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ABSTRACT 

Introduction 

Elevated serum uric acid (SUA) concentration, known as hyperuricaemia, is a common 

abnormity in individuals with metabolic disorders. There is increasing evidence supporting 

the link between high SUA level and the increased risk of a wide range of clinical disorders, 

including hypertension, cardiovascular diseases (CVD), chronic renal diseases and metabolic 

syndrome. Although there are considerable research efforts in understanding the pathogenic 

pathways of high SUA level and the related clinical consequences, their causal relationships 

have not been established except for gout. Like other complex traits, genetic determinants 

play a substantial role (an estimated heritability of 40-70%) in the regulation of SUA level. 

Investigating the role of genetic variants related to SUA in various diseases might provide 

evidence for the above hypothesis which links uric acid to clinical disorders.  

Method  

Umbrella review was carried out first to provide a comprehensive overview on the range of 

health outcomes in relation to SUA level by incorporating evidence from systematic reviews 

and meta-analyses of observational studies, meta-analyses of randomised controlled trials 

(RCTs), and Mendelian randomisation (MR) studies. The umbrella review summarised the 

range of related health outcomes, the magnitude, direction and significance of identified 

associations and effects, and classified the evidence into four categories (class I [convincing], 

II [highly suggestive], III [suggestive], and IV [weak]) with assessment of multiple sources 

of biases.  

Then, a MR-PheWAS (Phenome-wide association study incorporated with Mendelian 

randomisation [MR]) was performed to investigate the associations between the 31 SUA 

genetic risk variants and a very wide range of disease outcomes by using the interim release 

data of UK Biobank (n=120,091). The SUA genetic risk loci were employed as instruments 

individually. The framework of phenome was defined by the PheCODE schema using the 

International Classification of Diseases (ICD) diagnosis codes documented in the health 

records of UK Biobank. Phenome-wide association test was performed first to identify any 

association across the SUA genetic risk loci and the phenome; MR design and HEIDI 

(heterogeneity in dependent instruments) tests were then applied to distinguish the PheWAS 

associations that were due to causality, pleiotropy or genetic linkage. 
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To validate the MR-PheWAS findings, an enlarged Phenome-wide Mendelian randomisation 

(PWMR) analysis were performed by using data from the full UK Biobank cohort 

(n=339,256). A weighted polygenic risk score (GRS), incorporating effect estimates of 

multiple genetic risk loci, was employed as a proxy of the SUA level. The framework of 

phenome was defined by both the PheCODE schema and an alternative Tree-structured 

phenotypic model (TreeWAS) for analysis. Significant associations from these analyses were 

taken forward for replication in different populations by analysing data from various GWAS 

consortia documented in the MR-base database. Sensitivity analyses examining the 

pleiotropic effects of urate genetic risk loci on a set of metabolic traits were performed to 

explore any causal effects and pleiotropic associations. 

Results 

The umbrella review included 101 articles and comprised 144 meta-analyses of 

observational studies, 31 meta-analyses of randomised controlled trials and 107 Mendelian 

randomisation studies. This remarkable assembly of evidence explored 136 unique health 

outcomes and reported convincing (class I) evidence for the causal role of SUA in gout and 

nephrolithiasis. Furthermore, highly suggestive (class II) evidence was reported for five 

health outcomes, in which high SUA level was associated with increased risk of heart failure, 

hypertension, impaired fasting glucose or diabetes, chronic kidney disease, and coronary 

heart disease mortality in the general population. The remaining 129 associations were 

classified as either suggestive or weak.  

The MR-PheWAS (using the interim release cohort) identified 25 disease groups/ outcomes 

to be associated with SUA genetic risk loci after multiple testing correction (p<8.6 ×10-5). 

The MR IVW (inverse variance weighted) analysis implicated a causal role of SUA level in 

three disease groups: inflammatory polyarthropathies (OR=1.22, 95% CI: 1.11 to 1.34), 

hypertensive disease (OR=1.08, 95% CI: 1.03 to 1.14) and disorders of metabolism 

(OR=1.07, 95% CI: 1.01 to 1.14); and four disease outcomes: gout (OR=4.88, 95% CI: 3.91 

to 6.09), essential hypertension (OR=1.08, 95% CI: 1.03 to 1.14), myocardial infarction 

(OR=1.16, 95% CI: 1.03 to 1.30) and coeliac disease (OR=1.41, 95% CI: 1.05 to 1.89). After 

balancing pleiotropic effects in MR Egger analysis, only gout and its encompassing disease 

group of inflammatory polyarthropathies were considered to be causally associated with 

SUA level. The analysis also highlighted a locus (ATXN2/S2HB3) that may influence SUA 

level and multiple cardiovascular and autoimmune diseases via pleiotropy. 
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The PWMR analysis, using data from the full UK Biobank cohort (n=339,256), examining 

the association with 1,431 disease outcomes, identified 13 phecodes that were associated 

with the weighted GRS of SUA level with the p value passing the significance threshold of 

PheWAS (p<3.4×10-4). These phecodes represent 4 disease groups: inflammatory 

polyarthropathies (OR=1.28; 95% CI: 1.21 to 1.35; p=4.97×10-19), hypertensive disease 

(OR=1.08; 95% CI: 1.05 to 1.11; p=6.02×10-7), circulatory disease (OR=1.05; 95% CI: 1.02 

to 1.07; p=3.29×10-4) and metabolic disorders (OR=1.07; 95% CI: 1.03 to 1.11; p= 3.33×10-

4), and 9 disease outcomes: gout (OR=5.37; 95% CI: 4.67 to 6.18; p= 4.27×10-123), gouty 

arthropathy (OR=5.11; 95% CI: 2.45 to 10.66; p=1.39×10-5), pyogenic arthritis (OR=2.10; 

95% CI: 1.41 to 3.14; p=2.87×10-4), essential hypertension (OR=1.08; 95% CI: 1.05 to 1.11; 

p=6.62×10-7), coronary atherosclerosis (OR=1.10; 95% CI: 1.05 to 1.15; p=1.17×10-5), 

ischaemic heart disease (OR=1.10, 95% CI: 1.05 to 1.15; p=1.73×10-5), chronic ischaemic 

heart disease (OR=1.10, 95% CI: 1.05 to 1.15; p=1.52×10-5), myocardial infarction 

(OR=1.15, 95% CI=1.07 to 1.23, p=5.23×10-5), and hypercholesterolaemia (OR=1.08, 95% 

CI: 1.04 to 1.13, p=3.34×10-4). Findings from the TreeWAS analysis were generally 

consistent with that of PheWAS, with a number of more sub-phenotypes being identified. 

Results from IVW MR suggested that genetically determined high serum urate level was 

associated with increased risk of gout (OR=4.53, 95%CI: 3.64-5.64, p=9.66×10-42), CHD 

(OR=1.10, 95%CI: 1.02 to 1.19, p=0.009), myocardial infarction (OR=1.11, 95%CI:1.02 to 

1.20, p=0.011) and decreased level of HDL-c (OR=0.93, 95%CI:0.88 to 0.98, p=0.004), but 

had no effect on RA (OR=0.92, 95%CI: 0.84 to 1.01, p=0.085) and ischaemic stroke 

(OR=1.03, 95%CI: 0.93 to 1.14, P= 0.582). Egger MR indicated pleiotropic effects on the 

causal estimates of DBP (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.014), SBP (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.003), CHD (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.008), 

myocardial infarction (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.008) and HDL-c (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.016). When balancing out 

the potential pleiotropic effects in Egger MR, a causal effect can only be verified for gout 

(OR=4.17, 95%CI: 3.03 to 5.74, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡 = 1.27 × 10−9; 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.485). Sensitivity analyses 

on the GRSs of different groups of pleiotropic loci support an inference that pleiotropic 

effects of genetic variants on urate and metabolic traits contribute to the observed 

associations with cardiovascular/metabolic diseases.     

Conclusions 

This thesis presents a comprehensive investigation on the health outcomes in relation to SUA 

level. The causal relationship between high SUA level and gout is robustly verified in this 

thesis with consistent evidence from the umbrella review, the MR-PheWAS and the PWMR. 

The association of high SUA level with hypertension and heart diseases is supported by both 
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the evidence from umbrella review and analyses conducted in this thesis, however, given the 

caveat of pleiotropy in the causal inference, a conclusion of causality on hypertension and 

heart diseases is not robust enough based on the current findings. Furthermore, the 

epidemiological evidence from the umbrella review indicated that high SUA level was 

associated with several components of metabolic disorders, and the analyses of the UK 

Biobank data identified a significant association with metabolic disorders and a sub-

phenotype (hypercholesterolaemia). The causal inference in this study is limited by the 

common difficulty of pleiotropy caused by the use of multiple genetic instruments. Although 

we have performed sensitivity analysis by excluding the key pleiotropic locus, unmeasured 

pleiotropy and biases are still possible. In particular, unbalanced pleiotropy is recognised as 

an issue for the causal connections on the association between SUA level and hypertension. 

Other potential causal relevance of SUA level with respiratory diseases and ocular diseases 

is also worthy of further investigation. Overall, when taken together the findings from 

umbrella review, MR-PheWAS, PheWAS/TreeWAS analysis, MR replication and sensitivity 

analysis conducted in this thesis, I conclude that there are robust associations between urate 

and several disease  groups, including gout, hypertensive diseases, heart diseases and 

metabolic disorders, but the causal role of urate only exists in gout. This study indicates that 

the observed associations between urate and cardiovascular/metabolic diseases are probably 

derived from the pleiotropic effects of genetic variants on urate and metabolic traits. Further 

investigation of therapies targeting the shared biological pathways between urate and 

metabolic traits may be beneficial for the treatment of gout and the primary prevention of 

cardiovascular/metabolic diseases. 
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1 BACKGROUND 

1.1 Uric acid  

1.1.1 Physiochemical properties 

Uric acid ( , 7, 9-dihydro-1H-purine-2, 6, 8(3H)-trione) is a heterocyclic organic 

compound of carbon, hydrogen, nitrogen and oxygen (C5H4N4O3) with a molecular weight of 

168 g/mol (1). Uric acid behaves as a weak hydrogenated acid with a dual dissociation constant 

(pKα=5.75, pKβ=10.30) (1). The hydrolysis reaction (uric acid <=> urate- + H+) is prone to shift 

to the right in weakly alkaline environment. The water solubility of uric acid is relatively low 

(0.6 mg/100 mL, at 20 °C) varying according to environmental temperature and the pH 

(potential of hydrogen) (1). 

In most mammals, uric acid as a break-down product of purine metabolism could be further 

metabolised into a more soluble allantoin that can be completely excreted via urine, therefore, 

the vast majority of mammalian species have a very low concentration of uric acid (range: 30-

89 µmol/L) in the blood (2, 3). However, in humans and other hominoids, due to the 

evolutionary functional loss of uricase (an enzyme, catalysing the conversion of uric acid into 

allantoin), uric acid is unable to be further degraded and thereby exists as the final product of 

purine catabolism (3). Under normal physiological condition (i.e., pH 7.4 and 37°C), uric acid 

predominantly circulates as the urate anion combined with a variety of cations (e.g., sodium, 

potassium, calcium, ammonium, and magnesium) in the plasma, extracellular and synovial fluid, 

and only a very small proportion (less than 5%) is bound to serum albumin (4). Due to the high 

concentration of sodium in human body fluids, monosodium urate (MSU) monohydrate 

(NaC5H3N4O3·H2O) exists as one of the most common forms of ionised urate, in which a urate 

molecule is bonded to one sodium and one water molecule (5). The solubility limit of urate in 

human blood is approximately 405 µmol/L (6.8 mg/dL) (5). The normal reference interval of 

serum urate level is 89-357 µmol/L (1.5-6.0 mg/dL) in women and 149-416 µmol/L (2.5-7.0 

mg/dL) in men (6). When the serum urate level exceeds the  solubility limit (at a status of near 

saturation or supersaturation), urate crystals will deposit as MSU preferentially in and around 

peripheral joints (5).  
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1.1.2 Metabolic homeostasis 

The metabolic homeostasis of uric acid is determined by the balance between its production and 

elimination. This involves a variety of complicated biological processes, including hepatic 

purine catabolism, renal excretion and intestinal uricolysis. Under normal physiological 

circumstances, healthy adults would maintain a total uric acid body pool of approximately 

1000mg (1200mg in males and 600-700mg in females), and achieve a daily turnover rate at 60% 

from the balance of uric acid metabolism (7).  

1.1.2.1 Uric acid production 

Uric acid is typically not ingested from the diet but produced from the degradation of exogenous 

and endogenous purines (human diet contains little urate but many purine precursors). The 

major site of uric acid production is the liver, with small amounts being produced in other 

tissues like intestine, muscle, kidney and vascular endothelium (8). Its production depends on 

the process of purine biosynthesis and degradation. Normally, the enzymes involved in the 

purine metabolism maintain a balanced ratio between purine synthesis and degradation in the 

cell. 

 Purine de novo synthesis and salvage  

Purines, as the monomeric precursors of nucleic acids, perform many important biological 

functions in the cell. They function as essential components of DNA and RNA nucleic acids to 

store, transcribe and translate genetic information (9). Purines are also the structural components 

of some co-enzymes (e.g., nicotinamide adenine dinucleotide [NAD]) and provide the source of 

cellular energy through adenosine triphosphate (ATP). These functions have been shown to play 

critical roles in modulating cellular energy metabolism and signal transduction (10). A balanced 

quantity of purines is required by cells for their growth, proliferation and survival. In order to 

replace the obligatory loss of purines during tissue nucleic acid turnover, purine nucleotides are 

mainly supplied through two biosynthesis pathways: de novo synthesis and salvage (Figure 1-1).  

Purine nucleotides can be synthesised de novo with simple starting materials (i.e., glycine, 

glutamine, aspartate, formate, and CO2) which involves a multistep biosynthesis (11). Purine 

biosynthesis is initiated on a backbone of ribose-5-phosphate to form a phosphorylated ring 

structure (5-phosphoribosyl-1 Pyrophosphate, PRPP), and this reaction is catalysed by the PRPP 

aminotransferase. Following a series of reactions utilising ATP, glutamine, glycine and 

aspartate, this pathway yields inosine monophosphate (IMP). IMP is then converted into either 

adenosine nucleotide (AMP) or guanosine nucleotides (GMP). Of note, the process of purine de 
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novo synthesis is highly energy consuming, which consumes 8 ATP equivalents for the 

synthesis of AMP and 9 ATP equivalents for the synthesis of GMP. The two rate-limiting 

enzymes of these reactions, PRPP synthase and glutamine-PRPP amidotransferase, are both 

subject to the feed-back control of various purine nucleotides. The second pathway for purine 

biosynthesis is known as purine salvage, which contributes to recover the purine bases (i.e., 

adenine, hypoxanthine, and guanine), either from the nucleic acid turnover or from the dietary 

nucleic acids, into the forms of adenine and guanine nucleotides. Salvage process involves re-

synthesis of nucleotides from bases through two phosphoribosyltransferases: (i) adenine 

phosphoribosyltransferase (APRT) mediating the conversion from adenine to AMP; and (ii) 

hypoxanthine-guanine phosphoribosyltransferase (HGPRT) acting on either hypoxanthine to 

produce IMP or on guanine to produce GMP. These enzymes involved in salvage pathway are 

widely distributed among human tissues. The de novo synthesis and salvage pathways 

contribute interactively to maintain a constant and desired purine nucleotide pool for human 

body.  

Exogenous purines from diet, which are absorbed mainly as nucleosides and free bases, can also 

partly enter the body pool of purines. An abundant supply of exogenous purine precursors could 

affect the pathways of purine metabolism (12). Its effects on the de novo purine synthesis 

include: (i) depressing the activity of PRPP aminotransferase that catalyses the initial reaction of 

purine de novo synthesis, given this enzyme can be inhibited by the feed-back of the high level 

of purine nucleotides (e.g., ATP, ADP); and (ii) reducing the supply of PRPP (S-

phosphoribosyl-1-pyrophosphate), a substrate for de novo synthesis. These actions subsequently 

divert the PRPP away from the de novo synthesis process resulting in the de novo synthesis 

being minimised or switched off. Moreover, the purine salvage process is also subjected to 

feedback inhibition by purine levels. Once the cellular level of purine nucleotides reaches the 

required level, an increasing load of purines will inhibit the activities of enzymes (i.e., APRT 

and HGPRT) and consequently direct the purines towards the degradation process to produce 

uric acid.  
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Figure 1 - 1: Precursors and pathway of purine de novo synthesis and salvage. 

Dark grey boxes denote enzymes contributing to purine de novo synthesis pathway; light grey boxes 

denote enzymes contributing to purine salvage pathway. Red lines represent feedback inhibition of 

the rate limiting steps of the purine biosynthetic pathway, regulating the activity of the PRPP 

amidotransferase. Abbreviations: PRPP, 5-phosphoribosyl 1-pyrophosphate; IMP, inosine 5-

monophosphate; AMP, adenosine 5-monophosphate; XMP xanthosine 5-monophosphate; GMP, 

guanosine 5-monophosphate; purA, adenylosuccinate synthetase; purB, adenylosuccinate lyase; 

guaB2, IMP dehydrogenase; guaA, GMP synthase; apt, adenine phosphoribosyltransferase; hpt, 

hypoxanthine-guanine phosphoribosyltransferase; (Source: adapted from reference (12) with 

permission covered by Creative Commons Attribution License [CC BY]).  

 Purine degradation and uric acid formation 

The main pathways of purine degradation are outlined in Figure 1-2. Briefly, purine nucleotides 

are converted into nucleosides by intracellular nucleosidases first; nucleosides are then 

converted to inosines by adenosine deaminase; inosines are further degraded by the enzyme 

purine nucleoside phosphorylase (PNP) to release the purine base and ribose-l-P. The PNP 

products are merged into xanthine by guanine deaminase and xanthine oxidase, and xanthine is 

then oxidised to uric acid by this latter enzyme. The major steps of uric acid formation could be 

summarised as: 

(i) Dephosphorylation – The purine molecules (AMP, IMP, and GMP) are dephosphorylated 

into the corresponding nucleotides (adenosine, inosine, and guanosine) by the enzyme 5-prime 

nucleotidase (5'-NT).  
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(ii) Deamination – The AMP (nucleotide) and adenosine (nucleoside) are deaminated into IMP 

and inosine correspondingly. These reactions are catalysed by AMP deaminase (AMPD) and 

adenosine deaminase (ADA), respectively.  

(iii) Glycosidic bond cleavage – The nucleoside inosine is then converted into hypoxanthine and 

the nucleoside guanosine is converted into guanine, which are both catalysed by purine 

nucleotide phosphorylase (PNP).  

(iv) Uric acid formation – Hypoxanthine and guanine are oxidised into xanthine by xanthine 

oxidase (XO) and guanine deaminase (GDA) respectively. Xanthine is finally catalysed into 

uric acid by xanthine oxidase. 

 

 

Figure 1 - 2: Purine degradation and UA production. 

Both endogenously and exogenously purines share the same pathway for degradation to uric acid. 

Abbreviations: GTP, guanosine triphosphate; ATP, adenosine triphosphate; PRPP, 5-phosphoribosyl 

1-pyrophosphate; IMP, inosine 5-monophosphate; AMP, adenosine 5-monophosphate; GMP, 

guanosine 5-monophosphate; (Source: adapted from Reference (13) with permission covered by CC 

BY). 

 Inborn disorders in purine metabolism  

As explained above, each step of purine metabolism highly depends on the activities of enzymes 

catalysing the corresponding reactions. Genetic deficiency in any enzyme involved in purine 

synthesis, recycling or degradation processes, will cause purine nucleotides to not be 
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metabolised properly and result in different hereditary disorders (14). Inborn disorders resulting 

in abnormalities in purine de novo synthesis include: (i) phosphoribosylpyrophosphate 

synthetase superactivity, (ii) adenylosuccinase deficiency, and (iii) 5-amino-4-

imidazolecarboxamide (AICA) riboside deficiency (AICA-ribosiduria). Inborn disorders 

causing abnormalities in purine salvage pathway include: (i) hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) deficiency, and (ii) adenine phosphoribosyltransferase 

(APRT) deficiency. Inborn disorders leading to abnormalities in purine catabolism include: (i) 

muscle adenosine monophosphate (AMP) deaminase deficiency, (ii) adenosine deaminase 

deficiency, (iii) purine nucleoside phosphorylase deficiency, and (iv) xanthine oxidoreductase 

deficiency. These inborn disorders in purine metabolism would over-ride the control of uric acid 

metabolism homeostasis and result in either hypouricaemia or hyperuricaemia (see Chapter 1, 

Section 1.2 “Hyperuricaemia” for more information).  

1.1.2.2 Uric acid excretion 

The daily production of uric acid from purine catabolism is relatively constant at 300 to 400mg 

(8). Unlike other mammals having the enzyme uricase to convert uric acid into a more soluble 

allantoin for excretion, metabolism of uric acid in human tissues is negligible. To maintain 

homeostasis, uric acid is eliminated intact from the human body via two routes: the 

gastrointestinal tract and the kidney (15). 

 Intestinal secretion 

A small portion of uric acid is secreted into the gastrointestinal tract for disposal. The secretion 

of uric acid (via biliary and/or intestine) in the gastrointestinal tract is thought to be by both 

passive permeation (depending on the urate concentration) and active transportation (mediated 

by high-capacity urate efflux transporters) (16). The intestinal urate transporters have not been 

well investigated so far, but recent studies report a high expression level of ABCG2 gene 

(encoding a high-capacity urate efflux transporter) in the intestinal epithelium and suggest that 

the ABCG2 transporter plays an important role in the intestinal secretion of uric acid (17). The 

secreted uric acid is further degraded by intestine bacteria (18). Especially in the lower intestine 

tract, uric acid is exposed to a large number of bacteria, e.g., Escherichia coli, Aerobacter 

aerogenes and Paracolobactrum species. Uricase from these bacteria can catabolise uric acid 

into carbon dioxide (CO2) and ammonia (NH3), which are then reabsorbed or eliminated as 

intestinal air (19). This breakdown process of uric acid in the gut lumen is known as intestinal 

uricolysis and is responsible for 30% of the total uric acid disposal (20). Nearly all uric acid 
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secreted in the gut is completely degraded by the intestinal flora, with a only small amount 

being found in human faeces (15).  

 Renal excretion 

It is estimated that renal excretion is responsible for the remaining 70% of the daily uric acid 

disposal (21). The excretion of urate via the kidney largely depends on renal function. 

Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, 

which is an indication of the kidney condition. Fractional extraction of urate (FEUR) is used to 

represent the percentage of filtered urate that is finally excreted via urine. It is calculated as the 

ratio of urate clearance (CUA) to creatinine clearance (CCr, an approximation to GFR), with the 

formula: FEUA= [(UUA × Urine sample volume)/PUA] / [CCr = (UCr × Urine sample volume)/PCr] 

×100% = (UUA × PCr)/ (UCr × PUA) ×100% (UUA: urinary urate concentration; PUA: plasma urate 

concentration; UCr: urinary creatinine concentration; PCr: plasma creatinine concentration). 

It is reported that nearly all circulating urate (>95%) is readily available to be filtered at the 

glomerulus, however, the FEUA in healthy adults is only 10% (range: 7-12%), indicating that 

the net tubular reabsorption of the filtered urate is about 90% (22). The renal handling process 

on urate is predominately explained by a classical model including four distinct components: (i) 

glomerular filtration, (ii) reabsorption in the proximal tubule, (iii) secretion near the terminus of 

the proximal tubule, and (iv) post-secretory reabsorption near these secretory sites. Specifically, 

almost all urate is filtered at the glomeruli; subsequently, pre-secretory reabsorption returns the 

majority of the filtered urate into the early proximal tubule; in the proximal tubule, 50% of the 

filtered urate is secreted back into the tubular lumen, and then the secreted urate undergoes post-

secretory reabsorption resulting in 7-12% of filtered urate load being excreted by the kidney 

(22).   

 Molecular mechanisms of urate transport 

The molecular mechanisms underlying the renal and intestinal handling processes of urate are 

not completely understood, but urate transporters are believed to play pivotal roles. The urate-

organic exchanger and voltage-sensitive pathways are suggested as the major two modes of 

urate transport. Among these identified transporters, URAT1 (organic anion transporter 1) and 

GLUT9 (glucose transporter 9) are believed to play important roles in renal reabsorption of 

urate, while ABCG2 (ATP-binding cassette sub-family G member 2) and ABCC4 (ATP-

binding cassette sub-family C member 4) are responsible for urate secretion (21).   
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URAT1, encoded by the SCL22A12 gene, is the major organic anion transporter (OAT) for 

urate (23).  SCL22A12 is uniquely expressed in the luminal membrane of the proximal renal 

tubular epithelium. Urate transport mediated by URAT1 is independent of the sodium-urate co-

transport but could be interfered with by organic anions, such as lactate, nicotinate, 

hydroxybutyrate, acetoacetate, and succinate. Intracellular accumulation of organic anions, 

which have an affinity with URAT1, facilitates the reabsorption of urate to exchange these 

anions out of the cell to maintain electronic balance. After being absorbed into the cell, urate 

then moves across the basolateral membrane into the blood by means of other organic anion 

exchangers, of which the most important one is GLUT9. GLUT9 is encoded by SLC2A9 gene 

and highly expressed in the kidney and weakly expressed in the liver and intestine (24). Apart 

from its strong ability in urate transport, it has also been previously identified as a fructose 

transporter (25).   

Uric acid secretion seems to be primarily mediated by the voltage-sensitive urate transporter, 

ABCG2, which substantially localises on the apical side of proximal tubular cells (26). ABCG2 

is also expressed in the intestinal epithelium to a lesser extent, which is believed to contribute to 

the movement of urate into the gut (17). Another candidate, ABCC4, also known as the 

multidrug resistance-associated protein 4 (MRP4) or multi-specific organic anion transporter B 

(MOAT-B), is a member of the adenosine triphosphate-binding cassette transporter family (27). 

ABCC4 is a novel renal apical organic anion efflux transporter, which mediates the secretion of 

urate and other organic anions, for instance, cGMP and cAMP (28).   

Other molecular mechanisms contributing to urate transport in renal tubular cells and intestinal 

epithelial cells have also been proposed, but their specific roles in the physiology of urate 

transport are still under investigation. The identified urate transporters with their localisations 

and physiological functions are summarised in Table 1-1 and Figure 1-3. 

Table 1 - 1: Urate transporters and their functions. 

UA 

transporters  

Coding 

genes 
Function Localisations Contribution 

URAT1  SLC22A12 Urate-anion exchanger Apical Reabsorption 

GLUT9  SLC2A9 Urate uniporter  Basolateral Reabsorption 

ABCG2  ABCG2 Urate uniporter Apical Secretion 

NPT1 SLC17A1 Na-phosphate cotransporter;   

Organic ion uniporter 

Apical Secretion 

NPT4  SLC17A3 Organic ion uniporter Apical Secretion 

OAT4 SLC22A11 Organic anion-dicarboxylate 

exchanger  

Uncertain Reabsorption 

OAT1  SLC22A6 Organic anion-urate exchanger Basolateral Secretion 
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OAT3  SLC22A8 Organic anion-urate exchanger Basolateral Secretion 

MCT9 SLC16A9 Monocarboxylic anion 

transporter  

Uncertain Uncertain 

ABCC4 ABCC4 ATP-dependent anion pump; 

Urate ion pump 

Uncertain Secretion 

Source: adapted from reference (21) with permission from the Springer Nature Publisher [reference 

number:4353060751528].   

 

 

Figure 1 - 3: Models for urate transport.  

Blue circles represent function confirmed by genome-wide association studies (GWAS), mutations 

in humans, and in vitro studies. Pink circles represent function confirmed by GWAS and in vitro 

studies. White circles represent strong in vitro data. Question marks refer to proposed but uncertain 

function. OAT, organic anion transporter; (Source: adapted from reference (21) with permission 

from the Springer Nature Publisher [reference number:4353060751528]).  

1.1.3 Biological function 

Uric acid has long been regarded as a metabolically inert waste product produced from catalytic 

activity of xanthine oxidoreductase. However, as increasing evidence shows uric acid has 

multiple biological roles (behaving as both anti-oxidant and pro-oxidant) in affecting the 

oxidative status in cultured cells, there are great controversies regarding its role in 

pathophysiology, with some researchers suggesting that it is simply a marker of xanthine 

oxidoreductase activity (29), others stating that it may exert beneficial effects as an anti-oxidant 

(30, 31), and others suggesting that it may induce the risk of oxidative stress due to its pro-
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oxidative properties (32, 33). This section is a brief review on the role of uric acid as an anti-

oxidant, pro-oxidant or surrogate marker under different conditions.  

1.1.3.1 Uric acid as an anti-oxidant 

According to an evolutionary hypothesis, the silencing of the uricase genes, resulting in an 

increased SUA level, provides a survival advantage for ancestors of Homo sapiens (34). Uric 

acid was believed to be one of the most important antioxidants circulating in the blood to 

protect cells from oxidative damage, thereby contributing to a prolonged lifespan and reduced 

risk of cancer (35). This hypothesis was based on in vitro experiments which demonstrated that 

uric acid can scavenge oxygen radicals and thus protect cells from oxidation.  

This property of uric acid, as a powerful scavenger of single oxygen peroxyl and hydroxyl 

radicals (-OH), was firstly demonstrated by Kellogg et al (36) and was further characterised by 

Ames et al (35). It has been indicated that uric acid acts as an antioxidant by reacting with a 

variety of oxidants, such as hydroxyl radical, peroxynitrite, and nitric oxide (37). The most 

classical scavenging process is the reaction of uric acid with the hydroxyl radical (OH), 

resulting in the formation of allantoin. In addition, uric acid could also react with peroxynitrite, 

a vital biological oxidant generated from the reaction of nitric oxide (NO) with a superoxide 

anion, to convert it into triuret (38, 39). Moreover, uric acid has also been reported to react with 

NO to produce a nitrosated compound with the capability of donating NO (40). Uric acid can 

also block ferrous (Fe2+) catalysed oxidation reactions in human (41). However, the ability of 

uric acid as an antioxidant is limited by several conditions. Specifically, uric acid is unable to 

scavenge superoxide (O2
−), and the scavenging process of peroxynitrite requires the presence of 

ascorbic acid and thiols (32, 38). The antioxidant property of uric acid could also be disabled by 

some compounds present in the body fluids. For example, the presence of bicarbonate can 

significantly inhibit the ability of uric acid to prevent the process of tyrosine nitrosylation, 

which is a critical step of oxidative damage of cellular proteins (42). Additionally, uric acid 

cannot scavenge lipophilic radicals and has no ability to break the radical chain propagation 

within lipid membranes (43). These physicochemical findings indicate that the antioxidant 

effect of uric acid is limited and probably manifested only in the hydrophilic environment of 

biological fluids, such as plasma.  

1.1.3.2 Uric acid as a pro-oxidant  

The ability of uric acid acting as a pro-oxidant has always been related to the induction of 

oxidative stress. Oxidative stress is a condition of excessive production of free radicals and/or 
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reactive oxygen species (ROS), as well as reduced anti-oxidative ability, which is usually due to 

the decreased intake or excessive consumption of antioxidants (44). It has been shown that the 

antioxidant reactions of uric acid with oxidants are accompanied by the formation of a variety of 

free radicals (45, 46). Radicals derived from these antioxidant reactions represent different 

degradation degrees of the uric acid molecule, varying from the urate anion (the radical site is 

located on the five-membered ring structure of uric acid) to carbon-based radicals, such as 

aminocarbonyl (which is generated after the breakdown of the five-membered ring structure due 

to the ONOO− attack) (45, 46). Uric acid itself and/or its downstream radicals seem to induce 

lipid oxidation, which can stimulate oxidant production in adipocytes (33). The increased level 

of oxidised lipids could in turn propagate a radical chain reaction and cause oxidative stress. 

The pro-oxidative effects of uric acid are likely mechanised through activating a nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase-dependent pathway, which results in 

increased production of reactive oxygen species (ROSs) (33). In contrast to its anti-oxidative 

effect, the pro-oxidative property of uric acid inducing oxidative stress mainly occurs in the 

intracellular environment, particularly in adipocytes (32). 

1.1.3.3 Uric acid as a surrogate marker of XOR activity  

Uric acid has also been recognised as a surrogate marker of xanthine oxidoreductase (XOR) 

activity. XOR is an enzyme that catalyses the production of uric acid with two forms, xanthine 

dehydrogenase and xanthine oxidase (47). Xanthine dehydrogenase has an affinity for oxidised 

NAD to convert it into uric acid and NADH (48). Xanthine oxidase first catalyses the oxidation 

of hypoxanthine to xanthine and further catalyses the oxidation of xanthine to uric acid, with the 

production of two oxidant molecules (one superoxide is produced in each step) (47). The ROSs 

generated by XOR activity from the formation of uric acid are thought to play a vital role in 

increasing oxidative stress. Hence, in this situation it becomes unclear if uric acid itself induces 

the damaging oxidative stress or it simply represents a surrogate marker of high-level oxidative 

stress due to the increased XOR activity. Although many experimental studies in animals 

support the pathophysiologic role of uric acid as discussed above (37), evidence from human 

studies is unclear. Clinical trials have been performed to examine the role of uric acid in disease 

states by utilising XOR inhibitors (49, 50). Xanthine oxidase inhibitors can reduce uric acid 

formation, but they can also decrease XOR induced superoxide generation, thus it is uncertain if 

any benefits observed with xanthine oxidase inhibitors are due to the decreased SUA level or 

due to the reduction of xanthine oxidase-associated oxidants. Given these, more efforts are 

required to clarify the pathophysiologic role of uric acid in humans. 
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1.2 Hyperuricaemia  

Abnormally elevated SUA level is the most common dysregulation of urate metabolism. 

Hyperuricaemia is a clinical term traditionally applied to the settings in which SUA levels are 

elevated with or without any clinical manifestation. Two-thirds or more of individuals with 

hyperuricaemia may have no clinical symptoms (asymptomatic hyperuricaemia), while one-

third have the signs of monosodium urate (MSU) crystal deposition in joints (e.g., gout) or 

kidneys (e.g., nephrolithiasis) (51).  Increased uric acid production, decreased uric acid 

excretion, or a combination of both problematic processes are the commonest causes of 

hyperuricaemia. The decreased efficiency of urate excretion is responsible for about 85%-90% 

of hyperuricaemia, while the remaining 10%-15% is caused by uric acid overproduction, which 

is often induced by genetic defects, disease conditions or intake of drugs or purine-rich diet (52). 

The definition/classification, aetiology, epidemiology and management of hyperuricaemia are 

presented in this section.  

1.2.1 Definition of hyperuricaemia 

There is no universally applicable definition for hyperuricaemia. It could be defined in several 

ways (Table 1-2), including population values, physiochemical cut-point, or the levels 

associated with disease risk.  

A statistically based definition for hyperuricaemia refers to the SUA level more than two 

standard deviations (SDs) above the mean of the healthy population. However, given the non-

normal distribution of SUA level in most populations and variations based on ethnicity, age and 

sex, the statistical definition of hyperuricaemia varies among populations (53). 

A physiochemical definition of hyperuricaemia based on the solubility limit of uric acid in 

plasma is preferred when compared to the statistical definition (53). This physiochemical 

definition corresponds to a SUA level of more than 416 µmol/L (7.0 mg/dL) as measured by an 

automated enzymatic method or corresponds to a SUA level of more than 476 µmol/L (8.0 

mg/dL) as measured by a colorimetric method.  

Epidemiological studies have shown that associations of high SUA level with non-crystal 

deposition disorders are always observed without reaching the saturating concentration. In this 

case, it is indicated that the physiochemical definition may not be appropriate for clinical 

practice (54). For practical and/or clinical purposes, an alternative definition of hyperuricaemia 

is suggested by some experts, in which a concentration of SUA exceeding 357 µmol/L in blood 

is used as the threshold of clinically relevant hyperuricaemia (53, 54). This reference value 
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integrates the estimated threshold for the lifelong risk for clinical consequences of 

hyperuricaemia and fits the recommended goal (<357 µmol/L) of clinical urate-lowering 

treatment in gout patients (55). Additionally, another significant threshold of SUA level is >476 

µmol/L and this reference value is applied as the threshold of initiating evaluation and 

lifestyle/pharmacologic intervention on patients with asymptomatic hyperuricaemia (55).  

Table 1 - 2: Definitions for hyperuricaemia.  

Definition  Criteria  Weakness 

Statistical definition SUA level >2 standard deviations above 

the mean value of healthy population  

Variations due to ethnicity, 

age, and sex, etc.  

Physiochemical definition Based on the saturation point of uric acid 

when monosodium urate crystals occur.  

Changes according to 

temperature and the PH.  

Definition based on the 

treatment target of gout 

and the potential of other 

diseases 

For all gout patients, the treatment target 

of SUA level is <357 µmol/L; for 

patients with severe gout, the treatment 

target of SUA level is <297 µmol/L.  

Differs between conditions.  

Source: adapted from reference (53, 56) with permission from the Elsevier publisher [reference 

number: 4353120627211].  

Among these definitions, SUA level above 416 µmol/L is the most widely used threshold to 

define hyperuricaemia, as there appears to be little disagreement regarding to the 

physiochemical characteristics of uric acid. Hyperuricaemia could be further classified into two 

categories based on the causes: (i) primary hyperuricaemia refers to a rise of SUA level due to 

genetic deficiencies; (ii) secondary hyperuricaemia refers to excessive uric acid production or 

decreased renal clearance caused by acquired clinical disorders, drugs, purine-rich diet, or 

toxins. Primary hyperuricaemia usually occurs in childhood and last indefinitely, while 

secondary hyperuricaemia can occur at any age.  

1.2.2 Aetiology  

The underlying aetiological mechanisms of hyperuricaemia could be classified into three 

categories: increased uric acid production (e.g., inherited enzyme defects, increased cell 

turnover and tissue hypoxia, purine-rich diet), decreased uric acid excretion (e.g., kidney disease, 

certain drugs, metabolic or endocrine diseases), and mixed type (e.g., high levels of alcohol 

and/or fructose, moderate/severe exercise, starvation). The main causes of hyperuricaemia are 

described below.  
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1.2.2.1 Inherited enzyme defects  

Genetic mechanisms inducing hyperuricaemia include overproduction of uric acid due to 

hypoxanthine–guanine phosphoribosyltransferase (HGPRT) deficiency or, 

phosphoribosylpyrophosphate (PRPP) synthetase overactivity or glucose-6-phosphatase (G6PT) 

deficiency (57). These inherited defects often lead to early development of severe 

hyperuricaemia. 

 Hypoxanthine-guanine phosphoribosyltransferase (HGRPT) deficiency 

HGRPT is a transferase that catalyses the conversion of hypoxanthine to inosine 

monophosphate and guanine to guanosine monophosphate. HGRPT deficiency is a rare 

inherited disorder caused by mutations in the HGPRT gene localised on the long arm of the X 

chromosome (57). Absence of HGRPT prevents the normal metabolism of hypoxanthine 

resulting in excessive uric acid production. A complete loss of HGPRT activity results in a 

severe disorder, called Lesch-Nyhan syndrome(58), and a partial deficiency in HGPRT activity 

causes a moderate disorder, called Kelley–Seegmiller syndroms (59). Both of them are 

characterised by overproduction of uric acid.  

 Phosphoribosylpyrophosphate (PRPP) synthetase over-activity 

Phosphoribosylpyrophosphate (PRPP) synthetase over-activity is an X-linked disorder of purine 

metabolism (57). Mutations in the PRPP synthetase (PRPS) gene lead to over-activity of PRPP 

synthetase and therefore increase the production of PRPP (60). Increased level of PRPP 

enhances de novo synthesis of purine nucleotides. When excessive production of purine 

nucleotides exceeds the need of the human body, the excess purine nucleotides are catabolised 

leading to overproduction and accumulation of uric acid. Clinical consequences of PRPP 

synthetase over-activity include an early-onset severe form, characterised by gout, urolithiasis, 

and neurodevelopmental anomalies (severe PRPP synthetase over-activity), and a mild late-

onset form with no neurologic damage (mild PRPP synthetase over-activity). Both of them are 

characterised by overproduction of uric acid.  

 Glucose-6-phosphatase (G6PT) deficiency  

Deficiency in G6PT is inherited as an autosomal recessive trait, leading to type I glycogen 

storage disease (61). Clinical consequences associated with this defect are increased uric acid 

production and symptoms of gout (61). The inability to dephosphorylate G6PT leads to an 

increased diversion of glucose into the pentose phosphate pathway (PPP). One of the main 
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products of PPP is ribose 5-phosphate. Increased production of ribose 5-phosphate leads to 

substrate-level activation of PRPP synthetase. Over-activity of PRPP synthetase has the same 

consequence as the inherited defect in the PRPS gene resulting in overproduction of uric acid as 

explained above. 

1.2.2.2 Accelerated cell turnover and tissue hypoxia 

Uric acid overproduction also occurs in the setting of increased cell turnover or tissue hypoxia. 

Certain types of tumours, such as metastatic cancer, multiple myeloma, leukaemia and 

lymphomas, can induce hyperuricaemia. Overproduction of uric acid in these cancers results 

both from the increased turnover rate of cell death and from the use of chemotherapy agents. 

With rapidly growing tumours, there are high rates of cell turnover and tumour proliferation, 

generating a large amount of purine nucleotides. Chemotherapy treatments can also cause 

overproduction of  uric acid due to tumour lysis syndrome (TLS), characterised  by a rapid 

amount of cellular destruction (62). Massive cell death and nuclear breakdown generates large 

quantities of nucleic acids. Of these, the purine nucleotides are catabolised into uric acid via the 

purine degradation pathway. At a high level of uric acid production, hyperuricaemia and MSU 

crystals occur. Additionally, overproduction of uric acid could also be induced by tissue 

hypoxia, under which ATP is consumed with the generation of its isoform xanthine oxidase (a 

necessary enzyme catalysing the formation of uric acid) (63). This may probably explain the 

high SUA level in individuals with congestive heart failure, congenital cyanotic heart disease, 

high altitude hypoxia, or obstructive sleep apnoea due to hypoxia (63, 64).  

1.2.2.3 Renal insufficiency  

Decreased efficiency of renal excretion of uric acid is responsible for about 85%-90% of 

hyperuricaemia, due to the complexity of the renal handling of uric acid, the sensitivity of 

kidney to metabolites and drugs, and mutations in urate transporter coding genes. Under-

excretion of urate appears to be a combination of decreased glomerular filtration, decreased 

tubular secretion, and increased tubular reabsorption. With acute and/or chronic kidney diseases, 

the kidney loses its ability to filter uric acid properly, leading to accumulation of uric acid in the 

blood. Decreased tubular secretion of urate often occurs in patients with metabolic or endocrine 

diseases (e.g., diabetic/starvation ketoacidosis, lactic acidosis, and ethanol or salicylate 

intoxication), as organic acids (e.g., lactate, acetoacetate, and beta-hydroxybutyrate) accumulate 

in these conditions and compete with uric acid for tubular secretion. Additionally, diuretic 

therapy can induce hyperuricaemia by enhancing reabsorption of uric acid in the distal tubule. 
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Some medications, such as pyrazinamide, salicylates, nicotinic acid, ethambutol, cyclosporine 

and cytotoxic agents, can interfere with the renal urate excretion, causing a rise in SUA level.  

1.2.2.4 Diet, starvation, and exercise 

Hyperuricaemia may also result from diet rich in purines, alcohol or fructose. Diet containing a 

high concentration of purines includes organ meat such as kidney and liver, red meat, poultry, 

fish, sardines, anchovies, mushrooms, yeast and beer (65). Exogenous intake of purines from 

diet can enrich the purine pool and enhance the degradation of purine nucleotides with the 

formation of excessive uric acid. Alcohol consumption can increase uric acid synthesis due to 

enhanced turnover of ATP from the conversion of acetate to acetyl-CoA during the metabolism 

of ethanol (66). In addition, acute large amounts of alcohol consumption can increase the 

production of lactate that can reduce renal urate excretion and exacerbate hyperuricaemia (67). 

Fructose, a simple sugar widely present in sucrose, honey, and fruits, can also rapidly increase 

SUA level. This is in part due to its rapid phosphorylation in hepatocytes with ATP 

consumption, intracellular phosphate depletion, and the stimulation of AMP deaminase with the 

generation of uric acid (68). Fructose intake also stimulates the synthesis of uric acid from 

amino acid precursors (68). The remarkable increase in fructose intake in populations may play 

a role in the rising level of SUA worldwide (69). 

Starvation can also increase SUA level by both increasing uric acid production and decreasing 

uric acid excretion. In starvation, the body breaks down its own (purine-rich) tissues for energy, 

thus rapid weight loss exacerbates hyperuricaemia (70, 71). Starvation can also impair the 

ability of the kidney to excrete uric acid, because of the competition between uric acid and 

ketones for transport (72).  

In addition, SUA level may be affected by exercise, with moderate exercise reducing SUA level 

(probably because of the increased renal blood flow) and severe exercise increasing SUA level 

(probably due to the ATP consumption and thereby the formation of adenosine and xanthine) 

(73).  

1.2.3 Epidemiology of hyperuricaemia 

Elevation of SUA level is evident in all world regions, particularly in Asia and the North 

America, where epidemiological data are abundant. However, the global burden of 

hyperuricaemia is difficult to be precisely quantified due to considerable regional variations. 

The purpose of this section is to summarise the epidemiologic characteristics of hyperuricaemia 

in terms of prevalence and incidence in different world regions. In order to capture the global or 
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national data on the epidemiology of hyperuricaemia, a systematic literature search was 

conducted in the MEDLINE and EMBASE on 12th November 2017 by using the MeSH terms: 

“gout or hyperuri*” AND “prevalen* or inciden* or epidemiolo*”. The retrieved literature was 

screened in title, abstract and full text review by myself. Population-based epidemiological 

studies on hyperuricaemia were eligible for inclusion and their findings are described below.   

1.2.3.1 Geographical prevalence  

In this literature review, 34 articles were finally included, reporting the population-based 

prevalence/incidence of hyperuricaemia for a total of 24 countries, which are grouped into 6 

WHO regions (Table 1-3). The proportion of individuals with hyperuricaemia was highly 

variable (range: 4.9%-53.8%) across various regions of the world with data lacking for many 

countries.  

 Western Pacific region 

The highest prevalence of hyperuricaemia was reported in the Western Pacific region within the 

ethnic group of Taiwanese aboriginals, for which the estimate was 53.8% (74). The prevalence 

of hyperuricaemia in mainland China was between 11.0%-32.1% from the population-based 

surveys of several areas (75-79). Data from Japan reported a high prevalence of 34.5% (80, 81). 

In contrast, a very low prevalence of 4.9% was reported in South Korea (82). In Oceania area, 

the Pacific islanders also had a high prevalence of hyperuricaemia (83-85). In the Australia 

Nation Health Survey, the crude prevalence estimate of hyperuricaemia in the general 

population was 23.0% (86), while the corresponding estimate for the white Australians was 12.0% 

(87). In New Zealand, hyperuricaemia was found in 15.3% of non-Maori adults (88), while the 

corresponding estimate for Maori individuals was in the range of 27.8%-49% (88, 89). 

 South-East Asia 

Data from South-East Asia were only available for two countries, in which Indonesia reported a 

high prevalence of 34.5% (80, 81), and the corresponding estimate for Thailand was18.4% (90).  

 Americas 

Data from the US National Health and Nutrition Examination Survey (NHANES) 2007–2008 

study reported a 21.6% prevalence of hyperuricaemia in the US adults (91). The prevalence was 

much lower in European Americans (7.5%) and Native Americans (range: 3.3%-7.2%) (92, 93).  
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A sample population in Mexico City was reported to have a hyperuricaemia prevalence of 26.5% 

in men and 19.8% in women (94). In Brazil, the prevalence of hyperuricaemia was reported in 

the range of 3.2%-5.6% for different age groups (95, 96). 

 Eastern Mediterranean  

For the Eastern Mediterranean region, only one study was identified, which reported a 

prevalence of 8% for Saudi Arabia (97). 

 Europe 

The prevalence of hyperuricaemia in Europe was reported for 6 countries with a range from 6.6% 

to 19.0%. In the UK, the prevalence of hyperuricaemia was reported to be 6.6%-8.0% (98, 99). 

A similar hyperuricaemia prevalence of 6.6% was reported in the Finnish population (100). A 

regional community-based study in Italian population reported a range of 8.5%-11.9% for 

hyperuricaemia prevalence (101). Studies in France, Turkey and Russia, reported very similar 

prevalence of 17.6%, 19.0%, and 16.8%, respectively (102-104).  

 Africa 

In Africa, the prevalence of hyperuricaemia was reported to be 20.5% in Nigerian men (105), 

25.0% in black Africans in Angola (106), 35.2% in Seychellois men and 8.7% in  Seychellois 

women (107).  

Table 1 - 3: Prevalence of hyperuricaemia in different world regions.  

WHO regions  Population  Prevalence (%) Reference 

Western Pacific region    

China, Mainland Han Chinese  11.0-32.1% (75-79) 

China, Taiwan Taiwanese Aborigines 53.8% (74) 

Japan, Okinawa Japanese 34.5% (80) 

South Korea Middle-aged men 4.9% (82) 

Australia 
White Australian 12.0% (87) 

General Population  23.0% (86) 

New Zealand 
Non-Maori 15.3% (88) 

Maori 27.8-49.0% (88, 89) 

Cook Islands 
Rarotongans 44.0% (83) 

Pukapukans 48.5% (83) 

Samoa Samoans (urban) 36.4% (84) 
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Samoans (rural) 43.3% (84) 

Fiji 
Fijians (urban) 32.4% (85) 

Fijians (rural) 16.9% (85) 

South-East Asia    

Indonesia, Java Malayo-Polynesians 24.3% (81) 

Thailand Thai 18.4% (90) 

Americas    

United States (USA) 
Americans of multiple 

ancestries 
21.2% (91) 

USA, Michigan European Americans 7.5% (92) 

USA, Montana Native Americans 3.3-7.2% (93) 

Mexico 
Mexican men 26.5% (94) 

Mexican women 19.8% (94) 

Brazil  Amerindians 3.2-5.6% (95, 96) 

Eastern Mediterranean    

Saudi Arabia Saudis 8.0% (97) 

Europe    

UK English 6.6-8.0% (98, 99) 

Finland Finnish 6.6% (100) 

France French 17.6% (102) 

Turkey Turkish 19.0% (103) 

Russia  Russian 16.8% (104) 

Italy Italian 8.5-11.9% (101) 

Africa    

Nigeria  Nigeria (men) 20.5% (105) 

Angola Black Africans 25.0% (106) 

Seychelles 
Seychellois (men) 35.2% (107) 

Seychellois (women) 8.7% (107) 

 

1.2.3.2 Incidence and time trend 

Published data on hyperuricaemia incidence are limited. However, it is evident that the trend of 

hyperuricaemia has been steadily rising in recent decades (108, 109). The rising incidence of 

gout indirectly reflects the progressive increase in SUA level (110). Over time, the incidence of 

gout in the US adults increased from 0.03% in 1978 to 0.05% in 1996 (111). Similarly, the 
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NHANES found that the self-reported lifetime prevalence of gout increased from 2.6% in the 

NHANES 1988–1994 to 3.8% in the NHANES 2007–2010 (112). Correspondingly, SUA level 

had also consistently increased over the interval between the two NHANES studies (91). The 

UK General Practice Research reported that the gout incidence increased steadily from a low of 

11.9 cases per 10,000 person-years in 1991 to a high of 18.0 cases per 10,000 person-years in 

1994 (113). Subsequently, the Royal College of General Practitioners Weekly Returns Service 

reported that the annual prevalence of gout in UK increased slightly from 0.43%  in 2001 to 

0.47% in 2007 (114). Data from successive surveys undertaken in New Zealand showed a 

remarkable increase of gout prevalence in both European descents and Maori residents (115). 

The prevalence of gout in China also increased. Successive population surveys in the city of 

Qingdao found the prevalence of gout was 0.36% in 2002 and had increased to be 0.53% in 

2004 (76, 116). Successive surveys conducted in Shantou area reported a prevalence of 0.17% 

in 1992, 0.15% in 1995 and 0.26% in 1999 (117). 

1.2.3.3 Sex-, age-, and ethnicity-related demographics 

Hyperuricaemia is far more common in men than in women. Primary hyperuricaemia frequently 

begins at puberty in men but is usually delayed until after menopause in women. The sex 

difference is in concordance with the fact that SUA levels in adult men exceed that in women at 

reproductive age, but after menopause, SUA levels in normal women increase and approximate 

that of normal men at a corresponding age. Similarly, when under 65 years old, males have a 

fourfold higher prevalence of gout than females, while this ratio reduces to 3:1 male to female 

when over 65 years (108). The substantial sex difference probably relates to the enhancement of 

renal urate clearance caused by oestrogenic compounds.  

The mean SUA level in children is lower than that in adults. The upper limit of the normal 

reference range of SUA level in children is 297 µmol/L, while the corresponding value is 416 

µmol/L in adult men and 357 µmol/L in adult women (118, 119). Consistently, the risk of 

hyperuricaemia also increases with age. As reported in the NHANES survey, the 

hyperuricaemia prevalence rises with the increasing age groups (91, 108). In particular, the 

incidence of hyperuricaemia and gout is more evident from the age of 30 in men and after the 

age of 50 in women (120). 

The risk of hyperuricaemia and gout varies across different ethnicities (108). Hyperuricaemia 

was much more common in the Pacific Maori than Europeans (27.1% vs. 9.4% in males, 26.6% 

vs. 10.5% in females) (88). In the US, African Americans develop hyperuricaemia more 

frequently than European Americans. It was estimated that African American females had 2.3 



Chapter 1  Background 

36 

 

times higher risk of developing hyperuricaemia comparing to European American females (121). 

The Hmong population in southern China also suffered higher SUA level (122). Filipinos in the 

US are at a higher risk of elevated SUA level than other ancestries in the US (123). 

1.2.4 Clinical evaluation 

Generally, health screening and laboratory evaluation of medical conditions unrelated to urate 

crystal deposition diseases do not routinely include measurement of SUA level (55, 124), unless 

in some cases where individuals were identified with SUA level >476 µmol/L, a follow-up test 

is suggested to confirm the presence of sustained hyperuricaemia (55, 124).  

1.2.4.1 Confirmatory test 

A repeated measurement of SUA level is needed to confirm the presence of sustained 

hyperuricaemia. For patients with a SUA level less than 416 µmol/L in the confirmatory test, 

further follow-up and evaluation are usually not performed. For patients with SUA level 

between 416-476 µmol/L in the confirmatory test, a repeat test should be performed during the 

following 6-12 months. For patients with a SUA level greater than 8 mg/dL in the confirmatory 

test, a more detailed evaluation should be initiated. The decision of no further evaluation on 

patients with SUA level ≤476 µmol/L is a practical compromise, considering the low incidence 

of gout in hyperuricaemia patients with SUA level between 416-476 µmol/L (125). 

1.2.4.2 Preliminary evaluation 

Evaluation is initiated for subjects with SUA level greater than 476 µmol/L in the confirmatory 

test. The preliminary evaluation includes a thorough history and physical examination, such as 

medical conditions, diet or lifestyle habits, pharmaceutical therapies, toxin exposure, or any 

known familial genetic disorders that may cause hyperuricaemia. Initial laboratory tests include 

a complete blood count and differential leukocyte counts, urinalysis, measurement of renal 

function and examinations on chemical profile, including electrolytes, calcium, and liver 

chemistries. In general, the initial evaluation would identify approximately 80%-90% causes of 

hyperuricaemia. Otherwise, additional laboratory examinations are considered to detect some 

specific causative factors. For instance, high level of SUA (>595 µmol/L in children or >714 

µmol/L in adolescents) may indicate a sign of underlying disorders, such as lymphoproliferative 

or myeloproliferative state, or inherited enzyme defects, which are indications for appropriate 

imaging, pathologic, biochemical, and/or genetic measurements. 

In summary, the main aim of preliminary evaluation of hyperuricaemia is to identify: 
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 Patients at high risk of gout or urolithiasis who need anti-hyperuricaemia treatment. 

 Drug or toxin induced hyperuricaemia that can be removed or substituted to relieve the 

hyperuricaemia status. This is especially important to patients for which lifestyle 

modifications and/or alternative pharmacologic medications are available. 

 Individuals whose hyperuricaemia is a sign of underlying disorders (e.g., inherited enzyme 

defects, lymphoproliferative or myeloproliferative state). 

1.2.4.3 Further evaluation  

A measurement of FEUR (fractional extraction of urate), representing the percent of urinary 

urate excretion per unit of GFR, should be performed for high level of SUA without identifying 

any cause during their initial evaluation. The FEUR can be determined by measuring the urate 

and creatinine concentrations in both blood and urine collections (see the Chapter 1, Section 

1.1.2.2 “Renal excretion” for more explanations on FEUR). The blood and urine collections for 

these studies should be carried out under the condition in which the individual has a standard 

diet, without consuming alcohol and drugs known to affect uric acid metabolism. The 

determination of FEUR will help to distinguish between causes resulting from increased uric 

acid production with hyperuricosuria (FEUR>10%) and causes resulting from decreased renal 

clearance (FEUR<6%) (126).  

Urinary uric acid excretion greater than 800 mg/day (4.8 mmol/day) or FEUR >10% is defined 

as hyperuricosuria, indicting excessive uric acid production from either exogenous (dietary) or 

endogenous purine catabolism (127). The exogenously and endogenously determined uric acid 

overproduction can be distinguished by the following clinical evaluations. Patients under 

clinical evaluation should have an isocaloric, purine-reduced diet (consuming 1 gram/kg dairy 

protein per day without intake of meat, seafood, alcohol and medications affecting uric acid 

metabolism) for 3-5 days. For patients with UA excretion >670 mg/day (4 mmol/day), 

endogenous causes of uric acid overproduction (e.g., inherited enzyme defects, or disorders 

resulting in increased rate of cell turnover) should be considered. Otherwise, excessive dietary 

purine consumption is confirmed as the cause of hyperuricosuria for patients whose uric acid 

excretion (less than 670 mg/day [4 mmol/day]) decreases to normal values on a purine-reduced 

diet. Under-excretion of urate but with normal renal function is indicative of genetic defects in 

urate transporter coding genes (functioning either as reduced secretion or as enhanced 

reabsorption), or secondary to reduced renal perfusion (e.g., diuretics). The distinction can 

provide further guidance on the choice of anti-hyperuricaemia drugs for individuals needing 

pharmacologic treatment. 
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1.2.5 Treatment 

Despite the high prevalence of hyperuricaemia, pharmacologic therapies on this biochemical 

aberration are not widely recommended (55, 124). The implementation of either non-

pharmacologic (lifestyle-based) intervention or pharmacologic therapies should be determined 

based on the estimates of the clinical consequences of hyperuricaemia. Additionally, for 

pharmacologic urate-lowering therapy, the estimated risk of clinical consequences related to 

hyperuricaemia should be weighed against the potential benefits and risks, given urate-lowering 

medications (e.g., allopurinol or colchicine) can induce rare but very severe and even life-

threatening adverse reactions. 

1.2.5.1 General principles 

 Asymptomatic hyperuricaemia  

Patients with hyperuricaemia (SUA level >476 µmol/L) but without evidence of urate crystal 

deposition should be offered a plan for non-pharmacologic (lifestyle) management to reduce 

SUA level. The lifestyle interventions include adjustment of dietary composition, reduction of 

alcohol intake, control of body weight, and regular moderate exercise (124, 128). Consumption 

of dairy products, particularly low-fat dairy products or some dietary supplementations such as 

with vitamin C, was found to be associated with a substantially reduction in SUA level (129).  

Attentions should also be taken in the management of some accompanying diseases. 

Specifically, the use of medications that may increase SUA level should be avoided for 

hyperuricaemia patients; on the contrary, the use of medications that can reduce SUA level 

and/or decrease the risk of gout is much preferred. For example, the use of fenofibrate for 

hyperlipidaemia, and losartan or calcium channel blockers for hypertension should be promoted 

among hyperuricaemia patients (130, 131). In contrast, antihypertensive drugs, such as 

angiotensin-converting enzyme (ACE) inhibitors, thiazide or loop diuretics, non-losartan 

angiotensin II receptor blockers, and beta blockers, that may raise SUA level, should be avoided 

when possible (130). 

 Hyperuricaemia with gout and urate nephrolithiasis 

For subjects whose asymptomatic hyperuricaemia is accompanied by MSU crystal deposition 

demonstrated only on imaging but with no occurrence of gout, the same approach as for other 

asymptomatic individuals with hyperuricaemia should be taken. However, for hyperuricaemia 

patients with gouty arthritis, appropriate urate-lowering pharmacotherapy should be started with 
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a recommended goal range of SUA level <357 µmol/L (55). Similarly, urate-lowering 

pharmacotherapy for the prevention of urate stone is not warranted in most individuals, unless a 

urate stone is discovered. The preferred treatment for hyperuricaemic individuals in the 

presence of urinary urate stone is hydration (fluid intake >2 L/day) and urinary alkalinisation 

with administration of potassium bicarbonate or potassium citrate, instead of allopurinol (132). 

 Sustained high levels of hyperuricaemia with hyperuricosuria 

Pharmacological urate-lowering therapy is considered for individuals with sustained marked 

hyperuricaemia or a less marked degree of hyperuricaemia but with sustained hyperuricosuria 

who are at high risk of acute uric acid nephropathy or recurrent bouts of acute renal failure. 

Sustained high levels of hyperuricaemia and hyperuricosuria always occur among individuals 

with purine and/or uric acid overproduction due to inherited enzyme defects in purine and/or 

ATP metabolism or genetic polymorphisms of urate transporter genes resulting in reduction of 

renal uric acid clearance, or due to clinical disorders associated with accelerated cell turnover. 

Under these circumstances, even when hyperuricaemia is not presented with any urate-induced 

disorders (i.e., gout, urate nephrolithiasis), a urate-lowering goal of SUA level <476 µmol/L is 

recommended to prevent acute renal failure (133).  

1.2.5.2 Urate-lowering medications   

There are several types of urate-lowering drugs available (134, 135), including (i) xanthine 

oxidase inhibitors (XOIs): allopurinol and febuxostat; (ii) uricosuric agents: probenecid, 

benzbromarone, and lesinurad; (iii) uricase:  pegloticase and rasburicase   

 Xanthine oxidase inhibitors (XOIs) 

XOIs are likely to be effective in all circumstances for urate-lowering therapies. The XOI 

allopurinol is used as first-line anti-hyperuricaemia therapy (134). However, some individuals 

showed adverse reactions, limiting the use of XOIs (136). Allopurinol and febuxostat are the 

available forms of XOIs. Oxypurinol is an active metabolite of allopurinol that was previously 

available as a substitute for patients intolerant to allopurinol.  

Allopurinol — The urate-lowering effect of allopurinol is due to its inhibition of xanthine 

oxidase (xanthine dehydrogenase) activity (137). On one hand, allopurinol, along with 

oxypurinol, produces inactivation of xanthine dehydrogenase, resulting in decreased UA 

formation. On the other hand, it can reduce the total urinary excretion of purines due to its 

inhibition on purine synthesis via drug-derived enhancement of purine base reutilisation and 

https://www.uptodate.com/contents/allopurinol-drug-information?source=see_link
https://www.uptodate.com/contents/febuxostat-drug-information?source=see_link
https://www.uptodate.com/contents/probenecid-drug-information?source=see_link
https://www.uptodate.com/contents/lesinurad-drug-information?source=see_link
https://www.uptodate.com/contents/pegloticase-drug-information?source=see_link
https://www.uptodate.com/contents/rasburicase-drug-information?source=see_link
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reduction of purine catabolism. Although allopurinol is very effective in urate-lowering therapy, 

side effects and adverse reactions occur occasionally. It is estimated that 3%-5% of treated 

patients would experience rash, diarrhoea, drug fever, leukopenia or thrombocytopenia (136, 

138). Sometimes, a potentially fatal adverse event, allopurinol hypersensitivity syndrome (AHS), 

consisting of erythematous rash, drug fever, hepatitis, eosinophilia, and acute renal failure, may 

occur in <0.1% of treated patients (136, 138).  

Febuxostat — Febuxostat is another type of XOI. Unlike allopurinol, which is a purine base 

analogue, febuxostat is a thiazolecarboxylic acid derivative that inhibits xanthine oxidase by 

occupying a channel in the xanthine oxidase dimer (139). Febuxostat produces a dose-

dependent effect in the reduction of SUA level (140). Compared to allopurinol, febuxostat is 

superior in urate-lowering efficacy, but has greater incidence of nausea, arthralgia, rash and 

abnormalities in liver function test. Thus, hepatic transaminase enzyme levels should be 

monitored regularly among febuxostat-treated patients (141, 142).  

 Uricosuric drugs 

Uricosuric drugs are weak organic acids that enhance the renal clearance of urate by inhibiting 

the urate reabsorption mediated by urate-anion exchangers in the kidney (23). Uricosuric agents 

include probenecid, sulfinpyrazone, benzbromarone, and lesinurad. Other drugs with modest 

uricosuric effect include the anti-hypertension drug, angiotensin II receptor antagonist losartan, 

and anti-hyperlipidaemia drug, fenofibrate (143). Hyperuricaemic patients with renal under-

excretion of uric acid are candidates for uricosuric drugs (144). Probenecid and sulfinpyrazone 

are effective for most patients but ineffective for those with impaired renal function (134). 

Benzbromarone is likely more effective for patients with mild/moderate renal insufficiency 

(creatinine clearance 30-59 mL/min), and patients who are not tolerant for 

allopurinol/febuxostat therapy (134). Lesinurad is an inhibitor of urate transporters (URAT1 and 

OAT4), involving in uric acid reabsorption in the kidney. Lesinurad should only be used in 

combination with XOI in patients who have not achieved target SUA level with an XOI alone 

(145). The major side effects of uricosuric drugs include rash, acute gouty arthritis, 

gastrointestinal intolerance, and uric acid stone formation (146).  

 Uricase 

Uricase (urate oxidase) is an enzyme that catalyses oxidation of uric acid into the more water-

soluble compound, allantoin. The important criterion in support of uricase treatment is the 

requirement for reduction or reversal of gout symptoms, particularly for patients with severe 

https://www.uptodate.com/contents/probenecid-drug-information?source=see_link
https://www.uptodate.com/contents/allopurinol-drug-information?source=see_link
https://www.uptodate.com/contents/prevention-of-recurrent-gout-pharmacologic-urate-lowering-therapy-and-treatment-of-tophi?sectionName=RISK%20REDUCTION&anchor=H2&source=see_link#H444920239
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gout on whom treatment with other urate-lowering agents is not effective (134). Pegloticase and 

rasburicase are two forms of widely used uricase. Pegloticase is a porcine uricase modified by 

covalent linkage to polyethylene glycol. Pegloticase is effective in the relief of acute gout 

attacks, but it can lose the urate-lowering effectiveness due to the effects of pegloticase 

antibodies (147). Rasburicase is developed from Aspergillus flavus to minimise the risk of 

contaminant-related allergic reactions and is widely used to prevent acute urate nephropathy due 

to TLS in patients with lymphoma and leukaemia (148).  
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1.3 Genetic polymorphisms  

The heritability of SUA levels is estimated to be 40-70%, indicating the importance of its 

genetic determinants (149). In 2009, a GWAS on serum urate, including 28,141 individuals of 

European descent, was performed by the European Network for Genetic and Genomic 

Epidemiology (ENGAGE) consortium and identified nine independent genetic loci (150). 

Subsequently, in a meta-analysis of 48 genome-wide scans including 110,347 individuals of 

European descent, the Global Urate Genetics Consortium (GUGC) identified 28 genetic loci 

(151). When incorporating the GWAS findings of the ENGAGE and GUGC consortia, a total of 

31 genetic risk loci were identified in relation to serum urate level, including SLC2A9, ABCG2, 

SLC17A1, GCKR, SLC22A11, SLC22A12, PDZK1, SLC16A9, LRRC16A, INHBC, RREB1, 

HNF4G, SFMBT1, TRIM46, OVOL1, IGF1R, VEGFA, A1CF, BAZ1B, UBE2Q2, ATXN2, 

TMEM171, HLF, BCAS3, ORC4L, INHBB, NFAT5, STC1, PRKAG2, MAF, and PRPSAP1. 

Despite the success of the GWAS approach in describing the genetic background of serum urate, 

a detailed understanding of gene functions in the regulation of SUA level is still lacking, with 

the exception of urate transporter coding genes. To further describe the nature of these genetic 

risk loci, the functions of genes mapped by the consortia were annotated by using the 

GeneCards (http://www.genecards.org/) database. GeneCards is an integrative web-based 

human gene database that integrates gene-centric data from ~125 web sources and provides 

comprehensive information on all annotated and predicted human genes.  

1.3.1 Urate transporter loci  

Many of the identified loci from GWAS harbour genes encoding urate transporters or involving 

molecular pathways contributing to urate transport. Gene functions for the urate transporter loci 

are displayed in Table 1-4.  

  

http://www.genecards.org/
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Table 1 - 4: Gene functions for the urate transporter loci identified in SUA GWAS. 

SNP CHR GENE  Gene function (from http://www.genecards.org/ ) 

rs478607 11 SLC22A12 

(Solute 

Carrier 

Family 22 

Member 

12) 

 The SLC22A12 gene encodes the member 12 of organic 

anion transporter (OAT1) family which was the first 

characterised urate transporter regulating serum urate level 

(23). This protein is an integral membrane protein primarily 

localised in epithelial cells of the proximal tubule of the 

kidney and mutations in this gene cause renal 

hypouricaemia (152).  

 Its related biological pathways involve the transport of 

glucose and other sugars, urate, bile salts and organic acids, 

metal ions and amine compounds (153).  

 GO annotations related to this gene include the PDZ 

domain binding and urate transmembrane transporter 

activity. Its biological function is a pharmacologic target for 

urate-lowering therapy of uricosuric agents. (153) 

 Diseases associated with SLC22A12 include renal 

hyperuricaemia and hypouricaemia (153). 

rs1249874

2 

4 SLC2A9 

(Solute 

Carrier 

Family 2 

Member 9) 

 The SLC2A9 gene encodes the member 9 of SLC2A 

facilitative glucose transporter family (GLUT9), 

characterised as a urate transporter and involved in renal 

urate re-absorption (25, 154).Members of this family play 

an important role in maintaining glucose homeostasis (155).  

 Its related pathways involve the transport of glucose and 

other sugars, bile salts and organic acids, metal ions and 

amine compounds (156).  

 GO annotation related to this gene includes glucose 

transmembrane transporter activity (156).  

 Disease associated with the SLC2A9 gene include renal 

hyperuricaemia and hypouricaemia (156).   
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SNP CHR GENE  Gene function (from http://www.genecards.org/ ) 

rs2231142 4 ABCG2 

(ATP 

Binding 

Cassette 

Subfamily 

G Member 

2) 

 The ABCG2 gene encodes the member 2 of ATP Binding 

Cassette Subfamily (ABCG2) (157). The superfamily of 

ATP-binding cassette (ABC) transporters transports various 

molecules across extra- and intra-cellular membranes (157).  

 Transporter ABCG2 has been shown to act as a urate 

transporter contributing to the excretion of urate in the 

kidney. This protein also functions as a xenobiotic 

transporter which may contribute to multi-drug resistance 

(158).  

 GO annotations related to this gene include ATPase activity 

and the activity of protein homo-dimerisation (159). Its 

biological function is the transport of urate, glucose and 

other sugars, bile salts and organic acids, metal ions and 

amine compounds (159). 

 Diseases associated with the ABCG2 include 

hyperuricaemia and erythroplakia (159). 

rs2078267 11 SLC22A11 

(Solute 

Carrier 

Family 22 

Member 

11) 

 The SLC22A11 gene encodes the member 11 of organic 

anion transporter (OAT4) family (160). The encoded 

protein is an integral membrane protein involved in the 

sodium-independent transport and excretion of organic 

anions (161).  

 This transporter is primarily found in epithelial cells of the 

proximal tubule in the kidney and in the placenta, where it 

may act to excrete harmful organic anions (160).  

 GO annotations related to this gene include inorganic anion 

exchanger activity and sodium-independent organic anion 

transmembrane transporter activity (162).  

 Disease associated with the SLC22A11 includes 

hyperuricaemia (162). 
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SNP CHR GENE  Gene function (from http://www.genecards.org/ ) 

rs1165151 6 SLC17A1 

(Solute 

Carrier 

Family 17 

Member 1) 

 The SLC17A1 gene encodes the sodium-dependent 

phosphate transport protein 1 (NPT1) (163). NPT1 is 

important for the reabsorption of phosphate and the urate 

excretion in the kidney, which actively reabsorbs phosphate 

into cells via Na+ cotransport and excretes urate into the 

distal renal tubule (164).  

 Its related biological pathways involve the transport of 

glucose and other sugars, bile salts and organic acids, metal 

ions and amine compounds, and uricosuric pathway 

(pharmacodynamics) (165).  

 GO annotation related to this gene includes symporter 

activity and phosphate ion transmembrane transporter 

activity.  

 Diseases associated with the SLC17A1 gene include gout 

and hyperuricaemia (165). 

rs1471633 1 PDZK1 

(PDZ 

Domain 

Containing 

1) 

 The protein encoded by the PDZK1 is the Na+/H+ 

exchange regulatory cofactor NHE-RF3, mediating the 

localisation of cell surface proteins (166). This protein is 

likely to influence urate transport indirectly by binding with 

the urate transporters URAT1, NPT1, and OAT4 (167). It 

also contributes to cholesterol metabolism by regulating the 

HDL receptor, namely scavenger receptor class B type 1 

(168).  

 Its related biological pathways include the regulation of 

cystic fibrosis transmembrane conductance regulator 

(CFTR) activity and the uricosurics pathway 

(pharmacodynamics) (169).  

 GO annotation related to this gene includes PDZ domain 

binding and the transporter activity (169). 

 Diseases associated with the PDZK1 gene include multiple 

myeloma (169).  
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SNP CHR GENE  Gene function (from http://www.genecards.org/ ) 

rs1171614 10 SLC16A9 

(Solute 

Carrier 

Family 16 

Member 9) 

 The protein encoded by SLC16A9 gene is a proton-linked 

monocarboxylate transporter (MCT9) (170). The predicted 

function of SLC16A9 (MTC9) is a carnitine efflux 

transporter, which catalyses the transport of 

monocarboxylates across the plasma membrane (171).  

 Whether SLC16A9 (MTC9) directly contributes to the 

transport of urate is not very clear, but associations between 

this gene and another two metabolites were observed, 

namely DL-carnitine and propionyl-L-carnitine, which in 

turn were associated with serum urate, forming a triangle 

between SLC16A9, serum urate and related metabolites 

(151).  

 GO annotation related to this gene includes the symporter 

activity and the transmembrane transporter activity of 

monocarboxylic acid (172).  

 Diseases associated with this gene include gout (172). 
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1.3.2 Other genetic risk loci 

For the remaining genetic risk loci identified from GWAS, their underlying biological functions 

in the regulation of serum urate have not been completely understood, but the functional 

annotation of the mapping genes highlights two broad pathways of glycolysis and 

inhibins/activins, which contribute to the biological processes of energy balance, cell 

proliferation, apoptosis, and immune response, as described below. Gene functions for other 

genetic risk loci of SUA levels are displayed in Table 1-5 and Figure 1-4.  

Table 1 - 5: Gene functions for other genetic risk loci identified in SUA GWAS. 

SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs1260326 2 GCKR 

(Glucokin-

ase 

Regulator) 

 The GCKR gene encodes a regulatory protein that inhibits 

glucokinase in liver and pancreatic islet cells by binding to 

the enzyme to form an inactive compound (173, 174).  

 Three biological pathways are related to this gene: the 

transport of glucose and other sugars, bile salts and organic 

acids, metal ions and amine compounds, cyclin-dependent 

kinase (CDK) mediated phosphorylation and the removal of 

cell division cycle 6 (Cdc6) from the cellular nucleus (175).  

 GO annotation related to this gene includes enzyme binding 

and protein domain specific binding (175).  

 Diseases associated with the GCKR include fasting plasma 

glucose level and maturity-onset diabetes (175). 

rs3741414 12 INHBC 

(Inhibin 

Beta C 

Subunit) 

 The INHBC gene encodes a member of the transforming 

growth factor-beta (TGF-β) superfamily, that could be 

processed by proteolysis to produce a subunit of 

homodimeric and heterodimeric activin compound (176). 

The heterodimeric complex may inhibit the signalling of 

activin A (177).  

 The biological pathways related to this gene include the 

TGF-beta signalling pathway (KEGG) and signalling 

pathway regulating pluripotency of stem cells (178).  

 GO annotation of this gene includes cytokine activity and 

hormone activity (178). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs675209 6 RREB1 

(Ras 

Responsive 

Element 

Binding 

Protein 1) 

 The product of RREB1 gene is a zinc finger transcription 

factor binding to the RAS-responsive elements (RREs) of 

gene promoters (179).  

 This protein is involved in Ras/Raf-mediated cell 

differentiation by binding to the RRE of calcitonin gene 

promoter (180).  

 GO annotation related to this gene includes the binding of 

nucleic acid and RNA polymerase II core promoter 

sequence-specific DNA (181). 

rs2941484 8 HNF4G 

(Hepato-

cyte 

Nuclear 

Factor 4 

Gamma) 

 The HNF4G gene encodes the member 2 of nuclear 

receptor subfamily 2, also known as NR2A2.  

 The related biological pathways of this gene are the 

regulation of beta-cell development and gene expression 

(182, 183).  

 GO annotations related to this gene include the transcription 

factor activity, steroid hormone receptor activity and 

sequence-specific DNA binding (184). Diseases associated 

with this gene include maturity-onset diabetes (184). 

rs6770152 3 SFMBT1 

(Scm-Like 

With Four 

Mbt 

Domains 1) 

 The protein encoded by the SFMBT1 gene contains four 

malignant brain tumour repeat (mbt) domains (185).  

 It is likely involved in antigen recognition (186).  

 GO annotations related to this gene include transcription 

corepressor activity and histone binding (187). 

rs642803 11 OVOL1 

(Ovo Like 

Transcripti

onal 

Repressor 

1) 

 The OVOL1 gene encodes a putative zinc finger 

transcription factor which is very similar to homologous 

protein in mouse and drosophila (188).  

 Based on its known functions in these species, this protein 

is likely involved in hair formation and spermatogenesis 

(189).  

 GO annotation indicates this gene is likely involved in 

RNA polymerase II core promoter proximal region 

sequence-specific binding and transcriptional repressor 

activity (189). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs6598541 15 IGF1R 

(Insulin-

Like 

Growth 

Factor 1 

Receptor) 

 The product of this gene is an insulin-like growth factor I 

receptor (IGF1R), containing alpha and beta subunits (190). 

This receptor is overexpressed in most malignant tissues 

where it may act as an anti-apoptotic agent by enhancing 

cell survival (190).  

 The biological pathways related to this gene include the 

development IGF-1 receptor signalling and the mammalian 

target of rapamycin (mTOR) (191).  

 GO annotation for this gene includes protein kinase activity 

and protein binding (191).  

rs729761 6 VEGFA 

(Vascular 

Endothelial 

Growth 

Factor A) 

 The protein encoded by the VEGFA gene is the member A 

of the PDGF/VEGF growth factor family (192).  

 This growth factor is essential for both physiological and 

pathological angiogenesis and it induces the proliferation 

and migration of the vascular endothelial cell (192). This 

expression of this gene is upregulated in some known 

tumours and is also correlated with tumour stage and 

progression. Mutations of this gene have been associated 

with atherosclerosis and microvascular complications of 

diabetes 1 (MVCD1) and atherosclerosis (192).  

 GO annotation highlight the role of this gene in the protein 

homo-dimerisation activity (193). 

rs10821905 10 A1CF 

(APOBEC1 

Compleme-

ntation 

Factor) 

 The product of this gene contains three different RNA 

recognition motifs, belonging to the hnRNP R family of 

RNA-binding proteins (194). This complementation factor 

may be involved in the RNA editing or RNA processing 

events (194).  

 Its related pathways are the mRNA editing of C to U 

conversion and the gene expression (195).  

 GO annotations related to this gene include 

nucleotide/nucleic acid binding (195). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs1178977 7 BAZ1B 

(Bromod-

main 

Adjacent To 

Zinc Finger 

Domain 1B) 

 This gene encodes an enzyme, tyrosine-protein kinase 

belonging to the bromodomain protein family (196).  

 The bromodomain is a structural characteristic of proteins 

involving in chromatin-dependent regulation of 

transcription (196).  

 GO annotation related to this gene includes protein tyrosine 

kinase activity and binding (197).  

 This gene is deleted in a developmental disorder, Williams-

Beuren syndrome (197). 

rs1394125 15 UBE2Q2 

(Ubiquitin 

Conjugatin-

g Enzyme 

E2 Q2) 

 The protein encoded by this gene is one of the ubiquitin 

conjugating enzymes (also known as E2 enzymes) (198).  

 Its related pathways are class I major histocompatibility 

complex (MHC) mediated antigen processing and innate 

immune response (199).  

 GO annotations of this gene include ligase activity (199). 

rs653178 12 ATXN2 

(Ataxin 2) 

 The ATXN2 gene encodes the protein that is involved in the 

trafficking of epidermal growth factor receptor (EGFR) 

(200). It functions as a negative regulator of endocytic 

EGFR internalisation at the plasma membrane (200).  

 The involving biological pathways are the regulation of 

checkpoint kinases.  

 GO annotation related to this gene includes the poly (A) 

RNA binding and protein C-terminus binding (201).  

 Diseases associated with ATXN2 include Spinocerebellar 

Ataxia 2 and late-onset Parkinson’s disease (201). 

rs7224610 17 HLF 

(Hepatic 

Leukaemia 

Factor) 

 This gene encodes a member of the proline and acidic-rich 

(PAR) protein family, a subset of the bZIP transcription 

factors (202).  

 The encoded protein forms homodimers or heterodimers 

with other PAR family members and binds to the sequence-

specific promoter elements to activate transcription (202).  

 GO annotations related to this gene include transcription 

factor activity, double-stranded DNA binding and 

sequence-specific DNA binding (203).  

 Leukaemia is associated with this gene (203). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs2079742 17 BCAS3 

(Breast 

Carcinoma 

Amplified 

Sequence 3) 

 The product of the BCAS3 gene is a microtubule associated 

cell migration factor (204).  

 This protein is involved in multiple biological processes, 

including angiogenesis, the regulation of cell polarity and 

directional endothelial cell migration, and the recruitment 

and activation of cell division control protein (Cdc42) 

(205).  

 GO annotation related to this gene includes chromatin 

binding and histone binding (205).  

 Disease associated with this gene is breast cancer (205). 

rs2307394 2 ORC4L 

(Origin 

Recogni-

tion 

Complex 

Subunit 4) 

 This gene encodes the subunit 4 of the origin recognition 

complex (ORC) that is an essential complex for the 

initiation of DNA replication in the cell (206).  

 The biological pathways related to ORC4 are the regulation 

of DNA replication, the cyclin-dependent kinase (CDK) 

mediated phosphorylation and the removal of Cdc6 (207).  

 GO annotation related to this gene includes the nucleotide 

binding and the DNA replication origin binding (207).  

 Meier-Gorlin Syndromes are associated with this gene 

(207). 

rs17050272 2 INHBB 

(Inhibin 

Beta B 

Subunit) 

 The INHBB gene encodes a subunit of the transforming 

growth factor-beta (TGF-β) superfamily that could be 

processed by proteolysis to generate a subunit of the 

dimeric activin and inhibin protein complexes (208).  

 These complexes respectively activate and inhibit the 

follicle stimulating hormone secretion activity of the 

pituitary gland (208). This gene is involved in the TGF-β 

signalling pathway (KEGG) and signalling pathways 

regulating pluripotency of stem cells (209).  

 GO annotation related to this gene includes the growth 

factor activity and protein homodimerisation activity (209).  

 Diseases associated with this genes are eclampsia and pre-

eclampsia (209). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs7193778 16 NFAT5 

(Nuclear 

Factor Of 

Activated T-

Cells 5) 

 The NFAT5 gene encodes a transcription factor involved in 

the transcription of inflammatory gene and the regulation of 

activated T cells family (210).  

 GO annotation of this gene includes sequence-specific 

DNA binding, transcriptional activator activity, and RNA 

polymerase II core promoter proximal region sequence-

specific binding (211).  

 Diseases associated with this gene are kidney papillary 

necrosis and spinocerebellar ataxia (211). 

rs10480300 7 PRKAG2 

(Protein 

Kinase 

AMP-

Activated 

Non-

Catalytic 

Subunit 

Gamma 2) 

 The PRKAG2 gene encodes the non-catalytic regulatory 

gamma subunit of the AMP-activated protein kinase 

(AMPK) (212).  

 AMPK is an important energy-sensing enzyme that 

monitors cellular energy status by inactivating key enzymes 

involved in regulating de novo biosynthesis of fatty acid 

and cholesterol (212).  

 GO annotation of this gene includes protein kinase activator 

activity and protein kinase binding (213).  

 Mutations in this gene have been associated with Wolff-

Parkinson-White syndrome, familial hypertrophic 

cardiomyopathy, and glycogen storage disease of the heart 

(213). 

rs7188445 16 MAF (MAF 

BZIP 

Transcripti

on Factor) 

 The protein encoded by this gene is a DNA-binding, leucine 

zipper-containing transcription factor, acting as a 

homodimer or as a heterodimer (214).  

 This transcriptional factor involves in the regulation of 

several cellular processes, including embryonic lens fibre 

cell development, chondrocyte terminal differentiation, and 

increased T-cell susceptibility to apoptosis (214).  

 GO annotation related to this gene includes sequence-

specific DNA binding, transcriptional activator activity, and 

RNA polymerase II transcription regulatory region 

sequence-specific binding (215).  

 Diseases associated with MAF are Ayme-Gripp Syndrome 

and multiple-type cataract (215). 
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SNP Chr Gene Gene function (from http://www.genecards.org/ ) 

rs17786744 8 STC1 

(Stannioca-

lcin 1) 

 The STC1 gene encodes a secreted, homodimeric 

glycoprotein that may have autocrine or paracrine functions 

(216).  

 The protein is likely involved in the regulation of renal and 

intestinal calcium and phosphate transport, cell metabolism, 

or cellular calcium/phosphate homeostasis (216).  

 GO annotation for this gene includes the activity of 

hormone (217).  

 Diverticulitis of colon is associated with the mutations of 

this gene (217). 

rs164009 17 PRPSAP1 

(Phosphori-

bosyl 

Pyropho-

sphate 

Synthetase 

Associated 

Protein 1) 

 The protein coded by PRPSAP1 gene seems to play a 

negative regulatory role in 5-phosphoribose 1-diphosphate 

synthesis (218). GO annotations related to this gene include 

magnesium ion binding and enzyme inhibitor activity (219). 

rs11264341 1 TRIM46 

(Tripartite 

Motif 

Containing 

46) 

 The product of this gene is a tripartite motif-containing 

protein, which is involved in the biological processes of 

interferon gamma signalling and innate immune system 

(220, 221) 

rs17632159 5 TMEM171 

(Transmem-

brane 

Protein 

171) 

 TMEM171 is a transmembrane protein coding gene but its 

function is not clear (222, 223). 
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2 AIMS AND OBJECTIVES 

2.1 Introduction 

The role of uric acid has been explored in a large number of observational studies in relation 

to a multitude of health outcomes. Apart from gout and urolithiasis (224, 225), compelling 

evidence supports the associations between high SUA level and the increased risk of non-

crystal deposition disorders, including metabolic syndrome, hypertension, chronic renal 

diseases, and cardiovascular diseases (CVDs) (225-227). Although there are considerable 

research efforts into understanding the pathogenic role of uric acid in these non-crystal 

deposition disorders, their causal relationships have not been established. It was argued that 

either these associations are confounded by other risk factors, such as obesity and 

hypertension, or they represent reverse causality. Genetic determinants play a substantial role 

in the regulation of SUA levels and genetic studies among twins and families reported a 

substantial heritable component of SUA level with an estimated heritability of 40-70% (228, 

229). The genetic component of SUA level has been explored in several GWAS (151, 230, 

231) and the wealth of GWAS findings allows the incorporation of genetic variant(s) as an 

instrument (s) which can be used to separate causal associations from non-causal ones, given 

that the genotype is generally independent of environmental exposures and the transmission 

of genetic information is usually unidirectional. Therefore, investigating the associations 

between SUA genetic risk loci and disease outcomes might provide evidence for the 

hypotheses which link uric acid to clinical disorders.  

2.2 Aim and objectives 

The overarching aim of this project is to employ the Phenome-wide association study 

(PheWAS) approach along with other complementary methodologies to investigate the role 

of uric acid in a wide range of disease outcomes by using data from the UK Biobank.  

The specific objectives are: 

(i) To conduct an umbrella review of meta-analyses of observational studies, meta-

analyses of randomised controlled trials (RCTs) and Mendelian randomisation (MR) 

studies on the associations between SUA level and multiple health outcomes. This 

umbrella review was performed to summarise the range of related health outcomes, 

present the magnitude, direction and significance of the identified associations and 



Chapter 2  Aims and objectives 

55 

 

effects, assess the potential biases and identify which of the observed associations 

are robust. The findings of umbrella review are presented in Chapter 3.  

 

(ii) To perform a MR-PheWAS analysis by using the interim release data of UK 

Biobank to provide an overview of the disease outcomes associated with the SUA 

genetic risk loci. The SUA genetic risk loci were employed as individual instruments. 

The phenome framework was defined by the PheCODE schema. PheWAS was 

performed first to identify any association across the SUA genetic risk loci and the 

phenome; the Mendelian randomisation (MR) design and the HEIDI (heterogeneity 

in dependent instruments) test were then applied to distinguish the PheWAS 

associations that were due to causality, pleiotropy or genetic linkage. The findings of 

MR-PheWAS are presented in Chapter 5.  

 

(iii) To validate the MR-PheWAS findings, an advanced Phenome-wide Mendelian 

randomisation (PWMR) analysis is performed by using data from the full UK 

Biobank cohort. A weighted polygenic risk score (GRS), incorporating effect 

estimates of multiple genetic risk loci, was employed as a proxy of the SUA level. 

The phenome framework was also defined by an alternative tree-structured 

phenotypic model. Any novel findings and/or replication of the MR-PheWAS 

findings were further described and explored in the PWMR analysis. The findings of 

PWMR are presented in Chapter 6.
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3 UMBRELLA REVIEW ON SUA LEVEL 

3.1 Summary  

The aim of this chapter is to assess if the available evidence is robust enough to indicate any 

causal effect of SUA level on the related health outcomes. I performed an umbrella review to 

collect and evaluate the evidence from systematic reviews and meta-analyses of 

observational studies, meta-analyses of RCTs and Mendelian randomisation studies 

systematically. I identified 136 health outcomes that were examined in relation to SUA 

levels across three study types, including anthropometric outcomes, cardiovascular diseases, 

metabolic diseases, kidney disorders, various cancers, and neurocognitive diseases. I adopted 

a set of criteria to assess the credibility of the observed associations. After assessment, no 

association from observational studies was classified as convincing, and associations with 

five health outcomes (heart failure, hypertension, impaired fasting glucose or diabetes, 

chronic kidney disease, coronary heart disease mortality) were classified as highly 

suggestive; only one outcome (nephrolithiasis) from meta-analyses of RCTs and one 

outcome (gout) from Mendelian randomisation studies presented convincing evidence, 

indicating a causal effect of high SUA level on increased disease risk. 

Despite a few hundred systematic reviews, meta-analyses, and Mendelian randomisation 

studies exploring 136 unique health outcomes, convincing evidence of a clear role of SUA 

level only exists for gout and nephrolithiasis. Umbrella reviews focus on the evidence from 

existing meta-analyses and therefore outcomes that have not been assessed in a meta-

analysis are not included in this review, which represents a weakness of this study. The 

available evidence does not support any change in existing clinical recommendations in 

relation to the clinical management of SUA levels.  

This chapter has been published in the British Medical Journal (BMJ) cited as “Li, X., Meng, 

X., Timofeeva, M., Tzoulaki, I., Tsilidis, K.K., Ioannidis, P.A., Campbell, H. and 

Theodoratou, E., 2017. Serum uric acid levels and multiple health outcomes: umbrella 

review of evidence from observational studies, randomised controlled trials, and Mendelian 

randomisation studies. BMJ, 2357-2376.” (232). 

For this published work, I conducted the systematic literature review and data extraction as 

the main investigator. The extracted data was checked by the second investigator (Meng, X.). 

I performed the statistical analysis, wrote the manuscript and revised the paper according to 

the comments given by the peer reviewers and the BMJ editorial committee. Theodoratou, E. 
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and Campbell, H. conceived the study and Ioannidis, P.A. contributed to the design. 

Campbell, H., Ioannidis, P.A., Tsilidis, K.K., Timofeeva, M., and Tzoulaki, I. critically 

reviewed the manuscript and contributed important intellectual content. 
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ABSTRACT  

Objective To map the diverse health outcomes associated with serum uric acid (SUA) and 

assess the credibility of evidence in favour of causal association.  

Design Umbrella review of the evidence from systematic reviews and meta-analyses of 

observational studies, meta-analyses of randomised controlled trials (RCTs) and Mendelian 

randomisation (MR) studies. 

Data sources Medline, EMBASE, Cochrane database of systematic reviews and screening 

of citations and references.  

Eligibility criteria Systematic reviews and meta-analyses of observational studies that 

examined associations between SUA and health outcomes; meta-analyses of RCTs that 

investigated health outcomes related to SUA-lowering therapy; MR studies that explored the 

causal associations of SUA with health outcomes.  

Results 47 articles reporting 144 meta-analyses of observational studies (76 unique 

outcomes), 8 articles reporting 31 meta-analyses of RCTs (20 unique outcomes) and 36 

articles reporting 107 MR studies (56 unique outcomes) met the eligibility criteria. Across all 

three study types, 136 unique health outcomes (including anthropometric outcomes, 

cardiovascular diseases, metabolic diseases, kidney disorders, various cancers, and 

neurocognitive diseases) were reported. 16 of 76 unique outcomes in meta-analyses of 

observational studies had p<10-6, 8 of 20 unique outcomes in meta-analyses of RCTs had 

p<10-3 and 4 of 56 unique MR outcomes had p<0.01. Large between-study heterogeneity 

was very common (80.3% and 45.0% in meta-analyses of observational studies and of RCTs 

respectively). 42 of 76 (55.3%) meta-analyses of observational studies and 7 of 20 (35.0%) 

meta-analyses of RCTs showed evidence of small study effects or excess significance bias. 

No SUA-health outcome associations from meta-analyses of observational studies were 

classified as convincing; five associations were classified as highly suggestive (increased 

risk of heart failure, hypertension, impaired fasting glucose or diabetes, chronic kidney 

disease (CKD), coronary heart disease mortality with high SUA levels). Only one outcome 

from RCTs (decreased risk of nephrolithiasis recurrence with SUA-lowering treatment) had 

p<10-3, 95% prediction interval excluding the null and no large heterogeneity or bias. Only 

one outcome from MR studies (increased risk of gout with high SUA levels) presented 

convincing evidence. Hypertension and CKD showed concordant evidence in meta-analyses 

of observational studies and in some (but not all) meta-analyses of RCTs with respective 

intermediate or surrogate outcomes, but they were not statistically significant in MR studies.  
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Conclusions Despite a few hundred systematic reviews, meta-analyses and MR studies 

exploring 136 unique health outcomes, convincing evidence of a clear role of SUA exists for 

only gout and nephrolithiasis. 
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What is known or unknown on this topic  

 Observational studies have suggested that high SUA levels are associated with a wide range of 

outcomes including cardiovascular and metabolic diseases (increased risk) or neurological 

diseases (decreased risk). 

 However, it remains to be determined whether these observed associations are causal.  

 Clinical trials of SUA lowering have shown that xanthine oxidase inhibition decreases blood 

pressure and improves renal function. 

 There is still much debate as to whether SUA is simply a marker of xanthine oxidase activity or 

a causal factor involved in systemic inflammation. 

Added value by this study 

 We present here a comprehensive overview and assessment of the existing evidence from 

multiple sources (including meta-analyses of observational studies, meta-analyses of RCTs and 

MR studies) for a wide range of health outcomes related to SUA.  

 We identified 136 health outcomes that were examined in relation to SUA but based on our 

evidence assessment convincing evidence of a clear role of SUA exists only for gout and 

nephrolithiasis.  

 Associations between SUA and five additional health outcomes (heart failure, hypertension, 

impaired fasting glucose or diabetes, chronic kidney disease, coronary heart disease mortality) 

were classified as highly suggestive.  

 There is a notable gap between observational studies and RCTs and MR studies. 

Implications of all available evidence 

 This study raises large uncertainty about the potential therapeutic benefits of SUA-lowering 

therapy beyond gout.  

 There is no adequate evidence against lowering SUA in gout patients in relation to an increased 

risk of neurological diseases.  

 The causal effect of SUA on the health outcomes with highly suggestive evidence might be 

worthy of further investigation.  
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3.2 Introduction 

Uric acid was thought to be a biologically inert waste product from purine metabolism, until 

Garrod et al discovered in the early 1800s that elevated SUA level was the cause of gout 

(233). Subsequently, associations of uric acid with cardiovascular and renal disorders were 

also observed (234). These associations were explored in a number of prospective studies, 

but yielded conflicting results and, therefore, the causal role of uric acid in these diseases 

was widely questioned (235-238). It was argued that either these associations are confounded 

by other risk factors, such as obesity and hypertension, or they represent reverse causality 

(236, 239). These inconclusive findings led to a shift of interest away from uric acid and 

asymptomatic hyperuricaemia was not considered as indication for SUA-lowering therapy in 

patients with cardiovascular and renal diseases (56, 124). 

New findings have fuelled enthusiasm to address this long-standing controversy (240). 

Recent epidemiological studies have explored associations of uric acid with a wide range of 

disease conditions, including cardiovascular diseases (CVD), metabolic syndrome, diabetes, 

cancer and some intermediate phenotypes or biomarkers (227). In an attempt to understand 

the possible underlying mechanisms, laboratory studies have found that uric acid is 

potentially involved in multiple biological processes including oxidation stress, systemic 

inflammation and intra-hepatic fructose metabolism, which are mechanisms that could be 

linked to the development of CVD and metabolic syndrome (241-243). Alternatively, uric 

acid may only present a marker of high oxidative stress associated with increased xanthine 

oxidase activity, instead of an active agent in the pathogenic processes (244). Finally, taking 

into account the antioxidant properties of uric acid (acting as a free radical scavenger), its 

potential mechanistic roles on these disorders may be complex (245). 

In view of the potential importance of uric acid, assessing the credibility of the observed 

evidence may have implications both for clinical practice and public health. It is recognised 

that different types of studies have specific strengths and weaknesses that can be seen as 

complementary (see Box 1). An umbrella review, which collects and evaluates evidence 

from multiple resources systematically, might therefore help clarify the composite literature. 

Here, we have performed an umbrella review of meta-analyses of observational studies, 

meta-analyses of randomised controlled trials (RCTs) and Mendelian randomisation (MR) 

studies on associations between SUA and multiple health outcomes. As shown in Box 1, 

these three lines of evidence can be complementary. The overarching aim of this study is to 

provide an overview of the spectrum of diseases related to SUA and to assess the evidence 

from multiple sources systematically. In particular, we summarised the range of related 
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health outcomes, presented the magnitude, direction and significance of the reported 

associations and effects, assessed the potential biases and identified which associations and 

effects have the most convincing evidence.   

Box 1: observational studies, randomised clinical trials, and Mendelian randomisation 

studies  

 An observational study aims to examine the association between an exposure and an 

outcome, and tests whether the association is caused by chance, bias or confounding. 

However, conventional observational studies typically may suffer from problems of residual 

confounding, undetected bias or reverse causality which may generate associations that are 

not reliable indicators of causality. 

 

 A randomised clinical trial (RCT) is an approach to obtain evidence of a causal effect of a 

treatment or intervention on a disease process, and it eliminates many of the biases and 

confounding factors that are present in observational studies. However, this study design is 

also subject to limitations, including non-adherence to the assigned intervention, limited 

external validity, short-term intervention effects, and non-retention, which can all render the 

results invalid or questionable. In addition, high costs and ethical concerns can also limit 

the application of RCTs in scientific research.  

 

 A Mendelian randomisation (MR) study provides a cost-effective analogy to an RCT by 

using genetic variants as proxies to test the causality of an association between the exposure 

and outcome. MR is not influenced by the confounding inherent in observational studies 

and not seriously affected by reverse causality, but it does rely on several assumptions (the 

genetic instruments should be associated with the exposure of interest, they should not be 

associated with known confounders, and they should affect the outcome solely through the 

exposure) that can be hard to identify and control. This approach may also lack power 

especially when the proportion of trait variance explained by the genetic instruments is 

small.  

 

 In summary, although none of these study types are infallible, all of them are able to 

provide useful information in relation to causal inference and they can complement each 

other in order to achieve increasing certainty about causality.  
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3.3 Methods 

3.3.1 Literature search and selection criteria 

We systematically searched Medline, EMBASE and the Cochrane database from inception 

to July 17, 2016 using a comprehensive search strategy (Supplementary Table 3-1) to 

identify systematic reviews and meta-analyses of observational studies, meta-analyses of 

RCTs, and MR studies. All identified publications went through a three-step parallel review 

of title, abstract and full text (performed by XL and XM) based on pre-defined inclusion and 

exclusion criteria.  

We included: (i) systematic reviews and meta-analyses of observational studies that 

examined associations between SUA levels (or hyperuricaemia) and health outcomes; (ii) 

meta-analyses of RCTs that investigated health outcomes related to SUA-lowering therapy 

(intervention with one or a combination of two or more SUA-lowering drugs versus placebo 

or no treatment) including xanthine oxidase inhibitors (allopurinol, febuxostat, or 

oxypurinol), uricosuric agents (probenecid, benzbromarone, thiazides, or citrates), and 

uricase analogues (pegloticase or rasburicase); and (iii) individual MR studies that explored 

SUA (or hyperuricaemia) associations in relation to health outcomes by using genetic 

instruments influencing SUA levels. The identified health outcomes included a wide range of 

diseases, intermediate phenotypes and biomarkers. Studies investigating associations 

between gout and health outcomes were not included. Meta-analyses of RCTs that used non-

drug interventions, such as dietary or lifestyle interventions were excluded. We further 

excluded animal and laboratory studies, meta-analyses on the prevalence of gout and 

hyperuricaemia and meta-analyses of RCTs that focused on pharmacological parameters, 

safety and effects of reducing SUA levels without investigating other health effects.  

3.3.2 Data extraction  

Data were extracted by one investigator (XL) and then checked by a second investigator 

(XM). For each eligible study, we abstracted the PubMed ID, first author name, journal, year 

of publication, study population, number of studies included, and outcomes investigated. For 

meta-analyses investigating more than one health outcome, each outcome was recorded 

separately. For meta-analyses of observational studies and of RCTs, we extracted the 

reported summary risk estimates (risk ratio, odds ratio, hazard ratio or mean difference) with 

the 95% confidence intervals (CIs) and the corresponding number of case and control 

participants. Furthermore, for each unique outcome, data from the individual component 
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studies that were included in the meta-analyses were also extracted for further analysis. This 

second level abstraction included data on study design, number of cases, total number of 

study participants, the relative risk estimates and 95% CIs for each component study. When 

more than one meta-analysis existed for the same outcome in the same population, individual 

component data were extracted from the most recent and largest meta-analysis. In a few 

exceptions where the most recent was not also the largest meta-analysis, we explored the 

reason for this discrepancy: if the most recent included prospective studies and the largest 

one had fewer prospective studies plus some retrospective data, we kept the one with the 

largest amount of prospective data; otherwise we kept the largest meta-analysis. For MR 

studies, we abstracted data on study population, sample size, genetic instruments, the 

variance of SUA explained by the genetic instruments (R2) and MR effect estimates (odds 

ratio, hazard ratio, mean difference or regression coefficient β), standard deviation (SD) of 

SUA levels and SD of continuous outcomes.  

3.3.3 Data analysis  

For systematic reviews, we performed descriptive analyses and presented the authors’ 

conclusions. For each unique meta-analysis of observational studies and of RCTs, we 

estimated a number of metrics including (i) the summary effect and 95% CI using a random-

effect model (DerSimonian & Laird method) (246); (ii)  the heterogeneity among studies (Q 

statistic and I2 metric with 95% CI);  (iii) the 95% prediction interval (PI) to predict the range 

of effect size that would be expected in a new original study, after accounting for both the 

heterogeneity among individual studies and the uncertainty of the summary effect estimated 

in the random-effect model; the calculation of 95% PI is based on the predicted distribution 

derived from a function of the degree of heterogeneity, the number of studies included and 

the within-study standard errors (247, 248); (iv) the presence of small study effects by using 

the Egger’s regression asymmetry test to investigate if small studies tend to give larger 

estimates of effect size than large studies (significance threshold p<0.10) (249); (v) the 

excess significance test to assess if the observed number (O) of studies with significant 

results was greater than the expected number (E) using the chi-square test: A = [(O-E)2/E + 

(O-E)2/(n-E)] ~ 2 (significance threshold p<0.10) (250, 251). For the excess significance 

test the expected number (E) of studies with significant findings was calculated by using the 

sum of statistical power estimated for each component study. The statistical power of each 

component study was calculated with an algorithm that uses a non-central t distribution, by 

assuming the true effect size to be the same as that of the largest component study (with 

smallest variance) in the meta-analysis (252). If the type of metric in a meta-analysis was 
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mean difference, we firstly calculated Cohen's d by weighing the pooled SD based on the 

sample size of individual studies. We then transformed Cohen's d, Hedges g and other 

standardised mean difference metrics to odds ratios (253). We compared the results reported 

in overlapping meta-analyses to evaluate their concordance in terms of the direction and 

statistical significance of the observed associations. All statistical analyses were conducted 

in Stata version 14.0. 

For MR studies, we didn’t conduct quantitative syntheses due to the extensive differences of 

genetic instruments used in the identified studies. Instead, we performed and present here a 

descriptive analysis of the individual studies. When more than one MR study was conducted 

for the same outcome, we compared the concordance of the findings in relation to the 

direction and statistical significance of the reported association and retained the MR study 

with largest number of cases and participants for further analysis and comparison. We 

performed a power calculation for the largest MR studies by using the non-centrality parameter 

(NCP) based approach, if all necessary information required for calculation was provided (i.e., 

sample size, number of cases, R2, estimates of association, SD of continuous outcomes and SD of 

SUA levels) (254). For MR study with missing R2, we used the R2 from other MR studies that 

used the same genetic variants as instruments to perform a crude power estimation.  

3.3.4 Credibility assessment 

Evidence from meta-analyses of observational studies with nominally statistically significant 

summary results (p<0.05) was classified into four categories (class I, II, III, IV) as 

previously proposed (255): (i) convincing (class I) evidence was assigned to associations, 

which had a statistical significance of p<10-6, included more than 1,000 cases (or more than 

20,000 participants for continuous outcomes), had the largest component study reporting a 

statistically significant result (p<0.05), had a 95% PI that excluded the null, did not have 

large heterogeneity (I2<50%), and  showed no evidence of small study effects (p>0.10) and 

of excess significance bias (p>0.10); (ii) highly suggestive (class II) evidence was assigned 

to associations, which reported a statistical significance of p<10-6, included more than 1,000 

cases (or more than 20,000 participants for continuous outcomes), and had the largest 

component study reporting a statistically significant result (p<0.05); (iii) suggestive (class III) 

evidence was assigned to associations, which reported a statistical significance of p<10-3 

with more than 1,000 cases (or more than 20,000 participants for continuous outcomes); (iv) 

weak (class IV) evidence was assigned to the remaining statistically significant associations 

with p<0.05. For each association in the convincing or highly suggestive categories we re-

assessed the evidence after excluding the retrospective and case-control studies (in an 
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attempt to address reverse causality). Finally, for each association in the convincing category 

we re-assessed the evidence after we examined each meta-analysis in depth ourselves by 

assessing the eligibility of the included studies as well as verifying the data used in the meta-

analysis.  

Evidence from meta-analyses of RCTs was assessed in terms of the statistical significance of 

the summary effect (p<10-3, 10-3≤p<0.05, p≥0.05), 95% PI (excluding the null or not), and 

presence of large heterogeneity (I2>50%), small study effects (p>0.10) and excess 

significance (p>0.10). We also noted the conclusions from any evidence classification 

(GRADE (256) or equivalent system) applied by  the original meta-analyses. Finally, 

evidence from individual MR studies was assessed in terms of statistical significance of the 

MR effect estimate (p<0.01) and of the statistical power (>80%) (257). 

For overlapping outcomes that were investigated in meta-analyses of observational studies 

and/or meta-analyses of RCTs and/or individual MR studies, we examined if the direction 

and statistical significance of the associations were reported concordantly across the different 

study types. We noted the overlapping outcomes that were graded as class I-II in meta-

analyses of observational studies and had 95% PI excluding the null in meta-analyses of 

RCTs. For these outcomes we also presented the evidence from MR studies if available.    

3.3.5 Patient involvement 

No patients were involved in setting the research question or the outcome measures, nor 

were they involved in the design and implementation of the study. No patients were asked to 

advice on interpretation or writing up of results. There are no plans to disseminate the results 

of the research to study participants or the relevant patient community.   
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3.4 Results 

3.4.1 Literature review 

Overall, the parallel reviews identified 4,608 publications across three databases. After 

application of the inclusion/exclusion criteria, 101 publications were selected for inclusion 

(Figure 3-1). Specifically, 15 systematic reviews of observational studies were reported in 

10 articles (Supplementary Table 3-2) (258-267); 144 meta-analyses of observational 

studies were reported in 47 articles (Supplementary Table 3-3) (16, 268-313); 31 meta-

analyses of RCTs were reported in 8 articles (Supplementary Table 3-4) (50, 314-320); and 

107 MR studies were reported in 36 articles (Supplementary Table 3-5) (321-356). Across 

all three study types, 136 unique outcomes were reported. 

 

Figure 3 - 1: Study flowchart. 

3.4.2 Meta-analyses of observational studies   

One hundred and forty-four meta-analyses of observational studies were identified in total 

(Supplementary Table 3-3). The median number of studies included in meta-analyses was 5 
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(range: 2-31) and the median number of participants and median number of cases were 7,932 

(range: 129-1,017,810) and 1,176 (range: 49-34,370) respectively. More than one meta-

analysis was conducted for 16 outcomes (Supplementary Table 3-3). The direction and 

statistical significance of the reported associations in overlapping meta-analyses were 

concordant for 14 (87.5%) outcomes: atrial fibrillation incidence (n=3) (268, 280, 310), 

coronary heart disease (CHD) (n=4) (16, 300, 304, 311), hypertension incidence (n=3) (272, 

302, 313), stroke incidence (n=2) (276, 303), diabetes (n=3) (277, 278, 307), chronic kidney 

disease (CKD) (n=3) (282, 283, 305), mild cognitive impairment (MCI) (n=2) (286, 308), 

Parkinson’s disease (PD) (n=3) (286, 287, 309), multiple sclerosis (n=2) (288, 306), CHD 

mortality (n=3) (16, 300, 304), CVD mortality (n=2) (293, 312), stroke mortality (n=2) (276, 

303), all-cause mortality in heart failure patients (n=2) (271, 295), and all-cause mortality in 

the general population (n=2) (293, 312). Discordance in the statistical significance was 

present for 2 outcomes: diabetic neuropathy (n=2) (279, 281) and Alzheimer’s disease (AD) 

(n=4) (285, 286, 301, 308). 

After removing the overlapping meta-analyses (which were conducted in the same 

population for the same outcome), 76 unique meta-analyses were retained reporting a wide 

range of outcomes (Table 3-1): cardiovascular outcomes (n=13), diabetes related outcomes 

(n=9), kidney disorders (n=7), neurocognitive disorders (n=11), cancer outcomes (n=6), all-

cause or cause-specific mortality (n=22), and other outcomes (n=8). Overall, 58 (76.3%) of 

the 76 non-overlapping meta-analyses reported nominally statistically significant summary 

results (p<0.05). In Supplementary Figure 3-1 and 3-2, we plot the summary effects of the 

unique meta-analyses of observational studies. Of these, 12 (92.3%) meta-analyses in 

cardiovascular outcomes, 8 (88.9%) meta-analyses in diabetes related outcomes, all 7 

(100.0%) meta-analyses in kidney disorders, one (9.1%) meta-analyses in neurocognitive 

disorders, one (16.7%) meta-analyses in cancer outcomes, 15 (68.2%) meta-analyses in all-

cause and cause-specific mortality, and 6 (75.0%) meta-analyses in other outcomes reported 

summary estimates with p<0.05 and suggested that high levels of SUA were associated with 

an increased risk of disease. In addition, 7 (63.6%) meta-analyses in neurocognitive 

disorders, and 1 (12.5%) meta-analysis in other outcomes (composite of adverse outcomes 

(death or major cardiovascular event [MACE]) in acute ischaemic stroke patients) reported 

summary estimates with p<0.05 and suggested inverse associations with SUA.  

We then applied our evidence classification criteria. Sixteen (21.1%) meta-analyses had 

p<10-6; 10 (13.2%) meta-analyses had a 95% PI that excluded the null; 27 (35.5%) meta-

analyses had more than 1,000 cases (or more than 20,000 participants for continuous 



Chapter 3  Umbrella review 

70 

 

outcomes); 15 (19.7%) meta-analyses had no large heterogeneity (I2<50%); 34 (44.7%) 

meta-analyses had neither small study effects nor excess significant bias. Based on these 

metrics, only one of 76 (1.3%) outcomes presented convincing evidence (class I: stroke 

mortality in general population); 7 (9.2%) outcomes presented highly suggestive evidence 

(class II: heart failure incidence, hypertension incidence, impaired fasting glucose or diabetes, 

CKD incidence, CHD mortality, all-cause mortality in heart failure patients, and non-

alcoholic fatty liver disease); 9 (11.8%) outcomes presented suggestive evidence (class III: 

atrial fibrillation, CHD incidence, CVD, prehypertension, medium term MACE, T2DM, 

CVD mortality, CKD mortality, death or cardiac events). The remaining 41 (53.9%) 

nominally significant outcomes presented weak evidence (class IV).  

We performed in-depth examination and re-assessed the meta-analyses of stroke mortality 

(276) (class I) and found that data from the largest study was incorrect (the events 

represented stroke incidence cases rather than stroke deaths and the included study had not 

published data on stroke mortality) (357). Furthermore, the data from two individual studies 

reported comparisons of SUA categories that differed from other studies (the highest sextile 

versus the second or third sextile rather than the lowest) (358, 359), and a fourth study had 

been included using only data on ischaemic stroke deaths but missing the data on 

haemorrhagic stroke deaths (360). When we excluded the stroke incidence study, used the 

proper comparison for the other two studies, and added the missing data in the fourth study, 

the association with stroke mortality was found to be non-significant (Table 3-2). For the 

highly suggestive outcomes (class II), when we limited the data to prospective cohort studies, 

all associations retained their ranking, except for all-cause mortality in heart failure patients 

and non-alcoholic fatty liver disease that were downgraded to class III (Table 3-2). 
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Table 3 - 1: Health outcomes and evidence class reported in meta-analyses of observational studies.     

Outcome  Population  

Study 

design 

included in 

MA 

Compariso

n 

N 

studies 

N 

participan

ts 

N 

cases 

Type 

of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-

value 

for 

Egger 

test 

P-value 

for 

excess 

significan

ce test 

95% 

prediction 

interval 

Evidence 

class§ 

Cardiovascular outcomes 

Atrial fibrillation 

(AF) (268) 
General  

Prospective 

cohort 

Hyper vs 

normal 
6 426,159 7,595 RR 

1.49 (1.24, 

1.79) 

2.50E-

05 

79 (42, 

89) 
0.01 0.22 0.87-2.53 III 

AF recurrence 

(269) 
AF patients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
4 1,298 393 OR 

1.52 (1.19, 

1.94) 

8.25E-

04 

89 (61, 

95) 
0.72 0.26 0.27-7.01 IV 

CHD incidence 

(16) 
General 

Prospective 

cohort 

Hyper vs 

normal 
13 70,382 6,666 aRR 

1.13 (1.05, 

1.21) 

7.70E-

04 
38 (0, 64) 0.27 <0.001 0.94-1.34 III 

CVD (270) 
Hypertensi

ve patients 

Prospective 

cohort 

Hyper vs 

normal 
6 19,546 1,054 aHR 

1.17 (1.07, 

1.27) 

3.56E-

04 
67 (0, 84) 0.05 0.04 0.90-1.52 III 

Heart failure 

incidence (271)  
General 

Prospective 

cohort 

Hyper vs 

normal 
5 427,917 

10,17

1 
HR 

1.65 (1.41, 

1.94) 

1.77E-

09 
72 (7, 86) 0.49 0.31 1.05-2.61 II 

Hypertension 

incidence (272)  
General 

Prospective 

cohort 

/nested case-

control 

Hyper vs 

normal 
17 71,630 

18,75

1 
aRR 

1.48 (1.33, 

1.65) 

3.99E-

12 

79 (65, 

85) 
0.06 NP 0.99-2.23 II 

Prehypertension 

(273)  
General  

Cross-

sectional 

Highest vs 

lowest 

SUA 

category 

8 44,095 
20,83

2 
OR 

1.84 (1.42, 

2.38) 

4.88E-

06 

91 (86, 

94) 
0.10 NP 0.81-4.01 III 

Left atrial 

thrombus or 

spontaneous 

echo contrast 

(LATH/LASEC) 

(268) 

Patients 

with heart 

diseases 

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

6 2,381 241 OR 
1.59 (1.13, 

2.23) 

7.51E-

03 

85 (66, 

91) 
0.02 NP 0.54-4.70 IV 

Major adverse 

cardiovascular 

events (MACE)† 

(274) 

Patients 

after PCI 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
2 3,054 NA RR 

1.78 (1.26, 

2.52) 

1.16E-

03 
NA NA NP NA IV 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type 

of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Medium-term 

MACE (275) 

Acute 

myocardial 

infarction 

(AMI) 

patients 

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

4 4,299 1,240 OR 
1.93 (1.36, 

2.74) 

2.56E-

04 
74 (0, 89) 0.81 NP 0.46-8.21 III 

Short-term 

MACE (275) 

AMI 

patients 

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

7 6,470 787 OR 
2.46 (1.84, 

3.27) 

1.93E-

09 
63 (0, 82) 0.25 NP 1.06-5.71 IV 

Stroke (270) 
Hypertensi

ve patients 

Prospective/ 

retrospective 

cohort 

Continuous 

SUA level 
3 9,978 217 aHR 

1.11 (0.98, 

1.26) 
0.10 70 (0, 89) 0.22 0.06 0.26-4.77 NS 

Stroke incidence 

(276) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

5 24,548 1,290 aRR 
1.22 (1.02, 

1.46) 
0.03 53 (0, 75) 0.03 NP 0.73-2.04 IV 

Diabetes related outcomes 

Type 2 diabetes 

(T2DM) (277) 
General 

Prospective/ 

retrospective 

cohort 

1 mg/dL 

 SUA 

increase 

11 42,834 3,305 RR 
1.17 (1.09, 

1.25) 

8.97E-

06 

75 (54, 

84) 
0.07 0.002 0.92-1.47 III 

Impaired fasting 

glucose or 

T2DM (278) 

General 

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

12 62,834 6,340 RR 
1.57 (1.39, 

1.77) 

1.12E-

12 
42 (0, 67) 0.09 NP 1.10-2.23 II 

Diabetes 

incidence† (270) 

Hypertensi

ve patients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
2 8,247 564 aHR 

1.84 (1.02, 

3.30) 
0.04 NA NA 0.42 NA IV 

Diabetic  

nephropathy 

(279) 

T2DM 

patients 
Case-control 

Categorical 

SUA level 
3 3,166 196 OR 

1.72 (1.07, 

2.76) 
0.03 

84 (12, 

93) 
0.04 NP 0.01-382.85 IV 

Diabetic 

microvascular 

complications 

(279) 

T2DM 

patients 
Case-control 

Categorical 

SUA level 
5 4,513 854 OR 

1.42 (1.11, 

1.83) 

6.00E-

03 

83 (61, 

90) 
0.08 NP 0.68-2.95 IV 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Diabetic vascular 

complications 

(280) 

T2DM 

patients 
Case-control 

Categorical 

SUA level 6 5,017 967 OR 
1.27 (1.11, 

1.45) 

4.86E-

04 

77 (57, 

86) 
0.02 0.51 0.87-1.86 IV 

Diabetic 

peripheral 

neuropathy (281) 

Diabetic 

patients 

Cohort/  

case-control 

Categorical 

SUA level 5 4,097 894 RR 
2.83 (2.13, 

3.76) 

2.91E-

12 

78 (23, 

89) 
0.94 0.93 1.05-7.62 IV 

Diabetic 

macrovascular 

complications 

(279) 

T2DM 

patients 
Case-control 

Categorical 

SUA level 
3 2,538 187 OR 

1.03 (1.00, 

1.06) 
0.05 48 (0, 79) 0.45 0.01 0.56-2.30 IV 

Diabetic 

retinopathy† 

(279) 

T2DM 

patients 
Case-control 

Categorical 

SUA level 2 1,739 311 OR 
1.23 (0.81, 

1.87) 
0.34 NA NA NP NA NS 

Kidney disorders 

CKD incidence 

(282) 

Middle-

aged 

populations 

Prospective/ 

retrospective 

cohort 

1 mg/dL 

SUA 

increase 

15 99,205 3,492 RR 
1.22 (1.16, 

1.28) 

1.61E-

14 

66 (39, 

78) 
0.22 0.12 1.02-1.44 II 

CKD new-onset 

incidence (283) 

Non-CKD 

population 

Prospective/ 

retrospective 

cohort 

1 mg/dL 

SUA 

increase 

7 153,620 7,014 HR 
1.13 (1.04, 

1.22) 

2.74E-

03 

83 (63, 

90) 
0.12 0.24 0.88-1.44 IV 

CKD new-onset 

incidence† (283) 

Diabetic 

patients  

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
2 NA NA HR 

1.90 (1.30, 

2.78) 

9.76E-

04 
NA NA 0.94 NA IV 

eGFR (284) 

Renal 

transplant 

recipients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
8 2,075 NA 

MD to 

OR 

0.36 (0.26, 

0.52) 

1.48E-

08 
66 (3, 82) 0.35 0.81 0.13-1.06 IV 

SCr (284) 

Renal 

transplant 

recipients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
5 873 NA 

MD to 

OR 

2.45 (1.69, 

3.54) 

2.77E-

06 
40 (0, 77) 0.15 0.65 0.88-6.81 IV 

Graft loss (284) 

Renal 

transplant 

recipients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
3 910 154 OR 

2.28 (1.54, 

3.38) 

4.66E-

05 
0 (0, 73) 0.57 NP 0.18-29.36 IV 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Chronic allograft 

nephropathy 

(284) 

Renal 

transplant 

recipients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
4 1,057 113 OR 

2.81 (1.65, 

4.77) 

1.52E-

04 
26 (0, 75) 0.92 NP 0.53-14.76 IV 

Neurocognitive disorders 

Alzheimer’s 

disease (AD) 

(285) 

General 
Cohort/ 

case-control 

SUA level 

(mg/dL) 
21 3,617 1,128 

MD to 

OR 

0.29 (0.11, 

0.76) 
0.012 

97 (96, 

97) 
0.30 NP 0.01-8.97 IV 

Dementia/cogniti

ve impairment 

(286) 

General 
Cohort/ 

case-control 

SUA level 

(mg/dL) 
31 7,021 2,681 

SMD to 

OR 

0.58 (0.41, 

0.83) 

2.52E-

03 

89 (86, 

91) 
0.01 0.004 0.08-4.48 IV 

Vascular 

dementia (VaD) 

(286) 

VaD 

patients vs 

controls 

Cohort/  

case-control 

SUA level 

(mg/dL) 
7 597 272 

SMD to 

OR 

0.92 (0.20, 

4.12) 
0.92 

94 (90, 

96) 
0.45 <0.001 0.01-200.17 NS 

Mild cognitive 

impairment 

(MCI) (286) 

MCI 

patients vs 

controls 

Cohort/ 

case-control 

SUA level 

(mg/dL) 
4 731 515 

SMD to 

OR 

0.65 (0.20, 

2.17) 
0.49 

92 (83, 

95) 
0.36 0.52 0.01-63.36 NS 

Parkinson’s 

disease incidence 

(287) 

General 

Cohort and 

nested case-

control 

Hyper vs 

normal 
6 33,185 578 RR 

0.65 (0.43, 

0.97) 
0.04 42 (0, 73) 0.39 NP 0.24-1.77 IV 

Multiple 

sclerosis (MS) 

(288) 

MS patients 

vs control 
Case-control 

SUA level 

(μmol/L) 
10 2,216 1,308 

SMD to 

OR 

0.49 (0.27, 

0.87) 
0.02 

92 (88, 

94) 
0.11 NP 0.05-4.96 IV 

Neruomyelistsoptic

is (NMO) (288) 

NMO 

patients vs 

control 

Case-control 
SUA level 

(μmol/L) 
3 1,137 229 

SMD to 

OR 

0.22 (0.10, 

0.45) 

9.07E-

05 

82 (49, 

91) 
0.65 0.93 0.02-3.14 IV 

Amyotrophic 

lateral sclerosis 

(ALS) (289) 

ALS 

patients vs 

controls 

Case-control 
SUA level 

( mg/dL) 
3 826 311 

Hedge's 

G to 

OR 

0.21 (0.14, 

0.32) 

6.33E-

13 
51 (0, 82) 0.43 NP 0.04-1.05 IV 

Schizophrenia 

(Chronic) † 

(290) 

Chronic 

Schizophre

nia patients  

vs controls 

Case-control 
SUA level 

( mg/dL) 
2 274 155 

Hedge's 

G to 

OR 

0.72 (0.43, 

1.21) 
0.22 NA NA NP NA NS 

 

 



Chapter 3  Umbrella review 

75 

 

Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Schizophrenia 

(First-Episode 

Psychosis) (290) 

Schizophre

nia patients 

vs controls 

Case-control 
SUA level 

( mg/dL) 
3 277 103 

Hedge's 

G to 

OR 

0.37 (0.23, 

0.59) 

4.16E-

05 
0 (0, 73) 0.50 0.21 0.02-7.75 IV 

Bipolar disorder 

(291)  

Bipolar 

disorder vs 

controls 

Case-control 
SUA level 

(mg/dL) 
9 1,127 619 

SMD to 

OR 

3.23 (1.82, 

5.73) 

7.09E-

05 

83 (66, 

89) 
0.19 NP 

0.65-

12.39 
IV 

Cancer outcomes 

Cancer incidence 

(292) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

5 456,053 
14,35

5 
RR 

1.04 (0.99, 

1.08) 
0.08 45 (0, 78) 0.30 0.16 0.93-1.14 NS 

Cancer incidence 

in digestive 

organs (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

3 266,347 2,521 RR 
1.06 (0.96, 

1.18) 
0.27 53 (0, 79) 0.58 0.65 0.81-1.40 NS 

Cancer in 

lymphoid and 

hematopoietic 

systems 

incidence† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

2 86,739 397 RR 
1.39 (1.13, 

1.71) 

1.89E-

03 
NA NA NP NA IV 

Cancer incidence 

in male genital 

organs (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

3 162,022 2,634 RR 
1.08 (0.96, 

1.21) 
0.19 61 (0, 87) 0.45 0.63 0.28-4.18 NS 

Cancer incidence 

in respiratory 

system (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

4 456,053 2,941 RR 
1.05 (0.93, 

1.18) 
0.43 71 (0, 87) 0.62 0.49 0.72-1.54 NS 

Cancer in urinary 

organs 

incidence† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

2 86,739 536 RR 
1.17 (0.44, 

3.15) 
0.77 NA NA 0.02 NA NS 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 

P-

value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value for 

excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

All-cause and cause-specific mortality 

CHD mortality* 

(16) 
General 

Prospective 

cohort 

Hyper vs 

normal 
13 876,584 

24,19

8 
aRR 

1.27 (1.16, 

1.39) 

3.46E-

07 

65 (36, 

78) 
0.10 NP 0.96-1.69 II 

CVD mortality 

(293) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

9 165,806 6,121 RR 
1.37 (1.19, 

1.57) 

1.07E-

05 
54 (0, 74) 0.59 NP 0.92-2.03 III 

CVD mortality† 

(271) 

Heart 

failure 

patients 

Prospective 

cohort 

Hyper vs 

normal 
2 2,250 NA HR 

1.45 (1.18, 

1.78) 

4.25E-

04 
NA NA NP NA IV 

CVD mortality† 

(270) 

Hypertensi

ve patients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
3 NA NA aHR 

1.31 (0.96, 

1.78) 
0.09 NA NA NA NA NS 

Stroke mortality 

(276) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

9 1,017,810 
21,28

1 
aRR 

1.32 (1.23, 

1.41) 

1.11E-

14 
30 (0, 65) 0.92 NP 1.13-1.56 I* 

CKD mortality 

(294) 
General 

Prospective 

cohort 

1 mg/dL 

SUA 

increase 

21 23,443 3,904 aHR 
1.07 (1.04, 

1.11) 

5.46E-

05 

82 (74, 

87) 
0.04 0.03 0.93-1.24 III 

Cancer mortality 

(292) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

12 632,472 NA RR 
1.17 (1.04, 

1.32) 

9.82E-

03 

66 (25, 

80) 
0.36 NP 0.82-1.69 IV 

Cancer mortality 

in digestive 

organs (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

4 187,886 855 RR 
1.22 (0.86, 

1.74) 
0.27 55 (0, 80) 0.99 NP 0.45-3.31 NS 

Cancer mortality 

in bone, 

connective 

tissue, soft 

tissue, and skin† 

(292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

NA 112,296 NA RR 
0.94 (0.47, 

1.87) 
0.87 NA NA NA NA NS 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 
P-value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Cancer mortality 

in lymphoid and 

hematopoietic 

systems† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

NA 112,296 NA RR 
1.18 (0.82, 

1.70) 
0.38 NA NA NA NA NS 

Cancer mortality 

in male genital 

organs† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

NA 88,033 NA RR 
0.51 (0.07, 

3.85) 
0.52 NA NA NA NA NS 

Cancer mortality 

in respiratory 

system and 

intrathoracic 

organs† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

2 116,646 164 RR 
1.08 (0.61, 

1.91)  
0.80 NA NA NP NA NS 

Cancer mortality 

in urinary 

organs† (292) 

General 
Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

2 112,296 NA RR 
1.35 (0.88, 

2.07) 
0.17 NA NA NP NA NS 

All-cause 

mortality (271) 

Heart 

failure 

patients  

Cohort/  

case-control 

Hyper vs 

normal 
11 12,444 1,888 HR 

2.15 (1.64, 

2.83) 
6.64E-08 

81 (67, 

88) 
0.01 0.37 0.87-5.31 II  

Short-term 

mortality(275) 

AMI 

patients  

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

8 6,805 396 OR 
3.24 (2.47, 

4.27) 
3.75E-16 31 (0, 69) 0.83 NP 1.74-6.06 IV 

Medium term 

mortality (275) 

AMI 

patients  

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

5 5,194 565 OR 
2.69 (2.00, 

3.62) 
1.75E-10 55 (0, 81) 0.66 NP 1.09-6.67 IV 

In-Hospital 

mortality (296)  

AMI 

patients  
Cohort 

Hyper vs 

normal 
6 5,686 218 RR 

2.10 (1.03, 

4.26) 
0.04 

81 (51, 

90) 
0.86 NP 

0.21-

20.66 
IV 

All-cause 

mortality (279) 

T2DM 

patients 

Cohort/  

case-control 

Hyper vs 

normal 
3 5,534 NA HR 

1.09 (1.03, 

1.17) 
8.04E-03 19 (0, 73) 0.49 NP 0.90-1.33 IV 

All-cause 

mortality (293) 
General 

Prospective 

cohort 

Highest vs 

lowest 

SUA 

category 

10 143,483 7,031 RR 
1.23 (1.08, 

1.39) 
1.35E-03 

75 (56, 

84) 
0.51 NP 0.79-1.90 IV 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 
P-value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

All-cause 

mortality (274) 

Patients 

after PCI 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
9 17,268 NA RR 

1.52 (1.28, 

1.81) 
2.95E-06 64 (3, 81) 0.002 NP 0.98-2.24 IV 

All-cause 

mortality (270) 

Hypertensi

ve patients 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
4 46,103 5,820 aHR 

1.12 (1.02, 

1.23) 
0.02 26 (0, 76) 0.77 0.93 0.86-1.49 IV 

All-cause 

mortality (270) 

CKD 

population 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
5 1,789 609 RR 

1.67 (1.29, 

2.16) 
1.09E-04 NA NA NA NA IV 

Other outcomes 

Medium/long-

term occurrence 

of death/MACE 

(275) 

AMI 

patients 

Prospective/ 

retrospective 

cohort 

50 μmol/L 

increase 
4 3,533 NA aHR 

1.19 (1.03, 

1.37) 
0.02 

84 (47, 

92) 
0.03 NP 0.65-2.18 IV 

Short-term 

occurrence of 

death/MACE 

(275) 

AMI 

patients 

Prospective/ 

retrospective 

cohort 

Highest vs 

lowest 

SUA 

category 

4 3,625 336 aOR 
2.26 (1.85, 

2.77) 
1.61E-14 0 (0, 68) 0.97 0.23 1.45-3.53 IV 

Combined death 

or cardiac events 

(271) 

Heart 

failure 

patients 

Cohort, 

case-control 

and Post-hoc 

RCT 

Hyper vs 

normal 
9 12,699 1,765 HR 

1.39 (1.18, 

1.63) 
7.44E-05 

66 (13, 

82) 
0.001 0.12 0.89-2.07 III 

               

Adverse 

outcomes 

(mortality, 

MACE, In-stent 

restenosis) (274) 

Patients 

after PCI 

Prospective/ 

retrospective 

cohort 

Hyper vs 

normal 
12 21,030 NA RR 

1.46 (1.29, 

1.65) 
3.63E-09 59 (3, 77) <0.001 NP 1.05-1.95 IV 

Occurrence of 

poor outcomes 

(297) 

Acute 

ischaemic 

stroke 

patients 

Prospective/ 

retrospective 

cohort, or 

nested case–

control 

Highest vs 

lowest 

SUA 

category 

9 7,932 NA HR 
0.77 (0.68, 

0.88) 
8.12E-05 44 (0, 73) 0.30 NP 0.56-1.06 IV 

Psoriasis (298)  
Psoriasis vs 

controls 
Case-control 

SUA level 

(mg/dL) 
13 29,037 1,644 

MD to 

OR 

4.46 (1.57, 

12.62) 
4.96E-03 

98 (98, 

99) 
0.41 <0.001 

0.06-

320.30 
IV 
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Outcome  Population  

Study design 

included in 

MA 

Comparison 
N 

studies 

N 

participants 

N 

cases 

Type of 

metric 

Relative 

risk 

(95%CI) 
P-value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value 

for excess 

significance 

test 

95% 

prediction 

interval 

Evidence 

class§ 

Severe psoriasis 

(298) 

Sever 

psoriasis 

patients vs 

controls 

Case-control 
SUA level 

(mg/dL) 
3 300 104 

MD to 

OR 

1.57 (0.25, 

9.80) 
0.64 

92 (78, 

96) 
0.20 <0.001 

0.00-

1.52E-10 
NS 

Non-alcoholic 

fatty liver 

disease 

(NAFLD) (299) 

General 

Prospective/ 

retrospective 

cohort, or 

case–control 

Highest vs 

lowest 

SUA 

category 

9 55,573 
10,58

1 
OR 

1.92 (1.59, 

2.31) 
2.51E-11 

78 (61, 

86) 
0.02 NP 0.99-3.74 II  

Abbreviations: MA, meta-analysis; AF, atrial fibrillation; CHD, coronary heart disease; CVD, cardiovascular disease; MACE, major adverse cardiovascular events; 

AMI, acute myocardial infarction; PCI, percutaneous coronary intervention; T2DM, Type 2 diabetes; CKD, chronic kidney disease; AD, Alzheimer’s disease; PD, 

Parkinson’s disease; VaD, Vascular dementia; MCI, mild cognitive impairment; MS, multiple sclerosis; NMO, neruomyelistsopticis; ALS, amyotrophic lateral 

sclerosis; NAFLD, non-alcoholic fatty liver disease; MD, mean difference; SMD, standard mean difference; NA, not available; NS, not significant; NP, not 

pertinent (because the number of expected significant studies was larger than the number of observed significant studies).  

† The heterogeneity (I2), Egger’s test or 95% PI could not be calculated, either because data about the individual component studies were insufficient or because the 

number of studies included in meta-analyses was less than 3.  
§ Evidence class criteria: (i) Class I (convincing): statistical significance with p<10-6, more than 1,000 cases (or more than 20,000 participants for continuous 

outcomes), the largest component study reported statistically significant effect (p<0.05); 95% prediction interval excluded the null; no large heterogeneity (I2<50%), 

no evidence of small study effects (p>0.10) and excess significance bias (p>0.10); (ii) Class II (highly suggestive): statistical significance with p<10-6, more than 

1,000 cases (or more than 20,000 participants for continuous outcomes), the largest component study reported statistically significant effect (p<0.05); (iii) Class III 

(suggestive): statistical significance with p<10-3, more than 1,000 cases (or more than 20,000 participants for continuous outcomes); (iv) Class IV (weak): the 

remaining statistically significant associations with p<0.05.  

*Evidence was re-assessed by examining the meta-analyses in depth to verify the eligibility/appropriateness of the data included in analysis and errors were found; 

when errors and analyses were corrected, the association became non-statistically significant.   
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Table 3 - 2: Re-assessing the credibility of associations with class I-II evidence reported in meta-analyses of observational studies*  

Outcome  
Populati

on  

Study 

design 

included in 

MA 

Comparison 

N 

studie

s 

N 

participant

s 

N 

cases 

Type 

of 

metric 

Relative 

risk 

(95%CI) 

P-value 
I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value for 

excess 

significanc

e test 

95% 

prediction 

interval 

Evidenc

e class§ 

Stroke 

mortality 
General 

Prospective 

cohort 

Highest vs 

lowest SUA 

category 

8 600,076 5,205 aRR 
1.17 (0.91, 

1.51) 
0.22 

84 (73, 

89) 
0.44 NP 0.46-2.98 

NS 

(changed 

from I) 

Heart failure 

incidence 
General 

Prospective 

cohort 

Hyper vs. 

normal 
5 427,917 

10,17

1 
HR 

1.65 (1.41, 

1.94) 
1.77E-09 72 (7, 86) 0.49 0.31 1.05-2.61 II 

Hypertension 

incidence 
General 

Prospective 

cohort 

Hyper vs. 

normal 
12 68,401 

16,13

2 
aRR 

1.42 (1.27, 

1.59) 
2.16E-09 

76 (53, 

85) 
0.04 NP 0.98-2.05 II 

IFG/T2DM General 
Prospective 

cohort 

Highest vs 

lowest SUA 

category 

13 56,130 5,629 RR 
1.62 (1.47, 

1.77) 
1.25E-22 0 (0, 49) 0.07 NP 1.45-1.79 II 

CKD 

incidence 

Middle-

Aged 

Populatio

ns 

Prospective 

cohort 

1 mg/dL 

SUA increase 
12 78,205 2,793 RR 

1.19 (1.12, 

1.25) 
1.26E-09 

67 (34, 

80) 
0.10 0.15 0.99-1.42 II 

CHD 

mortality 
General 

Prospective 

cohort 

Hyper vs 

normal 
13 876,584 

24,19

8 
aRR 

1.27 (1.16, 

1.39) 
3.47E-07 

65 (36, 

78) 
0.10 NP 0.96-1.69 II 

All-cause 

mortality 

HF 

patients 

Prospective 

cohort 

Hyper vs. 

normal 
6 9,608 1,474 HR 

2.38 (1.59, 

3.56) 
2.98E-05 

88 (77, 

92) 
0.05 0.39 0.61-9.35 

III 

(changed 

from II) 

Non-

alcoholic 

Fatty Liver 

Disease 

(NAFLD)† 

General 
Prospective 

cohort 

Highest vs 

lowest SUA 

category 

2 12,631 2,530 OR 
1.43 (1.20, 

1.71) 
8.63E-05 NA NA NP NA 

III 

(changed 

from II) 

Abbreviations: MA, meta-analysis; AF, atrial fibrillation; CHD, coronary heart disease; T2DM, Type 2 diabetes; NA, not available; NS, not significant; NP, not 

pertinent (because the number of expected significant studies was larger than the number of observed significant studies).  
† The heterogeneity (I2), Egger’s test and 95% PI could not be calculated, because the number of studies included in meta-analyses was less than 3. 
§ Evidence class criteria: (i) Class I (convincing): statistical significance with p<10-6, more than 1,000 cases (or more than 20,000 participants for continuous 

outcomes), the largest component study reported statistically significant effect (p<0.05); 95% prediction interval excluded the null value; no large heterogeneity 

(I2<50%), no evidence of small study effects (p>0.10) and excess significance bias (p>0.10); (ii) Class II (highly suggestive): statistical significance with p<10-6, 

more than 1,000 cases (or more than 20,000 participants for continuous outcomes), the largest component study reported statistically significant effect (p<0.05); (iii) 
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Class III (suggestive): statistical significance with p<10-3, more than 1,000 cases (or more than 20,000 participants for continuous outcomes); (iv) Class IV (weak): 

the remaining statistically significant associations with p<0.05.  

*Evidence was re-assessed by examining the meta-analyses in depth to verify the eligibility/appropriateness of the data included in analysis or excluding the data 

from retrospective/case-control studies to address reverse causality.  

  



Chapter 3  Umbrella review 

82 

 

3.4.3 Meta-analyses of randomised controlled trials   

We identified 31 meta-analyses of RCTs on SUA-lowering therapy from 8 publications 

(Supplementary Table 3-4). The median number of studies included in the meta-analyses 

was 5 (range: 2-10) and the median number of participants was 216 (range: 41-738). More 

than one meta-analysis was found for 5 outcomes (Supplementary Table 3-4). The 

direction and statistical significance of the effects in overlapping meta-analyses were in 

concordance only for one (20.0%) outcome: serum creatinine (SCr) (n=2) (316, 317). 

Discordance in either the direction and/or the statistical significance was found for the 

remaining 4 outcomes: glomerular filtration rate (eGFR) (n=2) (316, 317), end-stage kidney 

disease (n=2) (316, 317), systolic blood pressure (SBP) (n=2) (317, 320), and diastolic blood 

pressure (DBP) (n=2) (317, 320). 

Twenty unique meta-analyses (Table 3-3) were identified for the outcomes in relation to 

kidney disorders (n=10), endothelial function (n=2), all-cause and cause-specific mortality 

(n=4), and other outcomes (n=4). In Supplementary Figure 3-3 we plot the summary 

effects of the unique meta-analyses of RCTs. Overall, 12 (60.0%) of unique meta-analyses of 

RCTs reported a nominally statistically significant summary result at p<0.05 (8 had p<0.001). 

Only 3 (15.0%) meta-analyses had a 95% PI that excluded the null (two nephrolithiasis 

outcomes [with thiazide and citrate treatment] and one renal function outcome); 11 (55.0%) 

meta-analyses showed no large heterogeneity (I2<50%); and 13 (65.0%) meta-analyses 

showed neither small study effects nor excess significant bias.  

Taken all these together, only one outcome (recurrence of nephrolithiasis [with citrates 

treatment]) reported a p<10-3, had a 95% PI excluding the null and had no evidence of large 

heterogeneity or bias. In the original meta-analyses, the strength of evidence was graded 

collectively for three nephrolithiasis outcomes (with thiazide, citrate and allopurinol 

treatment) by using an approach conceptually similar to the GRADE ranking system (361) 

and evidence for these three nephrolithiasis outcomes was graded as moderate. 
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Table 3 - 3: Health outcomes reported in meta-analysis of RCTs. 

Outcome  Population 
SUA-lowering 

therapy 

N 

studies 

N 

participants 

Type of 

metric 

Relative risk 

(95%CI) 
P-value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value for 

excess 

significance 

test 

95% 

prediction 

interval 

Kidney disorders 

Recurrence of 

nephrolithiasis†§ (314) 

Nephrolithiasis 

patients 
Allopurinol 2 152 RR 

0.59 (0.42, 

0.84) 
2.90E-03 NA NA 0.39 NA 

Recurrence of 

nephrolithiasis§ (314) 

Nephrolithiasis 

patients 
Thiazides 5 300 RR 

0.52 (0.39, 

0.69) 
9.00E-06 0 (0, 64) 0.06 0.11 0.33-0.82 

Recurrence of 

nephrolithiasis§ (314) 

Nephrolithiasis 

patients 
Citrates 4 197 RR 

0.26 (0.15, 

0.45) 
2.84E-06 0 (0, 68) 0.19 NP 0.08-0.88 

SCr (315) General 
All active 

therapy 
9 580 

SMD to 

OR 

0.10 (0.03, 

0.39) 
4.64E-04 93 (90, 95) 0.39 NP 0.01-13.21 

SCr (316) CKD Patients Allopurinol 6 354 MD to OR 
0.16 (0.08, 

0.34) 
1.00E-06 70 (0, 85) 0.01 0.59 0.02-1.76 

eGFR (315) General 
All active 

therapy 
3 218 

SMD to 

OR 

2.22 (1.21, 

4.06) 
9.79E-03 29 (0, 80) 0.24 NP 0.01-497.40 

eGFR (317) 

Patients with CKD 

or decreased kidney 

function 

Allopurinol 5 346 MD to OR 
1.18 (0.97, 

1.42) 
0.09 0 (0, 64) 0.29 NP 0.86-1.60 

Proteinuria (317) 

Patients with CKD 

or decreased kidney 

function 

Allopurinol 5 250 MD to OR 
0.91 (0.73, 

1.12) 
0.40 0 (0, 64) 0.42 NP 0.64-1.28 

Blood urea nitrogen 

(BUN) (316) 
CKD patients Allopurinol 3 169 MD to OR 

0.18 (0.10, 

0.32) 
1.47E-08 0 (0, 73) 0.88 0.67 0.01-7.16 

End-stage renal disease 

(316) 
CKD patients Allopurinol 5 267 RR 

0.33 (0.21, 

0.51) 
1.38E-06 0 (0, 64) 0.01 0.07 0.16-0.68 

Endothelial function 

Flow-mediated 

dilatation (318) 

Population with 

vascular disease/risk 

factors 

Allopurinol/ 

oxypurinol 
5 144 MD to OR 

4.38 (1.85, 

10.38) 
8.76E-04 60 (0, 83) 0.23 0.24 0.27-70.69 

Forearm blood flow 

(318) 

Population with 

vascular disease/risk 

factors 

Allopurinol/ 

oxypurinol 
5 148 MD to OR 

2.69 (1.22, 

5.93) 
0.014 53 (0, 81) 0.09 0.61 0.24-30.73 
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Outcome  Population 
SUA-lowering 

therapy 

N 

studies 

N 

participants 

Type of 

metric 

Relative risk 

(95%CI) 
P-value 

I2 

(95%CI) 

P-value 

for 

Egger 

test 

P-value for 

excess 

significance 

test 

95% 

prediction 

interval 

Mortality  

Death during neonatal 

or infancy (319) 
All infants  Allopurinol 3 114 RR 

0.87 (0.43, 

1.75) 
0.71 34 (0, 81) 0.49 NP 0.01-952.4 

Death during neonatal 

or infancy† (319) 

Infants with severe 

hypoxic-ischaemic 

encephalopathy 

Allopurinol 2 41 RR 
0.92 (0.39, 

2.15) 
0.86 NA NA NP NA 

Death or serve 

neurodevelopmental 

disability (319)  

All infants Allopurinol 3 110 RR 
0.85 (0.63, 

1.15) 
0.29 0 (0, 73) 0.12 NP 0.12-5.98 

Death or serve 

neurodevelopmental 

disability† (319)  

Infants with severe 

hypoxic-ischaemic 

encephalopathy 

Allopurinol 2 41 RR 
0.93 (0.67, 

1.30) 
0.68 NA NA NP NA 

Others outcomes 

Severe quadriplegia 

(319)  

Surviving infants 

with hypoxic-

ischaemic 

encephalopathy 

Allopurinol 3 73 RR 
0.58 (0.27, 

1.26) 
0.17 0 (0, 73) 0.69 NP 0.01-86.99 

Seizures in neonatal 

period (319) 

Surviving infants 

with hypoxic-

ischaemic 

encephalopathy 

Allopurinol 3 114 RR 
0.98 (0.84, 

1.15) 
0.81 0 (0, 73) 0.15 NP 0.35-2.79 

SBP* (320) 

Patients with 

elevated SUA or 

kidney dysfunction 

Allopurinol 10 738 
MD 

(mmHg) 

-3.33 (-5.25, -

1.42) 
0.001 87 (79, 91) 0.60 NP -13.61-6.94 

DBP* (320) 

Patients with 

elevated SUA or 

kidney dysfunction 

Allopurinol 10 738 
MD 

(mmHg) 

-1.29 (-2.48, -

0.10) 
0.03 82 (68, 88) 0.38 NP -8.22-5.65 

Abbreviations: RR, relative risk; CKD, chronic kidney disease; SCr, serum creatinine; eGFR, glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

MD, mean difference; SMD, standard mean difference; NA, not applicable (did not calculate with only 2 studies); NS, not significant; NP, not pertinent (because the number of 

expected significant studies was larger than the number of observed significant studies).   

§ The strength of evidence was graded based on the evidence-based practice centre approach (conceptually similar to the GRADE ranking system); recurrence of nephrolithiasis (with 

allopurinol, thiazides or citrates treatment) was all considered with moderate evidence in original meta-analyses.  

† The heterogeneity (I2), Egger’s test or 95% PI could not be calculated, because the number of studies included in meta-analyses was less than 3.  

* Meta-analyses included one prospective study.  
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3.4.4 Mendelian randomisation studies 

A total of 107 MR analyses were identified from 36 publications (Supplementary Table 3-

5). The median number of participants and median number of cases were 7,158 (range: 343-

206,822) and 2,225 (range: 19-65,877), respectively. The proportion of SUA variance 

(adjusted R2) explained by genetic instruments was 1.8%-6.0%. More than one MR study 

was identified for 14 outcomes (Supplementary Table 3-5). Discordance in either the 

direction and/or the statistical significance of association among overlapping MR existed for 

all the identified outcomes: BMI (n=7) (322, 323, 328, 329, 337, 342, 348), BMD in femoral 

neck (n=2)  (324, 325), CHD (n=5) (323, 327, 333, 345, 353), DBP (n=7) (323, 328, 333, 

337, 346, 348, 351), SBP (n=7) (323, 328, 333, 337, 346, 348, 351), metabolic syndrome 

(n=2) (334, 347), glucose (n=3) (323, 333, 348), TG (n=3) (323, 348, 350), diabetes (n=6) 

(323, 326, 332), (327, 349, 354), SCr (n=2) (337, 356), eGFR (n=5) (333, 337, 348, 355, 

356), Parkinson’s disease (n=5) (338, 339, 343, 344, 352), memory performance (n=2) (341), 

and gout (n=3) (326, 327, 333).   

The 56 unique outcomes (Table 3-4) investigated in individual MR studies belonged to the 

following categories: anthropometric variables (n=9), cardiovascular outcomes (n=15), 

kidney disorders (n=6), metabolic disorders (n=5), neurocognitive disorders (n=5), 

metabolites (n=11), all-cause and cause-specific mortality (n=3) and other outcomes (n=2). 

Only 9 (16.1%) outcomes (diabetic macrovascular disease, arterial stiffness [internal 

diameter of carotid artery], adverse renal events, Parkinson’s disease, lifetime anxiety 

disorders, memory performance, CVD mortality, sudden cardiac death, and gout) presented 

statistically significant associations of p<0.05. Three MR studies (on memory performance, 

Parkinson’s disease and gout) reported discordant results in the direction and/or statistical 

significance in other MR studies. Of note, only 4 outcomes (diabetic macrovascular disease, 

arterial stiffness [internal diameter of carotid artery], renal events, and gout) reported a 

p<0.01, and only that for gout was based on convincing evidence (p=3.55×10-40, N sample 

size=71,501, power>99%).  

3.4.5 Comparing findings from meta-analyses  

Outcomes reported in meta-analyses of observational studies with highly suggestive 

evidence or meta-analyses of RCTs with 95% PI excluding the null are summarised in Table 

3-5. Among these outcomes, hypertension and CKD showed concordant evidence between 

meta-analyses of observational studies and the selected (largest) meta-analyses of RCTs on 

their corresponding intermediate traits or surrogate outcomes (e.g. SBP, DBP, SCr, eGFR 
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and end-stage renal disease), but had discordant evidence from MR studies. Moreover, as we 

mention above, even for these outcomes, there were additional meta-analyses of RCTs that 

had found discordant effects in terms of direction and/or statistical significance for all these 

intermediate traits or surrogate outcomes with the exception of SCr. Heart failure, impaired 

fasting glucose or diabetes and CHD mortality showed no evidence from meta-analyses of 

RCTs, and MR studies reported discordant evidence on either the corresponding outcomes, 

intermediate traits or surrogate outcomes. Recurrence of nephrolithiasis was only reported in 

meta-analysis of RCTs, and no evidence was found from meta-analyses of observational 

studies or MR studies.
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Table 3 - 4: Health outcomes reported in Mendelian randomisation studies.  

Outcomes Population 
N/n Events  

(N studies)* 
Genetic instruments (GI) 

SUA variance 

(R2) explained by 

GI 

Type of 

metric 

Estimate of effect 

(95%CI) 
P-value 

Statistical 

power# 

Anthropometric variables 

Appendicular lean mass 

(kg) (321) 
British 3,953 rs737267 in SCL2A9 NA β  0.013 (NA, NA) 0.51 NA 

Fat mass (kg) (322) Swiss 6,184 rs6855911 in SCL2A9 3.2% β  0.05 (-0.10, 0.19) 0.52 0.07 

BMI (kg/m2) (323)  European 127,600 (64)* 
Genetic risk score of 31 SUA-related 

SNPs 
4.2% MD§  

-0.0003 (-0.0008, 

0.0002) 
NA NA 

Waist circumference (cm) 

(322) 
Swiss 6,184 rs6855911 in SCL2A9 3.2% β  0.08 (-0.05, 0.21) 0.24 0.06 

BMD in femoral 

neck(g/cm2) (324) 
American 2,501 Genetic risk score of 5 SUA-related SNPs 3.3% β  -0.27 (-0.58, 0.03) 0.08 0.07 

BMD in L1–L4 (g/cm2) 

(325) 
Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β 0.39 (-0.26, 0.98) 0.26 0.19 

BMD in spine (g/cm2) (324) American 2,501 Genetic risk score of 5 SUA-related SNPs 3.3% β 0.08 (-0.32, 0.48) 0.68 0.18 

BMD in total femur (g/cm2) 

(324) 
American 2,501 Genetic risk score of 5 SUA-related SNPs 3.3% β  -0.29 (-0.60, 0.01) 0.06 0.11 

BMD in total hip (g/cm2) 

(325) 
Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β  0.19 (-0.36, 0.74) 0.50 0.19 

Cardiovascular outcomes  

Arrhythmia (326) German 3,060/444 Genetic risk score of 8 SUA-related SNPs NA OR 0.98 (0.88, 1.08) 0.64 0.05‡ 

Atrial fibrillation (326) German 3,060/368 Genetic risk score of 8 SUA-related SNPs NA OR 1.03 (0.93, 1.15) 0.57 0.05‡ 

Cardiomyopathy (326) German 3,060/316 Genetic risk score of 8 SUA-related SNPs NA OR 1.00 (0.89, 1.12) 0.93 0.05‡ 

CHD (323) European 206,822/65,877 (58)* 
Genetic risk score of 31 SUA-related 

SNPs 
4.2% OR 1.05 (0.92, 1.18) 0.49 0.57 

Heart failure (327) Pakistani 22,926/4,526 (2)* 
Genetic risk score of 14 SUA-related 

SNPs 
3.1% OR 1.07 (0.88, 1.30) 0.51 0.11 

Ischaemic heart disease 

(328) 
Danish 68,674/3,742 (2)* rs7442295 in SCL2A9 2.2% HR 0.93 (0.79, 1.09) 0.38 0.10 

Hypertension (326) German 3,060/2,225 Genetic risk score of 8 SUA-related SNPs NA OR 0.98 (0.90, 1.06) 0.56 0.05‡ 

Ischaemic stroke (327) Pakistani 82,091/14,779 (2)*  
Genetic risk score of 14 SUA-related 

SNPs 
3.1% OR 0.99 (0.88, 1.12) 0.93 0.05 

Peripheral vascular disease 

(326) 
German 3,060/295 Genetic risk score of 8 SUA-related SNPs NA OR 0.92 (0.82, 1.04) 0.18 0.06‡ 
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Outcomes Population 
N/n Events  

(N studies)* 
Genetic instruments (GI) 

SUA variance 

(R2) explained by 

GI 

Type of 

metric 

Estimate of effect 

(95%CI) 
P-value 

Statistical 

power# 

Valve disease (326) German 3,060/538 Genetic risk score of 8 SUA-related SNPs NA OR 1.08 (0.99, 1.19) 0.10 0.07‡ 

Diabetic macrovascular 

disease (330) 

Chinese T2DM 

patients 
3,207 Genetic risk score of 3 SUA-related SNPs NA OR 1.18 (1.06, 1.33) 0.004 NA 

cIMT (mm) (329) Finnish (male) 1,985 rs13129697 in SCL2A9 NA β 
<0.0001 (NA, 

NA) 
0.99 NA 

Arterial stiffness (internal 

diameter of carotid artery) 

(mm) (331) 

Italian 449 rs734553 in SLC2A9 NA β 0.48 (NA, NA) 0.003 NA 

DBP (mm Hg) (323) European 89,667 (37)* 
Genetic risk score of 31 SUA-related 

SNPs 
4.2% MD§ 

0.005 (0.003, 

0.007) 
NA NA 

SBP (mm Hg) (323) European 89,667 (37)* 
Genetic risk score of 31 SUA-related 

SNPs 
4.2% MD§ 

0.005 (0.003, 

0.006) 
NA NA 

Metabolic disorders  

T2DM (327) Pakistani 110,452/26,488 (2)* 
Genetic risk score of 14 SUA-related 

SNPs 
3.1% OR 0.95 (0.86, 1.05) 0.28 0.24 

Diabetes (332) European 
165,482/41,508 

(2)* 

Genetic risk score of 24 SUA-related 

SNPs 
4.0% OR 0.99 (0.92, 1.06) 0.79 0.06 

Fasting glucose (mmol/L) 

(323)  
European 57,397 (28)* 

Genetic risk score of 31 SUA-related 

SNPs 
4.2% MD§ 

-0.001 (-0.003, 

0.001) 
NA NA 

Fasting insulin† (333) American 19,899 (5)* Genetic risk score of 8 SUA-related SNPs 6.0% 
Z 

statistic 
-0.015 (NA, NA) 0.99 NA 

Metabolic syndrome (334) Chinese 7,827 
Genetic risk score of 2 SNPs (rs11722228 

in SLC2A9 and rs2231142 in ABCG2) 
2.1% OR 1.03 (0.98, 1.09) 0.23 NA 

Kidney disorders  

CKD (333) American 23,387/3,092 (5)* Genetic risk score of 8 SUA-related SNPs 6.0% OR 1.20 (0.96, 1.50) 0.12 0.70 

Acute kidney injury (335) American 7,553/823 Genetic risk score of 8 SUA-related SNPs 6.0% HR 1.01 (0.77, 1.34) 0.92 0.05 

Adverse renal events (336) Italian 755/244 rs734553 in GLUT9 NA HR 2.35 (1.25, 4.42) 0.01 NA 

Log eGFR (mL/min/1.73 

m2) (333)  
American 23,844 (5)* Genetic risk score of 8 SUA-related SNPs 6.0% β 0.001 (-0.01, 0.02) 0.91 0.05 

SCr (mmol/L) (337) European  7,979 (2)* Genetic risk score of 5 SUA-related SNPs 2.3% β 
-19.23 (-40.32, 

1.86) 
0.07 NA 

Albumin/creatinine ratio 

(356) 

Native 

American  
3,604 (3)* Genetic risk score of 5 SUA-related SNPs  5.3% 

Residual 

variance¶   
Overall p>0.05 NA 
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Outcomes Population 
N/n Events  

(N studies)* 
Genetic instruments (GI) 

SUA variance (R2) 

explained by GI 

Type of 

metric 

Estimate of effect 

(95%CI) 
P-value 

Statistical 

power# 

Neurocognitive disorders 

Parkinson’s disease (PD) 

(343) 
Birtish 1,815/1,061 Genetic risk score of 8 SUA-related SNPs  NA OR 1.55 (1.10, 2.18) 0.01 0.59‡ 

Age at onset of PD (339) European 664 (3)* 

4 SNPs in SCL2A9 NA 

β 

Null after multiple testing 

correction 
 

rs737267 NA 3.10 (0.17, 6.03) 0.04 

NA 
rs6449213 NA -1.18 (-4.96, 2.59) 0.54 

rs1014290 NA -4.56 (-8.13, -1.00) 0.01 

rs733175 NA 3.59 (0.67, 6.51) 0.02 

Lifetime anxiety disorders 

(340) 
Swiss 3,716 rs6855911 in SLC2A9 3.2% 

OR 

(male) 
1.40 (1.07, 1.84) 0.02 0.11 

OR 

(female) 
0.97 (0.80, 1.17) 0.73 0.05 

Current anxiety disorders 

(340) 
Swiss 3,716 rs6855911 in SLC2A9 3.2% 

OR 

(male) 
1.42 (0.99, 2.03) 0.06 0.12 

OR 

(female) 
0.84 (0.66, 1.06) 0.14 0.07 

Memory performance (341) 

European: 

Population 1 
1,091 4 SNPs in SCL2A9 NA β Overall p<0.05 NA 

European: 

Population 2 
1,066 4 SNPs in SCL2A9 NA β Overall p>0.05  NA 

Metabolites 

HDL-C (mmol/L) (323) European 196,621 (68)* Genetic risk score of 31 SUA-related SNPs 4.2% MD§ 
-0.008 (-0.010, -

0.006) 
NA NA 

LDL-C (mmol/L) (323)  European 196,621 (68)* Genetic risk score of 31 SUA-related SNPs 4.2% MD§ 
-0.001 (-0.003, 

0.001) 
NA NA 

TC (mmol/L) (323) European 196,621 (68)* Genetic risk score of 31 SUA-related SNPs 4.2% MD§ 0.000 (-0.002, 0.002) NA NA 

TG (mmol/L) (323) European 196,621 (68)* Genetic risk score of 31 SUA-related SNPs 4.2% MD§ 0.01 (0.01, 0.02) NA NA 

Parathyroid hormone 

(pg/mL) (325) 
Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β -0.63 (-2.12, 0.85) 0.40 0.05 

Phosphorus (mmol/L) (325) Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β -0.16 (-0.74, 0.42) 0.59 0.05 

CRP (mg/L) (342) European 7,158 Genetic risk score of 29 SUA-related SNPs NA β -0.05 (-0.15, 0.05) 0.37 NA 

Calcium (mmol/L) (325) Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β 0.06 (-0.10, 0.21) 0.48 0.20 
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Outcomes Population 
N/n Events  

(N studies)* 
Genetic instruments (GI) 

SUA variance (R2) 

explained by GI 

Type of 

metric 

Estimate of effect 

(95%CI) 
P-value 

Statistical 

power# 

Tropocollagen type 1 N-

terminal propeptide (ng/L) 

(325) 

Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β 0.11 (-1.53, 1.75) 0.90 0.05 

β-crosslaps of type I 

collagen containing cross-

linked C telopeptide (ng/L) 

(325) 

Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β -1.45 (-3.17, 0.27) 0.10 0.05 

25(OH)D (ng/mL) (325) Chinese 1,667 Genetic risk score of 5 SUA-related SNPs 1.8% β 0.76 (-0.63, 2.15) 0.28 0.05 

All-cause and cause-specific mortality 

Cardiovascular mortality 

(326) 
German 3,060/NA Genetic risk score of 8 SUA-related SNPs NA aHR 1.11 (1.02, 1.21) 0.02 NA 

All-cause mortality (326) German 3,060/NA Genetic risk score of 8 SUA-related SNPs NA aHR 1.02 (0.95, 1.09) 0.59 NA 

Sudden cardiac death (326) Germany 3,060/NA Genetic risk score of 8 SUA-related SNPs NA aHR 1.18 (1.03, 1.35) 0.02 NA 

Other outcomes  

Cancer (326) German 3,060/226 Genetic risk score of 8 SUA-related SNPs NA OR 0.95 (0.83, 1.08) 0.41 0.05‡ 

Gout (327) Pakistani 71,501/3,151 (2)* Genetic risk score of 14 SUA-related SNPs 3.1% OR 5.84 (4.56, 7.49) 
3.55E-

40 
1.00 

Abbreviations: GI: Genetic instruments; BMI, body mass index; BMD, bone mineral density; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHD, 

coronary heart disease; IMT, intima-media thickness; CVD, cardiovascular disease; T2DM, Type 2 diabetes; CKD, chronic kidney disease; SCr, serum creatinine; 

eGFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol; 

CRP, C-reactive protein; PD, Parkinson’s disease; MD, mean difference; NA, not available.  

* If the outcomes were reported from Mendelian randomisation analysis with pooling multiple studies, the number of studies included in pooled analysis was 

displayed in brackets.  

† Because of the lack of a standard to covert insulin in different studies to the same scale, sample size-weighted pooled analysis were performed and Z statistics 

were reported instead of the β coefficient. 

§ MD (mean difference) represented the difference in mean caused by per inverse variance weighted allele estimated from pooled analysis.   

¶ Residual variance represented the proportion of residual variance explained by the SUA related SNPs.  

‡ The statistical power was a crude estimation, as the MR studies failed to report R2; we used the extrapolated R2 from other MR studies that used the same genetic 

variants as instruments for calculation.  

# When MR studies that did not provide other necessary information for calculation (e.g. SD of SUA levels, SD of outcomes, or the number of cases), the statistical 

power was not calculated (reported as NA).   
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Table 3 - 5: Summary of evidence grading and comparison of multiple evidence.  

Outcomes MA of observational studies MA of RCTs* MR studies 

Heart failure  Class II  NA 
Heart failure:  

(N sample size=22,926; p=0.51; power=0.11) 

Hypertension†  

 
Class II 

SBP: (p=0.001; 95% PI included null) 

DBP: (p=0.034; 95% PI included null) 

Hypertension:  

(N sample size=3,060; p=0.56; power=0.05) 

Impaired fasting 

glucose or diabetes 

 

Class II NA 

Diabetes:  

(N sample size=165,482; p=0.79; power=0.06) 

Fasting glucose: 

(N sample size=57,397; p>0.05) 

Fasting insulin: 

(N sample size=19,899; p=0.99) 

CKD† Class II 

SCr: (p=4.64×10-4; 95% PI included null) 

eGFR: (p=9.79×10-3; 95% PI included null) 

End stage renal disease: 

(p=1.38×10-6; 95% PI excluded null) 

CKD:  (N sample size=23,387; p=0.12; power=0.70) 

Adverse renal events: (N sample size=755; p=0.01) 

SCr: (N sample size=7,979; p=0.07) 

eGFR: (N sample size=23,844; p=0.91;power=0.05) 

CHD mortality† Class II (general population) NA CHD: incidence (N sample size=206,822; p=0.49; power=0.57) 

Recurrence of 

nephrolithiasis  
NA 

Citrates treatment: 

(p=2.84×10-6; 95% PI excluded null) 

Thiazides treatment: 

(p=9.00×10-6; 95% PI excluded null) 

NA 

Abbreviations: MA, meta-analyses; MR, Mendelian randomisation; CKD, chronic kidney disease; CHD, coronary heart disease; HF, heart failure; NA, not 

applicable; NS, not significant. † If there was no identical outcomes investigated in meta-analyses of RCTs and/or MR studies to match with the class I-II 

observational associations, we juxtaposed the corresponding intermediate traits as surrogates for comparison. 

*Data presented on the largest meta-analysis of RCTs for each outcome; for SBP, DBP, eGFR, and end-stage renal disease other meta–analyses of RCTs on the 

same outcomes showed discordant results in direction of effect and/or statistical significance.
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3.5 Discussion  

In this study, we provide a comprehensive overview of reported associations between SUA 

levels and a wide range of health outcomes by incorporating evidence from meta-analyses of 

observational studies, meta-analyses of RCTs and MR studies. We also further evaluated the 

reported evidence by following criteria that we have previously applied to appraise the 

epidemiological credibility in several research fields (255, 362, 363). In summary, our study 

comprised 76 unique meta-analyses of observational studies, 20 unique meta-analyses of 

RCTs and 56 unique individual MR studies, which overall covered 136 unique health 

outcomes.  

3.5.1 Main findings and possible explanations  

Most health outcomes which were reported to be associated with SUA were identified from 

meta-analyses of observational studies, but after the application of our criteria none of them 

was classified as convincing (class I). Highly suggestive evidence (class II) existed for 5 

health outcomes, including heart failure, hypertension, impaired fasting glucose or diabetes, 

CKD and CHD mortality in general population. It is notable that a large proportion (80.3%) 

of the examined meta-analyses displayed substantial heterogeneity (I2>50%), indicating that 

these associations should be interpreted with caution. Possible sources of the observed 

heterogeneity include the mixture of prospective, retrospective or case-control studies and 

the mixture of different comparison groups, since some meta-analyses synthesised individual 

studies with diverse contrasted categories of SUA levels (e.g. various choices of tertiles, 

quartiles, quintiles or sextiles of SUA levels). Likewise, although the outcomes with class I-

II evidence fulfilled the criteria of credibility assessment for meta-analyses of observational 

studies, it would be inadvisable to conclude causation on this basis alone, due to the inherent 

limitations of unmeasured confounding, undetected bias or reverse causality in observational 

studies. In relation to reverse causality for example, some of the associations which were 

initially classified as class II (e.g. all-cause mortality in heart failure patients and non-

alcoholic fatty liver disease), were no longer highly suggestive (and were downgraded to 

class III) when focusing on prospective observational data and excluding the retrospective 

studies. 

Current evidence from meta-analyses of RCTs was limited to the beneficial effects of SUA-

lowering therapy on some intermediate traits or biomarkers related to cardiovascular and 

renal disorders (e.g. blood pressure, endothelial functions and renal function). However, 

when multiple meta-analyses of RCTs existed for their traits or markers, often their results 
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were not concordant in direction of effect and/or statistical significance. Although 12 health 

outcomes had p<0.05, only recurrence of nephrolithiasis with citrates treatment achieved 

p<10-3 with 95% PI excluding the null. Two additional health outcomes (recurrence of 

nephrolithiasis with thiazides treatment and end-stage renal disease in CKD patients with 

allopurinol treatment) also had a 95% PI excluding the null. Large heterogeneity and 

evidence of bias were common even in meta-analyses of RCTs (in 45.0% and 35.0% of 

meta-analyses of RCTs respectively). When incorporating evidence from meta-analyses of 

RCTs with that from meta-analyses of observational studies, there was a notable gap, as 

health outcomes that were investigated in meta-analyses of observational studies and 

classified as class I-II, have generally not been evaluated in meta-analyses of RCTs. In a few 

cases, data from RCTs on surrogate outcomes (e.g. SBP, DBP, renal function tests) that 

correspond to disease outcomes in observational studies (hypertension, CKD) were available, 

but conclusions from extrapolation of surrogate outcomes, which were evaluated in short-

term trials, to long-term clinical outcomes should be treated with caution.   

As an alternative to RCTs, MR design has been developed for exploring the causal effect of 

biomarkers on health outcomes. Fifty-six MR studies were identified that explored the causal 

role of SUA in cardiovascular, metabolic, neurocognitive and renal disorders or related traits 

and biomarkers. In contrast to the meta-analyses of observational studies where most of the 

results (76.3%) were statistically significant at p<0.05, the majority (83.9%) of health 

outcomes investigated in MR studies were not statistically significant. The generally 

negative results across so many health outcomes suggest that the large effects have probably 

not been missed, but most of the included MR studies could have been underpowered to 

detect modest effects. When retaining the largest MR study for each health outcome, 

significant results with p<0.05 were only reported for 9 health outcomes, and only 4 of these 

health outcomes (diabetic macrovascular disease, arterial stiffness [internal diameter of 

carotid artery], renal events, and gout) had p<0.01, while only the gout outcome was based 

on evidence from MR study with adequate power. Of the other 5 health outcomes with 

p<0.05, Parkinson’s disease and memory performance had at least one other MR study that 

was not significant or had an association in the opposite direction.  

There are a number of instrumental variable assumptions that need to be fulfilled for the 

results of an MR analysis to be valid. The first assumption states that the genetic instrument 

should be strongly associated with the intermediate phenotype. SUA has a significant 

heritable component with an overall heritability of 40%-60% (364), but the strength of 

genetic instruments used in MR studies was small or moderate, accounting for only 1.8%-6.0% 
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of SUA variance. Currently, the proportion of SUA variance explained by all common 

genetic variants identified by GWAS remains relatively small (7.0%) (151). This limits the 

power of genetic instruments to detect causal associations with SUA. The second and third 

assumptions (the instrument is associated with the outcome through the studied exposure 

only and the genotype is independent of other factors which affect the outcome) are more 

difficult to evaluate given the largely unknown complexity and interconnectedness of 

biologic pathways underlying the genetic variants related to SUA. The included MR studies 

tried to validate these assumptions either by excluding SNPs related to other known 

confounding factors, by excluding SNPs that had potential pleiotropic effects or by applying 

novel MR methods to account for pleiotropic effects (e.g. Egger or network MR).  

3.5.2 Clinical implications and future research  

Current recommendations on the pharmacological treatment of hyperuricaemia are related to 

gout or nephrolithiasis (124). Since a wide range of health outcomes have been identified to 

be associated with SUA, a renewed interest in whether individuals with asymptomatic 

hyperuricaemia should be treated with SUA-lowering drugs for the prevention or treatment 

of these non-crystal deposition diseases developed. In this study, we raised large uncertainty 

about the potential therapeutic benefits of an expansion of SUA-lowering therapy. Although 

we identified some highly suggestive associations from observational studies, there was a 

lack of concordance with clinically relevant endpoints from RCTs or surrogate endpoints 

from MR studies and therefore there is insufficient evidence to support any SUA-lowering 

drug intervention for these outcomes. Furthermore, the adverse effects of SUA-lowering 

drugs should be taken into consideration (for example an estimated 0.1% of patients treated 

with allopurinol, the first line SUA-lowering drug, develop allopurinol hypersensitivity 

syndrome, which can be life-threatening) (56).  

On the other hand, our study does not support one of the recommendations in the recently 

updated EULAR gout treatment guidelines which suggests that SUA level <178 µmol/L is 

not recommended for gout management in the long term (55). This recommendation is based 

on a number of observational studies in which low SUA levels were associated with 

increased risk of multiple neurological diseases, including Alzheimer’s and Parkinson’s 

disease (365-367). However, in our umbrella review a number of meta-analyses reported 

nominally statistically significant associations of low SUA levels with increased risk of 

multiple neurological diseases, but several other (9 out of 28) meta-analyses did not support 

these findings. Moreover, our credibility assessment showed that the nominally significant 
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associations were consistent with Class IV evidence, and a causal effect has not consistently 

been established for any neurological disease in MR studies. Therefore, there is no adequate 

evidence against lowering SUA in gout patients in relation to an increased risk of 

neurological diseases. 

In relation to future research, efforts to address the limitations and caveats in current 

evidence will be beneficial. In particular, as the current clinical trials of SUA-lowering 

treatment largely focus on the effect of allopurinol on some intermediate traits or biomarkers, 

the effect of SUA reduction on clinically relevant endpoints of the convincing and highly 

suggestive associations might be worth of further investigation. In addition, efforts to 

evaluate whether other SUA-lowering agents have the same effect as xanthine oxidase 

inhibitors, will help to determine if these effects are truly due to the SUA reduction per se 

rather than the mechanisms of xanthine oxidase inhibition. Finally, noting the largely 

discordant evidence in MR studies, better designed MR studies with collaboration of large 

international consortia may assist in deciding whether the lack of replication of highly 

suggestive findings of observational studies is due to low power to detect moderate/small 

effects or due to truly negative effects.  

3.5.3 Strengths and weaknesses of this review  

The strengths of the umbrella reviews have been previously described in detail (255, 362, 

363). Here, we summarised and presented the evidence of the associations between SUA and 

a wide spectrum of health related outcomes systematically and thoroughly by incorporating 

information from meta-analyses of observational studies, meta-analyses of RCTs and MR 

studies. We then calculated a number of additional metrics and applied well-defined criteria 

to assess the credibility of the observed associations. 

In relation to study weaknesses, umbrella reviews focus on existing meta-analyses and 

therefore outcomes that were not assessed in a meta-analysis are not included in the review. 

For example, we found no formal meta-analysis of observational studies on SUA and 

urolithiasis or gout, even though these associations are very well established. Although there 

are some differences in SUA levels between men and women, there is not sufficient evidence 

at a meta-analysis level and therefore we did not attempt to perform subgroup analyses by 

gender. To avoid subjectivity, we did not include reviews without explicit systematic 

literature searches, but this could limit the breadth of the results to some extent, if some non-

systematic reviews cover questions that have not been addressed by systematic reviews (368, 

369). Furthermore, we did not appraise the quality of the individual studies, since this should 
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be the responsibility of the authors of the original meta-analysis and it was beyond the scope 

of the current umbrella review. 

We adopted credibility assessment criteria, which were based on established tools for 

observational evidence and their individual limitations have been summarised previously 

(255, 362, 363). None of the components of these criteria provide firm proof of lack of 

reliability, but they cumulatively map the possibility that the results are susceptible to bias 

and uncertainty. Given the wide variety of study designs and populations considered in 

several of the meta-analyses, one may claim that large heterogeneity in particular may not 

necessarily be worrisome. However, considering it is difficult to differentiate the real 

heterogeneity from the heterogeneity that reflects some forms of bias or uncertainty, we 

applied I2<50% as one of the criteria for Class I evidence (convincing) for meta-analyses of 

observational studies, so as to assign the top evidence grade only to associations that are 

most robust and without hints of bias. In most cases I2>50% indicates the presence of 

component studies with opposite effects or of component studies with and without 

statistically significant associations. However, nine meta-analyses of observational studies 

classified as class II, III or IV had an I2>50% with all component studies reporting a 

statistically significant association of the same direction. Only one of these nine meta-

analyses (heart failure incidence) would be upgraded from Class II to Class I, if we did not 

consider the heterogeneity criterion, since the other 8 also failed additional class I criteria. 

No meta-analyses of RCTs had an I2>50% with all component studies reporting a statistically 

significant association with the same direction.    

Finally, another limitation of the umbrella review approach is the use of existing meta-

analyses taking their results at face value. Meta-analyses are known to have common flaws 

(370) and their results may also depend on choices made about what estimates to select from 

each primary study and how to represent them in the meta-analysis, e.g. in what contrast of 

exposure levels. This may be a common problem when the factor of interest is continuous, as 

in the case of SUA and where very different comparisons of levels of the risk factor may be 

selected to express risk (371). We therefore decided to investigate any meta-analyses with 

seemingly convincing evidence in more detail. In this process, the only meta-analysis that 

seemed to achieve convincing evidence (class I: stroke mortality) was found to actually have 

major flaws. Re-calculation of the results showed that the evidence was actually downgraded 

to be non-significant. It is possible that similar in-depth evaluations might have downgraded 

the credibility of some additional meta-analyses. In addition, we noted that many primary 

studies are represented in the calculations of meta-analyses by using only a small subset of 
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the data of extreme groups, e.g. as the risk ratio for an event in extreme quintiles of SUA. In 

these cases, the number of events pertinent to these extreme groups may be much fewer than 

the total number of events used in calculating the amount of evidence criterion. Therefore, 

some meta-analyses that seemingly include studies with a total of over 1000 cases may 

actually capture fewer than 1000 cases in the main calculations and thus their grading 

appraisal should have been weaker. These flaws and deficiencies are very difficult to 

decipher without an in-depth re-construction from scratch of all observational meta-analyses 

and they may explain why observational evidence for SUA associations generally did not 

show good concordance with randomised trial and MR evidence in our umbrella evaluation.  

Meta-analyses of observational data for SUA and other risk factors need to be strengthened. 

For continuous putative risk factors such as SUA, a wide consensus on the categorisation of 

levels of interest would be useful to achieve and careful meta-analyses of individual level 

data in inclusive consortia may help achieve this. This approach would allow a more 

accurate and reliable exploration of both linear and non-linear associations, e.g. the 

possibility of U-shaped associations with increased risk at both very high and very low levels. 

Currently available data from meta-analyses do not allow for consistent handling and 

assessment of such non-linear relationships. Conversely, data dredging using different 

categorisations of levels and exposure contrasts is likely to be fuelling a literature with 

spurious associations (372).  

3.6 Conclusion    

This comprehensive umbrella review will help investigators to judge the relative priority of 

health outcomes related to SUA in relation to future research and to clinical management of 

disease. In summary, despite a few hundred systematic reviews, meta-analyses and MR 

studies exploring 136 unique health outcomes, convincing evidence of a clear role of SUA 

exists for only gout and nephrolithiasis. Concordant evidence between observational studies 

and RCTs existed for hypertension and CKD, but a potential causal role of SUA for these 

outcomes has not been verified by current MR studies and even for these two outcomes not 

all meta-analyses of RCTs are concordant among themselves and with observational 

evidence. Therefore, the available evidence does not support any change in the existing 

clinical recommendations in relation to hyperuricaemia.  

  



Chapter 3  Umbrella review 

98 

 

3.7 Supplementary information 

Supplementary Table 3 - 1: Keywords and search strategy used in the umbrella review. 

MEDLINE (OvidSP)  

1. Uric acid.mp. or Uric Acid/ 

2. Uric Acid/ or urate*.mp. 

3. Acid uric.mp. or Uric Acid/ 

4. Hyperuricaemia.mp. or Uric Acid/ or Hyperuricaemia/ 

5. Uric Acid/ or hypouricaemia.mp. 

6. Uric Acid/ or hyperuricosuria.mp. 

7. Uric Acid/ or hypouricosuria.mp. 

8. 1 or 2 or 3 or 4 or 5 or 6 or 7 

9. "Review Literature as Topic"/ or "Review"/ or review*.mp. 

10. Meta-Analysis as Topic/ or meta-analys*.mp. 

11. Mendelian Randomisation Analysis/ or Mendelian randomi*.mp. 

12. 9 or 10 or 11 

13. 8 and 12 

EMBASE (OvidSP)  

1. Uric acid.mp. or uric acid/ 

2. Urate*.mp. or urate/ 

3. Uric acid/ or acid uric.mp. 

4. Hyperuricaemia.mp. or hyperuricaemia/ 

5. Hypouricaemia.mp. or hypouricaemia/ 

6. Hyperuricosuria.mp. or hyperuricosuria/ 
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7. Uric acid/ or hypouricosuria.mp. 

8. 1 or 2 or 3 or 4 or 5 or 6 or 7 

9. Systematic review.mp. or "systematic review"/  

10. "Systematic review"/ or meta-analys*.mp. 

11. Mendelian randomisation analysis/ or Mendelian randomi*.mp. or Mendelian randomisation/ 

12. 9 or 10 or 11 

13. 8 and 12 

Cochrane library  

(uric acid OR acid uric OR urate* OR hyperuricaemia OR hypouricaemia OR hyperuricosuria OR 

hypouricosuria) AND (systematic review* OR meta-analys*) 
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Supplementary Table 3 - 2: General characteristics and main findings of the systematic reviews of observational studies. 

Author Year Population Study design Comparison Outcome N studies Authors' interpretation 

Cardiovascular Outcomes 

Baker(373) 2005 Healthy subjects Cohort SUA level CVD 10 The excess risk associated with SUA in healthy patients is likely to be 

small. High SUA is likely an independent risk factor in patients at high 

CVD risk. 
Baker(373) 2005 

Patients at high 

CVD risk 
Cohort SUA level CVD 11 

Strazzullo(374) 2007 General Cohort SUA level CVD 16 

SUA is a very weak predictor of CVD in healthy population, but a 

significant independent predictor among subjects at high or very high 

risk. 

Strazzullo(374) 2007 
Patients with arterial 

hypertension 
Cohort SUA level CVD 8 

Strazzullo(374) 2007 
Patients at high 

CVD risk 
Cohort SUA level CVD 5 

Barron(260) 2015 General Cohort SUA level CVD 3 
Greater risk of CVD/all-cause mortality in those with the highest than 

with the lowest quartiles of SUA. 

Dimitroula(261) 2008 General Cohort SUA level Stroke 13 
It remains controversial whether elevated serum uric acid is 

neuroprotective or injurious at the onset of acute stroke. 

Hwu(262) 2010 General 
Cross-

sectional 
SUA level Hypertension 6 

All except one study have documented a direct association with either 

incident hypertension or increase in blood pressure. 
Hwu(262) 2010 General 

Cohort/case-

control 

Hyper vs 

normal 
Hypertension 17 

Kidney disease 

Avram(263) 2008 General Cohort SUA level 
Kidney 

dysfunction 
9 

Nearly all published prospective studies support the role of 

hyperuricaemia as an independent risk factor for renal dysfunction.  

Feig(375) 2009 General Observational SUA level 
Chronic kidney 

disease (CKD) 
11 

The preponderance of epidemiological evidence suggests a direct link 

between uric acid and CKD. 

Cognitive diseases 

Alonso(376) 2010 General 
Cohort/case-

control 
SUA level 

Parkinson’s 

disease (PD) 
10 

PD patients have lower SUA levels than controls; SUA is strongly and 

linearly associated with reduced risk of PD. 
Alonso(376) 2010 PD patients 

Cohort/case-

control 
SUA level 

Clinical 

disability and 
3 
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worse cognitive 

performance 

Chang(377) 2014 
AD patients vs 

control 
Case-control SUA level 

Alzheimer’s 

disease (AD) 
6 

Three studies elaborate that plasma or serum uric acid level is 

significantly lower in AD, while three other studies do not observe this 

difference. 

Other Outcomes 

Cnossen(378) 2006 Women Cohort SUA level Pre-eclampsia 5 

There is currently insufficient evidence to draw firm conclusions about 

the accuracy of serum uric acid determination in predicting pre-

eclampsia. 
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Supplementary Table 3 - 3: General characteristics and main findings of the 144 meta-analyses of observational studies. 

Author Year Outcome Population Comparison 
N 

Studies 

N 

Participants 

N 

Cases 

Type of 

metric 

Effect 

model 

reported 

Reported 

summary 

effect (95% CI) 

Concordance 

in overlapped 

MA 

Cardiovascular outcomes 

Tamariz(310) 2014 
Atrial fibrillation 

incidence 
General 

Highest vs lowest 

SUA category 
3 138,306 3,466 RR Random 

1.67 (1.23, 

2.27) 

YES(268, 310, 

379) 

Xu(379) 2015 
Atrial fibrillation 

incidence  
General Hyper vs normal 7 85,530 NA RR Random 

1.80 (1.37, 

2.38) 

Xu(379) 2015 
Atrial fibrillation 

new-onset  
General Hyper vs normal 5 84,837 NA RR Random 

1.66 (1.22, 

2.26) 

Zhang(268) 2016 
Atrial fibrillation  

incidence 
General  Hyper vs normal 6 426,159 7,595 RR Random 

1.49 (1.24, 

1.79) 

Tamariz(310) 2014 Atrial fibrillation 
Atrial fibrillation 

vs controls 
SUA level (mg/dL) 6 7,930 1,603 SMD Random 

0.42 (0.27, 

0.58) 

Zhao(269) 2016 
Atrial fibrillation 

recurrence 

Atrial fibrillation 

patients 
Hyper vs normal 4 1,298 393 OR Random 

1.37 (0.98, 

1.93)  

Xu(379) 2015 
Atrial fibrillation 

recurrence 
General Hyper vs normal 2 61,955 NA aRR Random 

2.07 (1.61, 

2.67)  

Wheeler(380) 2005 CHD incidence  General 
Highest vs lowest 

SUA category 
16 164,542 9,485 RR Random 

1.13 (1.07, 

1.20) 

YES(16, 380-

382) 

Kim(381) 2010 CHD General Hyper vs normal 9 53,750 5,113 aRR Random 
1.09 (1.03, 

1.16) 

Braga(382) 2015 CHD incidence  General Hyper vs normal 9 457,915 19,119 RR Random 
1.21 (1.07, 

1.36) 

Li(16) 2016 CHD incidence General Hyper vs normal 13 70,382 6,666 aRR Random 
1.13 (1.05, 

1.21) 

Qin(270) 2016 CVD 
Hypertensive 

patients 
Hyper vs normal 6 19,546 1,054 aHR Random 

1.17 (1.07, 

1.27)  

Qin(270) 2016 CVD 
Hypertensive 

patients 
Continuous SUA  4 NA NA aHR Random 

1.51 (1.13, 

2.03)  

Huang(383) 2014 
Heart failure 

incidence  
General Hyper vs normal 5 427,917 101,71 HR Random 

1.65 (1.41, 

1.94)  

Huang(383)  2014 
Heart failure 

incidence  
General 

Highest vs lowest 

SUA category 
4 NA NA HR Random 

1.64 (1.39, 

1.94)  
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Huang(383) 2014 
Heart failure 

incidence  
General 1 mg/dL SUA increase 3 420,756 9,812 HR Fixed 

1.19 (1.17, 

1.21)  

Zhang(384) 2009 Hypertension General  
Highest vs lowest 

SUA category 
8 28,657 NA RR Random 

1.55 (1.32, 

1.82) 

YES(272, 

384, 385) 

Grayson(385) 2011 
Hypertension 

incidence  
General Hyper vs normal 12 32,390 NA RR Random 

1.81 (1.55, 

2.07) 

Grayson(385) 2011 
Hypertension 

incidence  
General Hyper vs normal 11 33,925 NA aRR Random 

1.41 (1.23, 

1.58) 

Grayson(385) 2011 
Hypertension 

incidence  
General 1 mg/dL SUA increase 6 23,018 NA aRR Random 

1.13 (1.06, 

1.20) 

Grayson(385) 2011 
Hypertension 

incidence  
General 1 SD SUA increase  8 30,492 NA RR Random 

1.16 (1.07, 

1.26) 

Wang(272) 2014 
Hypertension 

incidence  
General Hyper vs normal 17 71,630 18,751 aRR Random 

1.48 (1.33, 

1.65) 

Wang(272) 2014 
Hypertension 

incidence  
General 1 SD SUA increase 10 37,125 7,584 aRR Random 

1.19 (1.11, 

1.28) 

Wang(272) 2014 
Hypertension 

incidence  
General 1 mg/dL SUA increase 5 15,951 4,941 aRR Random 

1.15 (1.06, 

1.26) 

Jiang(273) 2016 Prehypertension General  
Highest vs lowest 

SUA category 
8 44,095 20,832 OR Random 

1.84 (1.42, 

2.38)  

Zhang(268) 2016 

Left atrial thrombus 

or spontaneous echo 

contrast 

(LATH/LASEC) 

Patients with mitral 

stenosis,  

sinus rhythm or 

atrial fibrillation 

Highest vs lowest 

SUA category 
6 2,381 241 OR Random 

1.59 (1.13, 

2.23)  

Yan(386) 2014 

Major adverse 

cardiovascular 

events (MACE) 

Acute myocardial 

infarction (AMI) 

patients vs controls 

Hyper vs normal 6 2,406 651 RR Fixed 
3.44 (2.33, 

5.08)  

Song(387) 2015 MACE Patients after PCI Hyper vs normal 2 3,054 NA RR Fixed 
1.78 (1.26, 

2.52)  

Trkulja(388) 2012 
Medium term 

MACE 

Patients with acute 

myocardial 

infarction 

Highest vs lowest 

SUA category 
4 4,299 1,240 OR Random 

1.62 (1.20, 

2.19)  
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Trkulja(388) 2012 Short term MACE 

Patients with acute 

myocardial 

infarction 

Highest vs lowest 

SUA category 
7 6,470 787 OR Random 

2.21 (1.64, 

2.97)  

Qin(270) 2016 Stroke 
Hypertensive 

patients 
Hyper vs normal 5 NA NA HR Random 

0.94 (0.67, 

1.33)  

Qin(270) 2016 Stroke 
Hypertensive 

patients 
Continuous SUA level 3 9,978 217 aHR Random 

1.11 (0.98, 

1.16)  

Kim(389) 2009 Stroke incidence  General Hyper vs normal 6 11,495 NA RR Random 
1.41 (1.05, 

1.76) 
YES(276, 389) 

Li(276) 2014 Stroke incidence General Hyper vs normal 5 24,548 1,290 aRR Random 
1.22 (1.02, 

1.46) 

Diabetes related outcomes 

Jia(390)  2013 
Impaired fasting 

glucose or T2DM 
General 

Highest vs lowest 

SUA category 
12 62,834 6,340 RR Random 

1.57 (1.39, 

1.77)  

Kodama(277) 2009 
Type 2 diabetes 

(T2DM) 
General 1 mg/dL SUA increase 11 42,834 3,305 RR Random 

1.17 (1.09, 

1.25) 

YES(277, 307, 

390) 

Jia(390) 2013 T2DM General 
Highest vs lowest 

SUA category 
9 48,808 5,115 RR Fixed 

1.67 (1.51, 

1.86) 

Lv(307) 2013 T2DM incidence  
General without 

diabetes 
Hyper vs normal 8 32,016 2,930 RR Fixed 

1.56 (1.39, 

1.76) 

Lv(307) 2013 T2DM incidence  
General without 

diabetes 
1 mg/dL SUA increase 6 21,592 2,203 RR Fixed 

1.06 (1.04, 

1.07) 

Qin(270) 2016 Diabetes incidence 
Hypertensive 

patients 
Hyper vs normal 2 8,247 564 aHR Random 

1.84 (1.02, 

3.30)  

Qin(270) 2016 Diabetes incidence 
Hypertensive 

patients 
Continuous SUA level 2 NA NA aHR Random 

1.28 (1.18, 

1.38)  

Xu(279) 2013 
Diabetic 

nephropathy 
T2DM patients 

Continuous/categorical 

SUA level 
3 3,166 196 OR Random 

1.91 (1.07, 

3.42)  

Xu(279) 2013 Diabetic retinopathy T2DM patients 
Continuous/categorical 

SUA level 
2 1,739 311 OR Random 

1.23 (0.81, 

1.87)  

Xu(279) 2013 
Diabetic vascular 

complications 
T2DM patients 

Continuous/categorical 

SUA level 
6 5,017 967 OR Random 

1.28 (1.12, 

1.46)  
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Xu(279) 2013 

Diabetic 

microvascular 

complications  

T2DM patients 
Continuous/categorical 

SUA level 
5 4,513 854 OR Random 

1.47 (1.11, 

1.94)  

Xu(279) 2013 
Peripheral vascular 

disease  
T2DM patients 

Continuous/categorical 

SUA level 
3 2,538 151 OR Random 

1.27 (0.91, 

1.78)  

Xu(279) 2013 

Diabetic 

Macrovascular 

disease  

T2DM patients 
Continuous/categorical 

SUA level 
3 2,538 187 OR Fixed 

1.03 (1.00, 

1.06)  

Xu(279) 2013 Diabetic neuropathy T2DM patients 
Continuous/categorical 

SUA level 
2 2,034 231 OR Random 

1.19 (0.61, 

2.32) 

NO(279, 281)  

(discordance in 

statistical 

significance) 

Yu(281) 2016 
Diabetic peripheral 

neuropathy 

Diabetic peripheral 

peuropathy patients 

vs diabetic controls 

SUA level (μmol/L) 7 2,035 464 MD Random 
50.03 (22.14, 

77.93) 

Yu(281) 2016 
Diabetic peripheral 

neuropathy 

Diabetic peripheral 

peuropathy patients 

vs diabetic controls 

Hyper vs normal  5 4,097 894 RR Random 
2.83 (2.13, 

3.76) 

Kidney disorders  

Li(305) 2011 
Impaired kidney 

function 
General Hyper vs normal 3 3,004 NA RR Random 

1.35 (1.12, 

1.63)  

Li(305) 2011 CKD incidence General Hyper vs normal 10 276,801 3,730 aRR Random 
1.49 (1.27, 

1.75) 

YES(282, 283, 

305) 

Zhu(282) 2014 CKD incidence 
Middle-aged 

Populations 
1 mg/dL SUA increase 15 99,205 3,492 RR Random 

1.22 (1.16, 

1.28) 

Li(283) 2014 
CKD new-onset 

incidence 

Non-CKD 

population 
Hyper vs normal 6 28,256 NA HR Fixed 

2.59 (2.14, 

3.13) 

Li(283) 2014 
CKD new-onset 

incidence 

Non-CKD 

population 
1 mg/dL SUA increase 7 153,620 7,014 HR Random 

1.06 (1.04, 

1.08) 

Li(283)  2014 
CKD new-onset 

incidence 
Healthy population Hyper vs normal 4 NA NA HR Random 

2.86 (2.30, 

3.56) 

Li(283)  2014 
CKD new-onset 

incidence 
Diabetic patients  Hyper vs normal 2 NA NA HR Random 

1.90 (1.30, 

2.78)  

Huang(284) 2012 
eGFR (mL/min·1.73 

m2) 

Renal transplant 

recipients 
Hyper vs normal 8 2,075 NA MD Random 

-11.24 (-16.34, -

6.14)  
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Huang(284) 2012 SCr (μmol/L) 
Renal transplant 

recipients 
Hyper vs normal 5 873 NA MD Fixed 

0.24 (0.17, 

0.31)  

Huang(284) 2012 Graft loss 
Renal transplant 

recipients 
Hyper vs normal 3 910 154 OR Fixed 

2.29 (1.55, 

3.39)  

Huang(284) 2012 Graft loss 
Renal transplant 

recipients 
1 mg/dL SUA increase 3 1,050 NA aHR Fixed 

1.21 (1.08, 

1.37)  

Huang(284) 2012 
Chronic allograft 

nephropathy 

Renal transplant 

recipients 
Hyper vs normal 4 1,057 113 OR Fixed 

2.85 (1.85, 

4.38)  

Neurocognitive disorders 

Khan(391) 2013 
Alzheimer’s disease 

(AD) 

AD patients vs 

controls 
SUA level ( mg/dL) 17 3,447 1,153 SMD Random 

-0.42 (-0.62, -

0.21) 

NO(301, 391-

393) 

(discordance in 

statistical 

significance) 

Schrag(392) 2013 
Alzheimer’s disease 

(AD) 

AD patients vs 

controls 
SUA level ( mg/dL) 10 900 453 

Hedge's 

G 
Random 

-0.59 (-1.26, -

0.09) 

Chen(301) 2014 
Alzheimer’s disease 

(AD) 

AD patients vs 

controls 
SUA level ( mg/dL) 11 2,708 647 SMD Random 

-0.50 (-1.23, 

0.22) 

Du(393) 2016 
Alzheimer’s disease 

(AD) 

AD patients vs 

controls 
SUA level (mg/dL) 21 3,617 1,128 MD Random 

-0.77 (-1.18, -

0.36) 

Du(393) 2016 
Alzheimer’s disease 

(AD) 

Alzheimer’s 

patients vs controls 

Highest vs lowest 

SUA category 
3 7,372 NA RR Fixed 

0.66 (0.52, 

0.85) 

Bartoli(394) 2016 Bipolar disorder  
Bipolar disorder vs 

controls 
SUA level (mg/dL) 9 1,127 619 SMD Random 

0.65 (0.33, 

0.97)  

Bartoli(394) 2016 Bipolar disorder  
Bipolar disorder vs 

major depression 
SUA level (mg/dL) 5 735 399 SMD Random 

0.46 (0.16, 

0.75)  

Bartoli(394) 2016 

Bipolar disorder 

phase (Depressive vs 

euthymic phase) 

Depressive vs 

euthymic phase 
SUA level (mg/dL) 6 375 NA SMD Random 

-0.11 (-0.33, 

0.11)  

Bartoli(394) 2016 
Bipolar disorder 

phase  

Manic/mixed vs 

depressive phase 
SUA level (mg/dL) 7 472 NA SMD Random 

0.34 (0.02, 

0.66)  

Bartoli(394) 2016 
Bipolar disorder 

phase  

Manic/mixed vs 

euthymic phase 
SUA level (mg/dL) 6 402 NA SMD Random 

0.19 (-0.10, 

0.49)  

Khan(391) 2013 
Dementia/cognitive 

impairment 

Dementia/cognitive 

impairment 

patients vs controls 

SUA level (mg/dL) 31 7,021 2,681 SMD Random 
-0.33 (-0.48, -

0.17)  
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Khan(391) 2013 
Dementia/cognitive 

impairment 

Dementia/cognitive 

impairment 

patients vs controls 

Highest vs lowest 

SUA category 
5 3,281 489 OR Random 

1.18 (0.96, 

1.46)  

Khan(391) 2013 
Vascular dementia 

(VaD) 

Vascular dementia 

patients vs controls 
SUA level ( mg/dL) 7 597 272 SMD Random 

-0.05 (-0.88, 

0.78)  

Schrag(392) 2013 
Mild cognitive 

impairment (MCI) 

MCI patients vs 

controls 
SUA level ( mg/dL) 2 129 49 

Hedge's 

G 
Random 

-0.73 (-2.7, 

1.24) 
YES(391, 392) 

Khan(391) 2013 
Mild cognitive 

impairment (MCI) 

MCI patients vs 

controls 
SUA level ( mg/dL) 4 731 515 SMD Random 

-0.24 (-0.90, 

0.42) 

Khan(391) 2013 

Mixed or 

undifferentiated  

dementia 

Mixed or 

undifferentiated  

dementia vs 

controls 

SUA level ( mg/dL) 4 1,998 NA SMD Random 
0.19 (-0.17, 

0.54)  

Khan(391) 2013 
Parkinson’s disease 

(PD) 

PD patients vs 

controls 
SUA level ( mg/dL) 7 1,008 514 SMD Random 

-0.67 (-1.05, -

0.29) 

YES(309, 391, 

395)  

Shen(395) 2013 
Parkinson’s disease 

(PD) 

PD patients vs 

controls 
SUA level (μM/L) 6 2,493 1,217 SMD NA 

-0.52 (-0.72, -

0.31) 

Shen(395) 2013 
Parkinson’s disease 

(PD) 
General Hyper vs normal 6 33,185 578 RR Random 

0.65 (0.43, 

0.97) 

Shen(395) 2013 
Parkinson’s disease 

(PD) 
General Hyper vs normal 3 11,795 NA 

RR(dose-

respond) 
NA 

0.77 (0.68, 

0.88) 

Shen(309) 2013 PD progression PD patients Hyper vs normal 2 1,578 NA RR Fixed 
0.56 (0.43, 

0.72) 

Liu(396) 2012 
Multiple sclerosis 

(MS) 

MS  patients vs 

controls 
SUA level (umol/L) 8 1,037 556 SMD Random 

-0.68 (-0.82, -

0.55) 
YES(396, 397) 

Wang(397) 2016 
Multiple sclerosis 

(MS) 

MS patients vs 

control 
SUA level (μmol/L) 10 2,216 1,308 SMD Random 

-0.40 (-0.73, -

0.07) 

Wang(397) 2016 
Neruomyelistsopticis 

(NMO) 

NMO patients vs 

control 
SUA level (μmol/L) 3 1,137 229 SMD Random 

-0.85 (-1.24, -

0.46)  

Wang(397) 2016 MS and NMO 
MS+NMO patients 

vs control 
SUA level (μmol/L) 13 2,445 1,537 SMD Random 

-0.52 (-0.81, -

0.24)  

Abraham(398) 2014 
Amyotrophic lateral 

sclerosis (ALS) 

ALS patients vs 

controls 
SUA level ( mg/dL) 3 826 311 

Hedge's 

G 
NA 0.84 (NA, NA) 
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Flatow(399) 2013 
Schizophrenia 

(Chronic) 

Chronic 

Schizophrenia 

patients  vs 

controls 

SUA level (mg/dL) 3 241 103 
Hedge's 

G 
Random p=0.15 

 

Flatow(399) 2013 
Schizophrenia (First-

Episode Psychosis) 

Schizophrenia 

patients in First-

Episode Psychosis 

vs controls 

SUA level (mg/dL) 2 274 155 
Hedge's 

G 
Random p<0.01 

 

Cancer outcomes 

Yan(400) 2015 Cancer incidence General 
Highest vs lowest 

SUA category 
5 456,053 14,355 RR Fixed 

1.03 (1.01, 

1.05)  

Yan(400) 2015 
Cancer in Digestive 

organs incidence 
General 

Highest vs lowest 

SUA category 
3 266,347 2,521 RR Random 

1.08 (0.94, 

1.25)  

Yan(400) 2015 

Cancer in Lymphoid 

and hematopoietic 

systems incidence 

General 
Highest vs lowest 

SUA category 
2 86,739 397 RR Fixed 

1.71 (1.10, 

2.68)  

Yan(400) 2015 

Cancer in Male 

genital organs 

incidence 

General 
Highest vs lowest 

SUA category 
3 162,022 2,634 RR Fixed 

1.06 (1.00, 

1.13)  

Yan(400) 2015 

Cancer in 

Respiratory system 

and intrathoracic 

organs incidence 

General 
Highest vs lowest 

SUA category 
4 456,053 2,941 RR Random 

1.05 (0.93, 

1.19)  

Yan(400) 2015 
Cancer in Urinary 

organs incidence 
General 

Highest vs lowest 

SUA category 
2 86,739 536 RR Random 

1.17 (0.44, 

3.15)  

All-cause and cause-specific mortality  

Kim(381) 2010 CHD mortality General Hyper vs normal 8 253,336 4,473 aRR Random 
1.16 (1.01, 

1.30) 

YES(16, 381, 

382) 

Kim(381) 2010 CHD mortality General 1 mg/dL SUA increase 4 102,342 770 aRR Random 
1.12 (1.05, 

1.19) 

Braga(382) 2015 CHD mortality General Hyper vs normal 6 237,421 5,572 RR Random 
1.21 (1.00, 

1.46) 

Li(16) 2016 CHD Mortality General Hyper vs normal 13 876,584 24,198 aRR Random 
1.27 (1.16, 

1.39) 
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Li(16) 2016 CHD Mortality General 1 mg/dL SUA increase 6 NA NA RR Random 
1.15 (1.09, 

1.21) 

Qin(270) 2016 CVD mortality 
Hypertensive 

patients 
Hyper vs normal 3 NA NA aHR Random 

1.31 (0.96, 

1.78)  

Huang(383) 2014 CVD mortality 
Heart failure 

patients 
Hyper vs normal 2 2,250 NA HR Random 

1.45 (1.18, 

1.78)  

Zhao(293) 2014 CVD mortality General 
Highest vs lowest 

SUA category 
9 165,806 6,121 RR Random 

1.37 (1.19, 

1.57) 
YES(293, 401) 

Yang(401) 2015 CVD mortality General  
Highest vs lowest 

SUA category 
3 105,329 1,829 RR Random 

1.25 (1.00, 

1.56) 

Kim(389) 2009 Stroke mortality General Hyper vs normal 6 45,751 NA aRR Random 
1.26 (1.12, 

1.39) 
YES(276, 389) 

Li(276)* 2014 Stroke mortality General Hyper vs normal 9 1,017,810 21,281 aRR Random 
1.33 (1.24, 

1.43) 

Qin(270) 2016 Stroke mortality 
Hypertensive 

patients 
Continuous SUA level 2 NA NA aHR Random 

1.20 (0.95, 

1.51)  

Xia(294) 2016 CKD mortality General 
Highest vs lowest 

SUA category 
14 15,930 3,245 aHR Random 

1.52 (1.33, 

1.73)  

Xia(294) 2016 CKD mortality General 1 mg/dL SUA increase 21 23,443 3,904 aHR Random 
1.08 (1.04, 

1.11)  

Yan(400) 2015 Cancer mortality General 
Highest vs lowest 

SUA category 
12 632,472 NA RR Random 

1.17 (1.04, 

1.32)  

Yan(400) 2015 

Cancer mortality in 

bone, connective 

tissue, soft tissue, 

and skin 

General 
Highest vs lowest 

SUA category 
NA 112,296 NA RR Fixed 

0.94 (0.47, 

1.87)  

Yan(400) 2015 
Cancer mortality in 

digestive organs 
General 

Highest vs lowest 

SUA category 
4 187,886 855 RR Fixed 

1.27 (1.08, 

1.49)  

Yan(400) 2015 

Cancer mortality in 

lymphoid and 

hematopoietic 

systems 

General 
Highest vs lowest 

SUA category 
NA 112,296 NA RR Fixed 

1.18 (0.82, 

1.70)  

Yan(400) 2015 
Cancer mortality in 

male genital organs 
General 

Highest vs lowest 

SUA category 
NA 88,033 NA RR Random 

0.51 (0.07, 

3.85)  
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Yan(400) 2015 

Cancer mortality in 

respiratory system 

and intrathoracic 

organs 

General 
Highest vs lowest 

SUA category 
2 116,646 164 RR Random 

1.08 (0.61, 

1.91)  

Yan(400) 2015 
Cancer mortality in 

urinary organs 
General 

Highest vs lowest 

SUA category 
2 112,296 NA RR Fixed 

1.35 (0.88, 

2.07)  

Tamariz(402) 2009 All-cause mortality 
Heart failure 

patients  
Hyper vs normal 6 1,456 NA RR Fixed 

2.13 (1.78, 

2.55) 

YES(383, 402) 

Tamariz(402) 2009 All-cause mortality 
Acute heart failure 

patients  
Hyper vs normal 4 772 NA RR Fixed 

2.40 (1.50, 

3.70) 

Tamariz(402) 2009 All-cause mortality 
Chronic heart 

failure patients  
Hyper vs normal 2 772 NA RR Fixed 

2.10 (1.50, 

2.90) 

Huang(383) 2014 All-cause mortality 
Heart failure 

patients 
Hyper vs normal 11 12,444 1,888 HR Random 

2.15 (1.64, 

2.83) 

Huang(383) 2014 All-cause mortality 
Heart failure 

patients 
1 mg/dL SUA increase 10 21,119 5,755 HR Random 

1.04 (1.02, 

1.06) 

Li(305) 2011 All-cause mortality CKD population Hyper vs normal 5 1,789 609 RR Random 
1.67 (1.29, 

2.16)  

Trkulja(388) 2012 Short-term mortality AMI patients 
Highest vs lowest 

SUA category 
8 6,805 396 OR Random 

2.95 (2.29, 

3.80)  

Trkulja(388) 2012 
Medium term 

mortality 
AMI patients  

Highest vs lowest 

SUA category 
5 5,194 565 OR Random 

2.28 (1.82, 

2.86)  

Yan(386) 2014 In-hospital mortality  
AMI patients vs 

controls 
Hyper vs normal 6 5,686 218 RR Random 

2.10 (1.03, 

4.26)  

Xu(279) 2013 Mortality T2DM patients Hyper vs normal 3 5,534 NA HR Random 
1.09 (1.03, 

1.16)  

Zhao(293) 2014 All-cause mortality General 
Highest vs lowest 

SUA category 
10 143,483 7,031 RR Random 

1.24 (1.09, 

1.42) 
YES(293, 401) 

Yang(401) 2015 All-cause mortality General  
Highest vs lowest 

SUA category 
6 126,702 12,863 RR Random 

1.17 (1.03, 

1.32) 

Song(387) 2015 Mortality Patients after PCI Hyper vs normal 9 17,268 NA RR Fixed 
1.31 (1.21, 

1.42)  

Song(387) 2015 Mortality Patients after PCI 1 mg/dL SUA increase 3 NA NA RR Random 
1.25 (1.13, 

1.39)  
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Qin(270) 2016 All-cause mortality 
Hypertensive 

patients 
Hyper vs normal 4 46,103 5,820 aHR Random 

1.12 (1.02, 

1.23)  

Qin(270) 2016 All-cause mortality 
Hypertensive 

patients 
Continuous SUA level 3 NA NA aHR Random 

1.05 (0.98, 

1.13)  

Other outcomes 

Trkulja(388) 2012 

Medium/long-term 

occurrence of poor 

outcomes 

(death/MACE) 

AMI patients 
Highest vs lowest 

SUA category 
3 2,683 NA HR Random 

1.30 (1.01, 

1.68)  

Trkulja(388) 2012 

Medium/long-term 

occurrence of poor 

outcomes 

(death/MACE) 

AMI patients 50 μmol/L increase 4 3,533 NA aHR Random 
1.19 (1.03, 

1.37)  

Trkulja(388) 2012 

Short-term 

occurrence of poor 

outcomes 

(death/MACE) 

AMI patients 
Highest vs lowest 

SUA category 
4 3,625 336 aOR Random 

2.26 (1.85, 

2.77)  

Huang(383) 2014 
Combined death or 

cardiac events 

Heart failure 

patients 
Hyper vs normal 9 12,699 1,765 HR Random 

1.39 (1.18, 

1.63)  

Huang(383) 2014 
Combined death or 

cardiac events 

Heart failure 

patients 
1 mg/dL SUA increase 4 2,514 NA HR Random 

1.28 (0.97, 

1.70)  

Song(387) 2015 

Adverse outcomes 

(mortality, MAGE, 

In-stent restenosis) 

Patients after PCI Hyper vs normal 12 21,030 NA RR Random 
1.46 (1.29, 

1.65)  

Wang(297) 2016 
Occurrence of poor 

outcomes 

Acute ischaemic 

stroke patients 

Highest vs lowest 

SUA category 
9 7,932 NA HR Random 

0.77 (0.68, 

0.88)  

Wang(297) 2016 
Occurrence of poor 

outcomes 

Acute ischaemic 

stroke patients 
SUA level (μmol/L) 4 1,879 631 MD Fixed 

30.61 (20.13, 

41.08)  

Li(298) 2016 Psoriasis  
Psoriasis patients 

vs controls 
SUA level (mg/dL) 13 29,037 1,644 MD Random 

0.89 (0.05, 

1.73)  

Li(298) 2016 Psoriasis severity 
Sever psoriasis 

patients vs controls 
SUA level (mg/dL) 3 300 104 MD Random 

0.53 (-1.04, 

2.10)  

Zhou(299) 2016 

Non-alcoholic fatty 

liver disease 

(NAFLD) 

General 
Highest vs lowest 

SUA category 
9 55,573 10,581 OR Random 

1.92 (1.59, 

2.31)  



Chapter 3  Umbrella review 

112 

 

Abbreviations: MA, meta-analysis; CHD, coronary heart disease; CVD, cardiovascular disease; MACE, major adverse cardiovascular events; AMI, acute 

myocardial infarction; PCI, percutaneous coronary intervention; T2DM, Type 2 diabetes; CKD, chronic kidney disease; AD, Alzheimer’s disease; PD, Parkinson’s 

disease; VaD, Vascular dementia; MCI, mild cognitive impairment; MS, multiple sclerosis; NMO, neruomyelistsopticis; ALS, amyotrophic lateral sclerosis; 

NAFLD, non-alcoholic fatty liver disease; MD, mean difference; SMD, standard mean difference; NA, not available.  

* We corrected the errors and inappropriateness of the original meta-analysis, when conducted the quantitative analysis. 
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Supplementary Table 3 - 4: General characteristics and main findings of the 31 meta-analyses of RCTs. 

Author Year Population 

SUA-

lowering 

therapy 

Versus Outcome 
N 

studies 

N 

participants 

N 

Cases 

Type of 

metric 

Effect 

model 

Reported 

summary 

effect (95%) 

Concordance in 

overlapped MA 

Kidney diseases 

Fink(403) 2013 
Nephrolithiasis 

patients 
Thiazides 

Placebo/no 

treatment 

Nephrolithiasis  

recurrence 
5 300 151 RR Random 

0.52 (0.39, 

0.69)  

Fink(403) 2013 
Nephrolithiasis 

patients 
Citrates 

Placebo/no 

treatment 

Nephrolithiasis  

recurrence 
4 197 90 RR Random 

0.25 (0.14, 

0.44)  

Fink(403) 2013 
Nephrolithiasis 

patients 
Allopurinol 

Placebo/no 

treatment 

Nephrolithiasis  

recurrence 
2 152 78 RR Random 

0.59 (0.42, 

0.84)  

Wang(404) 2013 General 
All active 

therapy 

Placebo/no 

treatment 
SCr (mg/dL) 9 580 NA SMD Random 

-1.25 (-1.98, -

0.52)  

Wang(404) 2013 General 
All active 

therapy 

Placebo/no 

treatment 

eGFR 

(ml/min/1.73m2) 
3 218 NA SMD Fixed 

0.41 (0.14, 

0.68)  

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 
SCr (μmol/L) 6 354 177 MD Random 

-62.55 (-98.10, 

-26.99) 

YES(405, 406) 

Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 
SCr (mg/dL) 3 130 NA MD Random 

-0.40 (-0.80, 

0.00) 

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 

eGFR 

(ml/min/1.73m2) 
2 184 96 MD Fixed 

5.65 (1.88, 

9.41) NO(405, 406)  

(discordance in 

statistical 

significance) Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 

eGFR 

(ml/min/1.73m2) 
5 346 NA MD Random 

3.10 (-0.90, 

7.10) 

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 

End-stage renal 

disease 
5 267 132 RR Fixed 

0.30 (0.19, 

0.46) NO(405, 406) 

(discordance in 

direction and 

statistical 

significance) 
Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 

End-stage kidney 

disease 
2 164 NA RR Random 

1.01 (0.15, 

6.98) 

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 

Blood urea nitrogen 

(mmol/L) 
3 169 83 MD Fixed 

-6.15 (-8.17, -

4.13)  

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 

24-h urinary  

protein (g/day) 
3 184 94 MD Fixed 

0.13 (0.28, 

0.02)  
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Author Year Population 

SUA-

lowering 

therapy 

Versus Outcome 
N 

studies 

N 

participants 

N 

Cases 

Type of 

metric 

Effect 

model 

Reported 

summary 

effect (95%) 

Concordance in 

overlapped MA 

Zhang(405) 2014 CKD Patients Allopurinol 
Placebo/no 

treatment 

Stable renal 

function 
5 267 132 RR Fixed 

1.73 (1.44, 

2.09)  

Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 
Proteinuria (g/day) 5 250 NA MD Random 

-0.20 (-0.60, 

0.10)  

Endothelial function 

Higgins(407) 2010 

Population with 

vascular 

diseases 

Xanthine 

Oxidase 

Placebo/no 

treatment 

Flow-mediated 

dilatation (%) 
5 144 75 MD Random 

2.50 (0.15, 

4.84)  

Higgins(407) 2010 

Population with 

vascular 

diseases 

Xanthine 

Oxidase 

Placebo/no 

treatment 
Forearm blood flow 5 148 74 MD Random 

68.80 (18.70, 

118.90)  

Kanbay(408)* 2014 General Allopurinol 
Placebo/no 

treatment 

Flow-mediated 

dilatation (%) 
6 285 142 MD Fixed 

2.75 (2.49, 

3.01)  

Kanbay(408)* 2014 General Allopurinol 
Placebo/no 

treatment 

Forearm blood flow 

(%) 
5 130 71 MD Fixed 

2.62 (2.32, 

2.91)  

Kanbay(408)* 2014 General Allopurinol 
Placebo/no 

treatment 

Endothelial-

dependent dilatation 

(%)  

11 415 213 MD Fixed 
2.69 (2.49, 

2.89)  

Kanbay(408)* 2014 General Allopurinol 
Placebo/no 

treatment 

Endothelial 

independent 

dilatation (%) 

5 216 113 MD Fixed 
0.20 (-0.20, 

0.61)  

Mortality 

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Death during 

neonatal or infancy 
3 114 58 RR Fixed 

0.88 (0.56, 

1.38)  

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Death during 

neonatal or infancy 
2 41 20 RR Fixed 

0.97 (0.62, 

1.51)  
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Author Year Population 

SUA-

lowering 

therapy 

Versus Outcome 
N 

studies 

N 

participants 

N 

Cases 

Type of 

metric 

Effect 

model 

Reported 

summary 

effect (95%) 

Concordance in 

overlapped MA 

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Death or serve 

neurodevelopmental 

disability in 

survivors 

3 110 56 RR Fixed 
0.78 (0.56, 

1.08)  

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Death or serve 

neurodevelopmental 

disability in 

survivors 

2 41 20 RR Fixed 
0.92 (0.66, 

1.30)  

Other outcomes 

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Severe quadriplegia 

in surviving infants 
3 73 38 RR Fixed 

0.59 (0.28, 

1.27)  

Chaudhari(409) 2012 

Infants with 

hypoxic-

ischaemic 

encephalopathy 

Allopurinol 
Placebo/no 

treatment 

Seizures in neonatal 

period 
3 114 58 RR Fixed 

0.93 (0.75, 

1.16)  

Agarwal(410) 2013 

Patients with 

elevated SUA 

or kidney 

dysfunction 

Allopurinol 
Placebo/no 

treatment 
SBP (mmHg) 10 738 NA MD Random 

-3.33 (-5.25, -

1.42) NO(406, 410)  

(discordance in 

statistical 

significance) 
Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 
SBP (mmHg) 5 309 NA MD Random 

-2.70 (-7.30, 

1.90) 

Agarwal(410) 2013 

Patients with 

elevated SUA 

or kidney 

dysfunction 

Allopurinol 
Placebo/no 

treatment 
DBP (mmHg) 10 738 NA MD Random 

-1.29 (-2.48, -

0.10) NO(406, 410)  

(discordance in 

statistical 

significance) 
Bose(406) 2014 

Patients with 

CKD or 

decreased 

kidney function 

Allopurinol 
Placebo/no 

treatment 
DBP (mmHg) 5 309 NA MD Random 

-1.90 (-4.90, 

1.20) 

Abbreviations: MA, meta-analysis; CKD, chronic kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; MD, mean difference; SMD, standard mean difference; 

NA, not available. * Quantitative analyses were not performed, because we suspected some of the reported data misused standard error as standard deviation.  
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Supplementary Table 3 - 5: General characteristics and main findings of the 107 Mendelian randomisation studies.* 

Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Anthropometric variables 

Korostishevsky(321) 2016 British 3,953 
Appendicular lean 

mass (kg) 
rs737267 in SCL2A9 NA β  

0.01 (NA, NA) 0.51 

 

Lyngdoh(322) 2012 Swiss 6,184 Fat mass (kg) rs6855911 in SCL2A9 3.2% β  
0.05 (-0.10, 0.19) 0.52 

 

Burgess(342) 2015 European 7,158 BMI (kg/m2) 
Genetic risk score of 29 

SUA-related SNPs  
NA β 

-0.12(-0.53, 0.29) 0.57 

NO(322, 323, 

328, 329, 337, 

342, 348) 

(discordance in 

direction) 

Palmer(328) 2013 Danish  68,674 (2)* BMI (kg/m2) rs7442295 in SCL2A9 2.2% MD  
-0.04 (-0.25, 0.16) NA 

Hughes(337) 2013 European  7,979 (2)* BMI (kg/m2) 
Genetic risk score of 5 

SUA-related SNPs  
2.3% 

β  -0.05 (-0.12, 0.01) 0.11 

Lyngdoh(322) 2012 Swiss 6,184 BMI (kg/m2) rs6855911 in SCL2A9 3.2% 
β  -0.01 (-0.16, 0.14) 0.94 

Oikonen(329) 2012 Finnish (male) 1,985 BMI (kg/m2) rs13129697 in SCL2A9 NA 
β  0.04 (NA, NA) 0.82 

Parsa(348) 2012 American  868 BMI (kg/m2) rs16890979 in SCL2A9 NA 
MD  0.24 (-0.33, 0.81) 0.39 

White(323) 2016 European 127,600 (64)* BMI (kg/m2) Genetic risk score of 31 

SUA-related SNPs  
4.2% MD§  

-0.0003 (-0.0008, 

0.0002) 

NA 

Lyngdoh(322) 2012 Swiss 6,184 
Waist circumference 

(cm) 
rs6855911 in SCL2A9 3.2% β  0.08 (-0.05, 0.21) 0.24 

 

Xiong(325) 2016 Chinese 1,667 
BMD in femoral 

neck (g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.19 (-0.42, 0.81) 0.53 
NO(324, 325) 

(discordance in 

direction) Dalbeth(324) 2015 Americans 2,501 
BMD in femoral 

neck (g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
3.3% β 

-0.27 (-0.58, 0.03) 0.08 

Xiong(325) 2016 Chinese 1,667 
BMD in L1–L4 

(g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.39 (-0.26, 0.98) 0.26 

 

Dalbeth(324) 2015 American 2,501 
BMD in spine 

(g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
3.3% β 

0.08 (-0.32, 0.48) 0.68 

 

Dalbeth(324) 2015 American 2,501 
BMD in total femur 

(g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
3.3% β 

-0.29 (-0.60, 0.01) 0.06 

 

Xiong(325) 2016 Chinese 1,667 
BMD in total hip 

(g/cm2) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.19 (-0.36, 0.74) 0.50 

 

 



Chapter 3  Umbrella review 

117 

 

Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Cardiovascular outcomes  

Kleber(326) 2015 German 3,060/444 Arrhythmia 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.98 (0.88, 1.08) 0.64 

 

Kleber(326) 2015 German 3,060/368 Atrial fibrillation 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

1.03 (0.93, 1.15) 0.57 

 

Kleber(326) 2015 German 3,060/316 Cardiomyopathy 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

1.00 (0.89, 1.12) 0.93 

 

White(323) 2016 European 
206,822/65,877 

(58)* 
CHD 

Genetic risk score of 31 

SUA-related SNPs  
4.2% OR 

1.05 (0.92, 1.20) 0.49 

NO(323, 327, 

333, 345, 353)  

(discordance in 

direction) 

Keenan(327) 2016 Pakistani 
122,776/54,501 

(2)* 

Coronary heart 

disease 

Genetic risk score of 14 

SUA-related SNPs  
3.1% OR 

1.02 (0.92, 1.12) 0.73 

Kleber(326) 2015 German 3,060/2,418 
Coronary artery 

disease (CAD) 

Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.99 (0.91, 1.09) 0.90 

Han(345) 2015 Chinese  2,292/1,123 CHD 

rs11722228 in SLC2A9 NA OR 
1.09 (0.88, 1.35) 0.43 

rs4148152 in ABCG2 NA OR 
0.84 (0.70, 1.11) 0.31 

Yang(333) 2010 American 
23,362/3,050 

(5)* 
CHD incidence 

Genetic risk score of 8 

SUA-related SNPs  
6.0% OR 

1.03 (0.85, 1.25) 0.76 

Stark(353) 2009 German 2,714/1,473 CAD 

10 SUA-related SNPs: 

NA OR 

Overall P>0.05 

rs12129861 
1.04 (0.93, 1.15) 0.54 

rs780094 
0.95 (0.85, 1.06) 0.39 

rs734553 
1.14 (1.00, 1.29) 0.06 

rs734553 
1.14 (0.96, 1.36) 0.13 

rs742132 
0.98 (0.87, 1.10) 0.74 

rs1183201 
0.96 (0.86, 1.07) 0.48 

rs12356193 
0.94 (0.81, 1.09) 0.42 

rs17300741 
1.08 (0.97, 1.21) 0.15 

rs505802 
1.04 (0.93, 1.17) 0.5 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Keenan(327)  2016 Pakistani 
22,926/4,526 

(2)* 
Heart failure 

Genetic risk score of 14 

SUA-related SNPs  
3.1% OR 

1.07 (0.88, 1.30) 0.51 

 

Palmer(328) 2013 Danish 
68,674/3,742 

(2)* 

Ischaemic heart 

disease 
rs7442295 in SCL2A9 2.2% HR 

0.93 (0.79, 1.09) 0.38 

 

Kleber(326) 2015 German 3,060/2,225 Hypertension 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.98 (0.90, 1.06) 0.56 

 

Keenan(327) 2016 Pakistani 
82,091/14,779 

(2)* 
Ischaemic stroke 

Genetic risk score of 14 

SUA-related SNPs  
3.1% OR 

0.99 (0.88, 1.12) 0.93 

 

Kleber(326) 2015 German 3,060/295 
Peripheral vascular 

disease 

Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.92 (0.82, 1.04) 0.18 

 

Kleber(326) 2015 German 3,060/538 Valve disease 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

1.08 (0.99, 1.19) 0.10 

 

Yan(330) 2016 

Chinese 

female T2DM 

patients 

3,207 
Diabetic 

macrovascular 

Genetic risk score of 3 

SUA-related SNPs  
NA OR 

1.18 (1.06, 1.33) 0.004 

 

Oikonen(329) 2012 Finnish (male) 1,985 

Carotid artery 

intima-media 

thickness (cIMT) 

(mm) 

rs13129697 in SCL2A9 NA β 
<0.0001  0.99 

 

Mallamaci(331) 2015 Italian 449 cIMT (mm) rs734553 in SLC2A9 NA β 
0.40 (NA, NA) <0.001 

 

Mallamaci(331) 2015 Italian 449 

Arterial stiffness 

(internal diameter) 

(mm) 

rs734553 in SLC2A9 NA β 
0.48 (NA, NA) 0.003 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

White(323) 2016 European 89,667 (37)* DBP (mm Hg) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% MD§ 

0.005 (0.003, 0.007) 
NA 

NO(323, 328, 

333, 337, 346, 

348, 351) 

(discordance in 

direction and 

statistical 

significance) 

Sedaghat(351) 2014 Dutch 5,974 DBP (mm Hg) 
Genetic risk score of 30 

SUA-related SNPs  
4.2% β 

-0.42 (-0.72, -0.13) 0.01 

Mallamaci(346) 2014 Italian 449 DBP (mm Hg) rs734553 in SCL2A9 NA MD NA 
0.02 

Palmer(328) 2013 Danish 68,674 (2)* DBP (mm Hg) rs7442295 in SCL2A9 2.2% MD 
0.63 (-0.04, 1.29) NA 

Hughes(337) 2013 European  7,979 (2)* DBP (mm Hg) 
Genetic risk score of 5 

SUA-related SNPs  
2.3% β 

-0.002 (-0.13, 0.13) 0.97 

Yang(333) 2010 American 20,699 (5)* DBP (mm Hg) 
Genetic risk score of 8 

SUA-related SNPs  
6.0% β 

-0.34 (-1.04, 0.35) 0.33 

Parsa(348) 2012  American  868 
DBP-Clinic visit 1 (mm 

Hg)  
rs16890979 in SCL2A9 NA MD 

0.52 (-0.62, 1.66) 0.36 

Parsa(348) 2012 American  868 
DBP-High-salt 24-h (mm 

Hg) 
rs16890979 in SCL2A9 NA MD 

0.42 (-0.56, 1.40) 0.41 

Parsa(348) 2012 American  868 
DBP-Low-salt 24-h (mm 

Hg) 
rs16890979 in SCL2A9 NA MD 

0.19 (-0.75, 1.13) 0.69 

Parsa(348) 2012 American  868 
DBP-Salt sensitivity 24-h 

(mm Hg) 
rs16890979 in SCL2A9 NA MD 

-0.01 (-0.62, 0.60) 0.99 

White(323) 2016 European 89,667 (37)* SBP (mm Hg) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% MD§ 

0.005 (0.003, 0.006) NA 

NO(323, 328, 

333, 337, 346, 

348, 351) 

(discordance in 

direction and 

statistical 

significance) 

Sedaghat(351) 2014 Dutch 5,974 SBP (mm Hg) 
Genetic risk score of 30 

SUA-related SNPs  
4.2% β 

-0.75 (-1.31, -0.19) 0.01 

Mallamaci(346) 2014 Italian 449 SBP (mm Hg) rs734553 in SLC2A9 NA β 
NA 0.02 

Palmer(328) 2013 Danish 68,674 (2)* SBP (mm Hg) rs7442295 in SCL2A9 2.2% MD 
0.65 (-0.54, 1.85) NA 

Hughes(337) 2013 European  7,979 (2)* SBP (mm Hg) 
Genetic risk score of 5 

SUA-related SNPs  
2.3% β 

0.07 (-0.12, 0.26) 0.47 

Yang(333) 2010 American 20,673 (5)* SBP (mm Hg) 
Genetic risk score of 8 

SUA-related SNPs  
6.0% β 

-0.83 (-1.96, 0.30) 0.15 

Parsa(348) 2012 American  868 
SBP-Clinic visit 1  (mm 

Hg) 
rs16890979 in SCL2A9 NA MD 

0.08 (-1.70, 1.86) 0.38 

Parsa(348) 2012 American  868 
SBP-High-salt 24-h  (mm 

Hg) 
rs16890979 in SCL2A9 NA MD 

2.20 (0.65, 3.75) 0.01 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Parsa(348) 2012 American  868 
SBP-Low-salt 24-h  (mm 

Hg) 
rs16890979 in SCL2A9 NA MD 

1.48 (0.09, 2.87) 0.04 

 

Parsa(348) 2012  American 868 
SBP-Salt sensitivity 24-h  

(mm Hg) 
rs16890979 in SCL2A9 NA MD 

0.62 (-0.34, 1.58) 0.21 

 

Metabolic disorders  
  

White(323) 2016 European 
84,638/15,360 

(20)* 
Diabetes 

Genetic risk score of 31 

SUA-related SNPs  
4.2% OR 

0.99 (0.99, 1.01) 0.82 

NO(323, 326, 

332) (327, 349, 

354) 

(discordance in 

direction and 

statistical 

significance) 

Kleber(326) 2015 German 3,060/1,236 Diabetes 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.94 (0.88, 1.01) 0.10 

Sluijs(332) 2015 European 
165,482/41,508 

(2)* 
Diabetes 

Genetic risk score of 24 

SUA-related SNPs  
4.0% OR 

0.99 (0.92, 1.06) 0.79 

Keenan(327) 2016 Pakistani 
110,452/26,488 

(2)* 
T2DM 

Genetic risk score of 14 

SUA-related SNPs  
3.1% OR 

0.95 (0.86, 1.05) 0.28 

Pfister(349) 2012 British 
16,064/7,504 

(4)* 
T2DM 

Genetic risk score of 8 

SUA-related SNPs  
NA OR 

0.99 (0.94, 1.04) 0.68 

Sun(354) 2015 Chinese 5,198/2,999 T2DM 

15 SUA-related SNPs  

NA OR 

No overall result 

rs12129861 1.03 (0.92, 1.16) 0.59 

rs780094 1.22 (1.11, 1.35) 
3.9E-

05 

rs2544390 0.97 (0.88, 1.06) 0.50 

rs11722228 1.01 (0.91, 1.12) 0.83 

rs16890979 0.98 (0.66, 1.45) 0.91 

rs3775948 1.03 (0.93, 1.13) 0.59 

rs10489070 0.96 (0.84, 1.10) 0.54 

rs2231142 0.94 (0.85, 1.04) 0.21 

rs742132 1.01 (0.91, 1.13) 0.80 

rs1183201 0.98 (0.86, 1.11) 0.75 

rs1165205 0.98 (0.87, 1.11) 0.75 

rs1333049 1.024 (0.93, 1.12) 0.61 

rs17300741 0.97 (0.80, 1.19) 0.78 

rs506338 0.99 (0.89, 1.10) 0.87 

rs606458 1.11 (1.01, 1.22) 0.04 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes Genetic instruments (GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Yang(333) 2010 American 25,877 (5)* 
Fasting glucose 

(mmol/L) 

Genetic risk score of 8 SUA-related 

SNPs  
6.0% β 

-0.06 (-0.13, 0.02) 
0.13 

NO(323, 333, 

348) 

(discordance in 

direction) 

White(323) 2016 European 57,397 (28)* 
Fasting glucose 

(mmol/L) 

Genetic risk score of 31 SUA-

related SNPs  
4.2% MD§ 

-0.001 (-0.003, 0.001) NA 

Parsa(348) 2012 American  868 Glucose (mmol/L) rs16890979 in SCL2A9 NA β 0.78 (-0.87, 2.43) 0.36 

Yang(333) 2010 American 19,899 (5)* Fasting insulin† 
Genetic risk score of 8 SUA-related 

SNPs  
6.0% 

Z 

statistics 

-0.015 (NA, NA) 0.99 

 

Dai(334) 2013 Chinese 7,827 
Metabolic 

syndrome 

Genetic risk score of 2 SNPs 

(SLC2A9 and ABCG2) 
2.1% OR 

1.03 (0.98, 1.09) 0.23 NO(334, 347) 

(discordance in 

statistical 

significance) 
McKeigue(347) 2010 Scottish 1,017/203 

Metabolic 

syndrome 

Genetic risk score of 6 SNPs in 

SCL2A9 
NA NA NA 

>0.05 

Kidney disorders  

Yang(333) 2010 American 
23,387/3,092 

(5)* 
CKD 

Genetic risk score of 8 SUA-related 

SNPs  
6.0% OR 

1.20 (0.96, 1.50) 0.12 

 

Greenberg(335) 2015 American 7,553/823 
Acute kidney 

injury 

Genetic risk score of 8 SUA-related 

SNPs  
6.0% HR 

1.01 (0.77, 1.34) 0.92 

 

Testa(336) 2014 Italian 755/244 Renal events rs734553 in GLUT9 NA HR 2.35 (1.25, 4.42) 
0.01 

 

Hughes(337) 2013 European  7,979 (2)* 
eGFR (mL/min/1.73 

m2) 

Genetic risk score of 5 SUA-related 

SNPs  
2.3% β 12.20 (-11.50, 35.90) 0.31 

NO(333, 337, 

348, 355, 356) 

(discordance in 

direction and 

statistical 

significance) 

Parsa(348) 2012 American  868 
eGFR (mL/min/1.73 

m2) 
rs16890979 in SCL2A9 NA MD 0.42 (-1.78, 2.62) 0.71 

Yang(333) 2010 American 23,844 (5)* 
Log eGFR 

(mL/min/1.73 m2) 

Genetic risk score of 8 SUA-related 

SNPs  
6.0% β 0.001 (-0.01, 0.02) 

0.91 

Tabara(355) 2010 Japanese 5,165 (2)* 
eGFR (mL/min/1.73 

m2) 

Genetic risk score of 3 SUA-related 

SNPs  
NA β -0.11 (NA, NA) 

<0.001 

Voruganti(356) 2014 
Native 

American  
3,604 (3)* 

eGFR 

(mL/min/1.73 m2) 

7 SNPs in SCL2A9:  

5.3% 
Residual 

variance¶  

No overall result 

rs16890979 0.52 (NA, NA) 0.002 

rs6832439 0.52 (NA, NA) 0.002 

rs6449213 0.22 (NA, NA) 0.08 

rs13131257 0.58 (NA, NA) 0.001 

rs737267 0.44 (NA, NA) 0.004 

rs10805346 0.69 (NA, NA) <0.001 

rs12498956 0.24 (NA, NA) 0.05 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes Genetic instruments (GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate 

effect 

(95%CI) 

P value 

Concordance 

in overlapped 

MR 

Voruganti(356) 2014 
Native 

American  
3,604 (3)* SCr (mmol/L) 

7 SNPs in SCL2A9:  

5.3% 
Residual 

variance¶  

No overall result 

NO(337, 356)  

(discordance in 

statistical 

significance) 

rs16890979 
0.53 (NA, NA) 0.001 

rs6832439 
0.54 (NA, NA) 0.002 

rs6449213 
0.27 (NA, NA) 0.003 

rs13131257 
0.60 (NA, NA) 0.000 

rs737267 
0.46 (NA, NA) 0.004 

rs10805346 
0.68 (NA, NA) 0.000 

rs12498956 
0.23 (NA, NA) 0.06 

Hughes(337) 2013 European  7,979 (2)* SCr (mmol/L) 
Genetic risk score of 5 SUA-related 

SNPs  
2.3% β 

-19.23 (-40.32, 1.86) 0.07 

Voruganti(356) 2014 
Native 

American  
3,604 (3)* 

Albumin/creatinine 

ratio 

7 SNPs in SCL2A9:  

5.3% 
Residual  

variance¶ 

Overall P>0.05  
 

rs16890979 
0.13 (NA, NA) 0.07 

 

rs6832439 
0.16 (NA, NA) 0.05 

 

rs6449213 
0.01 (NA, NA) 0.64 

 

rs13131257 
0.14 (NA, NA) 0.05 

 

rs737267 
0.14 (NA, NA) 0.06 

 

rs10805346 
0.14 (NA, NA) 0.10 

 

rs12498956 
0.07 (NA, NA) 0.15 

 

All-cause and cause-specific mortality 

Kleber(326) 2015 German 3,060/na 
Cardiovascular 

mortality 

Genetic risk score of 8 SUA-related 

SNPs  
NA aHR 

1.11 (1.02, 1.21) 0.02 
 

Kleber(326) 2015 German 3,060/na All-cause mortality 
Genetic risk score of 8 SUA-related 

SNPs  
NA aHR 

1.02 (0.95, 1.09) 0.59 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Kleber(326) 2015 German 3,060/na Sudden cardiac death 
Genetic risk score of 8 

SUA-related SNPs  
NA aHR 

1.18 (1.03, 1.35) 0.02 
 

Metabolites 

White(323) 2016 European 
196,621 (68)* 

HDL-C (mmol/L) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% 

MD§ -0.008 (-0.010, -0.006) 
NA 

 

White(323) 2016 European 
196,621 (68)* 

LDL-C (mmol/L) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% 

MD§ -0.001 (-0.003, 0.001) NA 

 

White(323) 2016 European 
196,621 (68)* 

TC (mmol/L) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% 

MD§ 0.000 (-0.002, 0.002) NA 

 

White(323) 2016 European 
196,621 (68)* 

TG (mmol/L) 
Genetic risk score of 31 

SUA-related SNPs  
4.2% 

MD§ 0.014 (0.013, 0.016) 
NA NO(323, 348, 

350) 

(discordance in 

direction) 

Rasheed(350) 2014 European 8,208 (2)* TG (mmol/L) 
Genetic risk score of 5 

SUA-related SNPs  
1.7% β 

−1.01 (-2.57, 0.56) 0.21 

Parsa(348) 2012 American  868 TG (mmol/L) rs16890979 in SCL2A9 NA MD 2.38 (-2.87, 7.63) 0.35 

Xiong(325) 2016 Chinese 1,667 
Parathyroid hormone 

(pg/mL) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

-0.63 (-2.12, 0.85) 0.40 

 

Xiong(325) 2016 Chinese 1,667 Phosphorus (mmol/L) 
Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

-0.16 (-0.74, 0.42) 0.59 

 

Burgess(342) 2015 European 7,158 
C-reactive protein (CRP) 

(mg/L) 

Genetic risk score of 29 

SUA-related SNPs  
NA β 

-0.05 (-0.15, 0.05) 0.37 

 

Xiong(325) 2016 Chinese 1,667 Calcium (mmol/L) 
Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.06 (-0.10, 0.21) 0.48 

 

Xiong(325) 2016 Chinese 1,667 

Tropocollagen type 1 N-

terminal propeptide 

(ng/L) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.11 (-1.53, 1.75) 0.90 

 

Xiong(325) 2016 Chinese 1,667 
β-crosslaps of type I 

collagen (ng/L) 

Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

-1.45 (-3.17, 0.27) 0.10 

 

Xiong(325) 2016 Chinese 1,667 25(OH)D (ng/mL) 
Genetic risk score of 5 

SUA-related SNPs  
1.8% β 

0.76 (-0.63, 2.15) 0.28 
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Neurocognitive disorders 

Gonzalez-

Aramburu(344) 
2014 Spanish 343 Dementia in PD 

Genetic risk score of 8 

SUA-related SNPs  
NA OR 

1.05 (0.70, 3.00) 0.31 

NO(338, 339, 

343, 344, 352) 

(discordance in 

direction and 

statistical 

significance) 

Simon(352) 2014  American 808 (2)* PD progression 
Genetic risk score of 3 

SNPs in SCL2A9 
NA HR 

1.16 (1.00, 1.35) 0.06 

Gao(338) 2013 American 1,699 Parkinson’s disease 

12 SNPs in SCL2A9 

NA OR 

Overall P>0.05 

rs16890979 1.06 (0.90, 1.24) 0.51 

rs13129697 0.99 (0.85, 1.16) 0.91 

rs737267 1.01 (0.86, 1.18) 0.91 

rs6855911 1.00 (0.85, 1.18) 0.98 

rs4697700 1.03 (0.88, 1.22) 0.69 

rs4481233 1.01 (0.85, 1.21) 0.90 

rs7442295 1.06 (0.90, 1.26) 0.50 

rs6449213 1.01 (0.85, 1.21) 0.88 

rs1014290 1.04 (0.88, 1.22) 0.67 

rs12509955 0.99 (0.84, 1.18) 0.93 

rs17251963 1.05 (0.88, 1.25) 0.59 

rs12510549 0.96 (0.81, 1.14) 0.65 

Gonzalez-

Aramburu(343) 
2013 British 1,061 Parkinson’s disease 

Genetic risk score of 9 

SUA-related SNPs  
NA OR 1.55 (1.10, 2.18) 0.01 

Facheris(339) 2011 European 664 (3)* Age at onset of PD 

4 SNPs in SCL2A9 NA 

β 

Null after multiple testing 

correction 

rs737267 NA 3.10 (0.17, 6.03) 0.04 

rs6449213 NA -1.18 (-4.96, 2.59) 0.54 

rs1014290 NA -4.56 (-8.13, -1.00) 0.01 

rs733175 NA 3.59 (0.67, 6.51) 0.02 

Lyngdoh (340) 2013 Swiss 3,716/660 
Lifetime anxiety 

disorders 
rs6855911 in SLC2A9 3.2% 

OR 

(male) 
1.40 (1.07, 1.84) 0.02  

OR 

(female) 
0.97 (0.80, 1.17) 0.73  
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Author  Year  Population 
N/n Events  

(N studies)* 
Outcomes 

Genetic instruments 

(GI) 

SUA variance 

(R2) explained 

by GI 

Type of 

metric 

Estimate effect 

(95%CI) 

P 

value 

Concordance 

in overlapped 

MR 

Lyngdoh(340) 2013 Swiss 3,716/370 
Current anxiety 

disorders 
rs6855911 in SLC2A9 3.2% 

OR 

(male) 

1.42 (0.99, 2.03) 0.06 

 

OR 

(female) 

0.84 (0.66, 1.06) 0.14 

 

Houlihan(341) 2010 

Scottish 

(Population 1: 

LBC1936) 

1,091 
Memory 

performance 

4 SNPs in SCL2A9 

NA β 

Overall P<0.05  

NO(341) 

(discordance in 

statistical 

significance) 

rs733175 -0.10 (NA, NA) 0.0002 

rs1014290 -0.07 (NA, NA) 0.01 

rs6449213 -0.07 (NA, NA) 0.01 

rs6449213 -0.07 (NA, NA) 0.01 

Houlihan(341) 2010 

Scottish 

(Population 2: 

ET2DS) 

1,066 
Memory 

performance 

4 SNPs in SCL2A9 

NA β 

Overall P>0.05  

rs733175 -0.03 (NA, NA) 0.27 

rs1014290 -0.04 (NA, NA) 0.22 

rs6449213 -0.03 (NA, NA) 0.41 

rs6449213 -0.04 (NA, NA) 0.19 

Other outcomes  

Kleber(326) 2015 German 3,060/226 Cancer 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 0.95 (0.83, 1.08) 0.41 

 

Keenan(327) 2016 Pakistani 
71,501/3,151 

(2)* 
Gout 

Genetic risk score of 14 

SUA-related SNPs  
3.1% OR 5.84 (4.56,0 7.49) 

3.55E-

40 NO(326, 327, 

333) 

(discordance in 

statistical 

significance) 

Kleber(326) 2015 German 3,060/19 Gout 
Genetic risk score of 8 

SUA-related SNPs  
NA OR 1.15 (0.72, 1.82) 0.56 

Yang(333) 2010 American 
25,982/1,033 

(5)* 
Gout 

Genetic risk score of 8 

SUA-related SNPs  
6.0% OR 12.40 (8.50, 18.00) 

3.00E-

39 

Abbreviations: MR, Mendelian randomisation study; BMI, body mass index; BMD, bone mineral density; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHD, 

coronary heart disease; IMT, intima-media thickness; CVD, cardiovascular disease; T2DM, Type 2 diabetes; CKD, chronic kidney disease; SCr, serum creatinine; eGFR, glomerular 

filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol; PD, Parkinson’s disease; LBC1936, 

the Lothian birth cohort; ET2DS, the Edinburgh type 2 diabetes study; MD, mean difference; NA, not available.  

* If the outcomes were reported from Mendelian randomisation analysis with pooling multiple studies, the number of studies included in pooled analysis was displayed in brackets.   

† Because of the lack of a standard to covert insulin in different studies to the same scale, sample size-weighted pooled meta-analyses were performed and Z statistics were reported 

instead of the β coefficient. 
§ MD (mean difference) represented the difference in mean caused by per inverse variance weighted allele estimated from meta-analyses.   
¶ Residual variance represented the proportion of residual variance explained by the SUA related SNPs.  
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Supplementary Figure 3 - 1: Summary random-effect estimates of cardiovascular, diabetes, 

kidney disorders and cancer outcomes reported in meta-analyses of observational studies.  

Abbreviations: AF, atrial fibrillation; CHD, coronary heart disease; CVD, cardiovascular disease; 

LATH/LASEC, left atrial thrombus or spontaneous echo contrast; PCI, percutaneous coronary 

intervention; MACE, major adverse cardiovascular events; AMI, acute myocardial infarction; 

T2DM, type 2 diabetes; CKD, chronic kidney disease; SCr, serum creatinine; eGFR, glomerular 

filtration rate. 
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Supplementary Figure 3 - 2: Summary random-effect estimates of neurocognitive disorders, 

all-cause and cause-specific mortality, and other outcomes reported in meta-analyses of 

observational studies.   

Abbreviations: CHD, coronary heart disease; CVD, cardiovascular disease; T2DM, type 2 

diabetes; MACE, major adverse cardiovascular events; AMI, acute myocardial infarction; PCI, 

percutaneous coronary intervention; CKD, chronic kidney disease; NAFLD, non-alcoholic fatty 

liver disease.
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Supplementary Figure 3 - 3: Summary random-effect estimates of health outcomes 

reported in meta-analyses of RCTs. 

Abbreviations: CKD, chronic kidney disease; SCr, serum creatinine; eGFR, glomerular filtration 

rate; HIE, hypoxic-ischaemic encephalopathy.
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4 DESCRIPTION AND MANIPULATION OF UK 

BIOBANK DATABASE 

This chapter describes the UK Biobank resource used in this thesis. The first section of this 

chapter presents the study design, ethical approval, participant recruitment, data collection 

and data release of UK Biobank cohort. The second part provides a summary description of 

the UK Biobank dataset. The third part presents the processes of data cleaning and data 

preparation and summarises the characteristics of the datasets used in the following analysis.  

4.1 The UK Biobank cohort  

4.1.1 Study design  

The UK biobank is a large-scale, population-based prospective cohort study designed to 

improve the prevention, diagnosis and treatment of a wide range of diseases. It was funded 

by a body of organisations including the Wellcome Trust, Medical Research Council, 

Department of Health, Scottish Government, Northwest Regional Development Agency, 

Welsh Government, British Heart Foundation and Diabetes UK. This cohort was designed to 

include ~500,000 participants and to combine extensive measurements of baseline data and 

genetic data with longitudinal follow-up of participants’ national medical records (e.g. in-

patient hospital episode records and data from the cancer registry and death registry). The 

participant recruitment and baseline data collection took place from 2006 to 2010. The 

longitudinal follow-up will last for 20 years to allow detailed investigation of the genetic and 

non-genetic determinants of a wide range of complex diseases and phenotypes. The 

establishment of the cohort, the baseline assessment, the measurement and quality control of 

the genotype data, and the collection of the medical records for longitudinal follow-up were 

all carried out centrally by the UK Biobank team. Further manipulation of the UK Biobank 

data, for example, selecting study population, constructing genetic instruments and defining 

the phenome framework were performed by myself with help from collaborators.    

4.1.1.1 Ethics approval and research ethics requirements 

The detailed research protocol and ethics and governance aspects of the UK Biobank project 

have gone through an extensive review. An independent Ethics and Governance Council 

(EGC) was established by the MRC and the Wellcome Trust to ensure that the UK Biobank 

project met the required standards for conducting research on human participants. The key 

ethics and governance principles of UK Biobank were presented in the Ethics and 
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Governance Framework (EGF) (411). Based on the standards set by the EGF, research 

activities of UK Biobank were approved by the North West Multi-Centre Research Ethics 

Committee (MREC) in relation to the process of participant invitation and assessment and 

follow-up procedures. Additionally, ethics approvals from the National Information 

Governance Board for Health & Social Care (NIGB) in England and Wales and approval 

from the Community Health Index Advisory Group (CHIAG) in Scotland were also obtained 

to gain access to the information that would allow invitation of participants. UK Biobank had 

also sought a generic Research Tissue Bank (RTB) approval, which covered the vast 

majority of research using this resource, instead of requiring each application to apply for 

separate ethics approval. Informed consent was given by participants during their visit to the 

assessment centres. This consent related to their understanding and awareness of the 

following aspects: the purpose of UK Biobank, the information and samples that will be 

collected at enrolment, the linkage to their full medical records, the role of UK Biobank as 

the legal owner of the datasets, the safeguards in place relating to data and samples, the 

possibility of being re-contacted and the right to withdraw at any time without giving any 

reason and without penalty.   

The research protocol of this study was reviewed by the UK Biobank committee to ensure 

this study was consistent with the access procedures, the EGF and the consent provided by 

the participants. The application (application ID: 10775) was officially approved by the UK 

Biobank committee in 2015. The study did not require to re-contact the participants and did 

not involve any use of samples that were not covered by the RTB approval; therefore, 

following the instruction from the National Research Ethics Service (NRES) and UK 

Biobank’s governing Research Ethics Committee (REC), a separate ethics approval was not 

required for this study. When performing the data analysis, I complied with the UK Biobank 

Access Policy and the EGF regulation (411, 412) and acted in accordance with the Data 

Protection Act (DPA) (413). Findings deriving from the UK Biobank resource have been and 

will be published with the approval from UK Biobank. Knowledge developed from this 

study will be disseminated to benefit public health.  

4.1.1.2 Participant recruitment and enrolment  

Potentially eligible participants of UK Biobank were identified from the National Health 

Service (NHS) patient registry (414). People who were registered with the UK NHS, 

between the ages of 40 and 69 years old and living within 25 miles from any of the local 

study assessment centres, were eligible to participate in the study. The assessment centres 

were located across the UK and included Edinburgh, Glasgow, Newcastle, Middlesbrough, 
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Leeds, Sheffield, Bury, Manchester, Liverpool, Wrexham, Stoke, Nottingham, Birmingham, 

Oxford, Reading, Bristol, Swansea, Hounslow, Central London, and Croydon (Figure 4-1). 

The NHS number and date of birth from NHS register data were used to verify the age (40-

69 years old) of potential participants and remove duplicates or death records. A list of 

contact details of eligible participants was generated from the NHS register data by 

stratifying key demographic characteristics (e.g., age, gender and postcode as an index of 

social deprivation) to recruit a widely generalisable population. Over-sampling was 

performed for several particular diseases of interest (e.g. chronic obstructive pulmonary 

disease [COPD], schizophrenia) in order to recruit an adequate number of cases.  

 

Figure 4 - 1: The geographic locations of assessment centres across UK. 

(Source: adapted from (414)).  

Potential participants were sent an invitation letter for participation. They were asked to 

confirm the pre-booked provisional appointment at the local assessment centre. People who 

didn’t want to participate in the study were encouraged to indicate their unwillingness and to 

cancel the appointment. People who confirmed the appointment were sent a written 

confirmation of their appointment details along with instructions on preparing for the 

baseline assessment. A pre-visit reminder message or mail was sent to the confirmed 

participants before the scheduled appointment for baseline assessment. Between 2006 and 
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2010, about 9,000,000 people were invited by mail and 502,656 individuals were finally 

enrolled. The median number of participants recruited across the 23 assessment centres was 

21,290 (range: 649 to 44,220) (Table 4-1).  

Table 4 - 1: The number of participants recruited across the 23 assessment centres. 

Clinic ID Assessment centre Dates of operation No. of recruitment 

  11021    Birmingham    29/10/2009 - 21/07/2010    25,503  

  11011    Bristol    09/07/2008 - 28/11/2009    43,015  

  11008    Bury    14/01/2008 - 20/12/2008    28,336  

  11003    Cardiff    08/10/2007 - 31/05/2008    17,882  

  11024    Cheadle (revisit)    01/08/2012 - 06/06/2013    20,346  

  11020    Croydon    24/09/2009 - 09/07/2010    27,385  

  11005    Edinburgh    07/11/2007 - 07/06/2008    17,201  

  11004    Glasgow    16/07/2007 - 19/04/2008    18,651  

  11018    Hounslow    17/06/2009 - 26/06/2010    28,879  

  11010    Leeds    27/02/2008 - 11/07/2009    44,209  

  11016    Liverpool    28/01/2009 - 01/04/2010    32,818  

  11012    London Barts    27/08/2008 - 29/08/2009    12,583  

  11001    Manchester    16/04/2007 - 22/12/2007    13,940  

  11017    Middlesbrough    29/04/2009 - 06/02/2010    21,289  

  11009    Newcastle    23/01/2008 - 28/03/2009    37,008  

  11013    Nottingham    30/07/2008 - 12/09/2009    33,877  

  11002    Oxford    30/04/2007 - 27/10/2007    14,062  

  11007    Reading    14/05/2008 - 02/05/2009    29,417  

  11014    Sheffield    05/08/2009 - 13/07/2010    30,397  

  10003    Stockport (pilot)    13/03/2006 - 13/06/2006    3,798  

  11006    Stoke    05/12/2007 - 26/07/2008    19,440  

  11022    Swansea    11/03/2010 - 03/07/2010    2,281  

  11023    Wrexham    16/08/2010 - 01/10/2010    649 

(Source: adapted from (414)). 

 

4.1.2 Baseline assessment and data collection  

4.1.2.1 Overview of the baseline assessment process 

When individuals attended the assessment visit, UK Biobank staff provided an explanation 

and clarification about the research process. They were asked for their consent to participate 
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and went through a series of assessment stations. People who were unable to give consent or 

unable to take part in data collection or who were uncomfortable with any aspect of the 

participation were not enrolled. In general, information on participants’ sociodemographic 

status, family history, early life exposure, lifestyle and environmental exposures, health 

status, and psychosocial factors were collected by a self-completed questionnaire and 

computer-assisted personal interview. A series of physical and functional measurements 

were also taken for further analysis (e.g., anthropometrics, blood pressure and heart rate, 

spirometry, and eye examinations). Biological samples of blood and urine were collected for 

biochemical tests. The process of baseline assessment is summarised in Figure 4-2.  

 

 

Figure 4 - 2: Baseline assessment process.  

(Source: adapted from (414)). 

4.1.2.2 Baseline data collected from the questionnaire and interview 

The UK Biobank questionnaire collected a variety of baseline data, which could be 

summarised into the following broad data fields (Table 4-2): sociodemographic factors, 
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lifestyle and environmental exposures, family history and early life exposures, general health 

and disability, psychiatric or psychosocial state, and cognitive function (415).  

 Sociodemographic factors: Sociodemographic information on education and 

qualifications, employment status and current occupation, marital status, car ownership, 

household income, household structure, ethnicity and country of birth, was collected 

during the baseline assessment. 

 Environmental factors: A large number of environmental exposures were collected for 

the UK Biobank participants, including living address, residence at birth, occupation and 

other workplace factors, sleep, domestic heating, indoor air pollution and mobile phone 

use, etc.  

 Smoking and alcohol: Comprehensive questions on smoking were asked for those who 

smoked; alcohol consumption was assessed in terms of quantity, frequency and beverage 

specificity.  

 Physical activity: Physical activity was assessed by a self-ranking of activity level 

(vigorous, moderate and walking) and a 24-hour recall of daily activities.  

 Dietary habits: Dietary habits were recorded by a self-administered questionnaire 

developed based on the European standardised program for computer-assisted 24-hour 

dietary recall instruments (EPIC-SOFT).  

 Family history and early life exposures: Family history of common serious illnesses 

and early life exposures on birth weight, maternal smoking, breastfeeding, and childhood 

body size were collected during the baseline assessment. 

 General health and disability: Data on medical conditions, general health questions, 

self-reported disability, wheeze, chronic pain and chest pain, reproductive history of 

women were all collected.   

 Psychosocial and psychiatric state: Psychological and psychiatric traits were assessed 

by a series of standardised questionnaires (neuroticism/mood). 

 Cognitive function: Paired-associated learning questions to assess global cognition and 

reaction time tests for touch-screen administration were adopted to assess the cognitive 

function of the study participants.  
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Table 4 - 2: A summary of data collected from questionnaire and interview. 

Data fields  Variables available 

Sociodemographic 

factors 

Social class, education and qualifications, employment status and current 

occupation, marital status, car ownership, household income, household 

structure, ethnicity and country of birth, etc.  

Family history and 

early life exposures  

Family history of illness, birth weight, breast feeding, maternal smoking, 

childhood body size/height, place of birth, being a twin or other multiple 

order birth, etc. 

Lifestyle and 

environmental factors 

Physical activity, smoking, diet, alcohol consumption, sleep, occupations, 

domestic heating, etc. 

General health and 

disability 

Medical conditions, medications, disability, hearing, sight, reproductive 

history, chronic pain and chest pain, wheeze, skin and hair colour, etc. 

Psychiatric or 

psychosocial factors  

Neurosis, mood, depression status, satisfaction (job, family, health), social 

support, mental categories, and history of psychiatric care, etc. 

Cognitive function 
Fluid intelligence, numeric/prospective memory, pairs matching, reaction 

time, trail making, etc. 

 

4.1.2.3 Physical measurements taken at baseline assessment 

Baseline data from physical measurements were taken by well-trained stuff during the 

participants’ visit to the assessment centre (Table 4-3). These included: 

 Blood pressure (and pulse rate): Blood pressure and pulse rate were measured twice by 

the Omron HEM-7015IT digital blood pressure monitor.  

 Weight: Weight was measured by the Tanita BC-418 MA body composition analyser 

with removing shoes and heavy outer clothing.  

 Height: Standing and sitting heights (shoeless) were measured using a Seca 202 height 

measure. 

 Waist and hip circumference: Waist and hip circumferences were measured using a 

Wessex non-stretchable sprung tape measure.  

 Bio-impedance: Bio-impedance was measured by the Tanita BC-418MA body 

composition analyser.  

 Hand grip strength: Right- and left-hand grip strengths were measured once each using 

a Jamar J00105 hydraulic hand dynamometer.  

 Spirometry: The forced expiratory volume in 1 second (FEV1) and forced vital capacity 

(FVC) were measured three times using the Vitalograph Pneumotrac 6800 spirometer.  

 Bone densitometry: Bone mineral density (left heel) was measured by the Norland 
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McCue Contact Ultrasound Bone Analyser (CUBA).  

 Other measurements: Measurements (e.g., electrocardiogram [ECG], ankle-brachial 

index, pulse wave velocity, carotid intimal-medial thickness) were available in the pilot 

study but excluded from the main assessment. 

Table 4 - 3：A summary of data collected from physical measurements. 

Data fields  List of variables  

Anthropometrics  Height, weight, bio-impendence, hip and waist circumference, etc. 

Blood pressure and 

heart rate  

Systolic blood pressure, diastolic blood pressure, peripheral pulse pressure, 

average heart rate, etc. 

Arterial stiffness 
Pulse wave reflection index, pulse wave pressure versus time response 

curve, pulse wave arterial stiffness index, etc. 

Spirometry  
Forced vital capacity (FVC), forced expiratory volume in 1-second (FEV1), 

peak expiratory flow (PEF), etc. 

Eye examination 
Visual acuity, refractive index, intra-ocular pressure, optical-coherence 

tomography, etc. 

Others  Grip strength, bone mineral density, electrocardiograph, etc. 

 

4.1.3 Genotypic data and quality control (QC) 

4.1.3.1 DNA extraction 

The blood samples collected from participants at the baseline assessment were stored in the 

UK biobank facilities (at either -80°C or -196°C) in Stockport, UK. Full details of the 

procedures of sample retrieval and DNA extraction are provided in the following references 

(416, 417). Briefly, buffy coat samples for genotyping were located by robot to a 96-position 

plate; then DNA was extracted and purified by an automated process system using the 

Maxwell 16 Instrument. The Maxwell 16 Blood DNA Purification Kit was applied to test if 

the extracted DNA samples were free from contamination and had suitable concentration and 

purity. The DNA quantification was assessed with a set of pre-defined criteria: (i) average 

plate concentration was at least 20 ng/μl; (ii) average absorbance ratio (measured at 260 nm / 

280nm) was between 1.8-2.2; (iii) at least 80% of sample DNA concentrations was greater 

than 10 ng/μl; (iv) at least 80% of sample absorbance ratio (measured at 260 nm / 280nm) 

was between 1.8-2.2; (v) the extraction concentration of negative control was less than 1 

ng/μl. Samples failing to meet the pre-defined criteria (if possible these samples were re-

processed) were excluded. A brief overview of the process for DNA extraction is shown in 

Figure 4-3.  
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Figure 4 - 3: Overview of the automated process for DNA extraction.  

(Source: adapted from (417)). 

4.1.3.2 Genotyping and initial quality control (QC) 

The Affymetrix research service laboratory (Santa Clara, California, USA) was responsible 

for genotyping the samples, generating the genotypic data and performing the initial quality 

control checks (417, 418). Extracted DNA samples were genotyped on two arrays, the UK 

BiLEVE array and UK Biobank Axiom Array. The UK BiLEVE array was applied on an 

initial ~50,000 (11 batches) individuals. UK Biobank Axiom Array was used to genotype the 

remaining ~450,000 (95 batches) samples. The two genotyping arrays were very similar to 

each other (common marker content >95%) and included a comprehensive coverage of 

genome-wide common and low frequency variants, rare coding variants, and genetic markers 

of specific interest (e.g., pharmacogenomic markers, human leukocyte antigen [HLA], 

inflammation, and expression quantitative trait loci [eQTL] variants). A summary of the 

marker content on the UK Biobank Axiom Array is shown in Figure 4-4. The positions of 

markers were reported based on the Genome Reference Consortium Human Reference 37 

(GRCh37). Further details about the genotyping process and the design of UK Biobank 

Axiom Array are available at (419).  

Step 
1

• Load plates onto deck of DNA extraction system

Step 
2

• Generate and load file to system informing robot which plate to extract and number of 
aliquots to generate

Step 
3

• Robot performs checks on all plates prior to processing

Step 
4

• DNA extracted in batches of 32 samples

Step 
5

• DNA transferred from Maxwell to destination plates

Step 
6

• DNA in one plate quantified on Trinean DropSense

Step 
7

• Output file generated by robot with sample tracking, DNA concentration and   purity, DNA 
volume 

Step 
8

• Plate for genotyping sealed 

Step 
9

• DNA concentration checks completed 
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Figure 4 - 4: Summary of UK Biobank genotyping array content. 

This is a schematic representation of the different categories of content on the UK Biobank 

Axiom array (Source: adapted from (419)).  

An initial round of quality control (QC) of genotyping was conducted by the Affymetrix 

laboratory to exclude markers with poor cluster properties (418). In summary, variants which 

failed the basic Affymetrix genotyping quality metrics indicating poor genotype clustering 

(cluster QC) were excluded. This included the exclusion of variants for which (i) more than 

three genotype clusters were observed (indicating an off-target measurement), (ii) the call 

rate was less than 95%, or (iii) there was failure in one of the cluster quality metrics of 

Fisher’s linear discriminant (FLD), Heterozygous cluster strength offset (HetSO), 

Homozygote Ratio Offset (HomRO) (thresholds were defined in the Affymetrix Axiom 

Genotyping Solution Data Analysis Guide). SNPs failing to meet the cluster QC Metrics 

were set to missing for all samples in that batch. More details about the Affymetrix calling 

algorithms and filtering protocols were documented in (418). The cluster QC conducted by 

Affymetrix resulted in a data set of 489,212 individuals typed at 812,428 unique markers 

proceeded to post-genotyping QC. 
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4.1.3.3 Additional post-genotyping QC  

The Wellcome Trust Centre for Human Genetics (WTCHG) performed an additional round 

of marker-based QC to account for the population structure and check the consistency of 

genotype frequency between batches/plates. Details of the process of QC performed by the 

WTCHG is available at (420, 421). Briefly, to account for the population structure, they 

computed the SNP QC metrics by using a homogenous subset of European participants in 

UK Biobank. To identify homogenous individuals they projected UK Biobank samples on 

major principal components (PCs) computed by using the HapMap3 reference panel. 

Samples projected to the North-West European ancestry cluster were selected for computing 

the marker-based QC metrics. To detect any batch effects they tested whether the given 

batch had the same genotype frequencies as all other batches combined. Similarly, to look 

for any plate effects, they tested whether the given plate had the same genotype frequencies 

as all other plates, within the same batch. They also performed an exact Hardy-Weinberg 

Equilibrium (HWE) test for each batch within a homogenous sample. Genotypes at the SNPs 

that failed any of these tests with a p-value of <10-12 were set to missing in that batch. Two 

tests (array effect and discordance across control replicates) were performed for each marker 

across all batches. Any marker that did not pass one of these two tests was excluded from the 

dataset for all batches. After the marker-based QC the final release of genotype data 

contained 805,426 SNPs (>99% of the array content). Examples of markers failing these QC 

tests are displayed in Figure 4-5. 

Sample-based QC was then performed by the WTCHG based on a set of 605,876 high 

quality markers (genotyped on both arrays, passed QC in all batches) to identify samples 

with poor quality genotype calls, control for population structure (genetic ancestry/ethnicity) 

and to find related individuals. The PCs were further computed to indicate the genetic 

ancestry and account for population structure in other sample-based QC metrics (such as 

heterozygosity). The results of the PC analysis were then applied to adjust the heterozygosity 

and refine the relatedness inference. The sex of each individual was inferred based on the 

relative intensity of markers on the Y and X chromosomes. Samples with high 

missingness/heterozygosity rates or sex mismatch were not removed from the data release, 

but instead referred by a list of variables to indicate the insufficient data quality. The 

relatedness of samples was also indicated by a number of variables for further assessment. A 

small number of samples (835 in total) that were identified as sample duplicates (as opposed 

to identical twins), were likely mishandled in the laboratory or were withdrawn from the 

project, were excluded prior to the data release.  
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Figure 4 - 5: Examples of markers failing quality control tests.  

Each sub-figure presents an example of markers failing the corresponding QC tests (Source: 

adapted from (421)).  

4.1.3.4 Genotype imputation 

The WTCHG was responsible for the genotype imputation. This process aimed to predict 

genotypes that were not directly assayed by the genotype arrays by using reference panels 

with a large number of haplotypes (422). The details of imputation for the UK Biobank 
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genotype data are presented in the reference (421). Briefly, the imputation process started 

with pre-phasing the genotyped markers and followed by a haploid imputation step.  

 Pre-phasing  

A series of QC filters were applied first to select markers and samples for the phasing step. 

Genotyped markers were removed from the phasing step if they (i) were only present in 

either the UK BiLEVE or the UK Biobank Axiom arrays, (ii) failed the SNP QC in at least 

one of the batches, (iii) had a minor allele frequency < 0.0001, (iv) had >5% missingness. 

Samples were also removed if they were identified as outliers for heterozygosity and 

missingness. These filters resulted in a dataset of 670,739 autosomal SNPs in 487,442 

samples. Phasing and imputation were carried out on the filtered dataset. 

Phasing on the autosomes, in which a statistical method is applied to infer the underlying 

haplotypes of each individual, was carried out using the SHAPEIT3 (423). The accuracy of 

the pre-phasing method was assessed by taking advantage of the 696 mother-father-child 

trios that were identified in the UK Biobank and the median switch error rate was estimated 

to be 0.229% (421).  

 Imputation 

For the interim data release (~150,000), genotypes were imputed with a merged reference 

panel of the UK10K (424) and the 1000 Genomes Phase 3 (425), which consisted of ~ 87 

million variants in 12,570 haplotypes. For the final release of the full UK Biobank data, 

genotypes were imputed by using the IMPUTE4 (https://jmarchini.org/software/) with a 

combined reference panel of the Haplotype Reference Consortium (HRC) (426), UK10K 

haplotype resources (424), and the 1000 Genomes Phase 3 (425). This reference panel 

increased the number of testable markers to ~96 million variants and was expected to 

produce better imputation performance. In addition, they also imputed classical allelic 

variation at 11 human leukocyte antigen (HLA) genes localised in the histocompatibility 

complex (MHC) on chromosome 6, by using the HLA*IMP:02 algorithm with a multi-

population reference panel (427). The imputation quality of the HLA genes were checked 

across the two imputation methods among samples of European ancestry and the reported 

call rates were >95.1% for all HLA loci (421).  

The imputation process finally generated a dataset consisting of 92,693,895 autosomal SNPs 

for 487,442 individuals. 

https://jmarchini.org/software/
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4.1.4 Medical records for longitude follow-up 

A variety of sources and systems were used to follow up the disease occurrence, death and 

other health outcomes among enrolled participants (428). Currently, there were three 

different types of health records (i.e., hospital inpatient episodes, cancer registry data and 

death registry data) that have been incorporated into the central database. The process of 

incorporating routine electronic health records into the UK Biobank resource involved 

several steps (Figure 4-6). 

 

Figure 4 - 6: Steps involved in incorporating externally linked data into UK Biobank.  

(Source: adapted from (428)). 

4.1.4.1 Hospital inpatient data 

UK Biobank collected information on health events experienced by participants via in-

patient hospital records. Hospital admission data of England and Wales were collected at 

national level from the Department of Health’s Hospital Episode Statistics (HES) and were 

managed by the NHS Health and Social Care Information Centre (HSCIC) (429). For 

Scotland, Scottish Morbidity Records (SMR) have been routinely collecting admission data 

of all Scottish NHS hospitals since 1980; these data are managed by the Information 

Services Division (ISD) of the NHS Common Service Agency. Historical hospital data back 

to 1996 in England & Wales and back to 1981 in Scotland have been provided to the UK 

Biobank as supplementary information prior to enrolment. Hospital inpatient data 

documented in the UK Biobank currently comprise five main domains:  



Chapter 4  UK Biobank  

143 

 

 Admissions and discharge  

 Diagnostic and operation codes (ICD-9/10)  

 Maternity records  

 Psychiatric census  

 Critical care data 

The availability of data types with corresponding dates is shown in Table 4-4. The diagnosis 

information of patients was recorded following the World Health Organisation’s ICD and the 

operative procedures information were recorded following the OPCS (Office of Population, 

Censuses and Surveys: Classification of Interventions and Procedures). 

Table 4 - 4：Source of hospital inpatient data.  

Hospital 

admissions 

(in-patients) 

Country  Data provider  

International 

classification of 

diseases (ICD) 

Classification of 

interventions and 

procedures 

Period of 

data 

currently 

available ICD 9 ICD 10 OPCS3 OPCS4 

Hospital 

Episode 

Statistics 

(HES) 

England 

Heath & Social 

Care 

Information 

Centre 

(HSCIC) 

-- 
1996-

present 
-- 

1996-

present 

1996-

present 

Patient 

Episode 

Database 

(PEDW) 

Wales 

Secure 

Anonymised 

Information 

Linkage 

(SAIL) 

-- 
1999-

present 
-- 

1999-

present 

1999-

present 

Scottish 

Morbidity 

Record  

(SMR) 

Scotland 

Information 

and Statistics 

Division (ISD) 

1981-

1996 

1996-

present 

1977-

1988 

1989-

present 

1981-

present 

(Source: adapted from (429)).  

4.1.4.2 Cancer registry data  

The cancer registration incorporated information on cancer diagnosis from a variety of 

sources including hospitals, cancer and treatment centres, hospices and nursing homes, 

private hospitals, cancer screening programmes, other cancer registries, general practices, 

death certificates, HES and Cancer Waiting Time (CWT) data (430). Cancer records were 

provided to UK Biobank by the Medical Research Information Service of the National 
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Health Service Information Centre (HSCIC) for participants from England and Wales and by 

the Information Services Division (ISD) of NHS Scotland for participants from Scotland. 

UK Biobank received details of cancer registration both prior to the inception of study 

(cancer registry data were available back to the early 1970s when the cancer registry was 

first established) and following the establishment of UK Biobank. The cancer registry data 

present in UK Biobank comprise (Table 4-5): 

 Date of cancer diagnosis 

 Age at cancer diagnosis  

 Type of cancer (ICD-9/10) 

 Reported occurrences of cancer  

 Histology and behaviour code (ICD10-O-3) 

The type of cancer was coded by either the ICD-9 or ICD-10 according to the time of 

registration. The histology and behaviour codes of neoplasms are presented as five-digit 

codes in ICD10-O-3, with the first four digits coding the histology and the fifth digit coding 

the behaviour. 

Table 4 - 5: Source of cancer registry data.  

Cancer 

registry 
Data provider  

International classification 

of diseases (ICD) 
Period of data 

currently available 
ICD-9 ICD-10 

England & 

Wales 

Heath & Social Care 

Information Centre (HSCIC) 
1979-1994 1995-present 1996-present 

Scotland 
National Records of Scotland, 

NHS Central Register 
1980-1996 1997-present 1981-present 

Source: adapted from reference (430). 

4.1.4.3 Death registry data  

The follow-up of deaths was initiated at the recruitment phase of UK Biobank. UK Biobank 

participants were flagged at the NHS Central Registry from the date of their recruitment and 

UK Biobank received death notifications of participants (431). Data from the death 

certificates (all deaths and their certified causes) are sent to UK Biobank on a quarterly basis. 

The data presented in UK Biobank comprise (Table 4-6):  

 Date of death  

 Age at death  

 Underlying (primary) cause of death: ICD-10  
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 Contributory (secondary) causes of death: ICD-10  

 Description of cause of death  

 

Table 4 - 6: Source of death registry data. 

Death 

registry 
Data provider  

International classification 

of diseases (ICD) 
Period of data 

currently available 
ICD-9 ICD-10 

England & 

Wales 

Heath & Social Care 

Information Centre (HSCIC) 
-- 2006-present April 2006-present 

Scotland 
Information and Statistics 

Division (ISD), Scotland 
-- 2006-present April 2006-present 

Source: adapted from reference (431). 
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4.2 Characteristics of the UK Biobank database 

4.2.1 Summary of baseline data in UK Biobank 

The UK Biobank includes 502,656 participants, of which 89% are from England, 7% from 

Scotland and 4% from Wales. The cohort consists of 94.1% (self-reported) white population 

(88.1% British, 2.6% Irish and 3.4% other white background) and 5.5% other ethnicities 

(2.28% Asian, 1.16% Black, 0.59% mixed and 1.46% other/unknown). There are 229,221 

(45.6%) men and 273,445 (54.4%) women. The mean age of participants at recruitment was 

56.53 years old (range: 40-69, SD: 8.10), with 23.8% aged at 40-49 years old, 33.6% aged at 

50-59 years old and 42.6% aged at 60-69 years old. The mean BMI (body mass index) of 

participants at recruitment was 27.39 (range: 12.12-74.68, SD: 4.79) kg/m2. According to the 

indices of multiple deprivation measured based on income, employment, health, education, 

access to services, community safety and physical environment, 48.2% of participants were 

characterised as low level of deprivation, 33.2% were characterised as moderate level of 

deprivation and 18.4% were characterised as high level of deprivation. The 

sociodemographic characteristics of UK Biobank participants are summarised in the Table 

4-7.   

Table 4 - 7: A summary of baseline characteristics of UK Biobank participants. 

Continuous Mean ± S.D. 
Number of 

participants 

Representation 

(%) 

Age (years) 56.53 ± 8.10  502,620 99.9 

Standing height (cm) 168.48 ± 9.27  500,130 99.5 

Weight (kg) 77.97 ± 15.92 499,904 99.5 

BMI (kg/m2) 27.39 ± 4.79  499,579 99.4 

DBP (mmHg)* 82.02 ± 10.50 473,465 94.2 

SBP (mmHg)* 137.80 ± 19.27 473,460 94.2 

Categorical Levels 
Number of 

participants 

Representation 

(%) 

Sex Male 229,211 45.6 

Female 273,445 54.4 

Age group 40-49 years 119,632 23.8 

50-59 years 168,892 33.6 

60-69 years 214,131 42.6 

Self-reported ethnic 

background 

White (British, Irish, and other 

white background)  
472,798 94.06 

Asian (Indian, Pakistani, Chinese, 11,461 2.28 
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Bangladeshi and other Asian 

background) 

Black (Africa, Caribbean and 

other black background) 
8,093 1.61 

Mixed (White & Asian, White & 

Black, other mixed background) 
2,966 0.59 

Other/Unknown 7,339 1.46 

Resident location England  447,364 89.0 

Wales 35,186 7.0 

Scotland  20,106 4.0 

Deprivation Low 243,286 48.4 

Moderate  166,882 33.2 

High 92,489 18.4 

*Blood pressures (Data-field 4079 [DBP] and Data-field 4080 [SBP]) were measured at the baseline 

assessment by using standard automated device (automated reading, two measures of blood pressure 

were taken a few moments apart).  

4.2.2 Summary of health-outcome data in UK Biobank  

As described above, UK Biobank incorporated three types of health records into the central 

database, including hospital inpatient records, cancer registry data and death registry data.  

4.2.2.1 Hospital inpatient data 

 Hospital inpatient episodes: A total of 361,234 hospital episodes were available in the 

UK Biobank database in 2016, covering 395,978 participants. In particular, there were 

346,379 general episodes, 14,599 delivery episodes, 95 birth episodes, 94 psychiatric 

episodes and 50 other delivery/birth events (Figure 4-7).  

 

       Figure 4 - 7: A summary of hospital episodes available in the UK Biobank database. 
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 ICD-9/10 codes for disease diagnosis: In the hospital inpatient data, each episode had a 

primary ICD-10 or ICD-9 diagnosis code to describe the event of hospitalisation, when 

applicable, one or more secondary ICD-10 or ICD-9 diagnosis codes follows to annotate 

the corresponding hospitalisation event. Thus, 361,234 hospital episodes recorded 

1,491,042 items of primary ICD-10 code (8,160 distinct ICD-10 values) for 392,294 

participants, 2,066,751 items of secondary ICD-10 code (10,528 distinct ICD-10 values) 

for 320,450 participants, 42,837 items of primary ICD-9 code (2,448 distinct ICD-9 

values) for 20,309 participants and 17,293 items of secondary ICD-9 code (2,276 distinct 

ICD-9 values) for 8,716 participants. In summary, the hospital inpatient data included 

10,528 unique ICD-10 codes covering 392,338 participants, and 2,449 unique ICD-9 

codes covering 20,311 participants (Table 4-8). 

Table 4 - 8: A summary of hospital inpatient data. 

Diagnosis code Data items Distinct values No. of participants 

Main ICD-10 code  1,491,042 8,160 392,294 

Secondary ICD-10 code  2,066,751 10,528 320,450 

Sub-total  3,557,793 10,528 392,338 

Main ICD-9 code  42,837 2,448 20,309 

Secondary ICD-9 code  17,293 2,276 8,716 

Sub-total  60,130 2,449 20,311 

Total -- -- 395, 978 

 

 Common prevalent diseases in hospital inpatient data: The individual ICD-10 codes 

were classified into 22 disease categories according to the ICD system: the number of 

cases included in each disease category is summarised in Table 4-9 (range: 27-503,234; 

median: 50,218). Within the hospital episode data, the top 20 common prevalent ICD-10 

codes (with the first 3 digits) and the corresponding diseases were identified and 

summarised in Table 4-10. 
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Table 4 - 9: A summary of the disease categories included in hospital inpatient data.  

Disease category Description  No. of cases 

Chapter I Certain infectious and parasitic diseases 35,981 

Chapter II Neoplasms 66,299 

Chapter III Diseases of the blood and blood-forming organs and certain 

disorders involving the immune mechanism 
28,450 

Chapter IV Endocrine, nutritional and metabolic diseases 137,440 

Chapter V Mental and behavioural disorders 51,770 

Chapter VI Diseases of the nervous system 34,496 

Chapter VII Diseases of the eye and adnexa 27,258 

Chapter VIII Diseases of the ear and mastoid process 7,699 

Chapter IX Diseases of the circulatory system 257,515 

Chapter X Diseases of the respiratory system 86,615 

Chapter XI Diseases of the digestive system 202,376 

Chapter XII Diseases of the skin and subcutaneous tissue 20,844 

Chapter XIII Diseases of the musculoskeletal system and connective tissue 149,703 

Chapter XIV Diseases of the genitourinary system 111,762 

Chapter XV Pregnancy, childbirth and the puerperium 20,489 

Chapter XVI Certain conditions originating in the perinatal period 27 

Chapter XVII Congenital malformations, deformations and chromosomal 

abnormalities 
5,162 

Chapter XVIII Symptoms, signs and abnormal clinical and laboratory findings, 

not elsewhere classified 
165,904 

Chapter XIX Injury, poisoning and certain other consequences of external 

causes 
48,666 

Chapter XX External causes of morbidity and mortality 103,511 

Chapter XXI Factors influencing health status and contact with health 

services 
503,234 

Other Codes for special purposes 1,550 

 

  



Chapter 4  UK Biobank  

150 

 

Table 4 - 10: The top 20 prevalent ICD-10 codes/diseases in hospital inpatient data. 

ICD-10 Disease description  No. of cases 

I10 Essential (primary) hypertension 95,606 

E78 Disorders of lipoprotein metabolism and other lipidaemias 44,949 

R07 Pain in throat and chest 39,856 

R10 Abdominal and pelvic pain 38,914 

K29 Gastritis and duodenitis 35,786 

K44 Diaphragmatic hernia 32,580 

J45 Asthma 32,371 

K57 Diverticular disease of intestine 32,304 

I25 Chronic ischaemic heart disease 31,136 

I84 Haemorrhoids 29,176 

K62 Other diseases of anus and rectum 28,525 

K21 Gastro-oesophageal reflux disease 28,100 

M17 Gonarthrosis [arthrosis of knee] 24,283 

E11 Type 2 diabetes mellitus 24,147 

N39 Other disorders of urinary system 23,571 

I20 Angina pectoris 22,422 

Y83 Surgical operation and other surgical procedures as the cause of 

abnormal reaction 
22,055 

M19 Other arthrosis 19,966 

K52 Other non-infective gastroenteritis and colitis 19,815 

R69 Unknown and unspecified causes of morbidity 19,655 

 

4.2.2.2 Cancer registry data 

 Data items: A total of 233,875 data items, covering 79,111 participants, were available 

for cancer diagnosis, of which 76,321 data items were derived from the NHS information 

centre for Cancer Registry (2012 onwards), 8,468 data items were derived from the 

Scottish Cancer Registry (2012 onwards), and 63,002 data items were derived from the 

National Cancer Intelligence Network Cancer Registry (Figure 4-8).  
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       Figure 4 - 8: A summary of cancer registry data available in the UK Biobank database. 

 ICD-9/10 for cancer diagnosis: Within the cancer registry data, 207,935 items were 

coded by ICD-10 system covering 73,841 participants, and 25,818 items were coded by 

ICD-9 system covering 11,227 participants. Overall, the database included 556 unique 

ICD-10 codes and 302 unique ICD-9 codes, covering 79,066 unique participants 

diagnosed with cancer (Table 4-11). 

     Table 4 - 11: A summary of cancer registry data.  

Disease classification  Data items Distinct values No. of participants 

Type of cancer: ICD-10 207,935 556 73,841 

Type of cancer: ICD-9 25,818 302 11,227 

Total 233,753 858 79,066 

 

 Common prevalent cancers in cancer registry data: The types of cancer coded by ICD-

10 codes were classified according to the sites of neoplasms. The number of cases 

included in each sites of neoplasms were summarised in Table 4-12 (range: 1-19,620; 

median: 2,032). Within the cancer registry data, the top 20 common prevalent cancers 

(with the first 3 digits of ICD-10 code) were identified and summarised in Table 4-13. 
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Table 4 - 12: A summary of the types of cancer according to the sites of neoplasms. 

Sites of neoplasms No. of cases* 

Malignant neoplasms of lip, oral cavity and pharynx 913 

Malignant neoplasms of digestive organs 6,563 

Malignant neoplasms of respiratory and intrathoracic organs 1,978 

Malignant neoplasms of bone and articular cartilage 83 

Melanoma and other malignant neoplasms of skin 19,620 

Malignant neoplasms of mesothelial and soft tissue 603 

Malignant neoplasm of breast 13,025 

Malignant neoplasms of female genital organs 3,748 

Malignant neoplasms of male genital organs 7,942 

Malignant neoplasms of urinary tract 2,087 

Malignant neoplasms of eye, brain and other parts of central nervous system 615 

Malignant neoplasms of thyroid and other endocrine glands 630 

Malignant neoplasms of ill-defined, secondary and unspecified sites 468 

Malignant neoplasms, stated or presumed to be primary, of lymphoid, hematopoietic 

and related tissue 3,738 

Malignant neoplasms of independent (primary) multiple sites 1 

In situ neoplasms 11,218 

Benign neoplasms 1,009 

Neoplasms of uncertain or unknown behavior 2,453 

*Including both incident and prevalent cases. 
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Table 4 - 13: The top 20 common prevalent cancers in cancer registry data. 

ICD-10 Type of cancer   No. of cases* 

C44 Other malignant neoplasms of skin 18,628 

C50 Malignant neoplasm of breast 13,663 

C61 Malignant neoplasm of prostate 8,379 

D06 Carcinoma in situ of cervix uteri 3,972 

C18 Malignant neoplasm of colon 3,358 

C43 Malignant melanoma of skin 3,290 

D05 Carcinoma in situ of breast 2,455 

C34 Malignant neoplasm of bronchus and lung 2,301 

C54 Malignant neoplasm of corpus uteri 1,697 

C20 Malignant neoplasm of rectum 1,562 

D04 Carcinoma in situ of skin 1,446 

D03 Melanoma in situ 1,276 

C67 Hereditary factor IX deficiency 1,196 

C64 Malignant neoplasm of bladder 1,187 

C56 Malignant neoplasm of ovary 1,177 

C83 Non-follicular lymphoma 961 

D41 Neoplasm of uncertain or unknown behaviour of urinary organs 912 

D09 Carcinoma in situ of other and unspecified sites 717 

C91 Lymphoid leukaemia 683 

C15 Malignant neoplasm of oesophagus 645 

*Including both incident and prevalent cases. 

4.2.2.3 Death registry data 

 Data items: A total of 16,505 data items, covering 14,423 participants, were available 

from the death registry data (Figure 4-9), of which 13,217 data items were derived from 

the NHS information centre (10,252 items from post-2012 and 2,965 items from pre-

2012), and 3,288 data items were derived from the Scottish Morbidity Record (726 items 

from post-2015 and 2,562 items from pre-2015).  
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Figure 4 - 9: A summary of death registry data available in the UK Biobank database. 

 ICD-10 codes for cause of death: Within the death registry data, a total of 37,293 data 

items were available to record the causes of death of 14,418 participants. Primary 

(underlying) causes of death (16,500 data items) were reported for all 14,418 participants, 

consisting of 888 unique ICD-10 codes. Contributory/secondary causes of death (20,793 

data items) were reported for 8,782 participants, consisting of 1,144 unique ICD-10 

codes. Overall, the database included 1,525 unique ICD-10 codes to annotate the causes 

of death for 14,418 participants (Table 4-14). 

Table 4 - 14: A summary of death registry data. 

Cause of death Data items Distinct values No. of participants 

Primary (underlying) cause of death: 

ICD10 

16,500 888 14,418 

Secondary (contributory) cause of 

death: ICD10 

20,793 1,144 8,782 

Total 37,293 1,525 14,418 

 

 Common causes of death in death registry data: The primary and secondary causes of 

death coded by ICD-10 codes were classified into 22 disease categories according to the 

ICD system: the number of deaths caused by each disease category were summarized in 

Table 4-15 (range: 27-503,234; median: 50,218). Within the death registry data the top 

20 common prevalent ICD-10 codes (with the first 3 digits) and the corresponding 

causes of death were identified and summarised in Table 4-16. 
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Table 4 - 15: A summary of the primary and secondary death causes in each disease 

category.  

Disease 

category 
Description 

Primary 

causes 

of death 

Secondary 

causes of 

death 

Chapter I Certain infectious and parasitic diseases 146 791 

Chapter II Neoplasms 9,577 2,905 

Chapter III Diseases of the blood and blood-forming organs and 

certain disorders involving the immune mechanism 
33 193 

Chapter IV Endocrine, nutritional and metabolic diseases 153 1,174 

Chapter V Mental and behavioural disorders 129 338 

Chapter VI Diseases of the nervous system 517 503 

Chapter VII Diseases of the eye and adnexa 0 2 

Chapter VIII Diseases of the ear and mastoid process 0 2 

Chapter IX Diseases of the circulatory system 3,438 6,248 

Chapter X Diseases of the respiratory system 943 3,238 

Chapter XI Diseases of the digestive system 669 1,268 

Chapter XII Diseases of the skin and subcutaneous tissue 14 56 

Chapter XIII Diseases of the musculoskeletal system and connective 

tissue 
90 227 

Chapter XIV Diseases of the genitourinary system 84 801 

Chapter XV Pregnancy, childbirth and the puerperium 34 0 

Chapter XVI Certain conditions originating in the perinatal period 0 0 

Chapter XVII Congenital malformations, deformations and 

chromosomal abnormalities 
82 33 

Chapter 

XVIII 

Symptoms, signs and abnormal clinical and laboratory 

findings, not elsewhere classified 
576 738 

Chapter XIX Injury, poisoning and certain other consequences of 

external causes 
0 1,142 

Chapter XX External causes of morbidity and mortality 576 1,121 

Chapter XXI Factors influencing health status and contact with health 

services 
0 10 

Other Codes for special purposes 14 0 
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Table 4 - 16: The top 20 common prevalent death causes in death registry data. 

ICD-10 Disease description  No. of cases* 

C34 Lung cancer 1,786 

I25 Chronic ischaemic heart disease 1,089 

C50 Malignant neoplasm of breast 841 

I21 Acute myocardial infarction 819 

C25 Malignant neoplasm of pancreas 617 

C18 Malignant neoplasm of colon 526 

C61 Malignant neoplasm of prostate 485 

C71 Malignant neoplasm of brain 468 

C15 Malignant neoplasm of oesophagus 434 

C80 Malignant neoplasm, without specification of site 414 

J44 Other chronic obstructive pulmonary disease 341 

C56 Malignant neoplasm of ovary 340 

C22 Malignant neoplasm of liver and intrahepatic bile ducts 297 

C64 Malignant neoplasm of kidney, except renal pelvis 265 

C16 Malignant neoplasm of stomach 242 

C45 Mesothelioma 235 

J84 Other interstitial pulmonary diseases 234 

J18 Influenza and pneumonia 198 

C19 Malignant neoplasm of rectosigmoid junction 195 

C20 Malignant neoplasm of rectum 192 

*Including both incident and prevalent cases. 

4.2.3 Summary of genotype data in UK Biobank 

4.2.3.1 Genotype data quality 

The application of marker-based and sample-based QC processes resulted in a released 

genotypic dataset of 805,426 markers for 488,377 samples. The number and proportion of 

SNPs which failed marker-based quality tests are summarised in Table 4-17. Specifically, 

197 SNPs (proportion: 0.25‰) failed the batch effect test, 284 SNPs (proportion: 0.36‰) 

failed the plate effect test, 572 SNPs (proportion: 0.72‰) violated the HWE test, 45 SNPs 

(proportion: 0.06‰) failed the sex effect test, 5,417 SNPs (proportion: 6.83‰) failed the 

array effect test and 45 SNPs (proportion: 0.06‰) were in discordance in genotyping calls 

against the controls. Overall, the proportion of SNPs removed because of poor genotyping 

call was 9.7‰. 
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Table 4 - 17: Failure rates in marker-based quality control. 

QC steps Average number of SNPs 

failed per batch (SD) 

Proportion of all genotype 

calls affected (‰) 

Marker-based QC   

Batch effect 197 (86) 0.25 

Plate effect 284 (266) 0.36 

Violation of HWE 572 (77) 0.72 

Sex effect 45 (5) 0.06 

Array effect 5,417 6.83 

Discordance across control replicates 622  0.80 

Total 7,704 (721) 9.71 

 

A total of 3,163 genotyped samples (6.5‰) were identified as poor quality based on the 

sample-based QC (Table 4-18). After adjusting heterozygosity with the first six PCs of 

population structure, 968 samples (2.0‰) were identified as having an unusually high 

heterozygosity and/or >5% missing rate. When comparing the self-reported sex and the 

genetic inferred sex, 378 samples (0.8‰) were identified as a sex mismatch. Additionally, 

652 samples (proportion: 1.3‰) were indicated as instances of sex chromosome aneuploidy. 

Another 188 samples (proportion: 0.4‰) that appeared to be related (3rd degree) to a very 

large number (>10) of individuals were suggested to be excluded, as the excess related pairs 

were likely to be false positives. Another set of 977 samples (proportion: 2.0‰) were 

indicated to be excluded by the kinship estimation, as they had properties (e.g., high missing 

rates) that would lead to unreliable kinship estimates. 

Table 4 - 18: Failure rates in sample-based quality control. 

Sample-based QC 
Number of samples 

failed QC 

Proportion of samples affected 

(‰) 

High heterozygosity and/or 

 >5% missing rate 
968 2.0 

Sex mismatch 378 0.8 

Putative sex-chromosome aneuploidy 652 1.3 

Excess related pairs 188 0.4 

Unreliable kinship estimates 977 2.0 

Total  3,163 6.5 
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4.2.3.2 Genetic population structure  

The population structure of UK Biobank is diverse as indicated by the self-reported ethnic 

background (Table 4-19). Genetic PCs were calculated to quantify the population structure 

from genetic ancestry/ethnicity. The top 40 PCs were calculated using the fastPCA (432). 

Then the SNP-loads for each PC were computed by carrying out the appropriate matrix 

multiplications based on mean-centred and variance-scaled genotypes and the PC scores 

were computed by the fastPCA. All samples were then projected onto the PCs using their 

SNP-loads. As expected, individuals with similar PC scores have similar self-reported ethnic 

backgrounds. The overall population structure of UK Biobank as revealed by the first six 

pairs of PCs is shown in Figure 4-10. Of the 488,377 samples, 409,694 individuals 

(proportion: 83.9%) were identified as White with their PC scores falling in the 

neighbourhood of the North-West European ancestry cluster. This was in concordance with 

the self-reported ethnicity, where a majority of the UK Biobank participants reported their 

ethnic background as “British” (within the broader-level group “White”). When analysing 

the PCs within the self-reported British, a homogeneous population of White British ancestry 

subset (defined with a combination of self-reported ethnic background as “British” and 

genetic indicated ethnic background as “White” based on the PCs) was identified, which 

included 409,703 individuals.  

Table 4 - 19: Self-reported ethnic background. 

Self-reported ethnic background 
No. of 

participants 

Percentage 

(%) 

White (British, Irish, and other white background)  472,798 94.06 

Asian (Indian, Pakistani, Chinese, Bangladeshi and other 

Asian background) 
11,461 2.28 

Black (Africa, Caribbean and other black background) 8,093 1.61 

Mixed (White & Asian, White & Black, other mixed 

background) 
2,966 0.59 

Other/Unknown 7,339 1.46 
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Figure 4 - 10: Ancestral diversity in the UK Biobank cohort.  

Plots were made of consecutive pairs of the first six PCs in a PC analysis of genotype data for 

UK Biobank participants. Each point represents an individual and is placed according to their 

principal component scores (using genetic data only), with shapes and colours indicating their 

self-reported ethnic background as shown in the legend (Source: adapted from (417)). 

4.2.3.3 Genetic relatedness  

The genetic relatedness among UK Biobank participants was estimated by the kinship 

coefficients for all pairs of samples. According to the kinship inference, a total of 147,731 

UK Biobank participants (30.3%) were inferred to be related (3rd degree or closer) to at least 

one other participant in the cohort. The related individuals formed a total of 107,162 related 

pairs (Table 4-20), including 179 pairs of monozygotic twins, 6,276 pairs of parent-offspring, 

22,666 pairs of full siblings, 11,113 pairs of 2nd degree relatives (e.g., uncle-niece) and 

66,928 pairs of 3rd degree relatives (e.g., first cousins). In order to find the subset with the 

maximum number of unrelated individuals, further examination of the relationships among 

the samples within family groups was required (the procedure of identifying the largest 

possible subset of unrelated individuals is described below in the Chapter 4, Section 4.3.1 

“Study population selection”).  
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Table 4 - 20: Summary of related pairs (3rd degree or closer) for UK Biobank.* 

 
Monozygotic 

twins 

Parent-

offspring 

Full 

siblings 

2nd 

degree 

3rd 

degree 
Total 

Number 

of pairs 
179 6,276 22,666 11,113 66,928 107,162 

*Counts are derived from the kinship coefficients. 
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4.3  Cleaning and preparation of UK Biobank data 

4.3.1 Study population selection 

The SUA PheWAS analysis was constrained to a subset of unrelated White British 

individuals with high quality genotype data in order to minimize the influence of diverse 

population structure within UK Biobank. The metrics used to select the target study 

population were based on the data fields created for the genotype QC in UK Biobank. The 

detailed process for selecting target population is described below.  

4.3.1.1 Sex mismatch  

There are two data fields available to describe the sex of samples. Field one is the self-

reported sex submitted by participants (coded by data field 31 as “male” and “female”) and 

the other is the genetic sex (coded by data field 22001 as “male” and “female”) inferred 

from the calling genotypes on the male-specific region of the Y chromosome and the non- 

pseudoautosomal region of the X chromosome. When self-reported sex was not consistent 

with the inferred sex from genotype data samples were referred to as a sex mismatch. When 

comparing the data field 31 with the data field 22001, 99.9% samples showed concordance, 

but for a small number of samples (n=378) the data fields did not match and were thus 

excluded from the target population.  

4.3.1.2 Outliers in heterozygosity and missing rates  

The property of outliers in heterozygosity and high missing rates was coded as 0 (no) or 1 

(yes) and was described in the variable: “het.missing.outliers”. A total of 968 samples (coded 

as 1 [“yes”]) were identified as outliers and were excluded from the study population.  

4.3.1.3 Putative aneuploidy in sex chromosome  

The property of putative aneuploidy in sex chromosome (putatively carrying sex 

chromosome configurations that are not either XX or XY) was coded as 0 (“no”) or 1 (“yes”) 

and was described in the variable: “putative.sex.chromosome.aneuploidy”. A total of 652 

samples (coded as 1 [“yes”]) were identified as aneuploidy in sex chromosome and thus 

were excluded from the study population. 

4.3.1.4 Excess relatives 

The property of excess relatives (with more than 10 putative 3rd degree relatives in the 

kinship table) was coded as 0 (“no”) or 1 (“yes”) and was described in the variable: 
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“excess.relatives”. A total of 188 samples (coded as 1 [“yes”]) were identified to have excess 

relatives in UK Biobank and thus excluded from the study population.  

4.3.1.5 White British ancestry   

The property of White British ancestry (self-reported ethnic background as “British” and 

genetic ethnic background as “White”) was coded as 0 (“no”) or 1 (“yes”) and was described 

in the variable: “in.white.British.ancestry.subset”.  A total of 78,674 samples (coded as 0 

[“no”]) did not belong to the White British subset and thus were excluded from the study 

population. 

4.3.1.6 Subset of unrelated individuals 

To find the subset with the maximum number of unrelated individuals, Bycroft et al 

developed a procedure by using the R package “i-graph (v1.0.1)”. I first pruned the full 

pairwise kinship table so that it only included White British individuals that passed the 

sample quality control;  I then converted the pruned kinship table into a graph object where 

each vertex is an individual and edges exist between pairs of related individuals (421). Then, 

for each “family” (i.e. a network of nodes joined by edges as shown in Figure 4-11), the 

largest subset of individuals (vertices) without relatedness were identified and chosen by an 

algorithm implemented in the “largest_ivs” function in “i-graph” R package. For instance, 

in a simple case of trios, the child would be excluded, leaving the maximum number of two 

unrelated parents. When there were multiple possible solutions for the choice of the largest 

subset of unrelated individuals, one of these solutions were chosen at random. By following 

this procedure, the largest possible subset was identified, it included 339,256 unrelated 

individuals when restricted to the quality-filtered subset of White British. 
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Figure 4 - 11: Familial relatedness in the UK Biobank cohort.  

This figure illustrates examples of family groups within the UK Biobank cohort. Points indicate 

participants and lines between points indicate familial relatedness (3rd degree and closer), as 

inferred from the genetic data. The colour and thickness of the lines indicate different relative 

classes, as shown in the key. No integer means there is only the one shown; for example, there is 

only one network that comprises 6 full siblings (plus one 3rd degree relative who is related to all 

siblings). An integer next to a network indicates the total number of family networks in the 

cohort with the same configuration, ignoring 3rd degree pairs. For example, there are 10 networks 

that comprise exactly 5 full siblings (two examples, which differ with respect to a 3rd degree 

relative, are shown on this plot); when selecting the subset of unrelated individuals, one of the 5 

full sibling were retained at random; (Source: adapted from (421)).  

4.3.2 Covariate selection 

Covariates for the SUA PheWAS analysis were selected based on consideration of the 

baseline characteristics of UK Biobank cohort, the properties of genotyping data and the 

potential confounding factors related to SUA level. The following list of potential covariates 

were included: age, sex, BMI, assessment centre, the first 6 PCs, deprivation index, smoking 

status and alcohol intake frequency. Some other potential confounding variables such as data 

on creatinine concentration, HDL cholesterol and triglycerides were not available in UK 

Biobank and thus were not included as covariates. 
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4.3.2.1 Sex, age and BMI  

Among the selected study population (with 339,256 unrelated White British individuals), 

there were 182,110 females and 157,146 males (data field 32). To describe the age of study 

populatio, two data fields are available: age at recruitment (data field 21022) and age when 

attended assessment centre (data field 21003). The mean age of the study population at 2016 

was 64.82 (SD: 8.00) years. The distribution of male and female participants in each age 

group is shown in Figure 4-12.  The BMI (defined as: weight (kg) / [height (m)]2) was coded 

by the data field 21001 as a continuous variable expressed in kg/m2. The mean value of BMI 

was 27.02 (SD: 4.76) kg/m2 for female and 27.83 (SD: 4.23) kg/m2 for male (Figure 4-13).  

 

Figure 4 - 12: The age distribution of male and female participants. 
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Figure 4 - 13: The boxplot for BMI (kg/m2) in each sex.  

 

4.3.2.2 Assessment centre 

Assessment centre, where the participants were recruited, is coded by the data field f.54.0.0. 

The 339,256 unrelated White British individuals included in this study were distributed 

across 22 assessment centres. The number of participants recruited from each assessment 

centre is displayed in Figure 4-14. The assessment centre with the largest number of 

participants in this study was Leeds (n=31,348). The characteristics of the other covariates 

(sex, age, BMI) are summarised for each assessment centre and are shown in Table 4-21.  



Chapter 4  UK Biobank  

166 

 

 

Figure 4 - 14: The number of participants recruited from each assessment centre.  

Table 4 - 21 A summary of the baseline characteristics of participants recruited from each 

assessment centre. 

Assessment centre Counts Sex 

(female/male) 

Age  

(years) 

BMI  

(kg/m2) 

Barts       5,908 3,103/2,805 63.47±8.13 26.24±4.79 

Birmingham 16,056 8,385/7,671 63.92±8.11 27.70±4.85 

Bristol   30,830 16,982/13,848 63.98±8.27 27.02±4.66 

Bury 20,383 10,629/9,691 65.87±7.76 27.70±4.70 

Cardiff 12,781 6,885/5,896 65.01±7.84 27.97±4.86 

Croydon 15,076 8,217/6,859 64.28±7.79 26.98±4.70 

Edinburgh 12,355 6,826/5,529 65.39±7.92 27.02±4.67 

Glasgow 12,693 6,983/5,710 65.45±8.16 27.65±4.85 

Hounslow     14,763 7,922/6,841 64.22±7.98 26.71±4.70 

Leeds   31,348 16,984/14,364 64.97±7.92 27.44±4.72 

Liverpool 22,685 12,105/10,580 64.64±7.9 27.83±4.90 

Manchester 9,078 4,804/4,274 65.15±8.34 27.46±4.94 

Middlesborough     15,295 8,103/7,192 64.32±8.06 27.81±4.77 

Newcastle 26,285 14,184/12,101 65.2±7.94 27.73±4.74 

Nottingham   24,411 13,129/11,282 65.14±7.92 27.38±4.70 
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Oxford 9,922 5,654/4,268 66.04±7.96 26.67±4.62 

Reading   21,249 11,489/9,760 64.97±7.91 26.87±4.50 

Sheffield  21,885 11,651/10,234 64.36±7.82 27.53±4.81 

Stockport (pilot) 319 169/150 65.84±7.52 26.46±4.90 

Stoke 13,824 6,703/7,121 65.45±8.00 27.75±4.69 

Swansea 1,620 882/738 64.37±7.98 28.19±5.18 

Wrexham 490 258/232 63.53±8.22 28.62±5.81 

Overall   339,256 182,110/157,146 64.82±8.00 27.40±4.76 

 

4.3.2.3 Genetic principal components  

As explained in Section 2.3.2, the top 40 genetic PCs were computed and represented by a 

set of PC scores for all samples in the UK Biobank cohort. The top 40 PC scores were coded 

by the data field 22009 with an array index (multiple data items for each instance) running 

from 1 to 40. The first six PC scores were chosen as covariates to adjust for the 

heterozygosity of the population structure in SUA PheWAS, as they explained the most 

variation. The plots for the first six PC scores (pairs of PCs: 1&2; 3&4; 5&6) for the UK 

Biobank samples are shown in Figure 4-15 and the blue crosses represent the subset of 

White British ancestry (the target population of SUA PheWAS analysis) with their first six 

PC scores falling in the neighbourhood of the North-West Europe ancestry  cluster.  
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Figure 4 - 15: Plots for the first six PC scores.  

Each plot shows the principal component scores for all UK Biobank samples used to select the 

white British ancestry subset. Non-grey points indicate participants who have self-reported ethnic 

background “British” and participants with other ethnic backgrounds are coloured grey (Source: 

adapted from reference (421)). 

4.3.2.4 Other covariates 

To adjust for any effect of environmental exposures, smoking status and alcohol intake 

frequency were also included as covariates. Smoking status (coded by data field 20116) was 

categorised as “current smoking”, “previous smoking”, “never smoking” and “prefer not to 

answer”. The number of participants assigned to each smoking status is shown in Table 4-22. 

Alcohol intake frequency (coded by data field 1558) was grouped as “daily or almost daily”, 

“three or four times a week”, “once or twice a week”, “one to three times a month”, “special 

occasion only”, “never”, and “prefer not to answer”. The number of participants grouped in 

each category is summarised in Table 4 - 22. 
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Table 4 - 22: The smoking status and alcohol intake frequency among participants. 

Categorical Levels No. of participants Proportion (%) 

Smoking status 

Current smoking 35,798 29.0 

Previous smoking 31,090 25.2 

Never smoking 55,376 44.9 

Prefer not to answer 1,029 0.8 

Missing 88 <0.1 

Alcohol intake 

frequency 

Daily or almost daily 25,653 21.4 

3 or 4 times a week 28,224 23.5 

1 or 2 times a week 31,434 26.2 

1 to 3 times a month 13,373 11.1 

Special occasions only 13,161 11.0 

Never 8,168 6.8 

Prefer not to answer 78 <0.1 

Missing 0 0 
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4.3.3 Construction of genetic instruments  

4.3.3.1 Genetic risk loci and effect sizes 

To generate genetic instruments for SUA levels I searched for genetic variants associated 

with SUA levels from the GWAS catalogue (accessed in 07 Feb, 2017). Thirty genetic risk 

loci in relation to SUA levels (p<5×10-8) were identified from previous GWAS (150, 151). 

Based on the MR analysis performed by White et al (323), one more SNP rs164009 located 

in the PRPSAP1 gene (p=7.06×10-7) was included given its functional role in urate 

metabolism (i.e., it encodes a protein involved in the regulation of purine synthesis). In total, 

31 independent SNPs were selected as genetic proxies of SUA level (Table 4-23). These 

SNPs are distributed across 14 chromosomes (Chromosome 1 [n=2], Chromosome 2 [n=3], 

Chromosome 3 [n=1], Chromosome 4 [n=2], Chromosome 5 [n=1], Chromosome 6 [n=4], 

Chromosome 7 [n=2], Chromosome 8 [n=2], Chromosome 10 [n=2], Chromosome 11 [n=3], 

Chromosome 12 [n=2], Chromosome 15 [n=2], Chromosome 16 [n=2], Chromosome 17 

[n=3]).  

Each SNP effect on SUA level (effect size and standard error [SE]) was taken from the 

largest meta-analysis of GWAS in European populations performed by the GUGC 

consortium (151). This meta-analysis included 48 individual GWAS with 110,347 

individuals. The overall proportion of variance (adjusted R2) of SUA level explained by the 

31 selected SNPs was estimated to be 7%, of which 3.4% was explained by two SNPs 

(rs12498742 located at SLC2A9 and rs2231142 located at ABCG2) alone. Genome-wide sex-

interaction on the serum urate effect sizes were also examined in this study (151). They 

performed meta-analyses of GWAS separately for 49,825 men and 60,522 women. Except 

for SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly 

(p<5×10-8) in their effect sizes between men and women. The effect estimates of the 31 

selected SNPs on SUA level for the overall and sex-specific subjects are summarised in 

Table 4-23.  
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Table 4 - 23: The GWAS summary estimates for the effect of 31 SNPs on SUA level. 

Genetic instruments Overall effect  Male-specific effect Female-specific effect 

SNP Chr A1 A2 Closest/GRAIL gene beta se p_gc beta1 se1 p1 beta2 se2 p2 

rs10480300 7 T C PRKAG2/PRKAG2 0.032 0.006 9.37E-07 0.043 0.010 1.70E-05 0.024 0.008 3.20E-03 

rs10821905 10 A G A1CF/ASAH2 0.053 0.007 3.45E-12 0.042 0.011 3.80E-04 0.060 0.009 2.50E-10 

rs11264341 1 T C TRIM46/PKLR -0.048 0.006 1.04E-14 -0.055 0.009 1.10E-08 -0.044 0.007 9.10E-09 

rs1165151 6 T G SLC17A1/SLC17A3 -0.092 0.005 4.52E-60 -0.096 0.008 1.30E-28 -0.089 0.007 4.20E-37 

rs1171614 10 T C SLC16A9/SLC16A9 -0.074 0.007 6.48E-23 -0.086 0.011 1.90E-13 -0.067 0.009 3.00E-13 

rs1178977 7 A G BAZ1B/MLXIPL 0.050 0.007 6.68E-12 0.055 0.011 8.20E-07 0.046 0.009 2.60E-07 

rs12498742 4 A G SLC2A9/SLC2A9 0.380 0.006 0.00E+00 0.269 0.010 6.40E-153 0.460 0.008 0.00E+00 

rs1260326 2 T C GCKR/GCKR 0.077 0.006 1.31E-40 0.091 0.009 3.00E-25 0.063 0.007 1.90E-04 

rs1394125 15 A G UBE2Q2/NRG4 0.043 0.006 9.78E-11 0.060 0.010 5.50E-06 0.032 0.008 1.00E-04 

rs1471633 1 A C PDZK1/PDZK1 0.061 0.005 1.40E-26 0.069 0.008 3.50E-15 0.054 0.007 1.60E-14 

rs164009 17 A G QRICH2/PRPSAP1 0.029 0.006 7.06E-07 0.024 0.009 6.20E-03 0.032 0.007 8.20E-06 

rs17050272 2 A G INHBB/INHBB 0.037 0.006 9.36E-09 0.049 0.010 6.50E-07 0.030 0.008 1.90E-04 

rs17632159 5 C G TMEM171/TMEM171 -0.038 0.006 2.00E-09 -0.043 0.010 1.30E-05 -0.039 0.008 1.10E-06 

rs17786744 8 A G STC1/STC1 -0.031 0.005 8.82E-08 -0.033 0.009 2.10E-04 -0.029 0.007 2.10E-04 

rs2078267 11 T C SLC22A11/SLC22A11 -0.078 0.006 8.73E-36 -0.085 0.009 2.90E-19 -0.071 0.007 5.70E-20 

rs2079742 17 T C BCAS3/C17orf82 0.051 0.008 6.24E-09 0.054 0.013 5.60E-05 0.048 0.010 1.00E-05 

rs2231142 4 T G ABCG2/ABCG2 0.220 0.009 4.43E-116 0.270 0.014 3.80E-75 0.181 0.011 1.30E-52 

rs2307394 2 T C ORC4L/ACVR2A -0.035 0.006 7.26E-09 -0.036 0.009 1.20E-04 -0.034 0.007 4.70E-06 

rs2941484 8 T C HNF4G/HNF4G 0.049 0.006 3.91E-17 0.048 0.009 6.20E-08 0.046 0.007 1.30E-10 

rs3741414 12 T C INHBC/INHBE -0.071 0.007 9.79E-22 -0.091 0.011 7.00E-16 -0.057 0.009 4.30E-10 
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Genetic instruments Overall effect Male-specific effect Female-specific effect 

SNP Chr A1 A2 Closest/GRAIL gene beta se p_gc beta1 se1 p1 beta2 se2 p2 

rs478607 11 A G NRXN2/SLC22A12 -0.048 0.007 5.31E-10 -0.058 0.012 9.60E-07 -0.043 0.009 8.80E-06 

rs642803 11 T C OVOL1/LTBP3 -0.043 0.005 4.51E-14 -0.047 0.008 8.00E-08 -0.042 0.007 2.10E-09 

rs653178 12 T C ATXN2/PTPN11 -0.036 0.005 2.45E-10 -0.044 0.009 7.50E-07 -0.032 0.007 5.50E-06 

rs6598541 15 A G IGF1R/IGF1R 0.044 0.006 5.20E-13 0.039 0.009 2.70E-05 0.050 0.007 1.60E-11 

rs675209 6 T C RREB1/RREB1 0.063 0.006 1.38E-21 0.060 0.010 3.30E-09 0.064 0.008 2.00E-15 

rs6770152 3 T G SFMBT1/MUSTN1 -0.048 0.006 2.66E-16 -0.052 0.009 6.70E-09 -0.047 0.007 6.00E-11 

rs7188445 16 A G MAF/MAF -0.032 0.006 1.15E-07 -0.025 0.009 7.90E-03 -0.040 0.007 6.40E-08 

rs7193778 16 T C NFAT5/NFAT5 -0.047 0.008 2.36E-08 -0.048 0.012 2.10E-04 -0.045 0.010 1.00E-05 

rs7224610 17 A C HLF/HLF -0.038 0.006 4.74E-11 -0.043 0.009 9.00E-07 -0.034 0.007 3.00E-06 

rs729761 6 T G VEGFA/VEGFA -0.046 0.006 3.05E-12 -0.047 0.010 3.20E-06 -0.047 0.008 3.20E-06 

rs742132 6 A G LRRC16A/LRRC16A 0.035 0.006 1.90E-08 0.035 0.006 1.90E-08 0.035 0.006 1.90E-08 
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4.3.3.2 Use of individual SNPs as genetic instruments  

To achieve the primary goal of the PheWAS, which is to identify the cross-phenotype 

associations (genetic risk locus shared by multiple phenotypes), the simplest and most 

appropriate approach is to use each single genetic variant of interest as a predictor to observe 

its associations with the phenome. For this purpose, all 31 SNPs related to SUA level were 

applied as genetic predictors individually to explore their associations with the phenome. 

Genotypes of the 31 selected SNPs were extracted from the UK Biobank genetic datasets for 

the selected study population. Of these, 10 SNPs (rs11264341, rs1260326, rs1394125, 

rs17050272, rs2078267, rs2231142, rs2307394, rs675209, rs742132, rs653178) were 

genotyped for all included individuals (n=339,256). Genotypes of the remaining 21 SNPs 

were extracted from the imputed data. The number of participants with missing genotypes 

for the 21 SNPs ranges from 51-12,004 (median: 3,206) and the missing rates of genotypic 

data were less than 5% (range: 0.2%-4.2%; median: 0.09%). The allele frequency and 

genotype count of the study population (n=339,256) from UK Biobank is presented in Table 

4-24.  

To describe the nature and potential effect of each single variant, the function of putative 

genes where these variants map to was annotated by using NCBI gene database and 

GeneCards (www.genecards.org) database (Chapter 1, Section 1.3 “Genetic 

polymorphisms” for more information). In summary, of these 31 SNPs, 7 were mapped to 

genes (SLC22A11/OAT4, SLC22A12/URAT1, SLC17A1/NPT, PDKZ1, SLC2A9/GLUT9, 

ABCG2, and SLC16A9) encoding proteins related to urate transport across renal and gut 

membranes; one SNP (rs164009) is located within a candidate gene (PRPSAP1) that encodes 

a protein involved in the regulation of purine synthesis and thus affects urate generation; the 

remaining SNPs were largely mapped to genes encoding proteins for transcription or 

inhibins-activins growth factors with broad downstream responses and highlighting 

pathways in relation to carbohydrate metabolism, such as regulation of glycolysis, glucose, 

insulin and pyruvate.  

  

http://www.genecards.org/


Chapter 4  UK Biobank 

174 

 

Table 4 - 24: The allele frequency and genotype count of the 31 selected SNPs in the study population (n=339,265) from UK Biobank.  

SNP A1 A2 A1_freq A2_freq Genotype 1 (A1A1) Genotype 2 (A1A2) Genotype 3 (A2A2) Missing number Missing 

rate 

rs10480300 T C 0.727 0.273 25,212 132,730 178,115 3,206  0.009 

rs10821905 A G 0.824 0.176 10,415 97,284 227,374 4,190 0.012 

rs11264341 T C 0.571 0.429 62,651 166,037 110,575 0 0 

rs1165151 T G 0.549 0.451 68,897 167,982 101,915 469 0.001 

rs1171614 T C 0.769 0.231 17,960 120,040 199,948 1,315 0.004 

rs1178977 G A 0.802 0.198 13,322 107,362 218,528 51 0.000 

rs12498742 G A 0.768 0.232 18,453 120,558 199,922 330 0.001 

rs1260326 T C 0.607 0.393 52,424 161,510 125,329 0 0 

rs1394125 A G 0.638 0.362 44,414 156,803 138,046 0 0 

rs1471633 A C 0.538 0.462 72,514 168,505 97,945 299 0.001 

rs164009 G A 0.613 0.387 50,142 159,289 126,229 3,603 0.011 

rs17050272 A G 0.589 0.411 57,230 164,105 117,928 0 0 

rs17632159 C G 0.697 0.303 31,048 141,910 163,384 2,921 0.009 

rs17786744 G A 0.590 0.410 56,472 162,194 116,523 4,074 0.012 

rs2078267 C T 0.548 0.452 69,205 168,460 101,598 0 0 

rs2079742 C T 0.864 0.136 6,053 78,293 247,447 7,470 0.022 

rs2231142 T G 0.887 0.113 4,470 67,948 266,845 0 0 

rs2307394 C T 0.697 0.303 30,747 144,185 164,331 0 0 

rs2941484 T C 0.553 0.447 65,907 161,615 100,841 10,900 0.032 

rs3741414 T C 0.755 0.245 20,467 124,940 193,647 209 0.001 

rs478607 G A 0.847 0.153 8,044 87,168 243,012 1,039 0.003 
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SNP A1 A2 A1_freq A2_freq Genotype 1 (A1A1) Genotype 2 (A1A2) Genotype 3 (A2A2) Missing number Missing 

rate 

rs642803 T C 0.536 0.464 72,507 166,237 96,539 3,980 0.012 

rs653178 C T 0.517 0.483 79,137 169,471 90,655 0 0 

rs6598541 A G 0.645 0.355 42,133 153,913 139,819 3,398 0.010 

rs675209 T C 0.731 0.269 24,595 133,343 181,325 0 0 

rs6770152 G T 0.576 0.424 60,131 163,329 111,108 4,695 0.014 

rs7188445 A G 0.672 0.328 36,423 148,347 152,201 2,292 0.007 

rs7193778 C T 0.850 0.150 7,559 86,228 243,737 1,739 0.005 

rs7224610 C A 0.604 0.396 51,092 154,994 118,920 14,257 0.042 

rs729761 T G 0.715 0.285 26,764 132,929 167,566 12,004 0.035 

rs742132 G A 0.706 0.294 29,186 140,891 169,186 0 0 
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4.3.3.3 Calculation of a weighted polygenic risk score as a proxy of SUA level  

To explore the potential causal effect of SUA level across phenome-wide health outcomes, a 

weighted polygenic genetic risk score (GRS) was constructed by incorporating information 

from the 31 genetic risk loci associated with SUA level. Specifically, the polygenic risk score 

was created by adding up the number of SUA level increasing alleles carried by all 31 SNPs 

and then weight it based on their effect estimates on SUA level (regression coefficient beta) 

derived from the SUA GWAS performed by the GUGC consortium. For instance, if 

individual 𝑖 carries 𝑔𝑖𝑘 copies of the SUA-increasing allele for each variant 𝑘 = 1, … ,31, the 

weight for variant 𝑘 is 𝑤𝑘  then their weighted polygenic score is 𝑍𝑖 = ∑ 𝑤𝑘𝑔𝑖𝑘
31
𝑘=1 .  

The weighted polygenic risk score was calculated by using plink 2.0 for all individuals 

(n=339,256) included in the SUA PheWAS analysis. The weighted GRS was normally 

distributed among the study population with a mean value of 0.436 (SD: 0.309) (Table 4-25, 

Figure 4-16).  

 

Figure 4 - 16: The distribution of weighted polygenic risk score among study population. 

 

Table 4 - 25: A summary of weighted polygenic risk score among study population.  

Weighted GRS 
n Min. 1st Qu. Median 

3rd 

Qu. 
Max. Mean SD 

339,256 -0.880 0.231   0.461 0.656 1.545 0.436 0.309 
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4.3.4 Definition of the phenome framework  

The focus on a wider spectrum of phenotypes, termed the phenome, is an important aspect of 

the PheWAS approach. The phenome has been defined as a systematic and comprehensive 

set of phenotypes, including both clinical, biochemical and imaging traits, which could be 

measured as outcome phenotypes (e.g., disease status), or intermediate phenotypes (e.g., 

clinical variables). Unlike the genome, in which the genetic structure could be measured by 

reliable biological techniques, generating a framework of phenome highly relies on the 

clinical measurements and disease diagnoses. The phenome framework defined in currently 

published PheWASs varies according to studies (the characteristics of these PheWAS are 

summarised in Table 4-26), but the most effective and straightforward way for phenotyping 

is to use the electronic medical records (EMRs). In this PheWAS analysis for SUA level, I 

focused on phenotypes in relation to disease outcomes.  

4.3.4.1 ICD codes in UK Biobank 

We analysed three phenotypic datasets (in-patient hospital records, cancer registry data and 

death registry data) in the UK Biobank database. The coding for clinical diagnoses in these 

datasets follows the World Health Organisation’s ICD coding systems but uses different ICD 

versions (ICD-10 or ICD-9) based on the date of record. Within the in-patient hospital data, 

each episode has a primary ICD-10/9 diagnosis code to describe the event of hospitalisation, 

and when applicable, one or more secondary diagnosis codes followed to annotate the 

corresponding hospitalisation event. We included both the primary and secondary codes to 

define the case and control groups. Since cancer registry and death registry data overlapped 

with the disease diagnosis in hospital episode records, we pooled them into the hospital 

episode data to complement the disease diagnoses of participants. In these phenotypic 

datasets, we identified 2,779,598 unique records of hospital inpatient data corresponding to 

395,978 unique individuals (2,714,364 records had an ICD10 diagnosis code, 52,123 had an 

ICD9 diagnosis code and 13,111 records had no diagnosis code), 233,753 records 

corresponding to 79,066 unique participants (207,935 records had an ICD10 diagnosis code, 

and 25,818 had an ICD9 diagnosis code) from the cancer registry data, and 14,417 records 

from the death registry data. The breadth of the ICD-10/9 coding system ensures that it can 

describe well the range of human diseases but the individual ICD codes cannot be directly 

used to define an independent phenotype, as they are not designed to represent distinct 

phenotype groups. To aggregate the ICD codes, the PheCODE schema has been developed 

and successfully adopted in a number of PheWAS to combine one or more individual ICD 

codes into distinct phenotype groups (see the Chapter 4, Section 4.3.4.2 “PheCODE 
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schema”  for more information) (433-435).  
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Table 4 - 26: The characteristics of currently published PheWAS studies.  

Study Population Sample 

size  

Selected Predictors Phenotype data 

source 

No. of 

Phenotypes  

Significant phenotypic associations  

Genetic variants  

Denny, 2010 

(436) 

BioVU 6005 5 SNPs (with known 

associations) 

EMR (ICD-9-CM) 733  23 phenotypes (4 replicated, 19 novel) 

Denny, 2011 

(437) 

eMERGE 13,617 1 SNP (near FOXE1) EMR(ICD-9-CM) 866 Hypothyroidism, other thyroid diseases 

Pathak, 2012 

(438) 

Mayo Clinical 

Biobank 

6307 4 SNPs (associated with T2DM 

and related traits) 

EMR(ICD-9-CM) 285 Diabetes, disorders of lipid metabolism 

Denny, 2013 

(439) 

eMERGE 21,241 3144 SNPs (all SNPs in GWAS 

catalog) 

EMR(ICD-9-CM) 1385 263 phenotypes (210 replicated with 

p<0.05, 63 novel FDR<0.1) 

Hebbring, 2013 

(440) 

Marshfield Clinical 

patients 

4235 1 SNP (tagging HLA-

DRB1*1501) 

EMR(ICD-9-CM) 4841 MS, alcohol–induced cirrhosis, 

erythematous conditions, benign 

neoplasms of respiratory organs 

Pendergrass, 

2013 (441) 

PAGE network 70,061 83 SNPs (SNPs overlapped 

across PAGE study sites) 

Cohort studies 4706 111 phenotypes (26 replicated, 33 novel) 

Ritchie, 2013 

(434) 

eMERGE 13,859 23 SNPs (associated with ECG 

QRS duration) 

EMR(ICD-9-CM) 778 Cardiac arrhythmias; atrial fibrillation 

Cronin, 2014 

(442) 

Emerge & BioVU 24,198 54 SNPs (all in FTO gene) EMR(ICD-9-CM) 1645 Obesity, T2DM, fibrocystic breast disease  

Hall,         2014 

(443) 

Genetic NHANES  14,042 80 SNPs (GWAS-identified SNPs 

in NHANES datasets) 

Cohort studies 1008 69 phenotypes (21 novel) 

Mitchell, 2014 

(444) 

BioVU 11,519 130 SNPs (cardiovascular-related 

mtSNPs) 

EMR derived 8 T2DM, total cholesterol level  

Namjou, 2014 

(445) 

Paediatric patients   4268 2476 SNPs (overlapped SNPs 

between the dataset and GWAS 

catalog) 

EMR(ICD-9-CM) 539 JRA, thyroiditis, T1DM 

Shameer, 2014 

(446) 

eMERGE 13,582 81 SNPs (associated with platelet 

parameters) 

EMR(ICD-9-CM) 1368 Myocardial infarction, autoimmune, 

hematologic disorders  

Carroll, 2014 

(447) 

BioVU 6005 1 SNP (near HLA-DRB, 

associated with multiple 

sclerosis) 

EMR(ICD-9-CM) 1127 Multiple sclerosis 

Ye,           2015  

(448) 

Marshfield Clinical 

patients 

14,875 105 SNPs (presumed functional 

stop-gain and stop-loss variants) 

EMR(ICD-9-CM) 4841 Age-related macular degeneration  

Diogo, 2015 

(449) 

BioVU & other 29,377 3 SNPs (in TYK2 gene) EMR(ICD-9) 502 Rheumatoid Arthritis (RA) 
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Study Population Sample 

size  

Selected Predictors Phenotype data 

source 

No. of 

Phenotypes  

Significant phenotypic associations  

Moore, 2015 

(450) 

AIDS Clinical Trial 

Group 

2547 10,584 SNPs (SNPs passed the 

filter threshold across datasets) 

Clinical trial 

(Laboratory 

Phenotypes) 

27 Higher total bilirubin 

Lower absolute neutrophil counts 

LDL-C 

Hebbring, 2015 

(451) 

Marshfield Clinical 

patients 

4235 5 SNPs (reported in GWAS) EMR (ICD code & 

text-mining) 

23,384 & 4841 Nonexudative senile macular 

degeneration, spondylitis, MS, atrial 

fibrillation, triglyceride level 

Non-genetic predictors  

Warner, 2012 

(452) 

MIMIC II  36,095 Peak WBC count  EMR(ICD-9-CM) 5756 26 phenotypes (e.g. unspecified 

septicaemia) 

Boland, 2013 

(453) 

New Yorkers  2475 Presence of periodontitis EMR(ICD-9-CM) 993 9 phenotypes (e.g. T1DM, T2DM) 

Liao,         2013  

(454) 

RA cases vs. controls 2526 Autoantibody  EMR(ICD-9-CM) 512 Hypothyroidism, sicca, chronic non-

alcoholic liver disease  

Neuraz, 2013 

(455) 

Patients treated by 

thiopurine drugs 

442 TPMT activity  EMR(ICD-10) 445 Diabetes, nutritional anaemia 

Warner, 2013a 

(456) 

MIMIC II 24,580 Length of hospitalisation EMR(ICD-9-CM) 5657 191 (e.g. hospital-acquired complications) 

Warner,  2013b 

(457) 

MIMIC II & SHRINE 3392 Myeloma EMR(ICD-9-CM) 431 24 (e.g. Pathologic fraction) 

Roesch, 2015 

(458) 

Geisinger Clinic’s 

bariatric surgery 

program 

128 FGF19 and FGF21 EMR  205 Higher glucose 
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4.3.4.2 PheCODE schema 

The PheCODE schema was developed to combine one or more related ICD codes into 

distinct diseases or traits (459). In principle, ICD codes representing diseases with common 

aetiology were combined into one phenotype group defined by the phecode. On the other 

hand, for some diseases with distinctly different aetiologies, like type 1 and type 2 diabetes, 

their individual codes are retained and allocated into different phenotype groups. The 

PheCODE system has been continuously refined by clinical experts helping with revisions of 

different domains, such as cardiology and oncology. The latest version of the PheCODE 

system includes 1,866 hierarchical phenotype codes. The PheCODE system also provides a 

scheme to automatically exclude patients that have similar or potentially overlapping 

diseases (e.g. excluding type 1 diabetes and secondary diabetes mellitus for an analysis of 

type 2 diabetes) from the corresponding control group. Although the PheCODE system is 

effective at replicating genotype-phenotype associations, the current version of the 

PheCODE system was designed for the International Classification of Diseases, version 9, 

Clinical Modification (ICD-9-CM), and the phecode algorithm was not directly applicable to 

the ICD-10 coding system in the UK Biobank. 

To develop an aggregation method for the PheWAS analysis applicable to the ICD-10 coding 

system in UK Biobank, we collaborated with the Electronic Medical Records and Genomics 

(eMERGE) group of Vanderbilt University Medical Center and mapped ICD-10 codes to 

phecodes in both direct and indirect ways (Figure 4-17). An ICD-10 code could be mapped 

to a phecode directly if their descriptions matched each other regardless of capitalisation. An 

ICD-10 code can also be mapped to a phecode indirectly through an ICD-9-CM code.  The 

unified medical language system (UMLS) was used to map the ICD-10 code to ICD-9-CM 

(or map the ICD-10 code to systematised nomenclature of medicine clinical terms 

[SNOMED CT] code first and then to ICD-9-CM) and then the previous mapping of ICD-9-

CM to phecode was used to finally link the ICD-10 to the phecode. When an ICD-10 code 

could be mapped to both a child phecode and its parent phecode, only the mapping to the 

child phecode was retained and the child phecode was then mapped to its parent phecode; or 

when an ICD-10 code can be mapped to multiple distinct phecodes, all the mappings are 

kept. The mapping process was developed by the Vanderbilt group and I matched the ICD 

codes in the UK Biobank to the PheCODE schema for analysis. 
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Figure 4 - 17: Mapping ICD-10 codes to phecodes.  

Abbreviations: SNOMED CT = Systematised Nomenclature of Medicine, Clinical Terms; UMLS = 

Unified Medical Language System; GEM = General Equivalence Mappings; OHDSI = Observational 

Health Data Sciences and Informatics. 

Among the 7,990 ICD-10 codes used in UKBB, 6,654 (83.2%) codes were successfully 

mapped to phecodes. An additional 3,500 ICD codes within UKBB did not exist in the 

current ICD-10 versions, therefore, were not mapped to phecodes. When examining the 

mapping procedure, the majority of the unmapped ICD-10 codes were composed of 

encounter or procedural codes (i.e. codes beginning with Z) or supplementary codes (i.e. 

codes beginning with Y), which were not a description of a specific phenotype or disease. In 

addition, some ICD-10 code areas used in the UKBB representing the personal and family 

history were also unable to be mapped due to the missing corresponding elements in the 

PheCODE system. The top 10 unmapped ICD-10 codes are listed in Table 4-27. In total, 

8,947 ICD-10 codes were mapped to at least one phecode, with 256 (2.9%) codes mapped to 

more than one phecode. After mapping diagnostic ICD-10/9 codes to phecodes, the 

phenotypic data of UK Biobank consisted of 1807 distinct phecodes. 
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Table 4 - 27: The top ten unmapped ICD-10 codes in the UKBB. 

 UKBB ICD-10 ICD-10 descriptions 

In
-h

o
sp

it
a

l 
a

n
d

 c
a

n
ce

r 
re

g
is

tr
y

 d
a

ta
  

Z53.8 Procedure not carried out for other reasons 

Z92.2 Personal history of long-term (current) use of other medicaments 

Z30.2 Sterilisation 

Z82.4 Family history of ischaemic heart disease and other diseases of the 

circulatory system 

Z37.0 Single live birth 

Z03.8 Observation for other suspected diseases and conditions 

Z12.1 Special screening examination for neoplasm of intestinal tract 

Z92.1 Personal history of long-term (current) use of anticoagulants 

Z96.6 Presence of orthopaedic joint implants 

Z09.0 Follow-up examination after surgery for other conditions 

 

4.3.4.3 Tree-structured phenotypic model  

A novel Bayesian analysis framework, termed a tree-structured phenotypic model 

(TreeWAS), was developed to interrogate increasingly specific sub-phenotypes encoded by 

ICD-10 codes while retaining the statistical power to detect genetic associations (460). This 

application models the genetic coefficients across all phenotypes as a set of random 

variables. Given that ICD-10 codes are organised in a hierarchical tree-like structure, to 

model the correlation of this structure, a Markov process is applied to allow the genetic 

coefficients to evolve down the tree trunk and branches. The tree structure is determined 

from a known classification hierarchy based on the ICD coding system where each node of 

the tree is a clinical term in the classification and observations can be made at both terminal 

and internal nodes. The prior probability determines the expected degree of correlation 

between genetic coefficients across phenotypes. The coefficient at a parent node can either 

be inherited by a child node (the probability is denoted as e-θ) or can transition to a new 

uncorrelated value (the probability is denoted as 1- e-θ). This new value will be zero with a 

probability of 1 – π1, or non-zero with a probability π1. Thus, the e-θ and π1 parameters define 

the transition probabilities that control the Markov process. Given the structure of the model 

and the Markov process assumption, the likelihood over the genetic coefficients could be 

calculated across all clinical phenotypes using a dynamic programming model and the 

forward and backward algorithms (see reference (460) for more details). An overall Bayes 

Factor (BF) is estimated if the genetic coefficients are non-zero for at least one of the nodes 

in the tree. The marginal posterior probability (PP) at each node in the tree where the genetic 



Chapter 4  UK Biobank 

184 

 

coefficient is non-zero, and the magnitude of the corresponding effect were determined by 

using the maximum a posteriori (MAP) estimator (see reference (460) for more details). 
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5 MR-PheWAS: INTERIM RELEASE OF UK BIOBANK DATA 

5.1 Summary 

This chapter presents a MR-PheWAS (phenome-wide association study incorporated with 

Mendelian randomisation [MR]) analysis that was performed to investigate the associations 

between the 31 SUA genetic risk variants and a very wide range of disease outcomes (n=568) 

by using the interim release data of UK Biobank (n=120,091). The SUA genetic risk loci 

were employed as instruments individually. The framework of phenome was defined by the 

PheCODE schema using the ICD diagnosis codes documented in the health records of UK 

Biobank. Phenome-wide association tests were performed first to identify associations across 

the SUA genetic risk loci and the Phenome; MR and HEIDI (heterogeneity in dependent 

instruments) analyses were then applied to investigate whether the observed PheWAS 

associations were due to causality, pleiotropy or genetic linkage.  

The MR-PheWAS (using the interim release cohort) identified 25 disease groups/ outcomes 

to be associated with SUA genetic risk loci after multiple testing correction (p<8.57×10-5). 

The MR IVW (inverse variance weighted) analysis implicated a causal role of SUA level in 

three disease groups: inflammatory polyarthropathies (OR=1.22, 95% CI: 1.11 to 1.34), 

hypertensive disease (OR=1.08, 95% CI: 1.03 to 1.14) and disorders of metabolism 

(OR=1.07, 95% CI: 1.01 to 1.14); and four disease outcomes: gout (OR=4.88, 95% CI: 3.91 

to 6.09), essential hypertension (OR=1.08, 95% CI: 1.03 to 1.14), myocardial infarction 

(OR=1.16, 95% CI: 1.03 to 1.30) and coeliac disease (OR=1.41, 95% CI: 1.05 to 1.89). After 

balancing pleiotropic effects in MR Egger analysis, only gout and its encompassing disease 

group of inflammatory polyarthropathies were considered to be causally associated with 

SUA level. The analysis also highlighted a locus (ATXN2/S2HB3) that may influence SUA 

level and multiple cardiovascular and autoimmune diseases via pleiotropy. 

This chapter has been published in the Annals of the Rheumatic diseases cited as “Li, X., 

Meng, X., Spiliopoulou, A., Timofeeva, M., Wei, W.Q., Gifford, A., Shen, X., He, Y., Varley, 

T., McKeigue, P., Tzoulaki, I., McKeigue, P., Joshi, P., Denny, J.C., Campbell, H. and 

Theodoratou, E. 2018. MR-PheWAS: exploring the causal effect of SUA level on multiple 

disease outcomes by using genetic instruments in UK Biobank. Annals of the rheumatic 

diseases, pp.annrheumdis-201. doi: 10.1136/annrheumdis-2017-212534” (461).  

I was fully involved in all aspects of the research work presented in this chapter and the 

publication. In the study design, I read a vast amount of literature and found different 
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methodologies to decide the most appropriate one for this study. During the implementation 

of data analysis, I sought guidance from my supervisors to ensure each step of the analysis 

was robust and reasonable. I accomplished the data analysis with detailed reports to present 

the research findings. For publishing this work, I wrote the manuscript and revised the paper 

according to the comments given by the peer reviewers and the journal editors. Specific to 

the contribution of co-authors, Theodoratou, E. and Campbell, H. conceived the study. Meng, 

X., Wei, Q., Gifford, A., Tzoulaki, I., Denny, J.C., and Varley, T., contributed to create the 

mapping of ICD-10/9 codes to phecode. All authors critically reviewed the manuscript and 

contributed important intellectual content. 
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ABSTRACT 

Objectives: We aimed to investigate the role of serum uric acid (SUA) level in a broad 

spectrum of disease outcomes using data for 120,091 individuals from UK Biobank.  

Methods: We performed a phenome-wide association study (PheWAS) to identify disease 

outcomes associated with SUA genetic risk loci. We then implemented conventional 

Mendelian randomisation (MR) analysis to investigate the causal relevance between SUA 

level and disease outcomes identified from PheWAS. We next applied MR Egger analysis to 

detect and account for potential pleiotropy, which conventional MR analysis might mistake 

for causality, and used the HEIDI (heterogeneity in dependent instruments) test to remove 

cross-phenotype associations that were likely due to genetic linkage. 

Results:  Our PheWAS identified 25 disease groups/outcomes associated with SUA genetic 

risk loci after multiple testing correction (p<8.57×10-5). Our conventional MR analysis 

implicated a causal role of SUA level in 3 disease groups: inflammatory polyarthropathies 

(OR=1.22, 95%CI: 1.11 to 1.34), hypertensive disease (OR=1.08, 95%CI: 1.03 to 1.14), 

disorders of metabolism (OR=1.07, 95% CI: 1.01 to 1.14), and 4 disease outcomes: gout 

(OR=4.88, 95%CI: 3.91 to 6.09), essential hypertension (OR=1.08, 95%CI: 1.03 to 1.14), 

myocardial infarction (OR=1.16, 95%CI: 1.03 to 1.30), coeliac disease (OR=1.41, 95%CI: 

1.05 to 1.89). After balancing pleiotropic effects in MR Egger analysis, only gout and its 

encompassing disease group of inflammatory polyarthropathies were considered to be 

causally associated with SUA level. Our analysis highlighted a locus (ATXN2/S2HB3) that 

may influence SUA level and multiple cardiovascular and autoimmune diseases via 

pleiotropy.   

Conclusions: Elevated SUA level is convincing to cause gout and inflammatory 

polyarthropathies, and might act as a marker for the wider range of diseases with which it 

associates. Our findings support further investigation on the clinical relevance of SUA level 

with cardiovascular, metabolic, autoimmune, and respiratory diseases.  
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5.2 Introduction 

Uric acid (UA) is the end product of the exogenous and endogenous purine metabolisms, 

catalysed by the action of xanthine oxidase (8). Due to the evolved loss of uricase enzyme, 

humans are unable to convert UA into highly soluble compounds, leaving urate circulating in 

blood and resulting in a high basal level of serum uric acid (SUA).(34) The prevalence of 

hyperuricaemia (elevated SUA level >416 µmol/L) is in the range of 5-25% across different 

countries (91, 462, 463). A progressively rising trend of hyperuricaemia prevalence has been 

observed worldwide (463). Concerningly, hyperuricaemia is thought to inflict multiple 

clinical consequences, which is believed to be causally related to gout and suggestively 

associated with a number of prevalent health conditions, such as cardiovascular and 

metabolic diseases (236, 464, 465). 

Our recently published umbrella review presented a comprehensive overview of the breadth 

of disease outcomes related to SUA level by incorporating evidence from multiple sources 

(466). A large number of disease outcomes were reported to be associated with SUA level in 

observational studies, covering a wide range of diseases, including cardiovascular disease, 

metabolic syndrome, diabetes, cancer, and neurological disorders. However, evidence as to 

whether these associations are actually causal is not yet well developed, given that 

observational associations are susceptible to a variety of biases, confounding and/or reverse 

causality. Although results from randomized controlled trials (RCTs) have provided some 

evidence about the beneficial effects of SUA-lowering therapy on some intermediate traits or 

biomarkers (e.g. blood pressure, endothelial function, serum creatine), there remains a lack 

of RCTs focusing on the more important clinical disease endpoints (50, 316, 320). A number 

of Mendelian randomisation (MR) studies, using the genetic variants influencing SUA level 

as instruments, provide alternative evidence to distinguish causal from non-causal 

associations. However, these MR studies examined a limited set of disease outcomes and 

were not able to detect moderate effect size due to limited power (323, 326-328, 332, 337, 

349). Increasing sample size and the range of outcomes in an enlarged MR study thus offers 

the prospect of deeper and wider insight into the causal role of SUA. 

MR analysis is typically hypothesis-driven based on prior knowledge to specify the outcome 

to be examined in relation to the exposure of interest. Traditionally, only one (or a limited 

number) association between the exposure and one (or a few) pre-defined outcome(s) is 

tested in a MR study. Recently, Phenome-wide Mendelian randomisation (MR-PheWAS) 

analysis is proposed by integrating the Phenome-wide association study (PheWAS) and MR 
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method to build a hypothesis-searching approach, which aims to explore potential causal 

relationships between an exposure (using genetic instruments as proxies) and a range of 

phenome-wide disease outcomes in a high-throughput manner (467). This approach is 

effective in evaluating or replicating the associations reported in observational studies, as 

well as discovering new relationships, and generating new hypotheses on the genetic 

architecture shared by the related phenotypes. With its wealth of genotypic and phenotypic 

data collected in very large numbers, the UK Biobank study provides an excellent 

opportunity to explore the causal role of SUA level across a broad spectrum of disease 

outcomes. In this study, we performed a MR-PheWAS in UK Biobank database to discover 

disease outcomes related to genetic variations of SUA level and to investigate if any 

association is causal.  

5.3 Methods 

5.3.1 UK Biobank data 

The UK Biobank is a large-scale population-based prospective cohort, which enrolled over 

500,000 participants aged at 40-69 years. The recruited participants provided a wide range of 

self-reported baseline information. Blood samples were collected for biochemical tests and 

genotyping. Their national health records has been linked with the baseline and genotypic 

data for longitudinal follow-up. Genotypic and phenotypic data used in this study were 

obtained from UK Biobank under an approved data request application (application ID: 

10775).   

5.3.2 Genotyping and quality control  

Genotyping, quality control and genetic imputation were performed by the UK Biobank team 

prior to the interim release of genotypic data for 150,000 participants. The procedure of 

genotyping and quality control is presented in detail at 

https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf. We used the field variables 

made available by the UK Biobank for quality control to exclude the samples that had high 

missing or heterozygosity, outlying short runs of homozygosity, and sex mismatch (see 

online Supplementary Table 5-1). We constrained our analyses to participants who were 

self-reported British and confirmed to be European heritage based on the genetic principle 

component analysis performed by the UK Biobank. The quality control process generated a 

genotypic dataset output with 120,091 individuals included in the current analysis.  

https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf
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5.3.3 Phenotyping and mapping ICD-10/9 to phecode 

We focused on phenotypes in relation to diagnostic disease outcomes. We analysed two 

phenotypic datasets (in-patient hospital episode records and cancer registry data) in the UK 

Biobank using the PheCODE schema (see online supplementary text for phenotyping and 

mapping process).(433) The coding for clinical diagnoses in these datasets followed the 

World Health Organisation’s International Classification of Diseases (ICD) coding systems, 

but used different ICD versions (ICD-10 or ICD-9) according to the date of record. We 

included both ICD-10 and ICD-9 codes to define the case and control groups. Since cancer 

registry data overlapped with the cancer diagnosis in in-patient hospital records, we pooled 

the cancer registry data into the hospital episode data as a complement to the cancer 

diagnosis. 

5.3.4 Statistical analysis  

The statistical analysis included three main steps: first, we performed a PheWAS to identify 

disease outcomes that were associated with genetic risk loci of SUA level; second, we 

performed MR analysis by using both the inverse-variance weighted (IVW) method and MR 

Egger approach to explore causal relationship for identified PheWAS associations (468, 469); 

third, we applied HEIDI (heterogeneity in dependent instruments) test to exclude the cross-

phenotype associations caused by genetic linkage (470). 

5.3.4.1 Genetic instruments 

We selected 31 SUA-associated SNPs as genetic instruments (see online Supplementary 

Table 5-2), which were previously reported to be independently associated with SUA level 

in genome-wide association studies (GWAS) (150, 151). We obtained the SNP effect on 

SUA level from the largest GWAS performed in European population (151). The overall 

proportion of variance (adjusted R2) of SUA level explained by the selected genetic 

instruments was estimated to be close to 7.0% (151). 

5.3.4.2 Phenome-wide association analysis   

In phenome-wide analysis, we used 31 SUA-associated SNPs as genetic instruments 

individually to scan across a wide range of disease outcomes defined by the PheCODE 

system (433). With the PheWAS algorithm (471), a series of PheWAS association tests were 

performed: (i) the case group was generated by including patients with the tested phecode; (ii) 

participants were assigned to the control group based on the absence of both the tested 
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phecode and related phecodes (patients who had the parent, child or sibling phecodes of the 

tested phecode were excluded from the control group) (471); (iii) to ensure statistical power, 

analysis was only performed for phecode with no less than 200 cases. This minimum number 

of cases was suggested based on a simulation of power estimates for PheWAS analysis (472). 

We used logistic regression to test the associations between 31 individual genetic 

instruments (assuming an additive genetic model) and each phecode (number of cases ≥ 200) 

after adjusting for multiple covariates, including sex, BMI, age, assessment center and the 

principle components. Considering many phecodes were not independent, we used the false 

discovery rate (FDR) method developed by Benjamini et al to account for multiple testing 

(473). 

5.3.4.3 MR IVW, MR Egger and HEIDI test 

We then explored the identified PheWAS associations in three possible scenarios (see online 

Supplementary Figure 5-1): (i) causality: the observed association was causal  (through the 

SUA pathway); (ii) pleiotropy: the observed association was due to pleiotropic effect of one 

causal variant, (i.e. linked to SUA level and the particular disease outcome through 

pleiotropy); (iii) genetic linkage: the observed association was caused by the LD between 

two distinct causal variants, with one affecting SUA level and the other affecting the disease 

outcome.  

MR IVW To explore if there was any causal effect on identified disease outcomes, we 

performed the conventional MR analysis by pooling the individual effect of each SNP using 

the IVW method to estimate the overall causal effect (see online supplementary text) (474). 

MR Egger We then performed MR Egger to attempt to correct for any potential pleiotropic 

effect in the causal estimates. This approach is applied to balance the pleiotropic effects 

derived from multiple genetic instruments (see online supplementary text) (469).   

HEIDI test We calculated HEIDI statistics for the SUA genetic loci that were associated 

with more than one disease outcome. This test was to examine if the cross-phenotype 

association was due to genetic linkage (see online supplementary text) (470).  

5.3.5 Sex stratification analysis  

To account for any sex difference, we performed PheWAS and MR analyses in men and 

women separately. The sex-specific effects of SNPs on SUA level (see online 

Supplementary Table 5-2) were taken from the summary-level GWAS data provided by 

Köttgen et al (151). 
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5.4 Results 

A total of 120,091 UK Biobank participants were included in the analysis, consisting of 

56,845 men and 63,246 women with a mean age of 64.86 years in 2016 (standard deviation 

[SD] of 7.95) (see online Supplementary Table 5-3). Within phenotypic datasets, we 

identified 684,324 hospital episodes and 23,174 cancer registration records, which included 

7,990 unique ICD-10 codes and 1,998 unique ICD-9 codes. After mapping diagnostic ICD-

10/9 codes to phecodes, the phenotypic data consisted of 1807 distinct phecodes. After 

filtering out disease outcomes with low prevalence (number of cases <200), 568 phecodes 

(median number of cases = 694 [range: 200-39,142]) were included in PheWAS analysis.   

These 568 phecodes were classified into 17 broadly related disease categories (Table 5-1). 

We noted that the distribution of phenotypes examined was skewed across the different 

disease categories (see online Supplementary Figure 5-2), in which a large number of 

disease phenotypes was included in digestive, circulatory, endocrine and metabolic systems, 

but some disease categories, for example congenital anomalies, were not well represented in 

the study population.  

Table 5 - 1: The number of phenotypes and the number of cases in each disease category. 

Disease categories 
Number of 

phenotypes 

Number of cases 

Min. Median Mean Max. 

Circulatory system 61 221 665 2,937 39,142 

Congenital anomalies 6 206 265 302 522 

Dermatological diseases 24 201 706 2,736 32,738 

Diseases in sense organs 34 201 425 1,216 11,306 

Digestive diseases 73 201 949 2,176 23,129 

Neoplasms 59 203 763 1,916 30,101 

Infectious diseases 16 205 787 975 3,192 

Endocrine and metabolic diseases 25 229 492 2,304 13,592 

Hematopoietic diseases 10 205 1,187 1,600 3,669 

Neurological diseases 21 229 452 1,282 11,828 

Respiratory diseases 38 219 712 1,713 19,238 

Mental disorders 18 205 673 1,926 8,942 

Genitourinary diseases 77 200 666 1,606 29,859 

Pregnancy complications 11 227 360 707 2,531 

Musculoskeletal diseases 44 263 1,076 2,482 21,822 

Clinical symptoms 14 267 1,237 2,570 12,287 

Injuries and poisonings 37 211 589 911 4,842 
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5.4.1 Phenome-wide association analysis  

The PheWAS analysis performed 17,608 case-control tests, leading to an adjusted 

significance threshold of p<8.57×10-5 corresponding to a FDR of q<0.05 to account for the 

multiple testing. A total of 27 pairs of genotype-phenotype associations passed the 

significance threshold of FDR correction (p<8.57×10-5) in the overall PheWAS analysis with 

adjustment for covariates (Table 5-2). Results of PheWAS without adjustment for BMI are 

shown in online Supplementary Table 5-4. The sex-stratified PheWAS analysis identified 

10 pairs of genotype-phenotype association in men and 10 pairs of genotype-phenotype 

association in women (see online Supplementary Table 5-5). When compared to the overall 

PheWAS analysis, 5 new pairs of association were identified from the sex-stratified 

PheWAS analysis (see online Supplementary Table 5-5). 

These identified genotype-phenotype associations were distributed across 15 SUA genetic 

loci, of which 5 loci were associated with more than one disease outcome: rs653178 in the 

ATXN2/SH2B3 locus (number of disease outcomes: 𝑛𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 = 10), rs1165151 in the 

SLC17A3 locus (𝑛𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =3), rs1260326 in the GCKR locus (𝑛𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =3), rs2231142 

in the ABCG2 locus (𝑛𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =4) and rs2079742 in the BCAS3 locus (𝑛𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =2). Of 

note, six disease outcomes shared genetic associations with SUA level at more than one 

locus: gout (number of loci: 𝑛𝑙𝑜𝑐𝑖 =3), inflammatory polyarthropathies (𝑛𝑙𝑜𝑐𝑖 =2), disorders 

of iron metabolism (𝑛𝑙𝑜𝑐𝑖 =2), coeliac disease (𝑛𝑙𝑜𝑐𝑖 =2), hypertensive disease (𝑛𝑙𝑜𝑐𝑖 =2) 

and essential hypertension (𝑛𝑙𝑜𝑐𝑖 =2).  

In summary, the PheWAS analyses identified 25 unique disease groups/outcomes 

(corresponding to 25 unique phecodes) that shared genetic risk loci with SUA level, which 

included 9 disease groups (inflammatory polyarthropathies, hypertensive disease, circulatory 

disease, disorders of metabolism, disorders of thyroid, other diseases of respiratory system, 

disorder of skin and subcutaneous tissue, benign neoplasm of digestive system, and 

complications of labor and delivery) and 16 specific disease outcomes (gout, essential 

hypertension, angina pectoris, myocardial infraction, coronary atherosclerosis, ischaemic 

heart disease, atrial fibrillation and flutter, varicose veins of lower extremity, 

hypercholesterolaemia, disorders of iron metabolism, coeliac disease, hypothyroidism, 

gastritis and duodenitis, poisoning by antibiotics, cataract, and nasal polyps). The mappings 

of ICD codes to these 25 phecodes and their hierarchical relationships are shown in online 

Supplementary Table 5-6. 
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5.4.2 MR IVW, MR Egger and HEIDI test  

We then performed MR analysis using the IVW method to explore if there was any causal 

link between SUA level and the 25 disease groups/outcomes identified from PheWAS 

analysis. The MR IVW analysis suggested a potential causal link for 7 out of 25 disease 

groups/outcomes. The corresponding effect estimate on each disease outcome is presented in 

Table 5-3. It was indicated that genetically determined higher SUA level was potentially 

causally linked with an increased risk of 3 disease groups, including inflammatory 

polyarthropathies (OR=1.22, 95% CI: 1.11-1.34, p=1.10×10-4), hypertensive disease 

(OR=1.08, 95% CI: 1.03-1.14, p=0.004), disorders of metabolism (OR=1.07, 95% CI:1.01-

1.14, p=0.03), and of 4 specific disease outcomes including gout (OR=4.88, 95% CI: 3.91-

6.09, p=3.55e-15), essential hypertension  (OR=1.08, 95 %CI: 1.03-1.14, p=0.005), 

myocardial infarction (OR=1.16, 95% CI: 1.03-1.30, p=0.015), coeliac disease (OR=1.41, 95% 

CI:1.05-1.89, p=0.02).  

To explore and correct for any possible pleiotropic effect of multiple instruments, we then 

conducted the MR Egger analysis (Table 5-3). After balancing out the potential pleiotropic 

effects, the putative causal link of SUA level with gout (OR=4.58, 95%CI: 2.72 to 7.72, 

𝑃𝑒𝑓𝑓𝑒𝑐𝑡 = 1.76×10-6) and its umbrella disease group, inflammatory polyarthropathies 

(OR=1.15, 95%CI: 1.01 to 1.31, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡=0.03) remained statistically significant and there 

was no indication of unbalanced pleiotropy ( 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =0.73 and 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =0.23, 

respectively). The putative causal effect of SUA level on the other 5 disease 

groups/outcomes was not statistically significant in the MR Egger model. The causal effects 

of each individual SNPs on these 7 disease groups/outcomes are shown in online 

Supplementary Figures 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, and 5-9. Unbalanced pleiotropy was 

observed for essential hypertension (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =0.001) and its umbrella disease group, 

hypertensive disease (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =0.001). For myocardial infarction, coeliac disease and 

disorders of metabolism, the putative causal effect was not statistically significant in the MR 

Egger model (𝑃𝑒𝑓𝑓𝑒𝑐𝑡=0.75, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡  =0.41 and 𝑃𝑒𝑓𝑓𝑒𝑐𝑡  =0.80, respectively), although there 

was no evidence of unbalanced pleiotropy ( 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =0.13,  𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦  =0.75 and 

𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦=0.18, respectively). The results of the sex-stratified MR IVW are presented in 

online Supplementary Table 5-7. 

Finally, to distinguish the genotype-phenotype association of pleiotropy from LD, the HEIDI 

test was performed for the 5 genetic loci (rs653178 at ATXN2/SH2B3, rs1165151 at 

SLC17A3, rs1260326 at GCKR, rs2231142 at ABCG2 and rs2079742 at BCAS3) that were 
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associated with multiple disease outcomes in the PheWAS analysis (see online 

Supplementary Figures 5-10, 5-11, 5-12, 5-13, and 5-14). Based on the HEIDI test, we 

identified 14 disease outcomes that were associated with the SUA genetic risk loci due to 

pleiotropy (with 𝑃𝐻𝐸𝐼𝐷𝐼 >0.05). The strongest pleiotropic locus was the ATXN2/SH2B3, 

where three SNPs (rs653178, rs4766578, and rs3184504) in near-complete LD (r2=0.99) 

were tagged as the lead SNPs associated with 10 disease groups/outcomes as a cluster of 

cardiovascular diseases and autoimmune disorders (see online Supplementary Figure 5-10). 

Other potential pleiotropic effects included the associations of the BCAS3 locus (rs2079742) 

with essential hypertension (𝑃𝐻𝐸𝐼𝐷𝐼  =0.10) and hypertensive disease (𝑃𝐻𝐸𝐼𝐷𝐼  =0.09) (see 

online Supplementary Figure 5-11), the associations of the ABCG2 locus (rs2231142) with 

varicose veins of lower extremity (𝑃𝐻𝐸𝐼𝐷𝐼 =0.32) (see online Supplementary Figure 5-12), 

and the association of  the SLC17A3 locus (rs1165151) with poisoning by antibiotics 

(𝑃𝐻𝐸𝐼𝐷𝐼 =0.26) (see online Supplementary Figure 5-13).  

Our analysis rejected the null hypothesis of a pleiotropic model for the shared genetic 

association between SUA level and disorders of iron metabolism at the SLC17A3 locus 

(rs1165151) (𝑃𝐻𝐸𝐼𝐷𝐼 =5.54×10-28); we identified a different causal variant (rs17342717 in 

SLC17A1) that was in LD with the SNP rs1165151 (r2=0.24) and strongly associated with the 

disorders of iron metabolism (P=1.69×10-129) (see online Supplementary Figure 5-13). 

Similarly, for the associations between the SLC17A3 locus (rs1165151) and coeliac disease 

(𝑃𝐻𝐸𝐼𝐷𝐼 =6.51×10-16) (see online Supplementary Figure 5-13), the GCKR locus (rs1260326) 

and hypercholesterolaemia (𝑃𝐻𝐸𝐼𝐷𝐼  =3.27×10-11) (see online Supplementary Figure 5-14), 

the pattern of shared regional genetic association was more consistent with a genetic linkage 

model, and the SNP with the smallest p-value was tagged as an index of the distinct causal 

variant affecting the examined disease outcome.  
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Table 5 - 2: Genotype-phenotype associations identified from PheWAS after correcting multiple testing by FDR (p<8.57×10-5). 

Phecode Description SNP_risk allele† allele_freq n_total n_cases OR (95%CI) P* 

274.1 Gout rs2231142_T 0.11 119,555 1,003 1.89 (1.69, 2.12) 5.41e-28 

275.1 Disorders of iron metabolism rs1165151_G 0.45 119,063 205 3.56 (2.78, 4.56) 1.41e-23 

244.4 Hypothyroidism rs653178_C 0.48 118,821 4,146 1.21 (1.16, 1.27) 3.90e-17 

246 Disorders of thyroid rs653178_C 0.48 119,601 4,926 1.18 (1.14, 1.23) 8.82e-16 

274.1 Gout rs12498742_A 0.23 118,960 1,002 1.54 (1.37, 1.74) 7.94e-13 

275.1 Disorders of iron metabolism rs742132_A 0.29 119,271 205 2.80 (2.10, 3.74) 3.13e-12 

401 Hypertensive disease rs653178_C 0.48 119,762 23,634 1.06 (1.04, 1.09) 1.68e-08 

401.1 Essential hypertension rs653178_C 0.48 119,688 23,560 1.06 (1.04, 1.09) 2.00e-08 

411.4 Coronary atherosclerosis rs653178_C 0.48 119,460 9,526 1.09 (1.05, 1.12) 1.27e-07 

411 Ischaemic heart disease rs653178_C 0.48 119,401 9,467 1.09 (1.05, 1.12) 1.33e-07 

211 Benign neoplasm of digestive system rs11264341_C 0.43 117,030 1,504 0.83 (0.77, 0.89) 2.41e-07 

274.1 Gout rs1260326_T 0.39 119,555 1,003 1.26 (1.15, 1.38) 3.86e-07 

459.9 Circulatory disease rs653178_C 0.48 119,677 39,142 1.05 (1.03, 1.06) 2.24e-06 

411.2 Myocardial infarction rs653178_C 0.48 113,559 3,625 1.12 (1.07, 1.18) 2.80e-06 

557.1 Coeliac disease rs1165151_G 0.45 99,783 549 1.33 (1.18, 1.51) 4.30e-06 

557.1 Coeliac disease rs653178_C 0.48 99,965 550 1.31 (1.16, 1.48) 9.28e-06 

427.2 Atrial fibrillation and flutter rs6598541_A 0.35 113,261 4,333 1.11 (1.06, 1.16) 9.92e-06 

960 Poisoning by antibiotics rs1165151_G 0.45 112,343 1,027 0.82 (0.75, 0.90) 1.22e-05 

535 Gastritis and duodenitis rs478607_G 0.15 115,386 5,233 1.12 (1.07, 1.19) 1.34e-05 

411.3 Angina pectoris rs653178_C 0.48 114,967 5,033 1.09 (1.05, 1.14) 3.01e-05 

669 Complications of labour and delivery  rs729761_G 0.28 113,240 2,376 1.17 (1.09, 1.26) 3.78e-05 
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Phecode Description SNP_risk allele† allele_freq n_total n_cases OR (95%CI) P* 

272.11 Hypercholesterolaemia rs1260326_T 0.39 118,921 10,201 1.07 (1.03, 1.10) 3.82e-05 

366 Cataract rs6770152_G 0.43 116,218 4,567 1.09 (1.05, 1.14) 4.14e-05 

471 Nasal polyps rs10821905_A 0.17 112,745 983 1.26 (1.13, 1.40) 4.61e-05 

454.1 Varicose veins of lower extremity rs2231142_T 0.11 111,390 3,204 0.84 (0.78, 0.92) 5.79e-05 

401 Hypertensive disease rs2079742_T 0.13 115,659 22,832 1.07 (1.03, 1.10) 7.00e-05 

401.1 Essential hypertension rs2079742_T 0.13 115,588 22,761 1.07 (1.03, 1.10) 7.02e-05 

*Significance threshold of p<8.57×10-5corresponds to a FDR of q<0.05 after correcting the multiple testing.  
† Effect allele was harmonised to the SUA-raising allele defined by Köttgen et al.(151) 
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Table 5 - 3: PheWAS associations assessed by conventional MR IVW and MR Egger analysis. 

Disease outcomes MR IVW MR Egger 

 OR (95%CI) P effect Power* OR (95%CI) P effect P pleiotropy Power* 

Gout  4.88 (3.91, 6.09) 3.55e-15 1.00 4.58 (2.72, 7.72) 1.76e-06 0.73 1.00 

Inflammatory polyarthropathies‡ 1.22 (1.11, 1.34) 1.10e-04 0.99 1.15 (1.01, 1.31) 0.03 0.23 0.83 

Essential hypertension 1.08 (1.03, 1.14) 5.07e-03 0.82 0.93 (0.83, 1.05) 0.23 1.13e-03 0.73 

Hypertensive disease 1.08 (1.03, 1.14) 4.23e-03 0.82 0.93 (0.83, 1.05) 0.24 1.19e-03 0.73 

Myocardial infarction 1.16 (1.03, 1.30) 0.02 0.70 1.03 (0.84, 1.27) 0.75 0.13 0.08 

Coeliac disease 1.41 (1.05, 1.89) 0.02 0.72 1.31 (0.68, 2.54) 0.41 0.75 0.48 

Disorders of metabolism‡ 1.07 (1.01, 1.14) 0.03 0.52 1.01 (0.91, 1.14) 0.80 0.18 0.06 

Coronary atherosclerosis 1.07 (0.99, 1.15) 0.08 0.41 0.99 (0.85, 1.17) 0.95 0.20 0.06 

Ischaemic heart disease 1.07 (0.99, 1.15) 0.09 0.41 0.99 (0.85, 1.16) 0.91 0.20 0.06 

Angina pectoris 1.04 (0.94, 1.15) 0.41 0.11 0.95 (0.80, 1.12) 0.51 0.11 0.15 

Atrial fibrillation and flutter 1.01 (0.91, 1.12) 0.87 0.05 0.90 (0.75, 1.08) 0.23 0.07 0.41 

Circulatory disease 1.04 (1.00, 1.09) 0.08 0.40 0.97 (0.89, 1.07) 0.57 0.05 0.26 

Varicose veins of lower extremity 0.86 (0.72, 1.02) 0.09 0.55 0.86 (0.67, 1.10) 0.24 0.97 0.55 

Disorders of iron metabolism 1.19 (0.74, 1.90) 0.45 0.11 0.79 (0.15, 4.07) 0.77 0.47 0.12 

Hypercholesterolaemia 1.14 (0.96, 1.36) 0.12 0.94 1.18 (0.88, 1.58) 0.27 0.78 0.99 

Hypothyroidism 1.10 (0.99, 1.23) 0.07 0.39 0.99 (0.75, 1.32) 0.97 0.30 0.05 

Disorders of thyroid 1.08 (0.98, 1.20) 0.10 0.31 1.01 (0.79, 1.29) 0.94 0.41 0.05 

Benign neoplasm of digestive system 0.93 (0.78, 1.10) 0.36 0.11 0.90 (0.64, 1.26) 0.52 0.79 0.18 

Gastritis and duodenitis 0.97 (0.88, 1.07) 0.53 0.09 0.95 (0.80, 1.13) 0.55 0.70 0.16 

Nasal polyps 1.08 (0.88, 1.34) 0.45 0.10 1.09 (0.73, 1.60) 0.67 0.98 0.12 
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Disease outcomes MR IVW MR Egger 

 OR (95%CI) P effect Power* OR (95%CI) P effect P pleiotropy Power* 

Cataract 0.99 (0.90, 1.09) 0.85 0.05 0.91 (0.75, 1.10) 0.34 0.23 0.36 

Poisoning by antibiotics 0.85 (0.70, 1.04) 0.14 0.25 1.00 (0.68, 1.48) 1.00 0.28 0.05 

Complications of labour and delivery‡ 0.89 (0.76, 1.03) 0.12 0.30 0.78 (0.59, 1.02) 0.08 0.20 0.83 

Other diseases of respiratory system‡ 1.11 (0.94, 1.31) 0.19 0.22 1.16 (0.92, 1.46) 0.22 0.64 0.42 

Disorder of skin and subcutaneous tissue‡   0.99 (0.93, 1.06) 0.77 0.06 0.98 (0.89, 1.09) 0.75 0.85 0.09 

‡ Disease outcomes identified from sex-stratified PheWAS analysis. 
*The statistical power of MR analyses was calculated by using the non-centrality parameter (NCP) based approach (254); the overall proportion of variance 

(adjusted R2) of SUA level explained by the genetic instruments was estimated to be 7.0%.(151)  
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5.5 Discussion  

In PheWAS analysis by using SUA-associated SNPs as genetic instruments, we identified 32 

pairs of genotype-phenotype associations, which covered a wide range of phenotypic 

categories including endocrine/metabolic diseases, cardiovascular diseases, and autoimmune 

disorders. Our PheWAS analysis replicated 14 pairs of previously known genotype-

phenotype (or closely related phenotypic groups) associations reported in the GWAS Catalog 

(see online Supplementary Table 5-2 and Table 5-2). For example, rs653178 

(ATXN2/SH2B3 locus) was previously reported to be associated with diastolic blood 

pressure,(475) myocardial infarction (476), peripheral artery disease (477), coeliac disease 

(478), and serum thyroid peroxidase antibody levels (479). In our PheWAS, this SNP was 

statistically significantly associated with the same phenotypes (i.e. coeliac disease, 

myocardial infarction) or similar phenotypic groups (i.e. hypertension, circulatory and heart 

diseases, hypothyroidism and other disorders of thyroid). Our study also replicated the 

findings of the largest GWAS performed by Köttgen and the findings of the most recent 

candidate gene-based association study conducted in UK Biobank, which indicated that 2 

SUA-related SNPs (rs12498742 at the SLC2A9 locus and rs2231142 at the ABCG2 locus) are 

statistically significantly associated with gout at GWAS p-value threshold (p<5.0×10-8) (151, 

480). We also identified 18 novel genotype-phenotype associations (at the PheWAS 

threshold of p<8.57×10-5), of which the association between rs1165151 (SLC17A3) and 

disorders of iron metabolism had the smallest p-value (p=1.23×10-19).   

We performed conventional MR analysis, using the IVW method, to investigate whether 

there was a potentially causal link between SUA level and the 25 unique disease 

groups/outcomes identified from PheWAS. The results of MR IVW analysis suggested a 

potential causal effect of SUA level on 3 disease groups including inflammatory 

polyarthropathies, hypertensive disease, disorders of metabolism and 4 specific individual 

disease outcomes including gout, essential hypertension, myocardial infarction, coeliac 

disease. When adopting the advanced MR Egger analysis to account for potential pleiotropic 

effects, it is indicated that, except for gout and its umbrella disease group, inflammatory 

polyarthropathies, all the other putative causal associations suggested by MR IVW analysis 

were probably inflated by the presence of pleiotropy. However, although the MR Egger is 

more robust in dealing with pleiotropy, this method is not infallible (481). Intuitively, the 

genetic instrument with larger effect on SUA level is expected to have a larger effect on 

disease outcome and would exert stronger influence in the MR Egger regression model. With 

in-depth examination of the individual SNP effects on SUA level against the SNP effects on 
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disease outcomes (see online Supplementary Figures 5-5, 5-6, 5-7, and 5-8), we found that 

the outlying variant (rs12498742 at SLC2A9) that had the strongest association with SUA 

level showed a negative (null) effect on essential hypertension and hypertensive disease, 

which reversed the sign of the overall putative causal effect and led to a rejection of the 

intercept test. Given the influence of the outlying variant, the unbalanced pleiotropy and 

relatively small statistical power (power=0.73), we would interpret that unbalanced 

pleiotropy between SUA level and hypertension is an issue for their causal inference in MR 

Egger analysis. 

Previous observational studies have reported a sex difference in the association between 

SUA level and the development of cardiovascular diseases (235, 482-485), but few studies 

have addressed the sex difference by using a MR approach to remove the influence of 

environmental confounders. Our study identified a few more cardiovascular diseases (e.g. 

coronary atherosclerosis, ischaemic heart disease) that were potentially causally linked with 

the genetic variation of SUA level in women, but not in men. These MR findings were 

concordant with results from observational studies, which indicated that the relationship 

between SUA level and cardiovascular disease was particularly strong in women, especially 

for heart disease (235, 486, 487). Although these putative causal associations specific to 

females were not verified by MR Egger, this may be due to the decreased statistical power of 

MR Egger (and a higher risk of type 2 error). The biological mechanism that could lead the 

association of SUA level with cardiovascular disease to be more pronounced in women than 

in men remains a matter for further investigation.  

To gain a further exploratory sense of pleiotropy in PheWAS findings, we applied the HEIDI 

test to exclude the PheWAS associations that were probably caused by genetic linkage. The 

HEIDI test indicated that several PheWAS associations were likely driven by LD. For 

instance, the outstanding PheWAS association between disorders of iron metabolism and the 

SNP rs1165151 at the SLC17A3 locus was not consistent with a pleiotropic model and 

further examination found the SUA-associated SNP rs1165151 was located in linkage 

disequilibrium (LD) (r2=0.24) with the rs17342717 variant at the SLC17A1 locus, which was 

strongly associated with disorders of iron metabolism (p=1.69×10-129). This SNP 

(rs17342717) is also associated with red blood cell traits and serum iron levels in previous 

GWAS (488, 489). We suggest that the implications of these findings have wider relevance 

for PheWAS studies. Typically, associations of a single SNP with multiple phenotypes were 

claimed to be due to pleiotropy in previous PheWAS (490, 491). However, as PheWAS 
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focused on single variant without considering the correlations between SNPs, we would 

suggest that an additional examination of LD is necessary when we identify pleiotropic links.  

In contrast, the pattern of shared regional genetic associations of SUA level with multiple 

disease outcomes at ATXN2/S2HB3 locus was more consistent with a pleiotropic model, 

where we interpreted this locus influenced a cluster of cardiovascular diseases and 

autoimmune disorders. However within the ATXN2/S2HB3 locus there are three leading 

SNPs (rs653178, rs4766578, and rs3184504) in high LD (r2 =0.99). In this case, the HEIDI 

test was unable to provide an indication of whether the observed associations are due to 

pleiotropy or genetic linkage, as it was difficult to infer the causal variant. Although SNP 

rs653178 was reported as the lead variant influencing SUA level at this locus in GWAS, the 

potential biological mechanism underlying this effect is unclear (151). Furthermore, 

although, an effect of rs653178 on the regulation of blood pressure, cardiovascular diseases 

and coeliac disease has been suggested by a few GWAS (475-478), a clear biological 

explanation for this role could not be demonstrated. Evidence from the functional follow-up 

of the S2HB3 gene indicated that rs3184504 may be the causal variant, as the S2HB3 gene 

encodes one of the S2HB family proteins, which have a diverse physiological roles on 

haematopoiesis, immune response and signalling, and variation in rs3184504 may introduce 

a new phosphorylation site affecting the function of the S2HB protein (492, 493). We 

believe that further uncovering of the biological functions of this pleiotropic locus (e.g. gene 

function follow-up, expression quantitative trait loci [eQTL] analysis) might be helpful to 

understand the complex underlying relationship of SUA level with cardiovascular and 

autoimmune diseases.  

To judge the nature of PheWAS associations more comprehensively, it is important to 

consider different lines of evidence, including underlying biological plausibility. Therefore, 

we would like to highlight a few disease outcomes beyond joints and cardiovascular events. 

The sex-stratified MR IVW analysis identified that unspecified diseases in respiratory 

system were potentially causally linked with SUA level in women (with the MR Egger 

analysis showing a consistent causal effect). This finding is consistent with recently 

published experimental studies, which demonstrated that human airway epithelial cells and 

lung tissue expressed a functional UA production/secretion system and UA was crucial in 

mediating the development of allergic airway diseases and regulating the antigen-specific T-

cell proliferation (494-497). It was also speculated that fine, inhaled particulate matter (PM) 

can induce increased UA production in the human airway which may contribute to allergic 

sensitisation and asthma pathogenesis (498). Evidence from epidemiological studies in 
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relation to the association between SUA level and respiratory diseases has not been well 

explored (499, 500). Our findings support further investigation of the clinical relevance of 

SUA level in lung health and respiratory diseases.     

Key strengths of our study included its potential to make novel discoveries in genotype-

phenotype associations and to identify novel cross-phenotype associations, possibly 

reflecting common aetiology or causal mechanisms. Unlike the genome, for which genetic 

structure can be measured by reliable biological techniques, the definition of the phenome 

varies across studies. Current published PheWAS have been limited primarily to billing ICD

‑9‑CM to phecode system, and the method for aggregating ICD-9-CM codes into phecodes 

has proven to be valuable in previous PheWAS studies (433, 459). Our work broadened the 

utility of the PheCODE system and illustrated the process of adopting the system to the 

updated ICD-10 version to define the phenome framework. Our mapping process revealed 

some potential shortcomings of the current PheCODE system (e.g. the ICD-10 code 

involving the personal or family history were missing elements in the PheCODE system), 

which should be improved as a future undertaking. Recent methodological applications (e.g. 

tree-structured phenotypic model [TreeWAS]) can be applied for future PheWAS analyses 

(501). As we were preparing the manuscript for submission, a web-resource within UK 

Biobank, the GeneATLAS, was released in the bioRxiv (prior to peer review) (502). We 

checked our PheWAS findings in this database, but only 10 of the 31 SUA related SNPs 

were included in their database (and associations with some disease outcomes were 

replicated for these SNPs) (502). We focused on the causal relationships between SUA level 

and binary disease outcomes in MR analyses, and these findings were complementary to MR 

estimates of urate archived in the MR-Base database (http://eve.mrbase.org/), which mainly 

focused on quantitative traits. 

On the other hand, our analysis was limited to phenotypes with no less than 200 cases, 

therefore diseases with relatively low prevalence were not analysed. As the UK biobank 

grows we expect to perform PheWAS and MR analysis for more phenotypes, with the 

priority given for the ones of which the relationships with SUA level are much controversial 

such as dementia (503, 504). Furthermore for some analysed phenotypes, our PheWAS 

analysis may still have low power to detect small effect size. The use of the interim release 

of UK Biobank data and focusing on a very homogenous population (self-reported British 

confirmed by PCAs) limited the power of this study. Additionally, we did not analyse the 

self-reported UK Biobank data to avoid information bias, but this may impact the 

comprehensiveness of PheWAS and reduce the precision of MR estimates. To remedy this 
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limitation, we performed a sensitivity analysis for gout by comparing the MR estimates for 

hospital-diagnosed gout, self-reported gout and hospital-diagnosed/self-reported gout (see 

online Supplementary Table 5-8). The MR estimates are consistently statistically 

significant in any of the cases but with differences in their effect sizes. These differences 

might be due to the fact that gout cases ascertained from hospital discharge coding may be 

unrepresentative of gout, given hospitalised gout is more likely to be complicated by co-

morbidities, as reported by Cadzow et al (480). While making efforts to dissect the PheWAS 

associations with different models, given the complexity of human genetic structure, these 

models are not mutually exclusive and each model has its own methodological limitations, 

thus strong conclusions are not always possible. Therefore, the realistic goal for the present 

study was to assess different lines of evidence (i.e. causality, pleiotropy or genetic linkage) 

in order to characterize the identified PheWAS associations in relation to SUA level. It 

would be beneficial to assess whether measured SUA level, rather than its genetic proxy, are 

also associated with the observed disease outcomes, but data on the SUA biomarker are not 

yet available in UK Biobank.  

Overall, this PheWAS analysis demonstrated that SUA level shares genetic risk loci with 

multiple disease outcomes, particularly cardiovascular/metabolic diseases and autoimmune 

disorders. These findings provide the rationale for further investigation of whether these 

associations are causal. Our study indicated a putative causal effect of SUA level on 3 

disease groups (inflammatory polyarthropathies, hypertensive disease, and disorders of 

metabolism) and 4 specific disease outcomes (gout, essential hypertension, coeliac disease, 

and myocardial infarction); when balancing out the pleiotropy, a robust conclusion about 

causality was made for gout and its encompassing disease group, inflammatory 

polyarthropathies. Unbalanced pleiotropy was identified as an issue for the causal inference 

on the association between SUA level and hypertension. Other potential causal relevance of 

SUA level with respiratory diseases and ocular abnormalities are also worthy of further 

investigation. When interpreting the PheWAS associations from a view of pleiotropy, our 

analysis highlighted a key pleiotropic locus that influenced SUA level and multiple 

cardiovascular and autoimmune diseases. A further functional annotation of this locus might 

be helpful to understand the biological pathways that contribute to the phenotypic 

associations between SUA level and cardiovascular diseases (including hypertension).  
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5.6 Supplementary information 

Online Supplementary text   

Phenotyping and mapping ICD-10/9 to phecode 

ICD-9/10 codes were organised in a hierarchical tree-like structure. The individual ICD-9/10 

codes could not be directly used for PheWAS analysis, because they were not designed for 

representing distinct disease phenotypes. To aggregate the ICD codes, the PheCODE schema 

has been successfully adopted in a number of PheWAS to combine one or more individual 

ICD codes into distinct phenotype groups (433, 459). However, since the current version of 

the PheCODE was developed based on ICD-9-Clinical Modification (CM), the phencode 

algorithm was not directly applicable to the ICD-10 coding system in the UK Biobank. To 

develop an aggregation method for PheWAS analysis in UK Biobank, we collaborated with 

the Electronic Medical Records and Genomics (eMERGE) group of Vanderbilt University 

Medical Center and mapped ICD-10 codes to phecodes in both direct and indirect ways. We 

mapped the ICD-10 codes to phecodes directly if their descriptions matched each other 

regardless of capitalisation. Otherwise, we used the unified medical language system (UMLS) 

to map the ICD-10 code to ICD-9-CM (or map the ICD-10 code to systematised 

nomenclature of medicine clinical terms [SNOMED CT] code first and then to ICD-9-CM) 

and then used the previous mapping of ICD-9-CM to phecode to finally link the ICD-10 to 

phecode. The ICD-9 codes in UK Biobank were directly mapped to the phecodes through the 

first fourth or full (five) digital codes or through the descriptions regardless of capitalisation. 

MR IVW, MR Egger and HEIDI test  

MR IVW For each independent genetic instrument 𝑖, the causal effect of SUA level on the 

disease outcome (denoted as 𝑏𝑥𝑦(𝑖) ) was estimated by the ratio method, in which the 

coefficient from the regression of outcome on the genetic variant (using individual-level data 

from the UK Biobank and denoted as 𝑏𝑧𝑦(𝑖) ) was divided by the coefficient from the 

regression of SUA level on the genetic variant (using the summary-level GWAS data made 

available by Köttgen et al and denoted as 𝑏𝑧𝑥(𝑖)) (151). The overall causal effect of SUA 

level on the outcome mediated by all 31 genetic instruments was estimated by pooling the 

individual effect estimates of each SNP using the IVW method (474).  

MR Egger Briefly, instead of assuming that the genetic instruments are only associated with 

SUA level (no pleiotropy criterion of MR), the MR Egger uses a weighted linear regression 
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to regress the effect estimates of SNP-outcome associations against the effect estimates of 

SNP-SUA associations with the intercept unconstrained. The unconstrained intercept 

represents the average pleiotropic effects across the genetic variants (with a zero intercept 

indicating that there are no direct pleiotropic effects or the pleiotropic effects are balanced 

among the multiple genetic instruments). The slope coefficient from the MR Egger 

regression represents the overall estimate of the causal effect after accounting for the 

pleiotropic effects of multiple genetic instruments (469).  

HEIDI test The HEIDI test was firstly proposed by Zhu et al (470), but the principle of this 

test can be broadly applied to any pair of traits. The rationale and mathematical theories of 

this metric are explained elsewhere in detail (470). The HEIDI method assumes only one 

causal variant affected both the SUA level and disease outcome (via either vertical 

pleiotropy [including causality] or horizontal pleiotropy) within a genetic region. If we 

denote the 𝑏𝑧𝑥 as the effect estimate of a genetic variant on SUA level, and 𝑏𝑧𝑦 as the effect 

estimate of a genetic variant on disease outcome, the effect estimate of SUA level on disease 

outcome mediated by the genetic component could be calculated by the ratio method:  

𝑏𝑥𝑦 =
𝑏𝑧𝑦

𝑏𝑧𝑥
 

If we describe the casual variant as 𝑆𝑁𝑃0, under the Hardy-Weinberg equilibrium, for any 

𝑆𝑁𝑃𝑖  in LD with the causal variant, the effect estimate 𝑏𝑥𝑦(𝑖) calculated by the ratio method 

should be identical to 𝑏𝑥𝑦(0): 

𝑏𝑥𝑦(𝑖) =
𝑏𝑧𝑦(𝑖)

𝑏𝑧𝑥(𝑖)
=

𝑏𝑧𝑦(0) 𝑟0𝑖 √h0/ℎ𝑖

𝑏𝑧𝑥(0) 𝑟0𝑖 √h0/ℎ𝑖

=
𝑏𝑧𝑦(0)

𝑏𝑧𝑥(0) 
= 𝑏𝑥𝑦(0) 

where 𝑟0𝑖 is the LD correlation between the casual variant SNP (0) and SNP (𝑖), and ℎ0/𝑖 is 

determined by the allele frequency (ℎ = 2𝑝(1 − 𝑝)). Thus testing linkage against pleiotropy 

is equivalent to testing if there were any heterogeneity between 𝑏𝑥𝑦(0)  and 𝑏𝑥𝑦(𝑖) . If we 

defined  

𝑑𝑖 = 𝑏𝑥𝑦(𝑖) − 𝑏𝑥𝑦(0) 

then it is equivalent to testing if 𝑑𝑖 = 0.  

With the matrix of any pair of SNPs(𝑖, 𝑗) , the covariance could be calculated by 
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𝑐𝑜𝑣(𝑏𝑥𝑦(𝑖), 𝑏𝑥𝑦(𝑗))

=
𝑟𝑖𝑗

𝑏𝑧𝑥(𝑖)𝑏𝑧𝑥(𝑗)
√𝑣𝑎𝑟(𝑏𝑧𝑦(𝑖))𝑣𝑎𝑟(𝑏𝑧𝑦(𝑗)) + 𝑏𝑥𝑦(𝑖)𝑏𝑥𝑦(𝑗)(

𝑟𝑖𝑗

𝑧𝑧𝑥(𝑖)𝑧𝑧𝑥(𝑗)

−
1

𝑧𝑧𝑥(𝑖)  
2 𝑧𝑧𝑥(𝑗)  

2 ) 

𝑐𝑜𝑣(𝑑𝑖,𝑑𝑗) = 𝑐𝑜𝑣(𝑏𝑥𝑦(𝑖), 𝑏𝑥𝑦(𝑗)) − 𝑐𝑜𝑣(𝑏𝑥𝑦(𝑖), 𝑏𝑥𝑦(0)) − 𝑐𝑜𝑣(𝑏𝑥𝑦(𝑗), 𝑏𝑥𝑦(0))

+ 𝑣𝑎𝑟(𝑏𝑥𝑦(0)) 

Then, we calculated the Z values of 𝑑𝑖 

𝑧𝑑(𝑖) = 𝑑𝑖/√𝑣𝑎𝑟(𝑑𝑖) 

Under the null hypothesis, where 𝑑𝑖 = 0, we have a vector of 𝑧𝑑  value that follows the 

multivariate normal distribution (approximated by the Satterthwaite method) with 𝑧𝑑 ~ MVN 

(0, R), where R is the correlation matrix with the ijth element  

𝑟(𝑧𝑑(𝑖), 𝑧𝑑(𝑗)) = 𝑐𝑜𝑣(𝑑𝑖 , 𝑑𝑗)/√𝑣𝑎𝑟(𝑑𝑖)𝑣𝑎𝑟(𝑑𝑗) 

The HEIDI statistics was calculated as  

𝑇𝐻𝐸𝐼𝐷𝐼 = ∑ 𝑧𝑑(𝑖)

2
𝑚

𝑖
 

with 𝑚 being the number of SNPs associated with SUA level with p<1.57×10-3 (equivalent 

to 2 >10).  

In the analysis, we defined a region of ±250kb (upstream and downstream) around the locus 

associated with SUA level. For each locus, we calculated the HEIDI statistic only including 

SNPs that were associated with SUA level at p<1.57×10-3 (equivalent to 2 >10) in order to 

avoid very weak instruments and to increase the power. The larger the heterogeneity, the 

smaller the HEIDI’s P-value, and the higher the probability of association is caused by LD. 

The pattern of regional genetic association with SUA level and disease outcome was 

visualised by the LocusZoom (505).  
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PheWAS after correcting multiple testing by FDR. 

Supplementary Table 5-6: The mappings of ICD codes to phecodes for the 25 disease outcomes 

identified from PheWAS.  

Supplementary Table 5-7: Sex-stratified MR IVW analysis and MR Egger analysis. 

Supplementary Table 5-8: A sensitivity analysis of MR for gout cases defined by multiple criteria.  
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Supplementary Table 5 - 1: Sample quality control (QC) of genotype data in UK Biobank.  

Sample QC variables  Sample selection 

f.22050  Pass or not   This variable indicates the genotype quality for ~50,000 samples genotyped by UKBiLEVE array 

 Sample quality control undertaken by Affymetrix was a DNA quality filter (dish quality control < 0.82) and 

initial clustering call rate (<97%); 

 520 duplicates passed Affymetrix quality control in both samples, 33 passed Affymetrix quality control in 1 

sample, and 0 duplicates failed Affymetrix quality control in both samples.  

Pass  

f.22051 Pass or not   This variable indicates QC steps performed for ~50,000 samples genotyped by UKBiLEVE array 

 Sex mismatch (remove sample if submitted gender is different to gender inferred from sex chromosomes); 

 Final call rate (<95%), 

 Heterozygosity outliers (outlier if >3sd from mean heterozygosity); 

 Unintended duplicate (>98% of alleles shared identical by descent); 

 Ancestry principal components outlier (outlier if >10sd from mean on first 10 principal components).  

Pass  

f.22010 Pass or not   This variable indicates the genotype quality for all samples; 

 Samples showed signs of insufficient data quality; 

 Individuals with high missing or for which heterozygosity rates were not explained by the long runs of 

homozygosity (ROH) nor mixed ethnicity. 

Pass 

Population structure  

f.22006  Genetic ethnic 

group 

 Ethnic groups determined by principle genetic components.  Select self-

reported British 

and confirmed to 

be Europeans by 

PCAs  

f.21000  Ethnic background  Self-reported ethnic background 

f.22009  Genetic principal 

components 

(PCAs) 

 The first fifteen PCAs were available for the samples 

Sex mismatch  

f.22001 Genetic sex  Sex inferred from X chromosome genotypes Remove samples 

with sex mismatch f.31 Self-reported sex  Sex self-reported from the baseline assessment 
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Supplementary Table 5 - 2: Summary of the 31 SUA-associated SNPs identified from GWAS. 

Genetic predictors Overall effect  Male-specific effect Female-specific effect Other  associated 

phenotypes reported  in the 

human GWAS catalog 
SNPs Chr Effect 

allele 

Closest/GRAIL gene Beta SE p_val Beta SE p_val Beta SE p_val 

rs10480300 7 T PRKAG2/PRKAG2 0.032 0.006 9.37E-07 0.043 0.010 1.70E-05 0.024 0.008 3.20E-03 Red blood cell traits(506) 

rs10821905 10 A A1CF/ASAH2 0.053 0.007 3.45E-12 0.042 0.011 3.80E-04 0.060 0.009 2.50E-10 None 

rs11264341 1 C TRIM46/PKLR 0.048 0.006 1.04E-14 0.055 0.009 1.10E-08 0.044 0.007 9.10E-09 None 

rs1165151 6 G SLC17A1/SLC17A3 0.092 0.005 4.52E-60 0.096 0.008 1.30E-28 0.089 0.007 4.20E-37 None 

rs1171614 10 C SLC16A9/SLC16A9 0.074 0.007 6.48E-23 0.086 0.011 1.90E-13 0.067 0.009 3.00E-13 Acylcarnitine levels,(507) 

Glycerophospholipid 

levels,(507) Blood metabolite 

levels(508)  

rs1178977 7 A BAZ1B/MLXIPL 0.050 0.007 6.68E-12 0.055 0.011 8.20E-07 0.046 0.009 2.60E-07 None 

rs12498742 4 A SLC2A9/SLC2A9 0.380 0.006 0.00E+00 0.269 0.010 6.40E-

153 
0.460 0.008 0.00E+00 Gout(151) 

rs1260326 2 T GCKR/GCKR 0.077 0.006 1.31E-40 0.091 0.009 3.00E-25 0.063 0.007 1.90E-04 Gout,(509) C-reactive protein 

levels,(510) 

Dyslipidaemia,(511) 

Haematological and 

biochemical traits,(512) 

Chronic kidney disease,(513) 

Hypertriglyceridaemia(514)  

rs1394125 15 A UBE2Q2/NRG4 0.043 0.006 9.78E-11 0.060 0.010 5.50E-06 0.032 0.008 1.00E-04 Chronic kidney disease(513), 

Kidney function(515) 

rs1471633 1 A PDZK1/PDZK1 0.061 0.005 1.40E-26 0.069 0.008 3.50E-15 0.054 0.007 1.60E-14 None 

rs164009 17 A QRICH2/PRPSAP1 0.029 0.006 7.06E-07 0.024 0.009 6.20E-03 0.032 0.007 8.20E-06 None  

rs17050272 2 A INHBB/INHBB 0.037 0.006 9.36E-09 0.049 0.010 6.50E-07 0.030 0.008 1.90E-04 Glomerular filtration 

rate(creatinine)(515) 

rs17632159 5 G TMEM171/TMEM171 0.038 0.006 2.00E-09 0.043 0.010 1.30E-05 0.039 0.008 1.10E-06 None  

rs17786744 8 G STC1/STC1 0.031 0.005 8.82E-08 0.033 0.009 2.10E-04 0.029 0.007 2.10E-04 None  

rs2078267 11 C SLC22A11/SLC22A11 0.078 0.006 8.73E-36 0.085 0.009 2.90E-19 0.071 0.007 5.70E-20 Gout,(333)  

Cardiovascular disease risk 

factors(333) 

rs2079742 17 T BCAS3/C17orf82 0.051 0.008 6.24E-09 0.054 0.013 5.60E-05 0.048 0.010 1.00E-05 Metabolite levels (small 

molecules and protein 

measures)(516) 
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Genetic predictors Overall effect  Male-specific effect Female-specific effect Other  associated 

phenotypes reported  in the 

human GWAS catalog 
SNPs Chr Effect 

allele 

Closest/GRAIL gene Beta SE p_val Beta SE p_val Beta SE p_val 

rs2231142 4 T ABCG2/ABCG2 0.220 0.009 4.43E-116 0.270 0.014 3.80E-75 0.181 0.011 1.30E-52 Gout(151) 

rs2307394 2 C ORC4L/ACVR2A 0.035 0.006 7.26E-09 0.036 0.009 1.20E-04 0.034 0.007 4.70E-06 None  

rs2941484 8 T HNF4G/HNF4G 0.049 0.006 3.91E-17 0.048 0.009 6.20E-08 0.046 0.007 1.30E-10 None  

rs3741414 12 C INHBC/INHBE 0.071 0.007 9.79E-22 0.091 0.011 7.00E-16 0.057 0.009 4.30E-10 None  

rs478607 11 G NRXN2/SLC22A12 0.048 0.007 5.31E-10 0.058 0.012 9.60E-07 0.043 0.009 8.80E-06 None  

rs642803 11 C OVOL1/LTBP3 0.043 0.005 4.51E-14 0.047 0.008 8.00E-08 0.042 0.007 2.10E-09 None  

rs653178 12 C ATXN2/SH2B3 0.036 0.005 2.45E-10 0.044 0.009 7.50E-07 0.032 0.007 5.50E-06 Coeliac disease,(517) 

Diastolic Blood 

Pressure,(475) Chronic 

kidney disease,(513) Serum 

thyroid peroxidase antibody 

levels,(479) Rheumatoid 

arthritis,(518) Peripheral 

artery disease,(477) 

Myocardial infarction,(519) 

Inflammatory bowel 

disease(520)   

rs6598541 15 A IGF1R/IGF1R 0.044 0.006 5.20E-13 0.039 0.009 2.70E-05 0.050 0.007 1.60E-11 None  

rs675209 6 T RREB1/RREB1 0.063 0.006 1.38E-21 0.060 0.010 3.30E-09 0.064 0.008 2.00E-15 Gout,(333)  

Cardiovascular disease risk 

factors(333) 

rs6770152 3 G SFMBT1/MUSTN1 0.048 0.006 2.66E-16 0.052 0.009 6.70E-09 0.047 0.007 6.00E-11 None  

rs7188445 16 G MAF/MAF 0.032 0.006 1.15E-07 0.025 0.009 7.90E-03 0.040 0.007 6.40E-08 None  

rs7193778 16 C NFAT5/NFAT5 0.047 0.008 2.36E-08 0.048 0.012 2.10E-04 0.045 0.010 1.00E-05 None  

rs7224610 17 C HLF/HLF 0.038 0.006 4.74E-11 0.043 0.009 9.00E-07 0.034 0.007 3.00E-06 None  

rs729761 6 G VEGFA/VEGFA 0.046 0.006 3.05E-12 0.047 0.010 3.20E-06 0.047 0.008 3.20E-06 None  

rs742132 6 A LRRC16A/LRRC16A 0.035 0.006 1.90E-08 0.035 0.006 1.90E-08 0.035 0.006 1.90E-08 Cardiovascular disease risk 

factors,(333) Haematological 

and biochemical traits,(512) 

Metabolite levels(521)  

Abbreviations: SNP=Single Nucleotide Polymorphism; GWAS= Genome Wide Association Study; GRAIL=Gene Recognition and Analysis Internet Link.  
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Supplementary Table 5 - 3: Demographic characteristics of the sampled UK Biobank 

participants (n=120,091). 

Continuous variable Mean (S.D.) Number of missing 

Age# 64.86 (7.95) years 0 

Standing height 168.79 (9.20) cm 200 

Weight 78.68 (16.08) kg 288 

BMI† 27.54 (4.83) kg/m2 329 

Categorical variable Levels Number of participants 

Sex 
Male 56,845 

Female 63,246 

Assessment center 

Barts 2,004 

Birmingham 5,427 

Bristol 10,808 

Bury 7,751 

Cardiff 4,539 

Croydon 4,933 

Edinburgh 4,257 

Glasgow 4,783 

Hounslow 5,082 

Leeds 11,188 

Liverpool 8,404 

Manchester 3,278 

Middlesborough 5,563 

Newcastle 9,592 

Nottingham 8,429 

Oxford 3,163 

Reading 7,021 

Sheffield 7,779 

Stockport(pilot) 88 

Stoke 5,229 

Swansea 571 

Wrexham 202 

# Variable represents the mean age of participants at the year when we assessed their medical records.  
†BMI (body mass index) was calculated as the weight divided by the square of the height
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Supplementary Table 5 - 4: Genotype-phenotype associations identified from PheWAS analysis without adjustment for BMI. 

Phecode Description SNP_risk allele n_total n_cases allele_freq HWE_p beta SE OR (95%CI) P 

274.1 Gout rs2231142_T 119884 1008 0.113 0.642 0.619 0.057 1.86 (1.66, 2.08) 4.17E-27 

275.1 Disorders of iron metabolism rs1165151_G 119389 205 0.451 0.920 1.270 0.127 3.56 (2.78, 4.57) 1.34E-23 

244.4 Hypothyroidism NOS rs653178_C 119145 4169 0.482 0.690 0.184 0.023 1.20 (1.15, 1.26) 3.19E-16 

246 Other disorders of thyroid rs653178_C 119929 4953 0.483 0.708 0.163 0.021 1.18 (1.13, 1.23) 4.56E-15 

274.1 Gout rs12498742_A 119284 1007 0.233 0.773 0.429 0.060 1.54 (1.37, 1.73) 1.00E-12 

275.1 Disorders of iron metabolism rs742132_A 119598 205 0.293 0.790 1.029 0.148 2.80 (2.10, 3.74) 3.15E-12 

211 
Benign neoplasm of other parts of 

digestive system 
rs11264341_C 117350 1507 0.429 0.949 -0.189 0.037 0.83 (0.77, 0.89) 2.68E-07 

411.8 Other chronic ischaemic heart disease rs653178_C 119699 9495 0.483 0.720 0.075 0.016 1.08 (1.05, 1.11) 1.24E-06 

411.4 Coronary atherosclerosis rs653178_C 119787 9583 0.483 0.716 0.075 0.015 1.08 (1.05, 1.11) 1.41E-06 

411 Ischaemic Heart Disease rs653178_C 119728 9524 0.483 0.723 0.075 0.015 1.08 (1.05, 1.11) 1.47E-06 

274.1 Gout rs1260326_T 119884 1008 0.393 0.813 0.218 0.045 1.24 (1.14, 1.36) 1.48E-06 

401 Hypertension rs653178_C 120091 23755 0.483 0.720 0.049 0.011 1.05 (1.03, 1.07) 3.59E-06 

427.2 Atrial fibrillation and flutter rs6598541_A 113564 4368 0.353 0.549 0.106 0.023 1.11 (1.06, 1.16) 3.69E-06 

401.1 Essential hypertension rs653178_C 120017 23681 0.483 0.707 0.049 0.011 1.05 (1.03, 1.07) 4.20E-06 

557.1 Coeliac disease rs1165151_G 100035 550 0.450 0.904 0.285 0.062 1.33 (1.18, 1.50) 5.11E-06 

960 Poisoning by antibiotics rs1165151_G 112628 1031 0.451 0.864 -0.199 0.045 0.82 (0.75, 0.89) 8.01E-06 

557.1 Coeliac disease rs653178_C 100218 551 0.482 0.306 0.271 0.061 1.31 (1.16, 1.48) 8.27E-06 

411.2 Myocardial infarction rs653178_C 113854 3650 0.482 0.603 0.105 0.024 1.11 (1.06, 1.16) 1.31E-05 

535 Gastritis and duodenitis rs478607_G 115704 5252 0.152 0.914 0.114 0.027 1.12 (1.06, 1.18) 2.50E-05 

459.9 Circulatory disease NEC rs653178_C 120005 39322 0.483 0.702 0.037 0.009 1.04 (1.02, 1.06) 4.54E-05 

471 Nasal polyps rs10821905_A 113054 986 0.172 0.725 0.227 0.056 1.26 (1.12, 1.40) 5.06E-05 

366 Cataract rs6770152_G 116535 4592 0.427 0.063 0.087 0.022 1.09 (1.05, 1.14) 6.44E-05 

292.1 Aphasia/speech disturbance rs164009_A 116338 425 0.385 0.969 0.291 0.074 1.34 (1.16, 1.55) 8.38E-05 
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Supplementary Table 5 - 5: Genotype-phenotype associations identified from sex-stratified PheWAS after correcting multiple testing by FDR.* 

Phecode Description SNP_effect _allele n_total n_cases allele_freq hwe_p Beta SE OR (95%CI) P 

Significant associations identified from PheWAS analysis in men 

274.1 Gout rs2231142_T 56528 885 0.113 0.939 0.681 0.061 1.98 (1.75, 2.23) 8.23E-29 

274.1 Gout rs12498742_A 56253 884 0.234 0.876 -0.430 0.064 1.54 (1.36, 1.74) 2.68E-11 

714 Inflammatory polyarthropathies rs2231142_T 56306 2685 0.113 0.956 0.209 0.042 1.23 (1.14, 1.34) 5.82E-07 

274.1 Gout rs1260326_T 56528 885 0.393 0.554 0.238 0.049 1.27 (1.15, 1.40) 1.01E-06 

401 Hypertensive disease rs653178_C 56668 13027 0.482 0.834 0.073 0.015 1.08 (1.04, 1.11) 1.34E-06 

401.1 Essential hypertension rs653178_C 56630 12989 0.482 0.824 0.073 0.015 1.08 (1.04, 1.11) 1.42E-06 

277 Disorders of metabolism‡ rs3741414_C 56503 8017 0.243 0.604 -0.096 0.021 1.10 (1.06, 1.15) 3.98E-06 

714 Inflammatory polyarthropathies‡ rs1260326_T 56306 2685 0.393 0.657 0.120 0.029 1.13 (1.07, 1.19) 3.09E-05 

512 Other diseases of respiratory system‡ rs1471633_A 55070 977 0.462 0.930 -0.193 0.046 0.82 (0.75, 0.90) 3.25E-05 

274.1 Gout rs642803_C 55592 872 0.460 0.573 -0.198 0.050 1.22 (1.11, 1.34) 6.17E-05 

Significant associations identified from PheWAS analysis in women 

244.4 Hypothyroidism NOS rs653178_C 62363 3362 0.483 0.030 0.205 0.025 1.23 (1.17, 1.29) 7.95E-16 

246 Other disorders of thyroid rs653178_C 62970 3969 0.483 0.096 0.179 0.023 1.20 (1.14, 1.25) 2.51E-14 

211 Benign neoplasm of digestive system rs11264341_C 61908 896 0.431 0.872 0.257 0.048 0.77 (0.70, 0.85) 7.47E-08 

411.4 Coronary atherosclerosis rs653178_C 62971 2997 0.483 0.185 0.113 0.027 1.12 (1.06, 1.18) 2.71E-05 

411 Ischaemic Heart Disease rs653178_C 62954 2980 0.483 0.157 0.112 0.027 1.12 (1.06, 1.18) 3.35E-05 

669 Complications of labor and delivery# rs729761_G 59622 2376 0.283 0.958 -0.159 0.039 1.17 (1.09, 1.27) 3.78E-05 

401.1 Essential hypertension rs2079742_T 60918 10237 0.136 0.339 -0.098 0.024 1.10 (1.05, 1.16) 5.35E-05 

689 Disorder of skin and subcutaneous tissue#  rs2231142_T 63094 6142 0.113 0.349 -0.126 0.031 0.88 (0.83, 0.94) 5.72E-05 

401 Hypertensive disease rs2079742_T 60952 10271 0.136 0.310 -0.098 0.024 1.10 (1.05, 1.16) 5.78E-05 

535 Gastritis and duodenitis rs478607_G 60962 2845 0.153 0.790 0.144 0.036 1.15 (1.08, 1.24) 7.46E-05 

*Significance threshold of p<8.57×10-5corresponds to a FDR of q<0.05 after correcting the multiple testing. 
‡ Genotype-phenotype associations that were not identified in PheWAS analysis of overall population.   
# Genotype-phenotype association that were not identified in PheWAS analysis of overall population.
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Supplementary Table 5 - 6: The mappings of ICD codes to phecodes for the 25 disease 

outcomes identified from PheWAS. 

Phecode  ICD9/10 Descriptions 

274.1 Gout 

ICD-9 

274 Gout 

274 Gouty arthropathy 

274.1 Gouty nephropathy 

274.8 Gout with other specified manifestations 

274.9 Gout, unspecified 

ICD-10 

M10 Gout 

M10.0 Idiopathic gout 

M10.1 Lead-induced gout 

M10.2 Drug-induced gout 

M10.3 Gout due to impairment of renal function 

M10.4 Other secondary gout 

M10.9 Gout, unspecified 

714 Inflammatory polyarthropathies 

ICD-9 

714 Rheumatoid arthritis and other inflammatory polyarthropathies 

714 Rheumatoid arthritis 

714.1 Felty's syndrome 

714.2 Other rheumatoid arthritis with visceral or systemic involvement 

714.3 Juvenile chronic polyarthritis 

714.4 Chronic postrheumatic arthropathy 

714.8 Other specified inflammatory polyarthropathies 

714.9 Unspecified inflammatory polyarthropathy 

ICD-10 

M05 
Seropositive rheumatoid arthritis 

M05.0-M05.9 

M06 
Other rheumatoid arthritis 

M06.0-M06.9 

M07 
Psoriatic and enteropathic arthropathies 

M07.0-M07.6 

M08 
Juvenile arthritis 

M08.0-M08.9 

M09 
Juvenile arthritis in diseases classified elsewhere 

M09.0-M09.8 

M10 
Gout 

M10.0-M10.9 

M11 
Other crystal arthropathies 

M11.0-M11.9 

M12 
Other specific arthropathies 

M12.0-M12.8 
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M13 
Other arthritis 

M13.0-M13.9 

M14 
Arthropathies in other diseases classified elsewhere 

M14.0-M14.8 

401.1 Essential hypertension 

ICD-9 401 
Essential hypertension 

401.0-401.9 

ICD-10 I10 Essential (primary) hypertension 

401 Hypertensive disease 

ICD-9 

401 
Essential hypertension 

401.0-401.9 

402 
Hypertensive heart disease 

402.0-402.9 

403 
 Hypertensive chronic kidney disease 

403.0-403.9 

404 
Hypertensive heart and chronic kidney disease 

404.0-404.9 

405 
 Secondary hypertension 

405.0-405.9 

ICD-10 

I10 Essential (primary) hypertension 

I11 
Hypertensive heart disease 

I11.0-I11.9 

I12 
Hypertensive renal disease 

I12.0-I12.9 

I13 
Hypertensive heart and renal disease 

I13.0-I13.9 

I15 
Secondary hypertension 

I15.0-115.9 

411.4 Coronary atherosclerosis 

ICD-9 

411.81 Acute coronary occlusion without myocardial infarction 

414 
Other forms of chronic ischaemic heart disease 

414.00-414.07 

414.1 
Aneurysm and dissection of heart 

414.10-414.19 

414.2 Chronic total occlusion of coronary artery 

414.3 Coronary atherosclerosis due to lipid rich plaque 

996.03 Due to coronary bypass graft 

V45.81 Aortocoronary bypass status 

V45.82 Percutaneous transluminal coronary angioplasty status 

ICD-10 I20 
Angina pectoris 

I20.0-I20.9 
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I21 
Acute myocardial infarction 

I21.0-I21.9 

I22 
Subsequent myocardial infarction 

I22.0-I22.9 

I23 
Certain current complications following acute myocardial infarction 

I23.0-I23.9 

I24 
Other acute ischaemic heart diseases 

I24.0-I24.9 

I25 
Chronic ischaemic heart disease 

I25.0-I25.9 

Z95.1 Presence of aortocoronary bypass graft 

Z95.5 Presence of coronary angioplasty implant and graft 

411.2 Myocardial infarction 

ICD-9 

410 
Acute myocardial infarction 

410.0-410.9 

411 Postmyocardial infarction syndrome 

412 Old myocardial infarction 

429.7 
Certain sequelae of myocardial infarction, not elsewhere classified 

429.71-429.79 

ICD-10 

I21 
Acute myocardial infarction 

I21.0-I21.9 

I22 
Subsequent myocardial infarction 

I22.0-I22.9 

I23 
Certain current complications following acute myocardial infarction 

I23.0-I23.9 

I24.1 Dressler syndrome 

I25.2 Old myocardial infarction 

I51.0 Cardiac septal defect 

I51.3 Intracardiac thrombosis, not elsewhere classified 

427.2 Atrial fibrillation and flutter 

ICD-9 427.3 
Atrial fibrillation and flutter 

427.31-427.32 

ICD-10 I48 
Atrial fibrillation and flutter 

I48.0-I48.9 

411.3 Angina pectoris 

ICD-9 413 
Angina pectoris 

413.0-413.9 

ICD-10 I20 
Angina pectoris 

I20.0-I20.9 

411 Ischaemic heart disease 

ICD-9 410 Acute myocardial infarction 
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410.0-410.9 

411 
Other acute and subacute forms of ischaemic heart disease 

411.0-411.8 

412 Old myocardial infarction 

413 
Angina pectoris 

413.0-413.9 

414 
Other forms of chronic ischaemic heart disease 

414.0-414.9 

429 Ill-defined descriptions and complications of heart disease 

996.03 Due to coronary bypass graft 

ICD-10 

I20 
Angina pectoris 

I20.0-I20.9 

I21 
Acute myocardial infarction 

I21.0-I21.9 

I22 
Subsequent myocardial infarction 

I22.0-I22.9 

I23 
Certain current complications following acute myocardial infarction 

I23.0-I23.9 

I24 
Other acute ischaemic heart diseases 

I24.0-I24.9 

I25 
Chronic ischaemic heart disease 

I25.0-I25.9 

454.1 Varicose veins of lower extremity 

ICD-9 454 
Varicose veins of lower extremities 

454.0-454.9 

ICD-10 I83 
Varicose veins of lower extremities 

I83.0-I83.9 

459.9 Circulatory disease  

ICD-9 459 
Other disorders of circulatory system 

459.0-459.9 

ICD-10 

I00-I02  Acute rheumatic fever   

I05-I09  Chronic rheumatic heart diseases   

I10-I15  Hypertensive diseases   

I20-I25 Ischaemic heart diseases   

I26-I28    Pulmonary heart disease and diseases of pulmonary circulation 

I30-I52  Other forms of heart disease   

I60-I69  Cerebrovascular diseases   

I70-I79  Diseases of arteries, arterioles and capillaries   

I80-I89 Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified   

244.4 Hypothyroidism NOS 

ICD-9 244.9 Unspecified hypothyroidism 
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ICD-10 E03.9 Hypothyroidism, unspecified 

246 Disorders of thyroid 

ICD-9 246 
Disorders of thyrocalcitonin secretion 

246.0-246.9 

ICD-10 

E00 
Congenital iodine-deficiency syndrome 

E00.0-E00.9 

E01 
Iodine-deficiency-related thyroid disorders and allied conditions 

E01.1-E01.8 

E02 Subclinical iodine-deficiency hypothyroidism 

E03 
Other hypothyroidism 

E03.0-E03.9 

E04 
Other nontoxic goitre 

E04.0-E04.9 

E05 
Thyrotoxicosis [hyperthyroidism] 

E05.0-E05.9 

E06 
Thyroiditis 

E06.0-E06.9 

E07 
Other disorders of thyroid 

E07.0-E07.9 

557.1 Coeliac disease 

ICD-9 
579 Coeliac disease 

579.1 Tropical sprue 

ICD-10 
K90.0 Coeliac disease 

K90.1 Tropical sprue 

275.1 Disorders of iron metabolism 

ICD-9 275 Disorders of iron metabolism 

ICD-10 E83.1 Disorders of iron metabolism 

272.11 Hypercholesterolaemia 

ICD-9 272 Pure hypercholesterolaemia 

ICD-10 E78.0 Pure hypercholesterolaemia 

277 Disorders of metabolism 

ICD-9 

277 
Other and unspecified disorders of metabolism 

277.0-277.9 

783.9 Other symptoms concerning nutrition, metabolism, and development 

794.7 Basal metabolism 

ICD-10 

C96.0 Multifocal and multisystemic (disseminated) Langerhans-cell histiocytosis  

E43 Unspecified severe protein-energy malnutrition 

E70 
Disorders of aromatic amino-acid metabolism 

E70.1-E70.9 

E71  Disorders of branched-chain amino-acid metabolism and fatty-acid metabolism   

E72  Other disorders of amino-acid metabolism   
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E73  Lactose intolerance   

E74 Other disorders of carbohydrate metabolism   

E75  Disorders of sphingolipid metabolism and other lipid storage disorders   

E76    Disorders of glycosaminoglycan metabolism 

E77  Disorders of glycoprotein metabolism   

E78  Disorders of lipoprotein metabolism and other lipidaemias   

E79  Disorders of purine and pyrimidine metabolism   

E80 Disorders of porphyrin and bilirubin metabolism  

E83  Disorders of mineral metabolism   

E84  Cystic fibrosis   

E85  Amyloidosis   

E86   Volume depletion  

E87 Other disorders of fluid, electrolyte and acid-base balance   

E88  Other metabolic disorders   

E89  Postprocedural endocrine and metabolic disorders, not elsewhere classified   

E90  Nutritional and metabolic disorders in diseases classified elsewhere   

366 Cataract 

ICD-9 
366 

Cataract 

366.0-366.9 

998.82 Cataract fragments in eye following cataract surgery 

ICD-10 

V43.1  Lens 

V45.61 Cataract extraction status 

H26 
Other cataract 

H26.0-H26.9 

H28 
Cataract and other disorders of lens in diseases classified elsewhere 

H28.0-H28.8 

Z96.1 Presence of intraocular lens 

960 Poisoning by antibiotics 

ICD-9 

960 
Poisoning by antibiotics 

960.1-960.9 

961.8 Other anti-mycobacterial drugs 

V14.0 Personal history of allergy to Penicillin 

V14.1 Personal history of allergy to other antibiotic agent 

E856 Accidental poisoning by antibiotics 

E930 
Adverse effects in therapeutic use of antibiotics 

E930.0- E930.9 

E931.8 Adverse effects in therapeutic use of anti-mycobacterial drugs 

E933.4 Adverse effects in therapeutic use of Penicillinase 

ICD-10 
T36 

Poisoning by systemic antibiotics 

T36.5- T36.9 

T37.1 Poisoning by anti-mycobacterial drugs 
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T37.8 Poisoning by other specified systemic anti-infectives and antiparasitics 

Z88.1 Personal history of allergy to other antibiotic agents 

471 Nasal polyps 

ICD-9 471 
Nasal polyps 

471.0-471.9 

ICD-10 J33 
Nasal polyp 

J33.0-J33.9 

512 Other diseases of respiratory system 

ICD-9 

519 
Other diseases of respiratory system 

519.0-519.9 

786 
Symptoms involving respiratory system and other chest symptoms 

786.0-786.9 

ICD-10 

J95 
Postprocedural respiratory disorders, not elsewhere classified 

J95.0-J95.9 

J96 
Respiratory failure, not elsewhere classified 

J96.0-J96.9 

J98 
Other respiratory disorders 

J98.0-J98.9 

J99 
Respiratory disorders in diseases classified elsewhere 

J99.0-J99.9 

535 Gastritis and duodenitis 

ICD-9 535 
Gastritis and duodenitis 

535.0-535.7 

ICD-10 K29 
Gastritis and duodenitis 

K29.0-K29.9 

211 Benign neoplasm of digestive system 

ICD-9 

211 Benign neoplasm of other parts of digestive system 

  211.0-211.9 

ICD-10 

D13 Benign neoplasm of other and ill-defined parts of digestive system 

  D13.0-D13.9 

D19.1 Mesothelial tissue of peritoneum 

K31.7 Polyp of stomach and duodenum 

669 Complications of labour and delivery  

ICD-9 

667 Retained placenta without haemorrhage 

669 
Other complications of labour and delivery, not elsewhere classified 

669.0-669.9 

674 
Other and unspecified complications of the puerperium, not elsewhere classified 

674.0-674.9 

677 Late effect of complication of pregnancy, childbirth, and the puerperium 

ICD-10 O26.5 Maternal hypotension syndrome 
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O60 
Preterm labour and delivery 

O60.0- O60.9 

O61 
Failed induction of labour 

O61.0- O61.9 

O62 
Abnormalities of forces of labour 

O62.0- O62.9 

O63 
Long labour 

O63.0- O63.9 

O64 
Obstructed labour due to malposition and malpresentation of foetus 

O64.0- O64.9 

O65 
Obstructed labour due to maternal pelvic abnormality 

O65.0- O65.9 

O66 
Other obstructed labour 

O66.0- O66.9 

O67 

Labour and delivery complicated by intrapartum haemorrhage, not elsewhere 

classified 

O67.0- O67.9 

O68 
Labour and delivery complicated by foetal stress 

O68.0- O68.9 

O69 
Labour and delivery complicated by umbilical cord complications 

O69.0- O69.9 

O70 
Perineal laceration during delivery 

O70.0- O70.9 

O71 
Other obstetric trauma 

O71.0- O71.9 

O72 
Postpartum haemorrhage 

O72.0- O72.9 

O73 
Retained placenta and membranes, without haemorrhage 

O73.0- O73.9 

O74 
Complications of anaesthesia during labour and delivery 

O74.0- O74.9 

O75 
Other complications of labour and delivery, not elsewhere classified 

O75.0- O75.9 

O81 
Single delivery by forceps and vacuum extractor 

O81.3-O81.5 

O82 Single delivery by caesarean section 

O83 Other assisted single delivery 

O90.4 Postpartum acute renal failure 

689 Disorder of skin and subcutaneous tissue  

ICD-9 709 Other disorders of skin and subcutaneous tissue 

ICD-10 L00-L08 Infections of the skin and subcutaneous tissue   
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L10-L14  Bullous disorders   

L20-L30 Dermatitis and eczema   

L40-L45 Papulosquamous disorders   

L50-L54  Urticarial and erythema   

L55-L59 Radiation-related disorders of the skin and subcutaneous tissue   

L60-L75 Disorders of skin appendages   

L80-L99  Other disorders of the skin and subcutaneous tissue   
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Supplementary Table 5 - 7: Sex-stratified MR IVW analysis and MR Egger analysis.  

Outcomes 

Male-specific effect Female-specific effect 

MR IVW MR Egger MR IVW MR Egger 

Beta  SE 
OR 

(95%CI) 
P effect Beta  SE OR (95%CI) P effect P pleiotropy Beta  SE 

OR 

(95%CI) 
P effect Beta  SE 

OR 

(95%CI) 
P effect P pleiotropy 

Gout  1.77 0.12 
5.85 (4.59, 
7.46) 

2.22E-

15 
2.06 0.28 

7.81 (4.39, 
13.90) 

4.87E-
08 

0.20 1.23 0.30 
3.42 (1.84, 
6.38) 

3.40E-
04 

1.10 0.47 
3.01 (1.16, 
7.81) 

0.03 0.68 

Inflammatory polyarthropathies 0.57 0.07 
1.76 (1.53, 

2.04) 
5.41E-

09 
0.64 0.13 

1.90 (1.45, 

2.48) 

3.76E-

05 
0.49 -0.04 0.06 

0.96 (0.85, 

1.07) 
0.43 -0.08 0.07 

0.92 (0.79, 

1.07) 
0.28 0.46 

Essential hypertension 0.09 0.04 
1.10 (1.02, 
1.19) 

0.02 -0.07 0.08 
0.93 (0.78, 
1.10) 

0.37 0.02 0.07 0.03 
1.08 (1.00, 
1.15) 

0.04 -0.06 0.07 
0.94 (0.82, 
1.08) 

0.39 0.01 

Hypertensive disease 0.09 0.04 
1.10 (1.02, 

1.19) 
0.02 -0.07 0.08 

0.93 (0.78, 

1.10) 
0.37 0.02 0.07 0.03 

1.08 (1.00, 

1.16) 
0.04 -0.06 0.07 

0.94 (0.82, 

1.08) 
0.40 0.00 

Myocardial infarction 0.15 0.07 
1.17 (1.01, 
1.34) 

0.03 0.03 0.15 
1.03 (0.76, 
1.39) 

0.84 0.29 0.18 0.11 
1.20 (0.96, 
1.50) 

0.10 0.08 0.15 
1.08 (0.79, 
1.47) 

0.62 0.28 

Coeliac disease 0.35 0.26 
1.42 (0.83, 

2.43) 
0.19 0.03 0.60 

1.03 (0.31, 

3.49) 
0.96 0.51 0.27 0.16 

1.31 (0.94, 

1.84) 
0.11 0.22 0.28 

1.24 (0.70, 

2.22) 
0.45 0.77 

Disorders of metabolism 0.10 0.04 
1.10 (1.01, 
1.20) 

0.04 0.04 0.09 
1.04 (0.86, 
1.26) 

0.70 0.44 0.37 0.38 
1.44 (0.66, 
3.14) 

0.34 0.08 0.75 
1.08 (0.24, 
4.96) 

0.92 0.55 

Coronary atherosclerosis 0.05 0.05 
1.05 (0.95, 

1.16) 
0.32 -0.03 0.10 

0.97 (0.79, 

1.20) 
0.79 0.36 0.14 0.06 

1.15 (1.02, 

1.30) 
0.02 0.08 0.10 

1.09 (0.88, 

1.34) 
0.43 0.38 

Ischaemic heart disease 0.04 0.05 
1.04 (0.95, 
1.15) 

0.39 -0.03 0.10 
0.97 (0.79, 
1.19) 

0.77 0.38 0.14 0.06 
1.15 (1.02, 
1.30) 

0.02 0.07 0.10 
1.08 (0.87, 
1.33) 

0.47 0.33 

Angina pectoris 0.03 0.06 
1.03 (0.90, 

1.17) 
0.66 -0.02 0.12 

0.98 (0.77, 

1.26) 
0.89 0.64 0.12 0.08 

1.13 (0.97, 

1.32) 
0.11 0.01 0.12 

1.01 (0.80, 

1.29) 
0.90 0.15 

Atrial fibrillation and flutter -0.03 0.07 
0.97 (0.85, 
1.11) 

0.67 -0.20 0.11 
0.81 (0.65, 
1.03) 

0.08 0.06 0.08 0.08 
1.09 (0.92, 
1.29) 

0.33 -0.02 0.12 
0.98 (0.77, 
1.25) 

0.85 0.18 

Circulatory disease 0.05 0.03 
1.05 (0.98, 

1.12) 
0.16 0.01 0.06 

1.01 (0.89, 

1.13) 
0.92 0.39 0.03 0.03 

1.03 (0.98, 

1.09) 
0.23 -0.04 0.05 

0.96 (0.86, 

1.07) 
0.49 0.05 

Varicose veins of lower extremity -0.15 0.11 
0.86 (0.69, 
1.08) 

0.19 -0.15 0.21 
0.86 (0.55, 
1.33) 

0.48 0.97 -0.14 0.07 
0.87 (0.76, 
0.99) 

0.04 -0.14 0.13 
0.87 (0.67, 
1.13) 

0.29 0.98 

Disorders of iron metabolism 0.15 0.30 
1.16 (0.63, 

2.16) 
0.62 -0.42 1.05 

0.66 (0.08, 

5.60) 
0.69 0.50 0.37 0.38 

1.44 (0.66, 

3.14) 
0.34 0.08 0.75 

1.08 (0.24, 

4.96) 
0.92 0.55 

Hypercholesterolaemia 0.22 0.12 
1.24 (0.98, 
1.57) 

0.07 0.20 0.19 
1.22 (0.82, 
1.81) 

0.32 0.91 0.06 0.05 
1.06 (0.95, 
1.18) 

0.29 -0.04 0.12 
0.96 (0.75, 
1.23) 

0.74 0.21 

Hypothyroidism 0.20 0.13 
1.23 (0.95, 

1.59) 
0.12 0.21 0.26 

1.23 (0.73, 

2.08) 
0.42 0.98 0.06 0.05 

1.06 (0.95, 

1.18) 
0.29 -0.04 0.12 

0.96 (0.75, 

1.23) 
0.74 0.21 

Disorders of thyroid 0.20 0.12 
1.22 (0.96, 

1.55) 
0.09 0.22 0.22 

1.25 (0.80, 

1.97) 
0.32 0.90 0.04 0.05 

1.04 (0.94, 

1.15) 
0.48 -0.04 0.11 

0.96 (0.77, 

1.20) 
0.71 0.28 

Benign neoplasm of digestive 

system 
0.06 0.14 

1.06 (0.79, 

1.41) 
0.70 -0.01 0.26 

0.99 (0.59, 

1.68) 
0.97 0.75 -0.11 0.10 

0.89 (0.73, 

1.10) 
0.27 -0.09 0.18 

0.91 (0.63, 

1.33) 
0.63 0.85 
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Outcomes 

Male-specific effect Female-specific effect 

MR IVW MR Egger MR IVW MR Egger 

Beta  SE 
OR 

(95%CI) 
P effect Beta  SE OR (95%CI) P effect P pleiotropy Beta  SE 

OR 

(95%CI) 
P effect Beta  SE 

OR 

(95%CI) 
P effect P pleiotropy 

Gastritis and duodenitis -0.04 0.07 
0.96 (0.82, 
1.11) 

0.56 -0.03 0.15 
0.97 (0.71, 
1.33) 

0.83 0.93 -0.03 0.06 
0.97 (0.86, 
1.09) 

0.62 -0.07 0.08 
0.93 (0.79, 
1.11) 

0.41 0.45 

Nasal polyps 0.23 0.14 
1.25 (0.95, 

1.65) 
0.11 0.41 0.28 

1.51 (0.86, 

2.68) 
0.15 0.40 -0.23 0.17 

0.79 (0.56, 

1.11) 
0.17 -0.37 0.27 

0.69 (0.40, 

1.19) 
0.17 0.41 

Cataract -0.01 0.08 
0.99 (0.84, 
1.16) 

0.88 -0.13 0.16 
0.88 (0.63, 
1.23) 

0.43 0.38 -0.02 0.06 
0.98 (0.86, 
1.11) 

0.74 -0.10 0.10 
0.90 (0.74, 
1.10) 

0.30 0.20 

Poisoning by antibiotics -0.15 0.23 
0.86 (0.53, 

1.39) 
0.52 0.03 0.45 

1.03 (0.41, 

2.56) 
0.95 0.62 -0.14 0.11 

0.87 (0.70, 

1.09) 
0.21 0.00 0.16 

1.00 (0.71, 

1.40) 
0.99 0.21 

Complications of labour and 

delivery 
NA NA NA NA NA NA NA NA NA -0.11 0.07 

0.90 (0.78, 

1.04) 
0.14 -0.18 0.12 

0.83 (0.65, 

1.06) 
0.13 0.31 

Other diseases of respiratory 

system 
-0.14 0.11 

0.87 (0.69, 

1.09) 
0.21 -0.35 0.24 

0.70 (0.43, 

1.14) 
0.15 0.28 0.38 0.11 

1.46 (1.15, 

1.84) 

2.62E-

03 
0.51 0.15 

1.66 (1.22, 

2.26) 

2.27E-

03 
0.20 

Disorder of skin and 
subcutaneous tissue  

0.03 0.05 
1.03 (0.93, 
1.13) 

0.60 0.003 0.09 
1.00 (0.84, 
1.20) 

0.97 0.74 0.003 0.04 
1.00 (0.92, 
1.09) 

0.93 0.04 0.07 
1.04 (0.90, 
1.20) 

0.60 0.46 

 
In sex-stratified MR IVW analysis of 25 disease groups/outcomes (Supplementary Table 5-7), 3 disease groups/outcomes (gout, hypertensive disease, and 

essential hypertension) showed potential causal link with SUA level in both men and women, 3 disease groups/outcomes (inflammatory polyarthropathies, 

myocardial infarction, and disorders of metabolism) had potential causal link in men, and 4 disease groups/outcomes (coronary atherosclerosis, ischaemic heart 

disease, varicose veins of lower extremity and other diseases of respiratory system) had potential causal link only in women. The sex-stratified MR Egger analysis 

suggested causal effect of SUA level on gout in both men (OR=7.81, 95%CI: 4.39 to 13.90, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡= 4.87×10-8, 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦=0.20) and women (OR=3.01, 95%CI: 

1.16 to 7.81, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡= 0.03, 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦=0.68), on inflammatory polyarthropathies in men (OR=1.90, 95%CI: 1.45 to 2.48, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡= 3.76×10-5, 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦=0.49), 

and on other diseases of respiratory system in women (OR=1.66, 95%CI: 1.22 to 2.26, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡= 2.27×10-3, 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦=0.20). 
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Supplementary Table 5 - 8: A sensitivity analysis of MR for gout cases defined by multiple 

criteria.  

Case ascertainment  
No. of 

cases* 

MR IVW MR Egger 

OR (95%CI) P effect Power OR (95%CI) P effect Power 

Hospital-diagnosed 

gout 
1,003 

4.88 (3.91, 

6.09) 
3.55E-15 1.00 

4.58 (2.72, 

7.72) 

1.76E-

06 
1.00 

Self-reported gout 1,769 
9.78 (8.22, 

9.79) 
0.00E+00 1.00 

14.5 (10.1, 

14.9) 

2.89E-

15 
1.00 

Hospital-diagnosed or 

self-reported gout 
2,274 

8.26 (7.04, 

9.60) 
0.00E+00 1.00 

12.6 (9.06, 

17.3) 

6.66E-

16 
1.00 

*Note the number of study population is 120,091. 
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Online Supplementary Figures 

 

 

 

Supplementary Figure 5 - 1: Three possible explanations for the PheWAS association 

between SUA level and disease outcome through genotypes. 

(Reshaped based on the publication of Zhu et al). 
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Supplementary Figure 5 - 2: The number of phenotypes and median number of cases in each disease category (outliers>15K are not plotted). 
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Supplementary Figure 5 - 3: A scatter plot of the SNP effect on SUA level against the SNP 

effect on gout.  
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Supplementary Figure 5 - 4: A scatter plot of the SNP effect on SUA level against the SNP 

effect on inflammatory polyarthropathies.   
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Supplementary Figure 5 - 5: A scatter plot of the SNP effect on SUA level against the SNP 

effect on hypertensive disease. 
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Supplementary Figure 5 - 6: A scatter plot of the SNP effect on SUA level against the SNP 

effect on essential hypertension.  
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Supplementary Figure 5 - 7: A scatter plot of the SNP effect on SUA level against the SNP 

effect on myocardial infarction.  
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Supplementary Figure 5 - 8: A scatter plot of the SNP effect on SUA level against the SNP 

effect on coeliac disease.  
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Supplementary Figure 5 - 9: A scatter plot of the SNP effect on SUA level against the SNP 

effect on disorders of metabolism.
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Supplementary Figure 5 - 10: Regional association plots of SH2B3_ATXN2 locus with associated phenotypes.    
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Results of regional association were plotted as –log10 P-value for all SNPs located within a±250 kb window around SH2B3_ATXN2 ordered by the chromosome 

position. The LD between the index SNP (rs653178) and other SNPs in this region were indicated by using color scheme. Location of genes were given by blue 

narrows at the bottom, pointing the direction of transcription. Both the index SNP (rs653178) and the most significant SNPs associated with the phenotypes (top 

SNP with the smallest P-value) were tagged. Results were shown for (A) the regional association of the SH2B3_ATXN2 locus with SUA level; (B) the regional 

association of the SH2B3_ATXN2 locus with essential hypertension (top SNP: rs4766578; p value of HEIDI test = 0.99); (C) the regional association of the 

SH2B3_ATXN2 locus with hypertensive disease (top SNP: rs4766578; p value of HEIDI test = 0.99); (D) the regional association of the SH2B3_ATXN2 locus with 

angina pectoris (top SNP: rs4766578; p value of HEIDI test = 0.20); (E) the regional association of the SH2B3_ATXN2 locus with coronary atherosclerosis (top 

SNP: rs4766578; p value of HEIDI test = 0.91); (F) the regional association of the SH2B3_ATXN2 locus with ischaemic heart disease (top SNP: rs4766578; p value 

of HEIDI test = 0.93); (G) the regional association of the SH2B3_ATXN2 locus with myocardial infarction (top SNP: rs4766578; p value of HEIDI test = 0.06); (H) 

the regional association of the SH2B3_ATXN2 locus with circulatory disease (top SNP: rs3184504; p value of HEIDI test = 0.99); (I) the regional association of the 

SH2B3_ATXN2 locus with coeliac disease (top SNP: rs3184504; p value of HEIDI test = 0.67); (J) the regional association of the SH2B3_ATXN2 locus with 

hypothyroidism (top SNP: rs3184504; p value of HEIDI test = 0.57); (K) the regional association of the SH2B3_ATXN2 locus with thyroid disorders (top SNP: 

rs3184504; p value of HEIDI test = 0.88).  
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Supplementary Figure 5 - 11: Regional association plots of the BCAS3_TBX2 locus with associated phenotypes.    

Results of regional association were plotted as –log10 P-value for all SNPs located within a ±250 kb window around BCAS3_TBX2 ordered by the chromosome 

position. The LD between the index SNP (rs2079742) and other SNPs in this region were indicated with the color scheme. Location of genes were given by blue 

narrows at the bottom, pointing the direction of transcription. Both the index SNP (rs2079742) and the most significant SNP (with the smallest P-value) associated 

with the phenotypes (rs11650989). Results were shown for (A) the regional association of the BCAS3_TBX2 locus with SUA level; (B) the regional association of 

the BCAS3_TBX2 locus with essential hypertension (top SNP: rs11650989; p value of HEIDI test = 0.09); (C) the regional association of the BCAS3_TBX2 locus 

with hypertensive disease (top SNP: rs11650989; p value of HEIDI test = 0.10).  
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Supplementary Figure 5 - 12: Regional association plots of the ABCG2 locus with associated phenotypes.    

Results of regional association were plotted as –log10 P-value for all SNPs located within a ±250 kb window around ABCG2 ordered by the chromosome position. 

The LD between the index SNP (rs2231142) and other SNPs in this region were indicated with the color scheme. Location of genes were given by blue narrows at 

the bottom, pointing the direction of transcription. Both the index SNP (rs2231142) and the most significant SNP (with the smallest P-value) associated with the 

phenotypes were tagged. Results were shown for (A) the regional association of ABCG2 locus with SUA level; (B) the regional association of the ABCG2 locus 

with varicose veins of lower extremity (top SNP: rs2231142; p value of HEIDI test = 0.32).  
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Supplementary Figure 5 - 13: Regional association plots of the SLC17A3 locus with associated phenotypes.    

Results of regional association were plotted as –log10 P-value for all SNPs located within a ±250 kb window around SLC17A3 ordered by the chromosome position. 

The LD between the index SNP (rs1165151) and other SNPs in this region were indicated with the color scheme. Location of genes were given by blue narrows at 

the bottom, pointing the direction of transcription. Both the index SNP (rs1165151) and the most significant SNP (with the smallest P-value) associated with the 

phenotypes were tagged. Results were shown for (A) the regional association of the SLC17A3 locus with SUA level; (B) the regional association of the SLC17A3 

locus with poisoning by antibiotics (top SNP: rs1165205; p value of HEIDI test = 0.26); (C) the regional association of SLC17A3 locus with disorders of iron 

metabolism (top SNP: rs17342717; p value of HEIDI test = 5.54×10-28); (D) the regional association of the SLC17A3 locus with coeliac disease (top SNP: 

rs13202688; p value of HEIDI test = 6.51×10-16). 
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Supplementary Figure 5 - 14: Regional association plots of the GCKR locus with associated phenotypes.    

Results of regional association were plotted as –log10 P-value for all SNPs located within a ±250 kb window around GCKR ordered by the chromosome position. 

The LD between the index SNP (rs1260326) and other SNPs in this region were indicated with the color scheme. Location of genes were given by blue narrows at 

the bottom, pointing the direction of transcription. Both the index SNP (rs1260326) and the most significant SNP (with the smallest P-value) associated with the 

phenotypes (rs4665383) were tagged. Results were shown for (A) the regional association of GCKR locus with SUA level; (B) the regional association of the 

GCKR locus with hypercholesterolaemia (top SNP: rs4665383; p value of HEIDI test = 3.27×10-11).  
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6 PWMR ANALYSIS: FULL UK BIOBANK DATA 

6.1 Summary  

This chapter presents a Phenome-wide Mendelian randomisation (PWMR) study by using 

data from an unrelated White British subset (n=339,256) selected from the full UK Biobank 

cohort (the selection process is presented in Chapter 4, Section 4.3.1 “Study population 

selection”). The present study aims to extend the prior findings by combining genetic risk 

loci of urate into a weighted GRS, investigating more disease outcomes, assessing their 

associations with more cases (>3-fold), examining consistency of findings across two 

different phenotyping models, and replicating the findings by performing two-sample MR in 

different populations. 

A weighted polygenic risk score (GRS), incorporating effect estimates of multiple genetic 

risk loci, was employed as a proxy of serum urate level. The framework of phenome was 

defined by using both the PheCODE schema (also used in the previous MR-PheWAS) and a 

novel Bayesian analysis framework, termed TreeWAS: tree-structured phenotypic model. To 

validate the findings, identified associations were further examined in the MR-base database 

for replication in different populations. Sensitivity analysis examining the pleiotropic effects 

of urate genetic risk loci on a set of metabolic traits was performed to explore any causal 

effect and pleiotropic association.  

The PheWAS analysis based on the PheCODE schema examined the association between a 

weighted GRS of SUA level and 1,431 disease outcomes and identified 13 phecodes that had 

p value less than the significance threshold of PheWAS (p<3.35×10-4). These phecodes 

represent 4 disease groups: inflammatory polyarthropathies (OR=1.28; 95% CI: 1.21 to 1.35; 

p=4.97×10-19), hypertensive disease (OR=1.08; 95% CI: 1.05 to 1.11; p=6.02×10-7), 

circulatory disease (OR=1.05; 95% CI: 1.02 to 1.07; p=3.29×10-4) and metabolic disorders 

(OR=1.07; 95% CI: 1.03 to 1.11; p= 3.33×10-4), and 9 disease outcomes: gout (OR=5.37; 95% 

CI: 4.67 to 6.18; p= 4.27×10-123), gouty arthropathy (OR=5.11; 95% CI: 2.45 to 10.66; 

p=1.39×10-5), pyogenic arthritis (OR=2.10; 95% CI: 1.41 to 3.14; p=2.87×10-4), essential 

hypertension (OR=1.08; 95% CI: 1.05 to 1.11; p=6.62×10-7), coronary atherosclerosis 

(OR=1.10; 95% CI: 1.05 to 1.15; p=1.17×10-5), ischaemic heart disease (OR=1.10, 95% CI: 

1.05 to 1.15; p=1.73×10-5), chronic ischaemic heart disease (OR=1.10, 95% CI: 1.05 to 1.15; 

p=1.52×10-5), myocardial infarction (OR=1.15, 95% CI=1.07 to 1.23, p=5.23×10-5), and 

hypercholesterolaemia (OR=1.08, 95% CI: 1.04 to 1.13, p=3.34×10-4).  In the Bayesian 

analysis framework, containing 10,750 diagnostic terms, a total of 27 parent/child nodes of 
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ICD-10 terms were identified with a PP (posterior probability) ≥0.95. They were clustered 

mainly in five branches of the hierarchical tree structure: (i) block M10 (gout, OR=5.16, 

95%CI: 4.55 to 5.84; PP=1.00); (ii) block I10-I15 (hypertensive disease, OR=1.07, 95%CI: 

1.06 to 1.08; PP>0.99); (iii) block I20-I25 (ischaemic heart diseases, OR=1.07, 95%CI: 1.06 

to 1.08; PP>0.99); (iv) block I30-I52 (other forms of heart disease, OR=1.07, 95%CI: 1.06 to 

1.08; PP>0.99); (v) block I60-I69 (cerebrovascular diseases, OR=1.07, 95%CI: 1.06 to 1.08; 

PP>0.99). Findings from PheWAS and TreeWAS were generally consistent in their 

associations with gout, hypertensive disease, and heart diseases, while 14 more sub-

phenotypes were identified from TreeWAS. 

MR IVW analysis successfully replicated the association between urate and the risk of gout, 

CHD, myocardial infarction and decreased level of HDL-c in different populations by 

analysing various GWAS consortia summary data that are included in the MR-base database. 

However, the MR Egger analysis indicated the existence of unbalanced genetic pleiotropy on 

the observed associations between urate and cardiovascular/metabolic diseases. When 

balancing out the potential pleiotropic effects in Egger MR, causal effect was verified for 

gout (OR=4.17, 95%CI: 3.03 to 5.74, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡 = 1.27 × 10−9; 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.485).     

To further investigate the influence of pleiotropy, we re-calculated the PheWAS estimates by 

using a number of GRSs created based on their association with a set of metabolic traits. The 

GRS of urate-specific loci was only associated with gout and its upper disease group of 

inflammatory polyarthropathies, but not with any cardiovascular/metabolic diseases. In 

contrast, the GRSs of pleiotropic loci on BMI, BP, lipids and glucose showed association 

with both gout and the cardiovascular/metabolic diseases. When removing any group of 

pleiotropic loci from the creation of GRS, their association with hypertensive diseases, heart 

diseases, and metabolic disorders were not statistically significant.  

Overall, when taken together the findings from PheWAS/TreeWAS, MR replication and 

sensitivity analysis, I conclude that there are robust associations between urate and a group 

of diseases, including gout, hypertensive diseases, heart diseases and metabolic disorders of 

lipids, but the causal role of urate only exists in gout. Findings in this chapter indicate that 

the association between urate and cardiovascular/metabolic diseases is probably due to the 

pleiotropic effects of genetic variants on urate and metabolic traits. These findings suggest 

that urate could be a good predictor for the cardiovascular/metabolic disease risk. Further 

investigation on therapies targeting on the shared biological pathways between urate and 

metabolic traits would be beneficial for both the treatment of gout and the primary 

prevention of cardiovascular/metabolic diseases. 
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ABSTRACT 

Objective: To explore the causal and pleiotropic associations between serum urate levels and 

a phenome-wide spectrum of disease outcomes using data of 339,256 individuals from the 

UK Biobank cohort.  

Methods: A weighted polygenic risk score (GRS) of 31 genetic variants was employed as 

genetic proxy of serum urate levels. The phenome framework was defined by using both the 

PheCODE schema (termed PheWAS) and a tree-structured phenotypic model (termed 

TreeWAS). Significant associations from these analyses were taken forward for replication in 

different populations by analysing data from various GWAS consortia documented in the 

MR-base database. Sensitivity analyses examining the pleiotropic effects of urate genetic 

risk loci on a set of metabolic traits were performed to explore any causal effects and 

pleiotropic associations.  

Results: The PheWAS analysis, examining the association with 1,431 disease outcomes, 

identified 13 distinct phecodes representing 4 disease groups (inflammatory 

polyarthropathies, hypertensive disease, circulatory disease, metabolic disorders) and 9 

disease outcomes (gout, gouty arthropathy, pyogenic arthritis, essential hypertension, 

coronary atherosclerosis, ischaemic heart disease, chronic ischaemic heart disease, 

myocardial infarction, and hypercholesterolaemia) that were associated with the genetically 

determined serum urate levels after multiple testing correction (p<3.35×10-4). The Bayesian 

analysis of TreeWAS, examining 10,750 ICD-10 diagnostic terms, identified 27 parent/child 

nodes of ICD-10 terms reporting a posterior probability (PP) ≥0.95, with a few more sub-

phenotypes being identified than in the PheWAS analysis. MR IVW analysis successfully 

replicated the associations with gout, CHD, myocardial infarction and decreased level of 

HDL-c, but MR Egger analysis indicated the existence of pleiotropy for most of the 

associations. After balancing out pleiotropic effects, a causal role of urate was verified for 

gout (OR=4.17, 95%CI: 3.03 to 5.74). Sensitivity analyses on the GRSs of different groups 

of pleiotropic loci support an inference that pleiotropic effects of genetic variants on urate 

and metabolic traits contribute to the observed associations with cardiovascular/metabolic 

diseases.     

Conclusion: We conclude that there are robust associations between urate and a group of 

diseases, including gout, hypertensive diseases, heart diseases and metabolic disorders, but 

the causal role of urate is only supported in gout. Our study indicates that the observed 

associations between urate and cardiovascular/metabolic diseases are probably derived from 
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the pleiotropic effects of genetic variants on urate and metabolic traits. Further investigation 

of therapies targeting the shared biological pathways between urate and metabolic traits may 

be beneficial for the treatment of gout and the primary prevention of 

cardiovascular/metabolic diseases. 
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6.2 Introduction 

The role of urate has been explored in a large number of observational studies in relation to a 

multitude of health outcomes (232). Apart from gout, compelling evidence supports the 

association between high serum urate level and the increased risk of non-crystal deposition 

disorders, including hypertension, cardiovascular diseases (CVDs), and metabolic syndrome 

(225, 226, 232, 486). Although considerable research efforts have been made in trying to 

understand the pathogenic role of uric acid in these non-crystal deposition disorders, its 

causal role has not been established (232). Therefore, it has been argued that either these 

associations are confounded by other risk factors, such as obesity, or they represent reverse 

causality (227, 522).  

As in other complex traits, genetic determinants play a crucial role in the regulation of serum 

urate levels. Genetic studies among twins and families have reported a substantial heritable 

component of serum urate level with an estimated heritability of 40-70% (228, 229). The 

genetic determinants of serum urate level have been explored in several genome-wide 

association studies (GWAS) (150, 151, 230, 523) and the wealth of GWAS findings allows 

the application of genetic variants as instruments to help separate causal from non-causal 

associations, given that genotypes are generally independent of environmental exposures and 

the transmission of genetic information is usually unidirectional. Investigating the 

associations between urate genetic risk loci and disease outcomes might help provide causal 

evidence in support of the hypotheses which links urate to clinical disorders.  

Our recently published MR-PheWAS analysis (phenome-wide association study 

incorporated with Mendelian randomisation [MR] design) on the interim release data of UK 

Biobank (n=120,091) provided an overview of the disease outcomes that were associated 

with the urate genetic risk loci (461). Our study demonstrated that serum urate level shared 

the same genetic risk loci with multiple disease outcomes, particularly those related to 

cardiovascular/metabolic diseases and autoimmune disorders (461). These findings provide a 

rationale for the further investigation of whether these cross-phenotype associations are 

causal. Although we have applied multiple methodologies to distinguish the PheWAS 

associations that were causal from those due to pleiotropy or genetic linkage, the use of the 

interim release data of UK Biobank set power limitations to our investigation and did not 

allow us to investigate less prevalent phenotypes. The release of the full UK Biobank GWAS 

genotype dataset provides a unique opportunity to validate the previous MR-PheWAS 

findings and to include phenotypes that were not investigated in the previous study due to 

insufficient number of cases and controls.  
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In this study, we performed an updated phenome-wide Mendelian randomisation study 

(PWMS) by using data from the full UK Biobank cohort. A weighted polygenic risk score 

(GRS), incorporating effect estimates of multiple genetic risk loci taken from the most recent 

and largest GWAS (151), was employed as a proxy of serum urate level. The framework of 

phenome was defined by using both the PheCODE schema (also used in the previous MR-

PheWAS) (461) and a novel Bayesian analysis framework, termed TreeWAS: tree-structured 

phenotypic model (460). Any replication of previous findings and/or novel findings were 

further explored in this study. 

6.3 Methods 

6.3.1 UK Biobank data 

UK Biobank is a large-scale, population-based prospective cohort study, designed to 

investigate the genetic and non-genetic determinants of a wide range of complex diseases 

and phenotypes (415). The study recruited over 500,000 participants aged between 40-69 

years in 2006-2010 and combined extensive measurement of baseline data and genotype data 

with linked national medical records (e.g. in-patient hospital episode records, cancer registry 

and death registry) for longitudinal follow-up. UK Biobank obtained ethical approval from 

the North West Multi-Centre Research Ethics Committee (11/NW/0382). The research 

protocol of this study was reviewed by the UK Biobank committee to ensure it was in 

concordance with the Ethics and Governance Framework of UK Biobank. The genotype and 

phenotype data used in this study were obtained from UK Biobank under an approved data 

request application (application ID: 10775).  

Genotype data - Genotyping, quality control and genotype imputation were conducted by the 

UK Biobank team prior to the data release and the detailed procedures are described by 

Bycroft et al (421). The initial 50,000 participants were genotyped by the Affymetrix UK 

BiLEVE Axiom array and the remaining 450,000 participants were genotyped by the 

Affymetrix UK Biobank Axiom array. Genotype imputation was performed based on a 

merged reference panel of the Haplotype Reference Consortium (HRC) (426) and the 

UK10K haplotype resources (424), and the classical allelic variations at the MHC region 

were further imputed by using an additional multi-population reference panel (427). For 

quality control, a list of field variables was made available by the UK Biobank to indicate the 

genotype quality, population structure, and genetic relatedness.   

Phenotype data - A variety of national health systems and sources were used by the UK 

Biobank to follow up the disease diagnosis, cancer occurrence, and causes of death among 
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the enrolled participants. Currently, there are three main different types of health records (i.e. 

hospital inpatient episodes, cancer registry data and death registry data) that have been 

incorporated into the central database. The coding for clinical diagnoses in these datasets 

followed the World Health Organisation’s International Classification of Diseases (ICD) 

coding systems but used different ICD versions (ICD-10 or ICD-9) according to the date of 

record.  Primary and/or secondary ICD codes are available in the hospital inpatient data 

and/or death registry data to classify the main causes and contributory causes of the event of 

hospitalisation and/or death respectively.  

6.3.2 Study population and quality control 

In order to minimise the influence of the diverse population structure in UK Biobank, our 

study was constrained to a subset of unrelated White British subjects with high quality 

genotype data. The metrics used for genotype quality control (QC) were based on the data 

fields created by the UK Biobank. Samples that were identified as a sex mismatch, outliers 

with high heterozygosity or with high missing rate, putative sex chromosome aneuploidy, 

individuals with excess relatives, or non-White British ancestry were all excluded from the 

analysis. The largest possible subset (vertices) of individuals without relatedness were 

identified using an algorithm implemented in the R package “i-graph (v1.0.1)” developed by 

Bycroft et al (421). The detailed procedures for QC and the selection of target population are 

described in the Supplementary Methods. As a result, a subset of 339,256 unrelated 

individuals of White British ancestry were finally included in analysis.  

6.3.3 Weighted genetic risk score  

To generate a genetic proxy for SUA level, genetic risk loci associated with SUA level were 

searched across the GWAS catalogue and literature. Thirty genetic variants that were 

identified in previous GWASs and associated with SUA at p<5×10-8 among European 

population were used in the GRS (150, 151). In comparison to the genetic instruments used 

in the MR analysis performed by White et al (323), one additional SNP, rs164009 located in 

the PRPSAP1 gene (p=7.06×10-7), was included on the basis of its functional role in urate 

metabolism (encoding a protein involved in the regulation of purine synthesis). Therefore, a 

total of 31 independent SNPs were selected as components of the genetic proxy for SUA 

level. The overall proportion of variance (adjusted R2) of SUA level explained by the 31 

genetic variants was estimated to be 7% (151). The SNP effect on SUA level (effect size and 

standard error [SE]) was taken from the largest meta-analysis of GWAS in the European 

population performed by the Global Urate Genetics Consortium (GUGC) consortium (151).  
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Genotypes of the 31 selected SNPs were extracted from the UK Biobank genetic datasets for 

the target population (n=339,256). A weighted genetic risk score (GRS) was constructed by 

incorporating effect estimates of the 31 SUA genetic risk loci. Specifically, the polygenic 

risk score was created by adding up the number of SUA-increasing alleles for each SNP 

weighted based on the SNP effect size (regression beta coefficients) (151) and then adding 

this weighted score for all 31 SNPs. For instance, if an individual 𝑖 carries 𝑔𝑖𝑘 copies of the 

SUA-increasing allele for each variant 𝑘 = 1, … ,31, the weight for variant 𝑘 is 𝑤𝑘  then their 

weighted polygenic score is  𝑍𝑖 = ∑ 𝑤𝑘𝑔𝑖𝑘
31
𝑘=1 . The weighted polygenic risk score was 

calculated by using plink 2.0.  

6.3.4 Phenome framework 

We analysed the three phenotypic datasets (in-patient hospital records, cancer registry data, 

and death registry data) available in the UK Biobank database. As we were interested in 

disease phenotypes, the framework of the phenome was defined based on the ICD codes in 

the electronic medical records. We pooled the hospital episode data, cancer registry data and 

death registry data together and included both the primary and secondary ICD codes. The 

breadth of ICD-10/9 codes used in the UK Biobank well described the range of disease of 

participants, however, individual ICD codes could not be directly used to define the 

phenome, as they were designed to represent increasingly specific sub-phenotypes instead of 

independent phenotypes. To account for the correlations between ICD codes, we applied two 

strategies: (i) the PheCODE schema that has been recently updated and successfully adopted 

in our previous MR-PheWAS (461); and (ii) a novel Bayesian analysis framework 

(TreeWAS) that was developed by the researchers from the Wellcome Trust Centre for 

Human Genetics (460).  

PheCODE schema - The PheCODE system was developed to combine one or more related 

ICD codes into distinct disease groups (433). To develop a phenotyping method applicable 

to the ICD-10 coding system in UK Biobank, we created a map to match ICD-10 codes to 

phecodes (461), The latest version of the PheCODE system includes 1,866 hierarchical 

phenotype codes that could be directly matched to the ICD-9/10 codes and provides a 

scheme to automatically exclude the patients that have similar or potentially overlapping 

disease states from the corresponding control group (e.g., excluding type 1 diabetes from 

being in control group when analysing the phenotype of type 2 diabetes). More details about 

the updated PheCODE system are described in the previous publication (461).  
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Tree-structured phenotypic model - A novel Bayesian analysis framework has recently been 

developed to interrogate the increasingly specific sub-phenotypes defined by ICD-10 coding 

system with increased statistical power to detect genotype-phenotype associations (460). In 

principle, this phenotyping method models the genetic coefficients across all phenotypes as a 

set of random variables. To model the correlations of the hierarchical tree-like structure of 

ICD-10 codes (termed as tree-structured phenotypic model]), a Markov process was applied 

to allow the genetic coefficients to evolve down the tree trunk and branches. The tree 

structure was determined based on the classification hierarchy of ICD-10 coding system, 

where each node in the tree represents a clinical term in the classification. More details about 

the tree-structured phenotyping process are described elsewhere (460).  

6.3.5 Statistical analysis  

To take advantage of both phenotyping models, we explored the association between the 

weighted GRS of urate and the phenome framework defined by both the PheCODE schema 

(described as PheWAS analysis) and the tree-structured phenotypic model (described as 

TreeWAS analysis), respectively. The correlation with weighted GRS was examined for a 

number of potential confounding factors including sex, age, BMI, assessment center and the 

first 5 PCs (Supplementary Table 6-1). In the PheWAS analysis, the associations between 

weighted GRS and phecodes (with no less than 20 cases) were examined by logistic 

regression. Given that many phecodes were not independent, we applied the false discovery 

rate (FDR) method to correct the significance threshold (corresponding to a FDR of q<0.05) 

to account for the multiple testing (473). In the TreeWAS analysis, associations between the 

weighted GRS and the phenome variables were tested by the Bayesian network analysis at 

both terminal and internal nodes of the tree structure. The marginal posterior probability (PP) 

for each node in the tree (where its genetic coefficient was non-zero) and the corresponding 

maximum posteriori effect estimate with 95% credible interval were determined by using the 

maximum a posteriori (MAP) estimator. Any association with any node of the tree at the PP

≥0.95 was highlighted for further investigation. Details about the TreeWAS analysis have 

been described before (460). All the statistical analyses were implemented by R 3.3.2.  

6.3.6 Replication in MR-base database 

To validate findings, PheWAS associations were further examined in the MR-base database 

for replication in different populations. MR-base is a database and analytical platform for 

MR methods developed by the Medical Research Council, Integrative Epidemiology Unit at 

the University of Bristol (524). We applied this platform to replicate the findings by two-

http://www.bris.ac.uk/ieu/
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sample MR analyses (i.e., inverse variance weighted MR [IVW MR] and Egger-MR) using 

summary data from the largest available GWASs for the disease outcomes of interest.  

6.3.7 Sensitivity analysis 

We then performed sensitivity analyses to explore any causal effect and pleiotropic 

association. To identify genetic variants with pleiotropy, we examined their association with 

a set of metabolic traits (i.e., body mass index [BMI], waist to hip ratio [WHR], total 

cholesterol [TC], low-density lipoprotein cholesterol [LDL-c], high-density lipoprotein 

cholesterol [HDL-c], apolipoprotein-A/B, fasting glucose, 2hr glucose, glycoproteins, 

systolic blood pressure [SBP], and diastolic blood pressure [DBP]) through the publicly 

available resources from various GWAS consortia: GIANT (Genetic Investigation of 

ANthropometric Traits) (525), GLGC (Global Lipids Genetic Consortium) (526), MAGIC 

(Meta-Analyses of Glucose and Insulin-related traits Consortium) (527), and ICBP 

(International Consortium for Blood Pressure) (528). Pleiotropy was declared when these 

GWAS summary data reported genetic association between serum urate risk loci and these 

metabolic traits at p<1.61×10-3 (0.05/31) (Supplementary Table 6-2, 6-3, 6-4, 6-5, 6-6): (i) 

urate-specific loci: including 14 SNPs with no pleiotropic effect on the examined metabolic 

traits (Supplementary Table 6-2); (ii) urate-obesity pleiotropic loci: including 10 SNPs with 

pleiotropic effects on BMI or WHR (Supplementary Table 6-3); (iii) urate-BP pleiotropic 

loci: including 10 SNPs with pleiotropic effects on blood pressures (i.e., DBP and SBP) 

(Supplementary Table 6-4); (iv) urate-lipid pleiotropic loci: including 6 SNPs with 

pleiotropic effects on lipids (i.e., TC, LDL-c, HDL-c, apolipoprotein-A/B) (Supplementary 

Table 6-5); (v) urate-glucose pleiotropic loci: including 6 SNPs with pleiotropic effects on 

blood glucose (fasting glucose, 2hr glucose, glycoproteins) (Supplementary Table 6-6). A 

set of GRSs were created accordingly to re-calculate the effect estimates in PheWAS 

analysis.  

6.4 Results 

We included 339,256 unrelated White British individuals from the full UK Biobank cohort, 

consisting of 157,146 men and 182,110 women. The mean age of study population was 

56.87 (standard deviation [SD]: 7.99) and the mean BMI was 27.40 (SD: 4.76) kg/m2 at the 

time of recruitment. Other sociodemographic characteristics of the study population are 

summarised in Supplementary Table 6-1. The mean value of weighted GRS among the 

study population was 0.44 (SD: 0.31), which is equivalent to 0.44 mg/dL of serum urate 

level. The correlations between the weighted GRS and potential confounding factors (i.e., 
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age, sex, BMI, assessment centre and the PCs) are examined in Supplementary Table 6-1. 

Of these, two variables (i.e., assessment centre and the PCs) were statistically significantly 

correlated with the weighted GRS and therefore were adjusted as covariates.  

6.4.1 PheWAS and TreeWAS associations 

Within the study population, we identified 10,750 unique ICD-10 codes and 3,113 ICD-9 

codes in total. After mapping the diagnostic ICD-10/9 codes in UK Biobank to phecodes, the 

phenome defined by PheCODE schema consisted of 1807 distinct phecodes among the study 

population. After filtering the phecodes with no less than 20 cases, PheWAS analysis was 

performed for 1,431 phecodes (median number of cases: 345 [range: 20-107,298]) which 

could be classified into 17 broadly related disease categories (Table 6-1). Associations with 

the weighted GRS of urate were examined for 1,431 case-control groups, leading to an 

adjusted significance threshold of p<3.35×10-4 (corresponding to a FDR of q<0.05) to 

account for multiple testing. Of these, 13 phecodes were identified to be associated with 

genetically determined high serum urate level at p<3.35×10-4 (Table 6-2). These phecodes 

represent 4 disease groups: inflammatory polyarthropathies (OR=1.28; 95%CI: 1.21 to 1.35; 

p=4.97×10-19), hypertensive disease (OR=1.08; 95%CI: 1.05-1.11; p=6.02×10-7), circulatory 

disease (OR=1.05; 95%CI: 1.02 to 1.07; p=3.29×10-4) and metabolic disorders (OR=1.07; 

95%CI: 1.03 to 1.11; p= 3.33×10-4), and 9 disease outcomes: gout (OR=5.37; 95%CI: 4.67 to 

6.18; p= 4.27×10-123), gouty arthropathy (OR=5.11; 95%CI: 2.45 to 10.66; p=1.39×10-5), 

pyogenic arthritis (OR=2.10; 95%CI: 1.41 to 3.14; p=2.87×10-4), essential hypertension 

(OR=1.08; 95%CI: 1.05 to 1.11; p=6.62×10-7), coronary atherosclerosis (OR=1.10; 95%CI: 

1.05 to 1.15; p=1.17×10-5), ischaemic heart disease (OR=1.10, 95%CI: 1.05 to 1.15; 

p=1.73×10-5), chronic ischaemic heart disease (OR=1.10, 95%CI: 1.05 to 1.15; p=1.52×10-5), 

myocardial infarction (OR=1.15, 95%CI:1.07 to 1.23, p=5.23×10-5), and 

hypercholesterolaemia (OR=1.08, 95%CI: 1.04 to 1.13, p=3.34×10-4). 
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Table 6 - 1: The number of phenotypes and cases in each disease category.  

 

 

Disease categories Number of phenotypes 
Number of cases 

Median Mean Maxium 

Circulatory system 140 434 3,581 107,298 

Congenital anomalies  45 102 230 1,480 

Dermatological diseases 74 283 2,544 89,976 

Diseases in sense organs 104 253 1,228 31,845 

Digestive diseases  143 551 3,123 62,862 

Neoplasms 129 493 2,558 84,098 

Infectious diseases 48 190 958 8,600 

Endocrine and metabolic diseases 103 154 1,590 35,954 

Haematopoietic diseases 40 228 1,200 10,095 

Neurological diseases 69 224 1,180 32,194 

Respiratory diseases  71 674 2,448 49,782 

Mental disorders  64 260 1,493 23,226 

Genitourinary diseases 140 655 2,536 82,964 

Pregnancy complications 28 237 914 7,518 

Musculoskeletal diseases 109 347 2,847 59,852 

Clinical symptoms 27 711 3,741 33,553 

Injuries and poisonings  97 388 1,079 13,303 
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Table 6 - 2: Phenotypes associated with the weighted GRS of SUA level in PheWAS analysis (p<3.35×10-4). 

Phecode Description Group n_cases n_controls beta se OR (95%CI) P-value 

274.1 Gout endocrine/metabolic 2,532 335,108 1.682 0.071 5.37 (4.67, 6.18) 4.27E-123 

714 Inflammatory polyarthropathies musculoskeletal 15,408 320,862 0.244 0.027 1.27 (1.21, 1.34) 4.97E-19 

401 Hypertension circulatory system 63,694 274,477 0.076 0.015 1.07 (1.05, 1.11) 6.02E-07 

401.1 Essential hypertension circulatory system 63,442 274,477 0.077 0.015 1.08 (1.05, 1.11) 6.26E-07 

411.4 Coronary atherosclerosis circulatory system 25,795 311,554 0.096 0.022 1.10 (1.05, 1.14) 1.17E-05 

274.11 Gouty arthropathy endocrine/metabolic 88 335,108 1.631 0.375 5.10 (2.45, 10.66) 1.39E-05 

411.8 Chronic ischaemic heart disease, unspecified circulatory system 25,567 311,554 0.095 0.022 1.09 (1.05, 1.14) 1.52E-05 

411 Ischaemic Heart Disease circulatory system 25,617 311,554 0.094 0.022 1.09 (1.05, 1.14) 1.73E-05 

411.2 Myocardial infarction circulatory system 9,829 311,554 0.138 0.034 1.14 (1.07, 1.22) 5.23E-05 

711.1 Pyogenic arthritis musculoskeletal 270 277,590 0.742 0.205 2.10 (1.41, 3.13) 2.87E-04 

459.9 Circulatory disease  circulatory system 107,298 230,622 0.046 0.013 1.04 (1.02, 1.07) 3.29E-04 

277 Disorders of metabolism endocrine/metabolic 35,954 302,209 0.067 0.019 1.07 (1.03, 1.11) 3.33E-04 

272.11 Hypercholesterolaemia endocrine/metabolic 27,040 308,948 0.077 0.021 1.08 (1.04, 1.12) 3.34E-04 
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In the Bayesian analysis framework, containing 10,750 diagnostic terms, a total of 27 

parent/child nodes of ICD-10 terms were identified with PP≥0.95. They were clustered 

mainly in five branches of the hierarchical tree structure (Supplementary Table 6-7): (i) 

block M10 (gout, OR=5.16, 95%CI 4.55 to 5.84; PP=1.00) and its sub-phenotypes M10.0 

(idiopathic gout) and M10.9 (gout, unspecified); (ii) block I10-I15 (hypertensive disease, 

OR=1.07, 95%CI 1.06 to 1.08; PP>0.99) and its sub-phenotype I10 (essential hypertension); 

(iii) block I20-I25 (ischaemic heart diseases, OR=1.07, 95%CI 1.06 to 1.08; PP>0.99) and its 

sub-phenotypes I20 (angina pectoris), I21 (acute myocardial infarction), I25 (chronic 

ischaemic heart disease), I25.1 (atherosclerotic heart disease), I25.2 (old myocardial 

infarction); (iv) block I30-I52 (other forms of heart disease, OR=1.07, 95%CI 1.06 to 1.08; 

PP>0.99) and its sub-phenotype I50 (heart failure) and I50.1 (left ventricular failure); (v) 

block I60-I69 (cerebrovascular diseases, OR=1.07, 95%CI 1.06 to 1.08; PP>0.99) and its 

sub-phenotype I10 (cerebral infarction).  

Findings from PheWAS and TreeWAS were generally consistent in their associations with 

gout, hypertensive disease, and heart diseases, while more sub-phenotypes were identified by 

TreeWAS. Association with the disease group of inflammatory polyarthropathies was 

statistically significant in PheWAS (OR=1.28, 95%CI: 1.21 to 1.35, p=4.97×10-19) but had a 

moderate PP in TreeWAS (OR=1.07, 95%CI: 1.06 to 1.08, PP=0.76). We examined the 

specific diseases included in this disease group (M05-M06: rheumatoid arthritis [RA], M07: 

psoriatic and enteropathic arthropathies, M08-09: juvenile arthritis, M10: gout, and M11-14: 

arthropathies and other arthritis), and only gout had a statistically significant association with 

the genetically determined serum urate levels. Association with cerebrovascular diseases had 

a high PP in TreeWAS (OR=1.07, 95%CI: 1.06 to 1.08, PP>0.99) but did not reach 

significance threshold of PheWAS (OR=1.08, 95%CI: 0.99 to 1.16, p=0.07), although their 

estimates were of the same direction. We re-calculated the PheWAS estimates by adding up 

self-reported stroke cases to increase statistical power (n=4,541), but the corresponding 

estimates were still not statistically significant (OR=1.05, 95%CI: 0.99 to 1.13, p=0.13, 

n=9,528). 

6.4.2 Replication in MR-base database 

To validate the findings, we performed two-sample MR analyses on associated diseases (i.e., 

gout, RA, CHD, myocardial infarction, ischaemic stroke) or on their corresponding 

intermediate traits or surrogate outcomes (i.e., SBP, DBP, total cholesterol, LDL-c, HDL-c) 

(Table 6-3). Results from IVW MR suggested that genetically determined high serum urate 

level was associated with increased risk of gout (OR=4.53, 95%CI: 3.64 to 5.64, p= 9.66×10-
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42), CHD (OR=4.53, 95%CI: 3.64 to 5.64, P=9.66×10-42), myocardial infarction (OR=4.53, 

95%CI: 3.64 to 5.64, P=9.66×10-42) and decreased level of HDL-c (OR=4.53, 95%CI: 3.64 

to 5.64, p=9.66×10-42), but had no effect on RA (OR=0.92, 95%CI: 0.84 to 1.01, p=0.085) 

and ischaemic stroke (OR=1.03, 95%CI: 0.93 to 1.14, p=0.582). Egger MR indicated 

pleiotropic effects on the causal estimates of DBP (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.014), SBP (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.003), 

CHD (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.008), myocardial infarction (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 = 0.014) and HDL-c (𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =

0.014). When balancing out the potential pleiotropic effects in Egger MR, causal effect can 

only be verified for gout (OR=4.17, 95%CI: 3.03 to 5.74, 𝑃𝑒𝑓𝑓𝑒𝑐𝑡 = 1.27 × 10−9; 𝑃𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑦 =

0.485). 
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Table 6 - 3: Replication of MR effect estimates in MR-base database.  

Outcome beta se OR (95% CI) P effect P pleiotropy n_cases n_total Data source 

Replication of significant PheWAS findings 
     

Gout 
        

PheWAS 1.682 0.071 5.37 (4.67, 6.18) 4.27E-123 -- 2,532 337,640 UKBB 

IVW MR 1.511 0.112 4.53 (3.64, 5.64) 9.66E-42 -- 
2,115 67,259 GUGC 

Egger MR 1.427 0.163 4.17 (3.03, 5.74) 1.27E-09 0.485 

Hypertension 
       

PheWAS 0.076 0.015 1.07 (1.05, 1.11) 6.02E-07 -- 63,694 338,171 UKBB 

DBP 
    

 
   

IVW MR 0.427 0.272 1.53 (0.90, 2.61) 0.116 -- -- 
69,395 ICBP 

Egger MR -0.219 0.351 0.80 (0.40, 1.60) 0.538 0.014 -- 

SBP 
    

 
   

IVW MR 0.409 0.402 1.51 (0.68, 3.31) 0.308 -- -- 
69,395 ICBP 

Egger MR -0.713 0.496 0.49 (0.19, 1.29) 0.161 0.003 -- 

Coronary heart disease 
        

PheWAS 0.094 0.022 1.09 (1.05, 1.14) 1.73E-05 -- 25,617 337,171 UKBB 

IVW MR 0.098 0.038 1.10 (1.02, 1.19) 0.009 -- 
60,801 123,504 CARDIoGRAMplusC4D 

Egger MR 0.001 0.048 1.00 (0.91, 1.10) 0.977 0.008 

Myocardial infarction 
       

PheWAS 0.138 0.034 1.14 (1.07, 1.22) 5.23E-05 -- 9,829 321,383 UKBB 

IVW MR 0.105 0.041 1.00 (0.90, 1.11) 0.983 -- 
43,676 128,199 CARDIoGRAMplusC4D 

Egger MR -0.001 0.053 1.11 (1.02, 1.20) 0.011 0.008 
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Hypercholesterolaemia 
       

PheWAS 0.077 0.021 1.08 (1.04, 1.12) 3.34E-04 -- 27,040 335,988 UKBB 

Total cholesterol 
       

IVW MR 0.028 0.036 1.03 (0.96, 1.10) 0.433 -- -- 
94,595 GLGC 

Egger MR 0.048 0.052 1.05 (0.95, 1.16) 0.368 0.602 -- 

HDL-c 
        

IVW MR -0.075 0.026 0.93 (0.88, 0.98) 4.00E-03 -- -- 
94,311 GLGC 

Egger MR -0.010 0.035 0.99 (0.92, 1.06) 0.767 0.016 -- 

LDL-c 
        

IVW MR 0.011 0.023 1.05 (0.95, 1.16) 0.623 -- -- 
89,888 GLGC 

Egger MR 0.045 0.033 1.05 (0.98, 1.12) 0.188 0.175 -- 

Replication of non-significant PWMR findings 
     

RA 
        

PheWAS 0.095 0.055 1.10 (0.99, 1.22) 0.683 -- 3,522 324,384 UKBB 

IVW MR -0.081 0.047 0.92 (0.84, 1.01) 0.085 -- 
19,234 61,565 MR-base 

Egger MR -0.103 0.066 0.90 (0.79, 1.03) 0.132 0.645 

Ischaemic stroke 
       

PheWAS 0.071 0.04 1.08 (0.99-1.16) 0.070 -- 9,528 338,172 UKBB 

IVW MR 0.029 0.052 1.03 (0.93, 1.14) 0.582 -- 
10,307 19,326 ISGC 

Egger MR -0.028 0.074 0.97 (0.84, 1.12) 0.707 0.290 

UKBB, UK Biobank; GUGC, Global Urate Genetics Consortium; ICBP, International Consortium of Blood Pressure; CARDIoGRAMplusC4D,  

Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics) consortium;  

GLGC, Global Lipids Genetics Consortium; ISGC, International Stroke Genetics Consortium. 
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6.4.3 Sensitivity analysis 

To further investigate the influence of pleiotropy, we re-calculated the PheWAS estimates by 

using a number of GRSs created based on their association with a set of metabolic traits 

(Figure 6-1). The GRS of urate-specific loci was only associated with gout and its 

encompassing disease group of inflammatory polyarthropathies, but not with any 

cardiovascular/metabolic diseases. In contrast, the GRSs of loci pleiotropic influence on 

obesity, BP, lipids and glucose showed significant association with both gout and the 

cardiovascular/metabolic diseases. Specifically, the GRS of pleiotropic loci on lipids was 

significantly associated with all cardiovascular/metabolic diseases, including hypertensive 

diseases (i.e., essential hypertension), heart diseases (i.e., ischaemic heart diseases), and 

metabolic disorders (i.e., hypercholesterolaemia). Additionally, the GRS of pleiotropic loci 

on glucose was significantly associated with diabetes mellitus (i.e., type 2 diabetes). When 

removing any group of pleiotropic loci from the creation of GRS, their association with 

hypertensive diseases, heart diseases, and metabolic disorders were not statistically 

significant (Table 6-4). The effects of pleiotropic loci (mapped with genes) on SUA levels 

against their effects on four representative disease outcomes were plotted in Figure 6-2, in 

which the two urate transporter genes (SLC2A9 and ABCG2) are recognised as the leading 

loci driving the association with gout, the GCKR gene is the leading locus driving the 

association with hypercholesterolaemia, and the PTPN11/ATXN2 gene is the leading locus 

driving the association with hypertension and ischaemic heart diseases.  
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Figure 6 - 1: A network plot for sensitivity analysis of PheWAS using different sets of 

weighted GRSs.  

(M05-M14: Inflammatory polyarthropathies; I10-I15: Hypertensive diseases; I20-I25: Ischaemic heart 

diseases; E70-E90: Metabolic disorders) 
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Figure 6 - 2: A scatter plot for the effects of pleiotropic loci (mapped with genes) on SUA 

levels against their effects on four representative disease outcomes. 
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Table 6 - 4: Sensitivity analysis by removing the pleiotropic loci on metabolic traits. 

Disease 

outcomes 

GRS of all-urate loci (n=31) 
GRS of loci without pleiotropy on 

obesity (n=21) 

GRS of loci without pleiotropy on 

BP (n=21) 

GRS of loci without pleiotropy on 

lipids (n=25) 

GRS of loci without pleiotropy on 

glucose (n=28) 

OR (95%CI) pval FDR 
OR 

(95%CI) 
pval FDR 

OR 

(95%CI) 
pval FDR OR (95%CI) pval FDR 

OR 

(95%CI) 
pval FDR 

Gout 
5.37 (4.67, 

6.18) 

4.27E-

123 
TRUE 

3.89 (3.32, 

4.56) 

1.01E-

62 
TRUE 

5.42 (4.68, 

6.28) 

6.00E-

113 
TRUE 

5.07 (4.38, 

5.86) 

5.27E-

105 
TRUE 

5.09 (4.41, 

5.88) 

1.31E-

108 
TRUE 

Inflammatory 

polyarthropathies 

1.27 (1.21, 

1.34) 

4.97E-

19 
TRUE 

1.21 (1.14, 

1.28) 

6.43E-

10 
TRUE 

1.26 (1.19, 

1.33) 

1.02E-

15 
TRUE 

1.26 (1.19, 

1.33) 

1.16E-

15 
TRUE 

1.27 (1.20, 

1.34) 

1.34E-

17 
TRUE 

Hypertension 
1.07 (1.05, 

1.11) 

6.02E-

07 
TRUE 

1.07 (1.03, 

1.10) 

2.31E-

04 
FALSE 

1.04 (1.01, 

1.07) 

2.24E-

02 
FALSE 

1.05 (1.02, 

1.09) 
0.002 FALSE 

1.08 (1.05, 

1.11) 

1.82E-

06 
TRUE 

Essential 

hypertension 

1.08 (1.05, 

1.11) 

6.26E-

07 
TRUE 

1.07 (1.03, 

1.10) 

2.44E-

04 
FALSE 

1.04 (1.01, 

1.07) 

2.23E-

02 
FALSE 

1.05 (1.02, 

1.09) 
0.002 FALSE 

1.08 (1.05, 

1.11) 

1.83E-

06 
TRUE 

Coronary 

atherosclerosis 

1.10 (1.05, 

1.14) 

1.17E-

05 
TRUE 

1.08 (1.03, 

1.13) 
0.001 FALSE 

1.08 (1.03, 

1.13) 

7.82E-

04 
FALSE 

1.05 (1.01, 

1.10) 
0.022 FALSE 

1.08 (1.03, 

1.13) 

4.88E-

04 
FALSE 

Gouty 

arthropathy 

5.10 (2.45, 

10.66) 

1.39E-

05 
TRUE 

4.04 (1.73, 

9.44) 
0.001 FALSE 

5.69 (2.61, 

12.37) 

1.19E-

05 
TRUE 

5.36 (2.47, 

11.63) 

2.16E-

05 
TRUE 

4.78 (2.24, 

10.21) 

5.37E-

05 
TRUE 

Chronic 

ischaemic heart 

disease 

1.09 (1.05, 

1.14) 

1.52E-

05 
TRUE 

1.08 (1.03, 

1.13) 
0.002 FALSE 

1.08 (1.03, 

1.13) 

8.61E-

04 
FALSE 

1.05 (1.01, 

1.10) 
0.024 FALSE 

1.08 (1.03, 

1.13) 

5.58E-

04 
FALSE 

Ischaemic Heart 

Disease 

1.09 (1.05, 

1.14) 

1.73E-

05 
TRUE 

1.08 (1.03, 

1.13) 
0.002 FALSE 

1.08 (1.03, 

1.13) 

9.51E-

04 
FALSE 

1.05 (1.01, 

1.10) 
0.026 FALSE 

1.08 (1.03, 

1.13) 

6.04E-

04 
FALSE 

Myocardial 

infarction 

1.14 (1.07, 

1.22) 

5.23E-

05 
TRUE 

1.11 (1.03, 

1.20) 
0.006 FALSE 

1.11 (1.04, 

1.19) 
0.003 FALSE 

1.08 (1.01, 

1.16) 
0.033 FALSE 

1.12 (1.04, 

1.20) 
0.002 FALSE 

Pyogenic arthritis 
2.10 (1.41, 

3.13) 

2.87E-

04 
TRUE 

1.96 (1.24, 

3.09) 
0.004 FALSE 

2.14 (1.41, 

3.26) 

3.73E-

04 
FALSE 

1.82 (1.20, 

2.77) 
0.005 FALSE 

1.95 (1.29, 

2.95) 
0.001 FALSE 

Circulatory 

disease 

1.04 (1.02, 

1.07) 

3.29E-

04 
TRUE 

1.03 (1.01, 

1.06) 
0.020 FALSE 

1.03 (1.00, 

1.05) 
0.048 FALSE 

1.03 (1.00, 

1.05) 
0.041 FALSE 

1.04 (1.01, 

1.07) 
0.003 FALSE 

Disorders of 

metabolism 

1.07 (1.03, 

1.11) 

3.33E-

04 
TRUE 

1.04 (1.00, 

1.09) 
0.038 FALSE 

1.07 (1.03, 

1.11) 
0.001 FALSE 

1.03 (0.99, 

1.07) 
0.094 FALSE 

1.05 (1.01, 

1.09) 
0.019 FALSE 

Hypercholesterol

aemia 

1.08 (1.04, 

1.12) 

3.34E-

04 
TRUE 

1.03 (0.98, 

1.07) 
0.293 FALSE 

1.07 (1.02, 

1.12) 
0.003 FALSE 

1.03 (0.98, 

1.07) 
0.233 FALSE 

1.04 (1.00, 

1.09) 
0.051 FALSE 
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6.5 Discussion 

The present study demonstrated that genetically determined high serum urate level was 

consistently associated with increased risk of several disease groups, including inflammatory 

polyarthropathies (e.g., gout and gouty arthropathy), hypertensive diseases (e.g., essential 

hypertension), heart diseases (e.g., coronary atherosclerosis, myocardial infarction, angina 

pectoris,  ischaemic heart disease and heart failure) and metabolic disorders (e.g., 

hypercholesterolaemia). This study using data from the full UK Biobank cohort (n=339,256) 

replicated the associations discovered in the previous MR-PheWAS study based on the 

interim release of UK Biobank genetic data (n=120,091) (461), and identified a number of 

new sub-phenotypes of diseases (e.g., gouty arthropathy, angina pectoris, and heart failure). 

Association between urate and the risk of gout, CHD, myocardial infarction and decreased 

level of HDL-c were also successfully replicated in different populations by analysing 

various GWAS consortium data documented in the MR-base database (524),  but a causal 

relationship was only supported for gout. The role of urate in the development of 

cerebrovascular diseases is debatable, as their association was only identified in TreeWAS 

but cannot be replicated in PheWAS or MR analysis. Overall, findings from the current 

study supported the epidemiological observations that high serum urate level is correlated 

with high risk of hypertensive diseases, heart diseases, and metabolic disorders, and 

indicated that their associations were likely due to genetic pleiotropy instead of causality.  

6.5.1 Main findings and possible explanations 

Our finding that genetically predicted serum urate level is causally associated with increased 

risk of gout and its sub-phenotypes is not surprising, as it is well known that the causal factor 

of gout is represented by the monosodium urate crystals (MSU), which leads to acute local 

inflammation in joints (529). Moreover, this study also detected an association between urate 

and the disease group of inflammatory polyarthropathies. To investigate if there was any 

other type of inflammatory polyarthropathies associated with urate, we examined the 

association of urate with all specific diseases included in this group, but none of them are 

statistically significant. When removing gout cases from analysis, the disease group of 

inflammatory polyarthropathies was no longer associated with urate, indicating the observed 

association was driven by gout. As emerging evidence supports the notion that urate has pro-

inflammatory effects and may contribute to a growing family of auto-inflammatory disease 

(e.g., RA) through the production of a panel of inflammatory cytokines including IL-1β, IL-8, 

TNF-α, and IL-6 (529) (530). It is hypothesised that these findings are of relevance to RA, as 

IL-6 is a key pro-inflammatory cytokine that is originally described as a T-cell-derived B-
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cell differentiation factor and may stimulate the production of autoantibodies such as 

rheumatoid factor (531, 532). In this study, we additionally examined the association 

between the GRS of urate and RA in both UK biobank population (3,522 cases) and a larger 

European population (19,234 cases) (533), but neither of them detected any significant 

association. Our study did not provide any supportive evidence on the aetiological relevance 

between urate and RA as suggested by prior studies.  

Numerous epidemiological studies have reported that elevated serum urate level is related to 

increased risk of hypertension and their relationship has been consistent, showing a dose-

response relationship and of similar magnitude (486). Findings from this study supported 

their association, but the magnitude of estimated effect size (OR=1.07; 95%CI: 1.05 to 1.11) 

is relatively smaller than that of traditional epidemiological studies, in which a recent meta-

analysis synthesised data from 97,824 individuals and reported a pooled OR of 1.15 (95%CI: 

1.06 to 1.26) for incident hypertension for a 1 mg/dL increase of serum urate level (534). 

Similarly, the association between urate and a multitude of cardiac events of varying severity, 

including coronary atherosclerosis, angina pectoris, ischaemic heart diseases, acute/old 

myocardial infarction and heart failure, were also well explored in this study. The PheWAS, 

TreeWAS, and IVW MR replication analysis consistently supported a moderate association 

between urate and different types of heart diseases. However, the Egger-MR analysis 

reported here provided no evidence for causality, but suggested the presence of pleiotropy in 

their associations.  

Large epidemiological studies have established an association between high serum urate 

level and the increased risk of metabolic disorders (535). The NHANES III survey study 

suggested that high serum urate level was associated with increased level of serum LDL-c, 

triglycerides, total cholesterol, apolipoprotein-B, and decreased level of HDL-c (536). Our 

study further strengthened this epidemiological evidence and highlighted an association 

between urate and hypercholesterolaemia. Our IVW MR analysis replicated the 

corresponding association with its surrogate outcome (i.e., HDL-c), but the Egger-MR 

analysis suggested the presence of pleiotropy instead of causality. Additionally, 

epidemiological studies have also indicated that high serum urate level is associated with 

increased risk of diabetes (537). However, this association was not detected in the main 

PheWAS or TreeWAS analysis, while sensitivity analysis using the GRS of urate-glucose 

pleiotropic loci (i.e., GCKR, IGF1R, and SLC16A9) identified significant association with 

type 2 diabetes. 
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To explore how genetic pleiotropy influences the association with cardiovascular/metabolic 

diseases, we analysed all 31 urate loci across a set of metabolic traits and identified 14 SNPs 

(urate-specific loci) that were exclusively associated with urate and 17 SNPs (pleiotropic loci) 

that were associated with metabolic traits. When examining the urate-specific loci, their GRS 

was only associated with gout and its encompassing disease group of inflammatory 

polyarthropathies, but not with any cardiovascular or metabolic diseases. In contrast, when 

categorising the pleiotropic loci into different groups (e.g., GRS of urate-obesity loci, GRS 

of urate-BP loci, GRS of urate-lipids loci and GRS of urate-glucose loci), the GRSs of 

pleiotropic loci showed consistent associations with both gout and the 

cardiovascular/metabolic diseases. When removing any group of pleiotropic loci from the 

creation of GRS (e.g., GRS of urate without pleiotropic loci on BP, or GRS of urate without 

pleiotropic loci on lipids), their association with heart diseases and metabolic disorders was 

not statistically significant. Based on these findings, our study suggests that the association 

between urate and cardiovascular/metabolic diseases is probably due to the pleiotropic 

effects of genetic variants on urate and metabolic traits.  

Examining the associations between individual urate genetic risk loci and the related disease 

outcomes highlighted two loci, GCKR and PTPN11/ATXN2 that drive their association with 

hypercholesterolaemia, hypertension and ischaemic heart disease. Pathway network analysis 

of the leading pleiotropic genes provides some clues on how genetic pleiotropy contributes 

to the association between urate and cardiovascular/metabolic disease. Genetic variation in 

GCKR is shown to be associated with concentrations of urate, triglyceride and glucose (538). 

The most plausible explanation for this observation is that GCKR affects both serum urate, 

triglyceride and glucose levels by a common unconfirmed mediator which is proposed to be 

glucose-6-phosphate (539). GCKR controls the hepatic production of glucose-6-phosphate, 

which is catabolised for triglyceride synthesis via glycolysis, into pyruvate, and acetyl 

coenzyme A, while glucose-6-phosphate is also a precursor of purine (uric acid) metabolism 

(539). Additionally, gene functional annotation of PTPN11/ATXN2 highlights another 

subnetwork around haemostasis pathways, including platelet activation, aggregation, and 

sensitisation (activated by LDL-c) (540), and these may be relevant to the observed 

association with hypertension and heart diseases, but how this gene influences serum urate 

levels has not yet been clearly demonstrated. 

6.5.2 Clinical implications and future research 

The detection of a multitude of cross-phenotype associations in this study adds our 

understanding of the extent of shared genetic/biological components between urate and 
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metabolic traits. Further characterising the associations between urate and disease outcomes 

as causal or pleiotropic contributes to our knowledge of how the role of urate should be 

interpreted and used in clinical practice in the management of related disease conditions. 

Given that the associations between urate and cardiovascular/metabolic diseases are more 

likely due to pleiotropy rather than causality, our study supports the notion that urate could 

be a predictor but not be a target for the development of compounds that could reduce 

cardiovascular/metabolic disease risk. The linked biological pathways between urate and 

metabolic traits indicated that the frequent co-existence of gout with hypertension, 

cardiovascular diseases and hyperlipidaemia is a range of inter-related disease outcomes due 

to linked pathogenic components, rather than isolated events. This supports the European 

League against Rheumatism (EULAR) recommendation of systematic screening and 

assessment of cardiovascular/metabolic comorbidities in gout patients (541). The finding of 

genetic pleiotropy indicates the existence of common upstream pathological elements 

influencing both urate and metabolic traits, and this may suggest new opportunities and 

challenges for developing drugs targeting a more distal mediator that would be beneficial for 

both the treatment of gout and the prevention of cardiovascular/metabolic comorbidities. 

This study has focused on the detection of cross-phenotype associations and highlighted the 

importance of pleiotropy in the links of these complex diseases. We have made efforts to try 

to understand the cross-phenotype association in the context of a pleiotropy model, but 

functionally characterising the underlying biological mechanisms remains a challenge in this 

field and is worthy of further investigation. 

6.5.3 Strengths and weaknesses of the study 

The strengths of this study include its potential to examine a broad spectrum of disease 

outcomes related to urate and to reflect the shared biological relevance among associated 

phenotypes. Compared to the previous MR-PheWAS (461), the present study extends the 

prior findings by combining genetic risk loci of urate into a weighted GRS, exploring genetic 

pleiotropy on a set of metabolic traits systematically, investigating more disease outcomes, 

assessing their associations with >3-fold more cases, examining consistency of findings 

across two different phenotyping models to reduce the probability of false positive/negative 

findings due to factors related to the model, and replicating the findings by performing two-

sample MR in different populations. Our study demonstrated the performance of two 

phenotyping models by accounting for the differences in the specificity and granularity of 

different phenome definitions and by characterising the phenotypic correlations among 

different levels of ICD hierarchy. TreeWAS is shown to increase statistical power by up to 
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20%, and can detect new associations missed by conventional PheWAS. One of the major 

accomplishments of this study together with the previous MR-PheWAS have been the 

establishment of a framework or workflow for PheWAS (461). We believe this study would 

be an excellent starting point for researchers who plan to use the UK Biobank resource to 

comprehensively interrogate the clinical significance of biomarkers. The updated version of 

the PheCODE schema used in this study is available for researchers who are interested in 

performing PheWAS in UK Biobank when requested.  

This study also has limitations. The causal inference in our study is limited by the common 

difficulty of pleiotropy caused by the use of multiple genetic instruments. Although we have 

performed sensitivity analyses by grouping the pleiotropic loci based on metabolic traits and 

exploring their association separately, there is still a probability of undetected pleiotropy or 

the possibility that the relatively weak causal effects of urate on diseases were concealed by 

the strong pleiotropic effects of the genetic variants on metabolic traits. Moreover, as most 

patients (cases) were identified from the in-patient hospital records, this may have impaired 

the coverage of case ascertainment, especially for the diseases that do not usually cause 

events for hospitalisation. The incorporation of self-reported data would improve this 

limitation but is likely to mistakenly include cases who do not have a true diagnosis and 

introduce information biases. As UK Biobank is currently conducting biomarker assays and 

processing linkage to general practice records and out-patient data, it would be beneficial to 

confirm the potential association based on a widely-covered and accurately-defined criteria 

for case ascertainment in the future.  

6.6 Conclusion  

Overall, when taken together the findings from PheWAS/TreeWAS, MR replication and 

sensitivity analysis, we conclude a robust association between urate and a group of diseases, 

including gout, hypertensive diseases, heart diseases and metabolic disorders of lipids, but 

the causal role of urate is only supported in gout. Our study indicates that the association 

between urate and cardiovascular/metabolic diseases is probably due to the pleiotropic 

effects of genetic variants on urate and metabolic traits. These findings suggest that urate 

could be a good predictor for the cardiovascular/metabolic disease risk. Further investigation 

on therapies targeting on the shared biological pathways between urate and metabolic traits 

would be beneficial for the treatment of gout and the primary prevention of 

cardiovascular/metabolic comorbidities.  
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6.7 Supplementary information 

Supplementary Table 6 - 1: Association between the GRS of urate and potential 

confounding factors. 

Continuous variable Mean (SD) Beta (SE) P-value 

Age 56.87 (7.99) 0.010 (0.044) 0.830 

BMI 27.40 (4.76) -0.023 (0.027) 0.381 

PC1 score -12.35 (1.61) 0.007 (0.009) 0.408 

PC2 score 3.78 (1.50) -0.023 (0.008) 0.007* 

PC3 score -1.59 (1.58) -0.003 (0.009) 0.753 

PC4 score 1.29 (2.94) 0.104 (0.016) 1.74e-10* 

PC5 score -0.81 (6.61) 0.344 (0.037) 2.20e-16* 

Categorical variable Levels F-value P-value 

Sex male/female 0.476 0.490 

Assessment centre 22 centres 3.451 1.41e-07* 

BMI, body mass index; PC, genetic principal component.  

 

  



Chapter 6  PWMR analysis 

273 

 

Supplementary Table 6 - 2: A summary of 31 urate SNPs identified in previous GWAS.  

SNP Chr Closest/GRAIL gene Effect allele Allele freq beta se P Pleiotropy 

rs10821905 10 A1CF/ASAH2 A 0.824 0.053 0.007 3.45E-12 No 

rs1165151 6 SLC17A1/SLC17A3 T 0.549 -0.092 0.005 4.52E-60 No 

rs12498742 4 SLC2A9/SLC2A9 A 0.232 0.380 0.006 0.00E+00 No 

rs1394125 15 UBE2Q2/NRG4 A 0.638 0.043 0.006 9.78E-11 No 

rs1471633 1 PDZK1/PDZK1 A 0.538 0.061 0.005 1.40E-26 No 

rs164009 17 QRICH2/PRPSAP1 A 0.387 0.029 0.006 7.06E-07 No 

rs17632159 5 TMEM171/TMEM171 C 0.697 -0.038 0.006 2.00E-09 No 

rs17786744 8 STC1/STC1 A 0.410 -0.031 0.005 8.82E-08 No 

rs2078267 11 SLC22A11/SLC22A11 T 0.452 -0.078 0.006 8.73E-36 No 

rs675209 6 RREB1/RREB1 T 0.731 0.063 0.006 1.38E-21 No 

rs6770152 3 SFMBT1/MUSTN1 T 0.424 -0.048 0.006 2.66E-16 No 

rs7188445 16 MAF/MAF A 0.672 -0.032 0.006 1.15E-07 No 

rs7224610 17 HLF/HLF A 0.396 -0.038 0.006 4.74E-11 No 

rs742132 6 LRRC16A/LRRC16A A 0.294 0.035 0.006 1.90E-08 No 

rs10480300 7 PRKAG2/PRKAG2 T 0.727 0.032 0.006 9.37E-07 Yes 

rs11264341 1 TRIM46/PKLR T 0.571 -0.048 0.006 1.04E-14 Yes 

rs1171614 10 SLC16A9/SLC16A9 T 0.769 -0.074 0.007 6.48E-23 Yes 

rs1178977 7 BAZ1B/MLXIPL A 0.198 0.050 0.007 6.68E-12 Yes 

rs1260326 2 GCKR/GCKR T 0.607 0.077 0.006 1.31E-40 Yes 

rs17050272 2 INHBB/INHBB A 0.589 0.037 0.006 9.36E-09 Yes 

rs2079742 17 BCAS3/C17orf82 T 0.136 0.051 0.008 6.24E-09 Yes 

rs2231142 4 ABCG2/ABCG2 T 0.887 0.220 0.009 4.43E-116 Yes 

rs2307394 2 ORC4L/ACVR2A T 0.303 -0.035 0.006 7.26E-09 Yes 

rs2941484 8 HNF4G/HNF4G T 0.553 0.049 0.006 3.91E-17 Yes 

rs3741414 12 INHBC/INHBE T 0.755 -0.071 0.007 9.79E-22 Yes 
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SNP Chr Closest/GRAIL gene Effect allele Allele freq beta se p-val Pleiotropy 

rs478607 11 NRXN2/SLC22A12 A 0.153 -0.048 0.007 5.31E-10 Yes 

rs642803 11 OVOL1/LTBP3 T 0.536 -0.043 0.005 4.51E-14 Yes 

rs653178 12 ATXN2/PTPN11 T 0.483 -0.036 0.005 2.45E-10 Yes 

rs6598541 15 IGF1R/IGF1R A 0.645 0.044 0.006 5.20E-13 Yes 

rs7193778 16 NFAT5/NFAT5 T 0.150 -0.047 0.008 2.36E-08 Yes 

rs729761 6 VEGFA/VEGFA T 0.715 -0.046 0.006 3.05E-12 Yes 
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Supplementary Table 6 - 3: A summary of the pleiotropic effect of urate SNPs on obesity.   

SNP Chr Closest/GRAIL gene effect_allele 
BMI (n=336,107) WHR (n=141,537) 

Pleiotropy 
beta se p beta se P 

rs2231142 4 ABCG2/ABCG2 T -0.081 0.017 2.16E-06 0.029 0.025 0.261 Yes 

rs7193778 16 NFAT5/NFAT5 T 0.339 0.072 2.17E-06 0.468 0.130 3.10E-04 Yes 

rs2941484 8 HNF4G/HNF4G T 0.207 0.050 3.07E-05 -0.204 0.088 0.020 Yes 

rs1260326 2 GCKR/GCKR T -0.131 0.032 4.22E-05 0.130 0.045 0.004 Yes 

rs478607 11 NRXN2/SLC22A12 A -0.281 0.069 5.08E-05 0.152 0.119 0.200 Yes 

rs11264341 1 TRIM46/PKLR T 0.192 0.050 1.40E-04 -0.152 0.092 0.097 Yes 

rs642803 11 OVOL1/LTBP3 T 0.198 0.056 4.22E-04 0.133 0.077 0.084 Yes 

rs653178 12 ATXN2/PTPN11 T -0.233 0.067 4.93E-04 0.072 0.097 0.458 Yes 

rs6598541 15 IGF1R/IGF1R A 0.194 0.057 6.89E-04 0.089 0.077 0.251 Yes 

rs1178977 7 BAZ1B/MLXIPL A -0.179 0.060 0.003 0.360 0.086 2.84E-05 Yes 

rs1471633 1 PDZK1/PDZK1 A 0.091 0.039 0.021 -0.069 0.072 0.340 No 

rs2079742 17 BCAS3/C17orf82 T -0.158 0.069 0.022 -0.039 0.129 0.762 No 

rs3741414 12 INHBC/INHBE T -0.060 0.039 0.128 0.008 0.056 0.881 No 

rs7224610 17 HLF/HLF A -0.099 0.065 0.128 -0.082 0.113 0.471 No 

rs17050272 2 INHBB/INHBB A 0.099 0.066 0.133 -0.016 0.124 0.896 No 

rs729761 6 VEGFA/VEGFA T -0.087 0.058 0.136 0.261 0.104 0.012 No 

rs1171614 10 SLC16A9/SLC16A9 T 0.057 0.039 0.138 0.080 0.078 0.309 No 

rs2307394 2 ORC4L/ACVR2A T 0.106 0.075 0.159 -0.031 0.129 0.807 No 

rs1394125 15 UBE2Q2/NRG4 A -0.076 0.058 0.193 -0.067 0.114 0.554 No 

rs12498742 4 SLC2A9/SLC2A9 A 0.010 0.007 0.203 -0.001 0.013 0.952 No 

rs17786744 8 STC1/STC1 A 0.098 0.079 0.217 0.155 0.139 0.264 No 

rs10480300 7 PRKAG2/PRKAG2 T -0.103 0.084 0.222 -0.172 0.150 0.252 No 

rs675209 6 RREB1/RREB1 T -0.046 0.043 0.280 -0.206 0.079 0.009 No 

rs742132 6 LRRC16A/LRRC16A A 0.075 0.075 0.320 0.174 0.131 0.185 No 

rs1165151 6 SLC17A1/SLC17A3 T -0.025 0.026 0.345 0.050 0.046 0.273 No 

rs6770152 3 SFMBT1/MUSTN1 T 0.039 0.051 0.448 0.044 0.090 0.625 No 

rs2078267 11 SLC22A11/SLC22A11 T -0.023 0.031 0.453 -0.104 0.055 0.060 No 
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SNP Chr Closest/GRAIL gene 
Effect 

allele 

BMI (n=336,107) WHR (n=141,537) 
Pleiotropy 

beta se p beta se P 

rs10821905 10 A1CF/ASAH2 A -0.031 0.060 0.600 0.053 0.106 0.617 No 

rs17632159 5 TMEM171/TMEM171 C 0.027 0.069 0.694 -0.016 0.126 0.901 No 

rs7188445 16 MAF/MAF A 0.011 0.080 0.893 -0.203 0.141 0.149 No 

rs164009 17 QRICH2/PRPSAP1 A -0.007 0.085 0.936 -0.100 0.152 0.510 No 
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Supplementary Table 6 - 4: A summary of the pleiotropic effect of urate SNPs on blood pressure.   

SNP Chr Closest/GRAIL gene 
Effect 

allele 

DBP (n=317,754) SBP (n=317,756) 
Pleiotropy 

beta se P beta se P 

rs653178 12 ATXN2/PTPN11 T 1.057 0.068 6.66E-54 0.585 0.068 1.16E-17 Yes 

rs642803 11 OVOL1/LTBP3 T 0.377 0.057 4.83E-11 0.269 0.057 2.85E-06 Yes 

rs2307394 2 ORC4L/ACVR2A T 0.396 0.077 2.47E-07 0.091 0.077 0.235 Yes 

rs10480300 7 PRKAG2/PRKAG2 T 0.364 0.086 2.38E-05 0.453 0.086 1.45E-07 Yes 

rs729761 6 VEGFA/VEGFA T 0.236 0.060 7.38E-05 -0.040 0.060 0.506 Yes 

rs2941484 8 HNF4G/HNF4G T 0.194 0.051 1.30E-04 0.155 0.051 0.002 Yes 

rs1178977 7 BAZ1B/MLXIPL A 0.230 0.062 1.93E-04 0.026 0.062 0.676 Yes 

rs7193778 16 TRIM46/PKLR T -0.081 0.073 0.268 0.347 0.073 2.19E-06 Yes 

rs11264341 1 BCAS3/C17orf82 T 0.146 0.052 0.005 0.173 0.052 8.20E-04 Yes 

rs2079742 17 NFAT5/NFAT5 T 0.136 0.070 0.054 0.257 0.070 2.52E-04 Yes 

rs6770152 3 SFMBT1/MUSTN1 T 0.154 0.052 0.003 0.119 0.052 0.022 No 

rs7188445 16 MAF/MAF A -0.214 0.082 0.009 -0.037 0.082 0.655 No 

rs7224610 17 HLF/HLF A 0.174 0.067 0.009 0.202 0.067 0.002 No 

rs12498742 4 SLC2A9/SLC2A9 A 0.017 0.008 0.023 0.009 0.008 0.219 No 

rs1471633 1 PDZK1/PDZK1 A 0.080 0.040 0.048 0.041 0.040 0.313 No 

rs17786744 8 STC1/STC1 A 0.140 0.081 0.083 -0.114 0.081 0.159 No 

rs17050272 2 INHBB/INHBB A 0.111 0.068 0.099 0.063 0.068 0.354 No 

rs3741414 12 INHBC/INHBE T 0.062 0.040 0.126 0.125 0.040 0.002 No 

rs1165151 6 SLC17A1/SLC17A3 T 0.041 0.027 0.129 0.069 0.027 0.010 No 

rs1171614 10 SLC16A9/SLC16A9 T 0.048 0.039 0.224 0.103 0.039 0.009 No 

rs17632159 5 TMEM171/TMEM171 C -0.063 0.071 0.368 -0.066 0.070 0.349 No 

rs10821905 10 A1CF/ASAH2 A 0.046 0.061 0.447 0.174 0.061 0.004 No 

rs478607 11 NRXN2/SLC22A12 A 0.049 0.071 0.490 0.106 0.071 0.136 No 

rs2231142 4 ABCG2/ABCG2 T -0.012 0.018 0.497 -0.050 0.018 0.005 No 

rs2078267 11 SLC22A11/SLC22A11 T 0.020 0.032 0.523 0.000 0.032 0.999 No 

rs164009 17 QRICH2/PRPSAP1 A 0.050 0.087 0.570 -0.025 0.087 0.770 No 

rs1394125 15 UBE2Q2/NRG4 A 0.026 0.060 0.658 0.042 0.060 0.477 No 
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SNP Chr Closest/GRAIL gene 
Effect 

allele 

DBP (n=317,754) SBP (n=317,756) 
Pleiotropy 

beta se P beta se P 

rs6598541 15 IGF1R/IGF1R A 0.023 0.059 0.698 -0.029 0.059 0.618 No 

rs1260326 2 GCKR/GCKR T -0.012 0.033 0.714 0.066 0.033 0.044 No 

rs675209 6 RREB1/RREB1 T 0.012 0.044 0.792 -0.024 0.044 0.593 No 

rs742132 6 LRRC16A/LRRC16A A 0.005 0.077 0.950 0.003 0.077 0.966 No 
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Supplementary Table 6 - 5: A summary of the pleiotropic effect of urate SNPs on lipids.   

SNPs Chr 
Closest/GRAIL 

gene 
Effect 

allele 

TC (n=94,595) LDL-c (n=89,888) HDL-c (n=94,311) ApoA (n=18,403) ApoB (n=20,689) 
Pleiotropy 

beta se p beta se p beta se p beta se p beta se p 

rs1260326 2 GCKR/GCKR T 0.665 0.047 
6.67E-

46 

0.26

8 

0.04

8 

2.58E-

08 

-
0.14

7 

0.04

5 

1.24E-

03 

0.51

1 

0.14

1 

2.91E-

04 

0.86

7 
0.135 

1.31E

-10 
Yes 

rs653178 12 ATXN2/PTPN11 T -0.853 0.103 
1.07E-

16 

-
0.63

1 

0.10

6 

2.32E-

09 

-
0.73

1 

0.09

7 

5.72E-

14 

-
0.73

1 

0.29

6 
0.013 

-
0.16

2 

0.287 0.573 Yes 

rs17050272 2 INHBB/INHBB A -0.573 0.159 
3.27E-

04 

-

0.66
8 

0.16

2 

3.84E-

05 

0.02

7 

0.15

1 
0.858 

-

0.20
5 

0.29

3 
0.485 

-

0.36
7 

0.279 0.188 Yes 

rs642803 11 OVOL1/LTBP3 T -0.281 0.084 
7.76E-

04 

-

0.27
0 

0.08

6 
0.002 

-

0.34
2 

0.07

9 

1.54E-

05 

-

0.41
6 

0.23

7 
0.079 

0.03

9 
0.237 0.867 Yes 

rs3741414 12 INHBC/INHBE T 0.118 0.059 0.046 
0.22

4 
0.06

1 
2.18E-

04 

-

0.41

7 

0.05
6 

1.36E-
13 

0.01
0 

0.17
2 

0.953 
0.43

0 
0.172 0.012 Yes 

rs1178977 7 BAZ1B/MLXIPL A 0.196 0.090 0.029 

-

0.06

8 

0.09
4 

0.469 

-

0.63

2 

0.08
8 

6.88E-
13 

-

0.33

6 

0.27
9 

0.229 
0.65

0 
0.265 0.014 Yes 

rs6770152 3 
SFMBT1/MUST

N1 
T -0.302 0.108 0.005 

-

0.24

4 

0.11
0 

0.027 

-

0.14

2 

0.10
2 

0.165 

-

0.14

3 

0.22
6 

0.527 

-

0.06

0 

0.214 0.779 No 

rs7224610 17 HLF/HLF A -0.287 0.137 0.036 

-

0.25

8 

0.13

9 
0.064 

-

0.10

5 

0.12

9 
0.414 

0.30

5 

0.28

1 
0.279 

0.59

1 
0.267 0.027 No 

rs729761 6 VEGFA/VEGFA T 0.243 0.128 0.058 
0.25

4 

0.13

3 
0.055 

-
0.31

7 

0.12

2 
0.009 

-
0.16

6 

0.25

6 
0.516 

0.47

2 
0.256 0.066 No 

rs17786744 8 STC1/STC1 A 0.300 0.168 0.074 
0.31

9 

0.17

1 
0.062 

-

0.21
3 

0.15

8 
0.178 

0.47

0 

0.34

4 
0.172 

0.31

9 
0.333 0.338 No 

rs1165151 6 
SLC17A1/SLC1

7A3 
T -0.087 0.055 0.117 

-

0.05
5 

0.05

7 
0.327 

-

0.12
4 

0.05

2 
0.018 

-

0.14
4 

0.11

6 
0.213 

0.01

2 
0.112 0.916 No 

rs2941484 8 HNF4G/HNF4G T -0.159 0.104 0.126 

-

0.08

0 

0.10
8 

0.462 

-

0.03

1 

0.09
8 

0.755 
0.20

5 
0.21

6 
0.342 

-

0.15

7 

0.205 0.444 No 

rs11264341 1 TRIM46/PKLR T -0.154 0.113 0.171 

-

0.15

8 

0.11
5 

0.167 
0.10

0 
0.10

6 
0.347 

0.18
6 

0.22
2 

0.402 

-

0.09

6 

0.211 0.649 No 
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SNPs Chr 
Closest/GRAIL 

gene 
Effect 

allele 

TC (n=94,595) LDL-c (n=89,888) HDL-c (n=94,311) ApoA (n=18,403) ApoB (n=20,689) 
Pleiotropy 

beta se p beta se p beta se p beta se p beta se p 

rs1171614 10 
SLC16A9/SLC1

6A9 
T 0.120 0.093 0.197 

0.07

7 

0.09

6 
0.422 

0.02

0 

0.08

9 
0.820 

0.17

9 

0.18

4 
0.332 

-
0.01

9 

0.184 0.919 No 

rs2231142 4 ABCG2/ABCG2 T 0.031 0.026 0.234 
0.04

4 

0.02

7 
0.106 

-
0.05

6 

0.02

5 
0.027 

-
0.05

4 

0.09

6 
0.569 

-
0.02

4 

0.087 0.786 No 

rs2079742 17 
BCAS3/C17orf8

2 
T 0.163 0.149 0.275 

0.08

6 

0.15

3 
0.573 

0.21

4 

0.14

1 
0.130 

0.00

8 

0.27

3 
0.977 

-

0.27
5 

0.273 0.314 No 

rs1394125 15 UBE2Q2/NRG4 A 0.135 0.137 0.326 
0.13

5 

0.14

0 
0.334 

-

0.10

0 

0.13

0 
0.443 

-

0.28

0 

0.27

9 
0.316 

-

0.19

5 

0.262 0.456 No 

rs6598541 15 IGF1R/IGF1R A -0.070 0.084 0.402 

-

0.05

0 

0.08
9 

0.573 

-

0.24

8 

0.08
2 

0.002 

-

0.23

1 

0.25
0 

0.355 

-

0.00

9 

0.239 0.969 No 

rs478607 11 
NRXN2/SLC22A

12 
A 0.110 0.146 0.449 

0.15
0 

0.15
0 

0.317 

-

0.18

8 

0.13
8 

0.173 
0.15

8 
0.27

1 
0.560 

0.20
5 

0.270 0.449 No 

rs10821905 10 A1CF/ASAH2 A 0.085 0.130 0.514 
0.05

1 

0.13

2 
0.700 

0.01

9 

0.12

1 
0.876 

-
0.12

1 

0.23

2 
0.602 

-
0.23

7 

0.231 0.305 No 

rs2307394 2 
ORC4L/ACVR2

A 
T -0.094 0.151 0.534 

-
0.07

1 

0.15

4 
0.643 

-
0.08

3 

0.14

3 
0.562 

0.53

0 

0.32

0 
0.098 

-
0.00

2 

0.309 0.994 No 

rs164009 17 
QRICH2/PRPS

AP1 
A 0.097 0.183 0.597 

-

0.07
2 

0.18

6 
0.697 

0.09

7 

0.16

9 
0.568 

-

0.20
4 

0.37

9 
0.591 

0.46

7 
0.361 0.195 No 

rs7193778 16 NFAT5/NFAT5 T 0.081 0.157 0.608 

-

0.02
8 

0.16

0 
0.862 

-

0.25
3 

0.14

7 
0.085 

-

0.49
9 

0.32

1 
0.121 

0.64

2 
0.309 0.038 No 

rs7188445 16 MAF/MAF A -0.078 0.175 0.655 

-

0.01
9 

0.17

8 
0.916 

0.09

1 

0.16

3 
0.577 

-

0.44
5 

0.35

5 
0.209 

-

0.85
1 

0.339 0.012 No 

rs675209 6 RREB1/RREB1 T 0.035 0.092 0.704 

-

0.08

3 

0.09
4 

0.378 
0.05

6 
0.08

7 
0.525 

0.24
0 

0.18
1 

0.185 

-

0.11

3 

0.173 0.513 No 

rs12498742 4 
SLC2A9/SLC2A

9 
A 0.005 0.016 0.747 

0.00
8 

0.01
6 

0.617 

-

0.01

9 

0.01
5 

0.186 

-

0.02

7 

0.03
3 

0.425 
0.03

3 
0.033 0.320 No 

rs10480300 7 
PRKAG2/PRKA

G2 
T 0.053 0.178 0.766 

0.07

2 

0.18

4 
0.697 

-
0.02

2 

0.16

9 
0.897 

0.17

4 

0.40

9 
0.671 

-
0.27

7 

0.388 0.475 No 
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SNPs Chr 
Closest/GRAIL 

gene 
Effect 

allele 

TC (n=94,595) LDL-c (n=89,888) HDL-c (n=94,311) ApoA (n=18,403) ApoB (n=20,689) 
Pleiotropy 

beta se p beta se p beta se p beta se p beta se p 

rs2078267 11 
SLC22A11/SLC2

2A11 
T -0.013 0.067 0.848 

-
0.05

4 

0.06

8 
0.428 

0.07

4 

0.06

2 
0.227 

-
0.01

2 

0.13

1 
0.927 

0.19

7 
0.131 0.133 No 

rs17632159 5 
TMEM171/TME

M171 
C -0.026 0.155 0.865 

-
0.11

3 

0.16

1 
0.481 

0.34

2 

0.14

5 
0.018 

0.22

4 

0.31

9 
0.482 

0.24

6 
0.309 0.427 No 

rs1471633 1 PDZK1/PDZK1 A -0.008 0.089 0.926 
0.05

4 

0.09

0 
0.549 

-

0.19
0 

0.08

2 
0.020 

-

0.14
7 

0.17

2 
0.392 

0.30

6 
0.163 0.061 No 

rs742132 6 
LRRC16A/LRR

C16A 
A -0.011 0.163 0.944 

-

0.04

9 

0.16

6 
0.769 

-

0.00

9 

0.15

1 
0.955 

-

0.25

1 

0.33

7 
0.457 

-

0.36

0 

0.320 0.260 No 
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Supplementary Table 6 - 6: A summary of the pleiotropic effect of urate SNPs on glucose.   

SNP Chr Closest/GRAIL gene 
Effect 

allele 

Fasting glucose (n=15,234) 2hr glucose (n=58,074) Glycoproteins (n=18,732) 
Pleiotropy 

beta se p beta se p beta se p 

rs1260326 2 GCKR/GCKR T 1.182 0.247 1.67E-06 -0.416 0.040 5.57E-25 -0.078 0.151 0.603 Yes 

rs6598541 15 IGF1R/IGF1R A -0.682 0.455 0.134 0.273 0.075 2.77E-04 0.297 0.251 0.236 Yes 

rs1171614 10 SLC16A9/SLC16A9 T -0.297 0.392 0.448 -0.085 0.057 0.134 0.747 0.192 1.01E-04 Yes 

rs1394125 15 UBE2Q2/NRG4 A -1.302 0.512 0.011 0.009 0.084 0.912 -0.302 0.295 0.306 No 

rs17050272 2 INHBB/INHBB A 1.568 0.622 0.012 0.135 0.097 0.165 0.179 0.298 0.549 No 

rs7224610 17 HLF/HLF A 1.158 0.500 0.021 0.018 0.084 0.827 0.532 0.298 0.074 No 

rs478607 11 NRXN2/SLC22A12 A -1.083 0.521 0.038 0.025 0.088 0.775 0.189 0.276 0.493 No 

rs653178 12 ATXN2/PTPN11 T 0.833 0.528 0.114 -0.053 0.089 0.553 -0.044 0.302 0.883 No 

rs3741414 12 INHBC/INHBE T -0.479 0.324 0.139 0.014 0.054 0.792 0.083 0.177 0.638 No 

rs6770152 3 SFMBT1/MUSTN1 T 0.563 0.396 0.155 0.044 0.065 0.498 0.490 0.226 0.030 No 

rs7188445 16 MAF/MAF A -0.813 0.625 0.194 -0.191 0.103 0.065 -0.601 0.355 0.091 No 

rs10480300 7 PRKAG2/PRKAG2 T -0.719 0.656 0.273 -0.313 0.109 0.004 0.495 0.409 0.226 No 

rs2231142 4 ABCG2/ABCG2 T -0.150 0.145 0.302 0.031 0.024 0.199 0.104 0.093 0.264 No 

rs1165151 6 SLC17A1/SLC17A3 T 0.207 0.207 0.317 0.068 0.034 0.042 0.112 0.116 0.335 No 

rs164009 17 QRICH2/PRPSAP1 A 0.655 0.655 0.317 0.086 0.110 0.435 -0.040 0.380 0.915 No 

rs7193778 16 NFAT5/NFAT5 T 0.447 0.574 0.437 0.136 0.096 0.155 0.050 0.324 0.878 No 

rs1178977 7 BAZ1B/MLXIPL A -0.340 0.480 0.479 -0.122 0.080 0.127 -0.268 0.279 0.338 No 

rs2307394 2 ORC4L/ACVR2A T -0.400 0.571 0.484 -0.191 0.094 0.042 -0.252 0.339 0.457 No 

rs11264341 1 TRIM46/PKLR T -0.292 0.417 0.484 -0.075 0.069 0.275 -0.355 0.222 0.109 No 

rs2078267 11 SLC22A11/SLC22A11 T -0.154 0.244 0.528 -0.067 0.041 0.104 -0.027 0.137 0.843 No 

rs1471633 1 PDZK1/PDZK1 A -0.197 0.311 0.528 0.036 0.051 0.478 -0.035 0.173 0.839 No 

rs742132 6 LRRC16A/LRRC16A A -0.371 0.600 0.536 0.089 0.097 0.362 -0.219 0.341 0.521 No 

rs2941484 8 HNF4G/HNF4G T 0.180 0.388 0.643 0.067 0.063 0.287 -0.021 0.219 0.924 No 

rs675209 6 RREB1/RREB1 T -0.156 0.349 0.656 0.130 0.057 0.023 0.215 0.183 0.240 No 

rs2079742 17 BCAS3/C17orf82 T 0.235 0.529 0.657 -0.059 0.090 0.514 -0.622 0.274 0.023 No 

rs17786744 8 STC1/STC1 A 0.255 0.613 0.678 0.132 0.100 0.186 -0.187 0.344 0.588 No 

rs729761 6 VEGFA/VEGFA T -0.150 0.478 0.754 -0.202 0.078 0.010 -0.347 0.257 0.177 No 
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SNP Chr Closest/GRAIL gene 
Effect 

allele 

Fasting glucose (n=15,234) 2hr glucose (n=58,074) Glycoproteins (n=18,732) 
Pleiotropy 

beta se p beta se p beta se p 

rs17632159 5 TMEM171/TMEM171 C -0.161 0.579 0.782 -0.050 0.092 0.587 -0.093 0.317 0.769 No 

rs10821905 10 A1CF/ASAH2 A 0.045 0.453 0.920 0.079 0.075 0.294 -0.413 0.241 0.087 No 

rs642803 11 OVOL1/LTBP3 T -0.014 0.442 0.975 0.014 0.072 0.847 0.068 0.249 0.785 No 

rs12498742 4 SLC2A9/SLC2A9 A -0.001 0.058 0.985 0.000 0.009 0.978 0.029 0.033 0.376 No 
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Supplementary Table 6 - 7: Phenotypes associated with the weighted GRS of urate in TreeWAS analysis (PP>0.95). 

ICD-10 coding Disease description max_b† b_ci_lhs† b_ci_rhs† OR (95%CI) PP* 

M10 M10 Gout 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M100 M10.0 Idiopathic gout 1.640 1.515 1.765 5.16 (4.55, 5.84) 0.993 

M1007 M10.07 Idiopathic gout (Ankle and foot) 1.640 1.515 1.765 5.16 (4.55, 5.84) 0.993 

M1099 M10.99 Gout, unspecified (Site unspecified) 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M109 M10.9 Gout, unspecified 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M1097 M10.97 Gout, unspecified (Ankle and foot) 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M1096 M10.96 Gout, unspecified (Lower leg) 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M1094 M10.94 Gout, unspecified (Hand) 1.640 1.515 1.765 5.16 (4.55, 5.84) 0.993 

M1090 M10.90 Gout, unspecified (Multiple sites) 1.640 1.515 1.765 5.16 (4.55, 5.84) 0.985 

M109_int M10.9 Gout, unspecified_int 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

M100_int M10.01 Idiopathic gout_int 1.640 1.515 1.765 5.16 (4.55, 5.84) 1.000 

Chapter IX Chapter IX Diseases of the circulatory system 0.070 0.055 0.085 1.07 (1.06, 1.09) 1.000 

Block I10-I15 I10-I15 Hypertensive diseases 0.070 0.055 0.085 1.07 (1.06, 1.09) 1.000 

I10 I10 Essential (primary) hypertension 0.070 0.055 0.085 1.07 (1.06, 1.09) 1.000 

Block I20-I25 I20-I25 Ischaemic heart diseases 0.070 0.055 0.085 1.07 (1.06, 1.09) 1.000 

I20 I20 Angina pectoris 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.994 

I209 I20.9 Angina pectoris, unspecified 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.972 

I21 I21 Acute myocardial infarction 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.994 

I219 I21.9 Acute myocardial infarction, unspecified 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.966 

I25 I25 Chronic ischaemic heart disease 0.070 0.055 0.085 1.07 (1.06, 1.09) 1.000 

I251 I25.1 Atherosclerotic heart disease 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.999 

I252 I25.2 Old myocardial infarction 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.987 

Block I30-I52 I30-I52 Other forms of heart disease 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.999 

I50 I50 Heart failure 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.994 
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ICD-10 coding Disease description max_b† b_ci_lhs† b_ci_rhs† OR (95%CI) PP* 

I501 I50.1 Left ventricular failure 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.966 

Block I60-I69 I60-I69 Cerebrovascular diseases 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.991 

I63 I63 Cerebral infarction 0.070 0.055 0.085 1.07 (1.06, 1.09) 0.951 

* PP, posterior probability for the beta (β) estimate in the tree analysis not being zero. 
† max_b: maximum a posteriori effect estimate (beta) and the 95% credible interval (max_b_lhs, max_b_rhs). 
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Supplementary Table 6 - 8: Sensitivity analysis by using pleiotropic loci on metabolic traits.  

Disease 

outcomes 

GRS of all-urate loci (n=31) 
GRS of urate-specific loci 

(n=14) 

GRS of urate-obesity 

pleiotropic loci (n=10) 

GRS of urate-BP 

pleiotropic loci (n=10) 

GRS of urate-lipid 

pleiotropic loci (GRS=6) 

GRS of urate-glucose 

pleiotropic loci  (GRS=3) 

OR 

(95%CI) 
p FDR 

OR 

(95%CI) 
p FDR 95%CI p FDR 95%CI p FDR 95%CI p FDR 95%CI p FDR 

Gout 

5.37 

(4.67, 

6.18) 

4.27E-

123 
TRUE 

3.77 

(3.19, 

4.46) 

4.42E-

54 
TRUE 

12.82 

(9.91, 

16.59) 

5.10E-

84 
TRUE 

5.15 

(3.26, 

8.15) 

2.32E

-12 
TRUE 

9.52 

(6.05, 

14.99) 

2.19E-

22 
TRUE 

10.83 

(6.37, 

18.41) 

1.38E-18 TRUE 

Inflammatory 

polyarthropathies 

1.27 

(1.21, 

1.34) 

4.97E-

19 
TRUE 

1.22 

(1.15, 

1.30) 

6.45E-

10 
TRUE 

1.57 (1.40, 

1.76) 

3.39E-

14 
TRUE 

1.52 

(1.26, 

1.84) 

1.27E

-05 
TRUE 

1.52 

(1.26, 

1.83) 

1.25E-

05 
TRUE 

1.33 

(1.07, 

1.66) 

0.010 FALSE 

Hypertension 

1.07 

(1.05, 

1.11) 

6.02E-

07 
TRUE 

1.03 

(1.00, 

1.07) 

0.075 FALSE 
1.14 (1.06, 

1.22) 

1.42E-

04 
TRUE 

1.72 

(1.55, 

1.92) 

2.13E

-23 
TRUE 

1.45 

(1.31, 

1.61) 

3.99E-

12 
TRUE 

1.10 

(0.97, 

1.24) 

0.138 FALSE 

Essential 

hypertension 

1.08 

(1.05, 

1.11) 

6.26E-

07 
TRUE 

1.03 

(1.00, 

1.07) 

0.074 FALSE 
1.14 (1.07, 

1.22) 

1.37E-

04 
TRUE 

1.72 

(1.55, 

1.91) 

2.87E

-23 
TRUE 

1.45 

(1.31, 

1.61) 

4.08E-

12 
TRUE 

1.10 

(0.97, 

1.24) 

0.146 FALSE 

Coronary 

atherosclerosis 

1.10 

(1.05, 

1.14) 

1.17E-

05 
TRUE 

1.05 

(1.00, 

1.11) 

0.052 FALSE 
1.18 (1.07, 

1.30) 

5.96E-

04 
FALSE 

1.38 

(1.18, 

1.61) 

3.37E

-05 
TRUE 

1.80 

(1.55, 

2.09) 

1.35E-

14 
TRUE 

1.45 

(1.21, 

1.72) 

3.89E-05 TRUE 

Gouty arthropathy 

5.10 

(2.45, 

10.66) 

1.39E-

05 
TRUE 

4.38 

(1.77, 

10.82) 

0.001 FALSE 
9.83 (2.50, 

38.67) 

1.08E-

03 
FALSE 

1.94 

(0.17, 

21.86) 

0.592 FALSE 

3.28 

(0.30, 

36.00) 

0.331 FALSE 

12.57 

(0.75, 

209.57) 

0.078 FALSE 

Chronic ischaemic 

heart disease 

1.09 

(1.05, 

1.14) 

1.52E-

05 
TRUE 

1.05 

(1.00, 

1.10) 

0.057 FALSE 
1.18 (1.07, 

1.30) 

5.79E-

04 
FALSE 

1.37 

(1.18, 

1.59) 

5.49E

-05 
TRUE 

1.79 

(1.54, 

2.09) 

2.64E-

14 
TRUE 

1.44 

(1.20, 

1.71) 

5.81E-05 TRUE 

Ischaemic Heart 

Disease 

1.09 

(1.05, 

1.14) 

1.73E-

05 
TRUE 

1.05 

(1.00, 

1.10) 

0.060 FALSE 
1.18 (1.07, 

1.30) 

6.64E-

04 
FALSE 

1.37 

(1.17, 

1.59) 

5.61E

-05 
TRUE 

1.79 

(1.54, 

2.08) 

3.61E-

14 
TRUE 

1.43 

(1.20, 

1.71) 

6.58E-05 TRUE 

Myocardial 

infarction 

1.14 

(1.07, 

1.22) 

5.23E-

05 
TRUE 

1.05 

(0.97, 

1.14) 

0.205 FALSE 
1.30 (1.12, 

1.50) 

4.54E-

04 
FALSE 

1.65 

(1.30, 

2.09) 

3.41E

-05 
TRUE 

2.31 

(1.83, 

2.91) 

2.27E-

12 
TRUE 

1.75 

(1.33, 

2.30) 

6.10E-05 TRUE 

Pyogenic arthritis 

2.10 

(1.41, 

3.13) 

2.87E-

04 
TRUE 

1.73 

(1.07, 

2.78) 

0.024 FALSE 
2.66 (1.17, 

6.08) 

2.00E-

02 
FALSE 

1.71 

(0.43, 

6.80) 

0.444 FALSE 

9.58 

(2.44, 

37.68) 

0.001 FALSE 

6.13 

(1.24, 

30.22) 

0.026 FALSE 

Circulatory disease  

1.04 

(1.02, 

1.07) 

3.29E-

04 
TRUE 

1.02 

(0.99, 

1.05) 

0.258 FALSE 
1.10 (1.04, 

1.16) 

6.94E-

04 
FALSE 

1.31 

(1.20, 

1.43) 

1.59E

-09 
TRUE 

1.29 

(1.18, 

1.41) 

9.47E-

09 
TRUE 

1.17 

(1.05, 

1.29) 

0.003 FALSE 

Disorders of 

metabolism 

1.07 

(1.03, 

1.11) 

3.33E-

04 
TRUE 

1.03 

(0.99, 

1.08) 

0.157 FALSE 
1.17 (1.08, 

1.27) 

1.06E-

04 
TRUE 

1.12 

(0.98, 

1.27) 

0.100 FALSE 

1.58 

(1.39, 

1.80) 

3.09E-

12 
TRUE 

1.52 

(1.30, 

1.76) 

6.35E-08 TRUE 

Hypercholesterolae

mia 

1.08 

(1.04, 

1.12) 

3.34E-

04 
TRUE 

1.00 

(0.95, 

1.05) 

0.913 FALSE 
1.32 (1.20, 

1.45) 

3.53E-

09 
TRUE 

1.23 

(1.06, 

1.43) 

0.006 FALSE 

1.90 

(1.64, 

2.20) 

8.73E-

18 
TRUE 

1.84 

(1.55, 

2.19) 

3.01E-12 TRUE 

GRS, genetic risk score; FDR, false discovery rate; OR, odds ratio.   
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7 DISCUSSION 

7.1 Introduction  

In this thesis, background information regarding uric acid metabolism, hyperuricaemia, and 

the genetic determinants of SUA level have been presented in Chapter 1; the aims and 

objectives of this thesis have been outlined in Chapter 2; a systematic literature review on 

the range of health outcomes related to SUA level has been summarised in Chapter 3; the 

characteristics of UK biobank cohort and the manipulation process of UK Biobank data have 

been described in Chapter 4; Chapter 5 presents a MR-PheWAS analysis using the interim 

release of UK Biobank data and describes the methods and results, and interprets the 

findings; similarly, Chapter 6 presents an enlarged PWMR analysis using the full UK 

Biobank cohort and describes the methods and results, and interprets the findings.  

In this chapter, I will firstly discuss the methodological issues that have not been fully 

elaborated in the earlier chapters. I will also present and discuss the comments that have 

been proposed by the co-authors of the publications or the peer reviewers of the journals that 

this work has been submitted to. I will finally draw conclusions based on the findings of this 

thesis and provide suggestions on future research focus.  

7.2 Methodological and analytical issues  

The first part of this chapter discusses the main issues of the applied methodologies. These 

include (i) umbrella review; (ii) PheWAS approach: the PheCODE schema; (iii) MR 

methods: Two-stage MR, Wald Ratio MR, MR IVW and MR Egger; (iv) TreeWAS: the 

Bayesian analysis framework. Then, the common analytical issues of these methods are 

presented and the corresponding strategies for dealing with these issues are explained and 

discussed. These include (i) study population: why selecting the unrelated white British 

population for analysis instead of a broader target population of European descent; (ii) 

genetic instruments: why using the multiple genetic instruments rather than the single variant 

within the gene of which the function is well understood; (iii) covariates: why adjusting the 

PheWAS analysis only for the PCs and BMI but not for other potential confounding factors 

(e.g., sex, age, renal function); (iv) case ascertainment: how to define the individual as being 

a case or a control. 

7.2.1 Umbrella review 

To provide the research community with a comprehensive overview of the entirety of the 

published literature in relation to serum urate levels, I performed an umbrella review to 
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comprehensively assess the evidence available on the association between serum urate across 

all reported outcomes based on systematic reviews/meta-analyses of observational studies 

and RCTs as well as Mendelian randomisation (MR) studies. The main methodological 

issues have been fully discussed in Chapter 3, Section 3.5 “Discussion”, hereby, I only 

discuss a few remaining issues.   

7.2.1.1 Selection of eligible studies 

The methodology of umbrella review generally builds on the systematic analysis of meta-

analyses. The selection of studies for inclusion in this umbrella review is relatively 

asymmetrical with the inclusion of systematic reviews and meta-analyses of observational 

studies, meta-analyses of RCTs, and finally, individual MR studies. The reason I sought to 

collect information from systematic reviews (not only meta-analyses) of observational 

studies was to map the breadth of outcomes investigated in relation to serum urate levels. 

Even though the systematic reviews were included in the umbrella review, they were not 

taken forward for quantitative analysis. For MR studies, only one meta-analysis was 

available, thus I decided to include individual studies instead. I sought to collect information 

from only systematic meta-analyses instead of all meta-analyses, this was because I aimed to 

keep the umbrella review to be systematic, objective and transparent. For meta-analyses 

which are not strictly systematic, there is always an unavoidable layer of subjectivity in 

making decisions about which papers should be included, and how the results should be 

interpreted and/or discussed. Nevertheless, there are concerns that some non-systematic 

meta-analyses cover questions that have not been addressed by systematic ones; if not 

including them, the breadth of health outcomes is limited. This has been discussed in 

Chapter 3, Section “3.5 Discussion” as a limitation of this umbrella review. 

Additionally, another issue about the selection of the largest/latest meta-analysis when 

multiple (overlapping) meta-analyses exist for the same population/outcome has been 

questioned. This approach doesn’t assume that the larger the meta-analyses, the better the 

quality, although there is some empirical evidence that this assumption is adequate within 

RCTs. Due to the large number of meta-analyses identified, it would be challenging to 

perform formal quantitative appraisal for all included meta-analyses and their component 

studies. Instead, I chose to present the main results of all identified meta-analyses and 

compare the findings for outcomes with more than one meta-analysis, and select one meta-

analysis for each outcome to do the credibility assessment. The reason I selected the 

largest/latest meta-analysis for overlapping outcomes was because I expected that individual 

studies included in multiple meta-analyses should be considerably overlapped (if they 
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addressed the same question in the same population) and any difference should be due to 

new component studies being published and then being included in the most recent meta-

analysis. However, there were some exceptions when the latest MA was not the largest and 

this was when the latest meta-analyses only included prospective studies whereas the largest 

meta-analyses included both prospective and retrospective studies. In this case I always 

selected the meta-analyses including the largest number of prospective studies. I then 

compared the consistency of the findings among these overlapping meta-analyses, aiming to 

see if the significance and/or direction of the association changed when new individual 

studies are added. 

7.2.1.2 Criteria for credibility assessment 

There were some criticisms that the criteria used for credibility assessment was largely based 

on statistical concepts (p-values, 95%PI, heterogeneity, etc.), highly dependent on sample 

size and the number of included studies. I realised that the credibility assessment based on 

statistical concepts is not sufficient to capture all features of the quality of meta-analyses, but 

these quantitative metrics are valid in identifying major biases. Considering that this 

umbrella review included 175 meta-analyses and each meta-analysis included multiple 

individual studies, it would be challenging to additionally perform a formal quality appraisal 

for all included meta-analyses and their component studies. It has been acknowledged that 

the assessment of the quality of the individual studies was beyond the scope of this umbrella 

review and it should be the aim of the original meta-analyses. Therefore, I examined the 

grading quality reported in the original meta-analyses (if any), but found quite a few meta-

analyses using the GRADE (or other equivalent system) to assess the quality of their 

individual studies. The lack of the quality assessment of the component studies was 

highlighted as a common issue for the published meta-analyses. To improve this 

methodological limitation, I therefore applied a two-step assessment: I firstly performed 

quantitative assessment for all meta-analyses, and the statistical metrics filtered out meta-

analyses with obvious/serious biases (Class III and IV); I then re-assessed the remaining 

meta-analyses (with high level evidence - Class I and II) on the basis of study design (case-

control, retrospective, or prospective) and also by assessing the eligibility/quality of 

individual studies; and then conducted further evaluation on meta-analyses with high ranking 

evidence (Class I and II) to capture other quality issues that could have been missed in the 

quantitative assessment. In principle, although there are limitations, the methodologies I 

applied for credibility assessment can identify major biases and capture the essential features 
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of the quality of the included meta-analyses. Further evaluation for the meta-analyses which 

already have obvious/serious biases, would not add much value to the assessment. 

7.2.1.3 Interpreting different types of evidence  

In this umbrella review, different types of evidence (i.e., observational studies, RCTs and 

Mendelian randomisation studies) were incorporated. Although none of these study types are 

infallible, all are able to provide useful information about causal inference and can 

complement each other to achieve increasing certainty about causality. Observational studies 

examined the association between the exposure and the outcome and tested whether the 

association is caused by chance, bias, or confounding, but they are typically affected by 

residual confounding, undetected bias, or reverse causality, which may generate associations 

that are not reliable indicators of causality. RCT aimed to obtain evidence of a causal effect 

of a treatment or intervention on a disease process by eliminating many of possible biases 

and confounding factors, but they are limited by the issues of non-adherence to the assigned 

intervention, limited external validity, short term intervention effects, and non-retention, 

which can all render the results invalid or questionable. MR studies provided a cost-effective 

analogy to a RCT by using genetic variants as proxies to test the causality of an association 

between exposure and outcome; they are generally not influenced by the common 

confounding factors and not seriously affected by reverse causality, but do rely on several 

assumptions (the genetic instruments should be associated with the exposure of interest, they 

should not be associated with known confounders, and they should affect the outcome solely 

through the exposure) that can be hard to identify and control, and lack power when the 

proportion of trait variance explained by the genetic instruments is small. It is recognised 

that different types of epidemiological studies have specific strengths and weaknesses that 

can be seen as complementary, this study would therefore benefit from clarification as to the 

type of questions that each type of study is likely to address in terms of potential bias, 

generalisability and power limitation. Given the differences between different designs, I thus 

assessed each type of evidence separately and made specific conclusions for each study 

design type (the overall conclusion was a simple summary of specific conclusions).  Specific 

conclusions were drawn for each of the three study types. In particular: 1) no association 

from meta-analyses of observational studies was classified as convincing; 2) only one 

outcome from meta-analyses of RCTs (decreased risk of nephrolithiasis recurrence with 

SUA-lowering treatment) had p<10-3, 95% prediction interval excluding the null and no 

large heterogeneity or bias and was classified as convincing; 3) only one outcome from MR 

studies (increased risk of gout with high SUA levels) had p<0.01 with adequate power; the 
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overall conclusion of the chapter was a summary of specific conclusions: convincing 

evidence exists for only gout and nephrolithiasis. The comparison of the concordance across 

different study types aimed to see if evidence from RCTs and MR can strengthen the 

observed associations. 

7.2.1.4 Strengths and limitations of umbrella review 

The strengths and limitations of umbrella review have been fully discussed in Chapter 3, 

Section “3.5 Discussion”. In summary, strengths mainly includes:  

(i) Providing an overview of the entirety of the published literature in relation to serum 

urate levels (reporting an impressive number [136 in total] of outcomes), and 

presented all published findings in a comprehensive way. 

(ii) Collecting and evaluating evidence from multiple resources systematically, with 

recognising that different types of epidemiological studies were designed to address 

different questions but could be seen as complementary evidence for the same 

research topic.  

(iii) Employing evidence classification criteria to identify biases and to capture the 

essential features of the quality of the published meta-analyses, to assess the 

credibility of the reported evidence.  

(iv) Helping investigators to judge the relative priority of health outcomes related to serum 

urate levels and direct research or therapeutic efforts away from less important health 

outcomes in the future research and clinical management of diseases.  

Limitations includes:  

(i) Some meta-analyses were excluded from heterogeneity and bias tests because they did 

not provide adequate data to do the respective analyses.  

(ii) Both asymmetry and excess statistical significance tests offer suggestions of bias, and 

not definitive proof thereof.  

(iii) Effect inflation might affect even the results of the largest studies because often these 

studies were not necessarily very large or might have had inherent biases themselves. 

Thus, our estimates of the extent of excess statistical significance are probably 

conservative.  

(iv) The quality of the individual component primary studies were not appraised because 

this was beyond the scope of this umbrella review. This was the aim of the original 

systematic reviews and meta-analyses, which should include an assessment of study 

quality and whether the study should be included in the quantitative calculations. 
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7.2.2 PheWAS approach 

To complement GWAS, the concept of PheWAS has been developed. In essence, PheWAS 

is a reverse approach of GWAS, which provides a systematic method to explore the range of 

diseases and traits that are associated with a number of given SNPs or biomarkers (542). The 

concept of PheWAS is to perform a series of case-control tests on varying phenotypes to 

discover significant associations with pre-defined genetic variants or biomarkers of interest. 

Identifying the correlations among comprehensively collected phenotypes is believed to 

provide important information on the networks underlying human disease and health. 

PheWAS could be performed in a variety of datasets derived from electronic medical records 

(EMRs) or large population-based epidemiological studies (542). In particular, since the 

emergence of large biobanks (e.g., UK Biobank), in which a large volume of genotypic data 

is linked to extensive EMRs, it provides a unique opportunity to perform powerful PheWAS, 

even though there are some challenges to be overcome. The purpose of this section is to 

discuss the main technical issues of the PheWAS methodology and report the progress of 

PheWAS method that has been made based on the work of this thesis.  

7.2.2.1 Phenotyping: ICD codes  

The focus on a wider spectrum of phenotypes is an important aspect of the PheWAS design. 

Therefore, defining the individuals’ phenotypes, termed as phenotyping, is the most critical 

step. Phenotyping has been defined as the precise and comprehensive analysis of phenotypic 

characteristics of an individual (543). The term of “phenome” has been used as a systematic 

and comprehensive set of phenotypes, including the clinical, biochemical and imaging traits. 

Unlike the genome, in which genotyping could be performed by reliable biological 

techniques, the measurement of phenome relies highly on the availability of health data. The 

most commonly used data fields for phenotyping are from the electronic medical records 

(EMRs) and the epidemiological survey data, which could be measured as either outcome 

phenotypes (binary disease status) or intermediate phenotypes (quantitative clinical variables) 

(542).  

 EMRs based phenotyping  

For EMRs based phenotyping, the most effective and straightforward way is to use the ICD 

codes. The ICD coding system is a medical classification list developed by the World Health 

Organisation (544). This system is designed to map health conditions to corresponding 

generic categories together with specific variations. The major categories are designed to 

include a set of similar diseases. The ICD has been applied as a health care classification 

https://en.wikipedia.org/wiki/Medical_classification
https://en.wikipedia.org/wiki/World_Health_Organization
https://en.wikipedia.org/wiki/World_Health_Organization
https://en.wikipedia.org/wiki/Health_care
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system, which provides a system of diagnostic codes for classifying diseases and a wide 

variety of signs, symptoms, abnormal findings, complaints, social circumstances, and 

external causes of injury or disease (544).  

The ICD is revised periodically and is currently in its 10th version (ICD-10) (545). 

Establishment of ICD-10 began in 1983 and completed in 1992. The ICD-10 was first 

mandated for use in the UK in 1995 (before 1995, the adopted version was ICD-9). In 2010, 

the UK Government made a commitment to update the UK version of ICD-10 every three 

years (546). From April 1st 2016, the ICD-10 5th Edition was applied as the mandated 

diagnostic classification within the UK (546). The current version of ICD-10 includes more 

than 14,400 different codes (permitting the tracking of many new diagnoses compared 

to ICD-9) and through the use of optional sub-classifications, the number of codes can be 

expanded to over 16,000 (544). The unchanged international version of ICD-10 is used in 

more than 110 countries, with a few exceptions. For example, the United States, Australia 

and Canada, have developed their own adaptations of ICD, which include more procedure 

codes for classification of operative or diagnostic procedures. The United States expanded 

the code set to a modified version, named ICD-10 Clinical Modification (ICD-10-CM), 

which has 70,000 different codes (547). Adoption of ICD-10-CM was slow in the United 

States and it has been used since October 1, 2015. The ICD-10-CM was provided by the 

National Centre for Health Statistics (NCHS) and the Centres for Medicare and Medicaid 

Services (CMS) and the use of ICD-10-CM codes are now mandated for all inpatient 

medical reporting requirements in the United States (547).  

As known, the ICD-codes are organised in a hierarchical structure that the sibling ICD codes 

representing different subgroups belong to a similar set of disease group coded by their 

parent ICD code (544). Based on this hierarchical structure, a holistic phenotyping method 

was proposed for PheWAS, in which individual ICD codes at varying levels of phenotypic 

granularity are adopted to define cases and controls. For example, M10.1 and M10.2 are 

firstly classified into two different case groups, but then are combined into the same M10 

case group. The advantage of this method is that the phenotyping is performed without 

making any assumptions about the similarity of outcomes and the ICD codes are treated as 

representing independent disease outcomes. However, given the fact that the majority of ICD 

codes are designed to include a set of similar diseases, this phenotyping method would 

greatly reduce the study power and increase the burden of multiple test.  

To address these issues, the curated phenotyping method has been adopted to aggregate the 

ICD codes into an appropriate version for phenotyping. The curated phenotyping is built on 

https://en.wikipedia.org/wiki/Disease
https://en.wikipedia.org/wiki/Diagnoses
https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems#ICD-9
https://en.wikipedia.org/wiki/Procedure_code
https://en.wikipedia.org/wiki/Procedure_code
https://en.wikipedia.org/wiki/National_Center_for_Health_Statistics
https://en.wikipedia.org/wiki/Centers_for_Medicare_and_Medicaid_Services
https://en.wikipedia.org/wiki/Centers_for_Medicare_and_Medicaid_Services
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the backbone of the first three digital ICD codes and further refined based on clinical and 

biological knowledge (548). In principle, the fourth and fifth digital ICD codes, or 

sometimes even the third, representing diseases sharing the common aetiology are combined 

into one phenotype group. On the other hand, for some diseases with distinctly different 

aetiologies, like type 1 and type 2 diabetes, even if they are under the same three digit ICD 

code, their individual codes are retained and allocated into different phenotype groups. In 

addition, ICD codes, using the terms of “others” or “not elsewhere classified” are removed. 

Through the curated phenotyping, the number of cases for each phenotype is increased and 

the number of phenotypes examined in PheWAS is reduced, therefore, the multiple test 

burden is lower and the power to detect associations is higher due to increased number of 

cases. This phenotyping method also has its disadvantages, in which biases may be 

introduced by assuming that some diseases share the same aetiology. Despite this, curated 

phenotyping is still one of the most widely adopted methods in the published PheWAS. 

Based on the principles of curated phenotyping, a PheCODE schema has been developed for 

the researchers who are interested in the EMRs based phenotyping (details are discussed in 

the Section 7.2.2.2 “PheCODE schema”).  

 Epidemiological survey-based phenotyping  

Another important source of phenotypic data is the epidemiological surveys, in which a large 

number of phenotypes are collected. Compared with ICD codes, phenotyping in 

epidemiological data is even more challenging. Considering the relatively small sample size 

and the limited coverage of human diseases investigated in a single epidemiological survey, 

combination of phenotypic data from multiple studies is always required (548). Additionally, 

since the diseases investigated in epidemiological studies are not as well-structured and 

standardised as ICD codes, it is difficult to harmonise all phenotypes, and thus phenotypes 

are always manually binned into phenotype classifications (441). Although this method can 

reuse the epidemiological data to perform PheWAS, it is not the best option to harmonise the 

phenotypes of individuals.  

7.2.2.2 Phenome framework: PheCODE schema 

As discussed above, the ICD codes remain the most common data source of phenotyping. To 

address the need for an aggregation method, the electronic Medical Records and Genomics 

(eMERGE) developed a schema called “PheCODE” to represent disease phenotypes 

documented in the EMR (433). The PheCODE schema was first introduced in 2010, 

containing 733 distinct phenotype codes (459). This schema was developed based on the 

ICD-9-CM codes by combining one or more related ICD-9-CM codes into distinct diseases 



Chapter 7  Discussion 

295 

 

or traits (459). The eMERGE group are continuously refining the PheCODE schema with 

additional clinical experts helping with revisions of different domains, such as cardiology 

and oncology. The latest version of the PheCODE system involved 1,866 hierarchical 

phenotype codes (433).  

Although the PheCODE schema is effective at replicating genotype-phenotype associations, 

as explained above, the phenotyping algorithm developed by the US eMERGE group was 

based on the ICD-9-CM and it meant that the phenotyping algorithm could not be used 

directly for the UK Biobank data, in which the EMRs are largely encoded by the ICD-10 

version. In order to adopt the PheCODE schema to define the phenome, the US eMERGE 

group in Vanderbilt University Medical Center (VUMC) helped to create the mapping of 

ICD-10 codes to the current PheCODE system and evaluated the coverage performance of 

PheCODE for EMRs documented in the UK Biobank. Although multiple ways were applied 

to create the mapping to phecodes, about 26.8% ICD-10 codes used in the UK Biobank 

could not be mapped to any phecode. An examination on these codes showed that the 

majority were encounter/procedural codes or supplementary codes that are not descriptions 

of specific phenotypes or diseases. Of the ICD-10 codes that were successfully mapped to 

phecodes, about 8,947 ICD-10 codes were mapped to at least one phecode, and 256 (2.9%) 

codes were mapped to more than one phecodes. For example, the ICD-10 code B21.1 was 

mapped to two phecodes: 071.1 [HIV infection, symptomatic] and 202.2 [Non-Hodgkins 

lymphoma]. In addition, ICD-10 codes involving in personal or family history were also 

largely unmapped, and this revealed a potential shortcoming of the current PheCODE system 

(i.e., the missing element of family history) and demonstrated an area of which the system 

should be expanded and improved.  

7.2.2.3 Other phenotyping resources 

Apart from the eMERGE network, there are several other notable efforts focused on 

developing a more unambiguous definition of phenome, including the work from the Human 

Disease Ontology (DO) resource (549) and the Human Phenotype Ontology (HPO) project 

(550).  

The Human DO is a standards-based ontology that focuses on representing common and rare 

disease concepts captured from biomedical resources and organised by disease aetiology 

(549). The latest revision includes 8803 classes (terms) (6419 non-obsolete, 2384 obsolete) 

and provides textual definitions for 32% of DO classes (terms) (549). Human DO is a 

disease-focused database by design and thus it includes only concepts of disease. More 

specifically, it integrates disease concepts from ICD-9, the National Cancer Institute (NCI) 
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Thesaurus (551), SNOMED-CT (552) and MeSH 

(https://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the UMLS (553) based on 

the UMLS CUI for each disease term; it also includes disease terms extracted directly from 

Online Mendelian Inheritance in Man (OMIM) (554), and the Experimental Factor Ontology 

(EFO, http://www.ebi.ac.uk/efo/). However, the Human DO does not include progression 

(early, late, metastasis, stages) or manifestations (transient, acute, chronic) of disease as part 

of the disease definition; and it does not include compound disease terms (those describing 

the combination of two disease terms) such as glaucoma associated with pupillary block 

either. Instead, these diseases are represented by two distinct disease terms. Details about the 

Human DO resource are available at http://www.disease-ontology.org. 

The Human Phenotype Ontology (HPO) project includes a wide range of phenotypic 

abnormalities described in human diseases (550). At the time of writing this thesis, The HPO 

provided a structured, comprehensive and well-defined set of 10,088 classes/terms 

describing human phenotypic abnormalities. About 65% (6,603) of the classes are described 

by a detailed textual definition created by clinical experts. In addition, a logical definition is 

developed for 46% of all HPO classes using terms from ontologies for anatomy, cell types, 

function, embryology, pathology and other domains. The HPO is organised as three 

independent sub-ontologies covering different categories: the mode of inheritance, the onset 

and clinical course and the largest category of phenotypic abnormalities. Details about the 

HPO database are available at http://www.human-phenotype-ontology.org.  

Compared to the other phenotyping resource (e.g., the HPO and Human DO), the PheCODE 

schema remains the most direct way to use the diagnosis codes and enables the performance 

of PheWAS by leveraging EMRs for high-throughput analysis. Additionally, machine-

learning approaches like trained logistic regression models or support vector machines are 

also proposed to be used in phenotyping (548). Principle component analysis is another 

possible method to transform a number of phenotypic variables into a smaller number of 

phenotypic groups (555). Efforts are also made to evaluate the accuracy of combining 

various structured and unstructured data sources (549, 550). Hopefully, in the near future, 

more advanced phenotyping methods will be developed with collaboration from multiple 

organisations to discover disease subclasses and provide the means to better capture, store, 

exchange, and analyse phenotypic data.   

https://www.nlm.nih.gov/mesh/MBrowser.html
http://www.ebi.ac.uk/efo/
http://www.disease-ontology.org/
http://www.human-phenotype-ontology.org/
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7.2.3 TreeWAS method 

A limitation of the conventional PheWAS using PheCODE schema is testing a tree-

structured phenotype spectrum with a general linear model by assuming independence, 

although they are actually correlated. This would result in over correction of p value when 

adjusting for multiple testing. This issue was addressed by the alternative Bayesian analysis 

of a tree-structured phenotypic model (TreeWAS).  

In TreeWAS analysis, phenotypes are organised into a tree structure following the 

hierarchical structure of ICD10 codes to better capture the underlying biological process 

affecting the origin and progression of disease. The associations between weighted GRS and 

phenotypes were tested by the Bayesian network analysis at both terminal and internal nodes 

of the tree structure. The expected degree of correlation between genetic coefficients across 

each node in the tree was determined by the prior probabilities. The coefficient at a parent 

node can either be inherited by a child node with a probability, or can transition to a new 

uncorrelated value with a probability. The transition probabilities controlled the Markov 

process and the likelihoods over the genetic coefficients were calculated across all clinical 

phenotypes using a dynamic programming model and the forward and backward algorithms. 

The value of TreeWAS lies in enhancing power to identify groups of endpoints affected by 

exploiting the encoding of medical ontologies. With taking into account the correlations 

among clinical phenotypes, this new approach is shown to increase statistical power by up to 

20%.    

Additionally, TreeWAS using a Bayesian network analysis has an advantage in detection of 

non-linear associations that could be missed by conventional PheWAS. PheWAS analysis 

tested the association by running a logistic regression under a hypothesis of a linear model, 

thus any association that is non-linear would be less likely to be detected. The association 

between serum urate level and the risk of cerebrovascular diseases (e.g., stroke) is probably a 

case of non-linear association, which was only observed in TreeWAS but not in PheWAS. 

Previous studies assessing the association between serum urate level and cerebrovascular 

diseases (e.g., stroke) reported conflicting results, where some studies found a positive 

association whereas other studies reported a negative association. Some studies suggested 

that high SUA level was neuroprotective and associated with better outcomes after acute 

ischaemic stroke, while other studies reported that high SUA level was injurious and had a 

statistically significant association with the high risk of stroke incidence and mortality (556-

558).  Given the contradictory role of urate as both an antioxidant and a pro-oxidant, a 

compromise hypothesis of U-shaped relationship has been proposed that suggests low serum 
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urate level may increase the risk of cerebrovascular disease as a result of inadequate anti-

oxidative level and high serum urate level may function more as a pro-oxidant to increase the 

risk of stroke and other cerebrovascular diseases (558). If the presence of U-shaped 

relationship is true, the PheWAS analysis, in which association was tested under a 

hypothesis of a linear model, would be thereby unable to detect this association, however 

TreeWAS, testing the association without assumption of any linear model, reported a 

significant association.  

7.2.4 MR methods 

To interpret the observed PheWAS associations, I applied MR to determine whether there is 

any causal effect of SUA level on the identified diseases. MR is a method that uses genetic 

variants as instrumental variables (IVs) to examine the causal effect of an exposure on a 

disease (559). MR relies on the natural, random assortment of genetic variants during 

meiosis, which yields a random distribution of genetic variants in a population. Specially, 

individuals are naturally assigned at birth to inherit or not inherit the genetic variants that 

affect an intermediate phenotype (e.g., genetic variants raising SUA level); individuals who 

carry the risk genetic variants and those who do not are then followed up for the 

development of an outcome of interest. Ideally, as genetic variants are typically not 

associated with the common confounders and the transmission of genetic information is 

usually unidirectional, differences in the disease outcome between those who carry the 

variant and those who do not, can be attributed to the difference in the risk factor. This 

section will focus on the methodological issues that are prominent in the MR method.  

For the MR analyses of SUA levels conducted in this thesis, a list of crucial issues with 

regards to the MR approaches are carefully and sufficiently assessed and discussed, in 

particular the assumptions that underpin the MR design, the use of multiple instrumental 

variables, the choice of statistical methods for robust effect estimation, the statistical power 

to detect a moderate/small causal effect, and the interpretation of associations due to 

pleiotropy or genetic linkage disequilibrium.   

7.2.4.1 MR assumptions 

There are three main assumptions that underpin the MR method (as briefly mentioned in 

Chapter 4). These are:  

(i) The genotype is associated with the exposure. This assumption can be verified by 

statistical analysis. Reporting guidelines for MR analysis recommend the use of the 

partial F-statistic as a measure of the strength of the association between the IV and the 
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exposure (560). 

The F statistic is defined as the ratio of the mean square of the model (the first-stage 

regression of exposure on the IV) to the mean square of the error. In the MR reporting 

guidelines, a threshold of F <10 is typically used to define a ‘weak IV’. This criterion is 

based on the observation that the F value greater than 11 ensures the relative bias to be <10% 

regardless of the number of IVs used in MR analysis (560). However, in the MR analyses of 

SUA level there are no biomarker data available for the SUA levels of the UK Biobank 

participants. Therefore, I calculated the statistical power to report the strength of IVs, given 

that the F statistic encompasses information on the first-stage R2 (the proportion of variance 

in SUA level that is explained by IVs), the sample size and the number of IVs, which are 

also indicators of the statistical power of MR analysis (257). Power >80% was regarded as 

sufficient to detect the corresponding causal effect, otherwise, a statement on inadequate 

power was made to acknowledge the lack of strength to detect the causal effect. Details 

about the power estimation are further discussed in the Section “7.2.4.3 Statistical power of 

MR”).   

(ii) The genotype is associated with the outcome through the exposure of interest only. 

This assumption is likely be violated when the genotype has multiple (pleiotropic) 

effects, or when a nearby genetic variant in linkage disequilibrium with the IV 

affects the outcome in other ways than through the exposure of interest.  

One of the primary concerns on evaluating this assumption is whether the genetic variants 

used as IVs are likely to be pleiotropic. Pleiotropy can affect the interpretation of MR studies 

in multiple ways: (i) a reverse pleiotropic effect can counteract the effect of the biomarker on 

the disease, which will give a null finding even when there is a true causal effect between the 

biomarker and the disease; or alternately (ii) a positive pleiotropic effect can result in a 

positive association between the genetic variant and the disease that is likely to be 

mistakenly interpreted as a causal effect. To validate this assumption, I examined the 

presence of pleiotropy and balanced out pleiotropic effects by using a more advanced 

statistical technique, the MR Egger analysis that has recently been proposed to account for 

unbalanced pleiotropy. Details about MR Egger method are discussed in the Section “7.2.4.2 

MR methods”. 

Another concern about this assumption is genetic linkage disequilibrium, given the fact that 

SNPs located closely on a chromosome are usually inherited together. The closer the 

distance on a chromosome, the higher the extent of linkage disequilibrium. For example, a 

genetic variant that affects the exposure level of A (e.g., SUA) may be in linkage 
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disequilibrium with a SNP affecting the exposure level of B (e.g., LDL). If the exposure B is 

causally related to a disease outcome, the MR findings using the genetic variant in linkage 

disequilibrium with the genetic variant affecting exposure B would be mistakenly interpreted 

as that the exposure A being responsible for the corresponding disease outcome. To avoid 

any potential misinterpretation, the ideal IVs should be SNPs that localise in genomic 

regions without proximity to the loci that might affect the association of the SNP and the 

disease. However this is not always possible given the complexity of human genetic 

architecture. To validate this assumption, I applied the HEIDI test to examine if any of the 

observed associations are due to linkage disequilibrium instead of causality. Details on the 

HEIDI test have been elaborated in Chapter 5, Section “5.3 Method”, “5.5 Discussion” and 

“5.6 Supplementary information”) 

(iii) The genotype is independent of other factors, which affect the outcome (independence 

assumption). This assumption would be violated if subgroups in the study population 

have both different genotype frequencies and different distributions of the outcome 

(population stratification), or if there is an association between the genetic instruments 

and confounders.  

Population stratification refers to the confounding of genotypic associations by factors due to 

differences in subgroup populations. If the study population is not homogenous, any disease 

outcome that is at higher prevalence in one of the subpopulations may be associated with all 

SNPs that are more frequent in this group. To address this issue, I performed the SUA MR 

analyses in a very homogenous population (white British subset) and adjusted using the 

genetic principle components as covariates. For assessing the second common issue related 

to this assumption, I tested whether the genetic instruments of SUA level were associated 

with other common confounders such as BMI, smoking, assessment centre and any related 

confounders were adjusted as covariates in the analysis (Details about adjustment for 

covariates are discussed in the Section “7.2.5.3 Adjustment for covariates”).  

7.2.4.2 MR methods  

A number of statistical methods have been proposed for MR to obtain robust causal 

estimates and/or to examine the instrumental variable assumptions (561). These include the 

standard MR methods (i.e., two-stage method, Wald Ratio method) that are most frequently 

used when the individual-level data (i.e., data on exposure, outcome and IVs) are available 

from a single population (one-sample MR), and the more complicated methods (i.e., inverse-

variance weighted [IVW] MR, Egger MR) that are developed to integrate data from multiple 

samples (two-sample MR) and multiple IVs. In this section, I mainly discuss the mostly 
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common used methods as mentioned above, but it should be noted that this is not an 

exhaustive list of methods that are available for MR. 

 Two-stage method 

One of the most frequently used statistical methods for MR is two-stage analysis. This 

involves two stages of regression. The first stage is a linear regression with the instrument 

(genotype) as the independent variable and the exposure as the dependent variable, which is 

then used to obtain the exposure levels predicted by the instruments. The second stage is a 

regression with the outcome as the dependent variable and the genetically determined 

exposure level as the independent variable. With continuous outcomes under a linear model, 

the two-stage method is also known as two-stage least squares (2SLS). With binary 

outcomes, the second-stage (exposure–outcome) regression is a logistic regression model. 

The causal estimate is the second-stage regression coefficient that is explained as the change 

in the outcome caused by a unit change in the exposure and the estimator is expressed as a 

causal relative risk or odds ratio. However, there is a debate on the concern that estimates for 

binary outcomes from this method is inflated, as the uncertainty in the first-stage regression 

is not accounted for and the non-linear model does not guarantee that the residuals from the 

second-stage regression are uncorrelated with the instruments (561, 562). Despite this, the 

two-stage estimator with a logistic regression second-stage model still provides a valid test 

for the null hypothesis.  

 Wald Ratio method 

The Wald Ratio method, also known as the ratio of coefficients method, is the simplest way 

to estimate the causal effect of the exposure (X) on the outcome (Y). The ratio method 

typically uses a single IV (Z). If the coefficient of the regression of the exposure on the IV is 

denoted as 𝑏𝑧𝑥 and the coefficient of the regression of the outcome on the IV is denoted as 

𝑏𝑧𝑦, then the causal estimate could be calculated by the formula: ratio method estimate= 

𝑏𝑧y/𝑏𝑧𝑥 (563). Intuitively, this estimate could be explained as follows. The change in the 

outcome for a unit increase in the exposure is equal to the change in the exposure for a unit 

increase in the IV that is scaled to the change in the exposure for a unit increase in the IV. 

With a single IV, the causal estimate from the ratio method is the same as that of the 2SLS 

method (561). With multiple IVs, the 2SLS estimate could be viewed as a weighted mean of 

the ratio estimates calculated by using one instrument at a time, where the weights are 

determined by the corresponding coefficients obtained from the first-stage regression (561).  

The MR methods discussed above, particularly the two-stage method, require individual-

level data on genetic instruments, exposure and outcome from a single population. However, 
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in the case of SUA MR analysis performed in this thesis ,where the SUA levels were not yet 

available in UK Biobank, I therefore performed the alternative two-sample MR (2SMR) by 

using data from two independent populations, where the coefficient of the regression of SUA 

level on the genetic variant was taken from the summary-level GWAS data of European 

decent that were provided by the GUGC consortium (151) and the coefficient of the 

regression of outcome on the genetic variant was estimated by using the individual-level data 

from UK Biobank.  

 Inverse-variance weighted method  

The standard statistical method for performing two-sample MR is the inverse variance 

weighted (IVW) approach which is developed by combining the concepts of the ratio method 

and meta-analysis (474). For a single IV, the causal estimate for each IV could be calculated 

by the ratio method. With multiple IVs, the ratio estimates from each genetic variant can be 

averaged using an inverse-variance weighted formula that is taken from meta-analysis, 

where the IV-specific causal estimates are equivalent to the study-specific estimates, and the 

weights are the inverse-variance weights (474). The causal effect of the exposure on the 

outcome is estimated using a weighted linear regression where the residual standard error is 

set to one and the intercept is set to zero (474). This weighted regression model is equivalent 

to performing a fixed-effect meta-analysis (564). When using a fixed-effect model for 

combining the IV-specific causal estimates, no heterogeneity between the causal estimates of 

the individual genetic variants is expected (564). When substantial heterogeneity is present, 

the MR IVW analysis using a fixed-effect model is not recommended. Additionally, the MR 

IVW method also relies highly on the three fundamental assumptions listed above. As 

emphasised, if the three assumptions (i)–(iii) hold, then the causal estimate from IVW MR is 

robust and unbiased. However, assumptions (ii)–(iii) are likely to be violated in the MR 

study using multiple genetic instruments. To validate these assumptions, I thus applied the 

MR Egger method to assess whether the genetic variants have any pleiotropic effect 

(directional pleiotropy) and to provide an unbiased causal estimate under weaker 

assumptions — the InSIDE (Instrument Strength Independent of Direct Effect) assumption 

(469). 

 MR Egger method  

The MR Egger method is developed to provide robustness against misspecification of the 

MR assumptions (469). MR Egger is performed by a simple modification to the weighted 

linear regression described above. Instead of setting the intercept term to be zero, the 

intercept is estimated as part of the regression. If the genetic instruments are not pleiotropic, 
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then the intercept term should tend to be zero and the MR Egger estimate should be equal to 

the IVW estimate. Otherwise, if the genetic instruments are pleiotropic but the direct effects 

of the genetic variants on the outcome are independent of the associations of the genetic 

variants with the exposure (known as the InSIDE assumption), then the MR Egger regression 

will return a null estimate for the intercept (469). Under the InSIDE assumption, the 

intercept can be interpreted as an estimate of the average direct effects of the genetic variants 

on the outcome (469). If the average direct effect (intercept) is zero (referred as ‘balanced 

pleiotropy’), and the InSIDE assumption is satisfied, then the estimates of MR Egger should 

be robust. If the intercept term differs from zero (the average direct effect is not zero), then 

the InSIDE assumption is violated (referred as ‘directional pleiotropy’), and the MR estimate 

is biased. Hence, testing the intercept from the MR Egger analysis provides an assessment of 

the validity of the IV assumptions. Although the MR Egger is more robust in dealing with 

pleiotropy, this method is not infallible, and a number of methodological issues (i.e. the 

precision of the estimate, the influence of outlying variants, and the violation of the InSIDE 

assumption) have been proposed as limitations and these should be noted when interpreting 

the results (481).  

The precision of the MR Egger estimate not only depends on the proportion of variance in 

the exposure explained by the genetic variants (measured as R2 statistic), but also depends on 

the variability of the strength of individual genetic instruments (481). A precise MR Egger 

estimate requires the consistency of the causal estimates across the genetic variants. The use 

of pleiotropic variants, where heterogeneity between the causal estimates is observed, would 

result in over-dispersion in the MR Egger regression, in which a random-effects model is 

preferred. Therefore, the standard error of the causal estimate from the MR Egger method 

(random-effects model) is typically larger than that from the MR IVW method (fixed-effect 

model) and accordingly the 95%CI of the causal estimate from the MR Egger method is also 

wider than that from the MR IVW, which would result in an imprecise estimate.  

Besides, the MR Egger estimate is easily influenced by any outlying variant (481). If one 

genetic variant has a much stronger association with the exposure than others, then this 

variant would have a larger influence on the coefficients in the MR Egger regression. As 

illustrated by the example of hypertension mentioned in Chapter 5 Section “5.5 Discussion”, 

it is found that the outlying variant (rs12498742 in SLC2A9/SLC2A9 gene) that had the 

strongest association with SUA level showed a negative effect on hypertension and reversed 

the sign of the overall putative causal effect. In such a case, it implies that the InSIDE 

assumption is likely to be violated. The test for directional pleiotropy indicates that the 

genetic variants are not all valid instruments, thus the negative MR Egger estimate is highly 
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dubious, as the causal estimates from each variant are all positive.  

Given the respective limitations and strengths of the MR IVW and MR Egger methods 

discussed above, the next important issue is the interpretation of the discordant results from 

MR Egger and MR IVW. As discussed above, if the intercept parameter is close to zero, then 

the MR Egger estimate should be close to the IVW estimate, but the 95%CI of the causal 

effect estimated from MR Egger method is wider than that estimated from the IVW method 

due to the imprecision of MR Egger regression (481). In this case, the MR Egger analysis 

does not contradict evidence for a causal effect estimated from MR IVW analysis. On the 

contrary, if the intercept parameter is not zero, it implies the MR assumptions are violated 

and the pleiotropic effects from multiple instruments cannot even be balanced, thus neither 

the MR IVW estimate nor the MR Egger estimate are robust.  

In conclusion, it should be emphasised that the main point of the MR analysis is the 

assessment of the IV assumptions or the use of valid instruments. If the IV assumptions do 

not hold, then inferences from any analysis method will be unreliable. Although there are 

some situations where a particular method is more suitable than others (e.g., MR Egger 

method is more robust for the use of multiple instruments with balanced pleiotropy), there is 

no single MR method that is universally best. Instead, it makes sense for using different IV 

methods (e.g., MR Egger analysis) as sensitivity analyses to assess if the estimate given by a 

particular choice of MR method (e.g., MR IVW analysis) is credible or not.  

7.2.4.3 MR statistical power  

Statistical power is the probability that the null hypothesis (H0: no association) can be 

rejected if a specific alternative hypothesis (H1: a true association of the biomarker with 

disease risk) is true. The statistical power ranges from 0 to 1, and as statistical power 

increases, the probability of a type 2 error (false negative) decreases. In the published MR 

studies, investigators typically evaluate the F-statistic and the R2 from the first-stage 

regression (exposure-genetic variant) to directly reflect the power of MR analysis. Recently, 

Brion et al develops a non-centrality parameter (NCP)-based approach for calculating power 

of an MR study (254). The F-statistic and the R2 are strong determinants of the statistical 

power to detect a causal effect. Other determinants of statistical power include the sample 

size, the prevalence of the outcome in the study population and the true effect size of the 

exposure on the outcome. A formula for power estimation has been provided as an online 

web tool for researchers to perform calculation (http://glimmer.rstudio.com/kn3in/ mRnd/).  

As genetic variants typically explain a small/moderate proportion of the variance in 

biomarkers, the statistical power to detect an association between the variant and outcome in 
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MR can be relatively low and usually a large sample size is required to achieve adequate 

statistical power. Estimating statistical power is important as it can inform whether a null 

finding is representative of a true null causal association, or simply a lack of power to detect 

an effect size of clinical interest. Statistical power can be improved by the use of multiple 

genetic instruments to increase the proportion of variance of explained by the biomarker, or 

by increasing the sample size.  

Ideally, a power calculation is typically used in estimating sufficient sample size to achieve 

adequate power, thus it is usually performed before the study is carried out. However, in this 

thesis using data from UK Biobank cohort, where the sample size (and the number of cases 

for specific disease) is fixed, statistical power was calculated by using the NCP-based 

approach to investigate the minimum effect size that is likely to be detected. As the MR 

analysis is incorporated within the PheWAS analysis to investigate a wide range of 

phenotypes, the numbers of cases for different diseases can be considerably different 

depending on their prevalence. Therefore, the power of MR analyses for different diseases 

varies significantly from 1.0 to 0.01. The statistical power of MR studies to detect the 

specific causal effects have been noted and discussed in Chapter 5, Section “5.3 Method”, 

“5.5 Discussion”.   
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7.2.5 Analytical issues 

This section mainly discusses the analytical issues proposed by the peer reviewers and/or the 

co-authors of the publications derived from this thesis.  

7.2.5.1 Study of white British population 

When submitting the MR-PheWAS paper to the journal of Annals of the Rheumatic Diseases, 

one of reviewers proposed that “the use of the self-reported British (confirmed by PCA) is 

totally fine but a broader study population of European descent could add around 20K 

participants to increase the power and the use of interim release data sets a further limitation 

on the power of this study.”  

I agree with the reviewer that the use of interim release of data for MR-PheWAS analysis 

limited the power of this study and have acknowledged the proposed point as a limitation in 

the paper. The use of self-reported British (confirmed by PCA) was to minimise the 

influence of population stratification. I agree with the reviewer that the use of British 

population reduced the sample size when compared with the use of European descent, 

however, given the fact that the genetic determines of SUA level are diverse in different 

ethnicities and that the excluded samples consist of more controls than cases, I decided to 

use a homogenous British population after weighing the gains (minimise the influence of 

population stratification) and losses (lose study samples). Additionally, it should be noted 

that even the British people are not definitely homogenous, further adjustments for principal 

components of ancestry should be considered to minimise the influence of the population 

stratification.     

7.2.5.2 Use of multiple instrumental variables 

Another reviewer commented that “Clearly, pleiotropy is an issue, with some of the serum-

associated PheWAS variants used (e.g. GCKR) associated with multiple other phenotypes. 

Therefore I wonder why a simpler approach, using genetic variation within the well 

understood SLC2A9 gene, with no evidence for pleiotropy, is not used in studies.” 

I agree that the SLC2A9 gene suggested by the reviewer is a good candidate instrument, as it 

has the strongest association with SUA level and its biological function is well characterised 

as a urate transporter. So far as I know, there is no other disease (except gout) that has been 

reported to be associated with this locus (without observed evidence for pleiotropy), 

although it should be noted that the SLC2A9 gene is also a glucose/fructose transporter, 

which may leave the possibility for unobserved pleiotropy. However, the main reason for 

using multiple genetic variants in MR was to increase the strength of genetic instrument, as 
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the 31 SNPs all together can explain about 7% of SUA variance, while the SLC2A9 gene 

only accounted for less than 2% (151). An MR analysis using a weak instrument would 

easily suffer from bias and would tend to underestimate the true uncertainty, leading to 

inflated type 1 error rate (561).  

Furthermore, the use of multiple genetic instruments would strengthen the causal inference 

by noting the disease outcomes associated with at multiple SUA risk loci. This could be 

analogous to the RCTs using different SUA-lowering drugs, which work through different 

mechanisms and have different potential side-effects but lower SUA to the same degree. If 

the different SUA-lowering drugs produce the same reduction in the disease risk, then it is 

less likely that this effect is through agent-specific effect of the drugs, instead it points to 

SUA lowering as being the key. For example, gout is associated with multiple independent 

SUA risk loci, pointing to the same underlying SUA-outcome (gout) association; intuitively 

it is less likely that the association is caused by the reintroduced confounding (e.g. pleiotropy 

or LD), unless the reintroduced confounding acts in a way influencing two unlinked genetic 

variants. 

In addition to causality, I was also interested in pleiotropy, which may reflect common 

aetiology or biological pathways shared by the affected diseases. Using multiple genetic 

instruments allowed me to investigate pleiotropic associations of interest. As acknowledged, 

the use of multiple genetic instruments increases the risk to break the MR assumptions due to 

pleiotropy. To address this problem without vitiating the statistical power or losing the 

chance to investigate pleiotropic association, I therefore applied the advanced MR Egger 

analysis to correct for the observed and unobserved pleiotropy that was potentially caused by 

using multiple genetic instruments.  

7.2.5.3 Adjustment for covariates 

Additionally, one of the reviewers suggested not adjusting for BMI in the PheWAS analysis, 

given that BMI is known to be causally linked to urate levels. If adjusting for BMI, why not 

adjust for renal function?  

It is acknowledged that using genetic variants as proxy of exposure has the advantage of not 

be influenced by most confounding factors, since genetic variants are fixed at conception and 

typically do not change due to environment factors. Adjusting with covariates may lead to 

bias in the causal estimate when a covariate is on the causal pathway of the exposure to the 

outcome or is a collider or causally downstream of a collider (565). Briefly, a collider is 

variable that could be influenced both by the exposure and by the outcome. This was the 

reason why we did not adjust for renal function, since it is possible that renal function could 
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be influenced by both the SUA level and multiple disease conditions (e.g., chronic kidney 

disease, or hypertensive nephropathy).  

However, in some cases, adjustment for covariates is necessary to ensure validity of the IVs. 

One example is population stratification, in which the sample population consists of ethnic 

subgroups that have different distributions of the IVs and the outcome. An association 

between the IVs and outcome may be solely due to differences in ethnicity instead of any 

biological effect of the exposure. This can be addressed at least partially by adjusting for 

genetic PCs in the analysis. When I was performing the analysis, adjusting 5-6 principal 

components of ancestry was standard practice (in the past), thus I followed the old fashion 

and only adjusted for the first 5 principal components. However, recent results suggest that 

40 PCs are more appropriate for large cohorts. This may present as a limitation of this study. 

Besides, if the measured covariates can explain variation in the exposure or the outcome, 

then including such covariates in the analysis can generally improve the statistical power and 

increase the precision of the causal estimate. The rationale here is that accounting for a true 

risk factor decreases the residual variance of the outcome/phenotype and therefore increases 

the ratio of the true effect size of a predictor of interest (i.e. SUA) over the total phenotypic 

variance, which leads to increased statistical power and better precision in the causal 

estimate. Under these situations, adjusting for covariates is supportive. 

In relation to BMI, it is unlikely that it is a collider, as BMI is known to be upstream of the 

SUA metabolism pathway, as well as a known causal factor for disease development. 

Besides, given that BMI is a common risk factor for a large number of diseases, it is likely 

that adjusting for BMI contributes to stronger statistical power of PheWAS by reducing the 

residual variance. With the purpose of being more rigorous, I re-performed the PheWAS 

without adjusting for BMI as a sensitivity analysis. The unadjusted results have been 

provided as supplementary material, in which all identified genetic associations retained 

their statistical significance with slight changes in their regression coefficients. 

7.2.5.4 Case ascertainment  

For the causal effect of SUA level on gout, one reviewer questioned that “regarding use of 

ICD codes for gout, they are likely to be un-representative of gout given that hospitalised 

gout is complicated by co-morbidities (566) - this should be explicitly investigated and 

acknowledged as a limitation. It would be interesting for the authors to use the classification 

criteria of Cadzow et al (480) to calculate a causal effect size for serum urate in gout.” 
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Considering the possibility of introducing information bias in this study, we did not 

incorporate the self-reported data into the PheWAS analysis and I agree with the reviewer 

that this is a limitation of this study, as acknowledged in Chapter 5, Section “5.5 

Discussion”. Alternatively, we used a group of ICD diagnosis codes (ICD-10 code “M10” 

and its sub-codes; ICD-9 code “274” and its sub-codes) to represent gout. Gout cases were 

accordingly ascertained based on the primary or secondary hospital discharge coding. Gout 

cases derived from hospitalisation, as noted by the reviewer, are likely to be un-

representative of gout given that hospitalised gout is complicated by co-morbidities (566). 

We are also interested whether using the classification criteria proposed by Cadzow et al 

(480) would make any change to the causal effect size of SUA on gout ascertained from 

different resources. By following the reviewer’s suggestion, I conducted a sensitivity 

analysis to compare the MR estimates for hospital-diagnosed gout, self-reported gout and 

hospital-diagnosed/self-reported gout. The MR IVW/Egger estimates are consistently 

statistically significant in any of the cases, but the effect size are different and the self-

reported gout has the largest relative risk. 

7.3 Interpretation of the main findings  

Respective findings and conclusions derived from the umbrella review, the MR-PheWAS of 

the interim release of UK Biobank data and the PWMR of the full UK Biobank data have 

been discussed in the corresponding chapters (i.e., Chapter 3, Chapter 5, and Chapter 6). In 

this section, I will provide an overall discussion and conclusion by incorporating findings 

from these three chapters.  

7.3.1 Causality supported by convincing evidence 

7.3.1.1 Gout 

The causal relationship between uric acid and gout is robustly verified in this thesis with 

consistent evidence from the umbrella review, the MR-PheWAS of the interim release of UK 

Biobank data and the PWMR of the full UK Biobank data. Regarding the causal effect size 

on gout risk, estimates from these three sources of evidence are generally consistent. The 

umbrella review identified a MR analysis investigating the causal effect with 3,151 gout 

cases and 68,350 controls and reported that 1 SD increase in genetically determined SUA 

levels was associated with an increased risk of gout with an OR of 5.84 (95%CI: 4.56 to 7.49) 

(327). The causal effect size of SUA level on gout estimated form the MR-PheWAS 

including 1,003 gout cases and 119,555 controls presented a similar estimate with wider 

confidence interval (OR=4.58; 95%CI: 2.72 to 7.72) after correction of pleiotropy in MR 
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Egger regression (461). The causal effect estimated from the PWMR including 2,532 gout 

cases and 335,108 controls in UK Biobank reported a very similar magnitude of effect size 

on gout (OR=5.37; 95%CI: 4.67 to 6.18; p= 4.27×10-123). Overall, the causal effect of SUA 

level on gout is consistently supported in both direction and magnitude of effect size by the 

three lines of evidence incorporated in this thesis.  

7.3.2 Association supported by suggestive evidence 

7.3.2.1 Hypertension 

Apart from gout, the association between SUA and hypertension was classified as highly 

suggestive. In the umbrella review, a meta-analysis of observational studies provided highly 

suggestive evidence to support this association. The selected (largest) meta-analysis of RCTs 

on corresponding intermediate traits or surrogate outcomes (e.g., SBP, DBP) showed 

concordant evidence to support the causal effect. Evidence from published MR studies 

reported discordant evidence, in which the causal relationship was not verified (232). The 

MR-PheWAS and PWMR analysis performed in this thesis using data from UK Biobank 

demonstrated that SUA level shared genetic risk with hypertension at multiple loci, however, 

due to the presence of unbalanced pleiotropy detected by the MR Egger analysis, the causal 

association was not robustly inferred (461). Overall, when considering our emerging findings 

together with the previous evidence from umbrella review, it is reasonable to conclude an 

independent association between SUA level and hypertension, although there is not enough 

evidence at present to robustly conclude that this is causal.  

7.3.2.2 Heart diseases 

In the umbrella review, a wide range of heart diseases (including coronary heart disease, 

heart failure, and atrial fibrillation) has been identified to be associated with SUA level from 

observational studies, but there was a lack of concordance with clinically relevant endpoints 

from RCTs or surrogate endpoints from MR studies. Therefore, the evidence from the 

umbrella review is insufficient to support any casual effect of SUA level on these outcomes 

(232). In the MR-PheWAS and PWMR analysis, a wide range of cardiac diseases of varying 

severity, including coronary atherosclerosis, angina pectoris, ischaemic heart diseases, 

acute/old myocardial infarction and heart failure, were identified to be associated with the 

genetically determined SUA level (461). The association between SUA and cardiac diseases 

is favoured in both the previous studies and multiple analyses conducted in this thesis, 

however, given the same caveat in the causal inference with hypertension, a conclusion of 

causality on cardiac diseases is not robust enough.  
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7.3.2.3 Metabolic disorders 

Epidemiological evidence from the umbrella review indicated that high SUA level was 

associated with some of the components of metabolic syndrome (537), such as blood glucose 

levels or type 2 diabetes. However, the MR-PheWAS and PWMR analysis in this thesis did 

not identify any significant association between SUA and specific metabolic other than 

hypercholesterolaemia. When taken together the line of evidence from experimental studies, 

which indicated that high SUA level promoted the oxidation of low-density lipoprotein and 

disrupted the process of reverse cholesterol transport, it is likely that there is an underlying 

biological link between hyperuricaemia and hypercholesterolaemia.  

7.3.3 Association supported by weak evidence 

7.3.3.1 Cerebrovascular diseases 

The role of SUA level in the development of cerebrovascular diseases is debatable. The 

findings from this thesis are not completely consistent. Previous studies assessed in the 

umbrella review reported conflicting results for the association between SUA level and 

cerebrovascular diseases (e.g. stroke), where some studies suggested that high SUA level 

was neuroprotective whereas some studies reported that high SUA level was injurious. The 

TreeWAS analysis identified a positive association between the weighted GRS of SUA and 

cerebrovascular diseases, but this association was not replicated in the PheWAS analysis. In 

conclusion, findings in this thesis do not support the hypothesis that high SUA levels are 

neuroprotective as an anti-oxidant in the setting of cerebrovascular diseases. 

7.3.3.2 Respiratory diseases 

In addition to the findings discussed above, a few other disease outcomes were identified to 

be associated with SUA level with weak evidence. The sex-stratified MR-PheWAS analysis 

identified that a group of respiratory diseases were potentially linked with the genetically 

determined SUA level in women. The umbrella review did not provide any evidence 

regarding the respiratory diseases, but findings from experimental studies demonstrated that 

human airway epithelial cells and lung tissue expressed a functional UA production/secretion 

system and UA was crucial in mediating the development of allergic airway diseases and 

regulating the antigen-specific T-cell proliferation (494-497). Overall, the evidence in 

relation to the association between SUA level and respiratory diseases has not been well 

explored (499, 500). Our study contributes knowledge to the clinical relevance of SUA level 

in lung health and respiratory diseases. 
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7.3.3.3 Cataract 

Another possible association identified from the PheWAS analysis was that of SUA level 

with cataract. Although the MR analyses did not indicate any putative causal links (with 

limited power = 0.37), a review of the literature demonstrated that various presentations of 

ocular abnormalities have been described in relation to SUA level. These include the 

depositions of MSU crystals in different locations in the eye (e.g. cornea, conjunctivae, and 

iris), and the abnormalities of dry eye syndrome and intraocular hypertension frequently 

observed in hyperuricaemia patients (567). In addition, an association between gout and 

nuclear, posterior subscapular and cortical cataracts have also been reported, in which gout 

was suggested as a risk factor for cataract development (568). The exact biological role of 

SUA level in ocular disease development has not been fully understood. Our observation 

adds to the current evidence indicating a potential relationship between SUA level and ocular 

diseases. We believe that this accumulating evidence should lead to further investigation of 

ocular diseases in patients with hyperuricaemia and gout if this is of clinical relevance.
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8 CONCLUSION  

This thesis presents a comprehensive investigation on the health outcomes in relation to SUA 

levels. In conclusion, I firstly performed an umbrella review to provide a comprehensive 

overview of reported associations between serum uric acid (SUA) levels and a wide range of 

health outcomes by incorporating evidence from systematic reviews and meta-analyses of 

observational studies, meta-analyses of randomised controlled trials, and Mendelian 

randomisation studies. This remarkable assembly of evidence explored 136 unique health 

outcomes and concluded convincing evidence of a causal clear role of SUA level in gout. I 

then investigated the associations of the 31 individual SNPs related to SUA level with a very 

wide range of disease outcomes by using MR-PheWAS design (phenome-wide association 

study incorporated with Mendelian randomisation [MR]) with the interim release data of UK 

Biobank (n=120,091); this MR-PheWAS analysis demonstrated that SUA level shared 

genetic risk loci with multiple disease outcomes, particularly cardiovascular/metabolic 

diseases and autoimmune disorders. When balancing out the pleiotropy on MR Egger 

analysis, a robust conclusion on causality was made only for gout. When enlarging the 

sample size of PheWAS with 3-fold more cases by using the data from the full UK Biobank 

data (n=339,256), the analysis demonstrated that genetically determined SUA level is 

independently and consistently associated with several disease groups including 

inflammatory polyarthropathies (e.g., gout), hypertensive disease (e.g., essential 

hypertension), ischaemic heart diseases (e.g., coronary atherosclerosis, myocardial infarction, 

chronic ischaemic heart disease), metabolic disorders (e.g., hypercholesterolaemia) and 

suggest possible association with cerebrovascular diseases (e.g., cerebral infarction). These 

associations with gout, CHD, myocardial infarction and decreased level of HDL-c were 

successfully replicated in different populations by analysing data from various GWAS 

consortia. The analysis of causal inference detected the existence of unbalanced genetic 

pleiotropy in most of the associations. To further investigate the influence of pleiotropy, I re-

calculated the PheWAS estimates by using a number of GRSs created based on their 

association with a set of metabolic traits. The GRS of urate-specific loci was only associated 

with gout and its encompassing disease group of inflammatory polyarthropathies, but not 

with any cardiovascular/metabolic diseases. In contrast, the GRSs of pleiotropic loci on BMI, 

BP, lipids and glucose showed association with both gout and the cardiovascular/metabolic 

diseases. When removing any group of pleiotropic loci from the creation of GRS, their 

association with hypertensive diseases, heart diseases, and metabolic disorders were not 
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statistically significant. When balancing out the potential pleiotropic effects in Egger MR, a 

causal effect can only be verified for gout.     

The causal inference in this study is also limited by the common difficulty of pleiotropy 

caused by the use of multiple genetic instruments. Although we have performed a number of 

sensitivity analyses by excluding the key pleiotropic loci, there is still the probability of 

unmeasured pleiotropy. In particular, unbalanced pleiotropy was recognised as an issue for 

the causal inference on the association between SUA level and hypertension. The potential 

causal link of SUA level with respiratory diseases and ocular diseases is also worthy of 

further investigation. Overall, when taken together the findings from umbrella review, MR-

PheWAS, TreeWAS, MR replication and sensitivity analysis, I conclude that there are robust 

associations between urate and several disease  groups, including gout, hypertensive 

diseases, heart diseases and metabolic disorders of lipids, but the causal role of urate only 

exists in gout. The study in this thesis indicates that the pleiotropic effects of genetic variants 

on urate and metabolic traits may contribute to the observed associations between urate and 

cardiovascular/metabolic diseases. These findings suggest that urate could be a good 

predictor for the cardiovascular/metabolic disease risk, but may not a therapeutic target for 

reducing the risk of cardiovascular/metabolic diseases. Further investigation on therapies 

targeting on a more distal mediator (or biological pathway) shared between urate and 

metabolic traits would be beneficial for the treatment of gout and the primary prevention of 

cardiovascular/metabolic comorbidities. 

The research work presented in this thesis provides a comprehensive and thorough 

examination of urate-associated disease outcomes across the whole ICD spectrum and 

illustrates how serum urate level might influence the overall health. The detection of a 

multitude of cross-phenotype associations in this study adds to our understanding of the 

extent of shared genetic/biological components between urate and metabolic traits and 

increase our knowledge of how the role of urate should be interpreted and used in clinical 

practice in the management of related disease conditions. The overall analyses were limited 

by the lack of SUA biomarker data in UK Biobank. As UK Biobank is currently conducting 

biomarker assays, it would be beneficial to assess whether measured SUA level, rather than 

its genetic proxies, is also associated with the observed disease outcomes.  

With regard to the PheWAS methodology applied in this thesis, updating the PheCODE 

schema or applying a novel Bayesian analysis with a tree-structured phenotypic model 

progresses the establishment of a framework or workflow of PheWAS design for 

comprehensively interrogating the clinical influence of a biomarker. The ongoing challenge 
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for PheWAS is the possibility of misclassification, misdiagnosis and miscoding in routine 

healthcare data. It is expected that exploring the genetic basis of the healthcare phenome can 

expose disease areas where improvements are required to ameliorate disease perception or 

strengthen diagnostic practices. Digital phenotyping using genetic data together with 

longitudinal clinical records, physical measures, images and biomarkers may be helpful to 

rectify misclassification, misdiagnosis and miscoding present in healthcare data and to infer 

missing phenotypes. Processing linkage to general practice records and out-patient data 

would also be helpful to build up the individual’s phenome based on widely-covered and 

accurately-defined criteria in the future.
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