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Lay summary 

Parkinson’s disease (PD) is a common disorder of the nervous system. Patients have 

abnormalities of movement and often suffer from shaking of the limbs, slowness of 

movement and stiffness. The symptoms of PD have been linked to the death of cell 

bodies in the brainstem which contain the neurotransmitter dopamine, as well as the 

formation of clumps of the protein alpha-synuclein. In PD a large dopamine containing 

structure beneath the cortex of the brain known as the striatum has also been shown to be 

affected. A severe and early onset form of genetic PD has been shown to result from the 

G51D mutation in the alpha-synuclein itself. 

Animal models provide the opportunity to study PD further including the 

processes involved in the development of this disease. A recently developed gene editing 

technology known as clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to produce a rat model of 

PD which has the G51D mutation in alpha-synuclein that has been identified in humans. 

Rats with the G51D mutation (G51D/+) were studied until 17 months of age to determine 

if they had features of PD which have been identified in humans. Pathological 

experiments used brain tissue specimens from rats in order to investigate the structure of 

dopaminergic nerve terminals in the striatum and to determine whether the G51D/+ rats 

had abnormalities of alpha-synuclein staining in the striatum. Furthermore, rats received 

brain scans using a technique known as positron emission tomography (PET) which 

utilised the radiotracer L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) in order 

to assess the function of the dopaminergic nerve terminals in the striatum of rats.  

Pathological studies identified decreased staining for the enzyme tyrosine 

hydroxylase (which is involved in the synthesis of dopamine) in the striatum of both 

young and old G51D/+ rats compared with wild-type (WT) rats which did not have a 

mutation in alpha-synuclein. Staining for alpha-synuclein indicated an increased build-up 

of alpha-synuclein in cell bodies in the striatum of G51D/+ rats when compared with 

results from WT rats. PET imaging studies identified functional abnormalities of the 

dopaminergic system in the striatum of young and old G51D/+ rats when compared with 

WT rats.  

Pathological experiments which indicated the increased accumulation of alpha-

synuclein in cells in the striatum of G51D/+ rats when compared with WT rats, may 

suggest similar processes of clumping of alpha-synuclein to those which have been 

identified in patients with PD. PET imaging studies in young and old rats G51D/+ rats 
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indicated abnormalities of dopaminergic function which have some similarities to those 

identified in patients with PD. In old G51D/+ rats, PET imaging studies indicated an 

adaptive increase in dopamine turnover in the striatum and this may have occurred in 

response to impaired dopaminergic function in the striatum. Additional adaptive changes 

in dopaminergic nerve terminals in order to compensate for degenerative processes may 

be present in 10 and 11 month G51D/+ rats as indicated by pathological experiments and 

some data from 18F-DOPA PET imaging studies.  

The G51D/+ rat model appears to have some features of PD which have been 

identified in humans. This rat model would be interesting for further studies of PD 

including the underlying processes involved in the development of the disease. However, 

experiments have indicated that the features of PD modelled by G51D/+ rats were less 

severe than those observed in patients with the G51D mutation in alpha-synuclein. 



vi 
 

Abstract 

Parkinson’s disease (PD) is the second most common neurodegenerative condition to 

affect humans, and is characterised by the loss of dopaminergic neurons from the 

substantia nigra pars compacta (SNpc) in the midbrain along with the deposition of 

abnormal aggregates of alpha-synuclein protein in the brain which are in the form of 

Lewy bodies. Dopaminergic neurons from the SNpc project into a large subcortical 

structure known as the striatum, and positron emission tomography (PET) studies have 

demonstrated the dysfunction of the dopaminergic system in the striatum of patients with 

PD. Furthermore, immunohistochemistry studies of the striatum have identified the 

degeneration of dopaminergic nerve terminals and inclusions of alpha-synuclein. An 

aggressive and early onset form of familial PD is caused by the G51D point mutation in 

alpha-synuclein (G51D/+).  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-

associated protein 9 (Cas9) technology has been used to generate a novel and precise rat 

model of PD which has the G51D mutation in rat alpha-synuclein. Wild-type (WT) and 

G51D/+ rats were analysed over the course of ageing (5, 10/11 and 16/17 months of age) 

using histological experiments and L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-

DOPA) PET imaging in order to determine if G51D/+ rats have abnormalities of 

histological staining and dopaminergic function analogous to those identified in patients 

with PD.  

Histological experiments were optimised using WT rat tissue and then used 

immunohistochemistry for tyrosine hydroxylase (an enzyme involved in the synthesis of 

dopamine) to evaluate dopamine nerve terminal integrity in the striatum of WT and 

G51D/+ rats. In addition, immunohistochemistry for alpha-synuclein was used to evaluate 

staining for alpha-synuclein in cell bodies and the neuropil within the striatum of WT and 

G51D/+ rats. 18F-DOPA is a well validated PET radiotracer and has been used to 

investigate dopaminergic function in the striatum of rats. The enzyme aromatic L-amino 

acid decarboxylase converts 18F-DOPA to 6-18F-fluorodopamine, which is in turn 

incorporated into presynaptic vesicles, and then released into the synaptic cleft following 

neuronal activation. PET imaging experiments were first optimised using phantoms and 

WT rats, then the optimised protocols were applied to studies of WT and G51D/+ rats.  

Results from tyrosine hydroxylase immunohistochemistry at Bregma 0.00 mm 

identified a trend for decreased optical density of tyrosine hydroxylase staining in the 

striatum of 5 month G51D/+ rats compared with age-matched WT controls (p=0.15), and 
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in 17 month G51D/+ rats compared with age-matched WT controls (p=0.10). Semi-

quantitative analysis of alpha-synuclein immunohistochemistry indicated an increased 

abundance of alpha-synuclein positive cell somata in the striatum, and decreased punctate 

terminal staining in the neuropil of G51D/+ rats compared with age-matched WT rats.  
18F-DOPA PET imaging experiments indicated a trend for decreased influx rate 

constant (Ki) of 18F-DOPA in the striatum of 5 month old G51D/+ rats compared with 

age-matched WT controls (p=0.08), and a trend for decreased distribution volume ratio 

(DVR) of 18F-DOPA in the striatum relative to the cerebellum of 16 month old G51D/+ 

rats when compared with age-matched WT controls (p=0.09). 18F-DOPA PET imaging 

experiments also identified a trend for a decreased effective distribution volume ratio 

(EDVR) of 18F-DOPA in the striatum relative to the cerebellum (p=0.09) and in turn 

indicated increased effective dopamine turnover (EDT) (p=0.13) in the striatum of 16 

month old G51D/+ rats compared with age-matched WT rats. 

Therefore, the results indicated abnormalities of dopaminergic function, as well 

as tyrosine hydroxylase and alpha-synuclein staining in G51D/+ rats compared with age-

matched WT controls, and this appeared to have some features of PD in humans. Indices 

of EDT indicated compensatory changes in dopaminergic function in the striatum of 16 

month old G51D/+ rats compared with age-matched WT rats. Additional compensatory 

changes in dopaminergic terminal function and tyrosine hydroxylase protein expression 

may be evident in 11 and 10 month old G51D/+ rats respectively compared with age-

matched WT rats. The G51D/+ rat model represents an interesting model for further 

studies such as the underlying pathophysiology of PD. However, the phenotype observed 

in G51D/+ rats appeared to be less severe than that which has been observed in humans 

with G51D type PD. 
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Chapter 1 - Introduction 

1.1 Thesis introduction 

Parkinson’s disease (PD) is a common neurodegenerative condition which results in 

deficits of normal motor function (Gelb, Oliver and Gilman, 1999; Lees, Hardy and 

Revesz, 2009). PD is characterised by the loss of pigmented dopaminergic neurons from 

the substantia nigra pars compacta (SNpc) in the midbrain which project to the striatum, 

as well as the deposition of aggregated alpha-synuclein protein in the brain in the form of 

Lewy bodies (Moore and Bloom, 1979; Gibb and Lees, 1988; 1989; Spillantini et al., 

1997). Mutations in alpha-synuclein itself have also been shown to result in familial PD 

(Lees, Hardy and Revesz, 2009). An early onset and aggressive form of familial PD 

results from a G51D heterozygous mutation (G51D/+) in alpha-synuclein (Kiely et al., 

2013, 2015; Lesage et al., 2013). 

Immunohistochemistry (IHC) experiments have demonstrated decreased staining 

for the enzyme tyrosine hydroxylase (TH), which is involved in the synthesis of 

dopamine, in the striatum of PD patients when compared with healthy controls (Bedard et 

al., 2011; Kordower et al., 2013). IHC for alpha-synuclein has identified abnormal 

aggregates of alpha-synuclein protein in the striatum of patients with PD (Parkkinen et 

al., 2005; Mori et al., 2008). Furthermore, molecular neuroimaging studies using positron 

emission tomography (PET) along with the radiotracer L-3,4-dihydroxy-6-18F-

fluorophenylalanine (18F-DOPA), have been used to study presynaptic dopaminergic 

function in patients with PD. These experiments have identified abnormalities of 

dopaminergic function in the striatum of PD patients when compared with healthy 

controls (Brooks et al., 1990; Burn, Sawle and Brooks, 1994; Holthoff-Detto et al., 1997; 

Sossi et al., 2002; 2004).  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-

associated protein 9 (Cas9) engineering has been used to generate a precise single amino 

acid change in the rat alpha-synuclein gene to establish a novel G51D rat model of PD 

(G51D/+). In this thesis, I will use IHC experiments to characterise staining for TH and 

alpha-synuclein in the striatum of G51D/+ rats. In addition, I will investigate 

dopaminergic function in the striatum of G51D/+ rats using 18F-DOPA PET imaging. 

The methodology for TH and alpha-synuclein IHC will first be optimised by 

using brain tissue from a wild-type (WT) rat. Furthermore, the methodology for 18F-

DOPA PET imaging will be optimised by using phantoms and pilot 18F-DOPA PET 

experiments in WT rats. These optimised methods will then be applied to study WT and 
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G51D/+ rats over the course of ageing. These experiments are the first to characterise this 

novel rodent model of PD. The development of representative models of PD is important 

for studying the underlying mechanisms of PD and testing for potentially novel 

treatments for PD. 

 

1.2 Parkinson’s disease 

 Clinical presentation 

PD was first described by James Parkinson as the shaking palsy after clinical observations 

he made about six patients which suffered from involuntary tremor in the limbs and an 

abnormal posture and gait (Parkinson, 1817). Since this summary of case histories by 

Parkinson (1817), PD has been shown to be the second most common neurodegenerative 

condition after Alzheimer’s disease and affects 0.3% of the general population 

(Nussbaum and Ellis, 2003; de Lau and Breteler, 2006). The prevalence of PD increases 

with ageing with 1% of people over the age of 60 years affected by PD (Nussbaum and 

Ellis, 2003; de Lau and Breteler, 2006).  

Symptoms of PD are typically gradual in onset, and since patients are often 

affected at an older age, deficits such as stiffness of movement may be mistaken for 

ageing itself (Lees, Hardy and Revesz, 2009). Abnormalities which manifest in early PD 

typically include hyposmia (reduced smell sensation), constipation, executive 

dysfunction, sleep disturbances, and psychiatric disturbances such as depression 

(Chaudhuri, Healy and Schapira, 2006; Tolosa, Wenning and Poewe, 2006; Rodriguez-

Oraz et al., 2009). Later in the clinical course of PD, the motor deficits become more 

apparent and the cardinal clinical signs of PD include bradykinesia, rigidity, pill rolling 

tremor, and postural instability (Gelb, Oliver and Gilman, 1999; Lees, Hardy and Revesz, 

2009).  

In the neurology clinic, the accuracy of clinical diagnosis of PD is 73.8% (Rizzo 

et al., 2016a). Difficulties in accurately identifying patients with PD based on their 

clinical history and examination, means that some cases of atypical parkinsonism 

resulting from disorders such as multiple system atrophy (MSA), progressive 

supranuclear palsy (PSP) and essential tremor may be misdiagnosed as PD (Meara, 

Bhowmick and Hobson, 1999; Hughes, Daniel and Lees, 2001). A diagnosis of PD can be 

confirmed post-mortem by examining neuropathological specimens from affected 

patients (Gelb, Oliver and Gilman, 1999). 
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 PD is progressive and is currently an incurable disease, with existing treatments 

symptomatic and aimed at improving a patient’s quality of life (Lees, Hardy and Revesz, 

2009). Levodopa (L-3,4-dihydroxyphenylalanine) is currently the most effective drug for 

treating the motor symptoms of PD (Connolly and Lang, 2014). This medication is 

typically combined with a peripheral aromatic L-amino acid decarboxylase (AADC) 

inhibitor such as Carbidopa or Benserazide, in order to prevent the peripheral metabolism 

of levodopa to dopamine which would result in side effects such as nausea and would 

also reduce the bioavailability of levodopa in the brain (Marsden, 1994; Lees, Hardy and 

Revesz, 2009; Connolly and Lang, 2014). A good response to treatment with levodopa is 

strongly indicative of a diagnosis of PD, however caution is taken in interpreting 

responses to treatment since some patients with PD may initially be unresponsive, and 

some cases of atypical parkinsonism may show an initial positive response to levodopa 

treatment (Meara, Bhowmick and Hobson, 1999).  

 

 Neuropathological findings 

Histopathological confirmation of PD is necessary at autopsy, since PD lacks a 

completely reliable clinical marker and misdiagnosis is possible (Gelb, Oliver and 

Gilman, 1999). Difficulties associated with a diagnosis of PD were demonstrated by 

Hughes et al. (1992) who studied 100 patients clinically diagnosed with PD, though 

found that only 76 of these patients were confirmed with PD at post mortem.  

The neuropathological hallmarks of PD include the loss of pigmented 

dopaminergic neurons from the SNpc, and the identification of abnormally aggregated 

alpha-synuclein protein in the form of Lewy bodies (Figure 1.1) (Gibb and Lees, 1988; 

1989; Spillantini et al., 1997). The loss of pigmented dopaminergic neurons from the 

SNpc in PD leads to pallor of the midbrain compared with brain specimens from healthy 

controls (Braak et al., 2002; Halliday et al., 2014).   
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Figure 1.1: Neuropathological findings in patients with Parkinson’s disease at autopsy. In 
PD, the loss of pigmented dopaminergic neurons from the SNpc has led to pallor of the midbrain 
when compared with a healthy control (A). Haematoxylin and eosin (H&E) stained sections of the 
ventrolateral SNpc, from the boxes highlighted in A, demonstrate numerous pigmented 
dopaminergic neurons in the healthy control patient (B) and the loss of these neurons in the patient 
with PD (C). A higher magnification of an H&E stained section from the patient with PD has 
identified a Lewy body in a remaining pigmented neuron which has an eosinophilic core and pale 
halo appearance (D). IHC for alpha-synuclein has also identified a Lewy body in a pigmented 
dopaminergic neuron in the SNpc of the patient with PD (E) (Figure adapted from Obeso et al., 
2017).  

 

Transverse midbrain sections have been used to investigate neuronal cell counts 

in the SNpc. and have demonstrated a significantly lower number of pigmented neurons 

in the SNpc of patients with PD when compared with healthy controls (German et al., 

1989; Goto, Hirano and Matsumoto, 1989; Fearnley and Lees, 1991; Paulus and Jellinger, 

1991; Ross et al., 2004). In PD, neuronal cell loss has been shown to be most severe in 

the ventral and/or lateral portions of the SNpc (German et al., 1989; Goto, Hirano and 

Matsumoto, 1989; Paulus and Jellinger, 1991; Ross et al., 2004), and it is the ventrally 

located cell bodies which innervate the caudate and putamen via the nigrostriatal pathway 

(Smith and Kieval, 2000). In one study of 20 PD patients, 91% of neurons had been lost 

in the ventrolateral tier which is a brain region that is relatively spared by aging, and there 
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was a significant correlation between PD symptom duration and the extent of the 

neuronal loss (Fearnley and Lees, 1991). The total number of pigmented neurons in the 

SNpc has been estimated using unbiased stereology, and these methods have shown that 

the number of pigmented neurons in patients with PD are reduced by 55-75% of the 

healthy control mean (Pakkenberg et al., 1991; Ma et al., 1995; 1997). 

The striatum is the largest subcortical brain structure in mammals, and plays a 

major role in the control of normal motor functions (Lanciego, Luquin and Obeso, 2012). 

Projections to the sensorimotor striatum are provided via the nigrostriatal pathway and 

mainly arise from dopaminergic cell bodies located in the ventral SNpc (Moore and 

Bloom, 1979; Smith and Kieval, 2000).  Figure 1.2 illustrates the site of dopaminergic 

cell bodies in the midbrain and their projections via the nigrostriatal pathway to the 

putamen and caudate which are components of the dorsal striatum. 

 

 

Figure 1.2: Schematic diagram illustrating the site of dopaminergic cell bodies in the 
substantia nigra of the midbrain, which innervate the caudate nucleus and putamen. 
Dopaminergic neurons in the SNpc innervate the caudate nucleus and putamen (striatum) via the 
nigrostriatal pathway. However, in PD dopaminergic cell bodies in the SNpc degenerate and lead 
to a corresponding denervation of dopaminergic nerve terminals in striatum (Image from Guttman, 
Kish and Furukawa, 2003). 
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In PD the degeneration of dopaminergic neurons in the SNpc has implications for 

the function of dopaminergic terminals in the caudate and putamen. In this thesis I will 

use the term striatum to describe both the dopaminergic rich putamen and caudate. 

Biochemical studies of post mortem tissue have demonstrated that mean dopamine levels 

in the striatum of patients with PD were significantly lower than those of healthy controls 

(Bernheimer et al., 1973; Riederer and Wuketich, 1976). Dopamine depletion has also 

been found to be more severe in the putamen than the caudate (Rinne and Sonninen, 

1973; Lloyd, Davidson and Hornykiewicz, 1975; Hornykiewicz and Kish, 1986; Kish, 

Shannak and Hornykiewicz, 1988). It has been observed that clinical symptoms of PD 

arise after a substantial depletion of dopamine from the striatum, and when dopamine 

levels fall below 60-70% (Rodriguez-Oraz et al., 2009).  

Histopathological studies have analysed IHC staining in the striatum for TH 

which is an enzyme involved in the synthesis of dopamine (Figure 1.6). In PD the number 

of TH positive neurons in the striatum has been found to be 6-fold lower than that of 

healthy controls (Huot, Lévesque and Parent, 2007). The optical density (OD) of TH 

staining in the putamen and caudate has also been found to be decreased by 55 % and 

54% respectively in PD patients when compared with healthy controls (Bedard et al., 

2011). Furthermore, Bedard et al. (2011) found that the number of TH positive axon 

varicosities in the striatum were decreased by 76% in patients with PD when compared 

with healthy controls. Deficits in putaminal IHC staining for TH have been shown to 

occur early in PD and are most severe in the first 1-3 years of PD, whereas TH staining 

has been shown to be less affected later in the disease course (Kordower et al., 2013). 

A family of diseases known as the synucleinopathies is comprised of PD, 

dementia with Lewy bodies (DLB) and MSA, all characterised by the deposition of 

abnormally aggregated forms of alpha-synuclein in the form of Lewy bodies and Lewy 

neurites, and a corresponding neurodegeneration (Spillantini and Goedert, 2000; Martí, 

Tolosa and Campdelacreu, 2003). In PD, Lewy bodies may be classified as 

classical/brainstem or cortical in subtype. Classical Lewy bodies are spherical intra-

neuronal inclusions typically 8-30 µm in diameter, and these inclusions can be identified 

in haematoxylin and eosin (H&E) stained sections by their eosinophilic core and pale 

halo appearance, whereas cortical Lewy bodies have a smaller diameter and lack this core 

and halo feature (Jellinger, 2012).  

Electron microscopy of brain extracts from patients with Lewy bodies has 

revealed that Lewy bodies comprise alpha-synuclein filaments which are 5-10 nm wide 
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and 50-700 nm long (Spillantini et al., 1998). In vitro studies of filaments formed from 

recombinant alpha-synuclein, have been shown to comprise a β-structure which is formed 

of a 5-layered β-sandwich (Serpell et al., 2000; Vilar et al., 2008). In Lewy bodies alpha-

synuclein is often post-translationally modified and is extensively phosphorylated at the 

serine 129 residue, however alpha-synuclein may also be ubiquitinated or truncated 

(Fujiwara et al., 2002; Kuusisto, Parkkinen and Alafuzoff, 2003; Anderson et al., 2006). 

In neurodegenerative diseases, the formation of proteinaceous inclusions is thought to 

result from abnormal protein synthesis, aggregation, and/or clearance (Kragh et al., 

2012). A mechanism for Lewy body formation in PD is illustrated by Figure 1.3 which 

shows that monomers of alpha-synuclein can associate to form dimers, and then increase 

in size to form oligomers of alpha-synuclein (Lashuel et al., 2013). Oligomers of alpha-

synuclein in turn form amyloid fibrils which accumulate to form the Lewy body (Lashuel 

et al., 2013). 

 

 

Figure 1.3: Alpha-synuclein aggregation and Lewy body formation in Parkinson’s disease. 
Monomers of alpha-synuclein associate to form dimers, and these gradually increase in size to 
form oligomers. Oligomers of alpha-synuclein in turn form amyloid fibrils which accumulate to 
form the Lewy body. At the cell membrane, oligomers can also act to form transmembrane pores 
and β-rich intermediates (Figure adapted from Lashuel et al., 2013). 

 

IHC experiments targeting alpha-synuclein have been used to demonstrate Lewy 

bodies and Lewy neurites in the SN of patients with PD, and alpha-synuclein IHC is now 

used as a routine and sensitive histological test for the diagnosis of PD (Spillantini et al., 

1997; Baba et al., 1998; Lees, Hardy and Revesz, 2009). IHC has also been used to 

determine the extent of alpha-synuclein pathology in the brain of patients with PD. 

Inclusions have been identified in multiple brain regions including the dorsal motor 
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nucleus of the vagus, the locus coeruleus, the mesocortex, and the neocortex (Braak et al., 

2002). Studies have also identified alpha-synuclein inclusions in the striatum of patients 

with PD, although the number of cases with identifiable Lewy bodies can vary from as 

few as 11%, to as many as 83.3% or 87.5% (Jellinger, 2004; Parkkinen et al., 2005; Mori 

et al., 2008). 

One hypothesis states that the aggregates of alpha-synuclein occur in a 

predictable stage-like manner. During the earliest presymptomatic phase (Braak stage 1), 

Lewy bodies and Lewy neurites are found the dorsal IX/X nucleus and the anterior 

olfactory nucleus, then alpha-synuclein pathology spreads to the medulla oblongata and 

affects the caudal raphe nucleus and coeruleus-subcoeruleus complex (stage 2), with 

lesions in the previously affected brain regions increasing in severity with increasing 

stage of disease (Braak et al., 2002; 2003). At stage 3 the neuro-melanin containing 

neurons in the SNpc contain Lewy bodies and neurites, and by stage 4 there is a marked 

neurodegeneration and associated depigmentation of the SNpc, along with the 

development of symptoms of PD (Braak et al., 2002; 2003). At stages 5 and 6 the alpha-

synuclein pathology is even more extensive than in previous stages, and affects the 

neocortex and premotor areas (Braak et al., 2002; 2003).  

However, the evidence suggests that not all cases of PD may follow this proposed 

staging scheme, and Braak et al. (2006) have since found that 6.3% of cases of PD 

deviated from their own previously defined staging scheme (Braak et al., 2002). Studies 

have also shown that between 7.0% and 8.3 % of patients with PD and with Lewy bodies 

and Lewy neurites in their brainstem and/or cortical areas, do not have inclusions of 

alpha-synuclein in the dorsal motor nucleus of the vagus (Attems and Jellinger, 2008). In 

addition, half of the case series studied by Kalaitzakis et al. (2008) did not demonstrate 

the caudo-rostral progression of alpha-synuclein pathology that was proposed by Braak et 

al. (2002). Studies have also found discrepancies between the staging scheme and its 

proposed clinical correlates, since between 12.3% and 20.0% of the cases suffering from 

clinical PD have been shown to correspond to Braak stage 3 (which according to the 

staging scheme should only represent preclinical disease) (Braak et al., 2002; Jellinger, 

2003; 2004). Furthermore, a significant burden of alpha-synuclein aggregates in cortical 

and brainstem areas has been found in elderly patients without any evidence of 

neurological impairment (Parkkinen et al., 2005). 
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 Neuroimaging  

Neuroimaging techniques permit a non-invasive assessment of structural abnormalities or 

functional abnormalities, including those of certain neurochemical systems and neuro-

receptor sites in the brain (Politis, 2014).  

In the clinical setting, neuroimaging may be used to aid a diagnosis of PD. The 

most commonly used modalities are conventional magnetic resonance imaging (MRI), 

and single photon emission computed tomography (SPECT) along with the radiotracer 
123I-N-fluoropropyl-2b-carbomethoxy-3b (4-iodophenyl) nortropan (123I-FP-CIT) which is 

used to image dopamine transporters (DAT) in the brain (Politis, 2014). Neuroimaging 

using MRI is useful for ruling out vascular parkinsonism and other structural lesions of 

the brain including tumours (Rizzo et al., 2016b). DAT SPECT can be used to 

discriminate cases of Parkinsonism (including those of idiopathic PD, MSA and PSP) 

from cases of essential tremor, since the uptake ratio of 123I-FP-CIT in the striatum 

relative to the occipital cortex in patients with Parkinsonism has been shown to be 

significantly decreased when compared with both healthy controls and patients with 

essential tremor (Benamer et al., 2000). 

 Research studies have also employed neuroimaging techniques to characterise 

the structural and functional deficits in the brains of patients with PD and monitor disease 

progression, both in order to determine brain abnormalities underlying certain symptoms 

of PD, and to gain insight into aberrations in patients with preclinical PD (Brooks, 2008; 

Stoessl, Lehericy and Strafella, 2014). Both PET and SPECT imaging are molecular 

neuroimaging techniques which have been applied to study PD in humans. 

 

 Structural neuroimaging  

Transcranial ultrasonography has been used to investigate abnormalities in the midbrain 

of patients with PD. A study of 103 patients with PD by Berg, Siefker and Becker (2001) 

demonstrated that 91% of PD patients had a greater extent of echogenicity in the 

substantia nigra (SN) when compared with healthy controls. In addition, the area of 

hyperechogenicity was found to be significantly larger on the side that was contralateral 

to the limb displaying the most severe clinical symptoms (Berg, Siefker and Becker, 

2001). However, subsequent studies have determined that the increased echogenicity 

identified in the midbrain of patients with PD is not progressive, and is likely to be a trait 

and marker for predisposition to the development of PD, probably reflecting iron 

accumulation in the brain of patients (Berg et al., 2002; 2005). Nonetheless, a recent 
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meta-analysis by Vlaar et al. (2009) demonstrated that cases of PD and atypical 

Parkinsonism can be differentiated by using transcranial ultrasonography to image the 

Lenticular nucleus, since an increased echogenicity has frequently been identified in the 

Lenticular nucleus of patients suffering from atypical Parkinsonism (Vlaar et al., 2009). 

This is in contrast to findings from patients with PD (Vlaar et al., 2009).  

Typically, conventional MRI is unreliable for the identification of SN 

degeneration in patients with PD, however hypointensity in the region of the SN may be 

identified on T2 or T2* weighted images due to the iron deposition (Rizzo et al., 2016b). 

A study by Schwarz et al. (2014) used 3 Tesla susceptibility-weighted MRI of the SN to 

investigate the usefulness of this technique in differentiating patients with PD from 

healthy controls. Results demonstrated that the diagnostic accuracy of this technique was 

96%, with the normal swallow tail appearance of the ventrolateral SNpc lost in patients 

with PD (Schwarz et al., 2014). MRI studies have also demonstrated that the proton 

transverse relaxation rate (R2*) in the SN was significantly higher in patients with PD 

compared with healthy controls (Martin, Wieler and Gee, 2008; Péran et al., 2010; Ulla et 

al., 2013). The R2* has been found to increase with the worsening of symptoms in PD, 

however these findings are likely to reflect iron deposition in the SN rather than neuronal 

loss (Martin, Wieler and Gee, 2008; Péran et al., 2010; Ulla et al., 2013).  

Neuromelanin-sensitive MRI is emerging as a useful diagnostic tool for patients 

with PD, and can differentiate patients with early PD from healthy controls with a high 

sensitivity and specificity (Reimão et al., 2015). Diffusion tensor MRI has been used to 

investigate the integrity of the SN, and has identified that the fractional anisotropy in the 

SN was significantly decreased in patients with PD when compared with healthy controls, 

which likely reflects the loss of dopaminergic neurons from the SN (Yoshikawa et al., 

2004; Chan et al., 2007; Vaillancourt et al., 2009). Diffusion tensor MRI also allows 

patients with early PD to be distinguished from healthy controls with 100% specificity 

and sensitivity, since a substantial loss of dopaminergic neurons occurs prior to 

symptomatic onset (Yoshikawa et al., 2004; Chan et al., 2007; Vaillancourt et al., 2009).  

Studies using MRI have been used to identify atrophic changes in the striatum of 

patients with PD, however findings from these studies have produced mixed results. 

Some imaging studies have identified atrophy of the putamen in PD and increasing 

volumetric loss with disease progression (Geng, Li and Zee, 2006; Pitcher et al., 2012; 

Sterling et al., 2013; Lewis et al., 2016). However, other studies have found that there 

were no significant differences in putaminal volume between patients with PD and 
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healthy controls (Bonneville et al., 2005; Lee et al., 2011). Likewise, a few imaging 

studies have identified atrophic changes in the caudate nucleus in PD patients (Sterling et 

al., 2013; Tessa et al., 2014; Lewis et al., 2016). Results from other studies however, 

have identified that there were no significant differences in the volume of the caudate 

nucleus between patients with PD and healthy controls (Almeida et al., 2003; Geng, Li 

and Zee, 2006).  

Diffusion tensor imaging of the basal ganglia has been shown to be useful in 

distinguishing cases of atypical parkinsonism from PD, since cases of PSP have a 

significantly increased apparent diffusion coefficient in the putamen, globus pallidus, and 

caudate compared with cases of PD (Seppi et al., 2003). Studies by Nicoletti et al. (2006) 

and Schocke et al. (2002) have also found that cases of MSA can be distinguished from 

those of PD by using diffusion weighted MRI, since cases of MSA have a significantly 

increased regional apparent diffusion coefficient in the middle cerebellar peduncles and 

the putamen compared with those with PD. 

 

 Molecular neuroimaging 

PET and SPECT imaging studies employ a radionuclide or radiopharmaceutical agent 

which is sensitive and specific to a process of interest, and an imaging device which is 

used to localise the activity in the body of the patient (Khalil et al., 2011). These studies 

are advantageous since they allow key neurochemical pathways and 

transporters/receptors to be studied, and the functional basis of neurodegenerative 

disorders such as PD can be elucidated non-invasively. Figure 1.4 illustrates the diverse 

radiotracers which have been used to study patients with PD. The diagram demonstrates 

that patients may be affected by a range of abnormalities including aberrations to 

dopaminergic, serotonergic, noradrenergic and cholinergic systems.  
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Figure 1.4: Illustrative diagram of PET and SPECT tracers as well as their respective 
targets, which have identified abnormalities in the brains of patients with PD. PET/SPECT 
imaging has identified alterations in aromatic L-amino acid decarboxylase (DDC) activity, 
dopamine transporter binding (DAT), norepinephrine transporter binding (NET). dopamine 
receptor subtype 2/3 binding (D2R/D3R), vesicular monoamine transporter binding (VMAT-2), 
serotonin transporter binding (SERT), acetylcholinesterase activity (AChE), opioid receptor 
binding sites (µ, κ, δ) and glucose metabolism in patients with PD when compared with healthy 
controls. The images from patients with PD are presented on the right of the images from healthy 
controls (Image from Politis, 2014). 
 

The basis of SPECT and PET imaging techniques differ, since SPECT detects 

gamma photons which have been emitted directly from the radioisotope, whereas PET 

detects pairs of photons that have been emitted indirectly from the radioisotope because 

of an annihilation event. Both SPECT and PET imaging have certain advantages and 

disadvantages. SPECT imaging facilities are less expensive and more widespread than 

those required for PET imaging, and the radionuclides required for SPECT are often more 

readily available. However, a major advantage of PET imaging is that it has an improved 
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application for studies of tracer kinetics compared with SPECT (Khalil et al., 2011). 

Molecular imaging studies are often combined with computed tomography (CT) or MRI 

which provide additional structural information about the subject. I will further discuss 

the principles of radionuclide imaging in humans using PET imaging (combined with CT 

imaging) as an example. I will then discuss the deficits of neurochemical pathways and 

neuroreceptor systems that have been identified in patients with PD. 

 

 Overview of PET/CT imaging 

Figure 1.5 shows an overview of the processes involved in a PET imaging study in 

humans. PET imaging studies first begin with radiotracer synthesis. In the case of 

radiotracers labelled with the radionuclides Fluorine-18 or Carbon-11, the positron 

emitting radionuclide is typically synthesised onsite using a cyclotron and is used to 

produce the desired radiotracer in a “hot lab”, that is to say a chemistry lab designed to 

produce radiopharmaceuticals (Wadsak and Mitterhauser, 2010). The choice of the 

radiotracer is determined by the aims of the study, although radiotracers can be 

synthesised to determine metabolic processes in the brain including presynaptic 

dopaminergic function or glucose metabolism, or the distribution of neuro-receptor sites 

including DATs or vesicular monoamine transporter-2 (VMAT-2). The radiotracer is then 

injected into the subject. The spontaneous decay of the positron emitting radioisotope 

leads to the production of positrons which travel a short distance in tissue before 

annihilating with an electron, each positron producing a pair of ~511keV photons which 

are emitted at approximately 180 degrees (Lewellen, 2008). PET data is acquired by a 

specialised imaging camera which registers coincidence events that result when pairs of 

photons arrive within a predetermined time window.  
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Figure 1.5: Overview of a PET imaging study in humans. The process first begins with the 
synthesis of a radiotracer which is used to investigate a process of interest. The radiotracer is 
injected into a subject whom undergoes an imaging procedure using a PET scanner. Pairs of 
photons of approximately 511 keV are measured by electronics of the PET scanner, and then the 
PET data is reconstructed using various algorithms to determine the distribution and characteristics 
of the radiotracer. Reconstruction produces the final images which are used for data analysis. The 
data can be analysed to determine the distribution of the radiotracer in a tissue over time and 
kinetic modelling can be employed to investigate key physiological processes in the tissue of 
interest (Image from Rudroff, Kindred and Kalliokoski, 2015). 

 

The measured data is reconstructed in order to determine the characteristics of the 

radiotracer in vivo. Reconstruction methods utilise various algorithms for image 

reconstruction, and may involve either analytical or iterative methods. Filtered back 

projection (FBP) is an example of an analytical method, where the measured data is back 

projected along a line of response, and the steps for back projection are then interchanged 

with other steps which filter the data in Fourier space (Alessio and Kinahan, 2006). 

Iterative methods are thought to offer an improvement over analytical methods, since they 

more accurately model the system and the noise in the data (Alessio and Kinahan, 2006). 

Iterative methods comprise two basic components; criteria which define the best image, 

and a numerical algorithm which determines how the image is then updated at each 

iteration (Tong, Alessio and Kinahan, 2010). The process commences with an estimate of 

the objects activity distribution, then this estimate is compared with criteria used to define 
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the best image, and the image estimate is updated using criteria which best define the 

image (Tong, Alessio and Kinahan, 2010). Each cycle of this process represents one 

iteration, and this process is repeated depending on the number of iterations used for 

reconstruction (Tong, Alessio and Kinahan, 2010). The maximum likelihood-expectation 

maximisation (MLEM) algorithm can be used to estimate the objects activity distribution, 

and the methods can be modified to analyse only a portion of the data at one time, and to 

reduce the time taken for reconstruction as part of a process known as ordered subsets 

expectation maximisation (OSEM) (Alessio and Kinahan, 2006).  

PET data can be analysed to determine time activity curves (TAC) which 

represent the change in activity over time in tissue. Furthermore, data can be analysed to 

determine the ratio of the activity in the region of interest to that in the reference tissue 

which is devoid of specific trapping. More complex methods utilising kinetic modelling 

can also be employed to investigate physiological processes involving the radiotracer, 

such as an influx rate constant (Ki) of the radiotracer into a tissue of interest. 

PET imaging is often combined with another imaging technique such as CT in 

order to obtain structural imaging data. During CT imaging a narrow X-ray beam sweeps 

across the subject, and measurements are taken at many angles by a detector which is on 

the opposite side of the subject (Goldman, 2007). The beam width determines the slice 

thickness of the final image, and following the reconstruction of CT data, the image 

comprises a series of voxels which are represented by gray levels and which correspond 

to the attenuation of the x-ray beam by the subject (Goldman, 2007). During combined 

PET/CT imaging, CT imaging not only acts to aid the identification of key anatomical 

features of a tissue of interest (Rudroff, Kindred and Kalliokoski, 2015), but it also serves 

to aid the reconstruction of PET data, since CT data is used to determine attenuation and 

scatter corrections of the PET data based upon the properties of the subject that was 

imaged (Mediso, 2015). 

 

 Analysis of the non-dopaminergic systems 

The radiotracer 18F-fluorodeoxyglucose (18FDG) has been used to investigate brain 

glucose metabolism in patients with PD. A study by Huang et al. (2007) identified 

abnormalities of glucose metabolism early in PD, and furthermore these deficits were 

shown to progress linearly over the 48 months in which patients were analysed. Huang et 

al. (2007) found that 18FDG metabolism was significantly increased in the motor cortex, 

pons, subthalamic nucleus and internal globus pallidus, and was significantly decreased in 
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the prefrontal and inferior parietal cortices in PD patients when compared with healthy 

controls. It was concluded that impaired glucose metabolism in key motor and cognitive 

structures may contribute to the development of associated clinical deficits in patients 

with PD (Huang et al., 2007). It has been proposed that 18FDG PET may be useful in 

aiding a clinical diagnosis of PD, since cases of PD and atypical parkinsonism show 

differential patterns of glucose metabolism, and 18FDG PET can be used to classify 

patients with PD with 86-100% sensitivity and 75-91% specificity (Juh et al., 2004; 

Hellwig et al., 2012).  

Cholinergic innervation of the brain has been studied using the radiotracer 11C-

methylpiperidin-4-yl propionate (11C-PMP) which is a substrate for the enzyme 

acetylcholinesterase. PET imaging studies have demonstrated that acetylcholinesterase 

activity was significantly decreased in the striatum, thalamus and cerebellum of patients 

with PD when compared with healthy controls (Gilman et al., 2010). Cerebral cortical 

acetylcholinesterase activity has also been shown to be significantly decreased in patients 

with PD when compared with healthy controls, and this likely has a basis in the 

development of cognitive disorders in PD including deficits in executive and visuospatial 

functioning, and perceptual motor function (Shinotoh et al., 1999; Gilman et al., 2010). 

Consistent with cholinergic dysfunction in PD a widespread decrease in the availability of 

nicotinic acetylcholine (α4β2*) receptors has been identified in patients with PD when 

compared with healthy controls (Meyer et al., 2009). In PD patients with concomitant 

depression, depressive symptoms were significantly associated with decreased 

acetylcholine receptor binding in the anterior cingulate cortex, putamen and midbrain 

(Meyer et al., 2009).  

The binding of 11C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-

benzonitrile (11C-DASB) to serotonin transporters (SERT) has been found to be 

significantly decreased in the caudate, thalamus, ventral striatum and anterior cingulate 

cortex of PD patients when compared with healthy controls (Politis et al., 2010a; Politis 

et al., 2010b). However, in PD patients with concurrent depression 11C-DASB binding 

has been found to be relatively increased in the caudal raphe nuclei, and in limbic brain 

structures including the amygdala, posterior cingulate cortex and prefrontal cortex when 

compared with PD patients without symptoms of depression (Boileau et al., 2008; Politis, 

Wu, Loane, Turkheimer, et al., 2010). This likely reflects the low extracellular serotonin 

in these structures in depressed patients (Boileau et al., 2008; Politis, Wu, Loane, 

Turkheimer, et al., 2010). The radiotracer 11C-RTI-32 binds to both DAT and 
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norepinephrine transporters (NET) in the brain. In patients with both PD and depression, 

tracer binding in the locus coeruleus and thalamus was significantly decreased when 

compared with non-depressed PD patients (Remy et al., 2005). Despite the radiotracer’s 

binding properties, it was concluded that the binding of 11C-RTI-32 likely reflected 

decreased NET at this sites, therefore abnormalities of noradrenergic neurotransmission 

have been indicated in patients with both depression and PD (Remy et al., 2005). 

Abnormalities of other receptor systems have also been identified in patients with 

PD and have been linked to the development of levodopa-induced dyskinesias. A study 

by Piccini et al. (1997) used the radiotracer 11C-diprenorphine, and demonstrated that 

opioid receptor binding sites were significantly decreased in the striatum, thalamus and 

cingulate cortex of PD patients with dyskinesias when compared with those without 

dyskinesias. PD patients with dyskinesias also have a greater availability of activated N-

methyl-D-aspartate (NMDA) receptor channels and adenosine A2A receptors in the 

striatum when compared with those without dyskinesias (Ahmed et al., 2011; Mishina et 

al., 2011; Ramlackhansingh and Ahmed, 2011). Adenosine A2A receptors play a role in 

adenosine transmission, so have been included in this section. However, these receptors 

are interesting when discussing dopaminergic function since they have been shown to 

antagonise the activity of dopaminergic receptors via adenyl cyclase (Mishina et al., 

2011; Ramlackhansingh and Ahmed, 2011). 

 

 Analysis of the dopaminergic system 

Both PET and SPECT imaging studies have been used to investigate presynaptic and 

postsynaptic aspects of dopaminergic function. A summary of the molecular imaging 

targets studied and their respective PET or SPECT ligands is provided in Table 1.1. These 

studies have demonstrated that multiple aspects of normal dopaminergic function are 

affected in patients with PD, including the normal dopaminergic synthesis and storage 

capacity of neurons, the distribution of DATs and VMAT-2, and dopaminergic receptors 

themselves.  
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Table 1.1: Summary of the targets used for molecular imaging of the dopaminergic system in 
the patients with PD and their respective PET or SPECT ligands. Imaging of presynaptic targets 
using PET ligands has involved the evaluation of dopamine synthesis, VMAT-2, and DAT, whereas 
SPECT ligands have been used for imaging DAT. Postsynaptic targets including D1 and D2/D3 
receptors have been evaluated using a number of different PET ligands whereas SPECT ligands have 
been used for imaging D2/D3 receptors. 18F-FP-DTBZ-9-(3-18F-fluoropropyl)-dihydrotetrabenazine, 
18F-FE-PE2I-18F-(E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4’-methyl-phenyl)nortropane, 
99mTc-TRODAT-1-99mTc--[2[[2-[[[3-(4-chlorophenyl)-8methyl-8-azabicyclo[3,2,1]-oct-2-yl]-
methyl](2-mercaptoethyl)amino]ethyl]amino]ethane-thiolato(3-)-N2,N2’,S2,S2]oxo-[1R(exo-exo)]), 
123I-β-CIT-123I-2β-carbomethoxy-3β-(4-iodophenyl)tropane, 123I-IPT-123I-N-(3-iodopropen-2-yl)-2β-
carbomethoxy-3β-(4-chlorophenyl) tropane, 18F-DMFP-18F-Desmethoxyfallypride, 11C-NMSP-3-N-
11C-Methylspiperone, 11C-MNPA-[O-methyl-11C]2-methoxy-N-propylnorapomorphine, 11C-PHNO-
(+)-4-[11C]propyl-3,4, 4a,5,6,10b-hexahydro-2H-naphto-(1,2- b)-(1,4)oxa-zin-9-ol, 11C-NPA-(-)-N-
11C-propyl-norapomorphine, 11C-NMB-N-11C-methyl-benperidol, 123I-IBZM-123I-benzamide (Saeed 
et al., 2017; Strafella et al., 2017). 

Location of 
target 

Target PET ligands SPECT ligands 

Presynaptic 

Dopamine synthesis 
18F-DOPA 
18F-FMT 

 

VMAT-2 

11C-DTBZ 
18F-DTBZ 
18F-FP-(+)-DTBZ 

 

DAT 

11C-methylphenidate 
11C-RTI-32 
11C-CFT 
11C-WIN 35,428 
11C-nomifensine 
18F-CFT 
18F-FE-PE2I 

99mTc-TRODAT-1 
123I-β-CIT 
123I-FP-CIT 
123I-altropane 
123I-IPT 

Postsynaptic 

D1 receptors 

11C-SCH23390 
11C-NNC 112 
18F-fallypride 
18F-DMFP 

 

D2/3 receptors 

11C-raclopride 
11C-FLB457 
11C-NMSP 
11C-MNPA 
11C-PHNO 
11C-NPA 
11C-NMB 

123I-IBZM 
123I-epidepride 
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The dopamine synthesis and storage capacity in the striatum of PD patients has 

been investigated by using 18F-DOPA PET imaging. 18F-DOPA is a radio-labelled 

analogue of L-3,4-dihydroxyphenylalanine which is the normal substrate for the enzyme 

AADC in the pathway leading to the formation of dopamine (Figure 1.6). In an 18F-

DOPA PET imaging experiment, the radiotracer 18F-DOPA is injected intravenously into 

the subject and crosses the blood brain barrier (BBB) using the large neutral amino acid 

transporter, with 18F-DOPA taken up by nerve terminals and decarboxylated by AADC to 

form 6-18F-fluorodopamine (18F-DA) in both dopaminergic and noradrenergic neurons 

(Gjedde et al., 1991). Nevertheless, since the striatum is rich in dopaminergic nerve 

terminals the uptake of 18F-DOPA at this site has been used to investigate presynaptic 

dopaminergic function, with 18F-DA stored within neuronal vesicles in terminals in the 

striatum until synaptic release is stimulated by neuronal activation (Martin et al., 1989; 

Gjedde et al., 1991).   

 

 

Figure 1.6: Schematic diagram showing the role of L-3,4-dihydroxyphenylalanine in the 
synthesis of dopamine. The enzymatic pathway leading to the formation of dopamine is a 
multistep process. Phenylalanine is first metabolised by phenylalanine hydroxylase (PH) to form 
tyrosine, which is in turn metabolised by tyrosine hydroxylase (TH) to form L-3,4-
dihydroxyphenylalanine. Subsequently, L-3,4-dihydroxyphenylalanine is metabolised by AADC 
to form dopamine which is stored in synaptic vesicles and then released into the synaptic cleft 
during neurotransmission (Figure adapted from Kumakura and Cumming, 2009). 
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Studies have investigated the Ki of 18F-DOPA in the putamen and caudate during 

the phase of irreversible tracer binding, and have found that the mean Ki of 18F-DOPA 

was significantly decreased in PD patients when compared with healthy controls (Brooks 

et al., 1990; Burn, Sawle and Brooks, 1994; Holthoff-Detto et al., 1997; Lee et al., 2000; 

Rinne et al., 2000). This finding is thought to provide functional evidence for the role of 

dopaminergic deficits in the development of the motor symptoms of PD, since the 

putamen plays a key role in the regulation of movement (Nahmias et al., 1985). The 

severity of motor symptoms in PD has been shown to be correlated with measurements of 

dopaminergic function determined from 18F-DOPA PET studies, since a negative 

correlation was found between the Ki of 18F-DOPA in the putamen and the severity of 

motor symptoms determined using the Hoehn and Yahr scale (Morrish, Sawle and 

Brooks, 1995; Holthoff-Detto et al., 1997; Rinne et al., 2000). Analyses of sub-regional 

variations in the Ki of 18F-DOPA in the striatum of patients with PD have determined that 

presynaptic dopaminergic function was more severely impaired in the posterior putamen 

than the anterior putamen, with the Ki of 18F-DOPA in the caudate affected the least 

(Sawle et al., 1990; Nurmi et al., 2001). Figure 1.7 shows a decreased Ki of 18F-DOPA in 

the striatum of a patient with PD when compared with a healthy control subject, with 

more severe deficits observed in the posterior putamen than the anterior putamen (right 

striatum) in the patient with PD. Results from 18F-DOPA PET imaging studies of atypical 

parkinsonism such as MSA contrast with results obtained from studies of PD, since the 

mean Ki of 18F-DOPA in the caudate has been shown to be more severely affected in 

MSA than in PD (Brooks et al., 1990; Burn, Sawle and Brooks, 1994).   

In patients suffering from unilateral motor deficits, the Ki of 18F-DOPA in the 

putamen contralateral to the affected limb has also been shown to be significantly lower 

than the ipsilateral putaminal Ki (Morrish, Sawle and Brooks, 1995; Piccini and Whone, 

2004; Brück et al., 2009). The images shown in Figure 1.7 demonstrate asymmetry in the 

Ki of 18F-DOPA between the left and right striatum in the patient with PD when compared 

with the healthy control. 18F-DOPA PET data has also been used to estimate the duration 

of the preclinical period in PD, and has determined that the putamen may be affected for 

up to 7 years prior to the development of clinical signs (Morrish et al., 1998; Nurmi et al., 

2001). The onset of symptoms of PD has been estimated to occur when Ki of 18F-DOPA 

in the putamen is 57-80% of normal (Morrish, Sawle and Brooks, 1995; Morrish et al., 

1998). 
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18F-DOPA PET data has also been analysed using extended Patlak methods or 

using a modification to methods used for Logan graphical analysis in order to determine 

the effective distribution volume (EDV) or effective distribution volume ratio (EDVR) of 
18F-DOPA (Sossi, Doudet and Holden, 2001; Sossi et al., 2002; 2004). These outcome 

measures are the inverse of effective dopamine turnover (EDT) (Sossi, Doudet and 

Holden, 2001; Sossi et al., 2002; 2004). In patients with early PD, the EDV of 18F-DOPA 

in the putamen has been shown to be significantly decreased when compared with healthy 

controls, which in turn indicates increased EDT in the striatum of patients with early PD 

(Sossi et al., 2004). Furthermore, a comparison of results from early symptomatic and 

established PD has demonstrated a more rapid increase in EDT in early disease compared 

with the later stages (Sossi et al., 2004). Studies of patients with PD showing asymmetric 

motor deficits, have also demonstrated that the EDV or EDVR of 18F-DOPA was 

significantly decreased in the putamen contralateral to the most affected side (Kumakura 

et al., 2006; Oehme et al., 2011). 

 

 

Figure 1.7: 18F-DOPA PET images (Ki map) from a healthy control subject and a patient with 
idiopathic Parkinson’s disease at the level of the striatum. Images demonstrate a decreased Ki 

of 18F-DOPA in the striatum of the patient with PD (right) when compared with the healthy control 
subject (left). In the patient with PD the posterior putamen is shown to be more severely affected 
than the anterior putamen within the right striatum and there is asymmetry in the Ki of 18F-DOPA 
between the left and right striatum when compared with the healthy control subject (Figure 
adapted from Tai and Piccini, 2004). 

 

The radiotracer 6-18F-fluoro-m-tyrosine (18F-FMT) has been used to study AADC 

activity in the striatum (Nahmias et al., 1995). Studies have demonstrated the decreased 
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accumulation of 18F-FMT in the striatum of patients with PD when compared with results 

from healthy controls, and the most severe deficits have been observed in the posterior 

putamen of patients with PD (Nahmias et al., 1995; Asari et al., 2011). Patient motor 

deficits have also been shown to be negatively correlated with uptake rate constant of 18F-

FMT in the contralateral putamen (Gallagher et al., 2011a). 18F-FMT has been reported to 

have some advantages over 18F-DOPA since it has a higher affinity for AADC, and 

furthermore images are produced with a higher signal to background ratio since 18F-FMT 

does not produce the radiolabelled metabolite 3-O-methyl-6-18F-fluoro-L-DOPA (3-

OMFD) which can contribute to background activity in 18F-DOPA PET images 

(Gallagher et al., 2011a). On the other hand however, 18F-DOPA remains the tracer of 

choice for measurements of dopamine turnover, since the 18F-FMT that is metabolised by 

AADC to 6-18F-fluoro-m-tyramine has a low affinity for DAT and VMAT, meaning that 

it is not protected in synaptic vesicles and thus is subject to the activity of monoamine 

oxidase (Doudet et al., 1999; Gallagher et al., 2011a). 

The VMAT-2 transports monoamine neurotransmitters into synaptic vesicles in 

presynaptic nerve terminals. This transporter has been found in all monoaminergic 

neurons, although 95% of VMAT-2 in the striatum is associated with dopaminergic 

neurons (Frey et al., 1996). Radiotracers targeting VMAT-2 have been used to investigate 

the integrity of presynaptic dopaminergic nerve terminals in the striatum of patients with 

PD. The study by Frey et al. (1996) demonstrated that the tissue to plasma distribution 

volume of 11C-dihydrotetrabenazine (11C-DTBZ), a tracer which binds to VMAT-2, was 

significantly decreased for measurements from the putamen and caudate of patients with 

PD when compared with healthy controls, reflecting decreased VMAT-2 binding site 

density in the striatum and the neurodegeneration of dopaminergic nerve terminals. Over 

the course of PD, 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-DBTZ) binding to 

VMAT-2 in the caudate and putamen was found to progressively decrease, with VMAT-2 

most depleted in patients with advanced PD (Hsiao et al., 2014). When sub-regional 

variations in the putamen were investigated, 11C-DBTZ binding was found to more 

severely impaired in the posterior putamen compared with the anterior putamen (Bohnen 

et al., 2006). Furthermore, the binding of radiotracers to VMAT-2 has been shown to be 

more severely decreased in the striatum contralateral to the side of the patient displaying 

the most severe clinical deficits, thus demonstrating asymmetry in dopaminergic function 

in patients with PD (Bohnen et al., 2006; Lin et al., 2014).  



23 
 

The DAT transports dopamine from the synaptic cleft into the cytosol of 

presynaptic nerve terminals. Radiotracers targeting DATs have been used to investigate 

presynaptic dopaminergic terminal function in the striatum of patients with PD. DAT 

SPECT tracers such as 123I-FP-CIT are useful for distinguishing patients with PD from 

healthy patients as well as those with essential tremor, however studies have indicated 

that DAT SPECT may be less reliable for distinguishing cases of PD from those of PSP 

or MSA (Asenbaum et al., 1998; Benamer et al., 2000; Varrone et al., 2001; 

Loøkkegaard, Werdelin and Friberg, 2002). PET tracers targeting DAT including 11C-

methylphenidate, 11C-WIN 35,428 and 11C-nomifensine have identified that DAT binding 

was significantly decreased in the striatum of patients with PD when compared with 

healthy controls (Leenders et al., 1990; Frost et al., 1993; Lee et al., 2000).  

Postsynaptic dopaminergic function in PD has been investigated by use of tracers 

for the dopamine receptor subtypes D2 and D1. A study of D2 receptors in a cohort of 6 

untreated patients with PD did not indicate any significant differences in the mean striatal 

to cerebellar uptake of 11C-raclopride when compared with healthy controls (Brooks et 

al., 1992). However, a study of 4 untreated patients with PD and asymmetry in clinical 

motor deficits, identified that D2 receptor binding (11C-raclopride) was increased by 14% 

in the putamen contralateral to the most affected side, whereas binding in the ipsilateral 

putamen was comparable with that of healthy controls (Turjanski, Lees and Brooks, 

1997). Asymmetry in the density of D2 receptors has also been demonstrated by Rinne et 

al. (1995), where the maximum count of D2 receptors in the putamen was increased by 

33% on the side contralateral to the predominant motor symptoms, and asymmetry in D2 

receptor binding was shown to persist at follow up despite progression of clinical disease. 
11C-raclopride binding in the striatum of patients with PD has been shown to be inversely 

associated with 18F-DOPA uptake in the putamen, hence D2 receptors may be increased 

due to compensatory upregulation (Sawle et al., 1993). D2 receptor binding in the 

striatum of treated cases of PD has been found to be normal or significantly decreased 

when compared with healthy controls, and this may reflect either the effect of treatment 

itself and/or disease progression (Brooks et al., 1992; Turjanski, Lees and Brooks, 1997). 
11C-SCH 23390 has been used to study D1 receptors in the striatum of patients suffering 

from PD, however D1 receptor binding in the striatum of treated patients with PD was 

only mildly decreased and was not significantly different from controls (Turjanski, Lees 

and Brooks, 1997). 
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 Underlying causes 

 Idiopathic Parkinson’s disease 

Most cases of PD are described as idiopathic or of an unknown or unidentified cause. 

However, studies have identified that certain lifestyle/environmental factors, chemical 

exposure, and mutations can influence the development of PD or parkinsonism. Some of 

these latter causes have been used to model PD/parkinsonism in rodents. 

 

 Lifestyle and environmental factors, or chemical exposure 

Age is the major risk factor in the development of PD, although certain lifestyle factors 

including caffeine intake and cigarette smoking are negatively associated with the risk of 

developing PD (Ross et al., 2000; Hernán et al., 2001). A four- to seven-fold increased 

risk of developing PD was associated with exposure to pesticides or alternatively 

herbicides such as paraquat (Liou, Tsai and Chen, 1997), and the risk of developing PD 

has been shown to be greater with increased pesticide exposure (Petrovitch et al., 2002). 

Occupational exposure to copper and manganese have also been significantly associated 

with the development of PD (Gorell et al., 1997). Cases of chronic parkinsonism have 

been described in heroin addicts who inadvertently injected the neurotoxin 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), and these patients suffered from the 

degeneration of dopaminergic neurons in SNpc, although were distinct from PD in that 

there was no Lewy body pathology (Langston et al., 1983; 1999).  

 

 Genetic mutations linked to the development of Parkinson’s 

disease or parkinsonism 

Table 1.2 provides a summary of the genes which have been linked to the development of 

Parkinsonism or Parkinson’s disease. Autosomal recessive and early onset parkinsonism 

most commonly results from the mutation of parkin, although mutations in PTEN-

induced putative kinase 1 (PINK1) and parkinsonism associated deglycase (DJ-1) can 

also result in parkinsonism (Kitada et al., 1998; Valente et al., 2001; 2004; Bonifati et al., 

2003; Hague et al., 2003; Rogaeva et al., 2004). The development of PD itself has been 

linked to dominant mutations in leucine rich repeat kinase 2 (LRRK2) and SNCA, with 

dominant loss of function mutations in glucosylceramidase beta (GBA) increasing the risk 

of developing PD (Polymeropoulos et al., 1996; Goker-Alpan et al., 2004; Paisán-Ruíz et 

al., 2004; Gan-Or et al., 2008; Healy et al., 2008). I will further discuss the mutations that 
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have been identified in SNCA, the gene which encodes for the protein alpha-synuclein 

and which has been identified as a major constituent of Lewy bodies themselves.  
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Table 1.2: Summary of genes which have been linked to the development of Parkinsonism or 
Parkinson’s disease. Mutations in parkin, PINK1 and DJ-1 have been linked to the development of 
autosomal recessive and early onset Parkinsonism, whereas mutations in SNCA and LRRK2 have been 
linked to the development of autosomal dominant PD. Mutation in GBA is associated with an 
increased risk of developing PD. 

Inheritance 
pattern 

Gene Gene locus Clinical 
features 

References 

Autosomal 
recessive 

parkin 6q25.2-q27 Early onset 
Parkinsonism 

Kitada et al., 1998 

PINK1 1p35-p36 Early onset 
Parkinsonism 

Valente et al., 2001, 2004; 
Rogaeva et al., 2004 

DJ-1 1p36 Early onset 
Parkinsonism 

Bonifati et al., 2003; 
Hague et al., 2003 

Autosomal 
dominant 

SNCA 4q21-q23 PD Polymeropoulos et al., 
1996, 1997 

LRRK2 12q12 PD Paisán-Ruíz et al., 2004; 
Healy et al., 2008 

GBA 1q21 Increased risk of 
PD 

Goker-Alpan et al., 2004; 
Gan-Or et al., 2008 

 

 

 Mutations in SNCA 

Table 1.3 provides a summary of mutations affecting alpha-synuclein that have been 

linked to the development of PD. Genetic studies of a large Italian kindred by 

Polymeropoulos et al. (1996), were first to identify that genetic markers at chromosome 

4q21-q23 showed linkage to cases of PD. A subsequent study by Polymeropoulos et al. 

(1997) identified alpha-synuclein as a candidate gene, and found that an A53T point 

mutation in exon 4 of alpha-synuclein segregated with the PD phenotype in all but one of 

their affected patients. The clinical presentation of these patients was of typical PD that 

was responsive to levodopa, however the patients presented with clinical disease at a 

relatively young age (mean age 46.5 years) and the disease also had a rapid clinical 

course (mean duration of clinical disease 9.7 years) (Golbe et al., 1990).  
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Table 1.3: Summary of different mutations in alpha-synuclein that have been linked to the 
development of Parkinson’s disease. Six different point mutations result in PD, the most frequently 
reported mutation being A53T and the least frequently reported being A30P and A53E. Multiplication 
of the WT alpha-synuclein gene also results in PD and a number of cases have been reported as 
having duplication of alpha-synuclein. Triplication of alpha-synuclein also results PD although fewer 
cases have been reported than those with duplication. 

Type of mutation 
affecting alpha-
synuclein 

Mutation References 

Point mutation 

A53T Golbe et al., 1990; Polymeropoulos et al., 
1996, 1997; Athanassiadou et al., 1999; 
Markopoulou et al., 1999; Papadimitriou et 
al., 1999; Spira et al., 2001; Bostantjopoulou 
et al., 2001; Berg et al., 2005; Michell et al., 
2005; Ki et al., 2007; Choi et al., 2008; 
Puschmann et al., 2009; Bozi et al., 2014; 
Papadimitriou et al., 2016; Tambasco et al., 
2016; Xiong et al., 2016; Bougea et al., 2017 

A30P Krüger et al., 1998 
E46K Zarranz et al., 2004; Pimentel et al., 2015 
H50Q Appel-Cresswell et al., 2013; Proukakis et 

al., 2013 
G51D Kiely et al., 2013, 2015; Lesage et al., 2013; 

Tokutake et al., 2014 
A53E Pasanen et al., 2014 

Multiplication of the 
WT gene 

Duplication Chartier-Harlin et al., 2004; Ibáñez et al., 
2004, 2009; Nishioka et al., 2006; Fuchs et 
al., 2007; Ahn et al., 2008; Ikeuchi et al., 
2008; Obi et al., 2008; Troiano et al., 2008; 
Uchiyama et al., 2008; Brueggemann et al., 
2008; Nuytemans et al., 2009; Shin et al., 
2010; Sironi et al., 2010; Garraux et al., 
2012; Darvish et al., 2013; Elia et al., 2013; 
Itokawa et al., 2013; Kara et al., 2014; 
Konno et al., 2016 

Triplication Singleton et al., 2003; Farrer et al., 2004; 
Fuchs et al., 2007; Ibáñez et al., 2009; 
Keyser et al., 2010; Sekine et al., 2010; 
Kojovic et al., 2012; Ferese et al., 2015: 
Olgiati et al., 2015 
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Since the discovery of the A53T mutation in alpha-synuclein, additional point 

mutations have been identified including A30P, E46K, H50Q, G51D and A53E, and 

these mutations affect the N-terminal region of alpha-synuclein (Krüger et al., 1998; 

Zarranz et al., 2004; Appel-Cresswell et al., 2013; Kiely et al., 2013; Pasanen et al., 

2014). Duplication or triplication of the WT gene has also been shown to result in PD, 

with PD in these cases resulting from a 50% and 100% increase in gene dosage 

respectively (Singleton et al., 2003; Chartier-Harlin et al., 2004; Ibáñez et al., 2004). 

Gene dosage has been shown to influence the clinical presentation, with a more severe 

clinical phenotype identified in patients with triplication of SNCA in comparison with 

those showing only a duplication, although heterogeneity in the presentation of cases with 

the same mutation has been identified (Singleton et al., 2003; Chartier-Harlin et al., 2004; 

Ibáñez et al., 2004; Kara et al., 2014). 

The G51D mutation in alpha-synuclein was first identified in a British patient 

who presented at 19 years of age with asymmetric and levodopa responsive parkinsonism 

(Kiely et al., 2013). Later in the course of the disease this patient developed visual 

hallucinations, cognitive deficits, autonomic dysfunction and pyramidal signs, and both 

the clinical and neuropathological presentation of this patient have been shown to have 

characteristics of both PD and MSA (Kiely et al., 2013). Additional cases of G51D PD 

have been identified in French and Japanese families (Lesage et al., 2013; Tokutake et 

al., 2014), and a further 2 British cases were presented by Kiely et al. (2015).  

Kiely et al. (2015) in fact demonstrated interfamilial heterogeneity in the clinical 

progression of G51D PD, since two related cases had a rapid clinical course of just 6 

years, whereas the duration of the disease in the first identified British patient was 29 

years. The mean age of onset of G51D PD is early and is 40.4 +/- 6.0 years (mean +/- 

standard error of the mean (SEM)), and the mean duration of G51D PD is short at 10.4 

years +/- 3.3 years (Lesage et al., 2013; Tokutake et al., 2014; Kiely et al., 2015). G51D 

PD is characterised by the symptoms of parkinsonism, dementia, visual hallucinations, 

pyramidal signs and autonomic dysfunction (Lesage et al., 2013; Tokutake et al., 2014; 

Kiely et al., 2015).  

Figure 1.8 shows a comparison of the different clinical phenotypes due to 

mutation in SNCA, and shows that patients with the G51D mutation have the most severe 

phenotype. Patients with triplication of SNCA or an E46K point mutation have a mean 

disease duration of less than 10 years (Petrucci, Ginevrino and Valente, 2016), however 

as shown above the mean disease duration in patients with G51D is 10.4 years and thus is 
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only marginally greater than 10 years. Cognitive impairment is likely to be more severe in 

cases with triplication of SNCA or an H50Q point mutation, although patients with G51D 

mutation are more severely affected by other clinical deficits including hallucinations, 

pyramidal signs, myoclonus and seziures than are patients with other mutations in alpha-

synuclein (Petrucci, Ginevrino and Valente, 2016). However, there are some caveats 

associated with this-head to-head comparison of clinical phenotypes, since a small 

number of cases (7 total) of PD linked to the G51D mutation have been reported, whereas 

many more cases have been reported with an A53T mutation in alpha-synuclein or 

duplication or triplication of the WT gene (Table 1.3). Therefore, the results from 

Petrucci, Ginevrino and Valente (2016) should be considered with caution until more 

cases of G51D PD are identified. Similarly, only one case of A30P and A53E PD have 

been identified and this somewhat limits the comparison of the clinical phenotypes due to 

these mutations. 

 

 

Figure 1.8: Comparison of the clinical phenotypes of patients with different mutations in 
alpha-synuclein. Mutations resulting in the mildest clinical phenotype are shown on the left, 
whereas those resulting in the most severe clinical phenotype are shown on the right. Disease 
duration; white >15 years, grey 10-15 years, black <10years. For all other parameters; white-
absent, grey-occasionally present, black-always present. Duplication patients have 3 SNCA copies, 
whereas triplication patients have 4 SNCA copies (Image from Petrucci, Ginevrino and Valente, 
2016). 

 

Analysis of post mortem brain tissue from the first patient reported with G51D 

PD identified gross depigmentation of the midbrain and the atrophy of several brain areas 

including the caudate and putamen (Kiely et al., 2013). Analysis of histological sections 

from patients with G51D PD has identified a variable degree of neuronal loss in the brain, 

although neurodegeneration was often most severe in hippocampal, cortical, and 
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brainstem areas including the SNpc (Lesage et al., 2013; Kiely et al., 2015). IHC for 

alpha-synuclein has determined that G51D PD has hallmarks of both PD and MSA, since 

abundant and widespread alpha-synuclein pathology was identified in neurons of cortical 

and subcortical structures, and inclusions of alpha-synuclein have been identified in 

oligodendrocytes (Kiely et al., 2015). The inclusions in oligodendrocytes are known as 

glial cytoplasmic inclusion ‘like’ (GCI-like) since they resemble the GCIs that are found 

in patients with MSA (Kiely et al., 2015). In the caudate and putamen Kiely et al. (2015) 

found that there were frequent globular/diffuse Lewy bodies and alpha-synuclein threads.  

Figure 1.9 shows the widespread and abundant alpha-synuclein pathology that has been 

identified in cases of G51D PD, and the variable morphology of alpha-synuclein 

inclusion types. In studies by Lesage et al. (2013) inclusions of alpha-synuclein were 

identified with various morphologies, although they did not mention any evidence of 

GCI-like inclusions.  

 

 

Figure 1.9: Alpha-synuclein pathology was abundant and widespread in the brains of three 
patients suffering from G51D Parkinson’s disease. IHC for alpha-synuclein identified abundant 
inclusions in regions of the hippocampus (CA3), as well as in the caudate nucleus (Cd), the 
substantia nigra (SN) and the putamen (Pt) The morphology of alpha-synuclein inclusions was 
variable and inclusions were identified as globular, annular or diffuse. There was also evidence of 
alpha-synuclein threads. Some heterogeneity was observed in the extent of alpha-synuclein 
pathology (Figure adapted from Kiely et al., 2015). 
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Results from neuropathological studies of patients with the G51D mutation have 

been likened to the pathology observed in a Finnish patient with an A53E mutation in 

alpha-synuclein (Pasanen et al., 2014; Kiely et al., 2015). This patient had abundant 

alpha-synuclein pathology with inclusions of various morphologies, and GCI-like 

inclusions in oligodendrocytes (Pasanen et al., 2014). Features of PD and MSA have also 

been described in patients with duplication and triplication of SNCA (Gwinn-Hardy et al., 

2000; Obi et al., 2008). Furthermore, GCI-like inclusions have been identified in a patient 

with A53T mutation in alpha-synuclein (Markopoulou et al., 2008).  

Phenotypic correlations between patients with G51D and H50Q mutation have 

been investigated, since these mutations occur at similar locations in alpha-synuclein. 

Interestingly however, cases with G51D and H50Q mutation have distinct clinical and 

neuropathological findings (Kiely et al., 2015). Patients with an H50Q mutation present 

with late onset disease which resembles idiopathic PD, and this contrasts with patients 

with G51D mutation which have early onset disease and several disabling clinical 

symptoms (Appel-Cresswell et al., 2013; Proukakis et al., 2013; Kiely et al., 2015). 

Neuropathological findings from a patient with an H50Q mutation have demonstrated 

neuronal loss from the SNpc and alpha-synuclein pathology resembling idiopathic PD, 

although without the variable morphology of alpha-synuclein inclusions, GCI-like 

inclusions, or cortical, hippocampal or caudate neuronal loss found in patients with G51D 

PD (Kiely et al., 2015). 

 

1.3 Alpha-synuclein 

 Normal structure and function 

Human SNCA has been mapped to 4q21-q22 (Chen et al., 1995; Shibasaki et al., 1995). 

The encoded alpha-synuclein protein is 140 amino acids long and comprises 3 distinct 

regions; an N-terminal amphipathic region (residues 1-60), a hydrophobic central NAC 

(non-Aβ component of Alzheimer’s disease amyloid) region (residues 61-90), and a C-

terminal acidic region (residues 96-140) (Ahn et al., 2006). Figure 1.10 illustrates the 

structural characteristics of alpha-synuclein, including the seven 11-mer imperfect repeats 

that are found in the N-terminal and NAC regions and which are largely comprised of the 

amino acids KTKEGV (Ahn et al., 2006). Alpha-synuclein is a natively unfolded protein. 

However, the N-terminal region can bind lipid vesicles upon which it adopts a highly 

helical conformation comprising two helices which are separated by a short linker, with 

the C-terminal region of the protein remaining unbound and possibly functioning to allow 
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interactions with other proteins (Eliezer et al., 2001). Figure 1.10 shows the location of 

the point mutations in alpha-synuclein that have been linked to cases of PD, most of 

which occur within the fourth 11-mer repeat. However, the A30P mutation in alpha-

synuclein is found within the second repeat. 

 

 

Figure 1.10: Schematic diagram illustrating the structure of alpha-synuclein. Alpha-synuclein 
comprises a lipid binding domain which consists of the N-terminal amphipathic and central NAC 
regions of alpha-synuclein. Furthermore, alpha-synuclein has a C-terminal acidic tail. The N-
terminal region of alpha-synuclein comprises seven imperfect 11-mer repeats. Mutations in alpha-
synuclein linked to the development of PD have been identified in the second and the fourth 11-
mer repeats. Upon binding of the N-terminal region of alpha-synuclein to lipid vesicles, this region 
forms two alpha-helices separated by a short linker, whereas the C-terminal region remains 
unbound (Image from Burré, 2015). 

 

Figure 1.11 shows a sequence alignment of human and rat alpha-synuclein and 

demonstrates that rat alpha-synuclein has 95% homology to the human protein. In normal 

rat alpha-synuclein a threonine is present at position 53, yet rats are healthy and do not 

show signs of PD unlike patients of PD which have the A53T mutation (Polymeropoulos 

et al., 1997). It has been suggested that the rat may not show signs of PD due to the 

threonine at position 53 because of its short lifespan, or that there may not be the critical 

environmental trigger or cellular component which is necessary for the development of 

the characteristic findings of PD (Polymeropoulos et al., 1997). 
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Figure 1.11: Alignment of human and rat alpha-synuclein protein sequences. There is 95% 
homology between human and rat alpha-synuclein. The N-terminal region of alpha-synuclein is 
largely conserved between the human and the rat, except at position 53 where a threonine is 
present in normal rat alpha-synuclein. Red lettering highlights the residues that are not conserved 
between species. Alignment was performed using the Clustal Omega Multiple Sequence 
Alignment Tool (European Molecular Biology Laboratory-European Bioinformatics Institute). 
 

Studies in the electric fish Torpedo californica were first to isolate alpha-

synuclein (Maroteaux, Campanelli and Scheller, 1988). Experiments localised alpha-

synuclein to a portion of the nuclear envelope and also presynaptic nerve terminals, thus 

it was thought that alpha-synuclein was involved in co-ordinating nuclear and synaptic 

events (Maroteaux, Campanelli and Scheller, 1988). A role for alpha-synuclein in 

synaptic plasticity in vertebrates was subsequently identified by George et al. (1995) who 

studied the zebra finch homolog of alpha-synuclein. Further studies have concluded that 

alpha-synuclein may also play a role in vesicle function at presynaptic terminals, since 

alpha-synuclein expression tightly co-localises with the synaptic vesicle protein synapsin 

(Withers et al., 1997; Davidson et al., 1998; Murphy et al., 2000). Furthermore, alpha-

synuclein may regulate the size of synaptic vesicle pools and synaptic vesicle 

mobilisation at nerve terminals (Murphy et al., 2000; Cabin et al., 2002). Figure 1.12 

illustrates the diverse range of functions of alpha-synuclein at presynaptic terminals, 

which involve the regulation of vesicle filling, vesicle clustering, soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex formation 

and membrane remodelling. 

 

Human   1 MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTK 60 
Rat     1 MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVTTVAEKTK 60 
 
Human  61 EQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP 101 
Rat    61 EQVTNVGGAVVTGVTAVAQKTVEGAGNIAAATGFVKKDQMGKGEEGYPQEGILEDMPVDP 101 
 
Human 102 DNEAYEMPSEEGYQDYEPEA 140 
Rat   102 SSEAYEMPSEEGYQDYEPEA 140 
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Figure 1.12: Function of alpha-synuclein at presynaptic terminals. Alpha-synuclein likely 
regulates a number of processes at presynaptic terminals including membrane remodelling, vesicle 
filling and clustering, soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE)-complex assembly, synaptic vesicle release, and the modulation of the DAT (Image 
from Burré, 2015). 

 

Studies have indicated that alpha-synuclein may play a role in the function of 

dopaminergic neurons. Experiments performed by Abeliovich et al. (2000) found that 

alpha-synuclein knockout mice had a functional abnormality of striatal dopaminergic 

neurotransmission, and it was concluded that alpha-synuclein was likely to be a negative 

regulator of dopaminergic neurotransmission. MN9D dopaminergic cells over-expressing 

WT or A53T alpha-synuclein have a significantly lower dopamine synthesis capacity than 

non-transfected cells (Perez et al., 2002). A human mesencephalic cell line 

overexpressing mutant A53T alpha-synuclein was also shown to have impaired dopamine 

storage (Lotharius et al., 2002). Co-immunoprecipitation experiments on rat striatal tissue 

have found that alpha-synuclein co-localises with tyrosine hydroxylase, and recombinant 

alpha-synuclein has been shown to inhibit tyrosine hydroxylase activity in a dose-

dependent manner (Perez et al., 2002). Furthermore, in neuroblastoma cell lines 

overexpressing WT alpha-synuclein, both tyrosine hydroxylase mRNA and protein were 

downregulated (Baptista et al., 2003). Therefore, alpha-synuclein has been implicated in 

normal dopaminergic presynaptic function, and mutation in alpha-synuclein may act to 

adversely influence presynaptic dopaminergic function. 

 

 Effect of the G51D mutation 

In vitro experiments have demonstrated that the G51D mutation in alpha-synuclein does 

not affect the random coil configuration of alpha-synuclein in solution (Lesage et al., 
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2013). However, the G51D mutation which resides in the N-terminal region of alpha-

synuclein significantly reduces the ability of alpha-synuclein to form alpha-helical 

structures when it is incubated with lipid vesicles (Fares et al., 2014). This likely favours 

the aggregation of G51D alpha-synuclein at cell membranes when compared with the WT 

protein (Fares et al., 2014). Nonetheless, some experiments have indicated that G51D 

alpha-synuclein has a significantly lower rate of formation of amyloid than WT alpha-

synuclein, and that G51D alpha-synuclein is also significantly less likely to form 

oligomers (Lesage et al., 2013; Rutherford et al., 2014).  

The partially folded conformation of G51D alpha-synuclein may enhance its 

secretion (Fares et al., 2014). Interestingly, in vitro experiments performed by Stefanovic 

et al. (2015) have shown that oligomers of G51D alpha-synuclein have a lower 

propensity to disrupt membranes composed of anionic phospholipids compared with 

oligomers composed of WT or A30P, A53T, E46K or H50Q mutated alpha-synuclein. 

G51D alpha-synuclein has been shown to increase the susceptibility of cells to stressors 

including hydrogen peroxide (H202) and 1-methyl-4-phenylpyridinium (MPP+), with a 

significantly increased % of dead cells measured when cells expressing G51D alpha-

synuclein were exposed to these stressors when compared with those expressing WT 

alpha-synuclein (Rutherford et al., 2014). In vitro studies have shown an enhanced 

nuclear localisation of G51D alpha-synuclein compared with WT, although this data 

conflicts with results from human post-mortem studies which only show a partial co-

localisation of alpha-synuclein with nuclear envelope markers (Fares et al., 2014).  

 

1.4 Rodent models of Parkinson’s disease 

Rodent models of PD have been generated with only variable success i.e. the extent to 

which the model accurately represents key clinical and neuropathological findings in PD 

(face validity). Furthermore, there are often some limitations associated with the method 

of generation of the model and its relevance to PD patients (construct validity). 

 

 Pharmacological, toxin and chemical models 

Early experiments indicated that the anti-hypertensive reserpine depletes brain 

catecholamines and 5-hydroxytryptophan, after observations that levodopa treatment 

largely reverses the behavioural deficits of reserpine treated mice (Carlsson, Lindqvist 

and Magnusson, 1957). Subsequently, it was the reserpine mouse model which led to the 

discovery that dopamine depletion in the striatum was responsible for the development of 
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symptoms of PD, and that levodopa was an effective treatment for PD (Duty and Jenner, 

2011). The reserpine model has since been used to study neuroanatomical characteristics 

of the nigrostriatal system (Björklund and Lindvall, 1975), and has also been used as a 

useful test bed for screening the symptomatic efficacy of treatments for PD (Duty and 

Jenner, 2011).  

Parkinson’s diease has also been modelled in rodents by using toxins to generate 

lesions of the nigrostriatal system. The most common chemical lesion rodent models of 

PD are the 6-hydroxydopamine (6-OHDA) rat model and the MPTP mouse model. 

Stereotaxic injection of 6-OHDA into the rat striatum, SNpc or median forebrain bundle, 

has been used to induce the degeneration of nigrostriatal dopaminergic neurons 

(Ungerstedt, 1968; Ungerstedt and Arbuthnott, 1970). 6-OHDA acts selectively on 

catecholaminergic neurons as it is a structural analogue of catecholamines and results in 

neurodegeneration, since 6-OHDA readily auto-oxidises to form cytotoxic species such as 

H202 and hydroxyl radicals (Zigmond, Hastings and Abercrombie, 1992). The 6-OHDA 

rat model has been used to model the loss of TH positive cells and terminals from the SN 

and striatum respectively, motor deficits including stepping deficits, and the loss of 

dopamine from the striatum (Grealish et al., 2008). However, this model does have some 

disadvantages, since the neuroanatomical and neurochemical deficits are relatively rapid 

in onset, and are more rapid than those found in patients with PD (Grealish et al., 2008). 

Furthermore, this animal model does not seem to reproduce the characteristic Lewy 

bodies of PD (Grealish et al., 2008; Duty and Jenner, 2011).  

The chemical MPTP produces a toxic metabolite which inhibits the electron 

transport chain in mitochondria (Duty and Jenner, 2011). Treatment of mice with a 

chronic dosing regimen of MPTP results in alpha-synuclein and ubitiquitin positive 

inclusion bodies, as well as dopaminergic and motor deficits analogous to PD (Meredith 

et al., 2008). The pesticide rotenone inhibits mitochondrial respiration, and has been used 

successfully in rats to model the nigrostriatal degeneration, motor deficits and alpha-

synuclein inclusions in PD (Betarbet et al., 2000). 

 

 Genetic models 

PD has been modelled by reproducing causes of autosomal recessive parkinsonism 

including mutations in parkin, PINK1 and DJ-1 (Table 1.4), and causes of autosomal 

dominant PD by modelling mutations in LRRK2 (Table 1.5) and SNCA (Table 1.6). I will 
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further discuss the genetic models of PD that have been generated, and will highlight the 

successes of those models produced with mutations in SNCA. 
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Table 1.4: Genetic rodent models of Parkinson’s disease which have been generated by 
targeting parkin, PINK1 and/or DJ-1. Fewer rodent models have been generated with mutation in 
PINK1 than have been generated with mutation in parkin or DJ-1. Many of these models have been 
generated using mice, and even a model comprising triple knockout of parkin, PINK1 and DJ-1 has 
been generated. NSE-neuron-specific enolase, M-Mouse, R-Rat. 

Gene(s) Model 
species 

Protein expressed Promoter Comments References 

Parkin 

Mouse 
Parkin null  Exon 2 deleted Perez and 

Palmiter, 
2005 

Mouse Parkin null  Exon 3 deleted Goldberg et 
al., 2003; 
Itier et al., 
2003 

Mouse Parkin null  Exon 7 deleted von Coelln et 
al., 2004 

Rat Parkin null  Deletion within 
exon 4 

Dave et al., 
2014 

PINK1 
Mouse 

PINK1 null  Exon 4-7 
deleted 

Kitada et al., 
2007 

Rat 
PINK1 null  Deletion within 

exon 4 
Dave et al., 
2014 

DJ-1 

Mouse 
DJ-1 null  Stop codon put 

in exon 1. Exons 
3-5 deleted 

Kim et al., 
2005 

Mouse 

DJ-1 null  Exon 2 deleted Goldberg et 
al., 2005; 
Chandran et 
al., 2008 

Mouse 
DJ-1 null  Exon 2-3 

deleted 
Andres-
Mateos et al., 
2007 

Mouse DJ-1 null  Exon 7 
inactivated 

Manning-
Boğ et al., 
2007 

Rat DJ-1 null  Deletion within 
exon 5 

Dave et al., 
2014 

Parkin, 
PINK1 
and  
DJ-1 

Mouse Parkin, PINK1  
and DJ-1 null 

 Crossed mice 
from Goldberg 
et al. 2003, 
2005; Kitada et 
al., 2007 

Kitada et al., 
2009 
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Table 1.5: Genetic rodent models of Parkinson’s disease which have been generated by 
targeting LRRK2. Mouse models of PD have been generated which are either LRRK2 null, express 
mutant LRRK2 protein or overexpress WT human LRRK2. M-Mouse, H-Human, BAC-Bacterial 
artificial chromosome. 

Gene Model 
species 

Protein expressed Promoter Comments References 

LRRK2 

Mouse 
LRRK2 null  Promoter and 

exon 1 deleted 
Tong et al., 
2010 

Mouse LRRK2 null  Exons 29 and 30 
deleted 

Tong et al., 
2010 

Mouse Overexpressed 
WT LRRK2 (H) 

LRRK2 
(M) 

Generated using 
a BAC 

Li et al., 
2009 

Mouse 
Overexpressed 
WT LRRK2 (H) 

LRRK2 
(H) 

Generated using 
a BAC 

Melrose et 
al., 2010 

Mouse 
R1441C mutated 
LRRK2 (M) 

LRRK2 
(M) 

Generated using 
a BAC. FLAG-
LRRK2 

Li et al., 
2007 

Mouse R1441C mutated 
LRRK2 (M) 

LRRK2 
(M) 

Knock in mouse 
model 

Tong et al., 
2009 

Mouse R1441G mutated 
LRRK2 (H) 

LRRK2 
(M) 

Generated using 
a BAC. 

Li et al., 
2009 

Mouse Overexpressed 
G2019S mutated 
LRRK2 (H) 

LRRK2 
(H) 

Generated using 
a BAC 

Melrose et 
al., 2010 
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Table 1.6: Genetic rodent models of Parkinson’s disease which have been generated by 
targeting SNCA. Numerous rodent models have been generated with mutation in SNCA, with the 
mouse most commonly used as the model organism. A variety of different mutations have been 
modelled and different promoters have been used to express alpha-synuclein (α-syn). Some models 
have been generated on a mouse SNCA null background. M-Mouse, H-Human, R-Rat, Ha-Hamster, 
GFP-Green fluorescent protein, TH-Tyrosine hydroxylase, PrP-Prion protein, PDGF-Platelet-derived 
growth factor, DAT-dopamine transporter, BAC-Bacterial artificial chromosome, PAC-P1-derived 
artificial chromosome. 

Gene Model 
species 

Protein expressed Promoter Comments References 

SNCA 

Mouse 
 

WT α-syn (M) Thy1 
(M) 

WT mouse α-
syn has Thr at 
codon 53 

(Rieker et 
al., 2011) 

Mouse WT α-syn (H) TH (R)   (Richfield et 
al., 2002) 

Mouse WT α-syn (H) PrP (M)  (Gispert et 
al., 2003) 

Mouse 
WT α-syn (H) α-syn 

(H) 
Generated using 
a PAC 

(Gispert et 
al., 2003) 

Mouse 

WT α-syn (H) α-syn 
(H) 

Generated using 
a BAC. Mouse 
SNCA null 
background 

(Taylor et 
al., 2014) 

Mouse 
WT α-syn (H) 
fused to GFP 

α-syn 
(M) 

Generated using 
a BAC 

(Hansen et 
al., 2013) 

Mouse 
WT α-syn (H) 
fused to GFP 

PDGFβ  (Rockenstein 
et al., 2005) 

Mouse Overexpressed 
WT α-syn (H) 

PrP 
(Ha) 

 (Gomez-Isla 
et al., 2003) 

Mouse 
Overexpressed 
WT α-syn (H) 

PDGF 
(M) 

 (Rockenstein 
et al., 2002) 

Mouse Overexpressed 
WT α-syn (H) 

PrP (M)  (Giasson et 
al., 2002; 
Lee et al., 
2002; Unger 
et al., 2006) 

Mouse Overexpressed 
WT α-syn (H) 

α-syn 
(H) 

Generated using 
a BAC. Mouse 
SNCA null 
background 

(Janezic et 
al., 2013) 

Mouse 
A53T mutated α-
syn (H) 

PrP (M)  (Gispert et 
al., 2003) 

Mouse 
A53T mutated α-
syn (H) 

PrP (M) Mouse SNCA 
null background 

(Cabin et al., 
2005) 



41 
 

 

 

Mouse 

A53T mutated α-
syn (H) 

α-syn 
(H) 

Generated using 
a PAC 
construct. 
Partial deletion 
of mouse SNCA 

(Kuo et al., 
2010) 

Mouse 
Overexpressed 
A53T mutated α-
syn (H) 

PrP 
(Ha) 

 (Gomez-Isla 
et al., 2003) 

Mouse Overexpressed 
A53T mutated α-
syn (H) 

PrP (M)  (Giasson et 
al., 2002; 
Lee et al., 
2002; Unger 
et al., 2006) 

Mouse 
Overexpressed 
A53T mutated α-
syn (H) 

DAT 
(M) 

Tetracycline 
inducible system 

(Chen et al., 
2015) 

Mouse A53T mutated 
and truncated (1-
130) α-syn (H)  

TH (R)  (Wakamatsu 
et al., 2008) 

Mouse A53T and A30P 
doubly mutated α-
syn (H) 

TH (R)  (Richfield et 
al., 2002) 

Mouse 
A30P point 
mutation in α-syn 
(M) 

α-syn 
(M) 

Knock in mouse 
model, bred to 
homozygosity. 

(Plaas et al., 
2008) 

Mouse A30P mutated α-
syn (H) 

PrP 
(Ha) 

Tetracycline 
inducible system 

(Nuber et al., 
2011) 

Mouse A30P mutated α-
syn (H) 

α-syn 
(H) 

Generated using 
a PAC. Partial 
deletion of 
mouse SNCA 

(Kuo et al., 
2010) 

Mouse 

A30P mutated α-
syn (H) 

α-syn 
(H) 

Generated using 
a BAC. Mouse 
SNCA null 
background 

(Taylor et 
al., 2014) 

Mouse 
Overexpressed 
A30P mutated α-
syn (H) 

PrP 
(Ha) 

 (Gomez-Isla 
et al., 2003) 

Mouse 
Overexpressed 
A30P mutated α-
syn (H) 

Thy-1 
(M) 

 (Rockenstein 
et al., 2002) 

 

Table 1.6: Continued 
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 Mouse Overexpressed 
A30P mutated α-
syn (H) 

PrP (M)  (Lee et al., 
2002; Unger 
et al., 2006) 

Mouse E46K α-syn (H) PrP (M)  (Emmer et 
al., 2011) 

Mouse 
Truncated (1-120) 
α-syn (H) 

TH (R) Mouse SNCA 
null background 

(Tofaris et 
al., 2006) 

Mouse 

Phosphomimic 
(S129D) or non-
phosphorylatable 
(S129A) α-syn 
(H) 

α-syn 
(H) 

Generated using 
a BAC 

(Escobar et 
al., 2014) 

Rat 

A30P and A53T 
doubly mutated α-
syn (H) 

TH (R)  (Lelan et al., 
2011) 

Rat Overexpressed 
E46K mutated α-
syn (H) 

α-syn 
(H) 

Generated using 
a BAC 

(Cannon et 
al., 2013) 

Rat Overexpressed 
WT α-syn (H) 

α-syn 
(H) 

Generated using 
a BAC 

(Nuber et al., 
2013) 

 

 

 Models with mutations in parkin, PINK1, DJ-1 and LRRK2 

Loss of function mutations in parkin, PINK1 and DJ-1 have been modelled in the mouse 

with variable success. It has been reported that mice with a loss of function mutation in 

parkin are not a robust model of parkinsonism, since both the levels of dopamine and its 

metabolites in the striatum, and the motor performance of these mice were not 

significantly different when compared with WT controls (Perez and Palmiter, 2005). 

Studies of other mouse models with loss of function mutation in parkin, have found that 

TH positive cell counts from the SNpc were not significantly different from WT controls 

(Goldberg et al., 2003; von Coelln et al., 2004) Furthermore, the rat model studied by 

Dave et al. (2014) which had a deletion within exon 4 of parkin, did not show any 

significant deficits in behavioural tests of motor performance, and the levels of dopamine 

in the striatum and neuronal cell counts in the SNpc were were comparable to those of 

WT controls. A study by Itier et al. (2003) did however identify a significant decrease in 

the spontaneous locomotor activity of parkin mutant mice when compared with WT 

controls.  

Table 1.6: Continued 
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Few rodent models have been generated of PD linked to mutation in PINK1. A 

mouse model generated by Kitada et al. (2007) with loss of function mutation in PINK1, 

had striatal dopamine levels and SNpc TH positive cell counts that were comparable to 

those of WT controls, although amperometric recordings from striatal slices did identify a 

functional deficit of dopaminergic neurotransmission. The rat model of PD generated by 

Dave et al. (2014) which had a deletion within exon 4 of parkin, was an improved model 

of PD since the number of TH positive neurons within the SNpc was significantly 

decreased at 8 months when compared with WT controls, and rats showed evidence of 

significantly decreased performance in the open field test, and tests of hindlimb grip 

strength and motor coordination. 

Studies of DJ-1 deficient mice have reported that counts of TH positive neurons 

in the SNpc were not significantly different from controls (Goldberg et al., 2005; Kim et 

al., 2005; Andres-Mateos et al., 2007; Manning-Boğ et al., 2007; Chandran et al., 2008). 

Studies performed by Manning-Boğ et al. (2007) and Kim et al. (2005) found that there 

was no significant change in the levels of striatal dopamine although subtle locomotor 

deficits and hypolocomotion in response to amphetamine were identified in these studies 

respectively. Chandran et al. (2008) also described hypoactivity in their DJ -/- mice at 5 

and 14 months of age and motor deficits including decreased stride length and stride 

uniformity at 24 months of age. It was the rat model of PD linked to DJ-1 and generated 

by Dave et al. (2014) that provided the best model of PD linked to mutation in DJ-1, 

since this model showed significantly decreased TH positive cell counts in the SNpc at 8 

months of age, and behavioural deficits including significantly decreased hindlimbs grip 

strength at 4 months of age and significantly decreased open field rearing at 6 months of 

age. 

Mice have also been generated with the triple knockout of parkin, DJ-1 and 

PINK1 in order to obtain an improved phenotype. Interestingly, biochemical experiments 

identified that striatal dopamine levels were significantly increased in aged triple 

knockout mice, although analyses of the number of TH positive cells in the SNpc failed 

to identify any significant differences when compared with WT controls (Kitada et al., 

2009). Therefore, it was concluded from these experiments by Kitada et al. (2009) that 

parkin, DJ-1 and PINK-1 may serve a protective role, rather than be essential for the 

survival of midbrain dopaminergic neurons.  

The most common cause of familial PD is that due to the mutation of LRRK2. 

Nonsense mutation in LRRK2 can result in PD (Hernandez, Reed and Singleton, 2016), 
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therefore one study has generated LRRK2 null mice (Tong et al., 2010). However, mice 

with either deletion of the promoter and exon 1 or of exons 29 and 30 appeared normal, 

and the number of TH positive neurons in the SNpc as measured using unbiased 

stereology and the levels of striatal dopamine as measured using HPLC were comparable 

to WT controls (Tong et al., 2010). 

PD may also result from missense mutation in LRRK2, therefore a mouse model 

has been generated which overexpresses human LRRK2 with a mutation (R1441G) 

frequently identified in patients with PD (Li et al., 2009). LRRK2 mutant mice 

demonstrated significantly lower dopamine release from the striatum using intrastriatal 

microdialysis and significantly decreased cell body size in the SNpc compared with WT 

mice, although experiments did not identify any significant changes in TH positive cell 

counts in the SNpc (Li et al., 2009). TH positive axons in the striatum of R1441G mutant 

mice were fragmented although there was no significant difference in the OD of TH 

immunostaining in the striatum when compared with WT controls (Li et al., 2009).  

Models with a R1441C mutation in murine LRRK2 have also been generated, 

although the study conducted by Li et al. (2007) investigated the kinase and GTPase 

activity of LRRK2 in their mouse model rather than the integrity of the dopaminergic 

system, therefore it is unclear how the results from this study relate to the core 

pathological abnormalities found in patients with PD. Experiments performed by Tong et 

al. (2009) did characterise the integrity of the dopaminergic system in R1441C mutant 

mice, and identified that the number of TH positive cells in the SNpc and the levels of 

dopamine in the striatum were comparable to those of WT mice. However, functional 

abnormalities of dopaminergic neurotransmission were identified, since decreased 

amphetamine induced locomotor activity was observed in R1441C mutant mice when 

compared with WT controls (Tong et al., 2009).  

Melrose et al. (2010) identified significantly decreased extracellular dopamine 

levels in the striatum using in vivo microdialysis in both G2019S mutant LRRK2 mice 

and mice which overexpressed WT human LRRK2 when compared with non-transgenic 

controls. However, unbiased stereology and HPLC experiments found no significant 

difference in the number of TH positive cells in the SNpc nor the levels of dopamine in 

the striatum in the transgenic mice when compared with non-transgenic controls (Melrose 

et al., 2010). Overall, the rodent models of LRRK2 PD have demonstrated mild 

phenotypes and have failed to fully reproduce all of the features of human PD. 
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 Models with mutations in SNCA 

Transgenic models with mutations in SNCA have been generated to reproduce the 

features of familial PD. These models overexpress WT alpha-synuclein or mutated alpha-

synuclein including A30P, E46K or A53T point mutations.  

The transgenic technology that has been used to generate most rodent models 

with mutation in alpha-synuclein is associated with certain issues, since integration of the 

transgene can occur at any site, and furthermore this may involve a variable number of 

copies of the transgene (Plaas et al., 2008). Most often, models have been generated on a 

background which expresses endogenous rodent alpha-synuclein, therefore even if a 

model expresses just one transgene it already has multiple copies of alpha-synuclein 

compared with a WT control mouse/rat. Sometimes the level of overexpression of alpha-

synuclein can be 15 times greater than that of a non-transgenic mouse, though this does 

not model causes of human PD (Unger et al., 2006). A study by Cabin et al. (2005) tried 

to address concerns over endogenous mouse alpha-synuclein expression, and generated a 

model which expressed human A53T alpha-synuclein on an SNCA null background. 

 

 Mouse models 

Most transgenic mouse models have expressed human alpha-synuclein, although a model 

has been generated which expresses WT murine alpha-synuclein which already has a 

threonine at codon 53 (Rieker et al., 2011). Attempts have been made to increase the 

severity of mouse models by generating transgenic lines which express truncated alpha-

synuclein (Tofaris et al., 2006; Wakamatsu et al., 2008) or alternatively have 

combinations of mutations such as A30P and A53T (Richfield et al., 2002). However, the 

construct of the models generated by Richfield et al. (2002), Tofaris et al. (2006) and 

Wakamatsu et al. (2008) has limited relevance to the underlying cause of PD in humans. 

Transgenic mouse models have been generated using the bacterial artificial 

chromosome (BAC) (Hansen et al., 2013; Janezic et al., 2013; Taylor et al., 2014) or P1-

derived artificial chromosome (PAC) (Kuo et al., 2010) constructs, which comprise the 

complete human alpha-synuclein gene including the promoter and regulatory elements. 

Models have also been generated using constructs with various different promoters which 

lead to a more widespread or restricted pattern of expression depending on the promoter 

which had been used. Promoters that have been used include the Thy-1 promoter 

(Rockenstein et al., 2002), prion promoter (Gomez-Isla et al., 2003; Emmer et al., 2011), 



46 
 

platelet-derived growth factor (PDGF) promoter (Rockenstein et al., 2002), TH promoter 

(Richfield et al., 2002; Tofaris et al., 2006) and DAT promoter (Chen et al., 2015).  

The most severe motor phenotype was observed in the mouse model that 

expressed A53T human alpha-synuclein (mouse prion promoter) on an SNCA null 

background (Cabin et al., 2005). However, the motor deficits in this model were due to 

motor neuron damage and degeneration within the ventral roots of the spinal cord, rather 

than due to degeneration of the nigrostriatal system (Cabin et al., 2005). Therefore, this 

model has limited relevance to PD in humans. Results from other studies of transgenic 

mouse models of PD have been very variable, with some studies finding evidence of 

neuronal dysfunction in the absence of overt degeneration of the nigrostriatal system 

(Gispert et al., 2003; Gomez-Isla et al., 2003; Taylor et al., 2014), and other studies 

conducted by Richfield et al. (2002) and Janezic et al. (2013) demonstrating age-

dependent loss of nigrostriatal neurons and associated motor deficits. Only a few models 

including those studied by Rockenstein et al. (2002) and Tofaris et al. (2006) have 

demonstrated inclusions or aggregates of alpha-synuclein within the nigrostriatal system.  

Currently a robust and representative mouse model of PD (linked to mutation in 

SNCA) which displays all of the neuropathological hallmarks and associated behavioural 

deficits of PD is lacking. Improvements upon the previously used transgenic technology 

are also possible. To overcome potential limitations associated with transgenic 

technology, a knock-in mouse model with an A30P point mutation has been generated 

(Plaas et al., 2008), and mice were subsequently bred to homozygosity for phenotypic 

studies (S. Koks, personal communication, June 13, 2017). The homozygous mice grew 

well and bred normally, however at 15 months of age they had significantly reduced 

dopamine and also the metabolite L-3,4-dihydroxyphenylacetic acid (DOPAC) in the 

striatum, and tests of motor function identified motor abnormalities on beam walking and 

paw print tests (Plaas et al., 2008).  

 

 Rat models 

Rat models of PD have certain advantages when compared with mice, since their larger 

size is advantageous for preclinical imaging techniques such as microPET/CT (Dehay et 

al., 2016). The rat may also be more vulnerable to alpha-synucleinopathy because of 

differences in dopamine signalling (Nuber et al., 2013). Far fewer genetic rat models of 

Parkinson’s with mutations in SNCA have been generated than have mice, and with 

varying success.  
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Lelan et al. (2011) studied a rat model with an unusual double mutation in alpha-

synuclein (A30P and A53T) that has not been found to be a cause of familial PD when 

occuring together. Only olfactory deficits were described in this rat model, however it 

was reported that rats suffered from deficits in motor coordination at 19 months (data not 

shown) (Lelan et al., 2011). Studies of a BAC transgenic rat model with an E46K 

mutation identified that the dopamine metabolites DOPAC and homovanilic acid (HVA) 

were significantly decreased in the striatum, as was the dopamine turnover ((DOPAC + 

HVA)/dopamine) (Cannon et al., 2013). In this rat model there was an accumulation of 

alpha-synuclein in neuronal processes in the striatum, and measurements of the intensity 

of TH immunostaining in the striatum indicated a trend for decreased staining in the 

striatum of E46K rats compared with WT, although this difference was not significant 

(Cannon et al., 2013).  

The most successful genetic rat model of PD to date was a BAC transgenic rat 

model which overexpressed WT human alpha-synuclein (Nuber et al., 2013). In 16 month 

old BAC transgenic rats there was an accumulation of insoluble alpha-synuclein in the 

striatum as identified by sequential protein extraction and western blotting, and IHC for 

alpha-synuclein in 18 month old BAC transgenic rats identified immunoreactive dots in 

the striatum which were likely to represent neuritic alpha-synuclein pathology (Nuber et 

al., 2013). IHC for TH identified a significant decrease in the OD of TH immunostaining 

in the striatum of 18 month old transgenic rats compared with WT controls, and striatal 

dopamine levels were significantly decreased in 12 month old transgenic rats compared 

with WT controls (Nuber et al., 2013). Furthermore, TH positive cell counts from the 

SNpc were significantly lower in 18 month old transgenic rats compared with WT 

controls (Nuber et al., 2013). 11C-d-threo-methylphenidate PET was used to evaluate 

DAT binding in the striatum of 16 month old transgenic rats, and results showed a trend 

for decreased binding potential of 11C-d-threo-methylphenidate compared with WT rats 

and this bordered significance (p=0.056) (Nuber et al., 2013). 

 

1.5 CRISPR/Cas9 genetic engineering 

The CRISPR/(CRISPR-associated protein) Cas system is a mechanism of immune 

defence that is found in bacteria and archaea, and acts to prevent infection by invading 

viruses (Barrangou et al., 2007). Immunity is provided by small fragments of foreign 

DNA derived from pathogens which integrate into CRISPR loci, and these DNA 

fragments act to guide the Cas enzymatic machinery which in turn mediates immunity 
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(Barrangou et al., 2007). The type II CRSIPR/Cas system of Streptococcus pyogenes has 

been adapted for use as a tool for genetic engineering. 

The CRISPR/Cas9 system comprises a CRISPR RNA (crRNA) array which 

encodes the guide RNA sequences that recognise DNA sequences, a trans-activating 

crRNA (tracrRNA) which processes the crRNA for action, and the Cas9 nuclease which 

mediates the generation of double strand breaks (DSB) in DNA at sites determined by the 

crRNA (Ran, Hsu, Wright, et al., 2013). DSBs in DNA in the absence of a repair 

template, are repaired by non-homologous end joining (NHEJ), however this is an error-

prone method and results in the generation of insertion or deletion mutations (indels) at 

the site of cleavage (Figure 1.13) (Ran, Hsu, Wright, et al., 2013). However, precise gene 

editing is accomplished when a repair template is provided, since the template mediates 

homology-directed repair (HDR) (Ran, Hsu, Wright, et al., 2013). This latter approach 

can be used to generate precise single nucleotide mutations in DNA.  

 

 

Figure 1.13: Cas9 nuclease produces double strand breaks in DNA which can result in the 
production of indel mutations or can alternatively be used to achieve precise gene editing. In 
the absence of a repair template, DSBs are repaired by non-homologous end joining (NHEJ) which 
is an error prone process. and may lead to the production of a premature stop codon. When a repair 
template is provided, DNA is repaired by homology-directed repair (HDR) and this process can be 
used for precise gene editing including the generation of single nucleotide mutations. DSB-double 
strand break,sgRNA-single guide RNA, indel mutation-insertion or deletion mutation (Image from 
Ran, Hsu, Wright, et al., 2013).  

 

The methods have been further refined for genetic engineering, since it has been 

discovered that the crRNA and tracrRNA can be fused to produce a chimeric single guide 

RNA (sgRNA), thus only the sgRNA and Cas9 need to be used for gene editing (Ran, 

Hsu, Wright, et al., 2013). Specificity of targeting can also be increased by using a Cas9 
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nickase mutant which only produces single strand breaks in DNA, and methods using 

Cas9 nickase are used for gene editing with paired guide RNAs (gRNA) (Cong et al., 

2013; Ran, Hsu, Lin, et al., 2013).  

The CRISPR/Cas9 system has been used for genome engineering in human cells. 

In a study of HEK293T/17 cells by Cho et al. (2013), reproducible targeting was 

achieved at two loci (CCR5 and C4BPB). CRISPR/Cas9 has also been used for gene 

editing in human embryonic stem cells, and has even been used to generate reporter cell 

lines which are useful for monitoring cell fate decisions and cell populations during 

differentiation (Zhu et al., 2015). Experiments in mouse embryonic stem cells have 

shown that five different loci can be targeted simultaneously with an efficiency of 10% 

(Wang et al., 2013).  

Precise HDR mediated genome editing of two loci has been achieved in mice, 

following the injection of zygotes with Cas9 mRNA, and sgRNA and oligonucleotides for 

Tet1 and Tet2 in one procedure, with 6 out of 48 embryos transferred containing the 

desired modification at both loci (Wang et al., 2013). In the rat, HDR has been used to 

recover three recessive phenotypes associated with coat colour, by using the 

CRISPR/Cas9 system to achieve either a single nucleotide polymorphism exchange, the 

integration of a 19-base pair (bp) DNA fragment, or the elimination of a 7,098-bp DNA 

fragment (Yoshimi et al., 2014).  

The CRISPR/Cas9 system provides an opportunity for the generation of rodent 

models of PD including those with mutations in alpha-synuclein. CRISPR/Cas9 

technology could be used to generate a precisely engineered model of PD that expresses 

mutant alpha-synuclein from the endogenous rat locus. Such a model would overcome 

limitations associated with transgenic technology, including the random integration of 

transgenes and the expression of both human and rodent alpha-synuclein (Cabin et al., 

2005; Plaas et al., 2008).  

Since G51D PD in humans has been shown thus far to result in the most 

aggressive clinical phenotype, and neuropathological findings have demonstrated 

frequent inclusions of alpha-synuclein in the striatum and concurrent neuronal loss (Kiely 

et al., 2015), it would be particularly interesting to model the G51D mutation in alpha-

synuclein in the rodent. This could be accomplished using the CRISPR/Cas9 system with 

the provision of the donor oligo template for HDR. Experiments by Yoshimi et al. (2014) 

have shown that genetic engineering in the rat using CRISPR/Cas9 can be accomplished 

effectively. 
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The generation of a rat model of PD would be advantageous for the study of 

neurochemical abnormalities in the brain using preclinical imaging (Dehay et al., 2016). 

PET is a powerful imaging technique, and studies in PD using the tracer 18F-DOPA have 

demonstrated that the dopamine synthesis and storage capacity in the striatum was 

significantly decreased when compared with healthy controls (Brooks et al., 1990; Burn, 

Sawle and Brooks, 1994; Holthoff-Detto et al., 1997; Rinne et al., 2000). EDT in the 

striatum has also been found to be increased in patients with PD when compared with 

healthy controls (Sossi et al., 2002; 2004). These abnormalities of dopaminergic function 

could be modelled in a G51D rat model of PD. Furthermore, IHC targeting TH could be 

used to investigate the integrity of dopaminergic nerve terminals in the striatum which 

degenerate in PD (Bedard et al., 2011; Kordower et al., 2013). Similarly IHC for alpha-

synuclein could be used to identify the inclusions of alpha-synuclein that have been 

identified in the striatum of patients (Jellinger, 2004; Parkkinen et al., 2005; Mori et al., 

2008; Kiely et al., 2015). 

 

1.6 Aims of the thesis and hypotheses 

The aims of the thesis are to characterise a novel rat model of PD with a G51D mutation 

in alpha-synuclein, that was generated using CRISPR/Cas9 engineering in order to model 

a cause of aggressive PD. The aims are to characterise this G51D rat model by using 

histological techniques to investigate staining for TH (an enzyme involved in the 

synthesis of dopamine), and also staining for alpha-synuclein (a constituent of Lewy 

bodies), as well as by using 18F-DOPA PET imaging to analyse the function of the 

dopaminergic system in the striatum. Experiments focussed on the striatum (a major 

subcortical dopaminergic brain structure affected by PD in humans) in order to correlate 

the histology and 18F-DOPA PET imaging data from WT and G51D/+ rats. The relatively 

large size of the striatum was advantageous for accurate investigation of dopaminergic 

function in the brain of rats, with these experiments being some of the first to charcterise 

this novel genetic rat model of PD. 

The methods for histological experiments are optimised by using WT rats, and 

the methods for 18F-DOPA PET imaging are first optimised by using phantoms and then 

subsequently by using WT rats. Since patients with PD resulting from the G51D mutation 

in alpha-synuclein are heterozygous for this mutation (G51D/+), G51D/+ rats are 

analysed relative to WT controls using histological and 18F-DOPA PET experiments. 
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Experiments are conducted over the course of ageing since advanced age is a major risk 

factor for the development of PD. 

My hypotheses are: 

 G51D/+ rats will demonstrate the loss of dopaminergic terminal integrity and 

staining for TH in the striatum as identified by the use of histological staining when 

compared with WT rats. 

 G51D/+ rats will have evidence of aggregated alpha-synuclein in cells of the 

striatum as well as decreased staining at presynaptic nerve terminals as identified by the 

use of histological staining when compared with WT rats. 

 G51D/+ rats will demonstrate a decline in the dopamine synthesis and storage 

capacity in the striatum, and increased dopamine turnover (relative strength of uptake of 
18F-DOPA and elimination of its fluorinated metabolites) as identified by 18F-DOPA PET 

imaging when compared with WT rats. 
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 - Material and methods 

2.1 The overall experimental plan 

Figure 2.1 illustrates an overview of the experiments undertaken. Histological 

experiments using IHC were optimised by using WT rat brain tissue. Coronal brain tissue 

sections through the striatum were stained at two sites (Bregma 1.56 mm and 0.00 mm) in 

WT and G51D/+ rats at 5, 10 and 17 months of age. Tissue sections were analysed using 

cresyl violet staining, and IHC targeting TH and alpha-synuclein (n=3/4 per genotype per 

age-group).  Methods for the reconstruction of PET data were optimised by using 

phantoms which are imaging devices that mimic the properties of tissues of a living 

subject, then the in vivo 18F-DOPA PET imaging and analysis methods were optimised by 

using WT rats. The optimised 18F-DOPA PET methods were used to investigate 

dopaminergic function in the striatum of WT and G51D/+ rats at 5, 11 and 16 months of 

age (n=4 per genotype per age-group).  

 

Figure 2.1: Schematic diagram which illustrates an overview of the experiments undertaken. 
Histological experiments using IHC were optimised by using WT rat brain tissue. Coronal tissue 
sections through the striatum were stained at two sites in WT and G51D/+ rats at 5, 10 and 17 
months of age. Tissue was analysed using cresyl violet staining and IHC targeting TH and alpha-
synuclein. Methods for the reconstruction of PET imaging data were optimised by using phantoms, 
and experiments in WT rats were used to optimise the in vivo 18F-DOPA PET imaging and 
analysis methods. 18F-DOPA PET imaging was used to analyse dopaminergic function in the 
striatum of WT and G51D/+ rats at 5, 11 and 16 months of age. 

 

The first characterisation experiments to be conducted in G51D/+ rats were histological 

experiments using tissue from 10 month old rats, since there was a source of tissue 

available from rats being held in quarantine which could not be used for PET imaging. 

This source of animals contributed to the slight mismatch in age of animals used for some 

histology and PET imaging experiments, as did the production of the radiotracer which 

was unsuccessful in some instances and affected the ages of animals used for PET 



53 
 

imaging experiments and subsequently histological experiments at 5 and 17 months of 

age. 

 

2.2 Establishment of the G51D rat colony 

 Approval of in vivo experiments 

The breeding and maintenance of WT and G51D/+ rats, and in vivo techniques were 

approved by the Home Office under the project license held by Dr. Val Wilson. 

Experiments were conducted (unless otherwise stated) within the personal license held by 

Victoria Morley. 

 Generation of the G51D rat colony 

The G51D rat model of PD was generated in collaboration with Dr. Tomoji Mashimo and 

Yayoi Kunihiro (Kyoto University), with the single-stranded DNA (ssDNA) donor 

oligonucleotide and gRNA sequences made by Dr. Karamjit Singh Dolt (The University 

of Edinburgh). The CRISPR/Cas9 constructs used for the generation of rats were the 

empty gRNA cloning vector (Addgene plasmid #41824, deposited by George Church) 

and humanised Cas9 (hCas9) nuclease vector (Addgene plasmid #41815, deposited by 

George Church). The gRNA sequence was inserted into the gRNA expression vector. 

Then the gRNA and hCas9 vectors were in vitro transcribed, and the 90bp ssDNA mutant 

donor oligonucleotide was synthesised. gRNA and hCas9 mRNA, and ssDNA donor 

oligonucleotide were injected into the pronucleus of F344/Stm rat zygotes. Targeting 

generated two different mutations; the desired G51D point mutation in SNCA, and a 

minus 11bp mutation in SNCA which was thought to be a null allele. The rats with these 

two mutations were mated to produce the progeny (F1 founders) listed in Table 2.1 that 

were imported to The University of Edinburgh.  
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Table 2.1: Details of F1 founder rats imported from Kyoto University to The University of 
Edinburgh. The minus11bp mutation was thought to be a null allele of SNCA, thus F0 founders 
with minus 11bp and G51D mutations were mated to produce the F1 founder rats listed below. 
Eight rats were imported to The University of Edinburgh from Kyoto University. F-female, M-
male. 

Identification 
number 

Date of birth Gender Genotype 

1 16.7.14 F WT 
2 16.7.14 F G51D/+ 
3 16.7.14 M G51D/-11bp 
4 16.7.14 M -11bp/+ 
5 16.7.14 M G51D/+ 
6 16.7.14 M G51D/+ 
7 16.7.14 M G51D/+ 
8 16.7.14 M G51D/+ 

 

It was later discovered that rats with the minus 11bp mutation did not carry the 

null allele, therefore only a colony of G51D rats was established. F1 founder rats 

underwent embryo transfer rederivation (performed by Dr. Matthew Sharp and Julie 

Thomson, Central Bioresearch Services). Five 9 month old G51D rats (identification 

numbers 3, 5, 6, 7 and 8) were test mated with five 3 month old WT F344/DuCrl rats 

(Charles River Laboratories Italia). Two hundred embryos were then flushed from the 

WT female rats, and 120 one cells were transferred into three recipient female rats. 

 

 Genotyping 

The F0 and F1 founder rats were genotyped by Sanger DNA sequencing of extracted 

DNA. Later a polymerase chain reaction (PCR) and BspHI restriction enzyme digest was 

developed for the genotyping of G51D rats (Dr. Karamjit Singh Dolt) and results were 

compared with DNA sequencing. Samples for genotyping were obtained after ear 

notching of rats had been conducted for identification purposes. 

 

  DNA extraction 

Ear clips were placed in PCR tubes, then 50 µl of NaOH/ethylenediaminetetraacetic acid 

(EDTA) solution (25 µM NaOH (Sigma-Aldrich, 71690)/0.2 mM UltraPure EDTA 

(Thermo Fisher Scientific, 15575-038) was added to each sample and the mixture was 

incubated at 98 °C for 1 hour on a T100 Thermal Cycler (BioRad Laboratories, 1861096). 

The sample was cooled and then 50 µl of 40 mM UltraPure Tris-HCl (Thermo Fisher 
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Scientific, 15567-027) was added to each PCR tube and the mixture was pipetted up and 

down. Extracted genomic DNA (gDNA) was stored at -20 °C.  

 

 PCR and BspHI restriction enzyme digest 

An exon 3 PCR of rat SNCA and BspHI restriction enzyme digest was used for 

genotyping (Figure 9.1, Appendix). BspHI restriction enzyme was used for genotyping 

since the G51D mutation modelled in rat introduced a new BspHI restriction site. PCR 

used a 25 µl reaction, and each reaction comprised 15.75 µl of nuclease free water, 5 µl 

Q5® Reaction Buffer (NEB, B9027S), 1.25 µl of 10 µM forward primers and 1.25 µl of 

10 µM reverse primers (Sigma-Aldrich custom DNA oligonucleotides) (Table 2.2), 0.5 µl 

of 10 mM dNTPs (Thermo Fisher Scientific, 10297018), 0.25 µl Q5® Hot Start High 

Fidelity DNA Polymerase (NEB, M0493S), and 1 µl sample DNA. The reaction mixture 

was incubated on a T100 Thermal Cycler using the conditions listed in Table 2.3.  

 

Table 2.2: Sequence of the forward and reverse primers used for the exon 3 PCR for 
genotyping. 

Primer Sequence  
Forward 5’-TGGTGGCTGTTTGTCTTCTG-3’ 
Reverse  5’-TCCTCTGAAGACAATGGCTTTT-3’ 

 

Table 2.3: Experimental conditions used for the exon 3 PCR for genotyping. A thermal cycler 
was used for DNA denaturation, annealing of primers and extension of DNA. This cycle was 
repeated an additional 36 times. 

Step 
number 

Temperature (°C)/ 
programme 

Time (sec)/ 
programme 

1 98 30 
2 98 10 
3 64 20 
4 72 20 
5 Go to step 2 Repeat 36 x 
6 72 120 
7 10 hold 

 

BspHI restriction enzyme digest used a 20 µl reaction, and each reaction 

comprised 10 µl of PCR product, 7 µl of nuclease-free water, 2 µl of CutSmart® Buffer 

(NEB, B7204S) and 1 µl of BspHI restriction enzyme (NEB, R0517S). The reaction was 

incubated at 37 °C for 1 hour on a T100 Thermal Cycler. Digested PCR samples were 

then run on a 2.5% agarose gel which was 2.5 g agarose in 50 ml Tris-acetate-EDTA (40 
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mM Tris/20 mM acetic acid/1 mM EDTA) + 5 µl SYBR® Safe DNA Gel Stain 

(Invitrogen, S33102). 3 µl of Quick-Load® 100bp DNA ladder (NEB, N0467S) was 

loaded onto the gel next to the samples. Digested PCR samples were mixed with 3 µl of 

Gel Loading Dye Blue (NEB, B7021S), then 20 µl of each sample was loaded per well. 

Samples were run in 1x Tris-acetate-EDTA Buffer at 100 V using Mini-Sub® Cell GT 

Horizontal Electrophoresis System and PowerPac™ Basic Power Supply (Bio Rad 

Laboratories, 1640300). 

 

2.3 Histology 

 Perfusion fixation 

Rats were anaesthetised using an intraperitoneal injection of 75 mg/kg Ketamine 

Hydrochloride (Vetalar®, Boehringer Ingelheim Vetmedica) and 0.5 mg/kg 

Medetomidine Hydrochloride (Domitor®, Vetoquinol UK).  Vital signs were monitored 

and the depth of anaesthesia was determined by assessing the animals’ response to the toe 

pinch test. Once the animal was fully anaesthetised an incision was made into the 

abdomen, and then further cuts were made alongside the diaphragm. An incision was 

made through the diaphragm, then the thorax was opened with cuts along both sides. The 

right atrium was snipped open and then a 23-gauge needle was inserted into the left 

ventricle. 50 ml of phosphate buffered saline (PBS) (Life Technologies, 18912014) was 

flushed through the vasculature, followed by 100 ml of 4% formaldehyde (Fisher 

Bioreagents, BP531-500). The brain was dissected out of the skull and then placed in 4% 

formaldehyde for a further period of 24 hours.  

 

 Tissue processing and immunohistochemistry 

 Tissue cryoprotection and embedding 

Brains were washed twice in PBS then weighed (g), and the ratio of brain tissue to 

bodyweight was determined. Brains were incubated in 15% sucrose (w/v in PBS) 

(Scientific Laboratory Supplies, CHE3650) for 24 hours, and then in 30% sucrose (w/v in 

PBS) for 48 hours or until the brain sank to the bottom of the tube. Brains were embedded 

on specimen stubs (Agar Scientific, AGG318) which were made into embedding moulds 

using autoclave tape and parafilm (Scientific Laboratory Supplies, FIL1022). The 

embedding medium used was optimal cutting temperature (OCT) compound (CellPath, 

KMA-0100-00A) and tissues were equilibrated in OCT for 10 min before embedding. 

Brains were embedded whole and with olfactory bulbs nearest to the specimen stub and 
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cutting face. They were frozen quickly using a dry ice and ethanol slurry, and wrapped in 

foil and stored at -80°C. 

 

 Antibodies used for immunohistochemistry 

Primary antibodies were rabbit polyclonal anti-tyrosine hydroxylase (Merck Millipore, 

AB152) and XP® rabbit monoclonal anti-alpha-synuclein (D37A6) (Cell Signalling 

Technologies, 4179). The secondary antibody was horseradiash peroxidase (HRP)-

conjugated goat anti-rabbit IgG (H+L) (Promega, W4011).  

 

 Sectioning free floating coronal brain tissue sections 

Specimen blocks were equilibrated at -20°C before cutting and were mounted onto 

specimen discs using OCT. A cryostat was used to trim into brain until reaching the 

striatum, where a notch was made on the left-hand-side of the cortex at the bottom to aid 

the orientation of tissue sections. Serial 40 µm coronal sections were taken from the brain 

at the level of the striatum using a rat brain atlas as a guide for anatomical landmarks 

(Paxinos and Watson, 2013). Sections were lifted using a paintbrush into Corning® 

Costar® 12 well plates (Scientific Laboratory Supplies, 3513) containing PBS with 

0.01% sodium azide (Fisher Scientific, 10776301), and were stored at 4°C. 

 

 Colour immunohistochemistry  

Twelve well plates were used for IHC. Sections were permeabilised by incubating with 

0.1% Triton X-100 (v/v in PBS) (PBS-T) for 1 hour at room temperature on an orbital 

shaker. Sections were washed in PBS, then incubated with 0.3% H202 (Sigma-Aldrich, 

H1009) (v/v in PBS) for 30 min to block endogenous peroxidases. Sections were washed 

twice in PBS for 15 min, then washed with 0.1% PBS-T for 15 min. These sections were 

incubated with serum blocking buffer for 2 hours to block non-specific antibody binding, 

where serum blocking buffer was 3% normal donkey serum (D9663, Sigma-Aldrich) 1% 

BSA in 0.1% PBS-T. The tissue was incubated with anti-TH or anti-alpha-synuclein 

primary antibodies diluted in serum blocking buffer for 72 hours at 4°C, since this 

ensured that the antibodies penetrated the thickness of the sections. Sections were washed 

in 0.1% PBS-T three times for 15 min, then incubated with anti-rabbit HRP-conjugated 

secondary antibody in serum blocking buffer for 48 hours at 4°C. Sections were washed 

in 0.1% PBS-T twice for 15 min, and rinsed once for 15 min in PBS. To develop, sections 

were incubated with Vector NovaRED peroxidase (HRP) substrate kit (Vector 
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Laboratories, SK-4800). 5 ml of substrate was made from 5 ml of PBS to which 3 drops 

of reagent 1, 2 drops of reagent 2, 2 drops of reagent 3, and 2 drops of H2O2 were added, 

mixing well after the addition of each reagent. To stop the reaction PBS was added to the 

sections to dilute the substrate, then sections were washed twice for 15 min in PBS.  

Sections were mounted on SuperFrost Plus Adhesion Slides (VWR International, 

631-0108) and air-dried, then incubated in xylene for 15 min on three consecutive 

occasions. Coverslips (Scientific Laboratory Supplies, 22 mm x 50 mm, No 1.5, 

MIC3246) were mounted using VectaMount permanent mounting medium (Vector 

Laboratories, H5000).  

 

 Optimisation of immunohistochemistry 

 Source of brain tissue 

Tissue was obtained from one 7 month old WT F344 rat, which was sacrificed by 

perfusion fixation using the methods shown in section 2.4.1. Tissue was processed and 

stained using the methods described in section 2.4.2. 

 

 Determining the optimal antibody dilutions 

The optimal dilutions of primary and secondary antibodies for IHC were determined by 

testing a range of antibody dilutions (Table 2.4). Colour staining was developed by 

incubating sections with Vector NovaRED substrate for 4 min (TH) or 5 min (alpha-

synuclein). 

 

Table 2.4: Primary and secondary antibody dilutions that were tested using WT rat brain 
tissue. Various dilutions of primary anti-tyrosine hydroxylase and anti-alpha-synuclein antibodies 
were tested to determine the optimal dilutions for staining of coronal tissue sections of the 
striatum. 

Primary 
antibody 

Primary antibody 
dilutions tested 

Secondary 
antibody 

Secondary 
antibody 
dilutions tested 

anti-tyrosine 
hydroxylase 

1:300, 1:500, 1:800, 
1:1000 

HRP-conjugated 
anti-rabbit 

1:2000 

1:300, 1:500 1:2500 

anti-alpha-
synuclein 

1:300, 1:500 HRP-conjugated 
anti-rabbit 

1:2500 
1:300, 1:500 1:3000 
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 Testing the antibodies for non-specific staining 

Control reactions were used to test the antibodies for non-specific staining. Control 

experiments used primary antibody only, secondary antibody, and no primary or 

secondary antibody. 

 

 Investigating the optimal sites for immunohistochemistry 

TH IHC (using a dilution of anti-TH primary antibody of 1:500, and a dilution of HRP-

conjugated secondary antibody of 1:2000) was used to determine the optimal sites for 

IHC experiments. A total of 8 sites in the striatum were stained. Histology experiments 

were used to analyse staining in striatum in order to correlate the data with results from 
18F-DOPA PET imaging. IHC was performed most rostrally at Bregma 2.28 mm, and 

then for every 1 in 10 sections which were taken caudally from the striatum. 

 

 Histological experiments in WT and G51D/+ rats 

 Brain tissue specimens 

Female and male WT, G51D/+ rats were sacrificed by perfusion fixation at 5, 10 and 17 

months of age (n=3/4 per genotype per age-group). Tissue was sourced and processed 

using the methods described in sections 2.4.1, 2.4.2.1 and 2.4.2.3. 

 

 Immunohistochemistry experiments using G51D rat brain tissue 

IHC experiments for TH and alpha-synuclein were performed using the methods shown 

in sections 2.4.2.2 and 2.4.2.4. IHC used 40 µm sections from two sites in the brain 

identified as Bregma 1.56 mm (Figure 2.2) and Bregma 0.00 mm (Figure 2.3). Thus, the 

terminology Bregma 1.56 mm or Bregma 0.00 mm has been used to describe staining 

results from these sites.  
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Sections were stained in triplicate, and used the primary and secondary antibody 

dilutions, and development times listed in Table 2.5. Methods for the alpha-synuclein IHC 

also included the Haematoxylin QS Nuclear Counterstain (Vector Laboratories, H-3404) 

which was used for 45 seconds after mounting and before incubating sections in xylene. 

 

Table 2.5: The primary and secondary antibody dilutions and development times used for 
staining of sections from WT and G51D/+ rats. 

Primary 
antibody 

Primary 
antibody 
dilution 

Secondary 
antibody 

Secondary 
antibody 
dilution 

Development 
time (min) 

anti-tyrosine 
hydroxylase 

1:500 
HRP-conjugated 
anti-rabbit 

1:2000 4 

anti-alpha-
synuclein 

1:500 
HRP-conjugated 
anti-rabbit 

1:2500 5 

 

 Cresyl violet staining 

0.1% Cresyl violet acetate stain was prepared by dissolving 0.5 g of cresyl violet acetate 

(Acros Organics, 229630050) in 500 ml of water, with the addition of 1.25 ml of glacial 

acetic acid (Scientific Laboratory Supplies, CHE1014). The stain was heated to 60 °C, 

filtered and stored in the dark. Before use the stain was heated again and filtered. Then 40 

µm brain sections from the two sites of the brain used for IHC (Bregma 1.56 mm and 

Bregma 0.00mm) were stained in duplicate. Sections were mounted onto polylysine slides 

(VWR International, 631-0107) and air dried for at least 15 min. The sections were 

incubated in 1:1 chloroform (Fisher Bioreagents, 10727024): ethanol (VWR 

International, 20821.330) overnight to de-fat, and were then rehydrated by incubating in 

100% (x2), 95%, 80%, and 70% ethanol for 5 min each, followed by water for 5 min. 

Sections were incubated in 0.1% cresyl violet acetate solution at 60 °C for 25 min, were 

then rinsed briefly in water, and the stain was differentiated by dipping the sections 3 

times in 95% ethanol with acetic acid (8 drops of glacial acetic acid per 100ml of 95% 

ethanol). Sections were incubated in 100% ethanol for 5 min on two occasions, and then 

in xylene for 5 min on three occasions. Coverslips were mounted onto sections using 

Pertex Mounting Medium (CellPath, 00801). Slides were left to dry and stored in the dark 

at room temperature. 
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 Microscopy  

Brightfield images of sections stained using cresyl violet or colour IHC were obtained 

using the slide scanner Axio Scan.Z1 (Carl Zeiss Microscopy GmbH) and ZEN 2 (blue 

edition) software (Carl Zeiss Microscopy GmbH). Images were obtained using a tiled 

scan and the parameters listed in Table 2.6. Images were exported from ZEN 2 software 

for analysis, and were also used to generate representative images of cresyl violet staining 

and colour IHC (using a digital magnification of either 2.5x or 5x). The observer was 

blind to the genotype of samples during imaging and data analysis. 

 

Table 2.6: Images of sections stained using cresyl violet or colour immunohistochemistry 
were acquired using the slide scanner Axio Scan.Z1 and ZEN 2 software. The build of the 
equipment/imaging parameters are listed. 

Variable Build/parameter 
Imaging device Hitachi HV-F202SCL 

Objective 
Plan-Apochromat 
20x/0.8 M27 

Scaling per pixel 0.22 µm x 0.22 µm 
Bit depth 24 
Lamp intensity 275% 
Exposure time 200 µs 
Gain 1 
Binning 1:1 

 

Brightfield images of alpha-synuclein IHC were generated using the Akioskop 2 Plus 

upright microscope (Carl Zeiss Microscopy GmbH) and ZEN 2 software, and using the 

parameters listed in Table 2.7. Images were generated to demonstrate different staining 

types in the neuropil and to show images from WT and G51D/+ rats. 

 

Table 2.7: Images of sections stained using alpha-synuclein immunohistochemistry were 
acquired using the Akioskop 2 Plus upright microscope and ZEN 2 software. The build of the 
equipment/imaging parameters are listed. 

Variable Build/parameter 
Imaging device AxioCam ICc 1 

Objective 
Plan-Neofluar 
40x/0.75 Ph2 M27 

Scaling per pixel 0.116 µm x 0.116 µm 
Bit depth 24 
Exposure time 9 ms 
Binning 1:1 
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 Analysis of cresyl violet staining 

All images were analysed using the same microscopy settings including the same lamp 

intensity.  ZEN 2.1 lite (Carl Zeiss Microscopy GmbH) was used to inspect cresyl violet 

staining of the striatum, and representative images were taken using a digital 

magnification of 2.5x. ZEN 2.1 lite was also used to process images for estimates of cell 

counts. Four equally spaced ROIs were placed on the caudate-putamen on each side of 

the brain (ROI width-4601, height-4038 pixels) and images were exported at full 

resolution and as an 8-bit tagged image file format. Images were thresholded using Image 

J 1.51f software (National Institutes of Health (NIH)), and segmented using the 

Watershed algorithm to account for cells that may be very closely situated. The particle 

count function was used to estimate the number of cells in each ROI, and counts were 

averaged for the left and right striatum to obtain mean counts for the caudate-putamen 

(mm-2).  

 

 Determining the optical density of tyrosine hydroxylase 

immunohistochemistry 

ZEN 2.1 lite was also used to process images for measurements of the OD of TH staining. 

An ROI method was used to analyse TH stained sections with four equally spaced ROIs 

placed on the caudate-putamen. In addition, images of non-specific staining were 

obtained by placing four ROIs on the corpus callosum (ROI width-2207, height-1755 

pixels). Image J was used to measure the mean gray value (intensity) and the maximum 

gray value of staining in each ROI. Intensity values in the caudate-putamen and corpus 

callosum were then used to determine absorbance; 

 

Absorbance	ൌ	log10	ሺmax	intensity/mean	intensityሻ                       (2.1) 

 

The absorbance was then used to calculate the OD of staining; 

 

Optical	density	ൌ	absorbance/ሺtissue	thickness	ሺcmሻሻ                        (2.2) 

 

The mean OD of staining was determined for the left and right caudate-putamen, and the 

corpus callosum. The normalised OD of staining was determined by subtracting the OD 

of staining in the corpus callosum from the OD of staining in the caudate-putamen. This 

method of normalisation was used since the corpus callosum is devoid of TH positive 
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terminals (Carlsson et al., 2007; Rylander et al., 2013; Stott and Barker, 2014) and 

measurements from this region represent background staining. Non-specific staining can 

vary between sections and if not corrected for, it would be difficult to compare staining 

results from different sections. Measures from the left and right caudate-putamen were 

averaged to determine the mean normalised OD of TH staining in the whole striatum.  

To correlate IHC data with 18F-DOPA PET data, asymmetry in the OD of TH 

immunostaining in the caudate-putamen was determined using measures of the 

normalised OD of TH staining from the ipsilateral and contralateral caudate-putamen;  

 

Asymmetry	normalised	OD	ൌ	ሺcontralateral	normalised	OD	–	ipsilateral	normalised	ODሻ/																																	
contralateral	normalised	OD                                        (2.3) 

 

 Analysis of alpha-synuclein immunohistochemistry 

ZEN 2.1 lite was used to analyse alpha-synuclein staining in the caudate-putamen. Semi-

quantitative analyses were used to investigate the number of cells with somata staining 

for alpha-synuclein (Table 2.8), and alpha-synuclein staining in the neuropil (Table 2.9). 

Sections were analysed with the aid of a 500 µm x 500 µm grid, and were inspected on 

multiple occasions before grading the alpha-synuclein staining in cell somata and the 

neuropil of the striatum. 

 

Table 2.8: Semi-quantitative methods that were used to investigate the number of cell somata 
in the caudate-putamen staining positively for alpha-synuclein. Staining was graded from – 
(not discernible) to +++ (abundant) depending on the number of cells identified with alpha-
synuclein staining in their somata. Sections were analysed with the aid of a 500 µm x 500 µm grid. 

Grade 
Number of cell somata 
staining positively for 
alpha-synuclein 

Description 

- Not discernible 
Alpha-synuclein staining in somata was not 
identified 
 

+ Infrequent 
Cell somata staining positively for alpha-
synuclein were occasionally identified and 
sparsely distributed 

++ Moderate 
 Cell somata staining positively for alpha-
synuclein were frequently identified 
 

+++ Abundant 
Large numbers of cell somata staining 
positively for alpha-synuclein were 
identified 
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Table 2.9: Semi-quantitative methods that were used to investigate alpha-synuclein staining 
in the neuropil of the caudate-putamen. Staining was graded from – (not discernible) to +++ 
(marked) depending on the type of terminal staining in the neuropil. Sections were analysed with 
the aid of a 500 µm x 500 µm grid.  

Grade 
Type of punctate alpha-
synuclein staining in the 
neuropil 

Description 

- Not discernible 
No alpha-synuclein positive staining was 
identified in the neuropil 
 

+ Slight 
Punctate alpha-synuclein positive terminals 
were just discernible 
 

++ Moderate 
Moderately demarcated punctate terminals 
positive for alpha-synuclein were identified 
 

+++ Marked 
Well demarcated punctate terminals staining 
positively for alpha-synuclein were 
identified 

 

2.4 PET imaging 

 PET imaging system description 

The nanoScan PET/CT scanner (Figure 2.4) (Mediso Medical Imaging Systems, 

Budapest, Hungary) was used for phantom and in vivo PET imaging experiments. A 

description of the PET subsystem is provided in Table 2.10. The PET subsystem 

comprised 2 PET detector rings and had an axial field of view (FOV) of 10 cm. Super-

fine lutetium yttrium oxyorthosilicate (LYSO) crystals provided excellent spatial 

resolution which was 0.7 mm at 1 cm off-center using 3D OSEM reconstruction methods. 

Good temporal and energy resolution allowed efficient corrections to be made to the data. 

A description of the CT subsystem is provided in Table 2.11. The CT subsystem provided 

low dose and high resolution CT imaging. 
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Figure 2.4: The nanoScan PET/CT camera. The imaging bed was accurately positioned using the 
table translate and table lift. The touchscreen interface on the PET/CT scanner or the acquisition 
workstation were used to move the scanner bed, or to monitor of the vital functions of the rats during 
in vivo experiments (Image from Mediso, 2015). 
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Table 2.10: Description of the nanoScan PET subsystem. Two PET detector rings provided 
high sensitivity and excellent spatial resolution. FOV-field of view, LYSO-lutetium yttrium 
oxyorthosilicate, OSEM-ordered subsets expectation maximisation, NEC-noise equivalent counts 
(From Mediso, 2016). 

Feature Build/performance  
Number of rings 2 
Axial FOV 10 cm 
Transaxial FOV 12 cm 
Crystal material LYSO 
Crystal size 1.12 mm x 1.12 mm x 13 

mm 
Total number of crystals 36, 504 
Spatial resolution with 3D 
OSEM 

0.7 mm 

Sensitivity 8% 
Temporal resolution 1.2 ns 
Energy resolution 19% 
NEC for rat 230 kcps 

 

Table 2.11: Description of the nanoScan CT subsystem. CT imaging was low dose and 
provided high resolution images (From Mediso, 2016). 

Feature Build/performance 
X-Ray tube power 80 W 
Tube current ≤1 mA 
Exposure CT dose <10 mGy 
Transaxial FOV 2-12 cm 
Zoom <7.6 x 
Isotropic voxel size ≤10 µm 

 

The PET/CT camera was connected to a four-computer system which formed an 

acquisition and also a post-processing workstation (Figure 2.5). This system allowed data 

to be acquired, reconstructed, and processed simultaneously by forming a highly 

integrated system. The acquisition workstation consisted of Nucline and Tera-Tomo™ 

Real PCs, and the post-processing workstation consisted of Interview Fusion and Tera-

Tomo™ Post PCs. Nucline and Tera-Tomo™ Real can also be used to reconstruct PET 

and CT data where there are no ongoing measurements (Figure 2.6). Nucline and 

Interview Fusion PCs were Windows based PCs and were installed with Nucline 2.01 

software for PET and CT data acquisition, reconstruction and post-processing. Tera-

Tomo™ Real and Tera-Tomo™ Post were Linux based PCs and ran the Tera-Tomo™ 3D 

reconstruction engine. 
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Figure 2.5: The PET/CT camera and acquisition and post-processing workstations. The 
PET/CT camera (1) was connected to an acquisition workstation which comprised a Nucline PC 
(2) which controlled acquisition, and a Tera-Tomo™ Real PC (3) which controlled PET 
acquisition and reconstruction. The post-processing workstation comprised an Interview Fusion 
PC (4) which controlled PET reconstruction and image post-processing, and a Tera-Tomo™ Post 
PC (5) for PET data reconstruction (Image from Mediso, 2015). 

 

 

Figure 2.6: An integrated four PC system allowed simultaneous data acquisition, 
reconstruction and post-processing. Nucline and Tera-Tomo™ Real PCs were used for PET and 
CT data acquisition, as well as PET data reconstruction when there was no ongoing data 
acquisition. Interview Fusion and Tera-Tomo™ Post PCs were used for PET data reconstruction 
and image post-processing (Image from Mediso, 2015). 
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 Optimisation of PET reconstruction methods using phantoms 

 Imaging the PET image quality phantom 

The National Electrical Manufacturers Association (NEMA) NU-4 mouse image quality 

(IQ) phantom (Mediso Medical Imaging Systems, PH-60-00-42) was used to optimise the 

reconstruction methods for in vivo PET imaging experiments. The phantom comprised 3 

different chambers (Figure 2.7). One chamber comprised an area of homogeneous activity 

(30 mm diameter, 30 mm length) which was used to measure the % standard deviation 

(SD) in image uniformity, and another chamber contained air-filled and water-filled 

inserts (diameter 10 mm, length 15 mm and wall thickness 1mm for each insert) which 

were used to measure the spillover ratio (SOR) of activity into air and water. An 

additional chamber (30 mm diameter, 20 mm length) contained rods of 1-5 mm in 

diameter which were used to measure recovery coefficients (RC). Phantom data was 

acquired by Dr. Adriana Tavares (The University of Edinburgh). The phantom was filled 

with 3.8 MBq of homogeneous 18FDG solution. The activity used for the experiment was 

determined by calculating the difference between the activity measured in the syringe 

before and after filling the phantom, by using a CRC-25R Dose Calibrator (Capintec Inc., 

5130-3215) which was set to measure the radioisotope Fluorine-18. The phantom was 

then placed on the MultiCell™ mouse imaging bed and in the centre of the microPET 

detector ring. PET and CT data were acquired using the parameters listed in Tables 2.12 

and 2.13.  

 

 
Figure 2.7: Schematic diagram of NEMA NU-4 mouse IQ phantom. The phantom was filled 
with a homogeneous solution of 18FDG. The central chamber was used to measure % SD in image 
uniformity, and a chamber with air- and water-filled inserts surrounded by the homogeneous 
activity was used to determine the spillover ratio of activity into air and water (A). A third 
chamber of the phantom contained rods of 1, 2, 3, 4 and 5 mm in diameter which contained 
activity and these were used to determine recovery coefficients from rods of various sizes (B) 
(Image from Szanda et al., 2011). 
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Table 2.12: Acquisition parameters used for PET imaging of the PET IQ phantom. 

Variable Parameter 
Coincidence mode 1-5 
Count rate mode Normal 
List mode Packet timestamp 
Random sending On 
Length of scan 20 min 

 

Table 2.13: Acquisition parameters used for CT imaging of the PET IQ phantom.  

Variable Parameter 
Number of projections 480 
Scan type Semicircular-Full scan 
Tube voltage 50 kVp 
Exposure time 300 ms 
Zoom Maximum FOV 
Binning 1:4 

 

 Data reconstruction 

CT data was reconstructed using the parameters listed in Table 2.14. PET data was 

reconstructed by systematically varying certain reconstruction parameters, so that the 

optimal reconstruction scenario could be determined. Reconstruction parameters that 

were used for all data reconstructed during the initial analyses are shown in Table 2.15. 

Parameters which were systematically varied to determine their impact on image quality 

are shown in Table 2.16 and these include the coincidence mode, resolution, and number 

of iterations and subsets used for reconstruction. Preliminary analyses investigated 162 

different reconstruction scenarios. The most promising reconstruction parameters 

determined from the initial analyses were a coincidence mode of 1-3, normal resolution 

(voxel size 0.4 mm x 0.4 mm x 0.4 mm) and 4 iterations and 6 subsets. In further analyses 

PET data was reconstructed using these parameters, although now the data was 

investigated to determine the optimal methods for regularisation, randoms correction, 

spike filter and energy window. Data was reconstructed by systematically investigating 

the variables listed in Table 2.17, and resulted in the investigation of a further 10 

reconstruction scenarios. 
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 Table 2.14: Reconstruction parameters used for CT data of the PET IQ phantom. 

Variable Parameter 
Voxel size Medium 
Slice thickness Medium 
Filter size Cosine 
Filter cutoff 100% 

 

Table 2.15: Reconstruction parameters that were used for all PET data reconstructed during 
the initial analyses of the PET IQ phantom. 

Variable Parameter 
Reconstruction mode 3D 
Reconstruction protocol Whole body 
Reconstruction method Tera-Tomo 3D 
Reconstruction box 
dimensions  

x=-30.7/32.4 mm,  
y=-34.6/14.6 mm, 
z=15.5/113.3 mm 

Energy window 400-600 keV 
Detector model Full model 
Regularization None 
Median filtering Iteration count 
Spike filter On 
Randoms correction Delayed window 
AC and scatter On 

 
 

Table 2.16: PET data reconstruction parameters that were systemically varied to assess their 
impact on image quality. *Nucline only perimitted reconstruction using five subsets when the 
data was reconstructed using a coincidence mode of 1-5. 

Variable Parameters investigated 
Coincidence mode 1-3, 1-5 
Resolution (voxel size) Fast (0.6 mm x 0.6 mm x 0.6 

mm), Normal (0.4 mm x 0.4 
mm x 0.4 mm), Fine (0.3 
mm x 0.3 mm x 0.3 mm) 

Iterations 1, 2, 4, 6, 12, 24 
Subsets 1, 2, 3, 5*, 6 
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Table 2.17: PET data reconstruction parameters that were further investigated during more 
detailed analyses.  

Parameter Variable 
Energy window 250-750 keV 
Regularization Low, medium, high 
Spike filter Off 
Randoms correction None, variance reduction 

  

 Data analysis 

Measurements were made from each of the 3 chambers of the phantom, using the NEMA 

test programme in the Nucline software (Figure 2.8). In the central chamber a volume of 

interest (VOI) was placed to determine the % SD in image uniformity. In addition, VOIs 

were placed on rods of 4 different diameters (2, 3, 4, 5 mm) to determine the RC for each 

rod size. Measurements were not made from the rod of 1 mm diameter since this rod 

likely contained crystals, and this may therefore affect both the diameter of the rod and 

the communication of the rod with the homogeneous activity in the rest of the phantom. 

In a further chamber the SOR air/water was measured by placing VOIs on air and water-

filled inserts respectively. vivoQuant™ 2.5 software (inviCRO Ltd, London) was also 

used to determine the total activity (MBq) in the FOV.  
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Figure 2.8: Placement of VOIs using the NEMA test programme. Diagram illustrates the site 
of placement of VOIs to determine image quality in reconstructed PET data. The % SD in image 
uniformity was measured from the central chamber of the phantom, RCs were measured from rods 
of 2-5 mm in an adjacent chamber, although the RC from the rod of 1 mm diameter was not 
measured since this rod likely contained crystals. The SOR air/water was measured from air/water 
filled inserts in another chamber of the phantom. The white circle measured SOR from the air-
filled chamber whereas the blue circle measured SOR from the water-filled chamber. RC-recovery 
coefficient, SOR-spillover ratio, VOI-volume of interest (Figure adapted from Mediso, 2015). 

 

 Optimisation of in vivo 18F-DOPA PET imaging methods using WT 

rats 

 Synthesis of 18F-DOPA 
18F-DOPA was synthesised by Dr. Tashfeen Walton and Dr. Christophe Lucatelli at the 

Clinical Research and Imaging Centre (CRIC) (The University of Edinburgh). The tracer 

was produced using a multi-step nucleophilic fluorination pathway and used the 

TRACERlab MX synthesiser and cassette with the nucleophilic precursor to 18F-DOPA 

(ABX Advanced Biochemical Compounds, PEDP-0062-H). The method involved in the 

tracer synthesis is summarised by Martin et al. (2013), with the final product formulated 

in citrate buffer. 
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 In vivo 18F-DOPA PET imaging experiments 

WT Fischer 344 (F344) rats (n=2) were scanned at 5/6 months of age using 18F-DOPA 

PET imaging to determine the optimal in vivo imaging and analysis methods. General 

anaesthesia was induced and then maintained using gaseous Isoflurane (Abbott 

Laboratories Ltd, B506) in 0.6L/min O₂ and 0.4L/min nitrous oxide (N₂O). The toe pinch 

reflex and the animals’ vital signs were used to assess the depth of anaesthesia. Each rat 

was kept warm on a heated mat (set to 37°C) and their eyes were kept moist using 

Lacrilube ocular lubricant (Allergan, PL00426/0041). 

A 26-gauge cannula (Millpledge, MP06226) was placed in the tail vein of each 

rat. The cannula was flushed using sterile water for injections, then 10 mg/kg Carbidopa 

(Sigma-Aldrich, C1335) and then 10 mg/kg Entacapone (Sigma-Aldrich, SML-0654) 

were administered intravenously via the cannula to prevent the peripheral metabolism of 
18F-DOPA by AADC and COMT respectively. Solutions of Carbidopa and Entacapone 

were prepared in 10% ethanol in sterile water for injections, and were heated and 

vortexed until Carbidopa and Entacapone dissolved into solution, then cooled again prior 

to use. The cannula was flushed after injection of these substances and the patency of the 

cannula was checked for radiotracer injection. 

The animal was placed on a Multicell™ rat imaging bed (Mediso) which was 

heated to 38°C, and Red Dot™ neonatal ECG electrodes (3M™, 2282E) were attached to 

the animals’ paws to measure the ECG. Both a rectal thermometer and respiratory probe 

were placed in situ to monitor animal temperature and respiratory rate during imaging. 

Activity was dispensed from a stock vial which was kept behind a radiation shield and 

lead brick shielding, and into a syringe which was surrounded by a tungsten syringe 

shield. Activity was measured in the syringe using a CRC-25R Dose Calibrator which 

was set to measure the radioisotope Fluorine-18. Thirty minutes after the injection of the 

inhibitors, 29.5 +/- 7.0 MBq (mean +/- SD) of 18F-DOPA was injected intravenously as a 

bolus into the tail vein, and dynamic PET imaging commenced. The catheter was flushed 

using sterile water for injection, and the activity in the empty syringe used for injection 

was measured using the Capintec. The amount of activity injected was determined and 

was decay corrected. The time of injection was also recorded. Dynamic PET imaging 

lasted a total of 4 hours in duration, so that various parameters could be investigated for 

kinetic modelling including the use of either long or short durations of data for analysis. 

Apart from one animal which suffered from a short period of apnoea during anaesthesia, 

the animals remained relatively still during anesthesia and the PET scans were unaffected 
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by animal movement. At the end of the experiment the animal was sacrificed using an 

overdose of Isoflurane, and death was confirmed by cervical dislocation (in vivo work 

was by Dr. Adriana Tavares, The University of Edinburgh). 

 

 Acquisition of PET and CT data 

PET/CT data was acquired using Nucline™ v2.01 acquisition software. A scout view CT 

image was acquired prior to radiotracer injection using the parameters listed in Table 

2.18. This CT image ensured correct positioning of the animal for PET imaging and 

allowed the FOV to be set for PET acquisition. The FOV typically extended from the 

most rostral part of the olfactory bulbs to the most caudal part of the heart.  

 

Table 2.18: Parameters used to obtain the scout view CT images of rats. The scout view CT 
aided the positioning of the animal and allowed setting of the FOV for dynamic PET imaging. 

Variable Parameter 
View direction Side view 
Tube voltage 55 kVp 
Exposure time 300 ms 
Zoom Maximum FOV 

 

Radiotracer information was updated in Nucline to include isotope and ligand 

information (which were 18F and F-DOPA respectively), the amount to be injected 

(MBq), and the time of injection. Dynamic PET imaging commenced on the injection of 

the radiotracer and used the parameters listed in Table 2.19. PET imaging comprised two 

sequential scans each of 2 hours’ duration. Following dynamic PET imaging, CT data 

was acquired using the parameters listed in Table 2.20. 

 

Table 2.19: Parameters used for dynamic PET imaging of rats. PET imaging commenced after 
bolus injection of 18F-DOPA into the tail vein, and comprised two sequential scans each of 2 
hours’ duration.   

Variable Parameter 
Coincidence mode 1-5 
Count rate mode Normal 
Coincidence time window 5 ns 
Acquisition time 2 x 2 hours 
List mode type Packet timestamp 
Enable random sending On 
Axial overlap 50% 
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Table 2.20: Parameters used for CT imaging of rats. CT data was acquired following 
completion of dynamic PET imaging. 

Parameter Selected criterion 
Trajectory type Semicircular 
Zoom Maximum FOV 
Number of projections 480 
Tube voltage 55 kVp 
Scan type Full scan 
Exposure time 300 ms 
Binning 1:4 

 

 Reconstruction of in vivo 18F-DOPA PET data 

Parameters for the reconstruction of in vivo PET data were adapted from methods 

determined to be optimal by the reconstruction of PET phantom data. Both the PET and 

CT data were selected for reconstruction, as the CT image was necessary for attenuation 

and scatter corrections. The reconstruction range was defined using information from the 

co-registered CT scan and was set to include the body of the rat from the olfactory bulbs 

to the most caudal aspect of the heart, and the scanner bed. The parameters used for 

reconstruction are listed in Table 2.21. Compared with the phantom experiments, the 

reconstruction was now dynamic instead of wholebody, and data was reconstructed into a 

series of frames which were 6 frames of 30 sec, 3 frames of 60 sec, 2 frames of 120 sec, 

22 frames of 300 sec (PET scan 1) and 12 frames of 600 sec (PET scan 2).    
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Table 2.21: Parameters used for the reconstruction of PET data from rats. Parameters from 
reconstruction of in vivo data were adapted from methods determined to be optimal by the 
reconstruction of PET phantom data. 

Variable Parameter 
Reconstruction mode 3D 
Reconstruction protocol Dynamic 
Reconstruction method TeraTomo3D 
Energy window 400-600 keV 
Detector mode Full model 
Regularisation Normal 
Resolution Normal 
Coincidence mode 1-3 
Median filtering Iteration count 
Spike filter On 
Voxel size 0.4 mm x 0.4 mm x 0.4 mm 
Iterations 4 
Subsets 6 
Randoms correction Delayed window 
Attenuation correction and 
scatter 

On 

 

 Data analysis and kinetic modelling 

Images were analysed using PMOD 3.409 software (PMOD Technologies LLC) and a 

hand-drawn template. This image analysis (PMOD) was completed by both Dr. Adriana 

Tavares and Victoria Morley, then all further data analysis was completed by Victoria 

Morley. Data from the 2 x 2 hour PET files was merged. Images were then checked for 

animal movement, and the number and duration of frames was checked.  

To produce representative PET images of the striatum in the coronal and 

transverse planes (for display purposes) the PET images were averaged over frames 1-33 

and a 1 mm x1 mm x 1 mm Gaussian filter was applied. Standarised uptake value (SUV) 

images were then generated using the bodyweight of each rat and the activity injected. 

Images were also taken of co-registered CT data, and both these PET and CT images 

were used to generate the fused PET-CT images. 

VOIs were made using the PET images from the first WT rat, with co-registered 

CT images used to provide additional anatomical landmarks. To aid the visualisation of 

the striatum and cerebellum the dynamic PET images were averaged over the first 28 

frames, and a 1 mm x 1mm x 1 mm Gaussian filter was applied. VOIs were made by 

drawing regions of interest (ROI) onto each image slice, then combining the ROIs to a 

VOI. The VOI for the left striatum was made first using this method, then the VOI was 
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mirrored to create the VOI for the right striatum which was then moved into position. A 

VOI was made for the cerebellum, and a separate VOI called striatum merge was formed 

after combining VOIs from the left and right striatum together. The final set of VOIs 

were left striatum, right striatum, cerebellum and striatum merge. The same VOIs were 

used for the analysis of data from the second WT rat, and they were only moved into 

position on the striatum and cerebellum.  

VOIs were applied to the dynamic PET data and were used to determine TACs 

(kBq/ml) for each VOI which represented the relative uptake of 18F-DOPA into the target 

VOIs. SUV (g/ml) TACs were calculated in Excel using the animals’ bodyweight and the 

activity that was injected at the start of the experiment; 

 

						SUV	ൌ	activity	concentration	in	the	target	VOI	ሺkBq/mlሻ/	
ሺdecay	corrected	amount	of	18F‐DOPA	injected	ሺMBqሻ/weight	of	the	rat	ሺkgሻሻ			(2.4)  

 

The ratio of SUV TACs for the striatum to the cerebellum (SUVr) were calculated; 

 

SUVr	ൌ	SUV	in	the	target	VOI	ሺg/mlሻ/SUV	in	the	cerebellar	VOI	ሺg/mlሻ           (2.5) 

 

SUVr TACs were then inspected to determine the phase of pseudo-equilibrium which is 

when the slope of the curve is close to zero (Tavares et al., 2013; Barret et al., 2015) and 

where the rates of exchange between the specifically and non-specifically bound 

compartments are approximately equal. Pseudo-equilibrium was determined to occur 

between 47.5 and 87.5 minutes, and during this phase the mean of the SUVr TAC data 

was calculated.  

TACs (kBq/ml) were used for kinetic modelling by employing the Patlak 

reference tissue model and the Logan reference tissue model. Kinetic modelling of data 

was performed for the left and right striatum, and striatum merge, with the cerebellum 

used as a reference tissue region. The Patlak reference tissue model was used to 

determine the Ki of 18F-DOPA in the striatum. Data was first analysed using 60 min of 

data (t* of 10 min) so that data could be compared with results from 18F-DOPA PET 

imaging experiments in Sprague Dawley rats (Kyono et al., 2011). Results from Patlak 

graphical analysis were checked to ensure good fitting of the data with the model. Kinetic 

modelling was then repeated using 45 and 90 mins of data (t* of 10 min). The Ki of 18F-

DOPA for the left and right striatum, and striatum merge from 60 min analyses was 
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plotted (x-axis) relative to results from the 45 min and 90 min analyses (y-axis). Data was 

analysed using linear regression which was constrained to the origin, and the coefficient 

of determination (R2) and proportional systematic error (slope) were determined. The 

Logan reference tissue model was used to determine the distribution volume ratio (DVR) 

of 18F-DOPA. Data was first analysed using 180 min of data (t* of 30 min) since similar 

methods have been used to analyse 18F-DOPA PET data from rats (Walker et al., 2013a; 

Walker et al., 2013b). Results from graphical analysis were again checked to ensure good 

fitting of the data by the model. Kinetic modelling using Logan graphical analysis was 

then repeated using 60, 90, 120 and 240 min of data (t* of 30 min). The DVR of 18F-

DOPA for the left and right striatum, and striatum merge from 180 min analyses was 

plotted (x-axis) relative to results from 60, 90, 120 and 240 min analyses (y-axis). Data 

was analysed using linear regression which was constrained to the origin, and the R2 and 

slope of the regression line were determined. 

The EDVR of 18F-DOPA was also determined using the Logan reference tissue 

model. The TAC (kBq/ml) for the cerebellum was subtracted from the TACs for left 

striatum and right striatum and striatum merge before kinetic modelling (Walker et al., 

2013a; Walker et al., 2013b). Data was analysed using 180 min of data (t* of 30 min), 

and then kinetic modelling was repeated using 120 min data (t* of 30 min). Asymmetry 

in the EDVR of 18F-DOPA was investigated from results which analysed 180 min of data 

(Walker et al., 2013b). Asymmetry was calculated using the EDVR determined for the 

ipsilateral and contralateral striatum; 

 

Asymmetry	EDVR	ൌ	ሺEDVR	contralateral	–	EDVR	ipsilateralሻ/EDVR	contralateral    (2.6) 

 

Asymmetry EDVR was also calculated using results from the 120 min analysis.   

The inverse of the EDVR of 18F-DOPA indicates EDT (Sossi et al., 2002) EDT was 

estimated using the EDVR of 18F-DOPA determined from the 120 min and 180 min 

analyses;  

 

EDT	ൌ	1/EDVR                                                    (2.7) 
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   18F-DOPA PET imaging experiments in WT and G51D/+ rats 

   Longitudinal scanning of G51D rats 

Female and male WT and G51D/+ rats were analysed using 18F-DOPA PET imaging at 5, 

11 and 16 months of age (n=4 per genotype per age-group). Rats were imaged twice at 11 

and 16 months of age, whereas the 5 month old rats used for experiments were different 

animals. 

 

   Radiotracer synthesis and in vivo PET imaging  
18F-DOPA was synthesised by Dr. Tashfeen Walton and Dr. Christophe Lucatelli (CRIC, 

The University of Edinburgh). The method used for radiotracer synthesis was as 

previously stated in Section 2.3.3.1, and with the tracer initially formulated in citrate 

buffer although this was later changed to PBS. Rats were imaged using the methods used 

for WT rat optimisation experiments, although with some modifications. The activity of 
18F-DOPA that was injected was 18.5 +/- 7.1 MBq (mean +/- SD). Dynamic PET imaging 

comprised one scan of 2 hours’ duration. The rats were recovered after each PET imaging 

experiment for longitudinal PET imaging experiments or for perfusion fixation to obtain 

tissue for histological experiments. 

The in vivo PET imaging experiments were performed by Dr. Adriana Tavares, 

Carlos Corral Alcaide and Victoria Morley. Victoria Morley produced rats of the desired 

age and genotype for experiments, monitored and recovered the rats from the imaging 

experiments and monitored the health of rats over the course of aging for longitudinal 

imaging experiments. Dr. Adriana Tavares performed in vivo work including anaesthesia, 

radiotracer injection and PET imaging using the 11 month WT and G51D/+ rats. The 

remaining in vivo work in this thesis was performed by Carlos Corral Alcaide and 

Victoria Morley. Both Carlos Corral Alcaide and Victoria Morley anaesthetised the rats 

and injected the inhibitor drugs prior to the imaging experiment. Carlos Corral Alcaide 

dispensed and injected the radiotracer 18F-DOPA, and operated the PET/CT camera. 

 

   Recovery of rats following imaging experiments  

Immediately following PET/CT imaging rats were given 0.9 ml of water for injection 

subcutaneously to aid hydration, and were provided with soft mash. Rats were monitored 

regularly following imaging, which involved taking regular weight measurements and by 

using a clinical scoring scheme designed to assess posture, coat, movement, and eating 

and drinking. Animal health monitoring was also undertaken on a weekly basis to 
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monitor weight, appearance, behaviour, clinical signs, and to determine body condition 

score. 

 

 Reconstruction of PET data, analysis and kinetic modelling 
18F-DOPA PET data was reconstructed using the methods used for experiments in WT 

rats with the modification that data was only reconstructed into frames comprising 6 

frames of 30 sec, 3 frames of 60 sec, 2 frames of 120 sec and 22 frames of 300 sec. The 

majority of the PET imaging data was reconstructed by Victoria Morley, however the 

data was also reconstructed latterly by Carlos Corral Alcaide. 

Data was again analysed using PMOD software. Dr. Adriana Tavares was 

involved in the preliminary analysis of the image data from 11 month WT and G51D/+ 

rats using PMOD. This analysis was completed by Victoria Morley who also analysed the 

remaining image data using PMOD and conducted all other data analysis. 

To produce representative PET images of the striatum (for display purposes) 

from WT and G51D/+ rats at 5, 11 and 16 months of age in the coronal plane, PET 

images were first averaged over frames 1-33 then a 1 mm x 1 mm x 1 mm Gaussian filter 

was applied. SUV images were generated using the bodyweight of each rat and the 

activity injected. Images were also taken of co-registered CT data, and both these PET 

and CT images were used to generate the fused PET-CT images. 

Data analysis also used the hand-drawn template (left and right striatum, striatum 

merge, cerebellum) that was used for the analysis of data from WT rats. VOIs were first 

placed on the striatum and the cerebellum using images that had been averaged and 

smoothed, then these VOIs were subsequently applied to the dynamic PET data. The 

VOIs were used to extract TACs (kBq/ml), and these were processed to yield SUV (g/ml) 

and SUVr TACs. Mean SUVr was investigated during pseudo-equilibrium by 

determining the mean of SUVr TAC data between 47.5 and 87.5 min. Kinetic modelling 

of data was performed using the Patlak reference tissue model (60 min of data, t* of 10 

min) and the Logan reference tissue model (120 min data, t* of 30 min) to determine the 

Ki and DVR of 18F-DOPA respectively, and used the cerebellum as a reference tissue 

region. The EDVR of 18F-DOPA was also calculated using the Logan reference tissue 

model (120 min of data, t* of 30 min) where the TAC (kBq/ml) for the cerebellum was 

subtracted from regions of the striatum before running the analysis. EDT and asymmetry 

in the EDVR of 18F-DOPA were investigated as previously described in WT rat 

optimisation experiments (Section 2.3.4.5). 
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2.5 Statistical analysis 

Measurements of the Ki and DVR of 18F-DOPA from WT rats using different parameters 

for kinetic modelling were analysed using linear regression which was constrained to the 

origin. The slope of the regression line and coefficient of determination (R2) were 

calculated for these analyses.  
18F-DOPA PET imaging data and histological data (except analyses of alpha-

synuclein IHC) from WT and G51D/+ rats are presented as the mean +/- SEM. The SEM 

has been used to demonstrate the accuracy with which, the sample measured represents 

the population. 

Results from G51D/+ rats were analysed relative to results from age-matched WT 

rats (where appropriate) by using a two-sample t-test. This method was used since rats 

from different colonies were sometimes used for histology experiments and since the 

same rats could not be measured at all 3 time-points using 18F-DOPA PET due to 

technical issues with the PET camera and because some 18F-DOPA PET imaging 

experiments had to be repeated due to inadequate tracer injection. For statistical testing 

using the two-sample t-test, the null hypothesis would be rejected when p<0.05.  

Limitations associated with the breeding of animals meant that n=4 per group per 

time-point. Following the completion of the experiments in the study, G*Power version 

3.1.9.2 (Faul et al., 2007) was used for power analyses. The first parameter that was 

investigated using G*Power was sensitivity, and this involved computing the required 

effect size for t-test using two independent means, a sample size of 4 per group, α=0.05 

and power=0.95. Data obtained from the novel G51D rat model was then used to 

determine the effect size and power that was achieved for histology and PET imaging 

experiments performed in this study. Results are shown for experiments where the p 

value from the two-sample t-test approached significance i.e. OD of TH staining at 

Bregma 0.00mm in 17 month old rats, Ki of 18F-DOPA in 5 month old rats, and DVR, 

EDVR and EDT of 18F-DOPA in 16 month old rats. The effect size calculated was then 

used to investigate the ‘ideal’ sample size required for histology and 18F-DOPA PET 

imaging experiments using WT and G51D/+ rats where α=0.05 and power=0.95, since 

this may indicate if further histology and 18F-DOPA PET imaging experiments are 

required. 
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 - Neuropathology of G51D rat brains 

3.1 Introduction 

A diagnosis of PD can be confirmed at autopsy, and is made following the observation of 

certain neuropathological hallmarks, including the loss of pigmented dopaminergic cell 

bodies from the SNpc and the deposition of aggregates of alpha-synuclein protein in the 

form of Lewy bodies (Gibb and Lees, 1988; 1989; Spillantini et al., 1997).  

Studies have shown that the numbers of pigmented cell bodies in the SNpc of 

patients with PD are significantly reduced when compared with healthy controls (German 

et al., 1989; Goto, Hirano and Matsumoto, 1989; Fearnley and Lees, 1991; Pakkenberg et 

al., 1991; Paulus and Jellinger, 1991; Ma et al., 1995; 1997; Ross et al., 2004). 

Dopaminergic neurons in the SNpc give rise to projections which innervate the striatum 

via the nigrostriatal pathway (Moore and Bloom, 1979). In patients with PD, significantly 

decreased levels of dopamine have also been identified in the striatum, and the posterior 

putamen has been implicated as the brain region that is most affected (Bernheimer et al., 

1973; Rinne and Sonninen, 1973; Lloyd, Davidson and Hornykiewicz, 1975; Riederer 

and Wuketich, 1976; Hornykiewicz and Kish, 1986; Kish, Shannak and Hornykiewicz, 

1988). IHC experiments have identified that the numbers of TH positive neurons in the 

striatum of patients with PD are 6 times lower than in healthy controls (Huot, Lévesque 

and Parent, 2007). Furthermore, the OD of TH immunostaining in the caudate and 

putamen are 55 % and 54% lower respectively in PD patients compared with healthy 

controls (Bedard et al., 2011). Deficiencies in TH immunostaining occur more rapidly in 

early PD (for example cases of 1-3 years’ duration) than in more established disease that 

has affected the patient for more than 4-5 years (Kordower et al., 2013). In patients with 

PD, inclusions of alpha-synuclein have been identified in neurons of the SNpc (Gibb and 

Lees, 1989; Jellinger, 2003; 2004; Kalaitzakis et al., 2008). In addition, alpha-synuclein 

positive inclusions and neuritic changes have been identified in the striatum of patients 

with PD, however the number of cases affected by abnormal alpha-synuclein pathology 

has been shown to vary widely from 11% (Jellinger, 2004) to 83.3% and 87.5% 

(Parkkinen et al., 2005; Mori et al., 2008). 

 

3.2 A novel approach to modelling Parkinson’s disease 

Patients with G51D mutation in alpha-synuclein present with a severe clinical phenotype 

involving deficits in normal motor function, along with the development of pyramidal 

signs, dementia, visual hallucinations and autonomic dysfunction (Lesage et al., 2013; 
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Tokutake et al., 2014; Kiely et al., 2015). Furthermore, this presentation is thought to be 

more severe than PD resulting from other mutations in alpha-synuclein including patients 

with triplication of alpha-synuclein (Kiely et al., 2015). Semi-quantitative analyses of 

neuronal cell numbers in the brains of patients with the G51D mutation in alpha-

synuclein have identified severe neuronal loss in the SNpc (Lesage et al., 2013; Kiely et 

al., 2015). This may be accompanied by the loss of dopaminergic terminals which 

innervate the striatum.  

A rodent model of G51D PD may replicate these neuropathological findings, and 

dopaminergic dysfunction in the striatum may result from neuronal cell loss in the SNpc. 

Dopaminergic nerve terminal integrity in the striatum of the G51D rat model could be 

studied using TH IHC, as well as 18F-DOPA PET imaging which is a sensitive tool for 

assessment of in vivo dopaminergic function in the brain, and due to the larger size of the 

rat brain this species would be preferred for these experiments. A genetic rat model of PD 

with the G51D mutation in alpha-synuclein would have advantages over the chemical 

lesion models of PD that have previously been studied using IHC and 18F-DOPA PET 

imaging, since this genetic model would precisely replicate a cause of PD in humans, in 

contrast to chemical lesion models of PD which have limited relevance to the underlying 

cause of PD in humans and do not precisely replicate the underlying neuropathology 

since they lack Lewy bodies for example (Grealish et al., 2008; Duty and Jenner, 2011). 

Patients with the G51D mutation in alpha-synuclein have an G > A heterozygous 

mutation at base 152, within codon 51 which results in a glycine to aspartic acid amino 

acid change (Kiely et al., 2013; Lesage et al., 2013). Rodent alpha-synuclein protein is 

95% homologous to human alpha-synuclein, and a glycine is present at position 51 in 

both humans and rats. However, the DNA sequence at codon 51 is not homologous in the 

two species and comprises GGA in rats and GGT in humans. In order to generate a rat 

model with a G51D mutation in alpha-synuclein a two bp change is necessary, and GGA 

should be changed to GGT.  

By generating rats with a G51D heterozygous mutation in alpha-synuclein 

(G51D/+) the same mutation that is found in patients with PD will be replicated in the rat. 

G51D rats were generated in collaboration with Dr. Tomoji Mashimo and Yayoi Kunihiro 

(Kyoto University) using the recently identified CRISPR/Cas9 technology. To generate 

the mutant rats, gRNA, hCas9 mRNA, and the 90-bp ssDNA donor oligonucleotide were 

injected into the pronucleus of F344/Stm rat zygotes. Sanger sequencing was used to 

determine the genotypes of F0 founder rats. Of 11 founders analysed, six rats were WT 
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and five rats had mutations in SNCA, although only one rat had the desired GA to AT 

base pair mutation (G51D/+). Figure 3.1 shows results from Sanger sequencing of one 

WT and one G51D/+ founder rat (Data from Dr. Tomoji Mashimo). A different F0 

founder rat had an 11-bp deletion in SNCA (Delta -11), which removed the exon 3 splice 

donor and this rat was thought to have a null allele for SNCA. Therefore, rats with the 

G51D and Delta -11 alleles were mated and germline transmission of both alleles was 

observed in F1 founder rats. However, further protein studies using brain tissue from the 

F0 founder rat with the Delta -11 allele indicated that this rat did not have a null allele but 

instead produced a smaller alpha-synuclein protein (data not shown). Therefore, further 

studies have focussed only on rats with the G51D allele. 

 

 

Figure 3.1: Sanger sequencing of a fragment of SNCA shows the genotypes of two F0 founder 
rats generated using CRISPR/Cas9 technology. The DNA sequence at codon 51 was GGA in 
the WT (+/+) rat, and GGA/GAT in the G51D/+ rat. The amino acid at position 51 was glycine in 
the WT rat, and glycine/aspartate in the G51D/+ rat (Data from Dr. Tomoji Mashimo, Kyoto 
University). 

 

Eight F1 founder animals arrived at The University of Edinburgh and passed the 

quarantine screening procedures. However, these animals were unable to be released from 

quarantine since they could have been carriers of a bacterium that causes Tyzzer’s disease 

in rats, since there had been a recent history of this disease at Kyoto University. Rats 

from this colony could not be used for in vivo 18F-DOPA PET experiments, but could be 

perfused for neuropathological experiments. The G51D rat colony was required to be re-

established by embryo transfer rederivation at the Little France site (performed by Dr. 

Matthew Sharp and Julie Thomson, The University of Edinburgh), to perform further 

breeding of rats and to use the animals for 18F-DOPA PET imaging. The recipient females 

littered down producing 30 pups, of which 29 survived.  

Rats were genotyped using a PCR and restriction enzyme digest with BspHI 

(developed by Dr. Karamjit Singh Dolt, The University of Edinburgh), since the G51D 

mutation introduces a new BspHI restriction site into exon 3 of alpha-synuclein. Pups 
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with WT and G51D/+ genotypes were distinguished based on the pattern of the bands 

observed following agarose gel electrophoresis. gDNA from G51D/+ rats was partially 

digested by BspHI, whereas gDNA from WT rats was undigested. Figure 3.2a illustrates 

the DNA sequence of exon 3 of rat alpha-synuclein. The sequence at codon 51 (red) is 

shown for WT rats and those with the G51D mutation in alpha-synuclein, and the location 

of the new BspHI restriction site is illustrated for G51D mutated alpha-synuclein. Figure 

3.2b shows results from genotyping of the first litters of pups produced by embryo 

transfer rederivation. Some of these WT and G51D/+ rats were used for experiments, 

whilst others were used for breeding more WT and G51D/+ rats.  
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Figure 3.2: Site of the new BspHI restriction site in exon 3 of G51D alpha-synuclein (a), and 
results from genotyping of the first litters of rats born at the Little France colony following 
embryo transfer rederivation (b). The DNA sequence at codon 51 of rat alpha-synuclein (red) is 
shown for WT and G51D mutated alpha-synuclein, with the site of the new BspHI restriction site 
in G51D alpha-synuclein also highlighted. The sequence shows one strand of DNA from exon 3 in 
the 5’ to 3’ direction. An exon 3 PCR and digest with BspHI was used for genotyping, with 
genotypes of rats identified based on the banding pattern of DNA following agarose gel 
electrophoresis. In the presence of the G51D mutation the 275-bp PCR product was digested to 
152 and 123-bp. In WT and G51D/+ rats the PCR products were undigested and partially digested 
respectively. Genotyping of rederived rats identified 15 WT rats (#1, 2, 3, 5, 6, 7, 9, 11, 15, 16, 18, 
19, 20, 23, 29) and 13 G51D/+ rats (#4. 8, 10, 12, 13, 17, 21, 22, 24, 25, 26, 27, 28). #14 was run 
on a different gel due to the shape of the well on the gel, but was WT. M-100-bp ladder. 

 

3.3 Normal tissue architecture in the striatum 

The striatum receives projections from subcortical structures such as the SNpc, as well as 

cortical structures including the prelimbic cortex and sensory and motor cortical areas 

(Gerfen, 1984; Lanciego, Luquin and Obeso, 2012). Furthermore, projections from the 

striatum innervate structures including the globus pallidus and substantia nigra pars 

reticulata (Gerfen, 1984; Lanciego, Luquin and Obeso, 2012). Projection neurons of the 

striatum are known as medium spiny neurons and constitute 90% of cells in the striatum, 

whereas the remaining 10% of neurons are local interneurons which have smooth 

dendrites (Smith and Bolam, 1990; Lanciego, Luquin and Obeso, 2012). These 

interneurons act to modulate the neuronal activity of both the projection neurons and the 

different interneuron subtypes (Smith and Bolam, 1990; Lanciego, Luquin and Obeso, 
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2012). Projection neurons from the cortex to the thalamus/midbrain/pons also course 

through the striatum giving rise to either circular or oval structures in the striatal tissue, 

and these structures have been identified as corticofugal fibres, and comprise 

corticothalamic, corticotectal and corticopontine neurons, and also corticospinal motor 

neurons (Gerfen, 1984; Molyneaux et al., 2007; Greig et al., 2013). Tract tracing 

experiments in the rat have demonstrated that innervation of the striatum by 

dopaminergic neurons of the SNpc is provided via the nigrostriatal pathway, and that 

these projections give rise to dense terminals which are demonstrated using TH IHC 

(Hökfelt et al., 1977; Fallon and Moore, 1978; Prensa and Parent, 2001; Lopez-Real et 

al., 2003). However, a very small number of TH positive neurons that are intrinsic to the 

striatum have also been identified (Tashiro et al., 1989; Lopez-Real et al., 2003). 

 

3.4 The overall design of neuropathological experiments 

The approach to the analysis of neuropathological abnormalities in patients with G51D 

PD has involved a gross examination of the brain to identify abnormalities such as 

atrophy (Kiely et al., 2013). In this instance, histological stains including H&E and luxol 

fast blue/cresyl violet to investigate neuronal cell loss, alongside IHC experiments in 

order to characterise alpha-synuclein pathology in the brains of patients by using semi-

quantitative analyses (Kiely et al., 2013; 2015; Lesage et al., 2013).  

Macroscopic examination of the brain from one patient with the G51D mutation 

in alpha-synuclein identified atrophy of several brain areas including the caudate and 

putamen, and there was also a noticeable loss of normal pigmentation from the SNpc 

(Kiely et al., 2013). In studies by Lesage et al. (2013) and Kiely et al. (2015) neuronal 

cell loss from the SNpc was severe, and this may lead to an associated degeneration of 

dopaminergic fibres that innervate the striatum. Interestingly, despite the volume loss 

from the caudate and putamen that was reported for one G51D PD patient by Kiely et al. 

(2013), the severity of neuronal loss from the striatum of a cohort of three patients with 

G51D PD including the one patient originally studied by Kiely et al. (2013) showed this 

to be only mild or indeed not discernible (Kiely et al., 2015). However, an analysis of 

four patients with G51D PD by Lesage et al. (2013) concluded in their study that 

neuronal cell loss from the striatum was severe. Findings from studies of alpha-synuclein 

staining in the striatum of patients with G51D PD have also produced mixed results. The 

cohort studied by Kiely et al. (2015) found extensive alpha-synuclein threads in the 

caudate and putamen, and frequently moderate levels of globular and diffuse inclusions. 
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Annular/crescent and neurofibrillary tangle-like inclusions were found in some cases but 

not others (Kiely et al., 2015). The patients studied by Lesage et al. (2013) however, 

showed only a mild level of dystrophic neurites in the striatum, and Lewy bodies were 

absent from this brain region. 

Experiments initially used WT rat brain tissue in order to optimise the methods 

for tissue processing and immunohistochemistry which would be used to study TH and 

alpha-synuclein staining in the striatum of G51D rats.  Various combinations of primary 

antibodies (anti-TH and anti-alpha-synuclein) and the secondary antibody (HRP-

conjugated) were tested in order to determine the optimal antibody dilutions for staining. 

Non-specific staining was investigated by using several control experiments. The optimal 

levels for IHC in G51D rat brains were evaluated by performing TH IHC on serial 

coronal brain tissue sections which were taken from the whole extent of the striatum.  

Since advanced age is a major risk factor for the development of PD, brain tissue 

from WT and G51D/+ rats was evaluated over the course of aging. The G51D rat model 

is a previously uncharacterised rat model of PD, thus three time-points (5, 10 and 17 

months) were used to investigate potential temporal changes in neuropathological 

markers within the tissue. Rats were not studied beyond 18 months of age due to the 

increased likelihood of confounding diseases such as cancers at very old age. The brain 

tissue from rats was first evaluated to determine any patterns of atrophy, by calculating 

the brain to bodyweight ratio of tissue specimens. Sections were then stained at Bregma 

1.56 mm and Bregma 0.00 mm using cresyl violet in order to evaluate the tissue 

architecture in the striatum, and a particle count function in Image J software was used to 

estimate cell density. Sections from these two levels were then stained using the 

optimised methods for TH and alpha-synuclein IHC. The OD of TH immunostaining was 

determined in the caudate-putamen of sections, and asymmetry in the OD of TH staining 

was investigated so that results could be compared with findings from 18F-DOPA PET 

imaging. Sections stained for alpha-synuclein were analysed using semi-quantitative 

methods, in order to characterise alpha-synuclein staining in cell somata and nerve 

terminals in the striatum. All sections that were used for staining were taken as close as 

possible to Bregma 1.56 mm and Bregma 0.00 mm, and therefore this terminology is used 

to differentiate the two levels at which staining was performed. 
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 Tyrosine hydroxylase and alpha-synuclein as target antigens for 

immunohistochemistry 

Colour IHC experiments use specific antibodies along with a colorimetric reaction in 

order to detect specific proteins in tissue, and these experiments can be used to identify 

both the location of a protein of interest in tissue and various cell types, and also how 

much of a protein is present (Divan and Royds, 2013). IHC experiments are most 

commonly indirect and use a specific antibody (primary antibody) to identify a target 

antigen or protein of interest, then a second antibody (secondary antibody) to determine 

the sites of primary antibody binding, since the secondary antibody binds to the primary 

antibody. An enzyme linked to the secondary antibody reacts with certain substrates to 

produce a colour precipitate at the site of secondary antibody binding which is then 

identified by the use of light microscopy (Divan and Royds, 2013). The aim of 

experiments in G51D rats was to use IHC to characterise TH and alpha-synuclein staining 

in the striatum. 

TH is a protein which comprises 498 amino acids and is the rate limiting enzyme 

in the synthesis of catecholamines, where it acts to hydroxylate the amino acid tyrosine to 

form L-3,4-dihydroxyphenylalanine (Figure 1.6) (Daubner, Le and Wang, 2011). TH has 

been found in the axons and dendrites of dopaminergic neurons where it associates with 

synaptic vesicles, and TH positive staining has been observed in the striatum of rats 

(Pickel et al., 1975; Pickel, Joh and Reis, 1976; Hökfelt et al., 1977). Noradrenergic 

neurons also express the enzyme TH, however the intensity of TH staining is much lower 

in noradrenergic than in dopaminergic neurons, and furthermore TH staining in 

noradrenergic neurons is typically localised in the major noradrenergic nuclei of the 

medulla and pons, rather than in noradrenergic nerve terminals (Pickel et al., 1975; 

Pickel, Joh and Reis, 1976; Hökfelt et al., 1977).  

Experiments analysing novel rodent models of PD have used TH IHC to 

investigate the integrity of dopaminergic terminals in the striatum (Cannon et al., 2013; 

Nuber et al., 2013; Taylor et al., 2014; Chen et al., 2015; Perren et al., 2015). There has 

been shown to be a good correlation between the topographical pattern of TH staining 

and the uptake 18F-DOPA by the striatum (Kyono et al., 2011). Both TH and the enzyme 

AADC (which plays a key role in the metabolism of 18F-DOPA) are enzymes involved in 

the synthesis of dopamine in the brain (Figure 1.6). Therefore, evaluation of these two 

enzymes using 18F-DOPA PET imaging and IHC provides important but slightly different 

information concerning the integrity of dopaminergic terminals in the striatum. 
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Alpha-synuclein is a protein which comprises 140 amino acids and is thought to 

play a role in the regulation of synaptic plasticity, synaptic vesicle pools, SNARE-

complex assembly, tyrosine hydroxylase activity and dopaminergic function (George et 

al., 1995; Abeliovich et al., 2000; Murphy et al., 2000; Cabin et al., 2002; Perez et al., 

2002; Baptista et al., 2003; Burré, 2015). IHC and western blotting experiments using rat 

brain tissue have identified that alpha-synuclein localises to the nucleus, as well as 

presynaptic nerve terminals which form punctate structures in the caudate-putamen (Mori 

et al., 2002; Andringa et al., 2003; Yu et al., 2007). Electron microscopic studies have 

identified that alpha-synuclein localises to bouton-like structures at nerve terminals and is 

often closely associated with vesicle membranes (Totterdell, Hanger and Meredith, 2004). 

Tract tracing studies have provided evidence for alpha-synuclein presence in both 

dopaminergic nigrostriatal nerve terminals and glutamatergic corticostriatal nerve 

terminals in the striatum (Totterdell and Meredith, 2005).  

In addition, some studies of the rat brain have identified that neuronal cell somata 

stain positively for alpha-synuclein, but only in restricted brain regions (Li, Jensen and 

Dahlström, 2002; Mori et al., 2002; Andringa et al., 2003). Andringa et al. (2003) 

characterised alpha-synuclein staining in the Sprague Dawley rat brain. Alpha-synuclein 

positive cell somata were identified in the cortex, cholinergic forebrain, hypothalamus, 

SNpc and dorsal motor nucleus of the vagus, although no neuronal somata in the striatum 

were found to express alpha-synuclein (Andringa et al., 2003). Thus it was concluded that 

the striatum does not contain any cells which intrinsically express alpha-synuclein 

(Andringa et al., 2003). Studies by Li, Jensen and Dahlström (2002) and Mori et al. 

(2002) in Sprague Dawley and Wistar rats respectively also failed to identify alpha-

synuclein positive cell somata in the caudate-putamen, however they did identify 

positively stained neuronal somata in the olfactory bulb, cortex, hypothalamus, SNpc and 

dorsal motor nucleus of the vagus.  

Emmer et al. (2011) and Delenclos et al. (2014) used semi-quantitative analyses 

of alpha-synuclein staining in the brain to characterise novel rodent models of PD. In a 

mouse model overexpressing human WT alpha-synuclein (under the control of the Thy1 

promoter), accumulation of alpha-synuclein was found in cell somata of the caudate-

putamen in only a fraction of mice (Delenclos et al., 2014), however Emmer et al. (2011) 

did not describe alpha-synuclein staining in the striatum. In two BAC transgenic rat 

models of PD, aggregates of alpha-synuclein were found in nerve terminals of the 
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striatum, and these are termed dystrophic neurites (Cannon et al., 2013; Nuber et al., 

2013). 

 

 Approach to sectioning and immunostaining of histological 

specimens 

Experiments used 40 µm thick coronal cryosections of the brain that included the 

caudate-putamen. IHC used free-floating methods, since the mounting of sections after 

staining with these methods was good, and sections were good quality and often free from 

artefacts such as folds or air-bubbles (Figure 3.3). In addition IHC used indirect methods, 

therefore sections were first incubated with the primary antibody (anti-TH or anti-alpha-

synuclein), then the secondary HRP- conjugated antibody to determine sites of primary 

antibody binding. The primary antibody used for TH IHC was a polyclonal antibody 

whereas the antibody used for alpha-synuclein IHC was a monoclonal antibody, and these 

two different types of antibodies each have certain advantages and disadvantages. 

Polyclonal antibodies recognise multiple epitopes of the target antigen, whereas 

monoclonal antibodies recognise just one single epitope (Kim, Roh and Park, 2016). 

Therefore, polyclonal antibodies can have a higher sensitivity than monoclonal 

antibodies, although they can also result in greater background staining (Kim, Roh and 

Park, 2016). IHC experiments incubated sections with primary and secondary antibodies 

at 4°C, and used prolonged incubation times since preliminary experiments indicated that 

this was necessary to allow the antibodies to penetrate the 40 µm thick tissue sections. 

Sites of secondary antibody binding were determined by incubating sections with Vector 

NovaRED substrate, since the HRP that is linked to the secondary antibody reacts with 

Vector NovaRED to produce a red coloured precipitate. Vector NovaRED substrate has 

been shown to offer improved sensitivity compared with methods using conventional 3-

3’-diaminobenzidene (DAB) tablets for development (Vector Laboratories, 2017), and 

preliminary IHC experiments also demonstrated that staining with this substrate was both 

consistent and reliable.  

IHC experiments used a number of treatments to maximise the signal to noise 

ratio, and to ensure the accurate labelling of antigens in tissue. Endogenous peroxidases 

in tissue can result in non-specific staining, since they catalyse the development of the 

Vector NovaRED substrate (Kim, Roh and Park, 2016).  Therefore, sections were 

incubated with a solution of 0.3% H2O2 in order to block these endogenous enzymes. 

Non-specific staining of tissue sections can also result from the binding of the Fc portion 
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of the primary and/or secondary antibodies to tissue, since non-specifically bound 

secondary antibodies catalyse the development of the colour substrate (Kim, Roh and 

Park, 2016). Therefore, sections were incubated with a blocking solution of bovine serum 

albumin and normal serum, following which the antibodies used for staining were diluted 

in blocking solution. Subsequent to the incubation of sections with primary or secondary 

antibody, sections were also washed using a buffer containing 0.1% Triton X-100 

detergent, in order to remove loosely and non-specifically bound antibodies.  

 

 Determining the optimal antibody concentrations for 

immunohistochemistry 

All optimisation experiments used sections from the same WT rat brain. IHC was 

performed on sections containing the striatum (caudate-putamen) which were taken in 

consultation with a rat brain atlas (Paxinos and Watson, 2013). Both the TH primary 

antibody (Millipore, AB152) and alpha-synuclein primary antibody (Cell Signalling, 

D37A6) used for IHC experiments have previously been used for immunostaining of the 

rodent central nervous system (Sato et al., 2011; Breid et al., 2016).  

The aim of preliminary TH IHC experiments was to determine the optimal 

concentration of primary/secondary antibodies, so that good contrast was obtained 

between the striatum which is both the target region and also a positive control for 

immunostaining, and the corpus callosum which is used as a reference region since it is 

devoid of TH positive immunostaining (Carlsson et al., 2007; Rylander et al., 2013; Stott 

and Barker, 2014). After testing a range of primary and secondary antibody dilutions for 

TH IHC (Figure 3.3), the optimal primary antibody dilution was determined to be 1:500, 

and the optimal secondary antibody dilution was 1:2000 (Figure 3.3b). 

The aim of preliminary alpha-synuclein IHC experiments was to determine the 

optimal dilutions of primary/secondary antibodies, and to evaluate the methods for 

staining of alpha-synuclein rich presynaptic nerve terminals in the striatum (Mori et al., 

2002; Andringa et al., 2003; Yu et al., 2007). After testing a range of primary and 

secondary antibody dilutions for alpha-synuclein IHC (Figure 3.4), the optimal primary 

antibody dilution was determined to be 1:500, and the optimal secondary antibody 

dilution was 1:2500 (Figure 3.4b). In further experiments in G51D rats a haematoxylin 

counterstain was used to identify alpha-synuclein staining in the nucleus. 
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Figure 3.3: Determining the optimal primary and secondary antibody dilutions for tyrosine 
hydroxylase immunohistochemistry. Primary antibody dilutions that were tested were 1:300 (a, 
e), 1:500 (b, f), 1:800 (c) and 1:1000 (d). Secondary antibody dilutions that were tested were 
1:2000 (a-d) and 1:2500 (e, f). Using a primary antibody dilution of 1:500 and a secondary 
antibody dilution of 1:2000 (b) intense staining was observed in the TH rich striatum, and there 
was low non-specific staining in the corpus callosum, therefore these antibody dilutions were 
selected for use in further experiments. The negative control involved secondary antibody 
treatment only (g). Scale bar is 2 mm. 

 

 

 

Figure 3.4: Determining the optimal primary and secondary antibody dilution for alpha-
synuclein immunohistochemistry. Primary antibody dilutions tested were 1:300 (a, c) and 1:500 
(b, d), and secondary antibody dilutions tested were 1:2500 (a, b) and 1:3000 (c, d). Using a 
primary antibody dilution of 1:500 and a secondary antibody dilution of 1:2500 (b) strong staining 
with good contrast was observed in the striatum, and these antibody dilutions were selected for use 
in further experiments. Sections in (a) and (d) were deemed to be too dark and lightly stained 
respectively. The negative control involved secondary antibody treatment only (e). Scale bar is 2 
mm. 

 

 Investigation of non-specific staining in the methods used for 

immunohistochemistry 

Several control experiments were undertaken to ensure low non-specific staining by the 

antibodies used for IHC, and the effectiveness of methods used to inactivate endogenous 
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peroxidases in tissue. Control experiments were compared with sections stained using the 

optimal dilutions of primary and secondary antibodies determined for TH and alpha-

synuclein IHC (Figure 3.5a, b). Control experiments involved incubating the sections 

with secondary antibody only, primary antibody only, or without primary or secondary 

antibodies (Figure 3.5c-f). The sections used for these experiments were treated with the 

same methods used for TH/alpha-synuclein IHC, except where antibodies were omitted 

and sections were incubated with blocking reagent instead. Sites of non-specific binding 

or the presence of endogenous peroxidases would be indicated by the presence of red 

coloured precipitate, due to the catalysis of the NovaRED substrate.  

Sections stained for TH and alpha-synuclein showed strong and specific staining 

with good contrast (Figure 3.5a, b). Two sections have been shown for reactions using the 

secondary antibody only, since two different antibody dilutions were used for TH and 

alpha-synuclein IHC. Results showed slightly higher non-specific binding in the section 

incubated with the secondary antibody dilution of 1:2000 that was used for TH (Figure 

3.5c), compared with the section that was incubated with a secondary antibody dilution of 

1:2500 that was used for alpha-synuclein IHC (Figure 3.5d). However, where the OD of 

TH staining was later quantified the results were normalised to staining in the corpus 

callosum which has been shown to be devoid of TH positive terminals. When sections 

were incubated with the anti-TH primary antibody alone, or without primary or secondary 

antibody, they were almost colourless (Figure 3.5e, f) and these results demonstrate that 

endogenous peroxidases were effectively inactivated in the methods used for IHC.  
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Figure 3.5: Investigation of non-specific staining in the methods used for 
immunohistochemistry. Positive control sections were stained for TH (a) and alpha-synuclein (b). 
Negative control sections were incubated with HRP-conjugated secondary antibody only at a 
dilution of 1:2000 (c) or 1:2500 (d), anti-TH primary only (e), no primary or secondary antibodies 
(f). The section imaged for (e) was representative of the section that was incubated with anti-
alpha-synuclein primary alone. Strong and specific staining was observed in TH and alpha-
synuclein stained sections (a, b). Higher non-specific binding was observed in (c) than in (d), 
which represents the secondary antibody dilutions used for TH and alpha-synuclein staining 
respectively. Sections were almost colourless in (e) and (f), which indicates that the endogenous 
peroxidases have been inactivated effectively in tissue. Scale bar is 2 mm. 
 

 Investigating the optimal sites for staining using 

immunohistochemistry 

Serial coronal sections through the striatum (1 section in every 10) were stained in order 

to investigate the optimal sites for IHC in G51D rat brains. The aim of these experiments 

was to determine sites for IHC that were likely to have been measured using the VOIs 

employed for analysis of 18F-DOPA PET imaging data. Therefore, results from IHC and 
18F-DOPA PET imaging data could be directly compared. In addition, experiments aimed 

to identify sites that would allow consistent and reliable measurements of the OD of TH 

staining to be made. A total of eight serial sections from the striatum were stained using 

the optimal antibody dilutions determined for TH IHC (primary antibody dilution 1:500, 

secondary antibody dilution 1:2000) (Figure 3.6). In the most rostral (Figure 3.6a) and 

caudal sections (Figure 3.6h) the caudate-putamen was small, and the striatum at these 

sites was deemed most likely to lie at the periphery of the VOIs used for PET imaging 

analysis. Furthermore, in caudal sections (Figure 3.6f-h) the globus pallidus (which stains 

poorly for TH) was evident ventrally, and this increased in size when sections were 

stained even more caudally. Therefore, the sites that were deemed most likely to provide 

consistent TH immunostaining data that correlated with PET imaging data were shown by 
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Figure 3.6c and e. Following consultation with a rat brain atlas, the sites selected for IHC 

experiments in G51D rat brains were Bregma 1.56 mm and 0.00 mm (Paxinos and 

Watson, 2013). 

 

 

Figure 3.6: Serial sections from the striatum were stained using tyrosine hydroxylase 
immunohistochemistry in order to identify the optimal sites for immunostaining of G51D rat 
brain tissue. In the most rostral (a) and caudal sections (h) the striatum was small, and these sites 
were deemed likely to lie at the periphery of the VOIs used for PET imaging analysis. In (c) and 
(e) the caudate-putamen was well defined and staining at these sites would permit consistent 
measurements to be made of the optical density of TH staining. In sections (f, g, h) the globus 
pallidus was evident ventrally and this increased in size with sections stained more caudally. The 
negative control involved secondary antibody treatment only (i). Scale bar is 2 mm. 
 

3.5 Neuropathological investigations in G51D rat brain specimens  

 Sources of brain tissue 

Brain tissue was sourced from two different animal colonies. Tissue from 5 and 17 month 

old WT and G51D/+ rats was obtained from animals that were sacrificed after recent 18F-

DOPA PET imaging experiments. However, tissue from 10 month old WT and G51D/+ 

rats was sourced from a separate animal colony at the University of Edinburgh that was 

being held in quarantine. 
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 Investigation of brain weight differences 

Measurements of the ratio of brain weight to bodyweight have previously been used to 

investigate neurodevelopmental, neurotoxic and morphological changes in the brains of 

rats (Sayim et al., 2005; Morken et al., 2013; Kafka et al., 2014). Since brain atrophy has 

been identified in a patient suffering from G51D PD (Kiely et al., 2013), measurements 

of the brain to bodyweight ratio were performed in WT and G51D/+ rats. Since both 

female and male rats were used in this study, bodyweight was used to normalise the 

values measured for brain weight. Results indicated a trend for increased mean brain to 

bodyweight ratio in 5 month G51D/+ rats compared with age-matched WT rats (two-

sample t-test, p=0.07) where measurements were 0.0105 and 0.0084 respectively (Figure 

3.7).  
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Figure 3.7: The mean brain to bodyweight ratio in WT and G51D/+ rats at 5, 10 and 17 
month of age. Results indicated a trend for increased brain to bodyweight ratio in 5 month old 
G51D/+ rats compared with age-matched WT rats (p=0.07), although this may be explained by the 
decreased mean bodyweight of 5 month old G51D/+ rats compared with age-matched WT rats. 
The mean brain to bodyweight ratio was similar for 10 and 17 month old G51D/+ rats compared 
with age-matched WT rats. Data shows the mean and SEM. Results from age-matched WT and 
G51D/+ rats were analysed using a two-sample t-test, although no significant differences were 
identified. n=4 per genotype per age-group, except for 10 month WT and G51D/+ rats where n=2 
per genotype per age-group. 

 

However, examination of the bodyweight data from WT and G51D/+ rats 

indicated decreased mean bodyweight in 5 month old G51D/+ rats compared with age-
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matched WT rats (Figure 9.5, Appendix). Therefore, decreased mean bodyweight may 

explain the trend for increased brain to bodyweight ratio identified in 5 month old 

G51D/+ rats compared with age-matched WT rats, rather than brain morphological 

differences. Mean brain to bodyweight ratio was comparable in 10 month old WT and 

G51D/+ rats and was 0.0079 and 0.0078 respectively, and also in 17 month old WT and 

G51D/+ rats where measurements were 0.0056 and 0.0060 respectively (Figure 3.7). 

 

 Cresyl violet staining of brain tissue sections 

Cresyl violet stain contains a dye which binds to RNA in rough endoplasmic 

reticulum/ribosomes staining these structures purple-blue, and furthermore dye can bind 

to RNA/DNA in the nucleus of cells including neurons and glia (Burkitt et al., 1993; 

Kołodziejczyk, Ładniak and Piórkowski, 2014; Machado-Filho et al., 2014). Cresyl violet 

staining has previously been used to investigate brain tissue architecture in rodents and to 

map the normal neuroanatomy in the Sprague Dawley rat brain (Paxinos and Watson, 

2013). Furthermore, analyses of cresyl violet staining have been used to investigate 

neuronal cell loss from the striatum of rodents (Mihm et al., 2001; Machado-Filho et al., 

2014). Patients with G51D PD can suffer from neuronal loss in the striatum (Lesage et 

al., 2013; Kiely et al., 2015), therefore estimates of cell counts were made in order to 

investigate potential neurodegenerative processes in the striatum of G51D/+ rats. 

 

 Staining of sections at Bregma 1.56 mm 

Sections stained using cresyl violet were inspected to evaluate the morphology of striatal 

tissue from WT and G51D/+ rats at 5, 10 and 17 months of age. The diagram shown in 

Figure 3.8a illustrates the site of sampling of cresyl violet stained sections, to produce the 

representative images of staining at Bregma 1.56 mm shown in Figure 3.9. Images shown 

in Figure 3.9 were taken from the right caudate-putamen and are from female rats. In 17 

month old WT and G51D/+ rats a mosaic-like pattern of staining appeared to be more 

pronounced than in sections taken from rats at 5 and 10 months of age. A similar pattern 

was observed in a study of normal Wistar rats up to 6 months of age by Mengler et al. 

(2014), and this pattern likely represents corticofugal fibres that course through the 

striatum (Gerfen, 1984; Molyneaux et al., 2007; Greig et al., 2013). There did not appear 

to be a clear effect of genotype on the pattern of staining in the striatum, therefore the 

observed pattern is likely to be a variation of normal and may be more pronounced in 17 

month old rats due to ageing.  
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It was observed that the intensity of cresyl violet staining in the striatum of 

sections from 5 month old G51D/+ rats was lower than that of age-matched WT controls. 

All tissue was processed and stained using the same protocols. Cresyl violet staining of 

tissue from 5 month old G51D/+ rats was also repeated using new reagents, although the 

same staining results were obtained. The cresyl violet stain binds to RNA/DNA and 

reduced staining intensity may indicate a lower cell density in the striatum of 5 month old 

G51D/+ rats compared with age-matched WT rats, or the binding of the stain to tissue 

from 5 month old G51D/+ rats may be impaired because of poor tissue processing. 

Interestingly, sections from 5 month old rats stained at Bregma 0.00 mm (Figure 3.11) 

stained well using cresyl violet. Therefore, it was deemed unlikely that the decreased 

staining intensity identified in 5 month old G51D/+ rats was the result of poor tissue 

processing. It is possible that the G51D mutation in alpha-synuclein may result in early 

morphological changes in the brain which have manifested in the 5 month old G51D/+ 

rats. 

To investigate the tissue architecture further and identify potential differences in 

cell counts in the striatum, estimates of cell counts were made using Image J software. 

These estimates were made using the same ROI approach that was later used in this study 

to measure the OD of TH immunostaining in the striatum. The methods used to estimate 

cell counts were adapted from methods used by Cowper-Smith et al. (2008). Images were 

thresholded using Image J, and then segmented using the Watershed algorithm to account 

for cells that could be closely opposed.  

 

 

Figure 3.8: The site of sampling of cresyl violet stained sections to produce representative 
images of staining at a higher magnification. The diagram shows whole brain tissue sections 
from Bregma 1.56 mm (a) and Bregma 0.00 mm (b) stained using cresyl violet. The site sampled 
to produce representative images of the striatum at a higher magnification is shown by the blue 
box. Higher magnification images were taken using a digital magnification of 2.5x, and the 
striatum was identified with the aid of a rat brain atlas (Paxinos and Watson, 2013). 
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Figure 3.9: Representative images of cresyl violet staining in the striatum (Bregma 1.56 mm) 
from WT and G51D/+ rats at 5, 10 and 17 months of age. In 5 month old G51D/+ rats the 
staining intensity was lower than that of age-matched WT rats. Staining was repeated in 5 month 
old rats although the same results were obtained. In 17 month old WT and G51D/+ rats a mosaic-
like pattern of staining was evident. There did not appear to be a clear effect of genotype on the 
pattern of staining in the striatum. Images were from the right striatum of female rats. Scale bar is 
200 µm. 

 

Figure 3.10 shows results obtained for estimates of cell counts in the striatum of 

WT and G51D/+ rats at 5, 10 and 17 months of age. Results are the mean of counts 

measured for both the left and right striatum. Mean cell counts were comparable for 5 

month old WT and G51D/+ rats and were 1.19 x104 mm-2 and 1.20 x104 mm-2 

respectively. Therefore, the decreased staining intensity identified in the striatum of 5 

month G51D/+ rats does not appear to be the result of differences in cell counts. There 

was a trend for increased mean cell counts in 10 month old G51D/+ rats compared with 

age-matched WT rats, where cell counts were 1.65 x104/mm-2 and 1.42 x104 mm-2 

respectively (two-sample t-test, p=0.09). Interestingly however, mean cell counts in 17 

month old WT and G51D/+ rats were comparable, and were 1.25 x104 mm-2 and 1.32 

x104 mm-2 respectively.  

The trend for increased cell counts in 10 month old G51D/+ rats compared with 

age-matched WT rats may be the result of a neuroinflammatory process such as the 

infiltration by microglia, or alternatively could result from a reactive astrogliosis. The 
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causative process appears either to improve or resolve in G51D/+ rats by 17 months of 

age. However, it is possible that the source of animals may have influenced the results 

shown, since 10 month old rats were sourced from an animal colony being held in 

quarantine, whereas tissue from 5 and 17 month old animals was sourced from the main 

animal colony that had been rederived.   
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Figure 3.10: Estimates of cell counts (Bregma 1.56 mm) in WT and G51D/+ rats at 5, 10 and 
17 months of age. Mean cell counts were comparable for 5 month old G51D/+ rats and age-
matched WT controls. There was a trend for increased cell counts in the striatum of 10 month old 
G51D/+ rats compared with age matched WT rats (p=0.09). However mean cell counts were 
comparable for 17 month old WT and G51D/+ rats. Results from age-matched WT and G51D/+ 
rats were analysed using a two-sample t-test, although no significant differences were identified. 
Data shows the mean and the SEM. n=4 per genotype per age-group. 

 

  Staining of sections at Bregma 0.00 mm 

Tissue morphology in the striatum was also evaluated at Bregma 0.00 mm. The diagram 

shown in Figure 3.8b illustrates the site of sampling of cresyl violet stained sections, to 

produce the representative images of staining at Bregma 0.00 mm shown in Figure 3.11. 

Images shown in Figure 3.11 were taken from the right caudate-putamen and are from 

female rats. Cresyl violet staining identified corticofugal fibres that course through the 

striatum, and these were particularly evident in sections from 5 and 17 month old rats 

(Figure 3.11). There did not appear to be a clear effect of genotype on the pattern of 

staining in the striatum.  
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Figure 3.12 shows results obtained for estimates of cell counts in the striatum of 

WT and G51D/+ rats at 5, 10 and 17 months of age. Mean cell counts were comparable 

for 5 month old WT and G51D/+ rats and were 1.27 x104 mm-2 and 1.16 x104 mm-2 

respectively. There was a trend for increased mean cell counts in 10 month old G51D/+ 

rats compared with age-matched WT rats (two-sample t-test, p=0.13) where cell counts 

were 1.47 x104 mm-2 and 1.24 x104 mm-2 respectively. Mean cell counts were comparable 

for 17 month old WT and G51D/+ rats and were 1.05 x104/mm-2 and 1.13 x104 mm-2 

respectively. Therefore, the results from estimates of cell counts at Bregma 0.00 mm 

show a similar trend to results from Bregma 1.56 mm.  

The trend for increased cell counts in 10 month old G51D/+ rats compared with 

age-matched WT rats may be the result of microglial infiltration or a reactive astrogliosis 

as described in section 6.4.3.1. This abnormality may improve or resolve in G51D/+ rats 

by 17 months of age. As mentioned previously however, tissue from 10 month old rats 

was sourced from different stock to that used to investigate staining at 5 and 17 months of 

age. 

 

 

Figure 3.11: Representative images of cresyl violet staining in the striatum (Bregma 0.00 
mm) from WT and G51D/+ rats at 5, 10 and 17 months of age. The corticofugal fibres that 
course through the striatum were particularly evident in sections from 5 and 17 month old rats. 
There did not appear to be a clear effect of genotype on the pattern of staining in the striatum. 
Images were from the right striatum of female rats. Scale bar is 200 µm. 
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Figure 3.12: Estimates of cell counts (Bregma 0.00 mm) in WT and G51D/+ rats at 5, 10 and 
17 months of age. Mean cell counts were comparable for 5 month old WT and G51D/+ rats. 
There was a trend for increased mean cell counts in 10 month old G51D/+ rats compared with age 
matched WT rats (p=0.13). However mean cell counts were comparable for 17 month old WT and 
G51D/+ rats. Results from age-matched WT and G51D/+ rats were analysed using a two-sample t-
test, although no significant differences were identified. Data shows the mean and the SEM. n=4 
per genotype per age-group. 
 

 Tyrosine hydroxylase immunohistochemistry of brain tissue 

sections 

Sections stained using TH IHC were first examined using light microscopy, then the OD 

of TH staining in the striatum was determined using methods adapted from those 

employed by Santos and Cunha (2013). Since different ages and genders of rats were 

used for experiments, the OD of TH staining was quantified using an ROI approach. This 

method involved the placement of four equally spaced ROIs on each striatum, and the 

placement of four ROIs on the corpus callosum for each section. Measurements of the 

OD of TH staining in the striatum were normalised to measurements of OD made from 

the corpus callosum, which is a well validated method for assessment of TH 

immunostaining which considers background staining present in sections (Carlsson et al., 

2007; Rylander et al., 2013; Stott and Barker, 2014). The results shown are the mean OD 

for both the left and right striatum, except for measurements of asymmetry in the OD of 

TH staining where measurements are shown for the left and right striatum individually.  
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 Staining of sections at Bregma 1.56 mm 

Figure 3.13 shows representative whole brain tissue sections from WT and G51D/+ rats 

at 5, 10 and 17 month of age. An initial qualitative examination of staining indicated an 

increased staining intensity in the striatum of 10 month old G51D/+ rats compared with 

age-matched WT rats, however TH immunostaining in the striatum appeared to be 

comparable for other groups of age-matched rats. The diagram shown in Figure 3.14a 

illustrates the site of sampling of TH stained sections, to produce the representative 

images of staining at Bregma 1.56 mm shown in Figure 3.15. In these sections the small 

oval/circular structures which do not stain for TH are corticofugal fibres which course 

through the striatum and project from the cortex into thalamus, brainstem or spinal cord 

(Gerfen, 1984; Molyneaux et al., 2007; Greig et al., 2013). Higher magnification images 

indicate an increased staining intensity in the striatum of 10 month old G51D/+ rats 

compared with age-matched WT rats, and in 17 month old WT rats when compared with 

age-matched G51D/+ rats. However, with such assessments it is difficult to analyse the 

true staining intensity, since background staining may vary between sections and this may 

in turn influence the staining intensity in the target region.  

 

 

Figure 3.13: Representative images of tyrosine hydroxylase staining (Bregma 1.56 mm) from 
WT and G51D/+ rats at 5, 10 and 17 months of age. A qualitative examination of sections 
indicated an increased staining intensity in the striatum of 10 month old G51D/+ rats compared 
with age-matched WT rats. However staining intensity was comparable for other groups of age-
matched rats. Sections were from female rats. The negative control involved secondary antibody 
treatment only. Scale bar is 2 mm. 
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Figure 3.14: The site of sampling of tyrosine hydroxylase staining to produce representative 
images of staining at a higher magnification. The diagram shows whole brain tissue sections 
from Bregma 1.56 mm (a) and Bregma 0.00 mm (b) stained using TH IHC. The site sampled to 
produce representative images of the striatum at a higher magnification is shown by the blue box. 
Higher magnification images were taken using a digital magnification of 2.5x, and the striatum 
was identified with the aid of a rat brain atlas (Paxinos and Watson, 2013). 

 

 

Figure 3.15: Representative images of tyrosine hydroxylase staining in the striatum (Bregma 
1.56 mm) from WT and G51D/+ rats at 5, 10 and 17 months of age. A qualitative examination 
of sections indicated an increased staining intensity in the striatum of 10 month old G51D/+ rats 
compared with age-matched WT rats, and in 17 month old WT rats compared with age-matched 
G51D/+ rats. The circular/oval structures which do not stain for TH are corticofugal fibres which 
course through the striatum. Images were from the right striatum of female rats. The negative 
control involved secondary antibody treatment only. Scale bar is 200 µm. 
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Therefore, measurements of the OD of TH staining were employed to quantify 

TH staining in the striatum of rats, and these were normalised to the OD of TH staining in 

the corpus callosum, which represents background staining. Figure 3.16 shows results 

from measurements of the mean normalised OD of TH immunostaining in the striatum. 

The mean OD of TH staining was comparable for 5 month old WT and G51D/+ rats and 

was 56.0 and 52.6 respectively. The mean OD of TH staining was also comparable for 10 

month old WT and G51D/+ rats and was 41.8 and 45.8 respectively, and for 17 month old 

WT and G51D/+ rats being 44.2 and 45.2 respectively. Therefore, the G51D mutation in 

alpha-synuclein did not appear to influence the OD of TH staining at Bregma 1.56 mm. 
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Figure 3.16: The normalised optical density of tyrosine hydroxylase staining (Bregma 1.56 
mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. The mean OD of TH staining was 
comparable for G51D/+ rats and age-matched WT controls. Data shows the mean and SEM. 
Results from age-matched WT and G51D/+ rats were analysed using a two-sample t-test, although 
no significant differences were identified. n=4 per genotype per age-group.  

 

Asymmetry in the OD of TH staining in the striatum was investigated (Figure 

3.17) in order to compare results with findings from 18F-DOPA PET imaging studies of 

asymmetry in the EDVR of 18F-DOPA (Figure 6.8). Mean asymmetry in the OD of TH 

staining was greatest for 5 month old G51D/+ rats (left striatum -0.117, right striatum 

0.086).   

Analysis of the individual data points in 5 month old G51D/+ rats, 10 month old 

WT and G51D/+ rats, and 17 month WT rats identified asymmetry in the OD of TH 

staining, outwith a range of -0.1 to 0.1, in at least one rat per genotype per age-group. 
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Asymmetry in the OD of TH staining was greatest for one 5 month old G51D/+ rat where 

the measurements for the left and right striatum were -0.376 and 0.273 respectively. 

Results from individual WT and G51D/+ rats at 10 months of age indicated an 

asymmetry in the OD of TH staining (that was less than -0.1) for either the left or the 

right striatum. 

When the dataset was considered as a whole, the results were inconclusive as to 

whether the F344 rat strain had an asymmetry in indices of the dopaminergic system 

between the left and right striatum. 
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Figure 3.17: Asymmetry in the normalised optical density of tyrosine hydroxylase staining 
(Bregma 1.56 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age Mean asymmetry in 
the OD of TH staining was greatest for 5 month old G51D/+ rats. In 5 month old G51D/+ rats, 10 
month old both WT and G51D/+ rats, and 17 month old WT rats analysis of the individual data 
points revealed asymmetry, outwith a range of -0.1 to 0.1, in at least one rat per genotype per age-
group. In individual 10 month old WT and G51D/+ rats asymmetry in the OD of TH staining (that 
was less than -0.1) was found for either the left or the right striatum. Data shows the mean and 
SEM. n=4 per genotype per age-group. 

 

 Staining of sections at Bregma 0.00 mm 

Figure 3.18 shows representative whole brain tissue sections from WT and G51D/+ rats 

at 5, 10 and 17 months of age. A qualitative examination of staining in the striatum did 

not indicate any gross differences in staining intensity between groups of age-matched 

rats. The diagram shown in Figure 3.14b illustrates the site of sampling of TH stained 

sections, to produce representative images of staining at Bregma 0.00 mm shown in 

Figure 3.19. A qualitative examination of staining indicated a decreased staining intensity 

in the striatum of 10 and 17 month old G51D/+ rats compared with age-matched WT rats 



110 
 

(Figure 3.19). As mentioned previously however, there are difficulties associated with the 

assessment of background staining in sections analysed using such methods. 

 

 

Figure 3.18: Representative images of tyrosine hydroxylase staining (Bregma 0.00 mm) from 
WT and G51D/+ rats at 5, 10 and 17 months of age. A qualitative examination of sections did 
not indicate any gross differences in staining intensity of the striatum in groups of age-matched 
rats. Sections were from female rats. The negative control involved secondary antibody treatment 
only. Scale bar is 2 mm. 
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Figure 3.19: Representative images of tyrosine hydroxylase staining in the striatum (Bregma 
0.00 mm) from WT and G51D/+ rats at 5, 10 and 17 months of age. A qualitative examination 
of sections indicated a decreased staining intensity in the striatum of 10 and 17 month G51D/+ rats 
compared with age-matched WT rats. Images were from the right striatum of female rats. The 
negative control was a secondary antibody only control. Scale bar is 200 µm. 

 

There was a trend for decreased mean OD of TH staining in the striatum of 5 

month old G51D/+ rats compared with age-matched WT controls (two-sample t-test, 

p=0.15) where measurements were 43.7 and 58.1 respectively (Figure 3.20). The mean 

OD of TH staining was marginally increased in 10 month old G51D/+ rats compared with 

age-matched WT controls and was 55.5 and 50.6 respectively. There was a trend for 

decreased mean OD of TH staining in the striatum of 17 month old G51D/+ rats 

compared with age-matched WT controls (two-sample t-test, p=0.10) where 

measurements were 43.5 and 52.5 respectively.  
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Figure 3.20: The normalised optical density of tyrosine hydroxylase staining (Bregma 0.00 
mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. There was a trend for decreased 
OD of TH staining in the striatum of 5 month old G51D/+ rats compared with age-matched WT 
rats (p=0.15). The mean OD of TH staining in the striatum was marginally increased in 10 month 
old G51D/+ rats compared with age-matched WT rats. There was a trend for decreased OD of TH 
staining in the striatum of 17 month old G51D/+ rats compared with age-matched WT rats 
(p=0.10). Results from age-matched WT and G51D/+ rats were analysed using a two-sample t-test, 
although no significant differences were identified. Results show the mean and SEM. n=4 per 
genotype per age-group, except for 5 month old G51D/+ rats where n=3. 
 

A decrease in the OD of TH staining has been identified in patients with PD (Bedard et 

al., 2011; Kordower et al., 2013). The results may indicate the degeneration of 

dopaminergic nerve terminals in the striatum of 5 and 17 month old G51D/+ rats 

compared with age-matched WT rats. An early decline in the OD of TH staining in 5 

month old G51D/+ rats compared with age-matched WT rats may be followed by a 

compensatory increase in TH in the striatum of 10 month old G51D/+ rats compared with 

age-matched WT rats. There appears to be a second decline in the OD of TH staining in 

the striatum of 17 month old G51D/+ rats compared with age-matched WT controls. 

Interestingly, the trend for decreased mean OD of TH staining in the striatum 

of 5 month old G51D/+ rats compared with age-matched WT controls was similar to 

results obtained for measurement of the Ki of 18F-DOPA in the striatum. (Figure 6.4).  

Furthermore, the trend for decreased OD of TH staining in the striatum of 17 month old 

G51D/+ rats compared with age-matched WT rats, was similar to results obtained for the 

measurement of the DVR and EDVR of 18F-DOPA (Figures 6.5 and 6.6). 
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Despite tissue from 10 month old rats having been sourced from a different 

animal colony to that of the 5 and 17 month old rats, results from the histological 

experiments show a similar trend to results from 18F-DOPA PET imaging. Therefore, it 

was deemed unlikely that the source of animals used for experiments was responsible for 

the differential pattern of staining observed in groups of 10 month old rats when 

compared with 5 and 17 month old rats. 

Mean asymmetry in the OD of TH staining was within a range of -0.1 to 0.1 for 

all of the groups of rats that were studied (Figure 3.21). There did not appear to be a clear 

effect of genotype on the mean asymmetry in the OD of TH staining.  

Analysis of the individual data points revealed asymmetry in the OD of TH 

staining, outwith a range of -0.1 to 0.1 in at least one rat per genotype per age-group. 

Asymmetry in the OD of TH staining was greatest for one 5 month old WT rat where 

measurements for the left and rat striatum were -0.309 and 0.236 respectively. In 5 month 

old WT and G51D/+ rats the OD of TH staining for less than -0.1 for the left striatum and 

greater than 0.1 for the right striatum in at least one rat per group. However, in 10 month 

old WT rats some individual data points were less than -0.1 for either the left and right 

striatum and in 10 month old G51D/+ rats and 17 month old WT and G51D/+ rats one 

individual data point per group was less than -0.1 for the right striatum only. 

When the dataset was considered as a whole, the results were inconclusive as to 

whether the F344 rat strain showed asymmetry in indices of the dopaminergic system 

between the left and right striatum. 
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Figure 3.21: Asymmetry in the normalised optical density of tyrosine hydroxylase staining 
(Bregma 0.00 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. Mean asymmetry in 
the OD of TH staining was within a range of -0.1 to 0.1 for all of the groups of rats that were 
studied. However, analysis of the individual data points indicated asymmetry in the OD of TH 
staining, outwith a range of -0.1 to 0.1, in at least one rat per genotype per age-group. In 5 month 
old WT and G51D/+ rats at least one measurement was less than -0.1 for the left striatum. 
However, data from 10 month old WT rats indicated asymmetry less than -0.1 for data from either 
the left or right striatum, and in 17 month old WT and G51D/+ rats one individual data point per 
group was less than -0.1 for the right striatum only. n=4 per genotype per age-group, except 5 
month G51D/+ where n=3. 

 

 Effect of rat gender on measurements of the optical density of 

tyrosine hydroxylase staining 

In female PD patients, the uptake of 18F-DOPA by the striatum has been shown to be 

higher than that of male PD patients, therefore indicating higher baseline dopaminergic 

function in the striatum of females compared with males (Gallagher et al., 2011b). 

Studies in 6-OHDA lesioned rats have implicated oestrogen as a neuroprotective factor, 

in that it protects against both the loss of dopamine from the striatum and also 

dopaminergic neurons from the SNpc (Dluzen, 1997; Datla et al., 2003). Delayed 

establishment of the G51D rat colony and issues with breeding, meant that there were 

limited numbers of WT and G51D/+ rats available of one particular gender for 

experiments. Therefore, both female and male rats were used for experiments. The data 

has been investigated to determine the effect of rat gender on measurements of the OD of 

TH staining.  

Table 3.1 shows results for the mean OD of TH staining at Bregma 1.56 mm 

determined for female and male rats. The greatest difference in the mean OD of TH 

staining was observed for 5 month old WT female and male rats where measurements 
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were 44.4 and 67.8 respectively. The mean OD of TH staining in WT female rats tended 

to be lower than that of age-matched WT male rats. However, the mean OD of TH 

staining in G51D/+ female rats tended to be higher than that of age-matched G51D/+ 

male rats.  

Table 3.2 shows results for mean asymmetry in the OD of TH staining at Bregma 

1.56 mm determined for female and male rats. Mean asymmetry was greatest in 5 month 

old G51D/+ male rats (left striatum -0.376, right striatum 0.273) compared with age-

matched G51D/+ female rats (left striatum -0.031, right striatum 0.024). Mean 

asymmetry approximated to zero for both the 5 month WT male rats and 17 month 

G51D/+ female rats (left striatum -0.001, right striatum 0.001). There would appear 

therefore, to be no clear effect of rat gender on the mean asymmetry in the OD of TH 

staining at Bregma 1.56 mm. 
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Table 3.3 shows results for the mean OD of TH staining at Bregma 0.00 mm 

determined for female and male rats. The mean OD of TH staining was comparable for 

10 month old G51D/+ female and male rats and was 55.5 and 55.4 respectively. The 

greatest difference in the mean OD of TH staining was observed for 5 month old G51D/+ 

female rats compared with age-matched G51D/+ male rats, where measurements were 

50.7 and 29.7 respectively. There appeared to be no clear effect of rat gender on the mean 

OD of TH staining at Bregma 0.00 mm.  

Table 3.4 shows results for the mean asymmetry in the OD of TH staining at 

Bregma 0.00 mm determined for female and male rats. Mean asymmetry was greatest for 

5 month old WT female rats (left striatum -0.205, right striatum 0.164) compared with 

age-matched WT male rats (left striatum -0.004, right striatum -0.001). There appeared to 

be no clear effect of rat gender on the asymmetry in the OD of TH staining at Bregma 

0.00 mm. 
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 Alpha-synuclein immunohistochemistry of brain tissue sections 

Sections stained using alpha-synuclein IHC were first examined using light microscopy, 

then semi-quantitative analyses were used to investigate alpha-synuclein staining of cell 

somata and the neuropil of the striatum, using methods adapted from those employed by 

Andringa et al. (2003) and Delenclos et al. (2014). Sections from Bregma 1.56 mm and 

Bregma 0.00 mm were analysed so that results could be compared with findings from TH 

IHC and 18F-DOPA PET imaging. Semi-quantitative analyses were applied with the aid 

of a 500 µm x 500 µm grid and involved inspecting the sections on numerous occasions 

in order to ensure the correct classification of alpha-synuclein staining type.  

Semi-quantitative analyses of alpha-synuclein staining in cell somata categorised 

staining depending on the frequency of occurrence of cells which had cytoplasmic 

staining for alpha-synuclein. The number of positively stained somata that were identified 

in each region of the grid determined whether the staining was classified as not 

discernible (-), infrequent (+), moderate (++) or abundant (+++) (Figure 3.22). Alpha-

synuclein staining in the neuropil was classified as not discernible (-), slight (+), 

moderate (++) or marked (+++) depending on the type of punctate alpha-synuclein 

staining that was observed. Since alpha-synuclein staining was identified in the neuropil 

of all samples, representative images in Figure 3.23 show staining of slight, moderate or 

marked type. 
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Figure 3.22: Images showing different types of alpha-synuclein staining based on the number of 
positively stained somata. Staining within somata was quantified as not discernible (-), infrequent 
(+), moderate (++) or abundant (+++). Images were taken using a digital magnification of 5x. Scale 
bar is 100 µm. 

 

 

Figure 3.23: Images showing different types of alpha-synuclein staining that were identified 
in the neuropil. In the neuropil the punctate staining of terminals was slight (+), moderately 
demarcated (++) or marked (+++). Images are shown at a higher magnification than images of 
somal staining to demonstrate the different staining types. Staining within the neuropil was graded 
with the aid of the digital zoom feature within ZEN2 software. Scale bar is 10 µm. 

 

 Staining of sections at Bregma 1.56 mm 

Figure 3.24 shows images of alpha-synuclein staining in the striatum of WT rats. Alpha-

synuclein IHC demonstrated punctate staining in the neuropil which represented alpha-

synuclein staining in presynaptic nerve terminals, and alpha-synuclein staining co-

localised with the nuclear haematoxylin counterstain as well. These findings were 

therefore consistent with previous studies of alpha-synuclein IHC, which have 

demonstrated alpha-synuclein staining at presynaptic nerve terminals and in the nucleus 
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(Mori et al., 2002; Andringa et al., 2003; Yu et al., 2007). Interestingly the results also 

demonstrated alpha-synuclein positive staining in cell somata of two out of four 10 month 

old WT rats. Figure 3.24 shows an image from a 10 month old WT rat with alpha-

synuclein positive staining in cell somata in the striatum. This type of staining in WT rats 

was unexpected because alpha-synuclein staining in the neuronal somata of the WT 

Sprague Dawley and Wistar rat brain had only been demonstrated in select regions of the 

brain, notably the cortex, SNpc and dorsal motor nucleus of the vagus and not within the 

striatum (Li, Jensen and Dahlström, 2002; Mori et al., 2002; Andringa et al., 2003).  

Certain antibodies used for IHC may impact upon the staining results and the 

identification of alpha-synuclein staining in somata (Andringa et al., 2003). However, 

positively stained somata were not identified in all WT rats and it was deemed unlikely 

that somal staining for alpha-synuclein was solely the result of the antibody used for IHC. 

Tissue from 10 month old WT rats was sourced from a different animal colony to that 

obtained from 5 and 17 month old WT rats. Interestingly however, alpha-synuclein 

positive staining in cell somata was observed at Bregma 0.00 mm in three out of the four 

5 month old WT rats (+/++) and three out of four 10 month old WT rats (+/++) (Figure 

3.28). These results indicated that the source of tissue was unlikely to explain the alpha-

synuclein positive staining found in cell somata in 10 month old WT rats at Bregma 1.56 

mm.  

Previous studies have used either young Sprague Dawley rats (200-250g) or 

Wistar rats (age of animals unknown) (Li, Jensen and Dahlström, 2002; Mori et al., 2002; 

Andringa et al., 2003). Therefore, strain and age related factors may explain alpha-

synuclein staining in cell somata in some WT rats. Studies of alpha-synuclein expression 

in the striatum or SN of rodents over the course of ageing have produced mixed results 

(Adamczyk, Solecka and Strosznajder, 2005; Mak et al., 2009; Lu et al., 2016), therefore 

there is no clear consensus on changes in alpha-synuclein expression with ageing. It is 

possible however, that alpha-synuclein may accumulate in cell somata in WT F344 rats as 

part of a heterogeneous process, analogous to that identified in the brains of elderly 

patients with incidental Lewy Body disease (Jellinger, 2004; Parkkinen et al., 2005).  

Alpha-synuclein positive staining in cell somata was also identified in all 10 

month old G51D/+ rats, along with a subset of 5 and 17 month old G51D/+ rats. Figure 

3.24 shows images of alpha-synuclein staining in the striatum of G51D/+ rats with 

positively stained cell somata in tissue from rats at 5, 10 and 17 months of age. 
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Figure 3.24: Images of alpha-synuclein staining in the striatum (Bregma 1.56 mm) from WT 
and G51D/+ rats at 5, 10 and 17 months of age. Alpha-synuclein staining in WT rats was identified 
in the neuropil and co-localised with the haematoxylin counterstain as well. The image from the 10 
month old WT rat also demonstrates alpha-synuclein positive staining in cell somata which was 
identified in a subset of 10 month old WT rats. The images from the G51D/+ rats demonstrate alpha-
synuclein staining in this genotype including alpha-synuclein positive staining in cell somata which 
was identified in many samples. The negative control involved treatment with the secondary antibody 
only and also has a haematoxylin counterstain. Scale bar is 20µm. 

 

Semi-quantitative analyses were applied in order to investigate potential 

differences in the number of alpha-synuclein positive cell somata between WT and 

G51D/+ rats. Results indicated that an increased number of G51D/+ rats had positive 

staining in cell somata compared with age-matched WT rats (Figure 3.25). In 10 month 

old G51D/+ rats all animals had identifiable alpha-synuclein staining in cell somata, with 

one rat having an abundance of alpha-synuclein positive somata (+++). Conversely, in the 

group of 10 month old WT rats, two rats had somal staining that was not discernible (-), 

one had infrequent cells with alpha-synuclein positive somata (+), and one rat had 

moderate numbers of cells with somal staining (++). In 5 month old G51D/+ rats two had 

identifiable somal staining (+/++) whereas somal staining in the striatum of all age-

matched WT rats was not discernible (-). In 17 month old G51D/+ rats three rats had 

identifiable somal staining (+/++) whereas somal staining in all age-matched WT rats was 

not discernible (-).  
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Therefore, the results indicate that the G51D mutation in alpha-synuclein may 

increase the abundance of alpha-synuclein positive stained somata. The results indicate 

heterogeneity in alpha-synuclein positive staining in somata in G51D/+ rats, since results 

varied from not discernible (-) to abundant (+++). The decreased abundance of alpha-

synuclein positive cell somata in 17 month old G51D/+ rats compared with 10 month old 

G51D/+ rats could be the result of cell death within the striatum, such as of neurons that 

have alpha-synuclein accumulated in their cytoplasm. 
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Figure 3.25: Semi-quantitative analysis of alpha-synuclein staining in cell somata (Bregma 
1.56 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. In 5 and 17 month old WT 
rats alpha-synuclein staining in cell somata was not discernible. However, in 10 month old WT 
rats staining ranged from not discernible (-) to moderate (++). Alpha-synuclein positive cell 
somata were identified in all G51D/+ rats at 10 months of age. Results indicated an increased 
abundance of positively stained cell somata in G51D/+ rats compared with age-matched WT rats. 
Results from G51D/+ rats were also heterogeneous. Grading of pathology; not discernible (-), 
infrequent (+), moderate (++), abundant (+++). n=4 per genotype per age-group. 

 

Semi-quantitative analyses were applied in order to investigate potential 

differences in the staining for alpha-synuclein in the neuropil between WT and G51D/+ 

rats. In WT rats staining of the neuropil was most often moderate or marked (++/+++) 

which represented moderately or well demarcated punctate terminal staining (Figure 

3.26). In 5 month and 10 month old G51D/+ rats staining of the neuropil was either slight 

or moderate (+/++), and punctate terminal staining tended to be less well demarcated in 

these groups of G51D/+ rats compared with age-matched WT rats. It is possible that the 

G51D mutation in alpha-synuclein may affect the localisation of alpha-synuclein at 
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presynaptic nerve terminals, and this in turn may impact upon somal staining in the 

striatum. However, results from 17 month old rats did not indicate a clear effect of 

genotype on staining in the neuropil. Dystrophic neurites such as those identified in 

patients with PD were not identified in sections from WT or G51D/+ rats. 

Punctate staining in the neuropil appears to be better demarcated in 17 month old 

G51D/+ rats when compared with 10 month old G51D/+ rats. The reason for this is 

unclear, although it could be related to cell death which is hypothesised to have occurred 

in the striatum of G51D/+ rats by 17 months of age. 
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Figure 3.26: Semi-quantitative analysis of alpha-synuclein staining in the neuropil (Bregma 
1.56 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. Alpha-synuclein staining in 
the neuropil was found in all samples. In WT rats staining was frequently moderate (++) or well 
demarcated (+++). Staining in 5 and 10 month old G51D/+ rats was slight (+) or moderate (++). 
Therefore, staining in the neuropil of 5 and 10 month old G51D/+ rats was frequently less well 
demarcated than in age-matched WT controls. In 17 month old rats the effect of the G51D 
mutation in alpha-synuclein was unclear. Grading of pathology; not discernible (-), slight (+), 
moderate (++), marked (+++). n=4 per genotype per age-group. 

 

 Staining of sections at Bregma 0.00 mm 

Figure 3.27 shows images of alpha-synuclein staining in the striatum of WT rats. Alpha-

synuclein IHC demonstrated punctate staining in the neuropil and staining co-localised 

with the haematoxylin counterstain as well. Images from the 5 and 10 month old WT rats 

also show alpha-synuclein positive staining in cell somata (Figure 3.27) which was 

identified in a subset of 5 and 10 month old WT rats during semi-quantitative analysis 
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(Figure 3.28). Images of alpha-synuclein staining in the striatum of G51D/+ rats 

including positive staining in cell somata are shown in Figure 3.27. 

 

 

Figure 3.27: Images of alpha-synuclein staining in the striatum (Bregma 0.00 mm) from WT 
and G51D/+ rats at 5, 10 and 17 months of age. Alpha-synuclein staining in WT rats was 
identified in the neuropil and co-localised with the haematoxylin counterstain as well. The images 
from the 5 and 10 month old WT rats also demonstrate alpha-synuclein positive staining in cell 
somata which was identified in a subset of WT rats at 5 and 10 months of age. The images from 
the G51D/+ rats demonstrate alpha-synuclein staining in this genotype including alpha-synuclein 
positive staining in cell somata. The negative control involved treatment with secondary antibody 
only and also has a haematoxylin counterstain. Scale bar is 20 µm. 

 

Semi-quantitative analyses were applied in order to investigate the number of 

alpha-synuclein positive cell somata in striatal tissue from WT and G51D/+ rats. Results 

demonstrated alpha-synuclein positive staining in cell somata in three out of four 5 month 

old WT rats (+/++) and three out of four 10 month old WT rats (+/++), however somal 

staining was not discernible in any of the 17 month old WT rats (-) (Figure 3.28). In 5 

month old G51D/+ rats somal staining was classified as moderate or abundant (++/+++), 

whereas somal staining in 5 month WT rats ranged from not discernible to moderate (-

/+/++). Somal staining was moderate to abundant (++/+++) in 10 month old G51D/+ rats 

compared with age-matched WT rats where somal staining was graded not discernible to 
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moderate (-/+/++). Somal staining in 17 month old G51D/+ rats was infrequent to 

moderate (+/++) whereas somal staining in 17 month WT rats was not discernible (-).  

In conclusion, the results indicate that the G51D mutation in alpha-synuclein may 

increase the abundance of alpha-synuclein positive stained somata in the striatum. Results 

also indicate heterogeneity in staining patterns in samples from G51D/+ rats.  
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Figure 3.28: Semi-quantitative analysis of alpha-synuclein staining in cell somata (Bregma 
0.00 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. Staining in cell somata in 5 
and 10 month old WT rats varied from not discernible (-) to moderately abundant (++). Alpha-
synuclein positive staining in cell somata in 17 month old WT rats was not discernible (-). Results 
indicated an increased abundance of alpha-synuclein positive cell somata in G51D/+ rats 
compared with age-matched WT rats. Results from G51D/+ rats were also heterogeneous. Grading 
of pathology; not discernible (-), infrequent (+), moderate (++), abundant (+++). n=4 per genotype 
per age-group, except for 5 month old G51D/+ rats where n=3. 

 

Figure 3.29 shows results from semi-quantitative analysis of alpha-synuclein 

staining in the neuropil of WT and G51D/+ rats at 5, 10 and 17 months of age. Punctate 

terminal staining was identified in the neuropil in all samples. Results from 5 month old 

G51D/+ rats indicated an increased incidence of poorly demarcated terminal staining (+) 

compared with age-matched WT rats. Results from 10 month G51D/+ rats indicated 

decreased punctate terminal staining compared with age-matched WT controls. However, 

results from 17 month old WT rats indicate an increased incidence of poorly demarcated 

terminal staining (+) compared with age-matched G51D/+ rats. Results from G51D/+ rats 

indicated heterogeneity in the punctate terminal staining in the neuropil. Dystrophic 
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neruites such as those identified in patients with PD were not identified in any of the 

samples. 

Therefore, results from 5 and 10 month old G51D/+ rats (but not 17 month old 

G51D/+ rats) indicated decreased punctate terminal staining compared with age-matched 

WT rats. Decreased punctate terminal staining may be associated with an increase in 

alpha-synuclein positive cell somata in 5 and 10 month old G51D/+ rats compared with 

age-matched WT rats. These results would be consistent with G51D mutation in alpha-

synuclein disrupting the normal localisation of alpha-synuclein at presynaptic nerve 

terminals and increasing accumulation of alpha-synuclein in cell somata. 
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Figure 3.29: Semi-quantitative analysis of alpha-synuclein staining in the neuropil (Bregma 
0.00 mm) in WT and G51D/+ rats at 5, 10 and 17 months of age. Alpha-synuclein staining in 
the neuropil was found in all samples. Results indicated a decrease in punctate terminal staining in 
the neuropil in 5 and 10 month old G51D/+ rats compared with age-matched WT rats. Results 
from G51D/+ rats were also heterogeneous. However, results from 17 month old WT rats 
indicated a decrease in punctate terminal staining compared with age-matched G51D/+ rats. 
Grading of pathology; not discernible (-), slight (+), moderate (++), marked (+++).  n=4 per 
genotype per age-group, except for 5 month G51D/+ rats where n=3. 

 

3.6 Discussion and future directions 

Results indicated a trend for increased mean cell counts in the striatum of 10 month old 

G51D/+ rats at both Bregma 1.56 mm and Bregma 0.00 mm compared with age-matched 

WT rats. These results may indicate cellular infiltration into the striatum of 10 month old 

G51D/+ rats which could be the result of infiltration by microglia or conversely a reactive 
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astrogliosis. However, mean cell counts in the striatum of 17 month old G51D/+ rats had 

appeared to improve or resolve compared with age-matched WT rats. The source of 

increased cell counts in the striatum of 10 month old G51D/+ rats requires further 

characterisation. Ongoing work by Dr. Tilo Kunath’s Ph.D. student Stephen West (The 

University of Edinburgh), is being conducted to characterise microglial activation in 

dopaminergic brain regions of the G51D rat model using immunofluorescent techniques. 

In 5 and 17 month old G51D/+ rats there was a trend for decreased OD of TH 

staining at Bregma 0.00 mm compared with age-matched WT rats. However, the mean 

OD of TH staining in the striatum of 10 month G51D/+ rats (Bregma 0.00 mm) was 

marginally increased compared with age-matched WT controls. A decrease in the OD of 

TH staining in the striatum could indicate features of a PD-like phenotype, although the 

improvement in TH staining in 10 month old G51D/+ rats may indicate compensatory 

changes in TH protein expression.  

There did not appear to be a clear effect of rat genotype on the mean asymmetry 

in the OD of TH staining. Results from analysis of the asymmetry in the OD of TH 

staining (Bregma 1.56 mm/Bregma 0.00 mm) were inconclusive in determining whether 

the F344 rat strain displays asymmetry in indices of the dopaminergic system between the 

left and right striatum. 

Results from the analysis of rat gender on the mean OD of TH staining at Bregma 

1.56 mm indicated lower results in WT female rats compared with age-matched WT male 

rats. Conversely, results from G51D/+ female rats tended to be higher than those from 

age-matched G51D/+ male rats. However, results from analysis of the mean OD of TH 

staining at Bregma 0.00 mm, along with results from analysis of mean asymmetry in the 

OD of TH staining (Bregma 1.56 mm/Bregma 0.00 mm) failed to indicate a clear effect 

of rat gender on the OD of TH staining. 

A study by Kyono et al., (2011) using a chemical lesion model of PD 

demonstrated that images of TH IHC of the striatum correlate well with 18F-DOPA PET 

images of summated activity, therefore the observations made from TH IHC in G51D/+ 

rats at Bregma 0.00 mm may be reflected in data concerning dopaminergic function 

obtained from 18F-DOPA PET imaging experiments. However, it is not possible to 

determine dopaminergic function directly from the TH data analysed in this chapter, since 

the method used measured the abundance of the TH protein rather than dopaminergic 

function within the striatum. 18F-DOPA PET imaging studies in rat models of PD have 

previously only used the chemical lesion models, therefore the application of 18F-DOPA 
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PET imaging to the study of G51D rats would represent a novel approach to the 

evaluation of dopaminergic function in the brains of genetic rat models of PD. 
18F-DOPA PET imaging is a sensitive tool for the assessment of dopaminergic 

function in the brains of rats (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 

2013b; Becker et al., 2017). 18F-DOPA PET also has potential to elucidate interesting 

compensatory changes in dopaminergic terminal function in the brains of G51D rats, the 

mechanisms of which could be further dissected by using kinetic modelling to analyse 

various aspects of dopaminergic function including the storage of 18F-DA in vesicles and 

effective dopamine turnover. Rats could be recovered from experiments for use in future 

experiments at an older age, thus this method would be suited to the study of the colony 

of G51D rats where a limited number of rats of the desireable genotypes were available 

experiments. 
18F-DOPA PET imaging is applied to characterise dopaminergic function in the 

striatum of G51D rats in chapter 6 of this thesis, after optimising the reconstruction and in 

vivo PET methods (chapters 4 and 5 respectively). The ages of WT and G51D/+ rats used 

for PET imaging studies (5, 11 and 16 months) were similar to those used for the 

histological experiments in order to permit the correlation of data. Rats were not used for 

PET imaging experiments beyond 18 months of age due to the potential increase in 

incidence of confounding disease in old age such as cancer which may affect the results 

from the PET imaging studies, and furthermore there is a potential increase in anaesthetic 

risk with advancement in age which could affect the completion or recovery from PET 

imaging experiments. 

Analyses of alpha-synuclein staining identified positively stained cell somata in 

the striatum of a subset of 10 month old WT rats at Bregma 1.56 mm, and in a subset of 5 

and 10 month old WT rats at Bregma 0.00 mm, meaning that staining in WT rats could be 

analogous to incidental Lewy body disease that has been identified in some healthy 

elderly patients. 

Semi-quantitative analyses of alpha-synuclein indicated an increased incidence of 

alpha-synuclein positive cell somata in G51D/+ rats compared with age-matched WT 

rats, along with decreased punctate terminal staining in G51D/+ rats compared with age-

matched WT rats. Therefore, the G51D mutation in alpha-synuclein may disrupt the 

normal localisation of alpha-synuclein at presynaptic nerve terminals and favour its 

accumulation in cell somata. Alpha-synuclein may accumulate in somata by a process 

analogous to Lewy body formation in patients with PD. Alpha-synuclein positive cell 
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somata were particularly abundant in 10 month old G51D/+ rats, and this finding was 

interesting given the trend for increased cell counts identified in 10 month old G51D/+ 

rats compared with age-matched WT rats. 

The subcellular localisation of alpha-synuclein in the striatum could be further 

studied using sequential protein extraction and western blotting. Sequential protein 

extraction would permit the quantification of alpha-synuclein in cytoplasmic and 

membranous fractions. IHC experiments using antibodies to phosphorylated alpha-

synuclein (serine 129) could also be employed in order to determine whether alpha-

synuclein in cell somata has characteristics of the Lewy bodies that are observed in 

patients with PD.  

It is possible that G51D/G51D rats may have a more severe phenotype than that 

of G51D/+ rats. Histopathological data from G51D/G51D could not be obtained from 

G51D/G51D rats solely as a result of sample storage issues. However, it would be 

interesting to use neuropathological experiments to investigate cell counts, the OD of TH 

staining, and patterns of alpha-synuclein staining in G51D/G51D rats, and to then 

compare these results with the studies of WT and G51D/+ rats. 
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 - Determining the optimal reconstruction method for in 

vivo PET imaging data by use of phantoms 

4.1 Introduction 

PD is characterised by the loss of pigmented dopaminergic neurons from the SNpc 

(German et al., 1989; Goto, Hirano and Matsumoto, 1989; Fearnley and Lees, 1991), 

which project into the dopaminergic rich striatum (Moore and Bloom, 1979). PET 

imaging is a molecular neuroimaging technique which has been used to study 

abnormalities of the neurochemical systems of the brain of patients with PD. 

Furthermore, the radiotracer 18F-DOPA which is a fluorinated analogue of L-3,4-

dihydroxyphenylalanine, has been used to study dopaminergic function in the striatum of 

PD patients. 18F-DOPA PET imaging studies have identified a decrease in the dopamine 

synthesis and storage capacity of the striatum and increased EDT in PD patients 

compared with healthy controls (Brooks et al., 1990; Burn, Sawle and Brooks, 1994; 

Holthoff-Detto et al., 1997; Sossi et al., 2002; 2004).  

Patients with the G51D mutation in alpha-synuclein have been shown to suffer 

from an aggressive form of PD (Lesage et al., 2013; Tokutake et al., 2014; Kiely et al., 

2015). Modelling the G51D mutation in alpha-synuclein in rats may result in a PD-like 

phenotype which recapitulates the dopaminergic dysfunction identified in patients with 

PD. Dopaminergic function in the striatum of G51D rats could be investigated by using 
18F-DOPA PET imaging. 

Experiments in rat models of PD have shown that 18F-DOPA PET imaging is a 

sensitive technique for the assessment of in vivo dopaminergic function in the striatum 

(Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b). It was necessary to 

optimise the methods for reconstruction of in vivo PET data by using phantoms since the 

rat striatum is small in size and the optimal acquisition and reconstruction of PET data is 

scanner dependent. The reconstruction methodology established from the phantom 

experiments ensured that subsequent measurements of dopaminergic function made from 

the in vivo data were accurate. If an established protocol were used the methods may be 

biased if a different strain of rat (eg Sprague Dawley) or PET camera was used for the 

original experiments. 

The aim of these experiments was to determine the optimal reconstruction 

methods for in vivo PET data from WT and G51D/+ rats in order to permit the accurate 

quantification of dopaminergic function in the striatum.  
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4.2 Design of the experiments used to determine the optimal 

reconstruction methods  

Phantoms are specially designed imaging devices which aim to mimic the size, absorption 

properties and scatter of specific tissues/targets of a living subject. These devices can be 

used prior to in vivo imaging studies to investigate the performance of a PET scanner, and 

to evaluate the imaging methodology used for studies including the parameters used for 

the reconstruction of PET imaging data.  

NEMA has published the NU 4-2008 standards document concerning 

performance measurements from small animal PET scanners (NEMA, 2008). This 

publication outlines standardised methods for assessment of small animal PET scanners 

which can be applied across a wide range of scanner models (NEMA, 2008). These 

methods are used to determine scanner performance under typical imaging conditions 

(NEMA, 2008). Experiments used an IQ phantom which comprises three main chambers 

in order to investigate three different types of measurement (NEMA, 2008). The central 

chamber of the phantom is used to investigate image uniformity by determining the % SD 

of the reconstructed image from a uniform response. This measurement is used to 

investigate noise in the reconstructed image data which results from random variations in 

pixel intensity (Turkington, 2001; Estrada, 2005; Bao et al., 2009; Gaitanis et al., 2016). 

An adjacent chamber of the phantom comprises of rods of 1-5 mm in diameter, and these 

rods are used to determine the RC. The RC are calculated by dividing the maximum 

activity in the VOI placed on each rod by the mean of the uniformity test, and these 

measurements indicate the ability of the scanner to determine activity absorbed by lesions 

of various sizes (Bao et al., 2009; Gaitanis et al., 2016). At the opposite end of the 

phantom are air and water filled inserts that are surrounded by homogeneous activity. 

These inserts are used to calculate the SOR air and water, which are the ratio of the mean 

activity in the cold region (air or water) to the mean of the uniform area, and these 

measurements are then used to determine the accuracy of scatter corrections (Bao et al., 

2009; Gaitanis et al., 2016). 

The acquisition of PET IQ phantom data in this study was performed by Dr. 

Adriana Tavares (The University of Edinburgh). The phantom was filled with a uniform 

solution of 18FDG which was synthesised by Dr. Christophe Lucatelli (CRIC, The 

University of Edinburgh). The radioisotope Fluorine-18 was used for experiments which 

will replicate characteristics of the radiotracer 18F-DOPA which will be used for in vivo 

experiments in rats. Fluorine-18 has a half-life of 109.8 min, and decays by positron 
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emission 97% of the time, to yield positrons with a maximum kinetic energy of 630 keV 

and stable Oxygen-18 (Phelps, 2006).  

Positron annihilation results when an emitted positron collides with an electron, 

thus leading to the production of a pair of photons (Turkington, 2001). During the 

acquisition phase of a PET imaging study, the electronics of the PET scanner registers 

pairs of photons when they arrive within a predetermined time window, a process known 

as coincidence detection (Lewellen, 2008). Different types of coincidence events may 

result from positron annihilation, although true coincidence events are those which 

provide an accurate representation of the process of interest (Bailey et al., 2005). These 

events are registered when pairs of photons are emitted at approximately 180° and reach 

opposing detectors within the coincidence time window (Figure 4.1) (Bailey et al., 2005; 

Lewellen, 2008). Scatter coincidences can also result from Compton scattering (which 

occurs following the interation between a photon and a loosely bound orbital electron) 

and this leads to a loss of energy and change in direction of the affected annihilation 

photons (Bailey et al., 2005). Furthermore, random coincidences result when annihilation 

photons from two different events arrive within the coincidence time window (Bailey et 

al., 2005). In contrast, multiple coincidences result when more than two photons are 

detected within the coincidence time window. 

The coincidence circuit of a PET scanner registers prompt coincidences which 

include both true coincidences and random and scatter coincidences (Phelps, 2006). 

However, corrections for random and scatter coincidences can be applied during the 

reconstruction of PET imaging data, in order to accurately quantify the PET imaging data 

(Phelps, 2006). 

PET imaging data can be reconstructed using various algorithms in order to 

determine the distribution and characteristics of the radiotracer that was used for the 

study. Methods used for the reconstruction of PET IQ phantom data in this thesis were 

investigated in order to determine the optimal reconstruction parameters.  

Data can be reconstructed using analytical or iterative methods. FBP is an 

example of an analytical method which utilises a combination of filtering and back 

projection steps to reconstruct PET data (Alessio and Kinahan, 2006). This method has 

previously been applied to reconstruct 18F-DOPA PET data from rat models of PD 

(Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; Becker et al., 2017).  
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Figure 4.1: Schematic diagram which illustrates the type of coincidence events that can 
result following positron-electron annihilation. A PET scanner registers a true coincidence 
event when annihilation photons are emitted at approximately 180° and reach opposing PET 
detectors within the coincidence time window. Image artefacts can also result from scatter and 
random coincidences. Scatter coincidences are the result of Compton scattering which leads to a 
loss of energy and a change in direction of annihilation photons. Random coincidences are 
registered when photons originating from two different annihilation events are detected within the 
coincidence time window. Multiple coincidences are where more than two photons are detected 
within the coincidence time window, meaning that a line of response cannot be ascribed and the 
event is rejected (Image from Bailey et al., 2005). 

 

Iterative methods utilise criteria which define the best image estimate as well as 

numerical algorithms in order to reconstruct PET data, with the number of updates to the 

image depending on the number of iterations that are used for reconstruction (Tong, 

Alessio and Kinahan, 2010). Figure 4.2 illustrates the process involved when an image 

reconstruction problem is solved iteratively. With each iteration, the data is forward 

projected, a comparison is made between the estimated and measured projections, and the 

estimate is then back projected and updated. The objects activity distribution may be 

estimated using the MLEM algorithm, although a potential disadvantage of using this 

approach is that the use of a high number of iterations can lead to a lengthy reconstruction 

time (Tarantola, Zito and Gerundini, 2003). A modification of MLEM is OSEM, and this 

latter method uses only a subset of the data for each image update, therefore the time 
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taken for the reconstruction of data can be less than for methods using MLEM (Tarantola, 

Zito and Gerundini, 2003).  

 

 

Figure 4.2: Schematic diagram which demonstrates the process involved when a 
reconstruction problem is solved iteratively. The process commences with an initial estimate of 
the objects activity. The estimate is then compared with the measured data, and is updated based 
on the criteria which define the best image. One complete cycle from (1) to (4) is completed for 
each iteration used in the reconstruction of PET data. When OSEM is utilised, only a subset of the 
data is updated with each iteration (Image from Tong, Alessio and Kinahan, 2010). 

 

Iterative methods are thought to more accurately model the system and the noise 

in the data than analytical methods such as FBP, however they utilise much more 

complicated mathematical methods that do not obtain a direct analytical solution 

(Tarantola, Zito and Gerundini, 2003; Tong, Alessio and Kinahan, 2010). Furthermore, a 

compromise must be made in the number of iterations used for reconstruction, since the 

use of too many iterations has the potential to amplify noise and to lead to a deterioration 

in image quality (Tarantola, Zito and Gerundini, 2003). On the other hand, advantages of 

iterative methods when compared with analytical methods include improved spatial 

resolution and signal recovery as well as reduced streak artefacts (Bailey et al., 2005; 

Kuntner and Stout, 2014). Figure 4.3 illustrates differences in images reconstructed using 

FBP or OSEM, where these methods have been used to reconstruct 18FDG data from a 

human subject.  

The PET IQ phantom data was reconstructed using iterative methods, since the 

improved spatial resolution and signal recovery of these methods was desirable for the 
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reconstruction of in vivo PET data from rats since the striatum (target region) is small in 

size. The phantom experiments used a systematic approach in order to determine the 

optimal number of iterations and subsets for reconstruction, and to prevent, for example, 

the potentially detrimental effect of using too many iterations for reconstruction 

(Tarantola, Zito and Gerundini, 2003). 

 

 

Figure 4.3: Comparison of images reconstructed using filtered back projection and ordered 
subsets expectation maximisation. Data reconstructed using FBP (a) demonstrated streak 
artefacts compared with methods using OSEM (b). Images were reconstructed using data from an 
18FDG whole body study of a human patient. Images show a frontal section (Figure adapted from 
Bailey et al., 2005). 

 

During image reconstruction, parameters can also be selected to determine the 

configuration of the detectors and the resolution of the reconstructed image. These 

variables may influence the quality of the reconstructed image. The coincidence mode 

describes the configuration of detectors with which coincidence registration takes place; 

with coincidence mode 1-1 coincidence registration is between one detector and one 

opposing, whereas for coincidence mode 1-3 it is between 1 detector and 3 opposing, and 

for coincidence mode 1-5 it is between 1 detector and 5 opposing (Figure 4.4). The 
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coincidence mode determines the FOV and this is smallest for coincidence mode 1-1 and 

largest for coincidence mode 1-5 (Dahle, 2014). A coincidence mode of 1-1 is typically 

used for the reconstruction of data from a point source, whereas in vivo PET data is often 

reconstructed using a coincidence mode of 1-3 or 1-5. The resolution of the reconstructed 

image determines the voxel size, which is the physical dimension of the data elements in 

X, Y and Z. There is a compromise between methods which utilise a large voxel size 

which suppresses noise in the reconstructed image, and methods utilising a small voxel 

size which increases the detail of the image (Shakirin et al., 2008). PET IQ phantom data 

was also reconstructed to determine the optimal coincidence mode (1-3 or 1-5), and the 

optimal resolution (fast, normal or fine). 

 

 

Figure 4.4: Schematic diagram which demonstrates the process of coincidence registration 
by opposing detectors of the PET scanner, when using a coincidence mode of 1-1, 1-3 or 1-5. 
In vivo PET data is typically reconstructed using a coincidence mode of 1-3 (b) or 1-5 (c). For 
methods using a coincidence mode of 1-3, coincidence registration takes place between one 
detector and the three opposing, whereas for a coincidence mode of 1-5, coincidence registration 
takes place between one detector and the five opposing. A coincidence mode of 1-1 (a) would 
typically be used for the reconstruction of PET data from a point source (Figure adapted from 
Dahle, 2014). 

 

Additional parameters that may have an impact on the quality of the 

reconstructed image include the settings used for regularisation, randoms correction, the 

spike filter and the energy window. Regularisation is utilised to reduce noise in the 

reconstructed image which can result from the effects of the expectation maximisation 

algorithm, which enforces the maximisation of the likelihood function (Magdics et al., 

2011). Figure 4.5 illustrates noise that may result from using an increasing number of 

iterations for reconstruction. Using a small number of iterations, error levels in the 

reconstructed data decline with an increasing number of iterations (Magdics et al., 2011). 

However, a further increase in the number of iterations used for reconstruction results in 

progressively increased levels of error in the reconstructed image (Magdics et al., 2011). 
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The method of total variation regularisation which was used during reconstruction 

introduces a penalty term which limits noise in areas of relatively homogeneous activity 

but preserves sharp features and edges (Persson, Bone and Elmqvist, 2001; Magdics et 

al., 2011). The settings for regularisation that were investigated in this thesis were ‘none’, 

‘low’, ‘normal’ or ‘high’. 

 

 

Figure 4.5: Schematic diagram which illustrates the error that can be introduced into PET 
imaging data, when data is reconstructed using the expectation maximisation algorithm. 
Using a small number of iterations for reconstruction, the error in the reconstructed image declines 
with an increasing number of iterations. However, the error progressively increases when using 
additional iterations for reconstruction, and this is due to increasing levels of noise in the 
reconstructed image (Image from Magdics et al., 2011). 
 

True coincidence events provide important information about the process of 

interest and are the desirable measurement. However, photons can also contribute to other 

types of coincidence events including random and scatter coincidences. The random 

coincidence rate can comprise a substantial fraction of the prompt coincidences during a 

3D PET imaging study, although random coincidences can be corrected for in real-time 

by introducing a delay into the coincidence circuit (Madsen, 2005). Nonetheless, this 

method can result in noise which is propagated into the reconstructed image, therefore 

variance reduction methods (which utilise various algorithms) may be employed in order 

to suppress image noise (Badawi et al., 1999; Brasse et al., 2005). Randoms correction 

was investigated in this thesis by using a delayed window, no delayed window or total 

variance reduction.  

The number of scattered events accepted by the PET scanner electronics depends 

upon the lower energy threshold used for the energy window and also the energy 

resolution capabilities of the detectors (Turkington, 2001). The effect of a 400-600 keV 
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and a 250-750 keV energy window was investigated on the reconstructed PET phantom 

data. Settings for the spike filter were also investigated, since this feature is used to 

remove outlier pixels from the reconstructed image. 

The aim of the experiments was to determine the optimal reconstruction methods 

for in vivo PET imaging data by using phantoms. Image quality was assessed by using 

measurements of the % SD in image uniformity, SOR air and SOR water, RC from the 

rods of 2-5 mm diameter, and measured activity (MBq). Since the target region for in vivo 

imaging (i.e. the striatum) is small in size, the RC determined from the rod of 2 mm 

diameter was particularly important in determining the optimal reconstruction method.  

Preliminary experiments investigated the optimal number of iterations and 

subsets, coincidence mode and image resolution by systematically changing these 

reconstruction parameters. Data was reconstructed using either 1, 2, 4, 6, 12 or 24 

iterations, and 1, 2, 3, (5) or 6 subsets. If 2 iterations and 6 subsets were used for 

reconstruction, the terminology used in this chapter was 2i6s. In some instances the 

number of iterations used for reconstruction may be equivalent, for example when the 

product of the number of iterations and subsets used for reconstruction is the same 

(Waterstram-Rich and Gilmore, 2017), such as data reconstructed using 2 iterations and 6 

subsets or alternatively 6 iterations and 2 subsets. Gaitanis et al. (2016) use the 

terminology ‘iteration updates’ to describe the product of the number of iterations and 

subsets, and graphs included in this chapter are labelled with the number of iteration 

updates in ascending order. When the number of iteration updates were equivalent, the 

data with the lower number of iterations was plotted to the left of data with the higher 

number of iterations.  

The most promising reconstruction scenario identified from preliminary analyses 

was then used to investigate additional parameters for reconstruction, including the 

settings for regularisation, randoms correction, the spike filter, and the energy window. 

 

4.3 CT images of the PET IQ phantom 

PET phantom data was acquired along with co-registered CT images. Figure 4.6 shows 

CT images of the uniform chamber, the chamber with the rods of 1-5 mm diameter, and 

the chamber with the air- and water-filled inserts. CT images of the phantom appeared 

homogeneous in the chambers of the uniform region and the rods of 1-5 mm. The rods of 

the phantom are drilled in polymethyl methacrylate (PMMA) and the physical structure 

of the phantom was not easily distinguished from the activity that was present in the rods. 
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However, the air-filled insert was observed on the left of the images of the chamber that 

contained the air- and water-filled inserts. The air-filled insert was identified by a 

decreased CT number in the image.  

CT images of the phantom were used for quality control, and were used to inspect 

the phantom for evidence of air bubbles in regions which should comprise homogeneous 

activity. Measurements were only made from regions such as the central uniform 

chamber, where there were no inadvertent air bubbles. Images also show the scanner bed 

beneath the phantom which was used for attenuation correction during the reconstruction 

of PET phantom data. The PET images presented in this chapter were taken using the 

same coordinates used to create images of CT data. 

 

 

Figure 4.6: CT images of the PET IQ phantom uniform chamber, the chamber with the rods 
of 1-5 mm and the chamber with air- and water-filled inserts. The rods which are drilled into 
polymethyl methacrylate (PMMA) and filled with activity were not easily distinguished from the 
PMMA of the phantom itself. The air-filled insert was situated on the left of images used for 
measurement of SOR and this was demonstrated by a decreased CT number. CT images were used 
for quality control and to ensure measurements were not made from areas with inadvertent air 
bubbles. The scanner bed was located beneath the phantom and was used for attenuation correction 
during the reconstruction of PET phantom data. Images are shown in Hounsfield units (HU) and 
are in the transverse plane.  x=1.13, y=-6.39, z=-57.23 (uniform chamber), -75.25 (Rods of 1-5 
mm), -40.62 (air and water inserts). 

  

4.4 Investigation of the optimal reconstruction parameters 

 Image uniformity 

Figure 4.7 shows PET images taken from the central chamber that was filled with 

uniform activity, and provides illustrative images of data reconstructed using different 

settings for resolution (fast, normal or fine) and a different number of iterations and 

subsets. The data indicated that the image quality was affected by the number of iterations 

and subsets used for reconstruction, and was less affected by the resolution of the 

reconstructed image. The image of the uniform chamber reconstructed using 1i1s was 

blurred which might be expected, since the first guess during reconstruction using 

iterative methods is usually a uniform image and this image has undergone only one 



143 
 

update (Tong, Alessio and Kinahan, 2010). In contrast, the image reconstructed using 

24i6s was grainy, and this may have been the result of noise which had been amplified by 

the use of too many iterations for reconstruction of the data (Tarantola, Zito and 

Gerundini, 2003). 

 

 

Figure 4.7: Images of the PET IQ phantom central chamber filled with homogeneous activity 
after reconstructing the PET data using different methods. Images show the effect of varying 
the resolution (fast/normal/fine) and the number of iterations and subsets used for reconstruction. 
The data indicated that the image quality was affected by the number of iterations and subsets used 
for reconstruction, and was less affected by the image resolution. The image reconstructed using 
1i1s was blurred whereas the image reconstructed using 24i6s was grainy. Images were 
reconstructed using a coincidence mode of 1-3, and are shown in the transverse plane. x=1.13,   
y=-6.39, z=-57.23. 

 

To obtain a quantitative measure of image uniformity, the NEMA test 

programme was used to determine the % SD in image uniformity. Measurements were 

made using the same VOI which was placed on the centre of the uniform chamber, and 

measurements were compared with quality control thresholds (Table 4.1). For data 

reconstructed using a fast resolution and a coincidence mode of 1-3 the % SD in image 

uniformity was less than 15% regardless of the number of iterations and subsets used for 

reconstruction (Figure 4.8). For all other combinations of resolution (fast, normal or fine) 

and coincidence mode (1-3 or 1-5), the % SD in image uniformity was less than 15% 
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between 1i1s and 6i3s. The % SD in image uniformity was also less than 15% for data 

reconstructed using a fast resolution, coincidence mode of 1-5 and 4i5s. Data 

reconstructed using between 6i3s and 24i6s demonstrated an increasing % SD in image 

uniformity with an additional number of iterations and subsets, with the % SD in image 

uniformity 91-114% for images reconstructed using 24i6s.  

 

Table 4.1: The tolerance levels used for analyses of the % SD in image uniformity, spillover 
ratios into air and water, and recovery coefficients from rods of 2-5 mm diameter. Data from 
the 1 mm rod in the PET IQ phantom was not analysed since this rod likely contained small 
crystals in the lumen, meaning that the analysis of the RC from the rod of 1 mm diameter may 
have been inaccurate.  

Parameter Tolerance level 
Uniformity (% SD) <15% 
RC 2 mm >0.4 
RC 3 mm >0.6 
RC 4 mm >0.7 
RC 5 mm >0.8 
SOR air <0.15 
SOR water <0.25 

 

   



145 
 

1i
1s

1i
2s

2i
1s

1i
3s

2i
2s

4i
1s

1i
5s

1i
6s

2i
3s

4i
2s

6i
1s

2i
5s

2i
6s

4i
3s

6i
2s
12

i1
s
6i

3s
4i

5s
4i

6s
12

i2
s
24

i1
s
6i

5s
6i

6s
12

i3
s
24

i2
s
12

i5
s
12

i6
s
24

i3
s
24

i5
s
24

i6
s

0

10

20

30

40

50

60

70

80

90

100

110

120

Fast 1-3
Fast 1-5
Normal 1-3
Normal 1-5
Fine 1-3
Fine 1-5

Iterations and subsets

U
n

ifo
rm

it
y 

(%
 S

D
)

 

Figure 4.8: Effect of the reconstruction method on the % SD in image uniformity. The % SD 
in image uniformity was less than the tolerance level (<15 %) for data reconstructed using a fast 
resolution and a coincidence mode of 1-3, regardless of the number of iterations and subsets used. 
However, for all other combinations of resolution and coincidence mode, the % SD in image 
uniformity was <15% for data reconstructed using 1i1s to 6i3s. The % SD in image uniformity 
was also <15% for data reconstructed using a fast resolution, a coincidence mode of 1-5 and 4i5s. 
The % SD in image uniformity increased with an increasing number of iterations and subsets 
between 6i3s and 24i6s. 

 

The % SD in image uniformity was investigated in data reconstructed using an 

equivalent number of iterative updates. In theory, data reconstructed using different 

combinations of iterations and subsets which equal the same number of iterative updates 

should be equivalent (Waterstram-Rich and Gilmore, 2017). Table 4.2 shows results from 

measurements of the % SD in image uniformity, from data reconstructed using 12 

iterative updates with various combinations of resolution and coincidence mode. For data 

reconstructed using 6i2s and 12i1s, measurements of the % SD in image uniformity were 

the same when using either a fast, normal, or fine resolution along with a coincidence 

mode of 1-5. However, for data reconstructed using a fast resolution and a coincidence 

mode of 1-3, the % SD in image uniformity varied from 1-6% for data reconstructed 

using an equivalent number of iterative updates (6i2s/4i3s/2i6s/12i1s). Therefore, 

measurements of % SD in image uniformity were not necessarily the same for data 

reconstructed using an equivalent number of iterative updates. 
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Table 4.2: The % SD in image uniformity from data reconstructed using an equivalent 
number of iterative updates. Results from data reconstructed using a fast, normal, or fine 
resolution and a coincidence mode of 1-5, demonstrated that the % SD in image uniformity was 
equivalent for data reconstructed using 6i2s and 12i1s. However, the % SD in image uniformity 
was not equivalent for all data reconstructed using the same number of iterative updates. This is 
shown by the results from the analysis of data reconstructed using a fast resolution and a 
coincidence mode of 1-3, where the % SD in image uniformity ranged from 1-6% for data 
reconstructed using an equivalent number of iterative updates (2i6s/4i3s/6i2s/12i1s). The results 
shown are from images reconstructed using 12 iterative updates. 

 
Fast  
1-3 

Fast  
1-5 

Normal  
1-3 

Normal  
1-5 

Fine  
1-3 

Fine  
1-5 

2i6s 6.0 10.0 10.7 10.5 10.5 10.5 
4i3s 3.0 8.6 9.2 9.2 9.7 9.7 
6i2s 2.0 8.3 9.1 9.0 9.6 9.5 
12i1s 1.0 8.3 9.0 9.0 9.5 9.5 

 

 The rods of 2-5 mm in diameter 

Activity in the central uniform chamber of the PET IQ phantom communicates with the 

rods of 5 different diameters that are in an adjacent chamber and are parallel to the long 

axis of the PET scanner. The diameter of the rods was 1, 2, 3, 4 and 5 mm. However, only 

the rods of 2-5 mm in diameter were analysed in these experiments since the 1 mm rod 

was thought to contain crystals, which may have impacted upon the communication of 

the rod with activity in the central chamber and likewise may have affected its internal 

diameter.  

Figure 4.9 shows illustrative PET images of the rods which were reconstructed 

using different combinations of resolution and a different number of iterations and 

subsets. Data indicated that the image quality was affected by the number of iterations 

and subsets used for reconstruction, and was less affected by the resolution of the 

reconstructed image. The image of the rods reconstructed using 1i1s was blurred whereas 

the image reconstructed using 24i6s was grainy, and both these findings were similar to 

those obtained from the analysis of images of the central uniform chamber (Figure 4.7).  
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Figure 4.9: Images of the PET IQ phantom in the chamber of the rods of 1-5 mm in diameter 
after reconstructing the PET data using different methods. Images show the effect of varying 
the image resolution (fast/normal/fine) and the number of iterations and subsets used for 
reconstruction. The data indicated that the image quality was affected by the number of iterations 
and subsets used for reconstruction, and was less affected by the image resolution. The image of 
data reconstructed using 1i1s was blurred at the sites of the rods whereas the image reconstructed 
using 24i6s was grainy. The rod of 1 mm in diameter was thought to contain crystals in the lumen, 
therefore the diameter of this rod may be inaccurate. Images were reconstructed using coincidence 
mode 1-3, and are shown in the transverse plane. x=1.13, y=-6.39, z=-75.25. 

 

To obtain a quantitative measure of RC from the rods of 2-5 mm diameter, the 

NEMA test programme was used to place VOIs on the rods, and these results were 

compared with quality control thresholds (Table 4.1). The aim of this test was to 

determine the recovery of activity from objects of various sizes. The RC from the rod of 2 

mm in diameter was particularly important since the target region of interest in G51D rats 

(i.e. the striatum) is small in size.  

The tolerance level for the RC from the rod of 2 mm diameter was greater than 

0.4. For all combinations of resolution (fast, normal or fine) and coincidence mode (1-3 

or 1-5), the RC was greater than 0.4 between 6i3s and 24i6s (Figure 4.10). The RC was 

also greater than 0.4 using 2i6s and 4i3s along with a normal resolution and a coincidence 

mode of 1-3 or 1-5, or along with a fine resolution and a coincidence mode of 1-3. The 

value obtained for the RC 2 mm plateaued at 4i6s for all combinations of the 
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reconstruction parameters, although a higher plateau was observed for data reconstructed 

using a normal resolution and a coincidence mode of 1-5, or a fine resolution and a 

coincidence mode of 1-3 or 1-5. 

The RC from the rod of 3 mm diameter was greater than the tolerance level of 0.6 

for all combinations of resolution and coincidence mode between 2i5s and 24i6s (Figure 

4.11). The RC 3 mm plateaued at 6i3s using a normal resolution and a coincidence mode 

of 1-3 or 1-5, whereas the data reconstructed using a fine resolution measured an 

increasing RC with increased number of iterations and subsets, and the RC 3 mm 

measured from data reconstructed using a fast resolution decreased using a particularly 

high number of iterations and subsets. 

The RC 4 mm was greater than the tolerance level of 0.7 for all combinations of 

resolution and coincidence mode between 2i6s and 24i6s (Figure 4.12). The RC 4 mm 

was greater than 0.7 using 1i6s and a fast/normal resolution along with a coincidence 

mode of 1-3/1-5, using 1i6s and a fine resolution with a coincidence mode of 1-3, and 

using 2i3s and a fine resolution with a coincidence mode of 1-3. The RC 4 mm was 

greater than 0.7 using 6i1s and a fine resolution with a coincidence mode of 1-3/1-5, and 

6i1s and a normal resolution with a coincidence mode of 1-3. The RC 4 mm was also 

greater than 0.7 using 4i2s and a fast resolution with a coincidence mode of 1-3/1-5, and 

4i2s and a normal resolution with a coincidence mode of 1-5. The RC 4 mm that was 

measured generally plateaued after 4i3s for all combinations of resolution and 

coincidence mode. 

The RC 5 mm was greater than the tolerance level of 0.8 for all combinations of 

resolution and coincidence mode between 1i5s and 24i6s, except for the combination of 

1i6s and a fine resolution with a coincidence mode of 1-5. (Figure 4.13). The RC 5 mm 

generally plateaued after 4i3s for all combinations of resolution and coincidence mode. 
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Figure 4.10: Effect of the reconstruction method on the recovery coefficient from the rod of 2 
mm in diameter. The RC 2 mm was greater than the tolerance level of 0.4 between 6i3s and 24i6s 
using all combinations of resolution (fast/normal/fine) and coincidence mode (1-3/1-5). The RC 2 
mm was also >0.4 using 2i6s and 4i3s along with a normal resolution and a coincidence mode of 
1-3 or 1-5, and a fine resolution and a coincidence mode of 1-3.  
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Figure 4.11: Effect of the reconstruction method on the recovery coefficient from the rod of 3 
mm in diameter. The RC 3 mm was greater than the tolerance level of 0.6 for all combinations of 
resolution and coincidence mode between 2i5s and 24i6s. 
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Figure 4.12: Effect of the reconstruction method on the recovery coefficient from the rod of 4 
mm in diameter. The RC 4 mm was greater than the tolerance level of 0.7 for all combinations of 
resolution and coincidence mode between 2i6s and 24i6s. In addition, the RC 4 mm was greater 
than 0.7 using 1i6s, 2i3s, 6i1s, 4i2s for some combinations of resolution and coincidence mode. 
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Figure 4.13: Effect of the reconstruction method on the recovery coefficient from the rod of 5 
mm in diameter. The RC 5 mm was greater than the tolerance level of 0.8 for all combinations of 
resolution and coincidence mode between 1i5s and 24i6s, except for data reconstructed using 1i6s 
and a fast resolution with a coincidence mode of 1-5. 
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The RC 2 mm was investigated in data reconstructed using an equivalent number 

of iterative updates. Table 4.3 shows measurements of the RC 2 mm that were determined 

from data which was reconstructed using 12 iterative updates. Measurements of the RC 2 

mm are shown, given the importance of this measurement relative to the size of the 

striatum in rats. The RC 2 mm from data reconstructed using a fast resolution and a 

coincidence mode of 1-5 was particularly consistent and measurements ranged from 0.35-

0.36. The range of measurements for the RC 2 mm was largest for data reconstructed 

using a normal resolution and a coincidence mode of 1-3, where the RC 2 mm for data 

reconstructed using 6i2s was 13.6% lower than the RC 2 mm for data reconstructed using 

2i6s. From a theoretical perspective therefore, measurements of the RC 2 mm are not 

necessarily equivalent for data reconstructed using the same number of iterative updates.  

 

Table 4.3: The RC from the rod of 2 mm in diameter from data reconstructed using an 
equivalent number of iterative updates. The data reconstructed using a fast resolution and a 
coincidence mode of 1-5 was 0.35-0.36 and thus was consistent. The greatest variation in the RC 2 
mm was found for data reconstructed using a normal resolution and a coincidence mode of 1-3, 
where the RC 2 mm for data reconstructed using 6i2s was 13.6% lower than the RC 2mm for data 
reconstructed using 2i6s. The data shown is from images reconstructed using 12 iterative updates. 

 
Fast  
1-3 

Fast  
1-5 

Normal  
1-3 

Normal  
1-5 

Fine  
1-3 

Fine  
1-5 

2i6s 0.37 0.36 0.44 0.42 0.41 0.43 
4i3s 0.37 0.35 0.41 0.41 0.42 0.39 
6i2s 0.35 0.35 0.38 0.39 0.41 0.40 
12i1s 0.34 0.36 0.39 0.38 0.40 0.41 

 

 The air- and water-filled inserts 

In one chamber of the PET IQ phantom there are two inserts which are filled with either 

air or water, and these are surrounded by homogeneous activity from the central uniform 

chamber. The co-registered CT image (Figure 4.6) demonstrated that the air-filled 

chamber was located on the left of the images of reconstructed PET data. Figure 4.14 

shows illustrative PET images of the chamber with air- and water-filled inserts which 

were reconstructed using different combinations of resolution and a different number of 

iterations and subsets. Data indicated that image quality was affected by the number of 

iterations and subsets used for reconstruction and was less affected by the resolution of 

the reconstructed image. The image phantom reconstructed using 1i1s was blurred and 

the air and water inserts could not be visualised, whereas the inserts were visualised in the 

image reconstructed using 24i6s and the surrounding activity was grainy.  
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Figure 4.14: Images of the PET IQ phantom in the region of air- and water-filled inserts 
after reconstructing the PET data using different methods. Images show the effect of varying 
the resolution (fast/normal/fine) and the number of iterations and subsets used for reconstruction. 
The images show that increasing the number of iterations and subsets has the most pronounced 
effect on the image within the air and water filled inserts. The coincidence mode for all images 
was 1-3. The air-filled insert was on the left and the water-filled insert on the right. Images are in 
the transverse plane. x=1.13, y=-6.39, z=-40.62. 

 

The NEMA test programme was used to determine the SOR of activity into air- 

and water-filled inserts and the ability of the scanner to perform scatter corrections. These 

measurements were made by placing VOIs in the chambers of the air- and water-filled 

inserts. For all combinations of resolution and coincidence mode, the SOR air tended to 

decline with an increasing number of iterations and subsets (Figure 4.15). The SOR air 

was less than the tolerance level of 0.15 between 6i3s and 24i6s, and measurements of the 

SOR air were generally independent of the resolution and the coincidence mode used for 

reconstruction. Measurements of the SOR water also decreased with an increasing 

number of iterations and subsets, and the SOR water was less than the tolerance level of 

0.25 between 2i5s and 24i6s (Figure 4.16). 
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Figure 4.15: Effect of the reconstruction method on the spillover ratio of activity from a hot 
region into a cold region comprising an air-filled chamber. The SOR air generally decreased 
with an increasing number of iterations and subsets. Measurements of the SOR air were less than 
the tolerance level of 0.15 between 6i3s and 24i6s. The SOR air was generally independent of the 
resolution and the coincidence mode that was used for reconstruction. 
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Figure 4.16: Effect of the reconstruction method on the spillover ratio of activity from a hot 
region into a cold region comprising a water-filled chamber. The SOR water generally 
decreased with an increasing number of iterations and subsets, and the SOR water was less than 
the tolerance level of 0.25 between 2i5s and 24i6s. The SOR water was generally independent of 
the resolution and the coincidence mode that was used for reconstruction. 
 

Both SOR air and SOR water were investigated in data reconstructed using an 

equivalent number of iterative updates. Table 4.4 shows measurements of the SOR air 

from data reconstructed using 12 iterative updates. Measurements of the SOR air were 

particularly consistent for data reconstructed using 4i3s/6i2s/12i1s where the maximal 

difference in SOR air was 0.02. However, the SOR air was lower for data reconstructed 

using 2i6s than for data reconstructed using other combinations of iterations and subsets. 

Using a fine resolution and a coincidence mode of 1-5, the SOR air was 26.3% lower for 

data reconstructed using 2i6s compared with data reconstructed using 12i1s. 
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Table 4.4: The SOR air from data reconstructed using an equivalent number of iterative 
updates. For data reconstructed using 4i3s/6i2s/12i6s the maximum difference in the SOR air was 
0.02. However, the measurements of SOR air were lower for images reconstructed using 2i6s 
compared with data reconstructed using other combinations of iterations and subsets. Using a fine 
resolution and a coincidence mode of 1-5, the SOR air was 26.3% lower for data reconstructed 
using 2i6s compared with data reconstructed using 12i1s. The data shown is from images 
reconstructed using 12 iterative updates. 

 
Fast  
1-3 

Fast  
1-5 

Normal 
1-3 

Normal 
1-5 

Fine  
1-3 

Fine  
1-5 

2i6s 0.15 0.15 0.15 0.15 0.15 0.14 
4i3s 0.18 0.18 0.19 0.17 0.19 0.18 
6i2s 0.20 0.19 0.19 0.19 0.19 0.19 
12i1s 0.20 0.20 0.20 0.19 0.20 0.19 

 

Table 4.5 shows measurements of the SOR water from data reconstructed using 

12 iterative updates. Measurements of the SOR water for data reconstructed using 

4i3s/6i2s/12i1s differed by a maximum of 0.02. However, the SOR water for data 

reconstructed using 2i6s was lower than the SOR water determined from data 

reconstructed using other combinations of iterations and subsets. For data reconstructed 

using a fast resolution and a coincidence mode of 1-5 or a normal resolution and a 

coincidence mode of 1-3, the SOR water determined from data reconstructed using 2i6s 

was 27.3% lower than the SOR water determined from data reconstructed using 12i1s. 

Therefore, the SOR air and the SOR water were not necessarily the same for data 

reconstructed using an equivalent number of iterative updates. 

 

Table 4.5: The SOR water from data reconstructed using an equivalent number of iterative 
updates. Measurements of the SOR water for data reconstructed using 4i3s/6i2s/12i1s differed by 
a maximum of 0.02. However, the SOR water was lower for data reconstructed using 2i6s 
compared with data reconstructed using other combinations of iterations and subsets. The SOR 
water for data reconstructed using a fast resolution and a coincidence mode of 1-5 or a normal 
resolution and a coincidence mode of 1-3 was 27.3% lower for data reconstructed using 2i6s than 
for data reconstructed using 12i1s. The data shown is from images reconstructed using 12 iterative 
updates. 

 
Fast  
1-3 

Fast  
1-5 

Normal 
1-3 

Normal 
1-5 

Fine  
1-3 

Fine  
1-5 

2i6s 0.17 0.16 0.16 0.16 0.17 0.17 
4i3s 0.20 0.20 0.20 0.19 0.19 0.20 
6i2s 0.20 0.21 0.21 0.21 0.21 0.21 
12i1s 0.22 0.22 0.22 0.21 0.21 0.22 

 



156 
 

 The measured activity 

The PET IQ phantom was filled with 3.8 MBq of activity, however the measured activity 

determined from the reconstructed PET data was less than 3.1 MBq (Figure 4.17). One 

possible explanation for this decrease of at least 0.7 MBq is that some activity was lost at 

the ports of the phantom as it was filled.  

The measured activity in images reconstructed using between 2i3s and 4i5s was 

2.7-2.9 MBq (Figure 4.17). However, when a higher number of iterations and subsets 

were used for reconstruction the measured activity declined, decreasing at an earlier 

number of iterations and subsets for images reconstructed using a coincidence mode of 1-

3 compared with images reconstructed using a coincidence mode of 1-5. The decline in 

the measured activity using a higher number of iterations and subsets may reflect a 

deterioration in image quality that can result from the use of too many iterations 

(Tarantola, Zito and Gerundini, 2003). 
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Figure 4.17: Effect of the reconstruction method on the measured activity determined from 
the PET IQ phantom. The dashed line indicates the activity added to the phantom (3.8 MBq) that 
was measured by using the Capintec. The measured activity determined from the reconstructed 
PET data was less than 3.1 MBq, and was thus at least 0.7 MBq less than the 3.8 MBq used to fill 
the phantom. These differences may be in part be explained by activity being lost at the ports of 
the phantom as it was filled. The measured activity was 2.7-2.9 MBq for data reconstructed using 
between 2i3s and 4i5s. However, when a higher number of iterations and subsets were used for 
reconstruction the measured activity declined. Similarly, the measured activity started to decline 
for data using a lower number of iterations and subsets with a coincidence mode 1-3 compared 
with the data that was reconstructed using a coincidence mode of 1-5.  
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 Summary of the data analysed to determine the % SD in image 

uniformity, RC 2 mm, SOR air, SOR water and measured activity 

Inspection of the measurements obtained for the % SD in image uniformity, RC 2 mm, 

SOR air, SOR water and measured activity, indicated that the optimal reconstruction 

scenario required a compromise to be made between the measurements made for these 

parameters. The tolerance level of <15% for % SD in image uniformity was achieved for 

all reconstruction scenarios using between 1i1s and 6i3s, although the % SD in image 

uniformity tended to increase with an increasing number of iterations and subsets (Figure 

4.8). The RC 2 mm was particularly important given the size of the striatum in rats. The 

tolerance level of >0.4 was achieved for data reconstructed using between 6i3s and 24i6s 

(Figure 4.10), which was the opposite of the trend observed for measurements of the % 

SD in image uniformity.  

The SOR air was less than 0.15 for data reconstructed using between 6i3s and 

24i6s (Figure 4.15), and the SOR water was less than 0.25 for data reconstructed using 

between 2i5s and 24i6s (Figure 4.16). Both the SOR air and SOR water were lowest 

using a high number of iterations and subsets.  

The measured activity determined from the reconstructed PET data was at least 

0.7 MBq less than the 3.8 MBq that was used to fill the phantom. Nonetheless, the 

measured activity was relatively stable between 2i3s and 4i5s, before the measurements 

started to decline with an increasing number of iterations and subsets, and this was most 

rapid for data reconstructed using a coincidence mode of 1-3 (Figure 4.17). Therefore, the 

measured activity was highest using a low number of iterations and subsets. 

Given the importance of the measurements of the RC 2 mm this dataset was first 

investigated to identify candidates for the optimal reconstruction method. The analysis 

first focussed on identifying the optimal number of iterations and subsets for 

reconstruction. The RC 2 mm was greater than 0.4 for images reconstructed using 6i3s 

and 4i5s, and one of the highest values for the RC 2 mm was obtained from data using 

4i6s (Figure 4.10). Therefore, data reconstructed using 4i6s represented a particularly 

promising candidate. The % SD in image uniformity for data reconstructed using 4i6s 

was greater than the tolerance level of 15% but was less than 20%, therefore % SD in 

image uniformity was still relatively low (Figure 4.8). The SOR air and the SOR water 

for images reconstructed using 4i6s were less than the tolerance levels of 0.15 and 0.25 

respectively (Figures 4.15 and 4.16). The measured activity for images reconstructed 

using 4i6s was relatively high and was 2-75-2.60 MBq (Figure 4.17). 
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Next the optimal resolution and coincidence mode were determined from images 

reconstructed using 4i6s. Again, the analysis first focussed on the measurements of the 

RC 2 mm. The RC 2 mm was 0.96 and was highest for images reconstructed using a fine 

resolution and a coincidence mode of 1-3, whereas the RC 2 mm was 0.73 and was 

lowest for data reconstructed using a fast resolution and a coincidence mode of 1-3 

(Figure 4.10). PET data reconstructed using a fine resolution is associated with a 

potentially lengthy reconstruction time, therefore the data reconstructed using a normal 

resolution was investigated. The RC 2 mm from images reconstructed using a normal 

resolution and a coincidence mode of 1-3 was 0.88 and was moderately high. The RC 2 

mm was greater for images reconstructed using a normal resolution and a coincidence 

mode of 1-3, than for images reconstructed using a normal resolution and a coincidence 

mode of 1-5. PET data reconstructed using these latter parameters had a % SD in image 

uniformity of 17.5%, SOR air of 0.08, SOR water of 0.09, and the measured activity was 

2.63 MBq (Figures 4.8, 4.15, 4.16 and 4.17). Therefore, preliminary analyses indicated 

that a normal resolution, a coincidence mode of 1-3, and 4i6s were the optimal 

parameters for the reconstruction of in vivo PET data from rats. 

 

4.5 Further investigations to determine the optimal reconstruction 

parameters 

The PET IQ phantom data was further investigated to determine the optimal parameters 

for regularisation, randoms correction, spike filter setting and the energy window, by 

systematically varying these parameters. The data was reconstructed using the optimal 

parameters determined in this chapter for the resolution, the coincidence mode and the 

number of iterations and subsets. Reconstructed PET data was analysed to determine the 

% SD in image uniformity, RC 2 mm, SOR air, SOR water and the measured activity. 

This approach allowed the methods for reconstruction of PET data in rats to be further 

refined.  

 

 The methods used for regularisation 

The data reconstructed during the preliminary analysis of the optimal resolution, 

coincidence mode, and number of iterations and subsets had used regularisation that was 

set to ‘none’. The PET data was further investigated to determine the effect of 

regularisation which was set to ‘low’, ‘normal’ or ‘high’.  
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Table 4.6 shows results from the analysis of different settings used for 

regularisation during the reconstruction of phantom data. Changing the setting for 

regularisation from ‘none’ to ‘normal’ resulted in a decrease in the % SD in image 

uniformity from 17.5% to 13.7%, which was now less than the tolerance level of 15% 

(Table 4.1). Changing this setting resulted in a decrease in the RC 2 mm from 0.88 to 

0.83, however the results were still greater than the tolerance level of 0.4. The SOR air 

decreased from 0.08 to 0.07, however the SOR water was unchanged at 0.09. Both SOR 

air and SOR water were lower than their respective tolerance levels which were 0.15 and 

0.25. Changing the setting for regularisation from ‘none’ to ‘normal’ resulted in a small 

increase in the measured activity from 2.75 MBq to 2.76 MBq. A ‘high’ level of 

regularisation resulted in a further decrease in % SD in image uniformity compared with 

data reconstructed using ‘normal’ regularisation, and the RC 2 mm decreased from 0.83 

to 0.80. Therefore, it was determined that a ‘normal’ setting for regularisation would be 

the best compromise for the reconstruction of PET data from G51D rats. 

 

Table 4.6: Effect of the method used for regularisation determined from the analysis of data 
from the PET IQ phantom. Changing the setting for regularisation from ‘none’ to ‘normal’ 
resulted in a decrease in the % SD in image uniformity which was now less than the tolerance 
level of 15%. Changing the regularisation from ‘none’ to ‘normal’ resulted in a small decline in 
measurements of the RC 2 mm. 

 
% SD 
uniformity 

RC 2 mm SOR air SOR water 
Activity 
(MBq) 

None 17.5 0.88 0.08 0.09 2.75 
Low 16.6 0.84 0.08 0.09 2.72 
Normal 13.7 0.83 0.07 0.09 2.76 
High 10.1 0.80 0.08 0.09 2.74 

 

 The methods used for randoms correction, and settings for the 

spike filter and the energy window 

The data reconstructed during the preliminary analysis of the optimal reconstruction 

parameters used a delayed window for randoms correction. Therefore, the results 

obtained were compared with data reconstructed using no delayed window or variance 

reduction methods for randoms correction.  

Table 4.7 shows results from the analysis of various methods for randoms 

correction. When the data was reconstructed using no delayed window there was a minor 

decrease in the % SD in image uniformity, the RC 2 mm, and the measured activity 

compared with data reconstructed using a delayed window. The measurements of image 
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quality were similar for data reconstructed using a delayed window and variance 

reduction methods. Therefore, the use of a delayed window for randoms correction of 

PET phantom data appears to be desirable. 

Table 4.8 shows results from analysis of data reconstructed using the spike filter 

setting of ‘on’ or ‘off’. Data reconstructed with the spike filter set to ‘off’ showed a minor 

decline in the % SD in image uniformity from 17.5% to 17.3%, and measured activity 

similarly decreased marginally from 2.75 MBq to 2.70 MBq compared with data 

reconstructed with the spike filter set to ‘on’. The spike filter acts to remove outlier pixels 

and it was therefore decided that the final method should have the spike filter switched on 

for this purpose. 

 

 Table 4.7: Effect of the method used for randoms correction determined from the analysis of 
data from the PET IQ phantom. The data reconstructed using no delayed window showed a 
small decrease in the % SD in image uniformity, the RC 2 mm and the measured activity 
compared with data reconstructed using a delayed window. There was little difference in the 
outcome measures from data reconstructed using a delayed window or variance reduction 
methods. The data shows results from the analysis of various methods of randoms correction 
including a delayed window, no delayed window and variance reduction. 

 
% SD 
uniformity 

RC 2 mm SOR air SOR water 
Activity 
(MBq) 

Delayed 
window 

17.5 0.88 0.08 0.09 2.75 

No delayed 
window 

17.3 0.86 0.08 0.09 2.72 

Variance 
reduction 

17.5 0.88 0.08 0.09 2.74 

 

 

Table 4.8: Effect of the spike filter setting determined from the analysis of data from the 
PET IQ phantom. With spike filter set to ‘off’, there was a marginal decrease in the % SD in 
image uniformity and the measured activity compared with data reconstructed with the spike filter 
set to ‘on’. 

 
% SD 
uniformity 

RC 2 mm SOR air SOR water 
Activity 
(MBq) 

On 17.5 0.88 0.08 0.09 2.75 
Off 17.3 0.89 0.09 0.09 2.70 

 

Data reconstructed during the preliminary analysis of the optimal reconstruction 

parameters used an energy window of 400-600 keV. However, these results were 

compared with data from images reconstructed using an energy window of 250-750 keV.  
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Table 4.9 shows results from analysis of the energy window used for 

reconstruction of PET phantom data. When data was reconstructed using an energy 

window of 250-750 keV there was a decrease in the RC 2 mm by 42% compared with 

data reconstructed using an energy window of 400-600 keV. The % SD in image 

uniformity also decreased from 17.5% to 11.5%, however the SOR air increased from 

0.08 to 0.12 and the SOR water increased from 0.09 to 0.12. When the energy window 

was changed from 400-600 keV to 250-750 keV the measured activity increased from 

2.75 to 2.91 MBq since the larger 200-750 keV energy window accepts a greater number 

of photons. Given the substantial decline in the RC 2 mm when using an energy window 

of 250-700 keV compared with data reconstructed using an energy window of 400-600 

keV, it was concluded that the most suitable method for use in the reconstruction of in 

vivo PET data would involve the use an energy window of 400-600 keV. 

 

Table 4.9: Comparison of the settings used for the energy window obtained from the analysis 
of PET IQ phantom data. When an energy window of 250-750 keV was used for reconstruction, 
the RC 2 mm decreased by 42% compared with data reconstructed using an energy window of 
400-600 keV. Using an energy window of 250-750 keV the % SD in image uniformity decreased, 
and the SOR air and the SOR water increased when compared with data reconstructed using an 
energy window of 400-600 keV. The measured activity increased using an energy window of 250-
750 keV since a greater number of photons are accepted. 

Energy 
window 
(keV)  

% SD 
uniformity 

RC 2 mm SOR air SOR water 
Activity 
(MBq) 

400-600 17.5 0.88 0.08 0.09 2.75 
250-750 11.5 0.51 0.12 0.12 2.91 

 

4.6 Discussion and future directions 

Analysis of the PET IQ phantom data indicated that the optimal parameters for the 

reconstruction of in vivo PET data were a normal resolution, a coincidence mode of 1-3, 

4i6s, ‘normal’ regularisation, a delayed window for randoms correction, the spike filter 

set to ‘on’, and an energy window of 400-600 keV. Table 4.10 shows measurements 

made for the % SD in image uniformity, RC 2 mm, SOR air, SOR water and measured 

activity made from PET phantom data reconstructed using these parameters. These 

measurements could inform other users of the performance of the nanoPET/CT, and the 

optimal parameters determined above may be useful for similar in vivo experiments using 

this camera. 
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Table 4.10: Measurements made from PET IQ phantom data reconstructed using the 
optimal reconstruction parameters. The data was reconstructed using a normal resolution, a 
coincidence mode of 1-3, 4i6s, ‘normal’ regularisation, a delayed window for randoms correction, 
spike filter setting of ‘on’, and an energy window of 400-600keV. 

% SD 
uniformity 

RC 2 mm SOR air SOR water Activity (MBq) 

13.7 0.83 0.07 0.09 2.76 

 

These reconstruction parameters will be applied to in vivo PET data in chapter 4 

of this thesis. However, some aspects of the methods used to reconstruct PET phantom 

data will be modified for in vivo data. For rats the reconstruction method will use a 

dynamic reconstruction protocol instead of whole body, and the data will also be 

reconstructed into several frames. The most rapid uptake of 18F-DOPA is during the 

initial period after injection, therefore a series of short frames will be used for data 

acquired early in the scan, and then later the data will be reconstructed into frames of a 

longer duration.  

The first 18F-DOPA PET experiments in WT rats will be used to optimise the in 

vivo imaging protocol and methods for data analysis, and these studies will use a total 

scan duration of 4 hours. The frames that will be used to reconstruct the dynamic 18F-

DOPA PET data of 4 hours duration will be; 6 frames of 30 sec, 3 frames of 60 sec, 2 

frames of 120 sec, 22 frames of 300 sec, and then 12 frames of 600 sec. Modification of 

the total scan duration in further experiments in G51D rats would maintain the same 

overall profile of frames, however the number of long duration frames would decrease as 

the total scan duration was shortened. 

Analyses in this chapter evaluated different combinations of iterations and 

subsets for reconstruction, and results indicated that data reconstructed using the same 

number of iterative updates was not necessarily equivalent using the nanoPET/CT 

system. The differences in the measurements obtained may reflect increased image noise 

and variance when data is reconstructed using an increasing number of subsets when 

compared with data reconstructed using MLEM (Lalush and Tsui, 2000). In this study 

regularisation was applied to the most promising reconstruction scenario and was 

therefore only used for data reconstructed using 4i6s. However, it would be interesting to 

investigate the performance of the system when various settings for regularisation (eg 

‘low’, ‘normal’ or ‘high’) are applied to data reconstructed using an equivalent number of 

iterative updates. 
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 - Optimisation of 18F-DOPA PET imaging using WT rats 

5.1 Introduction 

The radiotracer 18F-DOPA crosses the BBB and is taken up by dopaminergic nerve 

terminals of the striatum, with 18F-DOPA metabolised to 18F-DA by the enzyme AADC, 

and 18F-DA then entering synaptic vesicles and subsequently released following neuronal 

activation (Martin et al., 1989; Gjedde et al., 1991). Figure 5.1 illustrates the metabolism 

of 18F-DOPA after intravenous injection. PET imaging experiments in humans using 18F-

DOPA were first used to visualise the basal ganglia in healthy subjects (Garnett, Firnau 

and Nahmias, 1983), and were later used to investigate dopaminergic function in the 

striatum of patients with PD.  

 

 

Figure 5.1: Schematic diagram which illustrates the metabolism of 18F-DOPA after 
intravenous injection. 18F-DOPA (FD) crosses the BBB via the large neutral amino acid 
transporter (LNAA), and is metabolised by AADC (AAAD) to form 18F-DA (FDA) which is 
stored in synaptic vesicles and is then released upon neuronal activation. 18F-DOPA may be further 
metabolised to L-3,4-dihydroxy-6-18F-fluorophenylacetic acid (FDOPAC)/ 6-18F-fluoro-
homovanillic acid (FHVA). In the peripheral circulation or the brain FD may be metabolised by 
catechol-O-methyltransferase (COMT) to form 3-O-methyl-6-18F-fluoro-L-DOPA (3-OMFD). In 
experiments aiming to determine dopaminergic function 3-OMFD is an undesirable product of 18F-
DOPA and contributes to background radioactivity which does not represent the process of interest 
(Image from Sossi et al., 2002). 
 

The mean Ki of 18F-DOPA in the caudate and putamen determined from Patlak 

graphical analysis has been found to be significantly decreased in patients with PD when 

compared with healthy controls (Brooks et al., 1990; Burn, Sawle and Brooks, 1994; 

Holthoff-Detto et al., 1997; Rinne et al., 2000). Experiments using a modification to 

methods used for Logan graphical analysis have also determined that the EDVR of 18F-

DOPA in the putamen relative to occipital cortex was decreased in patients with early PD 
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when compared with healthy controls (Sossi et al., 2002). Therefore, patients with early 

PD have an increased EDT in the putamen (Sossi et al., 2002).  

Patients with PD can present with unilateral motor deficits. 18F-DOPA PET 

imaging studies of these patients have demonstrated that the putaminal Ki contralateral to 

the affected limb was significantly decreased compared with the ipsilateral putaminal Ki, 

therefore patients with PD have also been found to have asymmetry in dopaminergic 

function in the striatum (Morrish, Sawle and Brooks, 1995; Piccini and Whone, 2004; 

Brück et al., 2009).  

Previous experiments in rats first used the radiotracer 18F-DOPA to investigate 

dopaminergic function in the striatum by utilising in vivo microdialysis, as well as ex vivo 

autoradiography and the measurement of tissue 18F-DOPA metabolites (DeJesus et al., 

2000; Forsback et al., 2004; Ishida et al., 2004; 2005). In WT Sprague Dawley rats the 

total extracellular Fluorine-18 activity and the uptake of 18F-DOPA in the striatum was 

found to be highest between 30 and 60 minutes (DeJesus et al., 2000; Forsback et al., 

2004). Experiments confirmed the localisation of 18F-DA within neurons of the striatum, 

and found that the dominant 18F-DOPA metabolites in the extracellular space were L-3,4-

dihydroxy-6-18F-fluorophenylacetic acid (18F-DOPAC) and then 6-18F-fluorohomovanillic 

acid (18F-HVA) (DeJesus et al., 2000). 

The specific uptake of 18F-DOPA in the striatum was increased when rats were 

pre-treated with both Carbidopa and Entacapone both of which are inhibitors of AADC 

and catechol-O-methyltransferase (COMT) respectively, compared with the use of either 

Carbidopa alone or of neither of these drugs (Forsback et al., 2004). Inhibitors of 

peripheral AADC are necessary since the activity of peripheral AADC can decrease the 

bioavailability of 18F-DOPA in the brain, by metabolising 18F-DOPA to 18F-DA in the 

peripheral circulation which is then unable to cross the BBB (Barrio et al., 1990; Chan et 

al., 1995). Inhibitors of peripheral COMT are necessary to prevent the metabolism of 18F-

DOPA to 3-OMFD, since although this latter metabolite is itself able to cross the BBB 

(Figure 5.1), once there it acts to increase the background activity in the brain and 

decrease the contrast between regions of specific and non-specific uptake (Martin et al., 

1989; Törnwall et al., 1994).  

In vivo and ex vivo studies of 6-OHDA lesioned rat models of PD have 

demonstrated that 18F-DOPA uptake in the lesioned striatum was significantly decreased 

compared with the non-lesioned side, thus demonstrating dopaminergic hypofunction in 

the striatum following 6-OHDA lesioning (Forsback et al., 2004; Ishida et al., 2004; 



168 
 

2005). Most recently the radiotracer 18F-DOPA has been utilised for PET imaging studies, 

and has also been used to investigate dopaminergic function in the striatum of 6-OHDA 

lesioned rat models of PD (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 

2013b; Becker et al., 2017). The recent study by Walker et al. (2013a) used a subset of 

the data that had previously been published by Walker, Dinelle, Kornelsen, McCormick, 

et al. (2013).  

Images of summated activity and the TACs determined from the VOIs used to 

analyse the PET data demonstrated the specific uptake of 18F-DOPA in the striatum 

relative to the cerebellum (Kyono et al., 2011; Walker et al., 2013b). In 6-OHDA 

lesioned rats the Ki of 18F-DOPA in the lesioned striatum has been found to be 

significantly decreased when compared with either the non-lesioned striatum (Kyono et 

al., 2011) or alternatively with results from sham-lesioned rats (Becker et al., 2017). 

Furthermore, the EDVR of 18F-DOPA in the lesioned striatum relative to the cerebellum 

was decreased, thus EDT in the lesioned striatum was increased when compared with 

results from normal controls (Walker et al., 2013a; Walker et al., 2013b). Measurements 

of asymmetry in the EDVR of 18F-DOPA have also demonstrated asymmetry in 

dopaminergic function between the left and right striatum in lesioned rats when compared 

with normal controls (Walker et al., 2013a; Walker et al., 2013b).  

Consequently, experiments have demonstrated the feasibility of 18F-DOPA PET 

imaging studies in the analysis of rodent models of PD, and results have demonstrated 

that dopaminergic function in the striatum of rats can be sensitively assessed in vivo using 
18F-DOPA PET imaging (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b). 

Dopaminergic function in the striatum of WT and G51D/+ rats could be analysed using 

methods similar to those that have recently been published (Kyono et al., 2011; Walker et 

al., 2013a; Walker et al., 2013b; Becker et al., 2017) in order to determine whether 

G51D/+ rats have abnormalities of dopaminergic function analogous to those identified in 

patients with PD. In this study it was necessary to establish the in vivo 18F-DOPA PET 

imaging protocol by using WT rats, and to optimise the parameters for the kinetic 

modelling of data from the F344 rat strain that was used to generate the G51D mutant 

rats. By using this approach, dopaminergic function in the striatum of age-matched WT 

and G51D/+ rats could be determined accurately in further studies. 
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5.2 Design of the in vivo 18F-DOPA PET imaging protocol 

Previous rat models of PD that have been studied using 18F-DOPA PET imaging were 

generated using outbred Sprague Dawley rats (Kyono et al., 2011; Walker et al., 2013a; 

Walker et al., 2013b; Becker et al., 2017). These experiments involved the injection of 

AADC and COMT inhibitors including Carbidopa and Entacapone (Kyono et al., 2011), 

or Benserazide and Entacapone/Tolcapone (Walker et al., 2013a; Walker et al., 2013b; 

Becker et al., 2017).  

Kyono et al. (2011) demonstrated that treatment with Carbidopa and Entacapone 

in combination was more effective than treatment with Carbidopa alone, since treatment 

with Carbidopa alone abolished the peak corresponding to 18F-DOPA on the plasma 

radiochromatogram, and also decreased the specific uptake of 18F-DOPA in the striatum 

relative to the cerebellum when compared with rats treated with both Carbidopa and 

Entacapone. Treatment with the AADC inhibitor Carbidopa may be more effective than 

treatment with Benserazide, since a recent study reported that a 10mg/kg dose of 

Benserazide was ineffective against the peripheral inhibition of AADC in as many as one 

in five rats and resulted in poor image quality in these animals (Walker et al., 2013b). It 

has also been reported that treatment with the COMT inhibitor Entacapone may be 

advantageous compared with treatment with Tolcapone, since Entacapone has limited 

effects on the central COMT activity which can act to bias measurements of 

dopaminergic function unlike the effects of Tolcapone (Walker et al., 2013b).  

The 18F-DOPA imaging experiments in these studies commenced with 

anaesthesia (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; Becker et al., 

2017). Following this, the AADC and COMT inhibitors were administered either 30 min 

prior to a bolus injection of 18F-DOPA (Kyono et al., 2011; Becker et al., 2017) or 

alternatively 90 min prior to the radiotracer injection (Walker et al., 2013b). Dynamic 

PET imaging data was acquired by Becker et al. (2017) and Kyono et al. (2011) for 60 

and 90 min respectively, who were interested in the irreversible kinetics of 18F-DOPA. 

On the other hand, dynamic PET imaging data was acquired by Walker et al. (2013b) for 

3 hours, who were interested in the reversible kinetics of 18F-DOPA.  

The optimisation experiments in this thesis were performed using two male WT 

F344 rats. The radiotracer 18F-DOPA was synthesised by Dr. Christophe Lucatelli (CRIC, 

The University of Edinburgh). The in vivo imaging experiments commenced with 

induction of general anaesthesia, then Carbidopa (10 mg/kg) and Entacapone (10mg/kg) 

were injected intravenously 30 min prior to radiotracer injection to ensure the inhibition 
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of peripheral AADC and COMT. 18F-DOPA was injected intravenously as a bolus and 

then dynamic PET imaging data was acquired for a total of 4 hours. Acquiring PET data 

of 4 hours duration meant that both irreversible and reversible tracer kinetics could be 

investigated. This conservative approach meant that the optimal methods for analysis 

could be determined for F344 rats, which may require either a shorter or longer duration 

of scan than was necessary in previous experiments involving Sprague Dawley rats 

(Kyono et al., 2011; Walker et al., 2013b; Becker et al., 2017). Following the 18F-DOPA 

PET imaging experiments, CT data was also acquired. This data was necessary to aid the 

reconstruction of PET data and also to provide anatomical landmarks for the analysis of 

PET data. After the long imaging protocol and period of anaesthesia the animals were 

sacrificed using Schedule I methods. In vivo work in these experiments was performed by 

Dr. Adriana Tavares (The University of Edinburgh). 

 

5.3 Approach to the analysis of 18F-DOPA PET imaging data 

Previous 18F-DOPA PET imaging experiments in rats reconstructed their dynamic PET 

imaging data using FBP methods and into 26-41 frames of increasing duration (Kyono et 

al., 2011; Walker et al., 2013b; Becker et al., 2017). Kyono et al. (2011) used a rat brain 

atlas to aid the placement of ROIs on the striatum and cerebellum which were drawn onto 

coronal images and stacked to form VOIs, whereas Becker et al. (2017) used VOIs from 

the PMOD rat brain atlas which were used to analyse spatially normalised dynamic PET 

images. On the other hand, Walker et al. (2013b) used rectangular ROIs of a predefined 

shape and size that were manually placed on images and which covered three consecutive 

transverse planes. Walker et al. (2013a) did however use a rat brain atlas to aid the 

placement of the ROI on the cerebellum. These ROIs/VOIs were then used to extract 

TACs for the striatum and the cerebellum from the PET imaging data, and the weight of 

the animal and injected activity was used to determine SUV TACs (Kyono et al., 2011; 

Walker et al., 2013b; Becker et al., 2017).  

Both Kyono et al. (2011) and Becker et al. (2017) used the Patlak reference 

tissue model in order to determine the Ki of 18F-DOPA in the striatum. Other studies used 

the Logan reference tissue model in order to determine the EDVR of 18F-DOPA in the 

striatum relative to the cerebellum (Walker et al., 2013a; Walker et al., 2013b). In 

addition, an extended Patlak graphical analysis has been used in order to determine the 

rate constant kref which reflects the decarboxylation of 18F-DOPA to 18F-DA, which is 
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then stored in synaptic vesicles at dopaminergic terminals (Walker et al., 2013a; Walker 

et al., 2013b). 

The in vivo 18F-DOPA PET imaging data in this thesis was reconstructed using 

the optimal parameters that were determined in chapter 3. The optimisation of 

reconstruction methods was important for accurate measurements of dopaminergic 

function in the striatum since this structure in the rat is small in size. The data was 

reconstructed using iterative methods and employed 4i6s, a normal resolution and a 

coincidence mode of 1-3. Although previous 18F-DOPA PET imaging experiments in rats 

have used FBP, iterative methods are thought to more accurately model the system and 

also the noise in the data (Tong, Alessio and Kinahan, 2010; Kyono et al., 2011; Walker 

et al., 2013a; Walker et al., 2013b; Becker et al., 2017). The data in this chapter was also 

reconstructed into several frames which comprised; 6 frames of 30 sec, 3 frames of 60 

sec, 2 frames of 120 sec, 22 frames of 300 sec, and then 12 frames of 600 sec. Short 

frames were used for data acquired at the start of the scan and just following tracer 

injection, since this was when the uptake and metabolism of 18F-DOPA in the brain was 

most rapid.  

The 18F-DOPA PET data in this thesis was analysed using PMOD software and a 

hand-drawn template since this was the tool that was available at the start of the study. 

For consistency all data has been analysed thus, although the lab has since gained access 

to the Px Rat brain template (Schiffer et al., 2006). The hand-drawn template was 

generated using data from the first WT rat, where ROIs were drawn onto image slices 

through the left striatum or alternatively the cerebellum and these were stacked to form a 

VOI. The VOI for the left striatum was mirrored to form a VOI for the right striatum, and 

another VOI striatum merge was formed from the VOIs for the left and right striatum 

combined. The same VOIs were used for all experiments and were only moved for 

positioning. The VOIs were placed on images manually, after inspecting images that were 

averaged over several frames and by using the co-registered CT scan for guidance.  

The VOIs were used to extract TACs (kBq/ml). The injected activity and weight 

of the animal was used to determine SUV TACs (g/ml), and the ratio of SUV TACs for 

the striatum to the cerebellum was used to calculate SUVr TACs. Data was analysed 

using kinetic modelling with the Patlak and Logan reference tissue models. The methods 

used for kinetic modelling were adapted from those used to analyse 18F-DOPA PET 

imaging data from other rat models of PD (Kyono et al., 2011; Walker et al., 2013a; 

Walker et al., 2013b; Becker et al., 2017), and were used to calculate the Ki, the DVR and 
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the EDVR of 18F-DOPA. EDT was also estimated, and asymmetry in the EDVR of 18F-

DOPA was calculated. Results calculated for the Ki and EDVR of 18F-DOPA as well as 

EDT were compared with values reported for normal or sham-operated Sprague Dawley 

rats (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; Becker et al., 2017).  

The data was also investigated to determine the possible effect of varying the 

duration of data analysed (min). This approach was used to determine whether the total 

PET scan length could be shortened, since this would be advantageous for recovery 

experiments in G51D rats.  

 

5.4 CT and 18F-DOPA PET images from WT rats 

Figure 5.2 shows CT images and 18F-DOPA PET images of summated activity in the 

coronal and transverse planes. Fused PET-CT images show both the co-registered CT and 

PET data together. 18F-DOPA PET images are indicative of the specific uptake of 18F-

DOPA in the striatum relative to the cerebellum. The data will be further investigated to 

determine quantitative measures of 18F-DOPA uptake in the striatum relative to the 

cerebellum by extracting TACs, and dopaminergic function will also be investigated by 

using kinetic modelling. 
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Figure 5.2: CT, 18F-DOPA PET and fused PET-CT images from WT rats. Images are shown 
in the coronal and transverse planes, and are from animals one and two. CT data is shown in 
Hounsfield units (HU). 18F-DOPA PET data (g/ml) is the average of frames 1-33 and has been 
smoothed using a 1 mm x 1 mm x 1 mm Gaussian filter. PET images indicated the specific uptake 
of 18F-DOPA in the striatum relative to the cerebellum. Fused PET-CT images show the co-
registered PET and CT data together.  
 

5.5 Time activity curves 

In order to determine the specific uptake of 18F-DOPA in the striatum relative to that of 

the cerebellum, VOIs were used to derive TACs from these brain regions. Figure 5.3 

shows results determined for TACs in kBq/ml for the whole striatum and the cerebellum. 

In animal one, peak activity in the striatum and cerebellum was 63.8 kBq/ml (38 min) and 

48.2 kBq/ml (23 min) respectively. In animal two, peak activity in the striatum and 
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cerebellum was 95.7 kBq/ml (33 min) and 71.1 kBq/ml (13 min) respectively. Therefore, 

peak activity in the cerebellum was lower and occurred earlier than the corresponding 

peak in activity in the striatum, and the results indicated the specific uptake of 18F-DOPA 

in the striatum relative to the cerebellum. Figure 5.3 only shows results from two VOIs, 

however future experiments could also use a hand-drawn template to analyse additional 

VOIs such as those drawn on the midbrain or thalamus. 
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Figure 5.3: Time activity curves (kBq/ml) obtained from 18F-DOPA PET experiments in WT 
rats. TACs were extracted from VOIs placed on the whole striatum and cerebellum. The peak in 
activity observed in the cerebellum was lower and occurred earlier than the corresponding peak in 
activity in the striatum, which indicated the specific uptake of 18F-DOPA in the striatum relative to 
the cerebellum. However, the peak activity in the striatum of animal two was greater than that of 
animal one, which is likely to result from differences in the amount of activity injected into each 
rat (n=2). 

 

However, comparisons between subjects are difficult when using measurements 

in kBq/ml, since these results do not take into account the weight of the animal or the 

amount of injected activity. In these experiments both rats weighed 420g, however the 

activity injected into animal one was 24.5 MBq and into animal two was 34.4 MBq. 

Therefore, differences in the activity injected into each animal have likely contributed to 

the differences in the TACs obtained from these animals. As a result SUV TACs were 

calculated using the weight of the animal and the injected activity in order to compare 

TACs between animals. 

Kyono et al. (2011) analysed SUV TACs from sham-operated controls and 

observed that the activity in the cerebellum peaked at less than 15 min after 18F-DOPA 
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injection and the peak activity in the cerebellum was 1.1-1.2 g/ml, whereas activity in the 

striatum of sham-operated controls continued to increase until just after 60 min, and peak 

activity in this region was ~1.7 g/ml. Becker et al. (2017) found that activity in the 

cerebellum of sham-operated controls peaked ~2 min after injection and was ~1.55 g/ml 

whereas peak activity in the striatum was observed at ~30 min and was ~1.75 g/ml. 

Walker et al. (2013b) analysed SUV TACs from normal control rats and observed a peak 

in activity in the cerebellum at ~20 min which measured 1.0-1.1 g/ml, with activity in the 

striatum continuing to rise until 60-80 min after injection at which point activity 

measured was 1.5-1.6 g/ml.  

Figure 5.4 shows SUV TACs from the WT F344 rats. Peak activity in the 

cerebellum of both rats was 0.824-0.867 g/ml (13-18 min) whereas peak activity in the 

striatum was 1.09-1.17 g/ml (33-38 min). The data demonstrates the specific uptake of 
18F-DOPA in the striatum relative to the cerebellum. The data also shows the 

reproducibility of 18F-DOPA PET imaging experiments, since the SUV TACs from the 

striatum and cerebellum of both rats were overlapping. The peak in activity in the 

striatum was reached at a time similar to that which had been reported by Becker et al. 

(2017), however this was earlier than other results reported for Sprague Dawley rats 

(Kyono et al., 2011; Walker et al., 2013b). 
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Figure 5.4: Standardised uptake value time activity curves (g/ml) obtained from 18F-DOPA 
PET experiments in WT rats. TACs were extracted from VOIs placed on the whole striatum and 
the cerebellum. The weight of the animal and injected activity was used to calculate SUV TACs. 
The data demonstrates the specific uptake of 18F-DOPA in the striatum relative to the cerebellum. 
TACs were overlapping and show the reproducibility of 18F-DOPA PET imaging experiments in 
WT rats (n=2). 

 

 

SUVr TACs have previously been used to investigate dopaminergic function in 

the striatum of patients with PD and represent the ratio of SUV TACs from the striatum 

to SUV TACs obtained from the reference region (Calne et al., 1985; Leenders et al., 

1986).  

Figure 5.5 shows SUVr TACs determined for WT F344 rats. SUVr TACs from 

animals one and two were overlapping and thus the results demonstrated the consistency 

of 18F-DOPA PET imaging experiments. The mean SUVr during pseudo-equilibrium 

(47.5-87.5 min) indicates the DVR of 18F-DOPA (McNamee et al., 2009), therefore the 

mean DVR of 18F-DOPA in the WT rats was estimated as 1.658 +/- 0.003 (mean +/- 

SEM).  
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Figure 5.5: Standardised uptake value ratio time activity curves obtained from 18F-DOPA 
PET experiments in WT rats. SUVr TACs were the ratio of SUV TACs for the whole striatum to 
SUV TACs for the cerebellum. Data from both animals was overlapping and demonstrated the 
consistency of 18F-DOPA PET imaging experiments in WT rats. The dashed box indicates the 
phase of pseudo-equilibrium (47.7-87.5 min). The mean SUVr during pseudo-equilibrium 
indicates the DVR of 18F-DOPA and was 1.658 +/- 0.003 for animals one and two combined (n=2). 

 

5.6 Kinetic modelling using the Patlak and Logan reference tissue 

models 

Compartmental models are used to simplify and to describe the uptake and clearance of 

radiotracers by tissue following injection (Bailey et al., 2005). Tracers that undergo 

irreversible trapping become specifically bound in tissue after entering from the blood, 

whereas tracers that undergo reversible trapping will exchange between specifically 

bound and non-specifically bound compartments in tissue.  

In the initial phase after injection 18F-DOPA behaves as an irreversibly bound 

tracer, where the 18F-DA formed from 18F-DOPA is stored in synaptic vesicles in nerve 

terminals of the striatum, however with increased scanning time there is reversibility of 

tracer binding which reflects the neuronal release of 18F-DA and its subsequent 

metabolism to 18F-DOPAC or 18F-HVA (Björklund and Cenci, 2010). Figure 5.6 

illustrates the irreversible and reversible trapping of a radiotracer such as 18F-DOPA using 

a two-tissue compartment model.  
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Figure 5.6: The uptake and clearance of radiotracers such as 18F-DOPA by tissues can be 
described using a two-tissue compartment model. Tracers that undergo irreversible trapping (a) 
become specifically bound in tissues after entering from the blood, whereas those that undergo 
reversible trapping (b) exchange between the specifically and non-specifically bound 
compartments in tissue. The fractional rate of change in concentration of a radiotracer is described 
by rate constants (K1, k2, k3, k4). K1 and k2 are the forward and reverse transport rate constants for 
18F-DOPA across the BBB and between plasma and tissue compartments ((Huang et al., 1991). k3 
is the 18F-DOPA decarboxylation rate constant, k4 is the turnover rate constant of 18F-DA and its 
metabolites (Huang et al., 1991). 

 

Kinetic modelling is used to analyse radiotracer kinetics based upon various 

assumptions concerning the tracers behaviour; the tracer is injected only in trace amount 

therefore does not affect the physiology of the subject, the tracer is in steady state with its 

endogenous counterpart eg L-3,4-dihydroxyphenylalanine, and that the radiolabelling of 

the tracer does not affect affect its inherent properties (Morris et al., 2004; Innis et al., 

2007). During kinetic modelling it is also assumed that the behaviour of the radiotracer is 

time invariant for the duration of the analysis according to the parameters of the model 

employed, for example, during irreversible radiotracer binding there is no clear evidence 

of radiotracer dissociation (Morris et al., 2004; Innis et al., 2007). 

Patlak graphical analysis is used to analyse tracers that undergo irreversible 

trapping, and this analysis method can be applied to data from 18F-DOPA PET imaging 

studies in the early phase after radiotracer injection (Patlak, Blasberg and Fenstermacher, 

1983; Patlak and Blasberg, 1985). In contrast, Logan graphical analysis is used to analyse 

tracers that undergo reversible trapping, and this method can be applied to 18F-DOPA 

PET data acquired from later in the PET scan (Logan et al., 1990; 1996).  
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The Patlak and Logan graphical analysis methods were originally developed 

using a plasma input function (Patlak, Blasberg and Fenstermacher, 1983; Logan et al., 

1990). However, these methods have since been adapted for use with a reference tissue 

region as an input, which is devoid of specific tracer trapping (Patlak and Blasberg, 1985; 

Logan et al., 1996). 18F-DOPA PET imaging data from WT rats has been analysed using 

the Patlak and Logan reference tissue models, since the aim of the future studies in G51D 

rats was to perform longitudinal PET imaging experiments and to recover the animals 

following imaging. If a plasma input function had been utilised, the repeated sampling of 

plasma activity from rats would have necessitated the culling of the animals after the 

experiments.  

The cerebellum has been used as a reference tissue region in previous 18F-DOPA 

PET experiments in rats (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; 

Becker et al., 2017). Biochemical studies have also identified that the specific trapping of 
18F-DA in the cerebellum was not detectable, and that measurement of activity from the 

cerebellum reflected the non-specific uptake of 18F-DOPA and its radiolabelled 

metabolites e.g. 3-OMFD in the brain (Melega et al., 1991). Therefore, 18F-DOPA uptake 

by the striatum and cerebellum are assumed to reflect specific and non-specific trapping 

respectively. 

 

 Patlak graphical analysis 

Patlak graphical analysis can be used to determine the Ki of 18F-DOPA in the striatum. 

The Ki of 18F-DOPA describes the transport of 18F-DOPA across the BBB, uptake of 18F-

DOPA into neurons, decarboxylation of 18F-DOPA to 18F-DA, and the storage of 18F-DA 

in synaptic vesicles (Gjedde et al., 1991). The data is analysed when t > t* since this is 

when the radiotracer in plasma is in a steady state with the reversible compartments in the 

brain (Patlak and Blasberg, 1985). Equation 4.1 describes graphical analysis using the 

Patlak reference tissue model. When tracer kinetics are irreversible a regression line fitted 

to the data when t > t* produces a straight line and the slope of the line represents the Ki 

of 18F-DOPA (Patlak and Blasberg, 1985). The term t refers to the time since radiotracer 

injection, whereas t* commences when the plasma and tissue compartments have fully 

equilibrated after tracer injection. 
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Equation 5.1: Graphical analysis using the Patlak reference tissue model. The measured tissue 
time activity curve (CT (t)) divided by the reference tissue time activity curve (CT ’(t)) is plotted 
against the integral of the reference tissue time activity curve divided by the instantaneous 
reference tissue activity. When tracer kinetics are irreversible, a regression line fitted to the data 
when t > t* produces a straight line, where the slope represents the influx rate constant (K) of 18F-
DOPA into the striatum. V is the intercept (PMOD Technologies, 2017b). 

 

 

 

Studies in WT Sprague Dawley rats by Kyono et al. (2011) used a t* of 10 min 

and a total of 60 min of data for Patlak graphical analysis, and subsequently Becker et al. 

(2017) analysed their data using these same criteria. Therefore, these parameters were 

used first for the analysis of 18F-DOPA PET data from WT rats in this thesis. Figure 5.7 

shows the fitting of the model following the analysis of PET data from the whole striatum 

of animal one, with all data inspected to ensure a good fit of the model to the data.  
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Table 5.1 shows results from analysis of 18F-DOPA PET data from WT rats using 

the Patlak reference tissue model. The Ki of 18F-DOPA in the whole striatum of both rats 

was 0.008 min-1, therefore results demonstrate that measurements of the Ki of 18F-DOPA 

in the whole striatum were reproducible between subjects. In animal one the Ki of 18F-

DOPA in the left striatum was 0.006 min-1 and was lower than that of the right striatum 

where the Ki of 18F-DOPA was 0.009 min-1. Measurements from the left and right 

striatum of animal two were consistent and were both 0.008 min-1.  

 
Table 5.1: The influx rate constant of 18F-DOPA determined from Patlak graphical analysis. 
Analysis used the parameters reported by Kyono et al. (2011) for the analysis of 18F-DOPA PET 
from Sprague Dawley rats. The Ki of 18F-DOPA (min-1) for the whole striatum was 0.008 for both 
animals, therefore results demonstrated that measurements of the Ki of 18F-DOPA in the whole 
striatum were reproducible between different subjects.  Results from animal one showed that the 
Ki of 18F-DOPA was lower in the left striatum than the right, however results from the left and 
right striatum of animal two were consistent. Data shows the Ki of 18F-DOPA determined for the 
left and right striatum and striatum merge (whole striatum). t* was 10 min, and the analysis used 
60 min of data. 

 Left striatum 
Right 
striatum 

Striatum 
merge 

Animal 1 0.006 0.009 0.008 
Animal 2 0.008 0.008 0.008 
 

Kyono et al. (2011) reported that the Ki of 18F-DOPA in the unlesioned 

striatum/sham operated striatum of Sprague Dawley rats was 0.0157-0.0167 min-1. 

However, Becker et al. (2017) have reported that the Ki of 18F-DOPA in the striatum of 

sham-operated rats was 0.0098-0.0101 min-1. Therefore, the Ki of 18F-DOPA in the whole 

striatum in this thesis was approximately 48-82% of the values that have previously been 

reported for unlesioned or sham-operated rats (Kyono et al., 2011; Becker et al., 2017).  
18F-DOPA PET data from WT rats was further investigated using Patlak 

graphical analysis in order to determine the optimal methods for kinetic modelling of data 

from F344 rats.  Patlak analysis used 45 or 90 min of data, and t* of 10 min. The Ki of 
18F-DOPA for the left and right striatum and striatum merge calculated from 45 and 90 

min analyses was plotted against the results obtained from the analysis using 60 min of 

data (Figure 5.8). The line of identity has been used to indicate a perfect 1:1 relationship 

between measurements of Ki using 45 or 90 min of data and measurements of Ki using 60 

min of data. Linear regression of the data was used to investigate the proportional 

systematic error (slope of the regression line) (Botnick, Suga and White, 2005) and the 

coefficient of determination (R2). 
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Patlak analysis using 45 and 90 min data resulted in a 79% increase and 44% 

decrease in the Ki of 18F-DOPA respectively compared with results from the 60 min 

analysis (Figure 5.8) (Table 5.2). Measurements of R2 represent the amount of variance 

that is shared by the X and the Y variable, with the proportion of variance that is unique 

to each measure is equal to 1-R2 (Ong and Van Dulmen, 2007). The R2 determined from 

linear regression of results from the 45 and 90 min analyses which were plotted against 

results from the 60 min analysis were 0.22 and 0.21 respectively, demonstrating that the 

amount of shared variance was low. Therefore, results indicated that the optimal methods 

for analysis of data using the Patlak reference tissue model used 60 min of data and a t* 

10 min. 
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Figure 5.8: Investigation of influx rate constant of 18F-DOPA determined using 45 and 90 
min of data. Results show the linear regression of results from analyses of 45 and 90 min of data 
which were plotted against results from analysis of 60 min of data. The slope of the regression line 
was used to investigate the proportional systematic error, and the coefficient of determination was 
used to investigate variance in the data. Data shown is from the left and right striatum and striatum 
merge (whole striatum). t* was 10 min (n=2). 
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Table 5.2: Investigation of the proportional systematic error and the coefficient of 
determination after linear regression of data obtained for the influx rate constant of 18F-
DOPA. Data was investigated by determining the slope of the regression line and the coefficient 
of determination (R2). Changing the analysis method from that of 60 min of data to use 45 and 90 
min of data resulted in a 79% increase and a 44% decrease in Ki respectively. R2 was low for both 
analyses. Data analysed was from the left and right striatum and striatum merge (whole striatum). 
t* was 10 min (n=2). 

 45 min 90 min 
Slope +/- 
standard 
error 

1.793 +/- 0.162 0.557 +/- 0.040 

R2 0.220 0.212 

 

 Logan graphical analysis  

The Logan reference tissue model can be used to determine the DVR of 18F-DOPA which 

is the ratio of the distribution volume of 18F-DOPA in a receptor containing region 

relative to that of a reference region, and the total distribution volume measures the 

capacity of a tissue to bind 18F-DOPA (Logan, 2003). Equation 4.2 describes graphical 

analysis using the Logan reference tissue model. When tracer kinetics are reversible a 

regression line fitted to the data when t > t* produces a straight line, and the slope of the 

regression line represents the DVR of 18F-DOPA.  

 

Equation 5.2: Graphical analysis using the Logan reference tissue model. The measured tissue 
time activity curve (CT (t)) and the reference tissue time activity curve (CT’(t)) are transformed and 
plotted as illustrated by the following equation. When tracer kinetics are reversible, a regression 
line fitted to the data when t > t* produces a straight line, where the slope represents the DVR of 
18F-DOPA. b is the intercept, k’2 represents the average tissue to plasma clearance (PMOD 
Technologies, 2017a). 

 

 

Logan graphical analysis has previously been used to analyse 18F-DOPA PET 

data from rats, although these methods used a TAC for the striatum from which the TAC 

for the cerebellum had been subtracted (Walker et al., 2013a; Walker et al., 2013b). 

Therefore, the results from these analyses calculated the EDVR of 18F-DOPA instead of 

the DVR of 18F-DOPA (Walker et al., 2013a; Walker et al., 2013b). Despite this 

difference the same general analysis parameters including a t* of 30 min and analysis of 
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180 min data were used for standard Logan graphical analysis of data from WT rats to 

calculate the DVR of 18F-DOPA. The EDVR of 18F-DOPA is calculated later in this thesis. 

Figure 5.9 shows the fitting of the model following the analysis of PET data from 

the whole striatum of animal one, with all data analysed to ensure a good fit of the model 

to the data. Table 5.3 shows results from the analysis of data using the Logan reference 

tissue model. The DVR of 18F-DOPA determined for the whole striatum relative to the 

cerebellum for animals one and two were 1.47 and 1.44 respectively, and thus results 

were comparable. Results from animal one showed that the DVR of 18F-DOPA was lower 

for data analysed from the left striatum when compared with the right, whereas results 

from animal two were consistent for all measurements. 

The mean SUVr during pseudo-equilibrium has been reported to estimate the DVR of a 

radiotracer (McNamee et al., 2009). The mean DVR for the whole striatum was 1.46 +/- 0.02 

(mean +/- SEM), however this was less than the mean SUVr measured during pseudo-

equilibrium which was 1.658 +/- 0.003  
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Table 5.3: The distribution volume ratio of 18F-DOPA determined from Logan graphical 
analysis. The parameters used for the analysis of data were adapted from methods previously used 
to analyse 18F-DOPA PET data from Sprague Dawley rats (Walker et al., 2013b). The DVR of 18F-
DOPA calculated using data for the whole striatum was 1.47 and 1.44 for animals one and two 
respectively, therefore results were comparable between subjects. Results from animal one showed 
that the DVR of 18F-DOPA was lower for the left striatum relative to the cerebellum when 
compared with data from the right striatum relative to the cerebellum. However, results from 
animal two were consistent. Data shows the DVR of 18F-DOPA calculated using data from the left 
and right striatum and striatum merge (whole striatum). t* was 30 min, and the analysis used 180 
min of data. 

 Left striatum Right striatum Striatum merge 
Animal 1 1.41 1.53 1.47 
Animal 2 1.44 1.44 1.44 

 

18F-DOPA PET data from WT rats was further investigated using Logan 

graphical analysis in order to determine the optimal methods for kinetic modelling in 

F344 rats. Logan graphical analysis used 60, 90, 120 or 240 min of data and a t* of 30 

min. The DVR of 18F-DOPA using data from the left and right striatum and striatum 

merge and calculated from the 60, 90, 120 or 240 min analyses was plotted against the 

results obtained from the analysis of 180 min of data (Figure 5.10). Linear regression of 

the data was used to investigate the proportional systematic error and the coefficient of 

determination.  

Results showed that Logan graphical analysis of 120 min of data resulted in a 5% 

increase in the DVR of 18F-DOPA relative to results from the 180 min analysis (Table 

5.4). Results from analyses of 90 and 60 min of data resulted in a 9% and 10% increase in 

the DVR of 18F-DOPA respectively relative to results from the 180 min analysis. 

Increasing the length of data analysed to 240 min resulted in a 5% decrease in the DVR of 
18F-DOPA relative to results from the 180 min analysis. The R2 determined from the 

linear regression of results from analysis of 120 min data which were plotted against 

results from analysis of 180 min of data was 0.895, thus the amount of shared variance 

was high. The R2 determined from linear regression of results from analyses of 90 and 60 

min of data which were plotted against results from analysis of 180 min data were 0.766 

and 0.644 respectively, thus R2 decreased when the analysis was shortened. The R2 

determined from linear regression of results from analysis of 240 min data which were 

plotted against results from analysis of 180 min data was 0.960.  
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Figure 5.10: Investigation of the distribution volume ratio of 18F-DOPA calculated using 60, 
90, 120 and 240 min of data. Results show the linear regression of data from analyses of 60, 90, 
120, 240 min of data which were plotted against results from analysis of 180 min of data. The 
slope of the regression line was used to investigate proportional systematic error, and the 
coefficient of determination was used to investigate variance in the data. The results shown are for 
the DVR of 18F-DOPA calculated using data from the left and right striatum and striatum merge 
(whole striatum). t* was 10 min (n=2). 
 

Table 5.4: Investigation of the proportional systematic error and the coefficient of 
determination after linear regression of data obtained for the distribution volume ratio of 18F-
DOPA. Data was investigated by determining the slope of the regression line and the coefficient of 
determination (R2). Shortening of the analysis to use 120 min of data resulted in a 5% increase in the 
DVR of 18F-DOPA relative to results from the 180 min analysis. The R2 was 0.895, thus the amount of 
shared variance was high. Shortening the analysis even further increased the percentage of error 
introduced into the data and R2 decreased. Results show the DVR of 18F-DOPA calculated using data 
from the left and right striatum and striatum merge (whole striatum). t* was 30 min (n=2).  

 60 min 90 min 120 min 240 min 
Slope +/- 
standard 
error 

1.099 +/- 
0.014 

1.091 +/- 
0.011 

1.050 +/- 
0.006 

0.954 +/- 
0.002 

R2 0.644 0.766 0.895 0.960 

 

The aim of the subsequent experiments in G51D rats was to recover rats 

following the imaging experiments, therefore a scan length of 240 min would be 

undesirable. Considering the shorter analyses, it was concluded that 120 min analysis 

would be most suitable for experiments in G51D rats, since the data correlated highly 

with results from 180 min analysis and a shorter scan length would also promote a good 

recovery of the rats following PET imaging.  Therefore, the method most optimal for 
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Logan graphical analysis of data from G51D rats would use 120 min of data and a t* of 

30 min. Taking into account the optimal methods required for data analysis using both the 

Patlak and Logan graphical analyses, it was determined that the total PET scan duration 

would be 2 hours, in order to permit the data to be analysed using both methods. Only a 

portion of the total data (60 min) would be used for Patlak graphical analysis. 

 

5.7 Further investigation of the data using a modification of methods 

used for Logan graphical analysis 

Previous experiments in rats have used the Logan reference tissue model to determine the 

EDVR of 18F-DOPA (Walker et al., 2013a; Walker et al., 2013b). This method uses TACs 

for the striatum from which the TAC for the cerebellum has been subtracted before 

running the analysis. The EDVR of 18F-DOPA is the ratio of distribution volumes of 18F-

DOPA in the specific and precursor compartments reduced by the factor k2/(k2 + k3), 

and is used to estimate EDT since EDT is the inverse (Sossi et al., 2002). Increased EDT 

has been identified in patients with early PD and likely reflects a compensatory change in 

dopaminergic function in nerve terminals of the striatum (Sossi et al., 2002; 2004).  

The EDVR of 18F-DOPA was first calculated using the methods that have been 

reported from experiments in Sprague Dawley rats (Walker et al., 2013b). The results 

obtained in this thesis were compared with the results obtained from Sprague Dawley rats 

(Walker et al., 2013a; Walker et al., 2013b), and also with results obtained from the 

analysis of 120 min of data. The data was further investigated to estimate EDT, and the 

data was analysed to determine asymmetry in the EDVR of 18F-DOPA (Walker et al., 

2013b). 

 

  Determining the effective distribution volume ratio of 18F-DOPA  

The EDVR of 18F-DOPA has been determined in rats by using 180 min of data and a t* of 

30 min (Walker et al., 2013a; Walker et al., 2013b). Table 5.5 shows the EDVR of 18F-

DOPA calculated for WT F344 rats using these parameters. The EDVR of 18F-DOPA 

using data from the whole striatum was 0.434 and 0.418 in animals one and two 

respectively. The EDVR of 18F-DOPA calculated using data for the left and right striatum 

from animal one was 0.370 and 0.499 respectively, and from animal two was 0.423 and 

0.412 respectively.  

Studies of normal control Sprague Dawley rats have reported that the EDVR of 
18F-DOPA in the whole striatum relative to the cerebellum was 1.07 +/- 0.22 (Walker et 
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al., 2013b) and 1.00-1.60 (Walker et al., 2013a). Therefore, results obtained from the 

whole striatum of F344 rats in this thesis were approximately 26-43% of the values 

previously determined from experiments in Sprague Dawley rats (Walker et al., 2013a; 

Walker et al., 2013b).  

Results from the analysis of the DVR of 18F-DOPA using 120 min data correlated 

well with results from the analysis of 180 min data, therefore the EDVR of 18F-DOPA was 

also calculated using 120 min of data and a t* of 30 min (Table 5.5). The EDVR of 18F-

DOPA in the whole striatum relative to the cerebellum was 0.511 and 0.495 for animals 

one and two respectively, therefore the analyses of 120 min of data resulted in an increase 

in the EDVR of 18F-DOPA compared with results from the analysis of 180 min of data. A 

scan length of 120 min was however beneficial for the recovery of rats from the PET 

imaging experiments and this was an aim for the subsequent experiments in G51D rats. 

 

Table 5.5: The effective distribution volume ratio of 18F-DOPA determined using a 
modification of methods used for Logan graphical analysis. The EDVR of 18F-DOPA was 
calculated using the parameters previously reported for experiments in Sprague-Dawley rats 
(Walker et al., 2013b) (180 min data), and results were comparable for animals one and two. 
Results from animal one indicated an increased difference in the EDVR of 18F-DOPA in the left 
striatum relative to the cerebellum compared with results from the right striatum relative to the 
cerebellum, when data was compared with results from animal two. The analysis of 120 min of 
data resulted in an increase in the EDVR of 18F-DOPA compared with results from the analysis of 
180 min of data. Results show the EDVR of 18F-DOPA which was calculated using data from the 
left and right striatum and striatum merge (whole striatum). t* was 30 min. 

  Left striatum 
Right 
striatum 

Striatum 
merge 

120 min 
Animal 1 0.409 0.602 0.511 
Animal 2 0.505 0.481 0.495 

180 min 
Animal 1 0.370 0.499 0.434 
Animal 2 0.423 0.412 0.418 

 

 

  Estimation of effective dopamine turnover in the striatum 

Since EDT in the striatum is the inverse of the EDVR of 18F-DOPA (Sossi et al., 2002; 

Walker et al., 2013b), measurements of EDVR were used to estimate EDT. The EDT 

estimated for the whole striatum and using data from the 180 min analysis was 2.30 and 

2.39 for animals one and two respectively (Table 5.6). EDT determined for the left and 

right striatum of animal one were 2.70 and 2.00 respectively, and for animal two were 

2.36 and 2.40 respectively. Therefore, greater variability was observed in estimates of 
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EDT determined for the left and right striatum of animal one compared with the results 

from animal two.  

Estimates of EDT were not reported in previous studies of Sprague Dawley rats, 

although calculation of EDT using their data for the EDVR of 18F-DOPA determined that 

EDT in the striatum of control Sprague Dawley rats was 0.935 +/- 0.241 (Walker et al., 

2013b) and 0.625-1.000 (Walker et al., 2013a). Therefore, EDT calculated for WT F344 

rats in this thesis was 2-4 times higher than that reported for Sprague Dawley rats 

(Walker et al., 2013a; Walker et al., 2013b).  

When EDT was estimated from the EDVR of 18F-DOPA determined from the 

analysis of 120 min data, EDT in the whole striatum of animals one and two were 1.96 

and 2.02 respectively (Table 5.6). Therefore, the shortening of the analysis from 180 to 

120 min resulted in a decrease in EDT estimated for the striatum. 

 

Table 5.6: Effective dopamine turnover in the striatum, determined from measurements of 
the effective distribution volume ratio of 18F-DOPA. The EDT in the whole striatum that was 
estimated from the EDVR of 18F-DOPA (180 min data) was comparable for animals one and two. 
However, an increased difference in EDT between the left and right striatum was found for animal 
one compared with results from animal two. When EDT was determined from the EDVR of 18F-
DOPA (120 min of data), EDT was decreased when compared with results from the 180 min 
analysis. Results show EDT that was estimated for the left and right striatum, and striatum merge 
(whole striatum). t* was 30 min. 

  Left striatum 
Right 
striatum 

Striatum 
merge 

120 min 
Animal 1 2.44 1.66 1.96 
Animal 2 1.98 2.08 2.02 

180 min 
Animal 1 2.70 2.00 2.30 
Animal 2 2.36 2.43 2.39 

 

  Investigating asymmetry in the effective distribution volume ratio 

of 18F-DOPA 
18F-DOPA PET imaging experiments in patients with early PD who presented with 

asymmetric motor deficits have shown that the EDV or EDVR of 18F-DOPA was 

significantly decreased in the putamen contralateral to the most severely affected side 

(Kumakura et al., 2006; Oehme et al., 2011).  

Asymmetry in the EDVR of 18F-DOPA has been investigated in 6-OHDA rat 

models of PD (Walker et al., 2013a; Walker et al., 2013b). The results from these studies 

have demonstrated increased asymmetry in the EDVR of 18F-DOPA in rats with severe 
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denervation within the ipsilateral striatum compared with those that had only mild 

denervation within the ipsilateral striatum due to 6-OHDA lesioning (Walker et al., 

2013a; Walker et al., 2013b). It is possible that G51D rats may model the asymmetry in 

dopaminergic function that has been identified in patients with PD. Therefore, 

measurements of asymmetry were investigated in WT rats with a view to using these 

calculations in G51D rats. 

Measurements of asymmetry in the EDVR of 18F-DOPA in WT rats first used the 

methods that have been reported for experiments in Sprague Dawley rats (180 min of 

data) (Walker et al., 2013b). Increased asymmetry in the EDVR of 18F-DOPA was 

identified for the results from animal one (left striatum 0.257, right striatum -0.346) 

compared with results from animal two (left striatum -0.026, right striatum 0.026) (Table 

5.7). This was despite the same mirrored VOIs being used for the analysis of data from 

both animals. 

The study by Walker et al. (2013b) demonstrated that asymmetry in the EDVR of 
18F-DOPA in normal control Sprague Dawley rats was between -0.1 and 0.1. However, 

~25% denervation of the ipsilateral striatum in 6-OHDA lesioned rats corresponded to an 

asymmetry of ~0.2 (Walker et al., 2013a). Therefore, the results from animal one 

indicated substantial asymmetry in dopaminergic function between the left and right 

striatum. 

When asymmetry was investigated using measurements of the EDVR of 18F-

DOPA (120 min of data), asymmetry for the left and right striatum of animal one was 

0.320 and -0.470 respectively, and for animal two was -0.051 and 0.048 respectively 

(Table 5.7). Therefore, measurements of asymmetry in the EDVR of 18F-DOPA from the 

analysis of 120 min of data were increased compared with results from the analysis of 

180 min of data. 
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Table 5.7: Measurements of asymmetry in the effective distribution volume ratio of 18F-
DOPA. Asymmetry was calculated using methods reported by Walker et al. (2013b) and using 
180 min of data. Results from animal one demonstrated increased asymmetry compared with 
results from animal two. When asymmetry was calculated using the EDVR of 18F-DOPA 
determined from the analysis of 120 min of data, asymmetry was increased compared with results 
from the analysis of 180 min of data. t* was 30 min. 

  Left striatum Right striatum 

120 min 
Animal 1 0.320 -0.470 
Animal 2 -0.051 0.048 

180 min 
Animal 1 0.257 -0.346 
Animal 2 -0.026 0.026 

 

5.8 Discussion and future directions 

Images of summated activity and TACs (kBq/ml or SUV) indicated the specific uptake of 
18F-DOPA into the striatum compared with the cerebellum in WT rats. Therefore, the 

results indicated that the in vivo protocol for 18F-DOPA PET imaging was working well.  

SUV TACs take into account the weight of the animal and the amount of injected 

activity, therefore are useful for comparing TACs between experiments on different rats. 

SUV TACs for the striatum and cerebellum were overlapping for animals one and two 

and demonstrated that the results from 18F-DOPA PET imaging experiments were 

reproducible. SUVr TACS for animals one and two were also reproducible. 

Mean SUVr during pseudo-equilibrium is thought to estimate the DVR of a 

radiotracer (McNamee et al., 2009). Mean SUVr during pseudo-equilibrium was 1.658 

+/- 0.003 (mean +/- SEM), however this was greater than the mean DVR of 18F-DOPA 

determined from Logan graphical analysis which was 1.46 +/- 0.02. 

Analysis of the data using kinetic modelling determined that the optimal method 

for Patlak graphical analysis used 60 min of data and a t* of 10 min. Results from Logan 

graphical analysis using 120 min of data and a t* of 30 min, were highly correlated with 

results obtained from the analysis of 180 min of data, and which have previously been 

used to analyse 18F-DOPA PET imaging data from rats (Walker et al., 2013a; Walker et 

al., 2013b).  

A short scan length was desirable for the recovery experiments that would 

ultimately be performed on G51D rats, therefore the optimal scan length would comprise 

2 hours, and optimal methods for Logan graphical analysis would use 120 min of data 

and a t* of 30 min.  
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The mean Ki of 18F-DOPA in the whole striatum of WT rats in this thesis was 

approximately 48-82% of the values that have been reported by Kyono et al. (2011) and 

Becker et al. (2017) for experiments in unlesioned or sham-operated Sprague Dawley 

rats. Furthermore, the mean EDVR of 18F-DOPA in the whole striatum relative to the 

cerebellum was approximately 26-43% of the values which have previously been reported 

for experiments in normal Sprague Dawley rats (Walker et al., 2013a; Walker et al., 

2013b).  

Results indicated that the EDT in the striatum of WT F344 rats was two to four 

times higher than that of Sprague Dawley rats (Walker et al., 2013a; Walker et al., 

2013b).  

Variability in the results between studies may have resulted from scanner specific 

factors including differences in image acquisition and reconstruction, or be due to animal 

specific factors including strain differences in physiology or alternatively could result from 

differences in the in vivo methods used between studies (Kuntner and Stout, 2014). It is 

possible that one or more of these factors has contributed to differences in the measurements 

of the dopaminergic function in this thesis compared with previous 18F-DOPA PET imaging 

studies in Sprague Dawley rats (Kyono et al., 2011; Becker et al., 2017). 

In this study the doses of Carbidopa and Entacapone were selected empirically based 

upon previous studies in rodents (Kyono et al., 2011; Walker et al., 2013b), and the 

effectiveness of the in vivo methods was determined from the TACs obtained from rats 

which indicated the specific uptake of 18F-DOPA in the striatum compared with the 

cerebellum. However, it would be interesting to further investigate the effectiveness of the in 

vivo methods in F344 rats by quantifying the levels of 18F-DOPA and its radiolabelled 

metabolites 3-OMFD, 18F-DA, 18F-HVA and 18F-DOPAC in plasma. These experiments 

would act to rule out the systemic metabolism of 18F-DOPA as a potential contributing factor 

in the differences observed in dopaminergic function between F344 rats and the previous 

studies of Sprague-Dawley rats (Kyono et al., 2011; Walker et al., 2013b; Becker et al., 

2017). 

Measurements of asymmetry in the EDVR of 18F-DOPA identified greater 

asymmetry in the results from animal one compared with the results from animal two. 

Measurements from animal one indicated substantial asymmetry in the EDVR of 18F-

DOPA. Therefore, results from animal one may indicate asymmetry in the dopaminergic 

function of the left and right striatum, or conversely asymmetry in blood perfusion 

between the left and right sides of the brain. It would be interesting to investigate if 
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asymmetry in the EDVR of 18F-DOPA is also evident in further studies of WT rats which 

are presented in chapter 5, and where results are compared with age-matched G51D/+ 

rats, since only two rats were analysed in the pilot experiments. 

The in vivo protocol for 18F-DOPA PET imaging and the optimal analysis 

parameters for kinetic modelling are applied to the study of G51D rats in chapter 5 of this 

thesis. 
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 - 18F-DOPA PET imaging in G51D rats 

6.1 Introduction 

In the midbrain, dopaminergic cell bodies in the SNpc give rise to projections which 

innervate the sensorimotor striatum via the nigrostriatal pathway (Moore and Bloom, 

1979). However, in PD there occurs the loss of the cell bodies in the SNpc giving rise to 

these projections (German et al., 1989; Goto, Hirano and Matsumoto, 1989; Fearnley and 

Lees, 1991; Pakkenberg et al., 1991; Paulus and Jellinger, 1991; Ma et al., 1995; 1997; 

Ross et al., 2004). Abnormalities have also been found in the striatum of patients with 

PD, with lower levels of dopamine measured in the striatum than in healthy controls, and 

these deficits have been found to most severely affect the putamen (Bernheimer et al., 

1973; Rinne and Sonninen, 1973; Lloyd, Davidson and Hornykiewicz, 1975; Riederer 

and Wuketich, 1976; Hornykiewicz and Kish, 1986; Kish, Shannak and Hornykiewicz, 

1988).  

PET imaging studies have analysed dopaminergic function in the striatum by 

employing the radiotracer 18F-DOPA, which is a radio-labelled analogue of L-3,4-

dihydroxyphenylalanine, a substrate in the enzymatic pathway leading to the formation of 

dopamine (Figure 1.6). Intravenously injected 18F-DOPA crosses the BBB, is taken up by 

nerve terminals and is metabolised by AADC in dopaminergic nerve terminals to form 
18F-DA, which in turn is incorporated into synaptic vesicles and is then released following 

neuronal stimulation (Martin et al., 1989). The ratio of uptake of 18F-DOPA in the 

striatum relative to the cerebellum has been shown to be significantly lower in PD 

patients compared with healthy controls (Calne et al., 1985). Kinetic modelling has also 

been implemented to analyse 18F-DOPA PET data. Patlak graphical analysis has been 

used to determine the Ki of 18F-DOPA in the striatum, and this analysis has been 

conducted during the irreversible phase of 18F-DOPA binding.  

In PD the mean Ki of 18F-DOPA in the caudate and putamen was found to be 

significantly decreased compared with healthy controls (Brooks et al., 1990; Burn, Sawle 

and Brooks, 1994; Holthoff-Detto et al., 1997; Rinne et al., 2000). Studies investigating 

sub-regional variations in Ki in the striatum have found that the mean Ki of 18F-DOPA in 

the posterior putamen was significantly lower than the mean Ki of 18F-DOPA in the 

anterior putamen and caudate (Brooks et al., 1990; Nurmi et al., 2001). Dopaminergic 

function in the putamen is likely to be impaired for up to 7 years before the onset of 

clinical signs (Morrish et al., 1998; Nurmi et al., 2001), and symptoms are estimated to 
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emerge when the putaminal Ki of 18F-DOPA has reached 57-80% of normal (Morrish, 

Sawle and Brooks, 1995; Morrish et al., 1998).  

During the reversible phase of 18F-DOPA binding, PET data has been analysed 

using a modification of methods used for Logan graphical analysis in order to determine 

the EDVR of 18F-DOPA, and in turn EDT since this is the inverse (Sossi et al., 2002).  In 

patients with early PD the EDVR of 18F-DOPA in the striatum relative to the occipital 

cortex was lower than that of healthy controls, revealing that patients with PD had higher 

EDT in the striatum (Sossi et al., 2002). Furthermore, studies of patients with PD and 

asymmetric motor deficits have shown that the EDVR of 18F-DOPA was significantly 

decreased in the putamen contralateral to the most affected side (Oehme et al., 2011). 

 

6.2 Design of experiments for 18F-DOPA PET imaging 
18F-DOPA PET imaging was used to investigate in vivo dopaminergic function in the 

striatum of WT and G51D/+ rats aged over time. Experiments were performed at 5, 11 

and 16 months of age, and used both female and male rats. Technical issues with the 

microPET scanner meant that rats were scanned twice at 11 and 16 months of age, 

although rats used for 5 month old experiments were sourced from different stock. The 

age of rats analysed using 18F-DOPA PET imaging also depended on radiotracer 

production, and failures in radiotracer production meant delays to the PET imaging 

experiments. Radiotracer production also affected the age of rats used for many 

histological experiments, since tissue from 5 and 17 month old rats was sourced 

following 18F-DOPA PET imaging experiments.  

The design of 18F-DOPA PET imaging experiments was based on the results 

obtained from optimisation experiments shown in chapters 3 and 4 of this thesis. These 

experiments were used to determine the in vivo imaging protocol, reconstruction protocol, 

and also the analysis methods used for WT and G51D/+ rats. Some modifications were 

made to the in vivo imaging protocol that was used for the optimisation experiments so 

that WT and G51D/+ rats could be recovered for longitudinal imaging experiments or for 

perfusion fixation for histological experiments. This was unlike the previous non-

recovery experiments performed during the optimisation studies. 
18F-DOPA was synthesised by Dr. Tashfeen Walton and Dr. Christophe Lucatelli 

(CRIC, The University of Edinburgh). The in vivo imaging protocol commenced with 

general anaesthesia followed by the administration of two substances thirty minutes prior 

to radiotracer injection, which were used to prevent the peripheral metabolism of 18F-
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DOPA; 10mg/kg Carbidopa (an inhibitor of AADC) and 10 mg/kg Entacapone (an 

inhibitor of COMT). 18.5 +/- 7.1 MBq (mean +/- SD) of 18F-DOPA was then injected as a 

bolus and dynamic PET imaging data was acquired over a duration of two hours, with the 

rats then recovered following anaesthesia. The reconstructed PET data comprised 33 

frames. 

Data was analysed using the same hand-drawn template that was used for the 

optimisation experiments, and this template comprised VOIs for the left and right 

striatum, striatum merge (both striata combined) and cerebellum. The VOIs were used to 

extract TACs (kBq/ml). The weight of the animal and injected activity were used to 

determine SUV TACs (g/ml), and SUVr TACS were calculated from the ratio of SUV 

TACs for the striatum to the SUV TACs for the cerebellum. Kinetic modelling used the 

Patlak reference tissue model with a t* of 10 mins and 60 mins of data to determine the Ki 

of 18F-DOPA in the striatum. Kinetic modelling also used the Logan reference tissue 

model with a t* of 30 mins and 120 mins of data to determine the DVR of 18F-DOPA in 

the striatum relative to the cerebellum. A modification of methods used for the analysis of 

data with the Logan reference tissue model was used to determine the EDVR of 18F-

DOPA in the striatum relative to the cerebellum. These methods used the TAC for the 

striatum from which the TAC for the cerebellum had been subtracted, a t* of 30 mins and 

120 mins of data. The EDVR of 18F-DOPA was used to estimate EDT in the striatum. 

Asymmetry in the EDVR of 18F-DOPA was also calculated to investigate differences in 

dopaminergic function between the left and right striatum. Since female and male rats 

were used for experiments, results from kinetic modelling of 18F-DOPA PET data, 

estimates of EDT and the asymmetry in the EDVR of 18F-DOPA were used to investigate 

any potential effects of rat gender. 

 

6.3 CT and 18F-DOPA PET images 

Figure 6.1 shows representative CT and 18F-DOPA PET images from WT and G51D/+ 

rats at 5, 11 and 16 months of age. Fused PET-CT images show both the co-registered CT 

and PET data together. The images have been generated using the same parameters for 

age-matched rats. Images are indicative of the uptake of 18F-DOPA in the striatum. 

However, the data will be further investigated to determine quantitative measures of 18F-

DOPA uptake in the striatum and cerebellum by extracting TACs, and kinetic modelling 

will be used to investigate dopaminergic function. 

 



199 
 

 

 

Figure 6.1: Representative CT, 18F-DOPA PET and fused PET-CT images from WT and 
G51D/+ rats at 5, 11 and 16 months of age. Images are shown in the coronal plane and have 
been generated using the same parameters. CT data is shown in Hounsfield units (HU). 18F-DOPA 
PET images (g/ml) are the average of frames 1-33 and have been smoothed using a 1 mm x 1 mm 
x 1 mm Gaussian filter. Fused PET-CT images show the co-registered PET and CT data together. 
The scanner bed can be seen on the dorsal aspect of the CT and the fused PET-CT images. 
 

6.4 Time activity curves 

Since the weight of the rats and the injected activity varied between PET imaging 

experiments, SUV TACs were calculated to compare TAC data between rats. TACs were 
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calculated from the full 2 hours of dynamic data wherever possible, however on rare 

occasions 18F-DOPA tracer injection was delayed relative to the start of dynamic 

imaging. Therefore, TACs were manually adjusted to account for this, and 100 min of 

data is shown since the total duration of TAC data varied between animals. Data was first 

analysed to ensure the specific uptake of 18F-DOPA into the whole striatum relative to the 

cerebellum, and to confirm that the imaging protocol was working well. Specific uptake 

in the striatum was observed since peak activity in the cerebellum was lower and 

occurred earlier than peak activity in the striatum (Figure 6.2a-c) (Table 6.1). Peak 

activity in the striatum was 0.80-1.24 g/ml and peak activity in the cerebellum (which 

was always lower than corresponding peak activity in the striatum) was 0.53-0.96 g/ml. 

The timing of peak activity in the striatum was 38-53 min whereas the timing of peak 

activity in the cerebellum (which was always earlier than corresponding peak activity in 

the striatum) was 23-43 min. 

SUV TACs for the striatum and cerebellum were compared between age-matched 

WT and G51D/+ rats. Peak activity in the striatum of 5 month old G51D/+ rats was 1.23 

g/ml and at 28 min, and was both greater and earlier than peak activity in the striatum of 

age-matched WT rats, which was 1.05 g/ml and at 53 min (Figure 6.2a) (Table 6.1). Peak 

activity in the cerebellum of 5 month old G51D/+ rats was 0.89 g/ml and was at 23 min, 

and was both greater and earlier than peak activity in the cerebellum of 5 month old WT 

rats, which was 0.74 g/ml and at 38 min. In 5 month old rats there was little difference in 

the magnitude of peak activity between the striatum and cerebellum for WT and G51D/+ 

rats, although peak activity in both the striatum and cerebellum of G51D/+ rats was 

noticeably earlier than peak activity in both the striatum and cerebellum of WT rats. In 11 

month old WT and G51D/+ rats peak activity in the striatum was comparable and was 

0.88 g/ml and 0.80 g/ml respectively, although peak activity occurred earlier in WT than 

G51D/+ rats, occurring at 38 min and 48 min respectively (Figure 6.2b) (Table 6.1). Peak 

activity in the cerebellum of 11 month old WT and G51D/+ rats was 0.64 and 0.53 g/ml 

respectively, and the timing of peak activity in the cerebellum of 11 month old WT rats 

was earlier than that of age-matched G51D/+ rats and occurred at 23 and 38 min 

respectively. In 11 month old WT and G51D/+ rats there was little difference in the 

magnitude of peak activity between the striatum and cerebellum, although peak activity in 

both the striatum and cerebellum occurred earlier in 11 month old WT rats than G51D/+ 

rats. Peak activity in the striatum of 16 month old WT rats was greater than that of age-

matched G51D/+ rats and was 1.35 g/ml and 1.18 g/ml respectively (Figure 6.2c) (Table 
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6.1). The timing of peak activity in the striatum of 16 month old WT and G51D/+ rats 

was comparable and occurred at 48 and 53 min respectively. Peak activity in the 

cerebellum of 16 month old WT rats was greater than peak activity in age-matched 

G51D/+ rats and was 0.96 g/ml and 0.79 g/ml respectively, although peak activity in the 

cerebellum was earlier in 16 month old WT rats than G51D/+ rats and occurred at 23 and 

43 min respectively. In 16 month old WT and G51D/+ rats there was little difference in 

the magnitude of peak activity between the striatum and cerebellum, although peak 

activity in the cerebellum of 16 month old WT rats was earlier than that of G51D/+ rats. 

In contrast, there was little difference in the timing of peak activity in the striatum in 16 

month old WT and G51D/+ rats.  

Therefore, the timing of peak activity in both the striatum and cerebellum 

appeared to be earlier in 5 month old G51D/+ and 11 month old WT rats compared with 

other age-matched groups (Table 6.1). However, direct comparison of 18F-DOPA uptake 

in the striatum relative to the cerebellum by calculating SUVr TACs, indicated more 

rapid uptake of 18F-DOPA in the striatum relative to the cerebellum in 5 month old 

G51D/+ rats compared with age-matched WT rats, but not for 11 month old G51D/+ rats 

when compared with age-matched WT rats (Figure 6.3a, b).  

Earlier peak activity in SUV TACs for both the striatum and cerebellum of 11 

month old G51D/+ rats compared with age-matched WT rats may be the result of 

methods used for the adjustment of TACs after delay in radiotracer injection. 

Alterntively, it is possible that delivery of the 18F-DOPA to the brain of 11 month old WT 

rats may have been more rapid than for other age-matched groups. The delivery of 18F-

DOPA to the brain may be affected by perfusion, with increased perfusion leading to a 

more rapid uptake of the radiotracer. All rats were maintained on the lowest dose of 

gaseous anaesthesia clinically possible, although factors such as anaesthesia may affect 

the uptake of 18F-DOPA into the brain (Kuntner and Stout, 2014). Results may also be 

influenced by temperature and posture, as well as the radiotracer injection itself (Kuntner 

and Stout, 2014). 

Considering results from both SUV TACs and SUVr TACs, the data may indicate 

dopaminergic dysfunction in 5 month old G51D/+ rats compared with age-matched WT 

rats. SUV TACs may also indicate dopaminergic dysfunction in the striatum of 16 month 

old G51D/+ rats compared with age-matched WT rats. It would be interesting to compare 

the data with results from kinetic modelling that have been used to investigate 

dopaminergic function in the striatum of rats. 
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Figure 6.2: Standardised uptake value time activity curves obtained from WT and G51D/+ 
rats at 5, 11 and 16 months of age. SUV TACs have been calculated using the weight of the rat 
and the activity injected. Results indicated the specific uptake of 18F-DOPA in the striatum relative 
to the cerebellum in 5 (a), 11 (b) and 16 month old rats (c). For 5 month old and 11 month old 
G51D/+ rats there was little difference in the magnitude of peak uptake of 18F-DOPA between the 
striatum and the cerebellum compared with age-matched WT rats. However, in 5 month old 
G51D/+ and 11 month old WT rats the peak uptake of 18F-DOPA in the striatum and cerebellum 
was earlier than for age-matched WT and G51D/+ rats respectively. In 16 month old WT and 
G51D/+ rats there was little difference in the magnitude of peak uptake of 18F-DOPA between the 
striatum and the cerebellum, however there was a shorter interval between the peaks in activity in 
the cerebellum and striatum for 16 month old G51D/+ rats compared with age-matched WT rats. 
Data shows the mean and SEM. n=4 per genotype per age-group. 
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Table 6.1: Analysis of standardised uptake value time activity curves to determine the 
magnitude and timing of peak activity in the striatum and cerebellum. Peak uptake of 18F-
DOPA in both the striatum and cerebellum of 5 month old G51D/+ rats and 11 month old WT rats 
was earlier than that observed for other age-matched groups of rats.  In 16 month old G51D/+ rats 
the interval between peaks in activity in the cerebellum and striatum was shorter than for age-
matched WT rats. Results show the mean and SEM. n=4 per genotype per age-group. 

Age (months) 5 11 16 

Genotype WT G51D/+ WT G51D/+ WT G51D/+ 

Peak activity 
in striatum 
+/- SEM 
(g/ml) 

1.05 
+/- 

0.19 

1.23 
+/- 

0.09 

0.88 
+/- 

0.10 

0.80 
+/- 

0.13 

1.35 
+/- 

0.11 

1.18 
+/- 

0.11 

Peak activity 
in cerebellum 
+/- SEM 
(g/ml) 

0.74 
+/- 

0.14 

0.89 
+/- 

0.06 

0.64 
+/- 

0.07 

0.53 
+/- 

0.09 

0.96 
+/- 

0.10 

0.79 
+/- 

0.05 

Time of peak 
activity in 
striatum 
(min) 

53 38 38 48 48 53 

Time of peak 
activity in 
cerebellum 
(min) 

38 23 23 38 23 43 

 

 

Figure 6.3a-c shows SUVr TACs which were calculated for WT and G51D/+ 

rats. SUVr TACs were overlapping for 11 month old WT and G51D/+ rats (Figure 6.3b). 

It follows then that the earlier peak in SUV TACs in both the striatum and cerebellum of 

11 month old WT rats may have resulted from the methods used to adjust TACs 

following delayed radiotracer injection, or may instead have been due to differential 

perfusion or due to the radiotracer injection itself in 11 month old WT compared with 

G51D/+ rats. SUVr TACs increased earlier in 5 month old G51D/+ rats compared with 

age-matched WT rats (Figure 6.3a) and marginally earlier in 16 month old G51D/+ rats 

compared with age-matched WT rats (Figure 6.3c). Therefore, results may indicate 

dysfunction of the dopaminergic system in the striatum of 5 month old G51D/+ rats 

compared with age-matched WT rats and potentially in 16 month old G51D/+ rats 

compared with age-matched WT rats.  
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Figure 6.3: Standardised uptake value ratio time activity curves obtained from WT and 
G51D/+ rats at 5, 11 and 16 months of age. SUVr TACs represent the ratio of SUV TACs for 
the striatum to SUV TACs for the cerebellum. SUVr TACs were overlapping for 11 month old 
WT and G51D/+ rats (b). However, SUVr TACs increased earlier in 5 month old G51D/+ rats 
compared with age-matched WT rats (a) and marginally earlier in 16 month old G51D/+ rats 
compared with age-matched WT rats (c). Data shows the mean and SEM. n=4 per genotype per 
age-group. 
 

Table 6.2 shows results from the calculation of mean SUVr during pseudo-equilibrium, 

which are thought to indicate the DVR of a radiotracer (McNamee et al., 2009). Small 
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differences in mean SUVr were observed between groups of age-matched rats, with the 

greatest difference in mean SUVr found between 5 month old WT and G51D/+ rats (two-

sample t-test, p=0.47). 

 

Table 6.2: The mean standardised uptake value ratio during pseudo-equilibrium obtained 
from WT and G51D/+ rats at 5, 11 and 16 months of age. Small differences in mean SUVr 
were observed between groups of age-matched rats. The greatest difference in mean SUVr was 
observed between 5 month old WT and G51D/+ rats (p=0.47). Mean SUVr was measured from 
TACs between 47.5 and 87.5 min. Results from age-matched WT and G51D/+ rats were analysed 
using a two-sample t-test, although no significant differences were identified. Data shows the 
mean +/- SEM. n=4 per genotype per age-group. 

Age (months) 5 11 16 

Genotype WT G51D/+ WT G51D/+ WT G51D/+ 

Mean SUVr 
pseudo-
equilibrium 
+/- SEM  

1.49 
+/- 

0.05 

1.54 
+/- 

0.03 

1.50 
+/- 

0.01 

1.52 
+/- 

0.06 

1.50 
+/- 

0.03 

1.47 
+/- 

0.04 

 

 

6.5 Kinetic modelling of the data using the Patlak and Logan reference 

tissue models 

 Patlak graphical analysis 

The Patlak reference tissue model was used to determine the Ki of 18F-DOPA in the 

striatum, with the cerebellum used as a reference tissue region. The Ki of 18F-DOPA 

reflects the transport of 18F-DOPA across the BBB and its uptake into nerve terminals, the 

subsequent decarboxylation of 18F-DOPA into 18F-DA by AADC, and then the storage of 
18F-DA in vesicles (Gjedde et al., 1991). There was a trend for decreased mean Ki in 5 

month old G51D/+ rats compared with age-matched WT rats, where mean Ki was 0.007 

min-1 and 0.010 min-1 respectively (two-sample t-test, p=0.08) (Figure 6.4). In 11 month 

old WT and G51D/+ rats mean Ki was 0.009 min-1 and 0.012 min-1 respectively, although 

increased variability was observed in data from 11 month old WT rats where Ki ranged 

from 0.007 to 0.015 min-1 (two-sample t-test, p=0.29). In 16 month old WT and G51D/+ 

rats mean Ki was 0.011 min-1 and 0.008 min-1 respectively, although increased variability 

was observed in data from 16 month old WT rats where Ki ranged from 0.0079 to 0.016 

min-1 (two-sample t-test, p=0.28).  
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Figure 6.4: The influx rate constant of 18F-DOPA in the striatum obtained from WT and 
G51D/+ rats at 5, 11 and 16 months of age. There was a trend for decreased mean Ki in the 
striatum of 5 month old G51D/+ rats compared with age-matched WT controls (p=0.08). Increased 
variability in the Ki of 18F-DOPA was observed for data from 11 month old and 16 month old WT 
rats compared with results from other age-matched groups. A two-sample t-test calculated that 
p=0.29 and p=0.28 in comparisons of data from 11 month old G51D/+ rats with age-matched WT 
rats and 16 month old G51D/+ rats with age-matched WT rats respectively. Results from analyses 
of age-matched WT and G51D/+ rats using a two-sample t-test did not identify any significant 
differences. Data shows the mean and SEM. n=4 per genotype per age-group. 

 

Consequently, the data would indicate a trend towards decreased dopaminergic 

function in the striatum of 5 month old G51D/+ rats compared with age-matched WT 

controls, and a decrease in Ki could indicate deficits analogous to PD observed in 

humans. It is possible that the trend towards decreased dopaminergic function identified 

in 5 month old G51D/+ rats relative to age-matched WT controls may be followed by 

compensatory mechanisms, which in turn lead to improved mean dopaminergic function 

at 11 and 16 months in G51D/+ rats measured using this method. Compensatory changes 

in dopaminergic function can occur in patients with PD, and it is possible that regulatory 

processes within the dopaminergic terminals are attempting to preserve dopaminergic 

function in the striatum of G51D/+ rats despite neurodegeneration. It was considered that 

the analysis may benefit from the study of additional WT and G51D/+ rats to further 

investigate differences in Ki resulting from G51D mutation in alpha-synuclein, therefore 

power analyses are conducted later in this chapter using the data generated in the study. A 

study of additional animals using 18F-DOPA PET imaging may confirm observations of 
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early dopaminergic dysfunction followed by a possible compensatory increase in 

dopaminergic function in G51D rats as measured using Patlak graphical analysis. 

 

 Logan graphical analysis 

The Logan reference tissue model was used to determine the DVR of 18F-DOPA in the 

striatum relative to that of the cerebellum which was used as a reference tissue region. 

The DVR of 18F-DOPA is the ratio of the distribution volume of 18F-DOPA in the target 

region (dopaminergic nerve terminals of the striatum) relative to that of the reference 

tissue region, where the total distribution volume measures the capacity of a tissue to bind 
18F-DOPA (Logan, 2003). The mean DVR of 18F-DOPA was comparable for 5 month old 

WT and G51D/+ rats and was found to be 1.47 and 1.43 respectively (Figure 6.5). The 

mean DVR of 18F-DOPA was marginally greater in 11 month old G51D/+ rats compared 

with age-matched WT controls and was 1.50 and 1.43 respectively. There was a trend for 

decreased mean DVR of 18F-DOPA in 16 month old G51D/+ rats compared with age-

matched WT rats, where results were 1.41 and 1.54 respectively (two-sample t-test, 

p=0.09).  

Therefore, results indicated a trend for decreased dopaminergic function in the 

striatum relative to the cerebellum in 16 month old G51D/+ rats compared with age-

matched WT controls. A decrease in the DVR of 18F-DOPA could indicate deficits in 

dopaminergic function analogous to PD in humans. These findings contrast with results 

from Patlak graphical analysis which identified a trend for decreased dopaminergic 

function in the striatum of 5 month old G51D/+ rats compared with age-matched WT rats 

(Figure 6.4). However, these two methods of graphical analysis use different durations of 

the PET imaging data, and have differing assumptions since the Patlak graphical analysis 

is used for tracers that undergo irreversible trapping (the early phase following 18F-DOPA 

injection), whereas Logan graphical analysis is used for tracers that undergo reversible 

trapping (late phase after 18F-DOPA injection).  

The results obtained from the analysis of mean SUVr during pseudo-equilibrium 

(Table 6.2) approximate to the values obtained for the mean DVR of 18F-DOPA that were 

obtained from Logan graphical analysis (Figure 6.5). However, when comparing results 

from 16 month old WT and G51D/+ rats there was a greater difference in the mean DVR 

of 18F-DOPA between these groups compared with results from analysis of mean SUVr. 
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Figure 6.5: The distribution volume ratio of 18F-DOPA in the striatum relative to the 
cerebellum, obtained from WT and G51D/+ rats at 5, 11 and 16 months of age. The mean 
DVR of 18F-DOPA in the striatum relative to the cerebellum was comparable for 5 month old 
G51D/+ rats and age-matched WT controls. The mean DVR of 18F-DOPA was marginally greater 
in 11 month old G51D/+ rats compared with age-matched WT controls. There was a trend for 
decreased mean DVR of 18F-DOPA in 16 month old G51D/+ rats compared with age-matched WT 
rats (p=0.09). Results from age-matched WT and G51D/+ rats were analysed using a two-sample 
t-test, although no significant differences were identified. Data shows the mean and SEM. n=4 per 
genotype per age-group. 

 

6.6 Analysis of the data using a modification of methods used for Logan 

graphical analysis 

  Determining the effective distribution volume ratio of 18F-DOPA 

The EDVR of 18F-DOPA is the ratio of the distribution volumes of 18F-DOPA in the 

specific and precursor compartments reduced by the factor k2/(k2 + k3), and is used to 

estimate EDT since EDVR is the inverse (Sossi et al., 2002). The methods used to 

determine the EDVR of 18F-DOPA were adapted from methods previously used to analyse 
18F-DOPA PET imaging data from Sprague Dawley rats (Walker et al., 2013a). Data 

analysis used the Logan reference tissue model, and the TAC for the striatum from which 

the TAC for the cerebellum had been subtracted before running the analysis. Analysis 

used a t* of 30 mins and 120 mins of data. The mean EDVR of 18F-DOPA for 5 month old 

WT and G51D/+ rats was 0.449 and 0.407 respectively, although data from 5 month old 

WT rats showing increased variability and the EDVR of 18F-DOPA ranged from 0.335 to 

0.563 (Figure 6.6). The mean EDVR of 18F-DOPA for 11 month old WT and G51D/+ rats 
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was 0.408 and 0.500 respectively, although data from 11 month old G51D/+ rats showed 

increased variability and the EDVR of 18F-DOPA ranged from 0.365 to 0.670 (two-

sample t-test, p=0.24). Values calculated for the EDVR of 18F-DOPA for 16 month old 

WT rats ranged from 0.381 to 0.592. There was a trend for decreased mean EDVR of 18F-

DOPA for 16 month old G51D/+ rats compared with age-matched WT rats where mean 

EDVR was 0.403 and 0.518 respectively (two-sample t-test, p=0.09).  
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Figure 6.6: The effective distribution volume ratio of 18F-DOPA obtained from WT and 
G51D/+ rats at 5, 11 and 16 months of age. Analysis used the Logan reference tissue model, and 
the TAC for the striatum from which the TAC for the cerebellum had been subtracted before 
running the analysis. Increased variability was observed in the EDVR of 18F-DOPA calculated for 
5 month old WT rats, 11 month old G51D/+ rats, and 16 month old WT rats compared with results 
from other age-matched groups. There was little difference in the mean EDVR of 18F-DOPA 
between 5 month old G51D/+ rats and age-matched WT controls. A two-sample t-test calculated 
that p=0.24 for comparison of data from 11 month old G51D/+ rats with age-matched WT 
controls. In 16 month old G51D/+ rats there was a trend for decreased EDVR of 18F-DOPA 
compared with age-matched WT controls (p=0.09). Results from age-matched WT and G51D/+ 
rats were analysed using a two-sample t-test, although no significant differences were identified. 
Data shows the mean and SEM. n=4 per genotype per age-group. 

 

Therefore, results indicated increased EDT in 16 month old G51D/+ rats 

compared with age-matched WT controls. A decrease in the EDVR of 18F-DOPA and 

consequent increase in EDT could indicate compensatory mechanisms analogous to those 

identified in early PD in humans (Sossi et al., 2002). Instead of using a tissue input 
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function, a plasma input function can be used to determine the EDV of 18F-DOPA which 

has been reported to be a more sensitive measure of dopaminergic function in early PD 

than the EDVR of 18F-DOPA (Sossi et al., 2002). Measurements of plasma 18F-DOPA and 

metabolites were not made in G51D rats since the aim was to recover rats from 

experiments for repeated 18F-DOPA PET imaging or to obtain tissue specimens by 

perfusion fixation. However, it would be interesting to investigate the EDV of 18F-DOPA 

in future experiments by use of a plasma input function. 

 

 Effective dopamine turnover in the striatum 

As mentioned, the EDVR of 18F-DOPA was used to estimate EDT since EDVR is the 

inverse (Sossi et al., 2002; Walker et al., 2013b). In patients with early PD, EDT in the 

striatum has been shown to be increased relative to healthy controls, and this was thought 

to represent a compensatory mechanism in early PD (Sossi et al., 2002; 2004). Since a 

trend for decreased EDVR was identified in 16 month old G51D/+ rats compared with 

age-matched WT controls (Figure 6.6), EDVR was used to estimate EDT. 

Mean EDT in 5 month old WT and G51D/+ rats was 2.31 and 2.49 respectively, 

although data from 5 month old WT rats showed increased variability and values ranged 

from 1.78 to 2.99 (Figure 6.7). In 11 month old WT and G51D/+ rats mean EDT was 2.45 

and 2.11 respectively, although data from 11 month old G51D/+ rats showed increased 

variability and values ranged from 1.49 to 2.74 (two-sample t-test, p=0.29). There was a 

trend for increased EDT in 16 month old G51D/+ rats compared with age-matched WT 

rats, where EDT was 2.53 and 1.99 respectively (two-sample t-test, p=0.13). Therefore, 

results indicate an increase in EDT in the striatum of 16 month old G51D/+ rats compared 

with age-matched WT rats. This in turn could represent a compensatory increase in 

dopaminergic function in 16 month old G51D/+ rats analogous to that identified in 

patients with early PD (Sossi et al., 2002; 2004).  
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Figure 6.7: Effective dopamine turnover estimated from the effective distribution volume 
ratio of 18F-DOPA. There was a small difference in mean EDT between 5 month old WT and 
G51D/+ rats, although increased variability was observed in data calculated for 5 month old WT 
rats. Mean EDT was decreased in 11 month old G51D/+ rats compared with age-matched WT rats, 
although increased variability was observed in data calculated for 11 month old G51D/+ rats 
(p=0.28). Results indicated a trend for increased mean EDT in 16 month old G51D/+ rats 
compared with age-matched WT rats (p=0.13). Results from age-matched WT and G51D/+ rats 
were analysed using a two-sample t-test, although no significant differences were identified. Data 
shows the mean and SEM. n=4 per genotype per age-group. 
 

  Asymmetry in the effective distribution volume ratio of 18F-DOPA 
18F-DOPA PET imaging studies of patients with early PD who presented with asymmetric 

motor deficits have identified that the EDV or EDVR of 18F-DOPA was significantly 

decreased in the putamen contralateral to the most severely affected side (Kumakura et 

al., 2006; Oehme et al., 2011). It is possible that G51D/+ rats may have an asymmetry in 

dopaminergic function in the striatum and have deficits analogous to the findings from 

patients with PD. The methods used to investigate asymmetry were adapted from 

methods that have previously been used to analyse 18F-DOPA PET imaging data from 

Sprague Dawley rats (Walker et al., 2013a). Asymmetry was calculated using the EDVR 

of 18F-DOPA determined separately for the left and right striatum.  

In normal Sprague Dawley rats measurements of asymmetry in the EDVR of 18F-

DOPA have been shown to vary from -0.1 to 0.1 (Walker et al., 2013b). Results from 

measurements of mean asymmetry in the EDVR of 18F-DOPA in WT and G51D/+ rats 

were between -0.1 and 0.1 except for the group of 11 month G51D/+ rats where mean 



212 
 

asymmetry for the left striatum was -0.145, and for the right striatum was 0.110 (Figure 

6.8). Mean asymmetry for the left and right striatum in 11 month G51D/+ rats were 

therefore just outwith the range determined for normal Sprague Dawey rats (Walker et 

al., 2013b). 
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Figure 6.8: Asymmetry in the effective distribution volume ratio of 18F-DOPA. Asymmetry 
was calculated from the EDVR of 18F-DOPA determined separately for the left and right striatum. 
Mean asymmetry in 5 month old WT and G51D/+ rats, 11 month old WT rats, and 16 month old 
WT and G51D/+ rats was between -0.1 and 0.1. Mean asymmetry for the left and right striatum in 
11 month G51D/+ rats were just outwith this range. However, in all groups of rats at least one 
measurement of asymmetry in the EDVR of 18F-DOPA for the left striatum from individual rats 
was less than -0.1, and at least one measurement for the right striatum was greater than 0.1. Data 
shows the mean and SEM. n=4 per genotype per age-group. 

 

Interestingly however, in 5 month old G51D/+ rats, and 11 and 16 month old WT 

and G51D/+ rats, values determined for mean asymmetry indicated decreased 

dopaminergic function in the left striatum compared with the right. In addition, inspection 

of the individual data points revealed that in all groups of rats at least one measurement of 

asymmetry in the EDVR of 18F-DOPA for the left striatum was less than -0.1, and 

conversely at least one measurement of asymmetry for the right striatum was greater than 

0.1. Asymmetry was greatest in one 11 month old G51D/+ rat where measurements for 

the left and right striatum were -0.370 and 0.270 respectively. 

Analysis used the hand-drawn template that was made from data acquired during 

optimisation experiments, and the template used on the left and right striatum were a 

mirror of one another. However, it is possible that the hand-drawn template may bias the 

measured data and lead to the analyses indicating falsely reduced dopaminergic function 

in the left striatum compared with the right.  
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The delivery of a radiotracer such as 18F-DOPA to the brain has been shown to be 

dependent upon factors such as blood perfusion (Kuntner and Stout, 2014). It is possible 

that factors relating to perfusion including the anatomy of the vasculature in F344 rats 

may influence the delivery and uptake of 18F-DOPA. Asymmetry in the vascular supply 

to the brain may lead to an apparent asymmetry in dopaminergic function in data from 

individual rats. Asymmetry in indices of the dopaminergic system in the striatum will be 

investigated in chapter 6 of this thesis using measurements of the OD of TH staining. 

These experiments may indicate whether asymmetry is the result of the template used for 

PET imaging analysis, or whether it may indeed be a feature of the rats used in the 

experiments. 

 

6.7 Effect of rat gender on measurements made from 18F-DOPA PET 

imaging data 

In female PD patients, the uptake of 18F-DOPA by the striatum has been shown to be 

higher than that of male PD patients, with the gender effect most significant for the 

caudate nucleus contralateral to the most affected limb (Gallagher et al., 2011b). Studies 

in 6-OHDA lesioned rodents have shown that the number of neurons lost from the SNpc 

and dopamine depletion from the striatum are significantly greater for female rats 

lesioned at dioestrus (low oestrogen) compared with those lesioned at pro-oestrus (high 

oestrogen) (Datla et al., 2003). Oestrogen has been implicated as a neuroprotectant, and 

dopamine content of the striatum has also been shown to be significantly greater in 6-

OHDA lesioned ovariectomized rats treated with oestrogens compared with those that did 

not receive treatment with oestrogens (Dluzen, McDermott and Anderson, 2001). 

Delayed establishment of the G51D rat colony and issues with breeding, meant that there 

were limited numbers of WT and G51D/+ rats available of any one gender for 

experiments. Therefore, both female and male rats were used for experiments. The data 

has been investigated to determine the effect of rat gender on measurements made from 
18F-DOPA PET imaging data. 

 Table 6.3 shows results for the Ki, DVR and EDVR of 18F-DOPA, as well as EDT 

determined for female and male rats. Results did not indicate a clear effect of rat gender 

on the Ki of 18F-DOPA. The mean Ki of 18F-DOPA for 5 month old G51D/+ female and 

male rats were 0.007 min-1 in both instances. In 16 month old G51D/+ rats measurements 

of mean Ki from female and male rats were 0.009 min-1 and 0.008 min-1 respectively, and 

these values were reproducible. Increased variability was observed in Ki data from 11 and 
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16 month old WT rats compared with data from other age-matched groups. Mean Ki were 

greater in WT female rats at 11 and 16 months of age and were 0.012 min-1 and 0.013 

min-1 respectively, whereas mean Ki in WT male rats at 11 and 16 months of age were 

0.006 min-1 and 0.008 min-1 respectively.  

Results did not indicate a clear effect of rat gender on the DVR of 18F-DOPA. The 

mean DVR of 18F-DOPA for 11 month old WT female and male rats were highly 

reproducible and were 1.43 in both instances. The greatest difference in the mean DVR of 
18F-DOPA was observed for 5 month old WT rats where measurements were 1.52 and 

1.41 in female and male rats respectively.  

Results did not indicate a clear effect of rat gender on the EDVR of 18F-DOPA. 

The mean EDVR of 18F-DOPA was greater in 5 month old WT female rats than in age-

matched WT male rats and results were 0.511 and 0.338 respectively. However, the mean 

EDVR of 18F-DOPA was lower in 11 month old G51D/+ female rats than in age-matched 

G51D/+ male rats and results were 0.483 and 0.551 respectively.  

Results did not indicate a clear effect of rat gender on estimates of EDT. Mean 

EDT for 5 month old G51D/+ female and age-matched G51D/+ male rats were 

reproducible and were 2.52 and 2.48 respectively. The greatest difference in mean EDT 

was observed for 5 month old WT female and age-matched WT male rats where results 

for mean EDT were 1.98 and 2.63 respectively.  

Table 6.4 shows results for asymmetry in the EDVR of 18F-DOPA that were 

determined for female and male rats. Results did not indicate a clear effect of rat gender 

on measurements of asymmetry in the EDVR of 18F-DOPA.  
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6.8 Power analyses 

G*Power was used to investigate sensitivity, and calculated that for sample size of n=4 per 

group, α=0.05 and power=0.95, the required effect size was 3.09. Table 6.5 shows the effect 

size that was calculated for experiments in this study which approached statistical 

significance. The results show that the effect size calculated was less than half of the 

required effect size for a t-test using two independent means. The achieved power for these 

experiments was less than 0.500. 

 

Table 6.5: Effect size and achieved power for histology and 18F-DOPA PET imaging 
experiments. Data is shown for histology and 18F-DOPA PET imaging experiments which 
approached significance. The effect size calculated for these experiments was less than half of the 
required effect size for a t-test using two independent means and a sample size of n=4 per group. The 
achieved power was less than 0.500. 

Measurement OD TH 
staining 
(Bregma 
0.00mm) 

Ki of 18F-
DOPA 

DVR of 
18F-
DOPA 

EDVR of 
18F-
DOPA 

EDT of 
18F-
DOPA 

Age (months) 17 5 16 16 16 
Effect size 1.35 1.53 1.44 1.44 1.25 
Achieved 
power 

0.363 0.444 0.403 0.403 0.320 

 

The effect sizes calculated from data from WT and G51D/+ rats which 

approached significance, was used to determine the ‘ideal’ sample size per group (Table 

6.6). For histology experiments analysing the OD of TH staining (Bregma 0.00mm) the 

‘ideal’ sample size for each group is 16, whereas for 18F-DOPA PET imaging experiments 

ideally 18 animals are required per group. The data indicates that the study of additional WT 

and G51D/+ rats using histology and 18F-DOPA PET imaging experiments would be 

beneficial. 
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Table 6.6: ‘Ideal’ sample size for histology and 18F-DOPA PET imaging experiments. Data is 
shown for experiments the p value obtained from two-sample t-test approached significance. For TH 
IHC experiments ideally 16 animals are required per group, whereas for 18F-DOPA PET imaging 
experiments ideally 18 animals are required per group. 

Measurement OD TH 
staining 
(Bregma 
0.00mm) 

Ki of 18F-
DOPA 

DVR of 
18F-
DOPA 

EDVR of 
18F-
DOPA 

EDT of 
18F-
DOPA 

Age (months) 17 5 16 16 16 
‘Ideal’ 
sample size 
(per group) 

16 13 14 14 18 

 

6.9 Discussion and future directions 

SUV TACs indicated a shorter interval between peak uptake of 18F-DOPA in the striatum 

and cerebellum in 16 month old G51D/+ rats when compared with age-matched WT rats. 

SUVr TACs indicated more rapid uptake of 18F-DOPA in the striatum relative to the 

cerebellum in 5 month old G51D/+ rats compared with age-matched WT rats, and in 16 

month old G51D/+ rats compared with age-matched WT rats.  

Results from Patlak graphical analysis indicated a trend for decreased mean Ki of 
18F-DOPA in 5 month old G51D/+ rats compared with age-matched WT rats, which 

suggested early dysfunction of the dopaminergic system in 5 month old G51D/+ rats. 

However, results from 11 and 16 month old rats did not indicate a clear effect of the 

G51D mutation in alpha-synuclein on the mean Ki of 18F-DOPA.  

Results from standard and modified Logan graphical analyses indicated a trend 

for decreased mean DVR and EDVR of 18F-DOPA in the striatum relative to the 

cerebellum in 16 month old G51D/+ rats compared with age-matched WT rats. 

Interestingly however, results from 5 and 11 month old rats did not indicate a clear effect 

of the G51D mutation in alpha-synuclein on the mean DVR or EDVR of 18F-DOPA.  

Results may indicate an early decline in dopaminergic function in 5 month old 

G51D/+ rats compared with age-matched WT rats as identified by Patlak graphical 

analysis, then an improvement in dopaminergic function in 11 month old G51D/+ rats 

compared with WT rats which may be the result of a compensatory increase in 

dopaminergic function.  

Evidence for a compensatory increase in dopaminergic function was identified in 

16 month old G51D/+ rats since there was a trend for increased mean EDT compared 

with age-matched WT rats. Compensatory changes in brain dopaminergic function have 
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been identified in PET imaging studies of patients with PD and are discussed further in 

chapter 7.3. 

Results from analysis of the OD of TH staining at Bregma 0.00 mm (caudal 

striatum) which were investigated in chapter 3 of this thesis, provide further support to 

the PET imaging findings for dysfunction within the dopaminergic system in G51D/+ 

rats. In contrast, results from TH IHC at Bregma 1.56mm (rostral striatum) did not 

indicate any differences between groups of age-matched WT and G51D/+ rats and this 

was unlike the results from 18F-DOPA PET imaging. The results may indicate that the 

signal measured from 18F-DOPA PET data is most reflective of dopaminergic 

function/nerve terminal integrity in the caudal striatum. 

The EDV of 18F-DOPA is thought to be a more sensitive measure of 

dopaminergic function than the EDVR of 18F-DOPA, since 3-OMFD contributes to 

background activity in images which are analysed in order to determine EDVR and likely 

contributes to bias which may change with disease progression (Sossi et al., 2002). Since 

measurements of the EDV of 18F-DOPA require a plasma input function it would be 

interesting to acquire data concerning 18F-DOPA and its metabolites in plasma from 

additional experiments in G51D rats, in order to investigate EDT as a function of EDV. 

These experiments could also be used to validate the effectiveness of the in vivo methods 

used in the study which employed Carbidopa and Entacapone to prevent the peripheral 

metabolism of 18F-DOPA. It would also be interesting to investigate other markers of 

dopaminergic terminal function such as VMAT-2 and DAT by using the radiotracers 11C-

DTBZ and 11C-methylphenidate (Lee et al., 2000), since these experiments would provide 

additional information about dopaminergic terminal function in G51D rats. PET imaging 

studies in patients with PD have found that dopaminergic function, VMAT-2 and DATs 

are differentially affected by the disease process (Lee et al., 2000; Adams et al., 2005), 

therefore it would be interesting to investigate if similar processes occur in G51D rats. 

There did not appear to be a clear effect of rat genotype on the mean asymmetry 

in the EDVR of 18F-DOPA. Interestingly however, measurements of mean asymmetry in 

the EDVR of 18F-DOPA indicated decreased EDVR for the left striatum compared with 

the right in 5 month old G51D/+ rats, and 11 and 16 month old WT and G51D/+ rats. In 

all groups of rats at least one individual data point was less than -0.1 for the left striatum, 

and conversely at least one data point was greater than 0.1 for the right striatum. 

 Asymmetry favouring decreased EDVR for the left striatum could be the result of 

the hand-drawn template used for analysis. However, anatomical based differences 
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including variations in perfusion between the left and right side of the brain may also 

affect tracer uptake in the F344 strain of rat used for these experiments. Results from 

measurements of asymmetry in the OD of TH IHC which are investigated in chapter 3 of 

this thesis, were inconclusive in determining if the F344 rat strain showed asymmetry in 

indices of the dopaminergic system between the left and right striatum. It would also be 

interesting to investigate the 18F-DOPA PET data further by using a rat brain template, 

since this method of analysis could be used to rule out any potential issues associated 

with the hand-drawn template used for analysis of PET data in this study. 

Increased variability was observed in PET data measured from certain groups of 

rats compared with other age-matched groups. Increased variability was observed in 

measurements of the Ki of 18F-DOPA from 11 and 16 month old WT rats, measurements 

of the EDVR of 18F-DOPA from 5 and 16 month old WT rats and 11 month old G51D/+ 

rats, and estimates of EDT made for 5 month old WT rats and 11 month old G51D/+ rats. 

There did not appear to be a clear effect of rat gender on results from kinetic modelling or 

further analyses of 18F-DOPA PET imaging data (i.e. EDT and asymmetry in the EDVR 

of 18F-DOPA), although increased variability in some of the results obtained may be 

explained by normal heterogeneity in outcome measures from 18F-DOPA PET imaging in 

studies of a genetic rat model of PD. Power analyses indicated that the study may benefit 

from the acquisition of 18F-DOPA PET imaging data from additional animals in order to 

increase the dataset. 

 

Additional data obtained from 18F-DOPA PET imaging studies in G51D/G51D 

rats may provide supportive evidence for the results obtained in this study of WT and 

G51D/+ rats. PD patients homozygous for the G51D mutation in alpha-synuclein have 

not yet been identified although affected individuals may arise theoretically if two G51D 

PD patients had a number of children. Patients homozygous for the G51D mutation might 

be expected to suffer from a more severe form of PD resulting from the two copies of the 

G51D mutated alpha-synuclein when compared with patients that are heterozygous for 

the G51D mutation. CT, 18F-DOPA PET and fused PET-CT images from G51D/G51D 

rats at 5, 11 and 16 months of age are shown in Figure 9.2 (Appendix), with SUV TACs 

and SUVr TACs shown in Figures 9.3 and 9.4 respectively (Appendix). Kinetic 

modelling of 18F-DOPA PET data from G51D/G51D rats (n=4 per genotype per age-

group) indicated a slight decline in the mean Ki of 18F-DOPA in the stratum in 5 month 

old G51D/G51D rats compared with age-matched WT rats, however mean Ki in 
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G51D/G51D rats was not less than mean Ki in age-matched G51D/+ rats (Table 9.1, 

Appendix). The mean DVR of 18F-DOPA was increased in 11 month old G51D/G51D rats 

compared with age-matched WT rats, whereas the mean DVR in 16 month old 

G51D/G51D rats was decreased compared with age-matched WT rats (Table 9.1, 

Appendix). Statistical testing using a one-way ANOVA (with a Tukey post hoc test) 

identified that the mean DVR of 18F-DOPA was significantly decreased in 16 month 

G51D/G51D rats compared with age-matched WT rats (p<0.05). Furthermore, the mean 

EDVR of 18F-DOPA was significantly decreased in 16 month G51D/G51D rats compared 

with age matched WT rats (p<0.05), and mean EDT was significantly increased in 16 

month G51D/G51D rats compared with age-matched WT rats (p<0.05) (Table 9.2, 

Appendix). Measurements of asymmetry in the EDVR of 18F-DOPA indicated decreased 

mean EDVR in the left striatum compared with the right in two out of the three groups of 

G51D/G51D rats (Table 9.3, Appendix). The mean DVR of 18F-DOPA in 11 month 

G51D/G51D rats may provide supportive evidence of a compensatory increase in 

dopaminergic function in 11 month old mutant rats compared with age-matched WT rats. 

Furthermore, results obtained for mean DVR, mean EDVR and mean EDT in 16 month 

old G51D/G51D rats provide supportive evidence of dopaminergic dysfunction and a 

compensatory increase in dopamine turnover in 16 month old mutant rats compared with 

age-matched WT rats. Indeed, more severe deficits in dopaminergic function were 

observed in 16 month G51D/G51D rats than in age-matched G51D/+ rats. 
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Chapter 7 - Discussion 

The aim of the Ph.D. was to characterise a novel G51D rat model of Parkinson’s disease 

using histology and 18F-DOPA PET imaging. Patients with PD suffer from the loss of 

dopaminergic terminals in the striatum and the deposition of abnormal aggregates of 

alpha-synuclein, as well as decreased striatal dopaminergic function compared with 

healthy controls. The methods used for histological experiments were optimised using 

WT rat tissue, and those used for 18F-DOPA PET imaging were optimised using 

experiments in phantoms and WT rats. Histological and 18F-DOPA PET imaging 

experiments were then employed to investigate characteristics of histological staining and 

dopaminergic function in the striatum of WT and G51D/+ rats over the course of ageing. 

 

7.1 Effect of the G51D mutation in alpha-synuclein on the dopaminergic system 

investigated using immunohistochemistry 

Results from TH IHC at Bregma 0.00 mm indicated a trend for decreased OD of TH 

staining in 5 month old G51D/+ rats compared with age-matched WT rats, and in 17 

month old G51D/+ rats compared with age-matched WT rats (Figure 3.20). 

Histological experiments in patients with PD have demonstrated a significant 

reduction in the number of TH immunoreactive neurons in the striatum (Huot, Lévesque 

and Parent, 2007). In patients with PD there was a significant decrease in the OD of TH 

immunostaining in the striatum when compared with healthy controls, which was most 

severe in the first 1-3 years of PD (Bedard et al., 2011; Kordower et al., 2013). A 

significant decrease in the OD of TH staining in the striatum has been replicated in a rat 

model of PD overexpressing WT human alpha-synuclein (Nuber et al., 2013), and also in 

a mouse model of PD overexpressing human A53T alpha-synuclein under the control of 

the DAT promoter (Chen et al., 2015).  

The trend for decreased OD of TH staining in the striatum of 5 and 17 month old 

G51D/+ rats compared with age-matched WT rats (Bregma 0.00 mm) would suggest 

some features of a PD-like phenotype at these time-points (Bedard et al., 2011; Kordower 

et al., 2013). The results are less marked although show some similarities to findings 

from rodent models of PD (Nuber et al., 2013; Chen et al., 2015). Interestingly, results 

from the OD of TH staining in the striatum in 10 month G51D/+ rats (Bregma 0.00 mm) 

did not identify a trend for decreased staining compared with age-matched WT rats. It is 

possible that compensatory mechanisms may explain the difference in staining results 
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between groups of 5 and 17 month old WT and G51D/+ rats and results from 10 month 

old WT and G51D/+ rats. 

In chemical lesion rodent models of PD compensatory changes in dopaminergic 

nerve terminals in the striatum have been proposed, including a rapid increase in TH 

activity and then a delayed increase in TH protein levels (Bezard and Gross, 1998). An 

increase in TH protein levels may explain the improvement in the OD of TH staining in 

the striatum of 10 month old G51D/+ rats compared with age-matched WT rats. In a 6-

OHDA lesioned rat model of PD the TH protein content of the striatum at 1-6 months 

post lesioning has been found to be less severely decreased when compared with the cell 

loss from the SNpc (Blanchard et al., 1995). Furthermore, the TH protein content in the 

striatum of lesioned rats was significantly increased at 6 months post lesioning compared 

with 1 month post lesioning (Blanchard et al., 1995). Blanchard et al. (1995) suggested 

that the results were either due to the accumulation of TH protein in remaining nerve 

terminals in the striatum or due to adaptive morphological changes including the 

expansion of nerve terminals. 

Experiments in 6-OHDA lesioned F344 rats have identified altered post-

transcriptional and/or post-translational regulation of TH in the striatum, since striatal TH 

protein levels were maintained following lesioning despite there being a three-fold 

decrease in TH mRNA in neurons in the SNpc (Pasinetti et al., 1992). Therefore, adaptive 

mechanisms in striatal nerve terminals including altered translation or the expansion of 

nerve terminals may explain the improvement in the OD of TH staining in the striatum of 

10 month old G51D/+ rats when compared with age-matched WT rats. 

Results from studies of post-mortem tissue in patients with PD have shown that 

dopamine is most depleted in the posterior putamen (Kish, Shannak and Hornykiewicz, 

1988). Furthermore, PET imaging studies using the radiotracers 18F-DOPA, 11C-DTBZ 

and 11WIN-35, 428 have demonstrated that the posterior putamen is the most severely 

affected area of the striatum in patients with PD (Brooks et al., 1990; Frost et al., 1993; 

Nurmi et al., 2001; Bohnen et al., 2006). Interestingly, results from TH IHC at Bregma 

1.56 mm (Figure 3.16) did not indicate any differences in the OD of TH staining between 

age-matched G51D/+ and WT rats. This was unlike the results from TH IHC at Bregma 

0.00 mm (Figure 3.20).  Bregma 1.56 mm is located further rostrally than Bregma 0.00 

mm, therefore results from G51D/+ rats appear to be consistent with the findings from 

studies of patients with PD (Kish, Shannak and Hornykiewicz, 1988; Brooks et al., 1990; 

Frost et al., 1993; Nurmi et al., 2001; Bohnen et al., 2006). The results indicate that the 
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posterior striatum may be more affected than the anterior striatum in G51D/+ rats 

compared with age-matched WT rats. 

Experiments using 18F-DOPA PET imaging do not study the activity of the 

enzyme TH, since the radiolabelled DOPA that is administered participates in an 

enzymatic reaction downstream of that which is catalysed by TH (Sossi et al., 2004). 

However, experiments in a 6-OHDA rodent model of PD have demonstrated that the 

distribution of 18F-DOPA activity determined from images of summated activity 

correlates well with the pattern of TH immunostaining in coronal brain tissue sections 

(Kyono et al., 2011). Bregma 1.56 mm and Bregma 0.00 mm were chosen as levels for 

TH IHC in WT and G51D/+ rats, since these sites were likely to have been analysed by 

the VOIs used for 18F-DOPA PET imaging analysis. Such histological experiments could 

permit the comparison of results from IHC and 18F-DOPA PET imaging experiments.   

Patients with PD and unilateral motor deficits have been shown to have an 

asymmetry in dopaminergic function in the striatum, with decreased dopaminergic 

function identified in the striatum contralateral to the most affected side (Morrish, Sawle 

and Brooks, 1995; Piccini and Whone, 2004; Kumakura et al., 2006; Brück et al., 2009; 

Oehme et al., 2011). Results from TH IHC however, did not indicate a clear effect of 

genotype on asymmetry in the OD of TH staining (Figures 3.17 and 3.21). Furthermore, 

these results were inconclusive in determining whether the F344 strain of rat used for 

experiments had an inherent asymmetry of the dopaminergic system between the left and 

right sides of this brain, which was a potential explanation for the observed asymmetry in 
18F-DOPA PET imaging data (Figure 6.8). 

 

7.2 Alpha-synuclein immunohistochemistry in WT and G51D/+ rats 

IHC for alpha-synuclein in the striatum of WT rats demonstrated positive staining in the 

nucleus and also punctate staining in the neuropil which was likely to be associated with 

presynaptic nerve terminals (Mori et al., 2002; Andringa et al., 2003; Yu et al., 2007). In 

10 month old WT rats at Bregma 1.56 mm (Figure 3.25) and 5 and 10 month old WT rats 

at Bregma 0.00 mm (Figure 3.28), alpha-synuclein staining was also observed in cell 

somata in the striatum in some but not all WT rats.  

Alpha-synuclein staining in cell somata has previously been observed in selected 

regions of the brain including the cortex, SNpc and dorsal motor nucleus of the vagus but 

not in the striatum of young Sprague Dawley rats nor Wistar rats (age not specified) (Li, 

Jensen and Dahlström, 2002; Mori et al., 2002; Andringa et al., 2003). The antibody used 
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for IHC has been reported to influence the ability of IHC experiments to detect alpha-

synuclein positive staining in cell somata (Andringa et al., 2003). However, positively 

stained cell somata were only detected in two out of the four 10 month old WT rats 

analysed at Bregma 1.56 mm. In addition, somal staining was only observed in three out 

of the four 5 month old WT rats, and three out of the four 10 month old WT rats analysed 

at Bregma 0.00 mm. Since alpha-synuclein positive staining in cell somata was not 

identified in all WT rats, it was deemed unlikely that the antibody used for experiments 

was the sole explanation for the identification of alpha-synuclein positive staining in cell 

somata in the striatum of rats. The accumulation of alpha-synuclein in the brain of a 

subset of elderly human patients has been observed in those suffering from incidental 

Lewy body disease (Jellinger, 2004; Parkkinen et al., 2005). Therefore, it is possible that 

ageing may result in alpha-synuclein accumulation in cell somata in some but not all WT 

rats, analogous to the process observed in patients with incidental Lewy body disease.  

Results from semi-quantitative analysis of alpha-synuclein staining in cell somata 

at Bregma 1.56 mm indicated that the G51D mutation in alpha-synuclein may increase 

the abundance of alpha-synuclein positive cell somata identified in G51D/+ rats 

compared with age-matched WT rats (Figure 3.25). This finding was consistent with 

results from semi-quantitative analysis of alpha-synuclein staining in cell somata of WT 

and G51D/+ rats at Bregma 0.00 mm (Figure 3.28).  

Results from semi-quantitative analyses of alpha-synuclein staining from patients 

with G51D mutation in alpha-synuclein have generated mixed results. In a study of four 

patients by Lesage et al. (2013) inclusions within cell somata were not identified in the 

caudate-putamen, although in a study of three patients by Kiely et al. (2015) inclusions 

were either not discernible or conversely abundant in the caudate-putamen depending on 

the morphology of the inclusions identified. Kiely et al. (2015) described heterogeneity in 

the results from neuropathological studies of G51D PD. Since two out of the three 

patients analysed had more severe cortical and hippocampal neuronal loss than the one 

other patient, the clinical phenotypes were found to vary between families (Kiely et al., 

2015). Furthermore, studies in rodent models of PD have demonstrated the accumulation 

of alpha-synuclein in cell somata in the caudate-putamen in some but not all mice which 

overexpressed human WT alpha-synuclein under the control of the Thy1 promoter 

(Delenclos et al., 2014). The finding that only a subset of 5 and 17 month old G51D/+ 

rats (Bregma 1.56 mm) showed somal accumulation of alpha-synuclein, appears to be 

similar to the results reported by Delenclos et al. (2014). In conclusion, G51D/+ rats may 
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have features of a heterogeneous process which has been identified in patients with the 

G51D mutation in alpha-synuclein and animal models of PD. 

Results from semi-quantitative analysis of alpha-synuclein staining in the 

neuropil at Bregma 1.56 mm indicated that staining in the neuropil of G51D/+ rats was 

often less well demarcated than staining in age-matched WT rats (Figure 3.26). Results 

from semi-quantitative analysis of alpha-synuclein staining in the neuropil at Bregma 

0.00 mm also indicated that staining in the neuropil of 5 and 10 month old G51D/+ rats 

was often less well demarcated than staining in the neuropil of age-matched WT rats 

(Figure 3.29). Results may therefore indicate decreased punctate staining of presynaptic 

terminals in G51D/+ rats compared with age-matched WT rats.  

The structure of G51D alpha-synuclein may affect its normal localisation at 

synapses since the G51D mutation impairs the normal interaction of alpha-synuclein with 

negatively charged vesicles (Fares et al., 2014). This may therefore explain the decreased 

punctate terminal staining in the neuropil of tissue from G51D/+ rats compared with age-

matched WT rats. Decreased staining for alpha-synuclein at presynaptic nerve terminals 

in G51D/+ rats may be linked to the increased staining identified in cell somata in 

G51D/+ rats compared with-age-matched WT rats. In vitro studies in primary neurons 

and HEK293T cells which express G51D alpha-synuclein have shown that the normal 

cellular localisation of G51D alpha-synuclein is disrupted (Fares et al., 2014).  However, 

these studies demonstrated a nuclear enrichment of G51D alpha-synuclein when 

compared with WT, whereas the cytosolic localisation of alpha-synuclein was 

significantly decreased in HEK293T cells expressing G51D alpha-synuclein compared 

with WT alpha-synuclein (Fares et al., 2014). In the three patients with G51D mutation in 

alpha-synuclein that were analysed by Kiely et al. (2015), certain alpha-synuclein 

inclusions were abundant in cell bodies in the striatum, therefore G51D alpha-synuclein 

may accumulate in cell somata in vivo unlike certain cell cultures studied in vitro.  

There was a trend for increased cell counts in the striatum of 10 month G51D/+ 

rats compared with age-matched WT rats at Bregma 1.56 mm (Figure 3.10) and Bregma 

0.00 mm (Figure 3.12). This finding was interesting when compared with the results from 

analysis of alpha-synuclein staining in cell somata in 10 month old G51D/+ rats at 

Bregma 1.56 mm (Figure 3.25) and Bregma 0.00 mm (Figure 3.28). Here, alpha-

synuclein positive cell somata were identified in all of the 10 month old G51D/+ rats 

analysed and were frequently moderate (++) or abundant (+++). This was unlike alpha-

synuclein staining in 5 and 17 month old G51D/+ rats. The trend for increased cell counts 
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in 10 month old G51D/+ rats compared with age-matched WT rats could be the result of 

infiltration by microglia or a reactive astrogliosis. Such increased cell counts may be 

explained by the moderate or abundant level of alpha-synuclein positive cell somata in 10 

month old G51D/+ rats. However, the source of increased cell counts requires further 

characterisation. 

 

7.3 Systematic investigation of the optimal parameters for reconstruction 

The optimal parameters for the reconstruction of in vivo PET data were determined by 

systematically reconstructing and analysing PET IQ phantom data. Analyses indicated 

that the optimal reconstruction parameters were a normal resolution, a coincidence mode 

of 1-3, 4i6s, ‘normal’ regularisation, delayed window for randoms correction, the spike 

filter set to ‘on’, and a 400-600 keV energy window. Table 3.10 summarises the % SD in 

image uniformity, RC 2 mm, SOR air, SOR water and measured activity determined for 

PET phantom data reconstructed using these parameters.  

Studies have presented data on the performance of preclinical PET imaging 

systems manufactured by Mediso. However, generally these studies have examined a 

limited number of parameters for reconstruction and/or there were disadvantages 

associated with the methods presented for the reconstruction of in vivo PET data.  A study 

by Szanda et al. (2011) analysed the performance of the nanoPET/CT (Bioscan Inc., 

manufactured by Mediso). However, the PET IQ phantom data was only reconstructed 

using a pixel size of 0.3 mm and single-slice rebinning (SSRB)/MLEM with 50 iterations 

(Szanda et al., 2011). Szanda et al. (2011) determined that the % SD in image uniformity 

was 8%, the SOR air and SOR water were 0.20 and 0.08 respectively, and the RC 2 mm 

was 0.58 for data reconstructed using these parameters. A thesis by Dahle (2014) 

examined the performance of the nanoScan PET/CT, with data reconstructed using the 

TeraTomo reconstruction engine, a coincidence mode of 1-5 and a voxel size of 0.4 mm x 

0.4 mm x 0.4 mm. However, there were no details in this thesis of the number of 

iterations used for image reconstruction (Dahle, 2014). The % SD in image uniformity of 

PET IQ phantom data reconstructed in these experiments was 4.7%, the SOR air and 

SOR water were 0.10 and 0.09 respectively, and the RC 2 mm was 0.84 (Dahle, 2014).  

The performance of the PET component of the nanoScan PET/MRI has been 

determined to be almost identical to that of the nanoPET/CT (Nagy et al., 2013). Nagy et 

al. (2013) reconstructed PET data using 48 iterations, a voxel size of 0.2 mm x 0.2 mm x 

0.2 mm, a regularisation strength of 0.001, using either the basic or full detector models. 
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Data reconstructed using the full detector model resulted in a % SD in image uniformity 

of 3.52%, the SOR air and SOR water were 0.058 and 0.062 respectively, and the RC 2 

mm was 0.84 (Nagy et al., 2013). The performance of the nanoScan PC (PET8/2) has 

recently been investigated by Gaitanis et al. (2016). The authors determined the effect of 

regularisation and the number of iterative updates used for reconstruction on image 

quality (Gaitanis et al., 2016). However, the voxel size was held constant at 0.4 mm x 0.4 

mm x 0.4 mm and details were not given for the coincidence mode used in the 

reconstruction of data (Gaitanis et al., 2016). The study concluded that a high 

regularisation level and 52 image updates (26 iterations and 2 subsets) was optimal for 

the reconstruction of PET phantom data using this system (Gaitanis et al., 2016). Data 

reconstructed using these parameters resulted in a % SD in image uniformity of ~5%, the 

SOR air and SOR water were ~0.15 and ~0.05 respectively, and the RC 2 mm was 0.5 

(Gaitanis et al., 2016). However, the use of such a high number of iterations to 

reconstruct in vivo PET data could result in lengthy reconstruction times. Furthermore, 

the PET8/2 scanner used by Gaitanis et al. (2016) differs from the PET 122S model 

offered by Mediso that was used for experiments in this thesis. 

In this thesis experiments systematically investigated several reconstruction 

parameters in order to determine the optimal reconstruction methods for in vivo PET data 

from G51D rats. These analyses were important for the accurate quantification of 18F-

DOPA PET data from the rat striatum which is small in size. Furthermore, the 

performance evaluation of the nanoPET/CT was important since the preclinical PET 

imaging facilities at The University of Edinburgh were only recently established. 

 

7.4 Dopaminergic function in WT rats as determined by 18F-DOPA PET 

imaging 

Images of summated activity (Figure 5.2) and TACs (Figures 5.3 and 5.4) demonstrated 

the specific uptake of 18F-DOPA in the striatum relative to the cerebellum. Therefore, the 

results indicated that the in vivo protocol for 18F-DOPA PET imaging was working well. 

Furthermore, SUV TACs and SUVr TACs (Figures 5.4 and 5.5) which take into account 

the injected activity and the weight of the animal, were overlapping and indicated that the 

data from 18F-DOPA PET imaging experiments was reproducible.  

Mean SUVr for the whole striatum during pseudo-equilibrium indicated that the 

DVR of 18F-DOPA was 1.658 +/- 0.003 (mean +/- SEM) (McNamee et al., 2009). 

However, the mean DVR of 18F-DOPA in the striatum calculated using Logan graphical 
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analysis was lower than the mean SUVr during pseudo-equilibrium and was 1.46 +/- 0.02 

(Table 4.3).  

Analysis of the Ki of 18F-DOPA in the striatum using various parameters for 

kinetic modelling indicated that the optimal methods for Patlak graphical analysis 

required 60 min of data and a t* of 10 min (Figure 5.8) (Table 4.2). Analysis of the DVR 

of 18F-DOPA using various parameters for kinetic modelling indicated that the results 

from Logan graphical analysis of 120 min of data correlated well with results from 

analysis of 180 min of data. Since the aim of 18F-DOPA PET imaging experiments in 

G51D rats was to recover animals after each imaging experiment, it was desirable to 

employ a short scan length in the final experiments. Therefore, the total scan length that 

was selected for experiments in G51D rats was 2 hours. The optimal parameters for 

Logan graphical analysis required 120 min of data and a t* of 30 min. 

Results from the kinetic modelling of 18F-DOPA PET data from WT F344 rats 

were compared with results from 18F-DOPA PET imaging experiments in Sprague 

Dawley rats (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; Becker et 

al., 2017). Results that were compared between studies used the same parameters for 

kinetic modelling. The mean Ki of 18F-DOPA in the whole striatum of F344 rats was 

0.008 +/- 0.000 min-1 (Table 4.1), and was approximately 48-82% of the values 

previously reported for experiments using unlesioned or sham-lesioned Sprague Dawley 

rats that were either aged 3-5 months or 498 g at the time of the experiments (Kyono et 

al., 2011; Becker et al., 2017). The mean EDVR of 18F-DOPA in the whole striatum of 

WT F344 rats was 0.426 +/- 0.008 (Table 4.5), and was approximately 26-43% of that 

which was reported for experiments in normal control Sprague Dawley rats (Walker et 

al., 2013b), which were 6-11 months old in the study by Walker et al. (2013a). Therefore, 

the results indicated increased EDT in the striatum of F344 rats compared with Sprague 

Dawley rats (Table 4.6).  

Generally, two main factors have been reported to affect the results obtained from 

PET imaging studies, and these include scanner specific factors and animal specific 

factors (Kuntner and Stout, 2014). Previous 18F-DOPA PET imaging studies using 

Sprague Dawley rats have used the microPET Focus 120 scanner (Concorde/Siemens) 

(Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; Becker et al., 2017). Both 

the build and performance of the individual scanner, including the spatial resolution, 

sensitivity, scatter and attenuation corrections, and the reconstruction algorithms used, 

can have an impact on results obtained from small animal PET imaging studies (Kuntner 
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and Stout, 2014). Parameters used for the reconstruction of PET imaging data in this 

thesis were optimised using phantoms and for the nanoPET/CT preclinical imaging 

system (Mediso). The methods used in this thesis employed 3D OSEM iterative image 

reconstruction, whereas the experiments using Sprague Dawley rats involved 2D FBP for 

image reconstruction (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b; 

Becker et al., 2017).  

Nonetheless, biological factors in animals have been reported to be more 

important and contribute to greater variability in PET imaging data than scanner related 

factors (Kuntner and Stout, 2014). In fact, variation may result from differences in animal 

housing, as well as anaesthesia, temperature, posture and radiotracer injection during the 

PET imaging experiment (Kuntner and Stout, 2014). Anaesthesia, temperature and 

posture could influence the uptake of 18F-DOPA into the brain, since they would likely 

affect brain perfusion, whereas poor radiotracer injection would affect the availability of 
18F-DOPA to the brain and could mean that the time taken for the tracer to equilibrate 

between blood and brain after injection were greater than t* selected for analysis. To 

reduce the effect of such biological factors on the data, the temperature and depth of 

anaesthesia was monitored carefully in F344 rats during PET imaging experiments. 

Furthermore, the effect of anaesthetic induced perturbations on the physiology of the 

individual animal were minimised by using as low a dose of anaesthetic as reasonably 

achievable.  

Cerebral blood flow is important for the perfusion of the tissue of interest with a 

radiotracer, and factors which affect cerebral blood flow can impact upon the kinetics of 

PET radiotracers (Bailey et al., 2005; Alstrup and Smith, 2013). Anatomical studies of 

the major cerebral arteries in the brain have shown that F344 rats have a significantly 

lower number of side branches arising from the middle cerebral artery than Wistar rats 

(Herz et al., 1996). Furthermore, F344 rats often have atypical vasculature patterns in the 

posterior circle of Willis which were not observed in a study of either Sprague Dawley or 

Wistar rats (Iwasaki et al., 1995). Therefore, strain related differences in perfusion could 

explain the differences in indices of dopaminergic function between F344 and Sprague 

Dawley rats, including possible asymmetry in dopaminergic function between the left and 

right sides of the brain.  

In vitro experiments using striatal slices have been used to investigate strain 

differences in dopamine physiology. However, in contrast to the results from this study 

experiments using fast scan cyclic voltammetry have identified decreased dopamine 
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turnover in the striatum of F344 rats compared with Sprague Dawley rats (Siviy et al., 

2011). 

 

7.5 Effect of the G51D mutation in alpha-synuclein on indices of 

dopaminergic function measured using 18F-DOPA PET imaging 

Results from 18F-DOPA PET imaging studies identified a trend for decreased Ki of 18F-

DOPA in the striatum of 5 month old G51D/+ rats compared with age-matched WT 

controls (Figure 6.4) Furthermore, there was a trend for decreased DVR and EDVR of 18F-

DOPA in the striatum relative to the cerebellum in 16 month old G51D/+ rats when 

compared with age-matched WT controls (Figures 6.5 and 6.6). Results from TH IHC in 

5 and 17 month old G51D/+ rats at Bregma 0.00 mm may therefore provide supportive 

evidence of degenerative processes in dopaminergic nerve terminals of the striatum of 

young and old G51D/+ rats compared with age-matched WT rats (Figure 3.16). The 

analysis of 18F-DOPA PET imaging data also identified a trend for increased EDT in the 

striatum of 16 month old G51D/+ rats compared with age-matched WT rats (Figure 6.7). 

The dataset appears to indicate an early decline in dopaminergic function in the striatum 

of G51D/+ rats which is likely due to neurodegeneration, and this may be followed by a 

adaptive changes in dopaminergic terminals in the striatum in order to maintain function. 

Compensatory change in dopaminergic function could be due to change in the activity of 

the enzyme AADC since this enzyme is important in the metabolism of 18F-DOPA. 

In patients with established PD the Ki of 18F-DOPA in the caudate and putamen 

has been found to be significantly decreased compared with that of healthy controls 

(Brooks et al., 1990; Burn, Sawle and Brooks, 1994; Holthoff-Detto et al., 1997; Rinne et 

al., 2000). The Ki of 18F-DOPA in the putamen is likely to be impaired in the early 

asymptomatic phase of PD, and may be decreased for up to 7 years before the onset of 

clinical signs (Morrish et al., 1998; Nurmi et al., 2001). Symptoms of PD have been 

estimated to emerge when the putaminal Ki of 18F-DOPA was decreased to levels of 

between 57 and 80% of normal (Morrish, Sawle and Brooks, 1995; Morrish et al., 1998). 

Studies in monozygotic twins have also shown impairment of dopaminergic function in 

asymptomatic individuals who have a twin sibling with PD (Piccini et al., 1999).  

Results from Patlak graphical analysis indicated dopaminergic dysfunction in the 

striatum of 5 month old G51D/+ rats compared with age-matched WT controls. Such 

dysfunction would be analogous to that identified in patients with PD. Interestingly 

however, results from Patlak graphical analysis did not indicate a trend for decreased Ki 
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of 18F-DOPA in 11 and 16 month old G51D/+ rats compared with age-matched WT rats. 

Therefore, the results suggest improved dopaminergic function as measured using this 

parameter in 11 and 16 month old G51D/+ rats compared with age-matched WT controls. 

Additional data from 11 month old G51D/G51D rats did not identify an increase in mean 

Ki compared with age-matched WT rats, however the mean DVR of 18F-DOPA was 

increased in 11 month old G51D/G51D rats compared with both WT and G51D/+ rats 

and may therefore provide supportive evidence of increased dopaminergic function in 11 

month old mutant rats (Table 9.1, Appendix). 

Studies of patients with early PD have identified that the EDVR of 18F-DOPA 

was significantly decreased at 55.3% of the values obtained for normal controls, and these 

results indicated increased EDT in the striatum of patients with early PD (Sossi et al., 

2002). Results from 16 month old G51D/+ rats indicated decreased EDVR of 18F-DOPA 

and increased EDT in the striatum compared with age-matched WT rats. Such deficits 

would be analogous to those identified in early PD, and additional data from 16 month 

old G51D/G51D rats provided supportive evidence for the observations made in G51D/+ 

rats (Table 9.2, Appendix). Increased EDT in early PD has been implicated as a 

compensatory mechanism in response to neurodegeneration in the striatum (Sossi et al., 

2002). These observations were confirmed by a further study by Sossi et al. (2004) who 

found that there was a relatively faster increase in EDT in the striatum of patients with 

early PD when compared with those with more established PD.  

Increased EDT has been identified in asymptomatic MPTP lesioned monkeys 

using 18F-DOPA PET imaging, where increased EDT was thought to serve as a 

compensatory mechanism to maintain synaptic dopamine levels following the damage to 

dopaminergic nerve terminals in the striatum (Doudet et al., 1998). Increased dopamine 

turnover has also been identified in MPTP lesioned monkeys using post-mortem 

biochemical analyses of dopamine and its metabolites (Barrio et al., 1990; Pifl and 

Hornykiewicz, 2006). An increase in dopamine turnover has been implicated as a 

potential mechanism in the recovery of motor function in MPTP lesioned marmosets, 

since improvements to motor function which occurred over several weeks correlated well 

with a measured increase in dopamine turnover ((HVA + DOPAC)/dopamine) in the 

striatum (Rose et al., 1989). Therefore, results from 16 month old G51D/+ rats indicate 

that the increased EDT in the striatum compared with age-matched WT rats was likely to 

serve as a compensatory mechanism. Compensatory mechanisms other than an increase 

in EDT may also be evident at earlier ages. This is because the trend for decreased Ki that 
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was identified in 5 month old G51D/+ rats when compared with age-matched WT rats 

was not identified in other groups of G51D/+ rats, including the group of 11 month old 

G51D/+ rats compared with age-matched WT rats. 

Compensatory increases in dopaminergic function have been identified in 

patients with PD when multiple tracers have been employed to study presynaptic 

dopaminergic function. A study by Lee et al. (2000) identified that compensatory changes 

in presynaptic terminal function in PD are likely to involve the upregulation of AADC 

activity and the downregulation of DATs in order to maintain extracellular dopamine 

concentrations following neurodegeneration. These conclusions were derived from a 

study which utilised the tracers 18F-DOPA, 11C-DTBZ and 11C-methylphenidate, since a 

correlational analysis demonstrated that the Ki of 18F-DOPA in the putamen was impaired 

to a lesser extent than were the binding potentials of 11C-DTBZ and 11C-methylphenidate 

(Lee et al., 2000). The binding potential of 11C-methylphenidate which is used to analyse 

DATs typically showed the greatest decrease at symptomatic onset (Lee et al., 2000).  

Dysregulation of dopaminergic function in PD has also been identified using the 

radiotracers L-3,4-11C-dihydroxyphenylalanine (11C-DOPA) and the fluorinated cocaine 

analogue 11C-CIT-FE, where experiments calculated the DAT corrected dopamine 

synthesis capacity in the striatum (Tedroff et al., 1999). These experiments found that 

dopaminergic tone was greatest in the region of the dorsal putamen (198% of control 

values) and that this was the brain region that was most severely affected in PD (Tedroff 

et al., 1999). Furthermore, a study of patients with LRRK2 mutations that were at high 

risk of PD using the radiotracers 18F-DOPA, 11C-DTBZ and 11C-methylphenidate, 

identified a significantly decreased binding potential of 11C-methylphenidate in the 

putamen relative to healthy controls in four asymptomatic individuals (Adams et al., 

2005). However, only two of these patients had a significant decrease in the binding 

potential of 11C-DTBZ in the putamen, and the Ki for 18F-DOPA was within normal limits 

(Adams et al., 2005). The results from this study were thought to provide further evidence 

for the upregulation of AADC activity and downregulation of DATs in PD which likely 

occurs early in PD (Adams et al., 2005).  

Compensatory mechanisms have even been implicated in studies of a 6-OHDA 

lesion rat models of PD using the radiotracers 18F-DOPA and 11C-DTBZ for PET imaging 

(Walker et al., 2013b). These experiments uncovered a complex relationship between the 

kref of 18F-DOPA and the binding potential of 11C-DTBZ (denervation severity), and 

results indicated the upregulation of kref per terminal in the striatum (Walker et al., 
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2013b). In animals with a denervation severity of less than 40% (measured by 11C-DTBZ 

PET imaging) there was little change to the of kref of 18F-DOPA in the striatum (Walker et 

al., 2013b). Therefore, studies have shown that the Ki of 18F-DOPA may either be 

maintained within normal limits or decreased to a lesser extent than other markers of 

dopaminergic terminal function, despite neurodegeneration in the striatum.  

It is unclear if patients with early PD show a similar temporal change in the Ki of 
18F-DOPA to that which was identified in G51D/+ rats. However, compensatory changes 

in dopaminergic terminal function in the striatum of G51D/+ rats may explain why the 

trend for decreased Ki of 18F-DOPA in 5 month old G51D/+ rats compared with age-

matched WT, was followed by measurements of Ki in 11 month old G51D/+ rats that 

were comparable to measurements from age-matched WT controls. 

In the rat brain AADC has been implicated as a regulated enzyme in the synthesis 

of dopamine, and the activity of AADC determines the fraction of L-3,4-

dihydroxyphenylalanine or 18F-DOPA which is converted to dopamine or 18F-DA 

respectively (Hadjiconstantinou et al., 1993; Zhu et al., 1993; Cumming et al., 1995). 

Studies in rodents have shown that AADC activity is regulated by dopaminergic 

receptors, since chronic treatment with dopamine receptor antagonists has been shown to 

maintain increased AADC activity for the duration of drug treatment (Hadjiconstantinou 

et al., 1993; Zhu et al., 1993). In mice, increased AADC activity has been shown to be 

followed by increased AADC protein synthesis, although it is unclear whether or not such 

increased protein synthesis occurs in rats (Hadjiconstantinou et al., 1993; Zhu et al., 

1993). Therefore, endogenous dopamine levels are likely to exert an inhibitory control 

over AADC via dopaminergic receptors, and decreased dopamine levels associated with a 

PD-like phenotype may lead to an increase in AADC activity. Studies in an MPTP mouse 

model of PD have shown that the dopaminergic receptors are more sensitive to occupancy 

by dopaminergic receptor antagonists, therefore AADC in models of PD may be more 

sensitive to regulation by this mechanism (Hadjiconstantinou et al., 1993).  

In G51D/+ rats, decreased stimulation of dopaminergic receptors may have led to 

an increase in the activity of AADC, therefore maintaining the Ki of 18F-DOPA within 

normal levels in 11 month old G51D/+ rats. It is suspected that a compensatory increase 

in AADC activity is present in 11 month old G51D/+ rats compared with age-matched 

WT rats. In addition, a compensatory increase in AADC activity could be present in 16 

month old G51D/+ rats compared with age-matched WT rats, as well as increased EDT.  



235 
 

Results from the measurement of asymmetry in the EDVR of 18F-DOPA in WT 

and G51D/+ rats indicated decreased mean EDVR of 18F-DOPA for the left striatum 

compared with the right in five out of the six groups of rats analysed. Inspection of the 

individual data points revealed that in all of the groups of rats analysed, at least one 

measurement for the left striatum was less than -0.1 and conversely at least one 

measurement for the right striatum was greater than 0.1. The greatest asymmetry in the 

EDVR of 18F-DOPA was observed in one 11 month old G51D/+ rat where measurements 

of asymmetry for the left and right striatum were -0.37 and 0.27 respectively. In contrast, 

experiments in Sprague Dawley rats have indicated that asymmetry in the EDVR of 18F-

DOPA in normal controls was between -0.1 and 0.1 (Walker et al., 2013b). 

As discussed previously, the results from TH IHC were inconclusive in 

determining whether the F344 strain of rat used for this study had an inherent asymmetry 

of the dopaminergic system between the left and right sides of this brain. It was 

considered that the template used for the analysis of PET imaging data could result in an 

apparent asymmetry in dopaminergic function between the left and right sides of the 

brain. Nevertheless, the template used for analysis was specifically made for the strain of 

rat used for experiments, and the VOIs that were used for the left and right striatum were 

a mirror of one another. This approach had been used for analysis deliberately in order to 

reduce the likelihood of such bias. 

Another possible explanation for asymmetry in PET imaging data may include 

the anatomy of the brain vasculature in F344 rats. The uptake of 18F-DOPA by the brain 

is strongly dependent on the perfusion of tissue (Kuntner and Stout, 2014). However, in a 

study of the brain vasculature in F344 rats, 8 of the 21 rats analysed were found to have 

atypical vasculature patterns in the posterior circle of Willis, and it was determined that 

this pattern could lead to lower blood flow through anastomoses with other vessels and/or 

ill-balanced blood flow between the left and right sides of the brain (Iwasaki et al., 1995). 

Consequently, the anatomy of the vasculature in the F344 rat brain may lead to an 

asymmetry in the EDVR of 18F-DOPA. 

 

7.6 The G51D alpha-synuclein rat model as a precise and novel model of 

Parkinson’s disease 

The G51D alpha-synuclein rat model of PD was generated using CRISPR/Cas9 

technology precisely to introduce the G51D mutation into alpha-synuclein. Human 

patients with PD linked to the G51D mutation in alpha-synuclein are heterozygous (Kiely 
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et al., 2013; 2015; Lesage et al., 2013; Tokutake et al., 2014), therefore it was G51D 

heterozygous rats that were analysed in this study. The G51D mutation that was modelled 

in the rat may (based on the 7 cases reported so far) cause of the most aggressive genetic 

PD in humans (Petrucci, Ginevrino and Valente, 2016), therefore it was anticipated that 

G51D rats would model an aggressive PD-like phenotype. This precisely engineered rat 

model has good construct validity since it replicates the mutation found in humans. 

Furthermore, this model has advantages over previously generated genetic rat models of 

PD. G51D/+ rats express mutant alpha-synuclein from the endogenous rat locus, whereas 

previously generated genetic rat models of PD have used transgenic technology, which 

results in the random integration of transgenes into the genome (Cannon et al., 2013; 

Nuber et al., 2013). In a study by Lelan et al. (2011) a combination of mutations (A30P 

and A53T) was used that are not found together in patients, and there was also promoter 

restricted expression (tyrosine hydroxylase) of the transgene, which is quite different 

from cases of familial PD. 

6-OHDA rat models of PD mimic the loss of dopamine and TH observed in 

patients with PD and provide a good model of the biochemical alterations found within 

the brain of PD patients (Duty and Jenner, 2011). One strength of 6-OHDA models of PD 

is the robust neurodegeneration that is observed in the nigrostriatal system, and these 

models also recapitulate the inflammatory processes, oxidative stress and mitochondrial 

dysfunction found in patients with PD (Duty and Jenner, 2011). However, the G51D 

genetic rat model of PD analysed in this study has potential advantages over the 6-OHDA 

lesion rat models of PD which have recently been studied using 18F-DOPA PET and in 

some cases TH IHC (Kyono et al., 2011; Walker et al., 2013a; Walker et al., 2013b). The 

6-OHDA rat model of PD only suffers a focal lesion to the dopaminergic system and does 

not reproduce all of the neuropathological features of PD such as Lewy bodies, whereas 

the G51D rat model has the potential to replicate the widespread and multi-brain region 

involvement that is found in patients (Grealish et al., 2008; Duty and Jenner, 2011). 

Representative rodent models of PD are important for both the study of the underlying 

mechanisms in PD, and also for testing novel treatments for PD that are more effective 

than frequently used agents such as levodopa with all its side-effects in clinical usage. 

The construct of the G51D/+ rats is most similar to the A30P point mutation 

mouse model which was generated by Plaas et al. (2008), although indeed the mice used 

for experiments in that study were homozygous for the A30P mutation (S. Koks, personal 

communication, June 13, 2017). Studies of the A30P mouse model used high 
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performance liquid chromatography (HPLC) experiments instead of IHC and PET 

imaging in order to determine the function of the nigrostriatal dopaminergic system, and 

identified a significant decrease in striatal dopamine and DOPAC in 15 month old mutant 

mice compared with WT controls (Plaas et al., 2008). Therefore Plaas et al. (2008) 

described greater deficits in dopaminergic function in their A30P homozygous mice than 

was identified in G51D/+ rats in this study. Nonetheless 18F-DOPA PET imaging results 

from G51D/G51D rats in this study did identify that the DVR and EDVR of 18F-DOPA 

was significantly decreased in 16 month old G51D/G51D rats compared with age-

matched WT rats. 

The most representative transgenic rat model of PD to date overexpressed human 

WT alpha-synuclein and demonstrated a significant decrease in the OD of TH staining in 

the striatum of 18 month old transgenic rats compared with WT rats, also showing 

significantly decreased striatal dopamine levels measured using HPLC in 12 month old 

transgenic rats when compared with WT rats (Nuber et al., 2013). Furthermore, there was 

a trend for decreased binding potential of 11C-d-threo-methylphenidate in the striatum of 

16 month old transgenic rats (p=0.056) compared with WT controls (Nuber et al., 2013). 

Alpha-synuclein IHC experiments performed by Nuber et al. (2013) identified a granular 

pattern of alpha-synuclein staining in the striatum of 16 month old homozygous rats, 

which comprised dilated neuritic spheroids and these inclusions possibly affected 

dopaminergic fibres originating from the SNpc. Results from TH IHC experiments 

indicate that the BAC transgenic rat model studied by Nuber et al. (2013) may have more 

severe deficits of the dopaminergic system than G51D/+ rats, although alpha-synuclein 

IHC also identified pathology in the striatum of G51D/+ rats compared with age-matched 

WT rats in this thesis.  

The phenotype of G51D/+ rats may be most similar to the BAC transgenic rat 

studied by Cannon et al. (2013) which overexpressed E46K mutated human alpha-

synuclein. TH IHC experiments indicated a trend for decreased TH staining in the 

striatum of E46K rats compared with WT rats (although no significant differences were 

identified) (Cannon et al., 2013). Dopamine levels measured using HPLC were 

unchanged, but dopamine turnover ((DOPAC + HVA)/dopamine) was significantly 

decreased in E46K rats compared with WT rats (Cannon et al., 2013). Histological 

experiments in E46K rats demonstrated the accumulation of alpha-synuclein particularly 

in the processes of neurons in the striatum (Cannon et al., 2013).  
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It is unclear how the phenotype of G51D/+ rats compares to the rat model 

generated by Lelan et al. (2011) which expressed A30P and A53T mutant human alpha-

synuclein under the control of the TH promoter. The experiments performed by Lelan et 

al. (2011) focussed mainly on the olfactory system, and apparently this rat model suffered 

a deficit of motor coordination at 19 months (data not shown), although data from 

analyses of other regions of the brain has not been reported. 

Studies of patients with G51D mutation in alpha-synuclein have largely focussed 

on the one hand on clinical symptoms shown by affected patients, and on the other on 

neuropathological studies including semi-quantitative analyses of neuronal loss and 

alpha-synuclein IHC (Kiely et al., 2013; 2015; Lesage et al., 2013; Tokutake et al., 

2014). In the G51D/+ rats formal behavioural testing was not used to analyse deficits in 

motor and cognitive functions, although animals appeared well and thrived with no 

adverse mortality observed in G51D/+ rats up to 18 months of age. 18F-DOPA PET 

imaging and TH IHC have not been used to study patients with G51D PD (Kiely et al., 

2013; 2015; Lesage et al., 2013; Tokutake et al., 2014). However, 18F-DOPA PET 

imaging and TH IHC have identified significant differences between patients with 

idiopathic PD when compared with healthy controls, and these patients with idiopathic 

PD are likely to be less severely affected than those with G51D PD (Brooks et al., 1990; 

Burn, Sawle and Brooks, 1994; Holthoff-Detto et al., 1997; Huot, Lévesque and Parent, 

2007; Bedard et al., 2011; Kordower et al., 2013; Kiely et al., 2015). In conclusion, the 

phenotype exhibited by G51D/+ rats appears to be less severe than both G51D and 

idiopathic PD.  

Potential reasons for the differences in phenotypes shown by humans and rodents 

may include the lifespan of the rodent being too short to demonstrate a phenotype, 

rodents possibly lacking a key cellular component or environmental trigger, or 

alternatively there may be particular protective factors in rodents that are not found in 

humans (Polymeropoulos et al., 1997; Cabin et al., 2005). Ageing is a major risk factor 

for the development of PD, although the short lifespan of rodents may nonetheless not be 

a contributing factor since experiments in short lived animal models including 

Caenorhabditis elegans and Drosophila melanogaster have shown that dopaminergic 

neuronal loss, locomotor dysfunction and potentially alpha-synuclein inclusions can be 

modelled in these species (Feany and Bender, 2000; Lakso et al., 2003). Normal rodents 

without features of PD all express alpha-synuclein with a threonine at position 53 even 

though this is a cause of PD in humans. However, studies have shown that the motor 
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deficits and alpha-synuclein pathology are exaggerated in human A53T mice which do 

not express endogenous alpha-synuclein (Cabin et al., 2005). Consequently, 

characteristics of endogenous rat/mouse alpha-synuclein may influence the phenotype 

observed.  

Beta-synuclein has been suggested as a possible protective factor and a regulator 

of alpha-synuclein aggregation. Mouse models of PD overexpressing human beta-

synuclein and either human WT or A53T alpha-synuclein have a significantly decreased 

number of alpha-synuclein positive inclusions compared with those expressing human 

WT or A53T alpha-synuclein alone (Hashimoto et al., 2001; Fan et al., 2006). Concurrent 

expression of human beta-synuclein resulted in improved motor performance and a 

significantly increased % of TH positive terminals in the striatum when compared with 

mice expressing human WT or A53T alpha-synuclein (Hashimoto et al., 2001; Fan et al., 

2006). Certain protective factors may ameliorate the phenotype observed in G51D/+ rats 

compared with patients with G51D mutation in alpha-synuclein. 

 

7.7 Limitations of the study 

Female and male WT and G51D/+ rats were used for histological and 18F-DOPA PET 

imaging studies due to the restricted availability of age matched WT and G51D/+ data of 

one particular gender. This was because the animal colony had to be re-established by 

embryo transfer rederivation and animals were slow to breed during the initial matings. 

Results from measurements of the OD of TH staining (Bregma 1.56 mm) indicated that 

the mean OD of TH staining was higher in female G51D/+ rats compared with age-

matched male G51D/+ rats (Table 6.1). However, results from measurements of the OD 

of TH staining (Bregma 0.00 mm), or of asymmetry in the OD of TH staining (Bregma 

1.56 mm/Begma 0.00 mm) did not indicate a clear effect of rat gender on the 

measurements obtained (Tables 6.2, 6.3 and 6.4). Results from 18F-DOPA PET imaging 

studies did not indicate a clear effect of rat gender on the outcome of kinetic modelling, 

nor on measures of EDT nor indeed asymmetry in the EDVR of 18F-DOPA (Tables 5.3 

and 5.4).  

Increased variability was observed in TH IHC data from certain groups of rats 

e.g. 5 and 11 month old WT and G51D/+ rats at Bregma 1.56mm (Figure 3.13) and 5 

month old G51D/+ rats at Bregma 0.00mm (Figure 3.15). Increased variability was also 

observed in 18F-DOPA PET imaging data from certain groups of rats e.g. the Ki of 18F-

DOPA measured in 11 and 16 month old WT rats (Figure 6.4), the EDVR of 18F-DOPA 
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measured in 5 and 16 month old WT rats and in 11 month G51D/+ rats (Figure 6.6), and 

EDT measured in 5 and 16 month old WT rats and in 11 and 16 month old G51D/+ rats 

(Figure 6.7). Variability was observed in the data using both techniques, and this was 

despite different animals being used at 11/10 months of age for histology and 18F-DOPA 

PET imaging experiments respectively, and different animals were also used at 5 and 16 

months of age for 18F-DOPA PET imaging.  

Given the variability observed in the data and the results obtained from power 

analyses, the study would likely benefit from including additional n numbers in order to 

increase the dataset. Power analyses determined that group sizes of n=16 and n=18 should 

be studied for TH IHC and 18F-DOPA PET imaging experiments respectively, therefore 

interpretation of the current dataset may be limited by the small number of animals per 

group that were studied. The data was investigated using a two-sample t-test which 

provides preliminary data on the WT and G51D/+ rats. This statisticial test was used 

since rats on some occasions originated from different animal colonies, or were studied at 

either one or two time-points.  

In the current dataset a total of up to four animals per group were studied, and the 

inclusion of additional n numbers particularly in 18F-DOPA PET imaging experiments 

would have been difficult due to repeated issues with radiotracer production. The age of 

rats studied using 18F-DOPA PET imaging was also limited by the failures in the 

production of the radiotracer. This in turn impacted upon histological experiments, since 

tissue was often sourced from animals that had previously undergone PET imaging. 

Nonetheless, it may be possible to acquire more data once the colony is well established 

and radiotracer production is consistent. 

The G51D/+ rats studied in this thesis replicated the G51D/+ mutation that is 

observed in humans. Additional PET imaging data from G51D/G51D rats that were 

generated towards the end of the study of WT and G51D/+ rats showed more severe 

deficits in dopaminergic function and a greater increase in EDT in 16 month old 

G51D/G51D rats than in age-matched G51D/+ rats, though there is no human resource 

with which to make a direct comparison. 

 

7.8 Future directions 

Were it not for the sample storage issues affecting the availability of tissue specimens 

from G51D/G51D rats and the impracticality of replacing specimens obtained over a 17 

month period it would have been interesting to investigate cresyl violet staining and TH 
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and alpha-synuclein IHC findings from rats with this genotype. Power analyses indicated 

that the study may benefit from the inclusion of IHC and 18F-DOPA PET data from 

additional WT and G51D/+ rats. 

It would be interesting to explore the cause of the trend for increased cell counts 

in the striatum of 10 month old G51D/+ rats compared with age-matched WT rats. 

Increased cell counts may be associated either with inflammation or a reactive 

astrogliosis. Ongoing work within the Kunath lab, conducted by Ph.D. student Stephen 

West, is investigating microglial activation in the G51D rat model of PD using 

immunofluorescent techniques. 

Experiments investigating morphological changes within the brains of G51D rats 

included the measurement of brain to bodyweight ratio and assessment of cresyl violet 

staining of the striatum. However, it would be interesting to further investigate the 

architecture of the whole brain in G51D rats by examining cresyl violet stained sections 

and applying the methods used for cell counts in this thesis to brain regions including the 

midbrain, brainstem, thalamus, cortex and cerebellum. In addition, imaging modalities 

such as MRI could also be used to assess brain architecture. Brains of perfused rats could 

be studied using high-resolution MRI and voxel based morphometry in order to 

investigate possible grey matter loss from the brains of G51D rats eg from the SN, 

striatum or cortex. 

Sequential protein extraction and western blotting could be used to analyse the 

cellular localisation of alpha-synuclein in cytoplasmic and membranous fractions. In 

addition, further information could be gained concerning alpha-synuclein’s localisation at 

presynaptic terminals by using double immunofluorescence experiments and confocal 

microscopy to analyse the colocalisation of alpha-synuclein with markers of presynaptic 

terminals such as synaptophysin. Antibodies to phosphorylated alpha-synuclein (serine 

129) could also be used to determine whether alpha-synuclein which has accumulated in 

cell somata has the same characteristics as alpha-synuclein that have been identified in 

Lewy bodies of patients with PD. In order to correlate the new data with the existing 

histological data presented in chapter 5, it would be most interesting to perform these 

experiments using tissue from the striatum of WT and G51D/+ rats. However, in later 

experiments these techniques could also be used to explore biochemical and 

neuropathological alterations in alpha-synuclein in a number of other regions of the brain 

including the olfactory bulb and SNpc which are brain regions that contain dopamine. 
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It might be interesting to obtain plasma data from rats concerning 18F-DOPA 

and its metabolites. Firstly, these experiments could be used to determine the 

effectiveness of the in vivo methods used in the study. Secondly, plasma data could be 

used to determine the EDV of 18F-DOPA which has been shown to be particularly 

sensitive to changes in EDT in early PD, since 3-OMFD can introduce bias into 

measurements of EDVR and may not change linearly with disease progression (Sossi et 

al., 2002; 2004). Measurements of EDV would provide valuable information concerning 

dopaminergic function in the striatum of G51D/+ rats. Nonetheless, the results from 

G51D/+ rats indicated a compensatory increase in dopaminergic terminal function when 

compared with age-matched WT rats. PET imaging experiments using the tracers 11C-

DTZ and 11C-methylphenidate which analyse VMAT-2 and DATs respectively, may 

provide further information about dopaminergic terminal function in G51D/+ rats. IHC 

experiments could also use antibodies to VMAT-2 and DAT to analyse these markers in 

the striatum of tissue specimens. 

To confirm the results obtained from the TH IHC and 18F-DOPA PET imaging 

experiments, it would be particularly interesting to obtain HPLC data measuring 

dopamine and its metabolites (DOPAC and HVA) from striatal tissue. To permit the 

correlation of HPLC data with the existing TH IHC and 18F-DOPA PET imaging data, 

HPLC analysis should be performed using fresh-frozen striatal tissue from WT and 

G51D/+ rats at 5, 10/11 and 16/17 months of age. Tissue from the midbrain could also be 

used to investigate potential changes in dopamine and its metabolites within the SNpc, 

and furthermore HPLC could be used to investigate potential alterations in other 

monoamine neurotransmitters such as serotonin and noradrenaline. 

The existing 18F-DOPA PET imaging data set could be used to investigate 

dopaminergic function in brain regions such as the SNpc and thalamus by employing 

Patlak and Logan graphical analysis. The image data could be analysed by using a hand-

drawn template similar to that which was employed in this study, or by using the Px Rat 

brain template (Schiffer et al., 2006) that has been developed using data from Spague 

Dawley rats. Furthermore, this latter method could be used to rule out any potential issues 

associated with the hand-drawn template that was used for data analysis in this thesis.  

It would be interesting to expand upon the TH IHC data obtained from the WT 

and G51D/+ rats by investigating dopaminergic neuron loss from the SNpc, and this data 

could be directly compared with any additional data obtained from the analysis of 

dopaminergic function in the midbrain by using 18F-DOPA PET imaging. IHC 
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experiments could involve the use of serial sections from the midbrain and staining 

methods for TH IHC such as those described in chapter 2 of this thesis. Unbiased 

stereology could then be used to determine cell loss from the SNpc. It would be 

interesting to compare results from the analysis of TH positive cell loss from the SNpc 

with the existing dataset analysing the OD of TH staining in the striatum. 

In this study G51D/+ rats were compared with WT controls. However, it would 

be interesting to directly compare the results from G51D/+ rats with data from 6-OHDA 

models of PD. 6-OHDA rat models of PD are well characterised chemical lesion models 

which demonstrate robust nigrostriatal damage and mimic biochemical features of PD, 

neuroinflammation, oxidative damage and mitochondrial dysfunction (Duty and Jenner, 

2011). 6-OHDA chemical lesion models of PD could be generated by stereotaxic 

injection of 6-OHDA into the brains of WT rats, and then rats could be analysed using the 

methods employed for TH IHC and 18F-DOPA PET imaging that have been used in this 

thesis. 

WT and G51D/+ rats analysed were regularly monitored using a general health 

assessment. The G51D/+ rats appeared well, were in good body condition, and did not 

appear to suffer from gross behavioural deficits, although rats were not assessed using 

formal behavioural tests such as those of motor function. Thus it would be interesting to 

investigate any potential differences between WT and G51D/+ rats using specific 

behavioural tests, and tests of motor function would be particularly relevant to the result 

presented in this thesis given the role of the striatum in movement. Tests of motor 

function that could be used to evaluate rats include the Rotarod, footprint analysis, and 

beam walking tests. In addition, behavioural testing could be used to investigate potential 

non-motor deficits such as those affecting the smell and normal cognitive function, since 

these are frequently identified in patients with PD. 

 

7.9 Conclusions 

Results from measurements of the OD of TH staining at Bregma 0.00 mm indicated the 

degeneration of dopaminergic terminals in 5 and 17 month old G51D/+ rats compared 

with age-matched WT rats. However, results from measurements of the OD of TH 

staining at Bregma 1.56 mm in G51D/+ rats were comparable with age-matched WT rats. 

These results would be consistent with the neurodegeneration in the posterior striatum 

that is found in PD. A compensatory increase in TH protein expression or the expansion 
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of nerve terminals in the striatum may explain the observed recovery in the OD of TH 

staining in 10 month old G51D/+ rats compared with age-matched WT rats.  

Somal accumulation of alpha-synuclein was identified in the striatum of some 

WT rats and may be related to ageing, since incidental Lewy body disease has been 

identified in a subset of healthy elderly human patients. Results from alpha-synuclein 

IHC experiments indicated increased somal accumulation of alpha-synuclein and 

decreased punctate terminal staining of the neuropil in G51D/+ rats compared with age-

matched WT rats. It is possible that G51D alpha-synuclein could re-localise from 

presynaptic nerve terminals to cell somata.  

Estimates of cell counts in the striatum indicated a potential neuroinflammatory 

process or reactive astrogliosis in 10 month old G51D/+ rats compared with WT rats. 

Alpha-synuclein positive staining in cell somata was particularly abundant in 10 month 

old G51D/+ rats, and this may be associated with the trend for increased cell counts in 10 

month old G51D/+ rats compared with age-matched WT rats. However, the underlying 

cause of increased cell counts may improve or alternatively resolve by 17 months of age 

in G51D/+ rats compared with age-matched WT rats.  
18F-DOPA PET imaging studies indicated a trend for decreased dopaminergic 

function in the striatum of 5 and 16 month old G51D/+ rats compared with age-matched 

WT controls. Compensatory changes in dopaminergic function were indicated by the 

trend for increased EDT identified in 16 month old G51D/+ rats compared with age-

matched WT rats. Additional compensatory mechanisms including increased AADC 

activity may explain the observed recovery of mean Ki particularly in 11 month old 

G51D/+ rats compared with age-matched WT rats.  

Measurements of asymmetry in the EDVR of 18F-DOPA may indicate that the 

F344 rat strain has asymmetrical vasculature patterns which supply the brain. Results 

from asymmetry in the OD of TH staining were inconclusive in determining whether the 

F344 rat strain has an asymmetry in normal striatal anatomy. 

Results indicated dysfunction of the dopaminergic system and also alpha-

synuclein expression in G51D/+ rats compared with age-matched WT controls. 

Therefore, G51D/+ rats may have features that are analogous to PD in humans. It seems 

however that the phenotype observed in G51D/+ rats would appear to be less severe than 

that of G51D PD in humans. 
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7.10 Conclusions from the analysis of the G51D rat model of PD in the 

context of the aims of the study 

The main findings were: 

 a trend for decreased dopaminergic terminal integrity in the striatum of 5 and 

17 month old G51D/+ rats compared with age-matched WT rats (Bregma 0.00 mm) 

which was identified using TH IHC. 

 an increased incidence and/or abundance of alpha-synuclein positive cell 

somata in the striatum of G51D/+ rats compared with age-matched WT rats which was 

analysed using alpha-synuclein IHC.  

 a trend for decreased dopamine synthesis and storage capacity in the striatum 

of 5 month old G51D/+ rats compared with age-matched WT rats which was identified 

using 18F-DOPA PET imaging. 

 a trend for increased dopamine turnover in the striatum of 16 month old 

G51D/+ rats compared with age-matched WT rats which was estimated from results from 
18F-DOPA PET imaging. 
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Chapter 9 - Appendix 

 

 

Figure 9.1: Schematic diagram illustrating the exon 3 PCR of SNCA and BspHI digest used for 
genotyping. Diagram shows exon 3 PCR of WT and G51D SNCA of the 5’ to 3’ strand, with the site 
of forward (green) and reverse (red) primers shown. G51D mutation was modelled in the rat by GA to 
AT bp mutation, and this introduces a new BspHI restriction site. PCR and BspHI digest of WT rat 
SNCA produces DNA fragments of 275-bp, whereas PCR and digest of G51D SNCA produces 
products which are 152 and 123-bp. (Figure adapted from a diagram made by Dr. Karamjit Singh 
Dolt). 
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Figure 9.2: Representative CT, 18F-DOPA PET and fused PET-CT images from G51D/G51D 
rats at 5, 11 and 16 months of age. Images are shown in the coronal plane and have been generated 
using the same parameters. CT data is shown in Hounsfield units (HU). 18F-DOPA PET images (g/ml) 
are the average of frames 1-33 and have been smoothed using a 1 mm x 1 mm x 1 mm Gaussian filter. 
Fused PET-CT images show the co-registered PET and CT data together. The scanner bed can be 
seen on the dorsal aspect of the CT and fused PET-CT images. 
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Figure 9.3: Standardised uptake value time activity curves obtained from G51D/G51D rats at 5, 
11 and 16 months of age. SUV TACs have been calculated using the weight of the rat and the 
activity injected. Results indicated the specific uptake of 18F-DOPA in the striatum relative to the 
cerebellum. The magnitude of peak uptake of 18F-DOPA in the striatum and cerebellum in 5 month 
old rats was 1.21 g/ml and 0.84 g/ml respectively, in 11 month old rats was 1.46 g/ml and 0.99 g/ml 
respectively and in 16 month old rats was 1.06 g/ml and 0.83 g/ml respectively. The time of peak 
uptake of 18F-DOPA in the striatum and cerebellum was at 42 and 32 minutes respectively except for 
data from the cerebellum of 16 month old G51D/G51D rats where the time of peak uptake was at 27 
minutes. Data shows the mean and SEM. n=4 per age-group. 
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Figure 9.4: Standardised uptake value ratio time activity curves obtained from G51D/G51D rats 
at 5, 11 and 16 months of age. SUVr TACs represent the ratio of SUV TACs for the striatum to 
SUV TACs for the cerebellum. SUVr TACs were overlapping for 5 and 16 month old G51D/G51D 
rats. However, the SUVr TAC for 11 month old G51D/G51D rats was higher than that obtained for 
G51D/G51D rats at 5 and 16 months of age. These findings are reflected in the values obtained for 
mean SUVr duing pseudo-equilbrium (47.5 to 87.5 min) which were 1.49, 1.60 and 1.47 for 5, 11 and 
16 month old G51D/G51D rats respectively. SUVr TACS show the mean and SEM. n=4 per age-
group. 
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Figure 9.5: Bodyweight of rats at 5, 10 and 17 months of age. Results demonstrate a lower mean 
bodyweight in 5 month old G51D/+ rats compared with age matched WT rats. Data shows the mean 
and SEM. Results in age matched WT and G51D/+ rats were analysed using a two-sample t-test, 
although no significant differences were identified. n=4 per genotype per age-group except at 10 
months where n=2 per genotype per age-group. 
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