects are not entirely independent.  Furthermore, 

the null distribution for the dominance test varies with family structure, in particular, 

with the number of dam families per sire. Distributions of the test statistic in 4. 

7/Table 4.6 appear to group by number of dam families, with human type pedigrees 

with a single dam per sire most conservative, regardless of family size. The number of 

full sibs within dam families did not appear to affect the distribution. It is possible that 

the lack of half sib families, might result in confounding of additive and dominance 

effects at the QTL. Theoretically if both components need to be estimated within dam, 

lack of information might lead to a higher probability of variance components being 

zero.  

 

Results showed that power is also affected by population structure. Power to detect 

dominance at the QTL was similar for pig and poultry populations but much lower for 

humans.  
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This was unsurprising as the human population consisted of many small families with 

low numbers of full sibs making it difficult to detect dominance. Increased power 

might be achieved in human studies from a pedigree with more generations providing 

information from relationships such as grandparents and cousins but this needs to be 

explored further.   

 

It is anticipated that further correction for multiple testing for large linkage groups or 

genome wide testing would be necessary. The distribution, however, of H0 when 

testing for multiple linked positions is unresolved and authors have used different 

approximations (Xu & Atchley 1995; Pratt et al. 2000; Piepho 2001; Nagamine et al. 

2004), Procedures such as permutation and bootstrapping enable the setting of 

empirical thresholds and circumvent problems associated with failure of distributional 

assumptions and independence of multiple tests (Churchill & Doerge 1994; Visscher 

et al. 1996), although computational complexity can restrict their use within the 

variance component framework. 

 

The method described by Piepho relies on the gradient of change in likelihood. 

However, this method still assumes that the test statistic for a single test follows a 

standard Chi-square distribution under the null hypothesis and therefore does not 

address the issue of mixture distributions that is apparent for these types of analyses. 

It is difficult to ascertain whether the method is appropriate here, when the test 

statistic follows a mixture of distributions and likelihoods under the null scenario are 

very flat.  

 

There is strong evidence to suggest that a common environment effect should be 

routinely evaluated in all variance component QTL models as, if unaccounted for, 

most variation due to common environment masquerades as dominance. I have shown 

that presence of common environmental effects has little effect on false negative rates 

but a potentially huge impact on false positive rates.  

 

I have demonstrated that incorporating a dominance effect in a genome scan has very 

limited detrimental effect on the power to detect purely additive QTL. Detection of 

spurious dominance was also rare suggesting that dominance could be routinely 

included in genome scans. I have also shown by simulation that, if not fitted in the 
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analysis model, dominance may be detected as spurious additive effects or inflated 

estimates of additive genetic variance. This suggests that dominant QTL effects can 

be detected as additive QTL when additive-only models are used; see also Misztal et 

al.  (1998) and Pante et al. (2002) for similar effects with polygenic dominance. This 

has important implications for predicting response to selection as the success of any 

selection programme is dependent on correctly identifying the mode of inheritance 

and proportion of variance explained by the QTL. For example, Hayes and Miller 

(2000) show that including dominance effects in mate selection can be a powerful tool 

for exploiting previously untapped genetic variation while Dekkers and Chakraborty 

(2004) discuss maximization of crossbred performance by incorporating information 

from overdominant QTL.  

 

A further confounding factor not studied here might be polygenic dominance. It is, 

however, unlikely to have affected the results as most of the information for polygenic 

dominance would have come from the covariance of full sibs and should have been 

accounted for by the common environment effect. This might not be the case within 

other relationships in deeper, more complex, pedigrees suggesting that the inclusion 

of a polygenic dominance effect may be valuable when examining such data 

structures. 

 

4.5 Conclusions 

 

Variance component methods were implemented to detect dominant QTL. Type 1 

error rates and power were explored using extensive simulation. Results indicate that 

if the mixture of distributions is taken into account nominal chi square thresholds 

were appropriate for when testing for additive QTL but conservative when testing for 

dominant QTL in all pedigrees and particularly in the case of the populations with 

sires mated to only one or two dams. Ascertaining the correct null distribution is a 

difficult issue but one that merits revisiting. Here I have shown that although 

theoretically the tabulated chi square values are fairly robust, the expected probability 

of non zero variances varies with population structure, thus there are instances when 

greater power is achieved by empirically deriving the correct distribution of the test 

statistic. Power to detect dominant QTL effects was high in livestock pedigrees with 
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little spurious dominance and could be successfully routinely employed under the 

proviso that common environment or direct maternal effects are accounted for. 

Effects of extra generations or extended pedigrees are yet to be explored but may 

provide greater power for structures with few dam families.   
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Appendix 4.1 Power (proportion of replicates) to detect significant additive and dominant QTL for Poultry, Human and Pig Scenarios across 
range of simulated additive and dominant QTL effects at 5 and 1% thresholds based on tabulated χ2 values for likelihood ratio statistic 
 

    Power Additive + Dominant QTL Vs null test (2df) 

Genetic effect Poultry Human Pig Poultry point-wise 
Additive Dominant 

QTL 
variance 

QTL         
h2 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 

0.0 0.0 0.00 0.00 1 4 0 1 0 4 0.1 1 
0.1 0.0 0.01 0.00 1 4 1 3 2 4   
0.2 0.0 0.02 0.01 3 14 1 3 11 22   
0.0 0.3 0.02 0.01 2 11       
0.0 0.4 0.04 0.02 9 18       
0.3 0.0 0.05 0.03 16 34 1 7 25 45   
0.0 0.5 0.06 0.04 19 41       
0.1 0.5 0.07 0.04 25 48     16.7 37 
0.4 0.0 0.08 0.04 56 75 1 4 56 75   
0.2 0.5 0.08 0.05 39 61     30 53 
0.0 0.6 0.09 0.05 45 73       
0.3 0.5 0.11 0.06 60 81     52.3 71 
0.0 0.7 0.12 0.07 82 89       
0.5 0.0 0.13 0.07 80 90 5 12 87 93  92 
0.4 0.5 0.14 0.08 82 92     78.3 90 
0.0 0.8 0.16 0.09 95 98       

0.5 0.5 0.19 0.10 98 99   93 99 95.5 98 
0.6 0.6 0.27 0.14 99 100     99.3 100 
0.8 0.4 0.36 0.17 100 100 43 68 100 100   
0.7 0.7 0.37 0.18 100 100       
0.8 0.5 0.38 0.18 100 100 55 70 100 100   
0.8 0.6 0.41 0.19 100 100 52 76 100 100   
0.8 0.7 0.44 0.21 100 100 59 77 100 100   

0.8 0.8 0.48 0.22 100 100 64 81 100 100     
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Power  Additive + Dom  QTL Vs Additive QTL test (1df) Power  Additive QTL Vs null test (1df) 

Poultry Human Pig Poultry point-wise Poultry Human Pig Poultry point-wise 
p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 

6 4 0 1 0 1 0.1 1   0 6 1 8 0.1 3 
5 1 0 1 1 5    4 2 3 2 2   
10 5 0 1 4 6    23 2 5 11 28   
20 15       14 4       
30 21       17 11       
8 3 0 2 0 3     2 12 36 57   
52 38       35 24       
60 48     14.8 32 15 37     8.1 19 
9 5 0 1 3 5    84 3 9 69 82   
60 55     16.3 36 14 30     19.7 37 
80 66       45 31       
55 44     16.5 34 49 77     45.3 67 
95 91       68 57       
3 2 0 1 15 2  4   8 21 76 95  95 
58 48     14.4 35 76 90     77.4 89 
99 98       78 64       

56 45   17 28 10 23 98 100   93 97 95.3 98 
62 55     33.9 57 99 100     99.6 100 
30 21 3 7  14   100 100 58 82 100 100   
92 88       100 100       
49 37 2 12 11 27   100 100 64 81 100 100   
73 50 2 9 21 38   100 100 62 83 100 100   
88 84 4 12 42 60   100 100 72 88 100 100   

99 95 8 23 60 75     100 100 78 93 100 100     

Poultry, Pig and Human scenarios are chromosome-wise involving 100 replicates. Poultry point-wise involves a single test 
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Empirical Power (proportion of replicates) to detect significant additive and dominant QTL for Poultry, Human and Pig Scenarios across range 
of simulated additive and dominant QTL effects at 5 and 1% thresholds based on critical null threshold from 1000 replicates for likelihood ratio 

statistic 

Genetic effect 

Power (P<0.01)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.01)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.01)                        
Additive QTL vs null test             

(1v0) 

Additive Dominant 
QTL 

variance QTL h2 Poultry Pig Human Poultry Pig Human Poultry Pig Human 

0 0 0.000 0.00  0 0  0 2  0 0 
0.1 0 0.005 0.00 0 2 1 0 2 1 1 2 1 
0.2 0 0.020 0.01 6 13 2 1 4 1 8 9 2 
0.3 0 0.045 0.03 25 32 3 2 1 3 33 28 2 
0.4 0 0.080 0.04 56 61 2 2 4 2 63 62 2 
0.5 0 0.125 0.07 87 88 6 0 16 5 92 73 6 
0.1 0.1 0.008 0.00  5   3   3  
0.2 0.2 0.030 0.02  12   3   9  
0.3 0.3 0.068 0.04  39   6   36  
0.4 0.4 0.120 0.07  72   3   67  
0.5 0.5 0.188 0.10 98 95  84 21  99 90  
0.6 0.6 0.270 0.14 99   94   99   
0.7 0.7 0.368 0.18 100   99   100   
0.8 0.8 0.480 0.22 100 100 70 100 66 27 100 100 72 
0.4 0.8 0.240 0.12 100 99 50 35 8 11 100 99 58 
0.5 0.8 0.285 0.14 100 100 59 18 15 19 100 98 60 
0.6 0.8 0.340 0.17 100 100 59 33 29 13 100 100 59 
0.7 0.8 0.405 0.19 100 100 64 68 46 23 100 100 69 
0.8 0.8 0.480 0.22 100 100 70 100 66 27 100 100 72 
0 0.3 0.023 0.01 3   5   1   
0 0.4 0.040 0.02 10   10   2   
0 0.5 0.063 0.04 23 9  27 14  5 0  
0 0.6 0.090 0.05 54 24  52 40  19 2  
0 0.7 0.123 0.07 83 46  74 57  31 2  
0 0.8 0.160 0.09 96 77  92 85  47 9  
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Genetic effect 

Power (P<0.05)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.05)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.05)                        
Additive QTL vs null test             

(1v0) 
Additive Dominant 

QTL 
variance QTL h2 Poultry Pig Human Poultry Pig Human Poultry Pig Human 

0 0 0.000 0.00 9 6 4 9 8 9 5 2 4 
0.1 0 0.005 0.00 21 23 4 10 8 7 24 30 5 
0.2 0 0.020 0.01 52 51 11 9 8 8 55 57 13 
0.3 0 0.045 0.03 82 79 9 8 9 12 84 83 11 
0.4 0 0.080 0.04 96 93 19 5 20 9 97 79 21 
0.5 0 0.125 0.07  13   10   12  
0.1 0.1 0.008 0.00  23   11   24  
0.2 0.2 0.030 0.02  61   14   62  
0.3 0.3 0.068 0.04  91   15   92  
0.4 0.4 0.120 0.07 100 99  99 37  100 97  
0.5 0.5 0.188 0.10 100   97   100   
0.6 0.6 0.270 0.14 100   100   100   
0.7 0.7 0.368 0.18 100 100  100 83  100 100  
0.8 0.8 0.480 0.22 100 100 86 100 83 41 100 100 93 
0.4 0.8 0.240 0.12 100 99 78 57 24 19 100 99 82 
0.5 0.8 0.285 0.14 100 100 80 52 36 29 100 98 82 
0.6 0.8 0.340 0.17 100 100 82 73 53 31 100 100 85 
0.7 0.8 0.405 0.19 100 100 84 88 70 38 100 100 89 
0.8 0.8 0.480 0.22 100 100 86 100 83 41 100 100 93 
0 0.3 0.023 0.01 19   21   4   
0 0.4 0.040 0.02 23   31   11   
0 0.5 0.063 0.04 55 21  53 39  24 4  
0 0.6 0.090 0.05 81 52  81 62  33 15  
0 0.7 0.123 0.07 92 73  95 84  58 16  
0 0.8 0.160 0.09 99 91  99 93  65 30  
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Genetic effect 

Power (P<0.10)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.10)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.10)                        
Additive QTL vs null test             

(1v0) 
Additive Dominant 

QTL 
variance QTL h2 Poultry Pig Human Poultry Pig Human Poultry Pig Human 

0 0 0.000 0.00 13 11 14 13 14 18 17 11 13 
0.1 0 0.005 0.00 33 37 13 16 16 17 39 43 11 
0.2 0 0.020 0.01 68 61 22 16 13 16 74 70 22 
0.3 0 0.045 0.03 90 86 22 17 12 21 91 91 21 
0.4 0 0.080 0.04 97 97 31 16 25 17 97 81 36 
0.5 0 0.125 0.07  19   15   16  
0.1 0.1 0.008 0.00  32   24   32  
0.2 0.2 0.030 0.02  73   28   74  
0.3 0.3 0.068 0.04  95   30   92  
0.4 0.4 0.120 0.07 100 99  99 46  100 98  
0.5 0.5 0.188 0.10 100   100   100   
0.6 0.6 0.270 0.14 100   100   100   
0.7 0.7 0.368 0.18 100 100  100 88  100 100  
0.8 0.8 0.480 0.22 100 100 90 100 88 58 100 100 96 
0.4 0.8 0.240 0.12 100 99 84 68 36 28 100 99 89 
0.5 0.8 0.285 0.14 100 100 89 65 47 45 100 98 92 
0.6 0.8 0.340 0.17 100 100 89 84 63 42 100 100 88 
0.7 0.8 0.405 0.19 100 100 91 93 82 50 100 100 91 
0.8 0.8 0.480 0.22 100 100 90 100 88 58 100 100 96 
0 0.3 0.023 0.01 28   34   17   
0 0.4 0.040 0.02 38   50   22   
0 0.5 0.063 0.04 70 42  63 56  40 12  
0 0.6 0.090 0.05 89 68  89 74  53 20  
0 0.7 0.123 0.07 94 87  97 91  74 21  
0 0.8 0.160 0.09 99 97  99 98  81 43  

               Poultry, Pig and Human scenarios are chromosome-wise involving 100 replicates 
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Appendix 4.2 Power (proportion of 100 replicates) to detect significant additive and dominant QTL for Maternal Scenarios using pig scenario 
across range of simulated additive and dominant QTL effects at 5 and 1% thresholds based on tabulated χ2 values for likelihood ratio statistic. 
 

Power Additive + Dominant QTL Vs null test (2df) 

Genetic effect 

Maternal effect 
simulated not 

fitted 

Maternal effect 
simulated and 

fitted 
Maternal effect 

fitted 
No Maternal 

effect 

Additive Dominant 
QTL 
variance 

QTL        
h2 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 

0.0 0.0 0.00 0.00 32 47 1 4 0 2 0 4 
0.1 0.0 0.01 0.00 47 66 0 12 2 9 2 4 
0.2 0.0 0.02 0.02 63 86 26 41 18 32 11 22 
0.3 0.0 0.05 0.04 89 94 65 80 63 74 25 45 
0.4 0.0 0.08 0.07 100 100 93 97 86 95 56 75 
0.5 0.0 0.13 0.11 100 100 99 100 98 99 87 93 
0.8 0.4 0.36 0.26 100 100 52 52 100 100 100 100 
0.8 0.5 0.38 0.27 100 100 100 100 100 100 100 100 
0.8 0.6 0.41 0.28 100 100 100 100 100 100 100 100 
0.8 0.7 0.44 0.30 100 100 100 100 100 100 100 100 
0.8 0.8 0.48 0.31 100 100 100 100 100 100 100 100 
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Power  Additive + Dom  QTL Vs Additive QTL test (1df) Power  Additive QTL Vs null test (1df) 
Maternal effect 
simulated not 

fitted 

Maternal effect 
simulated and 

fitted 
Maternal effect 

fitted 
No Maternal 

effect 

Maternal effect 
simulated not 

fitted 

Maternal effect 
simulated and 

fitted 
Maternal effect 

fitted 
No Maternal 

effect 
p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 p<0.01 p<0.05 

41 63 1 4 0 0 0 1 0 4 1 8 0 5 1 6 
58 79 1 6 0 4 1 5 4 11 2 2 1 4 3 12 
52 73 3 8 1 4 4 6 24 47 11 28 31 49 34 53 
41 67 3 3 0 2 0 3 71 80 36 57 73 86 71 85 
46 72 1 9 1 4 3 5 91 96 69 82 91 98 96 99 
46 67 3 7 0 5 15 2 98 100 76 95 98 100 99 100 
82 94 36 57 25 44 7 14 100 100 100 100 100 100 100 100 
91 96 43 65 46 68 11 27 100 100 100 100 100 100 100 100 
98 98 70 84 63 77 21 38 100 100 100 100 100 100 100 100 

100 100 88 93 78 84 42 60 100 100 100 100 100 100 100 100 
99 99 95 95 90 95 60 75 100 100 100 100 99 99 100 100 

Maternal effect simulated to have a variance of 0.1  
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Empirical Power (proportion of 100 replicates) to detect significant additive and dominant QTL for Maternal Scenarios using pig scenario across 
range of simulated additive and dominant QTL effects at 1, 5 and 10% thresholds based on critical null statistic for likelihood ratio statistic from 

1000 replicates. 
 

Power (P<0.01)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.01)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.01)                        
Additive QTL vs null test             

(1v0) QTL 
variance      QTL h2   F MF M F MF M F MF M 

0.000 0.00 0 2 37 0 3 36 2 1 1 
0.005 0.00 3 4 57 1 1 52 1 5 1 
0.020 0.01 25 29 77 0 1 46 31 36 32 
0.045 0.03 69 74 90 1 2 36 73 73 79 
0.080 0.04 89 95 100 0 1 41 92 96 94 
0.125 0.07 98 100 100 4 1 42 98 99 98 
0.360 0.17 100 52 100 19 29 77 100 100 100 
0.383 0.18 100 100 100 42 40 91 100 100 100 
0.410 0.19 100 100 100 59 66 98 100 100 100 
0.443 0.21 100 100 100 76 84 100 100 100 100 
0.480 0.22 100 100 100 87 95 98 100 100 99 

 
Maternal effect simulated to have a variance of 0.1  
F maternal effect fitted but not simulated 
MF maternal effect simulated and fitted 
M maternal effect simulated but not fitted. 
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Power (P<0.05)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.05)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.05)                        
Additive QTL vs null test             

(1v0) 

         QTL 
variance      QTL h2   F MF M F MF M F MF M 

0.000 0.00 5 11 68 0 7 63 5 7 6 
0.005 0.00 10 20 82 4 4 79 5 16 7 
0.020 0.01 52 55 95 2 6 73 52 58 57 
0.045 0.03 83 88 97 4 8 67 82 89 86 
0.080 0.04 96 100 100 5 3 72 96 99 99 
0.125 0.07 100 100 100 17 4 67 100 100 100 
0.360 0.17 100 52 100 44 57 94 100 100 100 
0.383 0.18 100 100 100 68 65 96 100 100 100 
0.410 0.19 100 100 100 77 84 98 100 100 100 
0.443 0.21 100 100 100 84 93 100 100 100 100 
0.480 0.22 100 100 100 95 95 99 100 100 99 

 
 
Maternal effect simulated to have a variance of 0.1  
F maternal effect fitted but not simulated 
MF maternal effect simulated and fitted 
M maternal effect simulated but not fitted. 
 
 
 
 
 
 
 
 
 



 108

Power (P<0.10)                        
Additive + dominant QTL 

vs null test (2v0) 

Power  (P<0.10)                        
Additive + dominant QTL 

vs additive test (2v1) 

Power  (P<0.10)                        
Additive QTL vs null test             

(1v0) QTL 
variance      QTL h2   F MF M F MF M F MF M 

0.000 0.00 12 24 82 4 9 75 8 12 11 
0.005 0.00 20 30 91 10 14 83 9 22 17 
0.020 0.01 60 71 98 8 4 77 61 71 72 
0.045 0.03 90 97 98 4 12 78 88 95 88 
0.080 0.04 97 100 100 4 8 81 97 99 99 
0.125 0.07 100 100 100 28 11 88 100 100 100 
0.360 0.17 100 52 100 60 66 94 100 100 100 
0.383 0.18 100 100 100 74 72 97 100 100 100 
0.410 0.19 100 100 100 84 88 98 100 100 100 
0.443 0.21 100 100 100 86 94 100 100 100 100 
0.480 0.22 100 100 100 96 96 99 100 100 99 

 
Maternal effect simulated to have a variance of 0.1  
F maternal effect fitted but not simulated 
MF maternal effect simulated and fitted 
M maternal effect simulated but not fitted. 
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Appendix 4.3 Mean estimates of variance components at highest test statistic under 

models fitting additive and dominant QTL, and maternal effects for Poultry, Human and Pig 
Scenarios across range of simulated dominant QTL effects. Additive effect is fixed at 0.8 with 

dominant QTL effects ranging from partial to full Dominance 

 Polygenic variance is fixed at 0.2 for all scenarios. Maternal variance is 0.1 when simulated. 
Human. Pig, and Poultry  scenarios have residual variance sampled from distribution mean 
0, variance 1.5. All maternal scenarios are based on pig scenario with residual variance 
sampled from normal distribution with mean 0 and variance 0.75 denoted pig2  

 

 

 

Expectation 
Variance 

Additive QTL model Additive + Dominant QTL model  
 
 
 

Dominant 
QTL  
effect 

Add 
 

QTL 

Dom 
QTL 

Resid 
Add 
QTL 

Poly Mat Resid 
Add 
QTL 

Dom 
QTL 

Poly Mat Resid 

0.4 0.32 0.04 1.50 0.32 0.22 - 1.53 missing 0.04 0.23 - 1.51 

0.5 0.32 0.06 1.50 0.34 0.20 - 1.55 0.30 0.07 0.22 - 1.50 

0.6 0.32 0.09 1.50 0.35 0.20 - 1.56 0.30 0.09 0.22 - 1.50 

0.7 0.32 0.12 1.50 0.38 0.22 - 1.58 0.29 0.13 0.25 - 1.49 

Poultry 

0.8 0.32 0.16 1.50 0.38 0.20 - 1.60 missing 0.17 0.23 - 1.50 

0.4 0.32 0.04 1.50 0.37 0.16 - 1.52 0.28 0.08 0.21 - 1.40 

0.5 0.32 0.06 1.50 0.39 0.14 - 1.57 0.26 0.12 0.23 - 1.41 

0.6 0.32 0.09 1.50 0.40 0.15 - 1.58 0.28 0.11 0.22 - 1.40 

0.7 0.32 0.12 1.50 0.43 0.11 - 1.61 0.28 0.14 0.21 - 1.41 

Human 

0.8 0.32 0.16 1.50 0.46 0.09 - 1.64 0.26 0.17 0.21 - 1.35 

0.4 0.32 0.04 1.50 0.28 0.26 - 1.52 0.26 0.05 0.27 - 1.48 

0.5 0.32 0.06 1.50 0.31 0.24 - 1.54 0.28 0.07 0.25 - 1.49 

0.6 0.32 0.09 1.50 0.31 0.23 - 1.57 0.27 0.09 0.24 - 1.50 

0.7 0.32 0.12 1.50 0.34 0.24 - 1.58 0.27 0.13 0.26 - 1.48 

Pig 

0.8 0.32 0.16 1.50 0.36 0.23 - 1.61 0.28 0.16 0.25 - 1.49 

0.4 0.32 0.04 0.75 0.27 0.34 - 0.79 0.22 0.13 0.36 - 0.68 

0.5 0.32 0.06 0.75 0.27 0.34 - 0.80 0.21 0.15 0.37 - 0.69 

0.6 0.32 0.09 0.75 0.27 0.34 - 0.80 0.21 0.18 0.38 - 0.68 

0.7 0.32 0.12 0.75 0.30 0.33 - 0.84 0.22 0.23 0.37 - 0.68 

Pig2 
Maternal 

effect 
simulated 
not fitted 

0.8 0.32 0.16 0.75 0.29 0.35 - 0.84 0.21 0.25 0.39 - 0.66 

0.4 0.32 0.04 0.75 0.25 0.29 0.11 0.75 0.23 0.07 0.31 0.09 0.72 

0.5 0.32 0.06 0.75 0.24 0.26 0.12 0.75 0.24 0.08 0.30 0.10 0.73 

0.6 0.32 0.09 0.75 0.27 0.28 0.12 0.79 0.23 0.12 0.32 0.09 0.70 

0.7 0.32 0.12 0.75 0.27 0.26 0.13 0.81 0.22 0.15 0.31 0.09 0.71 

Pig2 
Maternal 

effect 
fitted and 
simulated 

0.8 0.32 0.16 0.75 0.29 0.26 0.14 0.83 0.23 0.20 0.32 0.09 0.71 

0.4 0.32 0.04 0.75 0.24 0.27 0.02 0.77 0.22 0.06 0.28 0.01 0.73 

0.5 0.32 0.06 0.75 0.25 0.25 0.02 0.76 0.23 0.08 0.27 0.01 0.73 

0.6 0.32 0.09 0.75 0.25 0.25 0.03 0.77 0.22 0.10 0.28 0.01 0.71 

0.7 0.32 0.12 0.75 0.25 0.24 0.03 0.79 0.22 0.13 0.28 0.01 0.72 

Pig2 
maternal 

effect 
fitted 

0.8 0.32 0.16 0.75 0.31 0.22 0.05 0.87 0.24 0.17 0.26 0.02 0.74 

0.4 0.32 0.04 0.75 0.24 0.29 - 0.77 0.22 0.06 0.29 - 0.72 

0.5 0.32 0.06 0.75 0.24 0.28 - 0.79 0.21 0.08 0.29 - 0.73 

0.6 0.32 0.09 0.75 0.26 0.28 - 0.80 0.23 0.11 0.28 - 0.72 

0.7 0.32 0.12 0.75 0.26 0.29 - 0.82 0.22 0.13 0.30 - 0.72 

Pig2 no 
maternal 

effect 

0.8 0.32 0.16 0.75 0.29 0.27 - 0.86 0.23 0.17 0.29 - 0.73 
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CHAPTER 5 

 

Detection of parent of origin effects using variance 

component analysis in simulated pedigrees 
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Summary 

A range of additive, dominant and imprinted QTL effects were simulated. Testing 

strategies for imprinted QTL were evaluated in human, pig and poultry populations 

for power to detect fully imprinted QTL and for false positive rates under Mendelian 

inheritance.  

Three different empirical thresholds for type 1 error were derived using varying 

additive and dominant QTL effects, and frequencies of the favourable allele.  

The detection of variance caused by imprinted genes and in particular estimates of 

variance components were also heavily dependent upon the number of sire and dam 

families used to estimate them.  

Type 1 error rates were high for the test of the separate maternal and paternal 

components against the additive model in the presence of large additive and 

dominant QTL effects. Type 1 error rates also differed markedly between human and 

livestock populations. For the detection of imprinting, power was greatest under a 

model incorporating separate parental components and could be used for an initial 

QTL search with little loss of power when compared to an additive model. 

Subsequent comparisons with individual parental effects were an effective test for 

parental inequalities and more robust than the test of the maternal and paternal model 

against the additive model. 

 

5.1 Introduction 

 

5.1.1 Genomic imprinting  

 

Genomic imprinting is the preferential expression of genes depending upon the sex 

of the parent from which they were inherited (Barlow 1995). It is brought about by 

epigenetic instructions – imprints – that are laid down in the parental germ cells 

(Reik & Walter, 2001). Examples include Prader-Willi syndrome in humans 

(Nicholls 2000), Callipyge in sheep (Charlier et al. 2001) and Igf2 in pigs (Nezer et 

al. 1999). The underlying mechanisms and evolutionary basis of imprinting is 

complex and not yet fully understood but genes tend to cluster in imprinted regions 

that are partially conserved across species. 
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 An increasing number of genome scans incorporating parent of origin effects have 

further highlighted their importance; see (De Koning et al. 2000;Dong et al. 

2005;Liu et al. 2007; McElroy et al. 2006a;Wolf et al. 2008) for scans revealing 

imprinted effects in pigs, humans, dogs, chicken and mice respectively. Luedi et al 

(2005) predict that there are over 600 imprinted genes in the mouse implying that the 

role of imprinting (in other species) is potentially underestimated.  Morison et al 

(2005) have compiled an imprinted gene database that contains more than 200 entries 

for mammals, marsupials and birds.  

 

Within livestock the effectiveness of selection procedures utilising genomic 

information relies on correctly identifying the mode of inheritance of desired 

variants. It has been hypothesised that imprinting has a role in heterosis and is 

potentially a source of variation that could be exploited in cross breeding and 

reciprocal crosses practised in many livestock species to combine fecundity and 

production traits (De Koning, Bovenhuis, & Van Arendonk 2002;Tuiskula-Haavisto 

& Vilkki 2007).  

 

Statistical methods to detect genomic imprinting involve the detection of allelic 

effects dependent on the parent of origin by genetic mapping. A maternally imprinted 

gene involves preferential expression of the paternal allele, i.e. shows an allelic effect 

when inherited from a sire and none when inherited from a dam and vice versa. A 

partially expressed QTL is one that shows an allelic effect when inherited from both 

sire and dam but the effect differs according to the parent from which it is inherited.  

 

In outbred populations parent of origin effects can be calculated as the difference 

between the heterozygous genotypes in a crossbred generation (Knott et al. 1998). 

This was modified to include direct tests for the contribution of maternal and paternal 

alleles by de Koning et al (2000; 2002) and implemented to find imprinted QTL 

explaining 2-10% of the phenotypic variance for body composition in pigs. Thomsen 

et al., (2004) treated the same model as a special case of the Mendelian model to 

compile a decision tree involving direct comparison of imprinted and mendelian 

models leading to the discovery of 33 parent of origin effects in pigs. 
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To date QTL studies in livestock populations for parent of origin effects have 

involved line crosses or divergent populations (Charlier et al. 2001;De Koning, 

Bovenhuis, & Van Arendonk 2002;Heuven et al. 2005;Lee et al. 2003;McElroy et al. 

2006b;Nezer et al. 2002;Thomsen et al. 2004b;Tuiskula-Haavisto et al. 2004).  

 

Detection of imprinted and dominant effects, however, within model or experimental 

populations is costly and potentially of limited relevance to populations under 

selection. It is often more practical to explore QTL segregating within a population, 

particularly if it is to facilitate selection within that population. Variance component 

theory has been developed to incorporate imprinted effects in complex pedigrees 

(Hanson et al. 2001;Pratt, Daly, & Kruglyak 2000;Shete & Amos 2002;Shete, Zhou, 

& Amos 2003). Heuven et al., (2005) use simulation of a variance component 

approach incorporating linkage disequilibrium following Lee et al., (2004) to 

evaluate optimum population structure in pigs to detect parent of origin effects. The 

detection of imprinted QTL using variance component approaches has been used in 

human data (Atwood et al. 2002;Shete & Yu 2005;Zhou et al. 2007) but very little 

application has been seen in livestock.  

 

The following chapter uses simulation to compare the power of the variance 

component approach to detect parent of origin effects in human, pig and poultry type 

pedigrees. The effect of population structure on the partitioning and estimation of 

variance components and the distributional properties of test statistics are evaluated 

by the comparison of different genetic models.  

 

 

5.2 Materials and methods 

 

5.2.1 Statistical Genetic Models for Variance Component Analysis  

 

As described in chapter 3 IBD coefficients were estimated for all relationships in the 

pedigree to calculate the covariance matrices for the QTL effects. Variance 
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components for each model were estimated using REML (Patterson & Thompson 

1971) implemented in the ASReml package (Gilmour, 1995). Models were solved 

using mixed model equations as described in chapter 2. 

 

A range of statistical models were evaluated: models used were 

(1)   y = Xβ + Zu + Wc + e    (null or polygenic)  

(2)   y = Xβ + Zu + Wc + Za + e        (additive) 

(3)   y = Xβ + Zu + Wc + Za + Zd + e       (additive  + dominance) 

(4)   y = Xβ + Zu + Wc + Zmm + Zpp + e      (maternal + paternal) 

(5)   y = Xβ + Zu + Wc + Zpp  + e       (paternal) 

(6)   y = Xβ + Zu + Wc + Zmm + e       (maternal) 

 

where y is a vector of phenotypic observations, β is a vector of fixed effects, u, a, d, 

m, p, c and e are vectors of random additive polygenic effects, additive and 

dominance QTL effects, maternal and paternal QTL effects, non genetic maternal 

effects and residuals, respectively. X, Z, W, Zm, and Zp are incidence matrices 

relating to fixed and random genetic, direct maternal, maternally expressed and 

paternally expressed QTL effects, respectively.  

 

Variances for polygenic and QTL effects are distributed as follows: var(u) =Aσ
2

a 

Var(a) = Gσ
2

q, Var(d) = Dσ
2

d,  Var(m) = GM σ
2

m, Var(p) = GP σ
2

p 

var(e) = Iσ
2

e,. For the non-genetic maternal effect Var(m) = Iσ
2

m. Where A is the 

standard additive relationship matrix based on pedigree data only and the relationship 

matrices G, GM, GP and D for a given QTL position are calculated from the gametic 

IBD matrix as outlined by Liu et al.,( 2002) described further in chapter 2.   

 

5.2.2 Calculating the relationship matrices A, G and D needed for the 

mixed model analysis  

 

The G, GM, GP and D are the appropriate relationship matrices used to model the 

additive, maternal, paternal and dominant QTL effects at each position tested.  They 
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are conditional on flanking marker information and therefore unique for each 

position evaluated for a QTL. Here the matrices were calculated every 5 cM.  

It can be shown that these relationship matrices are easily estimated from the gametic 

IBD matrix (chapter 2), a 2n x 2n matrix containing the probability of identity of 

descent between any of the two gametes of an individual with the gametes of the 

remaining individuals in the pedigree.  

 

The gametic IBD matrix was estimated with the recursive method of Pong-Wong et 

al., (2001) described in chapter 2. Variance components for each model were 

estimated using REML (Patterson & Thompson 1971) implemented in the ASReml 

package (Gilmour, Thompson, & Cullis 1995).  In order to estimate the variance 

components for the different models, ASReml requires the knowledge of the inverse 

of the relationship matrices. ASReml calculates the inverse of the A matrix directly 

from pedigree data, but G, GM, GP and D were inverted in using the R package for 

statistical computing (www.r-project.org) before using them in ASReml.  

 

5.2.3 Simulated populations 

 

The method was implemented in three simulated populations, representative of 

poultry, pig and human pedigrees (Table 5.1). The parental generation was simulated 

by random sampling without replacement from an unrelated base population. Under 

each scenario, random mating of parents was simulated to obtain a second generation 

of 1900 progeny.  

 

Table 5.1 Population Parameters for simulated pedigrees. 

 

 Sires Dams per sire no. of HS per sire no. of FS per dam 

Chicken 19 5 100 20 

Pig 10 19 190 10 

Human 633 1 - 3 
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2.4 Simulated polygenic and QTL effects 

A 20 cM chromosome was simulated with 5 markers spaced at 5 cM intervals and a 

bi-allelic QTL between the second and third marker at 7.5 cM. 

 

5.2.4.1 Polygenic variance 

 

To simulate polygenic variance, 10 unlinked additive effects of 0.2 were simulated 

each with an allele frequency of 0.5 following Alfonso and Haley (1998). The 

phenotypes generated under a polygenic model were normally distributed indicating 

that these unlinked QTL were sufficient to provide a reasonably structured polygenic 

variance. A residual effect was sampled from a normal distribution with mean 0 and 

a variance of 0.75.  

 

5.2.4.2 Dominant and imprinted QTL effects  

 

A range of maternally and paternally expressed QTL effects were simulated, together 

with various null scenarios. Null scenarios involved a range of additive, and partial to 

over dominant effects to explore spurious detection of parent of origin effects. The 

frequency of the favourable allele (p) was also varied. All scenarios were replicated 

100 times and are summarized in Table 5.2.  

 

5.2.4.3 Common environment and polygenic dominance 

 

The phenotypic resemblance between full sibs consists of one half of the additive 

genetic variance, one quarter of the variance due to dominance and any common 

environment effects. Non genetic sources of resemblance amongst full sibs such as 

common environment or direct maternal effects are often, at least partially, 

confounded with dominance as the covariance of phenotypic values is the sum of the 

covariances arising from genotypic and environmental causes. To ensure that 

maternal effects were accounted for in all scenarios a common environment or 

maternal effect was simulated by sampling from a normal distribution with variance 
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of 0.1 for each full sib family and assigning this value to each full-sib offspring. A 

direct maternal or dam effect was then fitted in all models. 

 

For one scenario the maternal effect was simulated but not fitted in the model to 

examine the effect on test statistics denoted mat
env

.  

 

Polygenic dominance with a variance of 0.1 was simulated by simulating full 

dominance at the 10 unlinked QTL denoted poly
dom

. For these scenarios no maternal 

effect was simulated. Test statistics were examined with a direct maternal effect both 

fitted (poly
dom

 F) and not fitted in the model (poly
dom

 NF).  

 

The variances of the additive (a), dominance (d) and imprinted (ai) QTL effects were 

calculated as follows: 

  V(d) = (2pqd)2 

  V(a) = 2pq[a+d(q-p)]2 

V(ai) = 2pq[p2 + ai
2 -2ad(p-q) + p2d2 + q2d2]   

reducing to V(ai) = 4pqa2 in the case of full imprinting. 
  

where d = (d1+d2)/2 and ai = (d1-d2)/2, for a bi-allelic locus with two alleles A 

and b, where A is the favourable allele and AA – bb = 2a,  Ab = d1 and bA = d2   
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Table 5.2 Simulated scenarios, genetic and non genetic parameters 

 Genetic effect at QTL Genetic variance at QTL 

 

Allele 
freq. a d1 d2 a- 

 p AA Ab bA bb V(a) V(d) V(ai) QTL 
Phen 
Var. 

QTL 
h

2
 

Gen  
h

2
 

Mat
env 

0.5 0.8 0.0 0.0 -0.8 0.32 0 0. 0.32 1.37 0.23 0.53 

Poly
dom

* 0.5 0.8 0.0 0.0 -0.8 0.32 0 0 0.32 1.37 0.23 0.43 

Null1 0.5 0.8 0.0 0.0 -0.8 0.32 0 0 0.32 1.37 0.23 0.43 

Null2 0.5 0.8 0.8 0.8 -0.8 0.32 0.16 0 0.48 1.53 0.31 0.51 

Null3 0.5 0.8 0.4 0.4 -0.8 0.32 0.04 0 0.36 1.41 0.26 0.46 

Null4 0.5 0.8 0.8 0.8 0.0 0.32 0.16 0 0.48 1.53 0.31 0.51 

Null5 0.5 0.0 0.8 0.8 0.0 0 0.16 0 0.16 1.21 0.13 0.33 

Null6 0.7 0.8 0.0 0.0 -0.8 0.27 0 0 0.27 1.32 0.2 0.4 

Null7 0.7 0.8 0.8 0.8 -0.8 0.1 0.11 0 0.21 1.26 0.17 0.37 

Null8 0.3 0.8 0.0 0.0 -0.8 0.27 0 0 0.27 1.32 0.2 0.4 

Null9 0.3 0.8 0.8 0.8 -0.8 0.53 0.11 0 0.64 1.69 0.38 0.58 

Null10 0.5 0.4 0.0 0.0 -0.4 0.08 0 0 0.08 1.13 0.07 0.27 

Null11 0.5 0.4 0.4 0.4 -0.4 0.08 0.04 0 0.12 1.17 0.1 0.3 

Null12 0.5 0.6 0.0 0.0 -0.6 0.18 0 0 0.18 1.23 0.15 0.35 

Null13 0.5 0.6 0.3 0.3 -0.3 0.18 0.02 0 0.2 1.25 0.16 0.36 

Null14 0.5 0.6 0.6 0.6 -0.6 0.18 0.09 0 0.27 1.32 0.2 0.4 

Mat1 0.5 0.2 -0.2 0.2 -0.2 0.02 0 0.04 0.04 1.09 0.04 0.24 

Mat2 0.5 0.4 -0.4 0.4 -0.4 0.08 0 0.16 0.16 1.21 0.13 0.33 

Mat3 0.5 0.6 -0.6 0.6 -0.6 0.18 0 0.36 0.36 1.41 0.26 0.46 

Mat4 0.5 0.8 -0.8 0.8 -0.8 0.32 0 0.64 0.64 1.69 0.38 0.58 

pat1 0.5 0.2 0.2 -0.2 -0.2 0.02 0 0.04 0.04 1.09 0.04 0.24 

pat2 0.5 0.4 0.4 -0.4 -0.4 0.08 0 0.16 0.16 1.21 0.13 0.33 

pat3 0.5 0.6 0.6 -0.6 -0.6 0.18 0 0.36 0.36 1.41 0.26 0.46 

pat4 0.5 0.8 0.8 -0.8 -0.8 0.32 0 0.64 0.64 1.69 0.38 0.58 

Based on an environmental variance of 0.75, polygenic additive variance of 0.2, and 

common environmental effect of 0.1  

* poly
dom

 scenario has no maternal effect, polygenic additive variance of 0.2 and polygenic 

dominance variance of 0.1.  

a = additive effect, d = dominance effect = (d1+d2)/2, V(d) = (2pqd)
2
, and V(a) = 2pq[a+d(q-

p)]
2
 ai is imprinted effect = (d1-d2)/2 
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For each individual, a residual effect was sampled from a normal distribution with a 

mean of 0 and a variance of 0.75. Because the error variance was constant, 

phenotypic variance and overall heritability increased with genetic effects. In the 

base scenario with no QTL simulated, polygenic heritability was 0.11. Total 

heritability (polygenic and QTL) ranged from 0.1 to 0.58 with maternally/paternally 

expressed QTL effects ranging from 4 to 39% of the phenotypic variance.  

 

5.2.5 Test statistic  

 

For each scenario, 100 replicates were analysed and the test statistics calculated at 2, 

7, 12, and 17cM. Tests involved comparisons of linear models (1)-(6) and are 

described in Table 5.3. A log likelihood ratio test statistic (LRT) for a given location 

was calculated as twice the difference between the log likelihood of the full and the 

reduced model. Power was estimated using empirical thresholds derived from 1000 

chromosome-wise replicates.   

 

Table 5.3 gives the type of QTL effects (i.e. mode of inheritance) estimated under 

each comparison and the 5% empirical threshold for type 1 error rate. Initially, each 

model was tested against the null hypothesis of no QTL. Subsequent tests between 

models were for  

i. Dominance by comparing the model incorporating additive and dominance 

addom (3) with a purely additive model add (2) 

ii. Parent of origin effects by comparing the pat+mat model incorporating 

maternal and paternal QTL (4) with the additive model add (2). 

iii. Paternal expression by comparing the pat+mat model (4) with a paternal 

model pat (5).  

iv. Maternal expression by comparing the pat+mat model (4) with a maternal 

model mat (6).   
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Table 5.3 Tests for QTL effects and corresponding empirical thresholds 

for 5% type 1 error based on 1000 simulated replicates  

 

QTL in Model 

Empirical Threshold 

 

Test 

alternative  

(H1) 

null 

(H0) QTL effect tested for 

Poultry Pig Human 

add 
add 

 (2) 

null  

(1) 
additive 

3.78 3.44 3.78 

addom 
add + dom  

(3) 

null  

(1) 
additive + dominant 

5.14 4.86 4.54 

pat+mat 
pat + mat  

(4) 

null  

(1) 
paternal  + maternal 

5.40 4.78 4.68 

pat 
pat  

(5) 

null  

(1) 
paternal 

3.52 3.76 3.0 

mat mat (6) 
null  

(1) 
maternal 

3.67 3.16 3.66 

dom 
add + dom  

(3) 

add  

(2) 
dominant 

2.60 2.40 1.4 

imp 
pat + mat  

(4) 

add 

 (2) 
imprinted 

2.80 2.54 2.76 

**patvfull 
pat + mat  

(4) 

pat  

(5) 
maternally expressed 

3.40 2.90 3.72 

**matvfull 
pat + mat  

(4) 

mat  

(6) 
paternally expressed 

3.34 3.12 3.04 

* LRT is chromosome–wise empirical threshold for 5% type 1 error rate for test 

statistic (twice the difference between log likelihoods for the alternative and null 

model), estimated by 1000 iterations 

** For example if the test of patvfull is significant the model incorporating paternal 

and maternal QTL is explaining more variation than the paternal QTL indicating 

some level of maternal expression. If there is no significant difference between the 

pat+mat model and mat model the maternal QTl is explaining all of the variation. 



 121

5.2.6 Null distribution 

 

Empirical chromosome-wise type 1 error rates were determined separately for all 

three population structures. One thousand replicates of the null scenario (both 

additive and dominance QTL effects set to zero), were analysed to determine 5% 

thresholds for the likelihood ratio statistic from all models and tests defined in Table 

5.1.  

 

5.3   Results 

Power and variance estimates for all models and all scenarios are given in 

Appendices 5.1 to 5.4 
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Figure 5.1. False positive rate for test for imprinting (imp) when simulating additive, 

dominant and over dominant QTL under an empirical 5% threshold, derived from 1000 

replicates of a null scenario with QTL effects of zero. The Imp test statistic is a 

comparison between a model fitting a paternal QTL and a maternal QTL mat+pat (H1) 

with add model fitting an additive QTL (H0). p denotes allele frequency, a denotes 

additive QTL effect and d denotes dominance QTL effect, QTL var is proportion of 

phenotypic variance explained by the QTL. 
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5.3.1 Spurious detection of parent of origin effects 

 

Figure 5.1 gives the proportion of replicates significant (P<0.05) for the imp test 

under varying additive and dominant QTL effects when there is no imprinting. All of 

the scenarios exceed the 5% type 1 error rate for the test between the pat+mat and 

the add model despite the absence of imprinting. Even with moderate additive effects 

there is spurious imprinting of 10-20%, and when large additive QTL effects are 

simulated explaining >20% of the phenotypic variance the false positive rate is 40-

70%. The test statistic is inflated by dominance effects, in particular over-dominance 

where the false positive rate is 70-80% and also affected by changes in allele 

frequency. False positive rate is also affected by population structure to a varying 

degree depending on mode of inheritance with the highest false positive rate 

observed for the largest QTL effects in pigs.  

 

 

Table 5.4 Thresholds for 5% type 1 error rate for imp* test statistic 

derived from 1000 replicates when simulating no QTL and simulating 

fully dominant QTL.  

 

5% type 1 error rate 

Empirical 

Threshold 

Allele 

freq. 

p/q 

Additive 

QTL 

effect 

a 

Dominant 

QTL 

effect 

d Poultry Pig Human 

1 0.5/0.5 0 0 2.8 2.54 2.76 

2 0.3/0.7 0.6 0.6 12.6 22.7 10.3 

3 0.3/0.7 0.8 0.8 30.6 53.7 11.6 

*Imp test statistic comprises the comparison of model fitting a paternal QTL 

and a maternal QTL pat+mat(H1) with add model (H0) 

 

Based on the high false positive rates under the null hypothesis of no QTL effects 

seen in Figure 5.1, more stringent thresholds were derived for the test for imprinting 

to try to account for the effects of additive and dominant effects at the QTL and 
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changes in allele frequency. Two further empirical thresholds for the imp test statistic 

were derived using fully dominant QTL with additive and dominant effects of 0.6 

and 0.8 and favourable allele frequency (p) of 0.3. Plots of the three distributions are 

given in figure 5.2 and thresholds for 5% type 1 error rate in table 5.4. 

 

Figure 5.2 shows that under threshold 1 the distributions are similar in all three 

populations. As additive and dominant effects at the QTL increase the distribution of 

test statistics become more variable confirming that the test for imprinting is affected 

both by the size of additive and dominance effects at the QTL and dependent on 

population structure.  
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Figure 5.2. Empirical distribution of the test statistic for the imp* test under a) QTL 

effect of zero, b) fully dominant QTL with additive and dominant QTL effects of 0.6 and 

c) fully dominant QTL with additive and dominant effects of 0.8. Allele frequencies for 

the dominant QTL are 0.3 and 0.7. First 500 of 1000 ranked replicates shown. *Imp test 

statistic comprises the comparison of model fitting a paternal QTL and a maternal 

QTL pat+mat (H1) with add model (H0). 
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Table 5.5 False positive rates for imp* statistic from empirical 5% thresholds, based on 100 replicates of each 

scenario. 

Genetic effect simulated Threshold 1 Threshold 2 Threshold 3 

Scenario 
Allele 
freq. 

p AA 
AB 
BA 

BB 

QTL 
var 

Chick Pig Hum Chick Pig Hum Chick Pig Hum 

null1 0.5 0.8 0 -0.8 0.23 39 72 64 3 3 5 0 1 0 

null2 0.5 0.8 0.8 -0.8 0.33 66 88 80 20 15 11 4 1 8 

null3 0.5 0.8 0.4 -0.8 0.25 51 73 68 2 7 4 0 2 1 

null 4 0.5 0.8 0.8 0 0.36 26 33 58 0 0 1 0 0 0 

null 5 0.5 0 0.8 0 0.13 78 78 74 18 2 5 0 0 2 

null 7 0.7 0.8 0.8 -0.8 0.2 41 62 75 5 4 1 0 3 1 

null 8 0.3 0.8 0 -0.8 0.29 34 55 59 0 1 1 0 1 1 

null 9 0.3 0.8 0.8 -0.8 0.2 73 82 62 27 38 6 3 6 4 

null 10 0.5 0.4 0 -0.4 0.07 11 11 10 0 0 0 0 0 0 

null 11 0.5 0.4 0.4 -0.4 0.1 28 25 11 0 0 0 0 0 0 

null 12 0.5 0.6 0 -0.6 0.15 19 10 11 2 1 0 1 0 0 

null 13 0.5 0.6 0.3 -0.3 0.16 37 20 6 1 1 0 0 0 0 

null 14 0.5 0.6 0.6 -0.6 0.2 45 43 12 2 1 0 0 0 0 

Mat
env

 NF 0.5 0.8 0 -0.8 0.23 100 95 93 59 45 45 3 0 38 

Poly
dom

 F 0.5 0.8 0 -0.8 0.23 10 37 12 1 0 0 0 0 0 

Poly
dom

 NF 0.5 0.8 0 -0.8 0.23 39 66 25 3 0 0 2 0 0 

*Imp test statistic comprises the comparison of model fitting a maternal QTL and a paternal QTL (H1) with a Mendelian model 

(H0). 
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Figure 5.3  Proportion of replicates significant for the imp test for full imprinting for 
maternally (left) or paternally (right) expressed QTL  based on 100 replicates,  under three 
different empirical thresholds: From top to bottom empirical thresholds derived  from a) no 
QTL effect, b) a fully dominant QTL with additive and dominant QTL effects of 0.6 and c) a 
fully dominant QTL with additive and dominant effects of 0.8. Favourable Allele frequencies 
for the dominant QTL are 0.5 for a  and 0.3 for b and c. Results are regardless of 
significance at the QTL.  
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Table 5.5 compares the false positive rates for the imp statistic under the three 

thresholds. The more stringent thresholds appear to successfully correct for 5% type 

1 error rates in the three different populations when no imprinting is simulated. Not 

fitting common environment in the model resulted in inflated tests for imprinting; 

these were controlled by the more stringent thresholds in the chicken and the pig 

populations but not in humans. Polygenic dominance variance of the same magnitude  

inflated spurious QTL dominance in chicken and pig populations but did not appear 

to inflate the imp statistic. Polygenic dominance was controlled by fitting a direct 

maternal effect. 

 

5.3.2 Power to detect imprinted QTL 
 
Figure 5.3 compares the proportion of replicates significant for the imp test for 

paternally/maternally expressed QTL under the three empirical thresholds (table 5.4).  

Under threshold 1 there was no difference in power amongst populations to detect 

maternally or paternally expressed QTL. For all populations power was high; > 95% 

to detect parent of origin effects of 0.2 explaining more than 4% of the phenotypic 

variance. Under the more stringent thresholds detection of QTL effects of 0.2 and 0.4 

explaining 4-13% of the phenotypic variance was most affected. In chicken and pig 

populations power was lower in the paternal analyses, with the pig population most 

affected. 

 

Figure 5.4 shows estimates of QTL variance from the pat+mat model (4) from 

scenarios mat4 and pat4 (Table 5.3). Maternally and paternally expressed QTL were 

simulated with a large fully imprinted effect (ai) of 0.8 where E(Vai)=0.64. There 

was little difference between the estimates of the paternal and maternal variance 

components together in the pat+mat model or individually (Appendix 5.1).  

Paternally expressed QTL variance was underestimated in the pig and the chicken 

populations. Maternally expressed variance was estimated more accurately, although 

slightly underestimated in the chicken population and over – estimated in the human 

population. There was little spurious estimation of variance from the parent from 

which the QTL is not expressed. 
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Figure 5.4 Estimation of maternal and paternal variance components using the 

pat+mat model fitting a maternal and paternal QTL. Based on 100 replicates that were 

all significant for the simulated QTL. a) paternally expressed QTL pat with a simulated 

imprinted effect of 0.8 and b) maternally expressed QTL mat with a simulated 

imprinted effect of 0.8. Dashed line denotes the expectation of QTL variance under the 

correct model 
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Table 5.6. Proportion of replicates (n=100) where there is maternal 

expression (patvfull test) and/or paternal expression (matvfull test) in a 

range of scenarios simulating additive, dominant, overdominant and 

imprinted QTL   

 

 Chicken Pig Human 
 patvfull matvfull patvfull matvfull patvfull matvfull 
null1 100 100 99 100 91 94 
null2 99 100 95 100 98 99 
null3 99 99 96 100 95 93 
null4** 91 92 69 91 53 61 
null5 
** 96 45 83 24 55 70 
null7 83 83 84 92 77 81 
null8 99 100 98 100 75 88 
null9 100 100 97 98 100 100 
       
mat1 69 3 44 2 67 89 
mat2 100 0 100 3 4 91 
mat3 100 4 100 3 0 87 
mat4 100 4 100 0 0 89 
pat1 4 99 3 100 91 52 
pat2 5 100 3 100 86 0 
pat3 13 100 6 100 95 0 
pat4 38 100 0 100 97 0 

*Regardless of significance of the QTL  

**Overdominance is simulated in these scenarios.Scenarios are summarised 

in Table 5.3 

Details of all scenarios are given in table 5.2. mat1-4 are maternally 

expressed QTL, and pat1-4 are paternally expressed QTL 

 

Table 5.6 shows the test of individual parental QTL against the pat+mat model 

denoted matvfull and patvfull based on the thresholds given in table 5.3. For an 

imprinted QTL only one parent is expected to show expression. For example for a 

maternally expressed QTL the expectation is that the patvfull test is significant and 

the matvfull test is not significant. For non imprinted QTL the expectation is that 

both tests are significant as there is expression from both parents. For the imprinted 

models, provided there is power to detect the size of effect, a high proportion of 

replicates indicate parental expression from the correct parent although for the largest 
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paternally expressed effect in chicken the paternal QTL fails to explain as much 

variance as the pat+mat model in 38% of scenarios.    

 

Table 5.7 Power (proportion of significant replicates, based on 100 

replicates) to detect fully imprinted QTL under different QTL models 

using 5% empirical threshold derived under null scenario of no QTL.  

 

   QTL Model 

   
add† addom†† pat+mat# pat‡ mat‡‡ Imp* 

% of full 
sig for imp ** 

chicken 31 44 63 5 74 67 93 
pig 12 26 42 8 52 49 83 0.2 
human 18 29 37 14 31 47 92 
chicken 100 100 100 2 100 100 100 
pig 95 99 100 5 100 100 100 

Maternal 
expression 

0.4 
human 55 75 95 3 96 95 100 
chicken 97 94 96 100 5 49 100 
pig 98 97 96 100 4 51 51 0.2 
human 9 18 39 43 4 48 92 
chicken 100 100 100 100 4 99 100 
pig 100 100 100 100 5 96 100 

Paternal 
expression 

0.4 
human 69 80 99 100 0 97 100 

Thresholds are based on 1000 simulated replicates and are given in table 5.3. 

† 
additive test statistic comparing model fitting additive QTL (H1) and no QTL (H0) 

†† 
addom test statistic comparing model fitting additive and dominant QTL (H1) and no QTL 

(H0) 

# 
pat+mat test statistic comparing model fitting maternal and paternal QTL (H1) and no QTL 

(H0) 

*Imp test statistic comprises the comparison of model fitting a maternal QTL and a paternal 

QTL (H1) with add model (H0). 

** % of the significant replicates under the pat+mat model also significant for the imp test 

 

Table 5.7 compares power to detect imprinted QTL under various QTL models. 

Power is greatest under the appropriate model incorporating separate paternal and 

maternal QTL effects, although for small effects only around half of subsequent tests 

between the pat+mat and Mendelian model are significant. When the appropriate 

model is not used a model including dominance is slightly more powerful than an 

additive model. For a non imprinted QTL the pat+mat model can be used with little 

loss of power (Appendix 5.1).  
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Figure 5.5 Spurious dominance under paternal and maternal expression 

number of replicates (out of 100) where dom test (additive + dominant 

QTL addom (H1) versus additive QTL add (H0) is significant when full 

imprinting is simulated and no dominance. 

 

5.3.3 False positives under full imprinting 

 

Figure 5.5 shows the proportion of replicates significant for the test for dominance 

when a fully imprinted QTL is simulated. For chicken and pig populations spurious 

dominance is found under maternal expression with the pig population most affected. 

For the human population detection of spurious dominance is high and independent 

of the parent from whom the QTL effect is expressed (Appendix 5.1).  
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5.4 Discussion 

 

Testing strategies for imprinted QTL were evaluated in human, pig and poultry 

populations for power (P < 0.05) to detect fully imprinted QTL and for false positive 

rates under Mendelian inheritance using three different empirical thresholds. 

Empirical thresholds for type 1 error were derived using varying additive and 

dominant QTL effects, and favourable allele frequencies.   

 

False positive rates for non imprinted QTL from the initial empirical distribution 

were surprisingly high and imply that the use of the imp test particularly using 

tabulated thresholds should be approached with caution. In particular dominant QTL 

effects appeared to inflate the test statistic for imprinting although this was also seen 

for large additive effects. This indicates that using no QTL to derive empirical 

thresholds is inappropriate and not a true representation of the null hypothesis for this 

test. It must be noted that at more modest, and potentially more biologically 

plausible, additive effects, false positive rates for imprinting were much lower. There 

was also a high rate of spurious dominance when only additive effects were 

simulated if additive effects were large (appendix 5.2), this was not seen in the 

chapter 4 because the simulated additive QTL effects were lower.  

 

Thresholds for the imprinting test derived from simulating additive and dominant 

QTL were extremely high, in particular reflecting the high rate of false positives in 

the pig population. The 5% type 1 error thresholds for the likelihood ratio test 

statistic were ~12, 31, and 54 for human, chicken and pig type pedigrees, 

respectively. When power calculations were made using these thresholds power to 

detect imprinted QTL was lowest in the pig population, in particular for the detection 

of paternally expressed QTL. Applying thresholds 1 and 2 across non imprinted 

scenarios did successfully control the type 1 error rate; however the selection of these 

thresholds was extreme and arbitrary, given that for real data the magnitude of 

additive and dominant QTL effects are unknown. Despite this there was still some 

power to detect imprinted QTL effects in all populations. It is difficult to hypothesise 

how an appropriate threshold should be selected for the analysis of real data.  
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One method might be to try to incorporate more variance components in the null 

hypothesis, for example test a model including maternal, paternal and dominant QTL 

against a model with additive and dominant QTL. This however would not account 

for the spurious imprinting found at large additive effects. It is also more difficult to 

achieve convergence for parameter estimates particularly those close to zero as 

components in the model increase.    

 

For the initial search power was greatest to detect imprinted QTL when the pat+mat 

model incorporating separate parental QTL when compared to searching under the 

add model. This also resulted in little loss of power when QTL effects were not 

imprinted. The subsequent testing of individual parental models with the pat+mat 

model using the patvfull and matvfull tests appears to be a reliable indicator of 

parental expression although these tests would also indicate expression from a single 

parent if there was low power to detect an effect segregating from the other parent, 

for example when favourable allele frequencies are low and/or there are a low 

number of parents of a given sex contributing to the population under study. 

 

Human pedigrees were in general less powerful to detect QTL under the add and 

pat+mat models and more susceptible to spurious dominance and inflated estimates 

of direct maternal variance when an imprinted QTL was analysed under an incorrect 

model. Conversely, using the imp test, false positive rates were lowest in human 

pedigrees. When using stringent empirical thresholds, the power to detect imprinting 

was highest in human pedigrees. The balanced design of the human pedigree also 

yielded more accurate estimates of the variance components under the correct model 

and equal power to detect paternally or maternally expressed QTL.  

 

The empirical 5% threshold, derived with no QTL effects simulated, corresponded to 

a nominal P value around 2.7% for all populations. The expectation is that under the 

null hypothesis the test statistic for the pat+mat versus null model is distributed 

asymptotically as a mixture of  ¼ χ
2

0, ½ χ
2
1 and ¼ χ

2
2 (Hanson et al. 2001b;Self & 

Liang 1987;Shete, Zhou, & Amos 2003). Hanson et al., (2001) show, using 

simulation, that the imp statistic, where using the additive model as the null is a 
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special case of constraining the parental components to be equal, can be controlled 

using a χ
2

1 distribution.  Here, under the null hypothesis of no QTL, the 5% type 1 

error rate of 2.7 despite being estimated chromosome-wise, is conservative when 

compared to the 3.84 tabulated value under χ
2

1 and closer to a mixture of χ
2

1 and χ
2
2 

distributions. It is clear, however, that this test statistic cannot be accurately derived 

under a null QTL model in the presence of moderate to large QTL effects. 

 

Although computationally expensive, permutation analysis is an attractive option. It 

is crucial to ascertain on what level the permutation should take place, for example in 

livestock it could be hypothesized that permuting phenotypes and genotypes within 

large dam families might be effective whilst circumventing re estimation of IBD 

matrices and polygenic or common environment effects.  

 

Accuracy of variance component estimates for imprinted QTL was dependent upon 

population structure and increased with the number of parents segregating for the 

effect. Pig and poultry populations failed to accurately estimate variance from 

paternally expressed QTL. In the pig population, the average estimate of 100 

significant replicates for a paternally expressed QTL with a variance of 0.64, was 

only 0.14. The pig population has only 10 sires and with even small sampling effects 

at intermediate allele frequencies there may be too few sires segregating to 

accurately estimate the paternal variance component. All pedigrees had higher 

estimates for maternally expressed QTL, possibly due to greater numbers of dam 

families than sire families in the populations. The lowest estimates were from the 

chicken population, which had the lowest number of dam families. In the human 

population, the maternal variance components were overestimated, possibly due to 

confounding. With no half sib structure, both estimates of the maternal and paternal 

variance components have to be derived from a single source of information i.e. the 

covariance of full sibs. 

 

Polygenic dominance resulted in some spurious dominance (Appendix 5.2) but had 

very little effect on the test for imprinting. A common or maternal environment 

effect did cause spurious inflation of the imp and dom test statistics, in particular for 
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the human populations. Although it is surprising that the maternal effect should have 

effects of this magnitude at an individual locus, the results reflect findings from the 

chapter 4. Hager et al., (2008) formalize this in an F3 mouse population using 

simulation to show how maternal genetic and direct effects can result in patterns that 

mimic those expected under imprinting, bipolar and polar dominance. The net result 

of gametic imprinting is a reduction of the expected phenotypic covariance between 

parents and offspring relative to that between siblings, therefore anything that 

inflates covariance between siblings could result in spurious inheritance patterns. 

 

5.5 Conclusions 

Substantially more replicates were used than in previous studies to examine type 1 

error rates. Whereas others use deterministic formulae or the assumption of chi-

square distributions this study derives empirical distributions and shows that for tests 

between different linear models, the derivation of the correct null distribution is a 

difficult issue. It is clear that in many circumstances tabulated thresholds would fail 

and furthermore type 1 error rates differ markedly between human and livestock 

populations. Therefore, tests between models although a useful source of information 

should be regarded with caution. For the detection of imprinting, the pat+mat model 

could be used for an initial QTL search with little loss of power for purely additive 

QTL. Subsequent comparisons with individual parental effects can be used to test for 

parental inequalities however this would still require correction for multiple testing. 

Given the effects of QTL size, environment, and differences in allele frequency care 

should be taken in interpretation of results.  
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Appendix 5.1  Proportion of significant replicates (n=100) for all tests based on 5% empirical type 1 error rate derived 

under null scenario of no QTL (Threshold 1) 

  
Poly

env
 

NF 
Poly

env
 

F 
Mat

env
  

null1 null2 null3 null4 null5 null7 null8 null9 null10 null11 null12 null13 null14 

  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.3 0.3 0.5 0.5 0.5 0.5 0.5 

  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.7 0.5 0.5 0.5 0.5 0.5 

  0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 0.8 0.8 0.8 0.4 0.4 0.6 0.6 0.6 

  0 0 0 0 0.8 0.4 0.8 0.8 0.8 0 0.8 0 0.4 0 0.3 0.6 

  0 0 0 0 0.8 0.4 0.8 0.8 0.8 0 0.8 0 0.4 0 0.3 0.6 

  -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 0 0 -0.8 -0.8 -0.8 -0.4 -0.4 -0.6 -0.3 -0.6 

chick 100 100 100 100 100 99 100 95 85 100 100 99 99 100 100 100 

pig 100 99 98 100 100 100 98 60 99 100 99 97 99 100 100 100 

add hum 97 95 97 99 97 100 98 54 55 85 100 29 54 73 78 74 

chick 100 100 100 100 100 99 100 100 85 100 100 100 100 100 100 100 

pig 100 100 98 100 100 100 98 100 98 100 100 95 97 100 100 100 

addom hum 97 94 99 100 94 100 99 68 87 92 100 28 52 72 77 76 

chick 100 100 100 100 100 99 100 97 85 100 100 100 99 100 100 100 

pig 100 100 98 100 100 100 99 85 99 100 100 98 99 100 100 100 

pat+mat hum 95 94 99 100 98 100 99 77 83 95 100 23 43 66 66 72 

chick 100 100 100 100 100 99 94 55 85 100 100 97 92 100 100 100 

pig 100 100 98 100 100 100 92 23 92 100 98 95 94 100 100 100 

pat hum 77 71 95 91 82 96 90 48 62 62 99 15 22 36 52 50 

chick 100 100 100 100 100 99 95 95 83 100 100 70 91 99 99 100 

pig 100 100 98 99 99 100 78 85 90 100 100 53 71 98 92 100 

mat hum 68 68 93 81 69 95 83 42 42 68 99 15 24 43 37 44 

chick 18 9 60 10 98 56 71 100 82 8 92 9 57 5 28 96 

pig 48 21 87 33 93 66 48 100 88 20 87 5 34 10 24 82 

dom hum 28 20 89 41 81 53 53 93 77 36 72 7 13 10 17 19 

chick 39 10 100 40 66 51 26 78 41 34 73 11 28 19 37 45 

pig 66 37 95 72 88 73 33 78 62 55 82 11 25 10 20 43 

imp hum 25 12 93 64 80 68 58 74 75 59 62 10 11 11 6 12 
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Appendix 5.2 Proportion of significant replicates (n=100) for dom test 

statistic based on 5% empirical type 1 error rate derived under null 

scenario of no QTL (Threshold 1) 

 

Scenario 

Allele 

Freq. Genetic effect Population 

 p AA AB bA BB 

QTL 

variance Chick Pig Human 

Mat NF 0.5 0.8 0 0 -0.8 0.23 60 87 89 

PD NF 0.5 0.8 0 0 -0.8 0.23 18 48 28 

PD F 0.5 0.8 0 0 -0.8 0.23 9 21 20 

10 0.5 0.4 0 0 -0.4 0.07 9 5 7 

12 0.5 0.6 0 0 -0.6 0.15 5 10 10 

1 0.5 0.8 0 0 -0.8 0.23 15 33 41 

8 0.3 0.8 0 0 -0.8 0.29 8 20 36 

11 0.5 0.4 0.4 0.4 -0.4 0.1 57 34 13 

13 0.5 0.6 0.3 0.3 -0.3 0.16 28 24 17 

14 0.5 0.6 0.6 0.6 -0.6 0.2 96 82 19 

2 0.5 0.8 0.8 0.8 -0.8 0.33 98 93 81 

3 0.5 0.8 0.4 0.4 -0.8 0.25 56 66 53 

4 0.5 0.8 0.8 0.8 0 0.36 71 48 53 

7 0.7 0.8 0.8 0.8 -0.8 0.2 82 88 77 

5 0.5 0 0.8 0.8 0 0.13 100 100 93 

9 0.3 0.8 0.8 0.8 -0.8 0.2 92 87 72 
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Appendix 5.3 Estimates of variance components for all models for maternally expressed QTL 

  human chicken pig 

Model  mat1 mat2 mat3 mat4 mat1 mat2 mat3 mat4 mat1 mat2 mat3 mat4 

 
Simulated 
variance 0.04 0.16 0.36 0.64 0.04 0.16 0.36 0.64 0.04 0.16 0.36 0.64 

residual 0.25 0.32 0.42 0.68 0.27 0.36 0.50 0.74 0.25 0.36 0.53 0.78 Null 
(1) dam 0.08 0.11 0.15 0.73 0.10 0.13 0.19 0.27 0.10 0.14 0.19 0.25 

add 0.08 0.19 0.39 0.79 0.03 0.20 0.38 0.49 0.02 0.18 0.31 0.38 

poly 0.18 0.13 0.04 0.00 0.24 0.15 0.11 0.19 0.23 0.17 0.20 0.30 

dam 0.08 0.11 0.15 0.73 0.10 0.13 0.19 0.25 0.10 0.14 0.19 0.24 

add 
 

(2) 
residual 0.80 0.84 0.91 0.79 0.75 0.80 0.84 0.83 0.76 0.80 0.83 0.86 

add 0.02 0.06 0.18 0.78 0.02 0.16 0.35 0.47 0.01 0.10 0.28 0.36 

poly 0.23 0.25 0.23 0.00 0.25 0.19 0.13 0.23 0.24 0.25 0.23 0.37 

dam 0.07 0.09 0.11 0.73 0.10 0.13 0.18 0.24 0.09 0.12 0.16 0.20 

residual 0.73 0.73 0.74 0.78 0.73 0.77 0.80 0.78 0.73 0.73 0.75 0.69 

addom 
 

(3) 

dom 0.08 0.13 0.21 0.01 0.02 0.03 0.05 0.09 0.03 0.08 0.11 0.20 

poly 0.19 0.19 0.18 0.03 0.23 0.23 0.23 0.30 0.21 0.21 0.20 0.23 

dam 0.06 0.07 0.07 0.56 0.09 0.09 0.10 0.13 0.09 0.10 0.09 0.10 

residual 0.76 0.76 0.77 0.82 0.74 0.75 0.75 0.73 0.76 0.75 0.76 0.75 

Pat 0.04 0.04 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

pat + mat 
 

(4) 

Mat 0.07 0.19 0.40 0.77 0.05 0.17 0.36 0.55 0.05 0.17 0.38 0.63 

Poly 0.23 0.31 0.42 0.68 0.27 0.36 0.50 0.74 0.24 0.35 0.52 0.77 

Dam 0.08 0.11 0.15 0.73 0.10 0.13 0.19 0.27 0.10 0.14 0.19 0.25 

residual 0.79 0.84 0.91 0.88 0.74 0.77 0.81 0.81 0.76 0.77 0.79 0.81 

pat 
 

(5) 
 Pat2 0.04 0.02 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 

Poly 0.22 0.21 0.20 0.04 0.24 0.23 0.23 0.30 0.21 0.22 0.20 0.23 

Dam 0.07 0.08 0.08 0.56 0.09 0.09 0.10 0.13 0.09 0.10 0.09 0.10 

residual 0.78 0.78 0.78 0.84 0.74 0.75 0.75 0.73 0.76 0.75 0.76 0.75 

Mat 
 

(6) 
Mat2 0.06 0.19 0.39 0.77 0.05 0.17 0.37 0.55 0.05 0.17 0.38 0.63 
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Appendix 5.4 Estimates of variance components for all models for paternally expressed QTL 

  Human Chicken Pig 

pat1 pat2 pat3 pat4 pat1 pat2 pat3 pat4 pat1 pat2 pat3 pat4 
Model 

Simulated variance 0.04 0.16 0.36 0.64 0.04 0.16 0.36 0.64 0.04 0.16 0.36 0.64 

residual 0.25 0.31 0.42 0.59 0.27 0.33 0.43 0.57 0.23 0.29 0.36 0.45 Null 
(1) dam 0.09 0.11 0.15 0.21 0.09 0.10 0.09 0.13 0.09 0.09 0.09 0.09 

add 0.07 0.20 0.37 0.62 0.06 0.14 0.25 0.36 0.06 0.13 0.21 0.26 

poly 0.18 0.11 0.05 0.01 0.21 0.20 0.20 0.25 0.18 0.16 0.16 0.19 

dam 0.09 0.11 0.15 0.21 0.09 0.10 0.10 0.14 0.09 0.09 0.09 0.09 

add 
 

(2) 
residual 0.80 0.84 0.91 0.97 0.75 0.77 0.78 0.79 0.78 0.79 0.81 0.85 

add 0.02 0.07 0.18 0.39 0.06 0.14 0.25 0.36 0.06 0.13 0.20 0.26 

poly 0.23 0.23 0.23 0.18 0.21 0.20 0.20 0.24 0.18 0.16 0.16 0.19 

dam 0.14 0.09 0.11 0.16 0.09 0.10 0.09 0.14 0.09 0.09 0.09 0.10 

residual 0.74 0.73 0.76 0.77 0.74 0.77 0.78 0.79 0.77 0.79 0.81 0.83 

addom 
 

(3) 

dom 0.08 0.14 0.19 0.28 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

poly 0.19 0.17 0.18 0.18 0.22 0.25 0.32 0.39 0.20 0.23 0.27 0.34 

dam 0.06 0.07 0.07 0.07 0.09 0.09 0.08 0.09 0.09 0.09 0.08 0.08 

residual 0.76 0.76 0.78 0.76 0.73 0.75 0.73 0.74 0.76 0.76 0.78 0.80 

Pat 0.08 0.20 0.39 0.68 0.05 0.13 0.19 0.21 0.05 0.10 0.13 0.14 

pat + mat 
 

(4) 

Mat 0.03 0.04 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 

Poly 0.21 0.20 0.20 0.21 0.23 0.26 0.32 0.41 0.21 0.24 0.27 0.35 

Dam 0.07 0.08 0.07 0.08 0.09 0.10 0.08 0.10 0.09 0.09 0.09 0.08 

residual 0.78 0.78 0.79 0.77 0.73 0.75 0.74 0.75 0.76 0.76 0.79 0.81 

pat 
 

(5) 
 Pat2 0.07 0.20 0.39 0.68 0.05 0.13 0.19 0.21 0.05 0.10 0.12 0.14 

Poly 0.23 0.30 0.41 0.59 0.26 0.33 0.42 0.56 0.22 0.28 0.35 0.44 

Dam 0.08 0.11 0.15 0.21 0.09 0.10 0.09 0.12 0.09 0.09 0.09 0.08 

residual 0.79 0.84 0.92 1.00 0.74 0.78 0.84 0.93 0.78 0.81 0.89 1.01 

Mat 
 

(6) 
Mat2 0.03 0.02 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 

Based on residual variance of 0.75, polygenic variance of 0.2, dam variance of 0.1 
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Summary 

 

Despite increasing evidence for parent of origin effects in crosses between divergent 

lines of poultry, imprinting in poultry remains a contentious issue. Variance component 

QTL methodology was used to analyse three candidate regions on chicken chromosomes 

1, 4, and 5 for dominant and parent-of-origin effects. Data was available for bodyweight 

and conformation score measured at 40 days for a two-generation commercial broiler 

dam line. 100 dams were nested in 46 sires with phenotypes and genotypes on 2708 

offspring. Linear models were constructed to simultaneously estimate fixed, polygenic 

and QTL effects. Different genetic models were compared by hierarchical extension to 

incorporate more variance components, and likelihood ratio test statistics derived from 

the comparison of full with reduced or null models. Empirical thresholds were derived 

by permutation analysis. Dominant QTL were found for bodyweight on chicken 

chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. 

A maternally expressed QTL for bodyweight and conformation score was found on 

chromosome 1 in a region corresponding to orthologous imprinted regions in the human 

and mouse. 

 

6.1.  Introduction 

 

The effectiveness of selection procedures utilising genomic information relies on 

correctly identifying the mode of inheritance of desired variants. Despite intense 

selection there is evidence to suggest that there is still much variation that might be 

exploited within commercial populations (Andersson et al., 2004; De Koning et al., 

2004). This continued segregation together with reciprocal effects and heterosis from 

line crosses utilized in commercial poultry (Fairfull et al., 1983; Liu et al., 1995; Marks 

1995; Nestor et al., 2005) suggests that at least part of the genetic variance may be non-

additive.  
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The underlying genetic architecture of heterosis and reciprocal effects is still not clear. It 

appears that both maternal effects and dominant or over-dominant genes play a role 

(Fairfull 1990). Tuiskula-Haavisto & Vilkki. (2007) suggest that there is also recent 

evidence for the role of parentally imprinted mechanisms in poultry to explain the 

underlying mechanism for reciprocal effects like those reported by Park et al (2006) for 

physiological traits associated with bodyweight in chicken.   

 

Genomic imprinting affects many mammalian genes (Morison et al., 2005) and is 

brought about by epigenetic instructions or imprints that are laid down in the parental 

germ cells (Reik et al., 2001). Imprinted genes are characteristically found in a clustered 

organization with 80% physically linked with other imprinted genes. These clusters are 

conserved in mammals, marsupials and flowering plants. (Reik et al., 2001).  Imprinting 

is most prevalent in foetal development and until recently was considered best described 

by the parental conflict hypothesis (Moore et al., 1991). In viviparous animals this 

occurs where the male exerts selection pressure for offspring to maximise use of 

maternal resources whereas the female limits this allocation of resources to preserve 

herself and future offspring. As there is no apparent parental conflict, the presence of 

imprinting was not thought to occur in oviparous species. Furthermore, IGF2 has been 

shown to be imprinted and expressed from paternal allele in man rabbits mice and sheep 

(Nezer et al., 2002), but not in the chicken (Yokomine et al., 2001). There is, however, 

recent evidence for imprinted genes in birds and lower vertebrates and for shared 

orthologues with mammalian imprinted genes (Dunzinger et al., 2005; Dunzinger et al., 

2007). Different species may also have species specific imprinted genes (Okamura et al., 

2006). Current theory suggests that the evolution of imprinted genes is a dynamic step-

wise process with orthologues present on separate chromosomes before imprinting 

arose. These conserved orthologues were selected during vertebrate evolution becoming 

imprinted only as the need arose (Dunzinger et al., 2005; Edwards et al., 2007). Lawton 

et al., (2008) show that transcriptional silencing at imprinted loci has evolved along 

independent trajectories in mammals and marsupials. In the chicken imprinted effects 

tend to cluster on a few machrochromosomes with 78% of imprinted gene orthologues 
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residing on chicken chromosomes 1, 3, and 5 (Dunzinger et al., 2005; Morison et al., 

2005; Tuiskula-Haavisto et al., 2007). 

  

Dominant and imprinted QTL effects have been identified in poultry for economically 

important production and disease resistance traits. Ikeobi et al (2002) found that 1/3 of 

QTL found for fat related traits in a broiler-layer cross showed dominance effects; 

Yonash et al (1999) found both partial and overdominance QTL effects for resistance to 

Mareks disease, while Kerje (2003) and Tuiskula-Haavisto (2002) report dominant 

effects for egg production traits. Parent of origin effects in poultry are reviewed by 

Tuiskula-Haavisto et al., (2007) and have been found for bodyweight, carcass and egg 

production traits (McElroy et al., 2006; Sharman et al., 2007; Tuiskula-Haavisto et al., 

2004).  

 

To date, QTL studies in poultry have mostly involved crosses between lines or divergent 

populations reviewed by Hocking (2005) and Abasht et al.,(2006). Detection of QTL 

effects, however, within model organisms or experimental populations is costly and 

potentially of limited relevance to populations under selection. It is often more practical 

to explore QTL segregating within a population, particularly if it is to facilitate selection 

within that population.  

 

This chapter uses a variance component approach to look for dominant and imprinted 

QTL associated with bodyweight and conformation score measured at 40 days in a two-

generation commercial broiler population.  

 

6.2   Materials and methods 

 

6.2.1.  Data 

 

Phenotypes on conformation score and bodyweight, both measured at 40 days, were 

available for a commercial broiler dam line from Cobb-Vantress Breeding Company 
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Ltd.  Conformation score is a subjective measure of fleshiness scored from 1-10 and was 

treated as normally distributed. A two-generation pedigree was available with a total of 

2708 offspring with phenotypes and genotypes for markers in candidate QTL regions on 

chicken chromosomes 1, 4 and 5. One hundred dam families were nested within 46 sire 

families to give an average of 27 full sibs and 59 half sibs. Progeny of Sire and dam 

family sizes ranged from 9 to 149 and 14 to 44 respectively. Birds were genotyped for 

markers spaced approximately every 16, 14 and 8 cM on chromosomes 1, 4, and 5, 

respectively. Markers were selected from the consensus linkage map (Schmid et al., 

2000). Linkage groups corresponded to the consensus map at approximately 128-

205cM, 75 – 182cM, and 57-104cM for chicken chromosomes 1, 4 and 5 respectively. 

Linkage maps were estimated using CriMap (Green et al., 1990).  Marker distances and 

consensus map positions are given in Appendix 2.1, and further details can be found in 

chapter 2  Rowe et al. (2006). Progeny were from two flocks across 17 hatch weeks. 

Fixed effects of sex, age of dam, and hatch within flock were fitted. Summary statistics 

and heritabilities can be found in Table 6.1. The phenotypic correlation between the two 

traits was 0.34 (0.03). These statistics were estimated only on the 2708 records used in 

the QTL analysis in contrast to chapter 1 where all 10,000 records for the commercial 

population were used. 

 

 

Table 6.1 Summary statistics and heritabilities for trait data 

 

 Mean  

( min,max) 

sd h
2
 (s.e.) c

2 
(s.e.) 

Bodyweight (g) 2510 (820, 3560) 300.4 0.08 (0.06) 0.045 (0.03) 

Conformation Score 3.35 (1, 5) 0.83 0.08 (0.06) 0.03 (0.03) 

h2 polygenic heritability based on animal model, c2 random common 

environmental or maternal effect  
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6.2.2 Statistical Genetic Models for Variance Component Analysis  

 

Following the two–step approach described by George et al. (2000), IBD coefficients 

were estimated for all relationships in the pedigree to calculate the covariance matrices 

for the QTL effects, which were subsequently used in a linear mixed model.  

 

The statistical models used were: 

(1)   y = Xβ + Zu + Wc + e    (null or polygenic)  

(2)   y = Xβ + Zu + Wc + Za + e        (additive) 

(3)   y = Xβ + Zu + Wc + Za + Zd + e       (additive  + dominance) 

(4)   y = Xβ + Zu + Wc + Zmm + Zpp + e      (maternal + paternal) 

(5)   y = Xβ + Zu + Wc + Zpp  + e       (paternal) 

(6)   y = Xβ + Zu + Wc + Zmm + e       (maternal) 

 

where y is a vector of phenotypic observations, β is a vector of fixed effects, u, a, d, m, 

p, c and e are vectors of random additive polygenic effects, additive and dominance QTL 

effects, maternal and paternal QTL effects, non genetic maternal effects and residuals, 

respectively. X, Z, W, Zm, and Zp are incidence matrices relating to fixed and random 

genetic, direct maternal, maternally expressed and paternally expressed QTL effects, 

respectively.  

 

Variances for polygenic and QTL effects are distributed as follows: var(u) =Aσ2
a Var(a) 

= Gσ
2

q, Var(d) = Dσ
2

d,  Var(m) = GM σ
2

m, Var(p) = GP σ
2

p 

var(e) = Iσ
2

e,. For the non-genetic maternal effect Var(m) = Iσ
2

m. Where A is the 

standard additive relationship matrix based on pedigree data only and the relationship 

matrices G, GM, GP and D for a given QTL position are calculated from the gametic 

IBD matrix as outlined by Liu et al.,(2002) described further in chapter 2.   
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6.2.3 IBD Estimation 

 

The G, GM, GP and D matrices are conditional on flanking marker information and 

therefore unique for each position evaluated for a QTL. Here IBD was estimated using 

the recursive method of Pong-Wong et al. (2001) and the matrices calculated every 5 

cM, as described in chapter 2.  

 

6.2.4 Test statistic  

 

A test statistic for a given location was obtained by comparing the likelihood of the full 

versus the reduced model. Twice the difference between the log likelihood of the full 

versus the reduced model was used as a log likelihood ratio test (LRT). For linkage 

group-wise test statistics genotypes were permuted within dam families to remove 

associations with IBD status and phenotype. Estimators for polygenic variances 

remained un-permuted. After each permutation, analyses were repeated for every test 

position along the chromosome and the highest test statistic at the best position recorded. 

After 1000 permutations the test statistics were ranked and the 95th percentile used for a 

linkage group-wise 5% type 1 error rate. Separate permutation analyses were carried out 

for each trait. Permutation analysis for all three chromosomes was similar so thresholds 

were set using the results from chromosome 4 as this is the linkage group with the most 

tests. In each case the highest test statistic for each model was recorded regardless of 

position. Thresholds and corresponding P values for χ2
k distribution with k df equal to 

the number of extra QTL components in the full versus the reduced model for each test 

are given in Table 6.2.  
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6.2.4.1 Detection of dominant QTL effects 

 

To detect dominance three tests were carried out;   

 

(i) add, comparing the additive QTL model (2) versus the null model (1) 

to test significance of the QTL variance component under a purely 

additive model  

(ii) addom, comparing the additive QTL + dominance QTL model (3) 

versus the null model (1) to test significance of QTL variance 

components under a model including additive and dominance effects.  

(iii) dom, comparing the additive QTL + dominance QTL model (3) vs. the 

additive QTL model (2) to test the significance of the dominance 

variance component.  

 

Tests (i) and (ii) are used in the initial search for the QTL whereas test 3 is applied 

subsequently to test specifically for the dominance component. 

 

6.2.4.2 Imprinting 

 

Initially QTL can be searched for using additive, pat+mat or single parental models. To 

test for imprinting four tests were carried out at each position.  

(i)    The pat+mat model (4) was tested against the null model (1)   

(ii)   The pat+mat model (4) was tested against the add model (2)   

(iii) and (iv)     The paternal and maternal models pat (5) and mat (6) were tested 

separately against the pat+mat model (denoted patvfull and matvfull respectively).  

 

 

 

 

 



 148

Table 6.2 Tests for QTL effects and corresponding empirical thresholds for 

5% type 1 error based on 1000 permutations.  

QTL in Model Test Conformation score 

Test 

alternative 

(H1) 

null 

(H0) 

QTL effect tested for 

*LRT (5%) P
 

*LRT 5% P 

add 
add 

(2) 

null 

(1) 
additive 5.74 0.02 4.53 0.03 

addom 
add + dom 

(3) 

null 

(1) 
additive + dominant 6.98 0.03 5.84 0.05 

pat+mat 
pat + mat 

(4) 

null 

(1) 
paternal  + maternal 3.05 0.09 2.94 0.08 

pat 
pat 

(5) 

null 

(1) 
paternal 7.16 0.03 6.6 0.04 

mat 
mat  

(6) 

null 

(1) 
maternal 5.38 0.02 4.54 0.03 

dom 
add + dom 

(3) 

add 

(2) 
dominant 4.80 0.03 5.12 0.02 

impvmend 
pat + mat 

(4) 

add 

(2) 
Parent of origin 3.18 0.07 3.43 0.06 

**patvfull 
pat + mat 

(4) 

pat 

(5) 
maternally expressed 4.14 0.04 4.32 0.04 

**matvfull 
pat + mat 

(4) 

mat 

(6) 
paternally expressed 4.5 0.03 3.58 0.06 

* LRT is chromosome–wise empirical threshold for 5% type 1 error rate for test statistic (twice the 

difference between log likelihoods for the alternative and null model), estimated by 1000 iterations 

** For example if the test of patvfull is significant the model incorporating paternal and maternal QTL is 

explaining more variation than the paternal QTL indicating some level of maternal expression. If there is 

no significant difference between the pat+mat model and mat model the maternal QTl is explaining all of 

the variation. 

 



 149

Following Hanson et al.,(2001) under an additive model both parents contribute equally 

whereas for an imprinted QTL only one parent is expected to show expression. For 

example, for a maternally expressed QTL the expectation is that the patvfull test is 

significant and the matvfull test is not significant. For non imprinted QTL the 

expectation is that both tests are significant as there is expression from both parents. 

 

6.2.5 Maternal effect 

 

Common environment effects are often, at least partially, confounded with dominance 

and imprinting as seen in chapters 4 and 5 and,Rowe et al., 2008). To explore the effect 

on detection of dominant and imprinted QTL, random dam effects were included in the 

linear model to account for common environment and evaluate its effect upon the 

partitioning of QTL variance.  

  

6.3. Results 

 

6.3.1 Additive and Dominant QTL effects 

 

Figure 6.2 shows QTL effects under additive and dominant QTL models for bodyweight 

and conformation score. There were chromosome-wide significant dominant QTL 

effects for conformation score on chromosomes 4 and 5. These effects were 

considerable, explaining 6.2 and 4.5% of the phenotypic variance, respectively. Table 

6.3 shows that the dominant QTL explains all of the QTL variance. It also appears that 

some of the maternal effect is apportioned to the dominant QTL. For bodyweight,the 

linkage peaks for dominant effects on chromosome 5, and additive effects on 

chromosomes 1 and 4, failed to reach linkage group-wise significance, regardless of 

whether a direct maternal effect was fitted.  
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Figure 6.2.  Test Statistic along chicken chromosomes 1, 4 and 5 using additive and 

dominant QTL models for weight (top) and conformation-score (bottom) The Y-axis shows 

the scaled rank of the test statistic obtained when compared to 1000 permutations of genotype 

within dam for 18 positions on chromosome 4 for weight and conformation-score. add is rank of 

test statistic obtained for model testing for additive QTL, addom is test statistic obtained from 

testing for both additive and dominant QTL effects and dom is test between two models for 

dominance only. Direct maternal effect was fitted. Solid line at top is 5% empirical linkage group-

wise significance  
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Table 6.3 Test statistics and proportion of phenotypic variance explained 

at most likely QTL position when fitting polygenic, additive QTL and 

dominance QTL effects for 40 day bodyweight and conformation score on 

chicken chromosomes 1, 4 and 5 

 

Model fitting additive QTL Model fitting additive and dominant QTL 

LRT 
†
variance component LRT 

†
variance component  

  Chr  

(pos) add add poly dam addom dom add poly dam residual dom 

Bodyweight 

1 (55) 5 0.07 0.09 0.02 5 0 0.07 0.011 0.02 0.89 0.003 

4 (85) 5 0.04 0.04 0.03 5.7 0.6 0.03 0.051 0.02 0.88 0.02 

5  (1)  1.4 0.02 0.06 0.02 5.3 3.9* 0.00 0.083 0.01 0.86 0.05 

Conformation score 

1 (50) 2.3 0.04 0.04 0.04 2.3 0 0.04 0.04 0.04 0.88 0.00 

4   (15) 4.1 0.04 0.04 0.05 10.4* 6.3* 0.00 0.06 0.03 0.84 0.06 

5   (25) 3.8 0.03 0.04 0.04 7.9* 8.1* 0.00 0.07 0.04 0.85 0.04 

†Proportion of phenotypic variance explained at highest test statistic (LRT). LRT 

is test statistic obtained from best position (pos) for pat+mat versus reduced 

model, add is additive QTL versus null model, addom is additive and dominant 

QTL versus null model, dom is additive and dominant QTl versus additive QTL 

model  

* 5 % linkage group-wise significance calculated from 1000 permutations of 

genotype within dam for 18 positions on chromosome 4 for weight and 

conformation-score  
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Figure 6.3 Test Statistic along chicken chromosomes 1, 4 and 5 for maternal and paternal 

QTL models for Body-weight. The Y-axis shows the scaled rank of the test statistic obtained 

when compared to 1000 permutations of genotype within dam for 18 positions on chromosome 4 

for conformation score. Mat and pat are testing for maternally or paternally expressed QTL 

respectively. Mat + pat is fitting both maternal and paternal expression and impvmend is testing 

difference between add model versus mat + pat model. Top is without direct maternal effect 

fitted, bottom is with direct maternal effect fitted. Solid line at top is 5% empirical linkage group-

wise significance 
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Figure 6.4 Test Statistic along chicken chromosomes 1, 4 and 5 for maternal and paternal 

QTL models for conformation score. The Y-axis shows the scaled rank of the test statistic 

obtained when compared to 1000 permutations of genotype within dam for 18 positions on 

chromosome 4 for conformation score. Mat and pat are testing for maternally or paternally 

expressed QTL respectively. Mat + pat is fitting both maternal and paternal expression and 

impvmend is testing difference between add model versus mat + pat model. Top is without direct 

maternal effect fitted, bottom is with direct maternal effect fitted. Solid line at top is 5% empirical 

linkage group-wise significance 
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6.3.2 Parent of origin QTL effects 

 

Figure 6.3 shows rank of test statistics when compared to permutation analysis for 

bodyweight on chromosomes 1, 4 and 5. Figure 6.2 shows that there is little evidence for 

a purely additive QTL at the beginning of the chromosome 1. Figure 6.3, however, 

shows that the pat+mat model is significantly better than the add model and there is 

evidence for a maternally expressed QTL on chromosome 1 at around 10 cM. Table 6.4 

also shows that the patvfull test is significant whereas the matvfull test is not indicating 

maternal expression. Furthermore, all of the QTL variance is explained by the maternal 

QTL (Table 6.5). When a dam effect is fitted, however, although the maternal QTL 

model and imprinting test (impvmend) remain significant there is no longer sufficient 

evidence to declare a QTL under the pat+mat model despite the estimate of the dam 

variance being zero (Table 6.5). 

 

On chromosome 4 there is some evidence for an, at least partially, paternally expressed 

QTL under the separate paternal and maternal models when a direct maternal effect is 

fitted, however the impvmend statistic does not reach significance. There is some 

evidence for imprinting on chromosome 5 but again no linkage peaks reach 5% 

chromosome-wide significance.  

 

Figure 6.4 shows test statistics for conformation score on chromosomes 1, 4 and 5. For 

chromosomes 1 and 5 a similar pattern is seen to bodyweight with a maternally 

expressed QTL when a dam effect is not fitted but insufficient evidence when dam is 

fitted. Chromosome 4 also has two linkage peaks, however neither reach significance.  
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Table 6.4 Test statistics for all models at highest test statistic for a 

pat+mat QTL model fitting a maternal and paternal QTL effect versus no 

QTL 

 
Model/Test 

Chr 

Pos 

(cM) add addom pat+mat pat mat impvmend patvfull matvfull dom 

Bodyweight, no dam effect fitted 

1 10 1.8 3.2 7.3* 0.0 7.3** 5.5* 7.3* 0.0 1.4 

4 85 5.3 6.3 5.3 4.1 1.4 0.0 1.3 4.0 0.9 

5 5 1.0 5.2 4.1 0.0 4.1 3.0 4.1 0.0 4.2* 

Weight dam, effect fitted 

1 10 1.7 2.6 6.3 0.0 6.3** 4.6 6.3* 0.0 0.8 

4 85 5.0 5.7 5.6 5.3 0.6 0.6 0.3 5.0* 0.6 

5 5 1.0 4.4 3.2 0.0 3.2 2.2 3.2 0.0 3.4* 

Conformation score, no dam effect fitted 

1 10 1.8 1.8 7.3* 0.0 7.3** 5.4* 7.3* 0.0 0.0 

1 65 2.0 2.0 3.2 3.2 0.0 1.2 0.0 3.2 0.0 

4 10 4.1  11.5* 5.0 1.5 3.7 0.9 3.5 1.3 7.4* 

4 85 0.1 0.8 3.5 0.0 3.5 3.4 3.5 0.0 0.7 

5 30 3.1 6.7 6.9* 0.0 6.8** 3.8 6.9* 0.1 3.6* 

Conformation score, dam effect fitted 

1 10 1.8 1.8 5.4 0.0 5.4* 3.6* 5.4* 0.0 0.0 

1 65 1.9 1.9 4.0 4.0 0.0 2.1 0.0 4.0* 0.0 

4 10 4.1 10.4* 4.4 2.1 2.6 0.2 2.3 1.8 6.3* 

4 85 0.1 0.5 2.6 0.0 2.6 2.5 2.6 0.0 0.4 

5 30 2.8 5.7 5.5 0.1 5.4* 2.7 5.5* 0.2 5.7* 

* and ** indicate 5 and 2.5% chromosome wise significance under permutation 

analysis.  top table is model fitting a direct maternal effect, bottom is excluding a 

direct maternal effect. 
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Table 6.5 Proportion of phenotypic variance explained by polygenic, direct 

maternal (dam), paternal QTL and maternal QTL effects fitted in a pat+mat 

model at the position of the highest test statistic for pat+mat model versus 

no QTL 

Variance component 

Chr  Position (cM) polygenic dam pat QTL mat QTL 

Bodyweight 

1 10 0.09 0.00 0.00 0.06* 

4  85 0.03 0.04 0.03 0.01 

5  5 0.09 0.01 0.00 0.04 

Conformation score 

1 10 0.08 0.03 0.00 0.05 

1 65 0.05 0.06 0.02 0.00 

4 10 0.05 0.05 0.02 0.03 

4 85 0.08 0.04 0.00 0.03 

5 30 0.08 0.04 0.00 0.04 

Table shows proportion of phenotypic variance explained by variance 

components. In null model with no QTL fitted polygenic heritability is 0.08, and 

dam component (C2) =0.05 for con and 0.03 for weight.  
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6.4. Discussion 

 

6.4.1 Chromosome 1  

 

There appears to be a maternally expressed QTL on chromosome 1 for both weight and 

conformation score associated with marker interval ADL0307-LEI0068, a region 

orthologous with imprinted regions in the mouse and human associated with Prader-

willi/Angelman syndrome (Nicholls et al., 2001). This region of chromosome 1, 

corresponding to approximately 128 to 151 cM on the consensus map, is within marker 

interval associated with many fat and carcass traits (Abasht et al., 2006a; Ikeobi et al., 

2002b; Ikeobi et al., 2004; Kerje et al., 2003; Sewalem et al., 2002). Furthermore, 

McElroy (2006) and Tuiskula-Haavisto et al., (2004a) both find maternally expressed 

QTL within the same marker bracket associated with egg production. Sharman et al 

(2007) find imprinted effects for skeletal traits at 135 cM chromosome 1. Tuiskula-

Haavisto et al., (2004b) also find a paternally expressed QTL associated with age at first 

egg in the same marker interval as the putative paternally expressed effect seen here for 

conformation score.  

 

Fitting a direct maternal effect appeared to reduce evidence for maternally expressed 

QTL. The impvmend test does not reach linkage group-wise significance when a direct 

maternal effect is fitted. It is difficult to know whether this is due to confounding of 

effects or that common environment can give spurious variance at the QTL. De Koning 

et al (2004) found significant additive effects for bodyweight and conformation and a 

strong direct maternal effect associated with this region using a three generation design 

from the same population. This could indicate that a strong component of the effect upon 

bodyweight comes from maternally influenced egg traits. Kerje et al (2003) report a 

strong correlation between egg weight and adult bodyweight (r=0.62, 0.0001) and a QTL 

for growth at the beginning of chromosome 1 at  68cM explaining half the phenotypic 

variation seen in egg weight. 
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6.4.2 Chromosome 4 

 

There appear to be two separate QTL segregating for bodyweight and conformation 

score on chromosome 4. For bodyweight there is an additive QTL in the region of 

ADL0266 – LEI0076 as found by Kerje et al., (2003) and Jacobsson et al.,(2005) . 

There is greater evidence for this from the paternal analysis. Although the paternal QTL 

appears to explain most of the additive variance there is insufficient evidence for 

imprinting i.e. the test of the pat+mat model versus an additive model is not significant.  

For conformation, a dominant and potentially over-dominant QTL explaining all of the 

QTL variance maps to around 80-118cM on the consensus map. Yonash et al (1999b) 

find partial and overdominance for QTL affecting resistance to Mareks disease in this 

marker bracket. Although Ikeobi et al (2004) find many dominant effects for carcass 

trait QTL, they find the QTL on chromosome 4 tends to behave additively as a single 

locus affecting many traits.  Sharman et al (2007) report QTL for many traits associated 

with skeletal traits on chromosome 4 including a dominant QTL associated with tibial 

marrow diameter at ADL0266-ROS0024.  

 

6.4.3 Chromosome 5 

 

On chromosome 5 there appear to be dominant effects for bodyweight and conformation 

traits. Although the test for dominance is significant for bodyweight the actual QTL does 

not reach linkage group-wise significance. Ikeobi et al., (2004) also found modest 

dominance effects for growth traits in this region. For conformation score, there is 

significant evidence for most of chromosome 5 for a dominant QTL and maternal 

expression at the end of the linkage group. Abasht et al., (2006b) also find a maternal 

sex interaction with fat traits in this marker bracket. Chromosome 5 has been associated 

with many paternally expressed traits (McElroy et al., 2006; Sharman et al., 2007; 

Tuiskula-Haavisto et al., 2007) and although the linkage group does not span the region, 

the first marker interval is close to a conserved gene cluster of twelve imprinted gene 

orthologues shown to replicate asynchronously. Here we see no evidence for paternal 
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imprinting on chromosome 5. Ikeobi et al find many QTL for traits associated with 

weight and carcass composition in this region although little dominance and no 

imprinting. 

 

Given that we are only using a two-generation pedigree we cannot confirm that these are 

truly imprinted effects, only that statistically there is evidence for uniparental 

expression. It is possible that effects are due to QTL allele frequency differences 

between the sexes. There is a requirement for enough sires and dams to ensure 

segregation together with enough offspring to detect QTL. Because sire families were 

larger it might be anticipated that power to detect paternally expressed traits was greater 

although this is not reflected in the results. Using simulation, Tuiskula-Haavisto et al., 

(2004a) concluded that segregation is an unlikely source of spurious parent-of-origin 

effects. Furthermore, imprinted effects on chromosome 1 were found in regions 

previously identified as parentally expressed in poultry and orthologous with 

genomically imprinted regions in humans and mice.  

 

6.4.5 Testing Strategy 

 

One problem with the strategy used is that the contrast may not be greatest at the highest 

test statistic for the pat+mat model but at the highest test statistic for the parental QTL. 

For example, on chromosome 5 the greatest evidence for a maternal QTL and for the 

impvmend test is not at the same position as the highest test statistic for a search under 

the pat+mat model versus null. The pat+mat model versus null is perhaps diluted by the 

non expression from the imprinted parent as it is explaining the same amount of 

variation with an extra degree of freed. Here we find that a bodyweight QTL on 

chromosome 4 could be declared as paternally expressed based upon separate parental 

QTL models but there is insufficient evidence when comparing a Mendelian versus a 

pat+mat or imprinted model. It is difficult to know whether this is due to information 

source, or perhaps too stringent a threshold on the impvmend test and what the true 

effect is.  
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6.5 Conclusions 

 

A large dominant and potentially over-dominant QTL for conformation score is 

segregating on chicken chromosome 4. This QTL is also detected under an additive 

model. However, the additive variance becomes zero in a model that also fits a 

dominance component. There is also evidence for dominant QTL affecting bodyweight 

and conformation on chromosome 5. There is evidence for a paternally imprinted or 

maternally expressed QTL affecting bodyweight and conformation score on 

chromosome 1 in a region orthologous with human and mouse imprinted regions and 

close to previously reported imprinted QTL affecting bodyweight and maternal traits in 

chicken and Quail. Initial results suggest that variance component analysis can be 

applied within commercial populations for the direct detection of segregating dominant 

and parent of origin effects. Further exploratory analysis might be useful to evaluate to 

what extent QTL effects might confounded with other sources of information or affected 

by segregating QTL allele frequency. 
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CHAPTER 7  

 

General Discussion 
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In the following chapter the main results and conclusions from each of the chapters, and 

the underlying theory of methods used are summarised briefly. Detailed discussion 

follows on findings, implications and inferences from simulation and real data in turn. 

Implications for the livestock industry and specifically poultry are considered. Finally 

conclusions, lessons learned and recommendations for future research are outlined.  

  

7.1 Summary of results 

 

7.1.1 Commercial poultry data 

 

Data was available for bodyweight and conformation score measured at 40 days for a 

two generation commercial broiler dam line. 100 dams were nested in 46 sires (i.e. Each 

sire was mated to on average 2 dams) with phenotypes and genotypes on 2708 offspring. 

Average family sizes were 59 and 27 for sires and dams respectively. Both generations 

were genotyped for markers spaced approximately every 16, 14 and 8 cM on 

chromosomes 1, 4, and 5, respectively. 

 

Chapter 3 Comparison of Half-sib and Variance component analysis 

in a two generation poultry pedigree 

The aim of the study was to investigate QTL in previously identified regions of chicken 

chromosomes 1, 4 and 5 relating to 40-day bodyweight and conformation score using a 

two-generation design. Half-sib and variance component analyses were implemented 

and compared. Half-sib QTL mapping was performed using the regression method in 

QTL Express for both paternal and maternal families. Confidence intervals and 

significance thresholds were estimated using bootstrapping and permutation analysis. 

Variance component mapping was done testing a novel module in QTL Express using 

MCMC to estimate IBD coefficients and ASReml to estimate QTL effects.  

Chromosome 4 showed nominal significance for QTL affecting bodyweight and 

conformation, and linkage was confirmed for both traits on chromosome 5. Results 
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varied according to method of analysis and common parent in the half-sib method. VCA 

tended to detect effects segregating from both parents. Analysis of dam families gave the 

strongest evidence for segregation of QTL. The results suggest that conformation score 

segregates as a separate trait in sires and dams.  

 

Chapter 6 Detecting dominant and Parent of Origin QTL effects 

using variance component analysis in poultry  

Variance component QTL methodology was used to analyse three candidate regions on 

chicken chromosomes 1, 4, and 5 for, additive, dominant and parent-of-origin effects. 

Linear models were constructed to simultaneously estimate fixed, polygenic and QTL 

effects. Different genetic models were compared by hierarchical extension to incorporate 

more variance components, and likelihood ratio test statistics derived from the 

comparison of full with reduced or null models. Empirical thresholds were derived by 

permutation analysis. Dominant QTL were found for conformation score on chicken 

chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. 

A maternally expressed QTL for bodyweight and conformation score was found on 

chromosome 1 in a region corresponding to orthologous imprinted regions in the human 

and mouse. 

 

7.1.2 Simulation 

 

Simulation studies involved an investigation of QTL detection using variance 

component models extended to incorporate additive, dominant and separate parental 

QTL effects. Extensive simulations were carried out to assess accuracy of estimates, 

type 1 error and statistical power in two generation human,  pig and poultry type 

pedigrees each with 1900 progeny in small, medium and large-sized families, 

respectively. 19, 10 and 633 sires were mated to 20, 19 and 1 dam(s) with 20, 10 and 3 

progeny for poultry, pig and human pedigrees respectively. A 20cM chromosome was 
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simulated with 5 markers spaced 5cM apart and a QTL situated between markers 2 and 3 

at 7.5cM. Test statistics for each model were computed at mid marker intervals.    

 

Chapter 4 Detecting Dominant QTL with variance component 

analysis in general pedigrees   

Simulation results showed that the empirical distribution of the test statistic when testing 

for dominant QTL effects did not behave in accordance with existing theoretical 

expectations and varied with pedigree structure. The distribution of the likelihood ratio 

test statistic was heavily dependent on family structure, with empirical thresholds lowest 

for human pedigrees. Power to detect QTL was high (0.84-1.0) in pig and poultry 

scenarios for dominance effects accounting for >7% of phenotypic variance but much 

lower (0.42) in human type pedigrees. Maternal or common environment effects were 

confounded with dominance. Including dominance in the QTL model did not affect 

power to detect additive QTL effects. Also, detection of spurious dominance QTL 

effects only occurred when maternal effects were not included in the QTL model. When 

dominance effects were present in the data but were not in the analysis model this 

resulted in both spurious detection of additive QTL or inflated estimates of additive QTL 

effects. Optimal power was dependent on selection of the appropriate thresholds for 

pedigree structure. 

 

 

Chapter 5 Detecting Parent of Origin QTL with variance component 

analysis in general pedigrees   

A range of additive, dominant and imprinted QTL effects were simulated. Testing 

strategies for imprinted QTL were evaluated in human, pig and poultry populations for 

power to detect fully imprinted QTL and for false positive rates under Mendelian 

inheritance.  
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Tests involved a model with separate maternal and paternal QTL effects tested against 

 No QTL 

 Additive QTL 

 Maternal QTL 

 Paternal QTL 

Three different empirical thresholds for type 1 error were derived using varying additive 

and dominant QTL effects, and frequencies of the favourable allele.  

The detection of variance caused by imprinted genes and in particular estimates of 

variance components were also heavily dependent upon the number of sire and dam 

families used to estimate them.  

Type 1 error rates were high for the test of the separate maternal and paternal 

components against the additive model in the presence of large additive and dominant 

QTL effects. Type 1 error rates also differed markedly between human and livestock 

populations. For the detection of imprinting, power was greatest under a model 

incorporating separate parental components and could be used for an initial QTL search 

with little loss of power when compared to an additive model. Subsequent comparisons 

with individual parental effects were an effective test for parental inequalities and more 

robust than the test of the maternal and paternal model against the additive model. 

 

7.2 Theory 

7.2.1 Method 

 

Using sire as a common parent a half sib design is based on the assumption that sires are 

unrelated and that each sire is mated to multiple dams with a single progeny. The half 

sib design fails to exploit information from the parent not used as the common parent or 

relationships between sires and between dams. Other relationships in the pedigree 

provide information in their contribution towards the genetic covariance. The phenotypic 

variance of the trait within the population is the sum of the genetic and environmental 
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covariances. This means that two related individuals are expected to have similar 

phenotypes proportional to the amount of genetic information they share measured by 

the number of genes or proportion of their genes descended from the same ancestral 

gamete or IBD. In a two generation pedigree this reduces to the alleles inherited from 

either parent. Variance component analysis can be applied directly within the mapping 

population, circumventing the need for model populations, divergent lines or crosses or 

very large families. In humans there is greater power over sibship methods and for 

livestock, breeding values can be estimated based on marker information with directly 

application for selection (Bennewitz, 2004).  

 

7.2.2 IBD estimation 

  

The inclusion of random genetic effects requires separate relationship matrices for each 

genetic effect. These covariances are then used to partition the phenotypic variance into 

genetic and environmental components. Estimating these relationships is the cornerstone 

of the methodology and potentially computationally expensive. The approximate method 

of IBD estimation used by Pong-Wong et al., (2001) has been shown to be an order of 

magnitude faster than MCMC whilst achieving similar results (Besnier et al., 2007; 

Sorensen et al., 2002). Comparing the results of chapters 3 and 6 for the detection of 

additive QTL it can be seen that the methodology implemented throughout the thesis 

performed better than that implemented in QTL Express. VCA was uninformative for 

much of the linkage group using LOKI, whereas this was never the case using R’Tools. 

The R’Tools software has two steps in the method protocol described in chapter 2. The 

first calculates allelic descent in a recursive fashion, however this is irrelevant in the 

case of a two generation design as the grandparental genotypes are not known. For a two 

generation design only the second step applies where information from sibs is used to 

estimate marker phase in offspring and parent. Following Liu (2002) the method uses 

the gametic IBD matrix to estimate the IBD coefficients for dominance i.e. the 

probability that two individuals will share two alleles at the QTL identical by descent 
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given marker information and computes a dominance covariance matrix. The diagonals 

from the gametic IBD matrix were also used to compute relationship matrices for 

separate maternal and paternal components as described in chapter 2. Computation of 

these matrices facilitated the extension of the linear model to incorporate dominance; 

and separate maternal and paternal QTL variances to test for inequalities of expression 

dependent on parental origin.  

 

7.2.3 Models and testing strategy implemented 

 

Five models were evaluated for the initial detection of QTL, models contained 

An additive QTL 

An additive and a dominance QTL  

A maternal and paternal QTL 

A maternal QTL 

A paternal QTL 

 

The subsequent test for dominance involved comparing the first and second model to 

test specifically for dominant QTL effects. An alternative would be to compare a model 

containing only a dominance effect with one containing additive and dominance effects, 

i.e. the null hypothesis is that only dominance effects are segregating however, this 

would seem less plausible biologically.  

There are various strategies which can be employed for the detection of imprinting. The 

initial search can be for an additive QTL, maternal and paternal QTL in the same model 

i.e. allowing them to vary, or to search for maternal and paternal QTL separately and 

subsequently comparing each of them in turn to a full model. Here the full model 

including both maternal and paternal QTL was used for the initial search. The 

subsequent test for imprinting involved comparison of the full model with an additive 

model (i.e. where both parents are constrained to be equal); at the highest test statistic 

from the search with the full model versus no QTL. This is a similar approach to that 
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recommended by Thomsen et al., (2004) who use a decision tree for line cross models 

that initially searches under the full/additive model and only subsequently tests for 

individual parental components if there is evidence for a QTL. They also report that 

fewer QTL are found using a Mendelian versus imprinting test than tests based on 

significance of parental alleles.  

One problem with this approach is that under imprinting the contrast between models 

may not be greatest at the highest tests statistic for the full model but at the highest test 

statistic for the non-imprinted parental QTL. This is seen in chapter 6. For example, on 

chromosome 5 the greatest evidence for a maternal QTL and for the test for imprinting is 

not at the same position as the highest test statistic for a search under the full model 

versus null. The full model versus null is diluted by the non expression from the 

imprinted parent as it explains the same amount of variation as the maternal QTL but the 

test involves an extra degree of freedom. Using simulation Hanson et al., (2001c) show 

that power to detect an imprinted QTL using VC analysis was significantly increased 

when modelling separate parental contributions. This is also noted by McElroy et al 

(2006) who test separately for maternal QTL and paternal QTL effects even when there 

is no evidence for additive effects under an additive QTL or a model including paternal 

and maternal QTL together.  

 

Shete et al., (2003; 2002) argue that testing the difference between the maternal and 

paternal components is a valid test for imprinting as the null hypothesis involves 

maternal QTL=paternal QTL=0. This is implicit as the maternal and the paternal 

covariances sum to the additive covariance, therefore if there is any degree of 

uniparental expression they cannot be equal. Testing the difference between the QTL as 

a search strategy would still require the initial ascertainment of a significant QTL. The 

test of the full model including a maternal and a paternal QTL component with an 

additive model (imp test) is based on using the additive model as the null as a special 

case of constraining the parental components to be equal as described by Hanson et al., 

(2001).  
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De Koning et al (2002) investigate search strategies in an F2 population using 

simulation and find that although power is increased when parental contributions are 

modelled separately the probability of spurious detection of QTL is also increased. Here 

we find that a bodyweight QTL on chromosome 4 could be declared as paternally 

expressed based upon separate parental QTL models but there is insufficient evidence 

when comparing an additive versus a full or imprinted model. It is difficult to know 

whether this is due to information source, or perhaps too stringent a threshold on the imp 

test and what the true effect is.  

 

Common environment was found to be confounded with both the test for dominance 

denoted dom and the test for imprinting denoted imp, therefore the effect of fitting a 

non-genetic maternal effect was also evaluated under QTL models used for the real data. 

These effects may arise, for example, from the rearing ability of the dam, or maternal 

nutrition. In poultry juvenile bodyweight has been shown to be correlated with egg size 

in turn affected by the age of the dam. Another potential source of confounding was 

polygenic dominance although is unclear to what level a polygenic effect might affect a 

single locus. It is hypothesised that it might be accounted for when fitting a common 

environment effect as both are estimated from the inflated covariance of full sibs.  

 

7.4 Expectation of distributional properties of the Likelihood Ratio Test 

statistic (LRT) 

 

Theoretically, the asymptotic distribution of the LRT is a mixture of chi square 

distributions with different degrees of freedom according to the number of parameters 

constrained (Self and Liang., 1987; Stram and Lee., 1994). This is because variance 

components are constrained to be non negative to make biological sense and therefore it 

becomes a one sided test. For example with one extra variance component the null 

distribution is a mixture of ½ χ0 (i.e.variance is zero) and ½ χ1 (i.e. variance is non-zero. 

With a model including two variance components, such as additive and dominant QTL 

effects the expectation of the distribution would be a mixture of ¼ χ0 (both variance 
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components are zero, ½ χ1 (one is non zero) and ¼ χ2 (both are non zero). Studies which 

assume this mixture of distributions include (Hanson et al., 2001; Self et al., 1987; Shete 

et al., 2003).  These assumptions hold providing the trait does not violate multivariate 

normality. The alternative hypothesis follows a non central chi squared distribution. 

Visscher (2006) provides a thorough review. Note these assumptions only hold for a 

point estimate corresponding to a single test (Self and Liang, 1987, Lander and Botstein, 

1989). It is therefore, inappropriate to compare theoretical mixture distributions with 

global empirical estimates for which distributional properties remain unresolved. Here 

although the mixture of distributions is used for comparison no distributional 

assumptions about the test statistic were made. The empirical derivation of the null 

distribution of the test statistic allowed the comparison across populations and genetic 

effects.  

 

7.5 Findings from Simulation studies 

 

7.5.1 Type 1 error rate 

 

When selecting empirical thresholds either from simulation studies or permutation tests 

one issue is at what position to select the most appropriate threshold for each test. For 

example, alternatives might be i) to use the highest test statistic at the position of the 

QTL, ii) to compare all models at the highest test statistic for the initial search, iii) to 

select the highest test statistic for each comparison regardless of position. Here the third 

option was used to ensure a conservative approach. 

 

Dominance 

 

Simulation showed that the empirical distribution of the test statistic for dominance dom 

did not behave in accordance with existing theoretical expectations and varied with 

pedigree structure. This was apparent in the much lower empirically derived threshold 

for the human pedigree. In total, eight chromosome-wise distributions each with 1000 
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replicates were simulated (Table 6.6) reproduced here in Table 7.1. Type 1 error rates 

were lower than the expectation for a nominal test, under a mixture of chi square 

distributions of 1 and 0 degrees of freedom, in all pedigrees even when estimated 

chromosome-wise. As there were only 4 tests this perhaps might not be expected to be 

very different from the nominal test statistic. When the distributions were compared the 

most conservative were those with single dams mated to each sire i.e. analogous to 

human populations. The distributions appear to group according to number of dams 

regardless of the number of full sibs within dams. It is possible that this is due to all 

variance components being estimated within dam. The covariance between full sibs 

consists of one half of the additive genetic variance, one quarter of the variance due to 

dominance and any common environment effects thus information about dominance 

comes from the comparison of information from full sibs. When there are half sib 

families the additive variance can be estimated by the covariance of half sibs which is on 

average ¼ of the additive genetic variance. If there are no half sib families it could be 

hypothesised that confounding of the two variances would mean they were more likely 

to be both zero. Another hypothesis is that the estimation of the relationship between 

siblings based on markers would be less informative and possibly less accurate. This 

was not the case with the additive QTL, not only were distributional properties close to 

the expectation but the IBD matrices estimated by MCMC agreed with those estimated 

using the deterministic method in R’Tools. 
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Table 7.1  Empirical 5% thresholds for LRT test statistic when testing for 

dominance and corresponding P value under χ2
1  distribution. 1000 

replicates simulated for chromosome-wise testing under null scenario of 

no QTL effects  

 

Pedigree Sires 

Dams 

per 

sire 

Progeny 

per dam 

LRT 5% 

empirical 

threshold 

1 

(human) 

633 1 3 

1.46 

2 380 1 5 1.14 

3 190 1 10 1.38 

4 317 2 3 2.1 

5 190 2 5 2.02 

6 195 2 10 2.06 

7 (chick) 19 5 20 2.62 

8 (pig) 10 19 10 2.70 

 

 

Further tests for dominance were carried out under the scenarios simulated to test for 

false positives in imprinting. Here the residual variance was scaled differently such that 

the QTL effects explained a greater proportion of the variance. With much greater 

additive effects type 1 error rates for dominance rose sharply. Regardless of the ratio to 

residual variance with an additive QTL explaining 15% of the phenotypic variance type 

1 error for a test for dominance was 0.05. When the additive QTL increased to 23% of 

the phenotypic variance however the type 1 error rate increased to 0.15 in poultry, 0.33 

in pigs and 0.41 in human pedigrees. These type 1 error rates were based on 100 
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replicates. This is contrary to the initial result that type 1 error rates are low in human 

populations. Although the probability of additive effects segregating of this magnitude 

are low (Hayes et al., 2001) it is clear that there is a threshold over which the 

distributional properties of the test are altered. Derivation of type 1 error using more 

replicates may be appropriate but it seems unlikely that sampling variation could 

account for the variation of the test statistic. When 1000 replicates were used to derive 

5% type 1 error thresholds again there is marked increase with larger additive effects as 

shown in Table 7.2 derived for the chicken and human pedigrees. 

 

Table 7.2 Empirical 5% thresholds for the null distribution of the test for 

dominance dom in human and poultry pedigrees. 1000 replicates were 

simulated for chromosome-wise testing under null scenario of no 

dominance and varying additive QTL h2  

 

Additive QTL  

(h2) 

Human Poultry 

0.0 1.48 2.78 

0.01 1.76 2.48 

0.04 1.6 2.16 

0.09 1.66 2.62 

0.15 1.88 3.72 

 

  

Although QTL have been reported of this magnitude these are large effects and it might 

be hypothesised that for the range of QTL effects one might expect that the spurious 

rates found for the imp test in chapter 6 are unlikely.  
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Imprinting 

 

The empirical 5% threshold for the imp test derived with no QTL effects simulated, 

corresponded to a nominal LRT value of around 2.7% for all populations in line with 

expectations under a mixture of χ1-0. Furthermore type 1 error rates of a similar order 

were found under permutation analysis for the real poultry data shown in Table 3.   

False positive rates for non imprinted QTL from the initial empirical distribution, 

however, were surprisingly high and imply that the use of tabulated thresholds for this 

type of test should be approached with caution. In particular dominant QTL effects 

appeared to inflate the imp test statistic with rates of ~0.7 for all pedigrees for an over-

dominant QTL explaining 13% of the phenotypic variance. Spurious imprinting was also 

seen for large additive effects. As seen for spurious dominance at more modest, and 

potentially more biologically plausible, additive effects, false positive rates for 

imprinting were much lower dropping to around 10% for an additive QTL explaining 

7% of the variance. Despite this there appears to be an over-dominant QTL effect on 

chromosome 4 in the real data analysis explaining 6.2% of the phenotypic variance with 

little evidence for imprinting and an imprinted QTL on chromosome 1 which shows no 

evidence for dominance.  
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Table 7.3  Comparison of 5% Type 1 error thresholds set by permutation 

analysis and empirical distribution for simulated poultry pedigree using 

1000 replicates/permutation tests. 

 

test 

Empirical 5% 
threshold 

from 
simulation of 

no QTL 
effects (4 

tests) 

Permutation 
linkage-wise 

for 
bodyweight 
(18 tests) 

Permutation 
linkage-wise 

for 
Conformation-

score (18 
tests) 

Addom 5.14 6.98 5.84 
Add 3.78 5.74 4.53 
dom 2.6 3.05 2.94 
Full 5.4 7.16 6.6 
Pat 3.52 5.38 4.54 
Mat 3.67 4.80 5.12 
Imp 2.6 3.18 3.43 

Patvfull 3.4 4.14 4.32 
Matvfull 3.34 4.5 3.58 

 

Alternative thresholds for the imprinting test were derived by simulating fully dominant 

QTL to account for the false positive rates. The selection of these statistics was fairly 

arbitrary and applied retrospectively so of little application to real data analysis. It was 

interesting to note, however, that despite the extremely high thresholds set, 12, 31 and 

54 for chicken, human and pig populations respectively there was still power to detect 

imprinted QTL. Again empirical distributions of the null statistic diverged with the 

human pedigree much more conservative than the poultry.   

 

One alternative might be to try to incorporate more variance components in the null 

hypothesis, for example test a model including maternal, paternal and dominant QTL 

against a model with additive and dominant QTL. This however would not account for 

the spurious imprinting found at large additive effects. It is also more difficult to achieve 

convergence for parameter estimates particularly those close to zero as components in 

the model increase.    
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Contrary to these results Hanson et al., (2001) show, using simulation in human 

pedigrees that type 1 error rate for the imp test, can be controlled using a χ
2

1 distribution 

for a range of additive effects. They assess type 1 error differently at a locus unlinked to 

the QTL. They do report inflated type 1 error rates using the Haseman-Elston sibship 

method although not of the magnitude described here. They postulate that these might be 

due to its failure to account for non independence of sibships.  

 

In summary, for comparisons between model such as the imp and dom tests, failure to 

select the correct null hypothesis gives spurious inflation of the test statistic. When 

derived under the null distribution of no QTL thresholds for the imp statistic are similar 

across pedigrees and in line with expectations under a mixture of chi square 

distributions. In contrast for the dominance test there are population differences even 

under the null hypothesis with tabulated thresholds becoming more conservative as the 

number of dam families per sire decreases. It is possible that the lack of independence 

between the variance components is affecting the distribution of the test statistic or that 

the null hypothesis selected is inappropriate. It is extremely difficult to hypothesise how 

an appropriate general threshold could be derived for the analysis of real data.  

 

7.5.2 Power 

 

In the light of the type 1 error rates it is difficult to discuss power of tests between 

models with any real degree of certainty in particular for the imp test.  

 

Power to detect Dominance 

Power to detect moderately large dominant QTL effects was high in livestock pedigrees 

reaching 95% for a QTL explaining 7% of the variance of a similar magnitude to the 

QTL found in the real data. Power to detect dominance at the QTL was much lower for 

the human pedigree at 42%. This was unsurprising as the human population structure of 

many small families with low numbers of full sibs would be expected to be less 
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informative for the detection of dominance. This is further compounded under the use of 

tabulated thresholds where power drops to 25%. The low empirical 5% type 1 error 

threshold means human pedigrees are more susceptible to type 2 errors as shown in 

chapter 4. Power under the 5% empirical threshold was similar to deterministic 

expectations incorporating non centrality parameters accounting for size of sibship as 

shown in Table 4 comparing results from the web based power calculator based on 

formulae derived by Sham and Purcell, (2000) 

 

Increased power might be achieved in human studies from a pedigree with more 

generations providing information from relationships such as grandparents and cousins 

but this requires further exploration. Shete and Amos (2003) develop a method which 

also incorporates information from an extra IBD coefficient (fmij, mfij) derived from 

tracing descent of grandparental alleles and resulting in higher power. They simulate 500 

replicates using parameters a=3, i=2, residual=1, and d=0, with a pedigree of 40 

individuals where grandparents have three sons and three daughters and parents have 4-5 

progeny. They see a moderate increase in power with 0.65 under an additive model 

increasing to 0.83 without the extra IBD information and 0.93 when it is included.  
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Table 7.4 Comparison of power to detect additive and dominant QTL using 

empirically derived, tabulated, and using web based calculator 

approximating deterministic formulae* for prediction of power in human 

sibships.  

 Model 

Genetic 

effect Calculator 

Add + 

dom QTL Add QTL 

a d predicted Χ2
1 Emp Χ2

1-0  emp 

0.10 0.0 24 21 20 22 22 

0.20 0.0 19 9 9 10 11 

0.30 0.0 15 12 11 12 12 

0.40 0.0 12 5 4 4 5 

0.50 0.0 10 3 4 3 4 

0.80 0.4 75 62 72   

0.80 0.5 79 79 83   

0.80 0.6 83 78 85   

0.80 0.7 88 65 73   

0.80 0.8 92 84 96   

     *(Sham and Purcell, 2000) 

 

Power to detect imprinting 

 

As seen by others (De Koning et al., 2002; Hanson et al., 2001a; McElroy et al., 2006; 

Shete et al., 2002; Thomsen et al., 2004) power was greatest to detect imprinted QTL 

when the full model incorporating separate parental QTL was used. This also resulted in 

little loss of power when QTL effects were not imprinted. The subsequent comparison of 

individual parental models with the full model appears a more reliable indicator than the 

imp test although this is still prone to segregation issues when allele frequencies are very 

low and/or there are few families from which the QTL allele can segregate.    
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Human pedigrees were in general less powerful to detect QTL under the Mendelian and 

full model and more susceptible to spurious inflation of dominance and common 

maternal estimates when an imprinted QTL was examined under an incorrect model. 

Conversely, using the imp test, false positive rates were lowest and under stringent 

empirical thresholds power to detect imprinting was highest in human pedigrees. The 

balanced design of the human pedigree also yielded more accurate estimates of the 

variance components under the correct model and equal power to detect paternally or 

maternally expressed QTL.  

 

Hanson et al., (2001) also use this test with 956 sibs across 263 nuclear families with 

median size of 3 and range from 2-11, a comparison of results is given in Table 7.5. For 

the imp test results are largely in agreement despite the clear indication from the 

simulation results that the empirical threshold does not perform well and fails to control 

type1 error in many scenarios. With a QTL explaining 30% of the variance Hanson et al 

(2001) find LOD scores with imprinting fitted of LOD 4.5 versus LOD 3.1 when not 

fitted. Here, using the threshold derived under the null hypothesis of no QTL, for a QTL 

explaining 26% of the variance the pat + mat model results in an LRT with an equivalent 

LOD score of 11.5 versus a LOD score of 4.9 under the additive model. 
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Table 7.5 Comparison of Power to detect imprinted QTL using the test of a 

full (pat + mat) model against an additive model for simulated human 

pedigrees  

 

Hanson* method using imp test with 

tabulated thresholds of Χ2
1 

Human pedigree imp test statistic 

using 5% empirical threshold derived 

under no QTL 

heritability power heritability power 

0.1 0.20 0.04 0.45 

0.2 0.62 0.13 0.90 

0.3 0.90 0.26 0.99 

0.4 0.99 0.38 1.0 

0.5 1.0   

Hanson et al., 2001 

 

 

 

7.6 Multiple testing 

 

There are two general sources of multiple testing with these approaches. The first is 

common to all analyses involving genome scans and involves the testing at multiple 

positions. Secondly the use of multiple tests at each position must also be resolved.  

 

The distribution, however, of H0 when testing for multiple linked positions is unresolved 

and authors have used different approximations (Nagamine et al., 2004; Piepho 2001; 

Pratt et al., 2000; Xu et al., 1995), Procedures such as permutation and bootstrapping 

enable the setting of empirical thresholds and circumvent problems associated with 

failure of distributional assumptions and independence of multiple tests (Churchill et al., 

1994; Visscher et al., 1996).  
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Here only the first issue is addressed either by deriving empirical threshold under the 

null hypothesis using a chromosome-wise approach for the simulation work and by 

permutation and bootstrapping analyses using the real data. In both cases linkage groups 

are small and do not cover whole chromosomes therefore further correction for multiple 

testing for large linkage groups or genome wide testing would be necessary. 

Computational complexity is likely to be an issue using this framework, particularly at 

the genome-wide level.  

 

The approximation method described by Piepho (2001) relies on the gradient of change 

in likelihood across the linkage group. However, this method still assumes that the test 

statistic for a single test follows a standard Chi-square distribution under the null 

hypothesis and therefore does not address the issue of mixture distributions. The 

application of Piepho’s method to either the simulated or the real data results in very 

small changes in test statistic, analogous to rounding up from three to 2 significant 

figures. This may be due to few tests in the simulation study where the likelihood 

profiles are very flat.  

 

Heuven et al (2005) take the approach that if the nominal test statistic is a mixture of 

distributions, a more conservative approach and therefore way of dealing with multiple 

testing is to use df equal to the number of parameters. This seems an arbitrary way of 

dealing with a complex issue, the mixture of distributions are not accounted for, and the 

resolution is in no way proportional to the amount of multiple testing being done. 

Furthermore, this still doesn’t account for multiple models or differences attributable to 

population structure.  

 

Testing using multiple models is a more difficult issue and there is little evidence for its 

application within the variance component framework. For the test of maternal and 

paternal QTL Hanson et al., (2001) find that type 1 error rates approximately double and 

therefore suggest a bonferroni correction is appropriate when scanning for a QTL by 

selecting the highest test statistic from either parent.  
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 7.7 Permutation analysis 

 

The evidence presented does not point towards a single approach in the selection of 

thresholds but rather shows that the distributional properties of the test statistic are 

affected by many things and that the selection of a null hypothesis is a difficult issue. 

Although computationally expensive, permutation analysis is an attractive option 

circumventing many distributional assumptions and accounting for the genetic 

background of each specific data set. It could also potentially be adapted to account for 

multiple models as well as multiple positions.  

 

The crucial issue is to ascertain on what level the permutation should take place. The 

permutation of phenotypes and genotypes within large dam families circumvented the 

re-estimation of IBD matrices and kept polygenic effects constant. It is possible that this 

method would be less appropriate for small full sib families, for example within 3 full 

sibs in the human pedigree where there would be little room for sampling. In particular, 

it is difficult to see how the use of permutation testing could be implemented in 

unstructured populations where there is no obvious sub class within which to permute 

genotypic and phenotypic information. Using regression techniques, McElroy et al., 

(2006) suggest the permutation of the maternal and paternal coefficients for a 

permutation test for imprinting. A novel and potentially exciting test might be the 

development of a similar approach with variance component analysis by permuting 

maternal and paternal coefficients at the IBD matrix level, for example with a 0.5 

probability of the coefficient being selected from either the maternal or the paternal 

relationship matrix.   

 

Permutation thresholds were less stringent for the dom test and similar to what one 

expect under a mixture of distributions although cannot be directly compared to the null 

due to testing at multiple positions. Under simulation test statistics for addom, add and 

dom empirically derived for a poultry pedigree with 4 tests were similar for the real data.  

They were higher in the real data given that 18 tests were carried out but ordered 
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similarly in terms of magnitude. The add and addom were more stringent than the 

nominal cut off for a chi square under a mixture or distributions as expected under 

multiple testing but the dom statistic much less so.   

 

7.8 Results from poultry data 

 

Additive analyses  

There was nominal significance for an additive QTL affecting bodyweight on 

chromosome 4 and linkage was confirmed for bodyweight and conformation score on 

chromosome 5. The half sib analyses gave the first indication that QTL effects were 

dependent upon parent of origin. Test statistic curves differed in significance and shape 

according to whether the sire or dam was used as a common parent. Given the simplicity 

and ease of application could be considered a very useful initial approach although it is 

only applicable to pedigrees with large enough sibships from both parents. The half sib 

analyses also provided test statistics for individual families useful for narrowing 

confidence intervals and investigating pleiotropy. On chromosome 1, 3 out of 4 sire 

families were segregating for both weight and conformation score. This could be due to 

pleiotropy, or correlation between the trait measurements which was moderate at 0.34 

(0.03), or potentially linkage disequilibrium as a result of intense selection. The 

population has been under intense selection for more than 40 generations.  

 

Dominance 

For the detection of the dominant QTL for conformation score the fitting of a direct 

maternal effect did not have any effect on the test statistic in contrast to the simulation 

findings, possibly because the dominance effect on chromosome 4 appeared to be 

segregating in sire families as also apparent in the half sib analysis. Low estimates of 

polygenic variance were associated with this region. For bodyweight on chromosome 4 

the linkage curves for the dom and the imp test statistics are very similar and are reduced 

when a maternal effect is fitted.  
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Again for chromosome 5 the dom and imp linkage peaks look remarkably similar for 

bodyweight although these are unchanged by the fitting of a maternal effect despite most 

of the information coming from maternal expression.  

 

Imprinting 

The most striking result is conformation score on chromosome 1. There is no evidence 

from the half sib analyses for a QTL and little evidence from the variance component 

approach. However when the maternal and paternal QTL effects are allowed to differ 

there is much greater evidence for a maternally expressed QTL explaining ~6% of the 

variance in both traits. There is no evidence for dominance and little evidence for an 

additive QTL so it is not anticipated that the effects could be due to false positives. The 

fitting of a dam effect does reduce the power of the full model to detect a QTL although 

the imp and the maternal QTL remain significant for both bodyweight and conformation 

score. Furthermore as with the half sib analyses there is another linkage peak for a 

paternal QTL at the opposite end of the linkage group. This region is orthologous with 

the Prader-willi/Angelman syndrome region on human and mouse chromosomes 

(Nicholls et al., 2001). Most of this region is paternally expressed but there is a region 

maternally expressed and shown to affect Angelman syndrome which can cause obesity. 

Moreover many others have found imprinted effects here one of which is associated with 

egg weight which in turn is highly correlated with bodyweight.  

 

Potential sources of type 1 error 

It has been hypothesised that truncation selection can lead to spurious QTL detection 

and differences between sexes. Also for imprinting the assumption under the null of 

equal parental contributions is only valid if recombination rates are either equal amongst 

sexes or sex specific recombination is incorporated. Hanson et al., use simulation to 

show that in humans the method is robust to modest differences in genetic distances less 

than a ratio of 10. Although higher recombination rates in one sex can lead to the 

spurious detection of imprinting, imprinting itself also leads to a greater recombination 

rate in one sex therefore it is difficult to partition cause and effect. Genetic distances 
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between markers estimated in CRIMAP (Green et al., 1990) were similar for both sexes 

and for the physical and the consensus map. Kerje et al., (2002) also investigate sex 

specific recombination rates across the chicken genome and do not find evidence for 

high ratios of female:male recombination rates in these regions. Mackinnon and Georges 

(1992) suggest that spurious QTL detection may arise from intense truncation selection 

with different rates in sexes and that commercial populations would be most susceptible 

to this. The authors use an extreme scenario and do not differentiate between mutation 

rates between QTL and marker alleles. Here mapping was done within a commercial 

broiler dam line so segregation differences would not be expected between sexes 

although selection intensity and selection criteria for male parents mat differ to female 

parents. The low trait heritabilities compared to the three generation pedigree might be 

due to effects of selection, for example the Bulmer effect or potentially masked variation 

from dominance effects.  

 

In an F2 population power is dependent on allelic differences between lines and enough 

heterozygote parents for power to detect segregation. For the variance component 

approach in livestock pedigrees the pig pedigree had the least number of sires and was 

least powerful at detecting paternally expressed QTL. If sires were fixed for a QTL 

allele, no variation would be seen in offspring. If dams were segregating then it would 

appear as though the trait was maternally expressed as there would only be variation in 

progeny that had inherited marker alleles from the dams regardless of marker 

segregation. Both poultry and pig pedigrees failed to give accurate estimates of the 

paternally expressed variance components. This suggests that for a paternally expressed 

QTL, for example IGF2 explaining on average 2% of the phenotypic variance power to 

detect the QTL or estimate the variance would be low for the pedigree structure given 

here. Heuven et al., (2005) also conclude that in an F2 design a balance is needed 

between number of sires and offspring. 

Hager et al., (2008) give a derivation in the case of an F3 pedigree where a direct or 

maternal genetic effect could be detected as polar bipolar-dominance or imprinting 
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depending on other genetic parameters, and allele frequencies. Although their derivation 

is specific to this population it could generalise. 

 

Despite overwhelming evidence from chapter 4 that large spurious type 1 error rates 

abound, for the real data analysis on chromosome 4 an over-dominant QTL explaining 

in the region of 6% of the variance is detected yet we see thresholds for the imp statistic 

under permutation of a similar magnitude to those seen when derived under the null 

threshold of no QTL. What is more we don’t see spurious imprinting where there is a 

dominant QTL, we find it in a region where there is no evidence for dominance. This 

implies as suggested by the simulation results that spurious test statistics are controlled 

for moderate background QTL effects. It might also explain why these anomalies have 

not been previously reported in other studies as this is the most extensive simulation 

study of its kind to date evaluating the variance component method across species, 

models and genetic effects.  

 

7.9 Implications for poultry breeding 

 

The variance estimate for the maternal bodyweight QTL on chromosome 1 with a dam 

effect fitted is 2500g
2
. If we assume that this QTL is bi-allelic and fully imprinted effect 

the variance reduces to 4pqa
2
 at intermediate allele frequencies. This could result from 

additive QTL effects of approximately 50g rising to around 85g if frequency of the QTL 

favourable allele drops is 0.1. The standard deviation of the trait is 300g so a relatively 

modest imprinted effect could potentially cause considerable variation at the phenotypic 

level.  

 

Desired benefits of genomic analyses for commercial populations are the ability to select 

against specific variants for example the halothane gene in pigs, and to incorporate 

genomic information to estimate breeding values more accurately to maximise selection. 

The greatest advantage for many breeding schemes is the reduction of generation 
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intervals and accurate breeding values for traits difficult to measure or measurable in 

only one sex. 

 

Potential methods for commercial poultry breeders are marker assisted selection tools 

such as marker assisted BLUP where markers are fitted into the traditional selection 

criteria. This is useful for removing specific variants and maximising performance using 

a few marker traits. Genomic selection is also an increasingly popular tool incorporating 

marker genotypes or haplotypes to produce individual breeding values. Advantages of 

genomic selection are that greater resolution is achieved using haplotypes and further 

fine mapping is not essential. Disadvantages are that it requires a significant amount of 

genomic information and a huge investment. With the short generation times in poultry 

it doesn’t carry the same advantages as one might see in cattle where progeny testing is 

an extremely lengthy and expensive process. It also fails to account for non additive 

information, therefore performance over many generations is still to be evaluated.  

At present there is less evidence for the financial advantages of genomic selection over 

traditional selection or marker assisted BLUP given the considerable investment 

involved.  Advantages will depend on levels and patterns of linkage disequilibrium in 

the population and the amount of genotyping necessary for a resolution providing 

population wide linkage. For initial approaches family based analyses are advantageous 

when compared to association type analyses as there is greater LD and therefore fewer 

markers needed and spurious effects due to population structure such as migration and 

admixture are accounted for. Disadvantages are the low resolution renders the initial 

marker QTL association less likely to be applicable population wide. Variance 

component analyses can be extended to incorporate linkage disequilibrium, however 

advantages are relatively small (Heuven et al., 2005; Lee et al., 2005; Lee et al., 2006) 

 

Potentially of greatest benefit is to take advantage of dominance and imprinting in terms 

of mate selection and reciprocal crossing for important traits. Dekkers and Chakroborty 

(2004) show that the use of information from dominant QTL within lines for mate 
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selection can result in substantial benefits over index selection, in particular with over-

dominance where reported benefits are as high as 30%. 

  

8.0 Conclusions and Recommendations  

Variance component analysis was used to detect additive, dominant and imprinted QTL 

in a two generation poultry pedigree. Findings agreed with the results of other studies 

using a variety of methods. The use of an approximate algorithm for the estimation of 

IBD matrices performed well when compared to the MCMC based method within QTL 

Express.    

 

When variance component methods were evaluated with simulation they performed well 

within livestock pedigrees. Type 1 error rates under the null distribution of no QTL were 

similar for simulated and real poultry populations. Although power was lower to detect 

additive and dominant effects in human pedigrees simulation results were comparable 

with previous findings from other studies.   

 

Despite this the derivation of empirical type 1 errors revealed that the underlying 

assumptions of the test statistic are fundamentally flawed. In particular tests between 

models such as the imp and dom test are not robust to changes in population structure, 

common environment effects or the segregation of large QTL effects. Some of these 

effects can be systematically included into the model but when using reml fitting too 

many effects simultaneously results in non convergence of parameters. It could be 

debated that the pat+mat and the add models are not truly nested and that this might 

account for the high type 1 error rates. In this type of analysis it is also difficult to think 

of any extension to include an extra genetic parameter that could guarantee true 

independence. Careful thought should be given to how many models and traits to test. 

Parsimony is important as although accuracy of the estimation of variance components 

was good when the model was extended there were some issues with non convergence. 

Results such as parent of origin effects should be viewed as a starting point for further 



 189

investigation and could be underpinned by a variety of reasons such as non segregation 

or selection. It is important that a body of evidence is collated. 

 

The most challenging issue is the appropriate selection of a null hypothesis given that in 

real data there is no prior knowledge of potentially confounding effects. Permutation 

analysis is an attractive option as this provides a way to account for systematic effects. It 

has not been evaluated, however, under the extreme QTL effects which resulted in the 

deviation from expectation of the likelihood ratio statistic. The similarity in results from 

permutation testing and theoretical expectation could be interpreted as failure to correct 

the test statistic appropriately. There are other methods to compare likelihoods such as 

the Bayesian information criteria BIC, however this also compares likelihoods based on 

parameters constrained and would not be expected to provide greater accuracy. 

 

Future work 

Deriving empirical thresholds is useful and tells us how different family structures are 

affected but selection is arbitrary therefore an unreliable method of accounting for 

underlying variation.  As computational performance becomes less of an issue with the 

advent of tools such as grid computing, tests such as permutation will become much 

faster. Computational restraints might be further removed by faster IBD approximations 

(Besnier et al., 2007), and faster algorithms such as the score statistic (Ronnegard et al., 

2008). Further analysis might involve the use of simulation to evaluate permutation 

testing strategies within different population structures and subclasses. An interesting 

extension of this for the detection of imprinting could include the permutation of 

maternal and paternal relationship matrices with an equal probability of receiving either 

coefficient/parental allele. The effects of selection and allele frequencies would also be 

of interest. Finally for human type pedigrees analysis could be extended to incorporate 

further generations and further information from more complex pedigrees which is 

where the greatest benefit of the method can be derived.   
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This thesis presents the most extensive evaluation of variance component methodology 

to date incorporating different modes of inheritance, genetic effects and population 

structures. Here we have shown that although theoretically the tabulated chi square 

values are fairly robust, the expected probability of non zero variances can vary with 

population structure, thus there are instances when greater power is achieved by 

empirically deriving the correct distribution of the test statistic. Conversely there are 

other scenarios when type 1 error rates are high and the likelihood of spurious detection 

of effects is increased. Recommendations would be that variance component analyses 

are a useful exploratory tool but should be used with caution. Although the method was 

robust for large sibships with moderate QTL effects, it is incorrect to assume 

distributional properties for the likelihood ratio test statistic under the null hypothesis. 

Thresholds should be derived using permutation or empirically as each population 

structure and set of genetic parameters presents a unique platform and should be treated 

discretely.  
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