

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Characterizing and Exploiting Application

Behavior Under Data Corruption

Georgios Stefanakis

T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Master of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2015

Abstract

Shrinking semiconductor technologies come at the cost of higher susceptibility to hard-

ware faults that render the systems unreliable. Traditionally, reliability solutions are

aimed to protect equally and exhaustively all hardware parts of a system. This is in

order to maintain the illusion of a correctly operating hardware. Due to the increasing

error rates that induce higher reliability costs, this approach can no longer be sustain-

able.

It is a fact that hardware faults can be masked by various levels of fault-masking

effects. Therefore, not all hardware faults manifest as the same outcome on an ap-

plication’s execution. Motivated by this fact, we propose a shift to vulnerability-

driven unequal protection of a given structure (or same-level structures), where the

less-vulnerable parts of a structure are protected less than their more-vulnerable coun-

terparts.

For that purpose, in this thesis, we quantitatively investigate how the effect of

hardware-induced data corruptions on application behavior varies. We develop a port-

able software-implemented fault-injection (SWIFI) tool. On top of performing single-

bit fault injections to capture their effects on application behavior, our tool is also data-

level aware and tracks the corrupted data to obtain more of their characteristics. This

enables to analyze the effects of single-bit data corruptions in relation to the corrupted

data characteristics and the executing workload. After a set of extensive fault-injection

experiments on programs from the NAS Parallel Benchmarks suite, we obtain detailed

insight on how the vulnerability varies; among others, for different application data

types and for different bit locations within the data.

The results show that we can characterize the vulnerability of data based on their

high-level characteristics (e.g. usage type, size, user and memory space location).

Moreover, we conclude that application data are vulnerable in parts. All these show

that there is potential in exploiting the application behavior under data corruption. The

exhaustive equal protection can be avoided by safely shifting to vulnerability-driven

unequal protection within given structures. This can reduce the reliability overheads,

without a significant impact on the fault coverage. For that purpose, we demonstrate

the potential benefits of exploiting the varying vulnerability characteristics of applica-

tion data in the case of a data cache.

iii

Lay Summary

Computer applications are executing on computer hardware and manipulate data stored

in the computer hardware to perform computations and decisions according to their in-

tended functionality. Unfortunately the underlying computer hardware is becoming

increasingly unreliable due to a variety of physical effects. Such occurrences of hard-

ware faults may unpredictably change the values of the application data causing the

computer applications to potentially have unexpected behavior.

Interestingly though, the hardware faults do not affect the executing application

always in the same manner; there are many different effects that a hardware fault may

have on the behavior of an application. E.g., the application may stop operations, it

may complete but compute a wrong output, it may complete successfully, etc.

One of the goals of this thesis is to investigate how an application behaves under

the presence of hardware faults that corrupt the application data. For that purpose

we develop a framework that emulates hardware faults in application data during the

execution of an application and captures the resulting behavior of the application. After

performing extensive tests on a set of applications, among other things, we can observe

which application data are less likely than others to affect the application behavior if

corrupted.

Based on this vulnerability insight, we propose that we can exploit the application

data vulnerabilities to our benefit. As it is imperative that computing systems behave

correctly, it has been common to protect fully the computing systems against as many

hardware faults as possible. Such exhaustive protection though comes at the cost of

increased operating costs and decreased performance in the effort to maximize the

system’s reliability.

As we find out that not all application data are equally vulnerable, we propose

that it is not necessary to fully protect a computing system. Instead we can unequally

protect a system by decreasing the protection of the areas that are less vulnerable if a

hardware fault occurs there. That way we can reduce the protection overheads with a

minimum effect on the system’s reliability. As a mean to motivate such a design, we

demonstrate the magnitude of potential benefits of unequal protection in the case of

one hardware structure in particular, a data cache.

iv

Acknowledgements

First, I would like to acknowledge the contribution of my supervisors, Marcelo

Cintra and Vijay Nagarajan, to this work and to my personal development. Without

their effort and guidance, this work wouldn’t have been possible and, without their

presence, I wouldn’t have got where I am today. It is because of them that I got the

opportunity to gain valuable research skills and life experience on the inner workings

of the academic community.

I would also like to thank the examiners, Boris Grot and Yannis Andreopoulos, for

their valuable comments and constructive suggestions on improving the quality of this

thesis. Equally important were the rest members of the institute. In particular, I would

like to thank the ICSA Directors, Murray Cole and Mike O’Boyle, for all their help

and support. Also, my kindest regards go to all the fellow students of the group and

to the fellow New Texas residents over the years. Many thanks to all of you Andrew,

Fabricio, Karthik, Luna, Murali and Vassilis, who slowly became Kiran, Praveen, Rui,

Stan and Ursula.

An extra special thank you goes to all of those that our time overlapped in Edin-

burgh and got close enough to consider them my friends, made my time in Edinburgh

more fun, were kind enough to tolerate me and kept me sane too. Here’s a big one for

Andrew, George, Konstantina, Lito, Natasa, Nikolas, Salvatore and Vassilis. The same

goes for all of those that have kept in touch with me over the years. I may not mention

you by name but I am nevertheless very grateful for being there for me and remaining

friends throughout the years.

This would not be a proper acknowledgement section without a hello to Jason

Isaacs and a shout-out to the EPT/PDT/ETT members. Alexi, Anastasia, Evripidi and

Stavre, there is a state-sized thank you coming your way. I cannot picture life without

your wisdom, wittiness, bickering, wittering, reposting and five nines availability.

Before concluding this list, I want to state my gratitude to my parents for their

support. Last but not least, I would like to thank my dear brother, Filippos, for coping,

for being understanding and for being mature enough to handle things in my stead.

More so for not making me feel too bad that I hadn’t been physically there for him to

watch him grow up, all while making me immensely proud of him.

Finally, many thanks to the anonymous EU/UK taxpayer that through its involun-

tary contribution made it possible to fund this research. I sincerely hope that one day

the findings will affect your everyday life in a meaningful manner.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following paper:

• Georgios Stefanakis, Vijay Nagarajan, and Marcelo Cintra. Understanding the

Effects of Data Corruption on Application Behavior Based on Data Character-

istics, In Proceeding of the 34th International Conference on Computer Safety,

Reliability & Security (SAFECOMP), September 2015.

(Georgios Stefanakis)

vii

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Fault Masking . 3

1.2 Problem Statement . 5

1.3 Thesis Goals and Approach . 7

1.4 Thesis Contributions . 9

1.5 Thesis Overview . 10

2 Characterization Framework 13

2.1 Framework Overview . 14

2.2 Single-Fault Injection Tool . 15

2.2.1 Fault Trigger . 16

2.2.2 Fault Injection and Fault Model 16

2.2.3 Monitoring, Data Tracking and Reporting 18

2.2.4 Benefits of Binary Instrumentation 22

2.3 Summary . 23

3 Application Behavior Characterization Under Data Corruption 25

3.1 Experimental Setup . 26

3.2 Workload-Related Vulnerability Variation 30

3.3 Application Data Vulnerability Variation 31

3.3.1 Per-Bit Vulnerability Variation within Application Data 34

3.4 Memory Space Vulnerability Variation 40

3.5 Register File Vulnerability Variation 43

3.6 Instruction-Level Vulnerability Variation 47

ix

3.6.1 Per Instruction Type at Fault Injection 48

3.6.2 Per Instruction Type at First Consumption

of Corrupted Operand . 52

3.6.3 Program Space Vulnerability 56

3.6.4 Program Vulnerability Phases 59

3.7 Summary . 62

4 Exploiting Application Behavior Characterization 65

4.1 Exploitation Alternatives . 66

4.1.1 Identifying Areas of High Exploitability Potential 72

4.2 Data Cache Content Profiling . 75

4.2.1 Data Cache Content Profiler 75

4.2.2 Experimental Setup and Profiling Results 79

4.3 Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 83

4.3.1 Strongly-Protected Surface Trade-Offs Against Fault Coverage 86

4.3.2 Practicality Issues of This Case Study 94

4.4 Summary . 96

5 Related Work 99

5.1 Monitoring Behavior Under Data Corruption 101

5.1.1 Analytical Techniques . 101

5.1.2 Experimental Techniques - Fault Injection 102

5.2 Observing Vulnerability Variations 104

5.3 Shifting to a Hardware/Software Co-Approach 107

5.4 Fault-Tolerant Cache Design . 110

5.5 Summary . 115

6 Conclusion 117

6.1 Summary . 118

6.2 Contributions . 120

6.3 Future Works . 121

A Single-Fault Injection Tool Output Specification 125

Bibliography 131

x

List of Figures

1.1 Visualization of fault-masking effects and corruption outcomes 5

2.1 Complete SWIFI framework overview 15

2.2 Decision tree for determining application data usage type 18

3.1 Workload-related vulnerability variation (Full NPB) 31

3.2 Data memory location related vulnerability variation (Full NPB) . . . 32

3.3 Data size related vulnerability variation (Full NPB) 32

3.4 Data user related vulnerability variation (Full NPB) 33

3.5 Data usage type related vulnerability variation (Full NPB) 33

3.6 Per-bit vulnerability variation (Full NPB) 35

3.7 Per-bit vulnerability variation of FP 8 byte data (Full NPB) 36

3.8 Per-bit vulnerability variation of INT 8 byte data (Full NPB) 36

3.9 Per-bit vulnerability variation of IP 8 byte data (Full NPB) 37

3.10 Per-bit vulnerability variation of PTR 8 byte data (Full NPB) 37

3.11 Per-bit vulnerability variation of PTRMR 8 byte data (Full NPB) . . . 38

3.12 Per-bit vulnerability variation of PTRTP 8 byte data (Full NPB) . . . 38

3.13 Per-bit vulnerability variation of PTRTP 4 byte data (Full NPB) . . . 39

3.14 Per-bit vulnerability variation of INT 4 byte data (Full NPB) 39

3.15 Memory space vulnerability variation (BT, CG, DC, EP, FT) 41

3.16 Memory space vulnerability variation (IS, LU, MG, SP, UA) 42

3.17 Register file vulnerability variation (Full NPB) 44

3.18 Register file vulnerability variation (BT, CG, DC, EP, FT) 45

3.19 Register file vulnerability variation (IS, LU, MG, SP, UA) 46

3.20 Instruction vulnerability variation at fault injection (Full NPB) 48

3.21 Instruction vulnerability variation at fault injection (BT, CG, DC, EP,

FT) . 49

xi

3.22 Instruction vulnerability variation at fault injection (IS, LU, MG, SP,

UA) . 50

3.23 Instruction vulnerability variation at first consumption of corrupted

operand (Full NPB) . 52

3.24 Instruction vulnerability variation at first consumption of corrupted

operand (BT, CG, DC, EP, FT) . 53

3.25 Instruction vulnerability variation at fault consumption of corrupted

operand (IS, LU, MG, SP, UA) . 54

3.26 Program space vulnerability variation (BT, CG, DC, EP, FT) 57

3.27 Program space vulnerability variation (IS, LU, MG, SP, UA) 58

3.28 Program vulnerability phases (BT, CG, DC, EP, FT) 60

3.29 Program vulnerability phases (IS, LU, MG, SP, UA) 61

4.1 Visualization of the exploitation alternatives 67

4.2 Management of concurrent usage type classification for in-order data

cache content profiling . 78

4.3 Data cache content profiling per usage type (over execution time) (CG) 81

4.4 Data cache content profiling per usage type (averaged) (Full NPB) . . 82

4.5 Trading-off fault coverage of FP 8 byte data (Full NPB) 89

4.6 Trading-off fault coverage of INT 8 byte data (Full NPB) 90

4.7 Trading-off fault coverage of PTR 8 byte data (Full NPB) 90

4.8 Trading-off fault coverage of PTRTP 8 byte data (Full NPB) 91

4.9 Trading-off fault coverage of PTRTP 4 byte data (Full NPB) 92

xii

List of Tables

2.1 Reported corruption characteristics 20

2.2 Reported corruption effects . 21

3.1 Profiling and sampling information for each tested benchmark 29

4.1 Breakdown of data cache contents per data type and data size (64K

cache) (Full NPB) . 85

4.2 ‘Unused’ data cache contents/space (64K cache) (Full NPB) 93

xiii

Chapter 1

Introduction

Hardware reliability challenges have always been present in all parts of a system (logic,

interconnects, memory elements). Examples include wire-induced noise corrupting

data communicating over the interconnects, operating voltage/frequency scaling caus-

ing timing violations, gamma ray and alpha particle strikes flipping values in transis-

tors, ageing or manufacturing defects causing deterioration of chips and systems.

All such occurrences of anomalous physical conditions are called hardware faults

[45]. According to their duration, hardware faults can be classified into (a) transient

faults (soft errors or single event upsets) that occur only once and do not persist, (b)

permanent faults (hard faults) that occur at some point in time and persist from that

time onward and (c) intermittent faults that occur repeatedly but not continuously in

the same location.

Once a hardware fault occurs, it is upsetting logic values. Therefore, regardless

of the cause or the duration of hardware faults, all of them essentially lead to data

corruption. As data corruptions affect a system’s dependability, hardware faults must

be dealt with to ensure the hardware’s reliability.

Hardware faults are not a recent challenge and extensive research work is already

present to enable fault-tolerant features in a system. The purpose of fault-tolerant de-

sign is to improve dependability by enabling a system to perform its intended behavior

in the presence of a given number of faults [32].

As such, hardware faults need to be detected and corrected to ensure the correct

operation of a system. The approach to tolerate a fault depends on its type. Generally,

a set of up to four steps needs to be followed in order to tolerate a fault [45]: (1)

Error detection, where the system becomes aware of the presence of a fault, (2) Error

1

2 Chapter 1. Introduction

recovery (error correction), where the system tries to mask the fault’s effect and set the

correct expected behavior, (3) Fault diagnosis, where the type and location of the fault

is identified (not for transient faults), and (4) Self repair, where the system is repaired

or reconfigured to avoid the diagnosed fault.

Each step requires a form of redundancy in terms of extra hardware and/or compu-

tations. Thus, reliability solutions always come with associated performance and cost

overheads in their effort to ensure the highest possible fault coverage.

As it is desirable for systems to maintain their expected functionality, even in the pres-

ence of faults, hardware reliability and correctness has become a design target equally

important to high performance and low cost. Due to the necessity of a correctly op-

erating infrastructure, especially on safety and mission critical systems, a common

approach has been to deal with hardware faults exclusively at the hardware level. In

that effort to ensure that the hardware operates correctly, all system components are

protected equally, exhaustively and transparently between the hardware/software stack

levels. Not unexpectedly, adding the necessary redundancy comes with an overhead

of extra operating costs and/or reduced performance. Such reliability-associated costs

are not an issue for the safety and mission critical systems.

As we move into deep submicron fabrication technologies the reliability challenges

start to appear in an ever-increasing rate [40]. As a result reliability concerns now arise

in commodity systems too. Once more the general consensus is to protect all system

components equally, exhaustively and transparently between the hardware/software

levels. This time though, due to the cost concerns in commodity systems, the various

proposed reliability mechanisms aim to maximize dependability under a minimum per-

formance/cost penalty. As such, most existing reliability approaches focus on reduc-

ing these reliability associated overheads by tinkering with the implementation details.

All these while ensuring that the hardware faults are hidden from the upper architec-

tural/software layers in order to still provide them with the behavior of a fault-free

hardware layer.

Unfortunately, due to the increasing error rates in successive process generations,

this black box approach cannot be maintained for much longer [9]. We are reaching

the point where it will be unsustainable to deal with all the faults at the hardware level

transparently. It will become prohibitively expensive, both in terms of power/area

cost and performance to tolerate all hardware faults and guarantee a fully protected

underlying hardware.

1.1. Fault Masking 3

All these lead to the general problem that motivated this thesis; increasing error

rates inducing unsustainable higher reliability costs, especially due to the equal and

exhaustive protection.

The rest of this introductory chapter is organized as follows: Section 1.1 introduces

the natural fault-masking effects that are the motivation to our proposed solution to the

problem of unsustainably increasing reliability costs. Section 1.2 shifts the original

problem into the two new problems that this thesis intends to tackle in order to reduce

the reliability costs. Section 1.3 states the goals of this thesis and overviews our ap-

proach to achieve them. Section 1.4 states our main contributions. Finally, Section 1.5

concludes this chapter with an overview of this thesis.

1.1 Fault Masking

Interestingly, not all hardware faults end up manifesting as errors in the system’s be-

havior and the executing application’s behavior.

In fact, depending on the fault characteristics (location, type, timing, duration), the

executing workload and the underlying hardware, a hardware fault may get masked for

a variety of reasons by various levels of fault-masking effects [45]:

• Logic-level masking, where a hardware fault may get masked at logic gate level

before becoming an error, e.g., a 2-input AND gate’s output will not change if it

has a fault in one input and a zero in its other input.

• Architecture-level masking, where a hardware fault is not logically masked but

may never propagate to the architectural state, e.g., a hardware fault in memory

in the non-opcode bits of a NOP instruction or a hardware fault in the branch

predictor.

• Application-level masking, where a hardware fault is not architecturally masked

but may never propagate to the application’s output, e.g., a hardware fault in a

memory location that is never to be accessed again.

Once a fault does get masked by any fault-masking level, then the system and the

executing application behave as expected resulting into a correct application execu-

tion. If a hardware fault does not get masked and becomes an error, the effect on the

executing application varies and may be one of the following:

4 Chapter 1. Introduction

• Application crash, where the not-masked hardware fault leads to an invalid op-

eration that causes the application to crash.

• Application stall, where the not-masked hardware fault causes the application to

wrongly wait for an event that will never occur or lead the application to enter

an infinite execution.

• Delayed correct execution, where the not-masked hardware fault does not cor-

rupt the application output but causes the computation to complete in a larger-

than-usual delay.

• Silent data corruption (SDC), where the not-masked hardware fault propagates

to the application output causing it to be different than the expected one. Con-

trary to all the previous execution upsets that are observable when they occur,

these cases where the output is wrong are unobservable execution upsets. They

can be identified only after application completion by comparing the effective

application output to the expected correct one. This non-observability of SDCs

make them the most severe case of possible execution outcomes under hardware

faults. There is also a special case of SDCs, that will not be considered by this

thesis, where the output corruption is masked at user level by not being perceived

as a wrong output, e.g., a single wrong pixel color in a frame of a video.

Fig. 1.1 visually depicts the possible fault-masking levels and the possible cor-

rupted execution outcomes. To summarize, depending on the fault characteristics

(location, type, timing, duration), the executing workload and the underlying hard-

ware, faults can either (a) get masked by various levels of fault-masking effects (logic-,

architectural-, application-level) and result in a correct execution with no visible effects

or (b) not get masked and result either in an observable execution upset (application

crash, stall or delay) or an unobservable output corruption (silent data corruption).

All these fault-masking effects have been widely documented by prior works, espe-

cially those that experimentally evaluate the dependability of fault-tolerant approaches.

In such works a breakdown of possible execution outcomes is usually presented and

the fault coverage is commonly measured as the percentage of the resulting SDCs.

Generally, the focus has always been on reducing the occurrence of SDCs because

they are the most severe ones. SDCs are the only execution outcome that is unde-

tectable online by any means and that does not provide any indication that something

happened out of the ordinary. All other corruption outcomes are observable and de-

1.2. Problem Statement 5

tectable by conventional methods, e.g., software-visible symptom-based fault detec-

tion [50, 27, 37, 13, 8] monitors for suspicious behaviors/symptoms, such as violating

likely program invariants, memory exceptions, cache misses, branch mispredictions,

fatal exceptions, program crashes, high OS activity, hangs.

Hardware
Fault

Application-level masked?

Architecture-level masked?

NO YES

NO

NO

correct
execution

YES correct
execution

YES correct
execution

application
crash

application
stall

delayed correct
execution

silent data
corruption

Logic-level masked?

Figure 1.1: A hardware fault possibly getting masked by different levels of fault-masking effects

and resulting into different possible corruption outcomes.

1.2 Problem Statement

As mentioned, reliability solutions face the problem of the unsustainably increasing

overhead costs as the hardware fault error rates increase, especially due to the tendency

to protect all hardware and software components equally and exhaustively.

Mainly motivated by the aforementioned fact that not all hardware faults manifest

as the same symptom in an application’s execution and can be masked by various levels

of fault-masking effects, this thesis proposes a solution to the unsustainable reliability

6 Chapter 1. Introduction

costs. We propose that we can avoid protecting equally and exhaustively the under-

lying hardware. Instead we suggest a shift to vulnerability-driven unequal-protection

mechanisms, where the protection strength is assigned according to the error sensitiv-

ity of the components under protection. Our proposed shift to unequal protection will

be targeting a given structure or same-level structures.

Given that the end-to-end effect of a hardware fault on the application output is

what matters and, in particular, since only faults that lead to SDCs are what need to be

protected against, the area that needs to be protected strongly against faults can be re-

duced. This intuitively translates into reliability overhead reductions without affecting

the fault coverage. Alternatively, this points out that for the same overhead the fault

coverage can be increased and help sustain the increasing error rates. This is contrary

to most of existing fault-tolerance approaches that tend to be conservative and do not

leverage the inherent masking of hardware faults.

As what we propose is to assign protection to hardware/software components accord-

ing to their likelihood that a fault occurring there will cause an SDC to the final exe-

cution outcome, this thesis intends to tackle the problem of driving and implementing

vulnerability-driven reliability mechanisms.

This means that in order to solve the original problem of high unsustainable relia-

bility costs we shift the problem into:

• observing and characterizing the exact end-to-end effects of hardware faults on

application behavior, and

• exploiting the gained insight in a vulnerability-driven reliability mechanism to

reduce the reliability overheads in a given structure or same-level structures.

Generally we expect that useful insight can be gained by characterizing the ap-

plication behavior under hardware-induced data corruption conditions. In particular,

we expect that application behavior under unreliable conditions will vary and we in-

tend to exploit these variations to our benefit. Given the expected error sensitivity

variations, we will use this to avoid exhaustive equal protection and reduce the re-

liability overheads, without a significant reliability impact, by shifting to a class of

vulnerability-aware unequal-protection architectures, where less-vulnerable applica-

tion data are protected less against corruption than their more-vulnerable counterparts.

1.3. Thesis Goals and Approach 7

1.3 Thesis Goals and Approach

Our proposed thesis goals revolve around investigating how the effect of hardware-

induced data corruptions on application behavior varies with the purpose of iden-

tifying exploitable insight in order to reduce the reliability costs by shifting into a

vulnerability-aware protection paradigm.

The goals of this thesis relate exactly to the twofold problem we intend to tackle.

Generally speaking, the research goal of this thesis is to answer the following ques-

tions: (1) Can application behavior under data corruption be characterized based on

the characteristics of the corrupted data (type, bit, location, etc.) and what data-level

error-sensitivity observations can be made? (2) How can this characterization insight

be exploited to drive the design of lower-cost vulnerability-aware unequally-protected

architectures?

To characterize the effects of hardware-induced data corruption on application

behavior based on the corrupted data characteristics and the executing work-

load, we use software-implemented fault injection (SWIFI). This is to model transient

fault data corruption in memory locations, during the operation of an application in a

unprotected system, and to capture the effect of the corruption on the execution.

As our focus is on gaining detailed error-sensitivity insight of application data

types, we develop a portable instrumentation-based SWIFI tool that operates at ap-

plication data level. Given an application binary, without need of its source code,

the SWIFI tool can finely control the location of the corruption in the application’s

memory address space without further intruding the application behavior. Once a fault

is injected at runtime, without need for binary file modifications per injection test, it

tracks the corrupted data to classify them according to their use by the application.

Meanwhile it monitors the execution’s state and outcome to report back many diag-

nostics regarding the corruption and the corruption outcome. Since we monitor the

full application behavior under data corruption until completion, we capture all higher

levels of fault-masking effects and all possible outcomes of a data corruption (ranging

from silent data corruption on one side of the spectrum to correct execution with no

visible effects on the other side).

SWIFI is an established method commonly used in the literature as it is a straight-

forward, fast and easy to deploy way to inject realistic faults in real systems, while

allowing for more detailed monitoring/reporting. It has been used mainly for system-

8 Chapter 1. Introduction

level dependability assessment of reliability mechanisms [20, 42, 48, 7, 39] but usu-

ally without further elaboration on the vulnerabilities of individual hardware/software

structures. Other non fault-injection approaches do vulnerability estimation through

detailed modeling to analyze the behavior of only higher-level hardware structures [31,

46, 47]. Instead, we employ SWIFI in order to gain detailed error sensitivity insight at

a lower application data level.

The main value of our study stems from investigating data-level (down to bit-

level) vulnerability variations. As we can perform an extensive set of individual fault-

injection tests that report many diagnostic information, we can thoroughly character-

ize the data corruption effects on application behavior based on the characteristics of

the corrupted data; namely, among others, their location within the memory address

space, their size, their type as used by the application and, even, the exact bit location

of the corruption. This enables us to quantitatively investigate how the acuteness of the

effect of a hardware-induced data corruption on application varies. As a result we can

observe the actual varying vulnerability characteristics at application data-level, down

to identifying bit ranges within specific types of application data that if corrupted by

a single-event-upset are less prone to manifest as SDCs. This approach is more de-

tailed compared to existing studies, that also focus on vulnerability estimation, but

are limited due to investigating higher abstraction structures (e.g., specific hardware

structures [31, 46], code segments [13], instructions [6, 29]) or due to using limited

assumptions for estimating the vulnerabilities (e.g., characterizing individual memory

locations only by their liveliness attributes [29]). Moreover, as hardware functionality

is largely visible through software, the injected faults can emulate faults at various lev-

els of a system and not only at application data level. As such we can extrapolate the

insight to error sensitivity of instructions, memory address space and registers too.

After correlating the corruption characteristics to the reported corruption effects on the

application behavior, we gain statistical insight into the application data vulnerabili-

ties per tested workload. It is observed that there are vulnerability variations between

application data, even within bit ranges of specific application data types.

Given that the gained insight from the characterization study essentially estimates

data-level vulnerability factors for a given workload, it can be exploited by shift-

ing to vulnerability-driven unequally-protected architectures where the application

data are protected unequally according to their expected vulnerability. Moving down

into characterizing data-level vulnerabilities, instead of higher-level hardware/software

1.4. Thesis Contributions 9

structures, results into deeper and more exploitable insight by a variety of protection

schemes.

One promising way to exploit such insight is for reducing the cost of existing fault-

tolerant mechanisms that tend to protect everything equally. We argue that such a

shift is highly beneficial; the protection overhead can be reduced without a significant

impact on fault coverage, as we reduce the fault-protected surface by avoiding the

excessive full protection of the previously identified less-vulnerable application data.

This is contrary to traditional reliability approaches that either unnecessarily protect

all parts equally and exhaustively [16, 19, 52, 11] or offer unequal protection agnostic

to the actual distribution of likelihood of the application’s data to corrupt the execution

output [55, 22, 23].

Achieving these goals will allow to sustain the same reliability QoS as before but

for lower operating costs or higher performance. This can be translated also into sus-

taining a reliable operation of applications on the increasingly unreliable hardware.

Moreover, as our proposed class of vulnerability-aware fault-tolerant architectures

can have varying fault protection levels, it lends itself naturally to offer various degrees

of reliability QoS for trading off reliability against performance/cost. Considering that

our characterization study goes down to bit-level vulnerability estimation, the perfor-

mance/cost benefits can be maximized for an even smoother trading off against relia-

bility. This also enables graceful degrading architectures where for a given error rate

we may achieve better metrics than existing techniques and guarantee a minimum set

of executing functions.

Finally, vulnerability-aware unequal protection is orthogonal to the specifics of

fault-tolerant approaches. It may be applied to any kind of software- or hardware-level

fault tolerance method to reduce the total area under protection and, subsequently, their

reliability overhead.

As an instance to demonstrate the applicability and potential of exploiting the vary-

ing vulnerability characteristics of application data, we assume a data cache design that

can unequally protect its contents driven by our characterization insight and we observe

the trade-offs between the fault-protected surface reduction against the fault coverage.

1.4 Thesis Contributions

In this thesis, we make the following main contributions:

• We establish an easy-to-deploy instrumentation-based SWIFI framework that

10 Chapter 1. Introduction

can perform extensive tests on target binaries for a data-aware characterization

study of the exact data corruption effects on application behavior, where all pos-

sible levels of fault-masking effects are captured.

• After extensive experimental fault-injection tests, we observe different levels

of vulnerability variations. The most promising among them is the workload-

related vulnerability variation of application data of the NPB-serial benchmarks

based on their characteristics, along with the vulnerability variation within parts

of application data. For given application data characteristics, we identify clear

patterns of less-vulnerable bit ranges that if corrupted are less likely to cause

SDCs, e.g., up to 32 LSBs of floating-point data in the CG (Conjugate Gradient)

benchmark have each less than 1% probability to cause an SDC. The other ob-

served vulnerability variations are in areas such as the memory space, the register

file, individual instructions and the program space.

• We demonstrate the potential exploitability of our data-level characterization

findings in a generic fault-tolerant data cache running the NPB-serial bench-

marks. Assuming a vulnerability-aware unequal-protection mechanism we show

how much we can exploit the vulnerability characteristics of application data and

to what effect on the reliability QoS level, e.g., the fault-protected surface of a

64K data cache can be reduced by 41% with a less than 0.01% drop in the fault

coverage just by avoiding protection of the less-vulnerable bit ranges of floating-

point data in the EP (Embarrassingly Parallel) benchmark.

1.5 Thesis Overview

The remainder of this thesis is structured as follows:

In Chapter 2 we describe our SWIFI-based framework for enabling our data-aware

characterization study of the exact data corruption effects on application behavior. Ad-

ditional relevant supplementary material is detailed in Appendix A.

In Chapter 3 we present and analyze the characterization results after invoking our

SWIFI framework to extensively test the NAS Parallel Benchmarks. The application

behavior variation is observed in relation to different levels of corruption characteris-

tics; application data characteristics (usage type, size, location in memory space, bit

location corrupted, etc.), memory space characteristics, register-level characteristics

and instruction-level characteristics.

1.5. Thesis Overview 11

In Chapter 4 we discuss the importance of our characterization findings and on

the ways they can be exploited for vulnerability-driven protection of a given struc-

ture or same-level structures. Then we demonstrate the potential of shifting to a class

of vulnerability-aware unequal-protection architectures by exploiting our insight in a

fault-tolerant data cache with two distinct levels of protection strength.

In Chapter 5 some background information on fault tolerance is discussed fol-

lowed by relevant prior works. The presented relevant studies generally relate to meth-

ods that investigate the varying vulnerabilities of hardware and software components,

methods that attempt to unequally protect a system and methods that trade-off reliabil-

ity against cost/performance.

Finally, Chapter 6 concludes this thesis by summarizing its approach and contri-

butions, before presenting some grounds for future works.

Chapter 2

Characterization Framework

In this chapter we present our instrumentation-based software-implemented fault-inje-

ction (SWIFI) framework that can perform extensive data-level aware fault-injection

tests. Its end purpose is to capture the exact effects of hardware-induced data corrup-

tion on application behavior, mainly in relation to the corrupted data characteristics

and the executing workload.

To do so, we employ SWIFI to model transient single-bit fault in memory locations,

during application execution in an unprotected system, and to capture the corruption

effect on the execution. As we focus mainly on characterizing the effects of data

corruption at data level, we develop a portable instrumentation-based SWIFI tool that

is data-level aware. Given an application binary, without need of its source code, our

tool can finely control the location of the corruption in the application’s memory space

without further intruding the application behavior. Once a fault is injected at runtime,

without need for binary file modifications per test, on top of traditional fault-injection

approaches, it tracks the corrupted data to gather more information regarding them.

Meanwhile it keeps monitoring the execution to report back more diagnostics relating

to the corruption characteristics and the corruption outcome.

We opted to perform the characterization study through fault injection testing, in-

stead of modeling-based methods. Fault injection is a straightforward technique that

allows us to quickly set a toolchain to capture all possible end-to-end effects of data

corruption down to bit-level granularity, in real applications in real systems. If we were

to use analytical techniques, the propagation of every bit of every used data would have

to be modeled through a detailed hardware/software data flow analysis. Then, to obtain

the desired vulnerability characteristics, a slow detailed microarchitectural simulation

13

14 Chapter 2. Characterization Framework

of the tested application would have to be performed. Despite the time effort, this

analytical approach would still not be able to capture all the detailed corruption char-

acteristics and effects, as we intend.

Moreover, due to implementing the SWIFI framework using binary instrumenta-

tion in particular, the close monitoring of the application execution status is possible

without requiring all of the above. Dynamic instrumentation is an easy to deploy,

portable and efficient way to alter and monitor an application’s execution. On top of

modeling the desired corruption and capturing the exact execution outcome of real ap-

plications in real systems, fault injection by instrumentation also allows us to finely

control the location of corruption, to closely observe the execution and to capture even

finer details of the corruption characteristics and the corruption effects.

In the rest of this chapter, first, we present an overview of our framework in Section 2.1.

Then, to show how we can capture all the desired properties of our experiments, in

Section 2.2 we elaborate on the details of the individual single-fault injection process,

focusing on the chosen injected fault model and the data-tracking capabilities of the

implemented tool.

2.1 Framework Overview

Our proposed SWIFI framework (Fig. 2.1) operates as follows on a given application-

under-test to characterize its behavior under data corruption:

• First, a golden run of the target binary is profiled, without introducing data cor-

ruption, to obtain (a) its expected correct output (for SDC detection), (b) its nor-

mal execution time when under instrumentation by our tool (for delayed/stalled

execution detection) and (c) its total number of memory load accesses (for de-

ciding the sample rate to drive the tests uniformly over the test space).

• Then a single-fault injection tool is repeatedly invoked on a clean instance of the

target application, each time corrupting a different memory load operation. In

every test, the application-under-test is re-executed, a bit-flip is injected at a ran-

dom bit of a different specified memory load access and the rest of the execution

is closely monitored to capture/report the details of the corrupted data character-

istics and of the exact corruption effects. Given a sample rate, we drive the tests

uniformly over the test space of all possible memory locations and times.

2.2. Single-Fault Injection Tool 15

FAULT INJECTION FRAMEWORK for a given application

results

.app
#total mem loads

execution time
correct output

sampling rate R.app
profiling

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

SINGLE-
FAULT

INJECTION
TOOL

.app
test

mem
load i*R

<corrupted data
characteristics,

corruption outcome>

Figure 2.1: Our proposed framework that captures an application’s behavior under data cor-

ruption through extensive multiple single-fault injection experiments.

• Finally, once all tests complete, the extensive reported execution results are ag-

gregated to relate the corruption outcome to the corrupted data characteristics

(Chapter 3).

Once we set up the framework, it will run extensive fault injection tests over given

applications. Due to the volume of our experiments and the detailed reported diagnos-

tics, after aggregating our results and studying them, we will be able to confidently

relate in many ways the corruption attributes and the resulting corruption effect on the

application. Among the gained insight, we expect to be able to elaborate on the vary-

ing vulnerability factors of application data depending on their characteristics, down

to even identifying different vulnerability levels within bit ranges of application data.

2.2 Single-Fault Injection Tool

At the heart of our framework is the single-fault injection tool that operates following

the established fault injection methodology. In each test once the fault trigger con-

dition is reached, a fault injection is performed according to the chosen fault model

16 Chapter 2. Characterization Framework

and the rest of the execution is monitored to report the exact end-to-end effect of the

corruption. Since we opted for SWIFI these operations are performed using special

software to emulate the behavior of expected hardware faults during the application

operation only (and not the kernel).

To briefly outline the operation of the single-fault injection tool, it performs and

monitors the fault injection tests by dynamic binary instrumentation of the application-

under-test. In each test just before a specified memory load access a random bit of the

accessed data is flipped to emulate a single-bit transient fault in the particular memory

location. Then the execution is monitored and, on top of usual SWIFI approaches, the

corrupted data are tracked in order to report more detailed corruption characteristics

(Table 2.1) and corruption effects (Table 2.2).

2.2.1 Fault Trigger

First, the single-fault injection tool starts by instrumenting the application-under-test

until the execution reaches the specified memory load access to be corrupted. The

memory load access to be corrupted will be chosen uniformly out of the total memory

load accesses of the tested workload.

The specified memory load access acts as both a spatial and a temporal fault trig-

ger to invoke the injection routine just before the load operation. Instead of corrupting

random memory locations in the whole address space at random times, using the mem-

ory load access as a fault trigger captures all possible times that a transient fault could

occur and all possible live memory locations that could get corrupted by a transient

fault. Thus it simplifies driving where/when to inject a fault as it narrows down to

selecting a memory load access, without having to rely on external events. Also its

inject-before-load policy reduces the testing space by avoiding the unnecessary testing

of dead memory locations.

2.2.2 Fault Injection and Fault Model

Once the instrumentation code detects that the fault trigger condition has been reached,

the fault-injection routine is invoked in a manner similar to a software trap. Then,

complying to our fault model, it injects a random bit-flip in the accessed data just

before they are accessed.

The chosen injected fault model emulates single-bit transient faults in memory

locations by randomly flipping a bit of the accessed data just before they are accessed

2.2. Single-Fault Injection Tool 17

by a memory load operation. The bit-flip is performed by storing the corrupted value to

the same memory location without further intruding the application’s original behavior.

This is to force the execution to behave as if a different value was already there and

avoid activating any reliability mechanisms of the system that would skew our intended

vulnerability insight.

Software-injected high-level faults model lower-level hardware-induced data cor-

ruption to make the system behave as if a hardware fault was present in order to mon-

itor the application behavior. Therefore, it is important in fault-injection testing for

dependability assessment to choose fault models that closely resemble the naturally

occurring hardware faults. Given that we focus on error sensitivity of application data,

the chosen fault model suffices for our purposes to capture the application behavior

under corrupted application data without a need for precise realistic hardware fault

models. Plus, due to the instrumentation-based SWIFI the fault model does not need

to be adapted per target system but only to have the necessary high-level characteristics

(type, duration, location) required by our application data level investigation.

In particular, we chose a bit-flip fault type instead of stuck-at-zero or stuck-at-one

to ensure that application data will always be corrupted at every injection test.

Moreover, the inject-before-load policy enforces emulation of transient faults as the

injected corruption will not persist after the corrupted location is overwritten. Model-

ing transient fault duration fits better our purposes as they affect only a single memory

object. On the contrary, permanent/intermittent (or multi-bit) faults in memory loca-

tions, besides being harder to emulate in software, corrupt different data over time (or

multiple bits). In that case it would be indistinguishable which corrupted data (or bits)

are responsible for the reported outcome.

Finally, the injected fault location is in main memory and it suffices for our data-

aware error sensitivity investigation. Although we inject fault at main memory lo-

cations, our chosen fault model is not limited to emulating hardware faults only in

memory. Depending on the system and how the fault is propagated, it may translate to

emulating faulty behavior in other locations too, such as the register and the cache lo-

cation where the corrupted value is loaded, or faulty behavior of communication wires

and CPU instructions that use the corrupted value.

18 Chapter 2. Characterization Framework

original data (D)
corrupted data (D')

corrupted memory location (M)
first register to store data (R)

register R type

FP

D usage
type is FP

IP

D usage
type is IP

D usage
type is PTR

D usage
type is PTR

else

check if subsequent accessed
memory addresses are equal
to D or D'

D usage type
is PTRMR

[until execution completion] - track data propagation from R
and M to other registers and
memory locations
- check if subsequent accessed
memory address computed using
affected registers

found

D usage type
is PTRTP

[for an instruction window]

D usage
type is INT

else

else

else

D within binary

image ranges

found

SEG/SP

im
m

ed
ia

te
cl

as
si
fic

at
io

n
no

n-
im

m
ed

ia
te

cl

as
si
fic

at
io

n
(d

at
a

tr
ac

ki
ng

)

Figure 2.2: Decision tree used by the single-fault injection tool to classify the corrupted appli-

cation data according to their use by the application.

2.2.3 Monitoring, Data Tracking and Reporting

Once the fault has been injected the rest of the application execution is still instru-

mented and analyzed to monitor and report the effects of the data corruption. As the

instrumentation and analysis are transparent to the original binary behavior, the fault-

injection software does not intrude the application space/behavior and guarantees the

non-intrusiveness of the SWIFI tool.

Due to the chosen fault trigger, fault model and instrumentation-based injection

we can perform data-level aware fault injection and data-aware characterization of

corruption effects. Once the memory location is corrupted and then loaded, we can

track it as an application variable to get its detailed usage characteristics and relate

them to the outcome to capture the varying vulnerabilities of application data.

More precisely, at the moment of the fault injection, the tool tries to finely identify

as many characteristics of the corrupted data as possible (Table 2.1). Attributes such

as their location in the memory address space (global, heap or stack), size and user

(system or user data) can be identified immediately.

Classifying the type of the corrupted data according to their use by the application

2.2. Single-Fault Injection Tool 19

(Fig. 2.2) can be either immediate (e.g., floating-point data, instruction pointer, etc.) or

it may require tracking the data through the execution until a first meaningful use (e.g.,

to determine if they are used for addressing memory or not).

To elaborate, at fault injection which always happens just before a memory load op-

eration, we can identify the first register (R) where the corrupted data (D’) are stored.

If it is a floating-point register, the instruction counter or a segment/stack pointer reg-

ister, we can classify immediately the corrupted data as floating-point (FP), instruction

pointer (IP) or memory addressing data (PTR) respectively. Otherwise, we check if the

original uncorrupted data (D) hold a value within the address ranges of the application

binary image and, if they do, we identify them as memory addressing data (PTR).

If the data usage type cannot be determined immediately, data tracking and close

monitoring of the execution are used to determine their usage. The corrupted (and

the uncorrupted) value is checked against all subsequent accessed effective memory

addresses to check if the corrupted data are used for memory addressing (PTRMR).

Meanwhile, for a specified instruction window, we use dynamic taint analysis [56]

to track the data propagation from the first register (R) to hold the corrupted data and

from the corrupted memory location (M). We model our problem as a dynamic taint

analysis problem where the taint sources are the register R and the bytes in M. After

every instruction, we track accordingly the taint propagation to other registers and

memory locations.

To do so, for every executed instruction, we obtain a list of the input/output registers

and input/output memory locations accessed by the instruction and:

• If the instruction clears an output register (e.g., sub R1, R1, R1), then the out-

put register gets untainted in case it was tainted already.

• If the instruction outputs to registers/memory locations:

– If any of the input registers/memory locations is tainted, then all output

registers/memory locations must get tainted.

– Otherwise, if all of the input registers/memory locations are untainted, then

all output registers/memory locations must get untainted.

• If the instruction does not output to any register/memory location:

– No taint propagation for this instruction.

20 Chapter 2. Characterization Framework

Table 2.1: Reported corruption characteristics

Characteristics of corrupted data

Injected bit-flip location

Memory address of corrupted data

Memory space location global, heap or stack

Size 1, 2, 4, 8 or 16 bytes

User System library data or application-space (user) data

Usage type FP: floating-point data (immediate classification)

IP: instruction pointer (immediate classification)

PTR: memory addressing data (immediate classification)

PTRMR: memory addressing data (classification by checking subsequent accessed

memory addresses)

PTRTP: memory addressing data (classification by data tracking until first use as

memory addressing data within an instruction window)

INT: integer data (if none of the above)

Other corruption characteristics

Corrupted memory load access number

First register to store the corrupted data

Corrupted instruction Instruction pointer, opcode and time at corruption

First use of corrupted data Instruction pointer, opcode and time at first use of first register to store the corrupted

data

If usage type identified as memory addressing data (PTRMR or PTRTP)

Time until first use as memory addressing data

Taint propagation of corrupted data Number (and total cumulative number) of registers and memory bytes where the

corrupted data have propagated through until detection as memory addressing data.

This tracking continues until a tainted register (in other words, a register whose

contents have been affected by the original corruption) is used for computing a memory

address (when the tainted register is used as a base or index register in a memory

operation). If this happens within the specified instruction window, then the original

corrupted data are reported as memory addressing data (PTRTP). The requirement to

perform dynamic taint analysis for a specified instruction window is to avoid taint

explosion, where the taint from register R would end up propagating to all registers

and would cause the false positive reporting of the original corrupted data as PTRTP.

Apart from reaching the end of the tracking instruction window, other reasons that

stop the tracking are: (a) an event causing the execution to stop (i.e., the application

finishes or crashes), and (b) the detection of the corrupted data as PTRMR in the mean-

time. Finally, if by the end of the execution the usage type is still unclassified, then the

corrupted data are reported as integer data (INT).

Table 2.1 summarizes all the reported corruption characteristics. Most relate to the

characteristics of the corrupted data (memory address, corrupted bit location, memory

2.2. Single-Fault Injection Tool 21

Table 2.2: Reported corruption effects

Corruption effects

Total number of executed instructions

Execution outcome Correct output

Delayed correct output

when the total execution time is a set amount of times more than the normal uncorrupted

execution time

Application crash

reported along with the crash details, the instruction’s opcode that caused the crash and

the time in instructions from the corruption until the crash

Application stall

due to excessive total executed instructions (or excessive total execution time), as dictated

by specified stall-time ratios, indicating that the corruption caused an infinite execution

(or the application to wait)

Silent data corruption (SDC)

wrong output

space location, size, user and usage type). Moreover, due to the close monitoring and

data tracking we can take note of other corruption details, such as the first register to

store the corrupted data, the first instruction to use the corrupted data, the time until first

use of the corrupted data, the time until first use as memory addressing data, how much

the corruption propagated in the register file and memory (taint propagation spread in

terms of tainted registers and memory bytes), etc. It will later be shown how such

information can be used to extrapolate the application data error sensitivity insight to

other functional units’ error sensitivity (such as the register file) or to instruction-level

error sensitivity.

After the injection, apart from possibly tracking the corrupted data to determine their

usage type, the tool keeps monitoring closely the execution to capture all possible exact

corruption effects (Table 2.2). The execution time is monitored to detect application

stalls or delayed executions, the output is checked for correctness or SDCs and fatal

signals are caught to identify crashes.

Once the execution completes (or stops due to a crash or a detected stall), the tool

reports back all the captured details relating to the corruption characteristics (Table 2.1)

and to the observed corruption effects (Table 2.2) for the performed single-fault injec-

tion test.1

1For details regarding the format and the meaning of the reported information, along with more
details on the way the reported information was captured, see Appendix A.

22 Chapter 2. Characterization Framework

2.2.4 Benefits of Binary Instrumentation

It has been mentioned why fault injection is more fitting to our purposes, compared to

modeling or simulation approaches, as it has the benefit of being a fast way to capture

the exact end-to-end effects of data-corruption.

Moreover the ease of performing fault-injection experiments is further ensured by

opting for software-implemented fault-injection (SWIFI), instead of hardware-imple-

mented, that on top of that is a dynamic binary instrumentation based implementation.

SWIFI, compared to hardware-implemented fault injection, is more flexible, easier to

operate, control and monitor the execution, while being more portable and not requir-

ing special purpose hardware.

Especially due to the use of dynamic binary instrumentation for performing the

SWIFI tests, our characterization framework inherits all the benefits of using instru-

mentation. Dynamic instrumentation is an easy to deploy, portable and efficient way

to alter and closely monitor an application’s execution. Furthermore, it helps to imple-

ment all our desired properties of the experiments; it assists our intended data tracking

and detailed execution monitoring, it allows to finely control the corruption location, to

closely observe the execution and to capture the intended finer details of the corruption

characteristics and the corruption effects (as shown in Tables 2.1-2.2).

All these are achieved without intruding the original behavior of the tested appli-

cation. As the instrumentation code is contained from the original binary, the injection

and monitoring routines are transparent to the executing target application and do not

interact with it, apart from injecting the corruption, and do not interfere with the ob-

served application behavior under corruption.

Moreover, as dynamic binary instrumentation allows for a runtime injection imple-

mentation, any application can be tested without need for its source code; as long as a

native executable binary file is available, it can be fault injected. There is no need for

recompilation of the source code or for pre-runtime modification of the original binary

to accommodate each different test. The injection can be performed without requir-

ing special architectural features or special hardware to trigger the injection routine or

test-specific software/hardware traps.

As the target application does not require modification, many tests can be per-

formed without changing the binary to support specific injections every time. As this

enables the automatic injection in the test space, with no manual effort required, a

larger number of tests can be performed automatically at a lower effort cost.

2.3. Summary 23

2.3 Summary

In this chapter, we presented our instrumentation-based software-implemented fault-

injection (SWIFI) framework. It utilizes a single-fault injection tool that is repeatedly

invoked to inject single-bit transient faults at uniformly chosen memory load accesses

during separate runs of the application-under-test. Its purpose is to monitor the appli-

cation behavior under data corruption, while tracking the corrupted application data, to

report detailed diagnostics regarding the corruption characteristics and the corruption

effects.

To summarize the key attributes of our approach, contrary to existing approaches,

our framework enables to thoroughly quantify the varying effects of hardware-induced

data corruption on application behavior. This is by observing the results of exten-

sive experiments (to uniformly test data among the testing space and to confidently

elaborate on the relation between the corruption location attributes and its effect) that

are fault-injection-based (to capture all levels of fault-masking effects and all possible

end-to-end exact corruption effects). Moreover, the experiments are finely controlled

(to control the exact location of the injected corruption), closely monitored (to report a

variety of detailed diagnostic information regarding the corrupted data characteristics

and the corruption effect) and data-level aware (to enable our intended novel finer-

grained characterization of data corruption effects).

In the next chapter, we employ our framework to extensively test a set of bench-

mark applications and then aggregate all the detailed reported results in order to char-

acterize their behavior under data corruption.

Chapter 3

Application Behavior Characterization

Under Data Corruption

In this chapter, first we describe how we setup our experimental framework to repeat-

edly test a set of benchmark applications (NPB-serial). Then, after performing our

extensive tests and aggregating all the detailed reported results, we discuss our find-

ings towards characterizing the exact effects of data corruption on application behavior

based on the attributes of the corruption.

As we will observe how application behavior varies under data corruption, we will

be able to elaborate on the varying vulnerability characteristics of application data de-

pending on their characteristics and the executing workload. What we consider as vul-

nerability of application data is the probability of resulting into a silent data corruption

(SDC) if corrupted during the execution of the application.

Although our fault-injection tests corrupt memory location data specifically, our

characterization analysis is not limited to investigating application data vulnerabilities

only. Due to the nature of the reported corruption characteristics, we can investigate

vulnerabilities of other hardware/software areas. This is contrary to existing studies

that were limited to estimating the vulnerabilities of only the higher specific abstrac-

tion structures under consideration (e.g., specific hardware structures [31, 46], code

segments [13], instructions [6, 29]).

In particular, first, the workload-related vulnerability variation is observed. Then it

is followed by the data-related variation based on data level characteristics, such as

corrupted data type, size, bit location corrupted, etc. Finally, using the remaining

corruption characteristics being reported by our framework, some other interesting

25

26 Chapter 3. Application Behavior Characterization Under Data Corruption

vulnerability variations are discussed to elaborate on the error sensitivity of other areas,

such as the memory space, the register file, individual instructions, the program space,

etc.

Generally, our purpose is to gain exploitable insight and to potentially identify

areas with lower vulnerabilities. As we propose that the error sensitivity insight can

be used to drive the design of lower-cost vulnerability-aware reliability mechanisms,

where protection is assigned according to the protected part’s vulnerability to cause an

SDC, we will focus on identifying areas with lower probability to result into an SDC.

3.1 Experimental Setup

The proposed SWIFI framework was implemented as a set of scripts and dynamic

binary instrumentation Pin tools [28]. The full set of the ten workloads of the NAS

Parallel Benchmarks [10] (64-bit, NPB-serial1 version 3.3.1, input class size S, gcc

4.4.6 -o3, Linux kernel 2.6.32) was extensively tested by our framework on a x86-64

computer cluster [33].

As it usually holds for all experimental evaluation setups, our results too are con-

ditional to the chosen experimental setting. All attributes of the hardware/software

configuration (e.g. chosen benchmarks, input sets/size, compiler parameters, hardware

parameters) affect the observations to be made. In this instance, the vulnerability vari-

ations will be observed for the aforementioned setup of benchmarks, input size and

hardware architecture. Nevertheless, here we explain the reasoning behind our choices

and how these could affect the observed results.

For the purpose of our vulnerability investigation we tested the NPB applications.

The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help

evaluate the performance of parallel supercomputers [10]. NPB perform highly-iterative

scientific computations over test input data generated within each benchmark run.

Example computations include fast Fourier transformation (FT), integer sorting (IS),

eigenvalue estimation (CG), Heat equation solving (UA), etc. NPB support different

input class sizes and have generally little I/O. NPB are not strongly dependent to the

generated input resulting into similar execution times for different same-size inputs.

One of the main reasons behind testing the NPB applications was their data-intensive

1We tested only the serial versions of NPB as our fault injection tool does not support parallel
applications.

3.1. Experimental Setup 27

scientific nature. As the main focus of this study was to identify the vulnerabilities of

application data, such workloads were a good fit to focus on testing the vulnerabili-

ties of data types. One other inadvertent benefit of testing the NPB applications was

their reliance on floating-point arithmetic. Due to their FP-heavy nature, FP data were

extensively tested and showed similar behavior across the different programs. This

established that this observed behavior is fundamental and should hold for other con-

figurations of floating-point intensive codes.

On the other hand the selected benchmarks posed some limitations exactly due

to their nature. As they heavily rely on iterative computations, there are more op-

portunities for faults to get masked by application-level masking effects making the

benchmarks inherently more resilient. Nevertheless, the intention of our study has

been to capture all masking effects. As a side effect of the iterative nature of the tested

programs, a more intensive testing of the more-frequent data became possible and that

further increased the confidence of the results to solidify the observed behavior. This

held more true especially in regards with the data types that showed consistent behavior

across benchmarks.

Finally, another initial reason behind testing the NPB applications was their parallel

nature that would enable also to test the vulnerability of data controlling the parallel

execution. Alas, only the serial versions of NPB were tested as supporting parallel

applications would require significant modifications of the fault injection tool. As

expected, this limits the gained insight by not reporting an extra type of application

data, those that control the parallel execution. Besides that, the rest insight is expected

to hold irrespective of the parallelism or not of the tested application.

Another parameter that affects the results is the input class size and the input data

values. There are different input class sizes that can be chosen to execute the NPB

applications. We would not expect larger input sizes or different inputs to have a

significantly changed vulnerability behavior for a given program, for the case of the

tested applications. The NPB programs are highly iterative and would behave similarly.

A larger input class would only increase the test space and increase the time to perform

the experiments.

Therefore, we opted for the smallest input class size (input class size S). This not

only reduced the execution time per benchmark but also the size of the total test space.

Although this resulted into less tests performed for a given sampling rate, the number

of total tests performed was still significant enough. Moreover, due to the uniform

distribution of the tests, memory locations may be tested multiple times over different

28 Chapter 3. Application Behavior Characterization Under Data Corruption

runs increasing the confidence of our results. As before, we wouldn’t expect larger in-

put sizes to have a significantly changed vulnerability behavior for a given program of

the tested applications, especially due to the dependance of the observed vulnerability

variations mostly on the type of the tested data.

Similarly, we don’t expect significant variations for different input values. As NPB

target the performance evaluation of parallel systems, the generated inputs try to gen-

erate an equal workload. For that reason, although we ensured that the generated input

was the same in every different run of the benchmarks, we expect that the observed

vulnerability patterns will still hold for other input values. More so because our most

interesting observations are explained due to the nature of the corrupted data types.

What we expect would differ in relation to the input values is the exact intensity of the

observed vulnerability levels.

To conclude, the observed vulnerability variations depend on the chosen experi-

mental setup. Despite the limitations, we expect that our main observations, that will

be discussed throughout the rest of this chapter, can still hold for different setups.

As it will be shown later in this chapter, our two main observations relate to (a) the

per-bit data level vulnerability behavior of application data and (b) the potential of

a per-application vulnerability characterization to generate useful insight at different

observation levels. Although the exact results are conditional to this setting and all

decisions made would affect the exact observed vulnerability variations, these choices

though do not invalidate our observations. Both observations will still hold for differ-

ent setups because the former (a) reflects a fundamental behavior of application data

types and because the later (b) inherently asks for a characterization testing under a

given experimental setup before obtaining/exploiting the results.

Before commencing with the individual fault injection tests, the benchmarks were pro-

filed (Table 3.1) to obtain their total memory load accesses and their normal uncor-

rupted execution time under instrumentation. As the number of total memory load

accesses captures all possible memory locations and times to inject a fault (not includ-

ing all the possible different bits where the fault could be injected within a memory

location), it indicates the size of our testing space. Given that in the profiled bench-

marks the total memory loads ranged from 4.7 million to 914.9 million, summing up to

a cumulative total of 2.28 billion, testing every bit of every memory load access would

be impractical and unreasonable. Nevertheless, such an exhaustive testing would pro-

vide with the highest possible degree of confidence at the extreme cost of testing time.

3.1. Experimental Setup 29

Table 3.1: Profiling and sampling information for each tested benchmark

NPB-SERIAL 3.3.1, INPUT CLASS S

Bench- Total memory Execution Sample Memory loads Test space

mark loads (M) time (sec) rate tested (K) coverage (%)

BT 187.5 20.7 1/234 801.6 0.43

CG 111.9 22.7 1/153 731.3 0.65

DC 33.1 21.9 1/43 769.9 2.33

EP 778.2 52.3 1/2461 316.2 0.04

FT 112.0 31.9 1/216 518.5 0.46

IS 4.7 3.4 1/5 959.3 20.00

LU 62.9 16.5 1/62 1015.6 1.61

MG 10.6 13.7 1/8 1335.0 12.50

SP 66.9 15.3 1/62 1079.3 1.61

UA 914.9 53.3 1/2947 310.4 0.03

Total 2283.1 - - 7837.6 0.34

Instead we set sample rates per benchmark to uniformly distribute our fault injec-

tion tests over the test space of possible memory load accesses to corrupt. To further

ensure the uniform distribution of the tested injected corruptions, in every test the bit-

flip was randomly injected within the tested data to ensure an equal probability of

testing every bit.

An implication of introducing the sample rate, that is using the memory load access

to uniformly distribute the tests over the test space, is that more-frequently accessed

data may be tested more times than less-frequently accessed data. Given that each test

is independent and in every test a different bit is corrupted, this works to our benefit to

further ensure the confidence of our vulnerability results when considering a specific

combination of application data types. On the other hand, one limitation of sampling

based on load accesses is that some accessed data may never be tested. This would

not affect our final observation as these are data that are likely not to stay live for long

execution periods and thus are less likely to get corrupted and affect the execution. In

any case though, for safety reasons, they can still be assumed as critical data even if

they haven’t be tested.

Table 3.1 shows the chosen sample rates that ranged from 1/5 to 1/2947 to uni-

formly test each benchmark. They were decided based on the number of memory

30 Chapter 3. Application Behavior Characterization Under Data Corruption

loads and normal execution time per benchmark, so that each benchmark is tested in

approximately the same total time on the available computer cluster, where the em-

barrassingly parallel nature of the tests was exploited for a faster completion of the

experiments (less than a week). The test space sampling brought the total number

of performed fault injection tests to 7.8 million for the full benchmark suite (ranging

from 310.4 thousand to 1.33 million for individual benchmarks). Despite the test space

sampling, compared to related fault injection based works, we performed significantly

more extensive fault injection tests that, coupled with the detailed collected test results,

enabled us to thoroughly elaborate on them, as we discuss in the rest of this chapter.

3.2 Workload-Related Vulnerability Variation

In the rest of this chapter an analysis is performed on the gathered information from the

injection experiments. Before delving into more exploitable insight, first an analysis

of the results is shown at a higher level mainly to show the overall workload-related

vulnerability variations.

Fig. 3.1 shows the breakdown of the exact end-to-end corruption effects on the

tested benchmarks. Similar to existing studies, the presented breakdown reconfirms

that hardware faults have varying effects on application behavior. Out of 7.8 million

performed fault injection tests on NPB-serial, 61.1% resulted in correct execution,

indicating that exhaustive protection is unnecessary. As for the rest outcomes, 23.5%

of the total tests resulted in SDCs, 15% in application crashes, 0.3% in application

stalls and less than 0.1% in delayed correct executions.

More importantly it can be observed that the number of faults that corrupted silently

the output varied per benchmark; the reported occurrences of SDCs ranged from 5.8%

for DC up to 37.9% for IS. Given that it suffices to protect only against SDCs, we

can further reduce the amount of data that need strong protection. Protecting only

against SDCs suffices because they are the only type of corruption outcome that is

undetectable online by any means, plus they do not cause any observable indication

that something happened out of the ordinary. All other execution corruption outcomes

are observable as they upset the execution in a visible way (i.e., application stall, crash

or delay) and detectable by conventional methods (e.g., by software-visible symptom-

based fault detection that monitors for suspicious software behaviors/symptoms).

The presented breakdown of corruption effects is for the tests performed following

our experimental setup and for the set sample rates (as shown in Table 3.1). These

3.3. Application Data Vulnerability Variation 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT C
G D
C EP FT IS LU M
G SP UA

To
ta

l

Stall
Delayed
Crash
SDC
Correct

Figure 3.1: Breakdown of application behavior under corruption for each tested NPB-serial

application (including total breakdown for all performed tests)

results are cumulative per benchmark and would be different if different sample rates

had been chosen. E.g., as the sample rate is driven by the total load accesses, a de-

creased sample rate would test more the more-frequently accessed data and the total

breakdown would be skewed by their vulnerability. Despite that, these results were

shown here to demonstrate that there is varying application behavior under data cor-

ruption and that this is worth investigating. Therefore, in the rest of this chapter, the

vulnerability variations are shown for individual combinations of corrupted location

characteristics.

To conclude, Fig. 3.1 showed that application behavior under data corruption varies

depending on the benchmark indicating that applications have different inherent vul-

nerability characteristics. These variations are mostly attributed to each program’s

data-level sensitivities and their data access patterns. As such, it is promising to move

into an application data vulnerability investigation to gain more insight.

3.3 Application Data Vulnerability Variation

Given the volume of our experiments and the detailed captured information of the

corrupted data characteristics, we can characterize the application data vulnerabilities

based on the data characteristics. For this purpose we introduce an experiment-based

32 Chapter 3. Application Behavior Characterization Under Data Corruption

BT CG DC EP FT IS LU MG SP UA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Global Heap Stack Total

eD
VF

Figure 3.2: Varying eDVF depending on the location of the tested data in the memory address

space for each NPB-serial benchmark. Total indicates the reported SDCs per benchmark.

BT CG DC EP FT IS LU MG SP UA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1B 2B 4B 8B 16B Total

eD
VF

Figure 3.3: Varying eDVF depending on the size (in bytes) of the tested data for each NPB-

serial benchmark. Total indicates the reported SDCs per benchmark.

Data Vulnerability Factor (eDVF) that we define as the probability of a corruption in

specified data categories to result into an SDC. Contrary to the well-known vulner-

ability factors that estimate through modeling the probability of a fault in a specific

structure for a given application to corrupt the output [31, 46, 47], we use our testing

results to calculate the eDVF as the fraction of tests, on application data with specific

characteristics, that resulted in an SDC for a given application.

Fig. 3.2-3.5 show the eDVF variation over the tested NPB-serial benchmarks for the

different data characteristics that our fault injection framework can identify. Generally

most eDVFs are around 0.2, with limited exceptions going as high as 0.83, and quite

a few being less than 0.05. This points out that it is possible to rank application data

based on their probability to cause an SDC according to the data characteristics. In a

few cases, eDVFs are down to zero due to no reported SDC outcomes or due to absence

of the particular data categories in the specific benchmark. Both of these causes of zero

eDVFs indicate the particular data categories as less-vulnerable for the application in

3.3. Application Data Vulnerability Variation 33

BT CG DC EP FT IS LU MG SP UA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

System−data User−data Total

eD
VF

Figure 3.4: Varying eDVF depending on the user (system library or user data) of the tested

data for each NPB-serial benchmark. Total indicates the reported SDCs per benchmark.

BT CG DC EP FT IS LU MG SP UA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
INT
FP
IP
PTR
PTRMR
PTRTP

Total

eD
VF

Figure 3.5: Varying eDVF depending on the usage type (see Table 2.1) of the tested data for

each NPB-serial benchmark. Total indicates the reported SDCs per benchmark.

question.

System library data (Fig. 3.4) are less vulnerable almost consistently across all

benchmarks as they tend not to be output related and if corrupted tend to get masked

or cause crashes. On the contrary, in some benchmarks, there is a trend of longer data

being more vulnerable (Fig. 3.3), as longer data often hold output-related values and

thus if corrupted are more likely to corrupt the output too. This is more evident in the

benchmarks that use the longer 16-byte sized long double data. As for the usage type

eDVFs (Fig. 3.5), there is no benchmark wide observation to be made. Despite that,

they can be used per application basis to rank the vulnerability of their application data

according to their type. Moreover, given the application’s data access patterns, they

can explain the total application-level vulnerability variations.

Given the volume of our tests, our study captures the varying vulnerabilities of

application data per application with a high statistical confidence. Since there are

numerous ways to correlate the application data characteristics to the corruption out-

34 Chapter 3. Application Behavior Characterization Under Data Corruption

come, only an informative set per single data characteristics was presented here. The

detailed results of our experiments allow us to compute the eDVFs for combined data

characteristics to characterize more closely the application data vulnerabilities. Given

single-characteristic eDVFs for an arbitrary number of different data characteristics,

the combined eDVF for a given benchmark can generally be computed by multiplying

all the individual eDVFs with the ratio of the total number of data in the benchmark that

fit all the characteristics by the total number of data that fit at least one of the character-

istics. E.g., the eDVF of global-8B-user-integers in BT is the product of eDVFBT-global,

eDVFBT-8B, eDVFBT-user, eDVFBT-int and the fraction (number of data in BT that are

global-8B-user-int)/(number of data in BT that are either global or 8B or user or int).

Although there seems to be no common behavior of eDVFs across the tested bench-

marks, given the volume of our tests, our eDVFs investigation captures the varying vul-

nerability factors of application data per application. As eDVFs can be computed for

all combinations of data characteristics for a given application, they can be exploited to

rank application data according to their expected vulnerability to drive a vulnerability-

aware protection mechanism, i.e., for a given application we can tell which data types

are less prone to cause an SDC and thus protect them less than the rest.

3.3.1 Per-Bit Vulnerability Variation within Application Data

Moving deeper in our investigation we can get more consistent vulnerability insight

by observing how the data corruption effects vary depending on the exact bit location

of the corruption. As a showcase of this, Fig. 3.6 depicts the reported outcomes of all

performed fault-injection tests depending on the exact bit location of the injected cor-

ruption. As this includes all tests across all benchmarks, it cannot be comprehensively

used to estimate the eDVFs per bit for any application data.

Nevertheless it can be seen that there are patterns of vulnerability variation among

different bits of application data. Moreover there are patterns when considering the

other non-SDC corruption outcomes too. The observed cutoff points of the vulnerabil-

ity patterns are mainly explained by the different sizes of the tested application data,

especially between 8-byte and 16-byte data, and the non-uniform distribution of tests

between different data sizes. As our framework tested uniformly on memory load ac-

cesses, the number of tests performed per data size reflect the distribution of accesses

of these data sizes in the tested applications. In any case, all these point out that there

is potential in per-bit eDVF analysis, especially by investigating the eDVF per-bit of

3.3. Application Data Vulnerability Variation 35

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
eD

VF
 p

er
 b

it

te
st

 d
is

tri
bu

tio
n

ov
er

 d
at

a
bi

ts

0

31313

62626

93940

125253

156566

tested bit

127 119 111 103 95 87 79 71 63 55 47 39 31 23 15 7 0

SDC Correct Crash Delayed StallFull−NPB

Figure 3.6: Varying eDVF per bit of all tested data for all NPB-serial benchmarks combined.

specific single combinations of data usage types and sizes.

In Fig. 3.7-3.14 the per-bit eDVF analysis is shown for specific combinations of data

usage types and sizes. The per-bit eDVF distribution varies among application data

usage type categories (as classified in Table 2.1) while, most importantly, it shows

consistently common location patterns per each category across most of the tested

NPB-serial benchmarks.

For given combinations of usage types and data sizes, the bits that are more likely

to result into an SDC tend to be concentrated in continuous bit ranges either at the

MSBs (Fig. 3.7-3.8) or at the LSBs (Fig. 3.9-3.14) of application data for most of

the tested benchmarks, while the remaining bit ranges have generally near-zero (or a

distinctly lower) eDVF per bit making them candidates for reduced fault protection.

All these suggest that we can clearly identify bit ranges within particular application

data with distinct vulnerability levels to confidently conclude that application data are

vulnerable in parts.

More precisely, for the tested floating-point data (FP-8B, Fig. 3.7) the less-vulnerable

bit ranges are located at their LSBs across most of the tested benchmarks, while mov-

ing towards the MSBs the per-bit eDVF increases steadily. When considering as less-

vulnerable bits those with per-bit eDVF less than 0.01, the less-vulnerable bit-range

width varies from 20 LSBs for SP up to 32 LSBs for CG, while many of these bits

never resulted in an SDC. For the tested FPs, most of the non-SDC observed out-

comes were correct executions. The observed bit-range vulnerability variations are

explained by the nature of FPs where their LSBs only affect the accuracy of compu-

tations, are often discarded by rounding and tend not to affect the outcome. Moving

to MSBs it is expected that a corruption there will cause more upset to the data and as

36 Chapter 3. Application Behavior Characterization Under Data Corruption

BT

CG

EP
FT

IS

LU
MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

FP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.7: Varying eDVF per bit of tested FP data (8 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

BT

CG

DC
EP

FT

IS

LU

MG

SPUA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

INT−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.8: Varying eDVF per bit of tested INT (8 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

such the likelihood of resulting into an SDC increases. This also explains the varying

less-vulnerable bit-range width among applications as they have different precision re-

quirements. Moreover, it also explains the observed behavior in IS (Integer Sorting)

that is different than the other benchmarks. As FPs in IS are not part of the input/output

but are controlling the execution, they are more likely to corrupt the output.

Similar to the FP data, the less-vulnerable bit ranges in the tested INT2 data are

located at their LSBs (INT-8B, Fig. 3.8) but show higher eDVF per bit than their FP

counterparts, while the pattern holds for higher eDVFs per bit when moving towards

the MSBs. When considering as less-vulnerable bits those with per-bit eDVF less than

0.10, the less-vulnerable bit-range width varies from 24 LSBs for LU up to 43 LSBs

for EP (not including DC and IS). This common behavior suggests that data holding

values related to the computation, as both FPs and INTs do, tend to corrupt the output

2As INT data we denote all non floating-point application data that are not used for addressing
memory.

3.3. Application Data Vulnerability Variation 37

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

IP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.9: Varying eDVF per bit of tested IP (8 bytes) for each NPB-serial benchmark. Back-

ground bars show the per-bit outcome breakdown in total over all benchmarks.

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

PTR−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.10: Varying eDVF per bit of tested PTR (8 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

more when they are corrupted at a greater magnitude (i.e., at MSBs). INTs can also be

separated into distinct bit ranges with different vulnerability levels. Though, as they

are used in many different application specific ways (that we do not yet detect), there is

more variation in the width of the less-vulnerable ranges and not a common increasing

eDVF pattern in the more-vulnerable bit ranges, as it was the case for the FPs.

Generally, as the data types discussed so far often hold output-related values, cor-

ruption at their MSBs tends to result into SDCs and corruption at LSBs into correct

executions mostly. Moving on to memory addressing data (Fig. 3.9-3.13), we notice a

reversal of the behavior under data corruption where corruption at LSBs tends to result

into SDCs and corruption at MSBs into application crashes mostly. This is expected

behavior as corruptions in MSBs of memory addressing data will lead to pointers into

invalid memory locations and thus cause an application crash. On the contrary, corrup-

tions in LSBs are more likely to lead to pointers into valid memory locations with unde-

sired contents (or incorrect instructions) and thus corrupt the application output (or the

38 Chapter 3. Application Behavior Characterization Under Data Corruption

BT

DC

FT

IS
LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

PTRMR−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.11: Varying eDVF per bit of tested PTRMR (8 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

PTRTP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.12: Varying eDVF per bit of tested PTRTP (8 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

instruction flow) but without causing an immediate application crash. This is why the

more-vulnerable bit-range width of IP data is narrower than the PTR/PTRMR/PTRTP

that are similar. The application program space is narrower compared to the data mem-

ory space and, thus, there are less bits in IPs (than in PRT/PTRMR/PTRTP) that if

corrupted could still point to a valid location and not cause an application crash but an

SDC. Nevertheless, this clear behavior under data corruption for most benchmarks still

allows us to identify distinct vulnerability levels within different bit ranges of memory

addressing data too.

As shown, it is promising to move into characterizing the effects of data corrup-

tion based on the corrupted bit location in specific application data that are classified

according to their high-level characteristics (i.e., usage type, size). Especially due to

the usage-type-based classification, we were able to get (a) more exploitable insight

regarding the vulnerability of usage types that further explains the previous eDVF

per usage-type results (Fig. 3.5) and (b) more consistent results among most bench-

3.3. Application Data Vulnerability Variation 39

BT
CG

DC

FT

IS

LU

MG

SP

UA

31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

PTRTP−4B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.13: Varying eDVF per bit of tested PTRTP (4 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

BT

CG

DC

FT

IS

LU

MG

SP

UA

31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
VF

 p
er

 b
it

tested bit

INT−4B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

Figure 3.14: Varying eDVF per bit of tested INT (4 bytes) for each NPB-serial benchmark.

Background bars show the per-bit outcome breakdown in total over all benchmarks.

marks regarding the location patterns of more-vulnerable application data parts. What

changes across benchmarks is the exact width of the less-vulnerable bit range and the

vulnerability intensity of the more-vulnerable bit ranges.

Similar analysis could be performed for each of the other identified characteristics

of the corrupted data (i.e., location, user) or for the total per-bit eDVFs for all tested

benchmarks combined. Such analysis though would not provide the same exploitable

insight as the per usage type analysis because the per-bit variation of vulnerabilities

depends mostly on how the data-under-consideration are used by the application. If we

were to show the bit-level eDVF variation for, e.g., global application data, it would

capture the vulnerability characteristics of many different data usage types without

helping to make any significant observation. For more detailed insight the eDVF per-

bit variation can be also analyzed for combined data characteristics.

As we can now identify clear bit ranges within particular application data with

distinct vulnerability levels, the bit-level insight can be used instead of the higher-level

40 Chapter 3. Application Behavior Characterization Under Data Corruption

eDVFs to rank application data more accurately. On top of that, the clear partition

of application data in more-vulnerable and less-vulnerable parts helps to move further

into a bit-level finer granularity of vulnerability-aware protection of application data to

further reduce the amount of data under strong protection.

3.4 Memory Space Vulnerability Variation

In the previous section we focused on application data vulnerabilities depending on the

data characteristics. In this section, we will extrapolate the testing results to show the

vulnerability variations within the tested applications’ memory space.

The memory space vulnerability variation is still a data-dependent variation but

can offer a broader insight and new exploitation potential compared to the previously

discussed vulnerability variations. Memory space vulnerability is a very intuitive area

to focus on, especially given the way we performed the fault-injection tests. As a

reminder, just before a memory load access, the single bit-flip faults were injected at

the loaded memory location and it was straightforward to capture the corrupted data

memory address.

Given that this memory address of the corrupted data is among the reported cor-

ruption characteristics, here we observe the relation between the corruption outcomes

and the corrupted data memory address to elaborate on the memory space vulnerabil-

ity variation. Fig. 3.15-3.16 show the breakdown of the reported corruption outcomes

depending on the corrupted memory address for each tested workload.

As each workload does not access the exact same memory space ranges, each work-

load is shown on a separate figure where only the memory space ranges accessed by

it are shown. This includes all memory areas accessed during execution (heap, stack,

global/static area). Each point on the horizontal axis is not a single memory loca-

tion but rather a group of adjacent memory locations plotted against the breakdown

of outcomes of the total tests performed within this group of adjacent memory loca-

tions. Each memory location may have been tested multiple times depending on the

frequency that the application accesses it. The distribution of tests is shown by the blue

dotted lines and follows the memory load hotspots during execution. The non-uniform

distribution of the tests over the memory space is because the tests were distributed

uniformly over the memory load accesses and not the memory addresses.

Out of the figures, it can be seen that the observed outcome breakdown varies

over the tested memory space and among the different workloads. More importantly

3.4. Memory Space Vulnerability Variation 41

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

14724

29449

44173

58898

73622

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
2
c
8

0
x
6
5
5
3
d
8

0
x
7
f
f
f
0
8
9
9
6
e
6
0
L

0
x
7
f
f
f
1
3
e
5
9
8
9
0
L

0
x
7
f
f
f
1
f
1
b
5
2
1
8
L

0
x
7
f
f
f
2
a
4
4
e
2
e
0
L

0
x
7
f
f
f
3
5
7
c
b
a
c
8
L

0
x
7
f
f
f
4
0
d
2
2
f
4
0
L

0
x
7
f
f
f
4
c
0
a
8
9
1
0
L

0
x
7
f
f
f
5
7
2
5
5
8
2
8
L

0
x
7
f
f
f
6
2
4
b
2
6
8
0
L

0
x
7
f
f
f
6
d
9
3
e
e
8
0
L

0
x
7
f
f
f
7
8
b
a
f
4
9
0
L

0
x
7
f
f
f
8
4
1
2
e
0
1
8
L

0
x
7
f
f
f
8
f
3
7
5
3
0
0
L

0
x
7
f
f
f
9
a
9
2
1
6
0
8
L

0
x
7
f
f
f
a
5
c
5
0
d
f
0
L

0
x
7
f
f
f
b
0
f
b
9
a
f
8
L

0
x
7
f
f
f
b
c
3
9
c
0
a
8
L

0
x
7
f
f
f
c
7
9
0
6
2
0
8
L

0
x
7
f
f
f
d
2
d
9
d
b
c
8
L

0
x
7
f
f
f
d
e
0
3
2
a
e
0
L

0
x
7
f
f
f
e
9
4
7
e
b
4
0
L

0
x
7
f
f
f
f
4
8
b
b
6
2
8
L

0
x
7
f
f
f
f
f
e
8
1
c
9
8
L

SDC
Correct
Crash
Delayed
Stall

BT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

4514

9028

13541

18055

22569

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
4
4
b

0
x
6
0
c
c
d
c

0
x
6
1
4
2
a
0

0
x
6
1
b
7
e
0

0
x
6
2
2
d
7
0

0
x
6
2
a
2
e
8

0
x
6
3
1
8
7
0

0
x
6
3
8
e
2
4

0
x
6
4
0
3
6
4

0
x
6
4
7
8
e
4

0
x
6
4
e
e
6
8

0
x
6
5
d
a
0
c

0
x
6
8
c
8
0
0

0
x
6
9
b
7
1
0

0
x
6
a
a
5
8
0

0
x
6
b
9
4
4
0

0
x
6
c
8
2
7
8

0
x
6
d
7
1
e
8

0
x
6
e
6
0
9
8

0
x
6
f
4
f
a
0

0
x
7
0
3
e
c
8

0
x
7
1
2
d
1
0

0
x
7
3
7
f
1
8

0
x
7
f
f
f
4
e
5
c
f
1
2
c
L

0
x
7
f
f
f
f
c
0
f
7
f
b
c
L

SDC
Correct
Crash
Delayed
Stall

CG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

4075

8150

12225

16300

20375

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
2
7
0

0
x
e
0
c
4
f
8

0
x
1
4
2
1
8
9
0

0
x
1
9
5
7
4
9
8

0
x
1
e
0
4
9
0
0

0
x
2
2
6
4
3
5
8

0
x
2
6
a
5
c
0
8

0
x
2
d
d
1
0
4
0

0
x
3
9
3
5
e
2
8

0
x
7
f
0
e
e
4
4
6
3
0
e
4
L

0
x
7
f
2
b
7
6
2
c
f
e
4
8
L

0
x
7
f
4
7
f
e
3
9
4
4
f
8
L

0
x
7
f
6
4
b
a
7
d
1
e
e
8
L

0
x
7
f
8
1
5
5
3
3
6
6
c
8
L

0
x
7
f
9
d
c
b
2
5
d
e
8
0
L

0
x
7
f
b
a
7
4
8
3
e
e
d
8
L

0
x
7
f
d
7
0
6
7
4
f
0
1
8
L

0
x
7
f
f
3
8
b
8
5
e
e
f
0
L

0
x
7
f
f
f
1
7
5
6
6
7
3
8
L

0
x
7
f
f
f
3
e
1
c
d
6
2
0
L

0
x
7
f
f
f
6
4
b
c
2
2
e
8
L

0
x
7
f
f
f
8
b
1
b
c
7
1
c
L

0
x
7
f
f
f
b
1
c
c
1
f
2
c
L

0
x
7
f
f
f
d
8
7
8
a
f
1
8
L

0
x
7
f
f
f
f
f
0
3
1
5
c
0
L

SDC
Correct
Crash
Delayed
Stall

DC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

9491

18982

28473

37964

47455

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
5
6
e

0
x
6
d
7
e
6
0

0
x
7
f
1
0
2
0
3
0
9
b
c
0
L

0
x
7
f
2
5
b
6
f
1
e
e
7
8
L

0
x
7
f
3
b
d
4
2
b
5
7
9
0
L

0
x
7
f
5
1
d
4
d
a
e
7
a
0
L

0
x
7
f
6
7
9
b
9
7
a
7
a
0
L

0
x
7
f
7
d
a
0
f
f
2
d
7
8
L

0
x
7
f
9
3
a
1
7
b
c
7
9
8
L

0
x
7
f
a
9
b
5
f
5
a
b
c
8
L

0
x
7
f
b
f
3
0
2
9
d
5
3
8
L

0
x
7
f
d
5
5
5
8
2
1
7
9
8
L

0
x
7
f
e
b
0
2
f
a
3
f
e
8
L

0
x
7
f
f
f
0
2
1
5
8
e
0
0
L

0
x
7
f
f
f
1
8
f
6
0
4
d
0
L

0
x
7
f
f
f
2
f
e
0
4
d
b
8
L

0
x
7
f
f
f
4
6
c
c
c
d
b
0
L

0
x
7
f
f
f
5
d
6
4
e
8
b
0
L

0
x
7
f
f
f
7
4
5
f
1
5
d
0
L

0
x
7
f
f
f
8
b
6
4
a
f
6
8
L

0
x
7
f
f
f
a
2
7
7
a
0
c
0
L

0
x
7
f
f
f
b
9
8
f
9
e
a
8
L

0
x
7
f
f
f
d
0
4
b
c
f
e
0
L

0
x
7
f
f
f
e
7
8
7
5
b
a
0
L

0
x
7
f
f
f
f
e
7
3
a
d
5
0
L

SDC
Correct
Crash
Delayed
Stall

EP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

1709

3419

5128

6838

8547

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
2
7
0

0
x
6
1
6
9
7
0

0
x
6
6
a
0
1
8

0
x
6
c
2
e
8
8

0
x
7
1
c
9
b
0

0
x
7
7
5
d
3
8

0
x
7
c
e
e
9
8

0
x
8
2
8
b
1
8

0
x
8
8
2
0
3
0

0
x
8
d
b
a
a
0

0
x
9
3
5
5
7
8

0
x
9
8
e
5
8
0

0
x
9
e
7
9
2
0

0
x
a
c
8
d
c
8

0
x
c
f
6
5
a
0

0
x
f
0
d
1
a
0

0
x
7
f
2
c
1
b
5
e
e
b
c
8
L

0
x
7
f
9
1
6
7
2
4
8
6
1
0
L

0
x
7
f
f
8
a
c
2
1
3
b
e
8
L

0
x
7
f
f
f
2
7
5
e
4
c
b
0
L

0
x
7
f
f
f
5
1
8
f
f
3
1
4
L

0
x
7
f
f
f
7
c
1
4
8
c
5
8
L

0
x
7
f
f
f
a
7
c
d
3
8
8
0
L

0
x
7
f
f
f
d
1
9
3
1
3
8
8
L

0
x
7
f
f
f
f
c
8
3
f
0
8
0
L

SDC
Correct
Crash
Delayed
Stall

FT

Figure 3.15: Tested memory space vulnerability variation and breakdown of rest outcomes for

BT, CG, DC, EP and FT benchmarks.

42 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
m

em
or

y
sp

ac
e

VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

16627

33254

49880

66507

83134

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
0
4
0

0
x
6
0
8
9
f
4

0
x
6
0
e
f
5
8

0
x
6
1
5
6
a
8

0
x
6
1
c
4
e
c

0
x
6
2
2
b
1
4

0
x
6
2
9
6
2
4

0
x
6
3
0
2
6
4

0
x
6
3
6
7
9
4

0
x
6
3
c
d
e
c

0
x
6
4
3
2
c
4

0
x
6
4
9
6
9
0

0
x
6
4
f
9
d
0

0
x
6
5
5
d
5
8

0
x
6
5
c
1
0
8

0
x
6
6
2
4
d
0

0
x
6
6
8
8
d
4

0
x
6
6
e
c
2
0

0
x
6
7
4
f
6
c

0
x
6
7
b
2
c
0

0
x
6
8
1
7
b
c

0
x
7
f
4
e
c
1
7
f
e
a
9
8
L

0
x
7
f
f
f
2
8
f
9
5
5
d
8
L

0
x
7
f
f
f
9
1
7
3
3
9
1
8
L

0
x
7
f
f
f
f
a
4
9
7
7
d
8
L

SDC
Correct
Crash
Delayed
Stall

IS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

20861

41722

62582

83443

104304

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
2
7
0

0
x
6
5
4
3
4
0

0
x
7
f
f
f
0
1
d
7
9
d
b
8
L

0
x
7
f
f
f
0
d
5
8
1
9
7
8
L

0
x
7
f
f
f
1
8
e
7
c
8
f
0
L

0
x
7
f
f
f
2
4
8
b
5
d
0
0
L

0
x
7
f
f
f
3
0
1
3
f
d
7
0
L

0
x
7
f
f
f
3
b
9
0
e
1
3
0
L

0
x
7
f
f
f
4
7
3
0
3
a
0
8
L

0
x
7
f
f
f
5
2
a
e
4
8
a
0
L

0
x
7
f
f
f
5
e
2
1
9
0
7
8
L

0
x
7
f
f
f
6
9
c
9
8
c
8
8
L

0
x
7
f
f
f
7
5
5
5
8
7
f
0
L

0
x
7
f
f
f
8
0
d
e
3
f
c
0
L

0
x
7
f
f
f
8
c
4
7
e
8
b
8
L

0
x
7
f
f
f
9
7
c
d
0
c
b
8
L

0
x
7
f
f
f
a
3
3
b
2
e
7
0
L

0
x
7
f
f
f
a
e
b
2
3
3
7
0
L

0
x
7
f
f
f
b
a
2
f
0
a
7
8
L

0
x
7
f
f
f
c
5
c
4
6
c
6
8
L

0
x
7
f
f
f
d
1
2
d
1
4
9
8
L

0
x
7
f
f
f
d
c
a
1
4
6
0
8
L

0
x
7
f
f
f
e
8
2
5
1
4
5
0
L

0
x
7
f
f
f
f
3
c
a
5
0
d
8
L

0
x
7
f
f
f
f
f
5
c
9
4
f
8
L

SDC
Correct
Crash
Delayed
Stall

LU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

1225

2450

3676

4901

6126

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
0
7
8

0
x
6
3
2
5
4
8

0
x
6
5
9
f
3
0

0
x
6
8
b
e
9
8

0
x
6
b
e
5
3
8

0
x
6
e
6
1
a
8

0
x
1
0
c
5
b
3
0

0
x
7
f
f
f
0
8
d
1
a
5
6
0
L

0
x
7
f
f
f
1
7
4
8
a
8
2
0
L

0
x
7
f
f
f
2
5
d
2
8
8
c
8
L

0
x
7
f
f
f
3
4
5
b
7
7
8
0
L

0
x
7
f
f
f
4
2
e
e
7
7
f
0
L

0
x
7
f
f
f
5
1
5
c
f
8
f
8
L

0
x
7
f
f
f
5
f
e
7
8
1
8
0
L

0
x
7
f
f
f
6
e
6
d
3
3
a
8
L

0
x
7
f
f
f
7
d
0
8
f
9
0
0
L

0
x
7
f
f
f
8
b
9
1
2
3
d
8
L

0
x
7
f
f
f
9
a
1
a
2
8
7
4
L

0
x
7
f
f
f
a
8
a
f
2
1
2
8
L

0
x
7
f
f
f
b
7
1
f
2
d
4
0
L

0
x
7
f
f
f
c
5
a
a
7
d
5
0
L

0
x
7
f
f
f
d
4
2
8
b
1
b
8
L

0
x
7
f
f
f
e
2
9
7
d
d
4
0
L

0
x
7
f
f
f
f
0
f
a
d
2
0
0
L

0
x
7
f
f
f
f
f
7
0
a
0
b
0
L

SDC
Correct
Crash
Delayed
Stall

MG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

6688

13376

20065

26753

33441

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
0
0
2
0
0

0
x
6
2
6
1
d
8

0
x
6
3
a
d
a
0

0
x
6
4
f
d
c
8

0
x
6
6
5
1
9
0

0
x
7
f
f
f
0
4
f
c
8
c
7
0
L

0
x
7
f
f
f
1
2
6
a
f
2
8
0
L

0
x
7
f
f
f
1
f
8
d
b
a
d
0
L

0
x
7
f
f
f
2
c
9
f
6
b
4
0
L

0
x
7
f
f
f
3
9
a
6
3
c
f
c
L

0
x
7
f
f
f
4
6
a
f
0
d
b
0
L

0
x
7
f
f
f
5
3
7
7
8
e
3
8
L

0
x
7
f
f
f
6
0
b
a
e
c
c
8
L

0
x
7
f
f
f
6
e
0
a
2
8
2
8
L

0
x
7
f
f
f
7
b
3
a
a
c
a
0
L

0
x
7
f
f
f
8
8
7
b
c
7
3
0
L

0
x
7
f
f
f
9
5
9
e
b
2
4
8
L

0
x
7
f
f
f
a
2
d
a
e
0
8
0
L

0
x
7
f
f
f
a
f
f
d
7
5
a
0
L

0
x
7
f
f
f
b
d
3
0
7
b
d
8
L

0
x
7
f
f
f
c
a
7
6
5
0
5
0
L

0
x
7
f
f
f
d
7
8
6
e
e
0
0
L

0
x
7
f
f
f
e
4
9
c
8
5
2
0
L

0
x
7
f
f
f
f
1
9
e
a
f
f
8
L

0
x
7
f
f
f
f
e
b
6
f
5
5
0
L

SDC
Correct
Crash
Delayed
Stall

SP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

m
em

or
y

sp
ac

e
VF

te
st

 d
is

tri
bu

tio
n

ov
er

 m
em

or
y

sp
ac

e

0

3224

6448

9672

12896

16120

Breakdown of outcomes over the tested memory space

tested memory space (addresses of corrupted memory accesses)

0
x
4
2
d
c
d
8

0
x
6
a
8
4
2
4

0
x
7
0
e
3
6
4

0
x
7
4
8
a
f
8

0
x
7
c
8
d
c
0

0
x
8
4
0
8
8
8

0
x
8
9
5
2
7
0

0
x
8
b
f
6
e
0

0
x
8
d
b
7
a
0

0
x
8
f
e
3
7
0

0
x
9
7
6
f
d
8

0
x
9
d
7
a
e
0

0
x
7
f
f
f
0
0
b
b
4
c
0
0
L

0
x
7
f
f
f
1
5
d
e
8
3
e
0
L

0
x
7
f
f
f
2
a
f
5
2
0
5
8
L

0
x
7
f
f
f
4
0
0
a
7
c
1
8
L

0
x
7
f
f
f
5
5
2
1
e
0
c
0
L

0
x
7
f
f
f
6
a
6
7
2
d
6
0
L

0
x
7
f
f
f
7
f
4
f
6
1
4
8
L

0
x
7
f
f
f
9
4
9
9
1
1
b
0
L

0
x
7
f
f
f
a
9
b
2
f
4
4
8
L

0
x
7
f
f
f
b
e
f
d
2
6
3
0
L

0
x
7
f
f
f
d
3
e
d
3
3
a
8
L

0
x
7
f
f
f
e
9
0
9
d
1
5
0
L

0
x
7
f
f
f
f
e
5
5
e
8
a
8
L

SDC
Correct
Crash
Delayed
Stall

UA

Figure 3.16: Tested memory space vulnerability variation and breakdown of rest outcomes for

IS, LU, MG, SP and UA benchmarks.

3.5. Register File Vulnerability Variation 43

there are distinct memory space ranges with distinctly different corruption outcome

percentages. These are mostly attributed to the different memory space areas (heap,

stack vs global) and the different types of data mostly occupying that area in each

benchmark. Generally there is useful insight in the memory space vulnerability. E.g.,

there are memory ranges where the only other observed outcome (apart from SDCs)

are correct executions only or memory ranges where the non-SDC outcome probability

remains constant.

If we focus only on SDCs, the exploitability of the memory space vulnerability

still holds. There are still are distinct memory space ranges with distinct vulnerability

levels. These can be explained also mainly due to shifting between the global, heap

and stack segments and moreover due to the distribution of data types. E.g., the heap of

BT is mainly occupied by floating-point data, hence it exhibits a constant vulnerability

factor of 0.2 throughout its heap.

To conclude, what is most interesting is that there are again distinct levels of vulner-

ability over the tested memory space and that provides exploitable insight by various

ways. Unfortunately there are no common specific patterns among all benchmarks

(at the exact same address ranges) mainly because application data are not distributed

in the memory space the same way among applications. Nevertheless the memory

space vulnerability variation has potential if it is to be exploited in a per-application

basis. E.g., in a hardware reliability approach, the main memory could provide un-

equal multi-levels of protection where some areas may be protected more if they are

more vulnerable to result into an SDC if corrupted. Alternatively, the vulnerability of

memory space could be used as a quick way to identify and map vulnerable data to

stronger-protected cache banks. Another approach, in a software reliability approach,

would be to increase the redundancy and checking of instructions accessing the more-

vulnerable memory ranges.

3.5 Register File Vulnerability Variation

So far, the presented vulnerability insight was mainly at application data level and

pointed out how to achieve the same protection for less cost at application data level

only. Given the injected fault model (data corruption at application data directly), it

was straightforward to analyze the exact corruption effects in relation to the character-

istics of the corrupted data. Although our fault-injection tests were data-level aware,

we are not limited to investigating application data vulnerabilities only. Due to the ex-

44 Chapter 3. Application Behavior Characterization Under Data Corruption

tra information reported during the fault-injection tests related to the corruption char-

acteristics, we can observe the vulnerability variation of other hardware/software areas

too, targeting to obtain more exploitable insight in order to improve their reliability

mechanisms too.

In the rest of this chapter, we show what other vulnerability insight we can observe

by extrapolating our fault model to model other fault-injection locations by analyzing

the reported outcomes to other reported corruption characteristics.

First, in this section, we will extrapolate the reported corruption information to show

the vulnerability variations within the register file.

As a reminder of our fault-injection tool operation, once a fault is injected into a

memory location just before a memory load access, the corrupted data are eventually

affecting an output register through the executing instruction at the moment of fault

injection. It is safe to assume that although the fault was injected into a memory

location, it is equivalent to being injected into the register file and corrupting that first

register. As we capture and report this first register to load the corrupted data, we can

easily use the existing results to elaborate on the vulnerability of the register file for

the tested benchmarks without requiring to remodel/re-execute our tests.

Fig. 3.17 shows the breakdown of corruption outcomes depending on the first reg-

ister to load the corrupted data for all NPB-serial benchmarks combined. Only the

registers that were reported more than 100 times are shown to ensure the confidence of

the results. As expected again, the tests are not uniformly distributed over the register

file as the registers are not used uniformly to store the accessed data from memory.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

al

ea
x

eb
p

eb
x

ec
x

ed
i

ed
x

es
i

r1
0

r1
0d r1

1

r1
1d r1

2

r1
2d r1

3

r1
3d r1

4

r1
4d r1

5

r1
5d r8 r8

d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

xm
m

1

xm
m

10

xm
m

11

xm
m

12

xm
m

13

xm
m

14

xm
m

15

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

xm
m

7

xm
m

8

xm
m

9

10
83

47
81

8

72
1

16
54

19
19

69

79
03

22
22

55

17
10

44

90
84

35
10

11
11

1

16
79

44
46

6

11
19

6

41
77

5

47
80

35
16

5

11
59

30
96

2

48
30

29
17

5

15
13

4

34
65

9

83
79

17
68

65

74
97

1

51
61

7

10
18

09

24
28

04

21
62

59

64
04

54

78
16

4

11
47

92

10
66

81
0

74
34

61

17
57

83

11
77

92

68
04

9

74
64

8

15
46

53

29
38

44

10
73

15
2

31
94

88

33
04

40

23
24

52

23
96

94

12
50

82

91
78

3

93
95

9

0

0.
24

0.
22

0.
14 0.

18

0.
03

0.
24 0.
27

0.
22

0.
1 0.

16

0.
08

0.
04

0.
22

0.
05

0.
41

0.
09 0.

12

0.
05

0.
03

0.
24

0.
14

0.
29

0.
05 0.
06 0.

09

0.
09

0.
2

0.
33

0.
23

0.
34

0.
01

0.
18 0.

23 0.
24 0.

27

0.
26

0.
23

0.
24

0.
25

0.
2 0.
23 0.
25 0.

32

0.
24

0.
23 0.
24 0.
26

0.
23

SDC
Correct
Crash
Delayed
Stall

Full−NPB

Register name

R
eg

is
te

r V
F

Number of tests per register

Figure 3.17: Tested register vulnerability variation and breakdown of rest outcomes for all

NPB-serial benchmarks combined. Only the registers tested more than 100 times are shown.

3.5. Register File Vulnerability Variation 45

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
x

r1
0

r1
1

r1
2

r1
3

r1
4

r1
5 r8 r9 ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

xm
m

1

xm
m

10

xm
m

11

xm
m

12

xm
m

13

xm
m

14

xm
m

15

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

xm
m

7

xm
m

8

xm
m

9

30
0

17
4

24
9

83
3

84
5

93
4

92
7

92
3

12
37

13
97

10
88

13
36

15
67

15
84

40
67

11
55

47
6

46
58

26
93

88
8

76
36

8

62
94

1

41
59

2

18
34

4

19
30

5

29
61

8

81
85

4

18
27

09

22
49

5

22
71

7

37
92

6

10
63

88

27
80

4

13
26

8

96
36

21
08

6

0.16

0.02

0.14 0.11

0.3

0.14
0.2 0.21

0.27 0.24
0.28

0.2 0.22 0.19

0.28 0.3

0.07
0.13

0.04
0.12

0.3 0.27 0.26 0.23 0.2 0.2 0.17 0.19

0.29 0.32 0.32

0.2 0.21 0.24
0.19 0.22

SDC
Correct
Crash
Delayed
Stall

BT

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
x

es
i

r1
0d r1

2

r1
3d r8

d r9 r9
d

ra
x

rb
p

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

xm
m

1

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

62
2

15
1

26
13

9

10
46

3

15
0

12
6

37
27

52
4

78
64

11
6

12
44

63
3

20
4

21
60

48

38
1

17
12

44
2

60
4

43
75

89

83
98

59
08

12
6

29
8

73
13

19
7

0.47

0.07
0.15

0.35

0.51

0.14

0.47
0.38 0.38

0.16 0.14 0.14
0.1

0.35

0.1
0.14

0.02

0.3

0.19

0.08
0.02 0.05

0.16

0.02

0.93

SDC
Correct
Crash
Delayed
Stall

CG

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
i

ed
x

es
i

r1
0

r1
1

r1
2

r1
2d r1

3

r1
4

r1
5 r8 r8
d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

37
01

6

16
43

1

47
76

28
74

9

12
38

7

21
75

29
68

33
88

5

10
28

2

30
31

8

23
42

1

19
38

8

21
64

10
42

5

38
29

14
21

11
60

73

48
00

0

28
32

9

43
35

9

98
96

34
79

7

19
50

35

46
42

2

75
27

29
6

0.26
0.21

0.02 0

0.18

0 0.01 0.01

0.23

0.01 0.03 0

0.57

0.16

0
0.06

0.01 0.02 0.01

0.15
0.06

0.01
0.06

0

0.22

0.47

SDC
Correct
Crash
Delayed
Stall

DC

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

r1
2

r1
3

r1
4

r1
5

ra
x

rb
p

rb
x

rc
x

rfl
ag

s rip

xm
m

0

xm
m

1

xm
m

10

xm
m

11

xm
m

13

xm
m

14

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

xm
m

7

xm
m

8

xm
m

9

53
29

52
91

54
09

54
45

26
54

4

54
41

54
57

50
85

15
84

6

21
41

2

27
96

4

23
99

7

19
5

51
27

51
87

67
80

56
88

6

52
89

15
60

8

10
55

5

33
28

5

13
33

8

53
27

53
89

0.11
0.18

0.28

0

0.14

0.29

0.18

0 0 0 0

0.24

0 0 0 0

0.1

0.28
0.19

0.28

0 0 0 0

SDC
Correct
Crash
Delayed
Stall

EP

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
x

es
i

r1
0

r1
1

r1
1d

r1
3d r1

4

r1
4d r8 r8

d r9 ra
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

xm
m

1

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

12
20

42
1

24
4

62
8

85
0

90
3

32
2

10
7

18
09

60
9

24
40

11
9

88
1

88
40

48
76

13
23

23
47

13
92

7

35
22

78
76

3

10
27

46

99
52

1

98
36

1

87
72

1

14
84

29
85

11
14

0.23

0.1
0.17

0.24
0.17

0.25

0.04

0.58

0 0.03

0.17
0.13

0.23

0.06
0.14

0.01

0.16
0.08

0.03

0.17
0.12 0.13 0.12 0.14

0.37

0.18

0

SDC
Correct
Crash
Delayed
Stall

FT

Register name

R
eg

is
te

r V
F

Number of tests per register

Figure 3.18: Tested register vulnerability variation and breakdown of rest outcomes for BT,

CG, DC, EP and FT benchmarks. Only the registers reported more than 100 times are shown.

46 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

al

ea
x

ec
x

ed
x

es
i

r1
1

r1
2

r1
4

r1
5 r8 r8
d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

14

xm
m

5

34
2

61
8

17
18

71

16
40

11

14
32

98

45
0

12
7

13
6

10
9

20
2

43
9

42
6

47
6

11
92

14
7

21
4

16
9

22
4

15
78

24

28
91

03

32
6

47
4

12
91

9

13
28

1

0 0.02

0.18

0.3 0.27

0 0 0 0 0 0 0 0 0.01 0 0 0 0

0.28

0.66

0 0

0.71

0

SDC
Correct
Crash
Delayed
Stall

IS

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

eb
p

eb
x

ec
x

ed
x

es
i

r1
0

r1
0d r1

1
r1

1d r1
2

r1
2d r1

3
r1

3d r1
4

r1
4d r1

5
r1

5d r8 r8
d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0
xm

m
1

xm
m

10
xm

m
11

xm
m

12
xm

m
13

xm
m

14
xm

m
15

xm
m

2
xm

m
3

xm
m

4
xm

m
5

xm
m

6
xm

m
7

xm
m

8
xm

m
9

22
91

35
1

10
04

75
0

56
6

16
0

24
00

20
5

34
76

17
9

19
41

51
2

26
82

40
5

21
59

32
9

89
3

14
8

35
64

16
6

16
24

3

57
6

66
08

50
17

30
25

35
13

36
85

26
25

22
09

9

55
9

26
79

75
09

5

84
62

1

51
06

3

57
49

9

33
25

1

14
73

4

31
25

1

56
81

0

10
76

21

32
54

0

96
93

1

53
62

7

12
21

35

47
58

7

24
72

9

35
26

7

0.
33 0.

37

0.
15 0.
16

0.
29

0.
21 0.

24

0.
34

0.
25

0.
04

0.
19

0.
13

0.
22 0.
24

0.
19 0.

25

0.
18

0.
31

0.
21

0.
14

0.
33

0.
03

0.
17 0.

2

0.
18 0.

21

0.
2

0.
18

0.
15

0.
01

0.
14

0.
38

0.
36

0.
21 0.

26

0.
21 0.
23

0.
22

0.
14

0.
29

0.
38

0.
29 0.

33

0.
27

0.
25 0.

31

0.
22

SDC
Correct
Crash
Delayed
Stall

LU

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

al
ea

x
eb

p
eb

x
ec

x
ed

i
ed

x
es

i
r1

0
r1

0d r1
1

r1
1d r1

2
r1

2d r1
3

r1
3d r1

4
r1

5
r1

5d r8 r8
d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0
xm

m
1

xm
m

10
xm

m
11

xm
m

2
xm

m
3

xm
m

4
xm

m
5

xm
m

6
xm

m
7

xm
m

8
xm

m
9

49
0

37
67

14
5

52
6

73
2

26
86

64
6

35
42

72
7

26
18

19
83

88
7

97
4

27
2

16
92

36
7

35
8

47
3

44
05

12
18

0

30
64

92
8

52
73

75
72

93
8

11
30

5

13
51

1

41
60

99
24

78
80

1

17
57

93
87

14
40

95

29
32

96

48
97

0

21
8

51
97

51

23
57

5

52
53

57
50

28
73

6

26
95

4

38
04

6

11
43

6

0 0.
02 0

0.
09

0.
04

0.
01 0.
03 0.
05

0.
18

0.
04 0.

11

0.
01 0.

05

0.
06

0.
16

0.
02

0.
1

0.
05

0

0.
2

0.
02

0.
15

0.
03

0.
13

0.
04

0.
19

0.
18 0.
19

0.
17

0.
07

0

0.
18

0.
11

0.
22 0.

27

0

0.
24

0.
24 0.

3 0.
39

0.
26 0.
27

0.
23

0.
2

SDC
Correct
Crash
Delayed
Stall

MG

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
x

r1
0d r1

1

r1
2

r1
3

r1
4

r1
5 r8 r8
d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0

xm
m

1

xm
m

10

xm
m

11

xm
m

12

xm
m

13

xm
m

14

xm
m

15

xm
m

2

xm
m

3

xm
m

4

xm
m

5

xm
m

6

xm
m

7

xm
m

8

xm
m

9

11
36

95
2

93
6

33
4

19
6

10
04

53
7

76
5

26
62

65
64

12
1

13
70

21
1

18
61

12
70

2

13
79

20
72

3

55
73

20
83

15
02

7

80
6

72
77

16
76

31

14
43

93

27
15

6

12
70

4

57
81

17
27

8

12
37

9

18
40

9

23
31

53

10
34

01

16
09

46

26
00

8

20
75

4

14
70

5

10
69

7

15
68

1

0.13
0.04

0.17

0.04
0.12 0.13

0.06
0.15

0.23 0.25

0.08 0.07 0.08
0.17 0.2

0.1

0.27 0.31

0.1
0.17

0.01

0.19

0.43

0.3

0.44
0.51

0.43 0.4

0.52 0.53

0.26 0.27
0.37 0.39

0.32 0.33
0.41

0.35

SDC
Correct
Crash
Delayed
Stall

SP

Register name

R
eg

is
te

r V
F

Number of tests per register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ea
x

ec
x

ed
i

ed
x

es
i

r1
0

r1
0d r1

1
r1

1d r1
2

r1
3

r1
4

r1
5

r1
5d r8 r8

d r9 r9
d

ra
x

rb
p

rb
x

rc
x rd
i

rd
x

rfl
ag

s rip rs
i

xm
m

0
xm

m
1

xm
m

10
xm

m
11

xm
m

12
xm

m
13

xm
m

14
xm

m
15

xm
m

2
xm

m
3

xm
m

4
xm

m
5

xm
m

6
xm

m
7

xm
m

8
xm

m
9

84
5

48
5

23
2

71
4

41
5

19
30

18
8

26
8

21
8

11
4

16
2

16
0

73
1

22
2

65
4

23
3

20
28

23
0

55
95

46
7

21
8

63
02

73
8

57
99

42
46

22
5

71
92

35
01

6

26
28

8

68
07

23
90

0

97
09

78
31

94
70

35
91

6

28
97

7

44
11

9

11
99

3

65
45

56
69

91
46

33
28

50
75

0.32 0.34
0.28

0.38

0.22

0.54

0.4
0.49

0.38

0.17 0.14
0.18

0.31 0.35

0.45

0.32

0.42
0.34

0.4

0.28
0.2

0.45
0.37 0.37

0.13

0.02

0.28
0.2

0.11

0.24 0.23 0.26 0.23 0.24
0.16

0.21
0.25

0.13

0.24 0.25 0.26 0.25 0.23

SDC
Correct
Crash
Delayed
Stall

UA

Register name

R
eg

is
te

r V
F

Number of tests per register

Figure 3.19: Tested register vulnerability variation and breakdown of rest outcomes for IS,

LU, MG, SP and UA benchmarks. Only the registers reported more than 100 times are shown.

3.6. Instruction-Level Vulnerability Variation 47

The figure also shows the register vulnerability factor per register as a percentage of

reported SDC outcomes over the total number of times this register was reported. Al-

though most registers experience SDCs if corrupted, there are registers that experience

significantly less SDCs and thus can be deemed as less-vulnerable ones. Interestingly

the xmm registers that tend to hold the floating-point data, have a register VF around

0.2, while the rest reported outcomes are almost only correct executions, following the

floating-point data observations made in earlier sections.

The observed register vulnerability factors for all benchmarks combined are not

safe to be exploited in a benchmark-agnostic fashion because the tests per register

type are not distributed equally among the different benchmarks and because a specific

register’s outcome breakdown varies per application.

Fig. 3.18-3.19 depict the breakdown of corruption outcomes depending on the first

register to load the corrupted data per each tested benchmark. The only common be-

havior is regarding the xmm registers (except for IS) that tend to have similar vulner-

ability factor per benchmark, while the rest reported corruption outcomes tend to be

almost only correct executions. This, once more, is explained by the high occupancy

of xmm registers by floating-point data.

Despite the non benchmark-wide observations, a per-application profiling can still

point to some exploitable insight. The registers can be ranked per-application accord-

ing to their vulnerability in order to assign their protection strength accordingly. As the

register file is relatively small there would be not much benefits in adapting an existing

register file hardware protection mechanism.

On the contrary, there is more potential for savings in software-level reliability

mechanisms that could become aware of which registers tend to hold data that tend to

be more vulnerable. In such a scenario, a software-level reliability mechanism could

take care to replicate the data stored in such registers and also drive the more vulner-

able data to the registers usually occupied by more vulnerable data to minimize the

vulnerable area of the register file. The reverse intuitive approach of targeting to use

more the less-vulnerable registers would not work as intended because the registers’

vulnerability reflects the vulnerability of the data that they hold.

3.6 Instruction-Level Vulnerability Variation

In a similar fashion as before, in this section we will extrapolate the original injected

fault model to model instruction-level faults to observe vulnerability variations in re-

48 Chapter 3. Application Behavior Characterization Under Data Corruption

lation to instruction-level characteristics. Assisted by the reported corruption infor-

mation relating to the instruction at the moment of fault injection and the instruction

using first the corrupted data, we will discuss on instruction-level and program space

vulnerability variations.

Although we injected faults at memory locations just before a memory load access,

it is possible to infer instruction-level vulnerabilities. Due to the reported information

of our fault-injection tool, we can collect information such as (a) the instruction opcode

at the moment of the fault injection, (b) the instruction opcode of the first instruction

to use the first affected register, (c) the instruction pointer at the moment of the fault

injection and (d) the instruction counter at the moment of the fault injection.

All these were straightforward to be collected by our fault-injection tool and make

up some interesting characteristics to be investigated hereafter in this section. In par-

ticular, we will (a) model the vulnerability of instructions if they are targeted by a fault,

(b) model the vulnerability of instructions if they use a corrupted operand, (c) model

the vulnerability variations within the program space and (d) observe possible program

vulnerability phases.

3.6.1 Per Instruction Type at Fault Injection

During our fault-injection tests, the faults were injected just before instructions that

caused a memory load operation. As we capture the opcode of that instruction, we can

elaborate on the vulnerability variation at instruction level. The vulnerabilities that are

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

AN
D

AN
D

PD

C
AL

L_
N

EA
R

C
M

P

C
M

PS
B

C
M

PX
C

H
G

C
VT

SI
2S

D

D
EC

D
IV

PD

D
IV

SD

IM
U

L

JM
P

M
O

V

M
O

VA
PD

M
O

VD
Q

A

M
O

VD
Q

U

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
X

M
O

VS
XD

M
O

VZ
X

M
U

LP
D

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
B

SU
BS

D

TE
ST

U
C

O
M

IS
D

XO
R

PD

39
31

11

70
03

38
90

59

78
47

10
66

7

99
7

20
54

49

17
2

15
51

5

11
4

11
76

1

12
1

32
40

4

18
54

24
74

2

13
20

22
9

29
44

7

16
1

32
6

41
17

40

34
48

20
4

28
0

39
52

95

90
82

32
71

76
85

89

13
66

09

52
42

5

15
83

6

93
49

6

15
05

4

22
76

9

64
73

0.
53

0.
41

0.
3

0 0 0 0.
07

0.
04

0

0.
68

0

0

0.
33

0.
52

0

0.
17

0.
53

0.
41 0.

47

0.
24

0.
24

0.
01

0.
33

0.
27

0

0.
19

0.
05

0.
01

0.
17

0.
3

0 0 0

SDC
Correct
Crash
Delayed
Stall

Full−NPB

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

Figure 3.20: Tested instruction vulnerability variation at fault injection and breakdown of

rest outcomes for all NPB-serial benchmarks combined. Only opcodes reported more than 100

times are shown.

3.6. Instruction-Level Vulnerability Variation 49

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
M

P

D
IV

SD

M
O

V

M
O

VA
PD

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
B

SU
BS

D

18
57

27
93

9

28
52

39
81

18
93

6

21
11

31
32

60
01

70

24
9

11
27

11

80
1

26
77

12
8

24
00

2

0.19

0.4

0.1

0.4

0.23

0.48
0.52

0.2
0.16

0.3

0.1
0.04 0.02

0.18

SDC
Correct
Crash
Delayed
Stall

BT

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

C
M

P

M
O

V

M
O

VA
PD

M
O

VD
Q

A

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
BS

D

52
8

13
17

56
59

1

19
10

12
3

91
95

23
14

33

21
23

97

21
68

88

13
9

41
4

14
7

0.14 0.14

0.24

0.01

0.54

0.03

0.35 0.36

0.01
0.05 0.02 0

SDC
Correct
Crash
Delayed
Stall

CG

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AN
D

C
AL

L_
N

EA
R

C
M

P

C
M

PX
C

H
G

D
EC

IM
U

L

JM
P

M
O

V

M
O

VD
Q

U

M
O

VZ
X

PO
P

R
ET

_N
EA

R

TE
ST

70
93

78
11

86
8

15
76

13

15
47

7

11
73

6

80
5

16
88

0

40
66

40

27
9

57
81

96
20

0

28
67

4

13
44

0

0.22

0 0
0.07

0 0

0.99

0
0.07

0.49
0.42

0.01 0.01 0

SDC
Correct
Crash
Delayed
Stall

DC

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

SD

AN
D

PD

C
M

P

JM
P

M
O

V

M
O

VS
D

_X
M

M

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
BS

D

U
C

O
M

IS
D

17
17

0

10
66

7

52
22

53
90

31
65

0

14
44

41

29
07

1

32
36

9

16
02

2

13
58

1

10
62

2

0 0 0 0

0.11 0.13

0

0.17

0.01 0 0

SDC
Correct
Crash
Delayed
Stall

EP

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
M

P

IM
U

L

JM
P

M
O

V

M
O

VS
D

_X
M

M

M
U

LS
D

PO
P

R
ET

_N
EA

R

U
C

O
M

IS
D

10
50

2

35
64

15
73

32
4

21
01

10
41

74

37
85

53

11
94

3

14
2

14
19

39
41

0.13

0.01
0.05

0.17

0.05

0.16 0.13

0.04
0.13

0.01 0

SDC
Correct
Crash
Delayed
Stall

FT

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

Figure 3.21: Tested instruction vulnerability variation at fault injection and breakdown of

rest outcomes for BT, CG, DC, EP and FT benchmarks. Only opcodes reported more than 100

times are shown.

50 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

C
M

P

M
O

V

M
O

VS
XD

M
O

VZ
X

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
BS

D

TE
ST

29
43

27

75
0

47
71

60

15
71

84

15
10

13
28

0

35
8

27
5

12
91

9

67
5

0.66

0.01

0.24
0.28

0 0 0 0

0.71

0

SDC
Correct
Crash
Delayed
Stall

IS

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

C
M

P

D
IV

SD

IM
U

L

M
O

V

M
O

VA
PD

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
O

VZ
X

M
U

LP
D

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
B

SU
BS

D

TE
ST

XO
R

PD

11
00

3

16
09

65
02

4

89
71

80
17

61
6

53
32

2

19
89

1

40
70

4

54
94

56

57
1

19
3

32
41

19
87

29

18
65

50
1

13
60

6

35
33

3

12
0

27
51

0.22

0.88

0.39

0.12

0.4

0.17
0.24

0.67

0.23
0.26

0.13

0

0.97

0.24

0.1

0.01

0.19

0.3

0 0

SDC
Correct
Crash
Delayed
Stall

LU

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
M

P

JM
P

M
O

V

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
X

M
O

VS
XD

M
O

VZ
X

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
B

TE
ST

U
C

O
M

IS
D

56
85

1

93
56

7

18
69

5

21
6

96
04

1

33
55

78

71
63

87

12
7

21
2

11
97

53
4

12
73

14
84

91
8

64
3

81
89

0.
1

0.
21

0.
03

0

0.
13

0.
24

0.
22

0 0.
07

0 0 0.
01 0

0.
14

0 0.
01

SDC
Correct
Crash
Delayed
Stall

MG

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
M

P

D
IV

SD

M
O

V

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
O

VZ
X

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
B

SU
BS

D

XO
R

PD

79
34

11
89

14

71
39

20
37

1

63
85

2

12
20

5

69
97

92

78
9

21
0

12
93

59

30
05

74
6

94
4

66
87

37
21

0.2

0.46

0.13

0.29
0.23

0.47

0.32

0.09
0

0.33

0.09
0.01 0.03

0.59

0

SDC
Correct
Crash
Delayed
Stall

SP

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

C
M

P

D
IV

PD

M
O

V

M
O

VA
PD

M
O

VH
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LS
D

PO
P

R
ET

_N
EA

R

SU
BS

D

30
13

53
94

62
88

1

13
17

12
1

11
86

3

55
24

10
92

6

12
79

67

23
74

6

56
07

3

45
7

21
3

82
7

0.07

0.27

0.11

0.25

0.98

0.23 0.23

0.1

0.23

0.45

0.27

0.08
0.02

0.3

SDC
Correct
Crash
Delayed
Stall

UA

Instruction opcode at fault−injection

In
st

ru
ct

io
n

VF

Number of tests per instruction

Figure 3.22: Tested instruction vulnerability variation at fault injection and breakdown of

rest outcomes for IS, LU, MG, SP and UA benchmarks. Only opcodes reported more than 100

times are shown.

3.6. Instruction-Level Vulnerability Variation 51

modeled using that information are only for instructions that load corrupted data from

memory. Such instructions may either use the corrupted data immediately (e.g., adding

a register value to a value from memory) or move the corrupted data from memory.

Fig. 3.20 shows the breakdown of corruption outcomes depending on the instruc-

tion type at the moment of fault injection for all NPB-serial benchmarks combined.

Only the instruction opcodes that were reported more than 100 times are shown to en-

sure the confidence of the results, while the distribution of the tests over the reported

opcodes is also shown. The figure also shows the instruction vulnerability factor per

opcode as a percentage of reported SDC outcomes over the total number of times that

this opcode was reported.

Although this considers only instructions that load corrupted data and, thus, limits

the instruction types under consideration, it still provides an indication of instruction-

level vulnerabilities. Ranking such instructions based on their probability to result into

an SDC, if they load corrupted data, can be used as a guideline on which instructions

to protect stronger. This also holds if we consider that this can model the corruption

happening inside the functional unit implementing the given instruction; e.g., the out-

come breakdown of an ADD where one of the operands has a corrupted bit is the same

with the outcome breakdown where the operands are correct but a single output bit is

wrongly calculated.

The tests are not uniformly distributed over the instruction types and, as before, the

presented instruction-level vulnerability for all benchmarks combined is not safe to be

exploited in an benchmark-agnostic fashion. An exception holds for those clear results

that are explained due to the instruction type itself, e.g., the non-vulnerable instructions

AND and TEST that have zero vulnerability factors across all benchmarks.

More usable insight can be gained in a per-application profiling. Fig. 3.21-3.22

show the same breakdown of execution outcomes per each tested benchmark. It still

holds that instruction types may be ranked depending on their vulnerabilities in a per-

application basis.

If we focus only on the reported SDC percentages, it is interesting that there are

clear vulnerability variations among different opcodes, while some of them never re-

ported an SDC despite the large number of times reported. This points out that it is

promising to rank opcodes based on their vulnerability so that we employ more mea-

sures to ensure that a memory-loaded value has been correct for those instruction op-

codes with higher vulnerability to result into an SDC. Similarly, if we assume that the

corruption occurs within the functional/arithmetic units that implement the instruction

52 Chapter 3. Application Behavior Characterization Under Data Corruption

(only for instructions that do indeed use the corrupted data), then this can point out

which units to protect stronger than others. Equally interesting exploitation potential

lies with these instructions that never reported an SDC.

3.6.2 Per Instruction Type at First Consumption

of Corrupted Operand

During our fault-injection tests, the faults were injected just before instructions that

caused a memory load operation. Then these instructions could either use the loaded

corrupted data immediately or just move them from the memory to a register. In both

cases, there is always an output register that is affected by these instructions.

Here we target the instruction-level vulnerability variations of the first consumer of

the corrupted data. In other words, we observe the instruction-related vulnerability to

result into an SDC, if the instruction is the first to use the first affected register as an

input register after the instruction at fault injection.

To achieve this we need the opcode information of this first consumer of the cor-

rupted register that is provided by our tool. The process of obtaining this is different

than the other instruction-related captured information. To capture the instruction op-

code, instruction pointer and instruction counter at the moment of fault injection was

straightforward.

On the contrary, to capture the intended instruction opcode required tracking the

first register, that the corrupted data affect first, until its first use as an input register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD
AD

D
SD

AN
D

AN
D

PD
C

AL
L_

N
EA

R
C

D
Q

E
C

M
P

C
M

PX
C

H
G

C
VT

SI
2S

D
C

VT
TS

D
2S

I
D

EC
D

IV
SD

FS
U

B
ID

IV
IM

U
L JB JB
E JL JL
E

JM
P

JN
B

JN
BE JN

L
JN

LE JN
Z JS JZ

LE
A

LO
O

P
M

AS
KE

D
M

AX
SD

M
O

V
M

O
VA

PD
M

O
VD

Q
A

M
O

VS
D

_X
M

M
M

O
VS

X
M

O
VS

XD
M

O
VZ

X
M

U
LP

D
M

U
LS

D
N

O
P

PA
D

D
D

PU
SH SA

R
SE

TZ
SH

L
SH

R
SU

B
SU

BP
D

SU
BS

D
TE

ST
U

C
O

M
IS

D
U

N
PC

KL
PD

U
N

U
SE

D
XO

R
XO

R
PD

21
05

53

24
73

62

10
71

67
5

16
68

3

15
4

39
32

10
5

16
49

36

34
61

25
7

13
36

7

70
95

25
25

1

18
1

12
5

13
23

93
5

25
30

7

14
96

12
07

5

17
47

15
90

0

32
73

0

45
77

40
37

2

55
55

4

35
09

68
39

8

56
03

7

14
5

84
94

89

51
7

54
94

22

57
26

38

37
1

43
11

88

27
3

15
01

73

22
6

49
62

0

18
36

49
9

46
8

11
9

67
20

6

15
55

38

35
2

40
10

12
07

38
37

0

15
83

73
25

28

14
90

19

50
56

8

16
49

66
34

7

11
10

33
51

8

0.
23 0.
25

0.
22

0.
01 0 0.
03

0.
25

0.
18

0
0.

47
0 0

0.
09

0
0.

41
0.

21
0 0.
02 0.

06
0.

03 0.
07

0.
03

0.
29

0 0.
02

0.
02

0.
11

0.
01

0.
28

0
0.

36
0

0.
21 0.
23

0.
42

0.
24

0 0.
03

0
0.

36
0.

28
0.

26
0.

55
0.

07
0.

25
0.

37
0.

2
0.

03
0.

29
0

0.
23

0.
05

0.
05

0.
35

0
0.

07 0.
13

SDC
Correct
Crash
Delayed
Stall

Full−NPB

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

Figure 3.23: Tested instruction vulnerability variation (at first consumption of corrupted

operand) and breakdown of rest outcomes for all NPB-serial benchmarks combined. Only

opcodes reported more than 100 times are shown.

3.6. Instruction-Level Vulnerability Variation 53

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
AL

L_
N

EA
R

C
M

P

D
IV

SD JB
E

JL
E

JN
Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
U

LS
D

PU
SH SH

L

SU
B

SU
BS

D

TE
ST

U
N

U
SE

D

XO
R

PD

18
60

30
93

2

12
6

33
6

50
93

23
8

10
3

23
06

31
0

23
59

59
29

12
50

6

17
49

6

12
93

45

38
58

96

35
0

20
7

17
6

20
29

37

26
9

23
77

16
2

0.26

0.43
0.48

0.15

0

0.23

0.12 0.11
0.05

0.16

0.33
0.26

0.41

0.21 0.2

0.07

0.21

0.03

0.25

0.11

0

0.46

SDC
Correct
Crash
Delayed
Stall

BT

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
M

P

JN
LE JN

Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
U

LP
D

M
U

LS
D

PA
D

D
D

SU
B

SU
BS

D

TE
ST

U
N

U
SE

D

38
1

21
69

22

15
56

0

15
4

10
9

95
2

44
49

98
58

10
80

0

96
01

15
1

19
10

43
39

29

11
9

10
2

16
1

25
34

4

39
2

0.09
0.01

0.38

0.22 0.21
0.12 0.1

0.04

0.35

0.07

0.46

0.01

0.36

0.55

0.13
0.04

0.14

0

SDC
Correct
Crash
Delayed
Stall

CG

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AN
D

C
AL

L_
N

EA
R

C
M

P

C
M

PX
C

H
G

D
EC ID
IV

IM
U

L JB JB
E JL JL
E

JM
P

JN
B

JN
BE JN

L

JN
LE JN

Z JS JZ

LE
A

LO
O

P

M
AS

KE
D

M
O

V

M
O

VD
Q

A

PU
SH SH

L

SU
B

TE
ST

U
N

U
SE

D

XO
R

15
38

8

15
13

8

23
47

10
60

98

34
45

70
87

12
4

11
3

17
4

71
51

10
2

47
40

12
52

14
90

2

23
66

9

45
16

39
25

2

38
30

4

34
26

51
47

8

81
4

14
3

54
34

1

17
68

24

30
7

41
89

1

25
5

76
07

10
90

31

38
60

9

62
3

0.1

0.01 0.02
0.09

0 0

0.41

0.98

0 0 0 0 0.01 0.03

0.41

0 0 0

0.12

0

0.86

0
0.08 0.08

0.45

0.01

0.16

0.03 0.03 0
0.07

SDC
Correct
Crash
Delayed
Stall

DC

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

AN
D

PD

C
AL

L_
N

EA
R

C
M

P

D
IV

SD

FS
U

B

JB
E

JM
P

JN
BE JN

Z JZ

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
U

LS
D

PU
SH SA

R

SU
BS

D

U
C

O
M

IS
D

U
N

U
SE

D

XO
R

PD

54
17

71
50

9

15
3

10
92

53
36

10
66

6

18
1

51
88

26
2

54
34

42
3

55
01

36
3

10
43

6

42
63

2

15
99

3

33
30

0

21
62

4

10
53

7

54
77

28
35

6

17
93

8

17
95

1

0.24
0.16

0 0 0

0.14

0 0 0 0 0 0 0

0.17

0.04 0.06
0.12

0.17

0.05 0.02 0.04
0 0

SDC
Correct
Crash
Delayed
Stall

EP

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

SD

C
AL

L_
N

EA
R

C
M

P

C
VT

SI
2S

D

IM
U

L JB

JM
P

JN
BE JN

Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
U

LS
D

N
O

P

SU
BS

D

TE
ST

U
C

O
M

IS
D

U
N

U
SE

D

XO
R

PD

40
30

13
13

67

18
3

47
68

25
7

68
1

43
6

15
0

35
25

10
76

59
9

61
3

89
51

92
65

4

18
25

18

89
83

22
73

9

28
1

47
50

7

12
13

20
77

28
63

74
6

0.09
0.13

0
0.05

0.47

0.13

0

0.63

0
0.07

0.01

0.17
0.12

0.16 0.14
0.09

0.04

0.25

0.14 0.12

0 0

0.56

SDC
Correct
Crash
Delayed
Stall

FT

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

Figure 3.24: Tested instruction vulnerability variation (at first consumption of corrupted

operand) and breakdown of rest outcomes for BT, CG, DC, EP and FT benchmarks. Only

opcodes reported more than 100 times are shown.

54 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AN
D

C
M

P

C
VT

TS
D

2S
I

JN
Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VS
XD

M
U

LS
D

PU
SH SA

R

SU
B

TE
ST

U
N

U
SE

D

14
42

36

72
2

14
19

0

13
28

0

64
0

73
9

13
16

0

28
89

39

16
46

96

14
51

11

12
91

9

10
7

14
50

00

13
18

7

11
44

28
7

0.25

0

0.92

0 0 0.01

0.6
0.66

0.34

0.03

0.71

0

0.27

0.52

0 0

SDC
Correct
Crash
Delayed
Stall

IS

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

C
M

P

D
IV

SD

IM
U

L

JB
E JL JL
E

JN
LE JN

Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LP
D

M
U

LS
D

PU
SH SH

L

SH
R

SU
B

SU
BP

D

SU
BS

D

TE
ST

U
N

PC
KL

PD

U
N

U
SE

D

XO
R

PD

11
44

9

16
58

11
98

35

30
88

67
85

28
0

48
3

12
67

79
3

81
8

37
11

19
93

12
69

2

54
73

2

97
11

75
21

4

11
05

44

55
3

39
54

3

36
78

68

10
55

47
8

82
7

69
91

15
83

16
74

73

48
1

16
45

91
6

10
85

1

0.21

0.98

0.32

0.16

0.01

0.13
0.21

0.07 0.1

0.75

0.01
0.07

0.2 0.2

0.37 0.38
0.33

0.1

0.42

0.24

0.1

0.21

0

0.23

0.97

0.26

0.09

0.35

0

0.28

SDC
Correct
Crash
Delayed
Stall

LU

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

AN
D

C
M

P JB JB
E

JL
E

JN
B

JN
Z JZ

LE
A

M
AS

KE
D

M
AX

SD

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
O

VS
X

M
O

VS
XD

M
U

LS
D

PU
SH SH

L

SH
R

SU
B

SU
BS

D

TE
ST

U
C

O
M

IS
D

U
N

U
SE

D

XO
R

15
96

0

24
26

04

25
49

05

59
3

13
77

7

23
7

11
28

9

60
25

93
5

44
29

44
73

15
87

9

39
13

92

51
7

15
30

3

14
17

04

53
45

0

15
8

26
94

70
32

3

45
3

17
87

34
9

36
50

51
83

3

80
10

16
93

4

15
95

34
2

0.16
0.24 0.22

0
0.05

0 0.01 0.03 0
0.05 0.02

0.19 0.22

0

0.13

0.22 0.2

0
0.04

0.29

0.01

0.17
0.1

0.04 0.02 0.01
0.06

0
0.05

SDC
Correct
Crash
Delayed
Stall

MG

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

C
M

P

D
IV

SD

IM
U

L

JB
E

JL
E

JN
Z JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LS
D

PU
SH SH

L

SU
B

SU
BS

D

TE
ST

U
N

U
SE

D

XO
R

PD

11
13

3

20
0

18
25

76

11
30

26
64

13
9

92
6

31
3

45
11

14
06

47
19

21
09

9

41
95

7

84
88

3

40
98

7

15
2

41
06

80

14
34

11
61

83
0

25
62

77

14
18

11
63

37
93

0.26

0.66

0.45

0.11

0.24
0.17 0.19 0.17

0.13
0.08

0.13

0.36

0.24

0.41
0.36

0

0.33

0.07

0.25

0.1

0.27

0.13

0

0.23

SDC
Correct
Crash
Delayed
Stall

SP

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AD
D

AD
D

PD

AD
D

SD

C
M

P JZ

LE
A

M
AS

KE
D

M
O

V

M
O

VA
PD

M
O

VS
D

_X
M

M

M
O

VS
XD

M
U

LP
D

M
U

LS
D

N
O

P

PU
SH

SE
TZ

SH
L

SU
B

SU
BS

D

TE
ST

U
C

O
M

IS
D

U
N

U
SE

D

69
9

28
64

63
62

8

65
3

94
7

13
51

13
88

5

14
53

5

18
58

7

71
73

2

14
81

81
53

98
84

5

10
7

22
6

21
1

10
5

57
64

86
3

21
04

31
50

20
7

0.3

0.14

0.25

0.08

0.2 0.21

0.09

0.36

0.24
0.16

0.31

0.17
0.25 0.23

0.05

0.58

0.14

0.37

0.12

0.36

0.1

0

SDC
Correct
Crash
Delayed
Stall

UA

Corruption first−user instruction opcode

In
st

ru
ct

io
n

VF

Number of tests per Instruction

Figure 3.25: Tested instruction vulnerability variation (at first consumption of corrupted

operand) and breakdown of rest outcomes for IS, LU, MG, SP and UA benchmarks. Only

opcodes reported more than 100 times are shown.

3.6. Instruction-Level Vulnerability Variation 55

by an instruction. This tracking of the first affected register by the corruption is for

a window of 1000 instructions. If by the end of this instruction window the register

hasn’t been used by a later instruction as an input register or if the application crashes

first, then this case will be reported as an ‘unused’ case.

As there is the possibility of this register being overwritten before its first use as an

input register, the tool makes sure to monitor and report such cases as ‘masked’. This

doesn’t mean that the initial memory corruption got masked but that the register where

the corrupted data first got loaded got masked. The corrupted data will still reside in

the memory, unless overwritten in the meantime.

There is also a special common case where, at fault injection, when the corrupted

data are loaded from the memory, they do not get stored to a register but the outcome

of their processing is stored to one of the bits of the flags register. In that case the flags

register is assumed as the first register affected by the corrupted data. As such it is very

likely to be overwritten by a later instruction and being reported as another ‘masked’

instance.

As all these help gather information about the first instruction to use the first af-

fected register by the initial corruption, we can show the variation of corruption out-

comes depending on the opcode of the first instruction after the fault injection to

use the first affected register. Fig. 3.23 shows this outcome breakdown for all NPB-

serial benchmarks combined, along with the observed instruction vulnerability factors.

Again, only the instruction opcodes that were reported more than 100 times are shown,

along with the distribution of tests over the reported opcodes.

It may be observed that different instruction opcodes have different vulnerability to

result into an SDC if they are the first to consume the affected register. This points out

that there is exploitation potential. Although the corruption does not happen within the

instruction types under consideration, this type of instruction vulnerability can point

out where extra protection needs to be added to ensure that the vulnerable instruction

gets correct data at their input registers.

If the same vulnerabilities are observed per tested benchmark (Fig. 3.24-3.25),

there are more clear areas of where to focus. There are more instruction types that

are more invulnerable to faults in their input operands and there is still a clear variation

to the rest instructions, although this variation does not hold across benchmarks. For

the instance of the reported ‘unused’ cases, it can be seen that all such cases result only

into crashes and not any SDCs, meaning that the crash happened before the register

was used again by any instruction.

56 Chapter 3. Application Behavior Characterization Under Data Corruption

Despite the non benchmark-wide observations, using the vulnerability of instruc-

tion types when one of their operands is corrupted can be exploited in various ways.

E.g., there is potential in a software-level reliability mechanism that focuses on a

stronger check of the correctness of input operands only for the more-vulnerable in-

struction types.

3.6.3 Program Space Vulnerability

Given that our fault-injection tool captures and reports the instruction pointer of the

instruction executing at the moment of the fault injection, we can use this information

to relate the corruption outcomes to the instruction pointer value at fault injection in

order to observe the tested benchmarks’ program space vulnerability variations.

Fig. 3.26-3.27 show the breakdown of the reported corruption outcomes over the

program space for each tested workload. As each workload does not reside in the ex-

act same program space ranges, each one is shown on a separate figure where only the

instruction locations that triggered a fault injection are shown. This includes both the

workload’s space and the used libraries’ space. Each point on the horizontal axis is a

group of adjacent memory locations storing instructions plotted against the breakdown

of outcomes of the total tests performed within this group of instructions. The distri-

bution of tests over the program space is shown by the blue dotted lines. As it follows

the program execution hotspots (of instructions that cause memory load accesses) it

resulted into a non-uniform test distribution once again.

The target is to notice distinct ranges within the program space with distinct vul-

nerability levels and distinct breakdown of the rest corruption outcomes. Generally, it

can be seen that the bottom parts of the program space, where the library/system bi-

naries are loaded into, have near-zero occurrences of SDCs (as shown too in Fig. 3.4)

and tend to result into either a correct execution or an application crash when a fault is

injected during their execution.

On the contrary, most SDCs occur at the workload’s space but there is not a com-

mon pattern to be observed among workloads. Still though there is room for exploita-

tion for single workloads where there appear to be continuous ranges with higher vul-

nerability than other ranges. This implies that there are application code parts that can

be collectively marked as more vulnerable instead of marking individual instructions

as such.

3.6. Instruction-Level Vulnerability Variation 57

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

4677

9353

14030

18706

23383

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
9
2
8

0
x
4
0
3
0
d
b

0
x
4
0
4
0
e
3

0
x
4
0
5
3
d
0

0
x
4
0
6
6
5
6

0
x
4
0
7
e
7
b

0
x
4
0
8
7
3
c

0
x
4
0
9
1
f
0

0
x
4
0
9
9
7
1

0
x
4
0
a
2
c
3

0
x
4
0
a
e
6
1

0
x
4
0
b
c
c
0

0
x
4
0
c
6
f
f

0
x
4
0
d
1
5
9

0
x
4
0
d
d
4
8

0
x
4
0
e
6
d
b

0
x
4
0
f
1
5
0

0
x
4
0
f
b
c
0

0
x
4
1
0
2
6
3

0
x
4
1
0
b
4
1

0
x
4
1
1
3
1
c

0
x
4
1
1
b
2
6

0
x
4
1
2
7
c
f

0
x
4
1
3
1
6
e

0
x
4
1
3
b
d
4

0
x
4
1
4
6
2
4

0
x
3
4
2
9
c
0
9
2
c
6
L

0
x
3
e
8
7
8
0
d
f
3
5
L

0
x
7
f
4
1
a
a
3
3
3
6
e
9
L

0
x
7
f
8
4
0
1
a
6
0
a
b
4
L

0
x
7
f
c
d
c
5
0
a
e
f
4
0
L

SDC
Correct
Crash
Delayed
Stall

BT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

84267

168534

252801

337068

421335

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
a
6
0

0
x
4
0
1
0
4
5

0
x
4
0
1
2
4
7

0
x
4
0
1
b
5
4

0
x
4
0
2
5
6
b

0
x
3
0
d
b
0
0
9
2
d
6
L

0
x
3
3
f
3
2
0
9
4
d
1
L

0
x
3
6
6
4
4
0
9
e
b
3
L

0
x
3
8
6
b
4
0
9
4
7
4
L

0
x
3
a
6
3
6
0
9
b
5
4
L

0
x
3
d
f
5
a
0
b
5
c
e
L

0
x
3
f
7
5
a
0
e
e
6
9
L

0
x
7
f
0
6
b
7
2
9
d
0
0
b
L

0
x
7
f
1
4
5
b
6
1
6
2
e
f
L

0
x
7
f
2
3
b
c
c
9
8
a
2
2
L

0
x
7
f
3
4
2
e
6
4
5
a
d
5
L

0
x
7
f
4
1
f
d
1
e
3
0
a
9
L

0
x
7
f
4
f
4
b
f
8
4
4
9
0
L

0
x
7
f
5
a
6
0
5
0
6
a
d
2
L

0
x
7
f
6
5
e
2
8
0
6
a
c
f
L

0
x
7
f
6
f
0
1
8
e
4
5
2
3
L

0
x
7
f
7
f
8
a
1
6
d
a
d
5
L

0
x
7
f
8
d
b
f
7
f
0
7
1
e
L

0
x
7
f
9
b
6
c
6
5
e
a
e
0
L

0
x
7
f
a
a
f
5
e
c
1
0
d
e
L

0
x
7
f
b
8
0
9
5
6
7
8
a
c
L

0
x
7
f
c
5
7
5
c
b
8
8
4
8
L

0
x
7
f
d
1
8
7
9
5
1
b
7
8
L

0
x
7
f
d
f
c
5
4
4
7
e
1
0
L

0
x
7
f
e
f
0
2
c
4
d
f
2
2
L

SDC
Correct
Crash
Delayed
Stall

CG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

48919

97839

146758

195678

244597

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
b
2
0

0
x
7
f
0
6
e
b
3
c
5
3
1
1
L

0
x
7
f
0
f
9
1
1
5
7
1
b
8
L

0
x
7
f
1
8
1
7
1
b
1
e
0
9
L

0
x
7
f
2
0
9
4
4
f
3
f
2
3
L

0
x
7
f
2
9
1
3
5
b
8
a
6
2
L

0
x
7
f
3
1
b
4
2
9
5
e
3
0
L

0
x
7
f
3
a
1
9
f
6
d
a
6
2
L

0
x
7
f
4
2
9
8
0
f
b
0
e
6
L

0
x
7
f
4
b
3
1
b
b
c
f
d
1
L

0
x
7
f
5
3
c
7
8
a
6
1
a
0
L

0
x
7
f
5
c
6
9
8
5
5
0
e
d
L

0
x
7
f
6
4
d
c
1
e
f
c
9
7
L

0
x
7
f
6
d
6
1
f
8
b
0
e
6
L

0
x
7
f
7
5
d
f
9
8
9
d
f
7
L

0
x
7
f
7
e
7
7
e
8
b
a
2
2
L

0
x
7
f
8
7
0
5
e
4
2
e
0
9
L

0
x
7
f
8
f
9
e
9
e
1
0
5
b
L

0
x
7
f
9
8
3
9
6
7
1
a
f
2
L

0
x
7
f
a
0
b
b
1
8
6
e
b
0
L

0
x
7
f
a
9
5
2
c
d
6
e
b
2
L

0
x
7
f
b
1
e
7
a
2
c
e
0
9
L

0
x
7
f
b
a
6
1
0
1
b
0
4
7
L

0
x
7
f
c
2
f
0
f
4
e
1
1
4
L

0
x
7
f
c
b
6
f
1
4
b
f
0
0
L

0
x
7
f
d
4
0
1
3
c
6
f
0
0
L

0
x
7
f
d
c
a
f
f
e
7
0
8
0
L

0
x
7
f
e
5
4
9
7
d
b
f
0
8
L

0
x
7
f
e
d
b
b
d
4
c
f
c
4
L

0
x
7
f
f
6
5
9
1
b
5
1
2
b
L

0
x
7
f
f
e
e
3
8
d
e
1
8
5
L

SDC
Correct
Crash
Delayed
Stall

DC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

19961

39922

59884

79845

99806

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
9
0
0

0
x
7
f
0
7
4
0
4
5
e
3
f
c
L

0
x
7
f
0
f
b
9
5
1
d
3
b
e
L

0
x
7
f
1
8
2
1
4
3
c
3
b
0
L

0
x
7
f
2
0
8
6
f
9
1
5
4
6
L

0
x
7
f
2
9
0
d
b
a
f
3
f
c
L

0
x
7
f
3
1
a
c
6
3
a
3
9
2
L

0
x
7
f
3
a
3
b
9
4
6
5
5
6
L

0
x
7
f
4
2
a
4
7
8
e
4
7
5
L

0
x
7
f
4
b
4
1
0
3
2
5
4
6
L

0
x
7
f
5
3
c
4
7
6
b
3
3
f
L

0
x
7
f
5
c
5
3
f
c
4
3
3
9
L

0
x
7
f
6
4
d
8
c
c
4
3
3
b
L

0
x
7
f
6
d
8
3
2
c
2
4
4
b
L

0
x
7
f
7
6
1
1
e
c
c
6
3
f
L

0
x
7
f
7
e
7
3
8
3
6
6
3
f
L

0
x
7
f
8
7
1
8
b
1
6
7
9
1
L

0
x
7
f
8
f
c
0
7
7
9
5
3
7
L

0
x
7
f
9
8
4
0
3
b
3
3
4
1
L

0
x
7
f
a
0
f
d
1
1
d
5
4
6
L

0
x
7
f
a
9
7
9
e
b
e
3
3
d
L

0
x
7
f
b
1
d
c
b
3
3
3
f
8
L

0
x
7
f
b
a
8
8
9
8
6
4
8
1
L

0
x
7
f
c
3
0
d
2
b
c
3
3
f
L

0
x
7
f
c
b
b
2
0
5
f
5
3
7
L

0
x
7
f
d
4
4
0
b
2
c
3
3
9
L

0
x
7
f
d
c
c
8
f
d
d
4
1
2
L

0
x
7
f
e
5
4
9
2
3
8
3
8
5
L

0
x
7
f
e
d
a
9
7
a
2
4
4
b
L

0
x
7
f
f
6
4
1
7
c
f
5
4
6
L

0
x
7
f
f
e
c
2
9
3
e
3
3
9
L

SDC
Correct
Crash
Delayed
Stall

EP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

96677

193354

290031

386708

483385

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
9
1
e

0
x
7
f
0
3
b
b
9
a
0
a
8
d
L

0
x
7
f
0
c
8
2
1
c
4
8
7
9
L

0
x
7
f
1
5
5
8
0
2
5
8
7
1
L

0
x
7
f
1
d
e
1
3
b
4
a
8
d
L

0
x
7
f
2
6
3
9
1
b
b
9
0
6
L

0
x
7
f
2
e
c
5
b
3
5
9
0
f
L

0
x
7
f
3
7
3
4
b
3
7
9
0
6
L

0
x
7
f
3
f
9
a
3
2
4
8
7
9
L

0
x
7
f
4
8
0
5
4
7
2
8
7
1
L

0
x
7
f
5
0
5
d
9
f
2
9
0
6
L

0
x
7
f
5
9
0
d
5
6
0
9
9
e
L

0
x
7
f
6
1
9
8
d
0
7
a
b
5
L

0
x
7
f
6
a
3
3
d
f
7
9
0
f
L

0
x
7
f
7
2
a
2
4
b
7
8
7
9
L

0
x
7
f
7
b
a
5
4
a
a
9
0
f
L

0
x
7
f
8
4
0
f
4
7
a
9
0
6
L

0
x
7
f
8
c
d
1
1
5
d
5
4
c
L

0
x
7
f
9
5
d
e
5
c
c
8
7
1
L

0
x
7
f
9
e
2
5
0
f
1
8
8
e
L

0
x
7
f
a
7
7
1
b
1
3
8
1
6
L

0
x
7
f
b
0
2
d
7
a
7
8
1
6
L

0
x
7
f
b
8
e
e
c
4
0
a
a
e
L

0
x
7
f
c
1
9
6
9
e
4
a
a
e
L

0
x
7
f
c
a
2
5
1
3
1
a
8
d
L

0
x
7
f
d
2
e
f
1
d
7
a
a
e
L

0
x
7
f
d
b
7
9
d
d
8
8
7
1
L

0
x
7
f
e
4
6
2
1
9
c
8
1
6
L

0
x
7
f
e
d
3
d
6
6
d
9
0
f
L

0
x
7
f
f
5
f
d
8
4
b
8
8
e
L

0
x
7
f
f
e
8
e
0
5
9
9
0
f
L

SDC
Correct
Crash
Delayed
Stall

FT

Figure 3.26: Tested program space vulnerability variation and breakdown of rest outcomes

for BT, CG, DC, EP and FT benchmarks.

58 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
pr

og
ra

m
 s

pa
ce

 V
F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

174155

348311

522466

696622

870777

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
4
c
8

0
x
3
0
8
8
c
0
c
2
9
3
L

0
x
3
3
1
4
2
0
9
2
7
9
L

0
x
3
3
a
c
c
0
9
4
9
6
L

0
x
3
4
1
2
c
0
9
e
b
1
L

0
x
3
4
f
a
6
0
9
4
8
0
L

0
x
3
5
d
9
4
0
f
c
1
b
L

0
x
3
7
5
a
8
0
9
e
3
e
L

0
x
3
8
4
e
a
0
9
4
3
3
L

0
x
3
9
1
b
8
0
9
b
a
f
L

0
x
3
c
e
f
8
0
9
d
f
1
L

0
x
3
d
f
5
a
0
b
5
6
c
L

0
x
3
e
7
5
4
0
b
5
9
8
L

0
x
3
f
7
5
a
0
9
2
4
7
L

0
x
7
f
0
1
d
4
e
b
d
8
8
4
L

0
x
7
f
1
2
1
b
b
9
8
8
a
c
L

0
x
7
f
2
2
9
7
1
c
3
8
8
4
L

0
x
7
f
3
2
2
6
f
0
5
8
f
3
L

0
x
7
f
4
1
2
4
6
d
f
8
a
5
L

0
x
7
f
5
1
3
4
e
a
4
8
9
6
L

0
x
7
f
6
1
1
e
e
d
0
8
a
5
L

0
x
7
f
6
e
b
9
3
e
1
4
0
0
L

0
x
7
f
7
e
0
a
7
9
a
8
4
8
L

0
x
7
f
8
d
b
a
d
3
a
8
4
8
L

0
x
7
f
9
d
3
4
b
a
9
8
6
1
L

0
x
7
f
a
b
f
6
a
9
0
8
a
c
L

0
x
7
f
b
a
a
7
4
3
6
8
9
6
L

0
x
7
f
c
a
3
1
9
5
8
8
8
4
L

0
x
7
f
d
a
0
3
5
f
9
3
7
7
L

0
x
7
f
e
a
c
3
4
d
e
4
0
0
L

0
x
7
f
f
b
3
a
3
d
7
f
0
e
L

SDC
Correct
Crash
Delayed
Stall

IS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

11417

22835

34252

45670

57087

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
9
7
0

0
x
4
0
3
a
5
c

0
x
4
0
4
d
4
4

0
x
4
0
6
a
e
f

0
x
4
0
8
7
b
3

0
x
4
0
9
a
b
f

0
x
4
0
b
b
4
5

0
x
4
0
c
a
e
4

0
x
4
0
d
e
0
f

0
x
4
0
e
f
6
a

0
x
4
0
f
d
9
4

0
x
4
1
0
d
c
e

0
x
4
1
2
1
8
5

0
x
4
1
2
e
d
c

0
x
4
1
3
f
1
e

0
x
4
1
4
8
9
b

0
x
4
1
5
5
9
d

0
x
4
1
6
7
5
c

0
x
4
1
7
2
9
2

0
x
3
1
f
b
c
0
d
f
6
5
L

0
x
3
4
5
1
c
1
7
3
9
0
L

0
x
3
9
8
b
2
0
9
d
a
3
L

0
x
7
f
0
2
b
2
9
7
4
c
4
9
L

0
x
7
f
2
1
4
5
3
8
1
f
b
0
L

0
x
7
f
3
e
0
9
f
f
4
8
b
a
L

0
x
7
f
5
a
9
b
3
9
2
6
d
0
L

0
x
7
f
7
8
3
4
3
5
3
3
a
9
L

0
x
7
f
9
4
2
8
b
4
d
2
9
d
L

0
x
7
f
b
1
1
1
0
f
0
b
3
9
L

0
x
7
f
c
e
c
4
c
f
0
8
f
3
L

0
x
7
f
e
e
a
e
c
e
5
9
2
9
L

SDC
Correct
Crash
Delayed
Stall

LU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

148160

296320

444479

592639

740799

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
8
4
e

0
x
4
0
5
1
4
e

0
x
4
0
6
a
8
8

0
x
3
0
d
b
0
0
e
e
a
6
L

0
x
3
2
a
3
4
0
f
e
7
9
L

0
x
3
3
c
2
8
0
9
4
9
6
L

0
x
3
5
0
1
6
0
9
4
0
7
L

0
x
3
6
e
8
6
0
e
e
7
8
L

0
x
3
8
4
e
a
0
e
e
8
1
L

0
x
3
9
9
5
4
0
f
8
8
6
L

0
x
3
c
c
4
2
0
9
e
a
4
L

0
x
3
e
8
a
2
0
9
0
0
0
L

0
x
7
f
0
1
9
e
7
e
a
a
f
2
L

0
x
7
f
0
f
c
8
1
5
d
a
c
f
L

0
x
7
f
1
e
8
9
b
6
2
e
1
0
L

0
x
7
f
2
c
c
e
9
e
2
e
1
6
L

0
x
7
f
3
b
9
f
d
3
c
6
f
1
L

0
x
7
f
4
9
5
3
e
2
d
8
6
1
L

0
x
7
f
5
7
1
2
7
5
1
8
b
a
L

0
x
7
f
6
5
1
4
5
1
0
0
d
7
L

0
x
7
f
7
1
3
b
b
1
b
b
b
8
L

0
x
7
f
7
f
4
f
d
3
9
8
8
4
L

0
x
7
f
8
d
5
7
b
5
a
a
f
2
L

0
x
7
f
9
b
e
e
f
4
e
8
a
5
L

0
x
7
f
a
9
5
8
c
6
3
a
1
2
L

0
x
7
f
b
6
d
4
f
0
b
a
2
6
L

0
x
7
f
c
4
f
9
4
2
7
7
f
a
L

0
x
7
f
d
2
a
d
d
f
3
a
b
6
L

0
x
7
f
e
0
5
6
e
2
f
8
8
4
L

0
x
7
f
e
e
d
7
f
8
7
3
e
c
L

0
x
7
f
f
d
7
2
a
f
7
a
e
0
L

SDC
Correct
Crash
Delayed
Stall

MG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

11163

22327

33490

44654

55817

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
8
4
e

0
x
4
0
3
0
d
8

0
x
4
0
3
f
3
f

0
x
4
0
4
d
6
2

0
x
4
0
5
c
e
b

0
x
4
0
7
4
b
7

0
x
4
0
8
0
4
c

0
x
4
0
8
c
f
0

0
x
4
0
9
6
5
8

0
x
4
0
a
0
b
b

0
x
4
0
a
f
3
f

0
x
4
0
b
c
e
5

0
x
4
0
c
9
7
c

0
x
4
0
d
4
0
b

0
x
4
0
e
2
2
a

0
x
4
0
f
0
4
8

0
x
3
3
8
a
a
0
9
2
1
d
L

0
x
3
6
e
8
6
0
9
d
5
6
L

0
x
3
b
f
f
0
0
9
4
9
0
L

0
x
3
f
d
1
2
0
b
5
b
7
L

0
x
7
f
1
7
7
3
7
d
e
8
a
5
L

0
x
7
f
2
f
3
f
7
8
4
9
4
b
L

0
x
7
f
4
5
3
1
2
3
6
1
0
0
L

0
x
7
f
5
c
2
c
0
0
7
0
e
7
L

0
x
7
f
7
2
f
8
4
e
f
a
d
5
L

0
x
7
f
8
a
c
2
7
4
2
f
0
6
L

0
x
7
f
a
2
d
9
e
f
4
0
a
3
L

0
x
7
f
b
8
5
c
b
0
b
2
9
5
L

0
x
7
f
c
f
6
e
f
5
0
2
7
3
L

0
x
7
f
e
7
4
e
d
b
e
0
d
e
L

0
x
7
f
f
d
e
2
2
d
e
5
c
b
L

SDC
Correct
Crash
Delayed
Stall

SP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 s
pa

ce
 V

F

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 s
pa

ce

0

3342

6684

10027

13369

16711

Breakdown of outcomes over the tested program space

tested program space (instruction pointers at fault injection)

0
x
4
0
0
9
2
8

0
x
4
0
2
b
e
c

0
x
4
0
3
8
6
7

0
x
4
0
4
4
5
0

0
x
4
0
5
0
8
5

0
x
4
0
5
c
e
1

0
x
4
0
6
8
e
1

0
x
4
0
7
6
4
1

0
x
4
0
8
2
d
6

0
x
4
0
8
d
f
8

0
x
4
0
9
f
0
b

0
x
4
0
a
6
3
e

0
x
4
0
b
1
c
3

0
x
4
0
b
9
1
1

0
x
4
0
c
0
1
4

0
x
4
0
f
2
2
a

0
x
4
1
0
d
4
1

0
x
4
1
5
9
c
8

0
x
4
1
b
1
8
0

0
x
4
2
0
0
b
a

0
x
4
2
1
9
8
6

0
x
4
2
2
2
c
0

0
x
4
2
5
c
3
3

0
x
4
2
6
4
c
3

0
x
4
2
6
d
e
3

0
x
4
2
7
6
f
5

0
x
4
2
8
0
a
0

0
x
4
2
8
7
e
c

0
x
4
2
8
f
f
f

0
x
7
f
1
c
a
b
a
f
8
8
a
5
L

0
x
7
f
b
1
7
7
f
8
b
6
e
d
L

SDC
Correct
Crash
Delayed
Stall

UA

Figure 3.27: Tested program space vulnerability variation and breakdown of rest outcomes

for IS, LU, MG, SP and UA benchmarks.

3.6. Instruction-Level Vulnerability Variation 59

3.6.4 Program Vulnerability Phases

As the just presented program space vulnerability does not account for the program

phases, here we look into possible program phase related vulnerability patterns. As our

fault-injection tool reports back the instruction counter at the moment of fault injection,

it is straightforward to observe the outcome breakdown of corruptions over the lifetime

of an executing workload to identify possible program vulnerability phases.

Fig. 3.28-3.29 show the breakdown of the reported corruption outcomes against the

time the fault injection occurred (as measured by the instruction counter). As before,

each workload is shown separately. Unlike before, the test distribution is uniform

because we injected the faults in a way to distribute them uniformly over the memory

accesses that occur uniformly over time.

Out of the figures it can be seen that in most benchmarks there are clear repeating

patterns over time per benchmark for all reported corruption outcome occurrences.

This indicates that an application may have distinct program vulnerability phases that

mostly reflect the program execution phases. For most of the tested applications they

appear to be such vulnerability phases per application at the beginning of the execution,

at the end of the execution and one repeating in-between.

It is interesting that these outcome patterns are present for all types of reported

outcomes. What usually tends to vary, apart from the pattern’s strength, is the length

of the repeating pattern over time; some benchmarks have phases longer than other.

Moreover, it is highly useful that there are application intervals that don’t exhibit all

corruption outcomes, e.g., in DC and MG there are long time intervals where almost

zero SDC percentages were observed.

Moving on to considering only the SDC occurrences, there are still vulnerability

patterns to indicate program vulnerability phases. As it was expected, there are no

common vulnerability phases across all benchmarks, indicating that there is more po-

tential in a per-application basis.

Identifying program vulnerability phases has great exploitation potential. As it

points out when, during the execution, an application becomes more vulnerable, it can

drive a time-aware reliability mechanism that strengthens during specific time inter-

vals. Moreover, especially for repeating program vulnerability phases, it can be used

to prepare protection strategies for a particular vulnerability phase pattern and deploy

the strategy repeatedly to deal with the specific vulnerability phase footprint. Similarly,

it can be used to break an application into vulnerability phases where each one has a

60 Chapter 3. Application Behavior Characterization Under Data Corruption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
pr

og
ra

m
 v

ul
ne

ra
bi

lit
y

ph
as

es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

134

268

401

535

669

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

22
50

53
89

44
30

31
67

66
08

88
26

87
89

74
01

10
96

98
20

3

13
14

94
88

2

15
32

93
82

8

17
50

84
68

7

19
68

88
79

4

21
86

65
23

1

24
04

86
19

7

26
22

85
74

4

28
40

80
54

1

30
58

78
97

9

32
76

61
02

6

34
94

75
27

7

37
12

72
50

2

39
30

73
16

7

41
48

71
82

2

43
66

58
42

4

45
84

66
41

2

48
02

51
65

8

50
20

62
04

0

52
39

46
44

1

SDC
Correct
Crash
Delayed
Stall

BT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

122

244

366

488

610

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

32
90

56
29

62
70

23
90

77
12

55
74

91
56

47
29

10
60

06
32

3

12
04

46
86

4

13
48

67
55

9

14
93

08
68

6

16
37

49
08

4

17
81

69
29

5

19
26

10
20

4

20
70

51
40

1

22
14

92
19

1

23
59

12
07

4

25
03

53
52

1

26
47

94
42

6

27
92

14
52

7

29
36

55
87

8

30
80

96
58

3

32
25

33
18

2

33
69

57
58

4

35
13

98
33

4

36
58

39
42

7

38
02

61
85

0

SDC
Correct
Crash
Delayed
Stall

CG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

128

257

385

514

642

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

13
32

99
57

21
83

66
20

30
43

22
78

39
07

48
08

47
75

30
20

56
44

89
14

65
17

28
87

73
92

28
98

82
70

18
29

91
49

22
38

99
91

62
55

10
51

83
15

0

11
03

03
43

8

11
51

99
11

4

12
00

93
56

8

12
49

88
96

8

12
98

84
18

1

13
44

07
31

5

13
90

79
74

0

14
44

35
58

1

15
01

17
28

9

15
57

98
62

1

16
13

48
96

4

16
69

20
69

4

SDC
Correct
Crash
Delayed
Stall

DC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

53

105

158

210

263

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

18
11

56
29

4

36
20

72
89

3

53
87

95
32

0

71
97

41
62

7

90
06

58
81

1

10
77

38
00

97

12
58

29
91

63

14
39

22
15

34

16
15

94
75

72

17
96

86
49

63

19
77

79
10

60

21
54

52
31

91

23
35

44
32

24

25
16

37
48

72

26
93

09
92

93

28
74

03
51

48

30
50

76
49

35

32
31

68
20

46

34
12

61
79

19

35
89

33
49

50

37
70

25
63

25

39
51

17
42

48

41
27

91
50

95

43
08

84
22

82

SDC
Correct
Crash
Delayed
Stall

EP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

86

173

259

346

432

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

44
52

83
99

75
51

94
93

10
26

85
33

6

12
31

52
71

0

16
38

13
49

1

19
41

96
79

4

22
40

31
42

9

25
20

83
72

5

28
29

77
98

5

31
23

34
96

8

34
04

02
22

0

37
13

98
65

9

39
94

32
72

2

42
88

91
94

9

45
97

04
59

2

48
77

51
98

1

51
76

96
27

7

54
80

11
37

5

57
60

76
97

6

60
65

01
34

0

63
63

18
19

7

66
43

80
09

6

69
53

07
66

2

72
46

16
30

1

SDC
Correct
Crash
Delayed
Stall

FT

Figure 3.28: Observed program vulnerability phases and breakdown of rest outcomes per

program phase for BT, CG, DC, EP and FT benchmarks.

3.6. Instruction-Level Vulnerability Variation 61

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

163

325

488

650

813

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

95
65

47
8

10
50

13
43

11
16

62
29

12
10

99
49

12
76

66
97

13
71

95
98

14
36

80
99

15
32

99
98

15
96

87
46

16
93

93
92

17
56

93
07

18
54

90
93

19
17

01
48

20
15

87
99

20
77

12
66

21
76

97
19

22
37

28
29

23
37

96
55

23
97

36
69

24
98

97
47

25
57

46
02

26
59

95
55

27
18

54
83

28
13

92
54

SDC
Correct
Crash
Delayed
Stall

IS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

170

339

509

678

848

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

82
10

82
7

16
02

24
48

23
61

86
91

31
31

53
89

38
95

53
89

46
49

44
84

54
08

06
38

61
65

86
29

69
41

70
16

76
99

20
77

84
54

24
05

92
12

80
65

99
76

72
57

10
74

88
63

1

11
50

35
08

4

12
25

88
57

9

13
01

75
70

7

13
78

67
45

0

14
55

31
77

7

15
30

66
39

4

16
06

38
04

3

16
82

34
00

1

17
59

64
60

1

18
37

01
05

8

SDC
Correct
Crash
Delayed
Stall

LU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

226

452

679

905

1131

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

30
91

71
9

45
85

95
6

58
91

83
0

70
61

42
1

82
13

62
7

10
75

94
37

12
14

82
73

13
68

11
69

14
97

59
24

16
14

81
62

17
32

85
93

18
59

20
42

19
87

72
82

21
05

47
19

22
23

02
69

23
49

07
14

24
78

16
85

25
96

37
65

27
19

36
53

28
42

40
15

29
74

58
27

30
93

25
94

32
09

98
32

33
60

66
50

SDC
Correct
Crash
Delayed
Stall

MG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

180

359

539

718

898

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

86
76

58
3

17
53

81
61

26
74

05
07

35
85

06
49

44
98

21
21

54
15

52
71

63
17

10
53

72
37

59
32

81
46

36
84

90
62

17
59

99
77

52
91

10
88

82
62

8

11
81

16
22

8

12
71

85
88

4

13
64

92
57

5

14
59

45
35

1

15
51

38
59

8

16
42

31
34

3

17
34

02
05

6

18
25

45
97

2

19
16

26
13

7

20
08

59
16

0

20
98

94
57

5

21
89

59
16

1

SDC
Correct
Crash
Delayed
Stall

SP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

pr
og

ra
m

 v
ul

ne
ra

bi
lit

y
ph

as
es

te
st

 d
is

tri
bu

tio
n

ov
er

 p
ro

gr
am

 p
ha

se
s

0

52

103

155

206

258

Breakdown of outcomes over the tested program phases

tested program phases (instruction counter at fault injection)

17

10
22

74
17

9

20
35

97
07

4

30
60

89
82

9

40
81

94
80

2

50
92

27
51

3

61
10

06
59

6

71
18

18
90

1

81
37

01
68

7

91
52

11
91

3

10
17

50
33

27

11
19

34
78

58

12
21

04
47

11

13
22

81
37

83

14
23

72
03

85

15
24

78
62

09

16
25

91
52

89

17
27

96
99

40

18
29

86
46

81

19
30

89
32

50

20
32

28
63

09

21
34

54
07

14

22
36

37
12

27

23
36

72
53

37

24
39

25
50

14

SDC
Correct
Crash
Delayed
Stall

UA

Figure 3.29: Observed program vulnerability phases and breakdown of rest outcomes per

program phase for IS, LU, MG, SP and UA benchmarks.

62 Chapter 3. Application Behavior Characterization Under Data Corruption

different protection strategy applied to it depending on the vulnerability phase pattern.

Finally, identifying program vulnerability phases could be used to reduce the cost of

evaluating reliability mechanisms. This holds true especially for the identified repeat-

ing phases, where one can avoid repeatedly testing a repeating vulnerability phase, by

testing only one instance of it.

3.7 Summary

In this chapter, we observed how application behavior varies under data corruption

depending on the characteristics of the corruption and the executing workload.

For that purpose, using our SWIFI framework, we setup and performed an exces-

sive testing of the NPB-serial benchmark suite comprising of 7.8 million fault-injection

tests in total (Section 3.1). First we presented the top-level workload-related vulnera-

bility variations in NPB-serial (Section 3.2) that indicated that applications have dif-

ferent inherent vulnerability characteristics.

The amount of performed tests and the reported information enabled us to further

our investigation at data level to observe the application data related vulnerability vari-

ations (Section 3.3). We showed how the application behavior in NPB-serial bench-

marks varied depending on the high-level characteristics of the corrupted application

data; in particular, in relation to the (a) size, (b) usage type, (c) user and (d) memory

space location of the corrupted data.

As generally there were no application-independent vulnerability observations to

be made, we moved on to a finer-granularity characterization where we showed how

the application data vulnerability in NPB-serial benchmarks varied depending on the

exact bit location of the injected corruption (Section 3.3.1). This allowed to safely

identify distinct bit ranges within application data types where the probability to result

into an SDC, if corrupted, is very low.

Then we moved beyond to elaborate on areas of vulnerability other than appli-

cation data related. Given the reported information by our fault-injection tool (relat-

ing to the corruption characteristics and the corruption effects) and our original fault

model (single bit flips at memory locations just before memory load accesses), we ex-

trapolated the original fault model to model as many other locations of corruption as

possible without the need to remodel and repeat the experiments. This enabled to ob-

serve the vulnerability variations of NPB-serial benchmarks within the memory space

(Section 3.4), the register file (Section 3.5) and among instruction-level characteris-

3.7. Summary 63

tics (Section 3.6), including instruction type vulnerability variations, program space

vulnerability variations and program vulnerability phase detection.

Out of all the observed vulnerability variations the most interesting ones related to

the per-bit variations within application data. These pointed out that it was useful to

move in a bit-level and data-aware investigation of vulnerabilities as what drives the

vulnerability of data is mostly the way they are used by the application.

We showed that, when considering combinations of data usage types and data sizes,

there are distinct bit ranges within application data with distinct vulnerability levels.

This led to conclude that application data are vulnerable in parts. The data types hold-

ing output-related values have less-vulnerable continuous bit ranges at their MSBs,

while memory addressing data at their LSBs. E.g., each of the 32 LSBs of FPs in

CG has less than 1% probability to cause an SDC if corrupted. As the observed

less-vulnerable bit ranges were wide and experienced near-zero SDCs, they showed

promise for a high exploitation potential, as we will establish in the next chapter.

Moreover, this observed vulnerability of data in parts showed high exploitability

potential, among other reasons, also due to holding true for most of the tested bench-

marks. Generally very few application-independent observations could be made re-

lating to the other investigated vulnerability variations. Despite that, the characteriza-

tion results still showed exploitation potential in various locations (as it was mentioned

throughout this chapter), even if they are to be used in a per-application basis assuming

a previously vulnerability-characterized application. Nevertheless, all results pointed

out that application behavior can be characterized based on the characteristics of the

corruption and the executing application.

In the next chapter we will investigate on the potential benefits of exploiting the gained

characterization insight in order to reduce the overhead of reliability mechanisms. In

particular, out of all the observed vulnerability insight, we are going to focus on ex-

ploiting the (per-bit) application data related vulnerability variations.

Chapter 4

Exploiting Application Behavior

Characterization

In this chapter we build upon the gained characterization insight from Chapter 3 in

order to optimally exploit the application behavior under data corruption.

In particular, we will show the potential benefits of exploiting the per-bit data-level

vulnerability variations in a vulnerability-driven manner targeting the reliability-over-

heads reduction in a reduced-cost unequally-protected data cache that offers two levels

of fault-protection strength while running the NPB-serial benchmarks.

Among the insight of the characterization study, data-level vulnerability factors

were estimated for a given workload, down to identifying distinct bit ranges with dif-

ferent vulnerability levels within specific types of application data. This can be in-

tuitively exploited by shifting to vulnerability-aware unequal-protection architectures

where the protection strength is driven by the application data vulnerability. Our in-

tension is to introduce the unequal protection within a given structure or same-level

structures and not among different structures.

We argue that such a shift is beneficial as it reduces the fault-protected surface

for a given reliability QoS level and, as such, reduce the reliability costs by avoiding

excessive strong protection of the less-vulnerable application data. Considering that

our characterization study goes down to bit-level vulnerability estimation, the perfor-

mance/cost benefits can be maximized for an even smoother trading off against reli-

ability. This is contrary to traditional reliability approaches that either unnecessarily

protect all parts equally and exhaustively [16, 19, 52, 11] or offer unequal protection

agnostic to the actual distribution of likelihood of the application’s data to corrupt the

65

66 Chapter 4. Exploiting Application Behavior Characterization

execution output [55, 22, 23].

As mentioned throughout Chapter 3, the various characterization insight shows nu-

merous ways of exploitation potential depending on the observed area of vulnerability

variations and the design targets. Therefore, in Section 4.1 first we justify why out of

all the alternative options we decided to exploit that particular characterization insight

in that particular way and then we discuss on the desired characteristics for identify-

ing areas of high exploitability potential (Subsection 4.1.1) to maximize the potential

benefits.

Then in Section 4.2 we describe how we profiled the contents of a data cache run-

ning the NPB-serial benchmarks in order to obtain the occupancy rates of data types

within the data cache. This is both to identify if exploiting the per-bit vulnerability

variation of NPB-serial in a data cache adheres to the high exploitability character-

istics of Subsection 4.1.1 and also to help measure the optimal potential benefits in

Section 4.3. The potential benefits will be shown in terms of strongly-protected sur-

face reduction against to what effect on the fault coverage. These benefits are presented

to demonstrate the upper exploitation limits of the application behavior under data cor-

ruption. To do so, we assumed an optimal fault-tolerant cache design that can adapt to

unequally protect its contents. Therefore, before concluding this chapter, we discuss

on the practicality of our exploitation approach and on ways to improve it.

4.1 Exploitation Alternatives

There are numerous alternative ways, design targets, areas and mechanisms (also shown

in Fig. 4.1) that offer grounds for exploiting the application behavior under data cor-

ruption.

Out of all the possible ways and targets to exploit the observed characterization

insight, we focus on exploiting it for shifting into vulnerability-driven unequal-

protection architectures to reduce the reliability associated costs with a minimum

effect on the fault coverage against SDCs. Out of all the gained insight, we focus on

exploiting the data-level vulnerability variations and, specifically, the per-bit varia-

tions. Finally, out of all the areas we could apply the insight, we chose to apply it on a

hardware-level protection mechanism that operates, specifically, in a data cache.

In this section we explain our reasoning for limiting our exploitation investigation

into the aforementioned subset of the alternative exploitation options.

4.1. Exploitation Alternatives 67

Exploit the characterization insight at …

workload
level

data
level

per-bit data
level

memory
space level

instruction
level

in particular, the observed distribution of …

SDCs application
crashes

application
stalls

delayed correct
executions

in order to …

reduce reliability
overheads

improve fault
coverage

graceful
degradation

of a reliability mechanism operating at …

hardware level software level

that protects the …

DATA
CACHE

REG
FILE

MAIN
MEM ALU INSTRU-

CTIONS
PROGRAM
SEGMENTS

HW/SW levels

Figure 4.1: Visualization of the alternative options to exploit the application behavior under

data corruption. Grayed boxes show our choice.

The characterization study in the previous chapter provided with detailed breakdowns

for all possible application behavior outcomes under data corruption. Throughout this

thesis, as the vulnerability factor of a hardware/software area we assumed the statistical

probability that a hardware fault occurring in that area would cause an SDC. There-

fore, we will focus on exploiting the variations of the reported SDC occurrences only.

Nevertheless, one could also exploit the distribution of the rest corruption outcomes

too, if the design target was to reduce their occurrences.

We opted to consider only the SDC distribution and protect only against SDCs

because they are the most severe corruption outcome. SDCs are the only execution

outcome that is undetectable online by any means and that does not provide any in-

dication that something happened out of the ordinary. All other corruption outcomes

(application crash, application stall, delayed correct execution) are observable and de-

tectable by conventional methods (e.g., software-visible symptom-based fault detec-

tion [50, 27, 37, 13, 8] monitors for suspicious behaviors/symptoms, such as violating

68 Chapter 4. Exploiting Application Behavior Characterization

likely program invariants, memory exceptions, cache misses, branch mispredictions,

fatal exceptions, program crashes, high OS activity, hangs).

Generally, the focus has always been on eliminating the occurrence of SDCs only.

Such related works that focus on increasing the dependability of systems consider

protection against SDCs only and assume special detection mechanisms for the rest

corruption outcomes. Moreover, the fault coverage of the proposed fault tolerant ap-

proaches is always experimentally evaluated in terms of the reported resulting SDC

occurrences only.

In the rest of this chapter the characterization insight will be exploited focusing on

areas less vulnerable to result into SDCs only.

The characterization study in the previous chapter essentially estimated vulnerability

factors for different hardware/software constructs for given workloads. As the vulnera-

bilities varied they provided a way to rank these constructs based on their vulnerability

and pointed out which areas are more or less likely to silently corrupt the output if a

hardware fault occurs there.

What we propose here is that it is unnecessary to protect everything equally and

exhaustively and, instead, we can exploit the vulnerability insight to our advantage by

shifting to vulnerability-driven unequal-protection mechanisms where the protec-

tion strength is assigned to hardware/software parts according to their vulnerability.

In the rest of this chapter the vulnerability insight will be exploited for the purposes

of shifting to vulnerability-driven unequal-protection mechanisms within a given struc-

ture or same-level structures.

It is intuitive how shifting to such a vulnerability-driven protection paradigm can be

beneficial compared to protecting everything equally and exhaustively. Interestingly,

a vulnerability-driven unequally-protected architecture may target different design ob-

jectives.

One promising way to exploit the vulnerability insight in a vulnerability-aware

manner is for reducing the cost of existing exhaustive fault-tolerant mechanisms. Com-

pared to an equally protected approach, we can reduce the reliability overheads in

a given structure by avoiding its exhaustive unnecessary protection with a minimum

impact on the total dependability by reducing the protection strength (and thus the cost

of protection) of the less-vulnerable parts only of the given structure.

Targeting reliability cost reduction is one of the design targets that vulnerability

4.1. Exploitation Alternatives 69

variations can be exploited for in vulnerability-driven protection mechanisms. An al-

ternative design target could be to improve the fault coverage at the same reliability

overhead as an equally-protected approach, by reducing the protection strength of the

less-vulnerable parts while increasing the protection strength of the more-vulnerable

parts. Such a design target is very relevant today for keeping up with the increasing

number of error rates that make exhaustive schemes invoke unsustainable costs.

Furthermore, vulnerability-driven protection could be used for trade-off purposes.

As our proposed class of vulnerability-aware fault-tolerant architectures can have vary-

ing fault-protection levels, it lends itself naturally to offer various degrees of reliability

QoS and trade off reliability against performance/cost. Similarly, it shows promise

for a gracefully degrading system that can still operate under a large number of errors

while offering a necessary (but reduced) set of services.

The characterization insight is not necessarily to be exploited for design-time pur-

poses. As mentioned throughout the previous chapter, there are various other areas

of exploiting the vulnerability variations. Alternative uses could be for reducing the

testing space during application dependability assessment by avoiding testing the less-

vulnerable application data, for reducing the testing space during reliability mechanism

dependability assessment, for guiding a reliability-aware software transformation, etc.

In the rest of this chapter the vulnerability insight will be exploited for the purposes

of reducing the cost of the reliability overheads within a given structure or same-level

structures.

One of the key features of our characterization study was that it operated at application

data level to observe the vulnerability variation between different data types (according

to their usage type). Contrary to existing works that investigated the vulnerability of

higher-level hardware structures and could only exploit their observations only for the

structures under consideration, we were able to investigate on the vulnerability varia-

tions of more areas than the one we injected faults in. As shown throughout the previ-

ous chapter, although our characterization framework operated on results by data-level

fault-injection experiments only, its data awareness allowed to extrapolate the reported

results to model the vulnerability of other areas too without the need to remodel and

repeat the fault-injection tests. As a result we were able to obtain the vulnerability

variations within the memory space, the register file and among instruction-level char-

acteristics.

Despite that, out of all the gained insight, we chose to exploit the application data

70 Chapter 4. Exploiting Application Behavior Characterization

related vulnerability variations (Section 3.3) and, in particular, the per-bit ones (Sec-

tion 3.3.1). As our study has been data-level aware it is more natural to focus on ex-

ploiting the application data vulnerabilities. More importantly, the per-bit data-level

variations show clear and consistent vulnerability variation patterns for given combi-

nations of data usage types and sizes; distinct bit ranges within application data can be

identified with distinct different vulnerability levels.

As this points out that application data are vulnerable in parts, it offers straight-

forward grounds to exploit that by protecting unequally the application data parts.

Moreover as this goes down to bit-level vulnerability estimation it can fine-tune the

unequal protection so that the potential benefits are maximized and, considering that

our suggested vulnerability-driven unequal-protection shift can offer various degrees

of reliability QoS, it can offer an even smoother trading off against reliability.

Most importantly, the per-bit data-related vulnerabilities show high-exploitability

characteristics. There are clear patterns, with high degrees of variation, that are con-

sistent among most applications. Moreover it is easy to unequally protect data words

(both in terms of identifying their types to drive the unequal protection and in terms of

implementing the unequal protection on them).

The rest observed vulnerability variations tended to not offer such clear insight

among different benchmarks. Nevertheless there is still ground for exploiting them in

a per application basis, as long as first the respective vulnerabilities are ranked before

exploiting them.

In the rest of this chapter only the per-bit data-type related vulnerability variations

will be exploited.

Depending on the level where error detection and error correction take place, reliabil-

ity mechanisms can be classified into hardware level, software level or a combination

of both. As vulnerability-driven unequal-protection is orthogonal to the specifics of a

reliability mechanism, the vulnerability insight can be exploited at any-level mecha-

nisms. E.g., a software-level mechanism that ensures reliability by instruction duplica-

tion can be adapted to duplicate only the instructions processing the more-vulnerable

data. Similarly, a hardware-level mechanism that ensures reliability by replicating

hardware structures can avoid duplicating parts of those that process less-vulnerable

data.

Equally interesting is applying vulnerability awareness to hardware/software co-

design reliability approaches. Such a shift offers more space for trading-off reliability

4.1. Exploitation Alternatives 71

QoS against performance/cost. Both the hardware and the software layer can become

aware of the error rates and exchange relevant information to ensure that the system

operation will always move forward in a gracefully degrading manner. In such co-

design approaches the hardware layer knowingly may not provide the illusion of fault-

free operation and let some faults propagate to the software layer, where the software

would be fault-aware to correct these in a way it sees fit.

Despite the choices made so far, vulnerability-driven unequal-protection may be

introduced to reduce the overhead costs of reliability mechanisms operating at any

level and protecting any area. In other words, the characterization insight can be ap-

plied orthogonally and exploited in many hardware/software areas. As we specifically

decided to exploit the per-bit data-level vulnerability variations, it is more fitting to do

so in the case of a hardware-level protection mechanism operating in a data cache.

Out of the possible hardware areas that require protection against faults, this chosen

insight is more natural to be exploited in data-holding structures in general (i.e., main

memory, data caches, registers, etc.) and not necessarily only in data caches. Never-

theless, as mentioned before, due to the data-level awareness of the experiments, our

insight can be extrapolated to be applied in other non data-holding structures (i.e., arith-

metic/logical operations, communication wires, etc.). Moreover, data-holding struc-

tures are more susceptible to transient hardware faults due to their increasing relative

size and due to their constant exposure to faults compared to logic that is exposed only

when it is actively computing a result [29]. As expected the extra cost of constant full

protection is also relatively higher and along with data caches being a performance

bottleneck, research on decreasing the data cache reliability overhead is more relevant.

Equally important is that exploiting the per-bit data-level vulnerabilities shows

more high exploitability potential in data caches than other data-holding structures.

Exploiting that application data are vulnerable in parts depending on their usage type

is more straightforward in the case of an vulnerability-aware unequally-protected data

cache compared to a similar main memory. Determining the data types as they are

being accessed and assigning their vulnerabilities in a data cache is easier, compared

to the main memory, where data reside before being first used and thus before identi-

fying their types. Similarly, if we were to exploit the data-level vulnerabilities in an

unequally-protected register file, the potential savings will be relatively small as the

less vulnerable data wouldn’t occupy specific registers nor a large set of them con-

stantly. Moreover, as it will be established in the next section, the most consistent

per-bit insight for the tested applications (the clear vulnerability variations among FP

72 Chapter 4. Exploiting Application Behavior Characterization

data) is highly exploitable in a data cache as it is occupied by it in large volumes during

large application execution intervals.

In the rest of this chapter the vulnerability insight will be exploited only for the

case of a hardware-level mechanism protecting a data cache.

4.1.1 Identifying Areas of High Exploitability Potential

Throughout this section a variety of alternatives to exploit the vulnerability insight was

discussed. The abundance of options is mostly enabled by the fact that (a) we obtained

vulnerability variations at different levels and (b) that unequal protection can be ap-

plied orthogonally to many areas regardless of the specifics of the original reliability

mechanism (i.e., their protection method, the component they protect, their level of

operation or their design goal).

All exploitation alternatives do not share the same magnitude of potential benefits.

Here we suggest what characteristics are desired to identify promising areas of high

exploitability potential to maximize the benefits of exploiting the application behav-

ior insight by introducing vulnerability-aware unequal protection and how our chosen

exploitation alternative satisfies these properties.

Generally, the exploitability potential depends on which observed vulnerability insight

is to be exploited and where the vulnerability-aware unequal protection is to be intro-

duced. To maximize the potential benefits the following characteristics are desired:

• Regarding the vulnerability insight to be exploited, it is desired that it offers:

(a) clear and distinct vulnerability patterns,

(b) that are consistent across different workloads, and

(c) that their vulnerability intensity levels are different by high degrees. This

is because high vulnerability variation between the less and more vulnera-

ble areas offers more potential benefits compared to constant vulnerability

throughout all areas.

• Regarding the location where the vulnerability-aware unequal protection is to be

introduced, it is desired that:

(a) it is easy and low cost to assign the protection strength based on the vul-

nerabilities; in other words, identifying the vulnerabilities of the different

parts must be easy and low cost to occur online during execution, and

4.1. Exploitation Alternatives 73

(b) it must be possible to introduce unequal protection at the area under pro-

tection without much overhead; in other words, the existing mechanisms

must be naturally adaptable to unequal protection.

• Regarding the synergy of both of the above, for a vulnerability pattern under

exploitation in the chosen area, the volume/timeshare that the varying vulnera-

bility pattern is present in the chosen area must be large enough to maximize

the benefits and to warrant the effort of introducing vulnerability-aware unequal

protection there.

Out of all the available vulnerability insight and potential exploitation areas, we de-

cided to exploit the per-bit data-level vulnerability variations of the NPB-serial bench-

marks to reduce the reliability-overhead costs in a reduced-cost vulnerability-driven

unequally-protected data cache. This chosen exploitation alternative shows all high

exploitability characteristics.

In particular, regarding the per-bit data-level vulnerability insight for NPB-serial

(Section 3.3.1): (a) It showed clear and distinct vulnerability patterns among different

bit ranges of most data types, where the bit ranges that are less vulnerable are either at

the MSBs or LSBs of application data. (b) It showed consistent vulnerability variation

among most of the different workloads. (c) The observed vulnerability patterns have

different vulnerability intensity levels; the less-vulnerable bit ranges have almost zero

vulnerability factors, while the more-vulnerable are significantly more vulnerable.

Regarding introducing vulnerability-aware unequal protection in a data cache: (a)

As the per-bit vulnerabilities are determined by the data type and as most data types can

be identified at access time, it is possible to set the vulnerabilities of the cache contents

at access time during execution to drive the vulnerability-aware mechanism online. (b)

As the data cache is a data-holding structure, the available data protection mechanisms

(e.g., ECC) can naturally be adapted to support unequal data word protection.

Regarding the volume/timeshare that the most exploitable per-bit data-level vulner-

ability patterns occupy the data cache: The most promising per-bit data-level vulner-

ability pattern is the one for FP data because they show clear, consistent and distinct

patterns. Due to the FP-heavy nature of the NPB-serial benchmarks, we expect that the

data cache will be heavily occupied by FP data during large application execution in-

tervals. Therefore there is high exploitation potential in unequally protecting FP data in

a data cache. Although we expect that not all data types will experience high volumes

in the data cache (and thus not experience all high exploitability characteristics), those

that will are looking very promising, even if they are the only ones to be exploited.

74 Chapter 4. Exploiting Application Behavior Characterization

Generally, we expect that the potential benefits will be substantial and can be maxi-

mized when unequally protecting application data in a data cache.

As the per-bit data-level vulnerability insight for NPB-serial showed, there are wide

and continuous bit ranges within specific application data with near-zero probability

to result into an SDC. E.g., each of the 32 LSBs of FPs in CG have less than 1%

probability to cause an SDC if corrupted. Similar near-zero probability is experienced

for up to 49 MSBs of 8-byte IPs, for up to 41 MSBs of 8-byte PTRs, for up to 39 MSBs

of 8-byte PTRMRs and PTRTPs (excluding CG), etc.

This points out that only parts of data need to be protected strongly against faults.

E.g., only 50% of the full width of FPs in CG, 24% of 8-byte IPs, 36% of 8-byte PTRs,

40% of 8-byte PTRMRs and PTRTPs (excluding CG) needs to be protected strongly

against faults. If the rest non-vulnerable bit ranges are not as strongly protected as

the more vulnerable ones, the expected fault coverage per dataword of these types will

almost not drop at all.

When taking into account the volume of the data types in a data cache, generally we

expect that the strongly protected surface reduction can be maximized when exploiting

the per-bit data-level vulnerabilities. E.g., as NPB-serial is FP heavy, we expect that

the data cache will be largely occupied by FPs. Assuming an average occupancy rate

of X% of FPs in a data cache running CG, then 0.5 ∗X% of the data cache can be

protected not-strongly to an almost zero drop of the fault coverage of FPs. Therefore

we can reduce the total strongly-protected surface to a minimum effect on the fault

coverage to reduce the reliability overheads in a cache.

The potential benefits of our chosen exploitation alternative depend on the volume

that the data types occupy the data cache. In the next section we will profile the con-

tents of a data cache running the NPB-serial benchmarks in order to obtain the vol-

ume/timeshare of data types within the data cache. This will further show how the

chosen exploitation alternative experiences all high exploitability characteristics and

how this can translate into potential benefits in terms of strongly-protected surface

reduction.

4.2. Data Cache Content Profiling 75

4.2 Data Cache Content Profiling

To move forward with our exploitation investigation we require a method for data

cache content profiling to obtain the volume/timeshare of data types within a data

cache during the execution of an application. Such information is needed (a) to reaffirm

that our chosen exploitation alternative (of per-bit data-level vulnerabilities in a data

cache) experiences all high exploitability characteristics (see previous section) and (b)

to measure the maximum potential benefits of our chosen exploitation alternative (see

next section).

In this section, first, we describe our data cache content profiler. Its purpose is to

simulate a data cache in order to obtain the occupancy rates of the data types within

the data cache during the execution of an application. Then, after setting up our ex-

periments, we profile the contents of various data cache configurations executing the

NPB-serial benchmarks to obtain the required information.

4.2.1 Data Cache Content Profiler

Overview: For a given application binary and a cache configuration, the data cache

content profiler instruments the application to capture every memory access (both loads

and stores) and to simulate them in the data cache. The cache content profiler requires

one instrumented run of the application for each different cache configuration.

For every memory access, it classifies the accessed data in different usage types,

according to their use by the application. The usage type classification logic is the

same as the one used by the single-fault injection tool1.

Then, all classified memory accesses are simulated in order by a data cache simu-

lator. On top of traditional cache simulators, it keeps track of the data type that each of

the cache bytes is occupied by. This enables to obtain the occupancy rates of the data

types within the data cache during the execution of the given application.

Data usage type classification: Classifying the usage type of the accessed data can

be either immediate at access time or it may require tracking the data through the

execution until a first meaningful use (as detailed in Subsection 2.2.3). As the cache

content profiler requires one run of the application, there may be multiple accessed

1Given the reasons we require data cache content profiling, the profiler has to be compatible with the
performed vulnerability characterization, thus it must classify the contents using the same classification
algorithm as the characterization framework (see Subsection 2.2.3 and Fig. 2.2).

76 Chapter 4. Exploiting Application Behavior Characterization

data being tracked concurrently but at separate tracking processes.

To manage the multiple data tracking processes we use a queue. This queue keeps

an in order history of the memory accesses and may include both classified and not-yet

classified memory accesses. Each element in the queue is independent of each other.

There are separate data structures used for implementing the independent data tracking

and dynamic taint tracking logic; each queue entry holds all the necessary propagation

information for its own purposes, i.e., load/store, initial memory address, initial regis-

ter, tainted registers, tainted memory locations, instruction tracking window, etc.

Once a new memory access is captured, it is added to the queue. If its data usage

type can be classified immediately, it is flagged accordingly. Otherwise, the classi-

fication process is set up and all relevant information for data tracking purposes are

added to the new queue element. If it is a load access, this includes the original loaded

memory location and the first register to store the loaded data. If it is a store access,

this includes only the original stored memory location.

Then, for every instrumented instruction and for every non-classified memory ac-

cess data type, the classification proceeds independently of the rest ongoing classifica-

tions processes; the data tracking and/or the dynamic taint tracking proceeds for each

memory access according to the classification logic. Once a memory access data type

is classified, the relevant queue entry is updated.

The logic and process to detect the types by data tracking is the same as in the

single-fault injection tool. A separate case holds for classifying the usage types of data

accessed by memory stores. When storing data in memory there is no indication how

the data have been used so far by the application. An exception holds if they were

stored in memory using one of the special registers as an input register and then we

can classify them immediately, e.g., a store using an FP register as an input can be

classified as accessing FP data. Otherwise, to classify the originally stored data, we

will have to wait for them to be accessed again by a subsequent memory load access

and then invoke the classification process.

Queue management: To ensure the correctness of the forthcoming simulation we

use the aforementioned queue. To simulate a memory access by the cache simulator,

its usage data type must have been classified. Also, the memory accesses must be

simulated in the correct order. The queue, apart from enabling the concurrent data

tracking processes, keeps an in order history of the memory accesses to feed them in

order to the cache simulator.

4.2. Data Cache Content Profiling 77

As data usage type classification is not always immediate and does not take the

same time to detect, the queue may include both classified and not-yet classified mem-

ory access data types; some elements in the queue may not be classified yet but more

recent ones may be.

For every instrumented instruction we attempt to empty the queue. All classified

memory accesses at the head of the queue are removed from the queue, until the head

of the queue is occupied by a not-yet classified memory access. Those that are success-

fully removed from the head of the queue are passed to the cache simulator to simulate

a memory access (load or store) at a memory address that is of a specific size in bytes

and that holds data of a classified usage type.

If the head of the queue remains unclassified for large execution intervals, the queue

size may quickly become unmanageable. To avoid an explosion of the queue size, we

impose (a) a time limit (in instructions) for the classification process by data tracking2,

and (b) a time limit (in instructions) for waiting for a non-classified memory store

location to be accessed again by a memory load3.

Fig. 4.2 shows an example of how the queue is populated over time to perform con-

current different data usage type classification processes on different memory accesses

and how the queue is emptied to pass the classified memory accesses to the cache

simulator.

Data cache simulator: The classified memory accesses that are removed from the

head of the queue are passed in order to the cache simulator. The passed information

include the access type (load or store), the memory access address, the accessed data

size (in bytes) and the accessed data usage type.

The simulator is a traditional cache simulator that, on top of the usual ones, it keeps

track of the cache content data types at byte granularity. For every cache byte, it stores

the usage type of the data that occupy that byte and the full byte range that the data

in that byte occupy. E.g., assuming an 8-byte FP stored in memory at bytes 0x10 up

2As in the single-fault injection tool, an instruction window of 1000 instructions is set as a time
limit to classify the tracked data’s usage type. If the time limit is reached, their usage type is reported
as INT. Due to this time limit, data that may have otherwise classified as other usage types, are forced
to be classified as INT. An implication of that is that the percentage of INT data may increase and
include a mix of other types too, while the rest reported data usage types contain exactly the correctly
identified types. Nevertheless, the exploitation potential benefits presented in the rest of this chapter still
hold, especially as this classification behavior was present also during the vulnerability characterization
framework.

3Memory stores that are not immediately classified cannot be tracked to determine their usage type
until accessed again by a subsequent memory load. If this doesn’t occur within an instruction window
of 1000 instructions, then the store access is reported as UNUSEDSTORE.

78 Chapter 4. Exploiting Application Behavior Characterization

mem access 1

load, 0xA, 4B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xA} reg={R1}

mem access 1

load, 0xA, 4B,
CLASSIFIED: PTRTP

can be

cache simulated

mem access 2

store, 0xB, 4B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xB} reg={wait}

mem access 3

load, 0xC, 8B,
CLASSIFIED: FP

mem access 2

store, 0xB, 4B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xB} reg={R4}

mem access 3

load, 0xC, 8B,
CLASSIFIED: FP

mem access 4

load, 0xB, 4B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xB} reg={R4}

mem access 2

store, 0xB, 4B,
CLASSIFIED: PTRMR

can be

cache simulated

mem access 3

load, 0xC, 8B,
CLASSIFIED: FP

can be

cache simulated

mem access 4

load, 0xB, 4B,
CLASSIFIED: PTRMR

can be

cache simulated

mem access 5

load, 0xD, 1B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xD} reg={R5}

mem access 5

load, 0xD, 1B,
UNCLASSIFIED

UNDER TRACKING:

mem={0xD} reg={R5}

ORDER OF SIMULATED CACHE ACCESSES
mem access 1

load, 0xA,
4B, PTRTP

mem access 2

store, 0xB,
4B, PTRMR

mem access 3

load, 0xC,

8B, FP

mem access 4

load, 0xB,
4B, PTRMR

APPLICATION
 ...
1: load (0xA, 4B, R1)
 ...
2: store(0xB, 4B, R2)
 ...
3: load (0xC, 8B, R3)
 ...
4: load (0xB, 4B, R4)
 ...
5: load (0xD, 1B, R5)
 ...

QU
EU

E
OV

ER
 T

IM
E

Figure 4.2: Example management of concurrent usage type classification for in-order data

cache content profiling.

(A) Each memory access is added to the queue. If classified immediately, it is flagged accord-

ingly. Otherwise, the necessary information to start the data tracking are added. Memory

access 1 requires data tracking, thus a classification process is setup to start on the accessed

memory address (0xA) and the first register loaded (R1). Memory address 2 is a store access

and will have to wait until the accessed memory address (0xB) is loaded by a subsequent ac-

cess (memory access 4), thus the classification process waits until memory access 4. Memory

access 3 is loaded into an FP register and can be classified immediately.

(B) Over time all unclassified accesses go through their respective classification process. The

figure shows the changes over time and not per individual instrumented instruction. When

the head of the queue is populated by one or more classified accesses, these are removed and

passed in order as cache accesses to the type-aware cache simulator.

4.2. Data Cache Content Profiling 79

to 0x17 and loaded into the cache, all simulated cache bytes representing 0x10 up to

0x17 are marked as storing an FP that spans from 0x10 up to 0x17.

For every cache access (both hits and misses), the exact cache bytes that are ac-

cessed are always updated to the usage type of the newly accessed data, even in the

case of load hits. As we care about usage type profiling, the cache content type infor-

mation must remain always up to date and reflect the most recent usage of the data.

E.g., assuming a cache hit of an 8-byte IP stored in memory at bytes 0x10 up to 0x17,

even though it is a cache hit, all simulated cache bytes representing 0x10 up to 0x17

are changed (from the aforementioned FP) to be marked as storing an IP that spans

from 0x10 up to 0x17.

On a similar note, when a cache access causes the change of a cache byte usage

type, all neighboring bytes that were part of the old value must have their usage type

invalidated. E.g., assuming a cache hit of a 1-byte INT stored in memory at 0x14, the

simulated cache byte representing 0x14 is changed (from the aforementioned IP data

stored between 0x10 and 0x17) to be marked as storing a 1-byte INT and (because the

original IP data are no longer valid) the type of the cache bytes representing 0x10-0x13

and 0x15-0x17 is invalidated.

Finally, due to classifying data types according to their use by the application, the

simulated usage types are known only after the data are used. Therefore, in cache

misses that cause a new cache line to be loaded into the cache, we have no way of

knowing the data types of the full cache line, apart from the bytes that were actively

accessed by the application. As a result, the profiled cache contents show a live image

of the types accessed so far by the application and not an indication of future accessed

types.

Reported occupancy rates: Every time a cache byte type is changed there are relevant

counters that are updated accordingly. These counter provide a live image of exactly

how many cache bytes are occupied by any combination of usage types and sizes. The

data cache content profiler uses these counters to report the occupancy rates of the data

types within the data cache during the execution of the given application.

4.2.2 Experimental Setup and Profiling Results

The data cache content profiler was implemented as a set of dynamic binary instru-

mentation Pin tools [28] reusing the usage type classification logic of the single-fault

80 Chapter 4. Exploiting Application Behavior Characterization

injection tool (as detailed in Subsection 2.2.3). Given the reasons behind the data cache

content profiling, the profiling results must be compatible to the performed vulnerabil-

ity characterization. Therefore we profiled the data cache contents when executing

the same benchmark binaries as the ones we have already obtained the vulnerability

insight for.

The contents of twelve different-sized cache configurations were profiled while

executing the full set of the ten workloads of the NAS Parallel Benchmarks [10] (64-bit,

NPB-serial, version 3.3.1, input class size S, gcc 4.4.6 -o3, Linux kernel 2.6.32). The

data caches were 4-set associative with a 32-byte block size and their size varied from

1K up to 2048K. To perform the cache content profiling one run of each application

was instrumented for each different cache size.

Given the data cache content profiler design, the results effectively depict the data

occupancy rates in an L1 cache. Focusing on L1 caches and reducing the reliability

costs at that level is more imperative in terms of cost and performance than in lower

level caches. Although we profiled up to 2048K-sized caches, that are unreasonable to

be used as L1 caches, these results still give an insight on how the larger lower level

caches would be occupied by data types.

Fig. 4.3 shows the data cache content profiling results for the CG benchmark for each

profiled cache size. It can be seen that, throughout the execution, there are data types

(FP and PTRTP data in the case of CG) that dominate the data cache in large volumes.

Similar behavior is exhibited in the rest tested benchmarks4; there are data types

that occupy the data cache in high volumes and during large execution intervals. This

holds especially true for the case of FP data. For most of the rest tested benchmarks,

except DC and IS that are not FP heavy, there are high occupancy rates of FP data in

the data cache (irrespective of its size) throughout the execution.

What varies among the profiled data caches and benchmarks is the magnitude of

the occupancy rates. Fig. 4.4 shows the breakdown of the data cache contents ac-

cording to their usage type for all NPB-serial benchmarks. These results are averaged

occupancy rates exhibited in each profiled cache size over the full execution of each

benchmark. This averaged breakdown of occupancy rates reaffirms that there are data

types (especially the FP data) that reside in large volumes in the data cache, regardless

of the cache size, during the lifetime of most profiled applications. As these are the

4For space reasons, the profiled data cache contents over the execution time are shown only for one
of the ten profiled NPB-serial benchmarks.

4.2. Data Cache Content Profiling 81

F
ig

u
re

4
.3

:
B

re
a
kd

o
w

n
o
f

d
a
ta

ca
ch

e
co

n
te

n
ts

(a
cc

o
rd

in
g

to
th

ei
r

u
sa

g
e

ty
p
e)

o
ve

r
th

e
ex

ec
u
ti

o
n

o
f

th
e

C
G

b
en

ch
m

a
rk

a
n
d

o
n

a
ve

ra
g
e

(l
a
st

p
lo

t)
.

(V
a
ry

in
g

ca
ch

e
si

ze
:

1
K

,
..
.,

2
0
4
8
K

,
4
-s

et
a
ss

o
ci

a
ti

vi
ty

,
3
2
-b

yt
e

b
lo

ck
si

ze
)

82 Chapter 4. Exploiting Application Behavior Characterization

F
ig

u
re

4
.4

:
A

ve
ra

g
ed

b
re

a
kd

o
w

n
o
f

d
a
ta

ca
ch

e
co

n
te

n
ts

(a
cc

o
rd

in
g

to
th

ei
r

u
sa

g
e

ty
p
e)

d
u
ri

n
g

ex
ec

u
ti

o
n

o
f

a
ll

N
P

B
-s

er
ia

l
b
en

ch
m

a
rk

s.

(V
a
ry

in
g

ca
ch

e
si

ze
:

1
K

,
..
.,

2
0
4
8
K

,
4
-s

et
a
ss

o
ci

a
ti

vi
ty

,
3
2
-b

yt
e

b
lo

ck
si

ze
)

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 83

data types that we intend to exploit their vulnerabilities, the profiling results motivate

that the potential benefits will be substantial.

As it appears that our chosen exploitation alternative satisfies all high exploitability

characteristics, we can move forward on measuring the maximum potential benefits.

In the next section we use the obtained occupancy rates to estimate the potential ben-

efits of exploiting the per-bit data-level vulnerability variations of NPB-serial in a

vulnerability-aware unequally-protected data cache.

4.3 Per-Bit Data-Level Vulnerability Exploitation

Benefits in a Data Cache

In this section we show the maximum potential benefits of our chosen exploitation

alternative. In particular, we will exploit the per-bit data-level vulnerability variations

of NPB-serial targeting the reliability-overheads reduction in a vulnerability-aware

unequally-protected data cache that offers two levels of fault-protection strength while

running the NPB-serial benchmarks.

As mentioned throughout this chapter and further established by the data cache

content profiling, we expect that exploiting the characterization insight in that particu-

lar vulnerability-driven manner will have significant potential cost-saving benefits, es-

pecially as it indeed experiences all high-exploitability characteristics (Section 4.1.1).

The potential reliability-overhead benefits will be measured in terms of strongly-

protected surface reduction against to what effect on the fault coverage to enable

trading-off the reliability overheads against the reliability QoS level.

To estimate these potential benefits (for the case of the data cache running the NPB-

serial) we only require (a) the observed per-bit data-level vulnerability variations of

the NPB-serial benchmarks obtained during the characterization study (Section 3.3.1)

and (b) the observed occupancy rates of data types in a cache executing the NPB-

serial benchmarks obtained by the data cache content profiling (Section 4.2). As ex-

plained later, this limit study does not require an exact design for a vulnerability-aware

unequally-protected cache; an assumed optimal cache design suffices.

As we exploit the per-bit data-level vulnerability insight, the trade-offs will be inves-

tigated at application data level granularity per particular combinations of data usage

84 Chapter 4. Exploiting Application Behavior Characterization

types (D) and data sizes (B bytes, b bits), while fine-tuning their unequal protection at

bit granularity.

More precisely, we will introduce the unequal protection per particular combina-

tions of D-B data, where their full bit range will be protected against N hardware faults

and b− l bits will be protected stronger against one extra hardware fault. This enables

to show how varying the amount of bits under stronger protection (b− l, l ∈ [0,b])

affects the fault coverage5 of D-B data against N + 1 faults occurring randomly over

the b bits of D-B data. Meanwhile, we will show how the variations of l for the par-

ticular combination of D-B data translates to benefits on the full data cache in terms of

strongly-protected surface reduction.

Therefore, the trade-offs we observe are between the fault coverage of particular

D-B data against the potential benefits in the full cache. Investigating the effects on

fault coverage at application data level (per combinations of D-B data) and not in

higher granularities (e.g., cache line, full cache), makes it clear to see how varying the

protection of D-B data affects their fault coverage to what benefits to the full cache.

If we had investigated the fault coverage variations at a higher level, although (a)

the unequal protection would still be per D-B data and (b) the benefits would still be

the same, the effects of exploiting the D-B data vulnerabilities (by varying the unequal

protection) on fault coverage would not be seen clearly. This is mainly due to the

methods for measuring the theoretical fault coverage that involve the probability that a

single hardware fault occurs in one out of the many cache bits. Due to the cache sizes,

this probability is small enough that makes the fault coverage changes minimal and

hard to see.

The potential benefits will be estimated for the case of a 64K data cache (4-set asso-

ciative, 32B block size). Out of the 12 profiled cache configurations (Section 4.2) we

show the exploitation potential in the 64K data cache only, as it is a typical size for an

L1 cache where any improvements in cost and performance are more imperative than

lower level caches. Moreover, the 64K-sized configuration experienced the most in-

stances of highest occupancy rates of FP data over the profiled benchmarks (Fig. 4.4).

Nevertheless, despite selecting the 64K-sized configuration, similar analysis can be

performed for the rest cache configurations.

Table 4.1 shows the data occupancy rates in a 64K sized data cache running the

5As the fault coverage (of an area protected by a reliability mechanism against a number of occur-
ring hardware faults) we define the probability that, if the number of faults occurs in this given area, an
SDC will not occur.

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 85

Table 4.1: Average occupancy rates (as percentages of the total cache area) per profiled bench-

mark for different combinations of data usage types and data sizes that reside in a 64K data

cache executing NPB-serial. Rates obtained by the data cache content profiler (Section 4.2).

AVERAGE OCCUPANCY RATES (%) IN A 64K DATA CACHE (4-SET ASSOCIATIVE, 32B BLOCK SIZE)

EXECUTING NPB-SERIAL (3.3.1, INPUT CLASS S)

type: FP IP PTR PTRTP INT UnusedStore

size: 8 16 any 8 4 8 16 any 4 8 any 4 8 any 4 8 16 any

BT 72.95 0.02 72.97 0.09 0.01 0.35 0.02 0.38 0.00 0.18 0.18 0.10 0.73 0.83 0.00 16.58 0.02 16.60

CG 60.42 0.03 60.45 0.08 0.00 0.03 0.00 0.03 24.65 0.11 24.76 3.45 0.34 3.81 0.91 4.51 1.79 7.21

DC 0.00 0.63 0.63 0.09 0.02 0.77 0.00 0.79 0.00 16.61 16.62 1.10 10.18 11.99 0.59 37.85 1.37 41.70

EP 90.64 0.02 90.66 0.07 0.00 0.10 0.00 0.10 0.00 2.10 2.10 0.08 0.11 0.19 0.00 4.93 0.01 4.94

FT 36.04 0.00 36.04 0.10 0.01 0.06 0.00 0.07 0.00 0.22 0.22 0.22 7.77 7.99 0.00 53.07 0.00 53.07

IS 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.02 69.18 0.10 69.28 3.07 0.38 3.50 20.93 0.12 0.65 21.70

LU 51.54 0.04 51.58 0.07 0.01 0.15 0.00 0.16 0.02 0.25 0.27 0.19 3.41 3.62 0.00 39.03 0.01 39.04

MG 59.46 0.00 59.46 0.07 0.00 0.28 0.14 0.42 0.01 0.21 0.22 0.20 0.84 1.07 0.01 31.76 3.34 35.11

SP 51.71 0.01 51.72 0.04 0.01 0.06 0.00 0.07 0.01 0.14 0.15 0.09 5.82 5.91 0.00 32.41 0.07 32.48

UA 42.41 0.03 42.44 0.05 0.00 0.80 0.00 0.80 7.37 0.05 7.42 0.71 1.35 2.06 0.11 34.36 6.71 41.18

NPB-serial benchmarks, as obtained from the data cache content profiler. Each rate

shows the average percentage of the total cache area that was occupied by a specific

data type of a particular size6. Not all cache occupancy rates for any combination of

data types and sizes are shown. Although the occupancy rates were obtained for all

combinations, only a subset of those will be exploited here as many of them were very

low for significant benefits.

This limit study does not require an exact data cache design to measure the intended po-

tential benefits. It only needs the per-bit data-level vulnerability variations and the data

cache occupancy rates. Therefore, we can assume an available optimal vulnerability-

aware unequally-protected data cache design that (a) can offer two levels of fault-

protection strength that can be fine-tuned at bit granularity to unequally protect the

cache contents at data-level granularity and (b) can detect the vulnerability of cache

data to drive their unequal protection according to their expected vulnerabilities. Al-

though assuming an optimal cache design assists into estimating the maximum poten-

tial benefits of introducing vulnerability-aware unequal protection in a data cache, it is

6Note that during the data cache content profiling (Section 4.2) we showed the total occupancy rates
per data type of any size. Here we will use the occupancy rates per data type for particular data sizes
to ensure compatibility with the respective per-bit vulnerability observations to estimate correctly the
trade-offs.

86 Chapter 4. Exploiting Application Behavior Characterization

an indication too of the limited practicality of the proposed approach as we will discuss

in the end of this chapter.

4.3.1 Strongly-Protected Surface Trade-Offs

Against Fault Coverage

In this subsection we demonstrate the potential exploitability of our characterization

findings in a generic design of a fault-tolerant data cache running the NPB-serial

benchmarks. Assuming a vulnerability-aware unequal protection mechanism we an-

swer the question of how much we can exploit the vulnerability characteristics of appli-

cation data to reduce the strongly-protected surface of a data cache and to what effect

on the reliability QoS level.

Introduction: The characterization study (Chapter 3) uncovered a variety of vulnera-

bility characterization observations that we could exploit in our case of an unequally-

protected data cache. Starting at higher application-level granularity, we showed the

percentages of tests per application that led to SDCs (Fig. 3.1) and we can exploit this

in a naive way by strongly protecting only that percentage of data cache contents, when

the respective application is executing, agnostic to their independent vulnerabilities.

This, however, would not be effective without knowing how to match the less-

protected portion of the cache to the less-vulnerable portion of the application’s data.

Instead unequal protection driven by the finer vulnerability classification of application

data according to their attributes (Fig. 3.2-3.5) is more promising and accurate given

that we can rank application data per application according to their vulnerabilities and

protect stronger only the more-vulnerable data types in the data cache.

More interesting room for exploitation is in the per-bit vulnerability variations

within application data (Fig. 3.7-3.14) as these exhibit the high-exploitability charac-

teristics. Moreover, as these results can drive a bit-level finer-grained unequal protec-

tion, they allow for the maximum possible reduction of the strongly-protected surface

to the minimum possible impact on the fault coverage.

Assumed cache design, protection and operation: Before measuring the fault cov-

erage against the strongly-protected surface reduction, we assume a data cache that is

equipped with a protection mechanism that can assign different protection at different

cache contents at data granularity. This protection mechanism can offer two levels of

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 87

fault-protection strength that can be fine-tuned at bit-level granularity to protect the

application data bits unequally. All bits of application data are protected against N

faults (weaker protection strength), while some bits of some application data can be

protected against one extra fault (stronger protection strength). Because our obtained

vulnerability insight is for single-bit data corruption effects, in order to show the ex-

ploitability potential, we had to define the stronger protection as protecting against one

extra hardware fault compared to the weaker protection.

The extra protected bits are protected by the stronger-protection level and the total

of them constitutes what we call strongly-protected cache surface. When the strongly-

protected surface covers the full cache, this narrows down to the fully equally protected

data cache that protects every application data against N+1 faults and that we compare

against. When there is no strongly-protected surface, this narrows down to a fully

weakly-protected data cache that protects every application data against N faults and

that exhibits the maximum potential benefits as it assumes that all contents are less

vulnerable. When N = 0, the weakly-protected surface does not protect the area it

covers.

In this trade-off analysis in terms of strongly-protected surface reduction, the exact

value of N is irrelevant. The trade-off observations still hold for the case of stronger

unequal protection against any number of N faults per protected application data. This

motivates a strongly-protected surface reduction even when the more-vulnerable data

are protected even stronger (or even have more than two protection-strength levels).

Similarly, the details on how exactly the protection mechanism is implemented

are irrelevant for measuring the strongly-protected surface reduction. All we require

is that the assumed protection mechanism can support the aforementioned behavior.

Moreover, we assume the data cache has the mechanisms to detect the vulnerability

of its data to drive their unequal protection accordingly. Once more, to measure the

intended potential benefits, the related design choices and implementation details are

irrelevant. E.g., how the vulnerability of data is detected, how the mapping is done

of vulnerable data to stronger protected regions, how the cache is partitioned in two

parts with different protection levels and to what effect on the other cache performance

metrics, such as cache hit/miss rates, etc.

Fault coverage: As the fault coverage (of an area protected by a reliability mechanism

against a number of occurring hardware faults) we define the probability that, if the

number of faults occurs in the given area, an SDC will not occur.

88 Chapter 4. Exploiting Application Behavior Characterization

To formulate this in the case of the assumed unequal-protection mechanism: The

fault coverage FCD,B,L (of a data type D of size B bytes when all of its b bits are

protected against N faults and b− l of its bits are protected against one extra hardware

fault, where L is a set of l ∈ [0,b] bits) is the probability that, if N + 1 faults occur

within the D-B data’s b bits, an SDC will not occur.

Because all b bits are protected against N faults, the first N faults will not cause

an SDC. As each occurring fault is an independent event, FCD,B,L narrows down to

the probability that the N + 1 fault will not cause an SDC. This is equivalent to the

inverse probability of the N + 1 fault causing an SDC. The probability of the N + 1

fault causing an SDC is the sum of the probabilities that the N +1 fault occurs in a not

strongly-protected bit and resulting into an SDC. Thus:

FCD,B,L = 1−∑
i∈L

(
1

b
V FD,B,i) (4.1)

The VFD,B,i is the observed statistical probability that a corruption in the bit i ∈

[0,b− 1] of data of usage type D and size B bytes (b bits) will result into an SDC.

V FD,B,i is obtained by the results of the per-bit data-level vulnerability study that es-

sentially provided statistical experimental vulnerability factors for each bit of each

combination of data usage types and data sizes.

Trade-off results: Fig. 4.5-4.9 show the reduction of the strongly-protected cache

surface against the reduction of the fault coverage of data, when we decide not to

protect strongly an amount of LSBs (or MSBs) of the data. Each figure is for a specific

combination of data usage type and data size.

These point out how much we can exploit the different vulnerabilities of different

bit ranges within application data to reduce the strongly-protected surface of the 64K

data cache running the NPB-serial benchmarks to what effect on the fault coverage.

The differences between the shown trade-off curves are because the vulnerability char-

acteristics and the rates that the specified application data types occur in the data cache

vary among the tested benchmarks.

To obtain the trade-offs shown in Fig. 4.5-4.9, for each combination of application

data usage types (D) and data sizes (B), we progressively reduce the protection of D-B

data by reducing their bit range under strong protection by 1 bit, until the strong pro-

tection has been removed from the full data bit range. Due to the per-bit vulnerability

insight that showed less-vulnerable bit ranges either at LSBs or MSBs of application

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 89

**

** *

**
*

**

**

Reduction of total fault−protected surface of a data cache

Ex
pe

ct
ed

 fa
ul

t c
ov

er
ag

e
fo

r F
P−

8B
 d

at
a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

70%

75%

80%

85%

90%

95%

100% FP−8B

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

Figure 4.5: Trading-off fault coverage of FP (8 byte) data against the strongly-protected sur-

face reduction (by excepting the FP (8 Byte) LSBs from the strongly-protected surface) of a

64K data cache running the NPB-serial benchmarks.

data, we reduce the bit range under strong protection by 1 bit in continuous bit ranges

starting at the LSB or MSB (depending on the D-B combination).

Every time the bit range under strong protection of D-B data is reduced, we ex-

trapolate this to the expected total reduction of strongly-protected surface of the data

cache. As we know the average occupancy rate of D-B data in the data cache and their

individual size (D), it is trivial to estimate the total reduction of strongly-protected sur-

face of the data cache every time we reduce the protection by one bit in every D-B data.

Thus, the total possible reduction of strongly-protected cache surface, when unequally

protecting D-B data, is bounded by the occupancy rate of D-B data in the data cache.

The progressive reduction of the strongly-protected surface can be seen in the figures

when moving towards right on the curves.

To simplify the calculation of the strongly-protected cache surface reduction we

used the average occupancy rates of D-B data. This implies an assumption that each

combination of D-B data occupies the data cache in a constant rate over the execution.

Although this is not what happens in reality, our assumption stands correct in a valid

cache design that could force specific D-B data to occupy specific optimally-sized

partitions of the data cache (whose sizes are decided by the occupancy rates) at the

cost of possibly increased cache miss rates.

As for the expected fault coverage, each figure shows the expected drop in fault

coverage for a specific combination of D-B for the same progressive reduction of their

bit ranges under strong protection by one more bit at a time. We computed the fault

coverage as discussed before for increasing widths of less-protected bit ranges. Note

90 Chapter 4. Exploiting Application Behavior Characterization

**
**
*

*

**
*
**

* *

**

Reduction of total fault−protected surface of a data cache

Ex
pe

ct
ed

 fa
ul

t c
ov

er
ag

e
fo

r I
N

T−
8B

 d
at

a

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

60%

65%

70%

75%

80%

85%

90%

95%

100% INT−8B

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

Figure 4.6: Trading-off fault coverage of INT (8 byte) data against the strongly-protected

surface reduction (by excepting the INT (8 Byte) LSBs from the strongly-protected surface) of

a 64K data cache running the NPB-serial benchmarks.

*
*
*
*
*
*
*
*
*
*
**
*
*
*

* **
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
*
**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* *

Reduction of total fault−protected surface of a data cache

Ex
pe

ct
ed

 fa
ul

t c
ov

er
ag

e
fo

r P
TR

−8
B

da
ta

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8%

75%

80%

85%

90%

95%

100%

PTR−8B
BT

CG

DC

EP

FT

IS

LU

MG
SP

UA

Figure 4.7: Trading-off fault coverage of PTR (8 byte) data against the strongly-protected

surface reduction (by excepting the PTR (8 Byte) MSBs from the strongly-protected surface) of

a 64K data cache running the NPB-serial benchmarks.

that the estimated fault coverage is estimated for a single D-B data of a given bench-

mark, and not the full data cache fault coverage, based on the per-bit data-level vul-

nerability insight. As expected, when reducing the bit range under strong protection of

D-B data, the fault coverage of single D-B data in the cache reduces. This can be seen

in the figures when moving towards right on the curves.

As an example, in Fig. 4.5, when protecting strongly all bits of FP-8B data of EP

(leftmost point), the fault coverage of FP-8B is 100% and the strongly-protected cache

surface does not reduce (0% reduction). When progressively reducing the strongly-

protected bit range of FP-8B data in EP by removing one LSB at the time, we move

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 91

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

*
*
*

*

* * * * * * * * * ** *
*

*
* * * * *

**
*
*
*
*
*
*
*

*

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
**
*
*
*
*
*
*
*
*
*

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Reduction of total fault−protected surface of a data cache

Ex
pe

ct
ed

 fa
ul

t c
ov

er
ag

e
fo

r P
TR

TP
−8

B
da

ta

0% 0.25% 0.5% 0.75% 1% 1.25% 1.5% 1.75% 2% 2.25%

80%

85%

90%

95%

100%

PTRTP−8B
BT

CG

DC
p=98.83%
r=16.61%

EP

FT

IS

LU

MG

SP

UA

Figure 4.8: Trading-off fault coverage of PTRTP (8 byte) data against the strongly-protected

surface reduction (by excepting the PTRTP (8 Byte) MSBs from the strongly-protected surface)

of a 64K data cache running the NPB-serial benchmarks.

right on the curve until the full FP-8B are not strongly protected (rightmost point of

the EP curve). When the full FP-8B in EP are not strongly protected, as the occupancy

rate of FP-8B data in the 64K data cache is 90.64%, the expected strongly-protected

surface reduction is also 90.64%. As for the expected fault coverage of FP-8B data

in EP, when not protecting their full bit range strongly, it drops to 91.20%. This is

obtained by the aforementioned fault coverage calculation method based on the per-bit

vulnerability factors observed for the FP-8B data in EP.

Discussion: Out of all the estimated trade-offs, we observe the best trade-offs when

unequally protecting floating-point data (FP-8B, Fig. 4.5). As most NPB-serial bench-

marks are FP-heavy (except DC and IS), along with the clear per-bit vulnerability

patterns of FP data (Fig. 3.7), we can avoid protecting the LSBs of FPs to a greatly

reduced total fault-protected surface with a minimal impact on fault coverage. For

example, the total fault-protected surface of the data cache under consideration can

be reduced by 15% (for 8 out of 10 benchmarks) compared to a fully-protected data

cache without affecting the fault coverage of single FP data. If this is to be decided per

benchmark, the surface reduction can reach up to 41% (for EP) with a less than 0.01%

drop in the fault coverage of its FPs, where 29 LSBs of each FP are not protected in

the data cache that is 90.64% occupied on average by FP data during execution of EP.

Furthermore, for a set reliability level we can now reduce the fault-protected sur-

face compared to a fully-protected data cache. For example, the fault-protected surface

may be reduced up to 91% (for EP) when not protecting at all the FPs, while the ex-

92 Chapter 4. Exploiting Application Behavior Characterization

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

* * * * * * * * * * * * * * *
*

*
*

*
*

*
* * * * * * * * * * * *

*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Reduction of total fault−protected surface of a data cache

Ex
pe

ct
ed

 fa
ul

t c
ov

er
ag

e
fo

r P
TR

TP
−4

B
da

ta

0% 5% 15% 25% 35% 45% 55% 65%

60%

65%

70%

75%

80%

85%

90%

95%

100% PTRTP−4B

BT

CG

DCEP

FT

IS

LU

MG

SP

UA

Figure 4.9: Trading-off fault coverage of PTRTP (4 byte) data against the strongly-protected

surface reduction (by excepting the PTRTP (4 Byte) MSBs from the strongly-protected surface)

of a 64K data cache running the NPB-serial benchmarks.

pected fault coverage for a single FP drops to 90%. The fault coverage, as we defined

it per single live data, measures the probability of an SDC caused by a corrupted FP

given a fault in a cache location with live FP contents. In reality the probability of an

SDC given a fault in a cache location containing a live FP is much smaller but it is not

shown as it would obscure the effects of unequal protection on single data.

The same trade-offs are observed for other application data types (INT-8B, PTR-

8B, PTRTP-8B, PTRTP-4B) and are shown in Fig. 4.6-4.9 respectively. Despite the

fact that these types have clear per-bit vulnerability patterns too, due to their smaller

volume in the data cache, avoiding protecting their less-vulnerable bit ranges does not

invoke such significant fault-protected surface reduction (except a few limited cases)

as it was the case for the FP data. Generally, the vulnerability-driven fault-protected

surface reduction is bounded by the average amount of the specific application data

types in the data cache for a given benchmark. Nevertheless, unequal protection can be

introduced to these types too to add their individual effects for a greater fault-protected

surface reduction.

So far, we showed how to exploit the vulnerability characteristics of only specific

data types that had clear vulnerability patterns. The same could be done for the re-

maining data types to further increase the benefits of bit-level unequal protection to

the extra cost of identifying all other data types and exploiting them, e.g., by rank-

ing bits of application data based on their per-bit vulnerabilities and reshuffling them

accordingly to form less-vulnerable bit ranges.

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 93

Table 4.2: Average rates of ‘unused’ cache contents/space (as percentages of the total cache

area) per profiled benchmark in a 64K data cache executing NPB-serial. Rates obtained by the

data cache content profiler (Section 4.2).

AVERAGE UNUSED STORES/SPACE RATES (%)

IN A 64K DATA CACHE (4-SET ASSOCIATIVE, 32B BLOCK SIZE)

EXECUTING NPB-SERIAL (3.3.1, INPUT CLASS S)

BT CG DC EP FT IS LU MG SP UA

Unused stores 16.60 7.21 41.70 4.94 53.07 21.70 39.04 35.11 32.48 41.18

Unused space 8.91 3.59 25.68 1.88 2.42 5.19 5.16 3.56 9.59 5.87

Sum 25.51 10.80 67.38 6.82 55.49 26.89 44.20 38.67 42.07 47.05

Before concluding, it is interesting to note that a significant amount of cache area

was reported during the cache content profiling as holding ‘unused stored data’ (as

shown in Table 4.2 and in Fig. 4.4). As a reminder of how these data were classified

as such, during the cache content profiling, a very short instruction window of 1000

instructions was imposed on the data classification logic to ensure the completion of

the cache content profiler (see Section 4.2). Especially for the case of the memory

store accesses, that cannot be classified until accessed by a consecutive memory load

access, this short instruction window caused a significant fraction of cache contents

to be reported as ‘unused stored data’ because there was no consecutive memory load

access that used them again shortly. This fraction essentially indicates ‘unused stored

data within 1000 instructions from the moment they were stored in memory’ and not

necessarily ‘stored data that will never be accessed again’. As expected, an increased

instruction window would reduce the reported percentage of ‘unused stored data’ and

increase our confidence on the liveliness of the stored data.

Nevertheless, we expect that there is indeed a fraction of cache contents that won’t

be accessed again in the lifetime of an application. This fraction will be significantly

smaller than those reported in Table 4.2 and estimating it would require removing

the instruction window limitation. Such cache areas, that store dead data, point out

another interesting exploitation area that was left as future work. Given that these dead

data cannot affect the execution output, we can avoid strongly protecting them too and

reduce further the strongly-protected cache surface, as long as we can guarantee that

these data won’t be accessed again.

Similar observations hold for the reported ‘unused cache space’ by the cache con-

tent profiler. This space refers to cache area that was never used or that was storing

data whose type has been invalidated (e.g., due to overwriting a part of longer data

94 Chapter 4. Exploiting Application Behavior Characterization

by a shorter one, due to a cache line replacement where not all the new cache line’s

data got accessed and classified, etc.). Therefore this cache area can too be exploited

for a further reduction of the strongly-protected cache surface by the reported average

‘unused cache space’ (Table 4.2).

4.3.2 Practicality Issues of This Case Study

The intention of the presented study was to estimate the maximum potential benefits

of exploiting the vulnerability variation of application data. For that purpose, we de-

cided on demonstrating these benefits for the case of a data cache only to answer the

question of how much we can exploit the vulnerability characteristics of application

data to reduce the strongly-protected surface of a data cache and to what effect on the

reliability QoS level.

As this was a limit study, all potential benefits estimated in this chapter assumed

an optimal fault-tolerant cache design. The assumed design, on top of being able to

drive and protect the data according to their vulnerability, it would have to be able to

reconfigure itself on a per application basis to exactly match to the vulnerability char-

acteristics of the executing application. Assuming an available optimal cache design

that can support fully-reconfigurable unequal protection is what enabled to get inter-

esting results that show that there is promise in a vulnerability-aware reduction of the

strongly-protected cache surface.

Alas, exactly this assumption makes the advocated approach impractical. The prac-

ticality of our approach is limited in its attempt to introduce vulnerability-driven un-

equal protection in the case of an optimal data cache to exploit the per-bit data-level

vulnerability characteristics of application data. This is because a one-to-one trans-

lation of the potential benefits to actual savings is impossible in the case of a cache

design that can offer a reconfigurable strongly-protected cache surface.

Such a design is not trivial to design without negating the savings of unequal pro-

tection. A fully reconfigurable design could be possible where, depending on the exe-

cuting application, the strongly-protected cache surface and protection strength change

depending on the vulnerability characteristics of the application. Sadly a major issue

of such an approach is that the extra configuration options would negate the savings

gained by introducing unequal protection. This is while not considering extra imple-

mentation challenges like detecting online the data vulnerabilities, mapping the data

to cache locations according to their vulnerability and offering different protection

4.3. Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache 95

strength for different data bit ranges. On the other hand, such an approach could pro-

vide with the best trade-offs and a general design usable by general purpose CPUs.

An alternative approach would be to remove the reconfiguration attributes of the

design and statically configure the cache protection given the executing application

vulnerabilities. In such an approach the potential benefits of unequal protection can

still be maximized. Though, as this essentially requires a different design per applica-

tion, it is inapplicable for a general purpose CPU but it could merit such an effort if the

cache were to reside in a specialized CPU or a co-processor.

Finally, the most reasonable approach would be a single cache design with prede-

termined protected cache surface targeting the common case without reconfigurability

properties. I.e., a statically configured cache that offers a predetermined set of par-

titions of different predetermined protection strengths that protect strongly predeter-

mined bit ranges of data. Although this does not offer a lot of flexibility and wouldn’t

maximize the savings, it would be an improvement on reliability costs, compared to

a fully protected cache, and it could work for different workloads. Such an approach

though would come at the expense of potentially increased miss rates as it would re-

quire a vulnerability-aware mapping of data to specific limited cache locations.

All the above point out the reduced practicality of exploiting the per-bit data-

level vulnerability variations in a fully-reconfigurable vulnerability-aware unequally-

protected data cache, despite showing high exploitation potential as measured by the

trade-offs between the strongly-protected surface against fault coverage. This does not

negate the importance of the vulnerability characterization results as they can still be

applied to other levels/structures that can benefit too by unequal protection.

A suggested alternative approach that shows promise and is left as future work

is applying vulnerability-aware unequal-protection to software-level reliability mech-

anisms. A significant drawback in the case of hardware-level reliability mechanisms

has been their lack of flexibility and the requirement of purpose-designed hardware to

support new features. On the other hand, software-level approaches could adapt more

easily to varying vulnerability characteristics while getting performance benefits. E.g.

in an instruction replication based approach, the replication degree may be determined

based on the vulnerability and type of the operands in order to get instant performance

speedup compared to the fully replicated version.

To summarize, although the vulnerability characterization results showed high ex-

ploitation potential, both generally and in the case of a data cache, the practicality of

materializing these maximum benefits for the case of a data cache is limited. This holds

96 Chapter 4. Exploiting Application Behavior Characterization

more true especially when considering an optimal unequally-protected data cache. A

further exploration on how we could translate these benefits into savings for the case

of a data cache is left as future work where a practical implementation can be devised

that does not compromise the maximum potential savings. Nevertheless, as mentioned,

it may be more practical to exploit the vulnerability characterization results in other

approaches instead, especially in software-based approaches due to their inherent flex-

ibility.

To conclude, despite the practicality issues of this case study, the observed trade-offs

showed that there is potential in shifting from fully equally-protected architectures to

vulnerability-aware unequally-protected architectures that exploit the per-bit data-level

vulnerability variations to reduce the total fault-protected surface smoothly against the

reliability QoS levels.

As the total fault-protected surface can be safely reduced to a minimum effect

on the fault coverage, it points out that implementing vulnerability-aware unequal-

protection on existing fault-tolerant approaches on a given structure or same-level

structures is promising to reduce their reliability overhead and improve their perfor-

mance.

4.4 Summary

In this chapter we showed the exploitation potential of the characterization insight

obtained in Chapter 3.

There are numerous alternative ways, design targets, areas and mechanisms that

offer grounds for exploiting the application behavior under data corruption. Out of

all the possible alternatives, we focused on exploiting the characterization insight to

reduce the reliability-associated overhead of reliability mechanisms with a minimum

effect on fault coverage by introducing vulnerability-aware unequal-protection in the

case of a data cache by exploiting only the data-related vulnerability variation and,

specifically, the per-bit variations.

We chose this exploitation alternative because it was identified as a promising area

with high exploitability potential; the per-bit data-level vulnerability variations showed

clear and distinct vulnerability patterns, that were consistent among benchmarks (es-

pecially for the case of FP data), with highly different vulnerability intensity levels.

Moreover, applying this insight for the case of a data cache was possible, as a data

4.4. Summary 97

cache can be modified to support vulnerability-driven protection and cache data pro-

tection mechanisms can be adapted to support unequal data word protection.

The high exploitability potential of our chosen alternative was further reaffirmed by

going through a data cache content profiling process that obtained the occupancy rates

of data types within a data cache during the execution of the NPB-serial benchmarks.

The cache profiling results showed that there are data types that dominate the data

cache in large volumes.

These obtained occupancy rates, along with the per-bit data-level characterization

insight, enabled to present a case study to demonstrate how the application data varying

vulnerability characteristics can be exploited for reduced-cost unequal fault protection

in the case of a 64K data cache running the NPB-serial benchmarks. In particular

we explored the potential benefits, when shifting into vulnerability-aware unequal-

protection architectures that can trade off between different reliability QoS levels. The

potential reliability-overhead benefits were measured in terms of strongly-protected

surface reduction against the effect on fault coverage. As our investigation focused on

showing the maximum potential, it was agnostic to an actual architectural design and

assumed the availability of a fault-tolerant data cache with a protection method that

can adapt to unequal protection and a classification mechanism to set the protection

levels of application data accordingly.

Despite the practicality issues of implementing this case study, the performed in-

vestigation pointed out that there is potential in shifting into vulnerability-aware unequal-

protection architectures (by protecting the less-vulnerable areas of a given structure

less than its more-vulnerable counterparts) as a viable alternative to exhaustive equal

protection in order to reduce the reliability overheads with a minimum effect on a sys-

tem’s dependability.

Chapter 5

Related Work

As we move into deep submicron fabrication technologies new reliability challenges

start to appear in an ever-increasing rate in all parts of a system (logic, intercon-

nects, memory elements). Examples include interconnects becoming more susceptible

to wire-induced noise, operating voltage/frequency scaling causing timing violations,

gamma ray and alpha particle strikes flipping values in transistors, chips and systems

deteriorating due to ageing or manufacturing defects.

All such occurrences of anomalous physical conditions are called hardware faults

[45] and, according to their duration, are classified into transient, permanent and inter-

mittent faults. Transient faults (soft errors or single event upsets) are faults that occur

only once and do not persist. Permanent faults (hard faults) are faults that occur at

some point in time and persist from that time onward. Intermittent faults are faults that

occur repeatedly but not continuously in the same location.

Generally, a set of four steps is followed to tolerate a fault [45]: (1) Error detec-

tion, where the system becomes aware of the presence of a fault, (2) Error recovery

(error correction), where the system tries to mask the fault’s effect and set the cor-

rect expected behavior, (3) Fault diagnosis, where the type and location of the fault is

identified (not for transient faults), and (4) Self repair, where the system is repaired or

reconfigured to avoid the diagnosed fault. As each step requires a form of redundancy,

fault-tolerant techniques aim to minimize the redundancy-associated performance/cost

penalty, while increasing the fault coverage.

The purpose of fault-tolerant design is to improve dependability by enabling a sys-

tem to perform its intended behavior in the presence of a given number of faults [32].

Hardware reliability and correctness is a design constraint equally important to per-

formance and low cost. It is desirable for systems to make forward progress, even in

99

100 Chapter 5. Related Work

the presence of faults. As such, a lot of related research exists on ensuring the reliable

operation of systems. Furthermore, it is becoming even more imperative to research

on reliability as it is a given fact that the transient error rates will always increase as

the technologies scale [40].

Fault-tolerant techniques may be classified into hardware level, software level or a

combination of both. The level that a technique operates depends on the level where

error detection and error correction take place.

Traditional approaches rely on costly physical redundancy to tolerate hardware

faults. The most elementary approach to hardware-level fault tolerance is to employ

physical redundancy [45]. Its simplest form is dual modular redundancy with a com-

parator. Operations are executed twice and the results are compared to detect faults.

This can be further extended into triple modular redundancy, by adding an additional

replicated module and replacing the comparator with a voter, to enable also error

correction and fault diagnosis. A more general physical redundancy approach is N-

modular redundancy for odd values of N greater than three, that as expected provides

even better detection, correction and diagnosis capabilities.

Physical redundancy may be implemented at different granularity levels, starting

from coarse grain levels, where the whole core is replicated, and moving to finer grain

levels, where ALUs or register files are replicated. All such physical redundancy ap-

proaches come to a high hardware cost and to high power/energy consumption and,

as such, are only used in high-budget and/or mission-critical systems rendering them

unacceptable for commodity systems.

Such exhaustive protection is unnecessary for non-life-critical systems as not all

hardware faults manifest as the same symptom. Depending on the fault location, the

executing workload and the underlying hardware, faults can either (a) get masked by

various levels of fault-masking effects (logic-, architectural-, application-level) and re-

sult in a correct execution with no visible effects or (b) not get masked and result either

in an observable execution upset (application crash, stall or delay) or an unobservable

output corruption (silent data corruption - SDC).

Out of all these possible corruption outcomes SDCs are the most severe as they are

undetectable online by any means and they do not cause any observable indication that

something happened out of the ordinary. The other corruption outcomes are observ-

able and detectable by conventional methods. E.g., software-visible symptom-based

fault detection [50, 27, 37, 13, 8] monitors for suspicious behaviors and symptoms,

5.1. Monitoring Behavior Under Data Corruption 101

such as violating likely program invariants, memory exceptions, cache misses, branch

mispredictions, fatal exceptions, program crashes, high OS activity, hangs.

Given that not all hardware faults manifest as the same symptom and that it suffices to

protect only against SDCs, this thesis targeted a vulnerability-based characterization of

application behavior under hardware-induced data corruption to identify areas of lower

likelihood to result into an SDC, if a corruption occurs there. As discussed throughout

this thesis, such a characterization can help move away from exhaustive equal pro-

tection to vulnerability-driven unequal protection of a given structure or same-level

structures to get performance/cost benefits without a severe impact on the fault cover-

age.

In this chapter we present prior works that relate to the goals of this thesis. First,

we focus on methods that monitor the behavior of a system under the presence of hard-

ware faults. Then, we discuss about works that implied and/or observed the varying

vulnerability characteristics at various levels (with an extra focus on those that investi-

gate variations at data-level and in caches). Afterwards, we present how related works

approach the necessary requirements in order to implement a shifted fault-tolerance

scheme in a hardware/software co-approach for reliability trade-off purposes. Finally,

we discuss on fault-tolerant cache-related approaches, along with those that can adapt

to different reliability levels for trade-off purposes.

5.1 Monitoring Behavior Under Data Corruption

Various analytical and experimental techniques have long been proposed for monitor-

ing the effects of hardware faults. These usually target to assess the dependability

characteristics of systems and reliability mechanisms and not to drive the design of

reduced-cost reliability mechanisms. Nevertheless they demonstrate that not all hard-

ware faults result into the same outcome and provide guidelines on how to capture the

behavior under data corruption.

5.1.1 Analytical Techniques

Analytical techniques model the behavior of hardware structures under the presence

of faults. Although modeling approaches do not usually correlate the fault’s character-

istics to the effects on the application behavior, they do observe the varying probability

102 Chapter 5. Related Work

of a hardware fault in different structures to corrupt the application output. Observing

the vulnerability characteristics of hardware structures is more prevalent in works that

focus on vulnerability factor estimation [31, 46, 47].

Vulnerability factor estimation introduces the concept that not every bit is equally

vulnerable and that the vulnerability factor of a structure is the fraction of vulnera-

ble bits within the total bits of the structure. Vulnerability factors can capture both

microarchitectural and architectural fault-masking effects (Architectural Vulnerability

Factor [31]) in a given structure for a given application through a detailed analysis. In

an AVF analysis the bits of the structure that are required for an Architecturally Correct

Execution (ACE bits) are constantly tracked while simulating the application. All bits

within a structure are assumed as ACE bits, until identified as un-ACE bits, when they

fall into categories of identified classes of bits that do not affect the outcome, e.g., bits

within predictor structures, the non-opcode bits of a NOP instruction, bits in dynami-

cally dead instructions, etc. In order to compute the actual AVF, this ACE analysis was

performed while simulating a set of benchmarks.

Alternative vulnerability factors can estimate the application’s tolerance to faults

in a specified structure independent of the structure’s microarchitectural design (Pro-

gram Vulnerability Factor [46]) or capture only the microarchitectural fault-masking

effects in a hardware structure independent of the application (Hardware Vulnerability

Factor [47]).

5.1.2 Experimental Techniques - Fault Injection

As the models in analytical techniques can get large and complex, such analysis is

usually slow, offers limited insight into an application execution status and tends to

focus on analyzing the behavior of only higher-level hardware structures. An alter-

native is to use experimental techniques, such as experimental verification and error

logging, where a system is monitored during its lifetime to record the causes that led

to its failures, or full-system simulation under simulated faults.

As these are also time consuming, the experimental approach of fault injection has

been widely used as a fast straightforward method to test real systems under realistic

faults. Fault injection has been mainly used for high-level dependability assessment

of reliability mechanisms, systems and applications and it can be hardware imple-

mented [3, 42, 48] or software implemented [20, 42, 48, 7, 39, 17, 14]. Fault-injection

experiments perform a set of iterative tests on a system while a given application is

5.1. Monitoring Behavior Under Data Corruption 103

executing. In every iteration, a fault is modeled and the full execution is monitored to

determine the exact effect of the injected fault on the application’s execution.

In hardware-implemented fault injection faults are injected into the hardware

layer of the target system either physically by electromagnetic interference and radi-

ation [3] or through the pins of an integrated circuit [42, 48]. Although this injection

approach injects real hardware faults that can reach all possible locations, it lacks flexi-

bility and is difficult to operate and control. Furthermore, hardware-implemented fault

injection suffers from low portability as it targets specific systems, requires special

purpose dedicated hardware to access the tested hardware and can possibly damage

the tested system.

On the contrary, software-implemented fault injection (SWIFI) overcomes most

of these drawbacks by injecting realistic faults using software methods. SWIFI achieves

higher properties of repeatability, controllability (in space and time), reproducibility,

non-intrusiveness and efficacy [3]. Furthermore, it is less expensive in terms of time

and effort and more flexible to repeatedly test and monitor the end-to-end behavior of

a system while executing a variety of applications.

SWIFI though cannot emulate all fault models and cannot reach all possible hard-

ware locations that could get corrupted; it is limited into emulating faults in software-

visible structures only. Nevertheless software-injected faults can model other high-

level models that correspond to other realistic lower-level faults.

Generally, in SWIFI, transient faults are injected by adding traps or replacing in-

structions, either at pre-runtime or at runtime, depending on the fault trigger and the

injection mechanisms. Pre-runtime injection methods mutate the application before-

hand, e.g., by substituting instructions and program data by false words [14] or by

source code mutation [17]. Runtime injection methods most commonly corrupt mem-

ory or register contents using time-based triggers (faults injected at specified times),

path-based triggers (faults injected at specified events) or stress-based triggers (faults

injected at specified workload threshold levels). The software injection mechanism can

be implemented by: direct program memory image corruption [39], dynamic process

control structure corruption using debugging registers [20, 48, 7], forcing execution

of pre-loaded routines using either software traps [42, 17] or hardware breakpoints of

specific target systems [42, 48].

As fault-injection testing captures all levels of fault-masking effects, it has been

widely used mainly to evaluate the fault coverage of proposed reliability approaches

against the non-protected case [35, 8, 6, 27, 37, 13, 41, 22, 29]. Although usually the

104 Chapter 5. Related Work

purpose is to measure the fault coverage, these works typically do offer a breakdown

of possible execution outcomes per tested workload. Therefore, it is observed that the

effect of a hardware fault is not always the same and that it also depends on the inherent

fault-tolerance attributes of the workload. On the other hand, these approaches perform

limited testing and are usually not thorough enough to correlate the corruption effect

to the corrupted location attributes, as they are agnostic to the characteristics of the

injected fault.

5.2 Observing Vulnerability Variations

The aforementioned works focused mainly on dependability assessment of reliability

mechanisms and not on vulnerability characterization, that was the focus of this thesis.

In this section we present prior works that are driven by the varying vulnerabilities of

hardware/software structures and investigate possible error sensitivity classifications.

Some fault-tolerant approaches have implied a classification of hardware parts to get

cost/performance benefits albeit without a formal exploration of their vulnerabilities.

One such approach, known as timing speculation, trades-off error rate against per-

formance/cost in the sense that it pushes the boundaries of the operational frequency

or voltage into ranges where timing faults are known to occur. Then, extra hardware

mechanisms are added to detect/correct these resulting errors. Timing speculation al-

lows to operate constantly below critical voltage or above critical frequency and gain

in cost/performance at the expense of the uncommon case that will fail and will need

extra time/support for correction. For this approach to be successful, the added de-

tection/correction hardware must be fast/cheap enough during error-free operation, so

that it doesn’t negate the overall performance/cost benefits of the timing speculation.

Another timing speculation approach to increase performance relies on pairing

two cores in a chip multiprocessor and run the same (or similar) code on both of

them [4, 49, 15]. One of the cores will execute speculatively (in other words, in a

relaxed functional correctness manner) in order to advance quicker within the appli-

cation and get execution hints in advance (such as data values, branch outcomes, etc.)

that will be communicated to the other core. The other core will execute the same code

correctly, without any speculation, but faster due to the received execution hints. This

results into both cores running faster combined than either could alone. Meanwhile

the non-speculative core, due to its reliable design and always-on nature, will ensure

5.2. Observing Vulnerability Variations 105

the correctness of the speculative execution. When throughput is required instead of

response time, the pair may be decoupled and operate independently at the safe fre-

quency. Also, as this approach relies on a second core that executes the same code, it

offers protection against transient faults too and not only against timing errors.

In the above approaches, that targeted a trade-off between performance/cost and er-

ror rate, the faults are mainly caused due to timing violations that are a direct result of

the imposed operating frequency/voltage. In order to offer a transparent and manage-

able fault-tolerant scheme, effort was put into minimizing the number of occurring tim-

ing violations by optimizing the common case at the expense of the uncommon case.

This is a first indication that not all hardware parts need to be protected equally and that

hardware may be classified based on its vulnerability. In particular, timing speculation

approaches implied a classification based on the frequency [16, 19] or delay [52, 11]

of logic paths by allowing timing/voltage faults on less frequently exercised paths or

longer delay paths to gain in cost/performance for the common case.

Similarly, existing cache-specific approaches have implied a vulnerability classifica-

tion of cache lines based on their access patterns by assigning higher protection prior-

ity to the most frequently/recently used cache lines [55] or only to the most recently

used cache line in every cache set [22] or only to the dirty cache lines [23]. Such clas-

sification is usually obtained through analytical methods or experimental testing. E.g.,

in [22] fault-injection experiments were performed on a partially protected cache to

measure the propagation of injected faults into visible corruptions and to deduce that

the most recently used cache lines are more vulnerable.

An analytical alternative to model the behavior of caches under the presence of

transient faults is to create a statistical model of a simplified cache and an error propa-

gation model [44]. Faults in both caches and registers are modeled and their propaga-

tion is studied taking into account possible application masking effects, e.g., an erro-

neous cache entry being overwritten by a new value. To test the validity of the proposed

error propagation model, a series of fault-injection tests was performed. Although this

is not an exact characterization study of data corruption effects on application behav-

ior, it is a promising approach that can be used to estimate the theoretical maximum

percentage of corrupted outputs for an application that executes in an unreliable cache.

Further modeling of the architectural masking effects of faults occurring in cache

lines has been taken into account in [30] where the mean time to failure of a data cache

is computed based on its size and its architectural vulnerability factor, assuming that

106 Chapter 5. Related Work

the cache fails when two transient faults hit the same line.

More specific fault-injection experiments that try to characterize the effect of data

corruption depending on the fault location appear in [34], where soft errors are simu-

lated to perform fault-injection experiments in an instruction cache and a data cache to

measure the effects on the execution depending on the location of the injected bit-flip.

The injected locations are distinguished (a) between the instruction cache and the data

cache and (b) between the cache tag and the cache data. In this approach the injec-

tion results showed that the data cache lines and tags are particularly vulnerable, that

the vulnerability of the instruction cache lines depends on the application, and that the

instruction cache tags are not as vulnerable.

As fault-masking effects occur up to application level, different execution behavior un-

der the presence of hardware faults is expected for different applications and among

dependability-aware redesigned versions of the same application [18, 43]. Thus, mov-

ing to software abstraction level is promising to observe the varying effects of faults

on application behavior [48, 17].

Similarly, fault injection experiments have been used as a way to measure the de-

pendability of applications and show how the workload characteristics affect the be-

havior under corruption. Such an observation is made in [12], where through fault-

injection experiments in a data cache, it is noticed that the resulting error rate depends

on the application’s input size and the way the application uses the data cache. As

the application’s input size increases, the error rate increases, until the input size is

large enough to fill and fit exactly in the data cache. Then the maximum error rate is

observed and, from that point on, as the input size keeps increasing the observed error

rate starts decreasing. This behavior is explained by the cache occupancy rates and the

cache miss rates, that force the correct values to be fetched from the main memory.

Similar varying vulnerability characteristics are expected among application segments

and instructions, as implied in software-level approaches where code segments [9, 35]

or individual instructions [6] are marked as critical to set the desired protection level.

The same variation can be more formally observed by reliability-aware software anal-

ysis to detect statistically-vulnerable code segments [13] and instructions [6, 29].

Moving to application data granularity, it has been implied that the corruption effects

vary depending on the data characteristics. For example, data segments can be marked

5.3. Shifting to a Hardware/Software Co-Approach 107

as approximate if their preciseness is not required for correct execution [38].

In existing cache-specific fault-tolerant approaches that don’t protect all cache lines

equally, there is an implicit classification of the vulnerability of data based on the

probability of being accessed. The most recently accessed and most frequently used

variables are considered more error-prone and a higher protection priority must be

set for them [22]. The motivation behind this is that most frequently used data are

likely to be used again and, if corrupted, are more prone to affect the execution. On

the other hand, inactive data have a higher probability of getting replaced/overwritten,

thus possible corruption there will get masked. Different methods may be employed

to identify such frequently used data. In [55] thresholds are set to define when data

should be considered as frequently used or as inactive.

As before, software analysis can be employed to further elaborate on the criticality

of application data, e.g., by profiling data according to their liveliness [29] suggesting

that more-frequently used data are more likely to corrupt the output. An even finer-

grained analysis is performed by the MASK technique [8] that statically analyzes the

code to find specific bits within data, that have a known value, that if flipped will

certainly cause an application to fail.

Once more, fault injection can be used for the same purpose. In [26], after fault-

injection experiments, data segments are marked as non-failure-critical if they affect

the output of multimedia workloads, where the output correctness requirements are

relaxed. Finally, finer-grained control of the injected fault’s location and monitoring of

the execution can be used instead to provide more insight on the corruption effects [5].

As an instance, fault injection experiments on specific microarchitectural structures

while monitoring the execution, apart from offering a breakdown of outcome types per

tested structure, have been used to correlate the fault injection location [27, 37] or the

execution outcome [41] to the time between fault injection and fault detection.

5.3 Shifting to a Hardware/Software Co-Approach

As mentioned, it is a given fact that the hardware/software parts are not equally vul-

nerable to faults. These inherent vulnerability variations may be leveraged to trade-off

between reliability and performance/cost in a hardware/software co-approach. Such a

trade-off suggests that the reliability levels may be set and defined by the application

or the system designer. To be able to set the reliability levels, an interface and commu-

nication mechanisms are needed, along with fault-tolerant techniques (either hardware

108 Chapter 5. Related Work

or software-level techniques) that are configurable to different protection strengths.

In this section we present the relevant details of existing works regarding (a) how to

set and communicate the desired fault-tolerance levels, (b) how to configure the fault-

tolerance levels and (c) how to expose hardware faults to be corrected by the software.

Setting and Communicating the Fault-Tolerance Levels As there is the need to set

the desired reliability levels, we will now focus on (a) how the existing works allow

the application, developer, compiler or runtime system to set the reliability levels and

on (b) how information is communicated between the software and the hardware to set

the required QoS reliability levels.

• API to set fault requirements: There are a few alternatives on how to specify

the API in order to set the desired fault requirements: In [9] code segments are

wrapped in code blocks in order to be executed in less-reliable hardware. In [6]

the application developer specifies the desired level of fault-tolerance for each

instruction or group of instructions, either in high-level language or in assembly

code. In [35] the programmer may protect individual code segments and also

set the method for error correction. It is a given that all such approaches are

accompanied by a respective compiler.

• Setting fault requirements automatically during compilation: The aforemen-

tioned developer-guided schemes that use a specified API to set the criticality

levels are not very practical as the programmer’s effort is required. A better

alternative is to get the compiler to perform this task automatically, either by

performing static analysis or a profile-guided compilation. In [6], it is proposed,

among others, a naive automatic compiler scheme that assigns the highest fault-

tolerance degree to all control flow instructions and all instructions on which

these control flow instructions depend. In [13] the compiler analysis sets fault-

tolerance levels by duplicating instructions in only what it considers as vulner-

able code segments. In [26], based on fault-injection experiments that provided

with vulnerability estimates, the compiler detects/sets the vulnerability of vari-

ables thus directing their fault requirements.

• Communicating fault requirements to the fault-tolerant hardware: The set fault

requirements need to be communicated to the fault-tolerant hardware and this

can be done in various ways: By modifying the instruction’s encoding to in-

corporate the required fault-tolerance degree [6]. By extending the ISA with

5.3. Shifting to a Hardware/Software Co-Approach 109

special instructions to configure the adaptive fault-tolerant hardware to the spec-

ified fault-tolerance level [6] or to mark critical and non-critical parts of an ap-

plication [9]. By introducing new instructions for each combination of original

instruction and reliability level [6]. By directly mapping the application data into

protected or unprotected hardware based on their vulnerability [26].

Fault-Tolerance Level Configuration: In order to configure the reliability level of the

fault-tolerance technique (either for software or hardware techniques), the technique

itself must be adaptable to varying degrees of protection strength. E.g., ECC code

is able to change in order to detect/correct more or less errors. Such a configuration

requirement is not necessary when the protection levels are just non-protection vs.

full-protection, as long as the protection mechanism can be turned on and off.

Although there are approaches that dynamically self-tune to the current error rate,

they do not count as a configurable fault-tolerant scheme in the way we define it. A

method that changes the causes of the faults to control the error rates is different from

a method that offers different levels of protection on an existing error rate. Such a

self-tuned approach, that adapts to the increased error rates due to voltage scaling, is

described in [11] where the error rate is monitored constantly and the supply voltage

is dynamically scaled to sustain a reference error rate. Similarly, in [4] the DIVA

approach is modified into a self-tuned system that reacts to the current error rate by

scaling the operating frequency and voltage.

More interesting are the methods that, for a given error rate, may adapt their fault-

tolerance levels. As mentioned, the techniques themselves must be configurable. Most

existing approaches that use configurable hardware fault-tolerance techniques set these

levels statically at design time. E.g., by setting reliable and non-reliable cores [9] or

reliable and non-reliable cache lines [26, 23, 22, 55, 23]. On the contrary, software-

level techniques lend themselves more naturally to configuration than hardware-level

techniques. E.g., in [6] the software fault-tolerance technique of duplicating instruc-

tions is used that can be easily configured at design time to specified lower or higher

degrees of fault-tolerance by disabling duplication or using triplication respectively.

Exposing Hardware Faults to the Software: All software-only fault-tolerance tech-

niques are effectively exposed to hardware faults. Here we are going to focus only on

approaches that explicitly allow a hardware fault to be corrected using software-level

fault-tolerance techniques:

110 Chapter 5. Related Work

• In [9] faults are detected on hardware level and reported to be corrected by the

software, only if the software has marked the specific application part to not be

corrected at hardware level.

• In [27] a cooperative hardware/software solution is designed that relies on sim-

ple low-overhead hardware detectors along with higher-level anomalous soft-

ware behavior detectors. In order to provide with a scheme that fully protects

the system with low overheads, a shift is proposed from detecting a hard fault

immediately to detecting the effects of the fault at application level (with low

cost software monitors for specific symptoms that were explicitly formulated).

This was mainly motivated by the the fact that only hardware faults that propa-

gate and become observable to software need to be handled.

5.4 Fault-Tolerant Cache Design

There has been extensive research on fault-tolerant caches and memories. This is be-

cause DRAM and SRAM have always been more susceptible than logic to transient

errors. Moreover, due to their relative size comparative to the rest of the processor,

faults are more probable to occur in caches and memories. In this section we are going

to focus on existing works that relate to our objective of a fault-tolerant data cache

architecture that, on top of that, can offer different concurrent levels of protection to

trade-off performance/cost against reliability.

Fault Tolerance in Caches: As cache is a structure that holds information, it natu-

rally lends itself to be protected by applying information redundancy and using error-

detecting codes (EDC). The main idea behind information redundancy is to add re-

dundant bits to a dataword to detect when it has been affected by an error [45]. The

most common EDC is parity. Odd (or even) parity adds one parity bit to a dataword to

convert it into a codeword that now has an odd (or even) total number of ones. With

the addition of just one parity bit, it is possible now to detect one single-bit error in the

dataword. A natural evolution of parity is to increase the width of the code to detect

more that one single-bit errors in the dataword. This is further extended into becom-

ing an error-correcting code (ECC) that adds enough redundant bits to also provide

correction.

Using EDC and ECC is a simple solution for detecting and correcting errors in stor-

5.4. Fault-Tolerant Cache Design 111

age and offers an easy ground for tradeoffs between reliability and performance/cost

just by varying the number of the extra protection bits. Unfortunately, as the EDC/ECC

strength is increased, the area and energy overhead grows quickly, while reading and

computing the codewords starts to become a performance bottleneck during read op-

erations [21].

To avoid the performance penalties, several alternative approaches have been pro-

posed that vary the way EDC and ECC are applied to the memory hierarchy. All of

them put effort on decoupling EDC from ECC, so that the high cost of the infrequent

error correction does not affect the common error-free case.

• An approach used by commercial processors [36] is to take advantage of the in-

herent information redundancy in memory hierarchies by enabling single error-

detection code in write-through L1 data caches, along with single error-correcting

code in the respective L2 cache.

• Another approach [23] is to store the ECC in a different structure and apply it

only to correct dirty cache lines, while the rest clean lines are protected with sim-

ple parity EDC. Additionally the dirty cache lines may be periodically cleaned

by forcing write-backs to higher level caches.

• In [36] only the EDC bits needed for error detection are added to the L1 cache,

in order to keep it small and fast in the error-free case. To support the necessary

error correction, the remaining ECC bits are stored separately in a dedicated ECC

recovery cache, allowing for higher coverage without affecting the performance

of the error-free operation.

Other similar approaches choose to store the remaining ECC bits in different

structures. In [54] the extra correction information is stored in the memory hier-

archy as cacheable data, dynamically and transparently partitioning the last level

cache into data parts and error codes. In [53] the extra correction information is

stored in a dedicated FIFO structure located in low-cost off-chip DRAM without

affecting the application’s cache behavior.

• An approach that reunites EDC and ECC is proposed in [22], where both EDCs

and ECCs are stored into the same dedicated parity cache that holds the correct-

ing codes only for the most recently used cache line per set.

• In [21] a two-dimensional coding scheme is used that decouples error detection

from error correction. Conventional per-word horizontal error coding is applied

112 Chapter 5. Related Work

only for error detection and small-scale error correction, while vertical across-

words error coding is used for scalable multi-bit error correction purposes that

doesn’t affect the latency of normal operation.

ECCs tend to be small enough and correct up to one error to avoid the perfor-

mance/cost overheads of stronger codes. Furthermore, detection and correction is usu-

ally performed when a cache line is accessed. As the time between accesses varies,

there is a chance of multiple faults occurring that cannot be detected/corrected by the

chosen single-error ECCs. Instead of increasing the strength of the code, [30] intro-

duces the use of scrubbing in caches where the cache structure periodically reads each

of its entries, corrects any errors, recomputes the ECC and writes the bits back. By

introducing this periodical check mechanism, the maximum time between accessing

cache data is bounded and the need for increasing the code’s strength is avoided.

Fault-tolerant cache approaches may avoid information redundancy and encoding

by using the expensive physical redundancy approach and replicate the whole cache

structure. An improvement on this scheme is using a shadow cache [22] where replicas

of only the most recently used cache line per set are stored to be compared with the

ones in the original cache for error-detection purposes.

Another class of approaches that employ a modification of physical redundancy are

those that use existing available space to replicate values. In such approaches, cache

lines may be replicated in place of dead cache lines and then compare the replicated

lines for error detection, while taking care not to evict lines that may be needed or not

to incur very high extra power consumption [55].

Other approaches may use the existing available space to substitute cache parts that

suffer from hard errors (that are detected offline during booting or periodical tests):

• Faulty cache lines may be disabled completely and substituted into adapted ex-

isting structures [2], such as the victim cache, or substituted into original cache

space reserved specifically for accommodating faulty cache lines [51].

• Another approach is to disable the faulty cache parts and continue execution in a

reduced capacity cache. E.g., complete faulty cache parts may be disabled [25],

even if the parts range from a cache line up to the whole cache. Alternatively,

faulty cache subblocks may be disabled while the rest cache line is still in use [1].

In any case, when disabling faulty cache parts, it is important to maintain the

coverage of the whole address space by the remaining cache parts and take care

5.4. Fault-Tolerant Cache Design 113

to remap the address space in an efficient way so that the performance hit can be

highly predictable [1].

• An alternative, where the faulty cache parts are not discarded, is to pair a faulty

cache block with another faulty cache block in the same set to form an oper-

ational block [24, 51], taking advantage of their non-overlapping faulty parts.

Furthermore, extra spare lines are available for completely faulty lines.

Trading-off Performance/Cost Against Reliability in Caches: All presented cache

fault-tolerant approaches can trade-off between performance/cost against fault cover-

age by varying their design parameters, even if this was not their original intent. E.g., as

the ECC correction strength can be changed at design time, the discussed ECC-based

cache schemes may also become more (or less) robust at the expense of increased

(or decreased) performance/cost penalty. Here we are going to focus on cache fault-

tolerant approaches that, by design, target to trade-off performance/cost against error

coverage and may not protect all cache parts equally to offer multiple concurrent levels

of fault tolerance, that preferably can be reconfigured online.

A first attempt to trade-off performance/cost against fault coverage is by protect-

ing only a portion of the cache and essentially providing with two concurrent fault-

tolerance levels (protected and non-protected):

• In [26] a partially protected cache is proposed. It is essentially two caches at

the same memory hierarchy level where one of them has error-protection mech-

anisms against transient faults and the other is unprotected. Through fault-

injection experiments the vulnerability of classes of data is determined, fol-

lowed by a compiler analysis to map the data based on their vulnerabilities to

the protected or the unprotected cache partition. To further optimize the pro-

posed scheme’s coverage and balance the trade-off between cost and fault cov-

erage, a design space exploration strategy is devised to discover the best cache

partitioning configuration.

• A similar trading-off approach where not all cache lines are protected is de-

scribed in [22]. In this approach, the coverage is compromised to reduce area

and energy costs of ECC by only protecting the cache lines that have been more

recently used in every cache set. Among other considerations, it is suggested

that cache lines that are frequently accessed may have a higher probability of

corruption due to low noise margins during read/write operations.

114 Chapter 5. Related Work

Other approaches trade-off performance/cost against fault coverage by protecting

some cache lines more than others and essentially providing with two concurrent fault-

tolerance levels (protected and stronger-protected):

• In [55] it is proposed to protect all the cache lines with parity code, while repli-

cating the most frequently/recently used ones in place of dead cache lines, in

order to offer different concurrent levels of cache fault tolerance. Furthermore,

adapting the thresholds, that define when a cache line should be replicated and

when a cache line is considered dead, effectively reconfigures the amount of

lines that are more protected and also allows for performance/power vs. reliabil-

ity trade-offs.

• To trade-off area at the expense of performance/bandwidth, in [23] only the dirty

cache lines are protected with ECC, while clean cache lines are protected only

with EDC. Specifically only one dirty cache line is allowed to be protected with

ECC per set in a 4-way set associative cache. If a larger number of lines in a set

requires ECC, a write-back is forced to make space for the new ECC.

All approaches that trade-off performance/cost against reliability lend themselves

naturally for graceful degradation purposes. The same applies for approaches that treat

some values as more important than others. Because caches are mechanisms to im-

prove program performance, they naturally allow to overuse their inherent redundancy

and even disable their faulty portions, in order to maintain correctness at the cost of a

gracefully degrading performance.

This cache characteristic essentially allows for a smooth trade-off between power/cost

and performance, while sustaining the fault coverage at the expense of performance. A

scheme that allows for a voltage scaled operation with a performance hit while main-

taining high fault-coverage is discussed in [1]. Similarly in [51], two low-overhead

schemes are developed to allow operation in lower voltage at the expense of lower

cache capacity. One scheme uses pairs of cache lines to form logical cache lines. The

other uses a quarter of the cache to store the fault locations and repair bits for the rest

of the cache. As a result, two performance levels are offered; either a high-voltage op-

eration with full cache capacity, either a lower-voltage operation with reduced cache-

capacity. In both cases, hard faults are detected during boot memory testing and are

isolated. Finally, in [25] the impact on the program performance is measured under

increasing hard error rates in a data cache. Some degrading strategies are proposed in

5.5. Summary 115

order to maintain the cache correctness by disabling faulty cache lines and sets, up to

disabling the whole cache. In any case, it is important that the whole address space is

covered by the cache, no matter the amount of disabled cache parts.

5.5 Summary

Reliability challenges have long been present in all parts of a system due to occurrences

of anomalous physical conditions known as hardware faults. To mitigate the resulting

reliability concerns, wide research work is present to enable fault-tolerance properties

in systems.

Traditionally, the reliability approaches relied on costly redundancy to exhaustively

protect all parts of a system. As not all hardware fault manifest as the same symptom,

this thesis targeted a vulnerability-based characterization of application behavior under

data corruption to identify areas of lower vulnerability. The purpose of this character-

ization was to help avoid the exhaustive protection by shifting to vulnerability-driven

unequal protection of a given structure to get performance/cost benefits without a se-

vere impact on fault coverage. For that reason, in this chapter we focused on prior

works that related to the goals of this thesis.

First, we presented methods that monitor the effects of hardware faults. These

methods are generally classified into analytical and experimental techniques. Analyti-

cal techniques model the behavior of hardware structures under the presence of faults,

are usually slow, offer limited insight and tend to focus on analyzing the behavior

of higher-level hardware structures only. An alternative is to use experimental tech-

niques that rely on monitoring/simulating a system under real/simulated faults. Within

the family of experimental techniques, fault injection (either hardware or software-

implemented) has been widely used as a faster method to test real systems under real-

istic faults.

As the analytical/experimental techniques are most commonly used for depend-

ability assessment of reliability mechanisms and not for vulnerability characterization,

we proceeded on discussing prior works that are driven by the varying vulnerabili-

ties of hardware/software structures. Some of them imply vulnerability classifications

without a formal exploration in order to get performance/cost benefits. Others follow

a more formal approach to observe the vulnerability variations, usually through an-

alytical modeling or fault-injection testing. In any case, the variations are observed

at different abstraction levels; starting from application level and full processor level,

116 Chapter 5. Related Work

then going down to caches, code segments and individual instructions, before reaching

data-level and bit-level variations.

In order to exploit the varying vulnerabilities, a shift into a vulnerability-driven

fault-tolerance scheme is required where one can trade-off the reliability QoS against

the performance/cost in a hardware/software co-approach. To do so, we discussed

how existing works implement the necessary features to support such a trading-off

approach. In particular, (a) how the desired fault-tolerance levels are set and com-

municated, (b) how the fault-tolerance strength is reconfigured and (c) how to expose

hardware faults to be corrected by the software.

Finally, since this thesis focused on measuring the benefits of vulnerability-driven

unequal protection in the case of a data cache, we concluded this chapter with the

prevalent cache protection approaches and existing fault-tolerant cache designs that

can adapt to trade-off reliability QoS against performance/cost.

Chapter 6

Conclusion

Hardware reliability challenges have always been present in all parts of a system man-

ifesting due to occurrences of anomalous physical conditions called hardware faults.

Hardware faults render the systems unreliable, thus a multitude of related works ex-

ists on ensuring the fault tolerance of systems. The purpose of such fault-tolerant

mechanisms is to improve dependability by enabling a system to perform its intended

behavior even in the presence of a given number of faults.

Such reliability solutions always come with associated performance and cost over-

heads in their effort to ensure the highest possible fault coverage. Traditionally, reli-

ability solutions are aimed to protect equally and exhaustively all hardware parts of a

system. This is in order to provide the illusion of a correctly operating hardware. But

as shrinking semiconductor technologies come at the cost of higher susceptibility to

hardware faults, this approach can no longer be sustainable.

To our benefit, not all hardware faults end up manifesting as errors in the systems

behavior and the executing applications behavior. Depending on the fault character-

istics (location, type, timing, duration), the executing workload and the underlying

hardware, faults can either (a) get masked by various levels of fault-masking effects

(logic-, architectural-, application-level) and result in a correct execution with no vis-

ible effects or (b) not get masked and result either in an observable execution upset

(application crash, stall or delay) or an unobservable output corruption (silent data

corruption).

As we face the problem of increasing error rates that induce unsustainable higher

reliability costs, especially due to the equal and exhaustive protection, this thesis pro-

posed a solution mainly motivated by the various levels of fault-masking effects. We

proposed that we can avoid protecting equally and exhaustively the underlying hard-

117

118 Chapter 6. Conclusion

ware by breaking the illusion of a fully protected hardware layer. To do so we sug-

gested a shift to vulnerability-driven unequal-protection mechanisms, where the pro-

tection strength of a given structure (or same-level structures) is assigned according to

the error sensitivity of the components under protection. This means that in order to

solve the original problem of high unsustainable reliability costs we shifted the prob-

lem into: (a) observing and characterizing the exact end-to-end effects of hardware

faults on application behavior, and (b) exploiting the gained insight in a vulnerability-

driven reliability mechanism to reduce the reliability overheads.

This chapter concludes this thesis by summarizing in Section 6.1 the proposed ap-

proach to reach the thesis goals. Section 6.2 presents our main contributions, while

Section 6.3 concludes this thesis with some suggestions for future works.

6.1 Summary

In Chapter 2 we described our instrumentation-based software-implemented fault-

injection (SWIFI) framework for enabling our data-aware characterization study of

the exact data corruption effects on application behavior. Our SWIFI framework uti-

lized a single-fault injection tool1 that is to be repeatedly invoked to inject single-bit

transient faults at uniformly chosen memory load accesses during separate runs of an

application-under-test. Its purpose is to monitor the application behavior under data

corruption, while tracking the corrupted application data, to report detailed diagnostics

regarding the corruption characteristics and the corruption effects.

In Chapter 3 we employed our SWIFI framework to extensively test the NPB-

serial benchmark suite (7.8 million fault-injection tests in total) and then aggregated all

the detailed reported results in order to observe how application behavior varies under

data corruption depending on the characteristics of the corruption and the executing

workload.

The amount of performed tests enabled us to, first, present the top-level workload-

related vulnerability variations in NPB-serial before moving on to application data re-

lated vulnerability variations. We showed how the application behavior in NPB-serial

benchmarks varied depending on the characteristics of the corrupted application data;

in particular, the size, usage type, user and location in memory of the corrupted data.

Then we moved on to a finer-granularity characterization where we showed how the

1Additional relevant supplementary material is detailed in Appendix A.

6.1. Summary 119

application data vulnerability varied depending on the exact bit location of the injected

corruption. This allowed to safely identify distinct bit ranges within application data

types where the probability to result into an SDC, if corrupted, is very low.

Moreover, given the reported information by our fault-injection tool (relating to the

corruption characteristics and the corruption effects) and our original fault model (sin-

gle bit flips at memory locations just before memory load accesses), we extrapolated

the original fault model to model as many other locations of corruption as possible.

This enabled to observe the vulnerability variations of NPB-serial benchmarks within

the memory space, the register file and among instruction-level characteristics (includ-

ing instruction type vulnerability variations, program space vulnerability variations

and program vulnerability phase detection) without the need to remodel and repeat the

experiments.

Generally, the characterization results showed exploitation potential in various lo-

cations, even if they are to be used in a per-application basis assuming a previously

vulnerability-characterized application. This enabled to proceed to estimate the ex-

ploitation potential of the obtained characterization insight.

In Chapter 4, after discussing the numerous alternative options that offer grounds

for exploiting the application behavior under data corruption, we chose a particular

exploitation alternative because it was identified as a promising area with high ex-

ploitability potential. To be precise, we focused on exploiting the characterization

insight to reduce the reliability-associated overhead of reliability mechanisms with

a minimum effect on fault coverage by introducing vulnerability-aware unequal pro-

tection in the case of a data cache by exploiting only the data-related vulnerability

variation and, specifically, the per-bit variations.

Then we proceeded to present a case study to demonstrate how the application

data varying vulnerability characteristics can be exploited for reduced-cost unequal

fault protection in the case of a 64K data cache running the NPB-serial benchmarks.

In particular we explored the potential benefits when shifting into vulnerability-aware

unequal-protection architectures that can trade off between different reliability QoS

levels. The potential reliability-overhead benefits were measured in terms of strongly-

protected surface reduction against the effect on fault coverage. As our investigation

focused on showing the maximum potential, it was agnostic to an actual architectural

design and assumed the availability of a fault-tolerant data cache with a protection

method that can adapt to unequal protection and a classification mechanism to set the

protection levels of application data accordingly.

120 Chapter 6. Conclusion

Despite the practicality issues of implementing this case study, the performed in-

vestigation pointed out that there is potential in shifting into vulnerability-aware unequal-

protection architectures (by protecting the less-vulnerable areas of a given structure

less than their more-vulnerable counterparts) as a viable alternative to exhaustive equal

protection in order to reduce the reliability overheads with a minimum effect on a sys-

tem’s dependability.

Finally, in Chapter 5, some background information on fault tolerance was dis-

cussed followed by prior works that related to the goals of this thesis. The presented

relevant studies generally related to methods that investigate the varying vulnerabili-

ties of hardware and software components, methods that attempt to unequally protect

a system and methods that trade-off reliability against cost/performance.

6.2 Contributions

In this thesis, we made the following main contributions:

• We established a portable instrumentation-based SWIFI framework that can

perform extensive tests on target binaries for a data-aware characterization study

of the exact data corruption effects on application behavior, where all possible

levels of fault-masking effects are captured.

• After extensive experimental fault-injection tests, we observed different levels

of vulnerability variations. The most promising among them was the workload-

related vulnerability variation of application data of the NPB-serial benchmarks

based on their characteristics, along with the vulnerability variation within parts

of application data. For given application data characteristics, we identified clear

patterns of less-vulnerable bit ranges that if corrupted are less likely to cause

SDCs, e.g., up to 32 LSBs of floating-point data in CG have each less than 1%

probability to cause an SDC. The other observed vulnerability variations were in

areas such as the memory space, the register file, individual instructions and the

program space.

• We demonstrated the potential exploitability of our data-level characteri-

zation findings in a generic fault-tolerant data cache running the NPB-serial

benchmarks. Assuming a vulnerability-aware unequal-protection mechanism we

showed how much we can exploit the vulnerability characteristics of application

6.3. Future Works 121

data and to what effect on the reliability QoS level, e.g., the fault-protected sur-

face of a 64K data cache can be reduced by 41% with a less than 0.01% drop in

the fault coverage just by avoiding protection of the less-vulnerable bit ranges of

floating-point data in EP.

6.3 Future Works

This section concludes this thesis by sketching some ideas for future works and im-

provements related to (a) the characterization of application behavior under data cor-

ruption and (b) the exploitation of the vulnerability insight. Some of these proposals

for future work are the following:

• Characterizing other applications: Throughout the thesis the potential in char-

acterizing the application behavior under data corruption was demonstrated only

for the case of the serial versions of the programs from NPB. Similar investiga-

tion through fault-injection testing is suggested for other types of benchmarks to

observe their vulnerability variation and establish if the insight gained in this the-

sis is observed in other programs too. Equally interesting would be to adapt the

SWIFI tool implementation to support multithreaded programs. This can enable

the characterization of more programs and also to investigate the vulnerabilities

of an extra type of data, those that control the parallel execution.

• Classification of data types according to their higher-level semantic usage:

We propose augmenting the usage type classification of the SWIFI framework to

support detection of higher-level semantic usage information of the application

data, i.e., classify them as loop counters, boolean values, pixel colors, parallel

execution control values, etc. This could provide more useful information on

the vulnerability of data depending on the exact way they are used and could

lead to better guidelines regarding which data types to protect stronger or which

data types to avoid using at application development or, even, how to drive a

compiler-level vulnerability-aware software transformation.

• Measuring the deviation of reported wrong outputs from the correct ex-

pected one: Given that there is an extra fault-masking level at user level, which

we did not consider in this thesis, where the output corruption is not being per-

ceived as a wrong output, e.g., a single wrong pixel color in a frame of a video,

122 Chapter 6. Conclusion

we propose measuring the deviation of reported wrong outputs from the correct

expected one. In such a setting, after deciding deviation thresholds, we can stop

considering all SDCs as equally severe and further reduce the vulnerable areas

that need to be protected.

• Increasing the propagation tracking capabilities of the characterization frame-

work: This could help obtain more details on the propagation of the corruption

throughout the system to understand how exactly data corruption propagates and

where/when exactly does it transform to become an SDC.

• Machine learning analysis of the experimental fault-injection results: This

could automate the process of identifying the areas of high exploitability poten-

tial out of the large amount of data available after the extensive fault-injection

experiments.

• Automatic characterization of application behavior under data corruption:

Instead of extensively testing the full program or memory space of an applica-

tion, an interesting future work could be to identify program/memory segments

that are representative enough so that it suffices to test only those and still be

able to get a reliable estimation of the vulnerabilities of the equivalent full appli-

cation.

• A practical implementation of a vulnerability exploitation hardware-based

approach: As the maximum potential benefits of exploiting the characterization

insight were estimated in this thesis assuming an optimal data cache design, it

would be relevant to investigate the design choices and effects in a practical im-

plementation. By that means it could also be investigated how the potential ex-

ploitation benefits translate into real-world savings (i.e., area cost, performance,

power) and to what effect on the fault coverage. Alternatively, a similar investi-

gation could be performed for a software-based approach.

• Exploiting the characterization insight in a hardware/software co-approach:

As the characterization insight provides data-level vulnerabilities, it is natural to

be applied at software-implemented reliability mechanisms. This can be espe-

cially promising if there is communication between the hardware and the soft-

ware layer to help each other drive their own partial reliability mechanism, i.e.,

the hardware layer can knowingly let faults propagate to the software layer that

could be then become fault-aware and protect against them. Another promising

6.3. Future Works 123

benefit enabled by such a co-approach is that it can offer a gracefully degrading

QoS where, even when the fault rates reach very high rates, the system could

configure itself to offer an elementary set of the necessary services.

Appendix A

Single-Fault Injection Tool

Output Specification

Every time the single-fault injection tool (as described in Section 2.2) is invoked in

fault-injection mode (and not for measuring the fault-free execution time under in-

strumentation of the application-under-test): (a) it performs a bit-flip in a random (or

specified) bit at the memory location accessed by a random (or specified) load memory

access, (b) it monitors the effect on the application and (c) it reports back with a CSV

record.

The reported information are providing extensive details on the injected fault and

the corruption effects on the execution. This appendix details the format and meaning

of each value of the reported record.

When a fault was not injected successfully to a specified memoryRefNo, the

following is reported:

memoryRefNo,,,,,,,,,,,,,,,,,,,,,,,,

When a fault is successfully injected, the following is reported:

memoryRefNo,IPatFault,opcodeAtFault,icountAtFault,

memAddress,size,testedBit,location,user,type,

firstUseReg,firstUseOpcode,firstUseIP,timeToFirstUse,

ifPtrTimeToUse,taintSpreadReg,taintSpreadMem,

maxTaintSpreadReg,maxTaintSpreadMem,totalIcount,outcome,

opcodeAtCrash,crashCode,crashSignal,timeToCrash

125

126 Appendix A. Single-Fault Injection Tool Output Specification

memoryRefNo: Number of the memory load reference that the fault was injected. It

can be either specified as a tool parameter or chosen randomly by

the tool. Only memory load references to memory are counted. Just

before the desired memory load reference is encountered, the tool

injects a bit-flip to the memory address that the memory reference

reads.

IPatFault: [hex] Instruction pointer of the instruction when the fault was

injected.

opcodeAtFault: [string] Opcode of the instruction when the fault was injected.

String produced by Pin’s OPCODE StringShort().

icountAtFault: Number of total instructions executed until the fault was injected.

memAddress: [hex] Memory address of corrupted data.

size: Size of corrupted data in bytes.

testedBit: Location where the bit-flip was injected in the corrupted data. It can

be either specified as a tool parameter or chosen randomly by the

tool. The LSB is 0. The MSB is size∗8−1.

location: [char] Type of location in memory address space where the

corrupted data reside. ‘H’ for heap, ‘G’ for global or ‘S’ for stack.

Default value: ‘H’. Type of location is detected based on its memory

address. Stack is detected by Pin’s instrumentation. Global is

detected by checking if the memory address lies within the memory

space occupied by the applications currently executing image.

user: [char] User of corrupted data. ‘S’ for system libraries or ‘U’ for

user. Default value: ‘U’. Detected by checking if the memory

address lies within the memory space of an applications image that

includes /lib/ or /lib64/ in its name.

127

type: [string] Type of corrupted data based on their use. At the moment

of the fault-injection (that happens just before a memory read oper-

ation), the first written register is used to determine the type of the

corrupted value. Alternative detection methods hold for the cases of

PTR, PTRMR, PTRTP and INT. Default value: INT.

FP: Floating point (if the first written register is an FP register)

IP: Instruction pointer (if the first written register is the IP

register)

FLAGS: If the first written register is eflags/rflags/flags.

SEG: If the first written register is a segment register.

PTR: If the first written register is the stack pointer, or if

the uncorrupted value is within the range [lowAddress,

highAddress] of one of the applications images (and thus

it will probably be a pointer).

PTRMR: If the corrupted value (or the uncorrupted value) is used

as an effective memory address to access memory at any

point of the execution after the fault injection.

PTRTP: If the corrupted value is used to compute a memory

address. This is done by tracking the original corrupted

register and corrupted memory locations over a specified

window of instructions. In every instruction the corruption

is propagating into other registers and memory locations

(if needed), until a corrupted register is used for computing

a memory address. Then the original corrupted value is

assumed to be used as a memory addressing value.

INT: Integer. If none of the above, then the corrupted value is

assumed to be used as an integer.

firstUseReg: [string] Register name of the first written register at the moment of

fault injection. String produced by Pin’s REG StringShort().

firstUseOpcode: [string] Opcode of the first instruction that uses the firstUseReg as

an input register, after the fault injection. Default value: UNUSED.

String produced by Pin’s OPCODE StringShort(). UNUSED when

firstUseReg was not used at all. MASKED when firstUseReg

was used as an output register without being used as an input before.

128 Appendix A. Single-Fault Injection Tool Output Specification

firstUseIP: [hex] Instruction pointer of the first instruction that uses the

firstUseReg as an input register, after the fault injection. Default

value: 0x0

timeToFirstUse: Time in instructions from the fault injection until firstUseReg is

used as an input register for the first time after the fault injection.

Default value: 0

ifPtrTimeToUse: Time in instructions from the fault injection until the corrupted

value is detected as PTRTP or PTRMR. Default value: 0.

taintSpreadReg: Number of corrupted registers (due to propagation of the original

corruption) at (a) the moment the corrupted value is detected as

PTRTP or PTRMR, or (b) the monitoring window is over.1 Default

value: 0

taintSpreadMem: Number of corrupted memory bytes (due to propagation of the

original corruption) at (a) the moment the corrupted value is

detected as PTRTP or PTRMR, or (b) the monitoring window is

over.1 Default value: 0

maxTaintSpreadReg:Total number of registers corrupted (due to propagation of the

original corruption) from the moment of fault injection until (a) the

moment the corrupted value is detected as PTRTP or PTRMR, or

(b) the monitoring window is over.1 Default value: 0

maxTaintSpreadMem:Total number of corrupted memory bytes (due to propagation of the

original corruption) from the moment of fault injection until (a) the

moment the corrupted value is detected as PTRTP or PTRMR, or

(b) the monitoring window is over.1 Default value: 0

totalIcount: Total number of instructions executed until the application stopped

execution regardless of the outcome.

1Note that taintSpreadReg, taintSpreadMem, maxTaintSpreadReg, maxTaintSpreadMem are
computed only when tracking the corrupted value to check if it is used for memory addressing. Even
if the corrupted value is not detected as PTRTP, if these values are not zero, then they can still provide
an insight of how much the corruption propagated during the propagation tracking. In other words,
when these are non-zero, they provide with information regarding how much the corruption propagated
between the fault-injection moment until one of the following happened: (a) PTRMR detected, (b)
PTRTP detected, (c) monitoring window is over.

129

outcome: [string] Execution outcome of experiment.

CO: COrrect output

CD: Correct output but Delayed, detected based on the total

executed instructions according to the set delayedRatio

WR: WRong output

SI: application Stall detected due to excessive executed

Instructions, according to the set unresponsiveRatioInstr

ST: application Stall detected due to excessive execution

Time, according to the set unresponsiveRatioTime

CR: application CRashed

opcodeAtCrash: [string] Opcode of last instruction executed that caused the

crash. Only valid when application crashed due to a signal. De-

fault value: “X”. String produced by Pin’s OPCODE StringShort().

crashCode: Application exit code. Only valid when application exited abnor-

mally. Default value: -1

crashSignal: Crash signal number. Only valid when application crashed due to a

signal. Default value: -1

timeToCrash: Time in instructions from the fault injection until the crash. Only

valid when the application crashed (due to a signal or abnormal

exit). Default value: -1

Example: ...,CO,X,-1,-1,-1

...,CD,X,-1,-1,-1

...,WR,X,-1,-1,-1

...,SI,X,-1,-1,-1

...,ST,X,-1,-1,-1

...,CR,X,crashCode,-1,timeToCrash

...,CR,opcodeAtCrash,-1,crashSignal,timeToCrash

Bibliography

[1] Jaume Abella, Javier Carretero, Pedro Chaparro, Xavier Vera, and Antonio

González. Low Vccmin fault-tolerant cache with highly predictable performance.

In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO-42, pages 111–121, New York, NY, USA, 2009. ACM.

[2] Jaume Abella, Eduardo Quiñones, Francisco J. Cazorla, Yanos Sazeides, and

Mateo Valero. RVC: A mechanism for time-analyzable real-time processors with

faulty caches. In Proceedings of the 6th International Conference on High Per-

formance Embedded Architectures and Compilers, HIPEAC ’11, pages 97–106.

ACM, January 2011.

[3] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs,

and Günther H. Leber. Comparison of physical and software-implemented fault

injection techniques. IEEE Transactions on Computers, 52(9):1115–1133, 2003.

[4] Todd M. Austin. DIVA: A reliable substrate for deep submicron microarchitec-

ture design. In Proceedings of the 32nd ACM/IEEE International Symposium

on Microarchitecture, MICRO-32, pages 196–207, Washington, DC, USA, 1999.

IEEE Computer Society.

[5] Fatemeh Ayatolahi, Behrooz Sangchoolie, Roger Johansson, and Johan Karlsson.

A study of the impact of single bit-flip and double bit-flip errors on program

execution. In Computer Safety, Reliability, and Security, volume 8153 of Lecture

Notes in Computer Science, pages 265–276. Springer Berlin Heidelberg, 2013.

[6] Demid Borodin, Ben H.H. Juurlink, Said Hamdioui, and Stamatis Vassiliadis.

Instruction-level fault tolerance configurability. Journal of Signal Processing

Systems, 57(1):89–105, October 2009.

131

132 Bibliography

[7] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: a technique

for the experimental evaluation of dependability in modern computers. IEEE

Transactions on Software Engineering, 24(2):125–136, Feb 1998.

[8] Jonathan Chang, George A. Reis, and David I. August. Automatic instruction-

level software-only recovery. In Proceedings of the 2006 International Confer-

ence on Dependable Systems and Networks, DSN ’06, pages 83–92, June 2006.

[9] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An

architectural framework for software recovery of hardware faults. In Proceedings

of the 37th International Symposium on Computer Architecture, ISCA ’10, pages

497–508, New York, NY, USA, 2010. ACM.

[10] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. http:

//www.nas.nasa.gov/publications/npb.html, 2012.

[11] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sunjay Pant, Rajeev Rao, Toan

Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and

Trevor Mudge. Razor: A low-power pipeline based on circuit-level timing spec-

ulation. In Proceedings of the 36th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-36, pages 7–18, Dec. 2003.

[12] F. Faure, R. Velazco, M. Violante, M. Rebaudengo, and M.S. Reorda. Impact

of data cache memory on the single event upset-induced error rate of micropro-

cessors. IEEE Transactions on Nuclear Science, 50(6):2101 – 2106, December

2003.

[13] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring:

Probabilistic soft error reliability on the cheap. In Proceedings of the 15th Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’10, pages 385–396, New York, NY, USA, 2010.

ACM.

[14] Jean-Philippe Gerardin. The DEF.Injecto test instrument, assistance in the design

of reliable and safe systems. Computers in Industry, 11(4), 1989.

[15] Brian Greskamp and Josep Torrellas. Paceline: Improving single-thread perfor-

mance in nanoscale CMPs through core overclocking. In Proceedings of the 16th

International Conference on Parallel Architecture and Compilation Techniques,

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html

Bibliography 133

PACT ’07, pages 213–224, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

[16] Brian Greskamp, Lu Wan, Ulya R. Karpuzcu, Jefrey J. Cook, Josep Torrellas,

Deming Chen, and Craig Zilles. BlueShift: Designing processors for timing

speculation from the ground up. In Proceedings of the IEEE 15th International

Symposium on High Performance Computer Architecture, HPCA ’09, pages 213–

224, Feb. 2009.

[17] Martin Hiller, Arshad Jhumka, and Neeraj Suri. PROPANE: An environment for

examining the propagation of errors in software. In Proceedings of the 2002 ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA’02,

pages 81–85, 2002.

[18] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for

matrix operations. IEEE Transactions on Computers, C-33(6):518–528, June

1984.

[19] Andrew B. Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. De-

signing a processor from the ground up to allow voltage/reliability tradeoffs. In

Proceedings of the IEEE 16th International Symposium on High Performance

Computer Architecture, HPCA ’10, pages 1–11, Jan. 2010.

[20] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI: A

flexible software-based fault and error injection system. IEEE Transactions on

Computers, 44(2):248–260, February 1995.

[21] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe.

Multi-bit error tolerant caches using two-dimensional error coding. In Proceed-

ings of the 40th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-40, pages 197–209, Washington, DC, USA, 2007. IEEE Computer

Society.

[22] Seongwoo Kim and Arun K. Somani. Area efficient architectures for information

integrity in cache memories. In Proceedings of the 26th Annual International

Symposium on Computer Architecture, ISCA ’99, pages 246–255, Washington,

DC, USA, 1999. IEEE Computer Society.

134 Bibliography

[23] Soontae Kim. Area-efficient error protection for caches. In Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’06, pages 1282–

1287, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation

Association.

[24] Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. Tolerating process

variations in large, set-associative caches: The buddy cache. ACM Transactions

on Architecture and Code Optimization, 6(2):8:1–8:34, July 2009.

[25] Hyunjin Lee, Sangyeun Cho, and Bruce R. Childers. Performance of graceful

degradation for cache faults. In Proceedings of the IEEE Computer Society An-

nual Symposium on VLSI, ISVLSI ’07, pages 409–415, Washington, DC, USA,

2007. IEEE Computer Society.

[26] Kyoungwoo Lee, Aviral Shrivastava, Ilya Issenin, Nikil Dutt, and Nalini Venkata-

subramanian. Partially protected caches to reduce failures due to soft errors in

multimedia applications. IEEE Transactions on Very Large Scale Integrated Sys-

tems, 17(9):1343–1347, September 2009.

[27] Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve,

Vikram S. Adve, and Yuanyuan Zhou. Understanding the propagation of hard

errors to software and implications for resilient system design. In Proceedings

of the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIII, pages 265–276, New York,

NY, USA, 2008. ACM.

[28] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA,

2005. ACM.

[29] Mojtaba Mehrara and Todd Austin. Exploiting selective placement for low-cost

memory protection. ACM Transactions on Architecture and Code Optimization,

5(3):14:1–14:24, December 2008.

[30] Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and Steven K. Reinhardt.

Cache scrubbing in microprocessors: Myth or necessity? In Proceedings of

Bibliography 135

the 10th IEEE Pacific Rim International Symposium on Dependable Computing,

PRDC ’04, pages 37–42, Washington, DC, USA, 2004. IEEE Computer Society.

[31] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt,

and Todd Austin. A systematic methodology to compute the architectural vulner-

ability factors for a high-performance microprocessor. In Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture, MICRO-36,

pages 29–, Washington, DC, USA, 2003. IEEE Computer Society.

[32] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer,

23(7):19–25, July 1990.

[33] University of Edinburgh. Edinburgh Compute and Data Facility (ECDF). http:

//www.ecdf.ed.ac.uk.

[34] Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo Violante. An accu-

rate analysis of the effects of soft errors in the instruction and data caches of a

pipelined microprocessor. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe, volume 1 of DATE ’03, Washington, DC, USA, 2003.

IEEE Computer Society.

[35] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.

August. SWIFT: Software implemented fault tolerance. In Proceeding of the

International Symposium on Code Generation and Optimization, CGO ’05, pages

243–254, March 2005.

[36] Nathan N. Sadler and Daniel J. Sorin. Choosing an error protection scheme for a

microprocessor’s L1 data cache. In Proceeding of the International Conference

on Computer Design, ICCD ’06, pages 499–505, October 2006.

[37] Swarup Kumar Sahoo, Man-Lap Li, Pradeep Ramachandran, Sarita V. Adve,

Vikram S. Adve, and Yuanyuan Zhou. Using likely program invariants to de-

tect hardware errors. In Proceedings of the 2008 IEEE International Conference

on Dependable Systems and Networks, DSN ’08, pages 70–79, June 2008.

[38] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. EnerJ: Approximate data types for safe and general

low-power computation. In Proceedings of the 32nd ACM SIGPLAN Conference

http://www.ecdf.ed.ac.uk
http://www.ecdf.ed.ac.uk

136 Bibliography

on Programming Language Design and Implementation, PLDI ’11, pages 164–

174, New York, NY, USA, 2011. ACM.

[39] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,

R. Dancey, A. Robinson, and T. Lin. FIAT - Fault injection based automated

testing environment. In Proceedings of the 18th International Symposium on

Fault-Tolerant Computing, FTCS-18, pages 102–107, June 1988.

[40] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger,

and Lorenzo Alvisi. Modeling the effect of technology trends on the soft error

rate of combinational logic. In Proceedings of the 2002 International Conference

on Dependable Systems and Networks, DSN ’02, pages 389–398, 2002.

[41] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and Daniel A.

Connors. Using process-level redundancy to exploit multiple cores for transient

fault tolerance. In Proceedings of 37th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks, DSN ’07, pages 297–306, June

2007.

[42] Daniel Skarin, Raul Barbosa, and Johan Karlsson. GOOFI-2: A tool for exper-

imental dependability assessment. In Proceedings of the 2010 IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks, DSN ’10, pages

557–562, June 2010.

[43] Joseph Sloan, David Kesler, Rakesh Kumar, and Ali Rahimi. A numerical

optimization-based methodology for application robustification: Transforming

applications for error tolerance. In Proceedings of the 2010 IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks, DSN ’10, pages 161–

170, July 2010.

[44] Arun K. Somani and Kishor S. Trivedi. A cache error propagation model. In Pro-

ceedings of the Pacific Rim International Symposium on Fault-Tolerant Systems,

PRFTS ’97, pages 15–21, Washington, DC, USA, 1997. IEEE Computer Society.

[45] Daniel J. Sorin. Fault tolerant computer architecture. Synthesis Lectures on Com-

puter Architecture, 4(1):1–104, 2009.

[46] Vilas Sridharan and David R. Kaeli. Eliminating microarchitectural dependency

from architectural vulnerability. In Proceedings of the IEEE 15th International

Bibliography 137

Symposium on High Performance Computer Architecture, HPCA ’09, pages 117–

128, February 2009.

[47] Vilas Sridharan and David R. Kaeli. Using hardware vulnerability factors to

enhance AVF analysis. In Proceedings of the 37th annual International Sympo-

sium on Computer Architecture, ISCA ’10, pages 461–472, New York, NY, USA,

2010. ACM.

[48] David T. Stott, Benjamin Floering, Zbigniew Kalbarczyk, and Ravishankar K.

Iyer. NFTAPE: A framework for assessing dependability in distributed systems

with lightweight fault injectors. In Proceedings of the 4th International Computer

Performance and Dependability Symposium, IPDS ’00, pages 91–, Washington,

DC, USA, 2000. IEEE Computer Society.

[49] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream proces-

sors: Improving both performance and fault tolerance. In Proceedings of the

9th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS-IX, pages 257–268, New York, NY,

USA, 2000. ACM.

[50] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom based soft error de-

tection in microprocessors. In Proceedings of the 2005 International Conference

on Dependable Systems and Networks, DSN ’05, pages 30–39, Washington, DC,

USA, 2005. IEEE Computer Society.

[51] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan Chishti, Muham-

mad Khellah, and Shih-Lien Lu. Trading off cache capacity for reliability to

enable low voltage operation. In Proceedings of the 35th Annual International

Symposium on Computer Architecture, ISCA ’08, pages 203–214, Washington,

DC, USA, 2008. IEEE Computer Society.

[52] Gil Wolrich, Edward McLellan, Larry Harada, James Montanaro, and Robert A.J.

Yodlowski. A high performance floating point coprocessor. IEEE Journal of

Solid-State Circuits, 19(5):690–696, October 1984.

[53] Doe Hyun Yoon and Mattan Erez. Flexible cache error protection using an ECC

FIFO. In Proceedings of the Conference on High Performance Computing Net-

working, Storage and Analysis, SC ’09, pages 49:1–49:12, New York, NY, USA,

2009. ACM.

138 Bibliography

[54] Doe Hyun Yoon and Mattan Erez. Memory mapped ECC: Low-cost error pro-

tection for last level caches. In Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09, pages 116–127, New York,

NY, USA, 2009. ACM.

[55] Wei Zhang, Mahmut T. Kandemir, Anand Sivasubramaniam, and Mary Jane Ir-

win. Performance, energy, and reliability tradeoffs in replicating hot cache lines.

In Proceedings of the 2003 International Conference on Compilers, Architecture

and Synthesis for Embedded Systems, CASES ’03, pages 309–317, New York,

NY, USA, 2003. ACM.

[56] Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall. Pri-

vacy Scope: A precise information flow tracking system for finding application

leaks. Technical report, EECS-2009-145, Department of Computer Science, UC

Berkeley, 2009.

	cover sheet
	gstefanakis_thesis
	List of Figures
	List of Tables
	Introduction
	Fault Masking
	Problem Statement
	Thesis Goals and Approach
	Thesis Contributions
	Thesis Overview

	Characterization Framework
	Framework Overview
	Single-Fault Injection Tool
	Fault Trigger
	Fault Injection and Fault Model
	Monitoring, Data Tracking and Reporting
	Benefits of Binary Instrumentation

	Summary

	Application Behavior Characterization Under Data Corruption
	Experimental Setup
	Workload-Related Vulnerability Variation
	Application Data Vulnerability Variation
	Per-Bit Vulnerability Variation within Application Data

	Memory Space Vulnerability Variation
	Register File Vulnerability Variation
	Instruction-Level Vulnerability Variation
	Per Instruction Type at Fault Injection
	Per Instruction Type at First Consumptionof Corrupted Operand
	Program Space Vulnerability
	Program Vulnerability Phases

	Summary

	Exploiting Application Behavior Characterization
	Exploitation Alternatives
	Identifying Areas of High Exploitability Potential

	Data Cache Content Profiling
	Data Cache Content Profiler
	Experimental Setup and Profiling Results

	Per-Bit Data-Level Vulnerability Exploitation Benefits in a Data Cache
	Strongly-Protected Surface Trade-Offs Against Fault Coverage
	Practicality Issues of This Case Study

	Summary

	Related Work
	Monitoring Behavior Under Data Corruption
	Analytical Techniques
	Experimental Techniques - Fault Injection

	Observing Vulnerability Variations
	Shifting to a Hardware/Software Co-Approach
	Fault-Tolerant Cache Design
	Summary

	Conclusion
	Summary
	Contributions
	Future Works

	Single-Fault Injection Tool Output Specification
	Bibliography

