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i 

 

Abstract 
 

Directed regeneration of axons in the CNS has potential for the treatment of CNS disorders and 

injuries. In contrast to mammals, following optic nerve lesion zebrafish regenerate axons that 

navigate to their correct targets and form new synapses leading to functional recovery. Correct 

pathfinding is thought to rely on a range of molecular cues in the CNS which the growing axon 

expresses receptors for. However, the specific guidance cues are not well elucidated. It is likely 

that a proportion of them will be the same as during development, while some may be specific to 

regeneration. Alternatively, axons may simply retrace former trajectories guided by the 

molecular environment or mechanical constraints of degenerating tracts, as demonstrated in the 

mammalian PNS. 

 To elucidate this, we investigated regeneration in the astray/robo2 knockout mutant 

which exhibits misprojection of optic axons during development leading to the establishment of 

ectopic tracts. We show that degenerating tracts do not provide a strong guidance cue for 

regenerating axons in the CNS as ectopic tracts in the astray mutant are not repopulated 

following lesion despite presenting a similar environment to entopic degenerating tracts. We also 

find that as astray mutant (knockout) and robo2 morphant (transient knockdown) projection and 

termination errors persist in the adult, it is clear that there is not an efficient correction 

mechanism for large-scale pathfinding errors of optic axons during development. In addition, we 

find a reduced importance of the axon guidance receptor Robo2 and its repellent ligand Slit2 for 

pathfinding during regeneration as specific developmental pathfinding errors of optic axons in 

astray mutants are corrected during adult optic nerve regeneration and global overexpression of 

Slit2 elicits pathfinding defects during development but not regeneration. 

 To address regeneration-associated gene regulation in axotomised retinal ganglion cells, 

we carried out a microarray analysis. We found that many genes detected as a gradient in the 

adult retina during regeneration are not differentially expressed in the embryonic eye, despite 

having distinct expression patterns in other embryonic tissues. Of the genes which exhibit strong 

differential expression in the retina of both regenerating adults and developing embryos, foxI1 is 

one of the most interesting candidates as other fox genes have been implicated in axon guidance 

and due to its highly restricted retinal expression pattern. Surprisingly, further investigation has 

revealed that foxI1 knockout mutant embryos have retinotectal projections which appear normal 

in terms of axon pathfinding and mapping.  

 Another family of genes indicated by the array, which are cytosolic phosphoproteins 

known to be involved in the signal transduction cascade of multiple inhibitory guidance cues 

during axon growth, are the crmps. Knocking down crmp2 with morpholinos during 

development resulted in a sparser innervation of the tectum with individual axons which trend 

towards having less complex arbors with shorter branches and reduced overall axon length.  

 As a whole this work adds to our current knowledge of optic axon guidance during 

development and regeneration and the relative importance and effect of selected potential 

guidance cues, which may help toward informing future mammalian CNS regeneration research. 
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1. Introduction 

1.1 Zebrafish as a model organism 

Kingdom: Animalia 

Phylum: Chordata 

Class:  Actinopterygii (Infraclass: Teleostei) 

Order:  Cypriniformes 

Family: Cyprinidae 

Genus:  Danio 

Species: Danio rerio 

 

The zebrafish is a tropical freshwater minnow native to streams of the southeastern Himalayan 

region. In captivity they can live for up to 5 years and grow to an adult size of 2 to 4cm, 

continuing to grow throughout life. They are popular aquarium fish due to their ease of raising 

and maintenance which is also a key factor in their success as a model organism in scientific 

research, where they are mainly used in studies of development and genetics. Sequencing of the 

complete zebrafish genome by the Sanger Institute began in 2001 and is ongoing 

(http://www.sanger.ac.uk/Projects/D_rerio). So far over 1.4Gigabases have been sequenced, 

containing over 24,000 known protein coding genes. Annotations are constantly updated and 

sequences are freely accessible using the Ensembl genome browser 

(http://www.ensembl.org/Danio_rerio/Info/Index). This facilitates the design of primers and 

morpholinos (antisense-oligonucleotides) and the generation of transgenic lines, of which there is 

a growing resource bank. Microarrays of the entire known zebrafish genome are also available. 

Comprehensive information resources are available through The Zebrafish Model Organism 

Database (http://www.zfin.org). Material resources, including transgenic fish and well 

characterised mutant lines, are available to the zebrafish community through the Zebrafish 

International Resource Centre (http://www.zebrafish.org/zirc/home/guide.php). The transgenic 

tools available include conditional gene activation systems such as the Cre/lox system (Langenau 

et al., 2005) and heat shock-inducible GAL4/UAS expression system (Scheer et al., 2002).  

 Zebrafish are an ideal model system for studying development in vivo. They breed daily, 

reliably and all year round when kept on a 14 hour light cycle. They have a large clutch size of 

around 160 eggs per female under optimum conditions which is convenient for obtaining robust 

numbers of experimental embryos (Spence and Smith, 2006). The large, transparent and sturdy 

http://www.ensembl.org/Danio_rerio/Info/Index
http://zebrafish.org/zirc/home/guide.php
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nature of the externally fertilised eggs lends them well to microinjection of a variety of 

substances, such as morpholino oligonucleotides, RNA or plasmid constructs, allowing the 

knockdown or overexpression of chosen genes with relative ease during development 

(Nasevicius and Ekker, 2000; Malicki et al., 2002).  

 Morpholinos are oligonucleotides with nucleic acid bases bound to morpholine rings 

which interfere with expression of a target gene when injected into the fertilised egg. There are 

two distinct classes of morpholino. Start codon directed morpholinos prevent translation of 

mRNA by interfering with the progression of the ribosomal initiation complex in the region of 

the start codon which causes a reduction in protein expression. Splice site directed morpholinos 

prevent normal processing of mRNA by spliceosomes by steric blocking of target pre-mRNA 

which results in alternatively spliced mRNA which is translated into an altered protein. 

Morphants (morpholino injected embryos) can be generated on demand, far more easily than 

generating a mutant knockout line, as morpholinos can be easily and rapidly designed for any 

gene of interest. Morpholinos also provide a means to study transient gene knockdown during 

development as, depending on the specific morpholino and concentration injected, they have an 

effective period of 2 to 18 days following injection (unpublished observations). Splice site 

directed morpholinos have the further advantage that their efficiency of knockdown can be 

assessed by comparing the ratio of wild type mRNA and aberrant mRNA for the target gene 

through RT-PCR. These same properties that lend the zebrafish embryo to morpholino use also 

make it an ideal candidate for zinc-finger nucleases, the latest powerful molecular method for 

making targeted gene knockouts (Ekker, 2008).  

 Zebrafish development is well characterised and a variety of transgenic reporter lines that 

express fluorescent proteins in retinal ganglion cells (RGCs) are available, allowing live imaging 

e.g Tg(pou4f3:gap43-GFP)
s356t

 (POU domain, class 4, transcription factor 3, formerly known as 

brn3c) (Xiao et al., 2005) and sonic hedgehog a Tg(shha:gfp) (Shkumatava et al., 2004). Rapid 

development from fertilised egg to free-swimming, feeding animal in 5 to 6 days allows rapid 

turnaround for developmental experiments. The embryos are largely transparent which allows 

the expression of fluorescent transgenes expressed within the nervous system to be observed in 

live embryos. Mutant lines almost completely lacking pigment, such as casper, are also available 

to enhance this potential for live viewing further (Henion et al., 1996). Their near constant size 

during early development also facilitates the use of techniques such as time lapse microscopy of 
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the live embryo without the complications of rapid size increase. In both the embryonic and adult 

situation, compounds can be introduced into the organism by adding them directly to the water.  

 Finally, one of the most distinguishing features of the zebrafish is its capacity for 

regeneration. A high capacity for regeneration has been shown during development and during 

adulthood in various tissues and organs, including regeneration of the blood vessels, lymph 

system, epithelium, peripheral nervous system, sensory cells of the lateral line and the heart. 

(LeClair and Topczewski, 2010; O'Brien et al., 2009; Ma et al., 2008; Poss et al., 2002). 

However the most remarkable and relevant property of zebrafish for our work, when compared 

to other traditional model organisms, is their high capacity for regeneration of the CNS (Becker 

and Becker., 2008). 

 

1.2 Regeneration following CNS injury in zebrafish in comparison to other classes 

Following injury to the CNS mammals lack functionally significant regeneration, resulting in 

permanent deficits (Chaudhry and Filbin, 2007). This is in contrast to adult zebrafish which are 

capable of regenerating axons that can navigate through the site of injury to reach their correct 

targets and form new synapses leading to functional recovery (Becker et al., 2004a; Tanaka and 

Ferretti, 2009). In adult zebrafish robust regrowth of severed brainstem neuron axons in the 

spinal cord and severed RGC axons in the optic tract has been demonstrated (Becker et al., 

2004a; Becker and Becker, 2007). Damage to the CNS of mammals, including humans, whether 

through injury or disease, often causes irreversible loss of motor and sensory function (Dijkers, 

2005). Due to its relevance to the most common cause of permanent severe disability in humans, 

axon regeneration and its failure in mammals has been extensively studied. The failure of axonal 

regeneration in mammals appears to be largely due to a low intrinsic capacity of mature CNS 

neurons for axon regrowth and an inhibitory CNS environment which expresses inhibitory 

myelin-associated molecules such as nogo-A (Spencer et al., 2003; Schwab, 2004) and 

extracellular matrix molecules such as the chondroitin sulfate proteoglycans found in the glial 

scar (Carulli et al., 2005; Fawcett, 2006). While zebrafish also express nogo-A, the zebrafish 

homolog lacks one of its inhibitory domains (Diekmann et al., 2005). Furthermore, zebrafish 

express the transcript nogo-66 which is 70% identical to mammalian Nogo-66. However, while 

Nogo-66 inhibits regeneration in mammals, nogo-66 signalling does not impair regeneration in 

zebrafish (Abdesselem et al., 2009). In contrast to mammalian myelin, myelin and 
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oligodendrocytes isolated from goldfish, do not inhibit the growth of goldfish RGC axons or rat 

dorsal root ganglion neurons in vitro (Wanner et al., 1995). While fish myelin appears to be less 

inhibitory of axon growth than mammalian myelin, it is not growth promoting as the majority of 

regenerating axons from the brainstem avoid myelin debris, to grow through the central grey 

matter of the spinal cord (Becker and Becker., 2001). In addition to the relative paucity of 

inhibitory molecules following a lesion in the teleost CNS, there is also the presence of axon 

growth promoting molecules including L1 homologues (Becker et al., 2004a), P0 (Schweitzer et 

al., 2003), and contactin1a (Schweitzer et al., 2007). In mammals the growth promoting 

Schwann cells of the PNS, but not oligodendrocytes of the inhibitory CNS, express L1 and P0 

(Oudega and Xu, 2006), suggesting some similarity between teleost oligodendrocytes and 

mammalian Schwann cells. Thus, fish oligodendrocytes might contribute to a CNS environment 

supportive of axon growth. The glial scar, which forms at the site of injury in mammals and is 

associated with chondroitin sulfate upregulation, is a potent obstacle to regeneration (Silver and 

Miller, 2004). In contrast to mammals, there is no evidence for major astrocytic scarring in fish 

CNS (Schweitzer et al., 2007). Interestingly while increased immunoreactivity for chondroitin 

sulfates has been demonstrated in the lesioned goldfish optic nerve (Battisti et al., 1992), it has 

not been found in zebrafish (Becker and Becker, 2002). However the properties of the glial 

environment are not the sole determinants of regeneration through the lesion site, as cell intrinsic 

properties play an important role as CNS axons of adult teleosts, lampreys and lizards can 

regenerate through a glial environment which is inhibitory to the regeneration of rodent axons 

(Yamada et al., 1995; Lurie and Selzer, 1991; Lang et al., 1998). 

 Regeneration of the CNS in fish has received extensive study and revealed a remarkable 

capacity for regeneration which far exceeds the functional but imperfect regeneration in the CNS 

of larval Anurans and reptiles (Egar et al., 1970; Iten and Bryant, 1976; Anderson and Waxman, 

1981; Filoni and Bosco, 1982; Géraudie et al., 1988; Zupanc et al., 1998). However, to add 

further complexity, regenerative capacity varies between species within an order (Rehermann et 

al., 2009; Russo et al., 2004; Egar et al., 1970; Filoni and Bosco, 1981; Lin et al., 2007) and 

between populations of neurones within a species. Spinal cord regeneration in lizard tail 

amputation is quite limited, lacking neurogenesis. This is in contrast to regeneration following 

neurotoxic insult to the brain which involves robust neurogenesis (Font et al., 1991). As with the 

zebrafish, the salamander is capable of CNS regeneration throughout life but for most classes 
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regeneration is highly influenced by life-stage. Birds and mammals, while capable of limited 

regeneration during embryogenesis, lose this ability as they mature (Beattie et al., 1990; Filoni 

and Gibertini, 1969; Mizell, 1968; Nicholls and Saunders, 1996). The same is true of frogs which 

are capable of a wide range of CNS and non-CNS regeneration in their larval form but not in 

their adult form. In contrast, highly regenerative salamanders such as the neotenous axolotl 

maintain throughout life the combinatorial expression of transcription factors which is necessary 

for neural tube formation during development (McHedlishvili et al., 2007) and maintain the 

sonic hedgehog secreting floorplate, which is associated with neural tube development in all 

vertebrates (Schnapp et al., 2005). Hedgehog family genes are expressed in the embryonic floor 

plate which gives rise to the ventrolateral motor neuron progenitor (pMN) domain which in turn 

expresses nkx6.1, pax6, and olig2
 
in all vertebrates (Jessell, 2000; Cheesman et al., 2004; Park et 

al., 2004; Fuccillo
 
et al., 2006). Sonic hedgehog-a expressing and pMN-like ependymoradial 

glial cells
 
(which express Tg(olig2:egfp), Nkx6.1, and Pax6)

 
have been shown in the unlesioned 

adult zebrafish spinal cord (Reimer, Kuscha, Wyatt et al., 2009). During regeneration following a 

spinal cord lesion, numbers of pMN-like ependymoradial
 
glial cells and expression levels 

of these factors greatly increase. This may indicate the importance of access to embryonic gene 

activity patterns and transcriptional programmes in regeneration. The ependymoradial glial cells 

themselves are further examples of such holdovers from development which are associated with 

highly regenerative species. Radial glia are cells with radial processes that line the central canal 

of the neural tube in developing amniotes and are necessary for neurogenesis. Radial glia, or 

radial glia-like cells, are retained in the adult CNS of highly regenerative classes such as fish and 

salamanders but are lost through neural differentiation in amniotes (Zamora, 1978; Sims et al., 

1991; García-Verdugo et al., 2002). However they are present in specific niches in the adult CNS 

which undergo neurogenesis in amniotes (Alvarez-Buylla et al., 1987; García-Verdugo et al., 

2002). The ongoing neurogenesis in amniotes that has so far been discovered may not be of 

relevance to standard regeneration paradigms, such as spinal cord lesion induced paralysis, 

which is a major model for mammalian CNS regeneration, as neurogenesis has not been found in 

the rat spinal cord (Horner et al., 2000). 

 Following an optic nerve lesion in mammals, up to 90% of RGCs die off, possibly due to 

removal of trophic support originating from their targets (Fawcett, 2006). Zebrafish do not show 

this marked cell death, with less than 20% of RGCs apoptosing following lesion (Zhou and 
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Wang, 2002). Frogs, which can be thought to be an intermediate evolutionary step between fish 

and mammals, show around 50% RGC survival (Beazley et al., 1986). The reduced regenerative 

capacity of the CNS of higher vertebrates may be viewed, perhaps simplistically, as a natural 

consequence of increases in CNS complexity through evolution (Northcutt, 2001). However it 

may be that specific adaptations have left some species more capable of intrinsic CNS 

regeneration than others. Some lizards are capable of adult spinal cord axonogenesis, whereas 

frogs, with arguably less complex nervous systems, are not. A potential explanation lies in the 

specialised escape mechanism of these lizards; the ability to shed and regrow the tail (see Table 1 

for comparison). Tail regeneration is accomplished by the recapitulation of some developmental 

programs in concert with mechanisms specific to regeneration (Clause and Capaldi, 2006). While 

this regeneration is imperfect, e.g. spinal column bone partially replaced by cartilage (Barber, 

1944) and innervation by one instead of three spinal nerves (Bellairs and Bryant, 1985), it is 

sufficient to regrow a functioning, innervated tail (Duffy et al., 1992). This reinnervation follows 

extensive sprouting from spinal and supraspinal neurones (Duffy et al., 1992). It may be that this 

survival strategy has primed the lizard nervous system, to a limited extent, for regeneration. The 

mechanism of growth in teleosts is an adaption which may contribute to their remarkable 

capacity for regeneration. Teleosts, unlike mammals, grow continuously throughout life. This 

process involves not only the enlargement of existing cells but also proliferation, including 

neurogenesis and axonogenesis which has been demonstrated in the brain and sensory systems 

(detailed below for the optic system) (Easter and Stuermer, 1984; Marcus et al., 1999; Zupanc, 

2008). It has also been speculated that the same is true of the motor system as, unlike in 

mammals where muscle tissue growth is accomplished by increasing the size of existing cells, 

fish continue to produce new muscle cells throughout their life, which may require continued 

neurogenesis to supply matching efferent innervation (Zupanc, 2008). However ongoing 

neurogenesis in the uninjured adult zebrafish has not been found in the spinal cord (Reimer, 

Kuscha, Wyatt et al., 2009). 



 

7 

 

  

Table 1.1. Summarised comparison of spinal cord regeneration across classes following lesion.  

Capability for regeneration loosely ties with the evolutionary period since the class diverged from the common ancestor, with more recently 

diverged classes exhibiting the lowest capacity for regeneration. While fish undergo spontaneous functional regeneration, larval Anurans 

will regenerate but lose this ability in the spinal cord as they mature, lizards show limited regeneration without neurogenesis and birds and 

mammals are capable of limited spinal cord regeneration only during a narrow embryonic window. 

Modified from Tanaka and Ferretti, 2009. 

 

1.3 Regeneration in the optic system 

 

1.3.1 Cellular regeneration of the retina 

The high regenerative capacity of the zebrafish also extends to the optic system. Regeneration of 

the retina is accomplished by a variety of vertebrate classes employing different methods but 

regeneration of the teleost optic system is arguably the most successful and complete in terms of 

restoration of structure and function. In teleosts, radial glia-like cells, the Mueller glia, give rise 

to progenitors cells which regenerate the retina, whereas newts and larval frogs recapitulate 

development by forming a new retinal neuroepithelium with cells derived from the retinal 

pigment epithelium (Hitchcock and Raymond, 1992; Mitashov, 1996; Lamba and Reh, 2008; 

Tsonis and Del Rio-Tsonis, 2004). In the adult situation, the frog retains the capacity for ongoing 

neurogenesis in the retina but loses the capacity for complete regeneration of the retina 

(Mitashov, 1996). Retinal regeneration can be induced in bird and mammal embryos only during 

a brief window with the application of ectopic growth factors. This process does not recapitulate 

development as the retinal pigment epithelium (RPE) is converted to retina without RPE renewal 

and results in a retina with abnormal apical–basolateral polarity (Park and Hollenberg, 1991).  
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Fig. 1.1. Structure of the eye and retina. 

The right hand image is an in situ hybridisation on retinal cryosection showing expression of roundabout2 in the 

retinal ganglion cell layer of an adult zebrafish following optic nerve crush. 

Adapted from Tanaka and Ferretti, 2009. 

 

1.3.2 Ongoing neurogenesis and axonogenesis 

Zebrafish, unlike mammals, grow continuously throughout life. This process involves not only 

the enlargement of existing cells but also proliferation, including neurogenesis (Zupanc, 2008). 

In teleosts both the retina and tectum grow throughout life. Neurogenesis occurs in the periphery 
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of the retina in an area called the ciliary margin, in a process common to fish and amphibians. 

These newborn RGCs in the retinal margin extend axons which exit the eye via the optic nerve 

head and navigate along the existing optic tract, within a specific bundle, to terminate onto the 

tectum and pretectal targets (Easter and Stuermer, 1984; Marcus et al., 1999). This clearly shows 

that the adult zebrafish CNS is capable of supporting the growth and navigation of axons from 

the retina to the tectum. The continuously generated RGCs in adult growth have axons which 

express developmental antigens such as the cell recognition molecules polysialylated NCAM and 

L1 (Bernhardt, 1999).  

 

1.3.3 Retinal ganglion cell axon regeneration 

RGCs with regenerating axons following axotomy present similar characteristics to newly 

generated RGCs. RGCs with regenerating axons reenter a growth state in which they reexpress 

various development associated genes which include cytoskeletal proteins, membrane bound 

recognition molecules of the immunoglobulin family, including neural cell adhesion molecule 

(ncam) and L1 homologues, and growth associated protein 43 (gap43), an indicator of axon 

growth (Bernhardt,1999). These genes are very likely to play a role in axon regrowth. Reduced 

L1 expression has been shown to impair axon regrowth (Becker et al., 2004a). However 

regeneration associated growth does not appear to be a complete recapitulation of development 

as regulation of the growth associated genes differs between the two processes. During 

development, but not regeneration, ncam is present on axons in its highly polysialylated form, 

embryonic-ncam (encam) (Harman et al., 2003). Other regeneration associated molecules, 

including the actin-interacting protein Gelsolin (Roth et al., 1999), the recognition molecules 

zfNLRR (Bormann et al., 1999) and Contactin1a (Schweitzer et al., 2007) are expressed at much 

higher levels during axon regrowth than during development. This would suggest that growth of 

axons during development and during regeneration relies on a similar but distinct pattern of gene 

regulation. Other cell types also contribute to the growth promoting environment following 

lesion. Photoreceptors secret Purpurin which promotes axon growth in RGCs (Matsukawa et al., 

2004) and other growth promoting molecules such as Axogenesis Factors-1 and -2, are secreted 

by optic nerve glia into the surrounding environment (Petrausch et al., 2000a). 
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Fig. 1.2. Regeneration of the optic projection onto the tectum is precise in zebrafish. 

Four weeks after an optic nerve crush, RGC axons have regenerated to the tectum and terminated in a spatially 

restricted manner similar to unlesioned controls. 

Coronal sections. Medial is left, dorsal is up. Bar is 200µm. 

Figure used with the kind permission of Dr. T Becker. 

 

 

1.3.4 Restoration of function 

The teleost optic system is capable of robust regeneration with spontaneous restoration of 

function, in contrast to the lack of regeneration in mammals, and functional but less robust 

regeneration in reptiles and Anurans. These regenerating RGC axons reach their appropriate 

targets leading to arborisation and a restoration of vision (McDowell et al., 2004; Bernhardt, 

1999). This is a very important distinction as, although most anamniotes have the capacity for 

some optic nerve regeneration, the extent and functionality of the regeneration varies and 

regrowth of axons does not necessarily lead to functional connections. While lizards may 

undergo spontaneous axon regeneration following an optic nerve lesion, they do not exhibit 

spontaneous restoration of vision and require visual conditioning to achieve it (Beazley et al., 

2003; Dunlop et al., 2004; Rodger et al., 2006). While zebrafish RGC axon regeneration is 

relatively precise with the vast majority of axons reaching their correct targets, it is not perfect. 
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In zebrafish and goldfish, an increase in misprojecting axons, relative to the unlesioned 

projection, has been observed following lesion induced regeneration, such as ipsilaterally 

projecting axons not typically found in teleosts (Springer,1981; Becker et al., 2000a). Zebrafish 

RGC axons can regenerate regardless of whether the nerve fibre layer and ensheathing 

oligodendrocytes tubes remain intact. This is in contrast to the peripheral nervous system of mice 

in which regenerating axons rely on the mechanical support provided by intact Schwann cell 

tubes (Nguyen et al., 2002). 

 

1.3.5 Axon navigation 

The regenerating optic axons must navigate a complex environment in the adult CNS which has 

undergone many changes and increased in complexity since the optic tract was established 

during the first days of development, including a difference in scale of over tenfold. The average 

length of an RGC axon's primary branch at 3 days post fertilisation (dpf) is 330 microns 

compared to the approximately 4mm length of the adult optic tract (unpublished observations). 

Furthermore, regenerating axons cannot navigate by fasciculation with existing axons, as is the 

case for developing axons (Pittman et al., 2008). The regenerating axons must make many 

directional choices to navigate through critical intermediate and final targets so re-establishing 

the correct route for the optic nerve which crosses at the optic chiasm and enters the anterior 

tectum in a tight fasicle, travelling along the roof of the tectum and then terminating in the 

correct area and layer of the tectum. The pattern of RGCs on the retina is mirrored onto the 

tectum with temporal retina RGCs projecting axons to anterior tectum and nasal retina RGCs 

projecting axons to the posterior tectum (Fig. 1.3) (Udin and Fawcett, 1988). This retinotopic 

map is highly precise. When this map is first established during development the axons grow 

precisely to their intended targets without excessive overshooting and do not undergo the 

extensive pruning which occurs in mammals during retinotopic map formation. Establishment of 

the retinotopic map during development is brought about by gradients of guidance cues in the 

tectum and complementary receptor gradients in the retina (Inatani, 2005). For most of this 

process the distances involved make it impossible for a growing axon to home in on its specific 

target directly so pathfinding, along cues in the vicinity of the axon, is likely to be the dominant 

influence. 
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1.3.5.1 Molecular determinants of axon pathfinding and retinotopic map formation 

The idea that neural maps are determined by gradients of signals in the projecting and target 

areas was first suggested by Roger Sperry in 1945 with his chemo affinity theory which was 

informed by his work in the retina (Sperry, 1945). It is now evident that correct pathfinding relies 

on a range of, often overlapping, molecular gradients in the CNS which the growing axon 

expresses receptors for. These chemotaxis-linked molecules can induce inhibition of growth, 

repel axons or promote growth and be diffusible or substrate bound (Tessier-Lavigne and 

Goodman, 1996). To navigate through the extracellular environment the axon must be able to 

detect and respond to these cues. This is achieved by asymmetric alterations to the cytoskeleton 

at the growth cone.  

 

1.3.5.2 Growth cone dynamics in axon pathfinding 

The growth cone is a highly motile structure at the growing tip of the axon. The growth cone is a 

swelling with many finger-like projections called filopodia which possess a largely actin based 

cytoskeleton, with the actin being formed into densely packed bundles. Whereas the 

lamellipodia, located between the filopodia, are filled with randomly oriented networks of actin 

filaments (Letoumeau, 1983; Bridgman and Dailey, 1989; Okabe and Hirokawa, 1991). While 

the filopodia and lamellipodia cytoskeletons are dominated by actin, the cytoskeleton of the 

central domain of the growth cone is mostly composed of microtubules. As there is constant 

turnover and rearrangement of these actin and microtubule components, which generate 

mechanical forces and influence the cell shape, the growth cone is highly dynamic (Goshima et 

al., 1997; Diefenbach et al., 1999; Fournier et al., 2000; Mack et al., 2000; Kamiguchi and 

Lemmon, 2000; Buck and Zheng, 2002). Thus molecules which can influence the dynamics of 

the growth cone cytoskeleton can influence the direction and rate of growth of axons (Tessier-

Lavigne and Goodman, 1996; Arimura et al., 2005; also see chapter 4). To facilitate this the 

membrane of the filopodia contains receptors and cell adhesion molecules which play a role in 

detecting guidance cues and responding to them. The growth cone is dense with organelles to 

allow for rapid response to environmental cues, including such processes as local translation, 

obviating the significant delay which would be required for transporting proteins along the 

length of an axon to the growth cone (Jung and Holt, 2011). Due to these properties the growth 

cone can rapidly respond to extracellular cues by turning, changing rate of growth, branching or 
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collapsing. Such rapid response may be vital to the correct behaviour of a growth cone as 

blocking local translation has been shown to inhibit the turning but not the growth of axons 

(Campbell and Holt, 2001). However that is not to say growth cones advance uniformly, as they 

have been found to slow or become more complex when reaching choice points in their 

pathways (Mason and Erskine, 2000). Extracellular signals are transduced through various 

second messengers such as kinases, GTPases, calcium and cyclic nucleotides (See Fig. 4.1 for an 

example) to promote or inhibit the assembly of actin filaments or microtubules (Gallo and 

Letourneau, 2004). Attractant cues, such as NGF, stabilise the cytoskeleton thus the side of the 

growth cone which receives the greatest attractant input will be preferentially stabilised leading 

to the growth cone turning towards the source of the gradient (Gundersen and Barrett, 1979; 

Gallo and Letourneau, 1998). In a similar manner repellent cues, such as Sema3A, destabilise the 

cytoskeleton leading to the growth cone turning away from the source of the cue or collapsing 

(Dontchev and Letourneau, 2002). 

 

1.3.5.3 Modulation of intra-axonal signalling pathways 

The effects of guidance molecules on axon growth are generally not direct as they act through 

varied intermediate transduction pathways, where the signal can be modified by other inputs to 

the pathway. Cytoskeletal-associated proteins perform a variety of roles which are integral to 

correct axon growth and pathfinding, such as actin bundling (Fascin and Filamin), vesicle 

transport (Myosin), and tubulin binding (Crmp2). Thus modifiers of growth and guidance have 

many potential targets which are often intricately linked. This results in the same guidance cue 

having different effects depending on the balance of the pathways within a specific growth cone. 

Netrin-1 acts as an attractant when signalling via the DCC receptor but a repellent via the Unc-5 

receptor (Kennedy, 2000; Shekarabi et al., 2005). The balance of these pathways is dynamic and 

the response of the same growth cone to a specific guidance cue may change over time. 

Furthermore, the response of the growth cone to guidance cues can vary depending on the levels 

of intracellular molecules and their possible modifications. An increase in the levels of certain 

cyclic nucleotides such as cAMP, can switch the growth cone response to the Netrin-1 guidance 

cue from repulsion to attraction, while lowering levels of cAMP will switch attraction to 

repulsion (Song et al., 1997; Ming et al., 1997). This is also the case for cGMP and Sema3A 

guidance (Song et al., 1998). Further modulation is introduced by modifications to proteins in the 
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growth cone which can alter their properties and so affect the growth cone's response to 

signalling molecules. Phosphorylation of the intracellular molecule Crmp2 is required for 

Sema3A induced
 
growth cone collapse to occur (Brown et al., 2004; Arimura et al., 2005). 

Therefore, without the phosphorylation of Crmp2 by kinases such as Rho-kinase, the 

downstream effects of Sema3A would be reduced or blocked (see chapter 4). 

 

1.3.5.4 Axon guidance is highly specific and efficient 

Such a finely controlled and dynamic guidance system is necessary due to the need for axons to 

navigate to their correct targets through a complex nervous system which consists of many tracts 

and targets. Each growth cone must be able to detect and respond to the guidance signals which 

direct it to its correct target, while navigating through tissues which may express guidance 

molecules for different subsets of axons and may contain the targets of other axons. Therefore 

the growth cone must be able to modulate its responsiveness over time and depending on the 

environment it must navigate. The use of overlapping gradients to direct axon growth is an 

extremely efficient method as the number of neurones in the human brain, which must project 

axons to their correct targets, is several orders of magnitude greater than the total number of 

genes in the genome (Schmucker and Flanagan, 2004). This means that different axons must 

respond differently to the same guidance cues which are re-used throughout the nervous system. 

While it is widely agreed that overlapping gradients are key determinants of axon guidance, 

which specific combinations of molecules influence these choices and are required for correct 

axon navigation is not well understood in vivo during development and even less so during 

regeneration. However several of the molecules which play a role in the establishment of the 

retinotectal projection have been identified due to extensive study of the optic system owing to 

its simplicity and accessibility; a selection are introduced in section 1.3.5.7.  

 

1.3.5.5 Molecular guidance gradients define relative maps 

Molecular gradients are not the sole determinant of axon guidance and targeting. Another factor 

which influences the final target of an axon is axon-axon competition. When a portion of the 

retina is ablated, the remaining RGC axons will spread out across the tectum to occupy the 

available space (Goodhill and Richards, 1999). Thus removing competing axons leads to the 

remaining axons interpreting the guidance cues in a similar but altered manner. Conversely, 
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when the tectum is partially ablated, the axons bunch together. If axon targeting was absolutely 

governed by molecular gradients it is unlikely that they would exhibit this adaption to the altered 

environment. It has been shown that axon guidance molecules, such as the Ephrins, define 

relative, not absolute, maps as overexpressing EphA receptors in a subset of axons leads to a 

shift in mapping for not only the overexpressing axons but also their wild type neighbours 

(Brown et al., 2000; Reber et al., 2004). 

 

1.3.5.6 Axon guidance in development and regeneration 

The ability of zebrafish RGC axons to navigate to the tectum and restore the retinotopic map 

following a lesion of the optic nerve is an apparent recapitulation of their developmental 

pathfinding and targeting ability (Becker et al., 2000a). If this is the case then regenerating optic 

axons must actively read specific molecular cues which are similar to those that guide 

developing pioneer axons to their targets (Becker and Becker, 2007). The identities of many 

developmental guidance cues and potential regenerative guidance cues have been indicated by 

RGC axon pathfinding mutants from zebrafish mutagenesis screens (Xiao et al., 2005; Gulati-

Leekha and Goldman, 2006). If such re-establishment of the axon guidance molecular gradients 

found in development occurs, it would require coordinated gene regulation. At present the genes 

responsible for this are unknown but it is expected that a proportion of them will be the same 

genes responsible for the initial establishment of the axon guidance gradients found during 

development. As zebrafish generate RGCs, which project axons to the tectum, throughout life it 

can be expected that environmental cues might be present for navigation by these newly 

generated axons. Therefore it is possible that these pre-existing cues are used by regenerating 

axons also. However it is possible that regenerating axons are guided by a set of molecules 

distinct from those expressed during development or for the guidance of newly generated axons 

in the adult. Other influences on axon navigation could potentially come from mechanical or 

molecular interactions with the denervated brain tracts. For example, in the regenerating 

peripheral nervous system of mice, denervated Schwann cell tubes provide mechanical guidance 

for regenerating axons (Nguyen et al., 2002). At the same time, Schwann cells up-regulate a 

number of axon growth promoting molecules (Oudega and Xu, 2006), which is also true for 

oligodendrocytes in the fish CNS (Stuermer et al., 1992). Which mechanism, or perhaps 

combination of mechanisms, are required for axon regeneration is currently one of the most 
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important questions in neuroscience as the answers will guide future strategies for directed axon 

regeneration in the treatment of CNS disorders. We can now begin to address this complex 

question as in the last 15 years, several axon guidance cues have been discovered, in part due to 

studies in the zebrafish optic system, as well as many more potential axon guidance cues, some 

of which regenerating RGC axons are known to express receptors for. 

 

1.3.5.7 Guidance molecules 

 

1.3.5.7.1 Tenascin-R 

Tenascin-R is an extracellular matrix molecule that acts as a repellent guidance molecule for 

optic axons during development (Becker et al., 2003) and is a potential inhibitor of axonal 

regeneration in the adult mammalian CNS (Becker et al., 2000b). Such repellent or inhibitory 

activity can guide axons by defining boundaries and thus confining the trajectories of the 

growing axons towards their correct targets and preventing axon branches growing beyond their 

appropriate areas. Tenascin-R has been shown to border the pathway of newly generated RGC 

axons in the adult zebrafish (Becker et al., 2004b). During regeneration RGCs upregulate 

expression of the Tenascin-R receptor, Contactin1a (Pesheva et al., 1993; and unpublished 

observations). Therefore Tenascin-R may be involved in axon guidance in the adult zebrafish as 

its expression is retained in the adult situation and during regeneration. 

 

1.3.5.7.2 Chondroitin Sulfates 

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix molecules  

which play important roles for axon guidance during development (Faissner and Steindler, 1995; 

Fukuda et al., 1997) and limit plasticity in the adult CNS (Hockfield et al., 1990; Corvetti and 

Rossi, 2005). The CSPGs exhibit varied fine structure alterations, which contribute to protein 

interaction, due to the action of modifying enzymes. One class of CSPG modifying enzyme is 

the chondroitin sulfotransferases which add sulfate groups to specific sugar residue positions. 

Increased immunoreactivity for chondroitin sulfates is associated with the glial scar in mammals, 

in which the scar exhibits mostly inhibitory effects on axon regeneration (Silver and Miller, 

2004). In contrast, the lesioned optic nerve of zebrafish has not shown an increase in chondroitin 

sulfate immunoreactivity (Becker and Becker, 2002). Chondroitin sulfate immunoreactivity 
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persists in the adult zebrafish in nonretinorecipient pretectal nuclei. These nuclei, which are 

embedded in the optic tract, must not be targeted by regenerating RGC axons if they are to reach 

their correct targets. Chondrotin sulfates repel regenerating zebrafish RGC axons in vitro and 

digestion of chondroitin sulfates with chondroitinase leads to an increase in misrouting of 

regenerating axons in vivo (Becker and Becker, 2002). 

 

1.3.5.7.3 Netrin-1 

Netrin-1 is a secreted guidance signal for developing axons, expressed in the optic nerve head. In 

the rat, the expression of netrin-1 is developmentally downregulated and its receptors are 

downregulated following lesioning of the optic nerve. In marked contrast, adult goldfish retain 

expression of netrin-1 and its receptors are expressed in newly generated RGCs and upregulated 

in regenerating axotomised RGCs. The increased expression of netrin-1 in the highly 

regenerative adult goldfish RGCs and decreased expression in the regeneration impaired adult rat 

RGCs, may indicate a potential role for netrin-1 in teleost axon guidance during regeneration 

(Petrausch et al., 2000b). 

 

1.3.5.7.4 Ephrins 

The establishment of the retinotopic map of RGC axons onto the tectum is guided by gradients of 

guidance cues in the tectum and corresponding receptor gradients in the retina (See Figure 3.1) 

(Inatani, 2005). The Ephrin-As and their Eph receptors are important inhibitory molecules 

involved in this process. Rostrocaudal gradients of Ephrin-A2 and Ephrin-A5 persist in both the 

unlesioned and lesioned adult zebrafish tectum (Becker et al., 2000a). In adult goldfish, Ephrin 

signalling has been shown to be required for the correct reestablishment of the topographic map 

following lesion (Rodger et al., 2004). 

 

1.3.5.7.5 Heparan Sulfates 

Heparan sulfate proteoglycans (HSPGs) are expressed extensively in the developing brain and 

are involved in RGC axon navigation. HSPGs are important for growth cone navigation (Lee and 

Chien, 2004) and, in mice, a lack of HSPGs has been shown to increase retinoretinal projection 

of RGCs (Inatani et al., 2003). HSPGs are extracellular matrix molecules with varied fine 

structure alterations, which contribute to protein interaction, due to the action of modifying 
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enzymes (Esko and Selleck, 2002). These modifications of the sugar residues of the HSPGs 

include epimerization, de-acetylation and sulfation. Sulfation is carried out by heparan sulfate 

transferases (HST) which add sulfate groups to specific sugar residue positions of the heparan 

sulfate sugars (Lee and Chien, 2004). HS6ST1 sulfates the 6-O position of glucosamine and has 

been shown to affect retinal axon guidance in the chiasm of developing mice (Pratt et al., 2006). 

 

1.3.5.7.6 Sulfatases 

Sulfatases (sulfs) remove sulfate groups from specific sugar residues of HSPGs. Sulf1 and Sulf2 

are secreted 6-O-endosulfatases involved in the processing of the 6-O position of glucosamine of 

HSPGs. They have an opposing activity to HS6ST1 which adds sulfate groups to the same target 

residue. The roles of Sulf1 and Sulf2 during normal development are not well understood but it 

has been shown in the mouse that they have overlapping yet essential functions (Holst et al., 

2007).  

 

1.3.5.7.7 Semaphorins 

Semaphorins are a family of secreted or transmembrane glycoproteins, many of which signal 

through Plexins (Kruger et al, 2005). The majority of semaphorins are associated with areas of 

exclusion for Plexin and Neuropilin co-receptor expressing neurons in the developing nervous 

system (Fiore and Püschel, 2003; Huber et al., 2003). Repulsive Semaphorin signalling has been 

shown in various developing nervous systems including in RGCs of zebrafish (Liu et al., 2004; 

Becker and Becker, 2007) and class 3 Semaphorins have been implicated in the inhibition of 

mammalian CNS regeneration (Niclou et al., 2006). As with chondroitin sulfate, the homologues 

of Semaphorin3A continue to be expressed in a nonretinorecipient pretectal nuclei in the adult 

zebrafish. Furthermore, regenerating RGCs re-express the receptor Neuropilin-1Aa and so may 

be able to detect repellent Semaphorin cues (unpublished observations). 

 

1.3.5.7.8 Collapsin response mediator proteins 

Collapsin response mediator proteins (Crmps) are a family of phosphoproteins which are highly 

expressed in the nervous system (Liu and Strittmatter, 2001). While not guidance cues 

themselves, the Crmps are involved in the signal transduction cascade of multiple inhibitory 

guidance cues, including Semaphorins, during axon growth (Liu and Strittmatter, 2001). The 
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crmps exhibit a high level of cross species homology (Quinn et al., 1999). This high level of 

evolutionary conservation highlights the functional importance of the Crmps. The expression 

pattern of Crmp2 in the embryonic brain is also consistent across the major model organisms, 

indicating its functional importance; mouse (Byk et al., 1996), cat (Cnops et al., 2004), zebrafish 

(Schweitzer et al., 2005; Christie et al., 2006), Xenopus (Kamata et al., 1998) and chick 

(Goshima et al., 1995). Interest in crmp2 first arose due to a crmp2 mutant in C.elegans which 

has severely uncoordinated movement which is due to abnormal axon guidance and outgrowth 

including premature axon termination, abnormal branching, aberrant pathfinding and a 

superabundance of microtubules in neurons (Hedgecock et al., 1985; Desai et al., 1988; Siddiqui 

and Culotti, 1991; Li et al., 1992). The crmps play a role in growth cone morphology and it has 

been shown that Crmp2 enhances the advance of growth cones by regulating microtubule 

assembly (Arimura et al., 2005).  

(See chapter 4). 

 

1.3.5.7.9 Roundabouts 

In the zebrafish, Roundabout 2 (Robo2) is a receptor for repellent extracellular matrix cues of the 

slit class (Dickson and Gilestro, 2006) and is known to be expressed in RGCs (Challa et al. 2001; 

Lee et al. 2001). Robo was first identified as the gene responsible for CNS axon pathway defects 

in a Drosophila mutant (Seeger et al., 1993).  

 

1.3.5.7.9.1 Robos are repellent guidance cues for developing axons  

Robo was shown to encode an immunoglobulin superfamily transmembrane receptor protein 

which carries out signal transduction via its cytoplasmic domain and is highly expressed in 

growth cones (Kidd et al., 1998a; Bashaw and Goodman, 1999). Robo expression is necessary 

for correct crossing at the midline by commissural axons as without Robo expression these axons 

recross the midline multiple times instead of only once and ipsilateral axons aberrantly cross 

(Seeger et al., 1993; Kidd et al., 1998b). Based on evidence from Drosophila it was shown that 

Slit, expressed by cells near the midline, repels axons from the midline via Robo mediated 

repulsion (Kidd et al. 1999; Brose et al. 1999). Axons which project ipsilaterally express Robo 

receptors and are repelled by Slit, while commissural axons have lower levels of Robo 

expression before crossing the midline which allows any attractant cues to overcome the Slit 
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repulsion. Following crossing, upregulation of Robo leads to the repulsive cues overcoming the 

attractants and the axon is repelled from the midline (Kidd et al., 1998a; Sun et al., 2000). 

Interestingly, in zebrafish Robo2 plays an important role in pathfinding of RGC axons even prior 

to approaching the midline as shown by errors in the astray mutant (Hutson and Chien, 2002) 

which may suggest that the precise function of robo2 is not completely conserved between 

invertebrates and vertebrates. In vertebrates, in vitro experiments have shown that Slit proteins 

can repel various axons which express Robos including chick olfactory bulb axons, rat spinal 

motor axons, mouse hippocampal axons, and rodent RGC axons (Brose et al., 1999; Li et al., 

1999; Nguyen Ba-Charvet et al., 1999; Niclou et al., 2000; Erskine et al., 2000; Ringstedt et al., 

2000). Other functions of Robo/Slit signalling include effects on cell migration (Wu et al., 1999; 

Zhu et al.,1999). 

 

1.3.5.7.9.2 Robos are highly conserved in vertebrates 

The four known mammalian robos (Kidd et al., 1998a; Yuan et al., 1999a; Huminiecki et al., 

2002) are orthologues of the four known zebrafish robos; robo1-4 (Lee et al., 2001; Bedell et al., 

2005). However, unlike Drosophila robo1, Drosophila robo2 and robo3 are not orthologues of 

their vertebrate namesakes and appear to have arisen due to independent genome duplication 

events (Dickson and Gilestro, 2006). The zebrafish Robos have high interspecies homology and 

high intrafamily homology, with the exception of Robo4 which is smaller than the other Robos 

with only around half of the conserved Robo family domains (Lee et al., 2001; Bedell et al., 

2005). Similarly in mice, Robo4 is the least homologous member of the robo family (Park et al., 

2003). The functional properties of Slits and Robos are also preserved across species as Slit and 

Robo proteins from different species can successfully interact (Brose et al., 1999). As with 

Drosophila, mammals have 3 slit genes which are expressed by midline cells  

(Holmes et al. 1998; Itoh et al. 1998; Nakayama et al.1998; Brose et al. 1999; Li et al. 1999; 

Yuan et al. 1999b). Zebrafish have 4 slit genes due to the teleost genome duplication resulting in 

a slit1a and slit1b (Hutson et al., 2003), which are also expressed at the midline and guide the 

optic pathway in a largely repellent manner (Barresi et al., 2005). 

 

  



 

21 

 

1.3.5.7.9.3 Expression patterns 

 

1.3.5.7.9.3.1 Robos 

The four known zebrafish robo genes (robo1 to 4) are highly expressed in the developing 

nervous system in overlapping but distinct patterns. As well as being expressed in the visual 

system, olfactory system, cranial ganglia, hindbrain and spinal cord, they are also expressed in 

other tissues such as the somites and fin buds (Lee et al., 2001). Both the timing of expression 

and spatial patterning suggest a role in axon guidance. The robo family is differentially 

expressed in the zebrafish optic system during development in a manner which supports a role 

for these proteins in retinal axon guidance. By 36hpf, during early optic system formation, robo2 

is strongly expressed throughout the RGC layer (Lee et al., 2001), at a time when axons are 

navigating from the retina to the tectum and are beginning to reach the optic chiasm (Stuermer, 

1988; Burrill and Easter, 1995). By 48hpf, robo2 expression is restricted to the peripheral retina 

where later born RGCs are being added in an annular fashion and are extending axons towards 

the tectum. Robo1 and robo3 do not appear to be expressed in the developing retina. However 

they are expressed in the tectum. While robo3 expression in the tectum is confined to only a 

subset of superficial cells, robo1 and robo2 are widely expressed in the tectum, with robo2 

exhibiting the strongest expression (Lee et al., 2001). Robo2 and, at a much reduced level, robo1 

and robo3 are expressed dorsal to the optic chiasm in the ventral diencephalon (Lee et al., 2001). 

By 76hpf, when axons are reaching the tectum and arborising, the pattern of robo expression 

from early development has largely persisted with robo2 still highly expressed throughout the 

tectum and RGCs (Campbell et al., 2007). Of the robos, robo2 expression is most widespread in 

the retinotectal system and surrounding areas where axons must make navigation choices, which 

may suggest its importance in this system. This was confirmed in the zebrafish mutant Astray, 

which expresses a truncated form of Robo2 which lacks the domains required to function as a 

receptor due to a point, nonsense mutation (Fricke et al., 2001). Zebrafish robo2 expression in 

the developing RGC layer is comparable to that of mammalian robo2 (Erskine et al., 2000; 

Niclou et al., 2000; Ringstedt et al., 2000). Whereas robo1 does not appear to be expressed in the 

zebrafish while it is expressed in the mammalian RGC layer in scattered cells (Erskine et al., 

2000; Niclou et al., 2000; Ringstedt et al., 2000). However it has been shown that Robo2 but not 

Robo1 is required for slit mediated intraretinal guidance in the mouse (Thompson et al., 2009). 
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In mice it has been shown that Robo3 suppresses the influence of Robo1 and 2 on commissural 

axons, while robo1 knockout has shown to be a weak phenocopy of robo2 knockout (Long et al., 

2004). In the zebrafish it has been shown through transplantation that robo2 is required eye-

autonomously for correct retinal axon pathfinding (Fricke et al., 2001). 

 

1.3.5.7.9.3.2 Slits 

How precisely Robos and Slits interact on the structural level is poorly understood and the 

affinity of one Robo family member for any particular Slit family member is unclear. Although 

in Drosophila it has been demonstrated that the Robos bind with similar affinity to Slit domains 

(Howitt et al. 2004). There is some evidence that Slits may have other receptors than Robos from 

knockout work in mice which revealed a more severe pathfinding phenotype when the slits were 

knocked out compared to knockout of the robos (Jaworski et al., 2010). Regional specificity of 

Slits in mouse intraretinal axon guidance may also indicate redundancy with other guidance 

signals (Thompson et al., 2009). From expression patterns of slits and robos, it can be inferred 

that Slit2 is likely to be an important ligand for Robo2 in the retinotectal system. In zebrafish 

Slit2 is expressed in the optic stalk where it may be involved in optic nerve fasciculation (Niclou 

et al., 2000) as it has been shown in rodent models (Erskine et al., 2000; Ringstedt et al., 2000). 

In zebrafish the expression patterns of slit2 and slit3 in the forebrain, rostral and caudal to the 

optic tract respectively, define a corridor through which RGC axons pass (Hutson and Chien, 

2002). Whereas in the rodent the pathway is bounded by slit1 and slit2 (Erskine et al., 2000; 

Niclou et al., 2000; Ringstedt et al., 2000). This suggests that while the slits are expressed in a 

manner consistent with influencing RGC guidance across classes, the specific slits involved may 

differ between classes. While zebrafish slit1a expression may not define the optic tract boundary 

as with mammalian slit1, it is expressed throughout the tectum and weakly in the RGCs during 

development. Slit1b and slit2 are not detectably expressed in the tectum but are expressed in the 

retina, but not in the RGCs. Slit3 is expressed in neither the tectum nor the retina (Campbell et 

al., 2007). 
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1.3.5.7.9.4 Astray mutant 

A functional null mutant for robo2 (Astray
ti272z

) exhibits various targeting errors of optic axons 

during development, including pathfinding errors (rostro-caudal pathfinding errors, ectopic 

midline crossing), and termination errors (increased terminal arbor sizes) of optic axons during 

development (Fricke et al., 2001; Campbell et al., 2007). Similar pathfinding defects are 

observed in slit or robo deficient mice (Plump et al., 2002; Plachez et al., 2008). Mutant growth 

cones are larger and more complex than wild-type and time-lapse analysis indicates that, unlike 

wild type optic axons, optic axons in astray mutants do not correct errors during growth across 

the chiasm (Hutson and Chien, 2002). 

(See chapter 2).  
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Fig. 1.3. Guidance cues are present in the optic pathway of adult fish. 

Diagram of the optic system (dorsal view) indicating expression of potential guidance molecules at the optic nerve 

head (Netrin), the pretectum (Sema3As, Tenascin-R, Chondroitin sulfates), and the tectum (Ephrin-A2 and A5). 

RGCs are continuously generated in the retinal margin (proliferation). Typical trajectories of temporal (green) and 

nasal (red) optic axons are indicated. 

Modified from Becker and Becker, 2007. 
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1.5 Summary 

In summary, zebrafish are capable of a high degree of spontaneous CNS regeneration and 

possess a CNS that is both rich in growth promoting molecules and low in inhibitory molecules. 

The optic nerve lesion paradigm in zebrafish offers an anatomically discrete and highly 

accessible extension of the CNS which undergoes full regeneration within four weeks and has a 

100% survival rate in our hands. The retinotectal system in particular has been well studied. 

Following axotomy, RGCs upregulate expression of a specific set of molecules associated with 

axon growth and pathfinding. These cues contribute to the ability of the RGC axons to regrow 

and navigate to their appropriate targets, leading to functional connections and the restoration of 

vision. The precise array of molecular determinants which are necessary for this process are 

currently not well elucidated. Such knowledge would greatly inform future research towards 

directed axon regeneration in mammals and humans for the treatment of CNS disorders and 

injuries. Towards this end, we have set out to uncover the molecular determinants of axon 

regeneration and guidance through a molecular analysis of the zebrafish retinotectal system. The 

availability of whole-genome microarrays for the zebrafish (Agilent) make it possible to obtain 

an overview of regeneration related gene regulation in order to identify novel guidance related 

genes. The identities of several guidance cues have been indicated by the study of RGC 

pathfinding mutants (Xiao et al., 2005; Gulati-Leekha and Goldman, 2006). Potential guidance 

molecules can be readily knocked down with morpholinos and any resultant pathfinding errors 

can be relatively easily studied in the semi-transparent embryos. The heatshock inducible 

GAL4/UAS system also offers the potential to perturb putative guidance molecules in both the 

embryonic and adult situation. Investigating how such embryonic pathfinding errors compare to 

possible pathfinding errors in adult regeneration will offer insight into the question of to what 

extent regeneration is a recapitulation of development. Furthermore the pathfinding mutant, 

astray (Karlstrom et al., 1996), offers the opportunity to disentangle the source of guidance cues 

in regeneration by studying how degenerating ectopic projections influence regeneration. 
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2. Analysis of the astray/robo2 zebrafish mutant reveals that degenerating tracts do not 

provide strong guidance cues for regenerating optic axons 

 

2.1 Summary 

During formation of the optic projection in astray/robo2 mutant zebrafish, optic axons exhibit 

rostro-caudal pathfinding errors, ectopic midline crossing and increased terminal arbor size. Here 

we show that these errors persist into adulthood, even when robo2 function is conditionally 

reduced only during initial formation of the optic projection. Adult errors include massive 

ectopic optic tracts in the telencephalon. During optic nerve regeneration in astray/robo2 

animals, these tracts are not re-populated and ectopic midline crossing is reduced compared to 

unlesioned mutants. This is despite a comparable macrophage/microglial response and 

upregulation of contactin1a in oligodendrocytes of entopic and ectopic tracts. However, other 

errors, such as expanded termination areas and ectopic growth into the tectum, were frequently 

re-committed by regenerating optic axons. Retinal ganglion cells with regenerating axons re-

express robo2 and expression of slit ligands is maintained in some areas of the adult optic 

pathway. However, slit expression is reduced rostral and caudal to the chiasm, compared to 

development and ubiquitous overexpression of Slit2 did not elicit major pathfinding phenotypes. 

This shows that (1) there is not an efficient correction mechanism for large-scale pathfinding 

errors of optic axons during development; (2) degenerating tracts do not provide a strong 

guidance cue for regenerating optic axons in the adult CNS, unlike the PNS; and (3) robo2 is less 

important for pathfinding of optic axons during regeneration than during development. 

 

2.2 Introduction 

In adult fish and amphibians, severed optic axons are capable of correctly growing through their 

original pathways and of functional target re-innervation (Becker and Becker, 2007). Given that 

the distances regenerating axons cover are much greater than during development and that 

regenerating axons cannot navigate by fasciculation with existing axons, as is the case for 

developing axons (Pittman et al., 2008), the question arises how precise navigation and target re-

innervation is accomplished. Answering this question may have wider consequences in the 

context of achieving directional axonal regeneration in the CNS of mammals, in which axon 

regrowth is currently difficult to induce (Chaudhry and Filbin, 2007). 
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 Mechanical or molecular interactions with the denervated brain tracts could guide 

regenerating axons. For example, in the regenerating peripheral nervous system of mice, 

denervated Schwann cell tubes provide mechanical guidance for regenerating axons (Nguyen et 

al., 2002). At the same time, Schwann cells up-regulate a number of axon growth promoting 

molecules (Oudega and Xu, 2006), which is also true for oligodendrocytes in the fish CNS 

(Stuermer et al., 1992). Alternatively, regenerating optic axons may actively read specific 

molecular cues, similar to those that guide developing pioneer axons to their targets (Becker and 

Becker, 2007). It is difficult to distinguish between these mechanisms in vivo, because 

degenerating tracts always overlap with the appropriate trajectories of regenerating axons. We 

decided to address this problem using the zebrafish astray mutant (Karlstrom et al., 1996). In this 

mutant, ectopic optic tracts are formed in a stochastic manner during development. If these tracts 

acted as non-specific guidance cues for regenerating axons they would divert some of the 

regenerating optic axons from their correct trajectories. 

Astray
ti272z 

is a functional null mutation for robo2 (Fricke et al., 2001), a receptor for 

repellent extracellular matrix (ECM) cues of the Slit class (Dickson and Gilestro, 2006). These 

mutants show pathfinding (rostro-caudal pathfinding errors, ectopic midline crossing) and 

termination errors (increased terminal arbor sizes) of optic axons during development (Fricke et 

al., 2001; Campbell et al., 2007), which are similar to those in slit or robo deficient mice (Plump 

et al., 2002; Plachez et al., 2008). Time-lapse analysis indicates that optic axons in astray 

mutants, in contrast to wild type axons, do not correct errors during growth across the chiasm 

(Hutson and Chien, 2002). However, the long-term fate of aberrantly growing axons in astray 

mutants has not been determined. Moreover, similar to other ECM molecules (Becker and 

Becker, 2002; Becker et al., 2004), Robo/Slit guidance could be important for regenerating optic 

axons. 

 Our analysis shows that ectopic tracts are not a preferred guidance cue for regenerating 

optic axons, despite a comparable cellular and molecular reaction to deafferentation in entopic 

and ectopic optic tracts. Dramatic pathfinding errors found in optic axons of adult astray (robo2) 

mutants are strongly reduced after regeneration. There are fewer expression domains of slits in 

adults than in embryos and over-expression of Slit2 does not affect axon regrowth. This indicates 

that Slit/Robo2 interactions are less important during regeneration than during development.
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2.3 Materials and methods 

 

2.3.1 Animals 

All fish are kept and bred in our laboratory fish facility according to standard methods 

(Westerfield, 1989) and all experiments have been approved by the British Home Office. We 

used homozygous astray
ti272z

 mutants (Karlstrom et al., 1996; Fricke et al., 2001), which are 

adult viable, crossed with Tg(pou4f3:gap43-GFP)
s356t

 (Xiao et al., 2005) transgenic fish to 

visualize the optic projection in living larvae. Tg(pou4f3:gap43-GFP)
s356t 

line was kindly 

provided by Dr. Herwig Baier. We also used the Tg(hsp70l:slit2-EGFP)
rw015d

 line for Slit2-GFP 

fusion protein overexpression (Yeo et al., 2004) and Tg(hsp70l:mcherry)
zc62

 control; both 

transgenes use the 1.5 kb hsp70l promoter (Halloran et al., 2000). 

 

2.3.2 Analysis of living larvae 

To assess the presence of an ectopic projection to the telencephalon, 5-day-old larvae were 

anesthetized in 0.01% aminobenzoic acid ethylmethylester (MS222, Sigma, St. Louis, MO) and 

the presence of axons in the telencephalon was assessed under a stereo-microscope equipped 

with fluorescence detection (SV8, Zeiss, Oberkochen, Germany). Subsequently, larvae were 

returned to tank water and raised to adulthood (older than 3 months of age). 

 

2.3.3 Analysis of heat-shocked larvae 

Hsp70l:mCherry or hsp70l:slit2-EGFP embryos were heat shocked for 1 hour in a 38°C water 

bath at 32 hpf, allowed to recover at 28.5°C, then fixed at 48 hpf. Embryos were mounted in 

agarose, and the right eye was injected with DiO or DiI, respectively (Hutson et al., 2004). 

Embryos were imaged laterally using a 488 or 568 nm laser for excitation and a 20x air or 40x 

water objective to capture a z-stack of axon labelling and a differential interference contrast 

image of the embryo.  

 

2.3.4 Adult optic nerve lesion and heat-shocks 

Optic nerve crush lesion was performed as described (Becker et al., 2000). Briefly, fish were 

deeply anesthetized by immersion in 0.033% MS222. The left eye was gently rotated out of its 

socket and the exposed opaque optic nerve was crushed with a pair of watchmaker’s forceps. A 
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clear stripe across the nerve indicated successful crush. Fish were revived in tank water and 

allowed to survive for up to 4 weeks post-lesion. For heat shock application, lesioned animals 

underwent daily heat shocks beginning at 3 days post-lesion until 21 days post-lesion, when 

optic nerve tracing took place. Tank water was heated from 25°C to 39°C, remained at this 

elevated temperature for at least one hour and was allowed to cool down again. This procedure 

has previously been shown to elicit gene expression from the hsp70l promoter in adult fish (own 

unpublished observations and Lee et al., 2005). 

 

2.3.5 Immunohistochemistry 

Antibodies for Tenascin-R (Becker et al., 2004), Tyrosine Hydroxylase (mab318, Millipore, 

Livingston, UK), GFP (A 11122, Invitrogen) and serotonin (S5545, Sigma) were used for 

immunofluorescent detection on 50 µm floating sections as described (Reimer et al., 2008) and 

analyzed by confocal microscopy. Labelling intensity was measured by calculating the mean 

pixel brightness for a defined area of the dorsal tectum for wild type and astray animals using 

ImageJ (http://rsbweb.nih.gov/ij/).  

 

2.3.6 In situ hybridisation and combination with immunohistochemistry 

Probes for robo2, slit1a (Campbell et al., 2007), slit1b (Hutson et al., 2003), slit2, slit3 (Yeo et 

al., 2001) and contactin1a (Schweitzer et al., 2007) have been described. Non-radioactive in situ 

hybridisation was carried out on cryosections (14 µm in thickness) from fresh frozen eyes and 

brains with digoxigenin-labelled probes as described (Becker et al., 2000). Combination of 

contactin1a in situ hybridisation with immunohistochemistry for macrophages/microglial cells 

with the 4C4 antibody (Becker and Becker, 2001) was carried out sequentially as described 

(Schweitzer et al., 2007). 

 

2.3.7 Analysis of the adult optic projection 

Labelling of the optic projection with biocytin (Sigma) has been described (Becker et al., 2000). 

Briefly, fish were deeply anesthetized and the entire optic nerve was cut followed by immediate 

application of a piece of gelatine foam soaked with the tracer. The tracer was allowed to be 

transported in the axons for 2.5 hours. Fish were transcardially perfused with 2% 

glutaraldehyde/2% paraformaldehyde and brains were cross-sectioned on a vibrating blade 
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microtome (Microm, Volketswil, Switzerland) at a thickness of 50 µm. Biocytin was detected 

with the ABC-kit (Vectastain, Burlingame, CA) and sections were counterstained with Neutral 

Red (Sigma). Ectopic tracts were scored when bundles of straight parallel axons were detected. 

Commissures and tracts were scored as containing optic axons, when at least two (posterior 

commissure) or three (optic chiasm) axonal profiles per section were detectable, to discount low 

levels of spontaneous misrouting in wild type animals. Variability of measurements is given as 

SEM. 

 

2.3.8 Morpholino experiments 

We used a splice blocking morpholino for robo2 (5'-TAAAAAGTAGCGCAACTCACCATCC-

3') that targets the exon1-intron1 splice donor site, injecting 1 nl/embryo of a 1 mM morpholino 

solution (Becker et al., 2003). For comparison, a non-active control morpholino was injected 

(GCTCCGCCACATCACAACACGCGC, Becker et al., 2003). For PCR analysis of aberrant 

splicing, RNA was extracted from pooled tissue of 15 larvae per time point using the RNeasy 

Mini Kit (Qiagen, UK). Reverse transcription, using random primers (Promega, Madison, WI, 

USA), was performed with the SuperScript III kit (Invitrogen, UK). The following primers were 

used to amplify the appropriately and aberrantly spliced sequence in PCR: robo2ex1 forward 

(AAACGTGTTCTGGGGTTGAG), binding in exon 1, 31 bp upstream of the start codon; and 

robo2ex2 reverse (CAGATCGGAGGGGTGTTCTA), binding in exon 2. To determine whether 

the morpholino phenocopies the astray mutant during early development of the optic projection, 

DiI was applied to the whole optic nerve of 3- to 4-day-old robo2 morpholino-injected larvae as 

described (Becker et al., 2003).  
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2.4 Results 

Using adult astray mutants we aimed to answer the following questions: (1) Is there a 

mechanism to correct developmental pathfinding errors of optic axons in the long term? (2) Are 

degenerating tracts used as a non-specific guidance cue for regenerating optic axons in the adult 

brain? (3) Does robo2 play a role for guidance of regenerating optic axons? 

 

 
Fig. 2.1 Pathfinding errors in the optic projection are retained in adults in astray mutants and in robo2 

morphants. A: Experimental paradigm. Living 5-day-old larvae were pre-selected for the presence of aberrant 

telencephalic optic tracts and raised for adult experiments as indicated. B: Dorsal views are shown (rostral is up). 

Living astray larvae were selected according to the presence of GFP positive optic axons in the telencephalon 

(TEL). Inset shows a wild type projection without telencephalic tracts. (C = chiasm; OT= optic tectum). Brightly-

labelled neuromasts have been removed from the projection for clarity. C: PCR analysis of robo2 mRNA expression 

with and without robo2 splice-blocking morpholino (MO). The morpholino reduces the abundance of the wild type 

transcript and an erroneous transcript (arrow) becomes detectable through at least 10 dpf. GAPDH is used as an 
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internal standard. D,E: Dorsal views of DiI-traced optic projections (rostral is up) indicate astray-like pathfinding 

errors in robo2 morpholino-injected (E), but not in control morpholino-injected (D) 5-day-old larvae. The ectopic 

projection to the telencephalon is mainly unilateral. F-H: Photomicrographs show optic axons (brown) in cross 

sections of the adult telencephalon (counterstained in red); dorsal is up. Ectopic tracts of optic axons (arrows in G,H) 

are present in the telencephalon of astray (G) and robo2 morphant (MO) animals (H), but not in wild type (F). The 

arrowhead in G indicates a dense termination area of ectopic optic axons in the dorsal telencephalon. Scale bars: B = 

100 µm (250 µm for inset); D,E = 100 µm; F,G = 200 µm; H = 100 µm. 

Part of this figure was kindly contributed by Dr. Thomas Becker (A and F-H) and Dr. Ken Rasband (B). 

 

 

2.4.1 Developmental targeting errors persist in adult astray mutants 

To determine whether there is an efficient mechanism for correcting developmental targeting 

errors of optic axons, we analyzed whether developmental misprojections are retained in adult 

astray mutants. Astray embryos show variability in the penetrance of the axon misrouting 

phenotype. To enrich our sample for animals with clear developmental misprojections, astray 

mutants were crossed into a pou4f3:GFP (previously, brn3c:GFP) background, which labels 

optic axons in living larvae. Thus, we were able to select larvae for raising that had a strong 

phenotype. This was judged based on the presence of ectopic telencephalic projections, which 

were detected in 66.9% ± 7.10% (n = 92 larvae) of the larvae (Fig. 2.1A, B). (Larvae were sorted 

by Dr. Thomas Becker and the image for Fig. 2.1B was taken by Dr. Ken Rasband). The fact that 

a third of the mutants did not have a telencephalic projection suggests that tract formation in the 

telencephalon is a stochastic event, and not because of optic axons consistently following 

secondary cues in the absence of Robo2 signaling. 
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Fig. 2.2 Aberrations of the optic projection in adult astray mutants and robo2 morphants. Photomicrographs 

show optic axons (brown) in cross sections of the adult brain (counterstained in red); dorsal is up. White arrowheads 

indicate brain midline. A,B: Ectopic optic tracts (arrows in B) in the tegmentum of astray mutants cross the midline 

and terminate in the ipsilateral tectum (black arrowhead). No ectopic tracts are present in wild type animals (A). 

Asterisks (A,B) indicate large diameter axons of the oculomotor nucleus that are always inadvertently retrogradely 

traced from the eye muscles. C,D: In wild type fish (C), optic axons cover the entire contralateral tectum only 

(arrow in C). In astray mutants (D) the contralateral and ipsilateral tectal halves are innervated in ocular dominance 

column-like patches (arrows in D). Note deep axons growing into the tectum in astray mutants (black arrowhead in 

D). E,F: Innervation of the central pretectal nucleus (CPN), the anterior (A) and ventro-lateral thalamus (VL), as 

well as the dorsal part of the periventricular pretectal nucleus (PPd) is expanded in astray (F) compared to wild type 

(E). G-I: Innervation of tectal layers is expanded in astray mutants (H), but not in robo2 morpholino treated animals 

(I) compared to wild type (G) (SFGS = stratum fibrosum et griseum superficiale; SGC = stratum griseum centrale; 

SAC = stratum album centrale). J,K: In astray mutants (K), but not in wild type animals (J), optic axons enter the 

tectum in several individual deep fascicles (arrow in K). L,M: Optic axons cross in the posterior commissure (PC) 

in astray (M), but not in wild type fish (L). Scale bars: A,B,E-I = 50 µm; C,D,J-M = 100 µm. 

This figure was kindly contributed by Anselm Ebert. 
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2.4.2 Errors in rostro-caudal pathfinding 

Optic projections of adults were traced unilaterally to reveal midline crossing of optic axons 

(Adult optic projection tracing in Fig. 2.1 was performed by Dr. Thomas Becker). Wild type 

animals never showed any axons in the telencephalon (n = 12 animals) (Fig. 2.1F). In 14 of 15 

astray mutants with a confirmed ectopic larval telencephalic projection, such a projection was 

also found at the adult stage (Fig. 2.1G). In these fish, ectopic tracts entered the telencephalon 

ventrally, rostral to the chiasm. Fascicles of optic axons often re-crossed the midline in the 

ventral telencephalon. Some tracts projected all the way to the olfactory bulb. At the end of 

fascicles, dense arborisation fields were found, particularly in the dorsal telencephalon. In the 

one fish without optic axons in the adult telencephalon, telencephalic tracts detected at the larval 

stage could have either originated exclusively from the unlabelled eye or been reduced during 

later development. 

Caudally misprojecting ectopic tracts of optic axons, often seen in astray larvae (Fricke et 

al., 2001), were never observed in wild type adults (Fig. 2.2A), but were present in the 

tegmentum at the level of the caudal tectum in astray adults (4 of 15 animals; Fig. 2.2B) (The 

optic projection tracing in Fig. 2.2 was performed by Anselm Ebert). These tracts crossed the 

mid-line in the tegmentum and axons grew dorsally to terminate in superficial layers of the 

tectum. Overall, the observations that 14 of 15 larvae pre-selected for the presence of ectopic 

optic tracts in the telencephalon retained these as adults and that several of these animals 

displayed other ectopic tracts suggest that astray mutants that had ectopic tracts as larvae usually 

retained them into adulthood. 

 

2.4.3 Aberrant midline crossing 

In addition to midline crossing of ectopic telencephalic and tegmental tracts, we observed ectopic 

midline crossing of optic axons in the posterior commissure in astray adults (12 of 15 animals), 

but never in wild type (n = 12 animals; Fig. 2.2L,M). Ectopic crossing in the posterior 

commissure is extremely common in astray larvae (Fricke et al., 2001; KR and CBC, in 

preparation). The tectum is innervated exclusively contralaterally as a continuous layer in all 

wild type animals (Fig. 2.2C). In contrast, we observed blocks of innervation in the ipsilateral 

tectum of all astray mutants (15 of 15 animals; Fig. 2.2D). In the contralateral tectum of astray, 

gaps in the innervation were observed (13 of 15 animals), presumably resulting from ectopic 
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ipsilateral innervation by the unlabelled eye. Ipsilateral tectum innervation is probably a 

consequence of axons re-crossing the midline caudal to the chiasm, because ipsilateral growth of 

axons at the chiasm was rare and indistinguishable from wild type (data not shown and Becker et 

al., 2000). 

Discrete blocks of tectal innervation probably represent eye-specific segregation of optic 

axons into ocular dominance columns. Ocular dominance columns are induced in the tectum of 

frogs (Constantine-Paton and Law, 1978) and fish (Meyer, 1982) in an activity dependent 

manner, whenever more than one eye innervates one tectal half. Moreover, tracing the larval 

optic projection from the left and right eyes with two different lipophilic tracers in astray 

mutants often labels segregated patches of innervation on the tectum, directly showing the 

presence of ocular dominance columns in larval astrays (CBC, data not shown). This suggests 

that robo2 is not required for activity dependent axon/axon interactions. 

 

2.4.4 Aberrant growth of optic axons into the tectum 

The dorsal brachium of the optic tract is tightly fasciculated in wild type animals (n = 12, Fig. 

2.2J). In all adult astray mutants, it enters the tectum in an abnormally broad front of individual 

fascicles (15 of 15 animals, Fig. 2.2K), indicating defasciculation of the optic tract in astray 

mutants. Within the tectum, close to the dorsal midline, fascicles of optic axons run deep, giving 

off axons dorsally to terminate in the superficial retinorecipient layers (13 of 15 animals, Fig. 

2.2D). This never occurs in wild type (Fig. 2.2C). Optic axon fascicles deep within the tectum 

are most likely a consequence of defasciculated growth into the tectum, since individual fascicles 

can be seen to enter the rostral tectum ventral to the retinorecipient zone (Fig. 2.2K).  

 

2.4.5 Expanded target innervation 

Larval astray mutants exhibit larger terminal arbors than wild type animals (Campbell et al., 

2007). In adult wild type animals, terminal fields are small, dense and sharply delineated. In the 

adult astray mutants retino-recipient pretectal nuclei, including the central pretectal nucleus 

(CPN), anterior thalamus (A), ventro-lateral thalamus (VL) and the dorsal part of the 

periventricular pretectal nucleus (PPd), showed expanded innervation fields with more diffuse 

borders (15 of 15) compared to wild type (Fig. 2.2E,F). We were able to quantify the lateral 

extent of the A/VL terminal field at the level of the CPN, which was significantly enlarged in 
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astray mutants (203. 2 ± 18.4 µm SEM) compared to wild type animals (124.7 ± 6.7 µm; Mann-

Whitney U-test, P = 0.0005). However, the cytoarchitecture of the pretectal area, visualized by 

neutral red counter-stain, was indistinguishable in wild type and astray animals. For example the 

distance between the CPN and the dorsal aspect of the ventricle was comparable between astray 

(333.5 ± 13.4 µm) and wild type animals (323.3 ± 14.1; P = 0.6). This suggests that optic axons 

terminated beyond their normal boundaries. 

In the tectum of wild type animals, most optic axons terminate in the stratum fibrosum et 

griseum superficiale (SFGS). In contrast, in astray mutants terminations of axons were more 

dispersed. A substantial proportion of optic axons innervated layers that were deeper than the 

SFGS (15 of 15 animals, Fig. 2.2G,H), resulting in a doubling in the depth of densely innervated 

tectal layers. The total depth of the termination zone in astray mutants was 92.4 ± 3.7 µm 

compared to 48.8 ± 1.7 µm in wild type animals (ANOVA, P < 0.0001), whereas the total 

thickness of the tectum was unchanged in astray mutants (185.1 ± 4.3 µm), compared to wild 

type animals (198.3 ± 10.2 µm, Mann-Whitney U-test, P = 0.4). This suggests that optic axons 

terminated beyond their normal target layers. Overall, developmental pathfinding and 

termination errors of optic axons in astray mutants are mostly retained in adults. Thus long-term 

error correction of the optic projection is inefficient in astray mutants. 

 

2.4.6 Robo2 deficiency is not the reason for inefficient correction of pathfinding errors of 

optic axons 

Is the failure to correct pathfinding errors a consequence of the lack of Robo2? It is possible that 

robo2 function is not only needed for correct pathfinding and terminal branching of optic axons, 

but also for error correction once ectopic tracts are present. Alternatively, a lack of error 

correction could be a general property of optic axons in zebrafish. To distinguish between these 

alternatives, we conditionally knocked down robo2 expression during early development to 

induce targeting errors, but allowed robo2 expression levels to recover during subsequent 

development, so as not to interfere with a possible robo2-dependent correction mechanism. 

To this end, we injected a splice-blocking morpholino against robo2 into embryos. Our 

PCR analysis of mRNA extracts from injected larvae indicated a reduction in correctly spliced 

robo2 mRNA at 3 dpf (days post-fertilization; Fig. 2.1C). At this time point the optic projection 

first forms a retinotopic projection on the tectum (Kaethner and Stuermer, 1994). However, 
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significant amounts of correctly spliced mRNA were still detectable, indicating only a partial 

knockdown. Importantly, a shorter aberrant band was detected by RT-PCR. We cloned and 

sequenced this band and found that it lacked a large part of exon 1, including 57 bp of coding 

sequence (spanning the start codon) and 24 bp of the 5' UTR, indicating usage of a cryptic 

upstream splice donor. While the predicted first ATG in the aberrantly spliced RNA is in frame, 

it lies 197 bp downstream of the usual start codon, well past the signal sequence and halfway 

through the first Ig domain of Robo2. It is thus very likely that no functional protein is translated 

from this RNA. As expected, at 5 dpf levels of correctly spliced robo2 mRNA were close to 

normal and expression of the aberrantly spliced mRNA was reduced. The aberrant band was 

nearly undetectable by 18 dpf. Thus, the morpholino partially knocks down robo2 expression 

and becomes ineffective by 18 days post-fertilization. 

 Analysis of the optic projection at 5 dpf by DiI tracing in wild type larvae and live 

observation of GFP fluorescence in pou4f3:GFP transgenic larvae after morpholino injection 

showed a partial phenocopy of the astray mutant. Out of 12 DiI traced larvae, 2 showed aberrant 

growth of the optic projection, with ectopic projections to the telencephalon, although these 

projections appeared unilateral—unlike most astray mutants—perhaps reflecting an incomplete 

knockdown of robo2 function (Fig. 2.1D,E). A few of the ectopic axons appeared to re-cross the 

midline in the posterior commissure, but no other astray-like errors were observed. The 

telencephalic pathfinding errors seen in robo2 morphants (morpholino-injected animals) are a 

definitive phenotype, very specifically associated with astray mutants and never observed in 

thousands of wild type larvae or after injecting scores of other morpholinos (CBC, unpublished 

data). Combined with the RT-PCR data, this partial phenocopy of the astray phenotype therefore 

indicates a specific action of the morpholino (Nasevicius and Ekker, 2000). 

To determine whether ectopic tracts in the telencephalon are retained in adulthood, we 

sorted live pou4f3:GFP transgenic robo2 morphants and raised those that had these tracts. The 

frequency of ectopic telencephalic tracts was 16.4% ± 4.4% (n = 243 larvae), which was lower 

than in astray mutants (67%), likely because of incomplete knockdown of robo2 (Fig. 

2.1A,D,E). In adult robo2 morphants that had been presorted as larvae for an ectopic 

telencephalic projection, tracing from both optic nerves showed a retained ectopic projection 

(n=5). Ectopic tracts were not as massive as those observed in astray mutants, probably because 

transient morpholino efficacy allowed later-developing optic axons to pathfind correctly. 
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  Of 4 additional unilaterally traced animals, 1 showed axons in the telencephalon (Fig. 

2.1H). In addition, two of the unilaterally traced animals showed ectopic tracts in the 

telencephalon that were not labelled by the tracer, but clearly discernable because of their 

whitish-appearing myelin and asymmetrical location in dissected brains (not shown). It is likely 

that these aberrant tracts consist of optic axons derived from the unlabelled eye, which would 

suggest that aberrant tracts in morpholino-injected animals often derive from only one eye. This 

would also be consistent with the unilateral telencephalic projection in morpholino-injected 

larvae (see above). 

In addition to telencephalic projections, we observed ocular dominance column-like 

innervation of the ipsilateral tectum in 1 of 4 unilaterally traced animals, indicating that ectopic 

midline crossing occurred in morpholino-injected animals. Other errors of optic axons observed 

in astray mutants, such as caudal growth into the tegmentum, more dispersed terminations, and 

irregular growth into the tectum were not found in adult morpholino-injected animals. 

Specifically, the terminations of optic axons were not more dispersed in morpholino treated fish 

(n = 9 animals; mean thickness of termination zone: 47.8 ± 1.41 µm, ANOVA, P = 0.8) than in 

uninjected wild type animals (48.8 ± 1.7; Fig. 2.2I). This is consistent with the absence of these 

late phenotypes in morphant larvae. 

 Thus ectopic growth of optic axons, caused by partial knock down of robo2 expression 

during early development, is not corrected during subsequent development when robo2 

expression levels have recovered. Overall, this suggests the general absence of an efficient 

correction mechanism for developmental pathfinding errors of optic axons in zebrafish. 
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Fig. 2.3 Correction and recurrence of errors by regenerating optic axons in adult astray mutants. Optic axons 

are stained brown in cross sections of the adult brain (counterstained in red); dorsal is up. White arrowheads indicate 

the brain midline. Asterisks indicate non-specific labelling of the meninges. A,B: No regenerated optic axons are 

present in wild type (A) or astray (B) telencephalon. C,D: The regenerated optic projection in the tectum is 

exclusively contralateral (arrow) in wild type (C) and astray (D), but erroneous growth of deep fascicles (black 

arrowhead in D) recurs in astray. E: Frequencies of different astray phenotypes before and after regeneration of the 

optic projection in animals pre-selected for the presence of telencephalic tracts in larvae. * = P <0.05, *** = P < 

0.0001. F-H: Regenerating optic axons do not cross the posterior commissure (PC) in wild type fish (F). 

Regenerated optic axons show ectopic crossing in the posterior commissure in some astray animals (H), but not in 

others (G). I,J: Regenerated axons enter the tectum in separate fascicles in astray (arrow in J), but not in wild type 

(I). K,L: Termination areas of regenerated optic axons in the pretectum are expanded in astray animals (L), 

compared to wild type animals (K). M,N: In astray (N), reinnervation of tectal layers is expanded compared to wild 

type (M) after regeneration. For abbreviations see Fig. 2.2. Scale bars: A,B = 200 µm; C,D,F-L = 100µm; M,N = 50 

µm. 

This figure was kindly contributed by Dr. Thomas Becker and Anselm Ebert. 
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2.4.7 Degenerating tracts are not a strong guidance cue for regenerating optic axons 

Next we asked whether degenerating optic tracts are a non-specific guidance cue for regenerating 

optic axons. If this was the case, regenerating optic axons in astray should faithfully re-populate 

not only the entopic tracts found in wild type animals but also ectopic tracts, such that the 

regenerated projection looks similar to the unlesioned projection in astray. Alternatively, if 

regenerating axons can only use specific pathfinding cues, they should rarely follow ectopic 

tracts, which lack such cues. To distinguish between these scenarios, we determined whether 

regenerating optic axons projected to the telencephalon in astray mutants. 

 A regenerated optic projection in adult zebrafish is indistinguishable from an unlesioned 

projection, except for a slight increase in the occurrence of ipsilateral optic axons in the optic 

tract (Becker et al., 2000). Adult astray mutants with a confirmed larval optic projection to the 

telencephalon received an optic nerve lesion and the regenerated projection was traced 

unilaterally at 4 weeks post-lesion. Rostro-caudal pathfinding errors were strongly reduced in the 

regenerated projection: Ectopic tracts in the telencephalon were observed in none of the wild 

type fish with a regenerated optic projection (Fig. 2.3A) and in only 1 of 15 astray animals (Fig. 

2.3B) (The optic projection tracing in Fig. 2.3 was performed by Dr. Thomas Becker and Anselm 

Ebert). This is significantly different from unlesioned astray animals (14 of 15, see above; 

Fisher’s Exact test, p< 0.0001). In the tegmentum, optic axons were present in no wild type 

animals and in only 1 of 15 astray mutants with a regenerated optic projection, compared to 4 of 

15 unlesioned astray animals, showing the same tendency to correct developmental pathfinding 

errors during regeneration. 

 

2.4.8 Cellular and molecular changes after deafferentation are similar in ectopic and 

entopic optic tracts 

Regeneration of optic axons into ectopic tracts could have been prevented by a degeneration that 

was too quick, such that the tracts had disappeared by the time axons arrived in the brain, or 

delayed, such that entry was blocked for regenerating axons. Ectopic tracts could also differ from 

entopic tracts in the expression of growth promoting molecules they contain. Therefore, we 

decided to observe degeneration of ectopic and entopic tracts and gene expression at a time point 

when entopic tracts are about to be re-populated. 
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To determine when axons regenerate we performed anterograde tracing experiments of 

the optic projection. At 8 days after an optic nerve cut lesion, 11 of 13 wild type animals had 

regenerating axons in the diencephalic optic tract and in 8 of 13 animals axons had reached the 

rostral tectum. By 16 days post-lesion, all animals (n = 4) had optic axons reaching the caudal 

tectum and 3 of 4 animals exhibited complete coverage of the tectum by optic axons (data not 

shown). This indicates that at about 1 week post-lesion, axons have regrown to an extent that 

they could have entered ectopic telencephalic tracts. 

As an indicator of tract degeneration, we decided to observe macrophage/microglial cell 

invasion of ectopic telencephalic tracts at 1 week post-lesion by immunohistochemistry. Tracts 

were identified by their dark appearance in differential interference contrast microscopy, their 

typical asymmetrical dorso-ventral extent, and dense immunolabelling for 

macrophages/microglial cells. We found a massive macrophage/microglial cell reaction that was 

comparable between ectopic and entopic tracts in all astray mutants (n = 4 animals; Fig. 2.4). 

The macrophage/microglial cell reaction in astray was not different from lesioned wild type 

animals (n = 4) (Schweitzer et al., 2003; Schweitzer et al., 2007). This suggests a similar timing 

of degeneration in ectopic and entopic tracts in astray animals. 

To determine whether oligodendrocytes might have failed to increase expression of axon 

growth-promoting molecules (Becker and Becker, 2007) in ectopic tracts of astray animals, we 

double-labelled sections for contactin1a mRNA by in situ hybridisation. Contactin1a mRNA is 

upregulated by oligodendrocytes of the optic tract after a lesion and may promote axon growth 

(Schweitzer et al., 2007). We found a similar increase in expression of contactin1a mRNA in 

ectopic and entopic tracts in astray animals at seven days post-lesion. This matched increased 

expression observed in lesioned wild type animals (n = 4; data not shown and Schweitzer et al., 

2007). This suggests that ectopic tracts contain oligodendrocytes that display a typical lesion 

response. Thus, at least some aspects of the cellular and molecular composition of ectopic and 

entopic tracts are comparable at a time when regenerating axons choose their path.
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Fig. 2.4. De-afferented ectopic optic tracts in the telencephalon of astray mutants display 

macrophage/microglial cell activation and increased contactin1a mRNA expression comparable to entopic 

tracts. Cross sections through the adult brain are shown as indicated in J,K. Macrophage/microglial cell 

immunolabelling (A-C) and contactin1a mRNA labelling (D-F) is comparable between de-afferented entopic (B, E, 

H) and ectopic astray optic tracts (C,F,I). Both signals are increased compared to unlesioned entopic tracts (A,D,G). 

Arrowheads in C,F,I indicate telencephalic midline. G, H, I shows superimposition of macrophage/ microglial cell 

and contactin1a mRNA labelling. Scale bar = 200 µm.
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2.4.9 Pathfinding errors but not termination errors of optic axons are reduced in the 

regenerated optic projection of astray mutants 

To test the hypothesis that robo2 deficiency impairs correct regeneration of optic axons, we 

analyzed the entire trajectories of regenerated optic axons in astray mutants. In the following we 

describe errors committed by regenerating optic axons in astray mutants, which were never 

observed in wild type animals, unless stated otherwise (13 animals). Error frequencies are 

compared with those in unlesioned astray mutants (Fig. 2.3E). 

Robo2 deficiency does not influence the frequency of erroneous ipsilateral axon growth 

in the chiasm during optic nerve regeneration. Even though ipsilateral axons were observed in 

regenerated astray mutants (8 of 15 animals) at a higher frequency than in unlesioned astray 

mutants (1 of 15, Fisher’s Exact test, P = 0.014), this proportion still matched that of regenerated 

wild type animals (6 out of 13, not significant, data not shown). This confirms our earlier 

observation that regenerating optic axons show an elevated rate of ipsilateral growth during 

regeneration even in wild type animals (Becker et al., 2000). 

 In the posterior commissure, ectopic midline crossing was reduced compared to 

unlesioned astray mutants. Optic axons crossing in the posterior commissure were present in the 

regenerated projection in only 6 of 15 animals, compared to 12 of 15 in unlesioned astray 

animals (one-sided Fisher’s Exact test, P = 0.03; Fig. 2.3F-H). 

In the tectum ipsilateral innervation was also strongly reduced. Two of 15 astray animals 

with a regenerated optic projection showed ipsilateral tectal innervation, which was significantly 

less than in unlesioned astray mutants (15 of 15; Fisher’s Exact test, P <0.00001; Fig. 2.3C,D). 

Reduced ipsilateral innervation is probably a consequence of reduced midline crossing in the 

posterior commissure. 

Defasciculation of the dorsal optic tract as it enters the tectum (15 of 15 animals; Fig. 

2.3I,J) and ectopic fascicles of optic axons in deep tectal layers (10 of 15 animals; 3C,D) were 

observed in astray mutants with a regenerated optic projection. This was not statistically 

different from frequencies of phenotypes found in unlesioned astray mutants (15 of 15 animals 

for defasciculation of the dorsal optic tract and 13 of 15 animals for the presence of ectopic 

fascicles in deep tectal layers; Fig. 2.3E). 

Termination patterns of regenerating astray axons were indistinguishable from 

unlesioned astray mutants. Reinnervated terminal fields in pretectal nuclei were expanded in 14 
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of 15 animals, whereas the regenerated innervation of pretectal nuclei was highly precise in all 

wild type fish (n = 13 animals; Fig. 2.3K,L). Tectal innervation was also expanded in all astray 

mutants with a regenerated projection (mean depth of termination zone: 89.6 ± 2.6 µm) matching 

that of unlesioned astray mutants (92.4 ± 3.7 µm, see above) and significantly thicker than in 

wild type animals with a regenerated optic projection (depth of termination zone: 48.5 ± 1.9 µm; 

ANOVA, P < 0.0001; Fig. 2.3M,N). 

Thus, many pathfinding errors of optic axons occur much less frequently (rostro-caudal 

errors, ectopic midline crossing) in astray fish with a regenerated optic projection than in 

unlesioned mutants. However, irregular growth into the tectum and termination errors in the 

pretectum and tectum are repeated. The simplest explanation for these repeated errors is that 

robo2 is required for certain pathfinding decisions and for correct termination of regenerating 

axons.  

 

2.4.10 Robo2 and slits are expressed during optic nerve regeneration 

Next we asked whether robo2 and slit ligands are expressed at the right time and place to be 

involved in targeting of regenerating optic axons in adult fish. We performed in situ 

hybridisation for robo2 in the retina, as well as the potential ligands slit1a, slit1b, slit2 and slit3 

in the optic pathway and in the brain, before and after optic nerve crush of wild type animals (In 

situ hybridisations for robo2 and slit2 expression in Fig. 2.5 were performed by Dr. Thomas 

Becker). The retina of adult teleost fish grows continuously in an annular fashion, i.e. central 

retina is older than peripheral retina (Easter and Stuermer, 1984). In the juvenile zebrafish retina 

(4 weeks post-fertilization), robo2 is expressed in the peripheral growth zone of the retina, next 

to the undifferentiated ciliary margin zone (Fig. 2.5A). In more central, older parts of the retina 

the retinal ganglion cells did not show detectable levels of robo2 mRNA expression. This is 

typical for genes involved in axonal growth of newly formed retinal ganglion cells (Bernhardt et 

al., 1996; Laessing and Stuermer, 1996). 

In the unlesioned adult retina (Fig. 2.5B), no robo2 mRNA expression was detected in 

the retinal ganglion cell layer. At 1 week after a lesion of the optic nerve in adult animals, when 

most axons have passed the chiasm/optic tract region, robo2 mRNA expression was not 

detectably up-regulated in the retina by in situ hybridisation and PCR (data not shown). However 
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at 2 weeks post-lesion, when axons navigate close to their targets, upregulation in the retinal 

ganglion cell layer of the entire retina was detectable by in situ hybridisation (Fig. 2.5C).   

Slits showed mRNA expression in the brain that was unchanged between unlesioned 

animals and animals at 2 weeks post-lesion and is described here as it pertains to the optic 

projection. Slit1a mRNA showed the most widespread expression in the brain, including the 

ventral diencephalon and the tectum. In the tectum, expression was strongest in large neurons in 

the SFGS. The mRNA was also detectable in the outer aspect of the cell dense stratum 

periventriculare (SPV), but not in the ventricular layer of ependymo-radial glial cells (Fig. 2.5E). 

Slit1b mRNA expression was mostly restricted to specific brain midline zones, such as at the 

medial aspect of the habenula and at the level of the posterior commissure (Fig. 2.5F,G). Low 

levels of expression were detected in the ventral telencephalon, rostral to the chiasm. Slit2 

showed strong and highly localized mRNA expression throughout the habenula and in the 

ventral diencephalon at the level of the chiasm (Fig. 2.5D). Slit3 mRNA showed low levels of 

expression in the A/VL and PPd region of the diencephalon (Fig. 2.5H). A strong slit3 mRNA 

signal was found in the tegmental midline, which did not coincide with the trajectories of optic 

axons (data not shown). Thus, retinal ganglion cells with regenerating axons express robo2 

mRNA, while their axons navigate a brain that expresses slit ligands close to the optic pathway. 
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Fig. 2.5. Robo2 and slits are expressed during regeneration of the adult optic projection. Cross sections are 

shown, except for D. A: In the retina of unlesioned juvenile, 4-week-old animals, robo2 mRNA is expressed in 

recently differentiated retinal ganglion cells in the peripheral growth zone of the retina (arrow) next to the ciliary 

margin zone (CMZ). Older, more central retinal ganglion cells (arrowhead) do not express detectable levels of robo2 

mRNA. B,C: In the adult (> 3 months of age) central retina, robo2 mRNA is re-expressed in the retinal ganglion 

cell layer at 2 weeks post-lesion (arrow in C) compared to the retinal ganglion cell layer in unlesioned controls 

(arrow in B). D: A sagittal section of the brain is shown (rostral left, dorsal up). Conspicuous expression of slit2 

mRNA is found in the habenula (HAB) and in the ventral diencephalon (arrow) at the level of the optic chiasm (C) 

(OB = olfactory bulb, TEL = telenencephalon, TEC = tectum mesencephali). E,F: Slit1a (E), but not slit1b (F), is 

expressed in the deafferented tectum at one week post-lesion. (SPV = stratum periventriculare, SFGS = stratum 

fibrosum et griseum superficiale) G: Strong local expression of slit1b mRNA is found at the level of the posterior 

commissure (PC) in cross sections of the brain. H: Low levels of slit3 mRNA expression are found in the pretectum, 

including the PPd area (arrow). Arrowheads in G,H indicate the brain midline. Scale bars in A,C,G = 50 µm; D = 

200 µm; E,F,H = 100 µm. 

Part of this figure was kindly contributed by Dr. Thomas Becker (A-D). 
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2.4.11 Tectal cytoarchitecture is comparable between astray and wild type animals 

Expansion of optic axon terminations beyond wild type retinorecipient layers is consistently 

found in all astray mutants with a regenerated optic projection. To estimate the potential 

contribution of developmentally altered brain morphology to these targeting errors, we analyzed 

the laminated architecture of the denervated tectum. We found that the layered expression of 

Tenascin-R (Becker et al., 2004), another extracellular matrix protein, as well as Tyrosine 

Hydroxylase and serotonin immuno-positive afferents (Kaslin and Panula, 2001) was 

comparable between astray mutants and wild type animals in the tectum at 1 week post-lesion 

(Fig. 2.6) (Immunhistochemistry in Fig. 2.6 was performed by Dr. Thomas Becker). At this time, 

the tectum is denervated and the first regenerating optic axons have just begun to reach it (see 

above). However, the intensity of Tenascin-R immunoreactivity increased by 41% (n = 3 

animals, mean pixel brightness was 96.2 ± 6.7 in astray and 68.0 ± 5.5 in wild type, Mann-

Whitney U-test, P < 0.05). Intensity of Tyrosine Hydroxylase immunopositive axons increased 

by 94% (n = 3, brightness was 48.0 ± 3.1 in astray and 24.8 ± 2.0 in wild type, Mann-Whitney 

U-test, P < 0.05). Serotonergic innervation was unchanged (brightness was 37.4 ± 12.0 in astray 

and 37.0 ± 12.0 in wild type). As the basic layering of extracellular matrix and afferent systems 

is retained in astray mutants, it is unlikely that the massive laminar termination errors of 

regenerating optic axons are solely caused by developmentally altered tectal cytoarchitecture. 
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Fig. 2.6. Comparison of 

laminar distribution of 

different markers in the 

denervated tectum at 1 week 

post-lesion. Cross sections 

through the dorsal tectum are 

shown (dorsal is up). 

Tenascin-R (A,B), Tyrosine 

Hydroxylase (C,D), and 

serotonin (E,F) 

immunoreactivities show 

comparable distribution in 

wild type and astray animals. 

However, labelling intensity 

of Tenascin-R and Tyrosine 

Hydroxylase was increased in 

astray mutants relative to wild 

type animals. For anatomical 

abbreviations see previous 

figures. Scale bar = 100 µm. 

This figure was kindly 

contributed by Dr. Thomas 

Becker. 
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2.4.12 Ubiquitous overexpression of Slit2-GFP during regeneration of the optic projection 

does not lead to major pathfinding errors 

To determine the effect of acutely compromising Robo/Slit signaling during regeneration we 

ubiquitously overexpressed a Robo ligand to mask endogenous slit expression patterns. We used 

a fish line (hsp70l:slit2-GFP) in which Slit2-GFP fusion protein overexpression can be induced 

by heat shock (Yeo et al., 2004). In all heat-shocked embryos, the optic tract is severely 

disrupted after a single heat-shock, including astray-like rostral and caudal pathfinding errors; 

such profound disruption is never seen in hsp70l:mcherry controls (Fig. 2.7A,B) (Embryo 

heatshocks and scans in Fig. 2.7A and B were performed by Melissa Hardy). Daily heat-shocks 

of adults led to a homogeneous 82% increase in immunodetectability of GFP in sections of the 

adult brain (non-heatshock: 9.8  2.30, n=6 animals; heatshock: 17.9  2.70, n=8 animals; p = 

0.01), indicating successful overexpression of Slit2 (Fig. 2.7C-F). Applying this treatment to 

animals with optic nerve lesions did not lead to ectopic telencephalic (Fig. 2.7G,H) or tegmental 

projections, nor crossing of axons in the posterior commissure (Fig. 2.7K,L), presence of 

ipsilateral axons in the tectum or increased termination layer depth of optic axons during 

regeneration (n = 4 animals). We detected deep running fascicles of optic axons in the rostro-

medial tectum of all animals (n = 4), not found in wild type. However, this was also observed in 

all unlesioned hsp70l:slit2-GFP fish (n = 12), which possessed an otherwise wild type-like optic 

projection. Thus, ubiquitous overexpression of slit2 during optic nerve regeneration did not 

induce astray-like pathfinding phenotypes. This is consistent with a reduced importance of 

Robo/Slit interactions for pathfinding of adult regenerating optic axons. 
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Fig. 2.7. Ubiquitous over-expression of Slit2-GFP causes astray-like phenotypes in the developing, but not the 

regenerating optic projection. A,B: Lateral views (maximal-intensity projections) of optic axons in heat-shocked 

embryos at 48 hpf show an essentially wild type projection in hsp70l:mcherry control embryos, but in hsp70l:slit2-

GFP embryos the tract is severely disorganized with anterior (arrow) and posterior (arrowhead) misprojections.  
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C-F: After repeated heat-shocks the entire brain of hsp70l:slit2-GFP animals (F) shows intense GFP fluorescence, 

compared to non-heat shocked controls (E). Similarly, immuno-detection of GFP in sections of the telencephalon 

shows homogeneous immunoreactivity after heat shock (D), but not in non-heat-shocked controls (C). G-L: 

Regenerating optic axons in heat shocked wild type (wt) and hsp70l:slit2-GFP transgenic fish do not grow into the 

telencephalon (G,H) or the posterior commissure (PC in K,L) and exclusively populate the contralateral tectum 

(arrows in I,J). Scale bars A,B = 50 µm; C,D = 200 µm; E,F = 1 mm; G,H = 200 µm; I,J = 100 µm; K,L = 50 µm. 

Part of this figure was kindly contributed by Melissa Hardy (A and B). 
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2.5 Discussion 

We show here for the first time that degenerating tracts are not a strong guidance cue for 

regenerating CNS axons, that robo2 may contribute to correct pathfinding and termination of 

regenerating optic axons, and that correction of large-scale developmental pathfinding errors of 

optic axons is inefficient in zebrafish. 

 

2.5.1 Degenerating tracts in the CNS are not an attractive guidance cue 

The adult astray mutant uniquely enabled us to test whether degenerating CNS tracts are a strong 

guidance cue for regenerating axons. This is because the mutant contains ectopic optic tracts that 

develop stochastically in two thirds of the animals and are mostly retained in adults. Thus, 

regenerating axons are confronted with degenerating tracts that do not overlap with the correct 

trajectory to their targets. 

If degenerating tracts were an attractive guidance cue, we would expect regenerating 

optic axons to re-enter these tracts in almost all cases. However, growth of regenerating optic 

axons into the telencephalon was extremely rare (1 of 15 animals) following an optic nerve crush 

in astray mutants that had been pre-selected for the presence of a telencephalic projection at the 

larval stage. Ectopic tracts were clearly present at 1 week post-lesion and underwent 

degeneration that was indistinguishable from entopic and wild type tracts, as judged by the 

macrophage/microglial cell response. This was the time point when regenerating optic axons 

repopulated tracts in the brain. Moreover, evidence from previous enucleation experiments 

(Schweitzer et al., 2003; Schweitzer et al., 2007) indicates that optic tracts are unchanged in 

diameter through at least 4 weeks post-lesion, when regeneration is complete (Becker et al., 

2000). This strongly suggests that degenerating ectopic tracts are available to regenerating axons, 

but are not re-entered. This differs from observations in the peripheral nervous system in mice, 

where repeated imaging of regenerating motor axons suggested that they retraced their former 

trajectories within remaining Schwann cell tubes because of mechanical constraints and possibly 

by interacting with Schwann cell and basal lamina derived growth-promoting molecules 

(Nguyen et al., 2002). Similarly, it has been suggested from electron-microscopic observations of 

the optic nerve of salamanders that regenerating optic axons use degenerating fibers as guidance 

cues (Turner and Singer, 1974). 
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Regenerating optic axons do not enter ectopic tracts despite the presence of growth-promoting 

molecules. We show here that the axon growth-promoting contactin1a is upregulated by 

oligodendrocytes in the lesioned ectopic tracts in a fashion similar to lesioned entopic optic 

tracts. This suggests that ectopic tracts are not avoided because they may lack growth promoting 

molecules expressed in lesioned entopic tracts. In fact, fish oligodendrocytes re-express a 

number of growth promoting molecules after an optic nerve lesion, such as L1-related proteins 

(Bernhardt et al., 1996; Ankerhold et al., 1998) and P0 (Brösamle and Halpern, 2002; Schweitzer 

et al., 2003). In mammals, oligodendrocytes survive an optic nerve lesion (Ludwin, 1990), but 

expression of L1 and P0 is restricted to peripheral Schwann cells (Martini, 1994). Overall, this 

suggests that regenerating optic axons show active, target-oriented navigation during 

regeneration.  

 

2.5.2 Robo2 may contribute to correct distal targeting of regenerating optic axons 

The frequencies of specific errors committed by regenerating robo2 deficient axons (Fig. 2.3E) 

suggest that robo2 is less important for correct rostro-caudal pathfinding and avoidance of 

ectopic midline crossing than during development, but may be necessary for fasciculated growth 

of regenerating optic axons into the tectum and for precise target zone termination of optic 

axons. 

Spatio-temporal expression patterns of robo2 and slit ligands correlate with these 

differences: Robo2 is not detectably re-expressed in any retinal ganglion cells after optic nerve 

crush at 1 week post-lesion, when regenerating optic axons have to make pathway choices in the 

chiasm/tract region. Rostro-caudal pathfinding errors originate in this region in unlesioned astray 

mutants. Thus, the slow upregulation of robo2 suggests that even in wild type animals optic 

axons may not rely on Robo/Slit guidance during early regrowth. Use of alternate guidance 

systems may explain why in astray mutants, despite the strong expression domain of slit2 in the 

diencephalon, few pathfinding errors are found close to the chiasm in the regenerated optic 

projection. In addition, specific slit expression domains seen near the developing chiasm are not 

detectable at the adult stage: In developing animals, slit3 mRNA borders the chiasm rostrally and 

caudally and slit2 mRNA borders it rostrally, which channels developing optic axons into the 

chiasm and prevents them from forming ectopic tracts (Hutson and Chien, 2002). Moreover, we 

found here that conditional overexpression of slit2 during regeneration did not induce ectopic 



 

71 

 

regrowth of optic axons, which is consistent with a reduced importance of Robo/Slit signaling. 

However, we cannot exclude that significantly increased levels of Slit2 were insufficient to fully 

mask endogenous slit expression domains. Taken together, these observations suggest that early 

pathway decisions of regenerating optic axons are not decisively determined by Robo/Slit 

interactions. Thus, other guidance cues may prevent regenerating optic axons from forming 

ectopic tracts during regeneration. Candidates for such cues are chondroitin sulfates (Becker and 

Becker, 2002), Tenascin-R (Becker et al., 2004) and Semaphorins (Becker and Becker, 2007), 

which are present along the adult optic pathway and may guide regenerating optic axons in a 

combinatorial manner. 

In contrast to early pathway decisions, in more distal parts of the optic pathway, reached 

when robo2 re-expression is detectable in retinal ganglion cells, slit expression patterns correlate 

with targeting errors: The posterior commissure, through which regenerating axons aberrantly 

cross, is bisected by midline slit1b mRNA expression. Aberrantly large terminal fields in the 

pretectum correlate with slit1a and slit3 mRNA expression there. The rostral tectum, in which 

defasciculated growth of regenerating axons occurs and abnormal deep innervation of the tectum 

originates in astray mutants, is bordered by slit2 and slit1b mRNA expression in the habenula. 

Expanded termination zones of optic axons in the tectum of astray mutants correlate with slit1a 

expression in the SFGS, the main optic axon receiving layer. In the developing tectum, 

Slit1a/Robo2 interactions negatively regulate branch tip numbers and size of terminal arbors of 

optic axons (Campbell et al., 2007). However, it remains to be seen whether less inhibited arbor 

growth in astray mutants also leads to targeting to inappropriate tectal layers of developing or 

regenerating optic axons. 

 We cannot exclude that a developmentally altered morphology of the adult astray brain 

may contribute to some aspects of targeting errors of regenerating astray optic axons. However, 

massive tectal termination errors are found in all astray animals with a regenerated optic 

projection, while our analysis of tectal cytoarchitecture suggests that any alterations in astray 

mutants are subtle. Therefore, it is likely that re-expression of robo2 in retinal ganglion cells 

contributes to correct distal targeting of regenerating optic axons. 
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2.5.3 Correction of developmental pathfinding errors of optic axons is inefficient 

The pathfinding errors observed in the unlesioned adult projection of astray mutants are similar 

to those in larvae, which show rostro-caudal pathfinding errors and aberrant midline crossing 

(Fricke et al., 2001). Enlarged termination zones in the pretectal targets and tectum of astray 

adults are also reminiscent of the enlarged terminal arbors observed for single optic axons in 

larval astray mutants (Campbell et al., 2007). Thus, we have no evidence that developmental 

errors made by retinal axons in astray larvae are corrected later; in the case of pathfinding, it is 

clear that larval errors can persist through adulthood. 

The lack of robo2 function is probably not responsible for the inability of astray mutants 

to correct errors, since rostral pathfinding errors caused by the temporary knock down of robo2 

during early development of robo2 morphants are not corrected at later stages, when Robo2 

expression has recovered. 

 In other axon guidance mutants, the extent of error correction for axonal pathfinding 

varies. In contrast to optic axons in astray, severe projection errors of peripheral nerves in 

Sema3A deficient mice are corrected during development by an unknown mechanism (White 

and Behar, 2000). However, EphA4 deficient mice retain developmental miswiring of the 

corticospinal projection in adults, leading to a severely abnormal gait (Kullander et al., 2003). 

In contrast to our observations in the CNS of astray, a naturally-occurring transient ("erroneous") 

ipsilateral optic projection in amniotes appears to be eliminated by cell death because of limited 

trophic factor availability (Isenmann et al., 1999) and by activity-dependent pruning mechanisms 

involving NMDA receptors (Ernst et al., 2000). However, activity-dependent mechanisms are 

unlikely to be wholly defective in astray mutants, because tecta innervated by both eyes show 

segregation of axons into ocular dominance column-like patches, a form of axon reorganization 

that depends on activity (Meyer, 1982) and likely involves NMDA function (Schmidt et al., 

2000) in fish. 

It is possible that the misprojections in adult astray mutants have been stabilized by 

target-derived trophic support. This could derive from the tectum, reached in all cases by 

caudally misprojecting axons, or from the extensive dorsal telencephalic arborisation field, 

reached by rostrally misprojecting axons. As the telencephalic termination field is ectopic, it is 

unclear which factors might stabilize optic axons that terminate here.  
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The functional consequences of mistargeting of optic axons in adult astray mutants are unknown. 

However, larval astray mutants exhibit surprisingly normal optokinetic and optomotor responses 

(Neuhauss et al., 1999). 

 

2.6 Conclusion 

Our findings suggest that regenerating optic axons of zebrafish show active navigation, which 

likely depends in part on robo2 function, and are not efficiently guided by the degenerating 

original tracts. This implies that presenting axons in the non-regenerating CNS of mammals with 

growth-promoting glial cells (Barnett and Riddell, 2007) may not be sufficient to induce directed 

growth of axons, unless specific navigational cues are also provided. 
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3. Putative axon guidance genes expressed as gradients in the RGC layer of the retina 

during optic nerve regeneration revealed by a microarray study 

 

3.1 Introduction 

As can be seen from the preceding chapter, while robo2 and slit2 play important roles for correct 

axon navigation during development, they are of reduced importance in regeneration. This leaves 

the question, what are the key genes required for successful regeneration? Such knowledge 

would greatly inform future research towards directed axon regeneration in mammals and 

humans for the treatment of CNS disorders and injuries. Currently the list of known 

developmental genes is much longer and well studied than known regeneration associated genes. 

All model organisms must go through development but only a select few exhibit adult CNS 

regeneration. As the zebrafish is one of the latter, we used this model to generate a list of 

regulation of regeneration associated genes in axotomised RGCs of the adult zebrafish using a 

single channel oligonucleotide microarray. 

 

3.1.1 Optic nerve lesion paradigm in adult zebrafish 

The optic nerve lesion paradigm in zebrafish offers an anatomically discrete and highly 

accessible extension of the CNS which undergoes full regeneration within four weeks and has an 

almost 100% survival rate in our hands. The retinotectal system in particular has been well 

studied. The cell bodies of the RGC neurones form the RGC layer in the retina, a discrete tissue 

which can be readily isolated from neighbouring tissues and the site of injury. This is in contrast 

to other regeneration models such as spinal cord where many different types of neurones are 

axotomized and some neurones of interest are difficult to separate from support cells and 

invading immune cells near the lesion site (Carmel et al., 2001; De Biase et al., 2005; Guo et al., 

2010). Transcriptional changes in the regenerating dorsal root ganglia (DRG) have been 

extensively studied by microarray screens but suffer from similar drawbacks (Bonilla et al., 

2002; Costigan et al., 2002; Nilsson et al 2005). Failure to separate out such cells may result in a 

list of general injury and repair associated genes rather than genes specifically associated with 

axon injury and regrowth as the other types of cells are contributing to wound response and 

repair. Furthermore, as the optic nerve is highly accessible and the eye remains intact following 

an optic nerve lesion, wound repair processes should be kept to a minimum in this paradigm.  



 

79 

 

3.1.2 Retinal ganglion cell gene regulation following axotomy 

Following axotomy, RGCs regulate expression of a specific set of molecules associated with 

axon growth and pathfinding, including cell surface receptors and transcription factors (Veldman 

et al., 2007). This regulation includes both up and down regulation, as, for example, a reduction 

in receptors for inhibitory molecules can enhance regeneration. These cues contribute to the 

ability of the RGC axons to regrow and navigate to their appropriate targets, leading to 

functional connections and the restoration of vision. The precise array of molecular determinants 

which are necessary for this process is currently not well elucidated. The sequencing of the 

zebrafish genome and subsequent availability of whole-genome microarrays for the zebrafish 

make it possible to obtain an overview of regeneration related gene regulation in RGCs to 

identify novel guidance related genes by examining changes in gene expression following optic 

nerve lesion (Cameron et al., 2005; Veldman et al., 2007). This is a powerful technique for 

uncovering regeneration-associated genes in an unbiased way, particularly when combined with 

techniques to enrich the sample for RGCs, such as fluorescence activated cell sorting (FACS) or 

laser capture microdissection. 

 

3.1.3 Microarray studies 

The basic principle on which microarrays are based is that of complementary sequence binding 

and visualisation thereof. This is the same principle at work in many of the most common and 

basic laboratory techniques, such as visualising double stranded nucleotides on a gel. The greater 

the number of complementary base pairs in a nucleotide sequence, the more tightly the strands 

anneal. Following washing steps, only strongly paired strands will remain hybridised with 

labelled probe. Probe-target hybridisation can be detected and quantified through the detection of 

fluorophores, silver or chemiluminescence-labelled targets to determine relative abundance of 

nucleic acid sequences in the target (Fig. 3.1). The total intensity of signal from each spot of 

probe, called a feature, is dependent on the total number of probes bound by the target. The 

intensity of this feature can then be compared to the intensity of a duplicate feature (containing 

the same probe) under different conditions, allowing for relative quantitation. While this process 

is quite simple in principle, the key advantage of microarrays over other techniques based on 

similar principles, such as in situ hybridisation or PCR, is that they offer massively parallel 

detection of targets. Microarrays can contain tens of thousands of probes and so the use of 
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microarrays has greatly accelerated specific forms of investigation such as genetic screening. In 

addition to their uses in studying expression levels of genes, microarrays are also used to 

genotype, resequence mutant genomes and detect single nucleotide polymorphisms. 

 A microarray consists of thousands of microscopic spots, called features, each containing 

picomoles of a different DNA probe (oligonucleotides) designed to match the sequence of 

known or predicted open reading frames. In the case of Agilent arrays this is accomplished by 

depositing oligonucleotide monomers onto specially prepared glass slides using an industrial 

inkjet process. In this way oligonucleotide probes are synthesised via phosphoramidite chemistry 

directly onto the array (link to microarray technology overview on Agilent's website). The 

probes are assembled a nucleotide at a time using a masking process so only specified spots 

receive each addition of nucleotides. The incorporation of user-generated custom probes into a 

standard array is made possible by this flexible printing process. Probes tend to be produced as 

either 25 or 60mers. The longer the probe the greater the specificity to the target but the lower 

the density of spotting onto the array, hence increased costs. In standard microarrays, the probes 

are bound to a solid surface of glass or silicon, known as the chip, via covalent bonding to a 

chemical matrix. Non-chip based arrays are also available which make use of microscopic beads 

for each probe.  

Microarrays can be either single-channel or two-channel. Two-channel arrays involve 

cDNA probes generated from two different samples and labelled with two different fluorophores 

being applied to the same feature. Single-channel arrays use only one fluorophore and apply only 

one sample per feature. Due to this, one feature is required per sample, meaning single-channel 

arrays require twice as many features as a comparable two-channel array. However single-

channel arrays are more robust, as a single aberrant sample will not contaminate the results of 

other samples on separate features, and data can be more easily compared between different 

experiments. Single-channel microarrays indicate relative levels of hybridisation with the target. 

This does not indicate the absolute abundance of the target gene but the relative abundance in 

comparison to other samples run in duplicate features within the array. Comparisons between 

different genes run on the same array are uninformative as the reaction kinetics during 

amplification and probe production will vary between templates, distorting initial levels of 

transcript. Depending on the experimental design, two-channel arrays can be used for 

http://www.genomics.agilent.com/GenericB.aspx?PageType=Custom&SubPageType=Custom&PageID=2011
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determining absolute levels of expression, but such use of microarrays is uncommon as qPCR is 

more suited to this task. 

 Microarrays can be used to answer a wide range of questions, depending on the samples 

compared in the array. To study both spatial and temporal gene regulation in the retina following 

optic nerve lesion we are comparing four samples obtained from unilaterally lesioned zebrafish. 

By isolating mRNA from retina containing RGCs of the regenerating lesioned and unlesioned 

optic tract, within the same animals, we can compare fold change with the least biological 

variability possible. By isolating retina containing RGCs from opposing extents of the retina 

(nasal retina versus temporal retina) we can compare spatial gene expression. Spatial regulation 

across the retina of transcription factors or cell surface receptors gives a good indication of genes 

related to formation of the retinotectal map. Thus four samples can be compared within an array 

to provide a list of genes potentially involved in regeneration or pathfinding of RGCs. As 

potential players in the regenerative response, our main focus is on cell surface receptors, ligands 

and transcription factors. While the mRNA for these classes of proteins will be found in RGCs, 

the corresponding ligands for the receptors will be expressed in the tract and brain and so will 

not be targets for an RGC based microarray. We hypothesise that of the genes indicated by the 

array some will be known from development to be involved in RGC axon pathfinding while 

some may be unique to regeneration. Due to the teleost genome duplication (Amores et al., 2004; 

Chen et al., 2004), others may be homologues or paralogues, of known regeneration associated 

genes. 
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Fig. 3.1. Fluorescence signals of the Cy3-hybridised Agilent microarray from this project which were detected 

using Agilent’s Microarray Scanner System (Agilent Technologies). Each dot in the image is an oligonucleotide 

containing spot. The more intense the signal, the more target is present, which gives an indication of the level of 

gene expression in the sample. This image was created by Miltenyi Biotec. 

 

3.1.4 Exploiting microarray findings 

Expression patterns in whole mount embryos and sections of adult retina and brain can be 

verified with in situ hybridisation and the fold changes qualitatively verified. qPCR can be used 

to quantitatively verify fold changes in retinal mRNA. Potential guidance molecules can be 

readily knocked down during development with morpholinos and any resultant pathfinding 

errors can be relatively easily studied in the semi-transparent embryos. Morpholinos can also be 

applied to transected axons to reveal the functional relevance of candidate genes during axon 

regeneration. In the adult zebrafish, morpholino knockdown in neurones following retrograde 

axonal transport of morpholino has been demonstrated in the spinal lesion model (Becker et al., 
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2004) and is adaptable to the optic system for selective targeting of RGCs (Veldman et al., 2007; 

unpublished observations). This allows selective knockdown during regeneration without 

equivalent manipulation during development so allowing the study of altered regeneration in an 

animal which underwent unaltered development. The heatshock inducible GAL4/UAS system 

also offers the potential to perturb putative guidance molecules in both the embryonic and adult 

situation, and as with the morpholino paradigm, it allows selective manipulation during 

development and/or regeneration. There exists a wide range of zebrafish RGC pathfinding 

mutants due to multiple mutagenesis screens having been carried out with a focus on the 

retinotectal system (Muto et al., 2005; Xiao et al., 2005; Gulati-Leekha and Goldman, 2006). 

However many more mutagenesis screens have been carried out in the zebrafish with the focus 

on other tissues and processes (Mullins et al., 1994; Driever et al., 1996; Baraban et al., 2007). 

Candidate genes from the microarray would provide an indication of which pre-existing mutants 

may harbour an unstudied optic system phenotype. This offers opportunities for studying the 

effects of gene knockout during development and regeneration, if the mutants are viable. While 

this lacks the manipulative possibilities of morpholinos (the gene is constantly and permanently 

knocked out), the advantage is that of complete knockout, rather than partial knockdown, 

enhancing any putative phenotype. Investigating how such embryonic pathfinding errors 

compare to possible pathfinding errors in adult regeneration will offer insight into the question to 

what extent regeneration is a recapitulation of development.  
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3.2 Summary 

Of the 21410 probes on the array 7092 demonstrated differential levels of binding to our 

samples, based on a single biological replicate. The expression patterns of the 32 most highly 

regulated genes, with particular focus on transcription factors, were investigated by RNA in situ 

hybridisation during development and regeneration. While differential expression patterns for 17 

of these genes could be demonstrated during early and mid embryonic development (1dpf and 

3dpf), none demonstrated expression patterns in the adult regenerating retina. The success of the 

in situ hybridisations was confirmed by multiple control probes which ran within the same 

batches and control embryos on the same slides as the adult retina. As the microarray data gives 

no indication of absolute expression, only relative levels, it may be that the in situ method is not 

sensitive enough to detect the expression gradients in the adult retina. One of the genes that 

exhibited the most pronounced expression pattern in the developing retina, foxi1, has a knockout 

mutant, foxi1
-hi3747

, in which we could detect no obvious optic projection pathfinding errors. 
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3.3 Materials and methods 

 

3.3.1 Animals 

All fish are kept and bred in our laboratory fish facility according to standard methods 

(Westerfield, 1989) and all experiments have been approved by the British Home Office. 

 

3.3.2 Optic nerve lesion 

Optic nerve crush lesion was performed as described (Becker et al., 2000). Adult zebrafish (older 

than 6 months and 2cm in length) were deeply anesthetized by immersion in 0.02% 

aminobenzoic acid ethylmethylester (MS222; Sigma, St. Louis, MO) until swimming posture 

and startle response became absent. The animal was placed on a cooled surface of metal resting 

on water ice to slow its metabolism. The mucus membrane sealing the left eye was removed with 

watchmaker’s forceps. The left eye was then gently lifted from its socket with two pairs of 

watchmaker’s forceps (Fig. 3.2). The exposed optic nerve was crushed with forceps behind the 

eyeball at a distance at which the ophthalmic artery runs parallel to the nerve and was thus 

spared from the crush. A translucent stripe across the otherwise whitish optic nerve at the site 

where the forceps had been applied indicated a successful crush of the nerve. Fish were revived 

by gently pulling them through aquarium water. Fish were observed for 2 hours following the 

operation and checked daily until tissue extraction at 7 days post lesion. Survival rates 

approached 100%. 

 

Fig. 3.2. Schematic of optic nerve crush. 

Following removal of the mucus membrane, the eye is gently lifted from its socket with two pairs of watchmaker’s 

forceps. The exposed optic nerve is crushed with forceps behind the eyeball at a distance at which the ophthalmic 

artery runs parallel to the nerve. Adapted from Liu and Londraville, 2003. 
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3.3.3 Tissue extraction 

At 7 days post lesion the operated fish were terminally anaesthetised in 0.1% MS222. The left 

eye was lifted from its socket with watchmaker’s forceps and the optic nerve severed with 

surgical scissors. The eye was then placed in a petri dish containing phosphate buffered saline 

(PBS). Using a razorblade and watchmaker’s forceps the cornea was pierced to relieve internal 

pressure and then a window cut in the cornea. The lens was removed through this opening and 

the eye was then divided into thirds by cutting from dorsal to ventral. The orientation of the eye 

was judged by an area of dark pigment on the dorsal extent of the eye. The middle third was 

discarded to leave a nasal third and a temporal third. The nasal and temporal thirds were then 

carefully teased apart to separate the retina from the rest of the eye (Fig. 3.3). The amount of 

non-retinal tissue included in the sample was kept to a minimum but could not be completely 

eliminated. The retinal layers separated from the nasal and temporal eye thirds were then 

separately flash frozen in 1.5ml reaction tubes immersed in liquid nitrogen. The same procedure 

was then carried out for the right (control) eye, giving 4 samples: Nasal Lesioned, Temporal 

Lesioned, Nasal Control and Temporal Control (see Figure 3.3). The retinas of 10 fish were 

pooled for each sample which were then sent to Miltenyi Biotec for RNA extraction and running 

on a microarray. 
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Fig. 3.3. Schematic of retinal tissue sample isolation and sample pairings. 

Following the post-mortem removal of the left (lesioned) eye from the fish and extraction of the lens from the eye, 

the eye was cut into (approximately) thirds as indicated. The central third was discarded. The remaining outer thirds 

were then carefully teased apart to separate the retina from the rest of the eye. The retinal layers separated from the 

nasal and temporal eye thirds were then separately flash frozen in 1.5ml reaction tubes immersed in liquid nitrogen. 

The same procedure was then carried out for the right (control) eye, giving 4 samples: Nasal Lesioned, Temporal 

Lesioned, Nasal Control and Temporal Control. The array data for these samples were compared pairwise as 

indicated. Nasal versus Temporal reveals spatial regulation (fold difference). Control versus Lesion reveals temporal 

regulation (fold change). Red dots on left optic nerve indicate approximate location of crush lesion. 
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3.3.4 Microarray 

The microarray was a standard Agilent Whole Zebrafish Genome Oligo Microarray 4x44K 

oligonucleotide expression array. I designed 60 probes for 30 genes of interest from the 

literature, which were not already included, using the e-Array application. Two probes were 

designed per gene in non-overlapping stretches of sequence to provide robustness against 

sequence errors or unknown splice sites. The microarray consists of 44,000 features each 

containing picomoles of a different DNA probe (in this case 60 base long oligonucleotides). 

Probes are generally targeted to the last 900 bases of mRNA sequence, as these are the most 

faithfully amplified when producing cDNA with polyT primers. The single microarray consists 

of four chips which allow four separate biological samples to be run on 44,000 probes (or, in this 

case, 22,000 probes each performed in technical intra-microarray duplicate). This allows all four 

of our samples to be run on the same microarray. This type of array is a single channel array 

which uses a single fluorophore to provide an indication of relative levels of gene expression 

between different samples. It does not give an absolute readout of gene expression levels as each 

unique RNA sequence will not amplify at a uniform rate. Expression levels can be compared 

between the same RNA sequence in different samples but not different RNA sequences within 

the same sample. Thus allowing us to compare gene expression between our four samples. The 

microarray was processed by Miltenyi Biotec.  

 Seven days after unilateral optic nerve lesion, the retinas of ten adult wild type fish were 

surgically dissected and processed to give four pooled samples: left (lesioned) eye nasal retina, 

left (lesioned) temporal retina, right (control) eye nasal retina, right (control) eye temporal retina. 

RNA was isolated from our frozen tissue samples by Miltenyi Biotec using a standard RNA 

extraction protocol (Chomczynski and Sacchi, 1987). RNA quality and concentrations were then 

assessed by Miltenyi Biotec using the Agilent 2100 Bioanalyzer platform (Agilent Technologies) 

(Mueller et al, 2000). The RNA chips contain an interconnected set of microchannels that is used 

for separation of nucleic acid fragments based on their size as they are driven through it 

electrophoretically. These results are visualized in a gel image and an electropherogram. The 

Agilent 2100 Bioanalyzer expert software generates an RNA Integrity Number (RIN) as a 

measure of overall integrity quality of the total RNA samples. The RIN is calculated based on 

several parameters including 28S RNA/18S RNA peak area ratios and unexpected 5S RNA 

peaks. RINs range from 1 to 10, with 10 being the highest quality and anything greater than 6 
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being considered as sufficient quality for gene expression profiling experiments (Fleige et al, 

2006). Cy3-labelled cRNA was then generated by Miltenyi Biotec from 1 µg of each total RNA 

sample using the Agilent Low RNA Input Linear Amp Kit (Agilent Technologies). cRNA yields 

and dye incorporation rates were measured by Miltenyi Biotec using the Nanodrop ND-1000 

Spectrophotometer (Nanodrop Technologies). Each sample was hybridised on the standard 

Agilent zebrafish oligonucleotide expression array by Miltenyi Biotec. Hybridisation onto the 

Agilent 60mer oligo microarray was carried out according to the Agilent Gene Expression 

Hybridisation kit. 1.65 g of Cy3-labelled fragmented cRNA in hybridisation buffer was 

hybridised for 17 hours at 65C onto the array. The array was washed once with 6xSSPE buffer 

containing 0.005% N-lauroylsarcosamine for 1 minute at room temperature. This was followed 

by a wash with 0.06xSSPE buffer containing 0.005% N-lauroylsarcosine for 1 minute at 37C, 

followed by a final wash with acetonitrile for 30 seconds.  

 The hybridised array was then scanned with an Agilent Microarray Scanner System 

(Agilent Technologies) by Miltenyi Biotec. The scanned images were then processed using 

Agilent Feature Extraction Software (FES) which determines feature intensities, rejects outliers 

and calculates statistical confidences. Differential gene expression data generated by FES was 

analysed using Rosetta Resolver gene expression data analysis system (Rosetta Biosoftware) by 

Miltenyi Biotec. This allowed the comparison of single intensity profiles against each other to 

generate gene regulation ratios between samples. The p-values generated by this process refer to 

the technical replicates and are not biologically significant. This is because, although 10 fish 

were pooled per sample, each sample is a single biological sample which was carried out on a 

single array in technical duplicate. The comparison of signal intensities in the 4 samples allows a 

comparison of fold change of gene expression following lesion and fold difference between 

opposing extents of the retina. Miltenyi Biotec then visualised the data in scatter plots of signal 

intensities for each sample comparison. The annotation of the array was incomplete and non-

standardised so automated gene ontology software could not be used. The genes with the most 

pronounced fold changes (both positive and negative) following lesion were manually annotated. 

Indicator genes which had already been proven to have specific patterns of regulation in the adult 

retina during regeneration were selected from the literature. These indicator genes were used to 

gauge the array’s biological validity by comparing their known regulation patterns to the fold 

changes obtained from the array for these specific genes. From the list of annotated genes, 
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candidate genes which are differentially regulated during regeneration were selected. Particular 

focus was given to genes for cell surface molecules which are likely to be receptors for axon 

guidance molecules, upstream transcription factors and downstream signalling molecules which 

may be involved in transduction guidance signals, and molecules related to those which have an 

axon guidance role in development.  

 

3.3.5 In situ hybridisation  

 

3.3.5.1 cDNA 

RNA was extracted from pooled tissue of 15 larvae per time point using the RNeasy Mini Kit 

(Qiagen, UK). Reverse transcription, using random primers (Promega, Madison, WI, USA), was 

performed with the SuperScript III kit (Invitrogen, UK). The Nanodrop ND-1000 

Spectrophotometer (Nanodrop Technologies, USA) was used to check concentrations and give 

an approximation of quality. For probe making templates, RNA was also extracted and processed 

from adult brain (1 brain) and adult retinas (2 whole retinas or 5 retinal thirds) in the same 

manner as for embryos.  

 

3.3.5.2 Probe making 

Primers for probe making were designed using Primer3 (http://frodo.wi.mit.edu/primer3/) and 

synthesized by VHBio (VHBio.co.uk). The sequences for primers used for in situ hybridisation 

probe making can be found in Table 3.1. 

 

  

http://frodo.wi.mit.edu/primer3/
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Gene Direction Sequence 

FOXI1 Forward 5’- ACTGCGACTCCAACTTCAGC -3’ 

  Reverse 5’- GTGTTGAGATGGCCTGGTTC -3’ 

FGA Forward 5’- CGTTGAAGGATGTGTTGGTG -3’ 

  Reverse 5’- AGCTCCACCCTCAGAAGAC -3’ 

FOXDI-Like Forward 5’- TTCCGTGCCGACAGTAATCC -3’ 

  Reverse 5’- GTGGCAATGTTCACCATTCAGC -3’ 

PLXDC2-Like Forward 5’- TGTTCACATCCAAGCCAGAG -3’ 

  Reverse 5’- TGTTCACATCCAAGCCAGAGG -3’ 

DLX2A Forward 5’- TGGCTTACATCTGTCGTTGG -3’ 

  Reverse 5’- AGTGGCAGAGATGTTCATTC GG -3’ 

HOXC5A Forward 5’- GTCCAATTACGCGTACGAAGG -3’ 

  Reverse 5’- ATACGTCTGCGACGTGTGAG -3’ 

HOXB1A Forward 5’- AGGCTGGATACCACCACTTG -3’ 

  Reverse 5’- CTCGCGTCAGATACTTGCTG -3’ 

HOXA3A Forward 5’- CGTGTCTTCTCTCACCGTAGG -3’ 

  Reverse 5’- GGAGTGGCTGTACCAGTTCC -3’ 

RGMB Forward 5’- AGC AGG ATC TTA CTA CCC CGG -3’ 

  Reverse 5’- TGT CCC TCC TGG TCA ATG C -3’ 

RGMA Forward 5’- AAA GGA GCA GGA CCA TCG G -3’ 

  Reverse 5’- CTC TGC TGC TCG TGC CTT AA -3’ 

FGF3 Forward 5’- GCTTCTTGGATCCGAGTTTGG -3’ 

  Reverse 5’- GGAAGAGGGAAGCTTTGTCC -3’ 

FGF4 Forward 5’- TGCGTGGCTAGGATACACAG -3’ 

  Reverse 5’- GTCTTCCACCTCGCAAAGAG -3’ 

PDX1 Forward 5’- CAAGGACTCTTGTGCCTTCC -3’ 

  Reverse 5’- TGATGTGTCTCTCGGTGAGG -3’ 

HSF2 Forward 5’- TGAAACACAGCTCGAACGTC -3’ 

  Reverse 5’- TCATCTCCAGGGACTCATCC -3’ 

FOXG1A Forward 5’- CACAGAACGGTGCACGAAGA -3’ 

  Reverse 5’- CTGGGAGGTCATGGATGGG -3’ 

FOXD1 Forward 5’- AGACTGGACACGGAACGTGAG -3’ 

  Reverse 5’- GAAGGAAGGCCGACTTGGAC -3’ 

EPHA4B Forward 5’- CCATCCCAACATCATCCGAC -3’ 

  Reverse 5’- ATAGGGACCGTGGTGGGAG -3’ 

Table 3.1. Sequences for primers used for in situ hybridisation probe making. 
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3.3.5.3 Reverse transcription polymerase chain reaction  

Reverse Transcription Polymerase Chain Reaction (RT-PCR) was carried out on an MJ Mini, 

Personal thermal cycler (BioRad).  

Reaction assembly, as optimised based on manufacturer's recommendations: 

 

21.5µl H20 

3 µl Thermo Polymerase buffer (NEB) 

ThermoPol Buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 0.1 % 

Triton X-100, pH 8.8) 

2 µl dNTPs (10mM ATP, 10mM CTP, 10mM GTP and 10mM UTP in H20) 

1 µl cDNA (50-100 ng/ µl) 

0.5 µl Taq Polymerase enzyme (5 units per µl) 

2 µl primer pair (10 µM forward and 10µM reverse primer in H20) 

 

The program used was as follows: 

Initial denaturation  95°C   5 minutes 

Denaturation   95°C   30 seconds 

Annealing   Varies°C 45 seconds 

Elongation   72°C  90 seconds 

Final elongation   72°C   5 minutes 

 

The elongation step was increased for longer amplicons and decreased for shorter amplicons, 

based on the estimate of 60 seconds elongation required for every 1000 bases of amplicon. 

Following PCR, the amplicons were purified from the reaction mixture using the MinElute PCR 

Purification kit (Qiagen). 
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3.3.5.4 Ligation into vector 

The purified amplicon was then ligated into the pGEM-T Easy vector using the pGEM-T Easy 

kit (Promega, Madison) as per manufacturer's instructions. 

 

5 µl 2X Rapid ligation buffer, T4 DNA Ligase 

1 µl pGEM-T Easy Vector (50ng) 

3 µl PCR product (Varies depending on concentration and length of amplicon as per Promega 

optimisation calculation) 

1 µl T4 DNA Ligase (3 Weiss units / µl) 

10 µl H20 

After mixing thoroughly, the mix was left at 4°C overnight. 

Following ligation, an aliquot was directly used for transformation in E.coli.  

 

3.3.5.5 Plasmid transformation into bacteria 

The plasmids were then used to transform E.coli XL blue cells. 3l of ligation mixture was 

added to 200l of frozen XL blue suspension. After 30 minutes on ice, the mixture was heated to 

42C for precisely 30 seconds to induce uptake of the plasmid. After a further 5 minutes on ice, 

250l of LB medium (13 capsules per 500ml water, Fisher) was added to the bacteria suspension 

which was then shaken for 1 hour at 37C. The bacteria were spread onto 0.1% ampicillin agar 

plates and incubated overnight at 37C. Bacteria which did not contain vectors would lack 

ampicillin resistance and fail to multiply.  

 

3.3.5.6 Colony PCR 

To ascertain if any colonies which developed overnight contained the correct insert, colony PCR 

was used. This involved RT-PCR (as above) with the exception that a colony picked from a plate 

was used as the template in place of cDNA. The colony was briefly dipped into the PCR mix and 

then wiped into a grid square on a fresh 0.1% ampicillin agar plate. Each square of the grid 

corresponded to a separate PCR tube. The primers used to amplify the insert were the same ones 

used to generate the amplicon for the insert. Primers for the T7 and SP6 sites contained in the 

vector (flanking the multiple insertion site) could also be used. The reaction product was ran on a 

1% agar gel with ethidium bromide (7µl per 100ml) to determine if the amplicon was of the 
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expected size before proceeding to create a midi preparation from colonies of the corresponding 

grid square. One colony was selected and incubated overnight at 37C in 50ml of LB medium 

with 50µg/ml ampicillin whilst shaking. The midi preparation was then purified using the 

HiSpeed Plasmid Midi kit (Qiagen). After checking the concentration of the purified plasmid 

was in a suitable range (200 to 600 ng/l) with the Nanodrop, a sample was sequenced by 

DNASeq at the University of Dundee. If a midi purification was found to have a concentration 

lower than 200ng/l it was usually an indication of reduced quality and so advisable to repeat the 

midi step. Following verification of the sequence against the Ensembl sequence using DNAman 

software, a sample of the purified plasmid was linearised using a suitable restriction 

endonuclease (NEB) and following NEB guidelines. The number of units of enzyme used was 

calculated as the minimum number of units indicated in the NEB catalogue to digest the weight 

of plasmid during an overnight incubation plus an additional 50% to ensure complete 

linearisation. Enzymes with star activity were avoided. Linearised plasmid was then ran on a gel 

alongside a sample of unlinearised plasmid to verify complete linearisation. The linearisation 

mixture was then purified using QIAQuick kit (Qiagen). Using the MAXIscript kit (Ambion), 

the purified linearisation was used as template to synthesise a digoxygenin labelled RNA probe. 

Sense probes were also made to be used as controls. 

 

3.3.5.7 In situ hybridisation on cryosections 

For in situ hybridisation, the eyes and brain of 7 days post lesion (dpl) fish were removed intact 

and embedded in TissueTek (Fisher) in electron microscopy molds. They were then flash frozen 

by 30 second immersion in a 50ml plastic tube containing 2-methylbutane chilled by liquid 

nitrogen before transferring to –80C for storage. The same process was carried out for the 

embedding of whole embryos (3 to 5 dpf). In situ hybridisation was performed on cryosections 

of whole embryos, adult eyes and adult brain. The frozen blocks of TissueTek containing the 

tissue were cut into 14µm sections on a Leica CM3050 cryostat. The embryos and brains were 

cut either coronally, parasagittally or horizontally. The eyes were mounted to give nasotemporal 

sections with each section containing both the lesion and control eye side by side. The 

cryosections were thawmounted onto Superfrost glass slides (VWR) and placed in a slide rack 

immersed in 4% paraformaldehyde (in PBS) overnight at 4C to fix the tissue. Approximately 40 

adult eye sections were mounted onto each slide, along with 10 whole embryo sections. This 
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protocol was carried out under RNase free conditions, including the use of filter pipette tips and 

nuclease free water. The next steps permeabilised the tissue. The slides were washed 3 times for 

10 minutes in 1xPBS, then placed in 70% ethanol for 10 minutes. Followed by rinsing in 

deionised water for 10 minutes twice. They were then placed into 0.1M HCl for 10 minutes and 

washed in 1xPBS for 10 minutes twice. Racks were placed in 0.1M triethanolamine immediately 

after adding 0.25% acetic acid anhydride (0.5ml added to 200ml) for 20 minutes. Slides were 

then washed in 1xPBS for 5 minutes twice. Followed by dehydration in an ascending ethanol 

gradient; 5 minutes each in 70%, 80% and then 95% ethanol. Slides were removed from the 

racks and left until dry (30 to 60 minutes). The area of slide containing sections was encircled 

with PAP-Pen (VWR) and slides were placed into an incubation chamber lined with tissue paper 

soaked in a 1:1 formamide and PBS solution to reduce evaporation. 600l of 1:1 formamide and 

hybridisation mix solution (see solutions) was pipetted onto each slide, covering all sections. 

Prehybridisation took place for 3 hours at 37C. Following prehybridisation, the prehybridisation 

mix was pipetted off and quickly replaced with 200l of hybridisation mix containing 1:500 

DIG-labelled RNA probe. Incubation chamber was then sealed with Parafilm (Fisher) and 

sections were hybridised at 55C overnight. After pouring off hybridisation mix, slides were put 

into racks in prewarmed 0.2x saline sodium citrate buffer (SSC) at 55C for 30 minutes twice, 

followed by washing in prewarmed 0.1xSSC / formamide (1:1) at 55C for 90 minutes thrice. 

Slides were then returned to room temperature and washed with 0.2xSSC for 10 minutes. 

Following a 10 minute equilibration in buffer 1, the slides were then blocked for 30-60 minutes 

in buffer 2. The borders of the slides were then dried using tissue paper and the PAP-Pen 

boundary was re-applied around the slides. The slides were then placed in an incubation chamber 

lined with tissue paper soaked in buffer 2. 500l of anti-DIG-alkaline phosphatase coupled 

antibody diluted in buffer 2 (1:2000) was then quickly pipetted onto each slide before the 

sections dried. The chamber was sealed with parafilm and left at 4C overnight to incubate. 

Following incubation, sections were washed in buffer 1 for 15 minutes twice and then placed 

into an incubation chamber lined with tissue paper soaked in buffer 1. 400l of NBT/BCIP 

staining solution (Sigma) was then pipetted onto the slides for 5 minutes. The NBT/BCIP 

solution was then removed, having buffered the pH of the slides, and replaced by fresh 

NBT/BCIP solution which was left in the dark to develop the colour reaction. Length of 

development varied from 30 minutes to 3 days depending on the probe. After the signal was 
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sufficiently developed, the slides were washed in 1xPBS for 10 minutes twice. The slides were 

coverslipped with elvanol (Carl Roth). 

 

3.3.5.7.1 Cryosection in situ hybridisation solutions 

 

10 x PBS - Phosphate buffered saline 

160g NaCl (MW: 58.44) 

28.39g Na2HPO4 (MW: 141.96) 

4g KCl (MW: 74.56) 

4.8g KH2HPO4 (MW: 136.09) 

Make up to 2L with filtered H2O water  

For 1xPBS of pH7.4 

 

20XSSC - Saline sodium citrate buffer 

175.32g NaCl (MW: 58.44) 

77.42g Trisodium citrate Na3C6H5O7 (MW: 258.06) 

Make up to 1L with filtered H2O 

 

4 % PFA - Paraformaldehyde 

16g PFA powder 

80ml filtered H2O 

Stir while heating (keeping below 60°C) 

Add 4 drops of 1M NaOH 

Once clear add 40ml 10XPBS 

Bring up to 400ml with filtered H2O 

Filter PFA 

Adjust to pH7.4 if required 

 

10 x Grundmix 

2 ml 1 M Tris/HCl pH 7.5 

200 Xl 0.5 M EDTA 
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2 ml 50X Denhardt´s solution (Sigma D 9905) 

2 ml tRNA 25 mg/ml (Boehringer, Yeast tRNA 109525) 

1 ml poly A RNA 10 mg/ml (Sigma P 9403) 

2.8 ml nuclease free H2O 

Store at –20 °C 

 

Hybridisation mix 

25 ml deionized formamide  

5 ml 10x Grundmix 

3.3 ml 5M NaCl  

2.5 ml 2M DTT  

10 ml dextran sulfate  

4.7 ml nuclease free H2O  

 

Buffer 1 

100 mM Trizma Base 

150 mM NaCl 

Adjust to pH 7.5 

 

Modified buffer 2 

1 % Blocking Reagent (Roche Diagnostics, Mannheim, Germany) 

0.5 % BSA, Fraction V 

Heat to 60 °C while stirring until blocking reagent dissolves 

Store at –20 ° 

 

Staining solution 

BCIP / NBT Staining tablets (SigmaFast, B-5655) in 10ml ddH2O 

 

Blocking buffer 

1% (weight/volume) Blocking Reagent  

0.5% (weight/volume) BSA in Buffer 1  
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3.3.5.8 Whole mount embryo in situ hybridisation 

For fixation of specimens, firstly 24hpf embryos were dechorionated with watchmaker forceps in 

PBS in a small petri dish. The PBS was replaced with 4% paraformaldehyde in PBS, pH7.2 and 

the dishes wrapped with parafilm and left overnight at 4°C. The following day embryos were 

transferred into 1.5ml eppendorf tubes and washed four times with PBS/0.1% Tween (PBST) for 

5 minutes per wash at room temperature (RT). For each wash 1ml of solution is used unless 

specified otherwise. The PBST was replaced with 100% methanol for 5 minutes at RT and then 

100% methanol again for a minimum incubation of 30 minutes at -20°C. Embryos were washed 

in 75%, 50% and then finally 25% methanol/PBST for 5 minutes at RT (all following steps are at 

RT unless specified otherwise). The embryos were then washed twice with PBST for 5 minutes. 

This was followed by digestion with proteinase K (0.7μl proteinase K / 1ml PBST) for 10 

minutes (10 minutes for 24hpf embryos, with increased or decreased incubation for older or 

younger embryos respectively). Then washed twice briefly (~30 seconds) in glycine/PBST (2mg 

glycine / 1ml PBST). Followed by further fixation in 4% paraformaldehyde in PBS for 20 

minutes. Filter pipette tips were used from this point onwards as any RNase introduced from this 

point on would destroy the probes. The PFA was thoroughly washed out with 4 washes in PBST 

for 5 minutes. Followed by a 5 minute wash in 300µl whole mount hybridisation buffer. Which 

was replaced with 400µl whole mount hybridisation buffer for prehybridisation for a minimum 

of 3 hours minimum at 55˚C. Tubes were wrapped with parafilm to reduce evaporation (buffer 

contains formamide). Prehybridisation reduces non-specific binding of the probe. Towards the 

end of the prehybridisation step, digoxygenin labelled probes were diluted to 1:1000 in 

hybridisation buffer and heated to 80°C for 10 minutes to reduce secondary structures which 

might impair the action of the probe. Probes were then briefly centrifuged and chilled on ice. 

Prehybridisation solution was removed from the embryos and replaced by probe solution for an 

overnight hybridisation at 55˚C, wrapped in parafilm. Following the overnight incubation, 

embryos were washed twice for 30 minutes at 55°C with 50% formamide / 50% 2XSSCT. 

Solutions were preheated to 55°C before adding them to the embryos. Embryos were then 

washed once in 1XSSCT for 15 minutes at 55°C and twice in 0.2XSSCT for 30 minutes at 55°C. 

Filter tips are no longer required as the following steps do not contain formamide or free RNA. 

Samples were then incubated with Boehringer/Roche blocking reagent at RT for 1 hour (400µl 

per eppendorf). The blocking reagent was then replaced with anti-DIG alkaline phosphatase fab 
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fragments, diluted to 1:2000 in fresh blocking reagent, and left overnight at 4°C. Before use the 

fab fragments were spun down to precipitate antibody clumps and only the supernatant used. 

This reduced non-specific labelling. Following the overnight incubation, the embryos were 

thoroughly washed with six PBST washes for 20 minutes each at RT. Embryos were then 

transferred to a 24 well plate to make subsequent development of the stain easier to monitor. An 

NBT/BCIP tablet was dissolved in 10ml of filtered H20 and the embryos were equilibrated for 5 

minutes in the dark in the resultant solution. This step buffered the pH of the embryos. The 

solution was then replaced with fresh solution and the embryos were then left in the dark to 

develop the signal for 30 minutes to 2 days. During this time the progress of development was 

observed until staining was optimum as judged by the quality of the specific signal compared to 

the background staining. This process could be slowed or accelerated by adjusting the 

temperature. Once staining was complete, the embryos were washed three times in PBS for 5 

minutes and then cleared in an ascending gradient of glycerol with PBS (30% glycerol, 50% and 

70%) for 5 minutes or longer. Embryos were then de-yolked using insect pins (to make them 

easier to mount successfully) and then mounted in 70% glycerol using vaseline spacers to 

prevent adhesion flattening the embryo. 

 

3.3.5.8.1 Whole mount in situ hybridisation solutions 

PBST 

0.1% (by volume) Tween 20 in 1x PBS  

 

SSCT 

0.1% (by volume) Tween 20 in 1x SSC 

 

Whole mount hybridisation buffer 

5 ml deionized formamide  

2.5 ml 20x SSC  

10 μl Tween 20  

100 μl 100 mg/ml yeast tRNA (109525, Boehringer) 

2.38 ml nuclease free H2O  

10 μl 50 mg/ml heparin 
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All other solutions are the same as for in situ hybridisation on cryosections. 

 

3.3.6 Tracing 

Lipophilic tracers, DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, 

Invitrogen) and DiO (3,3'-dioctadecyloxacarbocyanine perchlorate, Invitrogen), were used to 

investigate possible errors of pathfinding and targeting in foxi1
-hi3747

 mutant embryos (Nissen et 

al., 2003). 3dpf foxi1
-hi3747

 mutant embryos were kindly supplied by Judy Peirce and Dr. 

Bernardo Blanco of the Westerfield laboratory, University of Oregon, immersed in 4% PFA. The 

embryos were the offspring of a heterozygous cross, as the mutation is homozygous lethal 

around 6dpf. The homozygous embryos were then sorted from the heterozygous and non-mutant 

embryos based on the ―chinless‖ phenotype in which homozygous embryos have an 

underdeveloped hyomandibular and third and fourth branchial arches (Nissen et al., 2003). The 

heterozygous and non-mutant embryos were processed alongside the homozygous mutants to be 

used as controls. The embryos were then embedded in 1% low melting point agarose. A pulled 

glass needle was dipped into a saturated solution of either DiI in ethanol or DiO in chloroform 

(approximately 50mg per ml). After allowing the dye to crystallise onto the needle, the DiO 

needle was inserted into the temporal extent of the retina of one eye for 20 seconds using manual 

manipulation under stereomicroscopic observation. This was then repeated for DiI into the nasal 

extent of the retina of the same eye. The embryos were then immersed in PBS and incubated 

overnight at 37°C, allowing the dye sufficient time to diffuse along the axonal membrane. 

Labelling of the retina thusly results in DiO labelled anterior tectum and DiI labelled posterior 

tectum so revealing any gross errors of pathfinding or the retinotopic map. After incubation the 

contralateral eye was removed and the embryos whole mounted, injected side down. Using the 

empty socket as a window, the optic projection was imaged using a laser scanning confocal 

microscope (LSM510, Zeiss). Approximately 60 optical sections of 2µm step size were scanned 

per embryo to capture the entire projection from nerve head to tectum. Other foxi1
-hi3747

 mutant 

embryos were traced with DiI only in one eye and DiO only in the other eye, processed as above 

and then mounted dorsally, to reveal any potential midline crossing defects. 
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3.3.7 Quantitative PCR 

Retinal quadrants were isolated from 7dpl wild type (WIK) adults and RNA was extracted, as 

previously described. RNA concentration and purity were assessed using the Nanodrop and the 

Agilent 2100 Bioanalyzer platform, respectively, as described above. RNA samples were then 

pooled (intra-quadrant pooling) and cDNA production was performed as above. cDNA 

concentrations and purity were assessed using the Nanodrop. Any samples of low concentration 

and purity could be discarded at this stage, but all were found to fall within a suitable range. 

cDNA samples were then pooled (intra-quadrant pooling) and aliquoted. This gave a large 

volume of sample for each quadrant which minimised experimental variation and biological 

variation. Fold changes in cDNA levels were calculated using the delta-delta-Ct method, using 

gapdh and L24 expression as housekeeping genes (Livak and Schmittgen, 2001). qPCR was 

performed on a Corbett RotorGene 2000 real time cycler using Roche SYBR Green master mix 

kit. 

 

Reaction assembly, as modified from manufacturer's recommendations: 

12.5 µl SYBR Green Master Mix 

7 µl H20 

3 µl Primer pair (10 µM) 

(Volumes are for 1 single reaction) 

 

A master mix was made of these three components which was thoroughly mixed by pipetting. 22.5 µl 

of the mix was aliquoted into 200 µl micro eppendorf tubes, to which 2.5 µl cDNA was added. The 

dilution of the cDNA was 1/40 of the stock, as determined by running a dilution series of 1/5 to 1/80 to 

establish amplification efficiency. An efficiency value of greater than 0.6 was considered acceptable as 

efficiency was adjusted for using the qBase application v1.3.5 (BioGazelle) to calculate fold change 

based on two housekeeping genes for increased validity.  
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The program used was as follows: 

Initial denaturation  95°C  10 minutes 

Denaturation   95°C  15 seconds 

Annealing   58.5°C 20 seconds 

Elongation   72°C 20 seconds 

Final elongation   72°C rising to 95°C over 10 minutes 

with stepwise denaturation 

 

Primers for qPCR were designed using Primer3 (http://frodo.wi.mit.edu/primer3/) and Roche 

ProbeFinder for the Zebrafish Universal ProbeLibrary (http://www.universalprobelibrary.com). They 

were synthesized by VHBio (VHBio.co.uk). Primers were designed to amplify a sequence of 100 to 

150 bases in length. In some cases the length had to be greater than 150 bases to allow for optimum 

primer binding. Primers were designed to span an intron when possible to minimise the risk of 

amplification of contaminant genomic DNA. All PCR reactions gave amplicons of the expected size 

and all minus reverse transcription controls were negative (until 45 cycles). Gapdh and L24 were 

selected as housekeeping genes as they are generally accepted as good housekeeping genes (Veldman 

et al., 2007).  

 

Primer sequences of housekeeping genes: 

GAPDH, 5'-ATGACCCCTCCAGCATGA-3' and 5'-GGCGGTGTAGGCATGAAC-3'. 

L24, 5'-TGAGGAGGTGTCGAAGAAGC-3' and 5'-GCACTTCAGGCTTCTGGTTC-3'. 

 

Primer sequences of genes of interest: 

FOXD1L, 5'- AAAGCCTATGGCACTGGTGA -3' and 5'- CGAACAGATGCGGGAGAG -3'. 

FOXG1A, 5'- CCACTTCTAGGGCAAAGCTG -3' and 5'- GATGGTGAAGCGAGAGGAAC -3'. 

SOHO, 5'- AGCAAAAGAACAACGGCAAG -3' and 5'- GGTAAGCTGCAAGGAGTTCG -3'. 

 

 

  

http://frodo.wi.mit.edu/primer3/
http://www.universalprobelibrary.com/
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3.4 Results 

 

3.4.1 Microarray validity 

Processing and quality control of the RNA samples was carried out by Miltenyi Biotec using the 

Agilent 2100 Bioanalyzer (Fig. 3.4). The RNA samples were found to have RIN values between 

8.8 and 9.3, with anything greater than 6 being considered as sufficient quality for gene 

expression profiling experiments (Fleige et al, 2006). cRNA yields and dye incorporation rates of 

each sample were measured by Miltenyi Biotec using the ND-1000 Spectrophotometer 

(Nanodrop Technologies) and found to be in a comparable range (Table 3.2). Following 

hybridisation and scanning of the array, the data was analysed by Miltenyi Biotec and then 

visualised in scatter plots of signal intensities for each sample comparison (Fig. 3.5). The 

percentage of probes tested that showed signal intensities that were statistically increased or 

decreased between samples (p<0.01) was as high as 38% for one of the comparisons, with an 

average of 28% for all comparisons. This p-value refers to the technical replicates within the 

microarray and therefore is not a direct indication of biological significance as only a single 

microarray was performed in technical duplicate. With that caveat, following lesion a similar 

number of genes are upregulated as are downregulated. This is true for both the nasal (Fig3.5B) 

and temporal (Fig3.5C) extents of the retina. Temporal retina has more regulated genes (up and 

down) than nasal (8209 out of 21410 versus 5805 out of 21410). For fold difference (spatial 

regulation) before lesion we see a similar trend of numbers of up and down regulated genes 

being quite similar (Fig3.5A). For fold difference following lesion (Fig3.5D), there is an increase 

in the total number of regulated genes, from 3193 without lesion to 6561 following lesion, with 

the increase being skewed more to downregulation than upregulation, to give a total 

downregulation of 3568 versus an upregulation of 2903. 
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Fig. 3.4. Gel image (A) and electropherogram (B) of total RNA samples. As a reference, the RNA molecular weight ladder (in nucleotides, 

nt) is shown in the first lane. The lowest migrating green band represents an internal standard. The two prominent peaks within the 

electropherograms represent ribosomal RNA: left 18S RNA, right 28S RNA. Scaling of the y-axis is done automatically, relative to the 

strongest signal within a single run. All samples were found to have a RIN greater than 8 and so were satisfactory for microarray processing. 

Modified from data and images generated by Miltenyi Biotec. 

 

 

 

Table 3.2. cRNA yield and dye incorporation rates for each sample. 

Dye incorporation rates, as measured using the ND-1000 Spectrophotometer  

(NanoDrop Technologies), were comparable between the different samples. 

         Modified from data and images generated by Miltenyi Biotec. 
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Fig. 3.5. Scatter plot of signal intensities of all spots for all comparisons. 

The signal intensities of each feature represented by a dot is shown in double logarithmic scale. X-axis: control-log 

signal intensity; y-axis: sample-log signal intensity. Red diagonal lines define the areas of 2-fold differential signal 

intensities.  

Blue cross: genes which are not significantly regulated. 

Red cross: significantly upregulated genes (technical replicate p-value <0.01).  

Green cross: significantly downregulated genes (technical replicate p-value <0.01).  

Grey cross in legend: total of significantly up- and downregulated signatures. 

A. Nasal Control versus Temporal Control – Spatial fold difference without lesion 

B. Nasal Control versus Nasal Lesion – Fold change in the nasal extent of the retina 

C. Temporal Control versus Temporal Lesion – Fold change in the temporal extent of the retina 

D. Nasal Lesion versus Temporal Lesion – Spatial fold difference with lesion 

Following lesion, a similar number of genes are upregulated as are downregulated. This is true for both the nasal 

(Fig3.5B) and temporal (Fig3.5C) extents of the retina. Temporal retina has more regulated genes (up and down) 
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than nasal (8209 out of 21410 versus 5805 out of 21410). For fold difference (spatial regulation) before lesion we 

see a similar trend of numbers of up and down regulated genes being quite similar (Fig3.5A). For fold difference 

following lesion (Fig3.5D), there is an increase in the total number of regulated genes, from 3193 without lesion to 

6561 following lesion, with the increase being skewed more to downregulation than upregulation, to give a total 

downregulation of 3568 versus an upregulation of 2903. 

  Modified from data and images generated by Miltenyi Biotec. 

 

 

3.4.1.1 Gene lists 

From the raw array data and subsequent analysis, lists of genes were produced which provide 

varying levels of detail and can be used to follow the process of elimination to arrive at the final 

candidate genes. These lists are attached as computer files as they contain many hundreds of 

pages of data. For each list detailed below there are four versions; one for each sample pair 

comparison. 

 

Single-experiment raw data list 

The basic output data from the Agilent Feature Extraction software includes gene lists with the 

complete raw data sets, referred to as single-experiment raw data list. These are complete gene 

lists with all raw data. 

 

Single-experiment normalized data list 

Signal intensities from the single-experiment raw data lists were normalized by dividing the 

intensity values by their median. These normalized signal intensities were provided as a common 

table of single-experiment normalized data list which includes data on whether the signal 

intensity is positive or negative and if the signal is significantly above background. 

 

Gene ratio list 

Using the Resolver software gene ratio lists were generated for all genes compared between 

sample pairs which includes information on all normalized sample/control log10 ratios and fold 

changes, sequence descriptions and technical p-values. 
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Pre-selected candidate gene list 

From the gene ratio lists putative candidate genes with a technical p-value <0.01 were pre-

selected and summarised in the pre-selected candidate gene list. For each sample pair the 

preselected candidate list contains approximately 7000 genes, selected from the original 21410 

on the array. 

 

3.4.1.2 Indicator genes 

Once candidate genes were selected, indicator genes were selected to gauge the biological 

validity of the array data. Several indicator genes known to have certain patterns of regulation 

from the literature were compared to the array results for these genes. These analyses largely 

focused on upregulation following lesion (fold change) as there are many more genes with 

confirmed upregulation following lesion than those with a confirmed spatial regulation within 

the retina. Known upregulated genes included L1.1, beta thymosin, gap43, bmp2b, sox11a and 

sox11b which were all confirmed with an upregulation greater than 2 fold following lesion. Beta 

thymosin, gap43 and L1.1 were amongst the most highly regulated genes on the array with 55, 24 

and 10 fold change, respectively. To put this in context, only 40 out of 21410 genes had a fold 

difference greater than 10. However not all indicator genes matched expectations, as nrp1a had a 

fold change of less than two, which is the cut off point recommended by Miltenyi. Widely 

accepted housekeeping genes (Veldman et al, 2007; McCurley and Callard, 2008) were also used 

for indicators to detect false positives. β-actin, gapdh, L24, tbp, b2m and elfa all had ratios of 

less than two fold, indicating lack of regulation. The ratios for these comparisons are what would 

be expected based on the literature and are therefore in line with the microarray's data being 

valid. 

 

3.4.2 Candidate genes 

The partially annotated data obtained from Miltenyi Biotec, contained comparisons of gene 

expression between pairs of samples. Depending on which samples were being compared, this 

gave us a list of fold difference (Nasal versus Temporal retina) or fold change (Control versus 

Lesion). From these lists of several thousand probes each, a shortlist of candidate genes was 

selected for further investigation. To arrive at this shortlist we first defined our criteria for 

selection as follows: It can be expected that many genes involved in regeneration would be 
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upregulated during regeneration. This information can be obtained from the comparisons of the 

Nasal Control and the Nasal Lesion samples and the comparison of the Temporal Control and 

Temporal Lesion samples. However it can also be expected that many of the upregulated genes 

will be downstream of the genes which initiate and guide regeneration and will have more 

fundamental, basic roles in growth and repair e.g. producing actin. To narrow the search for 

more relevant upstream signals, we focussed on cell surface receptors and transcription factors. 

Interestingly, transcription factors account for up to 20% of the most highly spatially regulated 

genes on the array, when, in the human genome, transcription factors make up less than 10% of 

the total genes (Kasowski et al., 2010). Once candidate genes had been selected, their properties 

were analysed in all four of our sample pair comparisons, but to initially select these genes our 

main focus was on the spatial regulation following lesion (fold difference of Nasal Lesion versus 

Temporal Lesion). Spatial regulation of gene expression would indicate a gradient across the 

retina. If the microarray data indicates more probe binding in Nasal Lesion than Temporal 

Lesion sample, this indicates higher gene expression in the nasal retina compared to the temporal 

retina following lesion and we would expect a gradient to exist across the RGC layer of the 

retina going from nasal high to temporal low. Genes which show spatial regulation following 

lesion may be involved in axon pathfinding and map formation. Regenerating axons may be 

repelled or attracted by the molecule which constitutes the gradient and so either turn away from 

the gradient or grow against the gradient towards higher concentrations. Axon behaviour may be 

dependent on specific concentration ranges so the low end of a gradient may attract an axon until 

the concentration increases to the point where it switches to inhibition, thus mapping the axon to 

a point on the concentration gradient. By focusing on the Nasal Lesion versus Temporal Lesion 

sample pair we aimed to select genes involved in anterior / posterior mapping onto the tectum. 

This also increased our chances of finding novel genes or novel functions for genes as this 

aspect, in comparison to regeneration, has been less studied in microarray studies. From the pre-

selected candidate gene list of 7092 probes, we first manually annotated the 100 probes with the 

greatest positive fold difference (temporal retina expression higher than nasal retina expression) 

and the 100 probes with the greatest negative fold difference (nasal retina expression higher than 

temporal retina expression). Each probe was annotated to varying extents, some already had their 

associated gene name, while others had accession numbers or expressed sequence tag 

designations which could be searched for in NCBI. Other probes were coded based on third party 
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databases such as the TIGR Gene Index database (http://compbio.dfci.harvard.edu/tgi/cgi-

bin/tgi/gireport.pl?gudb=zfish). A sequence was obtained from these databases which could be 

BLASTed against the NCBI database to obtain the gene or predicted gene that the probe 

represents. The final category of annotation was that of Agilent's own probe identifiers. These 

identifiers correspond to a database of 60mers. These 60mers could then be BLASTed. Once the 

gene or predicted gene was identified, key properties of the gene were researched, such as 

possible roles in signal transduction. We sought help from bioinformaticians to automate this 

process and allow for the use of gene ontology software, but the disparate nature of the existing 

annotation made the task complex. After 100 genes from the top and 100 genes from the bottom 

of the list were manually annotated, the next 100 from the top and the next 100 from the bottom 

were assessed, but not fully annotated. 32 genes were chosen from this short list for further 

investigation using in situ hybridisation, along with additional genes which are homologues or 

paralogues of candidate genes but were not selected directly from the array data. 

 

3.4.3 Embryo in situ hybridisation 

Of the 34 genes selected for in situ hybridisation, 17 gave distinct mRNA expression patterns in 

embryos (Table 3.3). These patterns are described in figures 3.6 and 3.7. Four of the candidate 

genes (foxi1, foxd1-like, foxg1a and epha4b) showed expression gradients in the developing 

retina. These gradients possessed the same polarity as the adult gradients indicated by the array. 

 

 

 

 

 

 

 

 

 

 

http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gireport.pl?gudb=zfish
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gireport.pl?gudb=zfish
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Gene Fold 

difference 

P value Description Embryonic expression pattern 

FOXI1 22.70273 7.19E-40 Transcription factor  Temporodorsal retina, Otic vesicle, Rostral spinal  

       cord 

FGA 20.06361 4.53E-17 Protein bridging  Discrete areas of yolk sac surface 

         

FOXDI-Like 19.5379 6.17E-41 Predicted transcription  Temporal retina, Midbrain/chiasm 

      factor   

PLXDC2-Like 19.35315 1.62E-16 Predicted transmembrane  Notochord,  

      protein Midbrain/hindbrain boundary 

DLX2A 6.73358 1.77E-09 Transcription factor  Caudal telencephalon, Dorsal diencephalon 

         

HOXC5A 6.47784 0.00001 Transcription factor  Caudal embryo,  

       Spinal cord 

HOXB1A 3.92032 0.00005 Transcription factor  Rhombomere 

        

HOXA3A 3.45594 0.00839 Transcription factor  Rhombomere, Gradient in spinal cord rostral high  

       to caudal low 

RGMB 1.65077 1.86E-06 NEO1 ligand  Lens, Forebrain 

        

FOXD1 Not Not  Transcription factor  Diencephalon/chiasm, 

  significant significant  Sclerotome (Not in retina) 

RGMA -2.12432 0.00003 NEO1 ligand  Forebrain, Lateral line primordium, Tip of tail,  

       Some cranial ganglia, Differentiated neurones 

FGF3 -3.8893 8.38E-08 FGFR ligand  Midbrain/hindbrain boundary,  

       Tip of tail 

FGF4 -4.34497 0.00055 Growth factor  Midbrain/hindbrain, Gut,  

       Tip of tail 

PDX1 -4.35575 4.87E-12 Transcription factor  Pancreas 

         

HSF2 -4.62179 4.50E-08 Transcription factor  Rostral embryo 

         

FOXG1A -46.23848 1.95E-43 Transcription factor  Telencephalon, Nasal retina, 

       Cranial ganglia 

EPHA4B Not known  Not known  Eph receptor Temporal retina 

  on array on array    

Table 3.3. Candidate genes which gave distinct expression patterns in 24hpf embryo in situ hybridisation, in 

order of fold difference. 

Contents of the table: The fold difference between nasal lesioned retina and temporal lesioned retina (positive 

number indicates temporal has higher expression, negative number indicates nasal has higher expression); The p-

value of the fold difference indicates that all of the selected genes are technically statistically significant (but does 

not provide information on biological significance); A basic description of the gene product’s molecular function as 

it relates to our study; A description of the mRNA expression patterns of whole mount 24hpf embryos. Epha4b lacks 

http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-030505-1
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-031010-21
http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000029179;r=5:33368363-33370146;t=ENSDART00000043341
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=protein&dopt=GenPept&list_uids=148725591
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-980526-212
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-980526-533
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-990415-101
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-000823-3
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-040527-2
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-040426-2094
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-040527-1
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-980526-178
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-001006-1
file:///E:/Thesis/Split/Tables/v
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-011128-1
http://zfin.org/cgi-bin/webdriver?MIval=aa-markerview.apg&OID=ZDB-GENE-990415-267
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associated values as a probe for it is not known to be on the array i.e. array probes may exist for this gene but they 

are not annotated as such. Epha4b and the genes with fold differences of less than two were studied as they are 

paralogues or homologues of genes of interest from the array. Genes in red are those that exhibited an expression 

gradient in the retina and therefore are of interest for their role / potential role in axon guidance during development. 

 

 

 

Four of the seventeen genes were expressed as a gradient in the developing retina which is 

consistent with a role in retinotopic mapping during development; foxi1, foxd1-like, foxg1a and 

epha4b. For the three genes which have microarray data, the direction of the gradient is in 

agreement. Foxi1 and foxd1-like exhibit temporal high gradients in the in situ hybridisations on 

embryos and in the adult retina based array data. The same is true for foxg1a, with a nasal high 

gradient. Based on embryo mRNA expression patterns and the array data, foxd1 lacks a 

detectable gradient in both embryonic and adult retina. The graded retinal expression pattern of 

foxd1-like, but not foxd1, in zebrafish development and regeneration is similar to that of foxd1 in 

chick development (Takahashi et al., 2009). Based on the array data, the graded retinal 

expression pattern of epha4a in zebrafish regeneration is similar to that of epha4 in goldfish 

regeneration (Rodger et al., 2004). However during the period of development when the optic 

projection is formed, epha4b exhibits a gradient in the retina while epha4a does not 

(Komisarczuk et al., 2008). 
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Fig. 3.6. 24 hours post fertilisation whole mount embryos incubated with anti-sense probes show expression 

patterns of the candidate genes. In order of fold difference.  

A. Foxi1 expression in temporodorsal retina (arrow) and otic vesicle (arrowhead). B. Fga expression in discrete 

areas on the surface of the yolk sac (arrows). C. Foxd1-like expression in temporal retina (arrows) and optic chiasm 

and surrounding midbrain. D. Plxdc2-like expression in notochord and midbrain / hindbrain boundary (arrowhead). 

E. Dlx2a expression in caudal telencephalon (T) and dorsal diencephalon (D). F. Hoxc5a expression in the spinal 

cord (arrow) and caudal embryo. G. Hoxb1 expression in the rhombomere (Rh). H. Hoxa3a expression in the 

rhombomere (Rh) and a gradient in spinal cord rostral high (arrow) to caudal low. I. Rgmb expression in the lens 

(arrows) and the forebrain (Fb). J. Foxd1 expression in the diencephalon (arrow). K. Rgma expression in the 

telencephalon (T), midbrain (M) and hindbrain (H). L. Fgf3 expression in the midbrain/hindbrain boundary (arrow), 

otic vesicle (arrowhead) and the tip of tail. M. Fgf4 expression in the midbrain/hindbrain boundary (arrow) and the 

tip of the tail. N. Pdx1 expression in the pancreas. O. Hsf2 expression throughout the rostral embryo. P. Foxg1a 

expression in the nasal retina(arrows), telencephalon (T), and cranial ganglia (arrowheads). Q. Epha4b expression in 

the temporal retina (arrows). R. Neo1 weak constitutive expression / background labelling only.  

Scale bar in G is 200m. Scale bar in J is 100m. Scale bar in P for A, K and P is 100m. Scale bar in N for images 

D, L, M and N is 200m. Scale bar in O for images A, B, F, H and O is 200m. Scale bar in Q for C, E, I and Q is 

100m. Scale bar in R is 100m.  

A, B, D, F- H and L-O: Rostral is left, dorsal is up, viewed from lateral surface. 

C, E, I-K and P-R: Rostral is left, viewed from dorsal surface. 

E Eye, Tel Telencephalon, Fb Forebrain, M Midbrain, H Hindbrain, Ch Optic Chiasm, Rh Rhombomere.  
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Fig. 3.7. Horizontal cryosections of 3 days post fertilisation embryos incubated with anti-sense probes show 

expression patterns of the 6 candidate genes and positive controls. These sections were developed on the same 

slides as the adult retina sections to act as controls for the tissue type. A. Fga expression in the liver (arrow). B. 

Foxd1-like expression in the temporal retina growth zone (arrows), chiasm (Ch) and gill arches (arrowheads). C. 

Dlx2a expression in the brain. D. Rgmb expression in the retinal growth zone ventral to the lens (left arrow) and at 

the level of the lens (right arrow), the telencephalon (Tel), the midbrain (M) and the lens epithelium (LE). E. Foxd1 

expression in the optic chiasm (Ch) and midbrain (M). F. Rgma graded expression in the tectum, from caudal high 

(lower arrow) to rostral low (upper arrow). Intense expression in the olfactory epithelium (arrowhead) and the 

midline of the hindbrain (ML). P is the pigment layer of the eye and is not due to labelling. G. Foxg1a graded 

expression in the nasal retina (arrows) and expression in the telencephalon (Tel) H. Epha4b graded expression in the 

temporal retina (arrow) and expression in the telencephalon (Tel). I. Neo1 weak constitutive expression / 

background labelling throughout the brain. J. Pdx1 expression in the pancreas (arrow). K. Sox11b positive control 

expression in chiasm (Ch), forebrain (Fb) and midbrain (M), particularly along midline. L. Nrp1a positive control 

expression throughout the CNS and particularly in the RGC layer of the retina (arrows). 

Horizontal sections. Rostral is up. 

T Telencephalon, Fb Forebrain, M Midbrain, H Hindbrain, Ch Optic Chiasm, P Pigment layer of the eye 
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3.4.4 Adult in situ hybridisation 

 

3.4.4.1 Retina 

The embryo analyses indicated which genes have expression patterns which may support a role 

in axon guidance during development. We next looked at the expression patterns of these genes 

in adult regeneration to elaborate on the array findings and confirm if these genes are common to 

both processes or only one. Of the 17 probes which gave distinct mRNA expression patterns in 

embryos, none were found to give detectable expression patterns in adult retina cryosections. 

The in situ hybridisations on adult retina cryosections were rigorously controlled. Multiple 

positive controls were successfully used, examples of which can be seen in Figure 3.8. The 

controls, nrp1a, sox11a and sox11b show upregulation in the RGC layer of retinas from fish with 

optic nerve lesions as expected. Cryosections of 3dpf embryos (Fig. 3.7) were processed and 

developed alongside the adult sections on the same slide, giving clear expression patterns. Based 

on this evidence, which is discussed below, it is likely that the in situ hybridisation is not 

sufficiently sensitive to detect the expression patterns of the candidate genes in adult retina 

cryosections. 

 

3.4.4.2 Brain 

In situ hybridisation was performed on cryosections of adult brain for candidate genes which 

could potentially be expressed in the tectum i.e ligands of receptors expressed by the RGC 

axons. Rgma exhibited an expression gradient in the tectum from caudoventral high to 

rostrodorsal low, with increased labelling intensity of the ependymal layer (Figure 3.9). Rgma 

was the only gene tested to show a clear expression pattern in the adult tectum. 
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Fig. 3.8. In situ hybridisation on adult retina cryosections. Sections in the lesioned column are from retinas 

which are 7 days post optic nerve crush. Sections from the control column are from the contralateral eye which did 

not receive an optic nerve lesion. Nrp1a, sox11a and sox11b are positive controls which have been used previously 

in the lab. Nrp1a and sox11a show expression in the RGC layer without lesion. Nrp1a, sox11a and sox11b show 

clear increases in expression in the RGC layer following lesion. Fgf3, one of the candidate genes, shows no clear 

expression in either situation. Fgf3 is representative of all the candidate genes. 

Scale bar is 100µm. 
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Fig. 3.9. Parasagittal cryosections of the tectum 5 days post left optic nerve crush lesion, incubated with anti-

sense probes show graded expression pattern of rgma. A. Rgma graded expression in the tectum from 

caudoventral high to rostrodorsal low. V is the tectal ventricle. Caudal is down, dorsal is left. B. Epha4b, 
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representative of the candidate genes other than Rgma, shows only background staining and is presented as a 

negative control. C. Weak rgma expression in the rostrodorsal tectum. Ventricle is down. Caudal is down. D. Strong 

rgma expression in the caudoventral tectum showing increased labelling of the ependymal layer (arrow). Ventricle is 

down. Caudal is up. Scale bar for A and B = 100μm. Scale bar for C and D = 50μm. 

 

 

3.4.5 qPCR 

qPCR was carried out for 12 candidate genes and 2 housekeeping genes, gapdh and L24. Both of 

these genes are generally accepted housekeeping genes (Veldman et al., 2007) which have near 

constant expression in all cells due to their ubiquitous functions. Gapdh is an enzyme that 

catalyzes the sixth step of glycolysis and L24 is a ribosomal subunit protein. Primers which gave 

theoretically perfect amplification would result in doubling of amplicon with every cycle and 

give an efficiency value of 1. An efficiency value of greater than 0.6 was considered acceptable 

as efficiency was adjusted for using the qBase application to calculate fold change based on 2 

housekeeping genes for increased validity. Each gene was run in triplicate for each sample for 

the concentration optimisation run and then in triplicate within a single test run per gene. The Ct 

value is the cycle number at which the signal strength, i.e. the amount of amplicon, exceeds a 

defined threshold. The more template copies present in the sample and the more efficient the 

amplification, the lower the Ct value. Of the 12 candidate genes chosen for qPCR, 3 gave 

suitably reproducible results with Cts of replicates within a single cycle of each other (Table 3.4 

and Figure 3.10). The others showed very weak or inefficient amplification, resulting in a high 

Ct value which did not meet stringency cut offs for processing. The delta-delta-Ct method for 

relative qPCR, whereby product levels for an individual primer pair are compared between 

samples, produced values for the relative abundance of each gene transcript, normalised against 

gapdh target levels. Foxg1a showed higher levels of the target in cDNA derived from the nasal 

retina, foxd1-like showed higher levels of the target in cDNA derived from the temporal retina 

and soho showed no statistically significant differences between samples. Based on the relative 

abundance values from qPCR, the fold differences and fold changes for these genes between 

samples were calculated and compared to the values from the microarray (Table 3.5). qPCR 

confirms the direction and proportion of fold difference found by the array for these 3 candidate 

genes for all available comparisons. Proportions, rather than levels, are compared as both 
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methods use relative comparisons between samples, rather than absolute quantitation of target 

sequence. In the array and qPCR data, foxg1a has a high fold difference for Nasal Lesion retina 

sample (NL) versus Temporal Lesion retina sample (TL) and a high but slightly lower one for 

Nasal Control retina sample (NC) and Temporal Control retina sample (TC). In the array and 

qPCR data, foxd1-like shows a NL versus TL fold difference which is approximately double that 

of NC versus TC. Soho shows insignificant differences between samples for both the array and 

qPCR data. Not all conditions can be compared as some genes are not listed for every sample 

pairing on the array. This is most likely due to a non-significant p-value which may have been 

contributed to by a low fold difference, as the same probe set was tested for all samples. Miltenyi 

advised that we should disregard fold differences of less than two due to potential variation 

introduced in sampling and amplification. 

 The qPCR was based on cDNA generated from separate biological samples, using 

different kits and experimenter than the cDNA generated for the array (which was generated by 

Miltenyi). Despite these differences, and the main difference of a different method (qPCR versus 

microarray), the results are very similar. When the proportions of the fold differences are 

compared within each method, it can be seen they are broadly proportional between methods e.g. 

Based on the qPCR data for foxg1a the NL / TL fold difference is 1.2 times the NC / TC fold 

difference. For the microarray data this relationship is 1.1. Due to the different processes used to 

arrive at these results it can be expected that they will not match exactly. Given the disparate 

methods of measuring the same biological property, such broad similarities in the results are a 

good confirmation that both methods have been successful. However the confirmation of the 

array as a whole based on the qPCR data should not be overstated, as it based on only 3 genes as 

only 3 genes investigated for qPCR were found to be suitably reproducible.  
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Fig. 3.10. qPCR data for relative abundance of each gene transcript for all samples, normalised against 

GAPDH.  

Foxg1a showed higher levels of the target in cDNA derived from the nasal retina, foxd1-like showed higher levels of 

the target in cDNA derived from the temporal retina and soho showed no statistically significant differences 

between samples. 

Each bar represents 3 replicates from within a single run per gene. 

NC - Nasal Control, NL – Nasal Lesion, TC – Temporal Control, TL –Temporal Lesion 

 

 

  



 

123 

 

 

 
FOXG1A   FOXD1L   SOHO   

Sample qPCR Microarray qPCR Microarray qPCR Microarray 

NC V TC -17.5 -41.8 4.1 10.6 -2.3   
NL V TL -20.5 -46.2 8.7 19.5 -1.2 <±2 
NC V NL 1.1   -1.8   -1.2 <±2 
TC V TL -1.1   1.2 <±2 1.7 <±2 
              

Table 3.5. Comparison of measures of fold difference and fold change between samples, derived from qPCR 

and from microarray. The blank cells are due to no data being present on the array for these comparisons. 

Microarray data which shows a ratio of less than ±2 is considered as insignificant. 

qPCR confirms the direction and proportion of fold difference found by the array for these 3 candidate genes for all 

available comparisons. In the array and qPCR data, foxg1a has a high fold difference for NL versus TL and a high 

but slightly lower one for NC and TC. In the array and qPCR data, foxd1-like shows a NL versus TL fold difference 

which is approximately double that of NC versus TC. Soho shows insignificant differences between samples for 

both the array and qPCR data. 

 

 

3.4.6 Foxi knockout does not alter retinotectal phenotype in embryos 

Of the four genes found to be expressed in the developing retina, foxi1 was the most interesting. 

The transcription factor foxi1 has the highest fold difference for the Nasal Lesion versus 

Temporal Lesion comparison at 22.7 fold. Contrast this to the Nasal Control versus Temporal 

Control array where foxi1 has an impressive but significantly lower fold difference of 9.3. This 

indicates that foxi1 is expressed in a gradient in the unlesioned adult retina and the gradient 

becomes more pronounced following lesion. Moreover, it is a transcription factor, it is in the 

same family as foxg1a and foxd1 which have also been selected as genes of interest, it has been 

shown to be expressed in a highly specific spatial pattern in the embryonic zebrafish retina (Fig. 

3.11) and has a knockout mutant available. Given the highly localized expression pattern seen in 

the foxi1 embryonic in situ hybridisations it could be expected that foxi1 plays a role in 

retinotectal mapping. Foxi1 is known to play an important role in the formation of the otic 

system (Hans et al., 2007) but there are no publications linking it to mapping in the retinotectal 

system. We obtained preserved 3dpf foxi1
-hi3747

 embryos courtesy of Judy Peirce and Dr. 

Bernardo Blanco of the Westerfield laboratory. The embryos were sorted based on homozygotes 
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possessing the ―chinless‖ phenotype due to a reduced hyomandibular and reduced third and 

fourth branchial arches (Fig3.12). 

From our tracing of 19 chinless and 13 non-chinless siblings, we could discern no gross 

abnormalities of the optic tract or retinotopic mapping (Fig. 3.13). This was in addition to 23 

unsorted, traced foxi1 mutant embryos which also exhibited no obvious retintotectal phenotype. 

 

 

 

Fig. 3.11. Foxi1 expression in 36hpf Zebrafish embryo.  

Indicating expression in the dorsal retina, which shifts temporodorsally during development. Expression is also 

indicated in the otic vesicle and the branchial arches, both of these tissues have an altered phenotype in the mutant 

(Fig3.12). 

Rostral is left, dorsal is up. 

Image modified from Thisse et al., 2001. 
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Fig. 3.12. Wild type (upper) and homozygous foxi1 mutant (lower) 5dpf embryos. 

Homozygous mutant has a cleft due to a reduced hyomandibular and reduced third and fourth branchial arches. Wild 

types and heterozygous mutants lack this cleft therefore homozygous mutants can be isolated based on their 

"chinless" phenotype. The phenotype is evident from 2 to 6 dpf, when the mutant embryos die. 

Modified from direct ZFIN submission ZFIN ID: ZDB-FIG-070117-810. 
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Fig. 3.13. Lack of gross abnormalities in foxi1
-hi3747

 mutant optic tract or retinotopic mapping revealed by DiI 

and DiO tracing in the 3dpf embryo. A-D. Controls which lack the chinless phenotype (wild type and 

heterozygotes). These controls are indistinguishable from standard WIK controls (See Fig. 4.5C and D). E-H. 

Homozygous mutants possessing the chinless phenotype exhibit no noticeable aberrations in these scans of the 

retinotectal projection. 

Dorsal is up and rostral is left. Scale bar is 100µm. 
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3.5 Discussion 

Informed by microarray data for RGC gene regulation following lesion, differential expression 

patterns for 17 candidate genes were demonstrated during development when the optic system is 

being established. None demonstrated expression patterns in the adult regenerating retina, most 

likely due to insufficient sensitivity of the method. The candidate gene foxi1 exhibited a spatially 

restricted expression pattern in the developing retina but knockout of foxi1 did not induce a 

detectable phenotype in the optic projection. 

 

3.5.1 Zebrafish orthologues of known guidance cues in other species 

Of the 17 genes which were found to be expressed during development, 4 were expressed as a 

gradient in the developing retina which is consistent with a role in retinotopic mapping during 

development; foxi1, foxd1-like, foxg1a and epha4b (Table 3.3 and Fig. 3.6 and 3.7). For the 3 

genes which have microarray data, the direction of the gradient is in agreement between the two 

methods. Foxi1 and foxd1-like exhibit temporal high gradients in the in situ hybridisations on 

embryos and in the adult retina based array data. The same is true for foxg1a, with a nasal high 

gradient. In addition to foxg1a, there are a further two zebrafish foxg1 paralogues; foxg1b and 

foxg1c. Foxg1b has a dorsonasal expression pattern in the developing retina, whereas foxg1c is 

expressed only transitorily in the retina early in development (Zhao et al., 2009). Based on 

embryo mRNA expression patterns and the array data, foxd1 lacks a detectable gradient in both 

embryonic and adult retina. The graded retinal expression pattern of foxd1-like, but not foxd1, in 

zebrafish development and regeneration is similar to that of foxd1 in chick development. 

(Takahashi et al., 2009). This may indicate that foxd1-like, rather than foxd1, is the functionally 

equivalent orthologue of chick foxd1. As 3 of the 4 genes which are expressed in a gradient in 

the developing retina are from the fox family, it is likely that this family of genes is highly 

important in retinotectal development. 

 Based on the array data, the graded retinal expression pattern of epha4a, but not epha4b, 

in zebrafish regeneration is similar to that of epha4 in goldfish regeneration. (Rodger et al., 

2004). However during the period of development when the optic projection is formed, epha4b 

exhibits a gradient in the retina while epha4a does not (Komisarczuk et al., 2008). This could 

indicate that the epha4a is the functional equivalent of goldfish epha4 during regeneration but 

that epha4b is more likely to play a role in development than epha4a. 
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 We found that rgma is upregulated in the adult tectum during regeneration (Fig. 3.9) and 

is expressed throughout the brain during development (Fig. 3.6K), with the expression patterns 

being compatible with optic axon guidance during development and regeneration. However we 

did not detect its main known receptor, neo1, in the embryonic or adult retina. Other studies have 

also failed to detect neo in the developing retina (Thisse et al., 2001). It is possible that rgma has 

another receptor in zebrafish, such as a paralogue of neo1. 

 

3.5.2 To what extent is regeneration a partial recapitulation of development? 

Of the 17 genes which gave distinct expression patterns in the embryo, 4 exhibited gradients in 

the retina (Table 3.3). According to the microarray data 14 of these 17 genes are expressed in a 

gradient in adult retina following optic nerve lesion. Taken at face value, this indicates that for 

our candidate genes, 10 of the 14 genes which are expressed as a gradient during regeneration 

are not expressed as a gradient during development of the retinotectal system. However, as the in 

situ hybridisations on adult retina cryosections appear to lack the sensitivity required to confirm 

the array results (discussed below), it may be that gradients in the embryonic retina are also 

going undetected by in situ hybridisation. In order to resolve this situation an equivalent method 

must be used on both the adult and embryonic tissue, such as qPCR (discussed in further 

methods below). 
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3.5.3 Lack of candidate gene signal in adult retina in situ hybridisation 

Due to the qPCR findings concurring with the array data, the statistical confirmation of the 

technical aspect of the array data and the general agreement of indicator gene patterns from the 

literature, it is reasonable to assume that the array data is at least partially correct and therefore 

the negative results from the adult in situ hybridisations require explanation. The overall quality 

of the cryosection in situ hybridisations was generally good, as indicated by low levels of 

background staining and robust labelling of multiple positive controls (Fig. 3.8). All 17 probes 

were confirmed by in situ hybridisation on 24hpf embryos (Fig. 3.6), the majority of which also 

exhibited expression on 3dpf embryos which were developed on the same slides as the adult 

cryosections to give each slide a control (Fig. 3.7). These observations argue that neither the 

probes, tissue or the method can be wholly responsible for the lack of clear signal in the adult 

sections. This points to a property of the candidate genes themselves being a factor. The most 

likely explanation is that the method is not sensitive enough to detect certain genes which may be 

expressed at low levels. Evidence for this is discussed here. The microarray data gives no 

indication of the absolute levels of gene expression as measured by mRNA levels. However PCR 

and qPCR can give an indirect, relative indication of mRNA levels. The late amplification of the 

candidate genes in qPCR, compared to the lower Cts of the housekeeping genes, may be due to 

less target available for amplification, indicating low expression levels. The relative difficulty in 

amplifying many of the candidate genes by RT-PCR for probe making, in comparison to 

amplifying unrelated genes for other projects, could also be explained by low levels of target 

sequence in the mRNA and hence the cDNA. The candidate genes were found, in general, to be 

more readily amplified from cDNA based on template embryonic mRNA rather than adult 

derived mRNA, which may indicate that the embryo derived cDNA has relatively higher levels 

of the target sequence. Generally, embryonic tissue yielded greater concentrations of cDNA than 

adult retina samples but this was equilibrated before use. Furthermore, in situ hybridisation on 

cryosections is generally a less sensitive method than in situ hybridisation on whole tissue due to 

the additional processing and freeze-thaw of tissue, which can damage mRNA, required for 

cryosection processing. 

 Could a bias have been introduced in gene selection to favour genes with low abundance 

mRNA? Candidate genes were selected for two main criteria; the gene being classed as a 

transcription factor and having a high fold difference. A majority of the candidate genes (20 of 
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34) are transcription factors. Transcription factors can take part in a signal transduction cascade 

activating other genes, possibly other transcription factors, thus leading to an amplification of the 

signal. Depending on the specific transcription factor, where in the cascade it functions will 

determine its abundance. It can be expected that those nearer the beginning of the cascade will be 

found in lower abundance. However the information to support or deny this supposition is not 

readily available. Furthermore, of the 20 genes which reached the probe stage, 8 are non-

transcription factor genes. For the 14 genes which did not successfully reach the probe stage, 6 

are non-transcription factor genes. These proportions are not statistically significantly different 

indicating that transcription factor candidate genes could be amplified by PCR as successfully as 

non-transcription factor candidate genes. A second potential source of bias is that the candidate 

genes were selected for having high fold differences on the array. This is a measure of relative 

abundance of the target sequence between two samples and gives no information on the absolute 

abundance of the targets. It is possible that genes with low expression levels are more likely to 

have high fold differences on the array as an equivalent absolute change in the number of 

mRNAs present for a specific gene would have a more pronounced effect on relative levels if the 

number of mRNAs for that gene was low to begin with. However, the 17 genes which have 

probes successfully confirmed in embryos, present a mix of fold differences from the very 

highest (foxg1a, -46.2) to genes which are regarded as having no fold change as they are below 

the two fold cut off (rgmb, 1.7). Thus it seems unlikely that a bias was introduced by our 

selection methods. 
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3.5.4 Further methods 

Performing immunohistochemistry against the candidate genes is a method which could be used 

to confirm the array results, via the detection of the end product of the gene regulation rather 

than the mRNA. Unfortunately the availability of antibodies for use in zebrafish is still relatively 

poor. We did attempt immunohistochemistry using a Foxg1a antibody known to work in mice 

but untested in zebrafish. The results were negative, which is not surprising as mammalian and 

zebrafish proteins tend to share around 50% homology, which is generally insufficient for 

antibody cross-reactivity. 

 Performing in situ hybridisation on vibratome sections of retina may enhance any weak 

signal. This method can be more sensitive than cryosectioning as it avoids freeze-thaw of the 

tissue and uses the same protocol as the in situ hybridisation on whole embryos. However, due to 

the soft and fragile nature of the unfrozen eye, vibratome sectioning is more challenging and less 

efficient than cryosectioning.  

 As this was a single-channel microarray, data can be compared between different arrays 

using the same probes. Therefore performing additional arrays, with the same probes, would 

allow a statistical comparison, confirming the results of the original array. Also performing 

additional microarrays in triplicate, rather than the microarray in technical duplicate, would 

allow for more rigorous and informative statistics which would also direct candidate gene 

selection. Constant improvements in the microarrays available and annotations for microarrays 

of the zebrafish genome will allow for greater use of automated expression profiling programs 

such as the EBI Expression Profiler (http://www.ebi.ac.uk/expressionprofiler/index.html). 

 For any future arrays, sample enrichment for RGCs would allow for increased certainty 

that the regulated genes being detected are from RGCs. Fluorescence activated cell sorting 

(FACS) is a relatively quick and large scale method for the isolation of fluorescently tagged 

cells. This is usually performed in a transgenic line which expresses GFP in the cells of interest. 

FACS could be applied to the shh:GFP and pou4f3:GFP lines which express GFP in the RGCs. 

Following surgical separation of the eye into thirds, the opposing extents of the retina would be 

homogenised in separate samples and then FAC sorted. FACS can give purities of the target cell 

which approach 100%. Another method to enrich samples for RGCs, which we trialled, was to 

use laser capture microdissection (LCM). This technique works by the binding of selected areas 

of a cryosection onto a plastic slide, such as the Capsure extraction kit (Arcturus), by using a 

http://www.ebi.ac.uk/expressionprofiler/index.html
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laser pulse to melt the plastic onto the section. This captures the selected area of cells, which 

would be the RGC layer. mRNA can then be extracted from these cells and used for a 

microarray. The downside of this method is the limited amount of mRNA that can be extracted 

from each section, so requiring many retina sections to achieve a sufficient concentration of 

mRNA. These methods can also be used to enrich mRNA samples for other methods such as 

qPCR. 

 Given that the microarray results are based on end point measurements, albeit from an 

array performed in technical duplicate, whereas the qPCR ratios are based on a series of 

measurements performed for each cycle on samples in triplicate, it is likely that the qPCR results 

are the more accurate of the two sets. However relative qPCR only indicates the relative 

abundance of the target when compared between samples. Absolute quantification qPCR using 

multiple primer sets against each gene would be one method of triangulating the number of 

target transcripts for genes of interest. Despite the difficulty of amplifying less abundant 

sequences, qPCR remains one of the best ways of confirming microarray data. A higher success 

rate could be expected with the use of the most appropriate methods, such as Taqman probes, 

which are more resistant to late cycle contamination, ever-expanding Universal Probe Libraries 

and specialised kits for the amplification of rare transcripts. qPCR could be applied to embryonic 

retina mRNA samples. mRNA samples can be generated from opposing extents of the embryonic 

retina in similar ways to that of the adult, through surgical separation which can optionally be 

enhanced by LCM or FACS. By performing qPCR on both adult and embryonic retina samples, 

the problems of inter-method variation would be eliminated which currently exist with the 

comparison of embryonic in situ hybridisation results versus adult microarray data. 

3.5.4.1 Adult manipulations 

The genes which are indicated to be expressed as gradients in the adult retina by the array data 

could be investigated further through manipulation of their expression. In addition to gene 

knockdown during development, morpholinos can also be used to knockdown gene expression 

during adult optic nerve regeneration. Morpholino knockdown in RGCs during regeneration can 

be achieved by implanting a foam pledget soaked in morpholino at the site of optic nerve 

transection. The morpholino is retrogradely transported to the RGC cell body (Veldman et al., 

2007; unpublished observations). Newer vivo-morpholinos (Morcos et al., 2008) may provide 

the opportunity to apply repeat doses of morpholino during regeneration for as long as is 
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required, by introducing morpholino into the vitreous humour thus allowing it to pass into the 

RGCs which are adjacent to this space. The heatshock inducible GAL4/UAS system also offers 

the potential to perturb putative guidance molecules during adult regeneration (see Fig. 2.7). 

 

3.5.4.2 Foxi1 knockout does not grossly affect retinotopic mapping 

Given the highly localized retinal expression pattern seen in the foxi1 embryonic in situ 

hybridisations it could be expected that foxi1 plays a role in retinotectal mapping. Foxi1 is 

known to play an important role in the formation of another sensory system; the otic system 

(Hans et al., 2007). It is clear that foxi1 has important functions for development; without foxi1 

the embryo develops mandibular abnormalities, otic vesicle abnormalities and the swim bladder 

fails to inflate leading to death at 6dpf. However, despite the expression of the gene at the 

appropriate time and place to affect retinotopic mapping tracing of the optic projection in the 

mutant shows no indication of altered phenotype in the retinotectal system.  

 One possible explanation is that the mutant may not be truly null and the effects seen in 

other organs can be accounted for by toxic effects of the mutant protein or the mutant protein 

retaining domains sufficient for its putative role in the retinotectal system but not other tissues. 

This however is unlikely as the mutant protein, which has a proviral integration towards 5', is 

truncated before the DNA-binding domain which is conserved between species and is therefore 

likely to be essential for the function of the gene (Nissen et al., 2003). Of the four foxi1 mutants 

originally generated, foxi1
-hi3747

 had the integration site furthest towards 5' and the most 

consistent phenotype. The lack of in situ hybridisation signal for foxi1 expression in the mutants 

also suggests a destabilised mRNA due to the mutation (Nissen et al., 2003). However the 

precise sequence of the probe is not given so it may be that the probe targeted a sequence which 

had insufficient overlap with the mutant sequence. Additionally, the foxi1 mutant phenotype was 

phenocopied through the use of morpholinos. This phenocopy was acheived in only 50% of 

morphants, which is to be expected when comparing a knockdown to a knockout. While 

unlikely, it cannot be conclusively ruled out from this evidence that part of the enhanced effect 

of the mutation compared to the morpholino knockdown is due to activity of the truncated 

mutant protein. 

 With that caveat, given the lack of altered phenotype in the retinotectal system, it can be 

concluded that foxi1 is not necessary for the correct formation of the retinotectal system.  



 

134 

 

It is possible that foxi1 does not play an important role in retinotopic mapping but this would 

seem unlikely due to the very precise and specific expression pattern found in the embryonic 

retina. It is more likely that the role of the knocked out foxi1 is being compensated for by one or 

more other genes. Due to the teleost genome duplication it is possible that foxi1 has a paralogue. 

The foxi1 paralogue has not yet been identified in the zebrafish and it could be that this potential 

paralogue has assumed the function of foxi1 in mapping, or both paralogues could be functional, 

requiring both to be knocked down to induce a phenotype. Alternatively, the lack of foxi1 could 

be masked by other genes in the fox family such as foxd1-like, foxg1a or the paralogue foxg1b 

which is expressed in the developing dorsonasal retina (Zhao et al., 2009). As has been shown, 

knocking down only one of the ephrin-A genes is insufficient to disrupt visual mapping in mice, 

with a triple ephrin knockout required to achieve a strong phenotype (Pfeiffenberger et al., 2005; 

Cang et al., 2008). As we have shown the presence of other fox family genes expressed as 

gradients in the developing retina (Fig3.6C and P), it may be that these and perhaps other fox 

genes are sufficient to compensate for the lack of foxi1. Injections of morpholinos against foxd1-

like, foxg1a or foxg1b in the foxi1 mutant line, individually or together, may elicit phenotypes not 

observed with only a single fox knockdown. 

 

 

 

3.6 Conclusion 

Based on the array and mRNA expression pattern in embryos, less than half of the genes which 

are expressed in a gradient in the adult eye during regeneration are detected as a gradient in the 

developing retina. This may hint that the two fundamentally similar processes rely on diverged 

molecular cues. However given the caveat of failure to reveal these adult gradients with in situ 

hybridisation and that adult and embryo data derive from two different methods, further work 

with qPCR, additional microarrays or more sensitive in situ hybridisation methods would be 

necessary to confirm and expand on these findings. However based on these findings we can 

confirm the lack of a gross retinotopic phenotype in a foxi1 mutant and the presence of other fox 

family genes, foxg1a and foxd1-like, in the developing retina. This suggests these fox family 

genes as potential targets for coordinated manipulation of expression during development. 
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4. Manipulation of crmp2 expression during development reduces RGC axon arbor 

complexity 

 

4.1 Introduction 

Our microarray results highlighted gene families of interest which are implicated in axon 

guidance in the CNS. One such family was the collapsin response mediator proteins (crmps). 

Crmps are phosphoproteins which are highly expressed in the nervous system and involved in 

the signal transduction cascade of inhibitory guidance cues during axon growth (Liu and 

Strittmatter, 2001). They exist in both a cytosolic form and a form which is tightly associated 

with membrane proteins intracellularly but is not a transmembrane protein itself (Minturn et al., 

1995a). There are five known CRMPs in mammals (CRMP1 to 5) and six in zebrafish (crmp1 to 

4, crmp5a and crmp5b). The two zebrafish crmp5 paralogues probably arose during the teleost 

genome duplication event (Amores et al., 2004; Chen et al., 2004). Zebrafish crmps exhibit 

reasonably high intra-family homology (43-75%, amino acid BLAST) and high homology with 

human orthologues (67-90%, amino acid BLAST) (Schweitzer et al., 2005). This holds true 

amongst other species as rat crmp2 shares 98% of its amino acid sequence with chick crmp2 and 

89% with that of Xenopus (Quinn et al., 1999). This high level of evolutionary conservation 

highlights the functional importance of the crmps. The cross-species homology includes a 

conserved dihydropyriminidase domain which is common to all crmps but is non-functional as 

the crmps have not been shown to exhibit DHPase activity (Goshima et al., 1995; Wang and 

Strittmatter, 1997; Hamajima et al., 1996). 

 

4.1.1 Nomenclature 

The crmps, particularly crmp2, have been studied widely in many organisms indicating their 

cross species interest and resulting in a variety of names. 

The orthologues of zebrafish crmp2 are: 

CRMP-2 in human, rat, Xenopus and bovine 

CRMP-62 in chick 

Ulip-2 in Mouse and human 

DRP-2 in human 

TOAD-64 in rat 

UNC-33 in C.elegans 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4G7X9T6-2&_user=809099&_coverDate=08%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=001f62126f047%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4G7X9T6-2&_user=809099&_coverDate=08%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=001f62126f047%20
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Adding additional complication, the crmp family was abortively renamed as 

dihydropyrimidinase-like (dpysl) in some organisms but the majority of new literature retains the 

use of the crmp nomenclature. For simplicity, henceforth "crmp2" shall refer to all orthologs of 

crmp2, with species noted when relevant. 

 

4.2 Expression patterns of the crmp family 

In the zebrafish embryo, all six members of the crmp family are highly expressed in regions of 

neuronal differentiation and axiogenesis. Each crmp has a specific spatial and temporal pattern of 

expression, with none being observed outside of the nervous system (Schweitzer et al., 2005). As 

the cell types which express crmps do not change during early neurogenesis, the expression 

pattern of crmps mirrors the changes in morphology during development of the nervous system. 

Thus as the embryo develops and new neuronal populations appear, the regions expressing crmps 

increase in volume and complexity (Chitnis and Kuwada, 1990; Wilson et al., 1990; Ross et al., 

1992; Schweitzer et al., 2005). Crmp2 expression has been detected in the developing zebrafish 

brain until at least 97hpf (Christie et al., 2006). In the developing zebrafish retina all crmps, with 

the exception of crmp1, can be detected until at least 5dpf (unpublished observations). The crmps 

may have many roles in the developing nervous system as they are similarly widely expressed in 

the developing brains of the other main model vertebrates, with expression also found throughout 

the CNS and PNS; in rats (Wang and Strittmatter, 1996) and in mouse (Byk et al., 1998). Crmp 

expression patterns are similar to those of genes associated with neuronal and axonal 

differentiation, including cell recognition molecules L1.1, L1.2 (Tongiorgi et al., 1995), TAG-1 

(Warren et al., 1999) and contactin (Gimnopoulos et al., 2002). The crmps and their orthologues, 

are strongly implicated in growth cone signalling as they reach their peak expression levels 

during periods of rapid axonal growth and are then downregulated after growth. They are 

expressed in neuronal cell bodies, neurites and growth cones with their expression most 

concentrated in the distal portion of axons where the actions of the growth cone must take place 

(Quinn et al., 1999). This is similar to observations in the rat where Crmp2 is one of the earliest 

expressed proteins known in postmitotic neurons. It is highly enriched in the nervous system, is 

present in growth cones and is downregulated to almost undetectable levels in the rat cortex 

during postnatal week two, which is the end of the period of major axon growth (Minturn et al., 

1995b).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4G7X9T6-2&_user=809099&_coverDate=08%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=001f62126f047%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4G7X9T6-2&_user=809099&_coverDate=08%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=001f62126f047%20


 

141 

 

 In the developing mouse retina, differentiating retinal ganglion cells (RGCs), but not the 

neighbouring mitotic precursor cells, exhibit crmp expression (Kamata et al., 1998b). The crmps, 

while expressed in the cortical plate are not expressed in the ventricular zone, indicating that they 

are expressed in differentiated neurons but not their progenitors. Crmp2 is the exception to this 

as it is expressed in the ventricular zone in the rat (Wang and Strittmatter, 1996) and the newly 

formed neural plate in Xenopus (Kamata et al., 1998a) and the mouse (Kamata et al., 1998b).  

 

4.3 Crmp2 

Of the crmp family, crmp2 may be the most widely studied (Goshima et al., 1995; Wang and 

Strittmatter, 1996; Inatome et al., 2000). Much of the interest in crmp2 came from the 

observation that a crmp2 mutant in C.elegans had severely uncoordinated movement which 

when investigated further was found to be due to abnormal axon guidance and outgrowth 

including premature axon termination, abnormal branching, aberrant pathfinding and a 

superabundance of microtubules in neurons (Hedgecock et al., 1985; Desai et al., 1988; Siddiqui 

and Culotti, 1991; Li et al., 1992). The expression pattern of crmp2 in the embryonic brain is 

consistent across different vertebrate classes, indicating its functional importance; mouse (Byk et 

al., 1996), cat (Cnops et al., 2004), zebrafish (Schweitzer et al., 2005; Christie et al., 2006), 

Xenopus (Kamata et al., 1998a) and chick (Goshima et al., 1995). The expression of crmp2 in 

zebrafish embryonic RGCs is also consistent with expression of crmp2 in chick (Goshima et al., 

1995; Christie et al., 2006). The mutant C.elegans phenotype and the conserved expression 

patterns across species, suggest a role for crmp2 in neurite outgrowth as well as axon guidance.  

 

4.3.1 Crmp2 function 

 

4.3.1.1 Axon formation and growth cone collapse via microtubule assembly regulation 

Growth cones are a sensor for guidance molecules
 
during development which localize at the tips 

of axons
 
and dynamically change their morphology in response to attractive

 
and repulsive 

guidance cues, thus determining the direction
 
of growth (Dent and Gertler, 2003). They house the 

receptors and cellular machinery necessary to detect and respond to molecular cues in the 

environment that guide them to their targets. These cues can be mostly positive / attractant such 

as the neurotrophins or mostly inhibitory / repellent such as the semaphorins. In the rat, Crmp2 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4H3Y9W4-3&_user=809099&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=a64f0431bbdbe%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4H3Y9W4-3&_user=809099&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=a64f0431bbdbe%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4H3Y9W4-3&_user=809099&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=a64f0431bbdbe%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4H3Y9W4-3&_user=809099&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=a64f0431bbdbe%20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4H3Y9W4-3&_user=809099&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=a64f0431bbdbe%20
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protein is localised to growth cones, specifically lamellipodia and filopodia at the advancing 

edge of growth cones, where it is ideally placed to be part of the axon guidance signaling 

pathway (Minturn et al., 1995a).  

 It is known that microtubule dynamics and endocytosis
 
regulate growth cone morphology 

(Goshima et al., 1997; Diefenbach et al., 1999; Fournier et al., 2000; Mack et al., 2000; 

Kamiguchi and Lemmon, 2000; Buck and Zheng, 2002). Crmp2 binds to the tubulin dimer and 

enhances the formation of microtubules by acting as a carrier of tubulin heterodimers, delivering 

them to the assembly sites of growing microtubules (Fukata et al., 2002). Without this 

enhancement of microtubule assembly, growth cone dynamics would be altered in favour of 

retraction (Figure 4.1 illustrates a possible pathway connecting Crmp2 and cytoskeletal 

rearrangement). It has been shown in vitro that Crmp2 mediated microtubule assembly is 

essential for axonal growth and branching and induces neurite formation (Fukata et al., 2002). In 

the chick it has been shown that Crmp2 enhances the advance of growth cones by regulating 

microtubule assembly and Numb-mediated endocytosis (Arimura et al., 2005). In vitro, 

overexpression of crmp2 enhances the rate of axon growth, while a mutant form of Crmp2, 

lacking specific activity of the microtubule assembly, reduces axon growth. Given this and the 

fact that Crmp2 is enriched in growing axons, it can be inferred that the Crmp2-tubulin complex, 

which is concentrated in the distal extent of axons, promotes microtubule assembly and so axon 

formation (Fukata et al., 2002).  

 

4.3.1.2 Numb-mediated endocytosis 

Crmp2 also contributes to axon elongation by other mechanisms. Crmp2 binds to Numb and is 

localised in axonal growth cones. Numb is a membrane bound protein which is involved in 

clathrin-dependent endocytosis at the plasma membrane (Santolini et al., 2000) and has been 

implicated in maintaining neural progenitor cells during embryonic neurogenesis (Rasin et al., 

2007). Crmp2 facilitated Numb-mediated endocytosis of the cell adhesion molecule L1 in the 

growth cone leads to axon elongation (Nishimura et al., 2003). Numb mediated L1 endocytosis is 

necessary for axon growth (Kamiguchi and Lemmon, 2000). It has been inferred that Sema3A 

and Ephrin-A5 induced growth cone collapse acts via increased phosphorylation of Crmp2 

leading to inhibition of Numb-mediated endocytosis and so growth cone collapse (Goshima et al, 

1995; Arimura et al., 2005) (Fig 4.1). Contrary to this hypothesis, it has been shown in some 
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cases that endocytosis is enhanced during Sema3A and Ephrin induced growth cone collapse 

(Fournier et al, 2000; Jurney et al., 2002), indicating that there may be other factors at work, 

perhaps to selectively regulate endocytosis depending on the growth state of the axon. 

 

4.3.1.3 Isoforms 

In mammalian crmps, alternative splicing of exon1 has been described (Quinn et al., 2003, 

Yuasa-Kawada et al., 2003). Of the two Crmp2 isoforms in mammals, full length Crmp2, which 

is restricted to the cytoplasm, promotes neurite elongation in vitro (Rogemond et al., 2010). 

Whereas the short isoform, produced by cleavage, can undergo nuclear translocation leading to 

suppression of axonal growth and neurite outgrowth inhibition in vitro. This signalling is 

dependent on nuclear localisation of the short isoform as mutation of the nuclear localisation 

signal sequence restores neurite elongation activity of the molecule (Rogemond et al., 2008). A 

possible function of nuclear proteins is that of regulating genes that are involved with control of 

cell differentiation and proliferation, which is consistent with the expression of Crmp2 in 

progenitor cells and in tissues prior to neural differentiation (Wang and Strittmatter, 1996; 

Kamata et al., 1998a; Kamata et al., 1998b). It is likely that the nuclear localised isoform of 

Crmp2 may regulate transcription factors leading to the inhibition of neurite outgrowth. 

Therefore rather than simply the total expression level of Crmp2, the balance of the long and 

short Crmp2 isoforms, with their opposing downstream effects, is an important factor in the 

effects of Crmp2 on the nervous system. However, isoforms of Crmp2 have not yet been 

identified in zebrafish. 

 

4.3.1.4 Phosphorylation state dependent activity 

The phosphorylation state of Crmp2 is a key factor determining its activity. The microtubule 

formation enhancing properties of Crmp2 can be suppressed by phosphorylation of Crmp2 by 

Rho kinase, during growth cone collapse. Following phosphorylation by Rho
 
kinase, Crmp2 has 

a reduced ability to associate with microtubules, tubulin heterodimers and certain other proteins, 

including Numb (Arimura et al., 2005). However the actin binding property of Crmp2, distinct 

from its tubulin binding property, remains following phosphorylation. A similar effect on Crmp2 

function results from phosphorylation whether by Rho kinase, Cdk5 or GSK-3ß (Arimura et al., 
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2005). The importance of phosphorylation for the functioning of Crmp2 is highlighted by the 

conserved protein kinase consensus sites found in all orthologues of Crmp2 (Byk et al., 1996).  

 The phosphorylation state of Crmp2 plays an important role in Crmp2 mediated growth 

cone collapse. Growth cone collapse is downstream of Crmp2 phosphorylation which can be 

accomplished by multiple different kinases in different pathways. In vitro work has shown that 

Crmp2 is phosphorylated when PlexinA1 and Fes protein tyrosine kinase are activated in 

Sema3A induced growth cone collapse (Mitsui et al., 2002) and that phosphorylation of Crmp2 

is required for Sema3A induced
 
growth cone collapse to occur (Brown et al., 2004). The kinase 

Fes, which is regulated by class A Plexins, phosphorylates PlexinA1 and a Crmp2 / Crmp-

associated molecule (CRAM) complex (Mitsui et al., 2002). Fes kinase activity is necessary for 

the collapse of DRG neuron growth cones (Mitsui et al., 2002). The association of Fes and 

PlexinA1 is enhanced by the application of Sema3A. As Crmp2 plays a role in microtubule 

dynamics, it is plausible that the plexinA1/fes/crmp pathway might be involved in microtubule 

destabilisation. Another example is that of growth cone collapse induced by lysophosphatidic 

acid (LPA), during which Crmp2 is phosphorylated by Rho associated protein kinase (Arimura et 

al., 2000). It is known that Rho-kinase mediates Ephrin-A5 induced growth cone collapse in 

RGCs
 
(Wahl et al., 2000; Cheng et al., 2003). While Rho kinases can phosphorylate Crmp2, 

Crmp2 hetero-oligomers can act upon Rho kinases to alter Rho activity in response to different 

guidance signals (Leung et al., 2002). The levels of these proteins are influenced by 

neurotrophins (Byk et al., 1998; Ozdinler and Erzurumlu, 2001), so creating a complex 

interaction surrounding Crmp2 with feedback from Crmp2 itself. How this system performs 

when crmp2 is knocked out has yet to be elucidated as viable crmp2 mutant lines are not yet 

available in vertebrates. The growth factors BDNF and NT-3, which prevent growth cone 

collapse following exposure to repulsive guidance cues (Tuttle and O'Leary, 1998; Dontchev and 

Letourneau, 2002), inhibit phosphorylation of Crmp2 (Yoshimura et al., 2005). Retinoic acid 

(Gaetano et al., 1997) and NGF (Byk et al., 1998; Leung et al., 2002) can induce changes in the 

expression patterns and phosphorylation of the Crmps. As NGFs/neurotrophins (Byk et al., 

1998), ephrins and semaphorins (Arimura et al., 2005) can all induce changes in phosporylation 

of Crmps which influences growth cone collapse and the Crmps are expressed in neuronal cells 

that do not respond to Semaphorins (Takahashi et al., 1999), the crmps may modulate the 
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signalling of multiple guidance cues. This would make the Crmps key molecules in the growth 

and guidance of sensory axons during development and regeneration. 

 

4.3.2 Axon growth and guidance signalling molecules upstream of crmp2 

The severity of the C.elegans phenotype arising from a single mutation was the first indication 

that crmp2 may be involved in the signal cascades of multiple axon guidance and growth 

molecules. Further studies have linked several guidance and growth molecules with crmp2. 

Crmp2 appears to be a nexus point for multiple pathways which induce growth cone collapse, 

including those initiated by Sema3A, LPA and Ephrin-A5 (Arimura et al., 2000; Christie et al., 

2006). Some of the most studied are described below. 

 

4.3.2.1 Semaphorins 

Crmp2 was initially identified as a signal transducing molecule for the growth cone collapsing 

activity of semaphorins (Goshima et al., 1995). Semaphorins are repulsive axon guidance cues 

which are found in various developing nervous systems including the zebrafish brain (Wolman et 

al., 2007) and optic system (Liu et al 2004; Callander et al., 2007). The functional receptors for 

class 3 Semaphorins are a complex consisting of Plexin and Neuropilin (Takahashi et al., 1999). 

In chick, Crmp2 is one of the intracellular components of the pathway leading to Semaphorin-3A 

induced growth cone collapse (Goshima et al., 1995). Growth cone collapse induced by 

Semaphorin-3A/Collapsin-1 in dorsal root ganglion (DRG) neurons can be inhibited by blocking 

the action of Crmp2 (Goshima et al., 1995), demonstrating that Crmp2 is required for this 

process. Although crmp2 and the other crmps are mostly associated with Semaphorin-3A 

response, the crmps are also expressed in sympathetic neurons that respond to Semaphorin-3C 

but not Semaphorin-3A (Koppel et al., 1997). This indicates that the Crmps respond 

differentially to members of the Semaphorin family and the response to a single member can 

vary between cell types. 

 The overlap in specific expression areas in the rat central nervous system of Crmp2 and 

PlexinA4, a Semaphorin receptor important for sensory axon branching, further implicates 

crmp2 in axon formation (Miyashita et al., 2004; Christie et al., 2006). However as there is only 

a partial overlapping of expression patterns, this may indicate that other crmps or plexins may be 

involved in other cell types. This widespread expression of the crmps in central and peripheral 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W8W-4G7X9T6-2&_user=809099&_coverDate=08%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000043939&_version=1&_urlVersion=0&_userid=809099&md5=001f62126f047%20
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neurons also suggests that they may participate in the transduction of other guidance cues in 

addition to Collapsin-1/Sema3a and play a central role in the transduction of extracellular cues to 

their effects on axon growth. Furthermore, crmp2 is expressed in developing chick RGCs which 

do not express any known Collapsin/Semaphorin receptors and do not respond to Semaphorin-

3A, Semaphorin-3B, or Semaphorin-3C (Takagi et al., 1995; Takahashi et al., 1999).  

 

4.3.2.2 Neuropilins 

As mentioned, crmp activity is not limited to the Semaphorin pathways as Crmps are expressed 

in RGCs in chick which do not respond to Sema3A or Sema3C and do not express Semaphorin 

receptors (Takahashi et al., 1999; Quach et al., 2004). While chick RGCs do not express 

Neuropilin, it is expressed transiently in the retina by amacrine cells (Takagi et al., 1995). 

However chick appears to be an exception as the RGCs of other vertebrates, such as Xenopus 

(Fujisawa et al., 1990), mouse (Kawakami et al., 1996) and zebrafish (Liu et al., 2004), express 

Neuropilin.  

 It has been shown that zebrafish RGCs are guided by Sema3D and three of their four 

known neuropilins are expressed in RGCs; nrp1a, nrp1b and nrp2a (Liu et al., 2004). Nrp1a and 

nrp1b are expressed at a time and in a spatially restricted pattern in the retina which is consistent 

with a role in axon guidance of developing RGC axons (Liu et al., 2004). While Nrp2b is 

expressed in the inner nuclear layer of the retina, it is not expressed in the RGC layer. It is likely 

that the role for these genes in axon guidance is restricted to gross pathfinding as they are 

uniformly expressed throughout the retina by 48hpf when axons are reaching the tectum and the 

map is being established so a role in retinotectal map formation is questionable (Liu et al., 2004).  

 

4.3.2.3 Neurotrophins 

Crmps play a role in neurite extension controlled by neurotrophins. The Neurotrophin family of 

signalling molecules (NGF, BDNF, NT3, NT4) play roles in neurite extension, axon 

arborisation, axon sprouting during regeneration, differentiation and neuron survival (Huang and 

Reichard, 2001; Mendell and Arvanian, 2002). In the developing zebrafish the neurotrophins are 

expressed in the optic system, including the retina (Hashimoto and Heinrich, 1997; Dethleffsen 

et al., 2003). NGF is an attractive guidance cue in vitro, inducing axon elongation and branching 

(Gundersen and Barrett, 1979; Gallo and Letourneau, 1998) and has been shown to reduce the 
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growth cone collapse induced by Sema3A (Dontchev and Letourneau, 2002). It has been shown 

in cultured rat DRG cells that expression of a dominant negative form of Crmp2 or specific anti-

Crmp2 antibodies that block Crmp2 function during NGF induced neuritogenesis, increases the 

length of the neurites and the number of neurite bearing cells, but the number of neurites per cell 

remains unchanged (Quach et al., 2004). The response of cultured DRG cells is in contrast to that 

of hippocampal cells in vitro, where reducing Crmp2 activity through expression of a dominant 

negative Crmp2 mutant reduces axon formation and overexpression of Crmp2 leads to the 

formation of supernumerary axons (Inagaki et al., 2001), indicating cell specific responses to 

Crmp2. It is clear that the precise role of crmp2 varies between specific cell types, thus 

complicating mapping of the pathway.  

 

4.3.2.4 Crmp2-independent axon guidance 

As has been demonstrated above, Crmp2 is an important, central molecule in various axon 

guidance related pathways. However this is not to say that Crmp2 is the sole transducer of axon 

guidance. Sema3 induced growth cone collapse is mediated by Rac1, a member of the Rho 

family (Hall, 1998), in addition to Crmp2. Other Crmp2 independent pathways are also active in 

growth cone collapse as mutants of Crmp2 which act as permanently phosphorylated Crmp2 

could not occlude Ephrin-A5 induced growth cone collapse as another downstream molecule of 

Ephrin-A5, Rho-kinase, phosphorylates multiple targets including MLC and MAPs (Arimura et 

al., 2005).  

While the available evidence indicates the importance of crmp2 for axon growth and 

guidance, the other crmps should not be overlooked. Crmp1, 3, 4 and 5 have been shown to have 

limited influence over neurite extension, branching and growth cone formation (Quinn et al, 

2003; Hotta et al., 2005; Schmidt and Strittmatter, 2007). The coexpression of crmp2 in cells 

with other crmps, along with the fact that Crmps form heterotetramers, may indicate that Crmp 

activity is influenced by the combination of crmps expressed together in a cell (Wang and 

Strittmatter, 1997; Schmidt and Strittmatter, 2007). 
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4.4 Other processes involving crmps 

In addition to the crmps involvement in axon growth and guidance, they have been implicated in 

several other processes such as neuronal polarity, apoptosis and cell migration in the nervous 

system (Quinn et al., 1999, Liu and Strittmatter, 2001, Charrier et al., 2003 and Arimura et al., 

2004). Crmp2 has been shown to play a role in axon guidance of regenerating axons in the 

embryonic zebrafish as knockdown of crmp2 affects the ability of regenerating trigeminal 

sensory axons to successfully avoid reentering former territories (O’Brien et al., 2009). In vitro, 

it has been shown that crmp2 plays a role in determining neural polarity of dorsal root ganglion 

neurons by regulating axon formation. (Inagaki et al., 2001). While expression of crmps is 

greatly reduced in the adult nervous system, it remains most prominent in areas which undergo 

neurogenesis in adult life (Quinn et al., 1999). Seizure induced neurogenesis in the adult dentate 

gyrus is associated with increased expression of crmp4 in rat (Parent et al.,1997; Scott et al., 

1998). Crmp2 and crmp4 are reexpressed in the adult rat following sciatic nerve lesion (Minturn 

et al., 1995a) and there is evidence that overexpression of crmp2 can promote regeneration of the 

cranial nerve axons in rats (Suzuki et al., 2003). Finally, an increase in highly phosphorylated 

Crmp2 can be detected in association with neurofibrillary tangles in Alzheimer's disease models 

(Yoshida et al., 1998; Gu et al., 2000). 
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Fig. 4.1. Pathway of crmp2 activity leading to cytoskeletal rearrangement and axon growth. 

This is a possible interpretation of the Crmp2 pathway, largely based on chick DRG data, with a 

detailed focus on phosphorylation. Sema3A activation of Cdk5 and GSK3 leads to 

phosphorylations of Crmp2. Ephrin-A5 activates the Rho/Rho kinase pathway leading to Crmp2 

phosphorylation. This decreases Crmp2’s tubulin binding activity, leading to a reduction in 

microtubule assembly and Numb-mediated endocytosis which arrests axon growth and causes 

growth cone collapse. However the Crmp2 pathway is clearly complex and the precise role of 

Crmp2 differs between cell types and species. 

Adapted from Arimura et al., 2005. 
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4.5 Summary 

Crmps are expressed in the nervous system of developing zebrafish, and other model organisms, 

in specific temporal and spatial patterns which coincide with regions of neuronal differentiation 

and axonogenesis. Crmp2 is expressed in the retina during development and in the PNS during 

regeneration in the adult. Our microarray (chapter 3) results indicate an upregulation of crmp2 in 

the retina following an optic nerve crush lesion in the adult zebrafish. In summary, Crmp2 is 

implicated in multiple signaling pathways which result in growth cone collapse, including those 

initiated by Sema3A, LPA and Ephrin-A5. However, crmp2 has a complex role in the nervous 

system as it is involved in both negative and positive modification of axon growth including 

growth cone collapse and neurite extension. Taken together this may indicate a role for crmp2 as 

a central transducer or nexus in growth cone response to external guidance cues. From this data it 

can be hypothesised that manipulation of crmp2 during development will affect axon extension. 

Thus we manipulated levels of crmp gene expression in the developing zebrafish and observed 

the effects on the retinotectal system, with particular focus on crmp2.  

 We found that knockdown of crmp2 with two independent morpholinos resulted in an 

axon phenotype which could be observed in whole tract tracing in the form of sparser, less 

branched innervation of the tectum by RGC axons. Plasmid construct-induced expression of GFP 

in individual RGCs in crmp2 morphant embryos revealed a trend towards less complex arbors 

with shorter branches and reduced overall axon length. Expression of a Crmp2 dominant 

negative construct, along with GFP, in individual RGCs resulted in a significantly reduced main 

branch length. These results indicate that Crmp2 plays a role in RGC axon growth in the 

developing zebrafish as reducing Crmp2 activity may reduce axon growth. 
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4.6 Materials and methods 

4.6.1 Animals 

All fish are kept and bred in our laboratory fish facility according to standard methods 

(Westerfield, 1989) and all experiments have been approved by the British Home Office. 

 

4.6.2 cDNA 

For PCR analysis of aberrant splicing, RNA was extracted from pooled tissue of 15 larvae per 

time point and treated using the RNeasy Mini Kit (Quiagen, UK). Reverse transcription, using 

random primers (Promega, Madison, WI, USA), was performed with the SuperScript III kit 

(Invitrogen, UK). Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies) was used to 

check concentrations and give an approximation of quality. The following primers were used to 

amplify the appropriately and aberrantly spliced sequence in PCR: crmp2ex2 forward 

(GGGGCTAAGATTGTGAACGATGAT); crmp2ex5 reverse 

(TAGGCCAGGTAGACGAGGAAAGAG).  

 

4.6.3 Whole retinotectal projection methods 

 

4.6.3.1 Morpholinos 

Morpholino oligonucleotides against members of the crmp family were purchased from 

GeneTools (Corvallis, OR). The morpholino target, designated name, type and their sequences 

are detailed in Table 4.1. Morpholinos are oligonucleotides which have standard nucleic acid 

bases bound to morpholine rings. Morpholinos exist as two main types with differing modes of 

action; translation blocking and splice blocking. Start codon directed morpholinos prevent 

translation of mRNA by interfering with the progression of the ribsomal initiation complex in the 

region of the start codon. Splice site directed morpholinos act by steric blocking of target pre-

mRNA preventing normal processing by spliceosomes. Splice site directed morpholinos were 

used preferentially as these have a distinct advantage over start codon morpholinos in terms of 

verifying the efficacy of gene knockdown and the action of the morpholino. Splice blocking 

morpholinos result in a proportion of the target mRNA being aberrantly spliced. Amplification 

by RT-PCR of the region which includes the splice site target results in amplicons of varying 

lengths. The difference between the length of the aberrant amplicon and the wild type amplicon 
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indicates the length of sequence spliced out, or in some cases in, by the action of the morpholino. 

The relative intensities of the wild type and aberrant bands when run on a gel give an indication 

of the relative proportions of wild type mRNA and aberrantly spliced mRNA in the embryo.  

The control morpholino was a 5 base mismatch morpholino inactive control used 

previously in the laboratory (Becker et al., 2004). Morpholinos were introduced by standard 

zygote injections. Morpholinos were diluted to 0.5, 1, 2 and 4mM in Danieau solution (58 mM 

NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca (NO3)2, 5 mM HEPES, pH 7.6) (Nasevicius 

and Ekker, 2000). Glass capillaries (0.8µm internal and 1.0µm external diameter) were pulled to 

produce injection needles. A micromanipulator in concert with a microinjector (Microinjector 

Narishige, UK) was used to inject 1nl of morpholino solution into the yolk of a fertilised egg at 

the 1 to 4 cell stage. Fertilised eggs were of either wild type strain (WIK) or Tg(pou4f3:gap43-

GFP)
s356t 

. Morpholinos were injected either singly or as a mix containing two morpholinos to 

investigate possible synergistic action. 
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Target gene Morpholino name Type Sequence 

crmp1  crmp1 Start Translation blocking 5’-TGG TTA GTT GTC GGT GGA TGC AGC T-3’ 

crmp2 crmp2 Start Mo1 Translation blocking 5’-CTT GCC CTG ATA GCC AGA CAT CTT C-3’ 

  crmp2 Start Mo2 Translation blocking 5’-ATG CTC TTA TTG CCT TTG ATG AAC C-3’ 

  crmp2 IE Mo1 Splice blocking 5’-GAG TTT CAC ACA TAC CGA TCA TGG T-3’ 

  crmp2 IE Mo2 Splice blocking 5’-CAC TCT GGA AAC ACA GAT AAA CAC A-3’ 

crmp3 crmp3 IE Splice blocking 5’-TTT CAC AAA TAG ACT GAC CTC TTG C-3’ 

crmp4 crmp4 IE Mo1 Splice blocking 5’-TGG TTA GTT GTC GGT GGA TGC AGC T-3’ 

  crmp4 Start Mo2 Translation blocking 5’-GGT CCA GGC GTC TGC CCT CAG CCA T-3’ 

Table 4.1. Morpholinos for knockdown of crmps during development. The morpholino target, designated name, 

type and their sequences are given. 

 

4.6.3.2 Tracing 

Lipophilic tracers, DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, 

Invitrogen) and DiO (3,3'-dioctadecyloxacarbocyanine perchlorate, Invitrogen), were used to 

visualise the optic projection of WIK crmp morphants of 2 to 5dpf, as described (Becker et al., 

2003). Less than 10% of injected embryos exhibited developmental defects (oedema of the heart, 

curved tail or spherical yolk) which is not stastistically different from control or uninjected 

embryos. All embryos exhibiting such defects were excluded from analysis. The embryos were 

anaesthetised with MS222 and fixed in 4% paraformaldehyde overnight at room temperature. 

The embryos were then embedded in 1% low melting point agarose. A pulled glass needle was 

dipped into a saturated solution of either DiI in ethanol or DiO in chloroform (approximately 

50mg per ml). After allowing the dye to crystallise onto the needle, the DiO needle was inserted 

into the temporal extent of the retina of one eye for 20 seconds using manual manipulation under 

stereomicroscopic observation. This was then repeated for DiI into the nasal extent of the retina 

of the same eye. The embryos were then immersed in PBS and incubated overnight at 37°C, 

allowing the dye sufficient time to diffuse along the axonal membranes. Labelling of the retina 

thusly results in DiO labelled anterior tectum and DiI labelled posterior tectum so revealing any 

gross errors of pathfinding or the retinotopic map. After incubation the contralateral eye was 

removed and the embryos whole mounted, injected side down. Using the empty socket as a 

window, the optic projection was imaged using a laser scanning confocal microscope (LSM510, 

Zeiss). Approximately 60 optical sections of 2µm step size were scanned per embryo to capture 
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the entire projection from nerve head to tectum. Other morphant embryos were traced with DiI 

only in one eye and DiO only in the other eye, processed as above and then mounted dorsally, to 

reveal any potential midline crossing. A subpopulation of RGCs in the pou4f3 line express GFP, 

allowing observation of the fluorescent optic tract without the need for tracing, thus providing an 

additional assessment method, independent of dye tracing. Confocal scans were examined for 

any aberrations in axon phenotype using LSM Image Browser (Zeiss) by a blinded observer, side 

by side with scans of controls. 

 

4.6.3.3 PTU treatment 

Overlying surface pigment in the melanophores can obscure the optic tract from laser scanning 

and reduced the number of axons that could be successfully scanned per batch. In order to 

improve signal detection embryos were treated with 1-phenyl 2-thiourea (PTU). PTU inhibits 

melanogenesis by blocking all tyrosinase-dependent steps in the melanin pathway. At 24hpf the 

embryos were transferred to methylene blue fish water containing PTU (75µM) as per standard 

protocol (Karlsson et al., 2001). The embryos were kept in PTU fish water until 3dpf when they 

were sorted and scanned. PTU treatment was discontinued following the initial tracing 

experiments in wild types as there was evidence that it had toxic effects when combined with 

other manipulations. 

 

4.6.4 Single axon labelling 

Tracing of the whole tract is unsuitable for revealing phenotypes of individual axons due to 

overlapping axons. Therefore, plasmid constructs were used to visualise individual axons under 

the effect of knockdown or dominant negative expression. The plasmids were obtained dried on 

filter paper and amplified using standard methods. 

 

4.6.4.1 Plasmid transformation into bacteria 

XL blue cells were transformed with plasmids obtained from colleagues’ laboratories.  

The POU4F3:GAL4;UAS:GAP43-GFP (BGUG, formerly BRN3C:GAL4;UAS:GAP43-GFP) 

insert plasmid and the POU4F3:GAL4 (BG, formerly BRN3C:GAL4) insert plasmid, kindly 

supplied by the Baier laboratory and the UAS:GFP-UAS:DNCRMP2 (DNcrmp2) insert plasmid, 

kindly supplied by the Sagasti lab. 3l of ligation mixture was added to 200l of frozen XL blue 
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suspension. After 30 minutes on ice, the mixture was heated to 42C for precisely 30 seconds to 

induce uptake of the plasmid. After a further 5 minutes on ice, 250l of LB medium was added 

to the bacteria suspension which was then shaken for 1 hour at 37C. The bacteria were spread 

onto 0.1% ampicillin agar plates and incubated overnight at 37C. Bacteria which did not contain 

vectors with an insert would lack ampicillin resistance and fail to multiply.  

 

4.6.4.2 Colony PCR 

To ascertain if any colonies which did develop overnight contained the correct insert, colony 

PCR was used. This involved RT-PCR (as above) with the exception that a colony picked from a 

plate was used as the template in place of cDNA. The colony was briefly dipped into the PCR 

mix and then wiped into a grid square on a fresh 0.1% ampicillin agar plate. Each square of the 

grid corresponded to a separate PCR tube. Primers against GFP, crmp2 or the vector sequence 

flanking the multiple insertion sites were used, with sequences as follows: 

 

Primer Direction Sequence 

EGFP Outer  Forward 5’- CAT GGT CCT GCT GGA GTT CGT G -3’ 

EGFP Outer  Reverse 5’- CGT CGC CGT CCA GCT CGA CCA G -3’ 

EGFP Inner  Forward 5’- GCC ACA AGT TCA GCG TGT CC -3’ 

EGFP Inner  Reverse 5’- GAT GCC CTT CAG CTC GAT GC -3’ 

Crmp2  Forward 5’- ACG AAG ATG TCT GGC TAT CAG -3’ 

Crmp2  Reverse 5’- GGT GAA GTC ATC TTT ACC AAC -3’ 

T7  Forward 5’- TAA TAC GACTCA CTA TAG GG -3’ 

SP6  Reverse 5’- ATT TAG GTG ACA CTA TAG AA -3’ 

T3  Reverse 5’- ATT AAC CCT CAC TAA AGG GA -3’ 

Table 4.2. Primers used in colony PCR to confirm transformed bacteria contained the intended plasmid with 

the correct insert. 

 

The reaction product was ran on an agar / ethidium bromide gel to determine if the amplicon was 

of the expected size before proceeding to create a midi preparation from colonies of the 

corresponding grid square. 1 colony was selected and incubated overnight at 37C in 50ml of LB 

medium (0.1% ampicillin) whilst shaking. The midi preparation was then purified using the 

HiSpeed Plamsid Midi kit (Qiagen). After checking the concentration of the purified plasmid 
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was in a suitable range (200 to 600 ng/l), a sample was sequenced by DNASeq (Dundee). If a 

midi purification was found to have a concentration lower than 200ng/l it was usually an 

indication of reduced quality and so advisable to repeat the midi step. 

 

4.6.4.3 Plasmid microinjections 

To visualise individual axons in a crmp2 morphant embryo, the BGUG plasmid was coinjected 

into the cell of fertilised WIK eggs at the 1 cell stage (14ng/ µl in a 1nl injection per cell) with 

morpholinos against specific crmps (see Table 4.1). Injection into the cell is necessary as 

plasmids are not as readily transported from the yolk across the cell membrane as morpholinos. 

The concentration of plasmid had to be carefully titrated as the combined morpholino and 

plasmid coinjection had a combinatorial toxic effect on embryo development which was greater 

than either injected individually. Less than 10% of injected embryos exhibited developmental 

defects at 3dpf (oedema of the heart, curved tail or spherical yolk) which is not stastistically 

different from controls. All embryos exhibiting such defects were excluded from analysis. 

Controls were injected with BGUG and 5mismatch control morpholino. The BGUG plasmid 

contains the pou4f3 promoter, a GAL4:UAS amplification cassette and membrane targeted GFP. 

This resulted in expression of GFP in a random minority of cells which have an active Pou4f3 

promoter. 5% of embryos exhibited one or more GFP expressing RGC axons when observed 

under the fluorescent stereomicroscope. Approximately 50% of embryos exhibited sporadic GFP 

expression in a minority of non-RGC cells, particularly skeletal muscle, but this did not interfere 

with imaging of the RGC axons. Embryos were dechorionated with watchmaker´s forceps in 

tank water containing MS222 in a small petri dish and sorted for presence of GFP expressing 

RGCs under fluorescent stereomicroscope observation. GFP expressing RGCs could be most 

readily viewed through the lens of the eye. After sorting, anaesthetised embryos were fixed 

overnight at room temperature in 4% paraformaldehyde before confocal imaging as above. A 

similar procedure was carried out for the BG and DNcrmp2 plasmids to visualise individual 

axons, expressing dominant negative Crmp2 in an otherwise wild type embryo. These plasmids 

were coinjected as the BG plasmid contained the promoter and first half the amplification system 

and the DNcrmp2 plasmid has the second half of the amplification system coupled to GFP and a 

dominant negative form of Crmp2. This results in a minority of individual axons expressing GFP 

and DNcrmp2, while the non-GFP axons do not express DNcrmp2 and remain wild type. These 
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plasmids were injected at a combined concentration of 60ng / µl in a 1nl injection per cell. 

Increased concentration of plasmid relative to the BGUG injections was necessary as expression 

from these plasmids had a lower penetrance and generally weaker expression of GFP. Due to the 

weaker signal, immunohistochemistry was used to enhance the signal. Controls were injected 

with BGUG (60ng / µl in a 1nl injection per cell). 

 

4.6.4.4 Immunohistochemical signal enhancement 

Following anaesthetisation, dechorionation and sorting, the yolk sac was opened with an insect 

pin. This results in most of the yolk, which is broadly immunoreactive, disassociating during the 

protocol. All subsequent steps were performed on a shaker at room temperature unless otherwise 

stated. The embryos were washed for 5 minutes in PBS twice, followed by 45 minutes in 4% 

paraformaldehyde with 1% DMSO in PBS. The embryos were then washed in PBS for 5 

minutes, 3 times. Embryos were transferred from petri dishes to well plates and incubated with 

collagenase (Sigma C-9891), 500l per well. Length of incubation and concentration was titrated 

for optimum results at different embryo ages to balance penetration of the antibody with 

preservation of tissue. Treatment with 2mg/ml collagenase for 20 minutes for 3dpf embryos and 

2mg/ml collagenase for 25 minutes for 4dpf embryos was found to work well. The embryos were 

washed in PBS for 5 minutes, 3 times. Then the embryos were incubated with blocking buffer 

(1% DMSO, 1% normal serum, 1% BSA, 0.7% triton-X 100) for 30 min, 500l per well. 

Followed by overnight incubation with primary antibody (anti-GFP, rabbit, A11122, Invitrogen) 

in blocking buffer at 4 oC, 300l per well. The embryos were returned to room temperature and 

washed in PBS for 5 minutes, 3 times. Followed by overnight incubation with fluorescently 

labelled secondary antibody (anti-rabbit, donkey, 711-165-152, Invitrogen) in blocking buffer at 

4 oC, 300l per well. The embryos were returned to room temperature and washed in PBS for 5 

minutes, 3 times. The embryos were then mounted and confocal imaged as above. 
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4.6.5 Analysis 

 

4.6.5.1 Embryo development 

Embryo body length and eye width (nasotemporal) were measured using an eyepiece micrometer 

on a Zeiss Stemi2000 stereomicroscope. 

 

4.6.5.2 Whole retinotectal projection 

For traced embryos, phenotype analysis was carried out only on adequately traced embryos, with 

axons labelled along their full length. Pou4f3:GFP transgenic embryos were used to confirm that 

what appeared as inadequate labelling was itself not a phenotype of severely stunted axons. 

Qualitative assessment was carried out by observing compressed image stacks, exported from 

Zeiss LSM Image Browser software, for axons straying from the tectum, axons changing 

direction sharply and anything which is not typical of wild type axons. To assess phenotype 

quantitatively, a dorsoventral cross section was taken of the greyscale collapsed image stack, 

exported from Zeiss LSM Image Browser software, at the widest point. From the collapsed 

confocal stacks, a rectangular selection was cropped across the widest part of the tectum, with 

the rejection of any that had pigment overlying the area chosen for the histogram selection.This 

was then analysed using the Histogram function of ImageJ to give the standard deviation (SD) of 

pixel intensity across the selection. This effectively quantifies how coarse and pronounced the 

bands of colour across the image are. It could be expected that many finely branched axons 

would show as a diffuse, homogenous distribution of pixels resulting in low SD whereas few, 

coarse axons would show as distinct bands resulting in a high SD. SDs were then compared 

using a one way ANOVA with a post hoc Tukey test. The histogram method was employed for 

the morphants embryos traced with lipophillic tracers but gave no significant results, most likely 

as a consequence of varying intensities of background labelling and axon specific labelling. 

 

4.6.5.3 Individual axon labelling 

To identify the phenotype at the level of the individual axon we used individual axon labelling. 

Uncollapsed confocal stacks of GFP expressing axons were traced using the ImageJ plugin 

Simple Neurite Tracer (developed by Mark Longair at Edinburgh University as part of the 

EPSRC / MRC life sciences interface programme). The individual axons were traced in three 
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dimensions through the confocal stacks, from the optic nerve head to the branch tips under 

blinded conditions. Multiple properties of the axons were assessed when comparing crmp2 

morphant and control embryos, injected with BGUG. These included total axon length, number 

of branch points (total number of times an axon branches) and maximum branch order (number 

of branch points on a single path from nerve head to termination). Axons with overlapping arbors 

which could not be reliably separated from their neighbours were rejected from the analysis. 

Results for each property were compared using a one way ANOVA with a post hoc Tukey test. 

 

 

 

 

 

Fig. 4.2. Quantitation of RGC arbor parameters. 

A. The number of branch tips longer than 10μm are totalled (light blue branch tips) for branch tip number. 

B. The main branch is the longest single path from optic nerve head to termination (black). The total axon length is 

the sum of all branch tip lengths and internodal distances (red) plus the main branch (black). 

C. The order of an arbor is the mean number of branch points counted from the optic nerve head to the highest order 

branch point of the arbor.  

The green dots are branch points. Dorsal view, anterior is up. 

Modified from Campbell et al., 2007. 
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4.7 Results 

The collapsin response mediator proteins (crmps) were flagged as a gene family of interest in 

our microarray screen. Our array included probes for all 6 crmps and the data indicated that 

crmp2, 3, 4 and 5a were upregulated following a lesion, with crmp2 showing the highest fold 

change of the crmps with a fold change of 6 (Table 4.3). Crmp2 also had the highest fold 

difference between nasal and temporal, but these fold differences were very modest in 

comparison to the fold changes following lesion. Previous work in the laboratory elucidated the 

expression patterns of the crmps during development and in the adult, with and without lesion 

(Table 4.3, right-hand column). In situ hybridisations against the crmp family in the adult retina 

following optic nerve lesion were carried out by previous PhD student, Anselm Ebert. The 

mRNA expression patterns confirm the array findings that (1) there are no crmp spatial gradients 

in the RGC layer, either before or after lesion of the optic nerve and (2) crmp2, 3, 4 and 5a are 

upregulated in the RGC layer following optic nerve lesion. In the nasal control versus nasal 

lesion comparison, crmp4 regulation is below the 2 fold cut off but is very close with 1.905 fold 

change. Crmp1 and crmp5b showed no detectable upregulation during regeneration in either 

method. Thus, it is unlikely that crmp1 and crmp5b play a role in influencing adult regeneration, 

while the other crmps are expressed in the relevant tissue at the appropriate time to influence 

regeneration. Furthermore, as the previous findings indicate that crmp1 is the only crmp to not be 

expressed in the retina during development of the retinotectal system, it is unlikely that crmp1 

influences this process, while the other crmps are expressed in the relevant tissue at the 

appropriate time to influence axon pathfinding and mapping in the retinotectal system. Pilot 

experiments with low numbers of embryos had been carried out to investigate any gross 

qualitative effects on the retinotopic projection caused by morpholino knockdown of crmps 

during development. No effects were uncovered for the morpholinos crmp2 Start Mo1, crmp2 IE 

Mo1, crmp3 IE, crmp4 IE Mo1 and crmp4 Start Mo2. Crmp1 Start morpholino was used as a 

negative control as in situ hybridisations found it to not be expressed in the developing retina and 

had no effect on phenotype as expected. Morpholino crmp2 IE Mo2 was tentatively assessed to 

give an effect which may have been synergistic when combined with crmp4 Start Mo2.  
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Sample pair Gene Fold Difference mRNA expression  

     (Spatial gradient) pattern 

Nasal crmp1 No No gradient 

 Control crmp2 No No gradient 

 versus crmp3 No No gradient 

 Temporal crmp4 No No gradient 

 Control crmp5a No No gradient 

  crmp5b No No gradient 

Nasal crmp1 No No gradient 

 Lesion crmp2 No No gradient 

 versus crmp3 No No gradient 

 Temporal crmp4 No No gradient 

 Lesion crmp5a No No gradient 

  crmp5b No No gradient 

Sample pair Gene Fold Change mRNA expression  

     (Upregulation following lesion) pattern 

Nasal crmp1 No Not upregulated 

 Control crmp2 4.029 Upregulated 

 versus crmp3 3.781 Upregulated 

 Nasal crmp4 No (1.905) Upregulated 

 Lesion crmp5a 3.171 Upregulated 

  crmp5b No Not upregulated 

Temporal crmp1 No Not upregulated 

 Control crmp2 6.066 Upregulated 

 versus crmp3 3.946 Upregulated 

 Temporal crmp4 2.623 Upregulated 

 Lesion crmp5a 3.874 Upregulated 

  crmp5b No Not upregulated 

Table 4.3. Specific crmps show upregulation in the retina following lesion of the adult optic nerve in the 

microarray screen and in situ hybridisation. Probe ratios between samples pairs on the array are listed under fold 

difference for nasal versus temporal retina sample comparisons and fold changes for control versus lesion sample 

comparisons. Probe ratios on the array of less than 2 fold were disregarded. The microarray findings for the crmps 

are supported by in situ hybridisations performed on adult retina by another PhD student in our group, Anselm Ebert 

(summarised in the right hand column). The in situ hybridisation results confirm the array findings that (1) there are 

no Crmp spatial gradients in the RGC layer, either before or after lesion of the optic nerve and (2) crmp2, 3, 4 and 

5a are upregulated in the RGC layer following optic nerve lesion. In the nasal control versus nasal lesion 

comparison, crmp4 regulation is below the 2 fold cut off but is very close with 1.905 fold change. The data for these 

genes can be found in the array supplementary files under the following probe names: crmp1 - gb_DPYSL1, crmp2 - 

gb_DPYSL2, crmp3 - gb_DPYSL4, crmp4 - gb_DPYSL3, crmp5a - gb_DPYSL5A and crmp5b - gb_DPYSL5B. 
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4.7.1 Crmp2 IE Mo2 activity induces aberrant mRNA splicing 

The crmp IE Mo2 splice blocking morpholino had been designed to skip all of exon3. This 

would have resulted in an aberrant amplicon of 265 bases in length, compared to the 449 bases of 

the wild type (Fig. 4.3). However, application of crmp2 IE Mo2 lead to the appearance of two 

mispliced forms of crmp2 mRNA. Due to a cryptic splice site in exon3, an intermediate 

amplicon was also produced which contained a portion of exon3. Thus crmp2 IE Mo2 was found 

to reduce the expression of wild type mRNA and lead to the appearance of two additional 

mispliced forms of crmp2 mRNA in 24hpf morphants. At 3dpf the mispliced forms could not be 

detected and there was no reduction in wild type mRNA expression, which may indicate a 

relatively brief period of action for this morpholino. However the morphant optic projection 

phenotype could still be observed in embryos at 3dpf (discussed below). 

 

 

Fig. 4.3. Crmp2 IE Mo2 was found to reduce the expression of wild type mRNA and lead to the appearance of 

two additional mispliced forms of crmp2 mRNA. 

Aberrant splicing can be detected as a change in amplicon length by PCR. The upper band on the gel is the wild type 

amplicon, the lower band is the expected aberrantly spliced amplicon and the middle band is an additional aberrantly 

spliced amplicon. The topmost smeared band is most likely from inappropriate annealing as the primers had to be 

designed to bind to very specific regions of the mRNA, at the expense of other design considerations. The figure on 

the right illustrates the splicing which would result in the observed bands. 

This figure was kindly contributed by Dr. Eugen Kludt, Göttingen. 
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4.7.2 Whole tract labelling reveals sparser innervation of the tectum 

The first method used to attempt to elucidate any possible optic projection phenotype resulting 

from a knockdown of crmp2, was whole labelling of the optic projection with lipophillic tracers 

in crmp2 morphant embryos. Before searching for morphant phentoypes, the range of the 

baseline phenotype had to be observed by tracing uninjected embryos. The focus was on 3dpf 

embryos, as the retinotectal system is well established at this timepoint. 103 uninjected wild type 

embryos were traced to establish a robust baseline to define wild type phenotype and the possible 

variations which it can include. A time course of earlier timepoints was also studied, to allow 

comparisons of any potential specific or non-specific retardations of optic system development 

due to manipulations. 

Crmp2 IE Mo2 was injected at concentrations of 0.25mM (n=10), 0.5mM (n=51) and 

1mM (n=43). Confocal scans of the morphants at 3dpf, as assessed by a blinded observer 

alongside control scans, revealed a more sparsley innervated tectum with axons that appear 

coarser and less branched when compared to controls (Fig. 4.5). The phenotype was most 

pronounced at the highest concentration and not detectable at the lowest concentration. At 1mM 

an additional possible phenotype of axons straying from the posterior tectum was observed in 

1mM morphants (3 of 43) and was never seen in controls (0 of 103). The RGC axons appeared to 

reach the posterior tectum as indicated by bisbenzide staining, which may indicate that axon 

length is not reduced. Axon length was quantified in single axon labelling experiments (see 

section 4.7.6.2). At 4dpf, morphants were indistinguishable from uninjected controls. This may 

indicate a retardation of development of the optic system due to the morpholino or may be an 

effect of the morpholino becoming too dilute to have a significant effect on gene expression as 

the embryo develops. Furthermore, the 3dpf (72hpf) morphant phenotype (Fig. 4.5A and B) 

bears a strong resemblance to the 60hpf uninjected embryo (Fig. 4.4C). The possibility of 

general developmental retardation of the embryo is investigated below (section 4.7.6.1.1). Thus 

we conclude that knockdown of crmp2 during development, confirmed by PCR, leads to a 

qualitative phenotype which appears as a more sparsley innervated tectum with coarser axons 

which reach the posterior tectum. 
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Fig. 4.4. Time course of wild type optic projection development. Lateral views of confocal image stacks of the 

optic tract in whole-mounted embryos at different time points in development, after labelling of the temporal retina 

with DiO and nasal retina with DiI (A-C) and labelling of the temporal retina with DiI and the nasal retina with DiO 

(D). A. 48hpf time point showing few, unbranched axons not reaching the tectum. The inset gives the orientation of 

the brain with the labelled optic projection indicated in black (tel, telencephalon; ot, optic tract; tec, tectum; eye, 

contralateral eye; the ipsilateral eye was removed before mounting); dorsal is up, and rostral is left. B. 54hpf time 

point showing more numerous axons developing a curve towards the tectum. C. 60hpf time point where numerous, 

fine, branched axons have reached the tectum. D. 3dpf time point with dense, fine, branched axons terminating on 

the tectum showing its distinct shape. Scale bar in D = 100μm. 

  



 

165 

 

4.7.3 Knockdown of multiple crmps 

Possibly synergy of multiple crmp knockdown was investigated. Crmp2 IE Mo2 was coinjected 

with crmp4 Start Mo2 at the maximum concentration of morpholino that did not give toxic 

effects (0.5mM crmp2 IE Mo2 with 0.25mM crmp4 Mo2, n=40). No enhancement of phenotype 

was seen over control morphants injected with 0.75mM crmp2 IE Mo2 (n=17). 

 

4.7.4 Labelling variability 

In morphants, moreso than uninjected embryos, dye transport failed with a well labelled tract 

fading out as it approached the tectum which made the results unclear as to whether the tract 

itself was degrading or whether the dye was not being transported. As the dye is passively 

transported along the cell membrane this could indicate disruption of the membrane. Blebbing 

(dots of dye along the axon) was increased in morphants which can be an indication of 

degenerating axons or labelling artefacts. Such examples were rejected from further analysis but 

by rejecting all those with any imperfection of labelling we may have introduced a bias which 

rejected all embryos with the most severe phenotypes. For these reasons we sought an 

alternative, dye independent method to confirm the crmp2 morphant results.
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Fig. 4.5. Crmp2 IE Mo2 morphants show sparse innervation of the tectum at 72hpf but are indistiguishable 

from controls at 96hpf. Lateral views of confocal image stacks of the optic tract in whole-mounted wild type 

embryos, following labelling of the temporal retina with DiO and nasal retina with DiI. 

A, B. 72hpf crmp2 morphants (injected with 0.5mM crmp2 IE Mo2 at the 1-4 cell stage) exhibit axons that appear 

sparser, coarser and less branched than untreated 72hpf embryos (C, D). This phenotype is similar to the 60hpf time 

point (Fig. 4.4C). 

C, D. 72hpf controls showing finely branched axons which form a distinctive club shape on the tectum. 

E, F. 96hpf crmp2 morphants (injected with 1mM splice site directed morpholino crmp2 IE Mo2 at the 1-4 cell 

stage) showing a phenotype of finely branched axons which is indistinguishable from controls (G, H).  

Asterisks in B, G and H indicate overlying melanophores which impede laser penetration. 

Dorsal is up, rostral is left. Scale bar = 100μm. 
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4.7.5 Crmp2 morphant phenotype confirmed in the pou4f3:GFP line 

To independently confirm the morphant phenotypes observed after tracing, we generated 

morphants in the pou4f3:GFP line which expresses GFP in the majority of RGCs. 

This phenotype observed in pou4f3 crmp2 IE Mo2 morphants (Fig. 4.6) closely resembles that 

seen in wild type crmp2 IE Mo2 morphants (Fig. 4.5). That is, more sparsley innervated tectum 

with axons that appear coarser and less branched when compared to controls. Thus providing a 

strain and tracer independent confirmation of phenotype. Crmp2 IE Mo2 was injected at 

concentrations of 0.5mM (n=25), 0.75mM (n=9) and 1mM (n=9). As with the wild types, the 

phenotype was most pronounced at the highest concentration. These phenotypes were judged 

against the baseline phenotypes of 1mM control morpholino injected pou4f3 embryos (n=18). 

The optic projection in control morpholino injected pou4f3:GFP embryos was indistinguishable 

from that in uninjected embryos (n=30), indicating that morpholino injections do not have 

nonspecific effects on the branching pattern of RGC axons. The reduced variability in the 

fluorescence of RGCs due to the expression of transgenic GFP and lack of background labelling, 

compared to lipophillic tracers, allows for detailed quantitative analysis. This crmp2 knockdown 

phenotype was partially phenocopied with a second, independent morpholino against crmp2. 

Crmp2 Start Mo2 elicited an RGC axon phentoype which is qualitatively comparable but less 

pronounced than that elicited by crmp2 IE Mo2. With injection of 2mM crmp2 Start Mo2 (n=23) 

the phenotype is that of a more sparsley innervated tectum with axons that appear coarser and 

less branched when compared to embryos treated with 2mM control morpholino (n=19) (Fig. 

4.7). No phenotype was observable at lower concentrations. Efficacy of individual morpholinos 

varies. As crmp2 Start Mo2 is a start directed morpholino it's efficicacy cannot be readily 

measured for comparison with that of crmp2 IE Mo2 (Fig. 4.3). 

 Additional crmp2 morpholinos were investigated at 2mM but failed to elicit a phenotype; 

crmp2 Start Mo1 (n=9) and crmp2 IE Mo1 (n=6). 
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Fig. 4.6. Crmp2 IE Mo2 morphants generated in the Tg(pou4f3:gap43-GFP)
s356t

 line show sparse innervation 

of the tectum at 72hpf. Lateral views of confocal image stacks of the optic tract in whole-mounted 

Tg(pou4f3:gap43-GFP)
s356t

 embryos which have GFP expressing RGCs. 

A, B. 72hpf crmp2 morphants (injected with 0.5mM crmp2 IE Mo2 at the 1-4 cell stage) show RGC axons that 

appear sparser, coarser and less branched than control 72hpf embryos (C, D). This phenotype closely resembles that 

seen in crmp2 morphants generated in the wild type strain (Fig. 4.5A and B). 

C, D. 72hpf controls showing finely branched axons which form a distinctive club shape on the tectum. This 

phenotype closely resembles that seen in uninjected Tg(pou4f3:gap43-GFP)
s356t

 embryos (E, F) and wild type 

embryos (Fig. 4.5C and D). 

E, F. 72hpf uninjected embryos showing finely branched axons which form a distinctive club shape on the tectum. 

Asterisks in A, C and D indicate overlying melanophores which impede laser penetration. 

Dorsal is up, rostral is left. Scale bar = 100μm. 
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Fig. 4.7. Crmp2 morphants generated in the Tg(pou4f3:gap43-GFP)
s356t

 line show sparse innervation of the 

tectum at 72hpf. Lateral views of confocal image stacks of the optic tract in whole-mounted Tg(pou4f3:gap43-

GFP)
s356t

 embryos which have GFP expressing RGCs. 

A, B. 72hpf crmp2 morphants (injected with 2mM crmp2 Start Mo2 at the 1-4 cell stage) show RGC axons that 

appear sparser, coarser and less branched than control 72hpf embryos (C, D). This phenotype resembles a less 

pronounced phenocopy of that seen in crmp2 IE Mo2 morphants (Fig. 4.6A and B). 

C, D. 72hpf controls showing finely branched axons which form a distinctive club shape on the tectum. This 

phenotype closely resembles that seen in wild type embryos (Fig. 4.5C and D). 

Asterisk in D indicates overlying melanophores which impede laser penetration. 

Dorsal is up, rostral is left. Scale bar = 100μm. 
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4.7.6 Quantitation of RGC axon phenotype on the tectum 

4.7.6.1 Morpholinos against crmp2 have stastistically significant effects on the phenotype of 

RGC axons on the tectum 

The histogram method effectively quantifies how coarse and pronounced the axon fascicles 

across the tectum are. Many finely branched axons would present a diffuse, homogenous 

distribution of pixels resulting in low SD of average pixel brightness whereas few, coarse axons 

would present distinct bright lines with dark pixels in the intervening spaces, resulting in a high 

SD. The pou4f3:GFP embryos treated with crmp2 IE Mo2 (0.5mM, n=24 and 0.75mM, n=9) had 

SDs which were stastistically significantly higher than the control morphants (n=18) with p<0.05 

and p<0.0001, respectively (Fig. 4.8). There is no significant difference (NS) between uninjected 

(n=30) and control morpholino treated embryos. The less pronounced phenocopy elicited by 

2mM crmp2 Start Mo2 (n=23), is also statistically signficant compared to 2mM control 

morpholino treated embryos (n=18) with p<0.05 (Fig.4.9).  

 The single morpholinos and morpholino combinations which did not yield a qualitative 

phenotype were analysed using the histogram method. All comparisons are non significant, in 

agreement with observer visual assessment (Fig. 4.10). Crmp2 Start Mo1 was injected at 2mM 

and still remained qualitatively and quantitatively non-significant (Fig. 4.9). This indicates that 

this assessment method does not produce false positives for the morpholinos we have analysed, 

even at higher concentrations of morpholino. However, any morpholino will produce toxic 

effects at sufficient concentrations. While 2mM control morpholino injections did not lead to an 

observable phenotype similar to that of the morpholinos against crmp2, it did have an effect on 

the quantified standard deviation. A decrease in pixel intensity SD (p<0.05) when compared to 

controls was observed (Fig. 4.9). Nonetheless, this is in contrast to the standard deviation 

increases witnessed with both crmp2 morpholinos which elicit a phenoype (crmp2 IE Mo2, Fig. 

4.8 and crmp2 Start Mo2, Fig. 4.9). 
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Fig.4.8. Crmp2 IE Mo2 has statistically significant effects on the phenotype of RGC axons on the tectum. 

Cross sections of collapsed confocal stacks from 72hpf Tg(pou4f3:gap43-GFP)
s356t

 larvae were analysed using the 

ImageJ histogram function. The mean standard deviations for each condition were then compared using an ANOVA 

with Tukey post hoc test. There is no significant difference (NS) between uninjected and control morpholino treated 

embryos, thus ruling out morpholino toxicity. There is a statistically significant difference between the SD of 

controls and the SD of crmp2 IE Mo2 morphants at 0.5mM (p<0.05) and 0.75mM (p<0.0001).  

 

 

Fig. 4.9. A second crmp2 morpholino, crmp2 Start Mo2, has statistically significant effects on the phenotype 

of RGC axons on the tectum. 

There is a statistically significant difference between the SD of control and SD of the crmp2 Start Mo2 morphants at 

2mM (p<0.05) but not crmp2 Start Mo1. However, at 2mM concentration control morpholino SD is reduced 

compared to uninjected SD (p>0.05). 
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Fig. 4.10. Other crmp morpholinos had no stastically significant effect on the phenotype of RGC axon on the 

tectum. 

All comparisons are non-significant. This is in agreement with qualitative methods of observation, indicating a lack 

of false positives with this method of analysis. 

 

4.7.6.1.1 General embryo development 

Two readily accessible and relevant measures of embryo development are the overall embryo 

length and the width of the eye. A reduction in either of these could indicate a general retardation 

of development by morpholino treatment. A sparser tectal innervation could then be due to the 

retarded developmental state of the embryo rather than specific effects on tectal innervation. 

Crmp2 IE Mo2 morphants exhibit a statistically significant quantitative whole projection 

phenotype at 0.5mM (Fig. 4.8). At 0.5mM neither body length (Fig. 4.11) or nasotemporal eye 

width (Fig. 4.12) is statistically significantly reduced. This indicates that the RGC axon 

phenotype observed in embryos treated with 0.5mM crmp2 IE Mo2 cannot be attributed to 

general developmental retardation, based on these measures. 
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Fig. 4.11. Crmp2 IE Mo2 does not reduce embryo body length at 0.5mM in 3dpf embryos. Embryo body length 

is not significantly reduced by these treatments. Thus the RGC axon phenotype observed is not due to retardation of 

embryo development. 

 

 

Fig.4.12. Crmp2 IE Mo2 does not reduce eye width at 0.5mM in 3dpf embryos. Nasotemporal eye width is not 

significantly reduced by these treatments. Thus the RGC axon phenotype observed is not due to retardation of 

general eye development. 
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4.7.6.1.2 Effect on embryo size with increasing morpholino concentration 

Crmp2 Start Mo2 morphants exhibit a statistically significant tectal phenotype at 2mM (Fig. 4.9). 

The body length of crmp2 Start Mo2 morphants is not altered relative to uninjected (Fig. 4.13). 

However it is increased relative to 2mM control morphants (p<0.01, Fig. 4.13). Whereas 

nasotemporal eye width is reduced relative to uninjected (p<0.01) and 2mM control morphants 

(p<0.05, Fig. 4.14). Control morpholino treatment at 2mM reduces nasotemporal eye width 

relative to uninjected also (p<0.01, Fig. 4.14). The reduction of eye size by both active and 

control morpholinos at 2mM most likely indicates retardation of development induced by toxic 

effects. Whereas the increase in body length induced by active but not control morpholino is 

unexpected and cannot be readily explained by effects of retardation. This may indicate that the 

phenotype observed in the optic projection in 2mM crmp2 Start Mo2 morphants may in part be 

caused by non-specific effects of the treatment. 

 

 

Fig. 4.13. Crmp2 Start Mo2 increases embryo body length relative to controls but not uninjected at 2mM in 

3dpf embryos. While control morpholino reduces embryo body length relative to controls it is non-significant, as 

may be expected from mild toxicity due to the high morpholino concentration. However crmp2 start Mo2 stastically 

significantly increases embryo body length relative to controls (p<0.01) but not uninjected (non-significant), which 

cannot be readily explained by general retardation due to morpholino toxicity. 
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Fig.4.14. Crmp2 Start Mo2 and control morpholino treatment induces reduced eye width at 2mM in 3dpf 

embryos. As control morpholino treatment also leads to nasotemporal eye width reduction, this may be an 

indication of developmental retardation of the eye due to morpholino toxicity. 
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4.7.6.2 Individual axon labelling 

 

Fig. 4.15. Tracing individual axons for analysis. Injection of the Pou4f3:GAL4;UAS:GAP43-GFP construct 

results in mosaic expression of GFP in a random minority of retinal ganglion cells. The construct has been co-

injected with crmp2 IE Mo2 morpholino allowing individual morphant arbors to be studied using software traces (B) 

made from compressed confocal stacks (A). Both control morphants and crmp2 morphants show a wide range of 

arbor phenotypes in terms of branch number and branch length (C). These examples are from crmp2 morphants. 

Dorsal is up, rostral is left. Scale bar = 100μm  

 

4.7.6.2.1 BGUG plasmid coinjected with morpholino 

To study the phenotype of individual morphant axons, morpholino was coinjected with the 

BGUG plasmid which results in a minority of RGCs expressing GFP. The two groups were 

0.5mM crmp2 IE Mo2 plus BGUG plasmid, n = 28 axons from 18 embryos and 0.5mM control 

morpholino plus BGUG plasmid, n =13 axons from 6 embryos. Using SimpleNeuriteTracer, 

multiple properties of the axons were quantified and assessed with a Mann-Whitney test. Both 

controls and crmp2 morphants show a wide range of arbor phenotypes in terms of branch 

number and branch length which overlap between the two treatments (Fig. 4.15C).  

 

Total axon length 

The total length of a traced axon from the optic nerve head to the terminations, including the 

main branch and all collaterals: Crmp2 morphants 370.1 ± 19.0 µm, Controls 391.7 ± 21.2 µm, p 

= 0.2743. 
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Length of main branch 

The length of only the longest continuous branch from optic nerve head to termination, 

excluding any collaterals: Crmp2 morphants 301.5 ± 11.4 µm, Controls 328.6 ± 12.9 µm, p = 

0.0934. 

 

Mean length of collateral branches 

The mean length of the collateral branches, excluding the main branch: Crmp2 morphants 10.34 

± 0.97 µm, Controls 12.01 ± 1.39 µm, p = 0.0985. 

 

Branch tip number 

The total number of branch tips: Crmp2 morphants 3.536 ± 0.470, Controls 4.385 ± 0.646, p = 

0.1112. 

 

Branch order 

The maximum number of branches that can be counted along a continuous route from the optic 

nerve head to a termination: Crmp2 morphants 2.107 ± 0.342, Controls 3.000 ± 0.494, p = 

0.0764. 

 

For all measures the crmp2 morphants tend to reduced numbers. This trend may indicate a shift 

towards a stunted, less complex arbor phenotype with fewer, shorter branches. However with 

current assessed axon numbers there is a lack of statistical significance for all single axon 

measures. 
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4.7.6.2.1.1 General embryo development 

Embryo body length (Fig. 4.16) and nasotemporal eye width (Fig. 4.17) were not significantly 

statistically reduced by either plasmid injection with or without crmp2 IE Mo2 application. This 

indicates that general embryo development and eye development were not retarded by the 

treatments and so reduces the possibility that the effect observed on individual axons was due to 

non-specific or toxic effects of the treatment. 

 

Fig.4.16. Combined plasmid and morpholino treatments do not reduce embryo body length in 3dpf embryos. 

Embryo body length is not significantly reduced by plasmid treatment, whether in conjunction with control or crmp2 

IE Mo2 morpholino. Thus the RGC axon phenotype observed is not due to retardation of embryo development. 
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Fig.4.17. Combined plasmid and morpholino treatments do not reduce embryo body length in 3dpf embryos. 

Nasotemporal eye width is not significantly reduced by plasmid treatment, whether in conjunction with control or 

crmp2 IE Mo2 morpholino. Thus the RGC axon phenotype observed is not due to retardation of general eye 

development. 
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4.7.6.2.2 Crmp2 dominant negative construct 

We analysed the effects of a Crmp2 dominant negative over-expression construct as an 

alternative approach to morpholinos to reduce Crmp2 activity. The two treatments were 

DNcrmp2 and BG plasmid, n = 38 axons from 20 embryos and BGUG plasmid, n =21 axons 

from 13 embryos. The BG plasmid contains the upstream promoter elements which are activated 

in cells, such as RGCs, which express pou4f3. It is coinjected with the DNcrmp2 plasmid which 

contains the downstream components which lead to dominant negative Crmp2 and GFP 

expression when the pou4f3 promoter is active. The control for this experiment is the BGUG 

plasmid which has the same upstream promoter as the BG which leads to GFP expression only, 

without dominant negative Crmp2 expression. Using SimpleNeuriteTracer, multiple properties 

of the axons were quantified and assessed with a Mann-Whitney test. 

 

Total axon length 

The total length of a traced axon from the optic nerve head to the terminations, including the 

main branch and all collaterals: DNcrmp2 444.8 ± 14.3µm, Control 488.5 ± 28.7 µm, p=0.1151. 

 

Length of main branch 

The length of only the longest continuous branch from optic nerve head to termination, 

excluding any collaterals: DNcrmp2 337.8 ± 7.7µm, Control 372.8 ± 16.1µm, p=0.0107. 

 

Mean length of collateral branches 

The mean length of the collateral branches, excluding the main branch: DNcrmp2 15.03± 1.20, 

Control 15.23 ± 1.42, p=0.4761. 

 

Branch tip number 

The total number of branch tips: DNcrmp2 4.658 ±0.448, Control 5.238 ± 0.73, p=0.3156. 

 

Branch order 

The maximum number of branches that can be counted along a continuous route from the optic 

nerve head to a termination: DNcrmp2 2.737 ± 0.269, Control 3.619 ± 0.575, p=0.1492. 
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As with the individual axon measurements from morphants, all measures for the Crmp2 

dominant negative expressing axons tend to reduced numbers. This trend may indicate a shift 

towards a stunted, less complex arbor phenotype with fewer, shorter branches. However with 

current assessed axon numbers only the length of the main branch is statistically significantly 

reduced (p=0.0107). 
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4.7.7 Phenotype screens 

We entered into collaborations with Dr. Tom Pratt (Edinburgh) and Dr. Sally Stringer 

(Manchester) to screen for optic system phenotypes induced in zebrafish embryos by treatment 

with morpholinos against heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) and various 

sulfatases, respectively. 

 

4.7.7.1 Heparan sulfate proteoglycans 

Heparan sulfate proteoglycans (HSPGs) are expressed extensively in the developing brain and 

are involved in RGC axon navigation. HSPGs are important for growth cone navigation (Lee and 

Chien, 2004) and, in mice, a lack of HSPGs has been shown to increase retinoretinal projection 

of RGCs (Inatani et al., 2003). HSPGs are extracellular matrix molecules with varied fine 

structure alterations, which contribute to protein interaction, due to the action of modifying 

enzymes. (Esko and Selleck, 2002). These modifications of the sugar residues of the HSPGs 

include epimerization, de-acetylation and sulfation. Sulfation is carried out by heparan sulfate 

transferases (HST) which add sulfate groups to specific sugar residue positions of the heparan 

sulfate sugars (Lee and Chien, 2004). HS6ST1 sulfates the 6-O position of glucosamine and has 

been shown to affect retinal axon guidance in the chiasm of mice (Pratt et al., 2006). The 

investigation of HS6ST1 knockdown is at the preliminary stage. A phenotype of axons straying 

from the tract or tectum may have been identified but will require further scans to verify. During 

normal development axons navigate to 10 different arborization fields, which are precursors of 

retinorecipient nuclei (Burrill and Easter, 1994). Arborization field 3 (AF3) is located caudal to 

the tract and in controls axons can often be seen leaving the tract and growing towards AF3. In 

12 of 99 controls excessive or meandering outgrowth at the level of AF3 can be observed. 

Treatment with a morpholino against HS6ST1 at 0.5mM increases the frequency of such errors 

with 7 of 18 embryos showing the tentative phenotype. Axon outgrowth from the tectum has 

only been observed in 2 of 103 controls and never from the posterior extent of the tectum. 
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Fig. 4.18. HS6ST1 morphants exhibit axons with an increased tendency to stray from the tract and exit the 

tectum. Lateral views of confocal image stacks of the optic tract in a 4dpf whole-mounted HS6ST1 morphant and 

3dpf uninjected embryo, after labelling of the nasal retina with DiO and temporal retina with DiI. Dorsal is up and 

rostral is left. A. 4dpf HS6ST1 morphant (injected with 0.5mM HS6ST1 morpholino at the 1-4 cell stage) with axon 

outgrowth from the tract and tectum. Bottom left arrow indicates outgrowth from lower tract which is uncommon in 

controls. Bottom right arrow indicates outgrowth towards arborization field 3 similar to that seen in controls (Arrow 

in B). Middle arrow indicates outgrowth from caudal tectum which is very rare in controls. Top arrow indicates 

outgrowth posterior from tectum which is not seen in controls. B. 3dpf uninjected control with outgrowth from tract 

towards arborization field 3 (arrow) but no outgrowth from tectum. C. Enlarged section from (A) showing axons 

exiting the posterior tectum and growing posteriorly (arrow). D. Enlarged section from (B) exhibiting no axon 

outgrowth from tectum. Scale bar for A and B = 100μm. Scale bar for C and D = 25μm. 
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4.7.7.2 Sulfatases 

Sulfatases (sulfs) remove sulfate groups from specific sugar residues of HSPGs. Sulf1 and Sulf2 

are secreted 6-O-endosulfatases involved in the processing of the 6-O position of glucosamine of 

HSPGs. They have an opposing activity to HS6ST1 which adds sulfate groups to the same target 

residue. The roles of Sulf1 and Sulf2 during normal development are not well understood but it 

has been shown in the mouse that they have overlapping yet essential functions (Holst et al., 

2007). Six sulf targeted morpholinos are currently under investigation in collaboration with Sally 

Stringer’s goup (Manchester); three splice blockers against Sulf1Csb, Sulf2sb and Sulf2Bsb and 

three start blockers against Sulf1Ca, Sulf2b and Sulf2Ba. Confocal stacks have been assembled 

for each of these morpholinos and they have been assessed for any abnormalities of the optic 

projection (as above) but no phenotype has emerged. 
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4.8 Discussion 

We found that knockdown of Crmp2 with two independent morpholinos resulted in an axon 

phenotype which could be observed in whole tract tracing in the form of sparser, less branched 

innervation of the tectum by RGC axons. Individual axon phenotypes induced by morpholino or 

dominant negative Crmp2 expression tended towards less complex arbors with shorter axons 

overall.  

 It is known that microtubule dynamics and endocytosis
 
regulate growth cone morphology 

(Goshima et al., 1997; Diefenbach et al., 1999; Fournier et al., 2000; Mack et al., 2000; 

Kamiguchi and Lemmon, 2000; Buck and Zheng, 2002) and that Crmp2 influences both of these 

processes, through interactions with tubulin heterodimers and Numb, leading to increased axon 

elongation and branching (Fukata et al., 2002; Nishimura et al., 2003; Arimura et al., 2005). 

Without the enhancement of microtubule assembly due to Crmp2 acting as a carrier of tubulin 

heterodimers, growth cone dynamics would be altered in favour of retraction. The trend towards 

less complex arbors and shorter axons when Crmp2 activity is reduced through dominant 

negative expression or morpholino application, is consistent with the role of Crmp2 in 

axonogenesis and neurite extension and as a transducer of known axon guidance cues such as the 

Sempahorins which are implicated in axon branching (Miyashita et al., 2004). Furthermore, 

Crmp2 facilitated Numb-mediated endocytosis has been shown to enhance axon elongation 

(Nishimura et al., 2003). Therefore shorter axons are consistent with reduced Crmp2. Thus 

reducing Crmp2 reduces axon growth by affecting multiple pathways which each reduce axon 

growth in their specific manner. 

 If the various effects of reducing Crmp2 activity are additive we may expect to see a 

phenotype which is less subtle than the one we have induced. One technical consideration is that 

we have not quantified the extent of Crmp2 knockdown or the efficacy of the dominant negative. 

However, it is known that these treatments are effective in the trigeminal nerves of developing 

zebrafish, given the effects induced by this morpholino and the dominant negative protein by our 

collaborators (O'Brien et al., 2009). Assuming the subtle effect is not simply due to the 

incompleteness of knockdown, it may be that it is a result of competing effects of Crmp2. In rat 

hippocampal cells in vitro, knocking down Crmp2 activity through the expression of a dominant 

negative Crmp2 mutant reduces axon formation (Inagaki et al., 2001). While this is in 

accordance with our results, we cannot extrapolate too far from these models as altering Crmp2 
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levels has different effects in different types of cell and may depend on which upstream molecule 

is the dominant influence at any particular time. In contrast to the results from cultured rat 

hippocampal cells, in vitro experiments in the rat DRG have shown that Sema3A induced growth 

cone collapse can be inhibited by blocking the action of Crmp2 (Goshima et al., 1995). Therefore 

in the rat DRG model reducing Crmp2 activity should lead to an increase in axon growth. 

Similarly, in vitro experiments in chick DRG have shown that NGF induced neuritogenesis can 

be enhanced by blocking the action of Crmp2 (Quach et al., 2004). Contradictory results have 

also been obtained from studies of Crmp2 facilitated Numb-mediated endocytosis which has 

been shown to be necessary for axon growth (Kamiguchi and Lemmon, 2000; Nishimura et al., 

2003). While some studies have found that Sema3A and Ephrin-A5 induced growth cone 

collapse acts via increased phosphorylation of Crmp2 leading to inhibition of Numb-mediated 

endocytosis and so growth cone collapse (Goshima et al, 1995; Arimura et al., 2005) (Fig 4.1), 

others have shown that endocytosis is enhanced during Sema3A and Ephrin induced growth cone 

collapse (Fournier et al, 2000; Jurney et al., 2002). A possible explanation for individual in vitro 

experiments having contradictory findings may be due to the model being a skewed or over-

simplified version of the role of Crmp2. Given the high concentrations of molecules used in in 

vitro experiments it is questionable if axons in vivo would ever be presented with such a 

monolithic influence, rather than multiple, more subtle guidance cues. During the formation of 

the retinotectal system in zebrafish, many guidance cues are expressed simultaneously and in 

partially overlapping patterns. The Semaphorins (
 
Liu et al 2004; Wolman et al., 2007; Callander 

et al., 2007), Neurotrophins (Hashimoto and Heinrich, 1997; Dethleffsen et al., 2003) and 

Ephrins (Brennan et al., 1997; Picker et al., 1999) have all been implicated as signalling 

molecules upstream of Crmp2 and are all expressed in the retinotectal system during 

development. Crmp2 is a nexus for many types of cues ranging from mostly positive/attractant 

cues (Neurotrophins) to mostly inhibitory/repellent cues (Semaphorins). The Crmp2 pathway is 

complex and not well elucidated, so it is likely that there are other guidance and growth 

molecules which influence the pathway. Therefore the effect of reducing Crmp2 on growing 

RGC axons may be dependent on spatial and temporal expression of a variety of other molecules 

and to what extent they contribute to the response.  

 This convergence of multiple pathways and the fact that Crmp2 can act upon some of the 

kinases that act upon Crmp2 in a feedback loop (Leung et al., 2002) may give this pathway a 
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robustness that diminishes the effects of Crmp2 manipulation in the in vivo situation. Such 

robustness would not be unexpected in a system so essential for survival as the retinotectal 

system. Therefore the subtle phenotype obtained by our experiments may be an indication not of 

the lack of importance of Crmp2 in the developing zebrafish retinotectal system, but rather the 

result of complex interactions and compensatory mechanisms. 

 

4.8.1 Manipulations of other molecules in the Crmp2 pathway in the zebrafish retinotectal 

system 

By comparing how perturbations of molecules in the Crmp2 pathway affect the retinotectal 

phenotype in developing zebrafish we could draw more conclusions regarding the mechanisms 

underlying our observed phenotype. Unfortunately this information is largely not available as 

some key genes such as the relevant semaphorins (sema3aa, sema3ab) do not have known 

mutants in the zebrafish and although morpholino knockdown studies of these molecules have 

been carried out, they focused on areas other than the retinotectal system e.g. angiogenesis 

studies. The same is true for NGF, LPA and Rho-kinase (Rock1). Other genes of interest such as 

nrp1a and nrp1b do have mutants available but there are no citations associated with these 

mutants as they were identified by TILLING (Targeting Induced Local Lesions in Genomes) 

rather than phenotype screening so once again, there is no data on their effect on the retinotectal 

system. While the effects of Crmp2 knockdown, by the morpholino and by the dominant 

negative plasmid construct used in this study, have been investigated in the developing zebrafish 

regenerating trigeminal sensory axons (O’Brien et al., 2009), no comparisons can be drawn 

regarding axon extension as no data was provided regarding the complexity or length of the 

axons. 

 Mutants which have been studied in the retinotectal system and give a comparable 

phenotype to the crmp2 morphants, are tarde demais (tard) and late bloomer (late) (See Figure 5 

of Xiao et al., 2005). These mutants are described as having delayed tectal ingrowth. Both 

mutants exhibit sparser innervation of the tectum which is similar to that seen in crmp2 

morphants at 3dpf. However the axons appear to be shorter than those of the crmp2 morphants as 

they do not reach the posterior tectum. The similarities in phenotype may provide further 

evidence that the crmp2 morphant phenotype is not simply due to toxic effects but is due to a 

specific retardation of retinotectal development, as it is with tard and late mutants. Beyond their 
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affect on tectal innervation, little is known regarding these genes which were identified in a 

retinotectal phenotype screen and have not been sequenced. 

 

4.8.2 Whole projection labelling but not individual axons show a statistically significant 

phenotype 

From our results it can be seen that for crmp2 IE Mo2 morphants a clear qualitative phenotype 

was observed in whole projection labelling (Fig. 4.5) which was confirmed in a strain and 

method independent manner (Fig 4.6) and found to be statistically significant (Fig4.8) and 

specific (Fig 4.11 and Fig. 4.12). Treatment with crmp2 Start Mo2 provided a less pronounced 

phenocopy (Fig. 4.7). The tendencies of the individual axon measurements are consistent with 

the bulk labelling phenotypes of apparent sparser innervation of the tectum and less branching of 

axons but remain non-significant, with the exception of reduced main branch length in the 

dominant negative expressing axons. This may be due to a relatively subtle phenotype on the 

level of individual axons as the whole projection scans assess approximately four thousand 

labelled RGC axons at the 3dpf time point (personal communication, Dr. Chi-Bin Chien). Thus 

assessment of further individual axons may lead to the other measures also reaching significance. 

Alternatively there may be fewer RGC axons reaching the tectum in treated embryos due to cell 

death, which can be assessed in future experiments, or due to failure of neurogenesis as crmp2 

may play a role in neurogenesis (Quinn et al., 1999). There may be a systematic bias introduced 

as elaborate arbors are more likely to be rejected than compact arbors due to overlap with other 

axons making them difficult to trace. Significantly more control axons were discarded than 

crmp2 morphant axons (in controls 11 axons were traced and 45 rejected, while in crmp2 

morphants 25 axons were traced and 17 rejected, p=0.0384). 
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4.8.3 Future direction 

It is clear from these results that knocking down crmp2 affects the normal development of the 

retinotectal system but the phenotype of individual axons appears to be quite subtle when 

observed from a single time point. As crmp2 is implicated in growth cone response, knockdown 

may affect growth cone dynamics which would not be evident from a static datapoint. Time 

lapse confocal microscopy of transgenic axons in vivo would reveal any abnormal growth 

dynamics not captured with a single time point. Use of additional splice site directed 

morpholinos against crmp family members other than crmp2, the effects of which on mRNA can 

be quantified, would help to assess if the lack of phenotype when knocking down the other crmp 

family members is due to inefficient knockdown or that knocking down the target gene does not 

lead to a phenotype. The partial knockdown caused by crmp2 IE Mo2 could only be shown up to 

24hpf by RT-PCR and the phenotype of the morphant present at 3dpf was restored to wild type 

by 4dpf. It is possible that crmp2 expression is recovering by 3dpf and the phenotype witnessed 

at 3dpf is already partially recovered. For this reason a knockout mutant would further elucidate 

the role of crmp2. With continuing advances in genetics, such as zinc finger nucleases, creating 

mutant lines as required is becoming more feasible. However the lack of a vertebrate knockout 

line for crmp2, when lines exist for crmp1 (Su et al., 2007) and crmp3 (Quach et al., 2008) may 

indicate that a level of crmp2 expression may be required for survival. A crmp2 knockout RGC 

cell line would also allow the study of axon density in vitro, which is more readily measurable in 

culture, and is a possible explanation for why the tectal innervations appears sparser while the 

overall length of axons is not reduced. However, it is possible that even complete knockout of 

crmp2 will not yield a severe phenotype as there are five members of the crmp family expressed 

in the developing retina which are sufficiently homologous to suggest they may share some 

activity and be able to partially compensate for the loss of one. This has been shown with other 

regeneration linked genes in zebrafish such as KLF6a and KLF7a which show no effect on axon 

growth when knocked down individually but have a clear phenotype when simultaneously 

knocked down (Veldman et al., 2007). While the literature indicates crmp2 is the family member 

most integral to growth cone function and it has the most pronounced fold change during 

regeneration, it may be that a double or triple crmp knockdown or knockout would yield an 

enhanced phenotype. It is possible that the complexity of the pathways leading to Crmp2 and the 

feedback loop involving Crmp2, have a compensatory effect for altered Crmp2 levels.  
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 Investigating the many upstream signalling molecules implicated in the Crmp2 pathway 

may provide results that are more readily interpreted. Some of these upstream molecules, such as 

nrp1a and nrp1b, already have available mutants which have not yet been studied in the 

retinotectal system. To fully understand the role of Crmp2 will require the dissection of the 

various inputs of the pathway to understand their contributions to Crmp2 mediated axon 

extension. Detailed temporal, in addition to spatial, expression patterns for the upstream 

guidance and growth molecules will also help to inform the balance of inputs to the pathway as 

the RGC axon navigates the retinotectal system. 

 Once the pathway is better elucidated and if a robust crmp phenotype can be established 

in development, a next step would be to investigate crmp manipulation in adult regeneration as 

four of the six crmps are upregulated during optic nerve regeneration. Interestingly, while injured 

rat cranial nerves show increased expression of CRMP1, 2 and 5, but not CRMP3 and 4 (Suzuki 

et al., 2003), zebrafish RGCs upregulate crmp2, 3, 4 and 5a following lesion but not crmp1 and 

5b (Table 4.3). The differing responses of crmp family members may contribute to the differing 

regenerative potentials of these organisms. Manipulation during regeneration could be achieved 

by application of morpholinos to the transected nerve (Veldman et al., 2007) or by generation of 

an inducible overexpression line (Fig. 2.7), so determining any effect of crmp2 overexpression 

during regeneration. As crmp2 overexpression enhances rat cranial nerve regeneration (Suzuki et 

al., 2003), it would be of interest to study if crmp2 overexpression has similar effects on the CNS 

of zebrafish. Comparison of the roles of the crmps in development and regeneration would 

contribute to the question of to what extent regeneration is a recapitulation of development. 

As the phosphorylation state of Crmp2 is a key factor determining its growth cone collapsing 

activity, the proportion of one state in comparison to the other may be a key factor and by 

reducing Crmp2 overall it may reduce Crmp2 on each side of the balance resulting in little net 

effect. Experiments which block or enhance the phosphorylation of Crmp2 may show effects not 

elicited by a flat reduction of Crmp2. A related approach would be the overexpression of specific 

forms of phosphorylation insensitive or dephosphorylation insensitive Crmp2 (Arimura et al., 

2005). A similar situation may be presented by the relative abundance of the isoforms of Crmp2 

in mammals, as the long form promotes neurite extension while the short form inhibits 

(Rogemond et al., 2010). This balance could be manipulated with the overexpression of one of 

the forms. Isoforms of Crmp2 have not yet been identified in zebrafish. However, in the latest 
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revision to the published zebrafish genome crmp2/dpysl2 has been renamed dpysl2b and an entry 

has been created for dpysl2a. As yet dpysl2a has very little information associated with it other 

than a predicted 361bp sequence and has not been included in a scientific publication. 

 

4.9 Conclusion 

We have shown that crmp2 plays a role in development of the retinotectal system in zebrafish. A 

modest reduction in crmp2 expression leads to sparser, less branched innervation of the tectum 

by RGC axons. Individual axons in crmp2 morphants and axons expressing dominant negative 

Crmp2, have similar phenotypes which tend towards less complex arbors with shorter branches 

and reduced overall axon length. This is consistent with the role of crmp2 as a transducer of axon 

guidance signals and its role in axonogenesis. Reducing levels of Crmp2 further and for longer 

may reveal other aspects to this phenotype, as may coordinated knockdown of multiple crmps 

and other genes in the Crmp2 pathway. 
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5. Final thoughts 

 

5.1 The zebrafish is an ideal model for CNS regeneration studies 

The zebrafish CNS is capable of a high degree of spontaneous CNS regeneration and possesses 

an environment rich in growth promoting molecules and low in inhibitory molecules. The 

retinotectal system provides an anatomically discrete and highly accessible extension of the CNS 

in which over 80% of the RGC axons regenerate following optic nerve lesion, leading to full 

functional recovery. Zebrafish readily regenerate from crush injuries which are a realistic 

simulation of the majority of human CNS injuries. In vertebrate models, the regenerative 

capabilities of the zebrafish can only be matched by other teleost fish and a select few 

amphibians, such as the salamander. While more primitive fish, such as the jawless fish, are also 

highly regenerative they are a less appropriate model for higher vertebrates due to their relatively 

simple nervous system, lack of myelin, lack of limbs and technically primitive genetics (i.e. little 

changed from the first vertebrates) (Bullock et al., 1984; Kuratani and Ota, 2008; Kuratani, 

2008). Compared to many amphibians and other teleost models, such as the goldfish, zebrafish 

develop and regenerate rapidly, allowing for more efficient experiments and rapid collection of 

results (Bernhardt, 1999). The ease of raising zebrafish and their breeding habits allows for 

robust numbers of embryos to be rapidly generated on demand. The use of zebrafish as a 

research model also sidesteps many ethics concerns which are becoming increasingly central 

research issues, particularly in the UK. The extent to which fish can perceive pain is still in 

question (Sneddon, 2009) and the concept of research being carried out on fish is less offensive 

to the general public than more relatable mammals. A disadvantage of the zebrafish as a newer 

model organism, was the lack of support infrastructure in the form of tools and mutants. 

However the zebrafish is gaining on the mouse with rapid mutagenesis screens generating 

libraries of mutant lines, especially in the optic system due to the ease of automation for 

detection of mutants which affect vision (Muto et al., 2005; Xiao et al., 2005; Gulati-Leekha and 

Goldman, 2006). With the annotation of the zebrafish genome nearing completion and new 

advances in genetic manipulation such as zinc finger nucleases, the availability of custom 

designed lines will explode. While many may harbour concerns over how well insights gained 

from fish CNS regeneration would translate to the ultimate goal of human CNS regeneration, it is 

worth noting that the zebrafish has a complex nervous system and highly developed senses, 
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particularly vision. The adult zebrafish retina contains 100,000 RGCs (Mangrum et al., 2002), in 

comparison to the mouse retina which contains around 80,000 once mature (Danius et al., 2003; 

Nakazawa et al., 2006). Furthermore it cannot be overstated that while the zebrafish provides an 

easily accessible, manipulable regeneration model, currently mammals provide models for lack 

of regeneration only.  

 

5.2 Zebrafish studies inform mammalian CNS regeneration studies 

CNS regeneration in the zebrafish provides a "how to guide" for regeneration of the injured 

vertebrate CNS, which can be more widely applied by identification of conserved components of 

the regeneration machinery in other species, with much still to be elucidated. With our current 

understanding of neuroscience and state of the art techniques, the robo2 project (chapter 2) 

would have been impossible in any model which lacks intrinsic CNS regeneration. At present, 

much of the work concerned with regeneration in non-regenerating models focuses on 

determining the gene activity and set of guidance molecules that are required for axon growth 

during development and how to apply these findings to the adult situation. While these avenues 

of research will undoubtedly advance our understanding of neurogenesis, axonogenesis and axon 

guidance, which are vital to regeneration, it still remains unproven to what extent regeneration is 

a recapitulation of development. The overlap may not be sufficient to allow experimentally 

reexpressed developmental programs to induce regeneration in the adult. The zebrafish can 

directly inform us of regeneration linked cues and in doing so informs us as to what extent 

regeneration is a recapitulation of development for better direction of studies in higher 

vertebrates and humans. Our work with robo2 (chapter 2), and hinted by the array data (chapter 

3), suggests that these two processes are distinct but share expression of some genes, such as 

robo2, although the relative importance of expression of the gene differs between the two 

processes. Similarly, the expression of crmps varies between developing and adult regenerating 

CNS (chapter 4). Other work comparing development and regeneration in the zebrafish optic 

projection has revealed that, of the genes studied, while two thirds of the genes were expressed 

during both development and regeneration, a third were unique to regeneration (Veldman et al, 

2007). Given that there are genes specific to regeneration and the genes common to both 

processes may have altered importance and roles, working from knowledge of developmental 

growth and guidance cues alone may prove an insurmountable task without a blueprint from an 
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existing regenerating system to work towards. The zebrafish is an ideal model to supply this 

guide. 

 

5.3 Future direction 

It is clear that there are complex interactions between regeneration linked genes, such as crmp2 

and multiple guidance pathways, and that the function of any one particular gene may be masked 

by any number of others. In zebrafish RGC explants, individual knockdown of several genes 

regulated during regeneration failed to elicit a phenotype until a double knockdown unmasked 

the function of two genes which when knocked down individually had no effect (Veldman et al., 

2007). In the developing mouse optic system, individual ephrin knockouts have little effect on 

mapping, while a triple knockout of ephrin A2, A5 and the linked β2 subunit of the nicotinic 

acetylcholine receptor was required to cause a substantial disruption of mapping along the 

nasotemporal axis (Cang et al., 2008). This is especially true of genes which have close family 

members with high homology, such as the crmps which have both high intra-family and 

interspecies homology (Schweitzer et al., 2005). Generation of mutants which are knockouts for 

multiple crmps may enhance the crmp2 phenotype we observed and would be worth further 

study in the context of regeneration as four of the six family members are upregulated in the 

RGC layer following optic nerve lesion. Likewise for members of the fox family, which are 

implicated from the microarray and in situ hybridisation findings as regulated in gradients in the 

retina during development and regeneration. The lack of an optic system phenotype in the foxi1 

mutant was surprising in light of its highly spatially restricted expression in the developing 

retina. Given the gradients of foxg1a, foxg1b and foxd1-like in the retina during development, 

knocking down these family members in a foxi1 mutant may uncover a previously masked 

function of foxi1. As the mutation is lethal, manipulation of adult regeneration could be achieved 

by morpholino, heatshock inducible or other inducible system such as tetracycline inducible 

expression (Knopf et al., 2010). The slits are also highly homologous within and between species 

with significant homology between invertebrate and human slits (Brose et al., 1999). The 

functional properties of Slits and Robos are preserved across species as Slit and Robo proteins 

from different species can successfully interact (Brose et al., 1999). Similarities of expression 

and high homology of families between species and comparable activity between model 

organisms are good indications that lessons learned in zebrafish will be applicable to other 
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models and ultimately humans. Complete knockout of robo2 had little effect on regeneration, 

despite its importance during development. At the moment we cannot be certain if this is because 

lack of robo2 function is compensated for during regeneration, or if robo2 only has its main axon 

guidance properties during development. The upregulation of Robo2 and its ligands during 

regeneration may indicate the former. Knockout of multiple robos and/or slits may also unmask 

phenotypes which would otherwise be compensated for by other family members in a single 

knockout. In mouse knockouts it has been shown that triple slit knockouts exhibit defects in 

commissural axon guidance that are not present in single or double slit knockouts (Long et al., 

2004) and double knockouts of robo1 and robo2 also reveal aspects of robo function not 

apparent from single knockouts (Jaworski et al., 2010). As we already have the robo2 knockout 

line, knocking down additional robos in this mutant would be a logical next step with the 

availability and ease of use of morpholinos in the zebrafish. Robo4 is the least homologous 

member of the robo family (Park et al., 2003) and Robo3 suppresses the action of Robo1 and 2, 

while robo1 knockout has shown to be a weak phenocopy of robo2 knockout (Long et al., 2004). 

This would imply that of the possible robo combinatorial knockdowns, knockdown of robo1 and 

robo2 may have the greatest effect on axon guidance. However there is some evidence that slits 

may have other receptors apart from robo and targeting slits may reveal functions of other 

regeneration linked pathways (Jaworski et al., 2010). Effects of manipulations will elucidate 

unknown pathways and so provide better targets for future manipulation. In some cases, such as 

Robo/Slit interactions, the genetic work has outpaced the molecular and structural biology 

leaving geneticists to inform their own work through manipulation studies. How precisely 

vertebrate Robos and Slits interact on the structural level is poorly understood and the affinity of 

one Robo family member for any particular Slit family member is unclear. Whilst all three 

Drosophila Robos bind Slit domains with comparable affinities (Howitt et al., 2004), Drosophila 

robo2 and robo3 are not direct orthologues of vertebrate robos having arisen most likely because 

of independent genome duplication events (Dickson and Gilestro, 2006). Due to this we cannot 

conclude if our Slit2 overexpression experiments occupied all Robo receptors or if a specific 

Robo has a low affinity for Slit2 and could still detect other Slit cues. Such information would 

greatly inform which slits or robos would make the best targets of study. Molecular and 

structural biologists will play an important role in elucidating such interactions which will 

inform selection of the next generation of targets for manipulations. For example, there is 
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evidence that specific Heparan sulfate proteoglycan (HSPG) (see section 1.3.5.7.5) modifications 

may be necessary for Robo/Slit interactions to occur (Bülow and Hobert, 2004). Therefore 

altering the expression of a single, specific heparan sulfate modifying enzyme may be the key to 

knocking out all Slit/Robo interactions in one fell swoop. However more elucidation of structure 

is required to deduce which specific HSPG modifications are required, as given the complexity 

and variety of HSPGs, traditional genetic approaches would be intensive and time consuming. 

Such smart targeting may also help ease the transition of findings in zebrafish regeneration 

across to mammals, by identifying the most likely functional orthologues.  

 To achieve regeneration in the injured human CNS many challenges must be met and 

overcome. Many techniques may have to be combined to achieve this; activation of endogenous 

stem cells, introduction of exogenous stem cells, expression of transgenic neurotrophic factors, 

suppression of inhibitory factors, biological graft transplants, synthetic graft transplants, 

electrical stimulation, bionics and many more. Whatever methods come to the fore to combat 

neurodegeneration and nervous system injury, it appears certain that control of axonogenesis and 

directed axon guidance will play a key role towards this goal. Towards that end, zebrafish, in 

conjunction with many of the techniques outlined in this thesis, will make important 

contributions. Functional regeneration in the non-regenerative human CNS is a tall order and it is 

my hope that this work will contribute in some small part to that end. 
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6. Appendix 

 

6.1 Abbreviations and acronyms 

 

A   adenine  

BG  plasmid construct containing brn3c:gal4 sequence 

BGUG  plasmid construct containing brn3c:gal4;uas:gap43-gfp sequence 

BSA   bovine serum albumine  

C   cytosine  

cDNA   complementary deoxyribonucleic acid  

CMZ  ciliary margin zone  

CNS  central nervous system  

CPN  central pretectal nucleus  

cRNA  complementary ribonucleic acid  

Ct  threshold cycle 

dATP   desoxyadenosine triphosphate  

dCTP   desoxycytosine triphosphate  

dGTP   desoxyguanosine triphosphate  

DiI   1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate 

DiO   3,3'-dioctadecyloxacarbocyanine perchlorate 

dpf   days post fertilisation  

DMSO  dimethylsulfoxide  

DNA   deoxyribonucleic acid  

DNase   desoxyribonuclease  

dNTP   2-desoxyribonucleotide-5'-triphosphate  

dpf   days post fertilization  
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dpl   days post-lesion  

DRG   dorsal root ganglia 

dTTP  deoxyhymidine triphosphate 

DTT   dithiothreitol  

ECM  extracellular matrix  

E. coli   Escherichia coli  

EDTA   ethylendiamintetraacetic acid  

FACS  fluorescence activated cell sorting  

G   guanosine  

hpf   hours post fertilisation  

LB medium  lysogeny broth medium 

LCM  laser capture microdissection  

LSM  laser scanning microscope 

min   minute  

mRNA  messenger ribonucleic acid  

MS222  aminobenzoic acid ethylmethylester 

n  number of animals 

NaOH  sodium hydroxide 

NC  nasal control retina derived sample 

NL   nasal lesion derived sample 

PBS   phosphate buffer saline  

PC  posterior commissure  

PCR   polymerase chain reaction  

PFA  paraformaldehyde 

pMN  motor neuron progenitor  
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PNS  peripheral nervous system  

PPd  periventricular pretectal nucleus  

qPCR  quantitative polymerase chain reaction 

RGCs  retinal ganglion cells  

RIN  RNA Integrity Number  

RNA   ribonucleic acid  

RNase   ribonuclease  

RPE  retinal pigment epithelium  

RT   room temperature  

RT-PCR reverse transcriptase polymerase chain reaction 

SD  standard deviation 

SEM  standard error of the mean 

SFGS  stratum fibrosum et griseum superficiale 

SPV  stratum periventriculare  

T   thymine  

TC  temporal control retina derived sample 

TL  temporal lesion retina derived sample 

Tm   melting temperature  

VL  ventro-lateral thalamus  

v/v   volume per volume  

w/v   weight per volume  

WIK   wild type strain 

wpl   weeks post lesion 
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6.2 Materials 

 

6.2.1 Reagents and consumables 

 

Acetic acid anhydride 99%  Fisher Scientific, UK 

Aminobenzoic acid ethylmethylester  

(MS222) Sigma, MO, USA 

Ampicillin, Sodium Salt Fisher Scientific, UK 

Anti-Digoxigenin-AP, Fab fragments Roche, UK 

Biocytin  Sigma, UK 

Blocking Reagent  

Roche Diagnostics, 

Germany 

BSA, Fraction V Sigma, UK 

Chloroform 99%  Fisher, UK 

Denhardt´s solution  Sigma, UK 

DiI  Invitrogen, UK 

DiO  Invitrogen, UK 

DNA sample buffer (10x) Eppendorf, UK 

dNTPs VHBio, UK 

DTT Sigma, UK 

EDTA Fisher Scientific, UK 

Ethanol AR Grade  Sigma, UK 

Ethidium bromide solution Fisher, UK 

Formamide 99%  Sigma, UK 

Glycine >99% Sigma, UK 

Glutaraldehyde (25% solution) VWR, UK 

H2O (nuclease free) Fisher, UK 

HCl 4M Sigma, UK 

Heparin sodium salt Sigma, UK 

LB Agar Miller Fisher BioReagents Fisher Scientific, UK 

LB medium  Fisher Scientific, UK 

NBT/BCIP staining solution  Sigma, UK 

Neutral Red  Sigma, UK 

PAP-Pen  VWR, UK 

Parafilm  Fisher Scientific, UK 

Paraformaldehyde (crystalline) Sigma, UK 

Poly A RNA (P 9403) Sigma, UK 

Proteinase K Roche, UK 

Random primers  Promega, UK 

Ready-Load 1Kb Plus DNA Ladder Invitrogen, UK 

Restriction endonucleases (various) New England Biolabs, UK 

RNaseOUT recombinant ribonuclease 

inhibitor Promega, UK 

Superfrost glass slides  VWR, UK 
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T4 DNA Ligase New England Biolabs, UK 

Taq Polymerase enzyme New England Biolabs, UK 

ThermoPol Buffer New England Biolabs, UK 

TissueTek Fisher, UK 

Triethanolamine Sigma, UK 

Tween-20 Sigma, UK 

Yeast tRNA (brewer's) Sigma, UK 

 

All other chemicals purchased as pro analysis quality from Sigma-Aldrich (UK) or Fisher 

Scientific (UK). 

 

6.2.2 Kits 

ABC-kit  Vectastain, CA, USA 

Agilent Low RNA Input Linear 

Amplification 

Agilent Technologies, 

UK 

GFX Micro Plasmid Prep GE Healthcare, UK 

HiSpeed Plasmid Midi Qiagen, UK 

MAXIscript Ambion, UK 

MinElute Gel Extraction Qiagen, UK 

MinElute PCR Purification Qiagen, UK 

pGEM-T Easy Promega, UK 

QIAQuick Gel Extraction Qiagen, UK 

QIAQuick PCR Purification Qiagen, UK 

RNeasy Mini Qiagen, UK 

SuperScript III Invitrogen, UK 

SYBR Green Master Mix  Roche, UK 

 

6.2.3 Antibodies 

4C4 antibody  See Becker and Becker, 2001 

Anti-GFP (A 11122) Invitrogen, UK 

Anti-Tenascin-R  See Becker et al., 2004 

Mab318 (anti-Tyrosine Hydroxylase) Millipore, UK 

S5545 (anti-Serotonin) Sigma, UK 

Secondary antibodies (Cy2 and Cy3 

conjugated) 

Jackson ImmunoResearch Laboratories, PA, 

USA 
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6.2.4 Bacterial strains 

XL1 blue competent E.coli  Stratagene, UK 

NEB Turbo Competent E. coli (High 

Efficiency) 

New England Biolabs, 

UK 

 

 

6.2.5 Equipment 

Agilent 2100 Bioanalyzer Agilent Technologies, UK 

Aquarium system Aqua Schwarz, Germany 

Corbett RotorGene 2000 qPCR cycler Corbett Life Science, UK 

Grant SS40-2 water bath Grant Instruments, UK 

Hotplate stirrer Fisherbrand metal top Fisher Scientific, UK 

Hybridizer UVP HB-1000 Jencons PLS, UK 

Incubated shaker MaxQ Mini 4450 Fisher Scientific (UK) 

Laser scanning microscope LSM510 Zeiss (Goettingen, D) 

Leica CM3050 cryostat Leica, Germany 

LSM510 confocal laser scanning microscope  Zeiss, Germany 

MaxQ Mini 4450 benchtop incubated shaker Fisher Scientific, UK 

Microcentrifuge 5415 D Eppendorf (Hamburg, D) 

MJ Mini, Personal thermal cycler  BioRad, UK 

Nanodrop ND-1000 Spectrophotometer  Nanodrop Technologies 

Narishige Intracel microinjector and manipulator Intracel, UK 

PowerPac Basic electrophoresis power supply BioRad, UK 

Technico Mini microcentrifuge Fisher, UK 

Thermostat 5320 tube heater Eppendorf, Germany 

Sigma 1-13 benchtop centrifuge 

Sigma Laborzentrifugen GmbH, 

Germany 

Sigma 3K30C high speed centrifuge  

Sigma Laborzentrifugen GmbH, 

Germany 

Uvitec gel documentation system with Spacecom camera 

(06-12297) Uvitec, UK 

Vibratome Microm Optech Scientific Instruments, UK 

Vortex Genie 2 benchtop vortex Scientific Industries, NY, USA 
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