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Abstract 

One of the major goals in human genetics is to identify gene(s) underlying 
variation in quantitative traits. Determining whether the phenotype is heritable 
is necessary before embarking on gene identification. In humans, populations 
of twin pairs provide an elegant natural experiment to partition phenotypic 
variance of a trait into genetic and environmental factors. By comparing 
the resemblance of genetically identical (monozygotic) twin pairs to that of 
non-identical (dizygotic) twin pairs, the (classical) twin design has been widely 
used to estimate the proportion of phenotypic variance due genetic (heritability) 
and environmental factors. In addition, collections of dizygotic twins have 
been suggested as an important design for performing genetic linkage and 
association studies. Dizygotic twins are sibling pairs controlled for age and 
shared environmental factors. 

The aim of the research presented in this thesis is to understand the genetic 
basis of the variation of human quantitative traits using data from twins and 
(to some extent) their families. Traits investigated include behavioural traits 
(intelligence), clinical traits (the metabolic syndrome) and anthropometric 
measures (height). The focus of the thesis is mainly on heritability estimation 
using both conventional and novel statistical methods. The identification of 
gene(s) underlying complex phenotypes by means of linkage analysis is also 
presented. 

The importance of human twins for understanding genetic variation in human 
quantitative traits is reviewed. This includes the use of twins for estimating 
the heritability and identifying gene(s) underlying complex quantitative traits 
using genetic linkage and association studies (Chapter 1). The use of a novel 
finite mixture distribution model to partition phenotypic co(variance) of a 
trait into underlying genetic and environmental factors from twins of unknown 
zygosity is presented (Chapter 2-4). The Scottish Mental Surveys of 1st  June 

1932 and 4th  June 1947, respectively, administered the same validated verbal 
reasoning test (the Moray House Test) to almost everyone born in 1921 or 1936 
and attending school in Scotland. Information on zygosity was unavailable. 
A novel application of a finite mixture distribution model estimated a large 
and consistent heritability of cognitive ability of about 	This study is 
the first to estimate genetic and environmental components of cognitive ability 
in entire school-attending populations and implies that large (national) data 
collections can provide sufficient information on twin pairs to estimate genetic 
parameters, even without known zygosity (Chapter 2). The precision and 
bias of the finite mixture distribution model were assessed using computer 
simulations and application to IQ measures from a large sample of known 
zygosity twins (twins from the U.K. Twins' Early Developments Study). It 
is shown that the mixture distribution is unbiased provided that the twins' 
trait values are (bivariate) normally distributed and the sample size is large. 
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However, if the bivariate normality assumption is violated, then the mixture 
distribution provides biased estimates (Chapter 3). The extension of the model 
to multivariate analysis is discussed. The simulations show that multivariate 
analysis decreases the standard error of the variance component estimates 
(Chapter 4). Another statistical model, a mixed linear model is used to partition 
the phenotypic (co)variances of traits into genetic and environmental factors 
from twins of known zygosity (twins from the Danish Twin Registry). Its 
application to understand the underlying genetic and environmental aetiology of 
endophenotypes associated with the metabolic syndrome (the cluster of obesity, 
insulin resistance, dyslipidaemia and hypertension) showed that endophenotypes 
associated with the metabolic syndrome do not appear to share a substantial 
common genetic or familial environmental background (Chapter 5). Finally, a 
genome-wide linkage analysis to identify gene /chromosomal regions associated 
with adult height reveals several chromosomal regions that showed a modest 
linkage to adult height. This analysis provides further evidence for the polygenic 
nature of body height (Chapter 6). 

In conclusion, populations of twins are elegant natural experiments that provide 
means for understanding the genetic architecture of human quantitative traits. 
A finite mixture distribution model has been shown to be reliable and very 
useful in decomposing phenotypic (co)variance of quantitative traits collected 
from twins of unknown zygosity into genetic and environmental components. 
Twins have also been shown to be useful for understanding genetic and 
environmental aetiology of multiple phenotypes syndrome, and for identifying 
gene/chromosomal regions underlying variation of human quantitative traits 
(Chapter 7). 
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1 Introduction 

1.1 Variation in Human Phenotypes 

The ultimate aim of research in human genetics is to understand the genetic 

basis of human phenotypes. That is, to identify and characterize gene(s) 

underlying variation in human phenotypes. In genetics, human phenotypes can 

be categorized into those which show simple (Mendelian) patterns of inheritance 

and those which show complex (non-Mendelian) patterns of inheritance (e.g. 

Botstein and Risch, 2003; Risch, 2000). In simple Mendelian inheritance the 

phenotype can be explained by single genes, which are sufficient (and necessary) 

to determine the phenotypes. This includes phenotypes such as albinism, colour 

blindness, Huntington's disease, phenylketonuria (PKU) and sickle cell anemia. 

On the other hand, many other phenotypes that are evolutionary and medically 

important show a complex pattern of inheritance, in which many genes and 

environmental factors influence the phenotype. In other words, the relationship 

between genotype and phenotype is not simple (Lander and Schork, 1994). 

These phenotypes can form either a discrete (e.g. the absence or presence of 

breast cancer) or continuous/quantitative distribution (e.g. anthropometric 

measures, such height and weight). In the literature, the complex phenotypes 

are sometimes referred to as complex traits, quantitative traits or multifactorial 

traits. Throughout the thesis, "phenotype" will be used interchangeably with 

"trait". 

In the last two decades, huge efforts have been invested into identification 

and characterization of gene(s) influencing both Mendelian and complex 

traits. While success stories have commonly been reported for Mendelian 

traits, for which about 1,700 genes have been identified (Antonarakis and 



Beckmann, 2006; O'Connor and Crystal, 2006; Online Mendelian Inheritance 

in Man, 2006), the identification of genes underlying complex traits has been 

slow and difficult (Altmuller et al., 2001). Various methods have been explored 

and applied to identify gene(s) underlying complex traits. Linkage analysis 

and association studies are the two most commonly used methods for gene 

identification. While linkage analysis follows the (co)segregation of markers 

and traits in a pedigreed population, association studies correlate genotypes 

of an individual with its phenotype in the population. In addition, with the 

completion of the Human Genome Project (International Human Genome 

Sequencing Consortium, 2001; Venter et al., 2001), the availability of single 

nucleotide polymorphisms (SNPs) in the public databases (The International 

SNP Map Working Group, 2001) and the completion of the first stage of the 

International HapMap Project (The International HapMap Consortium, 2005), 

there has been a huge interest in genome-wide association analysis, where 

hundreds of thousands of SNPs covering the genome are tested for association 

with complex traits (Hirschhorn and Daly, 2005). 

Before embarking on gene identification, it is important to have some knowledge 

whether the trait is heritable (Martin et al., 1997). For quantitative traits, 

the most important parameter to serve this purpose is the heritability, which 

quantifies the proportion of phenotypic variance of a trait that is due to 

genetic factors. Although heritability for many different traits have been 

reported, this is not a fixed quantity. It is a function of allele frequency and 

specific to a population at any one time. Any changes in allele frequency (e.g. 

due to selection) or environment will change the heritability (Falconer and 

Mackay, 1996). Therefore, it is still important for heritability to be estimated 

for a specific trait for a given population at a specific time. 
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In human genetics, many heritability estimations are performed by utilising 

twins. In fact, it is the "workhorse" of research on understanding the genetic 

basis of individual differences in human quantitative traits (Plomin et al., 2001). 

As a consequence of twin studies, it is now widely accepted that genetic factors 

are important sources of the variation in most human traits. Heritability is 

estimated by exploiting the fact that monozygotic (MZ) twin pairs share all of 

their genes and that dizygotic (DZ) twin pairs share on average half of their 

segregating genes. By comparing the resemblance of MZ pairs with DZ pairs 

reared together, the so-called classical twin design enables one to disentangle 

and quantify the proportion of phenotypic variance due to genetic (heritability) 

and common environmental factors shared by twin pairs. By assuming that MZ 

pairs share the same common environmental experiences with that of DZ pairs 

and all genetic variation is additive, the heritability of a trait can be inferred 

from the excess of similarity of MZ pairs compared to DZ pairs. 

Besides the classical twin design, the heritability of quantitative traits has 

also been estimated using adoption designs. This is a very powerful design in 

separating the influence of genetics and environment on the resemblance between 

relatives. This design compares the resemblance between biologically related 

people who have been reared apart. These can be the comparison between 

offspring with their biological parents or monozygotic or dizygotic twins with 

their co-twins that have been adopted into different families. The similarities 

in their traits indicated the importance of genetic factors in the absence of a 

correlation between the environments of the biological and adopted parents. 

Currently, adoption studies are becoming very limited due to the declining 

number of adoptions as the consequences of contraception and the increased 

number of abortions (Plomin et al., 2001). 
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1.2 Twins in Human Genetics 

The idea of using twins in genetic studies has been usually attributed to the 

work of Francis Calton (1875) in his article "The history of twins, as a criterion 

of the relative powers of nature and nurture" published in Fraser's Magazine 

(1875) and the Journal of the Anthropological Institute (1876). While Calton was 

credited for proposing that twins can be used to study the effect of non-shared 

environmental factors on the resemblance of twins, he did not discover what is 

now called the twin design (Rende et al., 1990). The use of the classical twin 

design is possible by the recognition that there are two types of twins by a 

Scottish obstetrician, J. Matthews Duncan in the 19th  century (Hall, 2003). 

The detailed method of the twin design for estimating heritability by comparing 

the resemblance between MZ and DZ twin pairs was described independently 

50 years later by Curtis Merriman and Hermann Siemens, both in 1924 (Rende 

et al., 1990). However, a recent paper by Liew et al. (2005) argued that 

the twin design was first described two years earlier by Walter Jablonski, an 

opthalmologist in Frankfurt, Germany. Jablonski compared the within pair 

difference of MZ and DZ twins to assess the contribution of heredity to the 

refraction in human eyes (Liew et al., 2005). 

In this era of molecular genetics, where the research interest has shifted from 

only understanding the relative importance of genetic and environmental factors 

influencing variation of human phenotypes toward dissecting the underlying 

gene(s), populations of twins are still important (Lyons and Bar, 2001; MacGregor 

et al., 2000; Martin et al., 1997). For genetic linkage and association studies, DZ 

twins are sibling pairs controlled for the age and common environmental effects. 

Compared to the ordinary sibling pairs, DZ twins have additional advantages. 

These include a decreased probability of non-paternity and the higher tendency 
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of twins to participate in research (Martin et al., 1997). MZ twins that are 

discordant for various traits are also useful for the study of epigenetics, gene 

expressions (MacGregor et al., 2000) and variability genes (Berg, 1988). These 

advantages are coupled with the availability of twin registries worldwide that 

register and maintain contact with a large number of twins, providing enormous 

resources for a wide range of phenotypes (Boomsma et al., 2002; Busjahn and 

Hur, 2006). 

1.2.1 Biology of Twins 

Monozygotic twins are derived from a single fertilized ovum and account for 

about a third of all spontaneous twinning (Hall, 2003). The reason for MZ 

twinning is not clear, but it is suggested as a result of a delay in timing of 

normal development, which can be caused by impaired transport through the 

fallopian tube, conception in close proximity to oral contraceptive use, and 

minor trauma to the blastocyst (Hankins and Saade, 2005). MZ twinning is 

virtually independent of race, genetic factors, maternal age and parity (Hankins 

and Saade, 2005). 

Depending on whether twins share the same placenta (chorion) and membranes 

(amnion), MZ twins can be classified into three different types: dichorionic-

diamniotic, monochorionic-diamniotic and monochorionic-monoamniotic 

(Hall, 2003; Phillips, 1993). About one third of MZ twins are of dichorionic-

diamniotic type, where they share different placentas and membranes. The other 

two thirds of MZ twins share the same placenta but have different membranes 

(monochorionic-diamniotic). In addition, a small proportion of MZ twins 

(1-2%) have one set of placenta and membranes (monochorionic-monoamniotic) 

(Hall, 2003). The differences in placental and membranes types are highly 
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related to the timing when a fertilised age divided into two separate zygotes, 

i.e. dichorionic-diamniotic MZ twins (formed between days 0-4); monochorionic-

diamniotic MZ twins (formed between days 4-7); monochorionic-monoamniotic 

MZ twins (formed up to day 14) (Hall, 2003; Phillips, 1993) (see Figure 1.1). 

MZ twins are two genetically identical individuals (clones), except for very rare 

cases, such as heterokaryotypical MZ (MZ twins with different chromosomal 

composition) and MZ with chromosomal mosaicism (Gringas and Chen, 2001)- 
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Figure 1.1: Three types of monozygotic twins [source: Phillips (1993)] 
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On the other hand, dizygotic twins are formed from two ova fertilized by two 

spermatozoa. Genetically, DZ twins are the same as regular sibling-pair, who 

share on average half of their segregating genes. DZ twins carry separate 

set of placentas and membranes (dichorionic-diamniotic). Dizygotic twinning 

happens because more than one dominant ovarian follicle was matured in the 

same menstrual cycle (Hall, 2003). Spontaneous DZ twinning is under genetic 

control and the combined risk to the first degree female relatives is more than 

2 (Duffy et al., 2001b). A region on chromosome 3 has been linked to DZ 

twinning (Busjahn et al., 2000), but not replicated (Duffy et al., 2001a). DZ 

twinning is associated with follicle stimulating hormone (FSH) (Hall, 2003) and 

influenced by race, parity, maternal age and nutrition (Hankins and Saade, 2005). 

Spontaneous twinning rates vary across different countries and races (Hall, 2003). 

In Asian countries, about 6 in 1,000 livebirths are twins. In European and 

African countries, the prevalences are about 10-20 and 40 in 1,000 livebirths, 

respectively. While MZ twinning rate is fairly constant around the world (about 

4 in 1000) (Hankins and Saade, 2005), DZ twinning varies across countries, 

races (Tong et al., 1997) and time. Thus, the MZ/DZ ratio is different between 

countries and races. 

One of the early methods designed to diagnose the zygosity of twins (whether 

twins are MZ or DZ) is to use physical similarities questionnaires, which include 

questions such as eye and hair colour, hair texture and facial appearance 

(Cederlof et al., 1961; Sarna et al., 1978). The questionnaires can determine the 

zygosity of twins with an accuracy of about 95% (Goldsmith, 1991). With the 

availability of molecular markers, zygosity can now be determined by using a set 

of DNA microsatellite markers, which can provide an accuracy of 98-99% (Becker 

et al., 1997). Which methods to be used will depend on the type of research and 
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resource availability. In large epidemiological studies, questionnaires can be easy 

and cheap to use, whereas biological assessment might be only feasible in smaller 

sampled studies due to a higher cost (Jackson et al., 2001). 

1.2.2 Twins and Heritability Estimation 

The earliest use of twins in human genetics has been to resolve the 'nature-

nurture' debate regarding the sources of individual differences for various human 

physical and mental characteristics (Calton, 1875; Thorndike, 1905). Both 

studies suggested the importance of nature or hereditary factors on the variation 

of human characteristics. Since then, twins have been and are being used widely 

to understand the genetic and environmental aetiology underlying variation in 

most human phenotypes, ranging from physical to behavioral characteristics 

(Boomsma et al., 2002). 

There are several designs which utilise twins for estimating the genetic and 

environmental sources of individual differences in human phenotypes, including 

the (classical) twin method, the adoption design, and the extended twin design. 

Among these designs, the classical twin method, which compares the similarity 

of MZ pairs to that of DZ pairs, is the most widely used. The reasons for 

its popularity include the relatively simple design, the availability of simple 

statistical methods for the analysis and the easy collection of MZ and DZ twin 

samples from available twin registries. 

From standard quantitative genetic theory (see Falconer and Mackay, 1996; Lynch 

and Walsh, 1998), phenotypic variance (Vs) of a trait can be partitioned into 

variances due to additive genetic effects (VA), common environmental effects 

shared by family members (lc),  dominance genetic effects (VD), interaction 
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between additive genetic effect (VAA), interaction between additive and 

dominance genetic effects (VAD), interaction between dominance genetic effects 

(VDD), other non-additive genetic effects and specific individual environmental 

effects (VE). For each of these effects, their covariance in MZ and DZ twin pairs 

is presented in Table 1.1. 

Table 1.1: Covariances of MZ and DZ twin pairs 

Covariance 	 VA VD VAA VAD VDD VC VE 

Monozygotic (MZ) twins 1 	1 	1 	1 	1 	1 	0 

Dizygotic (DZ) twins 	1/2 	1/4 	1/4 	1/8 	1/16 	1 	0 

In the classical twin design, the heritability of a trait is estimated by contrasting 

the covariance of MZ twin pairs to that of DZ twin pairs. Since MZ twins are 

genetically identical, the only source for their difference is the specific individual 

environmental effect. Thus, at first glance, it seems that MZ twins alone can 

provide an estimate for genetic variance. However, MZ pairs reared together 

also share a common environment from conception to birth and also during 

period they were reared together. Therefore, the genetic variance is confounded 

with the common environmental variance. With the availability of DZ twins, 

this problem may be partly overcome. DZ twins are genetically like full sibs, 

but share a common environment similar with that of MZ twins. Thus, by 

contrasting the resemblance between MZ to that of DZ pairs, the heritability of 

a trait can be estimated (Falconer and Mackay, 1996). The problem with the 

classical twin design is that there are many possible effects, but only two variance 

components can be estimated in addition to the environmental variance. To 

estimate heritability, further assumptions have to be made. Usually, in particular 
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if the observed MZ correlation is less than twice the DZ correlation, variances 

due to epistatic effects (VAA, VAD  and VDD)  are ignored. A more complicated 

design, which includes additional family relationships is required to estimate 

those variances. 

From the classical twin design, there are only three observed statistics [variance 

of the trait (Vp)], MZ correlation (TMZ) and DZ correlation (rDz)] and four 

variance components to be estimated, VC  and VD are confounded and cannot be 

estimated simultaneously. Dominance genetic variance increases the correlation 

between MZ pairs compared to DZ pairs, while common environmental variance 

increases the correlation between DZ pairs compared to MZ pairs. Therefore, in 

the classical twin design, these variances are usually modelled separately using 

an ACE (Additive genetic, Common environment, Error variances) or ADE 

(Additive genetic, Dominant genetic, Error variances) model depending on the 

observed correlations of MZ and DZ pairs. If MZ correlation is less than twice 

the DZ correlation, then an ACE model is appropriate, by assuming that no 

dominant genetic variance is involved. However, if the MZ correlation is more 

than twice DZ correlation, then an ADE model is usually applied with the 

assumption that common environmental variance is zero (see Evans et al., 2002). 

The variance component estimation in the next section will consider the 

commonly used ACE model. Components of variance can be estimated by 

comparing the similarity of MZ and DZ pairs. MZ twin pairs are genetically 

identical, so any pair difference is due to individual specific environmental effect. 

On the other hand, pair difference in DZ twins is caused by half of additive 

genetic variance and common environmental variance. 

Let the phenotypic variance be standardised to 1 and a2, c2  and e2  be the 
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standardised variance components for VA, V, and VE,  respectively. Then: 

a2 +c2 +e2 =1 	 (1.1) 

rMz=a+c 	 (1.2) 

a2 	2 	 (1.3) 

By assuming that both type of twins experienced the same common 

environmental exposures, i.e. the VC  component is the same for MZ and DZ 

pairs, a2  and c2  can be estimated as: 

a2  = 2(Mz - rDz) 	 (1.4) 

and 

C2  = 2rD - TMZ 	 (1.5) 

In an ADE model, the corresponding variance components can be obtained in 

a similar fashion by considering that MZ pair shared all of their dominance 

variance, whereas a quarter is shared by DZ pairs. These simple models can 

be extended into more complicated models, including sex-specific variance 

components (Chapter 5) and multiple-traits analysis (Chapters 4 and 5) and a 

maximum likelihood-based method is usually used. 

The classical twin design is based on several important assumptions. 

These include the assumptions that twins are representative of the general 

population, that MZ twins share all of their genotype, and that the common 

environmental experiences shared by both type of twins are the same. 

While there are still criticisms about the reliability of the assumptions (e.g. 

Joseph, 2002; Phillips, 1993), these assumptions are testable and can be justified 
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(Evans and Martin, 2000; Martin et al., 1997). Provided that these assumptions 

are satisfied, the twin design is a very useful tool in human genetics for 

understanding the genetic and environmental causes of individual difference in 

human phenotypes. 

Another important assumption in heritability estimation or population genetic 

studies in general, is that mating occurs at random. However, it is known that 

for some characteristics, mating is not random. For example, Silventoinen et al. 

(2003) reported that for body height and body mass index (BMI), there was 

evidence for assortative mating. Positive phenotypic assortment was also found in 

other human phenotypes, including physical characteristics, education, religion, 

personality, socioeconomic status and cognitive traits (see e.g. Cavalli-Sforza 

and Bodmer, 1999; Merikangas, 1982). In the classical twin design, the effect of 

assortative mating cannot be estimated because phenotypic information on the 

parents are not available. A more complicated design, which includes the parents 

of the twins is needed. However, when estimating heritability using the classical 

twin design, it is still important to remember the possible effect of assortative 

mating on heritability estimates. In the presence of assortative mating, the 

phenotypic correlation between relatives increases. In the classical twin design, 

this tends to increase the covariance of DZ pairs. Since the heritability was 

estimated by contrasting the covariance of MZ to that of DZ pairs, an increase 

in DZ covariance will produce a biased downward heritability estimate (Neale 

and Maes, 2004). 

The classical twin design relies on the availability of zygosity information. While 

zygosity status of the twins can now be easily and economically obtained, it is 

not always known. The zygosity status of twins identified from large population-

based surveys in the fields of social sciences, economics or education (Deary 
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et al., 2004; Scottish Council for Research in Education, 1933; Scottish Council 

for Research in Education, 1949; Scarr-Salapatek, 1971; Webbink et al., 2006) 

are usually unknown. Genetic analysis for these data is still possible, but it 

requires different statistical methods. A finite mixture distribution model has 

been proposed to analyse data from twins of unknown zygosity (Neale, 2003). 

In Chapter 2, this model is applied to analyse IQ data from twins of unknown 

zygosity from the Scottish Mental Surveys 1932 (Scottish Council for Research in 

Education, 1933) and 1947 (Scottish Council for Research in Education, 1949). 

The precision and bias of the model for single trait (Chapter 3) and multiple 

traits (Chapter 4) are assessed by computer simulation. 

1.2.3 Twins and Gene Identification 

Two of the most commonly used methods to map and identify genes underlying 

human quantitative traits are linkage and association studies. While linkage 

is considered ideal for detecting genes with large effects over a larger genetic 

distance from a marker, association is very good for detecting genes with 

small effects and closer to a marker. Hence, these methods are said to be 

complementary (Plomin et al., 2001). 

Populations of twins are not only ideal for estimating the heritability of human 

phenotypes, they are also useful for identifying genes through linkage and 

association studies. Sibling-pairs can be used for linkage analysis and family-

based association test. Compared to ordinary siblings, DZ twins have additional 

advantages. DZ twins are matched for age, which is important for traits whose 

expression are age specific (Martin et al., 1997). DZ twins are also matched 

for measured and unmeasured shared environmental effects. This makes the 

separation of genetic and environmental factors from the phenotypic difference 
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between twins an easier task (MacGregor et al., 2000). 

Genetic Linkage: 

Linkage analysis tests for the (co)segregation of a quantitative trait loci (QTL) 

and a marker allele in a pedigreed population. In a sibling-pair design, the 

evidence for linkage between a marker and a trait is provided by the excess 

of alleles shared identical by descent (IBD) at a marker for phenotypically 

similar pairs. In other words, linkage analysis correlates the genetic similarity of 

sibling-pairs, which is expressed as the proportion of allele shared IBD (*), with 

their phenotypic similarity. 

In a sibling-pair design, the earliest method for detecting linkage between a 

marker and a QTL is the Haseman-Elston regression method (Haseman and 

Elston, 1972). This method regresses the phenotypic similarity of sibling-pairs 

on their genotypic similarity. If X and Y are the standardised phenotypic values 

of Sib, and Sib2, their phenotypic similarity is expressed as (X - Y)2  and their 

genotypic similarity is expressed as *. Therefore, the regression equation as 

described in Sham and Purcell (2001) is 

(X - Y)2  = 2(1 - r) - 2Q( -- 0.5) +,E 	 (1.6) 

r and Q are the sibling correlation and the proportion of phenotypic variance 

explained by the additive effects of the QTL, respectively. The presence of 

linkage between a marker and a QTL is tested by comparing the null hypothesis 

that the regression coefficient (-2Q) is zero against the alternative hypothesis 

that the regression coefficient is negative. 

Another popular method for linkage analysis is the variance component approach, 
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which is considered to be more powerful than the Haseman-Elston method (e.g. 

Almasy and Blangero, 1998; Amos, 1994; Sham and Purcell, 2001; Visscher and 

Hopper, 2001). This method is basically an extension of variance components 

model used for heritability estimation (Plomin et al., 2001), in which Q is added 

into the sibling-pair variance-covariance structure. The evidence of linkage 

is provided if Q is significantly greater than zero. In Chapter 6, a variance 

component linkage analysis to map QTL for body height is presented. 

Genetic Association: 

While linkage analysis correlates the phenotypic similarity with the genotypic 

similarity of individuals in a family, genetic association tests for the correlation 

between a genetic marker and a trait in a population. The association between 

a marker and a quantitative trait is tested by comparing the phenotypic values 

of individuals with different genotypes. The evidence for association is provided 

if there is a significant phenotypic difference between the genotype classes. 

Association studies can be subject to spurious associations (Lander and 

Schork, 1994). That is, the association between a marker allele and a trait 

can be caused by other factors such as ethnicity, admixture and population 

stratification. Consider the example of testing for an association between a 

marker and adult height in a mixture of Chinese and European populations, 

where due to population structure only, the frequency of the A allele is higher in 

the European population. As Europeans are on average taller than Chinese, an 

association between height and the A allele will be observed. However, this is 

entirely due to population structure. 

The association conducted within a family, family-based association test, is 

robust to admixture and population stratification (Laird and Lange, 2006) 
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because ethnicity or population substructure do not vary within families. In a 

sibling pair design, the association between a marker and a quantitative trait can 

be partitioned into within and between pair associations (Fulker et al., 1999). 

Because within pair association accounts for shared genetic and environmental 

effects, it reflects only the true association. On the other hand, the between 

family association reflects both the true and possible spurious associations 

(Posthuma et al., 2004). 

1.3 The Aim and Organization of The Thesis 

The aim of the research presented in this thesis is to enhance our understanding 

of the genetic basis of the variation of quantitatively distributed human complex 

phenotypes using twin and (to some extent) family data. These include the 

variation of behavioural traits (intelligence), clinical traits (the metabolic 

syndrome) and anthropometric measures (body height). The focus in this 

thesis is on heritability estimation using both conventional and novel statistical 

methods. The identification of gene(s) underlying complex phenotypes (body 

height) by means of linkage analysis is also presented. 

The thesis is organised into 7 chapters. The focus in Chapters 2-4 is on 

a novel finite mixture distribution method for estimating heritability from 

twins of unknown zygosity. The estimation of heritability of IQ score from 

population-based surveys, the Scottish Mental Surveys of 1932 and 1947, where 

zygosity is unknown is discussed in Chapter 2. Discussions on the precision and 

bias of the finite mixture distribution model using computer simulations and 

its application to IQ measures from a large sample of zygosity known twins 

[twins from the U.K. Twins' Early Developments Study (TEDS)] are presented 
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in Chapter 3. The extension of the finite mixture distribution to multivariate 

analysis is discussed in Chapter 4. The application of a mixed linear model for 

estimating heritability from twins of known zygosity for the traits associated 

with the metabolic syndrome is presented in Chapter 5. Moving from heritability 

estimation, the focus of Chapter 6 is on linkage analysis for identification of 

gene/ chromosomal regions associated with body height. In addition to twin 

data, the linkage analysis also utilised the data from other family members. 

Finally, the thesis is concluded in Chapter 7 (General Discussion). 
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2 A Mixture Distribution Model to Estimate 
Variance Components from Twins of Unknown 

Zygosity: Application to IQ Measures from The 

Scottish Mental Surveys of 1932 and 1947 

2.1 Abstract 

Twin studies provide estimates of genetic and environmental contributions to 

cognitive ability differences, but could be based on biased samples. This chapter 

presents whole-population estimates using twins from unique mental surveys in 

Scotland. The Scottish Mental Surveys of 1st  June 1932 (SMS1932) and 4th 

June 1947 (SMS1947) administered the same validated verbal reasoning test 

to almost everyone born in 1921 or 1936, respectively, and attending school in 

Scotland. There were 572 twin pairs from the SMS1932, and 517 pairs from the 

SMS1947. Information on zygosity was unavailable. A novel application of a 

mixture distribution was used to estimate genetic and environmental components 

of verbal reasoning variation by maximum likelihood. The study found consistent 

heritability (r0.70) and shared environment (0.21) estimates. The estimates 

decreased slightly when additional quantitative traits (height and weight) were 

added in a multivariate analysis. More generally for studies in genetics, the 

methodological innovation developed here implies that large (national) data 

collections can provide sufficient information on twin pairs to estimate genetic 

parameters, even without zygosity. 

2.2 Introduction 

Intelligence differences in humans have a well-understood phenotypic structure 

(Carroll, 1993) , strong predictive validity for health, education and occupational 
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outcomes (Gottfredson and Deary, 2004; Neisser et al., 1996), and correlate with 

brain structure and function (Gray and Thompson, 2004). The genetic and 

environmental contributions to variation in intelligence at different ages are of 

considerable interest, but are not fully understood (Plomin and Spinath, 2004). 

To date, twin, family and adoption studies suggest that, including studies 

at all ages, about 50% of the variation in human intelligence, as measured 

by psychometric tests, is attributable to additive genetic effects (Bouchard 

and McCue, 2003; Bouchard et al., 1990; Plomin and Spinath, 2004; Plomin 

et al., 2001). These sources also indicate that: the bulk of the substantial 

environmental effect is from sources not shared by siblings in the same rearing 

family; the genetic influence is especially strong on the general intelligence 

factor; the genetic contribution is stronger in adulthood than in childhood; and 

the effect of the shared rearing environment decreases almost to zero in early 

adulthood. 

A potentially serious and unanswered problem is the representativeness of 

the samples on which genetic and environmental contributions to variation in 

cognitive ability scores are based (Bouchard and McCue, 2003; Joseph, 2003). 

Volunteer samples could be especially prone to such effects and attrition from 

population-referenced samples could have biasing effects. Therefore, it is highly 

desirable to provide estimates of environmental and genetic contributions to 

intelligence variation based upon complete populations. 

The present study analysed data from unique, whole populations of 11-year-olds 

tested in the Scottish Mental Surveys of 1932 (SMS1932) (Scottish Council for 

Research in Education, 1933) and 1947 (SMS1947) (Deary et al., 2004; Scottish 

Council for Research in Education, 1949). On June 1st  1932 and June 4th 

1947, the Scottish Council for Research in Education organised the mental 
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testing of all children attending Scottish schools and born in 1921 or 1936, 

respectively. In the Scottish Mental Survey of 1932 (SMS1932) 87,498 children 

were tested (Scottish Council for Research in Education, 1933), and 70,805 

were tested in the Scottish Mental Survey of 1947 (SMS1947) (Scottish 

Council for Research in Education, 1949). The mental test used was a version of 

the Moray House Test No. 12 (Scottish Council for Research in Education, 1933). 

In addition to the novelty of using data from an entire population, a finite 

mixture distribution model that does not require zygosity of twin pairs to be 

known (Neale, 2003) was applied. This method provides a unique opportunity 

to perform genetic analysis on data collected (for non-biological purposes) from 

large population cohorts in, for example, the social sciences, as long as twin pairs 

can be identified from local identifiers such as family, school and date of birth. 

2.3 Subjects and Methods 

2.3.1 Study Populations 

Twin pairs were explicitly ascertained in the SMS1947, and some extra 

demographic and social information was collected from them (Mehrota and 

Maxwell, 1949; Scottish Council for Research in Education, 1949; Scottish Council 

for Research in Education, 1953). No attempt was made to establish zygosity. A 

total of 517 pairs were identified, 320 same-sex (SS) pairs and 197 opposite-sex 

(OS) pairs. In the SMS1932, twin pairs were not explicitly ascertained (Deary 

et al., 2004; Scottish Council for Research in Education, 1933). They were 

identified for the present study by matching pairs of subjects for: surname, date 

of birth and school identifier. A total of 572 pairs were ascertained, 382 SS and 

190 OS pairs. The zygosity status of these twin pairs is not known. The number 
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of twin pairs as a proportion of the entire population was 0.64% and 0.70% 

for the 1932 and 1947 populations, respectively, slightly lower than the current 

rate of twinning in Caucasian populations (Imaizumi, 2003). In total, the two 

populations contained 1089 twin pairs, 702 SS and 387 OS twill pairs. 

Twins who attended different schools, including brothers and sisters attending 

single sex schools (rarer at the primary level than at the secondary level) would 

not be identified. The computerised SMS1932 database is not complete. The 

ledgers containing the data from Fife, Angus and Wigtown have not been traced. 

There is no obvious bias entailed by these omissions as there is no reason to 

believe that genetic and environmental contributions to intelligence would be 

any different in those areas. In one area of Scotland, 10 twin pairs were from 

birth years 1922 and 1923. These were retained because all children were tested 

in the area from these birth years. Another two of the 'twin' pairs are from 

triplets. Two pairs had no information on sex and were omitted. 

2.3.2 Measures 

The version of the Moray House Test No. 12 (MHT) was very like that 

used in the United Kingdom for selection from primary to secondary school 

education when children were about 11 years old (Deary et al., 2004). Based 

on 71 questions, the maximum possible score on this test is 76. The MHT 

is a group-administered test with a time limit of 45 minutes, and contains 

a preponderance of verbal reasoning items, but also other material including 

numerical and spatial items. It was validated against the Stanford revision of 

the Binet test (r -i0.8) (Scottish Council for Research in Education, 1933). The 

MHT has high stability of individual differences over more than 60 years, with a 

correlation coefficient between MHT score between age 11 and 80 of 0.66 (Deary 
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et al., 2000; Deary et al., 2004). 

Additional phenotypic data, including height, weight and hence body mass index 

(BMI, body mass in kg divided by the square of the height in m) were available 

for the SMS 1947 twins. Height and weight were measured by a nurse either in the 

school or at home (Scottish Council for Research in Education, 1949). Since these 

traits have well-known heritabilities, including these indices afforded a check 

on heritability estimates against other studies. Moreover, some studies have 

reported a moderate phenotypic correlation between IQ and height (Humphreys 

et al., 1985; Johnson, 1991; Teasdale et al., 1989). By performing multivariate 

genetic analyses, the present study allowed an examination of the environmental 

and genetic correlations between cognitive ability and height. Lastly, in the 

method that was used to estimate genetic parameters, multiple traits provide 

more information on zygosity than data on a single trait. 

2.4 Statistical Methods 

Zygosity status, i.e. whether a twin pair is either monozygotic (MZ) or dizygotic 

(DZ), was not available for the same-sex twin pairs. Opposite-sex pairs are 

DZ. The number of MZ twins as a fraction of all twin pairs (or as a fraction 

of SS pairs) can be estimated assuming that the probability that a DZ pair is 

same-sex is 0.5. From each of the populations, the proportion of MZ twin pairs 

was estimated using Weinberg's differential rule as 1 - 2 x (proportion of OS 

twin pairs) (Weinberg, 1902). 

Intraclass correlations of SS and OS were obtained by partitioning the total 

variance into a between (o2
2 

f) and within (a) pair variance using ANOVA, and 
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fitting sex and cohort (for the combined MHT score of the SMS 1932 and 1947) 

as covariates. 

To partition the observed intraclass correlation of OS and SS twin pair phenotypic 

similarity into possible underlying causes, a model was fitted that partitions 

the covariance between twin pairs into an additive genetic (A), a common 

environmental (C), and a residual environmental (E) component of variance 

(Neale and Maes, 2004). The variance components of MHT score and other traits 

were estimated by fitting a finite mixture distribution method (Neale, 2003) 

using the Mx statistical package (Neale et al., 2002). 

The basic principle of the mixture model is illustrated in Figure 2.1, where two 

normal distributions are fitted to the distribution of same-sex pair difference. The 

combined MHT score, after adjustment for a sex and a cohort effect was used as 

an example. There is strong statistical evidence for the hypothesis that there are 

two distributions against the hypothesis that there is a single normal distribution 

(likelihood-ratio-test, 2 degrees of freedom, P - value = 6.1 x 10b0).  From the 

data, the estimated proportion of MZ pairs among SS pairs was 0.45 and used 

to weight the analysis. The estimates of the variances for the two underlying 

distributions, assumed to correspond to MZ and DZ pairs, are 48.4 and 236.1, 

respectively, assuming that the smaller within-pair variance corresponds to MZ 

twins. These estimates of the within-pair variance correspond to 2 x (1 - r) times 

the phenotypic variance, where r is the MZ or DZ correlation. Given the estimate 

of the total phenotypic variance of 243.4 (Table 2.4), the inferred estimates of 

the MZ and DZ intra-class correlations are 0.90 and 0.51, respectively, which 

correspond well to the results from the full mixture model, presented later. In 

the full model, both the within and between same-sex variances are partitioned 

into two groups simultaneously, and appropriate weights are given to all sources 
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of information by maximum likelihood. 

Sex and cohort effects (for combined MHT score) were fitted as covariates for all 

traits. The mixture proportion, in this case the proportion of MZ pairs among 

SS pairs, is assumed to be known, and the variance components are estimated 

using maximum likelihood. 

Male and female specific variance components were estimated and a likelihood-

ratio-test was used to test the hypothesis that these components were the same. 

The covariance between same-sex DZ pairs and opposite-sex DZ pairs is not 

necessarily equal; for example, if there are sex-specific genetic effects or if the 

shared environmental covariance differs between the two types of DZ pairs. This 

difference was estimated by allowing the genetic correlation between males and 

females to differ from unity, and tested using a likelihood-ratio-test. 

Since additional phenotypic data were available from the SMS1947 population, 

multivariate genetic analyses were performed on the 1947 data, with height, 

weight, BMI and MHT score as phenotypes. Given that additional phenotypes 

provide additional zygosity information, the mixture model is likely to give more 

precise estimates of parameters with multiple traits (Neale, 2003). 

2.5 Results 

Descriptive statistics of the MHT score and additional traits are presented in 

Table 2.1. As is known, girls scored higher in the MHT in the SMS1947, and 

there was an increase in the mean MHT score from the 1932 population to 

the 1947 population (Scottish Council for Research in Education, 1949). In 
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Figure 2.1: Probability density function of same sex (SS) pair difference for 

the combined Moray House Test score, after adjusting for sex and cohort 

effects, and the fitted curves for two underlying distributions, assumed to 

correspond to MZ and DZ pairs. The histogram represents the observed 

distribution of the SS pairs difference and the solid curve the sum of the 

fitted distributions from the mixture model. The estimated mean, variance, 

skewness and kurtosis from the single distribution of SS pair difference are 0.78 

± 0.49, 152.1 ± 8.6, 0.28 ± 0.10 and 1.40 + 0.20, respectively. The estimated 

means (variances) of the inferred MZ and DZ distribution of pair difference 

are -0.12 + 0.42 (48.4 ± 4.1), 1.52 + 0.83 (236.1 + 18.1), respectively. The 

estimated proportion of MZ among SS pairs of 0.45 was used to weight the 

analysis. 
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SMS1932, the proportion of monozygotic (MZ) among same-sex (SS) twins was 

0.50 ± 0.04. The estimate was smaller in SMS1947 (0.38 + 0.06), but the two 

are not significantly different (P - value > 0.05). When the twin data were 

combined, the proportion of MZ in SS was 0.45 ± 0.03, close to the estimated 

proportion of MZ in Caucasian populations (Imaizumi, 2003). A summary of 

the estimated proportion of MZ twins in the sample of SS twins is given in Table 

2.2. The estimated proportions of MZ among SS twins were used in the mixture 

analysis. 

Intraclass correlations for SS and opposite-sex (OS) twins for each trait are 

presented in Table 2.3. For all traits, the intraclass correlations of the SS twins 

were consistently higher than that of OS twins. This suggests that genetic 

variation contributed to the individual phenotypic differences. 

2.5.1 Univariate Analyses 

From univariate analyses, the additive genetic, shared environmental and specific 

environmental variance components and the corresponding 95% confidence 

interval (CI) of all traits are presented in Table 2.4. There were no significant 

differences between variance components for MHT scores estimated from the 

1932 and 1947 populations (P - value > 0.05). Therefore the combined MHT 

score data after adjusting for the cohort effect provides more precise estimates of 

variance components for MHT score. A large proportion of phenotypic variance 

in MHT score, approximately 70% (95% CI 58% to 83%), was attributed to 

additive genetic effects. In addition, an estimated proportion of 21% (95% CI 

10% to 32%) of the phenotypic variance was due to common environmental 

effects shared by twin pairs. These estimates imply a large repeatability (--'0.90) 

of MHT score in the Scottish population at age 11 in the 1930s and 1940s. There 
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Table 2.1: Descriptive statistics of the Scottish Mental Surveys' twin data. 

Traits Sex N Mean SD CV (%) 

Height (m)(SMS1947) M 488 1.37 0.07 4.98 

F 521 1.37 0.07 5.12 

Total 1009 1.37 0.07 5.11 

Weight (kg)(SMS1947) M 480 31.14** 4.33 13.89 

F 519 30.13** 4.41 14.65 

Total 999 30.61 4.40 14.37 

BMI (kg/m2)(SMS1947) M 480 16.68** 1.68 10.09 

F 519 16.11** 1.59 9.88 

Total 999 16.38 1.66 10.13 

MHT Score (SMS1932) M 508 28.45 15.31 53.81 

F 571 28.46 14.89 52.31 

Total 1080 28.46 15.08 52.99 

MHT Score (SMS1947) M 451 30.88* 16.77 54.31 

F 498 33.41* 15.81 47.32 

Total 949 32.21 16.31 50.64 

Combined MHT Score M 959 29.59 16.05 54.24 

F 1070 30.76 15.51 50.42 

Total 2029 30.21 15.78 52.23 

Note: Column N is the number of individuals, and column SD and CV are the 
standard deviations and coefficient of variation, respectively. * and ** denote 
significant differences between males and females at 5% and 0.1%, respectively. 
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Table 2.2: Estimated proportion of monozygotic (MZ) twin pairs 

Cohort SS pairs OS pairs Total 	pMZ (SE) pMZSS (SE) 

SMS1932 382 190 572 	0.34 (0.04) 0.50 (0.04) 

SMS1947 320 197 517 	0.24 (0.04) 0.38 (0.06) 

Combined 702 387 1089 	0.29 (0.02) 0.45 (0.03) 

Note: pMZ and pMZSS are the estimated proportion of MZ twins in the 
population of twin pairs and the proportion of MZ twins in SS twin pairs, 
respectively. pMZ was estimated using the formula 1 - 2 x (proportion of OS 
twin pairs). pMZSS was estimated as pMZ/(proportion of SS twin pairs). 

was no significant difference between variance components in males and females 

for all traits (P - value > 0.05, likelihood-ratio test). The genetic correlation 

between males and females was not significantly different from unity for all traits 

(P - value > 0.05). This suggests that the same set of genes influenced the 

phenotypes in males and females. 

Eighty percent (95% CI 65% to 95%) of the phenotypic variation in height 

was due to genetic effects, under the assumed ACE model. Only 14% (95% Cl 

0% to 28%) of the height variation between individuals was due to common 

environmental effects shared by twin pairs. A large proportion of variance due 

to additive genetic effects was also observed for weight (73%, 95% CI 58% to 

90%) and BMI (84%, 95% CI 70%-97%). 



Table 2.3: Intraclass correlations for same-sex (SS) and opposite-sex (OS) twins 

from the Scottish Mental Surveys of 1932 and 1947 (SMS1932, SMS1947). 

Traits Twin t SE(t) 

Height (m)(SMS1947) SS 0.003 0.002 0.69 0.03 

OS 0.002 0.002 0.54 0.05 

Weight (kg)(SMS1947) SS 14.9 5.64 0.73 0.03 

OS 8.16 8.43 0.49 0.05 

BMI (kg/m2 )(SMS1947) SS 2.16 0.85 0.72 0.03 

OS 1.0 1.14 0.47 0.06 

MHT Score (SMS1932) SS 153.0 74.2 0.67 0.03 

OS 122.0 89.8 0.58 0.05 

MHT Score (SMS1947) SS 198.2 78.8 0.72 0.03 

OS 153.0 93.1 0.62 0.04 

Combined MHT Score SS 169.9 76.2 0.69 0.02 

05 135.4 91.0 0.60 0.03 

Note: a, a are between and within twin pair variances obtained from ANOVA 
after adjusting for sex and cohort effects (for combined MHT Score); t and 
SE(t) are the estimated intraclass correlation and its corresponding approximate 
standard error. 
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Table 2.4: Variance components of MHT score and additional traits obtained from univariate analyses using the mixture 

distribution model. 

Traits 	A C E T a2  c2  e2  

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 

Height 0.0040 0.0007 0.0003 0.0050 0.80 0.14 0.06 

(SMS1947) (0.0030-0.0050) (0-0.0010) (0.0002-0.0004) (0.0040-0.0050) (0.65-0.95) (0-0.28) (0.04-0.09) 

Weight 13.90 3.62 1.42 18.94 0.73 0.19 0.08 

(SMS1947) (11.06-16.89) (0.64-6.58) (0.85-2.24) (17.08-21.12) (0.58-0.90) (0.04-0.33) (0.04-0.12) 

BMI 2.22 0.29 0.13 2.63 0.84 0.11 0.05 

(SMS1947) (1.86-2.63) (0-0.69) (0.08-0.20) (2.38-2.93) (0.70-0.97) (0-0.25) (0.03-0.08) 

MHT Score 164.8 36.3 25.1 226.3 0.73 0.16 0.11 

(SMS1932) (121.4-207.9) (0-76.4) (16.8-37.8) (205.2-250.8) (0.53-0.91) (0-0.32) (0.07-0.17) 

MHT Score 176.6 68.1 17.3 262.0 0.67 0.26 0.07 

(SMS1947) (136.8-217.3) (26.7-110.1) (9.5-29.5) (235.7-292.8) (0.52-0.84) (0.11-0.40) (0.04-0.11) 

Combined 170.9 51.0 21.6 243.4 0.70 0.21 0.09 

MHT Score (142.2-200.1) (22.4-79.6) (15.6-29.5) (226.4-262.4) (0.58-0.83) (0.10-0.32) (0.06-0.12) 

Note: A, C, E, and T are the additive genetic, common and shared environmental and total variance for each trait, respectively; 
a2 , c2  and e2  are the standardized variance for A, C and E, respectively. 



2.5.2 Multivariate Analysis 

Multivariate analyses of MHT score with height, weight, and BMI were 

performed on data from the SMS1947 population. A full 4-trait analysis could 

not be carried out because of the dependence between BMI, height and weight. 

Therefore, 2 trivariate analyses were performed i.e. height, BMI and MHT score 

and weight, BMI and MHT score. From the multivariate analyses, 59% (95% CI 

43% to 78%) of the phenotypic variance of MHT score of SMS 1947 was attributed 

to genetic variance compared to 67% (95% CI 52% to 84%) from the univariate 

analysis. There was a slightly higher proportion of variance due to common 

environmental effects in the multivariate analyses (31% compared to 26%). 

Estimates of correlation coefficients [genetic (r9 ), common (re ) and specific (re ) 

environmental and phenotypic (rn)] were derived from the estimated (co)variance 

components. Estimated phenotypic correlations between the measured traits 

were consistent with estimates of Pearson's correlations that ignored the twin 

structure of the data. The estimated genetic correlation coefficients between 

MHT score and the additional traits (height, weight, BMI) were not significantly 

different from zero (P - value > 0.05). There was a significant phenotypic 

correlation coefficient between height and MHT score [0.28 (95% CI 0.21 to 

0.35); P - value < 0.001], and the common environmental correlation coefficient 

between height and MHT score was high [0.74 (95% Cl 0.29 to 1.0)]. Table 2.5 

shows the estimates of all variance components from multivariate analyses, and 

the corresponding estimates of correlation coefficients are presented in Table 2.6. 

2.6 Discussion 

This study is the first to estimate genetic and environmental variance components 

for verbal reasoning ability (MHT score) in entire school-attending populations. 
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Table 2.5: Variance components obtained from multivariate analysis of SMS1947. 

Traits 	A C E T a2  C 2 e2 

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 

Height 

(SMS1947)' 

Weight 

(SMS1947) 2  

BMI 

(SMS1947)' 

MHT Score 

(SMS1947)' 

0.0040 

(0.0030-0.0040) 

13.30 

(10.39-16.32) 

2.21 

(1.86-2.59) 

157.1 

(114.7-199.4) 

0.0009 

(0.0002-0.0020) 

3.96 

(1.03-6.89) 

0.29 

(0-0.70) 

81.6 

(39.7-124.7) 

0.0004 

(0.0003-0.0006) 

1.72 

(1.19-2.58) 

0.14 

(0.09-0.21) 

26.0 

(16.8-39.7) 

0.0050 

(0.0040-0.0050) 

18.97 

(17.14-21.12) 

2.64 

(2.39-2.94) 

264.7 

(238.0-296.1) 

0.74 

(0.59-0.88) 

0.70 

(0.55-0.86) 

0.84 

(0.70-0.96) 

0.59 

(0.43-0.78) 

0.18 

(0.05-0.32) 

0.21 

(0.06-0.35) 

0.11 

(0-0.25) 

0.31 

(0.15-0.44) 

0.08 

(0.06-0.13) 

0.09 

(0.06-0.14) 

0.05 

(0.04-0.08) 

0.10 

(0.06-0.15) 

Note: A, C, E and T are the additive genetic, common and shared environmental and total variance for each trait, respectively; 
a2, c2  and e2  are the standardized variance for A, C, E, respectively. A full 4-trait analysis could not be carried out because of 
the dependence between BMI, height and weight. The results for height, BMI and MHT score are from a trivariate analysis of 
these traits. The results for weight are from a trivariate analysis of weight, BMI and MHT score. 



Table 2.6: Phenotypic (rn ), additive genetic (rg ) common (re ) and specific 

environmental (re ) correlations estimated from multivariate analysis of 

SMS1947, and their 95% confidence interval (CI) 

Traits rp  

(95% Cl) 

rg  

(95% Cl) 

r 

(95% Cl) (95% Cl) 

Height and 0.28 0.15 0.74 0.06 

MHT Score' (0.21-0.35) (-0.01-0.32) (0.29-1.0) (-0.21-0.31) 

Weight and 0.19 0.09 0.47 0.13 

MHT Score  (0.11-0.26) (-0.08-0.25) (0.04-0.99) (-0.13-0.37) 

BMI and —0.01 —0.003 —0.13 0.17 

MHT Score' (-0.09-0.06) (-0.15-0.14) (-1.0-1.0) (-0.09-0.42) 

Height and 0.71 0.65 0.88 0.85 

Weight3  (0.67-0.74) (0.56-0.72) (0.45-1.0) (0.75-0.91) 

Height and —0.02 —0.13 0.43 0.33 

BMI' (-0.09-0.06) (-0.27-0.01) (-1.0-1.0) (0.05-0.56) 

Weight and 0.69 0.68 0.79 0.73 

BMI2  (0.65-0.73) (0.61-0.74) (-1.0-1.0) (0.59-0.84) 

Note: A full 4-trait analysis could not be carried out because of the dependence 
between BMI, height and weight. 1  is from a trivariate analysis of height, BMI 
and MHT score. 2  is from a trivariate analysis of weight, BMI and MHT score, 
and 3  is from a trivariate analysis of weight, height and MHT score. 
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Hence, it may be assumed that there was no bias in parameter estimates due to 

ascertainment. The estimates for the additive genetic contribution to differences 

in MHT scores were 70% in the combined analysis, with a 95% CI of 58 to 83%, 

and highly consistent across the two whole populations. Estimates of heritability 

in later-born cohorts of children of similar ages from twin studies with known 

zygosity vary from 40% to 70% (Bartels et al., 2002; Bishop et al., 2003; Knopik 

and DeFries, 1998; Plomin et al., 2001). 

The heritability estimate of height was consistent with the published 

estimates using twin designs with known zygosity (Schousboe 

et al., 2004; Silventoinen, 2003b; Silventoinen, 2003a). The heritability estimates 

of weight and BMI in SMS1947 are similar with the estimates from previous 

twin studies (reviewed by Maes et al., 1997). Analyses of these traits have been 

useful to provide a check on the reliability of the mixture distribution methods. 

In addition, the similarity of variance components estimated from multivariate 

analyses compared to univariate analyses indicated that the estimates are precise. 

From multivariate analyses, although a significant phenotypic correlation 

between MHT score and height was estimated, there was no significant genetic 

component of this correlation. The significant phenotypic correlation between 

MHT score and height was attributed to common environmental correlation. It 

can probably be explained that the same common environmental effects (social 

economic status and better nutrition) influence both height and intelligence. 

The mixture distribution maximum likelihood method that was used has not 

been used before to estimate variance components in twin studies without known 

zygosity. From simulation studies, the estimate of the heritability using a mixture 

distribution appeared slightly biased upwards (Neale, 2003). However, when new 
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simulations were run with approximately the same population parameters as 

estimated in this study, the upward bias in the estimate of the heritability was 

only --2% (M. Neale, personal communication). The information to separate 

the distribution of same sex pair differences (for analysis within pairs) and pair 

sums (for analysis between pairs) into two underlying distributions comes from 

the contrast between the variance and kurtosis of the distribution (see Appendix 

2A). Therefore, if the distribution of a trait is strongly kurtotic then the mixture 

distribution may result in biased results. For the MHT scores considered in this 

study, kurtosis was estimated as —0.71 (SE 0.15). Although this is significantly 

different from the expectation under normality, the estimate indicates that 

the distribution is platykurtic, which is the opposite of what is expected and 

observed when the differences between SS pair observations are analysed. The 

departure from normality is discussed further in Chapter 3. 

Heath et al. (2003) showed that a latent class analysis can be used for zygosity 

diagnosis. The authors applied their analysis to discrete data from standard 

questions for zygosity diagnosis and fitted a 2-class latent class model, where the 

two classes are assumed to correspond to MZ and DZ groupings. In principle 

this method can be used for any discrete data on twins, and can be viewed as a 

discrete-trait version of the mixture model for quantitative traits that has been 

used. 

An alternative approach would be to use separate ANOVA for OS and SS 

data to estimate intraclass correlations and to estimate heritability from these 

assuming that the mixture proportion in the SS pairs is known (see Appendix 

2B for details). However, although these derivations help to understand and 

quantify the relationship between the population parameters and estimates in a 

least squares framework, this method does not use all information efficiently and 
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could lead to severe bias if the male-female genetic correlation deviates from unity. 

The proportion of MZ among same-sex twin pairs was assumed to be known 

in the analysis. A sensitivity analysis showed that varying this parameter from 

0.35 to 0.65 has little effect on the estimate of heritability. For the combined 

analysis of MHT score, the estimate of the heritability for MZ proportions 

among same-sex twin pairs of 0.35 and 0.65 was 0.71 (95% Cl 0.59 to 0.82) and 

0.69 (95% Cl 0.54 to 0.83), respectively. 

In this study the commonly used ACE model was fitted. Other three-component 

parameterisation is also possible, for example a model with additive genetic (A), 

dominance (D), and residual environmental (E) effects. However, this ADE 

model predicts that MZ correlations are larger than twice the DZ correlations, 

which is not consistent with the reported OS and SS intraclass correlations in 

Table 2.3. For all traits, the estimate of the C component was greater than zero, 

further suggesting that an ACE model is more appropriate than an ADE model. 

This study has wide implications for research into genetic variation of disease 

and non-disease related traits in human populations. Extremely large random 

samples, comprising 100,000s of individuals, have been collected or are being 

collected in a number of countries to answer fundamental questions in the fields 

of biomedical, educational and economics research. It has been shown that, with a 

minimum of required information (the most important of which are surname, date 

of birth, sex and a localized identifier such as school or household), a large number 

of twin pairs can be identified (see also Webbink et al., 2006) and that appropriate 

statistical methods are available to estimate genetic parameters without knowing 

zygosity. Hence, a genetic element can be added to such studies, thereby greatly 

enhancing their value. 
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Appendix 2A. Variance and Kurtosis for a Mixture of Two 

Normal Distributions 

For a trait x the i h  moment about the mean is defined as mi  = E[x - E(x)]. 

The variance and kurtosis are m2  and K = [ 2 - 3], respectively. For a single 

distribution of a normally distributed trait, m2  = a2, m4  = 3a4  and K = 0. For 

a mixture of two distributions with mixture proportion p, 

M2 =pa+(1 —p)a 	 (2.1) 

MIN 

M4 =3pa+3(1 —p)a 	 (2.2) 

For example, consider the difference in observations between pairs of twins 

in a mixture of DZ and MZ twin pairs with mixture proportion 0.5 and an 

ACE model with heritability of 0.6 and the proportion of variance due to 

common environmental effects of 0.2. The phenotypic variance is unity. Then, 

m2  = 0.350, m4  = 0.435 and K = 0.55. The principle of the mixture distribution 

approach is that the two unknown variances are estimated from the observed 

variance and kurtosis. 
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Appendix 2B. Estimation of Parameters from ANOVA on OS 

and SS Pairs 

Consider the ACE model and scaled phenotypes so that the phenotypic variance 

is unity. Let p be the proportion of MZ twins among same-sex (SS) twin pairs. 

The between (B) and within (W) mean square component in an AN OVA will 

then be a mixture from two distributions (MZ and DZ). The expected values 

are, 

E(Bss) = e2 +2c2 + ' h2(3+p) = 1+ c2 +h2(1+p) 	(2.3) 

E(Wss)=e2 +(1_p)h2 =1_c2 _h2(1+p) 	(2.4) 

with h2, c2  and e 2  the proportion of phenotypic variance due to additive genetic 

(A), common environmental (C) and residual environmental (E) effects. The 

intra-class correlation (t) from the between and within pair analysis is, 

[E(B)- 
2 
 E(W) 	[E(B) - E(W)] 	

(2.5) = E[(B)-E(W) + E(W) = [E(B) + E(W)} 

For the SS pairs, 

t83 = c2  + (1 +p)h2 	 (2.6) 

For the opposite-sex (OS) pairs, assuming an ACE model but allowing for a 

genetic correlation of less than unity between the sexes and different heritabilities 

for males (rn) and females (f), 



to8  = c2  + Tghmhf 	 (2.7) 

If the heritability for males and females is the same then, 

tos  = c2  + 
1 
 r9h 	 (2.8) 

Hence, under the assumption of equal heritabilities of males and females, there 

are two summary statistics (correlations), i.e. t88  and t08, but three unknowns 

(c2,h2,rg). It follows that, 

2(ts8 - t03) = h 2[(1 +p) - r9 ] 	 (2.9) 

and 
[t08(1 +p) - tssrg] =C 	 (2.10) 

[(1+p)_rg ] 

If one further assumes that Tg = 1, then the estimates of h2  and c2  satisfy 

h2 
= 2(t88  - t03) 	

(2.11) 
P 

= [t08(1 + p) - tss] 	 (2.12) 
P 

Relative to the standard twin design with MZ and DZ pairs, the sampling 

variance of the estimate of the heritability from SS and OS pairs is increased by 

a factor of p 2, for example by a factor of four if p = 
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3 Precision and Bias of a Mixture Distribution 

Model to Estimate Variance Components from 

Twins of Unknown Zygosity: Simulations and 

Application to IQ Measures from The U.K. 

Twins' Early Developments Study 

3.1 Abstract 

The classification of twin pairs based on zygosity into monozygotic (MZ) 

or dizygotic (DZ) twins is the basis of most twin analyses. When zygosity 

information is unavailable, a normal finite mixture distribution (mixture 

distribution) model can be used to estimate components of variation for 

continuous traits. The main assumption of this model is that the observed 

phenotypes on a twin pair are bivariately normally distributed. Any deviation 

from normality, in particular kurtosis, could produce biased estimates. Using 

computer simulations and analyses of a wide range of phenotypes from the U.K. 

Twins' Early Developments Study (TEDS), where zygosity is known, properties 

of the mixture distribution model were assessed. Simulation results showed 

that, if normality assumptions were satisfied and the sample size was large 

(e.g. 2,000 pairs), then the variance component estimates from the mixture 

distribution model were unbiased and the standard deviation of the difference 

between heritability estimates from known and unknown zygosity in the range 

of 0.02 to 0.20. Unexpectedly, the estimates of heritability of 10 variables from 

TEDS using the mixture distribution model were consistently larger than those 

from the conventional (known zygosity) model. This discrepancy was due to 

violation of the bivariate normality assumption. A leptokurtic distribution of 

pair difference was observed for all traits (except non verbal ability scores of MZ 

twins), even when the univariate distribution of the trait was close to normality. 

From an independent sample of Australian twins, the heritability estimates 
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for IQ variables were also larger for the mixture distribution model in 6 out 

of 8 traits, consistent with the observed kurtosis of pair difference. While the 

known zygosity model is quite robust to the violation of the bivariate normality 

assumption, this novel finding of widespread kurtosis of the pair difference may 

suggest that this assumption for analysis of quantitative trait in twin studies 

may be incorrect and needs revisiting. A possible explanation of widespread 

kurtosis within zygosity groups is heterogeneity of variance, which could be 

caused by genetic or environmental factors. For the mixture distribution model, 

violation of the bivariate normality assumption will produce biased estimates. 

3.2 Introduction 

The classical twin design is very useful in partitioning the observed phenotypic 

variance of complex traits in humans into genetic and environmental components 

(reviewed by Boomsma et al., 2002). By comparing the resemblance of 

monozygotic (MZ) twin pairs to that of dizygotic (DZ) twin pairs, twin studies 

allow the causes of individual differences in complex traits to be quantified. 

Under the assumption that both types of twins share the same degree of common 

environmental experiences (the common environment assumption), a larger 

similarity of MZ pairs compared to DZ pairs indicates that genetic factors 

influence phenotypic variation (e.g. Evans et al., 2002; Rijsdijk and Sham, 2002). 

The classification of twins based on zygosity is crucial in twin studies. A 

standard zygosity questionnaire (e.g. Peeters et al., 1998) answered by twins or 

their parents is usually used to diagnose zygosity. With the advance of molecular 

genetic markers, such as microsatellites, DNA-based zygosity testing is now 

widely used and gives a greater accuracy (e.g. Forget-Dubois et al., 2003). 
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Although zygosity information can now be easily and economically obtained, 

such information is not always available. Two examples are twin data that 

were collected before zygosity classification was routine [(e.g. the Scottish 

Mental Surveys 1932 (Scottish Council for Research in Education, 1933) and 

1947 (Deary et al., 2004; Scottish Council for Research in Education, 1949)] 

and data collected from large national studies in the fields of social sciences, 

economics or education where genetic study was not the main interest (e.g. 

Scarr-Salapatek, 1971). Twins from these studies can be identified by matching a 

pair with, for example, the same surname, birth date and location such as home 

address or school, if these identifiers are available. Assuming that an identifier of 

sex is also available, twin pairs from such studies can only be classified as same 

sex (SS) or opposite sex (OS) pairs. SS pairs are a mixture of MZ and DZ pairs 

whereas OS pairs are always DZ. For such studies, the conventional methods 

which rely on zygosity information cannot be used. Different methods have 

been proposed to analyse twin data where zygosity information is unavailable. 

Scarr-Salapatek estimated the correlations of MZ and DZ pairs by partitioning 

the z-transformed correlation coefficient of SS twins [An analogous method based 

upon ANOVA is described in Chapter 2 (Appendix 2B) and Benyamin et al. 

(2005)]. The method, however, assumed that the sample size and correlation of 

DZ SS twins were the same as those of the observed OS pairs, and is limited 

to univariate heritability (Neale, 2003). The OS correlation can substantially 

differ from the correlation of DZ SS, for example if the genetic or common 

environmental covariance is lower in OS pairs. 

Neale proposed a method based upon a normal finite mixture distribution 

(mixture distribution) to estimate MZ and DZ correlations from SS twins. 

This method partitions the SS twin distribution into underlying MZ and DZ 

distributions by maximum likelihood. The estimated proportion of MZ among 
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SS twins (pMZ) is used to weight the likelihood. This method has been applied 

to analyse individual differences in cognitive ability (the Moray House Test No. 

12) from twin data with unknown zygosity of the Scottish Mental Surveys 1932 

and 1947 (Chapter 2; Benyamin et al., 2005). In addition, Heath et al. (2003) 

proposed a latent class analysis to diagnose zygosity. This method can be used 

to analyse discrete data on twins by fitting a 2-class latent class model, which 

is assumed to correspond to MZ and DZ pairs (Chapter 2; Benyamin et al., 2005). 

The mixture distribution model of Neale assumes that the observed phenotypes 

on a pair follow a bivariate normal distribution in the population. Any deviation 

from normality, in particular kurtosis, could produce biased estimates because 

the partitioning of the observed within-pair and between-pair variation is based 

upon the contrast of the variance and kurtosis (Chapter 2; Benyamin et al., 2005). 

The purpose of the present study is to quantify the precision and bias of the 

mixture distribution model in estimating genetic parameters from twin data when 

zygosity is unknown. Simulation was used to quantify the precision of estimation 

of the mixture distribution model when the distributional assumptions were 

met, and to quantify bias when normality assumptions were violated. Finally, 

the known zygosity and mixture distribution models were applied to a range 

of IQ phenotypes from the U.K. Twins' Early Development Study (TEDS), 

a longitudinal study of a representative sample of all twins born in England 

and Wales between 1994 and 1996. Zygosity information is available on TEDS 

data. Therefore, the application of the mixture distribution model to these data 

afforded a check on variance components estimates from the previous application 

of the mixture distribution model on twins of unknown zygosity of cognitive 

ability from the Scottish Mental Surveys 1932 and 1947 (Chapter 2). 
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Table 3.1: Scenarios of simulated variance component proportions. 

Variance I II III IV V VI VII VIII IX 

Components 

a2  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 

e2  0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 

3.3 Methods 

3.3.1 Simulation Study 

MZ and DZ twin data were simulated using a standard ACE model of family 

resemblance, by sampling additive genetic (A), common environmental (C) and 

specific environmental (E) effects. No sex effects or other fixed effects were 

simulated, and for subsequent analyses it was assumed that there were only SS 

pairs. All simulations were replicated 1,000 times. To assess the precision of 

estimation of the mixture distribution model, twin data were first simulated under 

the assumed bivariate normal distribution. Nine different standardized variance 

component parameters (Table 3.1) were simulated for different sample sizes 

(500, 2,000 and 5,000 twin pairs, with equal proportions of MZ and DZ). Each 

simulated dataset was then analysed with the conventional (known zygosity) 

and mixture distribution (Neale, 2003) models, using the statistical package Mx 

(Neale et al., 2002). An overall mean was the only fixed effect fitted in the model. 

Although pMZ could in principle be estimated from the data when fitting a 

mixture distribution model, the estimate is very imprecise (result not shown). 

Therefore, in the mixture distribution model, an a priori estimate of pMZ is used 

to weight the likelihood. In a complete population survey, pMZ can be estimated 
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using Weinberg's differential rule as 1 - 2 x (proportion of OS twin pairs) 

(Weinberg, 1902). This formula assumes that the number of DZ SS twins is the 

same as DZ OS twins due to the distribution of sexes (Scarr-Salapatek, 1971). 

This proportion may not be accurately estimated in all studies. Therefore, in 

order to assess whether specifying a wrong proportion in the mixture distribution 

model has an effect on variance components estimation, different proportions 

(0.1-0.9) were used in the analyses when the true proportion was 0.5. For this 

simulation, the standardized A, C and E variance components were a2  = 0.50, 

= 0.25, e2  = 0.25 and simulations were based on 2,000 twin pairs with an 

equal proportion of MZ and DZ. 

In order to assess the effect of kurtosis on the parameters' estimation of the 

mixture distribution model, normally distributed twin data were transformed 

into a distribution with a desired kurtosis value using the Cornish-Fisher 

expansion (Cornish and Fisher, 1937). For each value of an individual (x) drawn 

for a normal distribution, the transformation is: 

C 
y=x+-(x3 -3x) 	 (3.1) 

24 

where y is the transformed x with desired kurtosis given by the coefficient c. For 

positive c smaller than 1, the simulated data has a distribution with the kurtosis 

value similar to c. For larger positive c, the kurtosis value for the transformed 

distribution was larger than c. On the other hand, for negative c, the kurtosis 

value for the transformed distribution was slightly smaller than c. For examples, 

the corresponding average kurtosis values for c of -2, -1, -0.75, -0.50, -0.25, 0.25, 

0.50, 0.75, 1 and 2 were -1.01, -0.70, -0.57, -0.42, -0.23, 0.27, 0.60, 0.99, 1.50 and 

4.15, respectively. The exact relationship between the value of c and the kurtosis 
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value of the transformed data is shown in Appendix 1. Data sets for different c 

(11 different values of c ranging from -2 to 2) were simulated. The standardized 

variance components were a2  = 0.50, c2  = 0.25, e2  = 0.25 and simulations were 

based on 2,000 twin pairs with an equal proportion of MZ and DZ pairs. Data 

were then analysed using the conventional and mixture distributions models as 

before. 

Parameter estimates obtained from all simulations were further analysed using 

the statistical package R (R Development Core Team, 2006). 

13.2 Data Application 

Variables and Zygosity Diagnosis: 

TEDS is a large scale longitudinal study on language and cognitive developments 

involving a representative sample of all twins born in England and Wales in 

1994 - 1996 (e.g. Trouton et al., 2002). In the present study, eight variables 

related to language and cognitive developments of 7-year-old twins were available 

for analysis. These traits included scores on conceptual grouping, picture 

completion, similarities, vocabulary and test of word recognition (TOWRE). The 

composites of a number of the variables, i.e. language (a composite of similarities 

and vocabulary), non-verbal IQ (a composite of scores for conceptual grouping 

and picture completion) and general cognitive ability (g), which is the composite 

of language and non-verbal IQ, were also analysed. The cognitive abilities were 

measured on each child individually and separately using a telephone interview 

(Petrill et al., 2002). The complete description and definitions of the IQ variables 

were presented previously (e.g. Harlaar et al., 2005; Kovas et al., 2005; Price 

et al., 2000a; Spinath et al., 2004). In addition to these variables, height and 

weight were included in the analyses and these variables were supplied by a 



parent/guardian of the twins, usually the mother. Parental ratings were used to 

ascertain the zygosity of SS twin pairs (Kovas et al., 2005). This method has 

an error rate less than 5%, as validated by DNA typing using a multiplexed set 

of highly polymorphic markers (Harlaar et al., 2005; Kovas et al., 2005; Price 

et al., 2000b). 

Samples and Exclusions: 

Individuals and their co-twin were excluded from the analysis if: (i) their data 

base entry had missing identifiers (for sex and zygosity), (ii) there were specific 

medical and genetic conditions recorded (as described Kovas et al., 2005), (iii) 

they were of non-white ethnicity, (iv) English is not the language at home (v) 

either twin had an extreme phenotype (more than 3 standard deviations from 

the mean for any variable) and (vi) they were of the opposite sex. The reason 

for excluding the opposite sex twins from the analyses was to avoid possible 

(large) biases due to sex-limitation effects. If opposite sex pairs were included in 

the analysis then the parameter estimates for the DZ SS twins will be centered 

on the DZ OS twins because the OS intraclass correlation is estimated with 

more precision than the variance components from the mixture distribution (see 

Appendix 2B in Chapter 2 for more explanation). 

The final data set comprised 3,582 SS twins, 1,904 MZ and 1,678 DZ pairs. The 

proportion of MZ pairs among all twin pairs in the selected dataset is larger 

than that of the excluded dataset (0.372 ± 0.007 compared to 0.313 ± 0.009). 

This difference could be due to a larger participation rate of MZ twins in the 

cognitive study. However, the proportion of MZ pairs among all pairs in the 

TEDS twin data is not significantly different from the whole twin population 

born in England and Wales between 1994 to 1996 (Imaizumi, 2003) [0.351 ± 

0.005 (TEDS) vs 0.343 ± 0.003 (population)]. 



Analysis: 

Descriptive statistics of the standardized residuals (after a general linear model 

correction for sex and age effects on all observations) of the IQ variables, 

height and weight were obtained using SPSS 12.0.2 for Windows (SPSS Inc., 

1989 - 2003). The standardized residuals were then split into MZ and DZ 

groups. Pearson correlations for MZ and DZ boys and girls were computed 

after adjustment for age effects. To test for normality, a Kolmogorov-Smirnov 

normality test (implemented in SPSS) was performed for all phenotypes, after 

adjustment for sex and age effects. All phenotypes were analysed using the 

known zygosity and mixture distribution models. In the mixture distribution 

model, the observed proportion of MZ among SS twins (pMZ = 0.53) was used 

to weight the analyses. For all analyses, sex and age were fitted as fixed effects. 

3.4 Results 

3.4.1 Simulation Study 

Mixture Distribution Model Under Normality: 

For normally distributed twin data, heritability (a2) estimates from the mixture 

distribution model were compared with that from the known zygosity model. 

Figure 3.1 shows the relationship between the estimates from the two models, 

for the range of heritabilities of 0.1 to 0.9 (other parameters as in Table 3.1), 

for samples of 2,000 twin pairs. For all sets of parameters, the mean estimate 

of the heritability was very similar for both models, i.e. there was no evidence 

of a bias in the estimate of heritability, unless the heritability was small 

(a2  < 0.4). The results showed that the higher the heritability simulated, the 

more similar the estimates between the two models. For heritabilities < 0.4, 



although the mean estimates between the two models were similar, the standard 

deviation of estimates from the mixture distribution was about three times 

that of the known zygosity model. A similar pattern was also observed for the 

standardized common environmental variance ( c), i.e. the larger the heritability 

simulated, the more similar the c2  estimates between the two models (Figure 3.2). 

When the estimate of the heritability is unbiased, a useful criterion for precision 

of estimation of the mixture approach is the standard deviation of the difference 

in the estimate of the heritability between the two models. Figure 3.3 shows this 

standard deviation for a range of sample sizes from 500 to 5,000 pairs, for the 

range of population parameters as given in Table 3.1. As expected, the larger 

the sample size, the smaller the standard deviations of the difference between 

the two estimates. For a sample size as large as 5,000 pairs, the maximum 

standard deviation of the difference was 0.15 (for a low heritability) and for a 

large heritability little information is lost by not knowing zygosity. However, 

when the sample size is quite small (e.g. 500 pairs), the standard deviations of 

the difference between the two estimates of heritability were quite large even for 

heritability as high as 0.6. 

The effect on bias in the estimates of variance components when specifying a 

wrong pMZ in the mixture distribution model is presented in Figure 3.4, when 

a2  = 0. 50, c2  = 0.25 and e2  = 0.25. The magnitude and direction of the effects 

on each parameter estimate were different. The effect on heritability and error 

variance estimates were small. For example, when the actual pMZ is 0.5 and it is 

specified as 0.6 or 0.4, the mean bias of heritability estimates from the mixture 

distribution was less than 2%. The effects were slightly larger on the common 

environmental variance estimates, especially when pMZ was underestimated. 
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Figure 3.1: Heritability estimates from the mixture distribution and known 

zygosity models for different values of simulated heritability (Table 3.1) under 

an ACE model. The results were based on 2,000 pairs (1,000 MZs and 1,000 

DZs) and 1,000 replicates. a2  is the mean heritability estimate from the 

mixture distribution model. 
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Figure 3.2: Standardized common environmental variance (0) estimates from 

the mixture distribution and known zygosity models for different values of 

standardized variance components (Table 3.1) under an ACE model. The 

results were based on 2,000 twin pairs (1,000 MZs and 1,000 DZs) and 1,000 

replicates. 
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Figure 3.3: Standard deviation of the difference in heritability estimates 

between the mixture distribution and known zygosity models for different 

sample sizes. 

Mixture Distribution Model When Twin Data is Kurtotic: 

For twin data with a kurtotic distribution of the phenotype, estimates from the 

known zygosity model were unbiased (results not shown). Figure 3.5 presents 

the mean difference of parameter estimates between the mixture distribution 

and known zygosity models for platykurtic (negative kurtosis) and leptokurtic 

(positive kurtosis) distributions. As indicated from Figure 3.5, the mixture 

distribution model resulted in larger heritability and smaller c2  and e2  estimates 

on simulated data with a kurtotic distribution compared to the known zygosity 

model. However, for smaller kurtosis values (-0.5 < k < 1), the mean parameter 

estimates from the mixture distribution model did not differ substantially from 

that of the conventional analysis. 
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Figure 3.4: Mean difference of standardized variance component estimates 

between the mixture distribution and known zygosity models when the 

incorrect mixture proportion was assumed (true proportion = 0.5). The 

simulated parameters are: a2  = 0.50, c2  = 0.25, e2  = 0.25 and simulations are 

based on 2,000 twin pairs (1,000 MZs and 1,000 DZs) and 1,000 replicates. 

3.4.2 Analyses of TEDS Data 

Descriptive Statistics and Phenotypic Distribution: 

Descriptive statistics of the data after exclusions are presented in Table 3.2. 

Between 2,279 and 2,545 pairs for which both twins had a phenotype on any 

variable from a total of 3,582 pairs were available for analysis. The main reason 

for a considerable missing data is that not all twins were tested/interviewed at 

age 7. The age of the twins when the parents' booklet was returned, which was 
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Figure 3.5: Mean differences of standardized variance component estimates 

between the mixture distribution and known zygosity models for a given 

estimated mean kurtosis. The simulated parameters are: a2  = 0.50, c2  = 

0.25, e2  = 0.25 and simulations are based on 2,000 twin pairs (1,000 MZs and 

1,000 DZs) and 1,000 replicates. 

used as a covariate in the genetic analysis, had a mean and SD of 7.05 and 0.25, 

respectively. Although the distribution of the phenotypes appeared normal, 

the Kolmogorov-Smirnov normality test showed that the trait distribution was 

significantly different from normality for all traits [except language (MZ, DZ) 

and g (DZ)]. The skewness and kurtosis values ranged from -0.38 to 0.48 and 

-0.75 to 1.12, respectively. Note that, with these kurtosis values, the simulations 

showed that the bias in the estimate of heritability of the mixture distribution 

model was less than 0.1 for a heritability of 0.5. 
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Table 3.2: Descriptive statistics of standardized residuals of TEDS variables after adjustment for sex and age effects. 

Variables 	Zygosity N 	Mean (SD) Skewness (SE) Kurtosis (SE) Skewness of pair Kurtosis of pair 

difference (SE) 	difference (SE) 

Age 	MZ 	1823 7.05 (0.25) 

DZ 	1580 	7.06 (0.25) 

Weight (kg) MZ 1360 -0.04 (0.99) 0.45 (0.05) 0.26 (0.09) 0.21 (0.07) 3.45 (0.13) 

DZ 1185 0.05 (1.01) 0.48 (0.05) 0.35 (0.10) 0.03 (0.07) 0.74 (0.14) 

Height (cm) MZ 1337 -0.02 (0.96) 0.00 (0.05) 0.59 (0.09) -0.04 (0.07) 6.79 (0.13) 

DZ 1162 0.03 (1.04) -0.24 (0.05) 1.12 (0.10) 0.17 (0.07) 1.54 (0.14) 

TOWRE MZ 1255 -0.02 (1.02) 0.10 (0.05) -0.75 (0.10) 0.23 (0.07) 1.20 (0.14) 

DZ 1133 0.03 (0.97) 0.05 (0.05) -0.65 (0.10) 0.01 (0.07) 0.26 (0.15) 

Conceptual MZ 1290 -0.01 (1.00) -0.27 (0.05) -0.67 (0.10) 0.06 (0.07) 0.16 (0.14) 

grouping DZ 1155 0.01 (1.00) -0.34 (0.05) -0.61 (0.10) 0.02 (0.07) 0.20 (0.15) 

Similarities MZ 1281 -0.03 (1.01) 0.02 (0.05) 0.19 (0.10) -0.12 (0.07) 0.65 (0.14) 

DZ 1145 0.04 (0.98) 0.01 (0.05) 0.37 (0.10) -0.19 (0.07) 1.12 (0.15) 

Note: The Kolmogorov-Smirnov normality test showed that for most variables, both the trait distribution (except language (MZ, 
DZ) and g (DZ)) and the distribution of the pair difference (except language (MZ), and g (DZ), non verbal (DZ), TOWRE (DZ)) 
showed significant deviation from normality, a  Number of pairs for which both twins had a phenotype. 



Table 3.2: Continued. 

Variables Zygosity NaMean (SD) Skewness (SE) Kurtosis (SE) Skewness of pair Kurtosis of pair 

difference (SE) 	difference (SE) 

Vocabulary MZ 1284 -0.02 (1.00) -0.01 (0.05) -0.15 (0.10) 0.10 (0.07) 0.61 (0.14) 

DZ 1149 0.02 (1.00) 0.02 (0.05) -0.09 (0.10) -0.11 (0.07) 0.47 (0.15) 

Picture MZ 1291 -0.04 (0.98) -0.29 (0.05) -0.07 (0.10) 0.00 (0.07) 0.44 (0.14) 

completion DZ 1153 0.05 (1.02) -0.38 (0.05) 0.06 (0.10) 0.11 (0.07) 0.71 (0.15) 

g MZ 1270 -0.04 (1.00) -0.10 (0.05) -0.19 (0.10) -0.01 (0.07) 0.30 (0.14) 

DZ 1137 0.04 (1.00) -0.13 (0.05) -0.16 (0.10) -0.04 (0.07) 0.70 (0.15) 

Language MZ 1274 -0.03 (1.01) 0.01 (0.05) -0.20 (0.10) 0.07 (0.07) 0.59 (0.14) 

DZ 1141 0.03 (0.99) 0.06 (0.05) -0.09 (0.10) -0.11 (0.07) 0.58 (0.15) 

Non verbal MZ 1128 -0.03 (0.99) -0.20 (0.05) -0.31 (0.10) -0.01 (0.07) -0.10 (0.14) 

DZ 1151 0.04 (1.01) -0.28 (0.05) -0.24 (0.10) 0.06 (0.07) 0.33 (0.15) 

Note: The Kolmogorov-Smirnov normality test showed that for most variables, both the trait distribution (except language (MZ, 
DZ) and g (DZ)) and the distribution of the pair difference (except language (MZ), and g (DZ), non verbal (DZ), TOWRE (DZ)) 
showed significant deviation from normality, a  Number of pairs for which both twins had a phenotype. 



Table 3.3: Twin correlations and their standard errors after adjustment for age. 

Variables MZ - Boy MZ - Girl DZ - Boy DZ - Girl 

Weight 0.84 (0.02) 0.85 (0.02) 0.47 (0.03) 0.52 (0.03) 

Height 0.92 (0.02) 0.94 (0.02) 0.56 (0.03) 0.64 (0.03) 

TOWRE 0.85 (0.02) 0.84 (0.02) 0.51 (0.03) 0.50 (0.04) 

Conceptual Grouping 0.38 (0.04) 0.32 (0.04) 0.24 (0.04) 0.29 (0.04) 

Similarities 0.51 (0.04) 0.43 (0.04) 0.37 (0.04) 0.35 (0.04) 

Vocabulary 0.63 (0.03) 0.57 (0.04) 0.49 (0.03) 0.47 (0.04) 

Picture Completion 0.47 (0.04) 0.48 (0.04) 0.39 (0.04) 0.40 (0.04) 

g 0.68 (0.03) 0.61 (0.03) 0.49 (0.03) 0.48 (0.04) 

Language 0.67 (0.03) 0.61 (0.03) 0.50 (0.03) 0.49 (0.04) 

Non Verbal 0.45 (0.04) 0.45 (0.04) 0.39 (0.04) 0.38 (0.04) - 

Twin Correlations: 

Twin correlations for all phenotypes, after adjustment for age, are presented 

in Table 3.3. The MZ and DZ twin correlations were similar across sexes. MZ 

correlations were consistently higher than DZ correlations. Results in Table 

3.3 indicate strongly that genetic factors play a significant role in explaining 

phenotypic variance in most of the traits. 

Variance Component Estimation: 

Initially, the variance component estimation using the known zygosity model was 

performed with separate variance components for boys and girls. However, for 

most variables there was no significant difference between variance component 

estimates in boys and girls, except for weight, TOWRE, similarities and picture 

completion (results not shown). The pooled (boys and girls) estimates from the 

known zygosity and mixture distribution models are presented in Table 3.4. 
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Known Zygosity With the exception of TOWRE score for which a large 

heritability was estimated (about 0.6), the heritability estimates of other 

IQ phenotypes were small to moderate, ranging from 0.16 to 0.33. Shared 

environmental variance accounted for 19 to 37% of the phenotypic variance of IQ 

variables. Thus, most of the phenotypic variation in IQ related variables (except 

for TOWRE) was specific to individuals. 

Genetic factors constituted a large proportion of the phenotypic variation in 

weight and height. About 70 % of the total phenotypic variance in weight and 

height were attributed to genetic factors. These findings are similar to previous 

studies on heritabilities of weight (reviewed by Pietilainen et al., 2002) and 

height (reviewed by Silventoinen, 2003a). 

Mixture Distribution The heritability estimates from the mixture distribution 

were consistently larger than those from the conventional model for all variables 

(Table 3.4). The confidence intervals of the estimates of heritability from the 

two models did not overlap for most traits. In addition, with the exception 

of height, the estimate of common environmental variance was zero (or close 

to zero) for all variables. For IQ phenotypes (except TOWRE), the mean 

difference of heritability estimates from the mixture distribution compared to 

the known zygosity model was 0.40. The difference in the average estimate of 

common environment variance was 0.29. However, the sum of the proportion 

of variance due to additive genetic and common environmental effects [giving 

the repeatability, the proportion of phenotypic variance of single measurements 

due to the effects of genetic and permanent environmental factors (Falconer and 



Table 3.4: Standardized variance component estimates from the known zygosity 

and mixture distribution models (boys and girls are pooled). 

Variables 	Model a2  (95%CI) 	c2  (95%CI) 	e2  (95%CI) 

Weight 

Height 

TOWRE 

Known 

Mixture 

Known 

Mixture 

Known 

Mixture 

Conceptual- Known 

Grouping Mixture 

Similarities Known 

Mixture 

Vocabulary Known 

Mixture 

Picture- Known 

Completion Mixture 

g Known 

Mixture 

Language Known 

Mixture 

Non Verbal Known 

Mixture 

0.71 (0.63 - 0.79) 

0.96 (0.93 -  0.97) 

0.69 (0.63 -  0.76) 

0.82 (0.75 -  0.91) 

0.63 (0.55 -  0.71) 

0.88 (0.77 - 0.91) 

0.16 (0.02 -  0.30) 

0.41 (0.13 - 0.46) 

0.19 (0.06 - 0.31) 

0.59 (0.50 -  0.63) 

0.26 (0.16 -  0.36) 

0.72 (0.55 -  0.75) 

0.20 (0.08 -  0.32) 

0.61 (0.54 -  0.65) 

0.33 (0.23 -  0.43) 

0.74 (0.56 -  0.78) 

0.26 (0.16 -  0.36) 

0.71 (0.53 - 0.78) 

0.16 (0.04 -  0.29) 

0.55 (0.27 -  0.60) 

0.14 (0.06 - 0.22) 

0.00 (0.00 - 0.03) 

0.24 (0.17 - 0.31) 

0.14 (0.05 -  0.22) 

0.21 (0.12 - 0.29) 

0.01 (0.00 - 0.11) 

0.19 (0.07 -  0.30) 

0.00 (0.00 -  0.21) 

0.27 (0.18 - 0.39) 

0.00 (0.00 -  0.06) 

0.35 (0.25 -  0.43) 

0.00 (0.00 -  0.14) 

0.29 (0.19 -  0.39) 

0.00 (0.00 -  0.04) 

0.32 (0.23 - 0.41) 

0.01 (0.00 - 0.16) 

0.37 (0.28 -  0.46) 

0.04 (0.00 -  0.18) 

0.30 (0.20 -  0.40) 

0.00 (0.00 -  0.22) 

0.15 (0.14 - 0.17) 

0.04 (0.03 - 0.05) 

0.07 (0-06 -  0.07) 

0.04 (0.03 -  0.05) 

0.16 (0.15 - 0.18) 

0.11 (0.09 - 0.13) 

0.65 (0.61 -  0.70) 

0.59 (0.54 -  0.66) 

0.54 (0.50 -  0.58) 

0.41 (0.37 -  0.46) 

0.40 (0.37 - 0.43) 

0.28 (0.25 -  0.33) 

0.51 (0.47 -  0.56) 

0.39 (0.35 - 0.44) 

0.35 (0.32 -  0.38) 

0.26 (0.22 -  0.30) 

0.37 (0.34 - 0.40) 

0.26 (0.22 -  0.30) 

0.54 (0.50 - 0.58) 

0.45 (0.40 -  0.52) 

Note: Known and mixture are the known zygosity and mixture distribution 
models, respectively. 
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Mackay, 1996)] was similar between the two models (Figure 3.6). 

3.5 Discussion 

Neale (2003) has shown that a mixture distribution model can be used to analyse 

twin data when zygosity information is incomplete or unavailable with little 

bias. His simulations were from (bivariate) normal distributions, an assumption 

of the mixture distribution model. In addition, Neale (2003) only simulated a 

single set of standardized variance components (i.e. a2  = 0.6, c2  = 0. 2, e2  

0.2) for twins without zygosity information. The present study further explored 

the properties of this model for a wider range of parameters and different 

scenarios. It includes assessing the mixture distribution model when the data is 

not normally distributed by simulating platykurtic and leptokurtic distributions. 

Different (incorrect) proportions of MZ among twins were also used to weight 

the analysis in the mixture distribution for a given true proportion, to assess 

the bias introduced by misspecification of this parameter. The simulation results 

suggested that, if the normality assumption was satisfied and the sample size 

was large, then the variance component estimates from the mixture distribution 

are unbiased and accurate for analysing twin data where zygosity information is 

unavailable. However, if the heritability is small (a2  < 0.4), then the estimates 

are imprecise. 

If the distribution of the phenotypes is kurtotic then the mixture distribution 

produced biased estimates. However, this bias was small for kurtosis values in 

the range of -0.5 and 1. Specifying a wrong mixture proportion in the analysis 

had small impact, in terms of bias, on the estimates of variance components, 

unless the difference between the true and estimated proportion was very large 
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Figure 3.6: Heritability (a2  ) and repeatability (defined as the sum of a2  + c2) 

estimates of nine IQ phenotypes, height and weight of TEDS data from the 

known zygosity and mixture distribution models for boys and girls. Sex and 

age were fitted as covariate. 
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(e.g. 0.5 and 0.2). For a population survey, the estimated proportion of MZ 

among SS twins can usually be estimated accurately. For the TEDS data, the 

estimated proportion of MZ twins among SS twins using Weinberg's differential 

rule (Weinberg, 1902) was very similar to the observed proportion, 0.523 and 

0.519, respectively. 

3.5.1 Post-hoc Analyses 

The analyses of IQ phenotypes, height and weight from the TEDS data showed 

that the estimate of heritabilities from the mixture distribution were consistently 

larger than those from the conventional model. These results are inconsistent with 

those from all of the simulations and demand an explanation. For the observed 

kurtosis values of the TEDS variables (in the range of -0.75 to 1.12, see Table 

3.2), the observed differences of variance component estimates between the two 

models were considerably larger than those from simulations. Thus, the observed 

differences could not be attributed to the kurtosis of the trait distributions. 

However, a further detailed dissection of the phenotypic distributions has shown 

that the distributions of pair difference were all leptokurtic [except non verbal 

ability scores of MZ twins (Table 3.2)], even for traits where the univariate 

(single twin) distribution was close to normality. This finding was unexpected 

and implies a violation of the usual assumption of bivariate normality of twins' 

phenotypes (e.g. Huggins et al., 1998; Neale, 2003; Rijsdijk and Sham, 2002). 

To verify that kurtosis of pair difference was the cause of the observed 

discrepancy, twin data that mimic the average parameter estimates of IQ 

phenotypes (except TOWRE) from the known zygosity model were simulated 

as an example (i.e. a2  = 0.22, c2  = 0.30, e2  = 0.48 with a kurtosis of pair 

difference of 0.48). Phenotypes (yl  and y2)  were simulated for a twin pair from a 
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Table 3.5: Mean estimates (SE) from 1,000 simulated twin data sets with 

parameters that mimic the average estimates of standardized variance 

components from the TEDS data (i.e. a2  = 0.22, c2  = 0.30, e2  = 0.48). 

Models 	 a2  (SE) 	 e2  (SE) 	 e2  (SE) 

Known (normala) 0.222 (0.002) 0.297 (0.002) 0.481 (0.001) 

Mixture (normal) 0.211 (0.007) 0.306 (0.005) 0.483 (0.002) 

Known (kurtosis b) 0.257 (0.002) 0.236 (0.002) 0.507 (0.001) 

Mixture (kurtosis b) 0.581 (0.002) 0.005 (0.001) 0.413 (0.001) 

Note: Known and mixture are the known zygosity and mixture distribution 
models, respectively, a  Normally distributed twin data. b  Transformed twin 
data with a kurtosis value of pair difference of 0.48. 

normal distribution, their difference (D = Y1 - Y2) was transformed (to D*)  using 

the previously described Cornish-Fisher transformation, and finally individual 

observations were backtransformed to y = yj  x El. This transformation 

was made to keep the means and variances of the individual observations 

approximately the same whilst creating kurtosis of the pair difference. The 

results (Table 3.5) clearly showed that the variance component estimates of the 

simulated data from the mixture distribution model resembled those of the IQ 

phenotypes of the TEDS study: the average estimates for the simulated data 

were a2  = 0.58, c2  = 0.01, e2  = 0.41, whereas the estimates of the IQ phenotypes 

(except TOWRE) were a2  = 0.62, c2  = 0.01, e2  = 0.38. The discrepancy on 

variance component estimates between the normal and transformed (kurtosis) 

data using the known zygosity model (Table 3.5) was a direct result of the 

transformation. 

To assess further the effects of kurtosis of pair difference on the mixture 
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distribution model, another simulation was carried out by simulating different 

values of kurtosis on pair difference. The results showed that kurtosis on pair 

difference had considerable effect on heritability estimations using the mixture 

distribution model (Figure 3.7). It can be seen clearly from the figure that the 

mixture distribution produced biased estimates even for small kurtosis values 

of the pair difference (-0.5 < k < 0.5). For a leptokurtic distribution of pair 

difference, the mixture distribution overestimated the heritability compared to 

known zygosity models. Even for a small positive kurtosis value (k < 0.5), the 

overestimation was not trivial (i.e. about 40%). On the other hand, the mixture 

distribution underestimated heritability if the distribution of pair difference was 

platykurtic. The bias produced by this type distribution was even larger than 

the bias from a leptokurtic distribution. These results are consistent with the 

observation in Chapter 2 that the information to separate the two mixtures from 

the mixture distribution model comes from the difference in the squared variance 

and kurtosis. Hence, if the pair difference within zygosity class is kurtotic, the 

mixture distribution will produce biased estimates because the model assumes 

that the only source of kurtosis is the mixture of two normal distributions. 

For the known zygosity model, the differences between the variance component 

estimates from the normal and transformed data are a direct result of the 

transformation of the data which changed the MZ and DZ correlations (results 

not shown), and merely show that the correlations depend on the scale of the 

observations. 

Are these results particular to the TEDS data? To explore this possibility, a 

number of IQ variables from an independent smaller sample of 272 MZ and 191 

SS DZ twins with known zygosity and an average age of 16 years old from the 

ongoing Brisbane Memory, Attention, and Problem-Solving (MAPS) twin study 

were analysed (Luciano et al., 2003; Wright et al., 2001). Eight IQ measures, 



-0.5 	0.0 	0.5 	1.0 	1.5 

Est. Mean Kurtosi s of Pair Difference 

Figure 3.7: Mean differences of heritability estimates between the mixture 

distribution and known zygosity models for a given estimated mean kurtosis of 

the pair difference. The simulated parameters are: a2  = 0.50, c2  = 0.25, e2  = 

0.25 and simulations are based on 2,000 twin pairs (1,000 MZs and 1,000 DZs) 

and 1,000 replicates. A is the difference between the mixture distribution and 

known zygosity models for transformed data with specific kurtosis; B is the 

difference of the known zygosity model between transformed data with specific 

kurtosis and normally distributed data. 
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namely information, arithmetic, vocabulary, verbal IQ, spatial, object assembly, 

performance IQ and full scale IQ assessed with the Multidimensional Aptitude 

Battery II (MAB-IT) (Jackson, 1998) were analysed using the known zygosity and 

mixture distribution model. Individuals with more than 3 standard deviations 

from the mean were excluded from the analysis, and sex and age were fitted as 

fixed effects. As with the TEDS data, an ACE model was fitted. The kurtosis 

of the pair difference of variables from the MAPS study were not different from 

zero for most traits but the SE was relatively large, ranging from 0.29 to 0.35. 

Heritability estimates ranged from 0.39 to 0.68 for the known zygosity analysis, 

and 0.01 to 0.85 for the mixture distribution model analysis. For six out of the 

eight traits, the estimate of the heritability from the mixture distribution model 

was larger than the estimate from the known zygosity model, consistent with an 

observed leptokurtic distribution of the pair difference, averaged over MZ and 

DZ pairs. For the other two traits, the lower estimate of the heritability from 

the mixture distribution model was consistent with the observed platykurtic 

distribution of the pair difference. For these traits, the average kurtosis of 

the pair difference from MZ and DZ pairs was -0.36 and -0.09, respectively. 

Although both the estimates of the heritability and their standard errors are 

larger in the MAPS study, making exact comparisons difficult, the results are 

qualitatively similar to those from the TEDS study, in that the difference in 

parameter estimates between the two models are consistent with the observed 

kurtosis of the pair difference. 

What could be the cause of the observed kurtosis on the pair difference, and what 

are the consequences for twin studies in general? Kurtosis on the pair difference 

when there is no kurtosis in the population could be due to a 'known' zygosity 

group itself being a mixture with respect to within-family variances. This could 

be the case for example if MZ are 'contaminated' with DZ pairs, and vice versa. 
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This is not likely to be an explanation for the data analysed, because the zygosity 

protocol is well-established and ambiguities about zygosity were resolved by DNA 

typing. For a2  = 0.4, c2  = 0.2, e2  0.4 and a bivariate normal distribution within 

zygosity group, a 5% error rate would create a kurtosis value of the pair difference 

of 0.034 and 0.016 within assigned MZ and DZ groups, respectively (Benyamin 

et al., 2005). These predicted values are below what was observed from the 

TEDS data (Table 3.2). Heterogeneity of within-family variance could be due to 

many factors, including heterogeneity of environmental variance (both MZ and 

DZ) and heterogeneity of within-family genetic variance (DZ). One speculative 

biological cause of heterogeneity of variance for MZ pairs is that such pairs vary 

in the amount of genome-wide methylation or placentation effects that are shared. 

The way in which data are collected or scored can also cause the observed 

kurtosis. For example, sum scores collected from questionnaires may not be 

multivariate normally distributed. For the TEDS data, the pair difference 

was extremely kurtotic for height and weight, traits that were reported by 

parents, and a histogram of the pair difference showed a huge peak at zero, 

both for MZ and DZ (results not shown). This suggests that the parents may 

report the average of their twins' height and weight correctly but not their 

difference. If this reporting bias is stronger in MZ than in DZ then parameter 

estimates will also be biased using the standard model with known zygosity. 

Although this may be an explanation for the height and weight data from 

the TEDS study, it is unlikely to be an explanation for the IQ phenotypes, 

which were measured on each child individually and separately using a telephone 

interview and material sent by post, presumably independently of parental input. 

Although twin researchers may check normality assumptions of the data before 

embarking on a maximum likelihood analysis that assumes normality, it is 
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unusual to check for the assumption of bivariate normality in zygosity groups. 

The results from this study suggest that while the known zygosity model is quite 

robust to the violation of bivariate normality assumption, a re-examination of 

bivariate normality for existing data may be prudent. For unknown zygosity 

data, consistency of the estimates of variance components with those from 

the known zygosity pairs should be checked. Finally, it is suggested that the 

possibility of extensive heterogeneity of within-family variance needs further 

attention. 
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Appendix 3. The Expected Kurtosis Value of Transformed Data 

for Given c 

Let x '-i  N(O, 1). The expected kurtosis value of the transformed variate y for 

given c is derived from the moments of y, 

C 
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Following Kendall and Stuart (1947), the expected value of 2rth  moment of the 

normal distribution is: 

E(x2r) = 2ñ 2r E(x2r+l) = O,r > 1; E(x2) = a2; E(x4) = 3(a2)2  2rr! 

E(x6) = 15(0,2)3 , E(x8 ) = 105(a2)4, E(x'°) = 945(a2)5; E(x'2) = 10395(a2)6 



The expected value of y, y2  and y4  are therefore: 
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Then, the expected kurtosis of y is: 
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4 A Mixture Distribution Model to Estimate 

Variance Components from Twins of Unknown 

Zygosity: Multiple Traits 

Abstract 

A mixture distribution model was shown to provide reliable genetic and 

environmental variance component estimates from twin data of unknown 

zygosity provided that the data follow a bivariate normal distribution (Chapter 

3). However, the standard error of the estimates are still larger than the 

estimates from a conventional method, where zygosity of the twins is known. 

One suggestion of a way to decrease the standard error of the estimates is 

to analyse multiple traits simultaneously in multivariate analysis. Additional 

phenotypes may provide additional zygosity classification as well as increase 

the effective sample size. Using computer simulations, this chapter assesses 

the precision of a multivariate mixture distribution model compared to a 

univariate model in analysing twins of unknown zygosity. The results show 

that a multivariate analysis reduces the standard error of variance component 

estimates. From the pattern of decreasing standard error of variance component 

estimates with the increase of number of traits analysed, it is suggested 

that if more than approximately 10 traits are analysed simultaneously, the 

mixture distribution model may provide variance component estimates that 

are comparable to conventional analysis of known zygosity. This study has 

opened the possibility of performing genetic analysis from large population based 

samples, where twin pairs can be identified but their zygosity is unknown. 
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4.1 Introduction 

A large number of twins can be identified from population based surveys 

(Benyamin et al., 2005; Scarr-Salapatek, 1971; Webbink et al., 2006). Since 

genetic studies may not be the purpose of such surveys, zygosity of the twins are 

usually not available. Statistical methods to decompose phenotypic variance of a 

trait into genetic and environmental components that do not rely on zygosity are 

therefore needed. A mixture distribution model has been proposed to address 

this need (Neale, 2003; Benyamin et al., 2005; Benyamin et al., 2006). 

In Chapters 2 and 3, the mixture distribution model was shown to be reliable 

in partitioning the phenotypic variance of twins of unknown zygosity into 

genetic and environmental components. Computer simulations (Chapter 3) have 

shown that for a reasonably large sample size, unless the (bivariate) normality 

assumption was violated, the mixture distributed provides unbiased variance 

components estimates. Those studies were concerned only with single traits 

(univariate analysis) and the standard error of the estimates from the mixture 

distribution was shown to be larger than that of the conventional (known 

zygosity) model, especially for small to moderate heritability. It has been 

suggested that by adding more traits in the analysis (multivariate analysis), 

the additional phenotypes may provide additional zygosity classification 

(Neale, 2003) and thereby lowering the standard error of the estimates. However, 

the amount gained by adding more traits in the analysis has not been evaluated. 

The aim of this chapter is to assess the precision of the multivariate mixture 

distribution model compared with that of a univariate model in analysing twin 

of unknown zygosity using computer simulations. 
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4.2 Simulation 

The simulation protocol is an extension of that presented in Chapter 3. By 

assuming a standard ACE model (additive genetic (A), common environmental 

(C) and specific environmental (E) effects) of family resemblance, 2,000 twin 

pairs (equal proportion of MZ and DZ) were simulated from a multivariate 

normal distribution. MZ pairs were simulated as two individuals sharing the 

same additive genetic and common environmental effects, but different specific 

environmental effects. For DZ pairs, the additive genetic effect was simulated by 

drawing a random value for the first individuals. The additive genetic effect of 

the second DZ individuals was calculated as half of the additive genetic effect 

of the first DZ individual plus a Mendelian segregation effect. The Mendelian 

segregation effect had a variance of 3/4 of the additive genetic effect, so that 

the total additive genetic variance of the second DZ individual is equal to 

additive genetic variance. The shared 1/2 additive genetic effect gives an average 

correlation of 0.5 as defined by the DZ pair relationship. As with MZ pairs, the 

same common environmental effect was also shared between individuals in a DZ 

pairs. 

A wide range of heritabilities (a2) were simulated (i.e., 0.1, 0.3, 0.5, 0.7 and 

0.9) and the standardised common environmental variance (c2) was fitted as 

0.2, except for the heritability of 0.9, where c2  is 0.05. One, two and five traits 

were simulated by assuming no correlation between traits. In addition, to 

assess whether the degree of correlation between traits has an effect on variance 

component estimation, a range of different correlations between traits was also 

simulated assuming equal phenotypic (rn ), genetic (rg ), common environmental 

(re ) and specific environmental (Te) correlations, with values of 0.2, 0.5 and 0.9. 

No sex effects or other fixed effects were simulated. A rotation method (Barr 
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and Slezak, 1972) was used to generate multivariate normal random vectors with 

a specified variance-covariance matrix. 

As in Chapter 3, all simulated datasets were simultaneously analysed using 

the known zygosity (conventional) and mixture distribution models using the 

statistical package Mx (Neale et al., 2002) and all simulations were replicated 

1,000 times. 

4.3 Results 

4.3.1 Uncorrelated Traits 

From the simulation, it is shown that by performing a multivariate analysis, 

the coefficient of variation of heritability estimates [the standard deviation of 

the estimates divided by the simulated heritability (CV)] from the mixture 

distribution model decreased as the number traits analysed increased (Figure 

4.1). The decrease in CV was greater if the heritability was low to moderate and 

became almost non-existent if the heritability was greater than 0.5. For example, 

for heritability of 0.1, the CV decreased from 1.71 in a univariate analysis to 

1.03 in a multivariate analysis with 5 traits. On the other hand, there was no 

difference in the CV of heritability estimates between univariate and multivariate 

analyses from the known zygosity model, except a small difference for very small 

heritability (a2  < 0.2) (Figure 4.1). For both models, the CV decreased as the 

heritability increased. 

The standard deviation of the difference between the heritability estimates 

from the mixture distribution and known zygosity models standardised by the 

heritability (CV difference) is shown in Figure 4.2. Similar to the pattern of 
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the CV of heritability estimates from the mixture distribution model, the CV 

of the difference of heritability estimates also decreased as the number of traits 

increased. Also, the decrease is larger when the heritability is small to moderate. 

Known Zygosity 
	

Mixture Distribution 

1 trait 
2 traits 
5 traits 

1 trait 
2 traits 
5 traits 

 

0.0 0.2 0.4 0.6 0.8 1.0 
	

0.0 0.2 0.4 0.6 0.8 1.0 

Simulated Heritability 
	

Simulated Heritability 

Figure 4.1: Coefficient of variation (CV) of heritability estimates from the 

known zygosity (left) and mixture distribution (right) models for given 

number of traits. The c2  component is constant, i.e., 0.2, except for the 

heritability of 0.9, where c2  = 0.05 and based on 2,000 twin pairs. 

75 



191 

LO 

LO 
0 

0.0 	0.2 	0.4 	0.6 	0.8 	1.0 

Simulated Heritability 

Figure 4.2: Standard deviation of the difference between the heritability 

estimates from the mixture distribution and known zygosity models 

standardised by the heritability (CV difference) for given number of traits. 

The c2  component is constant (0.2), except for the heritability of 0.9, when 

it is 0.05. Results are from 1,000 replicate samples of 2,000 twin pairs. 
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4.3.2 Correlated Traits 

Additional simulations for correlated traits showed that the correlation between 

traits did not have a large effect on variance estimation (Table 4.1). That is, the 

mean and variance of component estimates appeared to be independent of the 

correlation between traits. 

For both correlated and uncorrelated traits, while multivariate analysis decreases 

CV, the mean estimate of variance components are slightly biased (Table 4.1). 

For multivariate analysis with 5 traits, the mean estimate of a2  from the mixture 

distribution model was 0.48 compared to the true value of 0.50. The bias is also 

observed in the estimates of c2  and e2. For univariate analysis, a small bias was 

also reported by Neale (2003). 

4.4 Discussion 

It has been shown in this chapter that multivariate analysis decreased the 

variability (hence, the standard error) of the heritability estimates from the 

mixture distribution model. The more traits analysed simultaneously, the 

smaller the variability of the heritability estimates from the mixture distribution 

model. From the pattern observed in Figure 4.1, it is expected that if more than 

10 traits were analysed simultaneously, then the mixture distribution would be 

as good as the known zygosity model with similar sample size. 

Another interesting result from this study is that the multivariate mixture model 

performs well regardless of the magnitude of correlation between traits. However, 

it should be noted that the results were based on the same phenotypic, genetic, 

common and specific environmental correlations between traits. The behaviour 
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Table 4.1: Parameter estimates and SD in parenthesis from the known zygosity and mixture distribution models from multivariate 

analysis (5 traits) for given correlation coefficients. The simulated standardised variance components were a2  = 0.50; c2  

0.20; e2  = 0.30. Results were based on 1,000 replicates of 2,000 twin pairs. 

Simulated parameters 	 r = 0 	 r = 0.2 
	

r = 0.5 
	

r = 0.9 

Known 	Mixture 	Known 	Mixture 	Known 	Mixture 	Known 	Mixture 

a2  = 0.50 	 0.502 0.481 0.500 0.480 0.499 0.478 0.505 0.485 

(0.053) (0.109) (0.053) (0.110) (0.053) (0.106) (0.053) (0.108) 

= 0.20 	 0.198 0.214 0.200 0.215 0.201 0.217 0.194 0.210 

(0.049) (0.087) (0.049) (0.087) (0.049) (0.083) (0.050) (0.086) 

= 0.30 	 0.300 0.305 0.300 0.305 0.300 0.305 0.301 0.305 

(0.015) (0.028) (0.015) (0.029) (0.015) (0.028) (0.015) (0.028) 

Note: r is the correlation coefficient between traits (identical values of phenotypic (rn), genetic (r 9 ), common environmental (r e) 
and specific environmental (r e ) correlations). 



of the model for traits with different correlations requires further research. 

The simulations assumed a multivariate normal distribution for both twin and 

trait values. For a single trait, the robustness of the mixture model against a 

violation of normality has been discussed in Chapter 2. It was shown in Chapter 

2 that while the model is quite robust to the violation of normality assumption 

of the trait values, it is very sensitive to the bivariate normality assumption, i.e. 

the normality of twin pair difference. For multivariate analysis, although it was 

not evaluated in this chapter, similar results might be expected. This is because 

multivariate analysis is only an extension of univariate analysis in that if the 

distribution of the pair difference for one trait is kurtotic, then across traits 

pair differences may also be kurtotic. However, further research is required to 

investigate the effect of the violation of bivariate normality assumption on the 

estimates from multivariate analysis. 

In a univariate mixture model (Chapter 2), it was shown that specifying the 

wrong proportion of MZ twins among same-sex twins in the model has a small 

effect on the estimates of heritability and error variance, but a moderate effect 

on the estimate of common environmental variance. Its effect on variance 

components in a multivariate analysis is expected to be smaller. This rationale 

is based on the notion that additional traits provide additional zygosity 

classification (Neale, 2003). However, the relationship between the increase 

in precision of zygosity assignment and the number of phenotypes analysed 

simultaneously, was not investigated in this chapter. 

The availability of a mixture distribution model to analyse data on twins of 

unknown zygosity has opened the possibility of performing genetic analysis from 

large population based samples. Twins can be identified from large population 
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databases with a minimum of required information (date of birth, sex and 

school or home address). For example, using a name identifier, date of birth, 

school, grade and year of survey, Webbink et al. (2006) successfully identified 

almost 3,000 twin pairs from about 300,000 pupils registered in a longitudinal 

survey in the Netherlands. With the availability of a mixture distribution 

method, these twins can be analysed to answer some of the questions about 

the genetic and environmental sources of variation of various different phenotypes. 
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5 A Multivariate Mixed Linear Model to Estimate 

Co(variance) Components from Twins with 
Known Zygosity: Understanding the Underlying 

Genetic and Environmental Aetiology of the 

Metabolic Syndrome 

Abstract 

The cluster of obesity, insulin resistance, dyslipidaemia and hypertension, called 

the metabolic syndrome, has been suggested as a risk factor for cardiovascular 

disease and type 2 diabetes. The aim of the present study is to quantify genetic 

and environmental (co)variation of endophenotypes of this cluster in a general 

population of twin pairs. Data on 13 endophenotypes associated with the 

metabolic syndrome (grouped into obesity, insulin, lipids and blood pressure 

related endophenotypes) from 756 adult twin pairs of the GEMINAKAR Study 

of the Danish Twin Registry were analysed by performing univariate and 

multivariate genetic analyses. All endophenotypes showed moderate to high 

heritability (0.34-0.73) and no significant common environmental variance, 

except for fasting glucose. In general, genetic, environmental and phenotypic 

correlations between the endophenotypes were strong only within the group, 

but weak to moderate between groups. However, moderate genetic and specific 

individual environmental correlations between fasting insulin and obesity related 

endophenotypes and a moderate specific individual environmental correlation 

between fasting insulin with lipids endophenotypes indicated that some common 

genetic or specific individual environmental background might be shared 

between those components. It is demonstrated that in a general population, 

the endophenotypes associated with the metabolic syndrome apparently do not 

share a substantial common genetic or familial environmental background. 



5.1 Introduction 

The metabolic syndrome or insulin resistance syndrome is characterised by 

clustering of a group of symptoms related to insulin resistance, impaired 

glucose tolerance/ diabetes, obesity, hypertension and dyslipidaemia (raised 

triglyceride level and low high-density lipoprotein) (Eckel et al., 2005; Roche 

et al., 2005; Shaw et al., 2005). The clustering of these symptoms has been 

suggested as a better predictor for type 2 diabetes (Laaksonen et al., 2002) 

and cardiovascular disease (Girman et al., 2005; Sundstrom et al., 2006) than 

expected from its individual components. Currently, the prevalence of this 

syndrome is high, not only in developed countries but also in developing 

countries (Cameron et al., 2004). In the United States, about 25% of the adult 

population have been identified as having the metabolic syndrome (Ford and 

Giles, 2003). 

Growing evidence suggests that variation in the individual components of the 

metabolic syndrome is in part due to genetic effects. A wide range of heritabilities 

(mostly moderate to high) were estimated for obesity traits (mean: 0.55; range: 

0.37 to 0.80) (Freeman et al., 2002; Li et al., 2006; Lin et al., 2005; Poulsen 

et al., 2001; Schousboe et al., 2003a); insulin related traits (mean: 0.38; range: 

0.08 to 0.75) (Freeman et al., 2002; Henkin et al., 2003; Li et al., 2006; Lin 

et al., 2005; Samaras et al., 1999; Schousboe et al., 2003a); blood pressure 

(mean: 0.41; range: 0.16 to 0.76) (Freeman et al., 2002; Li et al., 2006; Lin 

et al., 2005; Martin et al., 2003; Poulsen et al., 2001) and lipid traits (mean: 0.46; 

range: 0.20 to 0.70) (Freeman et al., 2002; Li et al., 2006; Lin et al., 2005; Martin 

et al., 2003; Poulsen et al., 2001). However, the underlying mechanism of 

the clustering of these characteristics in an individual remains unclear (Hong 

et al., 1997). 



Correlations between insulin related endophenotypes and obesity endophenotypes 

have been previously estimated to be moderate or high (Nelson 

et al., 2000; Samaras et al., 1999; Tregouet et al., 1999), while correlations 

between other metabolic syndrome endophenotypes have been found to 

be weak or moderate (Martin et al., 2003; Samaras et al., 1999; Tregouet 

et al., 1999; Rainwater et al., 1997; Perusse et al., 1997). These correlations have 

surprisingly enough often been interpreted as strong evidence for a common 

underlying factor underlying the metabolic syndrome. 

In a joint statement from the American Diabetes Association and the European 

Association for the Study of Diabetes, Kahn et al. (2005) raised several 

provocative questions, including whether there is a metabolic syndrome. This 

question was raised due to the findings that correlations between the metabolic 

syndrome endophenotypes were weak to moderate. Also, factor analyses have 

suggested that more than one pathophysiological process underlies the syndrome, 

where more than one-third of the total variance in the clustering of the metabolic 

syndrome components was unexplained by latent factors identified from factor 

analyses (Kahn et al., 2005). 

Factor analysis, a data reduction method that explains a large set of observed 

variables by a smaller set of latent factors, has been widely used to understand 

the underlying factors of the clustering of the metabolic syndrome components, 

but its application and interpretation is often problematic due to the subjective 

nature of this method (Kahn et al., 2005; Lawlor et al., 2004). Two to four latent 

factors underlying the metabolic syndrome cluster have been reported, with 

these factors accounting for less than two-thirds of the total variance observed 

in the cluster (Austin et al., 2004; Edwards et al., 1994; Kahn et al., 2005; Lin 



et al., 2005; North et al., 2003). Some of the latent factors identified are body 

mass/fat distribution, insulin/glucose, lipids and hypertension. In one study 

(Novak et al., 2003), these factors were highly correlated, while in another, they 

were uncorrelated (Edwards et al., 1997). 

As an alternative method, multivariate genetic analysis may provide a 

complete and objective description of the underlying genetic and environmental 

architecture of the relationship between traits. In addition to partitioning the 

phenotypic variance into genetic and environmental components, the phenotypic 

covariance between the traits is partitioned in similar fashion. 

Two approaches have been proposed for estimating the genetic and environmental 

variations of the metabolic syndrome and its components. 	First, the 

phenotypes related to the syndrome were treated as continuous traits (Freeman 

et al., 2002; Hong et al., 1997; Maison et al., 2001; North et al., 2003; Samaras 

et al., 1999). Second, the phenotypes related to the metabolic syndrome were 

dichotomised into having and not having metabolic syndrome based on one of 

the formal definitions proposed. For example, Lin et al. (2005) estimated the 

heritability of the components of the metabolic syndrome as dichotomised traits 

based on the National Cholesterol Education Program Adult Treatment Panel 

III (NCEP/ATPIII) definition. While the latter approach might provide a direct 

insight into the genetic and environmental aetiology underlying the metabolic 

syndrome in the affected individuals, the standard errors of the estimates (e.g. 

heritability) were higher than those obtained from the former approach (Lin 

et al., 2005). In addition, this approach is dependent on subjective clinical 

criteria. 

An alternative to studying dichotomous traits is to study the underlying 



phenotypes (called endophenotypes or intermediate traits). Endophenotypes 

are continuous traits and thus overcome the problem of case definition. The 

aetiology may be genetically complex, but it will be less complex than that of a 

clinical endpoint (Dick et al., 2006; Hasler et al., 2006; Flordellis, 2005). This 

approach is preferable as it can provide a complete description of the underlying 

genetic and environmental aetiology of the investigated traits. 

Phenotypic data on 13 endophenotypes associated with the metabolic syndrome 

from 756 adult twin pairs of the GEMINAKAR Study of the Danish 

Twin Registry were analysed in order to elucidate the underlying genetic 

and environmental relationships between these endophenotypes in general 

populations. 

5.2 Subjects and Methods 

5.2.1 Study Subjects 

The data analysed in the present study were part of the GEMINAKAR Study. 

The study is a nation-wide Danish project investigating the genetic epidemiology 

of a wide variety of phenotypes among Danish twins, including endophenotypes 

of the metabolic syndrome (Schousboe et al., 2003a; Schousboe et al., 2004). 

The twins were recruited from two cohorts of the nation-wide, population-based 

Danish Twin Registry. Cohort I covers the birth cohorts 1931-1952, while cohort 

II covers the birth cohorts 1953-1982. Invitations to take part in a full day 

clinical investigation were sent to 2585 randomly chosen twin pairs who fulfilled 

the criteria that at least one twin should live within 100 km from one of the 

two clinical investigation sites (Odense and Copenhagen) and the pair should 

not take part in other studies at the same time. Cohort II was furthermore 
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chosen based on a previous self report of being healthy. The invitation contained 

detailed information about the study and its exclusion criteria (i.e. known 

diabetes or cardiovascular disease, conditions making a progressive maximal 

bicycle test impossible, pregnancy, and breast feeding). A reply coupon was 

enclosed for the twins to give information about their present health status and 

to either consent or decline telephone contact. If one twin partner in a pair did 

not respond or was not willing to participate, the pair as such was excluded. In 

1098 complete twin pairs (42%) both were willing and able to participate. 

A stratified sample of 756 twin pairs underwent an extensive full day clinical 

examination of a variety of phenotypes. The main focus was on phenotypes 

related to insulin resistance, obesity, and cardiovascular risk factors. The 

population included 311 moriozygotic (MZ) twin pairs, 445 dizygotic (DZ) 

twin pairs [314 same-sex (SS) twin pairs and 131 opposite-sex (OS) twin pairs] 

with a mean age of 38 years (range 18 to 67 years old). The examinations 

were running in parallel at The Danish Twin Registry in Odense and at The 

Institute of Preventive Medicine in Copenhagen from 1997 to 2000. The twins 

in a pair were examined on the same day. DNA-based microsatellite markers 

with the PE Applied Biosystems AmpFISTR Profiler Plus Kit were used to 

determine zygosity of the twins. The study was approved by all the Danish 

regional scientific-ethical committees, the Danish Data Protections Agency and 

conducted according to the principles of the Helsinki Declaration. 

5.2.2 Phenotypic Studies 

In this study, the endophenotypes were grouped into four different groups, i.e. 

obesity related endophenotypes, insulin related endophenotypes, blood pressure 

and lipid endophenotypes. Endophenotypes were grouped based on clear 



physiological relationships and supported by the earlier factor analyses (Novak 

et al., 2003; Edwards et al., 1997). Obesity was indicated by body mass index 

(BMI) and waist circumference (WAIST). Insulin related endophenotypes were 

represented by fasting, 30 and 120 minutes glucose (GLUO, GLU30, GLU120) 

and insulin (INSO, 1N530, INS120) levels. Blood pressure included systolic 

(SBP) and diastolic blood pressure (DBP). Finally, the concentration of high 

(HDL), low (LDL) density lipoproteins and triglycerides (TG) were measured 

and are representative of lipid endophenotypes. 

BMI was calculated as weight (kg) divided by square of height (m), where weight 

was measured using a standing beam scale to the nearest 0.1 kg and height 

was measured using a vertical scale with a horizontal moving headboard to the 

nearest centimetre. The measure (cm) at midway between the lowest rib and 

iliac crest was defined as waist circumference (Schousboe et al., 2004). A WHO-

standard oral glucose tolerance test was carried out after 10 - 12 hour overnight 

fast. Blood was taken before oral glucose ingestion, 30 and 120 minutes later, 

which was then analysed using the glucose dehydrogenase oxidation method. 

Then, a two site, two step, time-resolved immunofluorometric assay was used 

to measure serum insulin concentration (Schousboe et al., 2003a). Cholesterol, 

HDL and TG were measured on fasting blood samples by a colorimetric method 

(VITROS, Johnson & Johnson). LDL was calculated (F-formula) by subtracting 

HDL and (0.45 x TG) from total cholesterol. Systolic and diastolic blood 

pressures were measured after 30 minutes rest using a conventional mercury 

sphygmomanometer. Measurements were taken three times and the mean was 

used for analysis. 



5.2.3 Statistical Analyses 

Descriptive statistics of the data were explored using SPSS version 12.0.2 for 

Windows (SPSS Inc., 1989 - 2003) to examine trait distributions (Table 5.1). 

For endophenotypes showing a non-normal distribution, including BMI, GLUO, 

GLU120, INSO, 1NS30, INS120, HDL, and TG, a 100 x natural logarithm 

transformation was carried out to make the trait distribution (near) normal, 

which is an assumption in a maximum likelihood method. To test for the effects 

of sex and zygosity on the endophenotypes related to the metabolic syndrome, 

a general linear model was fitted. Twin correlations were calculated after 

adjustment for age and sex effects. 

By comparing the resemblance of MZ twin pairs to that of DZ twin pairs, a 

twin design allows the phenotypic variance of phenotypes to be partitioned 

into underlying additive genetic variance (A), common environmental variance 

shared by a twin pair (C) and environmental variance specific to individuals 

(E) (ACE model). The analysis assumes that both type of twins share the same 

degree of common environmental experiences (the so-called common environment 

assumption) and that the genetic effects on a trait are additive. An ACE model 

was selected since MZ twin correlations were generally less than twice that of DZ 

correlations (Table 5.2), which suggest that there is no appreciable dominance 

or epistatic genetic effect. 

Univariate and multivariate genetic analyses were performed in this study. 

Univariate genetic analysis estimates the genetic and environmental variance 

components of each trait independently (ignoring the dependency between 

traits). 	On the other hand, multivariate genetic analysis accounts for 

dependency between traits by partitioning the phenotypic covariances between 



these in addition to partitioning their variances. Thus, multivariate genetic 

analysis estimates the proportion of phenotypic variance of individual traits due 

to genetic and environmental variances as well as the genetic and environmental 

correlations between traits. Variance component estimates from univariate 

analysis are still needed for comparison. 

The partition of (co)variance components were estimated mainly by residual 

maximum likelihood (REML), fitting a mixed linear model (Visscher et al., 2004) 

using the ASReml package (Gilmour et al., 2002). The REML method takes 

into account that fixed effects or covariates are fitted when estimating the 

(co)variance components. If the analysis contains few such effects, the estimates 

are very similar to an analysis using maximum likelihood, as implemented in, 

for example, Mx (Neale et al., 2002). This was verified for univariate analyses 

and multivariate analyses (results not shown). Variation due to age and sex was 

removed by including these as fixed effects in the models. 

By including DZ-OS twins in the analyses, the possibility of sex-specific genes 

was tested for all endophenotypes in the univariate analyses. This was achieved 

by testing whether the coefficient of additive genetic covariance (CovA) between 

males and females for DZ-OS twin pairs was less than that of DZ-SS (i.e. 0.5), 

while the variance components in males and females are still allowed to be 

different. This test is equivalent to testing whether the genetic correlation 

between males and females for a particular trait deviates from unity. The 

log-likelihoods between the two models (OS CovA = 0.5 (H0) vs OS CovA < 

0.5 (H1)) were compared. In addition, the heterogeneity of variance components 

across sexes was tested in univariate analyses for all endophenotypes by allowing 

the variance components to be different in males and females. Both of the tests 

for sex-specific genes and heterogeneity of variance components were performed 



simultaneously using the statistical package Mx (Neale et al., 2002). 

5.3 Results 

5.3.1 Descriptive Statistics 

Descriptive statistics of the endophenotypes related to the metabolic syndrome 

are presented in Table 5.1. There were no age differences (P-value < 0.05) across 

sexes and zygosity groups. No significance differences among zygosity groups 

were observed for all endophenotypes. However, across sexes, mean differences 

(P-value < 0.05) were observed for most endophenotypes, except for LDL, INSO 

and INS30. Therefore, in the variance components analyses, the endophenotypes 

were adjusted for the effect of sex and heterogeneity of variance across sexes was 

modelled in the univariate analyses. 

Table 5.2 shows that for all endophenotypes (except for GLUO), MZ correlations 

were consistently larger than DZ correlations, suggesting that genetic 

factors contributed to the phenotypic variation of the metabolic syndrome 

endophenotypes. Indeed, the results of statistical genetic modelling (described in 

the next sections) confirmed that a significant part of the phenotypic variation 

of most endophentypes was due to genetic factors. Furthermore, the pattern 

of MZ and DZ correlations, in which MZ correlations are generally less than 

twice DZ correlations, indicated that an ACE model is an appropriate model to 

explain the phenotypic variations of the metabolic syndrome endophenotypes. 
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Table 5.1: Mean (SD) and range of the metabolic syndrome endophenotypes by sex and zygosity. 

Endophenotypes 

Male 

Sex 

Female MZ 

Zygosity 

DZ-SS DZ-OS 

All Range 

No. Subjects (range) 702-729 753-783 603-622 602-628 251-262 1465-1512 

Age (year) 38.0 (11.1) 37.5 (10.7) 37.7 (11.0) 37.9 (10.5) 37.7 (11.5) 37.8 (10.9) 18-67 

Body Mass Index (BMI) (kg/m2 ) 24.9 (3.1) 23.9 (3.8) 24.5 (3.4) 24.4 (3.6) 24.4 (3.4) 24.4 (3.5) 16.1-43.7 

WAIST Circumference (cm) 89.3 (9.0) 78.6 (9.6) 83.8 (10.6) 83.7 (11.0) 84.0 (10.4) 83.8 (10.7) 58.0-122.0 

Fasting Glucose (GLUO) (rnrnol/l) 4.9 (0.6) 4.7 (0.5) 4.8 (0.6) 4.8 (0.5) 4.8 (0.6) 4.8 (0.6) 2.7-13.0 

Fasting Insulin (INSO) (prnol/1) 36.3 (19.6) 38.2 (19.4) 37.6 (18.5) 36.7 (19.7) 37.6 (21.4) 37.2 (19.5) 6.0-182.0 

30 Minutes Glucose (GLU30) (mrnol/l) 8.7 (1.6) 8.3 (1.5) 8.4 (1.6) 8.5 (1.5) 8.5 (1.7) 8.5 (1.6) 3.6-18.7 

30 Minutes Insulin (INS30) (prnol/l) 301.2 (193.0) 320.8 (180.8) 308.6 (163.0) 311.8 (203.9) 316.0 (198.5) 311.2 (187.0) 36.0-1741.0 

120 Minutes Glucose (GLUC120) (mrnol/l) 5.9 (1.6) 6.4 (1.3) 6.3 (1.6) 6.1 (1.3) 6.1 (1.3) 6.2 (1.4) 2.5-23.6 

120 Minutes Insulin (INS120) (prnol/l) 143.2 (143.4) 192.1 (125.9) 173.7 (143.1) 159.4 (125.3) 176.2 (146.8) 168.3 (136.9) 8.0-1992.0 

Systolic Blood Pressure (SBP) (mmHg) 120.4 (14.0) 113.6 (13.6) 116.6 (14.7) 117.4 (14.4) 116.2 (12.6) 116.9 (14.2) 78.0-204.0 

Diastolic Blood Pressure (DBP) (mmHg) 70.1 (10.5) 67.2 (10.1) 68.7 (10.8) 68.1 (10.3) 69.5 (9.6) 68.6 (10.4) 42.7-112.0 

High Density Lipoprotein (HDL) (rnmol/l) 1.4 (0.4) 1.6 (0.5) 1.5 (0.5) 1.5 (0.5) 1.6 (0.3) 1.5 (0.5) 0.4-5.4 

Low Density Lipoprotein (LDL) (mrnol/l) 3.3 (1.1) 3.2 (1.1) 3.2 (1.1) 3.3 (1.1) 3.4 (1.0) 3.3 (1.1) -2.3-7.4 

Triglyceride (rnmol/l) 1.4 (0.8) 1.2 (0.7) 1.3 (0.7) 1.3 (0.6) 1.4 (1.0) 1.3 (0.8) 0.2-14.5 

Note: MZ: monozygotic twins; DZ-SS: dizygotic same-sex twins; DZ-OS: dizygotic-opposite-sex twins. 



Table 5.2: Twin correlations and their standard errors after adjustment for sex and age effects. MZ-M, MZ-F, DZ-M, DZ-F, 

and DZ-OS are MZ male, MZ female,DZ male, DZ female, and DZ opposite-sex twins, respectively. 

Trait 	MZ-M (s.e.) 	DZ-M (s.e.) 	MZ-F (s.e.) 	DZ-F (s.e.) 	DZ-OS (s.e.) 

BMI 0.67 (0.06) 0.40 (0.07) 0.75 (0.06) 0.49 (0.07) 0.29 (0.08) 

WAIST 0.55 (0.07) 0.34 (0.08) 0.65 (0.06) 0.46 (0.07) 0.15 (0.09) 

GLU0 0.52 (0.07) 0.30 (0.08) 0.34 (0.08) 0.36 (0.07) 0.35 (0.08) 

INS0 0.36 (0.08) 0.17 (0.08) 0.52 (0.07) 0.33 (0.08) 0.14 (0.09) 

GLU30 0.55 (0.07) 0.28 (0.08) 0.44 (0.08) 0.27 (0.08) 0.25 (0.09) 

INS30 0.51 (0.07) 0.29 (0.08) 0.50 (0.07) 0.32 (0.08) 0.40 (0.08) 
CO 
tQ 	

GLU120 0.43 (0.07) 0.22 (0.08) 0.41 (0.08) 0.20 (0.08) 0.26 (0.09) 

1NS120 0.48 (0.07) 0.24 (0.08) 0.41 (0.08) 0.22 (0.08) 0.29 (0.08) 

SBP 0.61 (0.06) 0.32 (0.08) 0.70 (0.06) 0.46 (0.07) 0.13 (0.09) 

DBP 0.63 (0.06) 0.31 (0.08) 0.71 (0.06) 0.43 (0.07) 0.20 (0.09) 

HDL 0.65 (0.06) 0.35 (0.08) 0.55 (0.07) 0.45 (0.07) 0.23 (0.09) 

LDL 0.69 (0.06) 0.40 (0.07) 0.80 (0.05) 0.38 (0.07) 0.22 (0.09) 

VLDL 0.34 (0.08) 0.32 (0.08) 0.54 (0.07) 0.38 (0.07) 0.07 (0.09) 

TG 0.38 (0.08) 0.33 (0.08) 0.56 (0.07) 0.35 (0.07) 0.01 (0.09) 



5.3.2 Univariate Genetic Analyses 

The proportions of phenotypic variance of the endophenotypes due to additive 

genetic (a2, heritability), common (c2) and individual specific (e2) environmental 

effects from univariate analyses are presented in Table 5.3. The variance 

component estimates from analysing all data and same-sex twins only were very 

similar for most endophenotypes, except for TG. With the exception of GLUO, 

moderate to high heritability were estimated for all endophenotypes (0.34 - 

0.73). Most endophenotypes had very small common environmental variance 

(C) components, except for GLUO. Thirty percent of variation of fasting glucose 

was explained by common environmental variance shared by twin pairs, whereas 

the figures are less than 13% for the rest of the endophenotypes. For WAIST, 

INS0, LDL and SBP, the C components were close to zero. 

The test for sex-specific genes showed that there was no evidence of sex-specific 

genes for all endophenotypes (results not shown). In addition, the difference 

in the variance component estimates and their ratios (e.g. heritability), when 

including or excluding DZ-OS twins, were mostly small (results not shown). 

Therefore, for subsequent analyses, DZ-OS twins were in included in the analyses 

with the DZ-SS twins (but adjusting for a sex effect on the mean). 

The test for heterogeneity of variance components across sexes showed that the 

variance component profiles were significantly different in males and females 

for 8 out of 13 endophenotypes (P-value < 0.05), including for BMI, WAIST, 

GLUO, INSO, GLU120, INS120, SBP, and TG. However, this heterogeneity was 

ignored in the full multivariate analysis (13 traits) by pooling the data on males 

and females (after sex adjustment), because it would require too many mutually 

highly correlated parameters to take the heterogeneity properly into account. 



Table 5.3: The proportions of phenotypic variance of endophenotypes related to the metabolic syndrome due to additive genetic 

effect (a2), common environmental effects shared by twin pairs (0) and specific individual environmental effects (e2) from 

univariate and multivariate analyses. The numbers in the brackets are the corresponding standard errors. 

Endophenotypes Univariate Analysis' 

a2  (s.e.) 	c2  (s.e.) 	e 2  (s.e.) 

Univariate Analysis 

a2  (s.e.) 	c2  (s.e.) 

b 

e2  (s.e.) 

Multivariate Analysis' 

a2  (s.e.) 	c2  (s.e.) 	e2  (s.e.) 

BMI 0.68 (0.08) 0.05 (0.08) 0.27 (0.02) 0.61 (0.09) 0.14 (0.09) 0.26 (0.02) 0.67 (0.08) 0.07 (0.08) 0.26 (0.02) 

WAIST 0.62 (0.10) 0.01 (0.09) 0.37 (0.03) 0.51 (0.11) 0.13 (0.09) 0.36 (0.03) 0.64 (0.10) 0.01 (0.08) 0.35 (0.03) 

GLUO 0.10 (0.12) 0.30 (0.09) 0.60 (0.04) 0.04 (0.13) 0.37 (0.11) 0.59 (0.04) 0.08 (0.12) 0.33 (0.09) 0.59 (0.04) 

INSO 0.46 (0.04) 0.00 (0.00) 0.54 (0.04) 0.47 (0.13) 0.00 (0.11) 0.53 (0.04) 0.49 (0.04) 0.00 (0.08) 0.51 (0.04) 

GLU30 0.39 (0.12) 0.08 (0.10) 0.53 (0.04) 0.32 (0.13) 0.14 (0.11) 0.54 (0.04) 0.38 (0.12) 0.10 (0.08) 0.52 (0.04) 

1N530 0.50 (0.11) 0.06 (0.09) 0.44 (0.04) 0.54 (0.12) 0.01 (0.11) 0.45 (0.04) 0.52 (0.10) 0.05 (0.10) 0.43 (0.04) 

GLU120 0.34 (0.13) 0.06 (0.10) 0.60 (0.04) 0.36 (0.14) 0.04 (0.12) 0.60 (0.05) 0.37 (0.12) 0.05 (0.10) 0.58 (0.04) 

INS120 0.45 (0.12) 0.02 (0.10) 0.53 (0.04) 0.45 (0.14) 0.01 (0.11) 0.54 (0.04) 0.46 (0.12) 0.02 (0.09) 0.52 (0.04) 

SBP 0.62 (0.10) 0.01 (0.09) 0.37 (0.03) 0.53 (0.11) 0.12 (0.10) 0.35 (0.03) 0.63 (0.10) 0.01 (0.09) 0.36 (0.03) 

DBP 0.61 (0.10) 0.04 (0.09) 0.35 (0.03) 0.55 (0.11) 0.11 (0.10) 0.34 (0.03) 0.62 (0.10) 0.03 (0.09) 0.35 (0.03) 

HDL 0.50 (0.10) 0.13 (0.08) 0.37 (0.03) 0.53 (0.11) 0.12 (0.09) 0.35 (0.03) 0.49 (0.10) 0.14 (0.08) 0.37 (0.03) 

LDL 0.73 (0.02) 0.00 (0.00) 0.27 (0.02) 0.71 (0.10) 0.03 (0.10) 0.26 (0.02) 0.72 (0.09) 0.00 (0.08) 0.28 (0.02) 

TG 0.39 (0.12) 0.06 (0.10) 0.55 (0.04) 0.19 (0.13) 0.26 (0.10) 0.56 (0.05) 0.37 (0.12) 0.07 (0.10) 0.56 (0.05) 

Note: aAflalysis  using all data (MZ, DZ-SS and DZ-OS). b  Analysis using MZ and DZ-SS only. 



The effect of ignoring this heterogeneity was investigated in detail for selected 

set of bivariate analyses. 

5.3.3 Multivariate Genetic Analysis 

Multivariate genetic analysis of all 13 endophenotypes was performed 

simultaneously in a single analysis using all data. The estimated proportion 

of variance components from the multivariate analysis are presented in Table 

5.3. The estimates and their standard errors were similar to those obtained by 

univariate analyses. 

To check the effects of ignoring the heterogeneity of variance components on 

the correlations between traits, a series of bivariate analyses were performed. 

Bivariate analysis between WAIST and INSO is presented as an example (Table 

5.4). In the univariate analyses, both traits showed significant differences 

between variance component estimates for males and females and were highly 

correlated. However, bivariate analysis showed that the genetic (r g ), phenotypic 

(rn ) and specific individual environmental (r e) correlations were very similar in 

males and females. The pooled estimates were somewhere in the middle between 

the two estimates with narrower confidence intervals. Therefore, the possibility 

of a small unknown bias has been traded for the more accurate estimates. 

Phenotypic, genetic and specific individual environmental correlations between 

the endophenotypes estimated from multivariate analysis are presented in Tables 

5.5 and 5.6, and to aid the interpretation, summarised in Table 5.7. No common 

environmental correlations between pairs of endophenotypes were significantly 

different from zero (results not shown). The environmental correlations between 

endophenotypes were mostly due to correlations within individuals (Te) rather 
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Table 5.4: An example of bivariate analysis by taking into account heterogeneity 

of variance components across sexes, while fixing the scaled additive genetic 

covariance in DZ-OS at 0.5 (the same as that of DZ-SS for both traits). 

WAIST and INSO were chosen because both endophenotypes are highly 

correlated and show heterogeneity of variance components in males and 

females. 

Sex 	 Correlation between WAIST and INSO (95% CI) 

r g  

Male 	0.59 (0.22-1.00) 	0.52 (0.39-0.62) 	0.52 (0.46-0.57) 

Female 	0.41 (0.04-0.68) 	0.32 (0.17-0.45) 	0.41 (0.34-0.47) 

Combined 	0.51 (0.30-0.71) 	0.41 (0.32-0.50) 	0.46 (0.41-0.50) 

Note: r9 , re , r are genetic, specific individual and phenotypic correlations, 
respectively. 

than shared by twin pairs (re). 

The main result from the multivariate analysis showed that the correlations 

between individual endophenotypes assigned to different groups were generally 

weak and not significantly different from zero. The strongest correlation between 

individual endophenotypes assigned to different groups was between obesity 

endophenotypes (WAIST) and insulin related endophenotypes (INSO) (r9  = 

0.50 ± 0.11; r e  = 0.41 + 0.05; r = 0.46 + 0.02). The correlations between 

obesity endophenotypes and lipid endophenotypes were mostly weak, except for 

moderate specific individual environmental correlations between either BMI or 

WAIST with TG. Weak correlations were estimated between obesity and blood 

pressure related endophenotypes. For example, the phenotypic and genetic 

correlations between BMI and SBP were 0.28 + 0.03 and 0.27 ± 0.09, respectively. 
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Table 5.5: Phenotypic correlations (r) between the metabolic syndrome endophenotypes. The numbers in the bracket are the 

corresponding standard errors. 

BMI 	WAIST GLUO INSO 	GLU30 INS30 GLU120 INS120 SBP 	DBP 	HDL 	LDL 

WAIST 0.86 (0.01) 

GLU0 	0.11 (0.03) 0.11 (0.03) 

INSO 0.46(0.02) 0.46(0.02) 0.18(0.03) 

GLU30 0.01(0.03) 0.05(0.03) 0.38(0.02) 0.10(0.03) 

1N530 0.26(0.03) 0.28(0.03) 0.06(0.03) 0.53(0.02) 0.25(0.03) 

GLU120 0.02(0.03) 0.03(0.03) 0.27(0.03) 0.13(0.03) 0.30(0.03) -0.07(0.03) 

1NS120 0.21(0.03) 0.21(0.03) 0.11(0.03) 0.50(0.02) 0.19(0.03) 0.34(0.03) 0.69(0.01) 

SBP 	0.28(0.03) 0.26(0.03) 0.12(0.03) 0.24(0.03) 0.13(0.03) 0.15(0.03) 0.15(0.03) 0.18(0.03) 

DBP 	0.26(0.03) 0.23(0.03) 0.11(0.03) 0.23(0.03) 0.06(0.03) 0.14(0.03) 0.13(0.03) 0.19(0.03) 0.69(0.03) 

HDL 	-0.17(0.03) -0.19(0.03) -0.05(0.03) -0.15(0.03) 0.01(0.03) -0.11(0.03) -0.04(0.03) -0.10(0.03) -0.02(0.03) 0.03(0.03) 

LDL 	0.11(0.03) 0.13(0.03) 0.02(0.03) 0.09(0.03) 0.07(0.03) 0.10(0.03) -0.01(0.03) 0.06(0.03) 0.11(0.03) 0.10(0.03) -0.19(0.03) 

TG 	0.22(0.03) 0.27(0.03) 0.13(0.03) 0.35(0.02) 0.20(0.03) 0.27(0.03) 0.20(0.03) 0.33(0.03) 0.20(0.03) 0.20(0.03) -0.22(0.03) 0.24(0.03) 



Table 5.6: Genetic (rg) and individual environmental (Te) correlations between the metabolic syndrome endophenotypes in the 

upper and lower diagonal, respectively. The numbers in the brackets are the corresponding standard errors. 

BMI 	WAIST GLUO INSO 	GLU30 INS30 GLU120 INS120 SBP 	DBP 	HDL 	LDL 	TG 

BMI 0.81(0.03) 0.12(0.28) 0.45(0.10) -0.18(0.15) 0.31(0.10) -0.30(0.16) 0.24(0.12) 0.27(0.09) 0.27(0.09) -0.10(0.11) 0.11(0.09) 0.16(0.14) 

WAIST 0.88(0.01) 0.14(0.31) 0.50(0.11) -0.09(0.16) 0.31(0.11) -0.31(0.18) 0.2(0.13) 0.26(0.11) 0.21(0.11) -0.07(0.13) 0.10(0.10) 0.18(0.15) 

GLUO 0.17(0.05) 0.18(0.05) -0.11(0.44) -0.14(0.53) 0.60(0.54) -0.45(0.67) 0.27(0.43) -0.30(0.41) -0.20(0.37) -0.43(0.45) 0.46(0.41) -0.58(0.68) 

INSO 0.48(0.04) 0.41(0.05) 0.26(0.05) -0.03(0.20) 0.64(0.11) -0.15(0.21) 0.60(0.13) 0.19(0.14) 0.04(0.14) -0.08(0.16) 0.23(0.13) -0.01(0.20) 

GLU30 0.18(0.05) 0.20(0.05) 0.32(0.05) 0.15(0.05) 0.13(0.18) 0.36(0.21) 0.42(0.19) 0.04(0.16) 0.05(0.16) 0.29(0.18) 0.15(0.14) 0.26(0.22) 

INS30 0.33(0.05) 0.29(0.05) -0.04(0.06) 0.46(0.02) 0.36(0.05) -0.01(0.19) 0.36(0.14) 0.16(0.13) 0.10(0.13) -0.02(0.14) 0.30(0.12) 0.32(0.17) 

GLU120 0.25(0.05) 0.24(0.05) 0.27(0.05) 0.19(0.05) 0.25(0.05) -0.08(0.06) 0.75(0.11) -0.08(0.17) -0.11(0.17) 0.07 (0.19) -0.04(0.15) 0.09(0.24) 

INS120 0.33(0.05) 0.31(0.05) 0.09(0.05) 0.44(0.05) 0.17(0.05) 0.36(0.05) 0.64(0.03) -0.03(0.15) -0.03(0.15) -0.22(0.16) 0.10(0.13) 0.34(0.18) 

SBP 0.28(0.05) 0.20(0.05) 0.18(0.05) 0.17(0.06) 0.12(0.05) 0.08(0.06) 0.20(0.05) 0.21(0.05) 0.72(0.06) -0.02(0.13) 0.11(0.10) 0.28(0.16) 

DBP 0.27(0.05) 0.21(0.05) 0.12(0.05) 0.21(0.05) 0.04(0.06) 0.09(0.06) 0.19(0.05) 0.16(0.05) 0.72(0.03) -0.01(0.13) 0.09(0.10) 0.15(0.16) 

HDL -0.20(0.06) -0.23(0.05) -0.01(0.06) -0.15(0.06) -0.05(0.06) -0.08(0.06) -0.07(0.06) -0.10(0.06) 0.09(0.06) 0.11(0.06) -0.03(0.11) -0.32(0.17) 

LDL 0.18(0.06) 0.17(0.06) 0.01(0.06) 0.02(0.06) -0.01(0.06) -0.05(0.06) 0.06(0.06) 0.05(0.06) 0.07(0.06) 0.06(0.06) -0.30(0.05) 0.38(0.14) 

TG 0.31(0.05) 0.32(0.05) 0.17(0.05) 0.44(0.05) 0.10(0.05) 0.21(0.05) 0.21(0.05) 0.34(0.05) 0.13(0.06) 0.16(0.05) -0.24(0.05) 0.19(0.06) 



Strong phenotypic and genetic 

correlations between insulin levels. 

Moderate phenotypic correlations 

between glucose levels, but their genetic 

correlations are not significant. No 

No significant 

correlations 

Weak or no significant 

correlations, except 

moderate correlation 

between INS30 and 

LDL (0.30 ± 0.12) 

significant to moderate correlations 

between glucose and insulin levels, 

except strong correlation between 

INS120 and GLU120 (r = 0.69 + 0.01; 

rg  = 0.75 ± 0.11; r = 0.64 ± 0.03) 

Table 5.7: Summary of genetic (rg, upper diagonal) and specific individual environmental ('re , lower diagonal) correlations 

between endophenotypes related to the metabolic syndrome assigned to different groups. 

Groups of 	Obesity 	 Insulin 	 Blood Pressure 	Lipids 

Endophenotypes 

Obesity 	 BMI and WAIST are strongly 	Weak or no significant correlations, 	Weak or no significant Weak or no significant 

(BMI, WAIST) 	correlated (r = 0.86 + 0.01; r g  = except moderate correlations between 	correlations 	 correlations 

0.81 + 0.03; re = 0.88) 	 INSO with either BMI or WAIST (0.45 ± 

0.10 and 0.50 ± 0.11, respectively) 

Insulin Generally weak or no significant 

(GLUO, GLU30, correlations, except moderate 

GLU120, INSO, correlations between fasting 

INS30, INS 120) insulin with either BMI or 

WAIST (0.48 + 0.04 and 0.41 + 
0.05, respectively) 



Table 5.7: Continued. 

Groups of 	Obesity 	 Insulin 	 Blood Pressure 	Lipids 

Endophenotypes 

Blood pressure Weak correlations Weak correlations SBP is highly correlated Weak or no significant 

(SBP, DBP) with DBP (r = 0.69 ± correlations 

0.03; rg  = 0.72 ± 0.06; 

Te = 0.72 + 0.03) 

Lipids Generally weak correlations, Generally weak correlations, except Weak or no significant Generally weak or no 

(HDL, LDL, TG) except moderate correlations moderate correlations between TG correlations significant correlations 

between either BMI or WAIST with fasting insulin (0.44 + 0.05) between lipid traits 

with TG (0.31 + 0.05 or 0.32 + 

0.05) 

Note: The genetic, specific individual environmental and phenotypic correlations assigned to the same groups of endophenotypes are on the diagonal. 
Since no formal testing of correlations of groups was performed, the correlations between endophenotypes assigned to the same or different groups are 
provided descriptively. 



Correlations between lipid endophenotypes and blood pressure were low. The 

correlations between insulin related endophenotypes and lipid endophenotypes 

were generally weak, except for moderate specific individual environmental 

correlations between TG and INSO (0.44 ± 0.05). Estimated genetic, specific 

individual environmental and phenotypic correlations between blood pressure 

and insulin related endophenotypes were very weak. 

In contrast to this, genetic and phenotypic correlations between endophenotypes 

assigned to the same groups were generally higher. Correlations between BMI and 

WAIST (both are indicators of some form of obesity) were high (rg  = 0.81 ± 0.03; 

Te 0.88 ± 0.01; Te— 0.86 + 0.01). Strong correlations were estimated between 

INSO with 1N530 or INS120, but moderate between INS30 and 1N5120. The 

phenotypic correlations between various glucose levels were moderate, but their 

genetic correlations were not significantly different from zero. The correlations 

between various insulin and glucose levels were not significantly different from 

zero or moderate, except for a strong correlation between INS120 and GLU120 

(rg  = 0.75 ± 0.11; re= 0.64 ± 0.03; Te 0.69 10.01). SBP and DBP were strongly 

related (rg  = 0.72 + 0.06; Te 0.72 ± 0.03; Te= 0.69 ± 0.03). The correlations 

between various lipid measurements were mostly weak. 

5.4 Discussion 

In this chapter, the observed phenotypic (co)variation of endophenotypes 

associated with the metabolic syndrome has been partitioned into genetic and 

environmental components. The results showed that genetic factors largely 

contributed to the individual differences in most of the endophenotypes. At the 

same time, the results showed that there does not appear to be major common 
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genetic or familial environmental background shared by the endophenotypes 

related to the metabolic syndrome. 

Although the heterogeneity of variance across sexes in univariate analyses 

and the likely effects of ignoring this to the estimates of correlations between 

endophenotypes in selected traits using bivariate analysis were tested, the effects 

on whole correlation structures (13 endophenotypes) could not be easily inferred. 

Therefore, the present results should be viewed in the presence of this limitation. 

Heterogeneity of variance components across sexes in the absence of sex-specific 

genetic effects for some traits could be caused by sex-specific environmental 

effects. One possible explanation for the sex differences in variance components 

estimates is that premenopausal women are largely protected against the 

metabolic syndrome or similar risk profiles. Although the investigation and 

understanding of this phenomenon will be very important, this is not addressed 

in the present study. 

The endophenotypes related to the metabolic syndrome investigated in the 

present study were based on all individuals in the distribution. The underlying 

genetic and environmental relationships in the pertinent tail of the distribution 

representing the metabolic syndrome may be different to that in the normal 

range. The DeFries-Fulker extreme analysis (DeFries and Fulker, 1985), which is 

based on a multiple regression method, could be used to estimate (co)variance 

components of extreme scores from a tail of the distribution (Purcell and 

Sham, 2003; Viding et al., 2003), to test whether the extremes are part of 

a continuum or form a discrete group. The application of this method to 

the endophenotypes studied could be explored, but given the large number 

of endophenotypes involved and the present sample size, power to distinguish 
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between underlying discrete groups is likely to be low. 

As with any other twin studies, this study should be viewed in the presence of 

the potential limitations, including whether twins under study are representative 

of the general population of singleton births. In our study, there is no reason 

to believe that twins are different from the general population as we have 

found the same prevalence of a number of diseases, e.g. Type 1 and Type 

2 diabetes, thyroid diseases, skin diseases and mortality, in Danish twins as 

in the population (reference list available from the last author). In addition 

to that, twin studies assume that MZ and DZ twins share the same common 

environmental experiences. This assumption can be tested by comparing 

phenotypic similarity in twins of perceived versus true zygosity (Kendler 

et al., 1993; Scarr, 1968). 	The assumption is violated if the phenotypic 

similarity of the twins is the result of perceived zygosity rather than the true 

zygosity. While this assumption has been tested empirically for some traits 

(Kendler et al., 1993), this is not commonly practiced as part of most twin studies. 

Both univariate and multivariate genetic analyses performed have shown 

that, except for GLUO, the heritability estimates for all 13 endophenotypes 

associated with the metabolic syndrome were moderate to high. These results 

indicate that phenotypic variation in individual endophenotypes is mostly due 

to genetic effects. Environmental factors that contribute to the variation of 

the endophenotypes between individuals appear to be mostly experienced by 

individuals, and not shared between family members. 

Previous twin studies have also shown that phenotypic variations in most of 

the metabolic syndrome related endophenotypes were largely genetic in origin 

(Edwards et al., 1997; Poulsen et al., 2001; Samaras et al., 1999). Those studies 
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also reported that common environmental variance shared by family members 

did not contribute to the variations of the endophenotypes. Some family studies 

reported smaller genetic components influencing phenotypic variation in the 

phenotypes related to the metabolic syndrome (Freeman et al., 2002; Henkin 

et al., 2003; Martin et al., 2003; Mitchell et al., 1996), but the components were 

still significantly different from zero. 

By partitioning the phenotypic covariance between endophenotypes into 

underlying genetic and environmental components, the multivariate genetic 

analyses have been useful for understanding the relationship among the 

endophenotypes. The results showed that the genetic and environmental 

correlations were strong only between endophenotypes assigned to the same 

group, but weak to moderate between endophenotypes assigned to different 

groups. 	The strong genetic correlations between endophenotypes in the 

same group indicate that these endophenotypes have genes in common. The 

findings may also be due to a direct causal physiologic relationship between 

endophenotypes assigned to the same group, e.g. insulin-glucose regulation 

and its consequences. 	Multivariate genetic analysis has also shown that 

environmental factors common to a pair of endophenotypes were specific to 

individuals rather than shared by family members. 

While previous studies have suggested common underlying factors influencing 

the endophenotypes related to the metabolic syndrome (Hong et al., 1997; Li 

et al., 2006), genetic, environmental and phenotypic correlations between groups 

of endophenotypes estimated from the present study did not entirely support 

this finding. The correlations between the groups of endophenotypes were mostly 

weak, except moderate correlations between insulin related endophenotypes 

with either obesity or lipid endophenotypes. However, since insulin related 
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endophenotypes and obesity have been suggested as the main factors underlying 

the metabolic syndrome, moderate correlations between these components may 

still indicate some common underlying genetic and environmental effects between 

the main components of the metabolic syndrome. 

The genetic and environmental correlations estimated from the present study are 

mostly in line with previous studies (Hong et al., 1997; Martin et al., 2003; Nelson 

et al., 2000; Perusse et al., 1997; Rainwater et al., 1997; Samaras 

et al., 1999; Tregouet et al., 1999). Moderate correlations between insulin 

related endophenotypes and obesity traits have previously been reported (Nelson 

et al., 2000; Samaras et al., 1999; Tregouet et al., 1999). For example, using 110 

female twin pairs, Samaras et al. (1999) have reported a genetic correlation of 

0.41 between insulin resistance and central fat, while Nelson et al. (1997) reported 

a higher genetic correlation of 0.64 between waist to hip ratio (WHR) and fasting 

insulin. The correlations between blood pressure and other metabolic syndrome 

endophenotypes have been reported as weak (Hong et al., 1997; Tregouet 

et al., 1999), while Mitchell et al. (1996) have reported a near zero genetic 

correlation between fasting insulin with either systolic or diastolic blood pressure. 

The correlations between the other metabolic syndrome endophenotypes have 

also been reported as weak or moderate (Martin et al., 2003; Samaras 

et al., 1999; Tregouet et al., 1999; Rainwater et al., 1997; Perusse et al., 1997). 

Although the correlations between endophenotypes reported in those studies 

were similar to the present study, these correlations have mostly been interpreted 

as strong evidence for a common underlying factor influencing the metabolic 

syndrome. 

Knowing that a large proportion of phenotypic variance of individual 

endophenotypes of the metabolic syndrome traits is explained by genetic 

105 



factors, finding genes responsible for these is the next challenge. Some studies 

have reported quantitative trait loci (QTL) responsible for the cluster of the 

metabolic syndrome or its components (An et al., 2005; Kissebah et al., 2000; Rich 

et al., 2005; Shearman et al., 2000). The BEACON gene located on chromosome 

19p has been reported to be associated with the metabolic syndrome related 

endophenotypes (Jowett et al., 2004). Goldin et al. (2003) summarised 12 

studies reporting QTL related to the metabolic syndrome components and the 

QTL were located mostly on chromosomes 1, 3, 5, 6, 7, 10, 14 and 17. Some 

studies have tried to locate genes responsible for the metabolic syndrome as a 

composite variable (Loos et al., 2003; McQueen et al., 2003; Ng et al., 2004; Tang 

et al., 2003). Given that genetic correlations between the endophenotypes 

of metabolic syndrome were weak to moderate as suggested from this study, 

finding genes for the metabolic syndrome as a composite variable may not be 

a good strategy. This strategy may be appropriate only for endophenotypes 

within groups, where the genetic correlations were mostly high. Results 

from this study suggest that finding genes responsible for each component of 

the endophenotypes of the metabolic syndrome separately may be a better option. 

In conclusion, while the individual endophenotypes of the metabolic syndrome 

were highly heritable, weak to moderate genetic correlations and no significant 

common environmental correlations between endophenotypes assigned to 

different groups suggest that the metabolic syndrome comprises a composite set 

of endophenotypes that apparently do not share a substantial common genetic 

and familial environmental background in the general population. However, 

moderate genetic and specific individual environmental correlations between 

fasting insulin and obesity endophenotypes and a moderate specific individual 

environmental correlation between fasting insulin and lipids endophenotypes 

indicated that some common underlying genetic or environmental variations 
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may be shared between fasting insulin with either obesity endophenotypes or 

lipids endophenotypes. For the metabolic syndrome to be useful in clinical 

practices, much more study is still needed. These include understanding 

whether the metabolic syndrome is a unified syndrome with known underlying 

pathophysiology, the endophenotypes included or excluded, the value of 

diagnosing patients with the syndrome and the treatment itself (Kahn 

et al., 2005). 
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6 A Genome-wide Linkage Analysis: Mapping 

Chromosomal Regions Influencing The Variation 

of Body Height 

Abstract 

Body height is an important anthropometric measure and an excellent model 

for studying the genetic architecture of complex traits. Genetic factors have 

been reported to account for most of the variation in body height, with a 

heritability estimated around 0.8. Previous linkage studies have identified several 

quantitative trait loci (QTL) that influence the variation of body height, mostly 

with moderate statistical support. The main objective of the present study 

is to identify chromosomal regions that influence the variation of body height 

in the Australian population. This study also provides a means to replicate 

previously reported QTL for body height. The subjects of the study were drawn 

from two Australian twin cohorts (Adolescent and Adult) consisting of 871 and 

7,007 individuals, respectively. The combined data provided a total of 5,419 

quasi-independent sib-pairs derived from 7,876 individuals in 2,628 families. 

A variance component linkage analysis revealed several chromosomal regions 

suggestive for linkage with body height, including 3q22.1 (LOD 2.1) and 5q32 

(LOD 	2.1). Sex-specific linkage analyses suggested that 1q32 (LOD = 1.9) 

and 15q23 (LOD = 1.9) were suggestive for linkage with body height in males, 

while 7p2l.1 (LOD = 1.9) was only suggestive in females. Despite the relatively 

large sample size, the moderate statistical support for most of the identified 

chromosomal regions suggests that body height is influenced by several or many 

genes, each having a modest effect. 

HE 



6.1 Introduction 

Body height is one of the most important anthropometric measures. It has 

been suggested as an indicator of childhood living conditions (Peck and 

Lundberg, 1995) and has been associated with the risk of coronary heart diseases 

(McCarron et at., 2002; Silventoinen et at., 2006). Body height has also been 

associated with intelligence (Abbott et al., 1998; Sundet et at., 2005), educational 

attainment (Magnusson et at., 2006; Silventoinen et at., 2004) and longevity 

(reviewed by Samaras et at., 2003). 

Body height has also been considered as an excellent model trait for 

studying the genetic architecture of complex quantitative traits (Hirschhorn 

et at., 2001; Visscher et al., 2006). It is a normally distributed quantitative 

trait and highly heritable. The early report by Pearson and Lee (1903), which 

suggested that genetic factors were important sources of variation for body 

height, has been consistently supported by many twin and family studies. In 

these studies, the heritability of height was estimated to be about 0.8 (reviewed 

by Silventoinen, 2003a). 

In order to identify the causal genes/polymorphisms underlying variation in body 

height, different strategies have been employed. From the results of segregation 

analyses, it has been suggested that several major genes (Ginsburg et at., 1998), 

including major recessive genes (Xu et al., 2002) influence the variation of 

body height. As suggested from association and candidate gene studies, several 

genes/polymorphisms have also been associated with body height. These 

include the short-stature homeobox-containing gene (SHOX) (reviewed by 

Rappold et at., 2005), vitamin D receptor gene (D'Alesio et al., 2005; Lorentzon 

et at., 2000; Remes et at., 2005; Xiong et at., 2005), collagen type 1 alpha 
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I gene (COL1A2) (Lei et al., 2005), estrogen receptor alpha gene (ESR1) 

(Lei et al., 2005; Schuit et al., 2004), cytochrome p450 19 gene (CYP19) (Ellis 

et al., 2001; Yang et al., 2006), adiponectin receptor 1 gene (ADIPOR1) (Siitonen 

et al., 2006), low density lipoprotein receptor-related protein 5 gene (LRP5) 

(Ferrari et al., 2004), dopamine D2 receptor gene (DRD2) (Miyake et al., 1999), 

peroxisome proliferator-activated receptor--y gene (PPARy) (Meirhaeghe 

et al., 2003), BCHE locus of butyryicholinesterase (Souza et al., 2005) and the 

parathyroid hormone type 1 receptor gene (PTHR1) (Scillitani et al., 2006). 

Another popular approach for gene identification, linkage analysis, has been very 

successful in identifying single/major gene disorders (e.g. Burton et al., 2005). 

However, its success for identifying loci affecting complex quantitative traits 

has been limited due to several factors, including low power because of the 

very large sample size needed to detect quantitative trait loci (QTL) with 

modest effect, inaccurate phenotyping, and low heritability (Palmert and 

Hirschhorn, 2003; Risch and Merikangas, 1996; Teare and Barrett, 2005). 

By avoiding the limitations of other complex traits, body height has been 

suggested as being amenable to linkage analysis for several reasons: 1) 

height has a very high heritability (about 0.8 in Caucasian populations); 

2) it can be measured easily and accurately; 3) a large sample size with 

information on height can usually be obtained by combining comparable 

data across studies (Hirschhorn et al., 2001; Palmert and Hirschhorn, 2003). 

In fact, results from previous studies suggested that chromosomal regions 

influencing body height can be mapped using a linkage approach (Beck 

et al., 2003; Dempfle et al., 2006; Geller et al., 2003; Hirschhorn et al., 2001; Liu 

et al., 2006; Mukhopadhyay and Weeks, 2003; Perola et al., 2001; Sale 

et al., 2005; Sammalisto et al., 2005; Shmulewitz et al., 2006; Willemsen 

et al., 2004; Wiltshire et al., 2002; Wu et al., 2003; Xu et al., 2002). To date, 
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numerous QTL for body height have been mapped to almost all chromosomes 

(Table 6.1), but with the exception of a few regions from a small number of 

studies, most of them were mapped with only moderate statistical support (i.e. 

LOD score < 3). This suggests that most of the genes influencing height have 

small to moderate effects. 

For linkage analysis to be able to detect QTL with small to moderate effects, 

a large sample size is required (Risch and Merikangas, 1996). Therefore, using 

a large sample size of 7,876 individuals from 2,628 families, the present study 

aimed to detect chromosomal regions influencing body height, including those 

with smaller effect sizes that may be missed by studies using smaller samples. In 

addition, this study also provides an opportunity to replicate previously reported 

chromosomal regions affecting body height. 

6.2 Subjects and Methods 

6.2.1 Subjects 

The subjects of the present study were drawn from two different cohorts, an 

adolescent and an adult cohort. The younger cohort constituted adolescent twins 

who participated in various studies conducted by the Genetic Epidemiology Unit 

at the Queensland Institute of Medical Research. These included a study of 

melanoma risk factors on 12 and 14 year old twins (Zhu et al., 2004) and a study 

of cognition in 16 year old twins and their siblings (Wright and Martin, 2004). 

For these adolescents, height measured by a nurse using a stadiometer was 

available from 1,575 individuals. The adult cohort constituted twins and their 

families who had been drawn from the Australian Twin Registry for various 

studies, including asthma and allergy (Duffy et al., 1998; Ferreira et al., 2005), 
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Table 6.1: Summary of QTL affecting body height reported in previous studies where multipoint LOD score > 1.9 [suggestive 

linkage (Lander and Kruglyak, 1995)]. 

Chromosome Peak markers 	cM (interval) 	LOD 	 Population 	 No. Individuals/ Reference 

position 	 No. Families 

lp21 D1S1631 125.75 4.25 (males only) Botnia and Helsinki 659/277 Sammalisto et al. 2005 

lp2l.1 D1S1631 136 (115-143) 2.25 African American, Genoa 611/na Wu et al. 2003 

lp3l D1S1728 106.5 (100 - 120) 55.3 -  79.4 Island of Kosrae, 2188/na Shmulewitz et al. 2006 

(L-score) Federated States of Micronesia 

1q12 D1S3723 140 2.02 Germany 184/92 Dempfle et al. 2006 

2q11.2 D2S113 104 2.23 Botnia 379/58 Hirschhorn et al. 2001 

3p14.2 D3S1766 72 2.31 Finland 702/183 Hirschhorn et al. 2001 

D3S1297-D3S1304 8.9 3.17 UK 1377/573 Wiltshire et al. 2002 

3q23 D3S1764 146 (134-158) 2.03 combination of populations 6752/2508 Wu et al. 2003 

3q26.1 D3S1763 175 (160-181) 2.06 European American, GENOA 749/na Wu et al 2003 

4q25 D4S1564 108 2.28 Botnia 379/58 Hirschhorn et al. 2001 

4q35 D4S426 202.69 2.18 Botnia and Helsinki 1417/277 Sammalisto et al. 2005 

4q35.2 D4S3051-D4S426 201 1.89 Botnia 379/58 Hirschhorn et al. 2001 

5pl4.3pl3.3 D5S2845-D5S1470 36.25-45.34 2.04 Netherlands 513 sib-pairs/174 Willemsen et al. 2004 

5q31 D5S2115 144 2.14 Caucasian (US) 671/53 Deng et al. 2002 

5q31.1 D5S816 137 (127-178) 2.26 HyperGen European American 1100/na Wu et al. 2003 

5q34 D5S 1471 160-qter 33.9 (L-score) Island of Kosrae, 2188/na Shmulewitz et al. 2006 

Federated States of Micronesia 

6q12 D6S1053 78 (62-94) 2.66 GENOA European American 749/na Wu et al 2003 

6q12-q14.1 D6S1053-D6S1031 80.45-88.63 2.32 Netherlands 513 sib-pairs/174 Willemsen et al. 2004 

6q25 D652436 154.64 3.06 Netherlands 1184/200 Xu et al. 2002 

6q25.3 D6S1007 159 3.85 Botnia 379/58 Hirschhorn et al. 2001 



Table 6.1: Continued. 

Chromosome 

position 

Peak markers cM (interval) LOD Population No. Individuals! 

No. Families 

Reference 

6q27 D6S503 200-201 2.45 Framingham Heart Study 2656/346 Geller et al. 2003 

7q11-21 D7S669-D7S630 103.1 2.26 United Kingdom 1377/573 Wiltshire et al. 2002 

7q35 D7S2195 150 3.40 Sweden 683/179 Hirschhorn et al. 2001 

7pter D7S2439-D7S1523 163.74-165.18 2.91 Finland 580/247 Perola et al. 2001 

7qtel D7S3058 174 (176-182) 2.46 Combination of populations 6758/2508 Wu et al. 2003 

8 na 135 (126 - 149) 1.92 African American 580/221 Sale et al. 2005 

8q24.2-q24.3 D851100-D8S373 159 2.52 Finland 702/183 Hirschhorn et al. 2001 

9p21.1 D9S 1868 42 2.01 Botnia 379/58 Hirschhorn et al. 2001 

D9S2169 12.55 2.57 (males only) Botnia and Helsinki 659/277 Samma!isto et al. 2005 

9q21.1 D9S301 66.32 2.09 Netherlands 1184/200 Xu et al. 2002 

9q22 GATA81C04M - ATA18A07M 97 (89 -104 cM) 4.34 Caucasian (US) 3726/434 Liu et al. 2006 

9q34.2-q34.3 D9S1818-1)9S1826 150.92-159.61 2.61 Finland 580/247 Perola et al. 2001 

10q21 GATA121A08 88.5 (80-95) 188.8 (L-score) Island of Kosrae, 2188/na Shmu!ewitz et al. 2006 

Federated States of Micronesia 

10q23.1 D10S1686 105.04 1.93 United Kingdom 1377/573 Wiltshire et al. 2002 

10na-q26.3 D10S1248-D10S212 165.27-170.94 1.94 Netherlands 513 sibs/ 174 Willemsen et al. 2004 

11pl5.4 D11S2362-D11S1999 11 2.57 Sweden 683/179 Hirschhorn et al. 2001 

l2p13.3 D12S341 0.62 2.07 Finland 702/183 Hirschhorn et al. 2001 

12q11 D12S1301 55-58 2.31 Germany 184/92 Dempfle et al. 2006 

12q13.1 D12S1090-D12S398 56 3.35 Finland 702/183 Hirschhorn et al. 2001 

12q15 D12S375 80.52 1.86 Netherlands 962/200 Xu et al. 2002 

13q12 D135221 16.26 2.66 (females only) Botnia and Helsinki 1417/277 Samma!isto et al. 2005 

13q33.1 D13S779-D13S797 82.93-na 3.56 Finland 702/183 Hirschhorn et al. 2001 



Table 6.1: Continued. 

Chromosome 	Peak markers 	cM (interval) LOD 	 Population 	 No. Individuals/ Reference 

position 	 No. Families  

14q11.2 GATA74EO2A 0-22 2.38 Framingharm Heart Study, 2885/330 Beck et al 2003 

Massachusetts 

14q23.1 D14S592 67 (58-92) 3.67 GENOA European American 749/na Wu et al. 2003 

14q32.2 D14S1426 13 2.01 Framingharm Heart Study, 4693/330 Mukhopadhyay and 

Massachusetts Weeks 2003 

15 D15S642 110-qter 43.7 (L-score) Island of Kosrae, 2188/na Shinulewitz et al. 2006 

Federated States of Micronesia 

15q12 D1551002 15.6 1.90 UK 1377/573 Wiltshire et al. 2002 

15 na 35 (23 - 44) 2.61 African American 580/221 Sale et al. 2005 

17q21.3 D17S958 66 2.69 Botnia 379/58 Hirschhorn et al. 2001 

18q21 D18S60 86.76 2.39 (males only) Botnia and Helsinki 1417/277 Sammalisto et al. 2005 

18q21.3 - 18q22.1 D18S1270 - D18S1364 2 and 8 cM 1.99 - 2.26 Framingharm Heart Study, 4692/330 Mukhopadhyay and 

Massachusetts Weeks 2003 

19p11 D19S250 46.5 28.5 (L-score) Island of Kosrae, 2188/na Shmulewitz et al. 2006 

Federated States of Micronesia 

20q13.1 D20S96 58.48 2.51 Botnia 379/58 Hirschhorn et al. 2001 

22q13 D22S282 50.81 2.85 Botnia and Helsinki 1417/277 Sammalisto et al. 2005 

22centr D225420 0 1.95 Sweden 683/179 Hirschhorn et al. 2001 

Xp22.2 DXS1O6O 15.12 1.95 Nebraska 671/53 Deng et al. 2002 

Xp24 DXS 1001 75.79 1.91 Nebraska 671/53 Deng et al. 2002 

Xp22 AGAT144 11.3 cM pter 5.36 (two point LOD) Caucasian (US) 3726/434 Liu at al. 2006 

Xq24 GATA165B12P 133 cM pter 5.63 (two point LOD) Caucasian (US) 3726/434 Liu et al. 2006 



anxiety and depression (Kirk et al., 2000), alcoholism (Heath et al., 1997) and 

the factors for cardiovascular disease (Beekman et al., 2003). A study of body 

mass index from this cohort has been extensively described by Comes et al. 

(2005). From the adult cohort, clinical measurement and/or self-reported height 

were available from 36,427 unique individuals. 

For the adult cohort, more than one measurement was available for some 

individuals due to their participation in multiple studies. Height discrepancies 

over time and extreme measures were checked carefully against original records 

and those which differed more than 3 cm from other height measures across 

studies were not included. Following Comes et al. (2005), rules were implemented 

to select the most accurate measurement for further analysis. Briefly, if a clinical 

measurement was available for an individual, it was used for the analysis. Out 

of 36,427 individuals, clinical measurements were available for 5,129 individuals 

(14.1%). If there was more than one measurement, the most recent measurement 

was chosen (see Figure 6.1). 

6.2.2 Genotyping 

In both adolescent and adult cohorts, microsatellite marker genotypes were 

available from several genome-wide and fine mapping studies. For the adolescent 

cohort, a detailed description of genotyping, cleaning and merging of each of the 

smaller genome scans has been provided by Zhu et al. (2004). For the adult 

cohort, these details were described by Comes et al. (2005). In addition, further 

genotypic data from a subset of individuals previously described by Comes et al. 

(2005) and 4,575 new individuals from the adult cohort have been incorporated 

into the present study (Luciano et al., 2006). The cleaning and integration 

procedures described by Comes et al. (2005) were also applied when adding new 
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Figure 6.1: Schematic diagram of the cleaning procedure to obtain the most 

accurate measurement of height from the adult cohort. 
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genotypic data to the adult cohort. 

Briefly, the procedure of merging the smaller genome scans into a combined 

genome scan can be described as follows. Firstly, raw data from each genome 

scan were integrated into one combined genome scan. Some individuals were 

genotyped using the same markers in different genome scans. Collapsing these 

duplicate markers into one unique marker was not an option since the same 

markers from different genome scans were genotyped using different primers, 

allele calling algorithms and measurement technologies. Thus, these markers 

were given unique identifiers and their map positions were separated by 0.001 cM 

to avoid zero-spacing. Secondly, for any marker, if Mendelian inheritance errors 

were detected at a given marker, all genotypes for that marker for a given family 

were removed. This procedure was performed by implementing the algorithm 

developed by O'Connell and Weeks (1999) for detecting and removing genotypes 

with Mendelian inconsistency. Finally, unlikely chromosomal recombination 

patterns were detected and removed using the --error option in the Merlin 

package (Abecasis et al., 2002). 

6.2.3 Subjects with Phenotypic and Genotypic Data 

For linkage analysis, the descriptive statistics for subjects with both phenotypic 

and genotypic information are summarised in Table 6.2. Subjects were selected 

if they were: 1) > 16 years of age; 2) genotyped with more than 210 autosomal 

markers (i.e. the maximum number of autosomal markers from the smallest 

genome scan); 3) less than 4 standard deviations above or below the mean, after 

sex and age adjustments. In addition, bivariate (within family) outliers were also 

detected and removed. These outliers were defined as any sibling pair in a family 

for whom the height squared difference (after sex and age adjustments) was 
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more than 4 standard deviations above the mean (see Appendix 3). If bivariate 

outliers were detected in families with more than 2 siblings, not all individuals in 

a pair were removed, but only the individuals causing the bivariate outliers (59 

individuals). Subjects younger than 16 years old were mostly in their adolescent 

growth stage, so to minimize heterogeneity of the phenotypic definition, only 

subjects > 16 years of age were included in the analyses. 

The adolescent cohort constituted predominantly DZ twin pairs since these 

have been targeted for genotyping. From 871 individuals in 383 families, there 

were 519 possible pairings of sibs (quasi-independent sib-pairs, QISPs). On the 

other hand, additional family relationships were available for the adult cohort, 

including half-sibs, cousins, avuncular and grandparent-grandchild pairs. From 

7,007 individuals in 2,245 families, there were 4,905 QISPs, 57 half-sibs, 8 

cousins, 138 avuncular and 10 grandparent-grandchildren relationships. Hence, 

nearly all information on linkage comes from sibling pairs. In addition to 

DZ twin pairs and additional siblings, there were 58 and 165 MZ twin pairs 

in the adolescent and adult cohorts, respectively. In the calculation of the 

number of informative relative pairs, only one individual from an MZ pair 

was included. In total, the linkage analysis performed in the present study 

utilised 7,876 individuals with genotypic and phenotypic information who derived 

from 2,628 families. A description of pedigree structures is presented in Table 6.3. 

6.2.4 Power Calculations 

To assess the power of the present study to detect a QTL influencing the 

normal variation in body height, a series of genetic power calculations based on 

Sham et al. (2000), was performed using a genetic power calculator developed 

by Purcell et al. (2003). The power calculations were performed under the 
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Table 6.2: Descriptive statistics of subjects with phenotypic and genotypic 

information after removing univariate and bivariate outliers. 

Variables Cohort Sex N (Subjects) Mean (SD) Range 

Age Adolescent Total 871 16.41 (0.72) 16 -  22 

Adult Total 7007 41.46 (15.26) 16 -  90 

Combined M 3165 38.42 (16.85) 16 - 88 

F 4711 38.86 (16.12) 16 -  90 

Total 7876 38.68 (16.41) 16 -  90 

Number of Adolescent Total 871 562 226 -  755 

autosomal Adult Total 7007 544 211 -  1640 

markers Combined M 3165 542 218 -  1617 

/individual F 4711 549 211 -  1640 

Total 7876 546 211 -  1640 

Height (cm) Adolescent Total 871 170.14 (8.38) 148- 195 

Adult Total 7007 169.27 (9.78) 135 -  203 

Combined M 3165 177.85 (6.86) 152 -  203 

F 4711 163.67 (6.55) 135 -  188 

Total 7876 169.37 (9.64) 135 -  203 

Standardised Adolescent Total 871 0.01 (0.97) -2.66 -  2.88 

residual of height Adult Total 7007 -0.01 (0.95) -3.87 -  3.81 

(adjusted for sex Combined M 3165 0.01 (0.99) -3.76 -  3.81 

and age) F 4711 -0.01 (0.94) -3.90 -  3.60 

Total 7876 -0.01 (0.96) -3-90 -  3.81 
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Table 6.3: Pedigree structure of individuals with phenotypic and genotypic 

information and after removing univariate and bivariate outliers. 

Cohort Adolescent Adult Combined- 

Male 

Combined- 

Female 

Combined-

All 

Families 383 2245 1897 2329 2628 

Individuals' 813 6842 3102 4551 7653 

QISPsa 519 4905 906 1946 5419 

Half-sibs' - 57 10 20 57 

Cousins' - 8 2 1 8 

Grandparent- - 10 1 3 10 

grandchild' 

Avuncular' - 138 28 45 138 

Note: aQ1y  one individual from each MZ pair was included in this calculation. 
QISPs is quasi independent sib pairs. 

following assumptions: 1) an additive QTL is influencing the variation of body 

height; 2) recombination rate between the marker and the QTL is 0; 3) a 

heritability of 0.9 [estimated by Macgregor et al. (2006)]; 4) type 1 error rate 

(a) = 0.0001 (equivalent to LOD score of 3). The expected LOD score for the 

combined cohort was also calculated using the above assumptions as E(LOD) = (1 

+ NCP)/4.605, with NCP the QTL non-centrality parameter (Sham et al., 2000). 

6.2.5 Linkage Analysis 

To identify and map chromosomal regions (quantitative trait loci, QTL) 

influencing variation in body height, a multipoint variance component linkage 

analysis was performed as implemented in Merlin 1.0.1 (for autosomes) and 
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MINX (for the X chromosome) programs (Abecasis et al., 2002) for the 

adolescent, adult and combined cohorts. In addition, to examine the presence 

of sex-specific QTL influencing body height, separate analyses for males and 

females were performed in the combined cohort. This was done by including 

only phenotypes from one sex while retaining the genotypes from both sexes. 

As the framework for mapping the QTL, i.e. establishing the position and 

order of the markers in the chromosomes, a locally weighted linear regression 

map (http://www.qimr.edu.au/davidD)  based on NCBI Build 35.1 physical 

map positions, deCODE and Marshfield maps was used (Duffy, 2006). In the 

linkage analyses, sex and age were fitted as covariates, except for the sex-specific 

analyses, where age was the only covariate. 

Briefly, linkage analysis correlates the phenotypic similarity of relative pairs 

with their genotypic similarity (represented by the proportion of alleles shared 

identical by descent at a specific position in the genome) (e.g. Almasy and 

Blangero, 1998). The presence of a QTL at a specific chromosomal location was 

tested by comparing the likelihood of no QTL (H0) with the likelihood that 

there is a QTL influencing the variation in body height (H1). The LOD (log of 

the odds) score is defined as twice the difference between the loglo  likelihood 

(H0) and (H1) (e.g. Almasy and Blangero, 1998). As suggested by Lander and 

Kruglyak (1995), the present study considered LOD score of 3.3 and 1.9 as 

significant and suggestive evidences of linkage between QTL and markers at the 

test position, respectively. 
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6.3 Results 

6.3.1 Descriptive Statistics 

Only subjects > 16 years of age were selected in this study, so that most of them 

will have reached their final (body) height (Figure 6.2). The age distribution 

of the subjects from the adolescent cohort was different from that of the adult 

cohort. The subjects in the adolescent cohort were mainly 16 years of age. Some 

individuals in this cohort were older, but not more than 22 years. On the other 

hand, a wide range of age was seen in the adult cohort with a mean age of 41.5 

years and a range of 16 - 83 years. 

The mean height of males was larger than that of females for all cohorts, 

and estimated differences were 10.76 cm (SE 0.44), 14.66 cm (0.16) and 14.16 

cm (0.15) for the adolescent, adult and combined cohorts, respectively. The 

estimated regression of age on height was 0.14 (SE 0.30), —0.07 (0.01), —0.05 

(0.01) cm/year, for the adolescent, adult and combined cohorts, respectively. 

The negative slope for the adult cohort is consistent with Macgregor et al. (2006). 

For all cohorts, skewness and kurtosis values of the standardised residuals of 

height after a general linear model adjustment for age and sex effects were very 

close to zero; skewness for the adolescent, adult and combined cohorts was 0.05 

(SE 0.08), 0.04 (0.03) and 0.03 (0.03), respectively and kurtosis was —0.25 (SE 

0.17), 0.10 (0.06) and 0.03 (0.06) were observed for the adolescent, adult and 

combined cohorts, respectively. This is a good indication that the data close to 

a normal distribution, which is an assumption of variance component linkage 

analysis by maximum likelihood. 

The average numbers of markers genotyped per individual were 562 (range: 226 
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- 755) and 544 (range: 211 - 1640) microsatellite markers for the adolescent and 

adult cohort, respectively. For the combined cohort, the number was 542 (range: 

211 - 1640). Overall, these numbers provided an average spacing of about 5 cM 

across the genome. 

The estimated sib correlations of height adjusted for the effects of age and 

sex were 0.49 (SE 0.04) and 0.42 (0.01) for the adolescent and adult cohorts, 

respectively and for the combined cohort was 0.43 (0.01). The corresponding 

heritability estimates as calculated by Merlin were 0.92, 0.82 and 0.85. The same 

heritability of 0.89 was estimated for males and females in the combined cohort. 

6.3.2 Power Calculations 

In the adolescent cohort, the power to detect a QTL explaining 20% of height 

variation was only 6.9%, whereas the power of the adult cohort for detecting 

the same sized QTL was 99.9%. However, when the QTL to be detected is 

responsible for 10% of the variation in height, the power of the adult cohort 

reduced to only 38%. The power of the combined cohort to detect a QTL 

responsible for 10 and 5% of the phenotypic variation is 45 and 3%, respectively. 

For a power of 80%, the required sample size to detect a QTL explaining 10% 

of the phenotypic variation is about 8,768 sib-pairs. In the combined cohort, 

the expected LOD scores for a QTL explaining 5, 10 and 20% of the phenotypic 

variance were 0.9, 3.0 and 11.5, respectively. In these power calculations, the 

QTL and the marker are assumed to be completely linked (recombination rate 

= 0). For average spacing of 2.5 or 5 cM, which is commonly found in practice, 

the powers will be less than the above figures. 
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Figure 6.2: The age (top) and height (middle) distributions of the subjects 

from different cohorts. The plots of height for given age are presented in the 

bottom part of the figure. 

6.3.3 Linkage Analysis 

Adolescent and Adult Cohorts: 

The multipoint LOD score profiles for all chromosomes are presented in Figure 

6.3 and the chromosomal regions that reached a LOD score of 1.5 or greater are 

presented in Table 6.4. In the adolescent cohort, no chromosomal regions showed 

a suggestive linkage for body height. However, five chromosomal regions that 

reached LOD scores greater than 1 were identified on chromosomes 1, 2, 7, 8 and 

9. From the adult cohort, 2 chromosomal regions [1q23.1 (LOD = 2.5); 5q32 
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(LOD = 1.9)] were suggestive for linkage with body height. In addition to that, 

7 other chromosomal regions reached a LOD score of 1.5 or larger (Table 6.4). 

There was little overlap between the results of the adolescent and adult cohorts 

(Figure 4A). When the two cohorts were combined, its LOD score profile was 

very similar to that of the adult cohort (Figure 413), not surprising given that 

about 90% of the combined samples came from the adult cohort. In the combined 

cohort, only two chromosomal regions [3q22.1 (LOD = 2.1) and 5q32 (LOD 

2.1)] were suggestive for linkage. 

The result of sex-specific linkage analysis in the combined cohort is presented in 

Figure 6.5. In males, two suggestive QTL were identified, including on 1q32.1 

(LOD = 1.9) and 15q23 (LOD = 1.9) (Table 6.4). In females, only one such 

region was identified, namely 7p2l.3 (LOD = 1.9). 

Bivaria te (Within Family) Outliers: 

To guard against undue influence of a few extreme sib-pairs, all linkage analyses 

were performed by excluding individuals who were classified as bivariate (within 

family) outliers. Based on simple chi-square theory (Appendix 6A), in a given 

family, these outliers were defined as sibling-pairs of individuals for whom the 

absolute difference was 19 cm or greater. The difference of linkage results 

between including and excluding bivariate outliers in the combined cohort is 

presented in Figure 6.6. The results showed that by excluding the outliers, the 

LOD scores increased for most regions, except for the region on chromosome 15. 
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Table 6.4: Chromosomal regions showing multipoint LOD score > 1.5. 

Cohort Chromosome Adjacent 

Marker 

Location and 

and CP (cM) 

Multipoint 

LOD score 

Adult 1q23.1 D1S1653 167 (155-174) 2.5 

D3S1768 59 (47-77) 1.6 

3q22.1 D3S1292 137 (128-153) 1.8 

5q32 GATA1391309 154 (141-164) 1.9 

7p2l D7S513 16 (2-24) 1.5 

8p23.1 D8S264 4 (0-18) 1.7 

12q13 D12S398 72 (41-114) 1.6 

16q21 D16S503 84 (74-92) 1.6 

20pll.23 D20S112 44 (37-76) 1.5 

Combined-M 1q32.1 GGAA23CO7 212 (203-231) 1.9 

2p2l D2S2259 69 (53-83) 1.5 

15q23 D15S131 70 (53-93) 1.9 

17q11.2 D17S798 59 (28-73) 1.7 

Combined-F 7p2l.3 GATA1191303 18 (9-26) 1.9 

Combined 1q23.1 D1S1653 167 (152-191) 1.7 

3q22.1 D3S1292 137 (128-148) 2.1 

5q32 GATA1391309 150 (141-160) 2.1 

Note: 'CI was calculated using the one LOD drop-off method. 
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Figure 6.4: LOD scores at 1 cM grid between the adult and adolescent cohorts 

(A) and between the adult and combined cohorts (B). 

6.4 Discussion 

Genetic studies of normal variation in body height are medically important 

and useful for understanding the genetic architecture of complex quantitative 

traits. As was shown in the present study, body height is a normally distributed 

quantitative trait. In the view that the heritability of height is very high, this 

suggests that many genes influence its variation (e.g. Hirschhorn et al., 2001). 

This genome-wide linkage analysis using a sample of 5,419 quasi-independent 

sib-pairs provides further evidence for the polygenic nature of body height. In 

the combined cohort, several chromosomal regions showed moderate linkage and 

two of them reached the asymptotic suggestive level of 1.9. However, despite 

using a large sample, none of them reached the asymptotic threshold of 3.3 

indicating significant linkage. With the current sample size, power calculations 

indicated that if there was a QTL explaining 20% or more of the variation 

in body height segregating in the Australian twin sample and the QTL was 
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completely linked to the marker, it was unlikely to be missed since the present 

study had 100% power to detect it. These results therefore suggest that normal 

variation in body height is influenced by several or many genes of small to 

modest effect. 

The results of sex-specific linkage analyses are particularly interesting. Beside 

there being sex-specific QTL [1q32.1, 15q23 (males) and 7p2l (females)], the 

peaks on 1q23.1, 12q13 and 17q11.2 were almost equally contributed by each sex. 

In addition to those, two other chromosomal regions, 3q22.1 and 5q32 deserve 

more attention. The LOD scores from the combined samples for these regions 

were much greater than the sum of the LOD score from males and females. 

These can be explained by the fact that almost half of the samples were of the 

opposite-sex pairings, which were excluded from the sex-specific analyses. In 

other words, the LOD scores of these regions were mainly contributed by the 

opposite-sex pairings. 

Previous studies have identified several chromosomal regions showing significant 

linkage (i.e. LOD score > 3.3) with body height (Table 6.1). These included the 

regions on chromosome 1p2l (for males only) (Sammalisto et al., 2005), 6q25.3 

(Hirschhorn et al., 2001), 7q35 (Hirschhorn et al., 2001), 9q22 (Liu et al., 2006), 

12q13.1 (Hirschhorn et al., 2001), 13q33.1 (Hirschhorn et al., 2001), 14q23.1 (Wu 

et al., 2003), and the X chromosome (Xp22 and Xq24) (Liu et al., 2006). Many 

other studies have also supported these regions as being associated with body 

height, including the regions on chromosome 1 (Shmulewitz et al., 2006; Wu 

et al., 2003); chromosome 6 (Geller et al., 2003; Xu et al., 2002); chromosome 7 

(Perola et al., 2001); chromosome 9 (Xu et al., 2002); chromosome 12 (Dempfle 

et al., 2006; Sammalisto et al., 2005; Xu et al., 2002); and chromosome 14 

(Mukhopadhyay and Weeks, 2003). Among these regions, 12q13.1 was replicated 
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in this study. The LOD scores for this region were 1.6 and 1.3 in the adult 

and combined cohorts, respectively. The chromosomal regions of 3q22.1 and 

5q32, which showed suggestive linkage in the combined cohort, have been 

previously mapped into a similar location. Using a combined population of 6752 

individuals, Wu et al. (2003) reported that 3q23 and 5q31.1 were suggestive 

for linkage with body height (LOD = 2.0 for both). (Deng et al., 2002) (2002) 

have also suggested that the region on chromosome 5 was associated with body 

height. Although these regions are not exactly the same, the one LOD drop-off 

confidence intervals overlap. 

Among many genes that have been associated with body height, the vitamin 

D receptor (VDR) has recently received more attention. As one of the 

intracellular hormone receptors, the main role of VDR is to bind the active 

form of vitamin D. This gene was mapped to 12q12-q14 (Online Mendelian 

Inheritance in Man, 2006). Association studies have suggested that variation 

in this gene is associated with body height (e.g. D'Alesio et al., 2005; Dempfie 

et al., 2006; Lorentzon et al., 2000; Remes et al., 2005; Xiong et al., 2005). 

Furthermore, a meta-analysis of published linkage studies on chromosome 12 

has shown that there is significant evidence for the presence of a QTL on this 

chromosome (Dempfie et al., 2006). In the present study, the LOD score for 

this region did not reach a suggestive linkage, but LOD scores of 1.6 and 1.3 

were observed in the adult and the combined cohorts. For the combined cohort, 

power calculations suggest that the expected LOD scores for a QTL explaining 

5 to 10% of the phenotypic variance are 0.9 and 3, respectively, so if the VDR 

has a moderate effect on height, the observed LOD scores in this region are not 

inconsistent with VDR being a candidate gene for height. 

Other interesting genes that are located under or close to the linkage peaks were 
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ADIPOR1 (1q32.1), PTHR1 (3p21.3), BCHE (3q26.1) and CYP19 (15q21.2) 

(Figure 5). Variants in these genes have been associated with body height (Ellis 

et al., 2001; Scillitani et al., 2006; Siitonen et al., 2006; Souza et al., 2005; Yang 

et al., 2006). In particular, Ellis et al. (2001) have reported that the association 

between the CYP19 gene was more evident in males than in females. As can 

be seen from Figure 5, the peak on chromosome 15 was male-specific. The 

concordance between this result and that of Ellis et al. provide evidence that 

the association between CYP19 and body height is male-specific. 

Linkage analyses were performed by excluding individuals who were categorised 

as bivariate outliers. Within family, these individuals were discordant for body 

height, when the between sib absolute difference is about 19 cm. This strategy 

would seems to be counter-productive, because most information for linkage 

comes from extreme discordant sib pairs (Risch and Zhang, 1995). However, by 

removing these outliers, disproportionate contribution to linkage from extreme 

pairs, which could be due to measurement errors, is avoided. 

In conclusion, a genome-wide linkage analysis has revealed several chromosomal 

regions suggestive for linkage with body height in a large sample of the Australian 

twin families. Among these regions, 3q22.1 (LOD = 2.1) and 5q32 (LOD = 2.1) 

reached the suggestive level for linkage. Separate linkage analyses for males and 

females suggested that three chromosomal regions were sex-specific. While the 

regions of 1q32 (LOD = 1.9) and 15q23 (LOD = 1.9) were suggestive for linkage 

with body height in males, 7p2l.1 was suggestive in females only. Despite a 

large sample size, the moderate statistical support for most of the identified 

chromosomal regions suggests that body height is influenced by several or many 

genes, each having a modest effect. 
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Appendix 6A. A Simple Calculation for Detecting Bivariate (Within Family) 

Outliers 

In a family consisting of sibling pairs, let y' and Y2  be the phenotypic (residual) 

values of sib1  and sib2, respectively. Their phenotypic difference is D =yj - Y2. 

By assuming that the phenotypic values are bivariate normally distributed, the 

expected mean and variance of the squared of D, (D 2) can be calculated using 

Chi-Square theory, 

D2, 2(1 -r)0,2 
  41) 	 (6.1) 

Where r is the sib correlation and a is the standard deviation of the phenotypic 

values for Yl  and Y2•  So, the mean of D2  is 2(1 - r)a2  and the variance of D2  is 

8(1 - r)20,4  

Hence, the expected standard deviation (SD) of D2  is 2/(1 - r) 0,2 
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7 General Discussion 

7.1 Summary 

Understanding the genetic basis of human phenotypes is the principal goal 

in human genetics. One of the end results of this endeavor is to understand 

the biological function of genes. For complex traits, typical steps needing to 

be taken to achieve this goal include heritability estimation, genetic linkage, 

association and functional studies. For a phenotype of interest, the quest begins 

with understanding how the variation observed between individuals is related to 

its genetic variation. This step involves partitioning the phenotypic variance of 

a trait into underlying genetic and environmental components. After knowing 

that genetic factors are important sources of the observed variation between 

individuals, the next step is to locate the chromosomal regions influencing the 

trait. This step can be achieved by means of linkage mapping. The chromosomal 

regions identified by linkage mapping usually contain hundreds of genes. To 

finely map the regions or in some cases to find the actual genes, association 

studies can be conducted. Populations of twins are very useful to serve every 

step of this endeavour (see MacGregor et al., 2000). The focus of this thesis 

is only on the first two steps, i.e. understanding the genetic variation of 

human quantitative traits and mapping the chromosomal regions influencing the 

variation of quantitative traits using samples of twins and (to some extent) their 

families. 

It is shown in this thesis that populations of twins, with or without zygosity 

information, are useful for understanding the genetic and environmental sources 

of quantitative trait variation between individuals. If genotypic data are also 

available, twins can be used to identify genes/chromosomal regions affecting the 
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variation of quantitative trait by means of linkage analysis. 

In Chapters 2-4, novel applications of a finite mixture distribution model 

(Neale, 2003) to partition the phenotypic variance of a trait into genetic and 

environmental components using data from twins of unknown zygosity are 

presented. Variance component estimates of IQ from two whole-population 

surveys in Scotland, SMS1932 and SM51947 are presented in Chapter 2. 

Consistent estimates of heritability of -0.70 and shared environment (c2) of 

0.21 were found in both surveys. The estimates decreased slightly when 

additional quantitative traits (height and weight) were added in a multivariate 

analysis. 	This study is the first to estimate genetic and environmental 

components of cognitive ability in entire school-attending populations and 

implies that large (national) data collections can provide sufficient information 

on twin pairs to estimate genetic parameters, even without known zygosity. 

The precision and bias of the finite mixture distribution model were assessed 

using computer simulations and application to IQ measures from a large sample 

of twins with known zygosity (twins from the UK Twins' Early Development 

Studies) (Chapter 3). Simulation results showed that, if normality assumptions 

were satisfied and the sample size was large (e.g. 2,000 pairs), then the variance 

component estimates from the mixture distribution model were unbiased and 

the standard deviation of the difference between heritability estimates from 

known and unknown zygosity was in the range of 0.02 to 0.20. Unexpectedly, 

the estimates of heritability of 10 variables from TEDS using the mixture 

distribution model were consistently larger than those from the conventional 

(known zygosity) model. This discrepancy was due to violation of the bivariate 

normality assumption. A leptokurtic distribution of pair difference was observed 

for all traits (except non verbal ability scores of MZ twins), even when the 
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univariate distribution of the trait was close to normality. From an independent 

sample of Australian twins, the heritability estimates for IQ variables were also 

larger for the mixture distribution model in 6 out of 8 traits, consistent with 

the observed kurtosis of pair difference. While the known zygosity model is 

quite robust to the violation of the bivariate normality assumption, the mixture 

distribution model produces biased estimates when the bivariate normality 

assumption is violated. The novel finding of widespread kurtosis of the pair 

difference may suggest that this assumption for analysis of quantitative trait 

in twin studies may be incorrect and needs revisiting. A possible explanation 

for widespread kurtosis within zygosity groups is heterogeneity of variance, 

which could be caused by genetic or environmental factors. In the mixture 

distribution model, the leptokurtosis- derived biases could perhaps be overcome 

by transforming the distribution of the pair difference to make it (near) normal, 

but further research is necessary to investigate whether it is feasible. 

Although the finite mixture distribution model was shown to provide reliable 

genetic and environmental variance component estimates from twin data of 

unknown zygosity, the standard error of the estimates are still larger than the 

estimates from a conventional (known zygosity) method. One suggested way 

to decrease the standard error of the estimates is to analyse multiple traits 

simultaneously in a multivariate analysis. Additional phenotypes may provide 

additional zygosity classification as well as increase the effective sample size. It 

is subsequently shown in Chapter 4 that a multivariate analysis indeed reduces 

the standard error of variance component estimates. From the pattern of 

decreasing standard error of variance component estimates with the increase of 

number of traits analysed, it is hypothesized that if more than approximately 

10 traits are analysed simultaneously, then the mixture distribution model 

provides variance component estimates with precision that are comparable to 
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conventional analysis of known zygosity. However, further research is required to 

examine the behaviour of the mixture model for traits with different correlations 

or when the pair differences are not normally distributed. 

As has been shown by Neale (2003), the mixture distribution model will be most 

useful for estimating variance components from twin data when the zygosity is 

known with misclassification, but the rate of misclassification is known. The 

model will also be useful when the posterior probability of zygosity of each pair 

of twins is calculated using e.g. a latent-class approach (Heath et al., 2003) 

prior to analysis using the mixture distribution model (Neale, 2003). While 

most of the current and new twin data collected will have zygosity information, 

the mixture distribution will still have a value for analysing twins from large 

population-based surveys, where zygosity information is not available as shown 

in Benyamin et al. (2005). 

In Chapter 5, another statistical model, a mixed linear model (Visscher 

et al., 2004) is used to partition the phenotypic (co)variances of traits into 

genetic and environmental factors from twins of known zygosity (twins from the 

Danish Twin Registry). This model is applied to understand the underlying 

genetic and environmental aetiology of endophenotypes associated with the 

metabolic syndrome (the cluster of obesity, insulin resistance, dyslipidaemia 

and hypertension). All endophenotypes showed moderate to high heritability 

(0.34-0.73) and no significant common environmental variance, except for fasting 

glucose. In a general population, it is demonstrated that the endophenotypes 

associated with the metabolic syndrome apparently do not share a substantial 

common genetic or familial environmental background. It is suggested that 

much more studies are needed before categorising people as having the metabolic 

syndrome has a clinical utility. These include understanding the metabolic 
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syndrome as a unified syndrome with known underlying pathophysiology, the 

endophenotypes included or excluded, the value of diagnosing patients with the 

syndrome and the treatment itself (Kahn et al., 2005). 

Following heritability estimations using twins unknown or known zygosity, the 

next focus is on the identification of QTL/chromosomal regions associated with 

body height (Chapter 6). Using a large sample of Australian twins, a variance 

component linkage analysis revealed several chromosomal regions suggestive for 

linkage with body height, including 3q22.1 (LOD = 2.1) and 5q32 (LOD = 

2.1). Sex-specific linkage analyses indicated that 1q32 (LOD = 1.9) and 15q23 

(LOD = 1.9) were suggestive for linkage with body height in males, while 7p2l.1 

(LOD = 1.9) was only suggestive in females. The results are mostly consistent 

with previous studies, in that statistical support for most of the identified QTL 

was low to moderate. It can be concluded from the present study that despite 

the relatively large sample size, the moderate statistical support for most of 

the identified chromosomal regions indicates that body height is influenced by 

several or many genes, each having a modest effect. 

Data used in each chapter come from different studies in different countries. 

Although the procedures for data collection have been designed to minimise 

possible bias and error, it is still important to discuss possible limitations of 

each data. In Chapter 2, the twin data come from two population surveys in 

Scotland, i.e. SMS1932 and SM51947. The twins from SM51947 were explicitly 

ascertained, but not for the twins from SMS 1932. They were instead identified 

by matching pairs of subjects for: surname, date of birth and school identifier. 

Although it is unlikely that any two individuals identified as twins are non 

biological twins, the possibility cannot be ruled out, in particular for large 

schools and common surnames. 
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In Chapter 3, the twins were collected from a representative sample of twins born 

in England and Wales who participated in the U.K. Twins' Early Development 

Study (TEDS). The main limitation of this data is that the measures/ phenotypes 

were obtained from a telephone interview. It is possible that for some twins the 

answers were influenced by his/her co-twins or their parents. Although each twin 

was interviewed individually and presumably independent of his/her co-twin and 

parental input, such possibility cannot be ruled out. It is also possible that the 

TEDS families are not a random sample from the population with respect to the 

phenotypes investigated. 

In Chapter 5, the twins were recruited from two cohorts of the nation-wide, 

population-based Danish Twin Registry. The younger cohort was selected as 

self reported healthy based on questionnaire data obtained three years before 

the study, while these data were not available for the older cohort. However, 

both cohorts were screened for known diabetes and cardiovascular disease before 

being invited to this clinical investigation. The non-participation among the 

selected and invited twins may have introduced biases in the distributions 

of the individual endophenotypes of the metabolic syndrome, but, although 

unverifiable, it is unlikely that the intrapair correlations and the mutual 

relationship between the endophenotypes are biased by this attrition of the 

study sample compared to the original study population. 

In Chapter 6, a possible limitation of the height data from the Australian twins 

is that most of the data come from a self reported measure. It has been shown by 

Macgregor et al. (2006) that self reported height is more variable than clinically 

measured height, which leads to a slightly lower estimate of heritability. While 

this may also affect the result of the linkage analysis presented in Chapter 6, 
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this was not quantified in this thesis. 

7.2 Future Prospects 

In this era of high throughput genetics, what is the future for twins in human 

genetic studies and in which direction is the field of gene identification going? 

These are two important questions that are going to be addressed in this last 

section of the thesis. 

7.2.1 The Future of Twins in Human Genetic Studies 

As has been shown in this thesis, twins are not only useful for traditional 

heritability estimation, but also provide additional advantages in the search for 

individual genes underlying variation in complex quantitative traits. Boomsma 

et al. (2003), Martin et al. (1997) and MacGregor et al. (2000) have argued 

for the importance of twins as a population of choice for genetic studies of 

complex traits. Populations of MZ and DZ twins can be useful and advantageous 

for genetic linkage and association studies. MZ twins by themselves are not 

informative for linkage since they are genetically identical. However, if sibling(s) 

are also available in an MZ family, they become informative for linkage. DZ 

twins are genetically the same as ordinary siblings, but they are matched for age 

and shared family environments. These are two important properties of twins 

in relation to linkage and association studies for the following reasons. It is 

recognised that age is an important factor for disease expression of most complex 

diseases. The matching of family environments also makes DZ twins have a 

greater similarity for other environmental variables, which might be important 

for disease expression (MacGregor et al., 2000). 
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MZ twins alone can also be a valuable resource for gene expression (e.g. 

Sarkijarvi et al., 2006) and epigenetic studies (Fraga et al., 2005; Petronis, 2006). 

With the advance of gene array technologies, the expression of thousands of 

genes from MZ twins that are discordant for a disease can be compared and 

the association between the level of gene expression and a disease can be 

inferred. For example, greater than 2-fold increase in the level of expression in 

six genes was found in MZ twins discordant for multiple sclerosis (Sarkijarvi 

et al., 2006). This type of research may lead to the identification of a number 

genes that can be further studied for their roles in influencing of the variation 

of complex traits using other methods, such as candidate gene association studies. 

Epigenetics, heritable variations in gene function that is not caused by changes 

in DNA sequences, has been increasingly recognised as an important source 

of phenotypic difference between discordant MZ twins (reviewed by Kato 

et al., 2005). In the presence of epigenetic modifications, individuals with the 

same genotypes can manifest different phenotypic expression. MZ twins are 

particularly suitable for studying these phenomena since MZ twins are genetically 

identical (Petronis, 2006). So, in the absence of environmental differences within 

pairs of MZ twins, any phenotypic difference could be attributed to epigenetic 

modifications. 

In the field of variance components estimation, heritability estimates have 

been commonly reported for many human phenotypes (reviewed by Boomsma 

et al., 2002). At first glance, it seems that there is no need for more heritability 

estimations. However, it should be noted that heritability is a property of a 

population at a given time (Falconer and Mackay, 1996). Since heritability 

is a function of allele frequency (which may change with e.g. the presence of 
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selection) and the environmental effects on a trait in a population may also 

change, the heritability of a trait still needs to be estimated from population to 

population. Twin studies will also play a role for decomposing the sources of 

family resemblance of new phenotypes. One example of a group of phenotypes 

gaining widespread interest is gene expression. These phenotypes quantify 

the expression level of genes, which are represented by the amount of mRNA 

transcript in a particular tissue. Using 10 pairs of MZ and 5 pairs of DZ twins, 

York et al. partitioned the variation in expression of more than 6,500 genes into 

genetic and environmental components. Average intraclass correlation of 0.3 

(SD 0.38) and -0.08 (0.54) were estimated for MZ and DZ pairs, respectively. 

Therefore, it is reasonable to argue that twins will still be important populations 

for decomposing the phenotypic variance into genetic and environmental factors. 

It is recognised that heritability estimation in the classical twin design was 

based on several important assumptions. One of the most important being 

the equality of common environmental assumption between MZ and DZ pairs. 

If MZ twins are treated more similarly than DZ twins, then the estimate 

of heritability will be biased. This assumption can be tested by comparing 

phenotypic similarity in twins of perceived versus true zygosity (Kendler 

et al., 1993; Scarr, 1968). 	The assumption is violated if the phenotypic 

similarity of the twins is the result of perceived zygosity rather than the true 

zygosity. While this assumption has been tested empirically for some traits (e.g. 

Kendler et al., 1993), this is not commonly practiced as part of most twin studies. 

Motivated by the limitations of the classical twin design and the availability of 

genome-wide genetic marker data, Visscher et al. (2006) proposed a new method 

for estimating heritability using the observed proportion of the genome that is 

shared by relatives. This method is different from the conventional approach, 
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in that the proportion of variance due to genetic factors was estimated from 

the actual (e.g. the proportion of alleles shared identical by descent) rather 

than the expected coefficient of relationship. As a result, this method does 

not imply any assumptions about the sources of twin resemblance, e.g. no 

assumption is made about the equality of common environmental experiences 

shared by MZ and DZ twins. With sufficient data, dominance and epistasis 

genetic effects can also be modelled using this method. In Australian samples, 

they obtained an estimate of heritability for height of 0.8, which is consistent 

with the estimates from the classical twin design commonly reported in the 

literature (see Silventoinen, 2003a). 

Another important point to be made about the place of twins in human genetic 

studies is the presence of twin registries worldwide. These registries maintain 

contacts and databases of twins, where large collections of phenotypes are 

recorded. Most of the established registries are in the Scandinavian countries, 

such as Denmark, Finland, Norway and Sweden. However, a number of twin 

registries have also been established outside Scandinavia, including in Italy, the 

Netherlands, UK and Australia. In Asia, the recognition of the importance 

of twins in large scale epidemiological studies has prompted countries such 

as Japan, South Korea and Sri Lanka to establish twin registries (Boomsma 

et al., 2002; Busjahn and Hur, 2006). These large resources are very valuable for 

human genetic studies, since it is well known that a large sample size is a key to 

the success for gene identification. 

7.2.2 The Future of Gene Identification 

The identification of genes underlying complex traits has been a very slow and 

difficult endeavor. While traditional linkage analysis has been very successful 
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in discovering genes responsible for most Mendelian traits, its success for 

complex traits has been limited. Many studies have failed to replicate previously 

reported linkage between markers and quantitative traits. Among the reasons 

for this failure is that complex traits may be influenced by many genes of 

small to moderate effects and most studies are under-powered to detect these 

genes (Aitmuller et al., 2001). Genetic association and linkage disequilibrium 

mapping have been suggested to be more suitable for detecting genes of small 

effects (Risch and Merikangas, 1996; Risch, 2000). Therefore, there is now a 

growing interest in using both methods to identify genes underlying complex 

traits. Genetic association studies have traditionally looked for an association 

between a single or several markers and a trait. However, with the completion 

of the Human Genome Project (International Human Genome Sequencing 

Consortium, 2001; Venter et al., 2001), the availability of SNP database in the 

public domain (The International SNP Map Working Group, 2001) and the 

completion of the first phase of the HapMap Project (The International HapMap 

Consortium, 2005), the prospect of a whole genome association using hundreds 

of thousands single nucleotide polymorphisms (SNPs) is very promising. Indeed, 

several genome-wide association studies have reported associations between SNPs 

and complex diseases (Duerr et al., 2006; Klein et al., 2005; Ozaki et al., 2002). 

The challenges faced by such large scale studies are both financial and technical. 

The funding required for a genome-wide association with 1,000 cases and 

controls are very expensive [in the order of several million USD (e.g. Palmer 

and Cardon, 2005)]. Although the costs of genotyping will continue to decrease, 

the costs of phenotyping are unlikely to decrease. Therefore, collaboration 

between research institutions is needed. The large numbers of SNPs to be tested 

also pose technical/ analytical challenges, particularly the problem of multiple 

testing. Hundreds of thousands tests are performed in a genome-wide association 
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test, which increase false positive rates if no correction is made. Therefore, an 

appropriate significance threshold based on the traditional Bonferroni correction 

or other methods (Thomas, 2004) as well as replication studies are required to 

ensure that positive results are real. 

Another new development in genetics that has attracted much attention is 

the genetic studies of gene expression. The field, which is known as genetical 

genomics (Jansen and Nap, 2001), emerged from the realization that measures 

of gene expression can be treated as any other quantitative trait. This means 

that gene expression can be described using quantitative genetic methods 

as well as subjected to genetic linkage and association analyses (Rockman 

and Kruglyak, 2006). Compared to traditional phenotypes, there are several 

advantages attributed to the analysis of gene expression. 	These include 

the possibility of large numbers (thousands) of phenotypes being assayed 

simultaneously and the fact that variation in gene expression is directly related 

to variation in DNA sequence (Rockman and Kruglyak, 2006). 

The studies of Morley et al. (2004) and Cheung et al. (2005) demonstrate how 

genome-wide linkage and association studies can be applied to gene expression 

phenotypes. Initially, a genome-wide linkage analysis was conducted on 3,554 

expression phenotypes using sib-pairs of 14 large Centre d'Etude Polymorphism 

(CEPH) families (Morley et al., 2004). Out of 3,554 expression phenotypes, 374 

showed evidence for linkage. Subsequent regional and genome-wide association 

studies using 57 founder individuals from the same CEPH pedigrees confirmed 

15 expression phenotypes which showed significant associations in the same 

regions indicated by linkage analysis (Cheung et al., 2005). Genetic studies 

of gene expression offer a new insight into genetic architecture of quantitative 

traits as well as provide a more direct relationship between DNA sequence 
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variation and phenotypic variation (Rockman and Kruglyak, 2006). At the same 

time, these studies also raise issues related to the analysis and interpretation of 

such experiments due to the large number of expression phenotypes analysed 

simultaneously. 

The studies of epigenetics, genome-wide association analysis and gene expression 

are among the most promising areas in the search for molecular basis underlying 

human complex traits. Twins are also expected to play significant roles in these 

new areas of research. Inevitably, these new areas of genetic research pose 

challenges in term of analysis and result interpretation. Nonetheless, new and 

exciting areas of human genetic research are waiting to be explored. 

The advances in genetics and genomics described above are expected to improve 

human health globally. However, genetic and genomic research described above 

and in this thesis mostly focuses on the needs of developed countries (Global 

Forum for Health Research, 2004). In other words, the phenotypes/diseases 

studied are those that are common in developed countries. This is perhaps 

because the key driver for allocation of funding is the burden of diseases in 

developed countries. On the other hand, genetic and genomic research on diseases 

that affect most people in developing countries, including genomics research of 

infectious agents and host-parasite relationships, have been very limited (The 

Advisory Committee on Health Research, WHO, 2002). This discrepancy is 

captured in the expression "the 10/90 gap", which states that only 10% of 

research funding is invested into the health problems that account for 90% of 

the global disease burden (Global Forum for Health Research, 2004). To correct 

the 10/90 gap, the commitment of researchers, research institutions, funding 

bodies, private companies, governments, media and NGOs in both developed 

and developing countries is required (Global Forum for Health Research, 2004). 
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This commitment would ensure that people from all countries and backgrounds 

benefit from the advances in genetics and genomics. 
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