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Abstract

Transmissible Spongiform Encephalopathy (TSE) are fatal,

neurodegenerative disease of humans and animals, primarily affecting the
Central Nervous System. These diseases can be transmitted between
individuals within the same species (sheep scrapie) and between species

(BSE from cattle to human). The true nature of the infectious agent has not
been fully elucidated, however the prion hypothesis suggests that a protein
alone is responsible. The disease-associated protein, PrPSc, is found in
infectious tissues and it is thought that this protein propagates by

converting the normal, non-infectious host protein, PrPc, into the infectious
PrPSc form. In diseased tissue, high levels of PrPSc appear to correlate with

high titres of infectivity and disease can be transmitted in short incubation
times.

A murine model of TSE has been produced in which the brains of infected
animals, at disease end-point, exhibit very low levels of PrPSc, and from
which infectivity can be further transmitted in short incubation times. This
is contradictory to the prion hypothesis. Using bioassay, the titre of

infectivity was measured in the brain from three animals of this model.
Other murine TSE models exhibiting high and intermediate levels of PrPSc,
in brain at disease end-point were compared to the low PrPSc model. The
low PrPSc model displayed infectivity titres similar to those of the high and
intermediate PrPSc models. Furthermore, disease was transmitted from the

low PrPSc model with shorter incubation times than from models with high
and intermediate PrPSc levels.

PK-resistant PrPSc levels, in protease-treated brain homogenate, were semi-
quantatively measured using immunoblot. PrPSc levels in the low model were
at least eight times lower than found in the high PrPSc model, and
surprisingly, levels of total PrP (PrPc and PrPSc) were the same in all models.
Therefore low PrPSc levels in the low model were not due to a reduced

amount of PrP produced during disease in these animals. This suggested
that infectivity in brain tissue of the low PrPSc model could possibly be

xv



associated with another form of PrP, not PrPSc. Investigation of alternative
forms of PrP that might be responsible for infectivity in the low PrPSc model
was therefore undertaken.

No evidence of increased amounts of transmembrane PrP was found in

infected animals from the low PrPSc model. Further biochemical

examination of the protease resistance and detergent solubility of PrP in
infected animals, using proteinase-K (PK) treatment and solublisation with

sarkosyl, revealed the presence of protease-resistant, detergent insoluble
PrPSc. In the low PrPSc model where infectivity was transmitted, one animal

possessed protease-resistant, detergent insoluble PrPSc and two revealed

only the protease-sensitive, detergent-soluble PrPc normally found in
uninfected animals.

In conclusion, contrary to the prion hypothesis, murine TSE models can

transmit infectivity from brain tissue in which PrPSc levels are extremely low
or non-detectable. Furthermore, this tissue can contain a high titre of

infectivity. Alternative forms of PrP have been implicated in TSE disease,
however no evidence of alternative PrP was found in the models

investigated. Given that some infectious brain tissue only contained PrP
with PrPc-like characteristics, PrPSc may not be the infectious agent of TSE.
It may be possible that a form of PrPc is infectious, but it is also conceivable
that a PrP-associated molecule, not studied here, is the infectious agent.

xvi



1. An Introduction to Transmissible

Spongiform Encephalopathy (TSEf

1.1. Introduction

Transmissible Spongiform Encephalopathies (TSE) are a group of slow,

inevitably fatal, neurodegenerative diseases affecting tissues of the Central
Nervous System (CNS). These diseases have extremely long incubation
times although the time from onset of illness to death of a human or animal
host can be short. TSE symptoms include behavioural changes, cognitive
impairment and insomnia, leading to ataxia, dementia and eventually
death. These diseases are found in animals as scrapie in sheep, Bovine

Spongiform Encephalopathy (BSE) in cattle, Feline SE (FSE) in domestic
and captured cats and as Chronic Wasting Disease (CWD) in mule deer and
elk. In humans several diseases have been described, Creutzfeldt-Jacob

Disease (CJD), Gerstmann-Straussler Syndrome (GSS), Fatal Familial
Insomnia (FFI), Kuru and the newly emerged variant CJD (vCJD). These
diseases are transmissible both within a host species, such as scrapie from

sheep to sheep and Kuru from man to man, and across species, such as

cattle BSE to humans, occurring as vCJD. TSE has also been transmitted

experimentally from humans and cattle to primates (Gajdusek, Gibbs &
Alpers, 1967; Herzog et al., 2004) and from sheep, cattle and humans to
rodents (Bruce, 1985a; Bruce et al., 2002; Tateishi & Kitamoto, 1995). The
production of rodent TSE models in particular has allowed a greater

understanding of the molecular and pathological mechanisms involved in
these diseases.

During the disease process, it is postulated that the normal cellular form of
the host protein PrP (PrPc), alters conformation to become the disease-
associated form of PrP (PrPSc) which itself is proposed to be the infectious
agent (Bolton, McKinley & Prusiner, 1982; Prusiner, 1982). The gene

encoding PrP has been found in all mammals looked at so far thus
indicating a wide range of potential hosts to transmit the infectious agent.
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Due to the variety of strains of TSE agent, that cause different clinical and

pathological characteristics in different animals, the infectious agent was

proposed to contain a nucleic acid component, but, despite repeated
attempts, no disease-specific nucleic acid has been isolated along with

infectivity. However, several studies have separated infectivity from

aggregated PrP isolated from TSE-infected animals (Manuelidis, Sklaviadis
& Manuelidis, 1987; Somerville & Dunn, 1996; Wille et al., 1996),

prompting fierce debate about whether PrP is the infectious agent, or merely
a component of infectious agent.

1.2. The host encoded protein, PrPc

PrPc is encoded by the host PrP gene, Prnp, in mice and PRNP in humans

(figure 1.1). Full length PrPc (figure 1.2) is 30-35 kDa and is expressed on

the surface of most cell types including liver, kidney, spleen, heart, testes,
bone marrow and blood platelets (Liu et al., 2001; MacGregor, 2001), but

expression levels are highest in neurons. (Bendheim et al., 1992). PrPc is

synthesised in the rough endoplasmic reticulum and is trafficked through
the golgi en route to the cell surface. It is modified via cleavage of

Mx6eg3"B9rp

Irtrcnl

1
1

5UTR CRF 31JTR

Bcnl Bcn2 5^3

Hrraicme. FRfP

Irtrcnl

Figure 1.1 Schematic representation of the PrP gene

Prnp has three distinct exons, exon 3 containing the open reading frame (ORF).
PRNP has two distinct exons although there may as yet be an undiscovered second exon
and intron within intron 1.

Adapted from (Fischer et al., 1996) and (Moore et al., 1999)
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the N-terminal signal peptide, addition of oligosaccharide sidechains via two

asparagine linked gylcosylation sites at amino acids 180 and 196, formation
of the disulphide bond between cysteine residues at amino acids 179 and
214 and attachment of the glycophosphoinositol (GPI) anchor to produce
the mature protein. PrPc is then transported to the cell surface where
attachment occurs via the GPI anchor, which can be cleaved by glycolipases
such as phosphatidylinositol phospholipase C (PIPLC) to release it from the
membrane. Recycling of PrPc occurs via an endocytic pathway, where PrPc
is transported by endosomes back into the cell. The production and

recycling process has been shown to take one hour in neuroblastoma cells

(Harris, 1999).

1.2.1. PrPc Structure

Recombinant PrP (rPrP) produced in Esherichia coli has been used in many

studies to investigate the structure of PrP. Although rPrP lacks the post-
translational modifications of eukaryotic PrP (it is not glycosylated and
lacks the glycophosphoinositol (GPI) anchor), circular dichromism (CD)
found the structure of this protein to be similar to that of normal hamster
PrPc (Wurthrich & Riek, 2001). Nuclear Magnetic Resonance (NMR)

techniques have identified the 3D structure of human, bovine, murine and
hamster PrPc (Wurthrich & Riek, 2001) but it must be borne in mind that
these structures are experimental because of the non-physiological
conditions used during NMR and the recombinant nature of the protein.
However, comparison of the structure of hamster, murine and bovine PrP
indicate that PrP from the different sources are remarkably similar in
structure. NMR studies revealed the structured nature of PrPc residues 120-

231, containing three a-helices at PrP amino acid residues 144-157, 172-
193 and 200-227, and two ^-sheets at residues 128-131 and 161-164

(Billeter et al., 1997; Zahn et al., 2000) (figures 1.2 & 1.3). The
crystallographic structure of ovine PrPc has recently been resolved and has
been shown to exhibit a similar secondary structure to human PrPc (Haire
et al., 2004).
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Figure 1.3 Cartoon of the NMR structure of human PrP

Sourced from (Zahn et al., 2000)

1.2.2. PrPc Function

The normal function(s) of PrPc has not yet been resolved. Potential roles for
PrP include the determination of neuron fate during embryogenesis

(Manson et al., 1992). PrP has been demonstrated to have a copper binding

ability, thought to take place at the N-terminal octapeptide repeat region

(figure 1.2) (Brown et al., 2000; Viles et al., 1999; Wong et al., 2000). PrP

may be associated with superoxide dismutase (Brown et al., 1999), involved
in normal synaptic function (Collinge et al., 1994), and play a role in the

peripheral nervous and lymphoreticular systems (Bruce et al., 2000;
McBride et al., 1992; Raeber et al., 1999). The rapid production and

recycling of PrPc from the cell surface back into the cell suggests that PrPc

may act as a receptor that can rapidly internalise its bound substrate

(Harris, 1999). It is not known whether PrPc binds a particular substrate,
however several potential molecules have been identified, including the
lamanin receptor protein (Rieger, Lasmezas & Weiss, 1999), Grb2

(Spielhaupter & Schatzl, 2001), Bcl2 (Kurschner & Morgan, 1995) and RNA

aptamers (Weiss et al., 1997). It is also feasible that if the infectious agent
of TSE is a virus or virus-like particle, PrPc may act as a viral receptor

(Rohwer, 1991). Elucidating the function of PrPc may help to ascertain
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whether the symptoms of TSE disease are caused by a loss of PrPc function,
rather than caused by the accumulation or PrPSc or by an intrinsic
neurotoxic property of PrPSc.

1.2.3. PrP null mice

It was thought that the creation of PrP null mice would indicate a function
for PrPc, however PrP null mice (Bueler et al., 1992; Manson et al., 1994a)

appear to develop normally except that they show altered sleep patterns

(Tobler et al., 1996). Given the lack of obvious phenotype in PrP null mice
in the absence of PrPc it is possible that the function of PrPc is compensated
for by another protein in these mice, however as yet, no compensatory

protein has been found. It has been demonstrated that PrPc is required to

support TSE infection since PrP null mice with a disrupted murine PrP

gene, Prnp, do not express PrPc and do not succumb to infection when
inoculated (Bueler et al., 1993; Manson et al., 1994a). There is a dose-

dependant effect of Prnp expression where disease incubation time
decreases with increasing (Manson et al., 1994b). Whilst Prnp copy number
affected the disease incubation time it did not alter the distribution or the

final intensity of vacuolation and PrP deposition (Manson et al., 1994b). It
has also been demonstrated that neuronal expression of PrPc is required to

support infectivity. PrPc-expressing cells were introduced into PrP null
mouse brain and upon TSE-infection only those cells expressing PrPc

displayed TSE-associated pathology (Brandner et al., 1996). These

experiments have demonstrated that the expression of host PrPc is critical
in supporting TSE.

1.2.4. PrPc and TSE

In order to further understand how PrPc is involved in TSE, transgenic mice

containing truncated PrP forms were created. Various lines of transgenic
mice that expressing PrPc with specific deletion regions have been created.
PrPc with deletions of the N-terminal 32-80 region of PrPc (cleaved in PrPSc
to produce PrP27-30), the C-terminal 144-231 region of PrPc, and a

combined deletion of both N and C-terminal regions 32-80 and 144-231
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(Fischer et a!., 1996) were produced. Only mice with the N-terminal
deletion succumbed to TSE when infected with the mouse-passaged RML

strain, suggesting that the C-terminal, globular domain of PrP must be

present for TSE to occur. Furthermore, the susceptibility of PrP null mice
to TSE was restored upon the introduction of a PrP construct devoid of the

octapeptide repeat region. Null mice expressing a PrP gene in which region
32-93 was deleted succumbed to TSE upon infection with RML (Flechsig et

al., 2000). Rescue appeared dose-dependant since mice hemi2ygous for the
introduced gene had a longer incubation time than homozygous mice.

Interestingly, in the rescued mice, PrPSc levels and titres of infectivity in
brain were lower than found in wild type mice and the authors suggest this
is because of the octapeptide region deletion. It may be that the presence of
this region allows TSE to develop more efficiently and PrPSc to accumulate
faster in wild type mice. This region may also play a role in interacting with
the infectious agent of TSE. Interestingly in the rescued brain PrPSc levels
were extremely low, whilst the titre of infectivity was found to be 107 ID50

units/ml (Flechsig et al., 2000). This may indicate that infectivity in the
brain of rescued mice was not conferred by PrPSc. PrPSc was detected in the

spinal cord however, and was transmissible to Tg20 indicator mice.

Whilst experiments using PrP null mice models indicate that the presence of
PrPc is clearly required for TSE, the above experiments indicate that the N-
terminus of PrPc is not necessarily required to support TSE. However the
N-terminus can adopt a structure (Gill et al., 2000) and it may be that when
the globular domain of PrPc interacts with its ligand, the N-terminus may

become structured and may itself form another binding site. The
interaction of the N-terminus with another ligand could act as an enhancer

signal for further PrPc-ligand interaction and allow TSE to rapidly develop.
Thus the N-terminus of PrPc may not be critical for the development of TSE,
however it could be rate-limiting.
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1.3. The Prion hypothesis

1.3.1. PrPSc and infectivity

The discovery of an abnormal form of PrP, PrP27-30 (PrPSc), in scrapie-
infected hamster and sheep brain but not from uninfected brain, lead to the
initial proposal that a small proteinaceous particle, called a prion, could be

responsible for conferring infectivity in TSE disease (Prusiner, 1982). This

hypothesis was based on initial experiments using hamster TSE agent,

263K, in which the protease resistant PrPSc fragment was found to be the

major component of TSE-infected tissues and appeared to correlate with

infectivity (Bolton et al., 1982; Prusiner et al., 1982a). When applied to a

sucrose gradient and separated into different fractions, most PrPSc was

found in fractions with the highest infectivity titre and less PrPSc was found
where infectivity was low (McKinley, Bolton 85 Prusiner, 1983). When
fractions containing infectivity and PrPSc were investigated using electron

microscopy, aggregates, or prion rods were identified (Prusiner et al.,

1982a). Furthermore, scrapie-associated fibrils (SAF) identified from
murine and hamster TSE models (Hilmert & Diringer, 1984; Merz et al.,

1981) were found to be associated with infectivity (Diringer et al., 1983).

Infectivity had previously been shown to be associated with membrane
fractions from TSE-infected animals, and subsequently PrPSc was identified
from membrane fractions of 263K-infected hamsters (Meyer et al., 1986).
These studies suggested that PrPSc was perhaps the infectious agent of TSE
since no nucleic acid was found in the preparations studied (Prusiner,

1982; Prusiner et al., 1982a). Furthermore, the addition of an anti-PrP27-
30 antibody to 263K-infected hamster brain homogenate reduced the

infectivity of that homogenate, indicating neutralisation of infectivity via

binding of the antibody to PrPSc (Gabizon et al., 1988). Moreover, at post¬

mortem, the accumulation of disease-associated PrP in brain of infected
animals was identified using anti-SAF antibodies (Farquhar, Somerville &
Ritchie, 1989; Kascsak et al., 1987; McBride, Bruce & Fraser, 1988).

PrP27-30, SAF or prion rods have only been identified from TSE-infected
brain (Kascsak et al., 1985; McKinley et al., 1983; Merz et al., 1981).
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Proteinase K (PK) treatment of TSE-infected tissue homogenate reveals a

protease-resistant core of PrPSc at 27-30kDa. This core is cleaved from the

full length 30-35kDa protein seen before PK-treatment. In comparison,

homogenate from uninfected tissues contains full-length PrPc at 30-35kDa,
which is completely degraded by PK-treatment (figure 1.1). In the TSE-
affected host, high levels of PrPSc are usually found in brain, spinal column
and other CNS tissues, and correspondingly high infectivity titres are

usually found in these tissues. Lower levels of PrPSc have been reported in

peripheral tissues such as spleen, lymph node, Peyers patches and tonsil as
well as in peripheral nerves, and in other non-CNS tissues such as

pancreas, thymus and placenta (Farquhar et al., 1996; Fraser, 1996;

Groschup et al., 1996), and infectivity titres are generally lower in these
tissues.

PrP c PrP Sc
PK - + +

Figure 1.4 Schematic diagram of immunoblotted. proteinase K-treated PrPcand PrPSc
Complete PK degradation of normal PrPc from uninfected tissues compared with the PK-
resistant core of infectious PrPSc from infected tissues.

Different amounts of PrPSc have been found in different brain areas

(DeArmond, 1988; Kuczius & Groschup, 1999) however, the relative levels
of PrPSc and titre of infectivity in specific brain areas have not been
measured to truly assess the correlation between these parameters.

1.3.2. PrPSc template

Studies indicated that the primary amino acid sequence of PrPSc and of the

normal, cellular form, PrPc, were the same (Turk et al., 1988). The prion

hypothesis radically proposed that PrPSc could convert PrPc into further
molecules of PrPSc, thus propagate the infectious agent. It is known that
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PrPc and PrPSc have different secondary and tertiary structure in that PrPc

mainly consists of a-helices and PrPSc has a high p-sheet content (Pan et al.,

1993). It is postulated that these differences occur via a conformational

change. Processes of PrPc->PrPSc conversion are thought to occur via either

(i) heterodimer conversion or (ii) seeded polymerisation (Caughey 85

Chesebro, 1997) (figure 1.5). The monomeric conversion model indicates
that when one molecule of PrPc and one molecule of PrPSc come together as
a heterodimer, PrPc is converted to PrPSc, creating a homodimer, which can

split into two separate, infective PrPSc molecules. The seeded

polymerisation model states that PrPSc exists as a polymer that can recruit
PrPc monomers, convert them to PrPSc and add them to the polymer
structure. Fragmentation of the infectious polymer then facilitates multiple
recruitment of PrPc and allows the build up of PrPSc in fibrils or amyloid.

Although the mechanism of PrPc->PrPSc conversion has not been fully

resolved, the seeded polymerisation method is currently favoured. In vitro
and cyclic amplification of PrPc using a PrPSc 'seed' has been experimentally
demonstrated and is further discussed in chapter 1.3.5.

NMR also revealed the unstructured nature of N-terminal residues 23-120,

however further studies have indicated the N-terminal region may be
structured to some degree (Gill et al., 2000). In addition the octapeptide

region of PrPc (residues 32-93) has been shown to have copper-binding

ability (Viles et al., 1999; Wong et al., 2000) thus this region of PrP may be

functionally essential. It has also been suggested that the N-terminus may

be capable of interaction with other proteins or the structured portion of
PrP and indeed, in vitro conversion assays have suggested that the N-
terminus of PrP may have a role in defining the conformation of converted
PrP (Lawson et al., 2001).
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PrPcmonomersaddedtoPrPSc
Figure1.5HypothesisedPrPconversionmodels Adaptedfrom(Caughey&Chesebro,1997)
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1.3.3. Alpha- and beta-folded PrP

Circular Dichroism (CD) has been used to assess the a-helical or p-sheet
nature of recombinant PrP, typically of the postulated structured region at

residues 120-231, producing a specific curve according to the degree of

protein folding. Using physiologically relevant conditions recombinant PrP
can be manipulated into the a- and P-forms to mimic PrPc and PrPSc
conformation in sub-cellular compartments (Jackson et al., 1999). Such

experiments demonstrate that a-folded PrP is capable of conversion to a p-
folded form. Furthermore, experiments have demonstrated that PrP is

capable of finding different conformations and folding-intermediates

suggesting that intermediate forms of PrP may exist (Baskakov et al., 2002).

However, intermediate forms of PrP generated in such experiments have not
been demonstrated to be infectious. The conversion of PrPc—>PrPSc may

allow PrPc to exhibit different characteristics from PrPSc thus TSE may

result from a gain of function of PrPSc.

1.3.4. Yeast Prions

The rapid conversion of a protein from one conformation to another has
been demonstrated in yeast. Normal soluble URE 3 and PSI proteins were

shown to convert to abnormal, insoluble ure2 and sup35 aggregates in

Saccharomyces cerevisiae (Tuite, 2000). These abnormal proteins altered
the biochemical characteristics of the yeast and allowed growth under

previously undesirable conditions. Such characteristics were passed on to

daughter cells via transfer of the abnormal protein during replication.
These experiments show proof of principal that rapid conversion can change
the biochemical property of that protein, and may indicate that prion
conversion is an evolutionary mechanism to deal with a rapidly changing
environment. Indeed, the growth of the fungi Podospera can be determined

by the presence of the abnormal HET-s protein, where the abnormal protein

only allowed mycelia to grow in the presence of compatible protein in the
cell cytoplasm (Liebman, 2002). This is an example of how podospera
avoids the spread of viruses, where mycelia containing genetically different
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material are not allowed to fuse. Thus, the conversion of PrPc to PrPSc may

be an evolutionary process that remains in mammals as a rare occurrence

as exhibited in spontaneous TSE cases. However, it has been demonstrated
that the induction, but not propagation of ure2 to URE3 in yeast requires
the involvement of Mksl protein (part of the nitrogen regulation cascade)

(Edskes & Wickner, 2000). This indicates that other proteins are likely to

be involved in the formation of abnormal protein. Furthermore, the prion

hypothesis has proposed that different structural conformations of PrPSc
could determine specific TSE strain characteristics (Aguzzi, 1998; Safar,

1996). Recent experiments have not only confirmed the transferable
characteristics of yeast prion proteins, but have also indicated that these
characteristics may be conferred in the structure of the yeast prion protein

(King 8s Diaz-Avalos, 2004; Tanaka et ah, 2004). Such experiments support

the hypothesis that strain-specific characteristics of TSE can be determined

by the conformation of PrP.

1.3.5. Cell-free conversion

Cell-free conversion experiments were devised to further investigate the
interaction of PrPc and PrPSc during the conversion process (Horiuchi et al.,

2001; Horiuchi & Caughey, 1999; Horiuchi et al., 2000; Kocisko et al.,

1994), and to examine the molecular mechanisms of the species barrier

(Priola, 1999; Priola, Chabry & Chan, 2001) and of TSE strains (Bessen et

al., 1995; Vorberg & Priola, 2002). Cell free conversion of purified PrPSc
isolated from TSE-infected brain (as SAF or PrP 27-30) can induce PrPc
conversion when mixed with an excess of PrPc (Caughey & Chesebro, 1997).
In these experiments, radiolabelled, PK-sensitive PrP (PrP-sen) produced in
vitro was mixed with PrPSc isolated from TSE-infected rodents. An increased

concentration of radiolabelled PrP that was PK-resistant (PrP-res) indicated
the conversion of PK-sensitive PrP to a PK-resistant form. This was thought
to mimic the conversion of PrPc to PrPSc. It appeared that homology
between PrPc and PrPSc was critical for the conversion of PrP since hamster

PrPSc added to mouse PrP-sen (or vice verca) did not drive PrP conversion

(Kocisko et al., 1995). Further studies showed that compatibility at specific
residues was required for efficient conversion (Priola et al., 2001), and
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seemed to fit in with the prion hypothesis where PrPSc acts as a template for
PrPc conversion. Subsequently, these studies indicated a critical binding
event at amino acids 109-141, which only allows conversion of compatible
PrP-sen and PrP-res (Horiuchi et al., 2000). Peptides corresponding to

amino acids 166-179 and 200-223 of hamster PrP can block the formation

of PrP-res, and since these peptides are thought to form p-sheet structures,
these areas of PrP may be involved in the formation of PrP-res via a

conformational change. Multiple regions of PrP are therefore thought to be
involved in the formation of PrP-res (Horiuchi et al., 2001). Recently, the

eukaryotic cell-derived PrPc in these cell-free reactions has been replaced
■with recombinant PrPc. This is produced from E. coli thus suggests that

eukaryotic cellular factors are not necessary for the conversion process

(Kirby et al., 2003). Moreover, glycosylation is not required for effective
conversion of PrPc->PrPSc (Kocisko et al., 1995), however the specific

glycoform pattern of a TSE strain has been proposed to be dictated by the

glycoform pattern of the PrPSc template (Vorberg 8s Priola, 2002).

The cell-free conversion process has been exploited in the PMCA assay

(protein misfolding cyclic amplification) where small concentrations of PrPSc
can be amplified using successive rounds of sonication and incubation with
PrPc (Saborio, Permanne & Soto, 2001; Soto, Saborio & Anderes, 2002).
PrPSc from an infected sample was mixed with an excess of PrPc from
uninfected brain, incubation encouraged the PrPc to PrPSc conversion and
sonication broke up PrPSc aggregates to seed further conversion. Increased
amounts of PrP-res were produced using this assay and conversion
reactions were only viable in the presence of infectious brain homogenate

(Saborio et al., 1999) suggesting that PrP alone is not sufficient for
conversion. It is known that PrP can bind to various other proteins but it is
unclear whether these play a role in aiding the conversion process.

1.4. Newly converted PrP^and infectivity

According to the prion hypothesis, the presence of PrPSc directly correlates
with the appearance of infectivity, however during cell-free conversion
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experiments or PMCA the increased production of PrP-res has not been

reported to associate with a concurrent increase in infectivity.

Bioassay of PrP-res produced by the cell-free conversion of chimeric

mouse/hamster PrP-sen with PrPSc purified from 263K-infected hamster
brain found no infectivity when transmitted to chimeric mice (Hill, Antoniou
& Collinge, 1999a). This infers that the acquisition of PK-resistance by PrP
is not enough to make it infectious. Such data may indicate that the PrP
formed in these experiments may not have adopted an infectious
conformation. Data may also suggest that there is another as yet

unidentified component required for infectivity. Indeed, a recent report has
shown that RNA increases PrPSc production when added to in vitro
conversion reactions, suggesting that RNA may facilitate the PrPc —>PrPSc
conversion process (Deleault, Lucassen & Supattapone, 2003). Moreover,
the presence of non-infectious but PK-resistant forms of PrP may also

suggest the existence of intermediate forms of PrP between PrPc and
infectious PrPSc.

1

It is possible to surmise, from these in vitro experiments, that PrPSc alone is
not the infectious agent. The conversion of PrPc —>PrPSc may indeed occur,

and there may be an increased accumulation of PrPSc in the affected host, in
common with other amyloidogenic diseases where misfolded protein
accumulates. However it is possible that PrPSc associates with other as yet
unidentified proteins or nucleic acids within these accumulations, which
when together, become infectious.

1.5. The virus hypothesis

Due to the long incubation time of TSE and the inevitable fate of animals

showing clinical symptoms of TSE, investigators suggested that the scrapie
agent was a slow virus, which affected the CNS (Kimberlin, 1976b).
Filtration experiments initially identified the scrapie agent as a small

particle of approximately 20-40nm, which was heat stable. Subsequent
denaturation experiments found that the scrapie agent had a heat
denaturation curve similar to that of double-stranded DNA (Millson, Hunter
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& Kimberlin, 1976) and there was a reported increase in DNA synthesis
rates in brains of mice clinically affected by TSE (Hunter, 1972), suggesting
that the agent was a DNA virus. Experiments to isolate the scrapie agent

indicated that the majority of infectivity was found in membrane fractions
and suggested that the agent may be a larger component, which may have
been an integral part of the host cell membrane (Millson et al., 1976).
Further experiments found that UV irradiation did not destroy scrapie

infectivity (Bellinger-Kawahara et al., 1987; Hunter, 1972) suggesting that

either, in common with some viruses, the scrapie agent was UV-resistant or
if the agent did contain nucleic acid this component would be extremely

small, around 20-30 bases. Indeed, a direct comparison of the UV-
resistance of scrapie and other viruses placed the scrapie agent alongside
small viruses (Rohwer, 1991) indicating that the agent could be viral. Due
to the small nature of the nucleic acid component, it was also considered
that the infectious agent could be a viroid, a small, naked nucleic acid.
However, infectivity transmitted by the scrapie agent was shown to be
unaffected by treatment of brain homogenate with ribonuclease and

deoxyribonuclease (Hunter, 1972; Millson et al., 1976), arguing against the

presence of a naked nucleic acid component. However virologists argue that
the demonstration that the scrapie agent is unaffected by nuclease yet
affected by protease degradation can also be characteristic of viruses

(Rohwer, 1991). Viruses composed of a nucleic acid core surrounded by a

proteinaceous envelope and/or capsid would be affected by proteases,
however nuclease treatment would not affect the protected nucleic acid.
Such findings therefore, cannot rule out a viral component to TSE.

1.5.1. The Virino hypothesis

The Virino hypothesis arose from the observations that no host immune
response was mounted during TSE infection. This hypothesis proposed a

two-component model where a protective protein coat consisting of host
protein surrounds, or is associated with, the infective agent. The protein
itself was proposed not to be infectious but may be closely associated to the

agent which may be a host independent, informational molecule such as a

small replicable nucleic acid. It was proposed that the informational
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molecule would be capable of providing heritable strain-specific information
such as the unique vacuolation targeting, incubation time and glycoform
ratio of each strain of TSE agent (Bruce & Dickinson, 1987; Kimberlin,

1982; Somerville, 1991). It was proposed that the virino agent could
interact with the product of the host gene to ensure replication of the agent.

Moreover, if the informational molecule was a nucleic acid that could bind

to the host protein, perhaps this could explain the lack of inactivation of the

agent by irradiation and the lack of host immune response (Dickinson &

Outram, 1988).

Although no disease-associated nucleic acid has been found, the virus

hypothesis of TSE has not become obsolete. Recent data has shown that
TSE disease incubation time can be dramatically extended by inoculating
two distinct strains of agent into the same mouse (Bartz, Aiken & Bessen,

2004; Manuelidis & Lu, 2003), similar to the blocking of a virulent virus
infection with a slowly replicating virus. These data corroborate earlier

findings (Dickinson et al., 1972) and indicate that the virus hypothesis has
not been disproved.

1.6. Biochemical evidence against the prion hypothesis

If the prion hypothesis is correct and PrPSc is the infectious agent, PrPSc
should correlate with infectivity. However some studies which have

separated PrPSc from infectivity have questioned this hypothesis. Using

organic solvents to dissociate aggregates of PrPSc, the PK-resistance of PrPSc
was partially separated from the amyloid property and infectivity (Wille et

al., 1996). Treatment using 2.5% HFIP (l,l,l,3,3,3-hexafluoro-2-propanol)
lowered infectivity titre, but not the PK-resistance of hamster 263K,
however using 10% TFIP (l,l,l-trifluoro-2-propanol), scrapie rod

morphology was altered yet infectivity remained constant. Since the
hamster 263K model was used to correlate PrPSc and infectivity, separation
of the amyloid and PK-resistant characteristics of PrPSc from infectivity was

significant.
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PrPSc has been further dissociated from infectivity using detergent, pH, heat
and dimethyl sulphoxide treatments. PK-treatment of detergent solublised
hamster 263K brain reduced infectivity by 97%, indicating that the
infectious agent was not protease resistant (Manuelidis et al., 1987).

Furthermore, treatment of brain from TSE-infected mice using high pH
buffers (pH9 or pH9.6) separated PrPSc from infectivity in sucrose gradient

centrifugation fractions of membrane preparations (Somerville & Dunn,

1996). In one experiment measurement of PrP content and infectivity from
each fraction found 60% of infectivity in one fraction containing less than
10% PrPSc. In another experiment one fraction containing 80% PrPSc
exhibited no infectivity. Moreover, heat treatment of murine TSE was

shown to reduce infectivity titre but not to affect the PK-resistance of
different strains of agent (Somerville et al., 2002). This indicated that

infectivity was independent of the PK-resistant property of PrP. Were the
infectious agent a protein alone, heat would degrade the protein, and affect
its PK-resistance. The authors suggest that their findings indicate an

infectious agent with an informational molecule that is protected by a heat-
resistant component, consistent with the virino hypothesis (chapter 1.5.1).
A further experiment examined microsomes prepared from 263K-infected
hamster brain treated with dimethyl sulphoxide (DMSO) before centrifuging
in a sucrose gradient (Shaked et al., 1999). Fractions of the gradient were

analysed and more PrP was found at the top of the gradient, in the light
fractions of DMSO-treated brain, compared to untreated brain. This PrP
was shown to be PK-resistant but was not found to be any more infectious
than PrP found in the equivalent gradient fraction from DMSO-untreated
brain. The authors concluded that PK-resistance was not necessary for

infectivity. It is possible that during PrPc —>PrPSc conversion, there are

populations of PrP which have PK-resistant characteristics yet have not
associated with infectivity. This may suggest that PrP conversion and the

acquisition of infectivity are separate events, furthermore, this may indicate
that rather than being the infectious agent itself, PrPSc associates with an

infectious agent during disease.
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1.7. Strains of Agent

The existence of different strains of infectious agent is a common concept in
conventional virology. However the presence of different strains of TSE has

proved a conundrum to the prion hypothesis - how can the many strains of

agent with different disease characteristics be encoded for by one protein
alone?

1.7.1. Strain characteristics

Scrapie from sheep and goats and BSE from cattle have been

experimentally inoculated and passaged in laboratory strains of mice. After

many passages in mice or hamsters, a range of stable scrapie strains

emerged (Bruce, 1985a; Bruce & Dickinson, 1987). These strains can be

distinguished by their specific disease incubation times when passaged

through a panel of different wild type mice (table 1.1) and unique

TSE Origin TSE Agent
Incubation Time (days)

C57BL Mouse VM mouse Hamster

Murine TSE Agent
Natural Scrapie ME7 180 320 n/a

87A 350 600 n/a
87V n/a 290 n/a
111A n/a >700 n/a

Experimental Sheep Scrapie 22C 190 470 n/a
22L 170 210 n/a
22A 205 460 n/a

Experimental Goat Scrapie 139A 170 210 n/a
79A 170 310 n/a
79V 250 280 n/a
22H 210 350 n/a

Natural BSE 301C 210 260 n/a
301V 280 115 n/a

Hamster TSE Agent
Experimental Goat Scrapie 263K n/a n/a 70

Table 1.1 Source and disease incubation time of TSE agents in different strains of mouse

Adapted from (Bruce, 1985a), n/a: not applicable.

pathological characteristics. Indeed, strains are classically defined by
disease incubation time, targeting of vacuolation via the vacuolation profile
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and targeting of PrP deposition, since these characteristics remain constant

upon subsequent passage through specific mouse strains. More recently,
the glycosylation profile of PrP (the three-band pattern produced upon

immunoblot of infected tissues - figure 1.1) and PrP conformational assays
have been used to classify TSE strains.

1.7.2. Classical strain typing

1.7.2.1. Vacuolation Profile

Strain identification can be performed on the basis of vacuolar targeting in
brain (Bruce, 1985a; Kimberlin, Walker 8s Fraser, 1989). Severity of
vacuolation is scored on a scale of 0-> 5 from at least six mice and average

values are then graphed to show the degree and pattern of vacuolation in
twelve different areas of the brain, consisting of nine grey matter and three
white matter areas (figure 1.6). The degree and pattern of vacuolation for
specific strains stays constant throughout passage, therefore new strains of

agent are readily identified.

Vacuolation profile of TSE-infected VM mice

Brain Area

—ME7

—m— 79A

—A— 87V

Figure 1.6 Vacuolation profiles from different murine TSE models.
Sourced from (Bruce, 1985a).
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More recently these procedures have been used to characterise different

experimental BSE and scrapie derived profiles (Bruce et al., 2002) and have
been used to show that the strain of TSE agent responsible for new variant
of CJD (vCJD) and BSE are identical (Bruce et al., 1997)

1.7.2.2. PrP deposition

Different strains of TSE agent can be characterised on the basis that each

displays a different pattern of PrP deposition. Paraffin-embedded brain
sections can be immunostained using PrP-specific antibodies to determine
the specific brain areas in which PrP accumulation occurs during disease.
Different rodent models exhibit distinct patterns of PrP deposition. For

example, ME7-infected C57BL mice have a widespread pattern of PrP

deposition and in 87V-infected VM mice PrP deposition is specifically

targeted to the CA2 region of the hippocampus (Bruce et al., 1994; Jeffrey et

al., 1997). Different targeting of PrP deposition has been seen in brain from

sheep and goats orally and intracerebrally infected with BSE and natural

scrapie (Foster et al., 2001a). In human TSE, different degrees and patterns
of PrP deposition in infected brain are associated with different diseases

(table 1.2).

Disease Allele age at onset Duration Pathology
Sporadic CJD None 30-89 4.5 years Severe grey matter vacuolation

Punctate PrP deposition
Familial CJD D178N (129V), 26-70 years 3 months- Severe vacuolation

E200K, V210I 4 years Little PrP deposition
GSS P102L, P105L, 22-66 years 1-12 years Vacuolation

A117V, Q217R Multicentric PrP aggregates
FFI D178N (129M) 20-71 years 6 months- Mainly thalamic vacuolation

3 years Very little PrP deposition
Acquired/ None 25-55 years 1-25 years As source

Iatrogenic
Kuru None 4.5-40 years 3-18 months No vacuolation

Spiked ball PrP aggregates
vCJD MM129 15-35 years 14 months Severe vacuolation

Florid PrP aggregation

Table 1.2 Characteristics of Human TSE Disease

The specific targeting of vacuolation and PrP deposition are the main
criteria via which a TSE strain is characterised. It is not clear how the

strain of agent can direct vacuolation and PrP deposition to different brain
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areas. It has been suggested that it is this targeting that ultimately controls
disease incubation time by specifically targeting critical areas of the brain or

perhaps critical cell types. It is controversial whether PrPSc alone can

account for all of the strain characteristics described above. If a protein
were to confer strain characteristics it would be required to form a different
conformation for each strain of agent. This would require many differently
folded forms of PrPScto exist in stable conformations (chapter 1.7.3.2).

1.7.3. Alternative methods of TSE strain classification

1.7.3.1. Glycosylation

It has been proposed that the different physiochemical properties exhibited

by each strain of TSE agent can be accounted for by glycosylation.
Evidence supporting this theory was demonstrated in TME (transmissible
mink encephalopathy)-infected hamsters that produced two distinct TSE
strains called hyper (HY) and drowsy (DY). These strains of TSE produced
different disease incubation times and disease-associated pathology in
hamsters (Bessen & Marsh, 1992). Upon PK-treatment the two strains

produced distinct PrPSc banding patterns caused by PK cleavage at different
residues at the N-terminal portion of PrPSc (Bessen 85 Marsh, 1992). In
vitro conversion of PrPc by HY and DY PrPSc propagated PK-resistant PrP
with distinct banding patterns (Bessen et al., 1995). It was therefore

implied that the HY and DY strains of TSE agent have PrPSc of different
conformations and that these conformational differences may account for
the different strain characteristics.

Glycosylation adds glycan chains at 2 different sites on PrP (figure 1.2). The

protein can be glycosylated at either of these sites, both of these sites or not
at all, producing a banding pattern of 3 different sizes of protein (figure 1.4).
TSE strains isolated from human tissues have been catagorised using
relative sizes and ratio of the different glycosylated bands when PrP is

electrophorised on an SDS-PAGE denaturing gel (Parchi et al., 1998;
Wadsworth et al., 1999b). Different banding patterns are thought to be

unique to different TSE strains, however comparison of samples using this
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approach has proved controversial. Samples that have different glycoform
ratios may have bands that are very similar in size, and it has been shown
that the use of metal chelating agents in the buffers used to prepare brain

homogenates for electrophoresis can alter the band sizes in a sample

(Wadsworth et al., 1999a). Moreover different laboratories have developed
different classification of human disease. One lab uses a type 1 & 2 system

based on the electrophoretic mobility of the unglycosylated band found after
PK-treatment of PrPSc from human brain (Parchi et al., 2000).

Unglycosylated bands of 21kD (type 1) and 19kDa (type 2) are produced

depending upon the location of the PK cleavage site within the PrP molecule

(Parchi et al., 2000). The other uses more complex typing system based

upon the electrophoretic mobility and the ratio of the mono-, di-, and un¬

glycosylated bands after PK-treatment of a TSE-infected sample (Collinge et

al., 1996). The use of two different classification systems based on

glycosylation alone indicates that this method of strain identification can be

complex.

Although glycotyping has been used to classify specific TSE disease in
infected humans (Hill et al., 1999b; Parchi et al., 2000), cattle and sheep

(Baron et al., 2000; Hope et al., 1999), this system is less useful in

distinguishing different mouse-passaged strains of TSE agent since these

produce similar glycosylation patterns upon immunoblot. Distinct glycoform

patterns have been found in different brain areas of TSE-infected mice

(Somerville, 1999) and humans (Head et al., 2001), suggesting that different
cell types can produce different PrP glycoform patterns even when infected
with the same TSE agent. Furthermore, different PrP isotypes have been
described within the same sCJD brain (Head et al., 2004), suggesting that
TSE-infected brain may contain a mix of TSE strains. Thus strain typing

using glycoform ratio and protein mobility can produce complex results that
are difficult to interpret.

1.7.3.2. PrPSc conformation

The conformational dependant immunoassay (CDI) can identify different
structural forms of PrPSc (Safar et al., 1998). In this assay, PrPSc is unfolded
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in increasing concentrations of guanidine hydrochloride (GndHCl) solution
and the gradual exposure of an antibody epitope buried in the native PrPSc
conformation is measured. The ratio of native/denatured protein is then

plotted on a graph with each sample occupying a unique point, distinct
from an uninfected control. Different mouse passaged strains of TSE were

distinguished using this assay, where they could not be separated by

glycoform analysis (Safar et al., 1998). This suggests that each strain of
TSE agent may indeed display distinct conformations. However, since
crude brain homogenate was investigated, this does not rule out the

possibility that the assay also measures a molecule or complex of

molecules, which may be the infectious agent and may be associated with
PrPSc. This molecule or complex may itself encourage the unfolding of PrPSc
as GndHCl concentrations increase.

1.8. Disease Diagnosis.

All TSE cases have common pathological hallmarks. Affected brain tissue
reveals a characteristic brain spongiosis, or vacuolation (figure 1.7A) and

staining using anti-PrP antibodies may reveal areas of deposition of the

host-encoded, disease-associated protein, PrP (figure 1.7B).

mmunostaining studies have been useful in separating BSE-infected from

scrapie-infected sheep, where PrP deposition is associated with different cell

types in brain, according to the host sheep breed and the TSE agent

(Gonzalez, Martin & Jeffrey, 2003). Specific immunostaining can identify

deposition and aggregation of PrP as large deposits and in some cases

amyloid plaques. The presence of these amyloidogenic deposits links TSE
to other amyloidogenic diseases such as Alzheimer's and Huntington's. In
common with Alzheimer's, Huntington's, Parkinson's and Down's syndrome,

astrocytic activation, or astrocytic gliosis, occurs in TSE-affected brain (Eng,
Ghirnikar & Lee, 2000). Different human diseases present varying but
characteristic pathology exhibiting differing degrees and distribution of
vacuolation as well as different deposition characteristics (table 1.2). As
discussed previously (chapter 1.2) PrPSc can be isolated along with
infectivity in CNS tissues (Diringer, Beekes 8s Oberdieck, 1994; Kascsak et
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al., 1985; McKinley et al., 1983; Prusiner et al., 1982b) thus is often used
as a marker for the presence of TSE disease.

t

c

Figure 1.7 TSE-associated pathology
Vacuolar pathology in a TSE-infected mouse (A) gives the brain a spongy appearance due to
holes in the tissue (sourced from H&E tissue archive, NPU, IAH). PrP deposition in the
87V/VM TSE model (B) identified using anti-PrP antibodies, seen as a brown staining, note
intense staining in the thalamus (t) and CA2 region of the hippocampus (c) (image courtesy
of P McBride, NPU, Edinburgh, as published in (Bruce et al., 1994)).

1.8.1. Post-mortem diagnosis

PrPSc can be experimentally distinguished from PrPc due to differences in

protease resistance and solubility in detergent (Meyer et al., 1986). PrPc is

detergent soluble and completely degraded by PK, whilst PrPSc is insoluble
in detergent and PK treatment reveals a 27-30 kDa protease resistant core

(figure 1.1). The close association of PK-resistant PrPSc with infectivity has
lead to PrPSc increasingly being used as the marker for TSE in assays based
on gel electrophoresis (SDS-PAGE) or enzyme-linked immunosorbent assay

(ELISA). These systems are being used throughout Europe with the

European Commission (EC) having approved three different tests for the

diagnosis of BSE. These are the Enfer Test, a sandwich ELISA produced by
Abbott Diagnostics, Bio-Rad's ELISA-based test Platelia™ BSE, and
Prionics®-Check tests (Check-WESTERN, an immunoblot and Check-LIA,
an ELISA). These assays are performed on brain tissue taken at post¬
mortem and all use PK-treated tissue to specifically detect PrPSc. Although
these assays are primarily used to diagnose BSE in cattle, they are also
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used to diagnose scrapie and chronic wasting disease (Deslys et al., 2001;
Grassi, 2003; MacGregor, 2001). All the assays described commonly use

brainstem material for diagnosis and rely on the detection of PK-resistant
PrPSc. However recently, atypical scrapie cases were not detected using
these assays even though SAF could be isolated from infected brain

(Buschmann et al., 2004). Additionally, were PrPSc not present in the

brainstem, but present elsewhere in the brain of infected animals, these

assays would not identify PrPSc in the sample taken. Whilst the use of EC-

approved assays do identify positive TSE cases, it is also possible that some
cases may not be identified. These assays may not be sensitive enough to

detect small amounts of PrPSc present in infected brain. Consequently the
true number of positive TSE cases may be under-reported and there may be
a risk of TSE-infected tissues entering and contaminating the food chain.

However, if PrPSc is not the infectious agent of TSE then PrPSc may not be
the best diagnostic marker for these diseases.

Additional diagnostic assays have been developed that do not rely on the
detection of the PK-resistant core of PrPSc. The DELFIA assay (differential
extraction lanthanide fluorometric immunoassay)(Barnard et al., 2000;

MacGregor et al., 1999) separates PrPc and PrPSc isoforms according to their
differential solubility in 1M Guanidine Hydrochloride (GndHCl) solution,
then measures the relative amounts of soluble and insoluble PrP using a

sandwich ELISA. DELFIA has been reported to detect 50pg PrP (Barnard et

al., 2000) and has been used to analyse the PrPc content in blood and blood

components, as well as measuring the amount of PrPSc in BSE-infected
cattle (Barnard et al., 2000; MacGregor et al., 1999). The CDI assay

(chapter 1.7.3.2) has also been used to diagnose BSE (Safar et al., 2002)
and human GSS (Tremblay et al., 2004). Again this assay uses GndHCl,
but rather than separating different PrP isoforms by solubility, the assay

measures the ratio of antibody binding to native and GndHCl-denatured PrP
in infected brain. This assay therefore does not distinguish PrP by PK-
resistance rather it detects all PrP isoforms present in the tissue

investigated. This assay has the advantage of detecting any PK-sensitive
forms of PrP that may be infectious, however it is possible it may also
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measure a PrP-associated but non-PrP component or complex which may

comprise the infectious agent.

1.8.2. Pre-mortem diagnosis

As yet there is no pre-mortem test that can identify TSE prior to the
occurrence of clinical symptoms. Confirmation of TSE occurs upon post¬

mortem examination of brain taken from the affected host. The emergence

of BSE and vCJD have caused concern over potentially infected tissues

entering the food chain, and the potential infectivity of human tissues and

bodily fluids. Effective pre-mortem diagnosis of TSE could ensure the
identification of potentially infectious tissues and enable their removal from
the food chain or, in the case of human disease, allow the disposal or

stringent cleansing of surgical instruments to reduce the potential risk of

iatrogenic TSE.

The need to identify TSE before clinical symptoms appear has prompted a

major upsurge in the development of diagnostic assays, with particular
interest in those that can be performed on easily obtained fluids or tissues.
The disease associated protein, PrPSc, has been detected in urine of TSE
infected patients and cattle (Shaked et al., 2001) and has also been
identified in blood platelet and plasma fractions (MacGregor et al., 1999).
These findings suggest the potential for infectivity to be found in body fluids
such as blood, and indeed BSE has been transmitted from sheep to sheep
via blood transfusion (Houston et al., 2000; Hunter et al., 2002). Given the
additional report of suspected transmission of CJD in humans via blood
transfusion (Llewelyn et al., 2004), it is essential that rapid but sensitive
diagnostic assays be developed to detect PrPSc in bodily fluids.

Cerebrospinal fluid (CSF), which is easily obtained by biopsy, has also been

investigated for diagnostic use. One study found an increased
concentration of gamma-14-3-3 (a CSF protein marker associated with

neurological disease) in TSE-infected mice (Baxter et al., 2002) using
immunoblot and ELISA, whilst another study used a sensitive confocal

scanning apparatus to detect extremely small amounts of PrPSc in CSF from
CJD-infected patients (Bieschke et al., 2000). As yet, the CSF assays have
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not been developed for human or animal diagnosis. PrPSc was found to
accumulate in lymphoid tissue in human and animal TSE cases (Joiner et
al., 2002; Kimberlin & Walker, 1979; Rubenstein et al., 1987; Wadsworth et

al., 2001) therefore studies have been undertaken to assess the usefulness
of tonsilar tissue in the pre-mortem diagnosis of human vCJD and scrapie
disease (Baylis et al., 2002; Hill et al., 1999b). These studies are

controversial since tonsil biopsy is an invasive surgical procedure and
instruments that may become infected during surgery have the potential to
further spread TSE if subsequently used on healthy individuals.

It is important to stress that the detection of PrPSc as a marker for TSE
relies heavily upon the strong correlation between PrPSc and infectivity.

However, these parameters have been separated and PrPSc may not be the
infectious agent of TSE. It has therefore been suggested that alternative,

surrogate markers should be found with definitive links to disease. One
such marker is EDRF (erythroid differenciation-related factor). The

expression of EDRF has been shown to reduce with increasing TSE in
infected mice, hamsters, cattle and sheep brain thus the severity of TSE can

be correlated with level of EDRF depletion (Miele, Manson 85 Clinton, 2001).

However, a full evaluation of this surrogate marker for TSE diagnosis has

yet to be undertaken.

1.8.3. Antibodies for PrP detection

All detection assays have in common the need for good antibodies. In SDS-
PAGE systems PrP is denatured for detection thus no antibody can

distinguish PrPSc from PrPc. ELISA-based assay detection of PrP will depend

upon the recognition of specific conformations of PrP, however antibodies

produced against linear peptide sequences will not distinguish
conformation. If different strains of agent have different conformations it is

important that these different conformations can be detected. It is therefore
essential that TSE diagnosis based upon the presence of PrPSc is confirmed

using a range of conformational and non-conformational antibodies.
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Polyclonal and monoclonal anti-PrP antibodies are produced by immunising
mice and rabbits with purified scrapie preparations, recombinant PrP or PrP

peptides (Farquhar et al., 1989; Korth et al., 1997; Li et al., 2000; Zanusso
et al., 1998). Although each antibody recognises a specific linear portion of

PrP, these mono- and polyclonal antibodies cannot distinguish PrPc from
PrPSc when protein is denatured during immunoblot or

immunohistochemical analysis thus infected samples must always be

compared to an uninfected control.

Antibodies that specifically recognise PrP in the PrPSc conformation have
also been described (Korth et al., 1997; Polymenidou et al., 2002). These

specifically recognise structural epitopes thus have been used in

immunoprecipitation experiments rather than immunoblot to identify PrPSc.
The 15B3 antibody recognises PrPSc from human CJD, BSE and murine

scrapie (Korth et al., 1997). PrPSc-specificity may lie in the recognition of
three epitopes of PrP, at 142-148, 162-170 and 214-226, which must all be

exposed in the PrPSc but not PrPc conformation. Despite the initial
identification of this PrPSc-specific antibody, 15B3 has not been widely
used. Exposure of tyrosine-tyrosine-arginine (YYR) residues is thought to be

Prpsc-specific. YYR is present in the 15B3 epitope (Korth et al., 1997) and
several other antibodies have been raised against peptides containing the
YYR motif (Paramithiotis et al., 2003). These antibodies have been shown to

be PrPSc-specific. PrPSchas been immunoprecipitated from infected mouse,

hamster, cattle and ovine brain and mouse spleen using YYR antibodies, as
has a misfolded, PK-sensitive form of PrP. Recently, a further antibody has
been reported to selectively immunoprecipitate PrPSc from CJD-infected
human brain (Zou et al., 2004). This antibody was raised against nuclear
DNA extracted from Raji Burkitts lymphoma cells and may indicate the

presence of DNA associating with PrPSc during disease. However this

antibody may recognise the conformation of an epitope rather than PrPSc per
se. However, antibodies that specifically identify PrPSc may provide useful
tools to investigate the presence of other forms of PrP or indeed, other
molecules that may be responsible for infectivity.
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1.9. TSE in the absence of PrP50

As discussed at length, PrPSc has been associated with infectivity in TSE
and is widely used as a marker for the disease. However, there are cases of
natural TSE in humans and experimental TSE in ruminants in which PrPSc
cannot be detected in post-mortem tissue. In human FFI, no PrPSc was

detected, however the associated TSE-pathology of microglial activation and

pro-apoptotic neurons were found in brain from eight affected patients

(Dorandeu et al., 1998). Furthermore, GSS-infected brain has been

reported to contain very little if any PrPSc (Tateishi & Kitamoto, 1995; Telling
et al., 1995). In GSS caused by the insertion of extra octapeptide repeat

regions, extremely low levels of PrPSc were reported alongside spongiosis and

gliosis (Young, 1999). In animals, atypical goat scrapie was reported with
the absence of PrPSc when detected by immuostaining and immunoblotting
methods, however the same brain exhibited high levels of vacuolation

(Foster et al., 2001b). Another case of goat scrapie with PrPSc absent in
brain was also described by the same authors (Foster et al., 2001a).

Additionally, placental tissue taken from a sheep scrapie case transmitted
TSE to mice, yet no PrPSc was detected in this tissue (Onodera et al., 1993).

A murine model of BSE-infected C57BL/6 mice was reported to lack PrPScin
TSE end-point brain in 58% of primary pass animals that were affected by
TSE (Lasmezas et al., 1997). When brain material was further passaged
39% of TSE-affected secondary pass and 13% of tertiary pass animals did
not contain PrPSc, yet brain was transmissible. Despite the demonstration
of transmissibility in the absence of detectable PrPSc, the titre of infectivity
was not examined in mice with and without PrPSc thus it is not known in

this model whether PrPSc level affected titre of infectivity.

Gerstmann-Straussler Syndrome (GSS) can develop as a spontaneous

disease in humans that have a proline to leucine mutation at PrP amino
acid 102 (P102L). Murine transgenic models of GSS have been produced in
which mice over-expressed a murine PrP construct containing the 101
proline to leucine mutation. Extremely low levels or the absence of PrPSc
was described in brain tissue taken from these mice. Tgl74 mice expressed
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a high copy number of the PrP transgene, produced 8x more PrP than wild
type mice and became spontaneously ill. Tgl96 mice expressed fewer copies
of the transgene than Tgl74 mice, produced 2x wild type PrP levels and
were originally reported to remain healthy (Hsiao et al., 1990). Brain tissue
from spontaneously ill Tgl74 mice was transmitted to Tgl96 mice and
caused disease. However no PrPSc was detectable in spontaneously ill Tgl74
or Tgl96 mice that became ill after transmission (Hsiao et al., 1990). The
lack of PrPSc was also described in disease end-point brain from other lines
of GSS transgenic mice (containing the P101L mutation) that became

spontaneously ill, Tg(MoPrP-PlOlL) mice (Telling et al., 1995) and

Tg(MHu2M-P101L) mice (Telling et al., 1996). Transmission of the

spontaneous murine GSS from Tgl74 to Tgl96 mice is often taken as proof
of the prion hypothesis (Hsiao et al., 1994). However, it is unclear in these

experiments whether infectivity was conferred by PrPSc since very little PrPSc

(if any) was found in brains of spontaneously sick mice. It has been

reported that 20% of Tgl94 mice become spontaneously sick (Kaneko et al.,

2000), thus the transfer of brain material into these mice may accelerate a

spontaneous disease already present. Furthermore, it is possible that in all
of the aforementioned GSS models, the spontaneous neurodegenerative
disease was due to the overexpression of the transgene and not the
mutation itself or the presence of PrPSc (Westaway et al., 1994). Bioassay
titration to confirm the amount of infectivity in these models was not

performed.

In another murine model of GSS/P102L, gene targeted transgenic 10ILL
mice (129/Ola mice, which also contain a P—>L mutation at amino acid 101
in the endogenous PrP gene) do not succumb to spontaneous disease but
were more susceptible than wild type mice to human GSS/P102L inoculum

(Manson et al., 1999). Human GSS was transmitted to mutant 10ILL mice
with an average incubation time of 360 days, but only transmitted to one

wild type 129/Ola mouse (101PP) in 456 days. Although both wild type and
mutant mice expressed similar levels of PrPc in the brain, 10ILL mice
produced very little PK-resistant PrP when inoculated with GSS/P102L.

Moreover, when the 10ILL mice were infected with hamster 263K (374

days), endpoint brain also exhibited extremely low levels of PrPSc (Barron et
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al., 2001). Again, 263K only transmitted to one wild type mouse (>700

days). It was not clear whether the low levels of PrPSc found in the infected
10ILL mice corresponded to low titres of infectivity in the brain since

bioassay was not performed on these animals. However, subsequent
studies showed that despite the lack of PrPSc in GSS-infected and 263K-
infected 10 ILL mice, TSE was transmitted from brain of infected mice in

short incubation times. Given that short incubation times are thought to
be indicative of high titres of infectivity (Kimberlin 8s Walker, 1978; Prusiner
et al., 1982b), this appeared contradictory with the low PrPSc levels found in
infected 10ILL mouse brain.

The natural and experimental cases discussed here indicate that the use of
PrPSc as a marker for TSE is not always appropriate. The presence of PrPSc
does not always correlate with infectivity, which may indicate that PrPSc is
not the infectious agent. It is clear that cases of TSE may be missed
because of the reliance on detecting a single pathological characteristic,
which may not be present in all cases. In addition to the detection of PrPSc,

post mortem diagnosis of atypical cases of TSE using other pathological
characteristics of TSE such as vacuolation, gliosis and neuronal loss is
critical for effective diagnosis. Therefore transmission and bioassay are the

only reliable methods to detect the presence of infectivity in tissues,

particularly where PrPSc is not evident.

1.10. Infectivity studies

The definitive method of identifying and measuring the amount of

infectivity, or titre of infectivity, in TSE infected tissues is bioassay. The
titration of infectivity in large animals such as scrapie in sheep or BSE in
cattle is highly expensive therefore mice are routinely used. Infectivity
transmitted to mice from TSE-infected tissues has been demonstrated from

various animal models (Bruce, 1985b; Kimberlin & Walker, 1979; Onodera
et al., 1993; Tateishi & Kitamoto, 1995) however, the incubation time of
disease transmission can be long. Infectivity titres differ according to the
strain of TSE agent and the experimental model used. Mouse passaged
BSE for example has high infectivity titres of 109 infectious units per gram
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brain (Taylor et al., 2002), whilst BSE in cattle has been titrated at 104
infectious units per gram brain (Taylor et al., 1997). Mouse passaged TSE

agents can have different infectivity titres according to the strain of mouse

(Carp & Callahan, 1986). In infected animals, different organs can exhibit
different titres of infectivity. The route of injection also determines the final
titre of infectivity in brain, with the intracerebral route usually the most

efficient (Kimberlin & Walker, 1979; Kimberlin & Walker, 1988). TSE

infectivity titres are inversely related to disease incubation times with short
incubation times indicative of high titres of infectivity (Kimberlin & Walker,

1978; Prusiner et al., 1982b).

1.10.1. Measurement of Infectivity titre

End-point titration in animal or cell culture is a standard method of

determining the lethal dose of an agent. The dilution of agent that causes
half of the animals within an experiment to die is known as an infectious
dose (ID50) and is similar to the lethal dose (LD50) which is often investigated
in the fields of virology and toxicology.
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Figure 1.8 Titration of TSE infectivity
Titration in large groups of animals to assess ID50, the infectious dose of agent that kills half
the animals in a group.
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The ID50 figure is calculated using statistical analysis following the method
of Karber (Karber, 1931) (figure 1.8). This bioassay procedure can measure

one infectious unit of TSE agent which is thought to contain 104 to 105
molecules of PrPSc (McKinley et al., 1983).

This level of sensitivity is rarely matched by in vitro assay. Recently, two

assays have been described that claim to have a similar sensitivity to

bioassay (Klohn et al., 2003; Safar et al., 2002).The first assay used CDI

(chapter 1.7.3.2) to quantify PrPSc present in BSE infected cattle (Safar et

al., 2002). CDI proposes that different conformations of PrPSc may cause

infectivity thus forms of PrP other than PK-resistant PrPSc are investigated.

Using CDI PrPSc was detected from a 107 dilution of BSE-infected cow brain.
Cattle BSE was passaged to Tg(BoPrP) mice (over-expressing bovine PrP) for

bioassay and was titrated with an ID50 of 107. This indicated that CDI is

capable of detecting one infectious unit of infectivity in BSE-infected brain,
however this level of sensitivity has only been demonstrated for one TSE

agent. The second assay assumes that PrPSc is the infectious agent of TSE
and measured the amount of PrPSc taken up from TSE-infected homogenate

by neuroblastoma cells (Klohn et al., 2003). PrPSc from RML-infected brain

homogenate was taken up by a clone of particularly susceptible cells, which
were then passaged to ensure PrPSc propagation. Cells were harvested,

serially diluted, fixed onto filter paper, then PK-treated and probed using
anti-PrP antibodies to identify PrPSc. PrPSc was measured in a 10 7 dilution
of the cells therefore the titre of infectivity was measured at 107 infectious
units, the same titre of infectivity found by bioassay of RML. The assay was

not sensitive for the murine TSE agents ME7 and 22A, or for hamster 263K,
and it may be that individual clones of cells must be identified for each
strain of TSE agent according to their ability to uptake each agent. The

application of this assay to all strains of TSE agent is not yet possible.

1.11. Alternative pathogenic forms of PrP

Particularly in human GSS cases, a lack of PrPSc has been described in
affected brain (chapter 1.9) therefore forms of PrP other than PK-resistant
PrP were proposed to exist in infected brain. PrPc is encoded by Prnp, in
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mice and PRNP in humans (figure 1.1), and it has been demonstrated that
inherited cases of TSE disease are associated with different mutations

within the host gene, or with insertional mutations of the octapeptide region

(Young, 1999) (table 1.2). Rodent models have therefore been produced in
which the Prnp gene contains disease-associated mutations or insertions in
order to mimic human TSE and to further understand the pathological
events that lead to death. Several of these diseases are thought to be due to

the production of alternative forms of PrP.

1.11.1. PK-sensitive PrP

An octapeptide repeat insertional model of TSE was produced to mimic an

inherited disease. Mice in this model produced PrP containing fourteen

octapeptide repeats (PG14 mice) (Chiesa et al., 1998). In one human case,

containing an inserted nine repeat region, PrP immunoreactive plaques
were found alongside Alzheimer-associated pathology (Duchen, Poulter 8s

Harding, 1993), however when the brain of PG14 mice was examined no

conventional PrPSc was detected. These animals had suffered a neurological
disease consistent with TSE, however PrP in affected brain was found to be

detergent insoluble (a PrPSc-like characteristic) but less PK-resistant than
PrPSc. PrPSc is usually detected using high concentrations of PK e.g. above

20pg/ml, but here, PK resistant populations at 2pg/ml PK were identified.

Although the PrP found by Chiesa et al did not contain infectivity, this

supports the existence of intermediate conformations of PrP. Such PK-
sensitive forms of PrP may explain the lack of PrPSc found in the human
disease. Differences in PK-resistance of PrPc or PrPSc may be brought about

by different conformations of alternative forms exposing or concealing PK-

cleavage sites. These different structural forms of PrP may have different
biochemical properties from PrPc or PrPSc with differential PK-sensitivities

and/or detergent solubility and therefore may have to be detected by

immunoprecipitation, using a panel of different polyclonal and monoclonal
antibodies. Moreover, these forms of PrP may not be the infectious agent of
TSE but may be responsible for the pathology. More recently, PK-sensitive
forms of PrPSc have been found in brain from a transgenic mouse model of
GSS using an alternative PK-incubation temperature of 4°C instead of 37°C
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for one hour (Tremblay et al., 2004), and in human CJD-infected brain

using a PrPSc-specific antibody (chapter 1.8.3) (Zou et al., 2004). It has not
been shown that the PrP found in these cases was infectious therefore it is

difficult to say whether PK-sensitive PrP in this model is associated with

infectivity.

1.11.2. Transmembrane PrP

An in vitro experiment to study the translocation of PrP indicated the

presence of secretory and membrane-spanning forms within microsomal
membranes (Hay et al., 1987). Two different forms were identified, ctmprp
and Ntmprp; where the C- or N-terminus projects into the lumen of the cell

(figure 1.9). A highly hydrophobic region was found between amino acids
111-134 (figure 1.2) and it is hypothesised that this region of PrP may span

the lipid bi-layer of the cell causing PrP to exist in a transmembrane rather
than cell surface orientation. Given the absence of PrPSc in some GSS

cases, brain from human GSS caused by the associated A117V mutation

(lying within the hydrophobic domain) was analysed for the presence of
transmembrane PrP. Such brain was found to contain an increased

amount of CtmPrP, therefore it was proposed that the alternative
transmembrane forms of PrP could be responsible for disease (Hegde et al.,

1998). Transgenic mouse models were therefore produced to mimic GSS
caused by the Al 17V mutation and other mutations were created within the

proposed transmembrane domain. In each case, increasing amounts of
ctmprp Were found in brain from animals affected by neurological

dysfunction. No PrPSc was found in affected brain from these models using
conventional PK-treatment, however a mild PK-treatment on ice did reveal
ctmprp (Hegde et al., 1998). Subsequent experiments have confirmed that
disease-associated mutations within the hydrophobic domain of PrP
increase the formation of ctmprp (Stewart 86 Harris, 2001). It is interesting
to note that transmembrane forms of PrP have not been described in

transgenic models with PrP mutations outside of the membrane-spanning
domain (Stewart 8& Harris, 2001), although they have been reported in
mouse neuroblastoma cells transfected with the GSS-associated P—>L

mutation at amino acid 101 (Mishra et al., 2002).
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Cystol

Figure 1.9 Transmembrane and secretory forms of PrP
GPl-anchored surface-bound PrP is flanked by NU"PrP with n-terminus in the lumen (left) and
ctmPrP with c-terminus in lumen (right). Adapted from (Hegde et al., 1998) and (Stewart &
Harris, 2001).

The transmembrane form of PrP has not been shown to be infectious

however the presence of this in brain without PrPSc may indicate that this
form is associated with TSE pathology rather than infectivity. However,

extremely low levels of ctmprp may be present in human cases and the
murine models of GSS/P101L and may be the reason for the lack of PrPSc
detected in affected individuals.

1.11.3. Cytosolic PrP

The most recent form of PrP that has been alluded to in vitro and in vivo is

cytosolic PrP (cyPrP) (Ma, Wollmann & Lindquist, 2002; Stewart & Harris,

2003). When the proteosome was inhibited, cyPrP accumulated in the
cytoplasm of cells, and rendered cells, specifically neurons, more

susceptible to the apoptotic cascades that cause cell death. It is not clear
whether cyPrP originates from a breakdown in the normal PrP cycling

process, however the proteosome is likely to be involved in removing

improperly modified PrP. Transgenic mice expressing a cyPrP construct

(PrP amino acids 23-230 but no signal sequences) produce cyPrP, which is
not trafficked through the ER/golgi. The accumulation of cyPrP leads to a
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neurodegenerative disease characterised by extreme neuronal loss in the
cerebellum, indicating that this form of PrP is neurotoxic (Ma 85 Lindquist,

2002). It has not yet been demonstrated whether cyPrP is transmissible.

Controversy surrounds this issue, as it remains inconclusive whether cyPrP
is a true form of PrP within the cell or an artifact of experimental processes.
Studies have suggested that inhibition of the proteosome itself causes an

increase in PrP mRNA production and protein synthesis and it is this, not
the de novo production of PrP that is responsible for PrP accumulation

(Drisaldi et al., 2003). Moreover, it has been demonstrated that primary
cultures of human neurones are not affected by cyPrP (Roucou et al., 2003),
thus this form of PrP may not be applicable to human disease.

1.12. PrP neurotoxicity

Extreme pathological changes occur in the TSE-infected host. The

appearance of vacuoles in brain, the deposition of the disease-associated

protein, and neuronal loss are all characteristic of TSE, however not all of
these characteristics appear in all TSE cases. It is not clear what causes
the death of the host, however it has been proposed that there are critical
brain areas to which pathology is targeted and the early targeting of

pathology to these areas induces a rapid death of the host. It is not clear
whether the presence of PrPSc itself is the cause of other pathology, however,
a correlation has been shown between areas of PrP deposition and
vacuolation (De Armond et al., 1989; Jeffrey et al., 1997) and between PrP

deposition and neuronal loss (Jeffrey et al., 2000).

The exact cause of neurodegeneration is not known, however it has been
surmised that the PrPSc itself could be the neurotoxic agent of TSE. A PrP

peptide encompassing residues 106-126 has been demonstrated to be toxic
in vitro, the toxic effect enhanced by the presence of microglia (Chiesa &
Harris, 2001). It is not clear whether microglia release substances, as yet

unidentified, that contribute to the neurotoxicity of TSE. PrP106-126 has
been described as the putative neurotoxic region of PrP, however other PrP

peptides, PrP147-220 and PrP 121-231, have also been found to be
neurotoxic (Brown, 2002). Interestingly, PrP106-126 has been reported to
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inhibit the neurotoxicity of PrP121-231 suggesting that the full-length PrP
molecule may contain neurotoxic sections, which become neutralised

(Brown, 2002). Endogenous cleavage of PrPScin the TSE-affected brain may

release the individual fragments, which may then be able to exert their
neurotoxic effects. A recent report has found small PK-resistant fragments
of PrP of 7-8kDa, in brain from patients affected by sporadic CJD (Zou et

al., 2003). It is surmised that these fragments are a sub-population of the
PrP27-30kDa PK-resistant fragment and it is possible that they may be the
neurotoxic forms of PrP.

The lack of PrPSc in some models of TSE caused investigation into the

neurotoxicity of alternative forms of PrP. The increase of ctmprp jn human
and rodent models of GSS/A117V caused speculation that ctmprp was

neurotoxic. The neurodegenerative ability of ctmprp has not been clearly
defined despite the in vitro demonstration of the neurotoxicity of the

putative transmembrane region using peptide fragments that span the

hydrophobic region (Haik et al., 2000). However it has been demonstrated
that ctmprp is retained in the endoplasmic reticulum (ER), where it may

trigger apoptotic or other stress-induced pathways that cause cell death.

PrPc is produced in the ER, where it is post-translationally modified and
folded before being trafficked through the golgi en route to the cell surface.
It may be that misfolded forms of PrP, including ctmprp are identified whilst
in the ER and are normally removed from the cell via proteosomal

degradation, however if this degradation pathway is blocked in some way,

increased concentrations of abnormal forms of PrP may accumulate. In

GSS/A117V, this may contribute to the increase of CtmPrP, however this is

unlikely to occur for other familial diseases since no ctmprp has been found
in other murine models (Stewart & Harris, 2001). However, it may be that a
more general mechanism of the accumulation of misfolded forms of PrP is

responsible for neurodegeneration. Recent studies have shown that that
increased concentrations of PrP in the cytosol (cyPrP) is neurotoxic and
causes neurodegeneration in a transgenic model (chapter 1.12.3), and
indicate that this may indeed be the general mechanism responsible for

neurodegeneration. Mutations in the host genome may result in the altered
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capability of the proteosome to remove improperly folded forms. If this
altered capability allowed the slow build up of cyPrP over time, this may

explain why familial TSE occurs in aging individuals. However, the
neurotoxic and neurodegenerative characteristics of the different forms of
PrP have not been elucidated.

The relationship between the newly identified forms of PrP that may be

responsible for neurodegeneration in familial forms of disease, and

infectivity has not been thoroughly studied. TSE did not transmit from
PGM mice, which contained PK-sensitive PrP, nor from murine models of

GSS/A117V, or from human cases. This indicates that PK-sensitive PrP and
ctmprp are not infectious or do not interact with the infectious agent. No

infectivity studies have yet been performed using the transgenic cyPrP
model therefore it is not known if cyPrP is capable of supporting infectivity.
It therefore appears that only PrPSc is the infectious agent, or that only PrPSc
can associate with the infectious agent. It is possible that PK-sensitive and
ctmprp forms of PrP are formed in the diseased animal in the PrPc —>PrPSc

conversion pathway, but that these forms have not yet become infectious or

not come into contact with the infectious agent. Further study of the
formation of alternative forms of PrP may indicate how PrP becomes

infectious, or where PrP interacts with the infectious agent.

1.13. Aims of this thesis

The prion hypothesis states that the disease-associated, PK-resistant

protein, PrPSc, is the infectious agent of TSE. Studies in rodent TSE models
have demonstrated a correlation between the amount of PrPSc and the titre

of infectivity, however, such disease models contained abundant PrPSc

(Bolton et al., 1982; Diringer et al., 1983; Hilmert & Diringer, 1984;

McKinley et al., 1983; Prusiner, 1982). In natural and experimental cases
of TSE there may be a lack of demonstrable PrPSc in the brain where

infectivity is present. PrPSc is widely used as a marker for TSE disease, but

clearly the absence of PrPSc cannot be guaranteed to indicate the absence of

infectivity. It is therefore important to determine whether PrPSc is an
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appropriate disease marker and whether PrPSc correlates with infectivity in
all cases of TSE.

When inoculated with human GSS/P101L brain or the hamster 263K agent,

10ILL mice developed TSE, however little PK-resistant PrP was detected in
brain tissue (chapter 1.10). Moreover, infectivity was further transmitted in
short incubation times from GSS/101LL and 263K/101LL brain tissue

suggesting a high titre of infectivity, inconsistent with the low PrPSc levels
exhibited.

The aims of this thesis were to use the 10 ILL rodent model to:

• investigate the relationship between PrPSc level and titre of infectivity in
the apparent absence of detectable PrPSc, and,

• examine the nature of infectivity in a "low PrPSc" model.

It was hypothesised that if PrPSc masked the true nature of the infectious

agent in abundant PrPSc models, the lack of PrPSc in the 10ILL model may
assist in identifying the infectious agent.
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2. Materials and methods

2.1 Biological Definitions

For the purpose of this thesis, the term "model" refers to a combination of a
mouse strain infected with a particular strain of TSE agent (C57B1 mouse

infected with the murine TSE agent, ME7). Chapter 1.9 provides further
details of murine TSE agents.

Transgenic mice homozygous for the GSS-associated P101L mutation are

designated "10ILL" and 12901a mice homozygous for the wild type PrP gene

are designated "101PP".

In all studies brain was examined from TSE-infected mice that became

clinically sick. These animals were humanly culled upon identification of
clinical symptoms and the brain tissue excised. This is termed " disease

end-point brain".

Previous characterisation indicated that PrPc is detergent-soluble and

completely degraded by protease, whereas PrPSc is detergent insoluble and
contains a protease resistant core (Meyer et al., 1986). These biochemical

parameters are used here to define PrPc and PrPSc.
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2.2 Primary antibodies

Antibody Mono/Polyclonal WB diltuion3 ICC dilution3 PrP Epitope(s)
3F43 Monoclonal n/a 71000 108-111

5B21 Monoclonal oooo n/a 34-45

6H44 Monoclonal n/a 71000 144-152

8H41 Monoclonal NT"" pooo 71000 175-190

8B41 Monoclonal 720.000 n/a 35-40

7A121 Monoclonal V20.000 n/a 90-145

1A82 Polyclonal n/a 71000 3 distinct

1B32 Polyclonal 720.000 71000 4 distinct

Calnexinb Polyclonal 72.000 - 3.000 n/a n/a

GAPDHC monoclonal 720,000 n/a n/a
a Diluted from lmg/ml stock solution
b a-calnexin supplied by Stressgen Biotechnologies Corp.
c a-GAPDH supplied by Chemicon Incorporated
1 (Li et al., 2000)
2(Farquhar et al., 1989; Langeveld et al., 1993)
3 (Kascsak et al., 1987)
4 (Korth et al., 1997)
Table 2.1 Primary antibodies used in TSE research

2.3 Secondary antibodies

WB dilution3 ICC dilution
Antibody

(HRP-conjugated) (Biotinylated)

rabbit a-mouseb 720,000 or 760,000 7400

Goat a -rabbitc 720,000 7400

Donkey a —rabbit0 n/a 7400
a secondary antibody dilution dependant on western blot chemilluminescent substrate;
1/20,000 for POD, 1/60,000 for West Dura (chapter 2.12)
b 0.9mg/ml stock solution
c lmg/ml stock solution
HRP conjugated and biotinylated antibodies sourced from Jackson laboratories, USA.
Table 2.2 Secondary antibodies used in TSE research
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2.4 Brain tissue sources

ME7/101PP: sourced from NPU experiment 522D-1A, primary passage of
TSE agent ME7 in 101PP mice.

ME7/101LL: sourced from experiment 522D-1A, primary passage of TSE

agent ME7 in 10ILL mice.

263K/101LL: sourced from experiment 522L-1A, primary passage of
hamster 263K TSE agent into 10 ILL mice.

GSS/10 ILL: sourced from experiment 522P-1A, primary passage of human
GSS isolate (containing P101L mutation) into 10 ILL mice.

SV mice (Prnp-a genotype) infected with TSE agents 139A and 79V and VM
mice (Pmp-b genotype) infected with TSE agents 79V, 22A and 301C were

sourced from the NPU catalogue of archive experiments, brain tissue stored

Uninfected 101PP: wild type 129/Ola mice (Manson et al., 1999)

(homozygous for the proline amino acid at PrP residue 101) sourced from

breeding stock maintained at NPU, Edinburgh.

Uninfected 10ILL: gene targetted 129/Ola mice homozygous for the leucine
amino acid at PrP residue 101 (Manson et al., 1999), sourced from breeding
stock maintained at NPU, Edinburgh.

2.5 Mouse brain excision

Mice were culled by cervical dislocation and the whole brain was removed.
Using sterile instruments, the skin was removed from the head and the
skull carefully cut open to expose the brain.

at -70°C.

Figure 2.1 Brain tissue excised from infected animals taken
for pathological (11 and biochemical 121 examination.

44



Whole brain was removed and cut sagitally to the right of the midline into
two pieces for (1) pathological examination and (2) biochemical analysis

(figure 2.1). Tissue for histopatholgy was fixed in 10% formal saline for 2-5

days. Brain for biochemical analysis was placed into a cryovial, flash frozen
in liquid N2 and stored at -70°C.

2.6 Brain homogenate preparation

All chemicals were sourced from Sigma unless stated. Brain homogenates
were prepared on ice, under Category 2 or Category 3 conditions where

required.

2.6.1 10% Homogenate

Tissue for homogenisation was weighed in a sterile petri-dish or freezing

vial, then transferred to a clean, pre-cooled Dounce Homogeniser:

PBS Homogenate; nine volumes of cold PBS solution (minus calcium or

magnesium) (Gibco) were added and the brain homogenised using 20-30
strokes of the pestle. Homogenate was stored in 50-200pl volumes in 1.5ml

screw-top centrifuge tubes (Starstead), at -70°C, after flash freezing in

liquid N2.

Detergent homogenate; nine volumes of cold detergent solution (1% NP40,
1% Sodium deoxycholate, 150mM NaCl, 50mM Tris HC1 pH 7.5) were added
and the brain homogenised as above. Supernate was collected in 50-200pl
volumes in 1.5ml screw-top centrifuge tubes after centrifugation at 16,000g
for five minutes at room temperature. After flash freezing in liquid N2,

samples were stored at -70°C.

2.6.2 5% detergent homogenate

An equal volume of 2x homogenate buffer (2% NP40, 1% Sodium

Deoxycholate, 300mM NaCl, lOOmM Tris HC1 pH7.5) was added to 10%
brain homogenate in PBS or 10% brain homogenate prepared as sterile
inoculum (chapter 2.22.2). Further homogenisation was performed in a
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screw-top centrifuge tube using 20-30 strokes with a pre-cooled centrifuge-
tube pestle (Anachem). The homogenate centrifuged at 16,000g at 10°C for
one minute to remove cellular debris. Supernate was aliquoted in 20-100pl
volumes in 1.5ml screw-top centrifuge tubes, flash-frozen in liquid N2 and
stored at -70°C.

2.7 Proteinase K treatment of brain homogenate

This process distinguishes PrPc from PrPSc by revealing the presence of the

protease resistant 27-30 kDa core of PrPSc (Prusiner ref 1982). Unless
otherwise stated, the final concentration of Proteinase K (PK) was 20pg/ml.

Samples were incubated at 37°C for one hour and the reaction stopped by
the addition of PMSF (Sigma) to ImM final concentration.

2.7.1 Lyophilised Proteinase K

Lyophilised PK (Sigma) was reconstituted in lOmM Tris pH 7.5 containing
ImM as CaCU (see appendix J) to produce a 25mg/ml stock solution for

long-term storage at -20°C.

2.7.2 Proteinase K Solution

PK solution (Roche) was supplied at a concentration of 19-25mg/ml. This
stock was kept refrigerated for up to one year.

2.8 Deglycosylation of PrP

The enzyme N-Glycosidase F (PNGase F) removes N-linked glycan side-
chains added to PrP during post-translational modification. For complete

deglycosylation each reaction was incubated overnight with shaking.

2.8.1 Deglycosylation reaction

Solutions provided as a kit from New England Biolabs (UK) were lOx
denaturant (5% SDS, 10% 6-mercaptoethanol), lOx G7 buffer (0.5M Sodium

Phosphate pH7.5), 10% NP40 and PNGase F enzyme (500U/ml). Reactions
were denatured in lx denaturant solution at 95°C for 10 minutes, before
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incubating the reaction in final concentrations of lx G7 buffer, 1% NP40
and 1-5 units of PNGase (pre-diluting in dPhO if required) to each reaction,
at 37°C, shaking, for at least 6 hours. Protein was methanol precipitated in
four volumes of ice cold methonol (Fisher), incubating at -70°C for at least 2
hours or -20°C overnight. Samples were centrifuged at 5,000-16,OOOg for
15 minutes, at 10°C, the methanol discarded and pellet dried before

resuspending in appropriate buffer.

2.8.2 Preparation for loading onto SDS-PAGE gel

Ethanol precipitated pellets were resuspended in 120mM Tris HC1 (pH 6.8)

(Sigma), lx loading buffer (Invitrogen), lx sample reducing agent

(Invitrogen) and dFBO in a total volume of 45pl. The addition of the Tris
solution was essential for efficient solublisation of the protein for

electrophoresis. After denaturing at 95°C for 30 minutes, 20pl of each

sample was loaded per well.

2.9 Detergent solubility of PrP

Brain prepared as 10% homogenate in PBS (chapter 2.22.2) was further

homogenised with 20% (w/v) sarkosyl solution to produce a 5%

homogenate. To reduce the viscosity caused by nuclear DNA contamination

lpl of Benzonase solution was added to each sample. Samples were

incubated at 37°C, shaking, for 30 minutes then centrifuged at 16,OOOg for
10 minutes at 10°C. The pellet and supernate were carefully separated and
the pellet resuspended in 10% (w/v) sarkosyl solution. On ice, the
supernate was placed into a 4ml polycarbonate ultracentrifuge tube and
filled with cold PBS before centrifuging at 150,OOOg for 2.5 hours at 10°C.

Supernate and pellet were carefully separated and the tube (containing the

pellet) carefully dried before resuspending the pellet in 10% sarkosyl. The
volume of recovered supernate was measured and placed into 4 volumes of
ice-cold methanol at -70°C for 2 hours to overnight, to precipitate protein.
The precipitate was pelleted at 2,OOOg for 15 minutes at 10°C and the

supernate discarded. All methanol was allowed to evaporate before

resuspending the protein pellet in 10% sarkosyl. All pellets were
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resuspended in a volume equivalent to the 10% homogenate used to start

the preparation, usually lOOpl. Where concentration of the samples was

required, all pellets were resuspended in 1 /5 of the original starting volume,

usually 20pl. Resuspended samples were stored at -70°C after flash

freezing in liquid nitrogen.

2.10 SDS-PAGE

Polyacrylamide gel electrophoresis (PAGE) separates protein according to

size. All reagents and apparatus from Invitrogen except where indicated.

Pre-cast Novex® Tris-Glycine SDS-PAGE gels with acrylamide content of
12% or 16% were purchased. Protein samples were pre-prepared in Novex®
2x sample buffer and NuPage® lOx sample reducing agent, to give lx final
concentrations of each. Samples were denatured at 95°C for 30 minutes
before loading onto the gel using elongated gel loading pipette tips (Costar).
Prestained standard markers (SeeBlue® or BIORAD Broad Range) were

loaded into appropriate wells according to manufacturers instructions. The

electrophoresis tank was connected to a BIORAD PowerPac 200, and run at

125V for 110-120 minutes until the dye-front reached the foot of the gel.
Gels were removed from the cassettes and trimmed of excess acrylamide

ready for protein transfer to membrane, or Coomassie Blue staining

(chapter 2.15.2).

2.11 Western blot

Proteins were transferred to polyvinylidene difluoride (PVDF) membrane

(Millipore, UK) using the BIORAD Trans-Blot® SD Cell. PVDF was immersed
in methanol (Fisher) for 10 seconds, washed in dPUO for two minutes and
then lx transfer buffer (39mM Glycine, 48mM Tris, 0.0375% SDS, 20%
methanol [v/v]) for at least two minutes before use. The Whatman paper

was thoroughly soaked in transfer buffer before making up the "transfer
sandwich" of (bottom to top) 6 pieces 3MM paper, PVDF, gel, 6 pieces 3MM

paper (figure 2.2). Transfer was complete after 90 minutes at 120mA per

gel, with the voltage not exceeding 26V using a BIORAD PowerPac 200.

Upon completion, the "sandwich" was carefully deconstucted and the PVDF
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rinsed in dH20, ready for immunoblotting (chapter 2.12) or Ponceau Red
staining (chapter 2.15.1).

Anode - lid of cell

6x 3MM Paper
Gel
PVDF

6x 3MM Paper
Cathode - base of cell

Figure 2.2 Transfer of SDS-PAGE separated protein to PVDF membrane
Electrical current runs from anode (positive) to cathode (negative) thus transferring proteins
from gel to the membrane.

2.12 Immunoblot

PVDF membranes were incubated at room temperature, shaking, in the

following solutions: lx block diluted from lOx Western Blocking Reagent

(Roche) using TBS (TBS (50mM Tris, 150mM NaCl, pH 7.5). Blots were

probed with primary monoclonal antibody diluted in 0.5x block overnight,
or primary polyclonal antibody diluted appropriately for 4 hours (chapter

2.2). Blots were washed 3x 10 minutes with TBS-tween (TBS plus 0.05%
Tween 20 (Sigma)), then 2x 5 minutes with 0.5x block. Add horseradish-
peroxidase conjugated secondary antibody diluted appropriately (chapter

2.3) in 0.5x block solution for 30 minutes. Wash lOx 5 minutes with TBS-
tween.

2.12.1 Protein detection

Protein was visualised by non quantitative chemilluminescence after
incubation with BM Chemilluminscent Blotting substrate (POD- peroxidase)

(Roche). POD substrate was added directly onto the membrane and
incubated for 1 minute before being exposed to Lumi-film (Roche) for up to
10 minutes to capture the luminescence.
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Quantitative chemilluminescence could be achieved using Supersignal ®
West Dura extended duration substrate (Pierce). Substrate was placed

directly onto the Kodak Image Station 440CF, and the membrane placed
into the solution. The resulting image was captured for up to one hour, and
stored for later analysis using the image analysis software.

2.13 Recombinant PrP

Recombinant wild type PrP (rPrP), containing proline at amino acid 101,
was kindly gifted by Dr I. Sylvester, IAH, Compton, UK. Recombinant PrP

(containing 1.734mg/ml total protein) was diluted to give 10ng/pl stock
concentration and stored at -70°C. For immunoblot control samples, 5pl of
the stock was added to the loading reaction (lOpl 2x loading buffer, 2pi lOx

reducing agent and 3pl dFUO to give 20pl total) and 20pl per well was
loaded after denaturing. This allowed blot to blot variation to be controlled
and PrP detected by immunoblot to be quantified

2.14 Kodak Image Analysis

Using a Kodak Image Station 440CF, PrP was identified from immunoblots
scanned during substrate development (chapter 2.12.1). The
chemiluminescent image produced was saved as a '.bip' file using the Kodak

Image analysis software. Each lane to be examined was selected, and the
bands to be analysed were highlighted using specific markers. The width of
the marker was adjusted to allow the marker to cover the whole band¬
width. The selection of bands was carried out automatically, and

occasionally produced extra bands where no image was detected, or did not

highlight bands that could clearly be seen by eye. Unwanted extra bands
were deleted and bands required for analysis were marked manually. For
each lane, a profile of the band pattern could be viewed and the bands were

fitted to a Gaussian Model. The software automatically fitted each band to

a symmetrical or asymmetrical Gaussian Model. The number of darkened
pixels making up the image was counted and data was expressed as a pixel
count or intensity. The background image across the whole lane was taken
into account when applying the Gaussian model. The data generated was
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exported to an Excel file to allow further analysis. The pixel intensity for
each sample was compared to that of 50ng recombinant 101PP PrP (rPrP).
This allowed the amount of PrP in each brain homogenate to be calculated,

equivalent to rPrP to control for blot-to-blot variation.

2.15 Protein visualisation without antibodies

2.15.1 Ponceau Red Staining

To confirm protein transfer to PVDF, membrane was incubated at room

temperature, shaking, with ready-made Ponceau stain (Sigma) for 2-5
minutes. Excess stain was discarded and the PVDF rinsed 2-3 times with

distilled water to visualise the bands. Complete destaining was achieved by

rinsing 2 times 5 minutes with TBS-tween before immunoblotting.

2.15.2 Coomassie Blue Staining

Gels were immersed in Coomassie Blue stain (0.25% Coomassie Brilliant
Blue R-250 (Sigma) (w/v), 10% acetic acid (Fisher) (v/v) in 50% methanol

(v/v), filtered through a Whatman No.l filter. Incubation was at room

temperature, shaking, for 30 minutes. Excess stain was removed and the

gel destained (20% Acetic Acid (v/v), 10% Methanol (v/v), in dl-hO) until

protein bands were clearly visible. The gel was dried (chapter 2.15.3) or

photographed using the Kodak Image Station 440CF (chapter 2.15.4).

2.15.3 Drying Coomassie Gels

Coomassie stained SDS-PAGE gels were dried using a Hoefer Drygel Slab
Gel Drier. The gels were assembled on top of 2 pieces of 3MM paper (larger
than the gel) pre-soaked in dFbO, covered with saran wrap and then placed
in the drier. The gel was dried at 70° C for 1-2 hours under vacuum then
allowed to cool under vacuum to ensure it remained flat.
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2.15.4 Photographing coomassie stained gels

Stained SDS-PAGE gels were placed on the glass plate of the Kodak Image
Station 440CF and illuminated from above. Using the Kodak Digital
Science™ ID Image Analysis Software package, the gel image was captured

using a 1-5 second exposure and the image saved. Images were then

directly printed or exported to Microsoft PowerPoint for labelling.

2.16 Total Protein Assay

Protein content of brain homogenate and recombinant PrP preparations
were assessed using the Pierce Microwell Plate protocol and Pierce reagents.

BSA standard protein and samples were diluted appropriately in PBS

(Gibco) or dPUO and applied to a microtitration plate (Linbro® EIA). 300pl
of Coomassie® Plus Reagent was added to each blank well, 290pl added to

sample/standard wells. After 5 seconds shaking at room temperature,

absorbance was measured at 595nm using Wallac plate-reader (Victor2
1420 Multilabel Counter). A Standard Curve of 'concentration of BSA v

absorbance' was plotted and sample concentrations calculated using the

equation of the standard curve. Samples were adequately diluted to lie
within the linear range of absorbance detected for the standards.

2.17 Microsomal membrane preparation from brain tissue

All preparations were performed on ice. Freshly collected or frozen brain
tissue (thawed before use) were homogenised in twenty volumes of
microsome buffer (0.25M Sucrose, lOOmM KC1, 5mM Mg Acetate, 50mM

Hepes (pH7.5)) containing 0.5mM PMSF, using at least 20 strokes of the

glass pestle in a Dounce homogeniser. The homogenate was transferred to

screw-top centrifuge-tubes for centrifugation at 16,000g for 10 minutes at
10°C. Supernate was transferred into a Beckman polycarbonate centrifuge
tube and further centrifuged at 130,000g for 30 minutes at 4°C to pellet
microsomes. The pellet was resuspended in microsome buffer minus PMSF
at 500pl per gram of starting tissue. The microsomes were flash-frozen and
stored at -70°C in 30pl volumes.
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2.18 Microsomal PK-protection assay

Circularised microsomal membranes will possess full-length
transmembrane proteins (figure 2.3). Protein external to the membrane will
be cleaved upon the addition of PK whilst protein inside the membrane is

protected (figure 2.3). Immunoblot detection of the protein of interest
detects a size shift to a smaller protein size in PK treated compared to

untreated samples. Microsomes (lOp.1) were incubated with 3pl 1M Tris HC1

pH7.5, 1.5pl PK (from lmg/ml stock), 1.5pl Triton X-100 in a 30pl reaction,
at 37°C for 30 minutes.

detected protein remains

Figure 2.3 Transmembrane protein protected from PK-cleavaae by microsomal membrane
Full length protein spans the microsomal membrane but only that inside the circularised
membrane is protected from PK-cleavage. Full length protein is larger than cleaved protein
when identified using immunoblot.

Reactions were stopped by adding lpl of lOOmM PMSF and incubating on

ice for 5 minutes. Reactions were deglycosylated before methanol

precipitation (chapter 2.8). They were then diluted in SDS-PAGE loading
buffer and sample reducing agent for gel electrophoresis on 16%

Tris/glycine gels (chapter 2.10). Control reactions, without PK treatment or

detergent, Triton X-100, were also included. Samples were immunoblotted
and protein detected using appropriate antibodies.
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2.19 Preparation of brain for pathological examination

2.19.1 Brain tissue fixation

Formal saline-fixed brain (chapter 2.5) was immersed in 98% formic acid

(BDH) for 90 minutes. Formic Acid was replaced with fresh 10% formal
saline in preparation for tissue embedding.

2.19.2 Brain tissue processing and cutting

Tissues were transferred to an automated processor and processed for
different times according to brain size (table 2.3). Tissue was removed and

kept on hot blocks whilst trimmed coronally at each cutting level (figure

2.4A) and embedded in blocks of hot wax (figure 2.4B). Cooled blocks were

trimmed of excess wax ready for cutting in 6pm microtome sections. The
sections were floated into a water-bath (42-45°C), then floated onto labelled

Superfrost-plus glass slides for staining. Slides were dried at 37°C

overnight and boxed until required.

Mouse Tissues Hamster Tissues

Solution Time in solution1 Solution Time in solution1

70% alcohol 40 minutes 70% alcohol 1.5 hours

80% alcohol 40 minutes 80% alcohol 1.5 hours

95% alcohol 40 minutes 95% alcohol 1.5 hours

99% alcohol 40 minutes 99% alcohol 1.5 hours

99% alcohol 40 minutes 99% alcohol 1.5 hours

99%/xylene 30 minutes 99%/xylene 45 minutes

99%/xylene 30 minutes 99%/xylene 45 minutes

Xylene 30 minutes Xylene 45 minutes

Xylene 30 minutes Xylene 45 minutes

Paraffin wax 25 minutes Paraffin wax 45 minutes

Paraffin wax 25 minutes Paraffin wax 45 minutes

Paraffin wax 25 minutes Paraffin wax 45 minutes

Table 2.3 Automated tissue processing
Mouse or hamster brain processed and embedded in paraffin wax using different protocols
according to size of brain.
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Figure 2.4 Brain sectioning for H&E and immunocytochemical staining

Half brain taken for pathological analysis (chapter 2.3). (A) Coronal sections cut at septum
(s); hippocampus (h); superior colliculus (sc); cerebellum (c); medulla (m) (Fraser &
Dickinson, 1968) and (B) brain segments laid out in wax blocks as indicated.

2.20 Haemotoxylin and Eosin Staining

Tissue sections were stained using an automated process (table 2.4) before

mounting a coverslip (22 x 22mm) using Pertex mounting medium (BDH):

Solution Time in solution1
Xylene 2x 5 minutes
90% IMS* 2x 2 minutes
95% IMS 1 minute

3 minutes

Haematoxylin Z stain 3 minutes
3 minutes

Scott's Tap Water$ 2 minutes
3 minutes

Putts Eosin 0.5 minutes
2.5 minutes

70/% IMS 1.5 minutes
95% IMS 2x 0.5 minutes
99% IMS 2x 0.5 minutes
99% IMS/Xylene 1 minute

Xylene 3x 1 minute

Table 2.4 Haemotoxylin and Eosin automated staining process

*IMS - Industrial Methylated Spirits (supplied by Anderson, Gibb and Wilson, UK)
$Scott's Tap Water Substitute (0.35% sodium hydrogen carbonate, 2% magnesium sulphate
in dH20)
Haemotoxylin and Eosin stains supplied by Thermo Shandon, UK
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2.21 Immunocytochemistry

Slides of brain sections were hydrated (xylene, 99%, 94% then 70% alcohol
for 5 minutes each (BDH)) before being placed into dl-hO and autoclaved at

121°C/15 minutes to help expose PrP epitopes to allow antibody detection.
Sections were also treated in 98% formic acid (BDH) for 5 minutes to aid the

epitope exposure process before being blocked of excess endogenous

peroxidases, in 1% or 2% hydrogen peroxidase (Sigma) in methanol for 10
minutes. Sections were placed in 99-70% alcohol then washed 3x 5
minutes in PBS-BSA (lx Phosphate buffered saline plus 0.1% BSA (Sigma)).
Each section was treated with lOOpl of each solution as follows: 1/20
dilution of normal rabbit serum (Dako, UK) to block for 20 minutes (if using

goat or donkey secondary antibodies, use goat or donkey serum

(respectively) to block). Wash 3x 5 minutes in PBS-BSA. Add primary

antibody overnight, 6H4, 8H4, 3F4, 1B3 and 1A8 (chapter 2.2) at 2.5pg/ml
in antibody diluent (1% BSA solution in lx PBS). Wash 3x 5 minutes in
PBS-BSA. Add biotinylated secondary antibody for one hour (rabbit ci-

mouse for monoclonal primary antibody and goat or donkey a-rabbit for

polyclonal primary antibody -chapter 2.3). Wash as before. Use ABC

streptaviadin kit solutions (Dako, UK) to amplify signal, add equal volumes
of solutions A and B then dilute at 1/50 in antibody diluent. Visualise PrP

using diaminobenzodine (DAB) substrate (Sigma) (0.05% final
concentration, activated using 0.025% final concentration hydrogen

peroxide). Sections were stained for one minute in haemotoxylin then
counterstained in Scott's tap-water substitute for one minute. Sections were
then dehydrated (70%, 94%, 99% alcohol, 1:1 xylene:alcohol, three times

xylene for 2 mins each) and coverslip mounted using DPX

(distyrene/tricresyl/xylene solution (BDH). PrP staining was assessed by

light microscopy. 87V-infected VM mouse brain sections were included as

positive controls. To control for antibody staining, duplicate sections were

probed with 1/1500 dilution of normal mouse serum and processed as

above.
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2.22 Bioassay measurement of infectivity titre

These methods have been described previously (Kimberlin & Walker, 1979)

(chapter 1.10). All procedures were performed in a sterile environment

using sterile techniques, at the appropriate containment level. Each
titration experiment was approved by the Neuropathogenesis Unit, Local
Ethical Review Committee (LERC).

2.22.1 Preparation of sterile brain homogenate

Brain tissue was carefully weighed, placed into a Dounce homogeniser with
nine volumes of saline solution (0.9% w/v) (Martindale Pharmaceuticals,

UK) and homogenised using at least 30 strokes of the pestle to prepare a

10% homogenate. The homogenate was transferred to screw-top centrifuge
tubes via a 1ml syringe fitted with 26 gauge needle and aliquoted in lOOpl
or 200pl volumes before flash freezing in liquid N2 and undergoing storage

at -70°C, for up to nine months.

2.22.2 Preparation of inoculum

For each brain, ten-fold dilutions of homogenate were prepared for
inoculum. Unopened, sterile aliquots of 10% homogenate (chapter 2.22.1)
were quickly defrosted and the homogenate drawn into a 1ml syringe fitted
with 26 gauge needle. 0.2ml homogenate was added to 1.8ml saline to give
10"2 dilution. This serial dilution was repeated until a 10"11 dilution was

reached (figure 2.5). Each diluted inoculum was prepared using a new 1ml

syringe with 26 gauge needle in preparation for inoculation.

Brain Tissue Serial dilution of brain homogenate
10"1 10"2 10"3 10"4 10"5 10"6 10"7 10"8 10"9 10"10 10"11

^27 ^7 ^27 ^7 q^27 ^7 ^k27 ^27

0.2ml transferred from each dilution into 1.8ml saline

Figure 2.5 Preparation of titration inoculum
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Any inoculm not used for injection was placed into sterile cryotubes

(Costar), flash frozen and stored at -70°C.

2.22.3 Inoculation of mice

Mice were anaesthesitised with 3% fluothane gas (delivered in oxygen)
before inoculation. Twenty microlitres of inoculum was delivered into the

right hemisphere of the brain using a 1ml syringe fitted with 26G 3/s"
needle. The needle was sheathed to expose a 2mm length to ensure that
inoculum was delivered into the right mid temporal cortex. Injected
animals were placed in revival cages and carefully monitored for adverse
reaction to the injection procedure. Any animal showing immediate adverse
reaction to the anaesthetic or injection procedures was humanely culled

using a Home Office approved Schedule 1 procedure. Where possible the
culled animal was replaced with another inoculated animal appropriate for
that group, so that group numbers remained constant. Subsequently,
animals found to be clinically TSE affected (scoring regime detailed in

appendix C) or suffering inter-current illness were immediately culled in
accordance with the Animals (Scientific Procedures) Act 1986, using a

Schedule 1 method and brain excised (chapter 2.5).

2.22.4 Karber calculation

The dilution of TSE agent that causes half of the animals within an

experiment to die is known as the infectious dose (ID50). This is calculated
from the number of animals exhibiting clinical and pathological signs of
TSE and rarely falls within a single group therefore statistical analysis is

employed, following the method of Karber (Karber, 1931). The proportion of
animals exhibiting clinical signs of TSE and confirmed TSE pathology is
calculated for each group and applied to the following equation:

ID50 = last dilution group with 100% TSE diagnosis -

(^proportion of animals from 100% positive groups downwards - 0.5)
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The 0.5 value is a constant applied since the final calculation is to find the
dilution at which 50% of animals are affected. The calculation for the

experiment illustration in chapter 1.10 would therefore be:

IDso = -2 - [(1+ 0.75+ 0.5+ 0.25+ 0)-0.5] = -2 - [2.5 - 0.5] =-4

Therefore the dilution at which 50% of animals die is 104, thus the original

20pl inoculum contains and ID5o of 104, or 104 infectious units.

2.23 Preparation of murine genomic DNA from tail tissue

Mice required for breeding and experimental animals were evaluated to

confirm genotype was homozygous 101PP or 10ILL. Tails of live animals
were taken after induced anaethesia using 3% fluothane delivered in

oxygen. For each animal, two l-2cm sections were removed from the tail tip

using a fresh, sterile, flamed scalpel (to cauterise the tail), and placed into a

clean microcentrifuge tube and stored at -20°C. One section of tail was
treated using the following solutions to extract DNA: 800pl of tail lysis
solution (15mM sodium acetate, 1% SDS, ImM Tris (pH8), ImM EDTA) plus
PK at 200pg/ml incubated overnight at 37°C or for 2-3 hours at 64°C,

shaking; lysate was mixed with 600pl of phenol (Qbiogene)/chloroform

(BDH) (1 part AquaPhenol (pH 8) : 1 part chloroform) for 1 minute and

centifuged at 16,000g for 5 minutes at room temperature.

600jil of the aqueous top layer was placed into a clean microcentrifuge
tube, mixed with 20pl of 3M sodium acetate plus 600pl isopropanol (Fisher)
and incubated at room temperature for 10 minutes.

DNA was collected by centrifugation at 16,000g for 2 minutes. The pellet
was washed in 500pl ice cold 70% ethanol (v/v in dLbO) and re-pelleted (as

before). DNA was resuspended in lOOpl dFhO and stored at +4°C.
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2.24 PrP genotyping of experimental animals

Genotype of experimental animals was confirmed by polymerase chain
reaction (PCR) amplification of the PrP open reading frame (ORF) and

enzymatic digest of the product. Mice were also screened for the PrP null
allelle using PCR amplification only.

2.24.1 PrP ORF amplification

All reagents sourced from Invitrogen unless otherwise stated. Mouse

genomic DNA (lpl per reaction) was amplified using oligonucleotides I (5'-

gtg get ggg gac aac ccc-3') situated in the ORF and II (5'-gcc tag acc acg aga

atg cg-S') situated in the 3TJTR, to produce a 756bp product. Each reaction
contained lx PCR buffer, 0.03mM MgCl, 0.2mM di-nucletide triphosphates

(Promega - ready mixed solution of ATP, CTP, GTP and TTP), 50pmol

oligonucleotide (MWG Biotech AG) and 2 units Taq DNA polymerase

(recombinant). Each reaction was cycled using a Biometra T3 Thermocyler,
94°C for 3 minutes (1 cycle), 94°C for 30 seconds/62°C for 30 seconds/72°C
for 30 seconds (30 cycles), 72°C for 10 minutes (1 cycle), hold at 4°C.

2.24.2 Restriction digest identification of proline/leucine alleles

Restriction digest reagents sourced from Promega. The leucine allele was

identified by the presence of an extra Ddel restriction site in the PrP ORF.
The amplified PCR products were incubated with Ddel restriction enzyme,

which recognised the restriction site: 5' CTTNA G 3'

3' GANT^C 5'

DNA carrying the 10IP allele was cleaved producing two fragments of 152
and 613 bp, DNA carrying the 101L allele produced three fragments of 152,
49 and 564 bp (figure 2.6). Each reaction was incubated in lx buffer D

(supplied as lOx solution 60mM Tris HC1 pH 7.9, 1.5M NaCl, 60mM MgCh,
lOmM DTT), O.lmg/ml BSA and 1-10 units of enzyme (lOOpl final volume)
at 37°C for at least 2 hours. Reactions were mixed with 4x loading buffer

(0.25% bromophenol blue in 15% ficoll) and run on a 1% agarose gel in 0.5x
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TAE buffer (0.2M Tris, 5.71% acetic acid (v/v), 50mM EDTA (pH8))

containing 0.6mM ethidium bromide (lOmM stock tablet dissolved in dkhO).

Intron 1

Fxon 1 Exon ?

1 5'UTR ORF 3'UTR

r

\
Exon 3

765

H

i

i152 613
1

i

,152

1

49

1

564

iii i

PCR

Proline

Leucine

Figure 2.6 Identification of proline and leucine alleles in PrP open reading frame

2.24.3 Null allele identification

The null allele consists of a neomycin cassette inserted into Prnp at the

unique Kpnl site to disrupt PrP production (Manson et al., 1994a). The
null allele was identified by amplifying the neomycin cassette using

oligonucleotides III (5'-ttg age ctg gcg aac agt tc-3'J and IV (5'-gat gga ttg cac

gca ggt tc-3') (figure 2.7). Each PCR reaction contained PCR buffer,
dinucletide triphosphates, and oligonucleotides as previously described
(chapter 2.24.2). Taq polymerase was added at 1 unit per reaction. Each
reaction was cycled at, 94°C for 3 minutes (1 cycle), 94°C for 30
seconds/62°C for 30 seconds/72°C for 1 minute (30 cycles), 72°C for 10
minutes (1 cycle), hold at 4°C. This reaction did not require restriction
digest. The 1.2kb PCR product was visualised using 1% agarose gel as
before (chapter 2.24.2).
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Intron 1

Figure 2.7 PCR amplification of murine null allelle

2.25 Measurement of PrP using DELFIA

DELFIA (Dissociation Enhanced Lanthanide Fluorometric ImmunoAssay)

separates PrP according to solubility in two different concentrations of
Guanidine hydorchloride. In 1M Guanidine HC1 PrPc is soluble and PrPSc
insoluble thus can be separated using differential centrifugation. The
amount of PrP in each fraction is measured using an ELISA-based

technique. PrPSc is solublised in 6M Guanidine HC1 to allow measurement.

The percentage of insoluble PrPSc is then calculated for each sample. This
method was performed by D. King (NPU, Edinburgh) and was adapted from
the method shown to detect picogram amounts PrPSc in BSE-infected cattle

(Barnard et al., 2000). All reagents and equipment were sourced from
Perkin-Elmer unless otherwise stated.

2.25.1 Separation of soluble and insoluble PrP

One volume of 10% brain homogenate in sterile PBS (chapters 2.6.1 &

2.22.2) was added to an equal volume of 2M Guanadine HC1 (Fluka

Biochemicals) then tris buffer and Triton X-100 were added to give 50mM
and 1% final concentrations, respectively. This mixture was homogenised
on ice using 20-30 strokes of a pre-cooled centrifuge-tube pestle. One
volume of NP40 buffer was added (1% NP40, 0.5% sodium deoxycholate,
150mM NaCl, 50mM Tris HC1 [pH7.5]) and the mixture further homogenised
using the centrifuge-tube pestle. Assay buffer was added to give 1ml final
volume and the mixture thoroughly vortexed for 2 minutes. Centrifuging at
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16,000g for 10, separated PrP into detergent soluble (supernate 1) and
insoluble (pellet 1) fractions. The pellet was resuspended in two volumes of
6M Guanidine HC1 and assay buffer added to give 1ml final volume.

Centrifugation at 16,000g for 5 minutes in a bench-top centrifuge allowed
the previously insoluble PrP to be collected in supernate 2.

2.25.2 Measurement of detegent soluble and insoluble PrP

All incubations were performed at room temperature, under constant

agitation and all wells were filled with 200pl solution, unless otherwise
stated. The ELISA procedure outlined below is depicted in figure 2.8.

Capture antibody, FH11 (appendix B - sourced from IAH resource centre,

Compton, UK) at lpg/ml in PBS was used to coat a 96-well DELFIA
microtitration plate, the plate refrigerated (+4°C) overnight. Unbound

antibody was removed using an automated programme for DELFIA
Platewasher 1296-026, then washed once with lx wash buffer (diluted from
25x stock). (Waste brain homogenate and wash solutions were captured in
a sealed bottle and treated with chlorine solution at 20,000 parts per

million before disposal.) Non-specific antibody binding sites were blocked

using sterile 2% BSA solution (Sigma) (in PBS plus a few grains of sodium
azide - store at +4°C) for 1 hour. Wash as before.

Figure 2.8 Capture and detection of PrP using DELFIA

As a blank, assay buffer was placed in the first two wells of each plate to
normalise background signal. Recombinant PrP (provided by Dr I Sylvestre,
IAH; Compton, UK) was diluted ten-fold in assay buffer (2000ng/ml down to

PrP

Europium

8H4 detection antibody

FH 11 capture antibody

+ enhancement solution
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0.2ng/ml, or 400ng to 40pg rPrP per well) to produce a standard curve.

Soluble and insoluble PrP fractions were loaded as neat solution in

duplicate. Each plate was then incubated for one hour. Plates were

washed in automated platewasher and europium-labelled 8H4 antibody

(chapter 2.2) was added and incubated for exactly one hour. Unbound

antibody was removed by washing six times in lx wash buffer in

platewashwer. Enhancement solution was added and the plate was

incubated for 5 minutes. This allowed europium to dissociate from the 8H4

antibody, the luminescence of free europium was then measured using a

Perkin-Elmer plate-reader (Victor2 1420 Multilabel Counter) fitted with

appropriate filter. WorkOut software was used to subtract background

signal from each sample and standard. Sample concentrations were

calculated from the resultant stantard curves. The percentage of insoluble
PrP was calculated as;

(PrP Concentration in supernate 2) x 100

(PrP concentration in supernate 2) + (PrP concentration in supernate 1)
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3. Identification of differing brain PrPSc levels
in murine TSE models

3.1. Introduction

It has been demonstrated that in TSE-infected brain PrPSc correlates with

infectivity (Bolton et al., 1982; McKinley et al., 1983; Prusiner, 1982), however
this relationship is not straightforward and is not clearly understood. In
certain tissues, the presence of PK-resistant PrPSc does not correlate with

infectivity. In brain, PrPSc is detected before infectivity increases however in

spleen, PrPSc was reportedly detected after the increase of infectivity titre

(Farquhar et al., 1994) and infectivity has been detected in the absence of PrPSc
in spleen (Czub et al., 1986a). Moreover, TSE models have been described
where clinical disease occurs in animals yet PK-resistant PrPSc is not readily
detectable in brain (Foster et al., 2001a) and disease transmission has been

reported in the absence of PK-resistant PrPSc (Lasmezas et al., 1997; Manson et

al., 1999; Onodera et al., 1993)(chapter 1.9).

The murine P101L model exhibits low levels of PK-resistant PrPSc in the brain

at disease end-point when infected with human GSS (Manson et al., 1999) or
hamster 263K inoculum (Barron et al., 2001). The titre of infectivity is
unknown in these animals however TSE disease can be transmitted from brain

in short incubation times (chapter 1.9). While short incubation times would
indicate a high titre of infectivity, low PrPSc levels suggest that titre of infectivity

may be low. The correlation between PrPSc and infectivity in brain has not been
defined in these models.

Host Prnp genotype and route of inoculation are known to influence TSE
disease. Depending on the Prnp genotype of the murine host (Prnp-a, Prnp-b or

Prnp-a/b allelles), each TSE agent produces disease with different incubation
times (Bruce et al., 1994; Carlson et al., 1986; Dickinson, Meikle & Fraser,
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1968; Moore et al., 1998) (table 1.1). Moreover in brain, the degree and

targeting of vacuolar pathology and PrP deposition differ depending upon Prnp

genotype (Moore et al., 1998) and the titre of infectivity varies (Carp &

Callahan, 1986; Kimberlin & Walker, 1979). The route of inoculation also
affects the degree and targeting of disease-associated pathology (Carp &

Callahan, 1986; Kimberlin & Walker, 1978)(chapter 1.7). In order to study the

relationship between PK-resistant PrPSc and infectivity it is therefore necessary

to control for PrP genotype and the route of inoculation.

The studies in this thesis aimed to define the correlation between infectivity
and PK-resistant PrPSc by comparing the P101L model of TSE disease that
exhibited low levels of PrPSc in brain, with TSE models that exhibited high and
intermediate levels of PrPSc. The studies performed in this chapter therefore
identified murine models of TSE, with similar genetic backgrounds, that
exhibit high, intermediate and low PrPSc levels in brain at disease end-point. A

range of TSE strains passaged in mice homozygous for Prnp-a or Pmp-b, were
examined to assess the differing amounts of PrPSc produced at disease end-

point in infected mice. Only models with TSE delivered via the intracerebral
route were investigated.
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3.2. Methodology

3.2.1. Immunoblot of PrPScin infected animals

Brain was flash frozen in liquid nitrogen and stored at -70°C prior to

analysis. Homogenate was prepared as 10% detergent homogenate (chapter

2.6.1), or as 5% detergent homogenate (chapter 2.6.2) from 10% sterile
inoculum (chapter 2.22.2). One aliquot of detergent homogenate was

proteinase-K (PK) treated (chapter 2.7.2). PK-treated and untreated brain
was diluted to 1% homogenate in 2x SDS-PAGE loading buffer and lOx

sample reducing agent (Invitrogen), electrophoresed and immunoblotted as

described (chapter 2.12). PrP was probed using monoclonal antibody 8H4

(chapter 2.2 8s (Zanusso et al., 1998)) and visualised using horseradish-

peroxidase (HRP) conjugated rabbit a-mouse secondary antibody and POD

(peroxidase) substrate (Roche) or West Dura substrate (Pierce) (chapter

2.12.1).

The infected murine models that were chosen as likely candidates for
further study in this thesis, were re-examined using the polyclonal

antibody, 1B3 (chapter 2.2 & (Langeveld et al., 1993)) and visualised using

goat a-rabbit secondary antibody (HRP-conjugated) and POD substrate.

In order to relatively measure PrPSc levels in the different models

investigated, an arbitrary scale of the level of PrPSc found in PK-treated end-

point brain from each model was assigned. Scores ranged from zero to

three, three indicating a high level of PrPSc.

3.2.2. Immunoblot of PrPcin uninfected animals

5% detergent homogenate was prepared as detailed previously (chapter

3.2.1). Uninfected 101PP and 10ILL brain homogenate was serially diluted
in PBS then diluted in SDS-PAGE loading buffer and sample reducing agent

(chapter 3.2.1) for immunoblot. Homogenate was loaded at either bio to

b320, or at b5, b75) i/10 and b20 of the original 5% homogenate.
Recombinant PrP (rPrP) was loaded at 50ng per well (chapter 3.2.4). PrP
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was probed using monoclonal antibodies 8H4 or 7A12 (chapter 2.2 &

(Zanusso et al., 1998)) then visualised as before (chapter 3.2.1).

3.2.3. GAPDH detection

One blot was stripped after PrP visualisation (25mM Glycine, 1% SDS (pH2),
membranes washed 2x 10 minutes then 2x 5 minutes with TBS-tween) and

re-probed using a-GAPDH antibody (chapter 2.2) to detect glyceraldehyde 3-

phosphate dehydrogenase. GAPDH is a ubiquitious protein thus was used
as a control to assess the loading of equivalent amounts of protein from
each sample. Visualisation of GAPDH was achieved using secondary

antibody and substrate as before (chapter 3.2.1),

3.2.4. Recombinant PrP loading control

In order to quantify PrPc in each sample and to normalise each immunoblot,
recombinant PrP was loaded into one well of each immunoblot.

Recominant PrP (gift from Dr I Sylvester, IAH, Compton, UK) was diluted to

give 10ng/pl stock concentration (in dH20) and was stored at -70°C. Five
microlitres of the stock was added to the loading reaction (lOpl 2x loading

buffer, 2pl lOx reducing agent and 3pl dH20 to give 20pl total) and 20pl per
well was loaded after denaturing.
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3.3. Results

3.3.1. PrPSc levels in different rodent models vary at end-point

PrPSc levels were assessed from different murine models, expressing
different Prnp alleles, in order to assess the variability of PK-resistant PrPSc
between models. Using the monoclonal antibody 8H4, a range of PrPSc
levels was found in PK-treated brain homogenate from the murine ME7,

139A, 79V, 22A, 301C and hamster 263K models investigated. Murine TSE

agents 79V and 22A were propagated in the VM strain of mice expressing
the Prnp-b allele, whist the others were propagated in SV mice, which

express the Prnp-a allele. Although PrPSc levels were not quantified in
absolute amounts, relatively high PrPSc levels were found in hamster 263K
and in murine ME7, 139A and 22A models, and intermediate PrPSc levels
were found in 79V and 301V strains (figure 3.1). The amount of PrPSc in
brain was not found to differ in models expressing Prnp-a or Prnp-b alleles

suggesting that these genetic differences do not affect the accumulation of
PrPSc during disease.

Importantly for these studies 263K or GSS-infected 10ILL mice had

previously demonstrated low PrPSc levels in brain (Barron et al., 2001;
Manson et al., 1999). 10ILL mice contain a gene targeted single point
mutation within the Prnp gene. This proline to leucine change is present at
amino acid residue 101. To minimise mouse Prnp background differences,
TSE-infected 10ILL mice were compared to wild type 129/Ola mice. These
mice contain the same Prnp-a allele as 10ILL mice except they contain the

proline amino acid at residue 101.

Not all of the TSE agents previously investigated were available for study in

129/Ola mice. ME7 and 139A-infected SV mice had produced high PrPSc
levels and were found to produce high levels of PrPScin 129/Ola mice (figure

3.2A&B). Intermediate PrPSc levels had been found in 30 lC-infected Prnp-a

mice, however this agent was not passaged in 129/Ola mice at the time of

investigation. Intermediate PrPSc levels had also been found in 79V-infected

Prnp-b mice, however this agent was not available in 129/Ola mice.
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Instead, 79A, which has the same drowsy goat origin as 79V (Kimberlin et

al., 1989), was available therefore the PrPSc level in 79A-infected 129/Ola
mice was assessed (figure 3.2B).

3.3.2. 129/Ola mice exhibiting high PrPSc levels

ME7-infected 129/Ola mice were previously shown to have high PrPSc levels
in brain, and developed disease with a mean incubation time of 161 days,
around the same incubation time as reported for other ME7-infected Prnp-a
mice (Manson et al., 1999). When investigated here, ME7-infected 129/Ola
mice expressing the 101PP allele (ME7/ 101PP) were also found to have high
PrPSc levels in brain when detected using monoclonal antibody 8H4 (figure

3.2A). In 139A-infected 129/Ola mice, also detected using 8H4, PrPSc levels
were found to be high in brain (figure 3.2B), corresponding to the high PrPSc
levels found in 139A-infected SV mice (figure 3.1).

PK+

38—

28—

Figure 3.1 PK-resistant PrPSc levels in end-point brain from various rodent TSE models
Immunoblot of PrPSc levels found in PK treated (20|jg/ml final concentration) end-point brain
homogenate from infected models of TSE. PrPSc levels in PK-treated brain from SV mice
(ME7, 139A, 301C), VM mice (22A & 79V) and 263K infected hamster. Brain homogenate
loaded as 1% homogenate for electrophoresis and PrPSc detected using monoclonal antibody
8H4 (chapter 2.2). Visualised using rabbit a-mouse secondary antibody (chapter 2.3) and
POD substrate (chapter 2.9). Chemiluminescence was captured on X-ray film after 5
minutes exposure.

The mean disease incubation times of 139A/101PP mice were similar to

that of other Prnp-a mice, at 147 days (table 3.1 & (Barron et al., 2003)).
Brain homogenate from only one animal per model was investigated for
PrPSc level since ME7 and 139A TSE agents have been shown to be stable
and to exhibit consistent PrPSc deposition and pathology over many

passages through Prnp-a mice (Bruce, 1985a). The infectivity titres of
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ME7/101PP and 139A/101PP mice were not known but would be expected
to give high titres of infectivity 108 - 109 ifu (infectious units)/g (Carp &

Callahan, 1986; Taylor et al., 2002). If PrPSc is the infectious agent of TSE,
then high PrPSc levels in these models should equate to high infectivity
titres.

3.3.3. 129/Ola mice exhibiting low PrPSc levels

129/Ola mice expressing the 10ILL allele had been reported to contain low
PrPSc levels in brain, when infected with human GSS and hamster 263K

inoculum (Barron et al., 2001; Manson et al., 1999). These models have not

been well characterised therefore PrPSc levels in three individual 263K-

infected 10ILL mice (263K/101LL) were examined using monoclonal

antibody 8H4. PrPSc levels differed in individual animals. In 263K/101LL

(1), a distinct band could be detected at around 30kDa (figure 3.2C, lane 2)
whereas in 263K/101LL (2) and (3), no PrPSc could be detected (figure 3.2C
lanes 4 and 6). The failure to detect PrPSc in 263K-infected mice is not a

reflection on the ability of the antibody to recognise the TSE agent, since
Prpsefrom 263K-infected hamsters was detected using 8H4 (figure 3.2C lane

8).

PrPSc levels in brain homogenate from two individual GSS-infected 10ILL
animals (GSS/ 10ILL) were also investigated using 8H4. Both animals were

found to contain no detectable PrPSc however the result from only one

animal is shown here (figure 3.2D). This data confirms that little or no

detectable PrPSc is found in GSS/101LL and 263K/101LL mice at disease

end-point as previously described (Barron et al., 2001; Manson et al.,

1999).

3.3.4. 129/Ola mice exhibiting intermediate PrPSc levels

79A-infected 129/Ola mice (101PP) were assessed for PrPSc level and were

found to contain less PrPSc compared to ME7 and 139A-infected 101PP mice

(figure 3.2B). The infectivity titre of this model was not known but if PrPSc is
the infectious agent, infectivity titre would be expected to be lower than that
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Figure3.2PrPSclevelsin129/OlamiceinfectedwithdifferentstrainsofTSEagent Identificationofhigh,intermediateandlowPrPSclevelsinPK-treatedbrain(20|jg/mlfinalconcentration)frominfected129/Olamice.1%brain homogenateloadedfrom(A)ME7-infected101PPand101LLmice,(B)139Aand79A-infected101PPmice,(C)threeseparate263K-infected101LL mice(263K)comparedwith263K-infectedhamster(Ha),(D)GSS-infected101LL(courtesyofDKing),detectedusingmonoclonalantibody8H4 (chapter2.2).(E)verificationofPrPSclevelsinME7-infected101PPand101LLmiceandtwoseparate263K-infected101LLmice,detectedwith polyclonalantibody1B3(chapter2.2).PKuntreatedbraininlanesmarkedPK-treatedbraininlanesmarked(A)to(C)&(E)PrPwasvisualised usingHRP-conjugatedsecondaryantibody(goata-rabbitwith1B3andrabbitct-mousewith8H4)andPODsubstrate(Roche),chemiluminescentsignal wasdetectedonX-rayfilm(Roche)after3-10minutesexposure.(D)PrPwasvisualisedusingrabbita-mousesecondaryantibody(chapter2.3)and WestDurasubstrate(Roche),chemilluminescencewascapturedusingKodakImager.



of ME7 in 101PP mice but higher than those of GSS or 263K-infected 101LL
mice. ME7-infected 10ILL mice (ME7/101LL) had been reported to exhibit
less PrPSc than found in ME7/101PP mice (Manson et al., 1999). Due to the

reported stability of the ME7 agent in Prnp-a mice (Bruce, 1985a) the
amount of PrPSc was investigated in one ME7-infected 10ILL mouse brain

using 8H4 monoclonal antibody. An intermediate PrPSc level was found in
this model (figure 3.2A), confirming the previously published data. The titre
of infectivity in ME7/101LL mice was not known, however, given that PrPSc
levels were less than found in 101PP mice infectivity titres may be lower in

ME7/10 ILL mice than in 101PP mice, if PrPSc is the infectious agent.

3.3.5. PrPSc level may not correlate with infectivity or short incubation time

Infectivity titres in brain taken from hamster 263K, murine ME7 and 139A
models are reported to be 108 to 109 infectious units per gram (ifu/g) (table

3.1) and this appears to correlate to the high levels of PrPSc detected in these
models. However, 301C, 22A and 79V have reported titres of 105-5 to 106

ifu/g (table 3.1) and although 301C and 79V PrPSc levels are lower, 22A
PrPSc levels appear to be as high as 139A. Although a detailed quantitative
assessment was not performed here, this discrepancy appears contradictory
to the hypothesis that high PrPSc levels correlate with high infectivity titres.

Another feature of TSE disease is that there is an inverse relationship
between infectivity titre and disease incubation time (Kimberlin & Walker,
1978; McKinley et al., 1983). By definition if PrPSc level correlates with

infectivity titre, high PrPSc levels should correlate with short incubation
times. Studies here demonstrate that this relationship is generally followed,
where models exhibiting highest PrPSc levels have shortest incubation times.
However, 301C and 22A models have similar incubation times yet 301C-
infected mice exhibit less PrPSc than 22A-infected mice (table 3.1, data
above line). In the P101L models, the general trend of high PrPSc levels

associating with short incubation times is also followed however there are

two exceptions (table 3.1, data below line). 79A-infected 101PP mice exhibit
intermediate PrPSc levels yet have the shortest incubation times of the
129/Ola mice studied here and GSS-infected 10ILL mice have a shorter
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TSEstrain

Mousegenotype
Infectivity(ifu/g)a
Incubationtime(days)b

ArbitraryPrPSc levelc

ME7

Prnp-a

108

160$

+++

139A

Prnp-a

to8-6*

150$

+++

301C

Prnp-a

106*

210$

++

22A

Prnp-b

105-5*

200$

+++

79V

Prnp-b

105-5*

280$

++

263K

hamster

109

65$

+++

ME7

Prnp-a101pp

nd

161§

+++

139A

Prnp-a101pp

nd

1471

+++

79A

Prnp-a101pp

nd

1391

++

ME7

Prnp-a101LL

nd

338§

++

GSS

Prnp-a101LL

nd

288J

+/-

263K

Prnp-a101LL

nd

374;

+/-

Table3.1WesternBlotofPrPSclevelsinmurinemodelsofTSE
cMeasuredbyimmunoblotusing8H4monoclonalantibody(figures3.1&3.2). 3Publishedinfectivitytitres,ME7(Taylor,McConnell&Ferguson,2000);139A(Carp&Callahan,1986),87Vand301V(Tayloretal.,1997), Hamster263K(Czub,Braig&Diringer,1988).*Neuropathogenesisunit,unpublisheddata.

bPublishedincubationtimes$(Bruce,1985a),§(Mansonetal.,1999),1(Barronetal.,2003),s(Barronetal.,2001) Note:Prf£clevelandinfectivitytitresarerepresentativeofeachmode!andwerenotmeasuredfromthesamebrain



disease incubation time than ME7-infected 10ILL mice even though the former
model exhibits less PrPSc. Therefore, while shorter incubation times are

indicative of high PrPSc levels and high infectivity titers, data here indicates
that the relationship between these parameters does not occur in every TSE
model.

3.3.6. PrPc expression in uninfected 101PP and 101LL mice

Different levels of PrPc expression affect disease incubation time and the rate of
PrPSc accumulation during the disease process (Manson et al., 1994b). The

possibility therefore arises that lower PrPSc levels found in infected 10 ILL mice

may be an intrinsic property of these animals if PrPc is not expressed at wild-

type levels. Previous investigation of PrPc levels in 101PP and 10 ILL mice had
detected less PrPc in 101LL than in 101PP mice (Manson et al., 1999) therefore
PrPc levels in brain of uninfected 101PP and 10ILL mice were re-examined.

Brain homogenate was serially diluted to assess whether the limit of detection
of PrPc was the same from both models. Using the monoclonal antibody, 8H4,

equivalent amounts of PrPc were detected in brain homogenate from both lines
of mice (figure 3.3A). PrPc from 10ILL and 101PP mice was detected at an

equivalent limiting dilution of 0.03125% of brain homogenate, or 6.25pg brain

equivalent (figure 3.3A). An anti-GAPDH antibody, detecting ubiquitous

glyceraldehyde 3-phosphate dehydrogenase, indicated equivalent protein was

loaded in each lane (figure 3.3 B). (GAPDH is a multifunctional, house-keeping
enzyme involved in DNA repair and replication, mRNA regulation, tRNA export,
neuronal apoptosis and in glycolysis and gluconeogenesis. It is constitutively
expressed at high levels in most tissues therefore was considered to be a good
loading control).

In contrast to the findings of equivalent levels of PrPc in 101PP and 10ILL mice
it was previously demonstrated, using the 8H4 antibody, that 10ILL mice
expressed lower PrPc levels than 101PP mice (Manson et al., 1999). Moreover,
differences in secondary structure have been seen between recombinant 10ILL
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and recombinant wild type 101PP protein (Cappai et al., 1999). If the
conformation of 10ILL and 101PP PrPc differs in vivo, the epitopes recognised

by monoclonal antibodies may be differentially exposed in these different

proteins. A more detailed study was therefore performed to futher investigate
the level of PrPc expression in 101PP and 10ILL mice. PrPc levels were

assessed using two monoclonal antibodies that recognised different epitopes,
8H4 and 7A12 (appendix B & (Li et al., 2000)).
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Figure 3.3 PrPc expression is similar in 101PP and 101LL mice

PrPc in uninfected 101PP (wild type) and 101LL mice (A) 101LL and 101PP brain homogenate
loaded in doubling dilutions from a 5% detergent homogenate starting material, ranging from
0.5% to 0.0158% homogenate loaded per well. Recombinant PrP loaded into each well at a
final concentration of 50ng. Probed using 8H4 monoclonal antibody (chapter 2.2). (B) Loading
control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) probed using a-GAPDH
monoclonal antibody (chapter 2.2). PrP and GAPDH visualised using rabbit u-mouse secondary
antibody and West Dura substrate (Pierce). Images were captured using Kodak imager after 15
minute exposure. (C) & (D) 5% detergent homogenate of brain diluted to load at 1% to 0.25%
homogenate per well detected using 8H4 (C) and 7A12 (D) monoclonal antibodies (chapter 2.2),
Markers are at 36 kDa and 30 kDa. Visualised using rabbit u-mouse secondary antibody and
POD substrate (Roche). Image was captured on X-ray film (Roche) after 3 minutes exposure.
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At each dilution of brain homogenate, both 10ILL and 101PP samples had the
same affinity to the 8H4 and 7A12 antibodies (figure 3.3 C & D). This indicates
that residues 90-145 (recognised by 7A12), which includes the first P-sheet
and residues 175-190 (recognises by 8H4), the second a-helix, were

equivalently exposed in PrPc from both models.

(A)
% homog. Dilution from Intensity of detection ng equivalent ng equivalent in 10% homog
loaded 10% homoq 101PP 101LL 101PP 101 LL 101PP 101LL

0.5 1/20 305850 227654 195 145 3901 2903
0.25 1/40 134803 126094 86 80 3438 3216
0.125 1/80 76623 34877 49 22 3909 1779
0.0625 1/160 65421 104721 42 67 6675 10684
0.0313 1/320 50615 43709 32 28 10328 8919

50nq recombinant PrP 78413 78413 50 50
Mean 5650 5500

SD 2912 4011

SE 1302 1794

(B) Equivalent PrPc levels in 101PP and 101LL brain

8000

■£ 6000
OJ
re

■| 4000
8"
Ol
= 2000

0

101PP 101LL

Figure 3.4 Measurement of PrPc expressed in 101PP and 101LL mice
Densitometric analysis of PrPc in uninfected 101PP and 101LL brain as represented in figure
3.3A. (A) Intensity of detection of each protein band by Kodak image analysis (chapter 2.10)
expressed as number of pixels. At each dilution loaded, the pixel intensity is converted to ng of
PrP using a known 50ng recombinant PrP (figure 3.3A lanes 7 & 14). The amount of PrP is
calculated for 10% homogenate loaded at each dilution. Each sample loaded will have a margin
of error due to dilution or loading errors during the experimental process therefore the mean
and standard error for the samples on the immunoblot is calculated. (B) Graphical
representation of mean ng PrP in each brain homogenate loaded.
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Differences in PrPSc levels in 10ILL-infected animals would therefore not be

caused by inefficient disease propagation due to reduced levels of PrPc. No

gross differences in PrPc level between 101PP and 10 ILL mice was seen after

visual assessment of the immunoblot (figure 3.3A) and this was confirmed by
densitometric analysis of the data (figure 3.4A&B).

3.3.7. Confirmation of PrPSc levels in murine TSE models

Each model investigated here was placed into a high, intermediate or low PrPSc

category by assigning an arbitrary score ranging from one to three based on

8H4 immunoblotting of PrPSc levels. Three indicated a high PrPSc level, two an

intermediate PrPSc level and one indicated low PrPSc levels. This ranking

provided a relative assessment of PrPSc level in each model and was particularly

appropriate for the TSE-infected 129/Ola mice that were considered for further

study (table 3.1). 8H4 detection ranked ME7-infected 101PP mice

(ME7/101PP) with high PrPSc levels (+++), ME7-infected 101LL mice

(ME7/101LL) with intermediate PrPSc levels (++) and 10ILL mice infected with
hamster 263K (263K/101LL) or human GSS (GSS/101LL) inoculum with low,
or non-detectable PrPSc levels (+/-). The prion hypothesis suggests that the
PrPSc associated with each strain of TSE must exist in different conformations

(Aguzzi, 1998; Safar, 1996). It is thought that these conformational differences
account for the different strain characteristics (disease incubation time,
distribution and intensity of TSE-associated pathology and infectivity titre) of
each strain of agent. To take into account possible conformational differences
of PrPSc in the particular models investigated here, PrPSc levels were confirmed
in brain homogenate using the polyclonal antibody, 1B3 (appendix B &

(Langeveld et al., 1993)). One animal from the high and intermediate models
and two animals from the 263K low PrPSc model were assessed (ME7/101PP,

ME7/101LL, 263K/101LL (a) and (b)) and were shown to exhibit the same

levels of PrPSc as seen with 8H4 (figure 3.2E). These are the models chosen for
further study and are indicated in the shaded boxes of table 3.1.

78



3.4. Discussion

Previous studies showed that PrPSc correlated with infectivity in brain and this
correlation appears strongest in models of TSE where PrPSc is found in
abundance (Bolton et al., 1982; Czub, Braig & Diringer, 1986b; De Armond et

al., 1989). However, several in vivo studies appear to contradict the correlation
of PrPSc and infectivity. These studies describe transmission of TSE disease
from brain in the absence of detectable PrPSc (Barron et al., 2001; Hsiao et al.,

1994; Lasmezas et al., 1997; Manson et al., 1999; Telling et al., 1996) (chapter

1.9). Transmission of infectivity from ovine placenta to mice has also been
described in the absence of detectable PrPSc (Onodera et al., 1993). Therefore
in order to further study the relationship between infectivity and PrPSc level,
murine TSE models were identified that exhibited different amounts of PrPSc in

brain at the end-point of disease, including the models of low PrPSc described

previously (Barron et al., 2001; Manson et al., 1999).

3.4.1. Relative PrP^ levels in different TSE models

Different amounts of PrPSc have been described in different TSE models

depending on the strain of agent and mouse strain used. A previous study

(Kuczius 8s Groschup, 1999) reported low PrPSc levels in a 22A (Prnp-b) model
and in 263K-infected hamsters, and high PrPSc levels in ME7 (Prnp-a) mice.
Intermediate PrPSclevels were found in 79A (Prnp-a), BSE-infected (Prnp-a) mice

(301C source (Bruce et al., 2002)) and in Chandler-infected Prnp-a mice

(similar passage history to 139A (Kimberlin et al., 1989; Peretz et al., 2001)).
This differed to the studies performed in this chapter, which assigned a

different ranking to the models. High PrPSc levels were found in ME7 and 139A

(Prnp-a) models as well as in 22A (Prnp-b) and hamster 263K models,
intermediate PrPSc levels were found in 79A and ME7/101LL (Prnp-a) models,
and low PrPSc levels were found in GSS and 263K-infected 10ILL (Prnp-a) mice.
Kuczius et al used C57BL/6 and VM95 mice, which express Prnp-a and Prnp-b
alleles, however these mouse strains have different genetic backgrounds to the
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SV and VM mice studied here. The differences in mouse genetic background

may explain the discordant results between these two studies. TSE agents

RML and 139A are of the same origin but the difference in ranking may

indicate that these strains have diverged through different passage histories in
the different laboratories. This is probably due to the influence of different
mouse genetic background upon the selection of TSE strains (Dickinson &

Meikle, 1969). The alternative ranking of the TSE agents between these two

studies may also be a reflection of the different antibodies used in each study,

polyclonal Ra5/7 and monoclonal 3F4 (Kuczius et at) compared with 8H4
monoclonal and 1B3 polyclonal antibodies. These may have differential
affinities to the strains of agent used therefore may detect different amounts of
PrPsc.

A comparative level of PrPSc in brain from different TSE models was required at

this stage of these studies to identify potential models with high, low and
intermediate PrPSc levels. The exact quantification of PrPSc levels in the TSE
models chosen for further study is discussed in chapter 6. To minimise the

genetic background differences and TSE agent differences, four different
murine models were chosen for further study. These comprised of a single TSE

agent in two lines of mice (ME7 in 101PP and 10 ILL mice) and three different
TSE agents in a single line of mice (ME7, 263K and GSS in 10ILL mice). The
ideal situation of three TSE agents in a single line of mice was not available for
this study. Ideally, the five different TSE agents, ME7, 139A, 79A, GSS and

263K, initially studied in Prnp-a mice would have been investigated, however
due to time and space constrains it was not possible to assess the titre of

infectivity in all of these models.

It may have been difficult to tell whether differences in infectivity titre or a lack
of correlation with PrPSc in the chosen high and low models was due to the
effect of strain of TSE agent or the effect of genetic background. The

ME7/ 10 ILL model therefore provided a link between the different lines of mice,
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101PP and 10ILL, and additionally exhibited intermediate PrPSc levels when

compared to the high and low PrPScmodels.

3.4.2. Effect of different genetic background on disease

Different genetic background is a major factor affecting TSE disease (Lloyd et

al., 2001; Manolakou et al., 2001). Even in mice with the same Prnp genotype,

the titre of infectivity and pathological characteristics of a strain of agent can
differ (Bruce & Dickinson, 1985; Carp & Callahan, 1986), therefore it was

important that the genetic background of the models to be compared was kept
as consistent as possible. By studying the ME7 strain of agent in 101PP and
10ILL models, the effect of a single amino acid change in 129/Ola mice was

assessed the upon titre of infectivity and the targeting of pathology. Due to the

gene targeting method employed to introduce the leucine amino acid into

endogenous murine PrP, the specific effect of this amino acid change can be

directly compared in ME7-infected 101PP and 10 ILL models. This amino acid

change has already been shown to affect disease incubation times (Barron et

al., 2001), and disease pathology may differ intrinsically in 10ILL mice causing
lower PrPSc levels to develop in infected 10ILL mice.

Different levels of PrPc expression in 101PP and 10 ILL mice may also explain

why different PrPSc levels are found in infected 101PP and 10ILL mice at

disease end-point. Due to the gene targeting method used to alter endogenous
murine PrP, the mutant PrP gene remains under the control of endogenous
murine promoter therefore the PrPc levels in each model should be the same.

Densitometric analysis of brain homogenate from uninfected 101PP and 10 ILL
mice found that there was no difference in PrPc level in this study. These
results differ from those described previously where PrPc levels in 10ILL

appeared lower than in 101PP (Manson et al., 1999). Manson et al used the
same 8H4 monoclonal antibody as used here, therefore the different results are

not due to the use of different antibodies. Manson et al used a polyclonal

antibody (1A8) to confirm their findings and suggested that differential

antibody affinity may be responsible for the difference in PrPc detection
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between the mice. However a second monoclonal antibody (7A12) used in this

study did not identify any differences between 101PP and 10 ILL antibody

affinity and confirmed the 8H4 result found here. There were differences in the

preparation and loading of brain homogenate for immunoblot, which may

account for the differences seen between the results here and those of Manson

et al. Unlike the experiments here, Manson et al did not demonstrate

equivalent protein loading on their blots. If the expression of PrPc is equivalent
in 101PP and 10 ILL mice, the reported differences in PrPSc levels between each
line of mice could be due to differences in the stability of PrPc in 10ILL and
101PP mice, or differences in cellular trafficking of PrPc in each line of mice.

The models chosen here for further study were designated, ME7/101PP (high

PrPSc), ME7/10ILL (intermediate PrPSc), 263K/101LL and GSS/101LL (low

Prpsc) Further discussion in this thesis includes the measurements of titre of

infectivity and PrPSc levels in the murine models and the correlation of these

parameters. The number of PrPSc molecules per infectious unit for each

particular model has been addressed and will be discussed in relation to the
correlation of PrPSc level and infectivity. The possibility that the models contain
alternative forms of infectious PrP, other than PrPSc, was also investigated.
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4- Primary pathological characteristics of
high, intermediate and low PrPScmodels

4.1 Introduction

The degree of disease-associated pathology in murine models differs
according to the strain of the TSE agent and the animal host infected

(Bruce, McBride & Farquhar, 1989) (chapter 1.7). Different models display

specific brain pathology that differ in degree and targeting of neuronal loss,

targeting and severity of vacuolation and in type, targeting and severity of
PrP deposition (Bruce et al., 2002; Bruce & Fraser, 1981; Fraser et al.,

1989; Jeffrey et al., 1997; McBride et al., 2001). The specific targeting of the
different pathologies can be investigated at disease end-point (Bruce et al.,
1994; Wells & McGill, 1992). Moreover, by culling animals at specific time-

points throughout an experiment the targeting and progression of pathology
during disease can be investigated, providing an insight into the spread of

pathology during TSE disease and how the different pathological events may
be linked (Beekes, McBride & Baldauf, 1998; Jeffrey et al., 2001). The use

of rodent models has allowed a better understanding of the nature and

sequence of pathology during disease, however, it is still not clear what
pathological event(s) actually kill the TSE-infected host.

It has been suggested that PrPSc is the infectious agent of TSE (Prusiner,
1982), however it is not clear whether the PrPSc protein is the cause of the
vacuolation, neuronal loss and astrocytic pathologies associated with TSE.
PrP deposition has been found in association with neuronal loss, and
vacuolar change, and has been found to precede these pathologies (Jeffrey
et al., 2000; Jeffrey et al., 2001). Astrocytic gliosis has been correlated with
diffuse PrP deposition in 263K-infected hamsters (DeArmond et al., 1987)
therefore strongly linking brain damage to the accumulation of PrP. In
ME7-infected SV mice (Prnp-a genotype), gross neuronal loss can be
detected under light microscopy (Scott & Fraser, 1984). Examination of the

hippocampus, reveals a 50% loss of the hippocampal CA1 pyramidal cell
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layer as well a shrunken hippocampus in comparison to that of uninfected
animals (Jeffrey et al., 2001; Scott & Fraser, 1984). Neuronal loss was

found to correlate with PrP deposition and with vacuolation in the ME7
model (Jeffrey et al., 2000).

The correlation of PrP deposition with areas of vacuolation has been
described in the thalamus and hippocampus of 263K-infected hamsters at

disease end-point (DeArmond et al., 1987), and in the CA2 region of the

hippocampus and the ventral thalamic nucleus of 87V-infected mice (Bruce
et al., 1989). Post-mortem analysis of BSE-affected cattle also indicated a

correlation between vacuolation and PrP deposition (detected as scrapie-
associated fibrils) (Wells et al., 1994), and in sCJD brain, areas of PrP

deposition are found to correlate with vacuolation only in areas where large
amounts of gross pathology was observed (Armstrong, Lantos & Cairns,

2001). At disease end-point, areas of PrP deposition and vacuolation

correlated, however, PrP deposition was found to precede vacuolation at

early stages of disease (Bruce, 1981). This may suggest that areas of PrP

deposition determine areas of vacuolation. Taken together, these

experiments provide evidence arguing that the presence of PrPSc can

determine whether vacuolar pathology, neuronal loss and gliosis occurs in
infected animals.

However, contradictory to the above studies, one study of human sCJD
brain demonstrated that neuronal loss did not correlate with PrP deposition

(Armstrong et al., 2001). This suggests that deposition of PrP may not be
the cause of neuronal degeneration. Moreover, the correlation between PrP

deposition and vacuolation is not always as consistent as described above.
Some natural scrapie, BSE and experimental transmissible mink

encephalopathy (TME) cases have been described where vacuolation is not
abundant at disease end-point yet PrP deposition is detected either by
immunoblot or immunostaining (Wells & McGill, 1992). This has also been
seen in human FFI cases associated with the D178N/129M mutation

(Monari et al., 1994). Conversely, vacuolation but not PrPSc deposition has
been reported in one human GSS case and in transgenic animals

subsequently infected with brain from this case (Telling et al., 1995). This
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has also been observed in goats challenged with natural scrapie (Foster et

al., 2001a). Extensive vacuolation, yet sparse PrP deposition was also seen

in the P101L transgenic model after infection with human GSS (Manson et

al., 1999) and hamster 263K (Barron et al., 2001). It is therefore not clear
whether the disease-associated accumulation of PrP seen in some models is

the true cause of other TSE-associated pathologies such as vacuolation.

The studies detailed in this chapter aimed to investigate whether there was

a correlation between PrPSc deposition and vacuolar pathology in the

GSS/10ILL and 263K/101LL models that displayed low levels of PrPSc in
the brain. The lack of PK-resistant PrPSc detected by immunoblot (chapter 3)
would suggest that disease-associated PrP is not heavily deposited in the
brains of GSS/101LL and 263K/101LL mice thus a high degree of
vacuolation would not be expected in these mice. However, previous data
indicated that brain from 263K/101LL mice is highly vacuolated, despite
the lack of PK-resistant PrPSc (Barron et al., 2001). This appears to
contradict the suggestion that PrPSc is the cause of TSE-associated vacuolar

pathology. Furthermore, it has been shown that the majority of disease-
associated PrP is PK-resistant PrPSc (McBride et al., 2001), thus immunoblot
levels of PrPSc for each model should reflect the amount of disease-

associated PrP detected by immunostaining. Thus, the studies performed
here also aimed to investigate the amount of disease-associated PrP
detected by immunostaining and immunoblot in models exhibiting high, low
and intermediate levels of PrPSc. For each model (ME7/101PP, ME7/101LL,

GSS/101LL and 263K/101LL), disease-associated PrP deposition was

examined in brain from representative animals, using

immunohistochemistry, and the specific targeting of PrP deposition was

identified. The targeting and intensity of vacuolation was also identified in
each model. If PK-resistant PrPSc was the cause of vacuolar pathology, the
models exhibiting low levels of should not exhibit a high degree of
vacuolation.
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4.2 Methodology

4.2.1 Brain tissue examined

129/Ola mice chosen for study are fully described in chapter 3. Whole
brain was excised from terminally ill, clinically positive ME7-infected 101PP
mice and from ME7, 263K and GSS-infected 10ILL mice. Tissue was fixed

and 6pm sections cut as described in chapter 2.19.

4.2.2 PrP deposition

4.2.2.1 Identification of disease-associated PrP

Mouse brain sections (6pm) were immunostained using either polyclonal

antibody 1B3 and biotinylated secondary donkey or goat a-rabbit antibody
or immunostained with monoclonal antibodies 6H4 or 8H4 and biotinylated

secondary rabbit a-mouse antibody (chapters 2.2 & 2.3). Hamster brain
sections were also immunostained, using monoclonal antibody 3F4 and
visualised using biotinylated rabbit a-mouse secondary antibody. Antibody

epitopes are described in appendix B. Diaminobenzine (DAB) substrate was

used for final visualisation in all cases (chapter 2.21). Sections were

examined under light microscopy for PrP deposition seen as a brown stain

against a blue counterstain for neuronal cell bodies.

4.2.2.2 Scoring PrP deposition

In order to compare the targeting of disease-associated PrP deposition
between models, seven different grey matter areas were scored for severity
of PrP deposition. Hippocampus, thalamus, hypothalamus, raphe of
midbrain, vestibular nuclei, cortex and cerebellum were chosen here

because they represented areas of high and low vacuolation therefore
deposition and vacuolation could also be correlated in these areas. The
amount of PrP deposited was scored on a scale of one to four for each
animal examined, four indicating most deposition. The mean score for each
brain area was indicated alongside the vacuolation profile, by a star.
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4.2.3 Vacoulation

Brain sections were haematoxylin and eosin stained (chapter 2.20) to

visualise vacuoles. Sections were examined under light microscopy at xlO

magnification. Vacuolation was scored according to the methodology of
Fraser (Fraser & Dickinson, 1968). Briefly, nine specific grey matter areas

throughout the cerebellum, midbrain and forebrain (detailed in figure 4.1)

Cerebellum Midbrain 2

Score Grey matter criteria

1 A few vacuoles unevenly scattered
2 A few vacuoles evenly scattered
3 Moderate vacuoles evenly scattered
4 Many vacuoles with some confluence
5 Dense vacuolation, confluent

White matter criteria
1 Moderate vacuoles unevenly scattered
2 Moderate vacuoles evenly scattered
3 Dense vacuolation, confluent

Figure 4.1 Brain areas scored for vacuolation and vacuolation scoring regime
Nine grey matter areas scored for vacuolation, 1-Medulla of cerebellum, 2-forth ventricle of
cerebellum, 3-superior colliculus, 4-hypothalamus, 5-thalamus, 6-hippocampus, 7-
paraterminal body, 8-cingulate cortex, 9-anterior cingulate cortex and three white matter
areas; l*-cerebellum, 2*-tegmentum, 3*-pyramidal tract are scored. V-vestibular nuclei. R-
raphe.

were scored on a scale from one to five according to the severity of

vacuolation, five being the most severe and zero or one indicating normal or
non-TSE vacuolation (figure 4.1). Three white matter areas in the
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cerebellum and midbrain were also scored (figure 4.1). White matter is
naturally more vacuolated than grey matter therefore is scored slightly

differently, on a scale from one to three with three indicating most severe
vacuolation and one indicating normal vacuolation (figure 4.1). For
statistical significance, at least six animals per group were scored. The
mean score of each group was plotted and the groups compared.

Brain tissue was removed and fixed by personnel within the animal facility
at the Neuropathogenesis Unit including V Thomson, E Murdoch and S

Dunlop. Further processing, wax embedding and cutting of brain sections
were carried out by S Mack and A Suttie. Vacuolation was assessed and
scored by experienced personnel, A Boyle and W-G Lui.
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4.3 Results

4.3.1 Primary pattern of vacuolation in all models

Vacuolation is a hallmark of TSE and a vacuolation profile is unique and

reproducible for each strain of TSE agent (chapter 1.7). It is thought that
the presence of PrPSc causes vacuolation thus the correlation between these
two parameters was investigated. The targeting and intensity of vacuolation
was therefore investigated in each of the models chosen for further study in
this thesis. Vacuolation profiles were plotted for each model according to

the protocol of Fraser and Dickinson, 1968.

In all the models studied here, ME7/101PP exhibited the most severe

vacuolation. Vacuolation was most severe in grey matter areas, particularly
the thalamus (figure 4.2 A to C). The vacuolation profile for the ME7/ 101PP
model was the same as that previously seen in other strains of mice infected
with ME7 (Bruce, 1985a; Bruce et al., 2002). ME7/101LL vacuolation

(figure 4.2D to F) was less intense than in ME7/101PP (figure 4.2 A to C
and figure 4.3) with most vacuolation seen in the hypothalamus rather than
the thalamus. This indicated that the targeting of ME7 vacuolation in
10ILL mice was different to that found in 101PP mice. In white matter,

vacuolar targeting in ME7/101PP and ME7/101LL brain was similar but
10 ILL mice exhibited lower amounts of vacuolation (figure 4.3).

Despite the lack of detectable PrPSc, GSS/101LL and 263K/101LL models

display the vacuolar pathology associated with TSE (figure 4.2 G to L). In

grey and white matter brain areas 263K/101LL and GSS/101LL mice had
similar intensity and targeting of vacuolation except at the superior
colliculus and hippocampus, where vacuolation was most severe in

GSS/101LL mice (figure 4.3). The intensity of vacuolation was similar in

ME7/101LL, 263K/101LL and GSS/101LL models in grey matter, however
in white matter vacuolation was more intense in the 263K/101LL and

GSS/101LL models in comparison to the ME7/101LL model (figure 4.3).
The severity of vacuolation in brain from each model could therefore be
ranked ME7/101PP > GSS/101LL > ME7/101LL > 263K/101LL.
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In addition, each vacuolation profile was unique to the model studied

indicating that each model contained a different strain of TSE agent

(chapter 1.7).

Figure 4.2 Vacuolation in TSE models

Vacuolation in brain from representative animals of each TSE model (A) to (C) ME7/101PP,
(D) to (F) ME7/101LL, (G) to (I) 263K/101LL, (J) to (L) GSS/101LL. Haemotoxylin and eosin
(H&E) stained coronal brain sections of 5-thalamus (left column), 6-hypothalamus (middle
column), 2-granular layer of cerebellum (right column) (see figure 4.1 for brain area
location). x20 magnification, bar represents 55pm.
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Figure 4.3 Primary vacuolation profiles
Vacuolation profile for each model. (A) Profiles consist of the mean scores of at least 6
individual animals per group. Nine grey matter areas scored for vacuolation, 1-Medulla of
cerebellum, 2-forth ventricle of cerebellum, 3-superior colliculus, 4-hypothalamus, 5-
thalamus, 6-hippocampus, 7-paraterminal body, 8-cingulate cortex, 9-anterior cingulate
cortex and three white matter areas; l*-cerebellum, 2*-tegmentum, 3*-pyramidal tract
were scored.

4.3.2 PrP deposition pattern in ME7-infected mice

To investigate the relationship between disease-associated PrP deposition
and vacuolation the intensity and pattern of PrP deposition was investigated
in each model. The immunohistochemical technique used to detect the

deposition of disease-associated PrP detects partially denatured PrP, which

may retain some conformation. Different conformations of PrP may not be
detected using a single monoclonal antibody therefore brain sections from

representative animals were probed for PrP deposition using two

monoclonal antibodies, 8H4 and 6H4, and the polyclonal antibody 1B3.

When ME7/101PP and ME7/101LL bram sections were stained using

monoclonal antibodies 8H4 and 6H4 the tissue was found to be extremely

fragile and difficult to retain on the slide. Cortex, thalamus, midbrain and

91



medulla of the hindbrain were often the only areas remaining after staining.
Where tissue was retained on the slides staining was observed in thalamus

(figure 4.4G to J), however this lacked the diffuse staining usually seen with
ME7-infected brain (Bruce et al., 1994). This suggested that the

immunostaining technique was not optimal.
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Figure 4,4 PrP deposition in ME7/101PP, ME7/101LL and hamster 263K models
Immunostaining of disease-associated PrP in TSE-infected mouse and hamster brain.
Paraffin-embedded tissue cut at the hippocampal/thalamic level (figure 4.1 - midbrain 1).
(A), (D), (G) & (I) ME7-infected 101PP; (B), (E), (H) & (J) ME7-infected 101LL mice detected
using polyclonal antibody 1A8 (A), (B), (D) & (E), and monoclonal antibodies 8H4 (G) & (H)
and 6H4 (I) & (J). (C) & (F) 263K-infected hamster brain detected with monoclonal
antibody 3F4. (A) to (C) hippocampus/thalamus x 40 magnification; (D) thalamus x20
magnification; (E) to (J) thalamus x 100 magnification.

Due to the difficulty in retaining ME7/101PP and ME7/101LL tissue
sections on slides during staining and due to the scarcity of 1B3 these
tissues were not stained using 1B3.
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ME7~infected brain had previously been stained using polyclonal antibody
1A8 (Manson et al., 1999). A retrospective investigation of these stained
tissues showed the typical ME7 pattern of widespread, diffuse staining

throughout ME7/101PP and ME7/101LL brain, as previously described

(figure 4.4A, B, D & E). Plaque-like PrP depositions were previously
described in the corpus callosum ofME7/101LL after 1A8 staining (Manson
et al., 1999) and these were evident after 6H4 and 8H4 detection (data not

shown). This suggested that 6H4, 8H4 and 1A8 antibodies were similarly

detecting PrP in ME7/101PP and ME7/101LL models. Furthermore, 6H4,
8H4 and 1A8 staining of brain indicated that high levels of PrP were

deposited in ME7/101PP brain and intermediate levels of PrP were

deposited in ME7/ 10 ILL brain. Moreover, higher levels of PrP deposition in

ME7/101PP mouse brain compared to ME7/101LL brain mirrored the
detection by immunoblot of higher PrPSc levels in ME7/101PP than in
ME7 / 10ILL brain homogenate.

4.3.3 Primary pattern of PrP deposition in 263K-infected mice

263K/101LL deposition was examined using monoclonal antibodies 8H4
and 6H4 and polyclonal antibody 1B3, in seven separate animals. The
amount of PrP deposition was less than found in ME7-infected brain and
varied between individual animals, ranging from easily visible to

undetectable at high magnification (figure 4.5A, E & I). PrP deposition in
three animals was easily detected at xlO magnification, but in four animals
PrP was only visible at x40 magnification. Where PrP deposition was

present there was no difference in the distribution, type or intensity of PrP

deposition detected by the 1B3, 8H4 and 6H4 antibodies (compare figure
4.5 B to D with F to H & J to L). Where PrP accumulated in 263K/101LL

brain, a punctate deposition was visible (figure 4.5 A to D) similar to that

previously described for 263K-infected hamsters (figure 4.4 C 8s F).
Punctate PrP was most intense in the thalamic nuclei, hypothalamus,

cortex, raphe of the midbrain and medulla of the hindbrain, as well as in
the vestibular nuclei of the hindbrain (figure 4.6 A to E). However, in some

263K/101LL animals, PrP deposition was not immediately evident therefore
stained tissue was investigated at high magnification. Extremely low levels
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Figure 4.5 PrP deposition in 263K/101LL model
Immunostaining of three individual 263K infected 101LL brains cut at hippocampus/thalamus
level (figure 4.1). (A) to (D) 263K /101LL - brain 1; (E) to (H) 263K /101LL brain 2; (I) to
(L) 263K /101LL brain 3. (A), (B), (E), (F), (I) & (J) stained with monoclonal antibody 8H4;
(C), (G) & (K) stained using monoclonal antibody 6FH4; (D), (Fl) & (L) stained with polyclonal
antibody 1B3. All antibodies used at 1/1000 concentration. (A), (E), & (I) Hippocampus and
thalamus x40 magnification; (B) to (D), (F) to (H) & (J) to (L) thalamus x200 magnification.
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of PrP deposition were seen in the thalamus, raphe and vestibular nuclei of
three animals (figure 4.6 F to H), however another four animals exhibited no

PrP deposition (figure 4.6 I to L). In brain areas where PrP levels were

highest, staining appeared to associate with microglia and with astrocytes.

PrP staining was also seen around blood vessels but was probably
associated with astrocytes surrounding the vessels.

The deposition of 263K in 10ILL mice was reminiscent of that seen in

hamsters, except that the golden, diffuse staining seen in 263K-infected
hamsters was not present. 3F4 detection of 263K in hamsters (6H4, 8H4
and 1B3 antibodies are mouse-derived and do not recognise hamster 263K.
Monoclonal antibody 3F4 recognises the Ml08/Mill epitope in hamsters

(Kanyo et al., 1999; Kascsak et al., 1987) revealed a golden brown, diffuse

deposition throughout the brain, particularly in thalamus, hypothalamus

(figure 4.4C & F), raphe of the midbrain and medulla of the hindbrain. PrP

deposition was visible in association with microglia and astrocytes as well
as neurons, as was characteristic of 263K-infected hamsters (Beekes et al.,

1998) (P. McBride, personal communication). Diffuse staining is a

characteristic of 263K-infected hamsters, however the lack of this staining
in 263K/101LL brain may not be characteristic of the 263K/101LL model.
The variability of PrP deposition identified using immunocytochemistry
mirrored the variability of PrPSc detection by immunoblot. Moreover, PrP

deposition levels were lower in 263K/ 10ILL mouse brain compared to ME7-
infected mouse brain, correlating with lower levels of PrPSc detected in

263K/ 10ILL brain homogenate detected by immunoblot.

95



thalamusraphevestibularnucleihypothalamuscortex
v m

CO CM

.f
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4.3.4 Primary pattern of PrP deposition in GSS -infected mice

GSS/101LL brains from six individual TSE-affected animals were stained

using polyclonal 1B3 and monoclonal 6H4 antibodies. For each brain

investigated, the type, distribution and intensity of deposition was similar
for both antibodies. PrP staining was less severe in GSS/10 ILL mice (figure

4.6) than in the ME7-infected models described previously (figure 4.4). PrP
in GSS/101LL mice was found in a punctate deposition (figure 4.7A & B),
similar to that found in 263K/ 10ILL brain. As with 263K/ 10ILL brain, PrP

staining in GSS/10ILL brain was variable, four animals exhibited visible
PrP and two appeared to have no PrP. Similar to the 263K/101LL model,

staining in GSS/ 10ILL tissues was most intense in the thalamic nuclei, the

hypothalamus, raphe of the midbrain and vestibular nuclei of the
hindbrain. PrP deposition in these areas was punctate but unlike that of

263K/101LL, did not appear to be associated with microglia or astrocytes.
In the two animals where PrP deposition was not readily visible, small PrP

deposits were sometimes visible in the thalamus, raphe and vestibular
nuclei when viewed under x400 magnification (figure 4.7D). Similar to the

263K/ 10 ILL model, positive control sections were stained as expected, thus
diffuse staining may not be characteristic of the GSS/ 10 ILL model.

Low/non detectable levels of PrP deposition were seen in GSS/10ILL brain
sections using the immunohistochemial technique described here. This

compared to low PrPSc levels seen in GSS/10ILL brain homogenates
detected by immunoblot, thus it appeared that the disease-associated PrP

deposited in this model could be PK-resistant PrPSc.

4.3.5 Comparative PrP deposition between models

To compare the relative amounts of disease-associated PrP deposited in
each murine model with the amount of PrPSc detected by immunoblot a

preliminary comparison of PrP deposition was performed across all models.
PrP deposition was assessed in seven different grey matter areas of the
brain, corresponding to five areas where PrP was known to accumulate
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Figure 4.7 Relative PrP deposition in individual GSS/101LL mice
Immunostained brain from GSS infected 101LL mice (GSS/101LL). Sections cut at
hippocampus/thalamus level (figure 4.1) and stained using 6H4 monoclonal antibody. (A) &
(B) GSS/10ILL brain 1; (C) & (D) GSS/101LL brain 2; (E) & (F) GSS/101LL brain 3. (A), (C)
& (E) hippocampus and thalamus x 40 magnification; (B), (D) & (F) thalamus x 100
magnification.
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in the models (thalamus, hypothalamus hippocampus, vestibular nuclei
and raphe) and two areas where PrP accumulation was rarely seen in some

models (cortex and cerebellum). PrP deposition in immunostained brain
sections was scored on a scale of one to four, where four indicated most

intense PrP staining (table 4.1). For a direct comparison of all models it
would have been better to compare all sections stained with the same

antibody however this was not possible here. ME7 deposition in each model
was assessed from lA8-stained sections since 6H4 and 8H4 sections were

incomplete (chapter 4.3.2). No difference in the level or type of PrP

deposition was seen in 263K/ 10ILL or GSS/ 10ILL brain when stained with
either 1B3 or 6H4 antibodies (figure 4.6 & 4.7) thus deposition was

assessed from 6H4-stained sections. The degree of PrP deposition in each
model was therefore ranked ME7/101PP > ME7/101LL > 263K/101LL >

GSS/101LL (figure 4.8). This is the same ranking given to the models
based upon immunoblot PrPSc detection and may indicate that the disease-
associated PrP deposited in these models is indeed PrPSc (chapter 3).

Brain Area ME7/101PP a ME7/101LL 3 263K/101LLb GSS/101LLb

Cerebral
Cortex

++ + + +

Hippocampus +++ ++ + +

Thalamus ++++ +++ ++ +

Hypothalamus ++ + + +++ + ++

Raphe ++++ +++ + ++

Vestibular nuc +++ +++ + ++

Cerebellar
Cortexc

++ ++ 0 0

Table 4.1 Comparison of PrP deposition levels between models
a PrP deposition detected using polyclonal antibody 1A8
b PrP deposition detected using monoclonal antibody 6H4
c
see figure 4.1 for vestibular nuclei (V) and raphe (R) location
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The vestibular nucleus and raphe of infected 10ILL models exhibit

relatively high PrP deposition in comparison to other brain areas (figure

4.7). Thalamic deposition was comparatively high in all models. In the
models where PrPSc levels were low, the thalamus was often the only area

where PrP deposition was visible (figure 4.7C). In ME7/101PP mice PrP
accumulation in vestibular nuclei and raphe was lower than in thalamus.

Although PrP deposition in all areas is higher in ME7-infected mice, it is

possible that primary targeting to the vestibular nuclei and raphe in

263K/101LL and GSS/101LL models facilitates a rapid clinical disease in
the low PrPSc models.

RPdeposition profile
IVE7/101PP —IVE7/101LL -±- 263K7101LL ■ GSSM01LL

Buin area

Figure 4.8 Comparative PrP deposition profiles
PrP deposition profiles in seven different grey matter areas in brain. Four to seven animals
scored for each model. Scores range from one to four, four indicating most severe PrP
deposition. Brain areas scored are cx-cerebral cortex, hc-hippocampus, th-thalamus, hy-
hypothalamus, ra-raphe, vn-vestibular nuclei, c-cerebellum (see figure 4.1 for location).

4.3.6 Comparison of PrP deposition and vacuolation in each model

It is not understood whether PrP deposition results in vacuolar pathology,
however areas of PrP deposition and vacuolar pathology have been
correlated in several TSE models, particularly those where PrP deposition is

high (chapter 4.1). A brief comparison of the vacuolation profiles and PrP
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deposition profiles of the chosen models was therefore performed here. PrP

deposition was examined in grey matter areas where vacuolation was found
to be high or low depending on the model thus deposition in thalamus,

hippocampus, hypothalamus, cerebellum and cortex was plotted alongside
the vacuolation profile for each model (figure 4.9). In ME7/101PP (figure

4.9A), areas of high vacuolation correspond to high PrP deposition and
lower vacuolation corresponded to lower PrP deposition. This correlation
was generally observed in ME7/101LL (figure 4.9B), 263K/101LL (figure

4.9C), and in GSS/101LL (figure 4.9D). More particularly, the association
between vacuolation and deposition was clearly demonstrated in

263K/101LL cortex where PrP accumulated solely around areas of
vacuolation (figure 4.6E). Across all the models studied here, where PrP

deposition was evident areas of PrP deposition and vacuolation were found
to correlate. This is similar to the pathology seen in models where PrP

deposition was high (De Armond et al., 1989) and probably demonstrates
that the general pathology in the low PrPSc model is in keeping with that of
other TSE-models (Jeffrey et al., 2001).

4.3.7 Other disease-associated pathology

ME7/101LL mice showed limited neuronal loss in the CA1 pyramidal cell

layer, which was not as apparent as the neuronal loss in the ME7/101PP
CA1 region (figure 4.4). Hippocampal neuronal loss does not appear to be
an intrinsic pathological characteristic of 10ILL mice since it was not

apparent in GSS and 263K-infected 10ILL mice (figures 4.5 & 4.7), thus

may be a characteristic of the ME7 agent itself. Neuronal loss in other
brain areas of infected 10ILL mice cannot be ruled out since this

pathological characteristic was not investigated outside of the hippocampus
in these studies. Time-course studies of neuronal loss in 263K/101LL and

GSS/ 10ILL models may find highly targeted neuronal loss in specific brain
areas.
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Figure 4.9 The association between vacuolation and PrP deposition
Vacuolation versus PrP deposition in each model, (A) ME7/101PP, (B) ME7/101LL, (C)
263K/101LL, (D) GSS/101LL. Vacuolation profile of nine grey matter areas is shown as a
solid line. PrP deposition levels (table 4.1) shown as stars at appropriate brain area. 2-
cerebellum, 4-hypothalamus, 5-thalamus, 6-hippocampus; 8 & 9-cortex. Vacuolation in
raphe of midbrain and vestibular nuclei not scored.
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4.4 Discussion

4.4.1 PrP accumulation correlates with PrPSc levels

In order to study the correlation between PrPSc level and titre of infectivity
TSE models were chosen which displayed different amounts of PrPSc as

detected my immunoblot (chapter 3). ME7/101PP had high, ME7/101LL

intermediate, and 263K/101LL and GSS/101LL low PrPSc levels. Here,

immunostaining of brain sections demonstrated the accumulation of
disease-associated PrP in each model. The level of PrP staining

corresponded with the amount of PrPSc exhibited in brain homogenate from
each model (chapter 3) where PrP accumulation was high in ME7/101PP,
low to undetectable in 263K/101LL and GSS/101LL models and found at

intermediate levels in ME7/ 10ILL brain. These findings are consistent with
other studies that showed a positive correlation between PrP deposition and
PrPSc level (DeArmond et al., 1987; Jeffrey et al., 2001 McBride, 2001 #284).

Deposition of PrP was seen before the onset of pathology however infectivity
was detected before the appearance of PrP deposition, suggesting that
whilst PrPScmay be pathogenic it may not be the infectious agent. It may be
that aggregated PrPSc can trigger other pathogenic events in TSE-infected
brain that leads to vacuolation and neuronal loss.

Although the study performed here provides additional evidence suggesting
that the PrP deposited in TSE affected brain is PrPSc definitive identification
of PrPSc in these brains is required. PET blot of adjacent brain tissue
sections for each model investigated here would have identified the presence

of PrPSc (McBride et al., 2001). This method has been used to track the

progression of PrPSc from the periphery to the central nervous system in
hamsters orally infected with 263K. Transfer of protein from paraffin-
embedded tissue (PET) to nitrocellulose membrane allows PK-treatment to
be performed. Protease resistant PrPSc can therefore be identified in specific
brain areas using this method.

Unlike hamster 263K brain, 263K/101LL and GSS/101LL brain sections
did not exhibit diffuse PrP staining. It is unknown whether diffuse staining
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is a characteristic of the 263K/101LL and GSS/101LL models since only a

limited number of 263K/101LL sections have been immunostained.
However formic acid treatment may have affected detection of this diffuse

staining. Brain from 263K/101LL and GSS/101LL models was immersed
in formic acid for 90 minutes to reduce the occupational exposure of staff to
TSE agents when handling and cutting infected brain. Experiments have
shown that infectivity in formic acid treated, fixed brain tissue can be
reduced by as much as 105 IDso/ml, depending on the strain of TSE agent
used (Taylor et al., 1997). It has recently been demonstrated that the

pretreatment of paraffin-embedded tissues with formic acid to
decontaminate infected tissue reduces the amount of detectable PrP in

immunostained sections. PrP staining was still detectable, however, in

highly affected brain areas such as thalamus and hippocampus (A. Suttie
and P McBride, personal communication 86 figure 4.10). To identify whether
diffuse staining does occur in the 263K/101LL and GSS/101LL models
brain sections should be re-examined without formic treatment.

Figure 4.10 The effect of formic acid treatment upon immunostained brain sections.
ME7-infected brain (A) not treated with abundant PrP-specific staining throughout the brain,
or (B) formic acid-treated with a loss of PrP-specific staining, PrP staining can be seen very
faintly in the hippocampus and thalamus (black arrows). Coronal sections of brain cut at the
thalamic/hippocampal level (figure 4.1) immunostained using 6H4 monoclonal antibody.
Images courtesy of A. Suttie, NPU, Edinburgh.
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Although 263K/101LL and GSS/101LL brain tissue were formic acid
treated and the levels of disease-associated PrP were thought to be reduced,
levels of PrP in these models were consistent with the low/non-detectable
levels of PrPSc detected using immunoblot (chapter 3). Individual animals
within the 263K/101LL and GSS/101LL models displayed variation in the
amounts of PrP deposited in the brain. This variation was also seen upon

immunoblot detection of PrPSc in individual brain homogenates (chapter 3).
It is reassuring to note that both immunocytochemistry and immunoblot

similarly measure the relative levels of disease-associated PrP, or PrPSc, in
each TSE model studied here.

4.4.2 PrP deposition and pathology

Prpsc deposition is thought to cause TSE-associated pathology and in

particular vacuolation has been shown to correlate with areas of PrPSc

deposition (DeArmond et ah, 1987). In the studies performed here in areas

of high PrPSc deposition intensity of vacuolation was high and where PrPSc

deposition was low vacuolation intensity was correspondingly low, thus it
did appear that vacuolation correlated with the presence of PrP deposition.
This agreed with previous studies (De Armond et al., 1989; DeArmond et al.,

1987). The studies by DeArmond et al and the studies here investigated
vacuolation and deposition at disease endpoint and did not plot the

progression of vacuolation alongside the appearance of PrPSc in the brain.
Moreover, in other murine TSE models PrPSc deposition has been shown to

precede synapse loss (Jeffrey et al., 2000) and areas of vacuolation and
neuronal loss correlated with areas of PrP deposition in an intra-ocular
model of murine TSE (Fraser et al., 1995). These studies further suggest

that PrPSc is the cause of TSE pathology.

Whilst the data accumulated by these studies indicate that PrP deposition
could be responsible for vacuolation, these parameters did not correlate in
all areas of 263K/101LL and GSS/101LL brain. High levels of vacuolation
occurred in the paraterminal body of these models and vacuolation was

often seen in the superior colliculus yet PrP deposition was rarely recorded
in these brain areas. This may indicate that not all TSE vacuolation is
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associated with PrPSc. Thus it is possible that PK-resistant PrPSc is not the
cause of vacuolar pathology in these models.

4.4.3 Targeting of PrP deposition and vacuolation

If PrPSc were the pathogenic molecule that initiated TSE-associated

pathology then the amount of PrPSc deposited in TSE-infected brain must

affect disease incubation time. However Kimberlin et al suggest that

specific target areas of pathology play a role in the speed of disease

progression (Kimberlin & Walker, 1988). Short disease incubation times
would occur when specifically vulnerable areas were targeted very soon

after acquiring TSE, however upon late targeting of vulnerable areas, the
disease incubation time would be longer. In the experiments performed
here the targeting of PrP deposition was not dramatically different between
models. Thalamic deposition was highest throughout all models except

GSS/101LL. PrP staining in GSS/101LL was high in the vestibular nuclei
and the raphe. These areas as well as the thalamus were also particularly
affected in the 263K/101LL model. Between the models, this is the only
visible difference in the distribution of PrP staining. It may be that specific

targeting to the vestibular nucleus in these models exacerbates the disease.
If these areas are critical in keeping the animal alive, early and specific

targeting of pathology to vestibular nuclei may explain the lower disease
incubation times in the 263K/101LL and GSS/101LL models. With the

specific targeting of PrP deposition to the vestibular nucleus and raphe in
the GSS/101LL and 263K/101LL models, it may be expected that specific
clinical symptoms would have been apparent during disease. Damage to
the acoustic vestibular nuclei may have resulted in impaired hearing or

serotonin depletion symptoms such as altered sleep patterns, aggressive
behaviour or increase motor activity. Damage to further vestibular nuclei
may have resulted in increased symptoms of imbalance. However, such

symptoms were not reported during the clinical phase of TSE in GSS and
263K-infected 10ILL mice, furthermore, there is no reported correlation
between clinical signs and areas of pathology. The 22A model of TSE, for

example, shows high levels of cerebellar damage, yet motor function is not

impaired to any greater degree in this model compared to than found in
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other TSE models (P McBride, personal communication). However it is

possible that other differences in the targeting of PrP deposition between

models, other than those discussed here, have been overlooked.

If vacuolation was targeting to critical brain areas in each model this may

also explain differences in TSE survival times. The targeting of vacuolation

(vacuolation pattern) has been shown to differ according to genetic

background of the host and the strain of TSE agent used (Bruce et al.,

1989). Where possible these variables have been minimised in this study,
however it appears that both these variables have an effect on the models
studied here. Each model of TSE produced a distinct vacuolation profile

according to the different strain of TSE agent used. Additionally the

presence of the 10ILL allele appeared to affect the intensity of vacuolation
with low levels of vacuolation in 263K-, GSS- and ME7- infected 10ILL

mice. Vacuolation in the hypothalamus appeared particularly high in these
models however it is not clear whether comparatively high vacuolation in
this brain area in the 10ILL models affected animal survival. The

hypothalamus is a highly important area of the brain, responsible for
homeostatic control in the animal. It has an important neuroendocrine
function and can regulate body temperature, the cardiovascular system,
food and water intake and stress responses. Thus if severe vacuolation
occurs in this area of the brain it is not difficult to see how this may be
critical to the survival of the animal.

In order to thoroughly assess and compare the pathological changes in all
of the models discussed here, time-course studies (chapter 4.1) should be

performed. Parameters such as synaptic loss, neuronal degeneration
(Jamieson et al., 2001; Jeffrey et al., 2000) and the appearance of gliosis

(De Armond et al., 1989; Jeffrey et al., 1997), which have been studied in
other TSE models, should be investigated. In conjunction with a detailed
investigation of the deposition of PrP and appearance of vacuolation this
would provide a detailed study of whether PrPSc correlates with TSE-
associated pathology in the 263K/ 10ILL and GSS/ 10ILL models.
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4.4.4 Is PrPScthe pathological molecule of TSE?

Low levels of PrP deposition and vacuolation are unlikely to cause death
unless they specifically occur in vulnerable brain areas. This specific

targeting of pathology may occur in the ME7/101LL, GSS/101LL and

263K/101LL models. If PrPSc is deposited before vacuolation occurs, it is

possible that PrPSc causes subsequent pathology, however, in certain brain
areas there are areas of vacuolation in which no PrP is detected. This may

suggest that, if PrPSc is responsible for vacuolation, it may exert distant as
well as local effects. However, in individual mice no PrP deposition was

detected yet vacuolar pathology was evident suggesting that PrPSc may not

be responsible for vacuolation.

If PrPSc triggers pathology in TSE-affected brain, it may be that PrP

deposition (as PK-resistant PrPSc) is a final event in a pathological reaction.
There may be an associated cascade of events triggering TSE pathology.
Whilst there is speculation that apoptotic events cause the neuronal loss
associated with TSE, it is not known how vacuolation occurs. However, if
the cascade of events leading to PrPSc deposition involves other proteins or

complexes, it is possible that these other reactions may cause other TSE-
related pathology (figure 4.11).

Prpe —► PrPi

A Y

PrP2 —► PrP3

B

PrPs<

Figure 4.11 PrP deposition cascade and interactions

Apoptotic cascades may interact with intermediate forms of PrP. Neuronal loss or other
pathological damage triggered by apoptosis may occur before conversion of intermediate
forms of PrP to PrPSc.

The proapoptotic markers, Fas and caspase 3 have been shown to be

upregulated before PrP deposition and clinical signs occurs in an 87V model
of TSE (Jamieson et al., 2001). It is possible that the cascade of PrP
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deposition may have triggered this upregulation, which ultimately leads to
neuronal loss.

In the 263K/101LL and GSS/101LL models, overproduction of B or Z

(figure 4.11) may result in the appearance of fatal pathological events at key
brain areas, before the accumulation of PrPSc. There may be different

pathways to disease-associated pathology depending on whether PrPSc is

present. These pathways may only be resolved if a detailed time-course

experiment was undertaken to investigate the interactions and sequence of

pathological changes during TSE disease in the low PrPScmodels.

For the purposes of this thesis a detailed investigation of pathology was not

required. Essential for these studies was that each model, ME7/101PP,

ME7/101LL, 263K/101LL and GSS/101LL, revealed TSE-associated

pathology and that the amount of PrP deposition corresponded to the
amount of Pk-resistant PrPSc previously detected by immunoblot. The
actual levels of PrPSc deposition and titre of infectivity in each model will be

quantified further in this thesis.
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5. Measurement of infectivitv in brain tissue

5.1. Introduction

In conjunction with a clinical evaluation, the deposition of PrP,
identification of PrPSc and appearance of vacuolation identifies a TSE
infected animal. However, in order to define TSE, a neurodegenerative
disease must be further transmitted from infected tissue. Transmission

indicates the tissue contains the infectious agent but it does not quantify
how much infectious agent is present. In general, short incubation times
indicate a high titre of infectivity. However as demonstrated earlier (chapter

3) these parameters do not always correlate. Therefore, to quantify the

infectivity present in infected tissue a full titration is required. There are

two approaches to measure titre of infectivity by bioassay. One is the time
interval assay (Kascsak et al., 1985; McKinley et al., 1983), the other is the

end-point titration assay (Kimberlin & Walker, 1979; Taylor et al., 2000).
The time interval assay uses the time from inoculation to onset of illness
and applies this to a specific equation to calculate infectivity titre. This
relies on the subjective assessment of when clinical symptoms begin in the
TSE-infected host. However, due to the subjectivity of the individual

carrying out the clinical assessment, the time of onset of clinical disease
can vary (V. Thomson, personal communication). Such complications may

introduce errors, which affect the incubation time assay. In the end-point
titration the appearance of clinical disease in animals can be more clearly
identified by continuously assessing the clinical status of animals over

several weeks after disease onset. In the experiments here, titre of

infectivity was measured using the end-point titration method (Kimberlin &

Walker, 1978) (chapter 1.10). The end-point titration requires more animals
than the incubation time assay and sufficient dilution of the agent must be

performed to ensure that the true end-point is reached. A study to compare

this assay with the time interval assay found no significant difference in the
calculation of infectivity titres between these assays (Prusiner et al., 1982b).

However, the end-point titration assay is thought to be more accurate in
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assessing titre of infectivity since this dilutes the infectious material to an

end-point.

Bioassay remains the gold standard for measuring TSE infectivity. The

presence of one infectious unit of the TSE agent in mice can be measured

by bioassay since TSE will progress in affected animals. The hamster 263K
model demonstrated that one infectious unit (ifu) contains 104 to 105
molecules of PrPSc (Bolton et al., 1982; Hilmert & Diringer, 1984; Hope 8s

Manson, 1991; McKinley et al., 1983) & chapter 1.10, thus any in vitro

assay must be capable of measuring this amount of PrPSc if it is to be

comparable to bioassay. Infectivity has been identified from brain and

placenta in the apparent absence of PrPSc when detected by immunoblot

(Lasmezas et al., 1997; Manson et al., 1999; Onodera et al., 1993), thus
most current PrPSc detection methods are not capable of identifying a single
infectious unit of TSE. Recently however, two in vitro assays were reported
to detect the equivalent of one infectious unit of TSE. The first assay relies
on the uptake and detection of PrPSc in neuroblastoma cells infected with
murine RML scrapie strain and assumes that PrPSc is the causal agent of
TSE (Klohn et al., 2003). This assay is strain specific, however and is not

useful for the studies performed here. The second assay, CDI, does not rely
on the detection of the PK-resistant 27-30kDa core of PrPSc. Instead,

different conformations of PrPSc that may be present in infected tissues can

be detected under increasing denaturing conditions (see chapter 1.9 for full

details). This assay has already been used to quantify BSE in infected cows

(Safar et al., 2002). CDI requires the use of specific antibodies to identify
an epitope that is hidden in the native but exposed in the denatured
conformation of PrP in specific samples. Such antibodies have not been
identified for the models investigated here.

The aim of this chapter was to calculate the titre of infectivity found in
models of TSE containing high (ME7/101PP), intermediate (ME7/101LL),
and low (263K/101LL) levels of PrPSc at disease end-point. This allowed a

correlation of PrPSc level with infectivity titre in each TSE model to test

whether high infectivity titres are produced in infected tissue with high
levels of PrPSc in accordance with the prion hypothesis. Infectivity in
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ME7/ 101PP brain in Prnp-a mice was previously titrated at 108 to 109 ifu/g

(Carp 85 Callahan, 1986; Taylor et al., 2000). The titre of infectivity has not
been previously reported for ME7/101LL mice however PrPSc levels in

ME7/101LL mice were less than in ME7/101PP mice (Manson et al., 1999)

indicating that lower infectivity titres may be expected in ME7/ 10ILL brain.

263K/101LL brain had not been previously titrated however extremely low
PrPSc levels in these mice may indicate that the titre of infectivity in

263K/101LL mice would be lower than in ME7/101PP and ME7/101LL
mice. Since PrPSc levels differ dramatically between individual primary pass

animals (chapter 4), three individual 263K/101LL brains were chosen for

Prpse/titre correlation. ME7 is a stable TSE agent and has been passaged

many times in Prnp-a mice (chapter 1.12) thus the variability of PrPSc level
between individuals in the ME7 model would be predicted to be less than
that in the 263K/101LL model. Therefore only one brain was studied from

ME7/101PP and ME7/101LL models.
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5.2. Methodology

5.2.1. Brain homogenate titrated

Brains from one animal each of ME7/101PP, ME7/101LL and GSS/101LL
models as well as three brains from the 263K/101LL model, (designated

263K/101LL (1), 263K/101LL (2) and 263K/101LL (3)) were prepared.
Sterile 10% brain homogenate was serially diluted tenfold, and 20p.l of each
dilution was inoculated into the right brain hemisphere of each mouse

(chapter 2.22).

5.2.2. Number of mice required for titration

To measure infectivity in brain from each model, donor homogenate from
the ME7/101PP model was titrated in 101PP mice and homogenate from

ME7/101LL and 263K/10 ILL models was titrated in 10ILL mice (table 5.1).
This ensured that the assay was not affected by differences in disease
transmission caused by genetic differences between the donor and recipient
mouse (Bruce & Dickinson, 1987).

Accurate measurement of end-point titration required the serial dilution of

homogenate containing the infectious agent to a point where a group of
animals do not shown clinical or pathological signs of disease. Previous
titration data from ME7-infected Prnp-a mice indicated dilution of brain

homogenate to at least lO8 was required to achieve a zero-affected group

(Taylor et al., 2000). It was not known whether the titre of infectivity in
263K-infected 10ILL brain would be higher than that in ME7/101PP mice.
Due to time constraints these titration experiments would not be repeatable
and it was important to reach the end-point of infectivity therefore all
titration experiments performed here were extended to 1011 dilution.
Furthermore, because infectivity titre decreases with increasing dilution,
fewer mice are affected by TSE therefore increased numbers of mice were

required in each dilution group. Thus, mouse group sizes increased with

increasing dilution of brain homogenate, with six animals for lO2 dilution,
nine animals each for lO3 and 1CH dilutions and 12 animals in each group
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thereafter. The mice used were housed in cages of six and this was

considered when choosing the number required for each dilution. In
addition, another 12 mice were added to the lO2 group of each titration to

provide stock tissue for other experiments. Whole brain from six of these
animals was stored at -70°C for further passage and titration experiments.
These brains could not be pathologically examined thus were not included
in vacuolation profile data, which requires at least six animals per group.

These experiments would not be repeatable due to time constraints thus the
additional animals were included in case of intercurrent deaths within the

original six animals injected at lO2 dilution of inoculum. Moreover the
addition of extra animals into the lO2 group allowed disease incubation
time to be calculated more accurately.

For each titration a total of 108 mice (101PP or 10ILL where appropriate)
were therefore required to be inoculated. In addition, 18 101PP mice were

inoculated with 10 2 dilution of each 263K/101LL brain homogenate,

263K/101LL (1), (2) 8s (3), to identify whether the differences in

transmissibility from individual 263K-infected 10ILL brain to 101PP mice
was a general feature of the 263K/ 10 ILL agent.

Donor Mouse Donor TSE strain Recipient Mouse

101PP ME7 101PP

101LL ME7 101LL

101LL 263K (1) 101LL

101LL 263K (2) 10 ILL

101LL 263K (3) 10 ILL

10 ILL GSS 101LL

Table 5.1 Genotype of donor inoculum titrated into recipient mice

5.2.3. Age of mice required for titration

Animals would ideally have been inoculated at 6-8 weeks old to keep the

age range to a minimum, however due to time and breeding constraints and
animal availability 101PP animals available for injection ranged from 11-26
weeks old and 10 ILL animals ranged from 4-31 weeks old. To obtain 6-8
week old animals, several small batches would have had to be produced
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since the logistic of breeding meant that a large batch of animals within this
age range could not be produced at one time. The wide age range was

preferable to the alternative option of performing staggered inoculations,
which would have involved freeze/thawing inoculum. Repeated freezing of
inoculum has been shown to alter disease incubation times thus may alter
the titre of infectivity in a sample. It was critical in these studies that the
titre of infectivity should not be compromised.

5.2.4. Assessment of mouse genotype

Stocks of 101PP and 10 ILL mice were maintained at a low level prior to
these experiments, however before mating, the PrP genotype of each

breeding pair was determined (proline or leucine at amino acid 101) to

ensure that homozygous 101PP or 10ILL animals were produced. DNA was

prepared from tail tissue and PrP genotype was assessed using Polymerase
Chain Reaction (PCR) (chapter 2.24). PCR of tail DNA was also performed at

the end of each experiment to confirm the genotype of each animal.

5.2.5. Assessment of TSE in injected animals

Intracerebral inoculation of mice was performed (chapter 5.2.1). From 90-
100 days post-inoculation, animals were assessed weekly for clinical

symptoms of TSE and scored accordingly (a positive clinical score is defined
in appendix C). When animals were scored TSE positive for three
consecutive weeks, or were deemed to be at the terminal stage of disease,

they were culled using a Schedule 1 method in accordance with the Animals

(Scientific Procedures) Act 1986. Disease status was confirmed by scoring
the degree of TSE-associated vacuolar pathology in grey and white matter
brain areas (chapter 4). This was essential since TSE-associated vacuolar

pathology can be found in some animals that have not shown clinical

symptoms (Manson et al., 1999).

Animals exhibiting clinical TSE symptoms and pathology were included in
transmission and disease incubation time calculations. Mice culled due to

welfare reasons (for example scratched eyes and ears) may be given a

negative clinical score but can exhibit positive pathology if culled at the
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early stages of disease. TSE transmission did occur in such animals
therefore data was used for the transmission but not the incubation time

calculation. Animals exhibiting positive clinical signs of disease but not
TSE pathology were not confirmed as having TSE thus were not included in
transmission or incubation time calculations. This also applied to mice that
exhibited no clinical disease or no TSE pathology. Additionally, data not

used for either experimental transmission or incubation time calculations
came from animals:

• that died immediately post-inoculation or before the start of the scoring

regime,

• that died due to inter-current disease, i.e. for reasons other than TSE,

• where brain could not be retrieved for pathological conformation of
disease status due to either cannibalism by other animals, autolysis of
brain tissue or because whole brain was stored for further use,

• that were of the wrong genotype for the group.

For these reasons, the final group numbers did not always correspond with
the original group numbers.
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5.3. Results

5.3.1. ME7/101PP brain has a high titre of infectivity

ME7/101PP titration in 101PP mice (produced from breeding stock
confirmed as homozygous 101PP, figure 5.1) resulted in a typical ME7
titration pattern. TSE was transmitted to 100% of 101PP mice in the lO2

group in 159 ± 0.3 days, and was transmitted to 100% of animals in

subsequent groups down to lO6 dilution of brain homogenate, with

increasing incubation times (table 5.2). Only 17% (2/12) of 101PP mice

receiving lO7 dilution and 9% (1/11) of animals in lO8 group were affected

by TSE (table 5.2). The first "zero group" (no TSE-affected animals in the

group) in this titration was at lO9 dilution of brain homogenate (table 5.2).
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Figure 5.1 PCR of breeding stock mice

1% Agarose gel of Ddel cut DNA from PrP ORF PCR, taken from breeding stock mice and
processed in batches of 11 or 12 samples; PL1220-PL1231, PL1244-PL1255, PL1232-PL1243,
PL1256-PL1267. Closed arrow at 613bp indicates proline aileie only, open arrow at 564bp
indicates leucine allele only. PL control DNA from an animal known to be heterozygous,
dH20 lane indicates no contamination of samples.
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Dilution Group

ME7/101PP n+ZnT3IncTimeb
ME7/101LL n+ZnT3IncTime"
263K/101LL(1) n+ZnT3IncTime"
263K/101LL(2) n+ZnT3IncTime"
263K/101LL(3) n+ZnT3IncTime"

10"2

6/6

159±0.3

7/7

220±4

13/13

109±2

13/13

129±2

13/13

262±4

10"3

6/6

170±1

5/5

249±7

6/6

114±1

6/6

134±6

3/6

308±16

10-4

9/9

177±2

9/9

277±4

8/8

125±3

9/9

159±9

6/7

399±9

10"5

9/9

201±5

7/8

313±21

8/8

144±4

6/9

193±22

6/7

398±8

10"6

11/11

269±15

7/12

409±25

11/12

189±16

1/7

226

2/11

401±4

10"7

2/12

291±14

0/10

n/a

5/12

189±6

0/17

n/a

0/9

n/a

10"8

1/11

244

0/12

n/a

1/11

228

1/12

186

0/12

n/a

10"9

0/11

n/a

0/11

n/a

0/9

n/a

0/9

n/a

0/8

n/a

10"10

0/11

n/a

0/11

n/a

0/10

n/a

0/11

n/a

0/9

n/a

10"11

0/11

n/a

0/8

n/a

0/11

n/a

0/11

n/a

0/8

n/a

10"2101PP

n/a

n/a

n/a

n/a

0/9

n/a

12/12

296±24

0/17

na

ID50

io676

10596

10693

10539

1049

ID50/9

1085

1077

1086

1071

1066

a n+=numberTSEpositiveanimals(assessedbyclinicalandpathologicalexamination);nT=totalnumberofanimalspergroup. bMeanincubationtime(days)ofanimalsscoredpathologicallypositive±standarderror n/anotapplicable ndnotdetermined ID50valueforinoculatedbraintissue(=20mg)-calculatedusingtheKarbermethod(chapter2.22.4).ForadditionaldataseeappendixD. ID50valuepergbraintissue(ax50) Datacorrectat10January2004 Table5.2TitrationofinfectivitvinTSEmodelsexhibitinghigh,lowandintermediatelevelsofPrP^
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At lO8 dilution only one 101PP animal had succumbed to TSE disease with
an incubation time of 244 days (table 5.2). This was a shorter incubation
time than those animals receiving lO6 homogenate dilution and it is

possible that if the inoculum at 10 8 dilution was not homogeneous, the
animal may have received a clump of TSE agent that was responsible for

causing rapid disease. In the study here, the dilution of brain homogenate
that resulted in 50% of animals affected by TSE was lO6-76 (table 5.2). The
titre of infectivity per gram of brain is therefore 108-5 infectious units (ifu)

(table 5.2), similar to those previously reported for ME7-infected Prnp-a
mice (Carp & Callahan, 1986; Taylor et al., 2000).

5.3.2. ME7/101LL brain has a lower titre of infectivity than ME7/101PP

TSE was transmitted from primary pass ME7/101LL brain to 100% of
10ILL animals (produced from stock mice confirmed 10ILL homozygous,

figure 5.1) receiving 102 dilution of inoculum in 220 ± 4 days (table 5.2). At
10"3 and 10"4 dilution of brain homogenate 100% of 10 ILL mice were

affected by TSE (table 5.2). Disease was transmitted to 88% (7/8) of
animals receiving 10 5 dilution and 58% (7/12) of animals receiving 10 6
dilution. The first "zero group" was at 10 7 dilution with no 10ILL mice

exhibiting TSE disease in this or subsequent groups (table 5.2). The
dilution at which 50% of 10ILL animals were affected by TSE was 10 5-96

(table 5.2). The titre of infectivity in ME7/101LL brain was therefore 107 7

ifu/g (table 5.2) and was lower than that in ME7/101PP brain. Thus lower
titre of infectivity in ME7/ 10 ILL brain corresponds with lower levels of PrPSc
exhibited in ME7/10ILL compared to ME7/ 101PP brain. This may suggest
that in these models PrPSc is the infectious agent of TSE.

5.3.3. 263K /101LL brains exhibit high titres of infectivity

Brain homogenate from three separate 263K/101LL animals (chapter 4)
were prepared for titration in 101LL mice. Using 263K/101LL (1), TSE was

transmitted to 100% of 10ILL mice that received 10 2 to 10 5 dilution of

brain homogenate, 92% (11/12) of 10ILL mice receiving 10 6 dilution, 42%

(5/12) of 10 ILL mice receiving 10 7 dilution and 9% (1/11) of 101LL animals
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that received lO8 dilution (table 5.2). At 10 9 dilution and above, there were

no cases of TSE transmission (table 5.2). The dilution of TSE agent that
caused disease in 50% of cases was therefore 10693, and the titre of

infectivity for 263K/101LL (1) was 1086 ifu/g (table 5.2), the same titre of

infectivity found in ME7/ 101PP brain.

The second titration experiment was performed using 263K/101LL (2)
brain. TSE was transmitted to 100% of 10ILL animals in 102 to 104

dilution groups, 67% (6/9) of 10ILL mice at 10 s dilution and 14% (1/7) of
animals at 106 dilution (table 5.2). No animals succumbed to TSE at 107
dilution however one animal receiving 10 8 dilution of brain homogenate

displayed the clinical and pathological symptoms of TSE. In subsequent
dilution groups there were no TSE cases (table 5.2). It is not clear whether
TSE in the single animal inoculated with 10 8 dilution of homogenate was,

again, a result of an aggregation of the agent in a non-homogeneous
inoculum. The first "zero group" was at lO9 dilution of brain homogenate.
The dilution of the 263K/ 10ILL (2) TSE agent that transmitted TSE to 50%
of 10ILL mice was 105-39 (table 5.2). Thus, the titre of infectivity in

263K/101LL (2) brain was 107 1 ifu/g (table 5.2). Given that the degree of

accuracy of titration is 0.5 log (Kimberlin, 1976a; Prusiner et al., 1982b),

ME7/101LL and 263K/101LL (2) brains can be considered to contain
similar titres of infectivity.

Using 263K/101LL (3) brain homogenate, TSE was transmitted to 100% of
10 ILL animals receiving 102 dilution only (table 5.2). Transmission of TSE
occurred in 50% (3/6) of 10ILL mice receiving 10 3 dilution, 86% (6/7) of
101LL animals receiving 10 4 and 10 s dilutions and 18% (2/11) of 101LL
animals at 10 6 dilution of brain homogenate (table 5.2). In all subsequent
dilution groups TSE was not transmitted thus the first zero group was at

10"7 dilution (table 5.2). The dilution of 263K/ 10ILL (3) TSE agent at which
50% of animals succumbed to TSE was 10 4 9 (table 5.2). The infectivity titre
of brain from 263K/101LL (3) was therefore 106 6 ifu/g (table 5.2).

In all three 263K/101LL titration experiments performed here the titre of

infectivity was greater than expected. The variability of titre of infectivity in
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individual 263K/101LL brain homogenates was not unexpected since PrPSc
levels varied in individual mice. This is probably due to the primary

passage of the hamster 263K TSE agent into a new host, 10ILL mice. It
has been previously shown that incubation period, titre of infectivity and
PrPSc deposition levels can differ in individual animals of the same model

upon primary passage but that this variation becomes stable upon

subsequent passage (Bruce, 1985a; Bruce et al., 2002). Given that PrPSc
levels in all three 263K/101LL brains were substantially lower than in

ME7/101PP and ME7/101LL brains (chapter 3) it was expected that the
titre of infectivity in 263K/101LL brain would be lower than that in the
ME7-infected mouse brains. However, titres of infectivity in 263K/101LL
mice were equivalent to those found in ME7-infected mice. Results here
indicate that PrPSc is not the infectious agent of TSE in the 263K/101LL
model.

In all three 263K/101LL titration experiments, disease incubation times

lengthened and the variation of incubation time within each group

increased upon dilution of TSE agent. For 263K/101LL (1) and

263K/101LL (2), disease incubation times at 102 dilution were extremely
short, at 109 ± 2 days and 129 ± 2 days, respectively (table 5.2). Brain

homogenate from 263K/101LL (3), at 102 dilution, produced a disease
incubation time of 262 ± 4 days (table 5.2). All three 263K/101LL isolates
were transmitted, at 10 2 dilution, to 101PP mice. Only 263K/101LL (2)
resulted in TSE, with a mean incubation time of 296 ± 24 days.
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5.4. Discussion

5.4.1. High titres of infectivity are found in brain with low PrPSc levels

Titrated brain from ME7/101PP contained 108-5 ifu/g (table 5.4). This is a

high titre of infectivity and it was not surprising to find such high levels of

infectivity in a brain exhibiting high PrPSc levels at disease end-point

(chapter 3). It was surprising however, to find that brain from 263K/ 10ILL

(1), that exhibited extremely low PrPSc levels at disease end-point (chapter 3)
contained the same high levels of infectivity at 1086 ifu/g (table 5.4).

Despite the absence of detectable PrPSc in 263K/101LL (2) brain

homogenate (chapter 3), similar titres of infectivity were found in

ME7/101LL (107-7 ifu/g) and 263K/101LL (2) brain (107 i ifu/g)(table 5.4).

Moreover, 263K/101LL (3) also exhibited no detectable PrPSc in brain

homogenate (chapter 3) but contained appreciable amounts of infectivity,
106 5 ifu/g (table 5.4), similar to ME7/101LL brain.

This is the first time substantial levels of infectivity have been reported in
transmissible brain containing non-detectable levels of PK-resistant PrPSc.

However, preliminary investigations in the GSS/101LL model (Manson et

al., 1999) also found similarly high titres of infectivity (1064 ifu/g) in
transmissible brain exhibiting extremely low PrPSc levels. Moreover, similar
to the 263K/ 10ILL model, short disease incubation times were found in the

GSS/ 10ILL model, at 134 days (R. Barron, unpublished data - appendix F).

Although the correlation between PrPSc level and infectivity titre has not

been thoroughly investigated in the GSS/10ILL model, these data may

indicate that infectivity in the GSS/101LL and 263K/101LL models is not

conferred by PK-resistant PrPSc.

If PK-resistant PrPSc is the infectious agent of TSE, it is surprising that brain
from 263K/101LL (2) & (3) contains relatively high titres of infectivity.
Across all of the models investigated here, the lack of correlation between
PrPSc and infectivity suggests that either (i) there is more PK-resistant PrPSc
in 263K /10ILL brain that is not detected by immunoblot, or (ii) PK-
resistant PrPSc alone is not the infectious agent of TSE. If PrPSc is the
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infectious agent of TSE then TSE-infected tissue containing high levels of
PrPSc, should contain a high titre of infectivity and TSE should be
transmitted in short incubation times. If PK-resistant PrPSc is the infectious

agent of TSE why do models with the same titre of infectivity in brain not

contain the same level of PrPSc in brain, regardless of TSE strain?

One infectious unit (ifu) of TSE is proposed to contain 104 to 105 molecules
of PrPSc as identified from hamster 263K experiments (Beekes, Baldauf &

Diringer, 1996; Hope & Manson, 1991; McKinley et al., 1983). The data

presented here may suggest that the number of molecules per ifu differs in
different TSE models. This may explain why ME7/ 101PP and 263K/ 10ILL

(1) brains exhibit the same titre of infectivity yet ME7/ 101PP contains more

PK-resistant PrPSc. If PrPSc is the infectious agent in TSE this may indicate
that there are intrinsic differences in the PrPSc in different models.

5.4.2. Variable disease incubation times from individual brains

Using 263K-infected hamsters an inverse relationship between incubation
time and titre of infectivity was demonstrated (Prusiner et al., 1982b) where
short incubation times of TSE transmission correlated with high titre of

infectivity. Within the ME7 models studied here, at secondary passage, this
inverse relationship also occurs. ME7/101PP has a higher titre of

infectivity and shorter incubation time than ME7/101LL. This relationship
also appears to correlate within the secondary passage of 263K/101LL
isolates, where 263K/101LL (1) has the shortest incubation time and

highest titre of infectivity and 263K/101LL (3) has the lowest titre of

infectivity and longest incubation time. However, the correlation between
incubation time and infectivity titre did not appear to hold across all of the
different models. ME7/101PP and 263K/101LL (1) models have the same

infectivity titre yet 263K/101LL (1) has the shortest incubation time.
Furthermore ME7/101LL and 263K/101LL (2) have similar titres of

infectivity yet 263K/ 10ILL (2) has a shorter incubation time. It is not clear
why there are differences in disease incubation times between models with
the same titre of infectivity.
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Since variability of TSE incubation time and titre of infectivity was

demonstrated within the 263K/101LL model, it may have been prudent to

investigate more than one brain in the ME7/101PP and ME7/101LL
models. One animal from the ME7 models was investigated since it had
been shown that ME7 is stable upon passage in Prnp-a mice. However, it is
known that genes other than Prnp can affect TSE incubation time (Lloyd et

al., 2001; Manolakou et al., 2001). The ME7 TSE agent used in these

experiments originated from a C57B1 mouse thus the subtle differences in

genetic background from C57B1 to 129/Ola mice expressing 101PP and
10ILL alleles may cause this to behave like a primary pass agent. In the

ME7/101PP and ME7/101LL models individual mice may exhibit
differences in intensity of PrP deposition, vacuolation and disease
incubation time. These animals may have provided additional data in the
correlation experiments performed here, however due to space, breeding
and time constraints it was not possible to perform additional titration

experiments.

5.4.3. What causes different TSE incubation times in each model?

The three 263K/101LL isolates studied here each produced different
disease incubation times at lO 2 dilution. It is not clear whether incubation

time is controlled by the titre of infectivity or different strain effects upon

passage. Each 263K/101LL isolate originates from a single hamster 263K

source, and it is not clear whether each brain contained a different TSE
isolate that is being selected for upon passage of each brain. To investigate
this, dose response curves for each experiment were plotted. A dose

response curve plots the relationship between dose of TSE agent and
disease incubation time (Kimberlin & Walker, 1978). By normalising the
titre of infectivity and plotting this against incubation time at each dilution

(see appendix E for data) each titration experiment produced distinct dose

response curves (figure 5.5). The curves indicated that TSE incubation time
was controlled by strain of TSE agent, rather than the titre of infectivity per
se of each isolate. In 10ILL mice, each isolate of 263K/101LL produced a

distinct curve thus indicating TSE strain control over TSE incubation time.

(Additionally, the GSS/101LL isolate also produced a distinct curve in
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10ILL mice indicating an effect of TSE strain upon TSE incubation time.)

Moreover, ME7/101PP and ME7/101LL experiments produced distinct
curves indicating that host factors may also play a role in determining
disease incubation time.

It is not known how host control may be exerted. The deposition of PrPSc

may control disease incubation time. Whilst PrPSc deposition is extremely
low in all three 263K/101LL models, PrPc conversion to PrPSc may trigger

rapid apoptosis and the onset of neuronal loss may account for earlier
death in 263K/101LL (1) and (2). Targeting of disease-associated pathology
other than PrPSc deposition, such as vacuolation, neuronal loss, apoptosis
and astrocytosis, may affect the survival time of animals infected with a

particular TSE isolate. Vacuolation was present in all models studied here

(appendix G) however it is not clear whether specific vacuolar targeting to

critical brain areas may have caused the death of TSE-infected animals in
the studies here. The correlation between vacuolation and PrPSc levels at

secondary pass could be further studied to investigate the role of pathology
in these models. In contrast, as suggested by Kimberlin et al, it is possible
that a genetic component of the TSE strain could target disease-associated

pathology to critical brain areas at different times (Kimberlin & Walker,

1988). This may account for different disease incubation times in different
models. To clarify whether TSE-associated pathology, driven by the

presence of PK-resistant PrPSc, is responsible for the death of TSE-infected
mice in the models studied here, time course assessment of the onset of
Prpsc deposition, vacuolation, neuronal loss and the presence of pro-

apoptotic markers should be performed in secondary pass brain tissue.

The studies described in this thesis were designed to investigate the
correlation between PK-resistant PrPSc and infectivity in TSE models

exhibiting different levels of PrPSc in brain. In this chapter it has been
demonstrated that high titres of infectivity are present in brain that exhibits
low PrPSc levels. Therefore to fully assess the correlation between PrPSc and

infectivity, and to investigate the number of molecules of PrPSc per ifu in
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each TSE model studied here, the detailed quantification of the levels of PK-
resistant PrPSc in each model was subsequently performed.
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6. Measurement and Quantification of PrP

6.1. Introduction

As TSE disease progresses toward the terminal stages, PrPSc accumulates in
the brain of TSE-infected animals (Beekes et al., 1996; Czub et al., 1986b;
De Armond et al., 1989; Jeffrey et al., 2001). This contributes to an

increase in the amount of total PrP (PrPc plus PrPSc) in brain, which can be
as much as 10 to 20-fold more than the total PrP in uninfected animals

(DeArmond et al., 1987). The amount of PrPc in diseased animals has been

reported to be similar to that in uninfected animals (Meyer et al., 1986).

Furthermore, the amount of PrPSc in brain at disease end-point differs
between affected individuals and between different experimental models

(Gambetti, Parchi & Chen, 2003; Hope et al., 1999; Kuczius & Groschup,

1999). In human sporadic CJD different brain areas have been found to

exhibit different levels of PrPSc (MacDonald, Sutherland & Ironside, 1996),
this has also been described in the hamster 263K model (DeArmond et al.,

1987).

In vitro studies have shown the conversion of a PK-sensitive form of PrP

(PrP-sen) to a PK-resistant form of PrP (PrP-res) and demonstrate the

principal of PrPc directly binding to PrPSc (chapter 1.3.5). It has not yet
been shown that the in vitro production of PrP-res in various systems

produces a concurrent increase in infectivity thus it is arguable whether
PrPSc alone is the infectious agent. Moreover, preparations of PrPSc have
been shown to contain additional proteins (Bolton et al., 1987; Kocisko et

al., 1995). Thus, in the infectious process, the involvement of molecules
other than PrPSc cannot be ruled out. The relationship between PrPSc and
other molecules is not yet understood, although PrP has been shown to
interact with the laminin receptor (Rieger et al., 1999) and small RNA
molecules (Weiss et al., 1997). Indeed conversion of PrPc to PrPSc in a cell-
free system has been shown to be enhanced by the presence of RNA
(Deleault et al., 2003). It is not yet clear whether such molecules assist
with the normal function of PrPc or if they assist in the production of an
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infectious PrP. No disease-associate nucleic acid has yet been found,
however there is no doubt that PrP plays a role in TSE disease (chapter

1.8.2).

Studies that suggested a strong correlation between PK-resistant PrPSc and

infectivity have also demonstrated that one infectious unit (ifu) is comprised
of more than one molecule of PrPSc. Early investigations of 263K-infected
hamster calculated the number of molecules of PrPSc in one infectious unit

at 104 to 105 molecules (McKinley et al., 1983; Meyer et al., 1986). In the
hamster 263K model purification of PrPSc as SAF (scrapie associated fibrils)
also calculated 104 to 105 molecules of PrPSc per infectious unit in the same

TSE model (Hilmert 85 Diringer, 1984). These figures were verified by other

investigators (Hope & Manson, 1991). The PrPSc molecule to infectivity ratio
assumes an average molecular weight for PrP of 30kDa and does not rule
out the possibility that forms of PrP other than PrPSc may contribute to

infectivity. Just as each TSE model has distinct pathology in terms of PrP

deposition pattern and vacuolation profile so the number of PrPSc molecules
that make up one infectious unit may differ in each model. The contribution
of PK-resistant PrPSc to the disease as a whole may therefore be different for
each TSE model.

In order to correlate PrPSc levels in terminal brain with the titre of infectivity,
PrPSc levels were quantified in TSE-infected mouse brain. Since it has been
shown that there are different PrPSc levels in different areas of the same

brain (De Armond et al., 1989), PrPSclevels were measured from whole brain

homogenate rather than from specific brain areas. To ensure a direct
correlation with the titration data, PrPSc was quantitatively measured in the
same brain homogenates that were used to titrate infectivity, from one

ME7/101PP and one ME7/101LL animal and from three separate

263K/101LL animals, 263K/101LL (1), (2) and (3) (chapter 5). The

quantification of PrPSc in these models allowed the calculation of the
number of PrPSc molecules per infectious unit to be performed to investigate
whether this agreed with previous data or differed in these models.
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Immunoblot is generally used as a qualitative assay. ELISA is a

quantitative method, which relies on antibody detection of the protein of
interest. However immunoblot samples can be quantified using careful
densitometric analysis performed on serial dilutions of homogenate

containing the protein of interest. For accurate measurement by

immunoblot, the protein of interest must be diluted to the limit of detection.
Given that previous studies had reported high reproducibility of results

using immunoblot to detect PrPSc (Schaller et al., 1999), and that sample
numbers in the study performed in this thesis were small, immunoblot was
chosen to quantitatively measure PrP in the samples here. During the
course of this work an ELISA became available, therefore the DELFIA

methodology (Detection Enhanced Lanthanine Fluorometric ImmunoAssay -

described in chapter 1.8.1) was also employed in these studies.
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6.2. Methodology

6.2.1. Preparation of brain homogenate for immunoblot

The same brain homogenates as previously used for the titration

experiments (chapter 5) were used here. Brain homogenate inoculum was

prepared in PBS (chapters 2.22.2 & 5.2.1) from one ME7/101PP animal,
one ME7/101LL animal and three separate 263K/10ILL mice (263K/101LL

(1), 263K/101LL (2) and 263K/101LL (3)), previously described (chapters 3
& 4).

For immunoblot, equal volumes of inoculum (10% brain homogenate) and
2x NP40 detergent buffer were mixed and further homogenised. This gave

rise to a 5% homogenate (chapter 2.6.2). This was stored at -70°C in 20pl

aliquots and a fresh aliquot was used for each immunoblot.

6.2.2. Immunoblot quantification of PK-resistant PrPScand total PrP

A two-fold serial dilution of five percent brain homogenate was prepared

using PK-treated (chapter 2.7.1) (at 20pig/ml final concentration)

homogenate for PrPSc detection and untreated homogenate for total PrP
detection. Brain homogenate was diluted in uninfected, PK-treated

(20pg/ml final PK concentration) brain homogenate (101PP or 10 ILL

appropriate for each model) for PrPSc detection and in PBS for total PrP
detection. Each diluted sample (lOpl) was mixed with loading buffer and

sample reducing agent (lx final concentration of each) and 20pl of each

sample was loaded per well for gel electrophoresis (chapter 2.10). Samples
were loaded across two 12% tris/glycine gels (Invitrogen), at brain

homogenate concentrations ranging from 2% to 0.000975% brain

equivalent (equivalent to 400pg to 0.2pig wet weight of brain). Non PK-
treated samples were loaded to control for PrP detection by the antibodies,
and a control sample of 50ng recombinant PrP (rPrP) was added to one lane
on each SDS-PAGE gel to control for blot-to-blot variation (chapter 2.13).
Where possible experiments were repeated three times to control for

experimental error. PrPSc was detected using the monoclonal antibody 8H4
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(chapter 2.2) and visualised with secondary rabbit a-mouse (chapter 2.3)
and West Dura substrate. Chemiluminesence was captured on x-ray film
for 30 seconds and then one minute before mounting the blot on the Kodak

Image Station 440 to digitally capture the chemiluminesence for one hour

(chapter 2.14).

For each lane in each immunoblot, the intensity of PrPSc detected was

measured using the Kodak image analysis software and expressed as a

number of pixels making up that image (chapter 2.14) (see appendix H for

data). Each sample intensity was compared to the intensity of 50ng rPrP on

that blot, and was quantified accordingly. Each sample lane represented a

dilution of homogenate and this dilution factor was applied to each lane to

give values for the loaded 10% brain homogenate. Due to experimental

error, the values varied between each experimental run and for each
dilution within the run, therefore a mean value was calculated for all
diluted samples run per TSE model. The standard deviation of samples
loaded onto the same blot, and between blots indicated the variability of PrP
detection using immunoblot. Due to the doubling dilution series, this assay

will not distinguish less than a 2-fold difference in PrP level between

samples.

6.2.3. Quantification of PrP using DELFIA

DELFIA measures PrPc and PrPSc based on their relative solubility in 1M
GndHCl. The critical measurement of infectivity titre and the quantification
of PrP had limited the availability of each brain homogenate used in these
studies. Fresh brain from each model was therefore used in the DELFIA

analysis of PrP. Although these brains were representative of each model,

infectivity was not titrated consequently PrPSc levels could not be directly
correlated with titre of infectivity. PrPSc and PrPc were measured in

homogenate that originated from one uninfected 10ILL, one ME7/101LL
and two 263K/101LL mice, designated (a) and (b). Additionally, the PrP
isoforms were also measured in one GSS/101LL brain (the non-titrated
brain described in chapter 5). From each brain, 10% homogenate was

prepared (chapter 2.6.1) and the DELFIA methodology followed (chapter
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2.25). These experiments were kindly performed by D King (NPU,
Edinburgh, UK), who optimised the DELFIA process.
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6.3. Results

6.3.1. Sensitivity of Immunobiot detection

To determine the sensitivity of immunobiot pure recombinant PrP (rPrP),
which produced a single band on coomassie stained gels (figure 6.1A), was
imunoblotted using the monoclonal antibody 8H4. This protein was used
as a control for the experiments described here since it produces a single
band upon immunobiot, which can be easily quantified. Recombinant PrP
was used to control for blot-to-blot variation and to enable PrP levels to be

quantified. This was consistently detected at 5-10ng as a single band at

around 28kDa (figure 6. IB) as observed previously (Takekida et al., 2002).
If present, degradation products of rPrP were detected below 20kDa.
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Figure 6.1 Sensitivity of detection of recombinant PrP

Wild type 101PP recombinant PrP analysed using 12% tris/glycine SDS-PAGE (A) serially
diluted, loaded at 10-5000 ng per well and coomassie-blue stained (chapter 2.15.2), and,
(B) serially diluted, loaded at l-1000ng and immunobiot detected (chapter 2.12). PrP
detected using 8H4 and visualised using secondary rabbit anti-mouse antibody and West
Dura substrate (chapters 2.2 & 2.3). rPrP was diluted in PBS before loading 20pl per well of
indicated concentrations. Sizes of markers are shown in kDa.

A preliminary investigation was undertaken to assess the usefulness of

deglycosylating PrP for measurement of the resultant single band rather
than the three bands of glycosylated PrP. In this experiment the amount of
PrP measured in deglycosylated samples was less than measured in
untreated samples (figure 6.2 & table 6.1 - compare PNGase treated against
untreated samples). This may have been due to loss of some PrP during the

deglycosylation process. Additionally, incomplete deglycosylation meant
that all bands in a sample lane were measured, thus proving of no
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advantage over the measurement of all three glycosylated bands of PrP.

Sample deglycosylation was therefore was not used for PrP quantification
studies.

Figure 6.2 Comparison of glycosylated and deqlvcosvlated 139A brain homoaenate
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Total PrP quantification (chapter 6.2.2) in PNGase treated (PNG+ lanes) or untreated (PNG-
lanes) brain homogenate from 139A-infected mouse. 0.5% to 0.0156% brain homogenate
was loaded across two SDS-PAGE gels. Control recombinant PrP (rPrP) was loaded at 50ng
per well in one well per SDS-PAGE gel. PrP was detected by immunoblot using monoclonal
antibody 8H4 (chapter 2.2) and visualised using secondary rabbit a-mouse antibody (chapter
2.3) and West Dura substrate. Marker sizes are indicated in kDa. * indicates the typical 3-
band pattern of di-, mono- and unglycosylated PrP. Deglycosylated PrP was detected at
30kDa. Recombinant PrP was detected at 28kDa. Incomplete deglycosylation of di- and
monoglycosylated bands visible at 33kDa. The lower 6kDa band probably represents natural
degradation products of deglycosylated PrP. Lane numbers correspond to data in table 6.1.

Lane PNGase
Band intensity
(pixels)

ng equivalent
(compared to rPrP)

1 - 283590 280
2 + 48515 48
3 - 164590 162
4 + 26580 26
5 - 34101 34
6 + 21780 21
7 - 26339 26
8 + 35039 35

9 - 13621 13
10 + 7950 8
11 - 1549 2
12 + 1207 1

rPrP n/a 50719 50

Table 6.1 Quantification of glycosylated and deolycosvlated PrP in 139A brain homoqenate
Measurement of PrP in brain homogenate, untreated (PNG-) or treated with PNGase (PNG+)
to deglycosylate the protein. The pixel intensity of each band per lane, as depicted in figure
6.2, was detected. The sum of individual bands was taken where multiple bands were
detected in one lane. Using a recombinant protein control, the pixel intensity was converted
to a ng equivalent (chapter 6.2.2).
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6.3.2. Detection of PK-resistant PrPScin infected brain from each model

PrPSc levels in ME7/101PP brain homogenate (figure 6.3) were judged to be

approximately two-fold higher than PrPSc levels in ME7/101LL brain

homogenate (figure 6.4) when detected by immunoblot. PrPSc levels in

263K/101LL brain homogenates (figures 6.5 & 6.6) were judged to be at

least five-fold lower than in ME7 / 101PP homogenate and at least two and a

half-fold lower than in ME7/101LL homogenate. The mean value of PrPSc
detected in each brain homogenate was 4010 ± 51 lng (± standard error) for

ME7/101PP (figure 6.3), 1979 ± 462ng for ME7/101LL (figure 6.4) and 872
± 292ng for 263K/101LL (1) (figure 6.5). No PrPSc was detected in brain

homogenate from 263K/101LL (2) or (3) (figure 6.6), indicating variable
levels of PrPSc from individual 263K/ 10ILL brain.

It is not clear why there was less PK-resistant PrPSc in the ME7/ 10ILL and

263K/101LL brain homogenates compared to ME7/101PP homogenate.
This may reflect a general reduction in the amount of total PrP in the 10 ILL
mice. This reduction may perhaps be due to differential processing of PrPc
in these animals or differences in the production of PrPSc during the
conversion process.
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1 3715 3485 3671
0.5 5716 5732 3273
0.25 5127 3287 3704
0.125 4495 2719 4975
0.0625 8696 392 1162
0.0313 7241 0 1509
0.0156 2901 0 0
0.0078 0 0 0
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Mean PrPSc ± SE 4010 ± 511

Figure 6.3 Quantification of PK-resistant PrPSc in ME7-infected 101PP brain homoaenate

PrPSc detected in ME7/101PP brain homogenate treated with PK (20ng/ml final
concentration), then two-fold serially diluted in uninfected 101PP brain homogenate (PK-
treated at 20ng/ml) to give dilutions of brain from 1 to 0.0039% when loaded onto 12%
tris/glycine SDS-PAGE gels. Control homogenates (loaded at 1%) of uninfected 101PP and
ME7/101PP brain, PK untreated, were also included. PrP was detected using 8H4
monoclonal antibody (chapter 2.2) and visualised using West Dura substrate. Blots (A), (B)
& (C) represent three separate experiments performed on different days. On each blot the
limit of detection is marked*. Recombinant PrP is indicated at 28kDa (<). The three
glycosylated bands of PrP were detected in each lane (I) and the sum of the pixel intensities
was taken. Compared to recombinant PrP, pixel intensity was converted to ng and the
homogenate dilution factor was taken into account to provide a concentration of PrPSc for
10% brain homogenate (table 6.2). A mean of the PrPSc concentrations obtained for each
lane over all blots was then calculated. A value of zero indicates no PrPSc was detected.
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Concentration of PrP50 in
ME7/101LL brain homogenate (ng)
Blot A Blot B Blot C

1 4785 1330 1091
0.5 4323 1723 1007
0.25 5757 1150 1268
0.125 7463 1177 332
0.0625 4176 941 319
0.0313 3178 1140 225
0.0156 0 0 168
0.0078 0 0 48
0.0039 0 0 0
0.0020 0 0 0
Mean PrPSc ± SE 1979 ± 462

Figure 6.4 Quantification of PK-resistant PrPSc in ME7/101LL brain homoaenate

PrPSc detected in ME7/101LL brain homogenate treated with PK (20fig/ml final
concentration), then two-fold serially diluted in uninfected 101LL brain homogenate (PK-
treated at 20pg/ml) to give dilutions of brain from 1 to 0.0039% when loaded onto 12%
tris/glycine SDS-PAGE gels. Control homogenates of uninfected 101LL and ME7/101LL
brain, PK untreated, were also loaded at 1% homogenate each. PrP was detected as before
(figure 6.3) Blots (A), (B) & (C) represent three separate experiments performed on
different days. On each blot the limit of detection is marked*. Recombinant PrP is indicated
at 28kDa (<). The three glycosylated bands of PrP were detected in each lane (I). The
pixel intensities for each band were converted to ng as previously detailed (figure 6.3). A
value of zero indicates no PrPSc was detected.

138



% Horn Loaded

263K/101LL(1) 263K/101LL(1)
q_

PK - - +
-

A • .

LO
LO rsi

LO CN t-H

O o o

+ + +

*

Wm- S§

CL
l_

cn
c
o
LO

LD
LO i—i 00 00 CT*
fN r\i LD m
vO m i—1 o o
o q q q q
o o o o o

+ + + + +

SI

o
LD

• r

I

% homogenate
loaded

Concentration of PrP50 in
263K/101LL (1) brain homogenate (ng)

Blot A Blot B
1 439 739
0.5 826 1371
0.25 396 2667
0.125 537 0
0.0625 0 0
0.0313 0 0
0.0156 0 0
0.0078 0 0
0.0039 0 0
Mean PrPSc ± SE 872 ± 292

Figure 6.5 Quantification of PK-resistant PrPScin 263K-infected 101LL ("11 brain homaenate

PrPSc detected in 263K/101LL (1) brain homogenate treated with PK (20pg/ml final
concentration), then two-fold serially diluted in uninfected 101LL brain homogenate (PK-
treated at 20pg/ml) to give dilutions of brain from 1 to 0.0039% when loaded onto 12%
tris/glycine SDS-PAGE gels. Control uninfected 101LL and 263K/101LL brain homogenates,
PK untreated, were loaded at 1% homogenate. PrP was detected as before (figure 6.3)
Blots (A) & (B) represent two separate experiments performed on different days. On each
blot the limit of detection is marked*. Recombinant PrP is indicated at 28kDa (<). The
three glycosylated bands of PrP were detected in each lane (I). The pixel intensities for
each band were converted to ng as previously detailed (figure 6.3). A value of zero
indicates no PrPSc was detected.
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Figure 6.6 Quantification of PK-resistant PrPScin 263K-infected 101LL (1) brain homaenate
PrPSc detected in 263K/101LL (2) and 263K/101LL (3) brain homogenate treated with PK
(20|ug/ml final concentration), then two-fold serially diluted in uninfected 101LL brain
homogenate (PK-treated at 20|ig/ml) to give dilutions of brain from 1 to 0.0039% when
loaded onto 12% tris/glycine SDS-PAGE gels. Control uninfected 101LL and 263K/101LL
brain homogenates, PK untreated, were loaded at 1% homogenate. PrP was detected as
before (figure 6.3). For 263K/101LL (2) blots (A), (B) & (C) represent three separate
experiments performed on different days. Only one experiment (blot A) was performed using
263K/101LL (3). On each blot the limit of detection is marked*. Recombinant PrP is
indicated at 28kDa (<). The three glycosylated bands of PrP were detected in each lane
(I). The pixel intensities for each band were converted to ng as previously detailed (figure
6.3). In all analysis, only zero values were obtained for all PK-treated lanes.
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6.3.3. Total PrP detection in titrated brain

To address whether total PrP levels differed in each model, and to be able to

assess the amount of PrPc in each infected animal, the total amount of PrP

was examined in the same brain homogenate as used for PrPSc
measurement (chapter 6.3.2). Uninfected 101PP and uninfected 101LL
brain homogenates were found to contain a similar amount of total PrP,
with 3314 ± 716 (SE) ng total PrP present in 101PP and 3834 ± 709 ng

present in 101LL brain homogenates (figure 6.7). ME7/101PP brain

homogenate contained 6180 ± 1431 ng total PrP (figure 6.8), approximately
4-fold more than the total PrP detected in ME7/101LL brain homogenate,
which contained 2292 ± 571 ng total PrP (figure 6.9). This large difference
was initially attributed to less PrPSc produced in 10ILL compared to 101PP
mice during disease, however it was subsequently found that it was

probably due to a degradation of PrP during storage of this sample (chapter

6.3.4). It is not clear why this sample in particular was affected since all

samples were stored in the same -70°C freezer. In 263K/101LL (1) brain

homogenate 5730 ±1062 ng total PrP was detected (figure 6.10) and

263K/101LL (3) exhibited 4114 ± 928 ng total PrP (figure 6.11). These data
indicated that ME7/ 101PP and 263K/ 101LL (1) contained approximately 2-
fold more total PrP than found in uninfected animals and that 263K/ 10ILL

(3) contained approximately the same amount of total PrP as in uninfected
animals. Total PrP levels were found to be similar in 263K/101LL (1) and

263K/ 10ILL (3) brain homogenates. The detection limits of 263K/ 10ILL (1)
and (3) were within a 2-fold range of that for ME7/101PP. Therefore, there
did not appear to be a major difference between total PrP levels in

ME7/ 101PP, 263K/ 10ILL (1) and 263K/ 10ILL (3) brain homogenates.

Infected animals have been shown to contain up to lOx more total PrP than
uninfected animals (Meyer et al., 1986). The finding here that uninfected
and infected brain exhibited only up to 2-fold differences in total PrP levels
was therefore surprising since the production of PrPSc during disease should
increase total PrP levels in infected compared to uninfected animals.
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% homogenate
loaded

Concentration of Total PrP in uninfected brain homogenate (ng)
Uninfected 101PP Uninfected 101LL

Blot A Blot B Blot E BlotC Blot D Blot E
1 1077 11297 nd 4510 4716 nd
0.5 2325 6966 3910 5662 3707 2903
0.25 3127 2598 3438 5494 2200 3216
0.125 1387 1030 3909 2583 1097 1779
0.0625 1740 304 6675 2689 1911 10684
0.0313 1444 544 10328 2449 2221 8919
0.0158 nd nd o nd nd 0
Mean PrP ± SE 3314 ± 716 3834 ± 709

Figure 6.7 Quantification of total PrP in uninfected 101PP and 101LL brain homoaenate

Detection of total PrP in uninfected 101PP and 101LL brain homogenate two-fold serially
diluted in PBS to give dilutions of brain homogenate from 1 to 0.0158% when loaded onto
12% tris/glycine SDS-PAGE gels. PrP was detected using 8H4 monoclonal antibody (chapter
2.2) and visualised using West Dura substrate. Blots (A) & (B) and (C) & (D) represent two
separate 101PP and 101LL experiments respectively. Blot (E) is an independent experiment
with 101PP and 101LL homogenate dilutions loaded across the same SDS-PAGE gel. All
blots were performed on different days. On each blot the limit of detection is marked*.
Recombinant and glycosylated PrP are marked as previously (figure 6.3) and total PrP was
detected as for PrPSc (figure 6.3). (F) Immunoblot E also probed with GAPDH (chapter 2.2)
to ensure equivalent amounts of protein were loaded at each dilution from each brain.

142



B

% Homogenate Loaded
ME7/101PP ME7/101PP

Q_
Q_

lo

cd

Q-
L_ m
Q_ LO LD r^

LO i— rsi CO CO CT> CTi
LT) fM __ T—1 IT) rv ro 1—1 o

LT) fNJ VO Ul
f— cn r-H o o o o

fNJ H O 1—

o CD CD CD CD o o
o o O LD o CD CD CD o o

*

q_
x-
CL
x_

cn
c
o
ld

MM"
i.

£ -

■jiWSS®
H

L 'S-'X;vWet;^

M05SaaHn6BMNHflHHHHaMHHi

% homogenate
loaded

Concentration of Total PrP in
ME7/101PP brain homogenate (ng)

Blot A Blot B
1 11970 14539
0.5 8222 10721
0.25 8765 3926
0.125 15550 1356
0.0625 4390 1400
0.0313 1783 2985
0.0156 650 247
0.0078 0 0
0.0039 0 0
0.0020 0 0
Mean PrP ± SE 6180 ± 1431

Figure 6.8 Quantification of total PrP in ME7-infected 101PP brain homoaenate

Total PrP detected in ME7/101PP brain homogenate two-fold serially diluted in PBS to give
dilutions of brain from 1 to 0.001% when loaded onto 12% tris/glycine SDS-PAGE gels. PrP
was detected as before (figure 6.3). Control homogenate of uninfected 101PP brain (PK-)
were loaded at 1% homogenate concentration per well. Blots (A) & (B) represent two
separate experiments performed on different days. On each blot the limit of detection is
marked*. Recombinant PrP is indicated at 28kDa (<). The three glycosylated bands of PrP
were detected in each lane (bracketed). The pixel intensities for each band were converted
to ng as previously detailed (figure 6.3). A value of zero indicates no PrP was detected.
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% homogenate
loaded

Concentration of Total PrP in
ME7/101LL brain homogenate (ng)

Blot A Blot B
1 3997 3022
0.5 2781 1578
0.25 3663 147
0.125 5137 0
0.0625 2594 0
0.0313 0 0
0.0156 0 0
0.0078 0 0
0.0039 0 0
0.0020 0 0
Mean PrP ± SE 2292 ± 571

Figure 6.9 Quantification of total PrP in ME7-infected 101PP brain homoaenate

Total PrP detected in ME7/101LL brain homogenate two-fold serially diluted in PBS to give
dilutions of brain from 1 to 0.002% when loaded onto 12% tris/glycine SDS-PAGE gels. PrP
was detected as before (figure 6.3). Control homogenate of uninfected 101LL brain (PK-)
were loaded at 1% homogenate concentration per well. Blots (A) & (B) represent two
separate experiments performed on different days. On each blot the limit of detection is
marked*. Recombinant PrP is indicated at 28kDa (<). The three glycosylated bands of PrP
were detected in each lane (bracketed). The pixel intensities for each band were converted
to ng as previously detailed (figure 6.3). A value of zero indicates no PrP was detected.
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% homogenate
loaded

Concentration of Total PrP in
263K/101LL (1) brain homogenate (ng)

Blot A Blot B
2 8215 1678
1 9663 3846
0.5 9563 4160
0.25 14665 6144
0.125 6206 6088
0.0625 11856 2846
0.0313 0 5471
0.0156 0 1270
0.0078 0 0
0.0039 0 0
0.0020 0 0
Mean PrP ± SE 5730 ± 1062

Figure 6.10 Quantification of total PrP in 263K-infected 101LL brain homoaenate

Total PrP detected in 263K/101LL (1) brain homogenate two-fold serially diluted in PBS to
give dilutions of brain from 2 to 0.002% when loaded onto 12% tris/glycine SDS-PAGE gels.
PrP was detected as before (figure 6.3). Control homogenate of uninfected 101LL brain
(PK-) were loaded at 1% homogenate concentration per well. Blots (A) & (B) represent two
separate experiments performed on different days. On each blot the limit of detection is
marked*. Recombinant PrP is indicated at 28kDa (<). The three glycosylated bands of PrP
were detected in each lane (bracketed). The pixel intensities for each band were converted
to ng as previously detailed (figure 6.3). A value of zero indicates no PrP was detected.
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Figure 6.11 Quantification of total PrP in 263K-infected 101LL brain homoqenate

Total PrP detected in 263K/101LL (3) brain homogenate two-fold serially diluted in PBS to
give dilutions of brain from 2 to 0.002% when loaded onto 12% tris/glycine SDS-PAGE gels.
PrP was detected as before (figure 6.3). Control homogenate of uninfected 101LL brain
(PK-) were loaded at 1% homogenate concentration per well. Blots (A) & (B) represent two
separate experiments performed on different days. On each blot the limit of detection is
marked*. Recombinant PrP is indicated at 28kDa (<). The three glycosylated bands of PrP
were detected in each lane (bracketed). The pixel intensities for each band were converted
to ng as previously detailed (figure 6.3). A value of zero indicates no PrP was detected.
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6.3.4. Total PrP detection in non-titrated brain

A second study of total PrP levels in infected animals was undertaken to

confirm the data described previously (chapter 6.3.3). Freshly prepared
brain homogenate was analysed from representative animals from each
model. Infectivity titres in these tissues were not investigated due to time
and breeding constraints. Fresh brain was investigated from one

ME7/101PP and one ME7/101LL animal and from two separate

263K/101LL animals, designated 263K/101LL (a) and 263K/101LL (b).
Due to time constraints, only one immunoblot experiment per homogenate
was carried out. There appeared to be similar amounts of total PrP in each

sample. ME7/ 101PP brain homogenate contained 4132 ± 1241 ng total PrP

(± standard error), ME7/101LL contained 3866 ± 2107 ng, 263K/101LL (a)
exhibited 671 ± 315 ng and 263K/101LL (b) contained 1398 ± 749 ng total
PrP (figure 6.12). When plotted alongside the uninfected data (taken from

figure 6.7) total PrP levels in ME7/101PP, ME7/101LL and 263K/101LL (b)
infected brain homogenate appeared equivalent, when error bars were taken
into consideration (figure 6.13). When considering the error bars, the total
PrP detected in 263K/ 10 ILL (a) and 263K/ 10ILL (b) homogenates appeared

equivalent, however 263K/101LL (a) appeared to contain less total PrP than
detected in uninfected and ME7-infected 101PP and 10 ILL brain

homogenates. It should be noted however, that these experiments were

only performed once, using one representative brain per model. This may

explain the large standard error in these experiments and why it was

difficult to distinguish the limits of detection between the samples.
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ME7/101PP ME7/101LL 263K/101LL(a) 263K/101LL(b)
2 4383 491 3147 175
1 5806 639 1815 561
0.5 8432 2052 858 913
0.25 10370 2788 771 1335
0.125 7446 2249 534 1351
0.0625 8360 16058 226 7958
0.0313 656 18244 26 3086
0.0156 0 0 0 0
0.0078 0 0 0 0

0.0039 0 0 0 0
0.0020 0 0 0 0
Mean PrP ± SE 4132±1241 3866±2107 671 ± 315 1398 ± 749

Figure 6.12 Quantification of total PrP in 263K-infected 101LL brain homoaenate

Total PrP detected in freshly prepared brain homogenate from (A) ME7/101PP, (B)
ME7/101LL, (C) 263K/101LL (a), (D) 263K/101LL two-fold serially diluted in PBS to give
dilutions of brain from 2 to 0.002% when loaded onto 12% tris/glycine SDS-PAGE gels. PrP
was detected as before (figure 6.9). The limit of detection is marked*. Recombinant PrP is
indicated at 28kDa (<). The three glycosylated bands of PrP were detected in each lane
(bracketed). The pixel intensities for each band were converted to ng as previously detailed
(figure 6.9). A value of zero indicates no PrP was detected.
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6.3.5. PrPc levels in infected brain

For each brain homogenate (titrated brain), PrPc levels were calculated by

subtracting the mean PK-resistant PrPSc level detected in a homogenate
from the mean total PrP level detected (table 6.2). Since PrPc levels were not

directly measured using immunoblot, this calculation only inferred to the
amount of PrPc in each brain homogenate studied here. These calculations
indicated that across all of the models studied, total PrP levels remained

relatively constant whereas PrPSc levels and PrPc levels varied across all
infected animals. In ME7/101PP, PrPc made up 35% of total PrP, whilst in

ME7/101LL, it only made up 14% of total PrP. In 263K/101LL (1) and (3)
PrPc constituted 85% and 100% of total PrP, respectively (table 6.2).

Model Total PrP (ng)a Relative % PK- Relative %PrPc

=100% res PrP^ng)" (ng)c

Uninfected 101PP 3314 NA 100%

Uninfected 101LL 3834 NA 100%

ME7/101PP 6180 65% (4010) 35% (2170)

ME7/101LL 2292 86% (1979) 14% (313)

263K/101LL (1) 5730 15% (872) 85% (4858)

263K/101LL (2) ND 0 NA

263K/101LL (3) 4114 0 100% (4114)
a Total PrP detected in each brain homogenate (ng) (chapter 6.3.3) contributes to 100% of
PrP per homogenate
b PK-resistant PrPSc detected in each brain homogenate (ng) (chapter 6.3.2) converted to a
percentage relative to total PrP.
c PrPc levels inferred for each brain homogenate by calculating total PrP minus PK-resistant
PrPSc (ng) converted to a percentage relative to total PrP.
NA Not applicable
ND Not determined - non enough homogenate to measure the parameter
Table 6.2 Relative contributions of PrPc and PK-resistant PrPSc in brain homoaenate from
each TSE model

Since PrPc was not actually detected in the experiments performed thus far,
PrPc levels were further investigated using a different detection method.
The ELISA-based assay, DELFIA was therefore used to detect both PrPc and
PrPSc levels from brain homogenate taken from each TSE model studied
here.
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6.3.6. Measurement of PrP using DELFIA

During the course of these studies the DELFIA assay became available.
This assay is more quantitative than the immunoblot system used above
thus PrPSc levels in infected brain and PrPc levels in uninfected and infected

brain could be quantified. Accordingly, the brain homogenate used to

quantify total PrP levels by immunoblot (i.e. the non-titrated homogenate
used in chapter 6.3.4) was investigated using DELFIA since the stocks of
titrated brain homogenate were no longer available. In 1M guanidine

hydrochloride solution [GndHCl] PrPSc is GndHCl-insoluble and PrP0 is
GndHCl-soluble therefore these fractions can be separated and PrP content

measured (chapter 6.2.3). PrP levels in experimental samples were

measured relative to a standard curve produced using recombinant PrP. In
uninfected 10ILL homogenate PrP was detected only in the 1M GndHCl-
soluble phase, none was detected in the GndHCl-insoluble phase (table 6.3).
This showed good separation of PrP in GndHCl soluble and insoluble

phases using this methodology (table 6.3). In ME7/101LL, PrP was

recovered mainly from the GnHCl-insoluble phase, indicating a high PrPSc
content (table 6.3).

Sample
GndHCI-soluble

PrP (ng)

GndHCl-insoluble

PrP (ng)

Total PrP

(ng)

% Insoluble

PrP

Uninfected 101LL 0.13 0 0.13 0

ME7/101LL 0.20 4.58 4.78 96

263K/101LL(a) 0.38 0.01 0.39 3

263K/101LL(b) 0.22 1.42 1.64 87

GSS/101LL 0.71 0 0.71 0

PrP detected in the 1M GndHCl-soluble phase is probably PrPe
PrP detected in the 1M GndHCl-insoluble phase is probably PrPSc
Total PrP is inferred from the addition of PrP in soluble and insoluble phases.
The precentage of GndHCl-insoluble PrP in each sample probably represents the contribution
of PrPSc. Data courtesy of D King, NPU, Edinburgh.
Table 6.3 DELFIA measurement of PrP in brain

In 263K/101LL (a) most PrP was detected from the GndHCl-soluble
fraction, however 3% of PrP was recovered in the GndHCl-insoluble phase
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(table 6.3). This suggests that there may be a small amount of PrPSc in this
brain but that the majority is probably PrPc. Conversely, in 263K/10ILL (b)
most PrP was recovered in the GndHCl-insoluble phase (table 6.3)

suggesting the majority of PrP in this brain was PrPSc, however 13% of PrP
was also recovered in the GndHCl-soluble fraction, suggesting this was

PrPc. Total PrP in 263K/101LL (a) was less than in 263K/101LL (b), and
concurred with previous immunoblot data (figure 6.12). ME7/101LL brain

homogenate contained 12-fold more total PrP than 263K/101LL (a)

homogenate and three-fold more total PrP than detected in 263K/101LL (b)
brain homogenate (figure 6.14).
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Figure 6.14 DELFIA measurement of PrP in brain

PrPc and PrPSc separated by differential solubility in 1M guanidine hydrochloride were
detected using monoclonal antibodies, FH11 at lpg/ml for capture and europium-labelled
7A12 for detection. Data represents a single measurement performed on a single
representative brain homogenate from each TSE model, except the 263K/101LL model
where two individual brain homogenates were investigated.
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Immunoblot had also measured three-fold more total PrP in ME7/101LL
than in 263K/101LL (b), but had measured only six-fold more total PrP in

ME7/101LL compared to 263K/101LL (a) (figure 6.12). This may be due to

less sensitive detection of PrP by immunoblot. Importantly, PrP was not

detected in the GndHCl-insoluble fraction of GSS/101LL brain, suggesting
that if present, PrPSc levels in this homogenate are extremely low.

6.4. Discussion

6.4.1. Sensitivity of PrP detection

The sensitivity of immunoblot was determined using pure recombinant PrP

(rPrP), which producing a single band on coomassie-stained SDS-PAGE.
This was consistently detected at 5-10ng, comparable to a previous study
where bovine recombinant PrP was detected down to lng by immunoblot

(Takekida et al., 2002). Immunoblot detected PrP in the ng range, similar to

previous immunoblot investigations (Lasmezas et al., 1997). DELFIA
detected PrP in the pg range, similar to the sensitivity of other ELISA-based

assays (Grassi et al., 2000). In other studies, immunoblot and ELISA

sensitivity has been improved by concentrating PrP from a whole sample,

using centrifugation or precipitation techniques (Lee et al., 2000;

Polymenidou et al., 2002; Safar et al., 1998). However, due to limited

availability of brain homogenate in which infectivity was titrated and PrPSc
levels were assessed, these techniques were not used to analyse the

samples described here.

In ME7/101PP brain 2mg wet weight contained 4pg PK-resistant PrPSc (2ug

PrPSc/mg brain). A total mouse brain, 500mg wet weight, has been reported
to contain up to 4pg PK-resistant PrPSc (8ng/mg) (R. Barron, IAH,

Edinburgh, personal communication) thus the absolute amounts of PrPSc
detected by immunoblot here probably over-represent those present in the
whole brain. DELFIA analysis of infected brain detected 4ng PrPSc in 20mg
wet weight of ME7/ 10 ILL brain (0.2ng PrPSc/mg) therefore probably under-
represents the amount of PrPSc present in whole mouse brain.
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The quantification of immunoblots relied on the accurate measurement of

rPrP concentration and if this was over-estimated then the sample values
are likely to be over-estimated. The concentration of rPrP was estimated

using the BSA assay and it is possible that this was not accurate. It may
have been more appropriate to perform a dilution series of rPrP on each blot
to provide a standard curve for PrP measurement, however space

constraints on each SDS-PAGE gel did not allow this. In addition the
densitometric analysis of PrP may not have been accurate. Where samples
were overloaded the chemilluminescent signal may not have been

completely captured. Alternatively the detection antibody may have a

different affinity to rPrP compared to native samples. Recombinant PrP is

produced in a prokaryotic system thus is unglycosylated and lacks the GPI-

anchor, which may affect the antibody affinity. In DELFIA it has been
demonstrated that anti-PrP antibodies have an increased affinity to rPrP

giving higher concentration values, compared to those of brain homogenate

samples (D King, unpublished results). If this also occurs during
immunoblot detection, this may explain why PrP levels in brain homogenate
measured by immunoblot here appear lower than previously reported.

In all of the quantification experiments it must be remembered that for each

model, except 263K/101LL, only one representative brain was chosen for

investigation. It is possible that, similar to the 263K/ 10 ILL model, different
amounts of PrP would be detected in other brains from the ME7/ 101PP and

ME7/101LL models. However, all of the samples examined here have been

compared to the same recombinant control and are similarly affected by any
error in measuring rPrP concentration. Important for this study is the
correlation between the relative amount of PK-resistant PrPSc in each sample
and the relative titre of infectivity found in each sample. The percentage of
Prpse in each sample remains unchanged even if the rPrP concentration was

not accurately measured. Clearly, 263K/101LL (1) brain has five-fold less
PK-resistant PrPSc than ME7/ 101PP yet both samples contain the same titre
of infectivity.
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6.4.2. Immunoblot variability

The detection of similar total PrP levels in each of the brain homogenates

investigated by immunoblot indicated that the limit of PrP detection had
been reached at the equivalent dilution for each brain homogenate.

Immunoblot, however, was sensitive enough to distinguish different
amounts of PrP within this dilution. The standard errors for each

measurement indicated a relatively high degree of variability for each

sample investigated using immunoblot and this probably contributed to

total PrP values appearing to be the same. Immunoblot variation can occur

within each blot, from sample to sample because of dilution and pipeting

errors, and can also occur between blots performed on different days, again
due to dilution and pipeting errors but also experimental conditions. In

general, where the dilution of homogenate increased, sample variability

increased, indicating that with each dilution errors increased. Generally,
inter-blot variation was greater than intra-blot variation, suggesting that the
variation in the day-to-day conditions contributed most to the variation in
PrP measurement. Although blot to blot variation occurred, the presence of
the rPrP on each blot allowed this variation to be controlled.

6.4.3. Immunoblot detected equivalent amounts of total PrP in brain

Previous studies had indicated that compared to uninfected animals, TSE-
infected animals displayed total PrP levels that increased 5 to 10-fold (Meyer
et al., 1986) or 4 to 7-fold (Somerville & Dunn, 1996), and that this increase
was due to the accumulation of PK-resistant PrPSc during disease. It was
considered that for samples containing high amounts of PK-resistant PrPSc,
the total PrP should be high, but the data described herein does not agree
with this. ME7/101PP homogenate contained 5 to 8-fold more PK-resistant
Prpsc than found in 263K/ 10ILL (1), however there was not an equivalent 5
to 8-fold difference in total PrP levels, indeed total PrP levels in these

homogenates were similar (figure 6.15). Surprisingly, brain homogenate
from all models studied here, including uninfected 101PP and 10ILL mice,

appeared to contain similar amounts of total PrP, when assessed by
immunoblot (figure 6.15).
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Moreover, quantification of total PrP in infected brain homogenate found
PrP levels to be no more than 2-fold higher than in uninfected brain (figure

6.15). Importantly, a second set of brain homogenates taken from the same

experimental models confirmed the total PrP data. In contrast, DELFIA
measurement of total PrP from the second set of brain homogenates
revealed different levels of total PrP in each homogenate with total PrP in

ME7/101LL brain homogenate 38-fold more than in uninfected brain.

Homogenate from 263K/101LL (a) contained 5-fold more and 263K/101LL

(b) contained 13-fold more total PrP than found in uninfected 10 ILL brain.

It is not clear why there was a difference between the two quantitative
methods used here. ELISA is a more sensitive technique than immunoblot
and may indicate more clearly the amount of PrP in each sample. In

immunoblot, the indirect measurement of the number of pixels contributing
to the PrP image for each sample may not accurately measure the amount

of chemiluninescence generated by the sample. It may be that the 2-fold
dilution factor chosen to assess these brain homogenates by immunoblot
was not sufficient to distinguish a 2 to 3-fold difference in PrP levels
between samples, however differences greater than 4-fold should be easily
distinguishable. DELFIA analysis of total PrP was more consistent with

previous reports that found an increase in total PrP with increasing PrPSc
levels (Meyer et al., 1986; Somerville & Dunn, 1996).

6.4.4. Amount of PK-resistant PrPSc varies in infected animals

In previous experiments 10ILL mice inoculated with ME7 or 263K produced
less PK-resistant PrPSc in brain than ME7-infected 101PP mice (Barron et

al., 2001; Manson et al., 1999). These findings were confirmed here.
Immunoblot indicated that PrPSc levels in ME7/101LL brain were 2-fold

less, and in 263K/ 10ILL (1) were 5 to 8-fold less, than in ME7/ 101PP brain
(figure 6.15). No PK-resistant PrPSc was detected in 263K/101LL (2) and
263K/101LL (3) brain homogenates by immunoblot (figure 6.15), consistent
with the variation in PrPSc levels found within in this TSE model, as

previously described (chapters 3 8s 4), DELFIA analysis confirmed
immunoblot data, detecting variable PrPSc levels between individual
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263K/101LL brains. DELFIA also detected pg levels of PrPSc in some

263K/101LL brain homogenates. Given that DELFIA detection of PrP is
more sensitive immunoblot detection, it is feasible that extremely low levels
of PrPSc in 263K/101LL (2) and (3) brain homogenates, which were not

detected by immunoblot, may have been detectable by DELFIA.

PrPSc was not detected by immunoblot or DELFIA in GSS/101LL brain

homogenate. TSE was had successfully transmitted to uninfected 10ILL
mice using this homogenate (chapter 5). 263K/101LL (2) and 263K/101LL

(3) brain homogenates also transmitted TSE to uninfected 10ILL mice

(chapter 5) and it is possible that DELFIA may not detect the presence of
Prpse in these homogenates. Since infectivity was transmitted from all

263K/101LL and GSS/101LL homogenate investigated by immunoblot it is

possible that infectivity may associate with something other than PK-
resistant PrPSc . It is possible that other soluble, intermediate forms of PrP

may be extracted along with PrPc during the DELFIA process, thus a

soluble, non-PrPc form of PrP could be the infectious agent.

6.4.5. Variability in PrPc levels in infected animals

The inferred PrPc levels obtained from immunoblot data indicated that PrPc

levels varied in infected animals (figure 6.15), and that in some infected
animals PrPc levels were lower than found in uninfected animals. This was

contrary to a previous study that showed PrPc levels in infected animals
were similar to those found in uninfected animals, with PrP° constituting
10% of the total PrP in an infected animal (Meyer et al., 1986). In the
immunoblot studies here only ME7/101LL brain homogenate contained
PrPc representing 10% of the total PrP. Notably, PrPc levels in 263K/10 ILL

(3) brain homogenate, which appeared to contain only PrPc , were similar to
PrPc levels found in uninfected 101PP and 10ILL mice. TSE was

transmitted from 263K/101LL (3) homogenate, however, indicating that the
PrP detected in this brain may be a PK-sensitive form of infectious PrP.
Such forms of PrP were recently described in a murine model of GSS

(Tremblay et al., 2004). DELFIA analysis of PrPc confirmed the variable,
and sometimes low, PrPc levels in infected animals.
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DELFIA measurement of GSS/101LL brain, that transmitted infectivity to

10ILL mice, detected PrPc levels higher those in uninfected 10ILL mice, yet
detected no PrPSc, suggesting that the 1M GnHCl-soluble fraction, in which
PrP° is found, may contain other soluble forms of PrP. Intermediate forms
of PrP have been isolated from 263K-infected hamster brain as small, PK-

sensitive forms of PrP (Tzaban et al., 2002), and it is possible that these
intermediates may also be present in the GndHCl-soluble fraction. Using
immunoblot alone it would be difficult to separate infectious and non¬

infectious soluble forms of PrPSc since both are PK-resistant. The

differential extraction method of DELFIA may be useful in isolating soluble
forms of PrP, which could then be titrated to identify whether they were

infectious. Alternatively, gel filtation studies, similar to those described by
Tzaban et al may be useful in identifying fractions of brain that contain

infectivity.

6.4.6. The correlation between PK-resistant PrPScand infectivity

The aim of these experiments was to quantify PK-resistant PrPSc levels for
correlation with infectivity titres. Importantly, each parameter was

measured in the same brain homogenate thus correlating infectivity with
PK-resistant PrPSc in a single animal. This provides an accurate correlation
for each model since PrPSc levels and titre of infectivity can vary between
individual animals. However, due to the limitations of the number of TSE
models studied and low the number of individual brains studied per model

(one from ME7/101PP, one from ME7/101LL and three from the

263K/101LL model) it was not possible to perform a statistical correlation.
With hindsight, at least another two models, exhibiting high and
intermediate levels of PrPSc, should have been examined for comparison with

ME7/101PP and ME7/101LL, and more individual brain homogenates
should have been examined from each model. Due to both time and space

constraints however, it was not possible to assess the titre of infectivity in
brain from a large number of animals.

General observation of the data here suggests that where one strain of TSE

agent is used, titre of infectivity increased with increasing PrPSc level, in
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accordance with the prion hypothesis. Within the 263K/101LL model,

homogenate from 263K/101LL (1) contained highest PrPSc levels and

infectivity titre and within the ME7-infected animals ME7/ 101PP contained
the highest titre of infectivity and PrPSc level. However, this relationship is
not consistent between the different models since homogenate from

263K/101LL (1) contains five times less PrPSc than found in ME7/101PP

homogenate yet titres of infectivity are equal. No PK-resistant PrPSc was
detected in homogenate from 263K/ 101LL (2) and 263K/ 101LL (3), yet titre
of infectivity in 263K/101LL (2) and 263K/101LL (3) were similar to that
found in ME7/101LL homogenate. If PK-resistant PrPSc is the infectious

agent in these diseases, this data suggests that this form of PrP is

intrinsically different in each model.

6.4.7. The number of PrP molecules per infectious unit

The hamster 263K model indicated that one infectious unit contains 104 to

105 molecules of PrPSc (McKinley et al., 1983; Meyer et al., 1986). High
titres of infectivity were found in ME7/101PP and in 263K/101LL (2) and

(3) brain homogenates, however PrPSc was not detected in 263K/101LL (2)
and (3) brain. This suggests that in different TSE models, if PK-resistant
PrPSc is the infectious agent, one infectious unit may be comprised of a
different number of PrPScmolecules. From the quantification of PK-resistant
Prpsc in each brain homogenate (measured in this chapter) and of the titre
of infectivity determined in each homogenate (chapter 5), it was possible to
estimate the number of molecules of PrPSc per infectious for each brain

homogenate studied here (table 6.4). In ME7/101PP, ME7/101LL and
263K/101LL (1) brain homogenates, where PK-resistant PrPSc could be
detected, the number of PrPSc molecules per infectious unit fell within

previously detected limits (Beekes et al., 1996; McKinley et al., 1983; Meyer
et al., 1986). ME7/101PP exhibited 105-4 molecules, ME7/101LL exhibited
105-9 molecules and 263K/101LL (1) exhibited 104 6 molecules PrPSc in one

infectious unit (ifu) (table 6.4). This suggests that in these models PK-
resistant PrPSc does correlate with infectivity.
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Brain

homogenate
Infectivity titre3
(IDSo/g brain)

Molecules PrP per infectious unit"

prp* PrPc

ME7/101PP io8-5 105'4 1051

ME7/101LL 107-7 105'9 106

263K/101LL(1) 108-5 104'6 io5-4

263K/101LL(2) 1071 na (f103 3) na

263K/101LL(3) 106-6 na (f103 7) io7-4
a Infectivity titre determined by end-point titration (chapter 5)
b Amount of PK-resistant PrPSc measured by immunoblot. Amount of PrPc inferred from
immunoblot detection of total PrP level minus PrPSc level
Number of molecules per infectious unit calculated; no. molecules in sampled

titre of infectivity
d Number of molecules in sample calculated; PrP detected fal * Avaaadro's number6

PrP molecular weight (assumed to be 30,000 Da)
e Avagadro's number of molecules in lmole of solution = 6.022 x 1023
f Assumed measurement of PrPScto be lng
nd Not determined
na Not applicable
Table 6.4 Number of molecules of PrP per infectious unit calculated from immunoblot
detection of PK-resistant PrPSc and end-point titration of brain homoaenate from each TSE
model

PK-resistant PrPSc in homogenate from 263K/101LL (2) and (3) was not
detected using immunoblot or DELFIA, however if infectious PrPSc was

present in these homogenates. it may be <5ng, below the limit of detection of
immunoblot. The value of lng PrPSc was therefore assigned to 263K/101LL
(2) and (3) to calculate the number of molecules of PrPSc per infectious unit
in each homogenate. There are <103 3 molecules PrPSc per ifu in 263K/ 10ILL
(2) and <103 7 molecules PrPScper ifu in 263K/ 10ILL (3) homogenates (table
6.4). Therefore the number of PrPSc molecules in one infectious unit in the
263K/ 10ILL models was less than those found in the ME7-infected models.
This infers that if PK-resistant PrPSc is the infectious agent in these brains,
one molecule of PK-resistant PrPSc in 263K/lOlLL-infected brain may be
more virulent than one molecule of PK-resistant PrPSc in ME7-infected

brain. However, if another molecule (or complex of molecules) contributes
to infectivity then 263K/101LL brain may contain more of this unidentified
molecule than ME7-infected brain.

161



PK-resistant PrPSc levels do not correlate with infectivity titre in 263K/ 10ILL

(2), (3) and (b) brains, as well as in the GSS/101LL brain investigated in
this thesis (chapter 3). Thus the correlation between PK-resistant PrPSc and

infectivity, as defined by Prusiner et al (McKinley et al., 1983; Prusiner,

1982), is not exclusive. It has been suggested that other forms of PrP,

particularly exhibiting PrPc-like biochemical properties (eg. PK-sensitivity)

may be present in TSE-infected brain (Safar et al., 1998; Tremblay et al.,

2004; Tzaban et al., 2002). It is not known whether these forms of PrP
contribute to infectivity. In the studies here, PrPSc was identified using PK
thus alternative PK-sensitive forms of PrP (PrP-sen) may have been

degraded along with PrPc. PrPc levels identified by immunoblot indicated
that the number of PrP-sen molecules per ifu in each homogenate was

similar, if not higher than the number of PrPSc molecules per ifu. These

data, and DELFIA detection of PK-sensitive PrP in the GndHCl-soluble

fraction from transmissible 263K/101LL and GSS/101LL brain, may

indicate the influence of PK-sensitive molecules, other than PrPc, on

infectivity in 263K/101LL and GSS/101LL models. Further studies to

identify PK-sensitive PrP in these models is therefore required.

Other studies have expressed the amount of PrPSc found in brain

preparations as absolute amounts, however such studies have attempted to

purify the scrapie agent, as PrP 27-30 or as SAF (Gibson et al., 1987;
Hilmert 8s Diringer, 1984; Kascsak et al., 1985; McKinley et al., 1983).
However in such experiments proteins other than PrP were also purified

(Bolton et al., 1987) thus may be associated with infectivity. The

experiments described in this chapter quantified PK-resistant PrPSc from
crude brain homogenate rather than from a purified SAF or PrP27-30

preparation. Thus, the study here, in common with other studies

correlating PrPSc and infectivity, may measure additional molecules that
contribute to infectivity.

The presence of alternative forms of PrP may explain why PK-resistant PrPSc
levels in individual brain from the 263K/101LL and ME7-infected models
can differ by at least five-fold yet infectivity titres remain similar. In the
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next chapter, therefore, the presence of other forms of PrP in brain
homogenate from GSS/10ILL and 263K/10ILL models was investigated.
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7. Alternative forms of PrP

7.1. Introduction

The studies performed in this thesis have indicated that there is a lack of
correlation between PK-resistant PrPSc and infectivity titre. This lack of
correlation is evident in the 263K/101LL model where individual brains
exhibited extremely low levels or no detectable PK-resistant PrPSc, yet

contained appreciable amounts of infectivity (chapters 5 & 6). Concentration
of the PrP in such samples may reveal the presence of extremely low levels of
PK-resistant PrPSc. If the prion hypothesis is correct PK-resistant PrPSc should
have been detected in 263K/101LL mouse brain from which TSE was

transmitted, however it is possible that alternative forms of infectious PrP,
other than PK-resistant PrPSc are present in the brain. It has been shown that
alternative forms of PrP are present in human GSS caused by the A117V
mutation and CJD caused by the insertion of nine extra octapeptide repeat

regions (chapter 1). Additionally, alternative forms of PrP, such as cyPrP, have
been suggested to be neurotoxic (Ma et al., 2002; Stewart & Harris, 2003) and
these may be present in cases of TSE where PrPSc is absent. Moreover if, as

suggested by the prion hypothesis, there is an infectious template that allows
the conversion of PrPc from an uninfectious to an infectious form, it may be an

alternative form of PrP and not PK-resistant PrPSc that acts as the template.

The concept of PrPc to PrPSc conversion has evolved from the suggestion of a

simple one step process to a complex conversion pathway, along which there
may exist several different structural forms of PrP (figure 7.1). These different
forms of PrP may have different PK-cleavage sites exposed and differential
biochemical properties to PrPc or PrPSc, resulting in differential PK-sensitivity
and/or detergent solubility. Due to the unknown nature of PrP intermediates
they are often referred to as PrP* (Weissmann, 1991).
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Figure 7.1 Does PrP conversion follow a simple or complex pathway?

If PK-resistant, detergent insoluble PrPSc is the infectious agent of TSE, why
does the 263K/101LL model have high titres of infectivity associated with low
PrPSc levels? Furthermore, why was no PK-resistant PrPSc detected in

GSS/101LL brain by immunoblot or DELFIA yet the same brain homogenate
was capable of transmitting infectivity? Both 263K/101LL and GSS/101LL
brain may contain infectious but PK-sensitive PrP and could explain why there
is a lack of PK-resistant, detergent insoluble PrPSc in these models.

This chapter investigates the possibility that infectivity is associated with a

form of PrP other than PK-resistant PrPSc. The biochemical characteristics of

PrP found in disease end-point brain in all of the models was therefore
analysed to determine whether the PrP present conformed to the detergent
insoluble, PK-resistance of PrPSc or the detergent soluble, PK-sensitivity of
PrPc. At the time of commencing these studies it was not known whether the
transmembrane PrP associated with the A117V GSS model was infectious.

Since the P101L mutation causes GSS, the possible presence of
transmembrane PrP was also investigated in infected 10ILL mice. The

implications of disease transmission with respect to the forms of PrP found in
each model are also discussed.
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7.2. Methodology

7.2.1. Brain homogenate investigated from each model

Brain homogenate from ME7/101PP, ME7/101LL and 263K/101LL models
was investigated. Where possible brain homogenate that had previously been
used to quantify PK-resistant PrPSc (chapter 6) and calculate titre of infectivity

(chapter 5) was used. All homogenates had transmitted TSE (chapter 5),
however, 263K/101LL (1) contained live-fold less PrPSc than ME7/101PP and

263K/101LL (2) & 263K/101LL (3) both contained no detectable PrPSc (chapter

6). Additionally, one brain from GSS-infected 10ILL mice that contained no

detectable PrPSc yet transmitted TSE (non-titrated brain - chapter 5) was also
examined.

7.2.2. PK sensitivity of PrP in each model

Five percent brain homogenate prepared in detergent (chapter 2.6.2) was

incubated with varying amounts of PK (chapter 2.7.1) at final concentrations of

1000, 500, 400, 300, 200, 100, 50, 20, 10, 5, 2, and lpg/ml. PK reactions
consisted of 9pl homogenate and lpl appropriately diluted PK in a total of 10pl.
Reactions were incubated at 37°C for 60 minutes and terminated by adding lpl
of lOOmM PMSF. Control reactions of PK-treated (20pg/ml final concentration)
and PK-untreated uninfected brain were also performed. Samples were

examined by immunoblot (chapter 2.12). PrPSc with different PK-resistant

properties may have different structural conformations not visible to one

monoclonal antibody. Blots were therefore probed using monoclonal antibody,
8H4, or polyclonal antibody, 1B3 (chapter 2.2).

7.2.3. Detergent solubility of PrP in each model

Brain was prepared as 10% homogenate from infected ME7/101PP,
ME7 /10 ILL, 263K/101LL (1), 263K/101LL (2), 263K/101LL (3) and
GSS/101LL and from uninfected 101PP and 101LL mice, and was analysed
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using the detergent solubility protocol (chapter 2.22). Resuspended fractions

(PI, P2 and S2) were split into two samples to identify PrPc and PrPSc

proportions in each fraction. One sample was PK-treated (20pg/ml final
concentration - chapter 2.7.1). Each reaction was added to SDS-PAGE loading
buffer and sample reducing agent then protein was separated by

electrophoresis and analysed using immunoblot (chapter 2.9).

Supernate 2(S2)

Brain tissue 5% homogenate Pellet 1 (PI)
in sarkosyl

Pellet 2 (P2)

Figure 7.2 Separation of detergent soluble and insoluble PrP fractions by centrifuaation
Pellet 1 (PI) produced after first spin contains cellular debris with PK-resistant and PK-sensitive
PrP present. Supernate 2 (S2) produced after first spin contains soluble PrP which is PK-sensitive
and is likely to represent PrPc. Pellet 2 (P2) produced after second spin contains insoluble PrP
which is PK-resistant and is probably PrPSc.

7.2.4. Identification of transmembrane PrP

Microsomal membranes were prepared (chapter 2.13) from brain tissue of one
animal each of ME7/101PP, ME7/101LL and 263K/101LL models as well as
from uninfected 101PP and 10 ILL animals. These tissues were taken from the

same experiments as the titrated tissues, but were from different animals. The
resultant microsomes were examined using the PK-protection assay to analyse
for transmembrane PrP. For each preparation, the identification of calnexin, a
ubiquitous transmembrane protein, was crucial in determining whether
membranes were intact before proceeding with transmembrane identification.
These methods were modified from published protocols (Hegde et al., 1998;
Stewart & Harris, 2001).
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7.2.4.1. Calnexin identification

To determine whether microsomal membranes remained intact after storage at

-70°C microsomal membranes were treated with PK (chapter 2.15).
Transmembrane calnexin protein was identified using a purified IgG, mouse

monoclonal, anti-calnexin antibody (chapter 2.2), visualised using goat a-

rabbit secondary (chapter 2.3) and POD substrate and viewed using x-ray film.
A shift from full-length 98kDa calnexin in PK-untreated reactions to a cleaved
64kDa protein in PK-treated reactions indicated intact microsomes.

7.2.4.2. Transmembrane PrP identification

Ntmprp was detected using monoclonal antibody 8B4 and ctmprp was detected

using monoclonal antibody 8H4 (chapter 2.2). PrP was visualised using

secondary rabbit a-mouse (chapter 2.3) and POD substrate using x-ray film

(chapter 2.12).
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7.3. Results

7.3.1. The relative PK-sensitivity of PrP

PrPSc is described as having a PK-resistant core of 27-30kDa, whereas PrPc is

completely degraded upon treatment with PK (McKinley et al., 1983; Meyer et

al., 1986). Diagnostic and research laboratories generally use > 20pg/ml PK to

identify the PK-resistant core of PrP. PK-resistant PrPSc was not detected in
brain homogenate from individual 263K/101LL and GSS/101LL mice, which

subsequently transmitted TSE (chapters 5 & 6), therefore it was possible that
infectious PrP in these models had an alternative PK-resistant pattern to PrPSc
found in the ME7/101PP and ME7/101LL models. PrP in both 101PP and
10ILL uninfected brain was sensitive to ^5 pg/ml PK, when detected with 8H4

(figure 7.3A&B) and > 10 pg/ml PK when detected with 1B3 (figure 7.4A&B).

ME7/101PP exhibited PrPSc that appeared to have a high degree of PK-

resistance, with the protease-resistant core still visible using lOOOpg/ml PK

(figure 7.4C). The quantification of PK-resistant PrPSc in ME7/101LL brain
indicated that this homogenate contained half the amount of PrPSc compared to

ME7/101PP (chapter 6). However PrP from both models exhibited the same

high degree of PK-resistance, exhibiting the protease resistant core at

lOOOpg/ml , when detected with 1B3 (figure 7.4D).

The PrP in 263K/ 10 ILL mice showed variability in PK-resistance. Homogenate
from 263K/101LL (1) showed a PK-resistance at 20 pg/ml when detected with
8H4 and up to 1000 pg/ml when detected with 1B3 (figures 7.3C & 7.4E).
thus PrP in this homogenate displayed a high degree of PK-resistance, similar
to the PrPSc in ME7/101PP and ME7/101LL brain homogenate. However,

homogenate from 263K/ 10ILL (2) and 263K/ 10ILL (3) was sensitive to PK £ 5

pg/ml, similar to that found in uninfected animals (figures 7.3D & 7.4F).
When immunoblotted with 8H4, PrP in GSS/ 10 ILL brain homogenate was also
sensitive to > 5pg/ml PK (figure 7.3E), similar to the PK resistance of PrP in
homogenate from uninfected and 263K/101LL (2) and (3) mice. In 1B3 blots,
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the intensity of the upper band at approximately 33kDa (figure 7.4 C-F)
increased with increasing PK concentration and probably represents PK itself
since this has an approximate molecular weight of 29kDa (Sambrook &
Russell, 2003).
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Figure 7.3 PK-titration of brain homoaenate detected using monoclonal antibody 8H4

1% brain homogenate PK-treated with up to 200pg/ml PK from (A) uninfected 101PP, (B)
uninfected 101LL, (C) 263K/101LL brain homogenate- 1, (D) 263K/101LL brain homogenate - 3,
and (E) GSS/101LL brain homogenate, including uninfected 101PP brain homogenate control,
untreated and PK-treated (20pg/ml final concentration). Detected using 8H4 monoclonal
antibody (chapter 2.2) and visualised using rabbit a-mouse secondary antibody (chapter 2.3)
and POD substrate. Bracket indicates PK-resistant core of PrP^at 27-30kDa.
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Figure 7.4 PK-titration of infected and uninfected brain homoaenate detected using 1B3

1% brain homogenate from (A) uninfected 101PP and (B) uninfected 101LL models, treated
with l-100(jg/ml PK (final concentration). 1% brain homogenate from (C) ME7/101PP, (D)
ME7/101LL, (E) 263K/101LL (1) and (F) 263K/101LL (3) models treated with l-lOOOgg/ml PK
(final concentration), with uninfected 101PP brain (PP), untreated an PK-treated (20|jg/ml final
concentration) as a control. Detected using polyclonal antibody 1B3 (chapter 2.2) and visualised
using secondary antibody (chapter 2.3) and POD substrate. Bracket indicates PK-resistant core
of PrP50 at 27-30kDa. * indicates the presence of PK itself at ~33kDa.
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7.3.2. The detergent solubility of PrP

PrPSc is described as a PK resistant protein, however this was not detected
from transmissible 263K/101LL or GSS/101LL brain homogenate using PK
concentrations >20mg/ml. PrPSc is further biochemically characterised as a

detergent insouble protein, compared to PrPc, which is detergent soluble. This
difference in solubility is thought to occur because of different conformations of
PrP. Therefore, to determine whether the low levels of PrPSc in 263K/101LL
and GSS/101LL models were due to different forms of PrP, the detergent

solubility of PrP from all models was investigated using the methodology
described (figure 7.2). Brain homogenate from uninfected 101PP and 10ILL
mice and from infected animals that had been investigated in the PK-resistance

experiments was used in these experiments. Initially samples were

resuspended in lOOpl buffer (chapter 2.9) therefore were not concentrated.

Brain homogenate from uninfected 101PP and 10ILL mice produced only the

expected detergent soluble, PK-sensitive PrPc, in S2 with no PrP detectable in
the other fractions (figure 7.5A & B). Brain homogenate from ME7/ 101PP and

ME7/101LL mice exhibited PrP in all fractions: P2 contained detergent
insoluble, PK-resistant PrPSc, S2 contained PK-sensitive PrPc and PI contained

PrPSc, indicating that not all of the abundant PrP in these tissues was released
during homogenisation (figure 7.5A & B). There were different patterns of
detergent solubility in the three different 263K/101LL brain homogenates

investigated. 263K/101LL (1) exhibited detergent insoluble PrPSc in P2, similar
to ME7-infected brain, whereas 263K/101LL (2) exhibited only detergent
soluble PrPcin the S2 fraction, similar to PrP in uninfected brain (figure 7.5C).

Detergent insoluble PrP was found in the P2 fraction of 263K/101LL (3) brain

homogenate. PrP detected in the PK+ lane was faint, but appeared to be PK-
resistant (figure 7.5C). However since the pellets produced using this method
were viscous and difficult to load onto the elecrophoresis gels, it was not

initially clear whether a small amount of PrP from the S2 PK- lane had spilled
into the PK+ lane during loading.
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(D) Uninfected 101PP
PI P2 S2

PK- + - .+

263K/101LL(2)
PI P2 S2

+ PK- + - + - +

263K/101LL(3) GSS/101LL
PI P2 S2 rec PI P2 S2

PK-+-+-+ - + -+- +

28kDa

m t H ~28kDa

Figure 7.5 Detergent solubility of PrP

Detergent solubility of PrP from all models assessed in (A) 2% brain homogenate from
uninfected 101PP and ME7/101PP mice, (B) 2% brain homogenate from uninfected 101LL and
ME7/101LL mice, (C) 2% brain homogenate from 263K/101LL (1), (2) & (3). (D) 5x
concentrated samples from uninfected 101PP, 263K/101LL (2) & (3) and GSS/101LL
homogenate. PK-treated brain (PK+ lanes) treated with 20pg/ml final concentration. PrP
detected using antibody 8H4, with West Dura substrate as before (figure 7.3). For band sizes,
compare to recombinant PrP (rec) at 28kDa.
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To identify whether low levels of PrPSc were present in infected brain,

homogenate from the 263K/101LL and GSS/101LL models, pellets were re-

suspended to a five-fold concentration (chapter 2.9). When compared to the

previous data, all concentrated samples showed an increase in the
concentration of PrP in each fraction (figure 7.5D). In uninfected homogenate,

only PK-sensitive PrPc was detected in the detergent soluble S2 fragment,

however, compared to the un-concentrated samples, an increased amount of
PK-sensitive PrP was found in the P2 fraction (figure 7.5D). This probably

represents a small amount of PrPc that was not completely removed from this
fraction before P2 was resuspended. PrP in 263K/101LL (2) and 263K/101LL

(3) homogenates showed the uninfected pattern of detergent solubility with the

majority of PrP present in the S2 fraction and PK-sensitive. In 263K/101LL

(3), however, PrP was detected in the S2 PK+ lane (figure 7.5D). Protein was

present at 30-35kDa, reminiscent of PrPc, and probably represented spill-over
from the S2 PK- lane rather than detergent soluble PK-resistant PrP, which
would be seen at 27-30kDa. PrP from 263K/ 10ILL (2) and (3) therefore exhibit
a PrPc-like detergent solubility. The GSS/101LL brain homogenate revealed
PrP with detergent solubility similar to that of ME7 infected tissues with PK-

resistant, detergent insoluble PrPSc found in the P2 fraction and PK-sensitive,

detergent soluble PrPc found in the S2 fraction. Moreover, PrPSc was visible in
this tissue where it had not been seen before indicating that concentration of
brain homogenate was required to detect low amounts of PrPSc in brain

homogenate. Concentration of homogenate from 263K/101LL mice to greater

than five-fold may have revealed PrPSc in this model.

7.3.3. Investigation of transmembrane PrP

The PrP detected in 263K/101LL brain homogenate appeared to be consistent
with the non-infectious PrPc form (PK-sensitive and detergent soluble), however

263K/101LL brain transmitted infectivity to 10ILL mice (chapter 5) thus this

homogenate contained more than non-infectious PrPc. It was therefore

possible that infectious PrP other than PrPSc was present in this model.
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Transmembrane PrP had been described in murine and human brain

exhibiting TSE pathology in the absence of PrPSc (Hegde et al., 1998). At the
time of performing the studies here it was not known if transmembrane PrP

was infectious, thus transmembrane PrP was investigated in the models
studied here.

Microsomal membranes were prepared from brain homogenate from one

representative animal from each model (ME7/101PP, ME7/101LL and

263K/101LL) and from uninfected 101PP and 101LL mice. The original

protocol devised for studying transmembrane PrP was performed on fresh
brain (Hegde et al., 1998; Stewart & Harris, 2001). Brain tissue from the
models used in this study had been frozen therefore it was essential to assess

whether frozen brain was suitable for this study. Calnexin, a membane-

spanning protein, was used as a control to verify that microsomal membranes
remained intact after removal from -70°C storage. The full length 98kDa
calnexin protein spans the ER membrane with a 64kDa portion remaining in
the lumen. When microsomes were incubated with PK, the protein outside of
the lumen was cleaved. After PK cleavage the protected 64kDa protein was

identified using immunoblot. Microsomes prepared from fresh and frozen
brains displayed the 64kDa fragment after incubation with PK (figure 7.6),

indicating that frozen brains could be used to

identify transmembrane PrP.

Figure 7.6 Suitability of microsomes preparations from
frozen compared to fresh brain from uninfected 101PP
mice.

Detection of transmembrane calnexin using an a-calnexin
antibody (chapter 2.2) indicates the shift from full length 90
kDa to 64 kDa calnexin.

Transmembrane PrP is found in two forms,

ctmprp Ntmprp (chapter 1.11.2) thus antibodies that recognise the C- and N-
terminus of PrP were used to identify these forms of PrP. 8H4 had been used

Frozen Fresh

PK -+ + - + +

DET - - + - - +

98 —'

49—

28
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to detect PrP previously (chapters 3, 4 & 6) this recognises the C-terminal

epitope at amino acid residues 175-190 of PrP (appendix B). Two N-terminal
antibodies had been described, 8B4 and 5B2, which recognise epitopes at

amino acid residues 36-43 and 34-52 respectively ((Li et al., 2000) 85 appendix

B). Compared to 5B2, 8B4 was found to have a higher affinity to PrP from
uninfected 101PP and 10ILL brain homogenate and appeared to preferentially
detect the diglycosylated form of PrP at 35kDa (data not shown).

10ILL 101PP 101PP 10ILL
PNGase - + rec + rec PNGase - + rec - + rec

36 —

30 —

16 -

36

30

I— 16

8H4 884

Figure 1.1 Detection of PrP using antibodies that recognise epitopes at the N-terminus
Brain homogenate from uninfected 101PP and 101LL mice was used to determine the usefulness
of antibodies that recognise PrP epitopes in the N- and C- terminal region. 2% brain homgenate
from 101PP and 101LL mice, untreated (PNG- lane) and deglycosylated as before (PNGase+
lane), control of 25ng recombinant PrP (rec) (naturally deglycosylated at 28kDa, open arrow)
detected using C- and N- terminal antibodies, 8H4 (left) and 8B4 (right) respectively. The
typical 3-band pattern of PrPc can be seen in PNGase- lanes at 30-35kDa. The bracket on the
right blot indicates probable dimers of rPrP and full length PrP. All immunoblots visualised using
secondary rabbit ct-mouse antibody and POD substrate (chapter 2.3). Markers indicate kDa
sizes.

Monoclonal antibody 8B4 had a similar affinity for PrP from 101PP and 10ILL
brain homogenate (figure 7.7) and in common with the antibody 8H4, this
detected deglycosylated PrP from uninfected 101PP and 10ILL brain at 30kDa

(figure 7.7). Both antibodies also detected naturally deglycosylated
recombinant PrP at 28kDa (figure 7.7). It was important to verify that both
antibodies detected deglycosylated PrP since all transmembrane reactions were

PNGase treated. Compared to the 8H4 blot results in the 8B4 blot were

difficult to interpret because of incomplete deglycosylation (figure 7.7). In both
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blots the typical 3-band pattern of PrPc was seen in PNGase- lanes at 30-
35kDa. Deglycosylated PrPc in PNGase+ lanes was present at 30kDa (closed

arrow). The recombinant PrP (rPrP or rec) is non-glysosylated and is present at

28kDa (open arrow), but has been overloaded in the 8B4 blot. In the 8B4 blot
the lower 28kDa band in PNGase+ lane (open arrow) probably represents

incomplete deglycosylation of PrP from the mono- and diglycosylated bands,
additional bands <16kDa in the rec lanes probably represent natural cleavage

products of rPrP and additional bands at >50kDa probably represent

dimerisation of full-length and recombinant PrP (bracket in figure 7.7).

Control reactions for transmembrane PrP were kindly provided by D. Harris
and R. Stewart (Washington University School of Medicine, St Louis, USA).
These consisted of reticulocyte lysate translation reactions (L9R-3AV) in which
PrP was produced that contained three alanine to valine mutations at PrP
amino acid residues 112, 114 and 117. These residues have been shown to

induce the production of ctmprp (Stewart & Harris, 2001). The leucine to

arginine mutation at residue 9, within the signal sequence, enhances the

production of ctmprp (Stewart, Drisaldi & Harris, 2001). In translation
reactions a combination of these mutations allows the production of ctmprp
alone (Stewart 85 Harris, 2003).

Half brain was taken from one uninfected 101PP and 10ILL mouse and from

one ME7/101PP, ME7/101LL and 263K/101LL mouse, and microsomal
membranes were prepared (chapter 2.17). The calnexin control assay verified
the membranes were in tact (figure 7.8) before the presence of transmembrane
PrP was investigated from each preparation.

PrP detection was controlled using homogenates of uninfected 101PP and
10ILL brain that were either untreated or PNGase-treated (figure 7.9B).
Transmembrane PrP, ctmprp at lQkDa and Ntmprp at i4kDa, should have been
detected in the control L9R-3AV samples, however no PrP was detected these
samples (figure 7.9B). This was possibly due to damage caused by the transit
of the control from the USA or by long-term storage at -70°C. Alternatively, the

177



harsher conditions of the PK-protection assay used here (37°C for 30 minutes)

compared to those previously described (4°C for 60 minutes) (Stewart & Harris,

2001), may also explain the lack of detection of transmembrane PrP.

1Q1PP 10 ILL ME7/1Q1PP 263K/101LL
PK-+ + - + + - + + -+ +
Det- - + - - + +

98

64

50

Figure 7.8 Verification of intact microsome preparations
In tact microsomal membrane preparations were confirmed in uninfected 101PP and 101LL as
well as ME7/101PP and 263K/101LL brain homogenates, using a-calnexin antibody (chapter 2.2)
and visualised using goat a-rabbit secondary antibody (chapter 2.3) and POD substrate. The
upper 98kDa band * indicated the presence of full-length calnexin. The lower 64kDa band
(downward arrow) indicated the presence of the internal portion of calnexin protected from PK
cleavage by the intact microsomal membrane. Marker sizes in kDa.

There is no 19 kDa band in the PK+/Det- lane in any of the samples (figure

7.9B) suggesting that ctmprp js not present at detectable levels in any of these
brain samples. All brain homogenates show similar results (figure 7.9B)

suggesting no difference in the transmembrane PrP between models. Detection
of PrP in the control brain homogenates using 8H4 indicated that the samples
were not fully deglycosylated and the resultant PrP was difficult to distinguish

(figure 7.9B). Deglycosylated PrP exhibits a major band at 28 kDa and another
band at 19-21 kDa, which represents the deglycosylated form of naturally
cleaved PrP. These fragments were present on the blots here as major bands
at 28 kDa and -19 kDa (figure 7.9B). However, because PrP was not fully
deglycosylated, there were extra bands representing monoglycosylated full
length PrP at -32 kDa and the naturally cleaved glycosylated fragment at -22
kDa (figure 7.9B). The presence of PK-resistant PrP in the PK+/Det- and
PK+/Det+ lanes of ME7/101PP indicates that there is PK-resistant PrPSc
present in this brain. However, curiously, PK-resistant PrPSc is not present in

178



these lanes of the ME7/101LL brain. Only one ME7/101LL brain was

investigated here and the absence of PK-resistant PrPSc in this homogenate

may be due to experimental error. However, this may also suggest that there is
an extremely low level of PrPSc in this particular ME7/101LL brain

homogenate. Unfortunately no immunostaining or immunoblot analysis was

performed on this brain prior to use therefore the levels of PrPSc in this animal
is not known.

In this assay, the 8B4 detection of PrP was poor and it is not clear why since
8B4 is clearly capable of detecting PrP (figure 7.7). PrP was faintly detected in
PNGase-treated uninfected 101PP and 10ILL brain homogenate, but was not

detected in untreated samples. PrP was only detected in microsomal

preparations from uninfected 10ILL homogenate as a deglycosylated fragment
of 28 kDa (figure 7.9B). This fragment was also faintly detected at 28 kDa in
the PK-/Det+ lane of ME7/ 101PP (figure 7.9B). No Ntmprp was found at 14 kDa
in the PK+/Det- lanes for any of the samples (figure 7.9B). The action of freeze-

thawing the microsomal membranes, however, may explain the lack of PrP
detected from the preparations made here. This action may have fractured the
membranes and allowed PK to digest all the PrP, including transmembrane
forms.
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Figure7.9InvestigationoftransmembranePrPfrombrainmicrosomes IdentificationoftransmembranePrPfrommicrosomepreparations.(A)microsomestreatedPK+/Det-containonlythetransmembrane forms,ctmPrPat19kDa(openarrow)andNtmPrPat14kDa(closedarrow),PK-/Det+containfulllengthtransmembraneandcellsurfacePrP, PK+/Det+noPrPdetected.(B)TransmembranePrPdetectedinmicrosomespreparedfromcontrolL9R-3AVreactions(lanesl-o), uninfected101PP(lanesd-g)and101LL(laness-v)brainandinfectedME7/101PP(lanesh-k),ME7/101LL(lanesw-z)and263K/101LL (lanesA-D)brain,using8H4todetectctmPrP(upperblot)and8B4todetectNtmPrP(lowerblot),visualisedusingrabbitanti-mouse secondaryantibodyandPODsubstrate.Controlbrainhomogenate,1%101PP(lanesa,b)and101LL(lanesp,q)(PNGase-/+)loadedtothe leftofeachmarker.*19-21kDadeglycosylated,naturallycleavedPrP.OmonoglycosylatedfulllengthPrPat~32kDa.Markersizesare indicatedat51,34,28,20and6kDainlanesc&r.



7.4. Discussion

Investigations were performed here to identify the presence of alternative
forms of PrP that did not conform to the previously described biological
characteristics of PrPSc (Meyer et al., 1986). Such forms of PrP may explain
the apparent absence of PK-resistant PrPSc in brain homogenate that
contain high titres of infectivity.

7.4.1. Transmissible brain contains PrP with PrPc-like characteristics

PrPSc is classically defined as detergent insoluble and PK-resistant whereas
PrPc is PK sensitive and detergent soluble (Meyer et al., 1986). The studies

performed here found that uninfected 101PP and 10ILL mouse brain
contained detergent soluble/PK sensitive PrP, reminiscent of PrP°, however
this PrP did display partial PK-resistance at low PK concentrations. This

single 28kDa intermediate form was previously described (Buschmann et

al., 1998) and is thought to represent an N-terminally cleaved product of
full length PrPc. The flexible N-terminal region of PrP is thought to be more

accessible to PK than the structured region, therefore the N-terminus is

thought to be cleaved before the 28kDa C-terminal globular domain

(Buschmann et al., 1998). Homogenate from 263K/101LL (2) and (3)
contained PrP with PrPc characteristics; detergent soluble and PK-sensitive,
and is consistent with the lack of PK-resistant PrPSc detected upon

immunoblot (chapters 3 & 6). Studies here did not indicate the presence of
PrP intermediate to PrPc and PrPSc in 263K/101LL (2) and 263K/101LL (3)
brain homogenates. Where PrPSc was readily detected; in 263K/101LL (1),

ME7/101PP and ME7/101LL homogenate (chapter 6), PrP was detergent
insoluble and PK-resistant, consistent with the biochemical definition of
PrPSc. However, the PrP in 263K/101LL (1) appeared less PK-resistant than
that in the ME7 models, consistent with a previous study describing the
ME7 agent as more PK-resistant than 263K (Kuczius & Groschup, 1999).

The resistance of PrPSc to PK may be due to the highly aggregated nature of
PrPSc. A tighly packed aggregate of PrP in ME7/101PP brain may not allow
PK to access the aggregate to completely cleave the protein. However, if PrP
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is aggregated loosely in 263K/ 10ILL brain this may allow PK to access PrP
and cleave the protein. Low concentrations of PK may therefore be effective
in completely cleaving 263K/101LL whereas high concentrations of PK
would be required to completely cleave PrP in ME7/ 101PP brain. Moreover,

given that PrP in 263K/101LL (1) is less PK-resistant than PrP in the ME7
models this may indicate the presence of smaller amounts of highly

aggregated PrPSc in 263K/101LL (1) compared to the ME7 models. PrP in

ME7/101PP and ME7/101LL brain homogenate was resistant to similar
concentrations of PK even though the ME7/101LL homogenate contained
half the amount of PrPSc than the ME7/101PP homogenate (chapter 6).
These data probably indicate that PrP found in brain from ME7 / 101PP and

ME7/101LL models is likely to be highly aggregated whereas PrP in

263K/ 10 ILL is less so.

Concentration of PrPSc in GSS/ 10 ILL brain revealed the presence of a small
amount of PK-resistant PrPSc. This may account for the transmission of
TSE from this brain homogenate to 10ILL mice (chapter 5). Brain

homogenate from 263K/101LL (2) and 263K/101LL (3) also transmitted

infectivity to 10ILL mice however no PK-resistant PrPSc was detected in
these brains even upon 5x concentration of the homogenate. This 5x
concentration may not have been enough to reveal exceedingly small
amounts of PK-resistant PrPSc in these homogenates thus methods of PrPSc
concentration such as precipitation of PrPSc using salts (Polymenidou et al.,
2002; Wadsworth et al., 2001) should have been considered. It was not

possible to perform such experiments on the exact brain homogenates

investigated here due to limited availability however it may have been

prudent to use fresh brain from representative animals of each model.

Infectivity was transmitted from all three 263K/101LL brain homogenates

yet in 263K/101LL (2) and (3) the only PrP detected had PrPc-like
characteristics. This may suggest that in these particular brain
homogenates, if PrP is the infectious molecule, a detergent soluble, PK-
sensitive form can confer infectivity. Since no PK-resistant PrP was present
in 263K/101LL (2) and 263K/101LL (3) brain homogenate PK-sensitive PrP
is likely to make up the majority of infectious PrP in these brains. This
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may suggest that the acquisition of infectivity may occur at a very early

stage during PrPc—>PrPSc conversion so that infectious PrP may have a PrPc-

like conformation (e.g. PrP1 portrayed in figure 7.1). If the infectious agent

is a molecule (or complex of molecules) associated with PrP, this association

may occur at a very early stage of disease. Moreover, taking into
consideration previous in vitro data indicating the conversion of PrPc to a PK
resistant form of PrP which is not infectious (Hill et al., 1999a), then it may
be that a PrP-associated infectious molecule, present in vivo, is not critical
to the in vitro conversion process per se. If this molecule was the infectious

agent of TSE then this would suggest that the infectious mechanisms of
TSE are separate from PrP conversion mechanisms.

7.4.2. 101LL mice are unlikely to contain transmembrane PrP

Brain tissue from all models investigated here was analysed for the

presence of transmembrane forms of PrP as ctmprp and Ntmprp, nq
transmembrane PrP was detected in uninfected 101PP and 10ILL mouse

brain. This agrees with other studies that have failed to find
transmembrane PrP associated with the P101L mutation (D. Harris,

Washington University, USA, personal communication) and in models with

disease-causing mutations outside of the hydrophobic region of PrP

(Stewart & Harris, 2001). Infection of 10ILL mice with ME7 or 263K TSE

agents did not result in detection of ctmprp in these animals. However,
ctmprp Ntmprp were not detected from the appropriate controls, thus the

presence of ctmprp in infected 10ILL mice cannot be completely ruled out.

Additionally transmembrane PrP was not identified from the single

experiment performed here. Since this was not repeated, the presence of
transmembrane PrP in the brain samples studied here cannot be completely
ruled out. Moreover, the concentration of microsomal membranes
recovered from the brains investigated here may have been low, thus low
amounts of transmembrane PrP may not have been visible in these

preparations.

In the experiments performed here, however, the suggested absence of
ctmprp in infected 10ILL mice is consistent with the finding that ctmprp
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production is not enhanced during TSE infection (Stewart & Harris, 2003).
Given that ctmprp has been reported to represent -1% of the total PrP, it is

possible that the experiments performed in this thesis are not sensitive

enough to detect extremely low levels of CtmPrP. Previous data here have
indicated that immunoblot of PrP can detect ^5ng PrP (chapter 6), thus if
ctmprp is present, levels must be <5ng. The use of the recently reported

ctmprp_Specific antibody, anti-SP (Stewart 85 Harris, 2003), may enhance the
detection of this form of PrP. Evidence from in vitro and in vivo experiments

suggests that only mutations within the hydrophobic domain of PrP

(residues 111-134) result in an increased amount of transmembrane PrP

(Hegde et al., 1998; Stewart & Harris, 2001). The GSS mutation, A116V,
was shown to increase ctmprp production in vitro and in vivo (Hegde et al.,

1998; Stewart & Harris, 2001). However the P101L GSS mutation lies out-
with the hydrophobic domain therefore would not be predicted to cause an

increase in transmembrane PrP in the 10ILL mice studied here. Other in

vitro studies in which human neuroblastoma cells expressed PrPc with the
P101L mutation have suggested that, compared to cells that do not contain
the P101L mutation, there is an increased concentration of a 20 kDa

fragment of PrP apparently derived from ctmprp (Mishra et al., 2002). To

explain the lack of PrPSc found in human GSS cases and in animal models
of GSS, the authors of this paper suggest that the P101L mutation causes

an increased production of ctmprp during disease (Mishra et al., 2002).
Furthermore, they suggest that the increased presence of CtmPrP, associated
with the P101L mutation, causes an increase in disease susceptibility

(Mishra et al., 2002). However, this is contradictory to the extended
incubation times reported for transgenic 10ILL mice infected with human
vCJD or with murine TSE agents 22A and 79V (Barron et al., 2001; Barron
et al., 2003). These mice show extended rather than shortened incubation
times compared to mice without the P101L mutation and suggests that the
10ILL polymorphism can decrease as well as increase susceptibility to
disease. Transmembrane forms of PrP have been suggested to be the
neurotoxic agent in models of TSE where PrPSc is non-detectable (chapter

1.11), however from the experiments performed here and elsewhere (Stewart
& Harris, 2001; Stewart & Harris, 2003), these forms are unlikely to be
involved in the disease process in 10ILL mice.
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7.4.3. 101LL mice may contain other forms of PrP

Cystolic PrP (cyPrP) along with ctmprp have not yet been demonstrated to be
infectious however these forms have been suggested, to cause neurotoxicity
in TSE disease (Ma et al., 2002; Stewart & Harris, 2003)(chapters 1.11 &

1.12). The accumulation of cyPrP may occur when cellular quality control
mechanisms are overwhelmed, with an increase in improperly folded PrPc

leading to a build-up of a PrPSc-like protein (detergent insoluble/partially

PK-resistant) that is neurotoxic (Dimcheff, Portis 8s Caughey, 2003b). Other

investigators suggest that cyPrP is not toxic to cultured human primary
neurons thus cyPrP is not applicable to human disease (Roucou et al.,

2003). Indeed these authors suggest that cyPrP (and normal PrP) is neuro¬

protective and directly interacts wdth the neuronal-specific proapoptotic

protein, Bax, to inhibit neuronal apoptosis (Roucou et al., 2003). The
involvement of cyPrP in TSE disease has therefore yet to be fully resolved.

Cytosolic PrP can apparently cause neurodegenerative disease in the
absence of PK-resistant PrPSc however since cyPrP has not been shown to be
infectious it is unlikely that this form of PrP would be present in the 10ILL
mice.

It is more likely that 263K/101LL (2) and 263K/101LL (3) brain

homogenates, and perhaps some GSS/101LL brains, contain an infectious
and PK-sensitive form of PrP. Using an alternative PK-treatment regime
and the CDI assay PK-sensitive PrPSc (sPrPSc) has been described transgenic
mice, containing the P101L mutation, that have been TSE-infected or

become spontaneously ill (Tremblay et al., 2004). Since Tg2866 mice
succumb to spontaneous neurodegenerative disease and TSE can be further
transmitted from brain, the detection of sPrPSc in these mice is thought to

represent the infectious agent. However the indicator Tgl96 mice in which
spontaneously ill Tg2866 brain homogenate was transmitted also succumb
to spontaneous disease. Tgl96 brain homogenate does not contain PK-
resistant PrPSc or sPrPSc thus it is not clear whether sPrPSc is an infectious

form of PrP. If sPrPSc was detected in 263K/101LL (2) and 263K/101LL (3)
brain this may provide more definitive evidence in support of the suggestion
that sPrPSc may be the infectious agent in some cases of TSE.
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It is possible that there are subtle differences in PrPc —>PrPSc conversion

process in 101PP and 10ILL mice that causes the appearance of PK-

sensitive, infectious PrP in the 263K-infected 10ILL mice. Alongside the

presence of PK-sensitive PrP the presence of ctmprp or cyPrP in these mice

may indicate that there is an alternative processing of PrP that causes the

rapid accumulation of these neurotoxic forms thus the rapid death of
infected 10ILL mice. The use of the anti-SP antibody (Stewart & Harris,

2003), may help verify whether ctmprp and indeed cyPrP are present.
Isolation of these forms of PrP followed by purification of PrP and

application in vivo or in vitro may indicate whether these are associated with

neurotoxicity rather than infectivity (chapter 1.12). This would indicate
that the neurotoxic characteristic of PrP is separate from the infectious
characteristic of TSE.
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8. Discussion

8.1. PK-resistant PrP50 does not definitively correlate with infectivity

The correlation between PK-resistant PrPSc and infectivity is a central issue
in the field of TSE disease. PrPSc is found only in infected tissues and the

prion hypothesis, which predicts that PK-resistant PrPSc alone is the
infectious agent of TSE, was formulated from experiments that co-purified
PrPSc and infectivity from infected brain from models exhibiting abundant
PK-resistant PrPSc at the terminal stages of disease (chapter 1.2). Indeed in
hamsters infected intracerebrally and orally with TSE, there is a strong

correlation between PrPSc level and titre of infectivity (Beekes et al., 1996;

McKinley et al., 1983; Prusiner, 1982). The detection of PK-resistant PrPSc
from BSE-infected cattle brain has also been shown to be consistent with

the correlation between PrPScand infectivity (Deslys et al., 2001).

Despite the demonstration that PK-resistant PrPSc correlates with infectivity
in these models there are cases of TSE where this form of PrP does not

appear to correlate with the presence of TSE or infectivity. PrPSc was not
detected in the brain of scrapie infected goats (Foster et al., 2001a), nor in
humans affected by FFI (Dorandeu et al., 1998) or GSS (Tateishi et al.,

1990). The lack of detectable PK-resistant PrPSc in these brains may be
explained by the presence of extremely low titres of infectivity in affected
brain. PrPSc levels in such brain may be so low they are extremely difficult
to detect. It is also possible that PK-resistant PrPSc may not be the
infectious agent in these cases of TSE. An alternative form of PrP or a

molecule other than PrP may be the infectious agent. Murine models of
TSE have been described in which disease can be transmitted from brain

that contains no detectable PrPSc (chapter 1.9). The murine model of BSE
transmission to C57B1/6 mice (Lasmezas et al., 1997) and the transgenic
model of GSS in Tgl74 mice (Hsiao et al., 1994) have both described
undetectable or extremely low levels of PK-resistant PrPSc in the brains of
TSE-affected mice, yet brain material from each of these models can

transmit infectivity. The model of Lasmezas et al in particular definitively
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demonstrates the presence of infectivity in the apparent absence of PK-
resistant PrPSc and may suggest that PK-resistant PrPSc is not the infectious

agent.

In addition to the Lasmezas model, the 263K/101LL model of TSE was

previously found to transmit TSE in the apparent absence of PK-resistant
PrPSc (Barron et al., 2001). It was thought that this model was useful for
further investigation into the correlation between PK-resistant PrPSc and

infectivity since high PrPSc levels would not obscure the real infectious

agent. In the studies here, the correlation between PK-resistant PrPSc and

infectivity appeared to hold where mice were infected with the same strain
of TSE agent (chapters 5 & 6). ME7/101PP exhibited two-fold more PrPSc
and one log more infectivity than ME7/ 10 ILL. Of all the 263K/ 10 ILL brain

homogenates studied here 263K/ 10ILL (1) exhibited most PrPScand had the

highest infectivity titre. However, PK-resistant PrPSc and infectivity did not

appear to correlate across all of the models investigated (chapters 5 8s 6).

Surprisingly, brain homogenates from 263K/101LL (1) and one ME7/101PP
animal both exhibited the same titre of infectivity yet ME7/101PP

homogenate contained five-times more PrPSc than 263K/101LL (1)

homogenate. Furthermore, in 263K/101LL (2) and 263K/101LL (3) brain

homogenates there was no detectable PK-resistant PrPSc yet these contained
similar titres of infectivity to one brain homogenate from the ME7/101LL
model, which contained only two-fold less PrPSc than ME7/101PP

homogenate. These data (summarised in figure 8.1) appear contrary to the

prion hypothesis.

The model of TSE studied here was not unique in showing that infectivity
could be transmitted in the absence of detectable PK-resistant PrPSc.

However the data presented in this thesis is the first to clearly demonstrate

high titres of infectivity in brain where PK-resistant PrPSc cannot be
detected.
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Figure8.1AmountofPK-resistantPrPScandinfectivitydetectedinhigh,intermediateandlowPrPScmodels TitreofinfectivityforeachmodelplottedagainstthecorrespondingamountofPK-resistantPrP50detectedbyimmunoblotrelativeto50ngrecombinant PrP,using8H4monoclonalantibody.OnebraineachfromME7/101PPandME7/101LLmodelsandthreeseparatebrainsfromthe263K/101LLmodel wereinvestigated.



8.2. PK-resistant PrPScmay not be the causal agent of TSE

In cases of TSE where there is an absence of PK-resistant PrPSc it has been

proposed that the infectious agent may be an alternative form of PrP.
Human brain affected by GSS/A117V has been shown to contain increased
amounts of transmembrane PrP as ctmprp (Hegde et al., 1998). Increased
amounts of ctmprp were also seen in a transgenic model of GSS/A116V

(Hegde et al., 1999). However, neither brain from the human case or the
murine model investigated was capable of transmitting TSE further thus it
is possible that ctmprp is a neurotoxic rather than infectious molecule.
Since the 263K/101LL mice investigated in the studies in this thesis
contained very little if any PrPSc in the brain, attempts were made to identify
whether transmembrane PrP was present in these mice. The single

experiment performed here did not allow a definitive conclusion to be drawn
as to whether ctmprp forms were present in the 263K/ 10ILL model, however
it indicated that ctmprp may be absent from this model. It is unlikely that
such forms would be present since the 10ILL mice used in this model have
a Prnp mutation out-with the transmembrane domain and it has been
shown that only mutations in the transmembrane domain can induce the

production of ctmprp (Stewart & Harris, 2001).

Other cases of TSE in which no PK-resistant PrPSc was detected in infected

brain are those of the human octapeptide repeat insertion and the murine
model of this disease in PG14 mice (Chiesa et al., 1998). These mice

displayed a neurological disease reminiscent of TSE, however, in
accordance with the suggestion that only mutations within the
transmembrane domain of PrP caused the production of CtmPrP, no

transmembrane PrP was found in the brain of affected animals from this

model (Stewart & Harris, 2001). Instead, PrP with altered PK-sensitivity
was found in brain homogenate treated with low concentrations of PK

(Chiesa et al., 1998). This brain material was not capable of transmitting
TSE thus the PK-sensitive PrP in this model is not infectious. The discovery
of non-infectious, PK-sensitive PrP in PG14 mice differs from the findings in
this thesis. 263K/101LL brain homogenate contained high titres of
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infectivity and did transmit infectivity to 10ILL mice, however there

appeared to be only PK-sensitive, detergent soluble PrP present where no

PrPSc was detected (chapter 7). This implied that a proportion of PK-
sensitive PrP detected in these brain homogenates was infectious and
further investigation is ongoing to definitively identify whether PK-sensitive
PrP is the infectious agent in the 263K/101LL model. These data may

suggest that the PK-sensitive PrP present in the PG14 model represents a

neurotoxic rather than infectious molecule.

Another study has linked PK-sensitive PrP to TSE. PK-sensitive PrPSc

(sPrPSc) was identified in spontaneously sick Tg2866 and TSE-infected

Tgl96 transgenic mice, which both carry the GSS/P101L mutation

(Tremblay et al., 2004). Both these lines of mice become spontaneously

sick, with 100% incidence in Tg2866 mice by 132 days and 20-30%
incidence in Tgl96 mice by approximately 550 days (Kaneko et al., 2000;

Tremblay et al., 2004). In these mice PK-sensitive PrPSc was detected using
an alternative PK regime, treating brain homogenate with 250pg/ml PK for
one hour at 4°C. PK-sensitive PrPSc appeared as a single band at 22-24kDa

upon immunoblot of all infected Tgl96 and spontaneous Tg2866 brains

investigated. However, it was not clear whether sPrPSc was present in
uninfected Tgl96 mice, whether spontaneously ill or not, thus it is difficult
to say whether sPrPSc is truly associated with infectivity. Clarification of this
issue is required before sPrPSc can be described as a disease-associated
form of PrP in the Tgl96 and Tg2866 models.

It may be that the PK-sensitive PrP described in 263K/101LL mouse brain
is similar to the sPrPSc form described by Tremblay et al, therefore it would
be prudent to perform the alternative PK regime on 263K/101LL brain

homogenate. Furthermore, since infectivity is not associated with PK-
resistant PrPSc in the 263K/101LL model, the presence of sPrPSc in this
model may provide a clearer indication of whether this form of PrP is indeed
infectious. Since the 263K/101LL model is a true TSE and is not

complicated by evidence of a spontaneous disease in the transgenic 10ILL

mice, this provides a more elegant model to study the proposed link
between infectivity and sPrPSc. If sPrPSc is infectious, this may represent
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one of the intermediate PrP* forms proposed to exist during the conversion
of PrPc—>PrPSc (Weissmann, 1991).

8.3. PK-resistant PrP50: A metabolic end product?

The prion hypothesis suggests that the normal protein, PrP° undergoes a

conformational change to become infectious PK-resistant PrPSc (Pan et al.,

1993). It is not known how or where during the conversion process PrPSc

acquires infectivity. It has been suggested that the conformational change
itself can confer infectivity, however studies have shown that PK-resistant
PrP produced via in vitro conversion is not infectious (Hill et al., 1999a).
This indicates that conformational change itself is not enough to make PK-
resistant PrP infectious and may suggest that PrPSc is not the infectious

agent. Moreover, experiments using heat treatment have dissociated

infectivity from the PK-resistant property of PrP (Somerville et al., 2002) and
further suggest that PK-resistant PrPSc is not the infectious agent of TSE. If
the infectious agent is not PrP another molecule or complex of molecules

may be the infectious agent, and may associate with PrP. In vitro studies
and studies in yeast have demonstrated the principal of PrP conversion

(Kirby et al., 2003; Kocisko et al., 1994; Liebman, 2002) and it is possible
that PrPSc is simply the final product in the conversion process rather than
the infectious agent per se.

The fact that PK-resistant PrPSc is present in most TSE cases may be an

indication that PrPc—► PrPSc conversion usually occurs at a rapid rate. In
some TSE models the conversion process may proceed rapidly towards the
PrPSc endpoint, with the infectious agent associating with PrPSc. In other
models, such as 263K/101LL, this conversion process may occur more

slowly, with a detergent soluble, PK-sensitive intermediate form of PrP

produced. The experiments performed in this thesis may indicate that in
the cases of TSE where PrPSc is not detected the conversion reaction may

not have reached the PrPSc endpoint and PrPSc may not be produced by the
time the animal dies. It is not clear why there should be differences in the
rate of conversion of PrP between different TSE models. More particularly it
is not clear why PrP conversion would occur at an extremely slow rate in the
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263K/101LL model studied here. It would be interesting to use brain

homogenate from the 263K/101LL model in cell-free conversion (Kocisko et

al., 1994) and PMCA experiments (Saborio et al., 2001) to identify whether
the PrP in this model is capable of forming PrPSc. If PK-resistant PrPSc were
formed from this material it would add to the data in support of the prion

hypothesis. However, the titre of infectivity of the resultant material would
also have to be assessed to investigate whether additional PrPSc formed was

infectious.

Subpassage of a TSE agent in the same species usually results in an

increased accumulation of PK-resistant PrPSc in the brain as the TSE strain

stablises. Further studies of the 263K/101LL model have indicated that

upon subsequent passage of two of the three isolates described in this
thesis (chapter 5) PK-resistant PrPSc became evident in brain homogenate.
However, passage of one 263K/101LL isolate resulted in disease with a

continued absence of PrPSc in brain homogenate. It is not known whether,
in accordance with the prion hypothesis, the titre of infectivity increased
with an increased presence of PK-resistant PrPSc or whether the discrepancy
between titre of infectivity and PrPSc remains. This requires further

investigation. Moreover, if the absence of PK-resistant PrPSc remained
consistent upon passage of one 263K/101LL isolate, this would be an ideal
model to dissect the strain-specific factors required for infectivity, and to

investigate whether PK-resistant PrPSc was primarily the neurotoxic agent of
TSE in this model.

It is not clear where in the cell the PrPc—>PrPSc conversion process occurs or

where the infectious molecule/complex interacts with PrP. There are

several likely scenarios, however. It may be that:

• PrPc interacts with an exogenous infectious molecule on the cell surface
and internalises it during the normal recycling process, therefore

allowing the infectious molecule access to any PrP already undergoing
conversion within the cell. It is possible that this binding/internalisation

phase may itself trigger the conversion of PrP.
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• Conversion of PrP takes place on the cell surface, making all
conformations of PrP readily available to interact with an exogenous

infectious molecule.

• The infectious agent is an endogenous molecule or complex and that the
interaction between this molecule and PrPSc occurs within the cell. PrPc

and PrPSc have been shown to react with many molecules including the
laminin receptor protein (Rieger et al., 1999), Grb2 and synapsin lb

(Spielhaupter & Schatzl, 2001), and RNA (Adler et al., 2003; Weiss et al.,

1997), and probably many more.

Whilst these possibilities do not rule out a form of PrP as the infectious

agent, they also suggest that an as yet unidentified molecule may be the
infectious agent of TSE, and that this may associate with PrP during TSE
disease.

8.4. Infectivity associated with PK-resistant PrPSc

One infectious unit of TSE is defined as containing 105 to 106 molecules of
PrPSc (Beekes et al., 1996; Hilmert & Diringer, 1984; McKinley et al., 1991;

Meyer et al., 1986). According to the prion hypothesis, PrPScis derived from
PrPc. If PrPc can give rise to any form of PrP that is infectious the number
of PrP molecules per infectious unit would remain constant in this model
since all forms of PrP have a molecular weight of approximately 30,000Da.
However, since this data has only been published in the hamster TSE model
it was not known whether the number of PK-resistant PrPSc molecules per

ifu differs for different models. In the studies performed here, there were

< 105 molecules of PrPSc associated with one infectious unit in brain from the

263K/ 10ILL model. In the ME7-infected models however, there were 105 to
106 molecules of PrP associated with one infectious unit. This data

therefore suggests that one unit of infectivity in different models of TSE is

comprised of a different number of PrPSc molecules. These data may

indicate that in the 263K/101LL model either one molecule of PK-resistant
Prpsc from 263K/101LL is more "infectious" than one PK-resistant PrPSc
molecule from the ME7 models, or there is a strain-associated
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molecule/ complex that is more prevalent in 263K/101LL than in the ME7
models (chapter 6). In the context of the discussion above (section 8.3) it

may be the strain-associated complex rather than the PrP that is the
infectious agent in the 263K/ 10ILL model.

8.5. Strain specificity of PrP50

The demonstration that there was no absolute correlation between PK-

resistant PrPSc and infectivity in brain across the models studied here may

suggest intrinsic differences in the PrPSc in each model. Each of the TSE

models studied in this thesis exhibited different disease incubation times,

titres of infectivity and vacuolation profiles consistent with different strains
of TSE agent (chapter 1.7). It is not clear whether a TSE strain is defined
via the conformation of PrP (Safar, 1996) or whether another, perhaps

genetic, element is involved (Dickinson 8s Outram, 1988; Kimberlin, 1976a).
It may be that the conformational dependant immunoassay (CDI) could

identify different conformations of PrP in the 263K/101LL model compared
to the ME7-infected models used in this thesis. This would indicate

whether the PK-sensitive, detergent soluble PrP found in the 263K/101LL
model had a different conformation compared to PrPSc found in the ME7
models. If so, this may indicate that this infectious PrP was an intermediate
form of the infectious agent. This would also strengthen the experimental
evidence to suggest that PrP conformation encodes the unique strain-

specificity of each TSE agent.

However, if the infectious agent is not a form of PrP but is associated with
PrP then TSE-strain specificity may be conferred by this other molecule or

complex of molecules. This is consistent with the strain-specific element of
TSE discussed at length both by Dickinson and by Kimberlin (Dickinson 86

Outram, 1988; Kimberlin, 1976a) where it is proposed that the TSE agent is

partially composed of genetic material that can encode the properties of
each TSE strain. The alternative infectious agent may be composed

partially or entirely of nucleic acids, however studies to find a strain-specific
DNA or RNA association with PrP have not been successful (Somerville,

1991). Recent in vitro studies have shown that the addition of RNA in cell-
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free conversion assays assists in converting PrP-sen to PrP-res (Deleault et
al., 2003) and indicates that a nucleic acid component may be required for

infectivity in TSE disease. This nucleic acid component may have a strong

association with PrPSc and may encode for the strain specificity of TSE

agents, however it is not clear whether this is a host-encoded or exogenous

component.

The unique strain-specific component in each TSE model may explain the
different disease incubation times for each model. Within the 263K/101LL

model, each isolate, 263K/101LL (1), (2) and (3), transmitted disease with
distinct incubation times and displayed different abilities to transmit

infectivity to 101PP mice. Upon subsequent passage through 10ILL mice,
each isolate may become a distinct strain of TSE agent. Since it is not

known how infectivity is acquired, it would be interesting to follow each

263K/101LL isolate through subsequent passage in 10ILL mice and study
the correlation between PrPSc and infectivity at each passage. A faster
disease course in the 263K/101LL model may indicate that there are more

of the strain specific factors present in this model compared with the other
models investigated. Alternatively, upon passage, 10ILL mice may select

specific TSE isolates, which have short disease incubation times.

8.6. PK-resistant PrPSc as a marker for infectivity

The important finding of these studies is the demonstration of a model of
TSE in which substantial titres of infectivity are present in the absence of
detectable PK-resistant PrPSc. Diagnostic assays that rely on the presence

of PK-resistant PrPSc as an indicator of TSE assume that there is a strong

correlation between infectivity and PrPSc. This includes the ELISA and
immunoblot assays that have been approved for use by the EU to screen for
BSE and scrapie in Europe (Biffiger et al., 2002; Deslys et al., 2001; Grassi,
2003; Madec et al., 1998; Schaller et al., 1999). As discussed at length in
this thesis, there are now several examples of human and animal cases as

well as experimental TSE models that dispute this correlation (chapter 8.1).
More recently abnormal forms of scrapie and BSE have been described in
which PK-resistant PrPSc was either not detected using the EU-approved
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assays (Buschmann et al., 2004) or differed in electrophoretic pattern from
that seen previously (Biacabe et al., 2004). Sub-clinical cases of TSE have
been described in which clinical symptoms are not evident yet infectivity is

present (Hill & Collinge, 2003) and infectivity has been reported in the

spleen of 263K-infected hamsters before the appearance of PK-resistant
PrPSc (Czub et al., 1986a). The absence of detectable PK-resistant PrPSc
therefore does not indicate the absence of infectivity and demonstrates the

potential for carriers of TSE to be present in the normal population. Such
carrier status in humans could result in the transmission of disease to an

individual by surgery or transfusion. Furthermore, atypical forms of
ruminant TSE could result in TSE-infected foodstuffs inadvertently entering
the food chain.

Whilst some diagnostic assays claim to detect the amount of PrPSc that
would be present in one infectious unit (Deslys et al., 2001; Safar et al.,

2002) none of these techniques directly measure infectivity. Bioassay
remains the most reliable method for detecting infectivity however this is a

time consuming and expensive process, not suitable for large-scale

diagnostic purposes.

Efforts have been made to find a surrogate marker for infectivity. In

cerebrospinal fluid (CSF) the presence of the proteins 14-3-3 and tau have
been reported to correlate with CJD (Baxter et al., 2002; Van Everbroeck et

al., 2003), however the levels of these proteins were low at disease onset
and end-point. CSF samples taken at early onset or pre-clinically therefore
are not likely to indicate the presence of TSE. Erythroid differentiation-
related factor (EDRF) has also been proposed as a surrogate marker for TSE

(Miele et al., 2001). The levels of expression of this protein were found to be
significantly reduced in experimentally infected hamsters and mice and in
natural BSE and scrapie cases. EDRF is expressed in bone marrow and in
blood thus may provide a simple diagnostic assay that could be used to
monitor the development of TSE in susceptible individual humans and
animals.
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The studies performed in this thesis are the first to describe the presence of

high titres of infectivity in the absence of PK-resistant PrPSc in a murine
model. These studies, the findings of atypical cases of BSE and scrapie,
and the recent report of the possible transfer of infectivity via blood
transfusion in humans highlight the need for a more suitable marker of TSE

infectivity to be identified and utilised in a rapid and preferably inexpensive

diagnostic assay.

8.7. Non-pathogenic PrP^

It is not clear whether PrP deposition in the brain is neurotoxic. In vitro
studies have identified a neurotoxic fragment of PrP from amino acid
residues 106-125 (Brown, 2002) therefore full-length PrP itself may have a

neurotoxic characteristic. It has been suggested that the deposition of PrPSc
in TSE-infected brain may cause other TSE-associated pathology such as

spongiosis and neuronal loss (De Armond et al., 1989; Jeffrey et al., 2001).
However this may be misleading. Spongiosis and neuronal loss can occur

in infected brains in the absence of PK-resistant PrPSc (Dorandeu et al.,
1998; Foster et al., 2001a), and although outwith the wider remit of this
thesis, studies performed here also demonstrated the presence of TSE-
associated pathology in the 263K/101LL and GSS/101LL models in the
absence of PK-resistant PrPSc (chapter 4). This may indicate that something
other than PK-resistant PrPSc (perhaps an elusive infectious

molecule/complex?) causes TSE pathology. The pro-apoptotic proteins, Fas
and caspase-3 have been described in TSE-infected brain (Jamieson et al.,

2001) and it may be that the presence of the infectious complex/molecule
may trigger apoptosis, microglial activation and contribute to neuronal loss.

Equally, these pathological characteristics of TSE may be triggered by the
PrPc—>PrPSc conversion process itself, or by another unidentified
mechanism. Many time-course studies have been performed to identify the
causal pathology of TSE (chapter 4) and further pathological studies using
the 263K/101LL or GSS/101LL models may help to elucidate the exact
cause of TSE pathology. The studies performed in this thesis indicate that
these models would provide a PrPSc-free in vivo environment to study the
neurodegenerative and pathological aspects of these diseases.
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8.8. Is TSE a viral disease?

In the studies performed here individual 263K/ 10ILL and GSS/ 10ILL mice
were identified that do not exhibit PrPSc deposition in areas of the brain
where spongiosis is evident. This is similar to the finding that CasBrE, a
murine retrovirus, causes spongiosis in infected animals yet virus is not

detected in infected animals (Portis, 2001). It is thought that pathogenesis
in CasBrE infected animals may be a consequence of indirect effects of viral
infection. Similarly, the spongiosis observed in TSE-infected animals may

be caused via an indirect effect of the infectious agent of TSE. The presence

of this agent may additionally trigger the conversion of PrPc -»PrPSc.

Alternatively if the infectious agent of TSE is a latent endogenous virus, the
conversion of PrPc -»PrPSc itself may trigger replication of the infectious
virus. As yet no viral component has been described in the TSE-infected

host, however the virus may be composed of host derived components or

may be endogenous.

In CasBrE infected mice, the associated envelope protein has been found to

be misfolded. This appeared to up-regulate proteins associated with ER
stress such as CHOP, BiP and Grp58, which may in turn account for the
observed up-regulation of pro-apoptotic proteins DP5, p21 and GADD45
and the down-regulation of the anti-apoptotic protein IAP2. In TSE, ER
stress has also been shown to increase misfolded forms of PrP such as

cyPrP (chapter 1.12), which have been proposed to cause neurodegeneration

(Ma et al., 2002; Stewart & Harris, 2003). Furthermore, the ER chaperone,

BiP, has been found to bind to mutant PrP (Jin et al., 2000) and pro-

apoptotic proteins (Fas and caspase-3) have been found in murine models
of TSE (Jamieson et al., 2001). Such data indicates that viral and TSE
infections may share common neuropathological characteristics. Moreover,
it has been proposed that retroviruses are involved in TSE pathogenesis

(Dimcheff et al., 2003a) and may be the infectious agent (Manuelidis, 2003).
The TSE models studied in this thesis display the spongiosis associated
with murine retroviral disease and are therefore ideal to search for a

disease-associated virus or nucleic acid.
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8.9. Future work

Studies here have demonstrated high titres of infectivity in brain

homogenate that further transmitted TSE yet contained non-detectable
levels of PK-resistant PrPSc. A form of PK-sensitive PrP appears to be the
infectious agent in these brains, however the true nature of infectivity in
such tissue remains to be fully elucidated.

8.9.1. Increased detection of PK-resistant PrPSc

In brain where PK-resistant PrPSc levels were low/non-detectable, PrPSc
levels may be concentrated using sodium phosphotungstic acid (NaPTA).
Sodium phosphotungstate (NaPTA), has been shown to selectively

precipitate extremely low levels of PrPSc, increasing detection by 1000-fold

(Wadsworth et al., 2001) and has also been used in combination with a mild
PK treatment on mouse brain samples to detect sPrPSc (Tremblay et al.,

2004). Such treatment may reveal small amounts of PK-resistant PrPSc

and/or sPrPScin 263K/ 10ILL and GSS/ 10ILL brain.

The PMCA technique has also been used to amplify low concentrations of
Prpsc jn infected brain (Saborio et al., 2001). Amplification of PK-sensitive
PrP in 10ILL brain may result in the formation of PrPSc and indicate that
PK-sensitive PrP is an intermediate in the PrPc—>PrPSc conversion process.

Using PMCA an increase in infectivity has not been identified alongside

increasing PrPSc levels. Titration experiments may indicate whether the
resultant PrP was infectious.

8.9.2. Further characterisation of PK-sensitive, infectious PrP

Conformational antibodies that can distinguish PrPSc from PrPc have been
described (Korth et al., 1997; Paramithiotis et al., 2003; Zou et al., 2004)

(chapter 1.9.3) thus may be useful in further identifying PK-sensitive forms
of PrPSc. Immunoprecipitation of 263K/101LL or GSS/101LL brain

homogenate using these antibodies would identify both PK-resistant and
PK-sensitive PrPSc. However these could be separated using different
GndHCl concentrations.
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The CDI assay may identify sPrPSc in infected and uninfected 10ILL mice,
however a suitable antibody (that recognised an epitope exposed in
denatured PrP but which is buried in the native conformation) must be
found to analyse the samples here. Immunoprecipitation of PrP using the
antibodies devised by Sy et al, 8H4, 8B4, 7A12 etc (Zanusso et al., 1998)

(appendix B) may indicate whether these are useful for the CDI detection of
PrP in the samples described here. These antibodies should be primarily
assessed by the guanidine melt curve to identify whether antibody epitopes
are exposed in denatured PrP but hidden in native PrP (Safar et al., 1998).

Bioassay of PK-treated and non-PK treated fractions of 263K/101LL brain

may give an indication of whether sPrPSc is capable of transmitting

infectivity, however, this would not rule out the presence of other
transmissible molecules. If PK-resistant PrPSc alone was the infectious

agent, PK-treated brain homogenate should have the same titre of infectivity
as untreated homogenate, however if titres are lower in PK-treated
compared to untreated fractions, this may indicate that PK-sen PrP is
infectious. However, this experiment would not rule out the presence of
other molecules that may associate with infectivity.

8.9.3. Cellular localisation of PK-sensitive, infectious PrP

Simple fractionation studies have indicated both a correlation and a

separation of PrPSc and infectivity (Bolton et al., 1982; Manuelidis et al.,
1987; Somerville & Dunn, 1996). Sucrose gradient fractionation of brain
taken from the models described in this thesis may indicate whether rPrPSc
and sPrPSc are present in similar cellular compartments or whether they
exist in different areas of the cell. Again, after isolating these forms of PrP
from sucrose gradients, bioassay would identify whether they associated
with infectivity, as indicated by Prusiner, or if they separate, as indicated by
Manuelidis and Somerville.

8.10. Concluding remarks

In the studies presented in this thesis, high infectivity titres were found in
brain in which PK-resistant PrPSc could not be detected. The titre of
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infectivity did not correlate with the amount of PK-resistant PrPSc found

across all models and was contradictory to the prion hypothesis. Current

diagnostic assays rely on the presence of PK-resistant PrPSc to diagnose TSE
and assume that the absence of this form of PrP indicates the absence of

infectivity. However, the findings here seriously question the suitability of
PK-resistant PrPSc as a surrogate marker for TSE and indicate that, in the
absence of alternative methods, transmission studies remain the only
definitive method for identifying infectivity in TSE-affected tissues.

In addition to other studies (Hill et al., 1999a; Shaked et al., 1999),

investigations here dissociated the PK-resistant characteristic of PrP from

infectivity. The PK-sensitive, infectious form of PrP identified here may

represent an intermediate PrP molecule, formed during PrPc—>PrPSc

conversion, which is the infectious agent. PrP is obviously central to TSE
since PrP null mice cannot support disease, however it is not clear whether
disease is mediated through a PrP molecule, or whether another molecule

(or complex of molecules) is required to associate with PrP. It is entirely

possible that the infectious agent of TSE is not PrP but may be a complex of

many molecules, including nucleic acids, some of which may be TSE strain

specific. This study cannot rule out the possibility that a viral or virino

particle may be the infectious agent. Given that the function of PrPc has yet
to be elucidated, it is possible that this protein is a cellular receptor for the
infectious agent thus facilitating entry of the infectious agent into the cell.
The 263K/101LL TSE model investigated here is a paradox to the prion

hypothesis but it is an elegant model to further dissect the true nature of
the infectious agent and the role of PK-resistant PrPSc in TSE pathology.
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Appendix A

Mouse PrP sequence

"MANLGYWLLALFVTMWTDVGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPP

QGGTWGQPHGGGWGQPHGGSWGQPHGGSWGQPHGGGWGQGGGTHNQW
NKPSKPKTNLKHVAGAAAAGAVVGGLGGYMLGSAMSRPMIHFGNDWEDRYYR

ENMYRYPNQVYYRPVDQYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVK

MMERVVEQMCVTQYQKESQAYYDGRRSSSTVLFSSPPVILLISFLIFLIVG"

Mouse Prnp sequence

Accession number M18070

1 ttgacgccat gactttcata catttgcttt gtagatagat gtcaaggacc ttcagcctaa

61 atactgggca ctgatacctt gttcctcatt ttgcagatca gtcatc|atg|g cgaaccttgg

121 ctactggctg ctggccctct ttgtgactat gtggactgat gtcggcctct gcaaaaagcg

181 gccaaagcct ggagggtgga acaccggtgg aagccggtat cccgggcagg gaagccctgg

241 aagcaaccgt tacccacctc agggtggcac ctgggggcag ccccacggtg gtggctgggg

301 acaaccccat gggggcagct ggggacaacc tcatggtggt agttggggtc agccccatgg

361 cggtggatgg ggccaaggag ggggtaccca taatcagtgg aacaaqccca qcaaaccaaa

421 aaccaacctc aagcatgtgg caggggctgc ggcagctggg gcagtagtgg ggggccttgg

481 tggctacatg ctggggagcg ccatgagcag gcccatgatc cattttggca acgactggga

541 ggaccgctac taccgtgaaa acatgtaccg ctaccctaac caagtgtact acaggccagt

601 ggatcagtac agcaaccaga acaacttcgt gcacgactgc gtcaatatca ccatcaagca

661 gcacacggtc accaccacca ccaaggggga gaacttcacc gagaccgatg tgaagatgat

721 ggagcgcgtg gtggagcaga tgtgcgtcac ccagtaccag aaggagtccc aggcctatta

781 cgacgggaga agatccagca gcaccgtgct tttctcctcc cctcctgtca tcctcctcat

841 ctccttcctc atcttcctga tcgtgggatg agggaggcct tcctgcttgt tccttcgcat

901 ttctcgtggt ctaggctggg ggaggggtta tcc
ATG| start codon
101P, site of the P to L mutation
Ddel recognition site
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Appendix C

Clinical symptoms of TSE in 129/Ola mice

The clinical symptoms of TSE in mice include ataxia, a weakness of the
hind limbs, hunched appearance, general lethargy and a lack of grooming

leading to a ruffled coat. 129/Ola mice live to approximately 600 days and

upon ageing exhibit the ruffled coat and lethargy see in TSE-affected mice.

They also suffer from scratched eyes and ears as they age and are

humanely culled when these symptoms of ageing appear therefore, it can be
difficult to assess 129/Ola mice infected with TSE, especially as they age.

However, personnel at NPU are extremely experienced in observing these
animals throughout the course of TSE disease and the course of ageing,
and are experienced in assessing clinical symptoms of TSE according to the

scoring regime (table AI). TSE-inoculated animals were observed on a daily
basis and scored weekly. Animals given three consecutive "+" (or above)
scores were culled as clinically positive. Animals that died unexpectedly
were given a clinical score based upon the score given in the previous two
weeks.

Score Criteria

1 Not affected by TSE

2 Likely to be affected

+ Definitely affected

9 "2" plus ataxia (gait affected)

G "+" plus ataxia

Scratched back (depends on TSE agent/Mouse strain combination)

X Scratched eyes (not a clinical disease but at the end of clinical phase some
TSE/Mouse combinations (esp. 129/Ola) have scratched eyes)

0 Wet around anal region

Table A 1 Clinical symptoms of TSE
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Appendix D

Karber calculation data

Titration Karber Calculation

ME7/101PP -6-[(l+ 0.167 + 0.091) -0.5]

ME7/101LL -4-r(l+ 0.875 + 0.583) -0.51

263K/101LL(1) -5-r(l+ 0.9167+ 0.417+ 0.091) -0.51

263K/101LL(2) -4-r(l+ 0.667 + 0. 143 + 0 + 0.083) -0.51

263K/101LL(3) -2-rCl + 0.5 + 0.857+ 0.875 + 0.182) -0.5]

GSS/101LL -2-fCl + 0.86 + 0.75 + 0.6)-0.5]
ME7/101PP brain titrated in 101PP mice
ME7/101LL and 263K/101LL brains titrated in 101LL mice
ID50 value for inoculated brain tissue (= 20mg)
ID50 value per g brain tissue (ax50)
GSS/lOlLLbrain titrated in 101LL mice (R.Barron, unpublished data
Table A 2 Karber calculation of titre of infectivity in models of TSE
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AppendixE Doseresponsecurvedata Dilution (10x)

Normalising Factor

ME7/101PP(10 Normalised titre

85ifu/g) Incubation time(days)
ME7/101LL(1( Normalised titre

I77ifu/g) Incubation time(days)
GSS/101LL(1G Normalised titre

Incubation time(days)

-2

2

1065

159

10"

220

1044

134

-3

3

1055

170

1047

249

1034

156

-4

4

1045

177

1037

277

1024

255

-5

5

1035

201

1027

313

1014

344

-6

6

1025

269

1017

409

-7

7

1015

291

-8

8

m

o

O

rH

244

-9

9

-10

10

-11

11

Dilution (10x)

Normalising Factor

263K/101LL(1)(1086ifu/g) NormalisedIncubation titretime(days)
263K/101LL(2)(10871ifu/g) NormalisedIncubation titretime(days)
263K/101LL(3)(1066ifu/g) NormalisedIncubation titretime(days)

-2

2

1066

109

1051

129

1046

262

-3

3

1056

114

1041

134

1036

308

-4

4

11046

125

1031

159

1026

399

-5

5

1036

144

1021

193

1016

398

-6

6

1026

189

10"

266

10°6

401

-7

7

1016

203

-8

8

io06

228

-9

9

-10

10

-11

11

Normalisingfactor*infectivitytitrecalculatesaninfectivitytitreforeachdilutionofagent.Plotthisaongsideincubationtimefordoseresponse TableA3Normalisationoftitreofinfectivitvforeachtitrationexperiment



Appendix F

Titration of brain homogenate from the GSS/101LL model

Dilution

Group
GSS/101LL

n+ZnT3 IncTime"
10"2 5/5 134±4

10"3 12/14 156±5

10"4 3/4 255±38

10"5 3/5 441±93

10"6 0/7 n/a

10"7 0/6 n/a
00brH 0/4 n/a

10"9 0/7 n/a
Obt-H nd nd

10~u nd nd

10~2 101PP 5/5 265±9

ID50 10471

ID50/g 1064
a
n+= number TSE positive animals (assessed by clinical and pathological examination); nT=

total number of animals per group.
b Mean incubation time (days) of animals scored pathologically positive ± standard error
n/a not applicable
nd not determined

ID50 value for inoculated brain tissue (= 20mg) - calculated using the Karber method (chapter
2). For additional data see appendix E.
ID50 value per g brain tissue (ax50)
Table A 4 Titration data of previously unpublished GSS/101LL brain (R.Barron. NPU, Edinburgh)
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AppendixG

VacuolationprofilesforTSEmodels 263K/101LL(1)263IV101PP(2)GSS/IOILL

263Hyi01LL(2)ME7/101PP

263K/101LL(3)ME7/101LL

5.00 4.00
v3.00 o

do2.00 1.00 0.00

678 BrainArea

FigureA2VacuolationprofileatsecondarypassageofallTSEmodels Comparisonofvacuolationprofilesfortitratedbrainfromallmodelsstudied.ME7/101PPtitratedin101PPmice-blueline,ME7/101LL titratedn101LLmice-maroonline,263K/101LL(1)titratedin101LLmice-redline,263K/101LL(2)titratedin101LLmice-turquoiseline/red square,263K/101LL(2)titratedin101PPmice(263K/101PP)-turquoisedottedline,263K/101LL(3)titratedin101LLmice-greenline/red triangle,GSS/101LLtransmittedtobutnottitratedin101LLmice-greenline/circles.Seechapter4forspecificbrainareas.



Appendix H

Quantification of PK-resistant PrPScfrom TSE-infected brain homogenate

% homogenate
loaded

Intensity of detection (Pixels)
ME7/101PP ME7/101L

Blot A Blot B Blot C Blot A Blot B Blot C
2 - - - - - -

1 434748 103670 763072 887315 1476490 161006
0.5 334445 85249 340217 400801 956700 74282
0.25 149986 24443 192508 266882 319222 46785
0.125 65739 10108 129269 172986 163362 6115
0.0625 63595 729 15100 48391 65331 2938
0.0313 26476 0 9803 18412 39568 1038
0.0156 5304 0 0 0 0 388
0.0078 0 0 0 0 0 55
0.0039 0 0 0 0 0 0
0.0020 0 0 0 0 0 0

50ng recombinant
PrP

58506 14872 103933 92713 555238 73778

% homogenate
loaded

Intensity of detection (Pixels)
263K/101LL(1) 262IK/101L L (2) 263K/101LL(3)
Blot A Blot B Blot A Blot B Blot C Blot A

2 - - - - -

1 30461 20763 0 0 0 0
0.5 28656 19250 0 0 0 0

0.25 6865 18727 0 0 0 0
0.125 4659 0 0 0 0 0
0.0625 0 0 0 0 0 0
0.0313 0 0 0 0 0 0
0.0156 0 0 0 0 0 0
0.0078 0 0 0 0 0 0
0.0039 0 0 0 0 0 0
0.0020 0 0 0 0 0 0

50ng recombinant
PrP

34710 14043 3563 240084 418043 3208

Quantification of PK-resistant PrPSc from triplicate, duplicate or single immunoblots for each
model investigated. Expressed as the number of pixels making up the PrP50 image as detected
using the Kodak Imager Software (chapter 6.2.2). Pixel intensity was converted to ng PrP c by
comparing number of pixels detected in each sample with those detected in 50ng rPrP (chapter
6.2.2). Refer to chapter 6 for images of each immunoblot.
Table A 5 Quantification of PK-resistant PrPSc
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Appendix I

Quantification of Total PrP from uninfected and TSE-infected brain homogenate

% homogenate
loaded

Intensity of detection (Pixels)
Uninfected 10I1PP Uninfected 1C>1LL

Blot A Blot B Blot E Blot C Blot D Blot E
2 - - - - -

1 86672 549487 - 2096164 152526 -

0.5 93563 169394 305850 1315813 59952 227654
0.25 62927 31595 134803 638391 17789 126094
0.125 13958 6261 76623 150034 4434 34877
0.0625 8752 924 65421 78112 3863 104721
0.0313 3633 828 50615 35529 2245 43709
0.0156 40249 - - -

0.0078 - - - -

0.0039 - - - -

0.0020 - - - -

50ng recombinant
PrP

40249 24319 78413 232376 16171 78413

% homogenate
loaded

Intensity of detection (Pixels)
ME7/IL01PP ME7/101LL 263K/101LL(1) 263K/1IJILL (3)
Blot A Blot B Blot A Blot B Blot A Blot B Blot A Blot B

2 - - - - 303773 598542 263241 113892
1 499303 87745 92333 22602 357316 686109 219437 112481
0.5 171352 32352 32126 5901 176804 371008 87744 72751
0.25 91329 5923 21154 274 135566 274007 24299 60122
0.125 81014 1023 14833 0 28684 135740 8804 23409

0.0625 11437 528 3745 0 27399 31725 12266 37151

0.0313 2322 563 0 0 0 30495 2931 4875

0.0156 423 23 0 0 0 3541 0 1768
0.0078 0 0 0 0 0 0 0 0

0.0039 0 0 0 0 0 0 0 0

0.0020 0 0 0 0 0 0 0 0

50ng recombinant
PrP

20840 3018 11550 3739 18488 89189 9499 57320

Quantification of Total PrP from triplicate, duplicate or single immunoblots for each model
investigated, including uninfected 101PP and 101LL mice. Expressed as the number of pixels
making up the PrPSc image as detected using the Kodak Imager Software (chapter 6.2.2). Pixel
intensity was converted to ng PrPSc by comparing number of pixels detected in each sample with
those detected in 50ng rPrP (chapter 6.2.2). Refer to chapter 6 for images of each immunoblot.
Table A 6 Quantification of Total PrP
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Appendix 3

Preparation of Lyophilised Proteinase K (PK)
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* Less protein loaded due to pipetting error

101PP 139A/101PP

Figure A 3 Reconstituted Ivophilised PK solution

Lyophilised PK reconstituted in different buffers; dH20 ± ImM calcium, 50mM Tris solution ± ImM
calcium, lOmM Tris solution ± ImM calcium. Brain homogenate from (A) 139A-infected or (B)
uninfected 101PP mice treated with 20pg/ml (final concentration) of each reconstituted PK solution or
a commercial, pre-made solution. 2% homogenate reactions analysed using 12% tris/glycine SDS-
PAGE and stained with Coomassie Blue solution (0.25%). * Less than 2% homogenate loaded in this
well due to pipetting error. (C) PK reconstituted in lOmM Tris pH7.5, ImM calcium buffer used to
treat 139A/101LL and uninfected 101LL brain tissue as before. Immunoblot detection using 8H4 and
POD substrate. Markers are indicated at kDa sizes.
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