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Abstract

The development of distributed training strategies for statistical prediction func-

tions is important for applications of machine learning, generally, and the develop-

ment of distributed structured prediction training strategies is important for natural
language processing (NLP), in particular. With ever-growing data sets this is, first, be-

cause, it is easier to increase computational capacity by adding more processor nodes

than it is to increase the power of individual processor nodes, and, second, because

data sets are often collected and stored in different locations.

Iterative parameter mixing (IPM) is a distributed training strategy in which each

node in a network of processors optimizes a regularized average loss objective on its

own subset of the total available training data, making stochastic (per-example) up-

dates to its own estimate of the optimal weight vector, and communicating with the

other nodes by periodically averaging estimates of the optimal vector across the net-

work. This algorithm has been contrasted with a close relative, called here the single-
mixture optimization algorithm, in which each node stochastically optimizes an av-

erage loss objective on its own subset of the training data, operating in isolation until

convergence, at which point the average of the independently created estimates is re-

turned. Recent empirical results have suggested that this IPM strategy produces better

models than the single-mixture algorithm, and the results of this thesis add to this

picture.

The contributions of this thesis are as follows.

The first contribution is to produce and analyze an algorithm for decentralized

stochastic optimization of regularized average loss objective functions. This algorithm,

which we call the distributed regularized dual averaging algorithm, improves over

prior work on distributed dual averaging by providing a simpler algorithm (used in the

rest of the thesis), better convergence bounds for the case of regularized average loss

functions, and certain technical results that are used in the sequel.

The central contribution of this thesis is to give an optimization-theoretic justifi-

cation for the IPM algorithm. While past work has focused primarily on its empirical

test-time performance, we give a novel perspective on this algorithm by showing that,

in the context of the distributed dual averaging algorithm, IPM constitutes a conver-

gent optimization algorithm for arbitrary convex functions, while the single-mixture

distribution algorithm is not. Experiments indeed confirm that the superior test-time

performance of models trained using IPM, compared to single-mixture, correlates with
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better optimization of the objective value on the training set, a fact not previously re-

ported. Furthermore, our analysis of general non-smooth functions justifies the use of

distributed large-margin (support vector machine [SVM]) training of structured pre-

dictors, which we show yields better test performance than the IPM perceptron algo-

rithm, the only version of the IPM to have previously been given a theoretical justifica-

tion. Our results confirm that IPM training can reach the same level of test performance

as a sequentially trained model and can reach better accuracies when one has a fixed

budget of training time.

Finally, we use the reduction in training time that distributed training allows to ex-

periment with adding higher-order dependency features to a state-of-the-art phrase-
structure parsing model. We demonstrate that adding these features improves out-of-
domain parsing results of even the strongest phrase-structure parsing models, yielding

a new state-of-the-art for the popular train-test pairs considered. In addition, we show

that a feature-bagging strategy, in which component models are trained separately and

later combined, is sometimes necessary to avoid feature under-training and get the best

performance out of large feature sets.
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Notation

Sequences and Sums Where αk is any indexed expression, and S � �
i1, i2, . . . , i|S|

�
is

any index sequence, we use pαiqiPS to denote the sequence
�

αi1 ,αi2 , . . . ,αi|S|

	
. Simi-

larly,
°

iPS αi is the sum αi1 �αi2 ��� ��αi|S| . For any K P N, we use rKs to denote the

index sequence p1,2, . . . ,Kq.

Conventional Symbols We have endeavoured to use the following symbols as consis-

tently as possible throughout this thesis:

D The dimension of a given feature space

d A dual representation of a weight vector (see §4)

rMs The indices of the elements in a set of training data

m The index of a given element of a set of training data

rNs The indices of the nodes in a network of processors

n The index of a node in a network of processors

R The set of real numbers

rT s The indices of the time steps an optimization procedure is run for

t The index of a given time step of an optimization procedure

w A weight vector in RD

X A set of input objects

Y A set of output objects, or training examples

Φ A feature embedding function, Φ : X �Y Ñ RD

Ψ An arbitrary regularization function, Ψ : RD Ñ R

Due to its popularity in other contexts, the symbol n is one symbol that will often

appear temporarily with other meanings, e.g., to denote the length of a sentence.
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Chapter 1

Introduction

1.1 Overview

The focus of this thesis is on distributed training of structured predictors, taking a

distributed optimization perspective, with a special interest in statistical parsing. As we

will see, interest in distributed training is important for progress in natural language

processing (NLP), because the cheapest feasible way to grow computational power is

to distribute processing across a network of computing cores.

Training as Optimization Creating and training a structured prediction function for an

NLP application requires a series of choices—one must choose a decoding algorithm,

feature set, model family, and loss function, among other things—but, in almost all

cases, the final step in the training process is some kind of numerical optimization pro-

cedure. This is almost universally true for supervised learning (§2). It is also true, for

example, for the M-step of the expectation maximization algorithm for unsupervised

or semi-supervised learning, and is used in each training step in a self-training semi-

supervised learning strategy (§6.1.2). In the standard case, a model is parameterized as

a vector w PRD, often called a weight vector (because it assigns positive and negative

“weight” to various kinds of features), and one tries to minimize regularized average

loss on some set of training data. That is, suppose that Ψ : RD ÑR is a convex regular-

ization function, introduced to prevent over-fitting and to keep weights from tending

towards infinity, that Y is a space of training examples and that ` : RD �Y Ñ R is

a function that measures the loss, or inappropriateness, of vector w for each example

z P Y . And, suppose we have access to a set S� pzmqmPrMs of training examples. Then,

7



Chapter 1. Introduction 8

the minimization of regularized average loss problem is to solve:

argmin
w

Ψpwq� 1
|S|

¸
zPS

`pw,zq (1.1)

The numerical solution, say w�, to (1.1) serves as the set of parameter values for the

prediction model that will be tested or used in some application. The minimization

of loss on a fixed data set is called the minimization of empirical loss, and has con-

nections with the minimization of expected risk, or loss to be expected on the entire

population of examples of interest (cf. §s 2, 3).

Distributed Data Sets Modern data sets can be too large to fit on a single computer’s

hard drive. Some very large organizations have needed to distribute their file systems

across a networks of computers, e.g., Google’s distributed file system (Ghemawat et al.,

2003). The distributed nature of the storage of this data means that optimizing a func-

tion like (1.1) is not as straightforward as if all of the data was on a single machine.

Instead, as we will see, a distributed form for (1.1), such as (1.5) can be more appro-

priate. This distributes the optimization of the training objective to the entire network.

The Desire for Multi-Core Processing Moore’s law (Moore et al., 1965) observed that

the density of computer circuits on computer chips doubled roughly every 18 months.

For many years, this meant a correspondingly exponential growth in computing power,

on which developers came to depend in order to make their programs run faster (Sutter,

2005). Although it remains possible to continue doubling the circuit density, the power

consumption required to run such circuits grows at such a rate as to be prohibitive, be-

cause circuit complexity grows faster than performance when additional circuits are

added to a single computing core (Gelsinger, 2001). Thus, a more efficient strategy to

continue increasing computational power, and the one adopted recently in practice, is

to keep the performance of a single computing core fixed, but to add more computing

cores (Chu et al., 2007). This has lead to a wide interest in all branches of computer

science towards scaling up computing power using strategies that can incorporate var-

ious multi-core strategies. As data sets of interest grow, optimization time on a single

core will, if the data is varied enough, take longer, and it is not a reasonable strategy to

continue carrying out the computation (1.1) on a single core.

Types of Multi-Core Processing The addition of more processor cores can take two

principal forms: shared memory parallel architectures (or symmetric multi pro-
cessing systems) and distributed architectures. Shared memory architectures are



Chapter 1. Introduction 9

characterized by a number of processing cores which have access to the same short-

term and long-term memory stores (i.e., random access memory and hard disk, respec-

tively). Distributed architectures, in contrast, involve networks of separate machines,

in which each processing node has its own short-term and long-term memory stores.

For small projects, a shared memory parallel architecture is often preferable. It is eas-

ier to write and reason about shared memory parallel programs because the computer

code running on each core can hold references to the same data. But, in many ways,

a more sought-after goal is the ability to understand and improve distributed compu-

tation. This is because a network of essentially unbounded size can be created out

of a number of ordinary computers, or “commodity machines” (Chang et al., 2008;

Dean & Ghemawat, 2008), and at less cost to install and replace. For example, the

Blacklight computer system, which comprises 4096 computing cores, was the world’s

largest shared memory computing system as of 2013 (Corp., 2011). Supported by a $3

million grant, it is a highly specialized and expensive piece of equipment. A network

of commodity machines would be cheaper to build (with 8-core processors currently

costing under $300), and easier to repair in part. Note that, in practice, a hybrid system

is also possible, in the sense that one might have a distributed network of computing

nodes, each of which contains a small number of computing cores locally sharing the

same memory. In that case, communication between the small number of cores that

are co-located behaves as a shared-memory system, but communication between nodes

must take place over the network.

The Consensus Optimization Problem A natural way to conceive of the problem of

optimization over a distributed network is to frame the following consensus optimiza-

tion problem (cf. §3.5). We suppose that each node n P rNs in a network has access

to its own local function fn : RD Ñ R, and the goal of the network is to collaborate

to find a single vector in some convex set W that is optimal for the average of those

functions:

argmin
wPW

1
N

¸
nPrNs

fnpwq (1.2)

By saying that node n has “access to” fn, we usually mean that only node n can query

for gradients of the function fn. In general, whatever information interface is provided

to the functions fn, we assume that only node n can use that interface, and that all other

nodes must learn about fn by communicating with node n.

The consensus optimization problem is perfectly suited to the optimization of reg-
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Shared Memory Parallel System Distributed System

Hard Disk Each core accesses same hard

disk

Each node has separate hard disk

RAM Each core accesses same RAM Each node has separate RAM

Communication Communication has essentially

no cost, since an object loaded

to RAM for one thread is visible

to all

Communication incurs a net-

work penalty. In order to com-

municate an object, one node

must serialize and send it across

the network.

Scaling Adding more cores is relatively

difficult—machines a machine

with thousands of shared cores is

very rare.

Scaling to thousands of cores is

possible with relatively inexpen-

sive hardware.

Concurrent Access

to Mutable State

Errors due to concurrent access

to mutable objects are possible,

and must be co-ordinated (e.g.,

using locks) between threads

running on same machine.

Errors due to concurrent access

between nodes are not possible,

as each node has access to its

own memory.

Table 1.1: Comparison of shared memory and distributed systems. Each “node” in a

distributed system might actually be a shared memory system with a processor con-

taining a small number (e.g., 2, 4, or 8) processing cores.
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ularized average loss over a data set that is spread across a network of N nodes. Sup-

pose we split the training set S of (1.1) into shards pSnqnPrNs, and each node n P rNs
has access only the examples in Sn. These examples can, in general, be different. For

simplicity, we will assume each shard Sn has the same size as any other shard.1 Then,

in order to minimize average regularized loss across all examples, the optimization

problem we need to solve is:

argmin
w

Ψpwq� 1
|S|

¸
zPS

`pw,zq (1.3)

�argmin
w

Ψpwq� 1
|S|

¸
nPrNs

¸
zPSn

`pw,zq (1.4)

�argmin
w

1
N

¸
nPrNs

�
Ψpwq� 1

|Sn|
¸
zPSn

`pw,zq
�

(1.5)

Then, the fn of (1.2) is the Ψpwq� 1
|Sn|

°
zPSn

`pw,zq of (1.5). It is important to note

that, since each shard Sn is different, each node has access to a potentially very different

function.

Thus, it is the distributed optimization problem of the form (1.2) that we offer a

novel solution to and perspective of in this thesis. The central characteristics of the

strategy we present are:

1. The data are not shared between nodes. Each node has access only to its own

local store of (different) training examples.

2. Nodes must communicate in order to find the globally optimal weight vector,

with communication occurring relatively infrequently (the costs of network com-

munication will be considered experimentally in §5.8.7).

Large-Margin Learning Perceptron training for binary classification was one of the

early forms of classifier training, and has more recently been successfully extended

to do structured prediction training (see §2.3). In the cases of both binary prediction

and structured prediction, it is known that large-margin training, using the support
vector machine (SVM) objective, will often train models that perform better than does

the perceptron (see §2). The SVM objective can be cast as a problem of minimiz-

ing regularized average loss, where the loss function chosen encourages a significant

1If this were not true, it would be possible to weight the various parts of the objective function
according to the number of examples in each, if desired.
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prediction margin between correct and incorrect outputs. We will below review a dis-

tribution strategy for perceptron training called iterative parameter mixing. A central

contribution of this thesis is to extend the analysis of iterative parameter mixing, from

the case of perceptron training, to which it was first applied, to cover the case of SVM

training also. Our experiments in §5 confirm that distributed SVM training outperforms

distributed perceptron training, and thus constitutes an improvement over past work in

this area.

Structured Prediction and Stochastic Optimization Prediction problems for NLP ap-

plications are typically structured prediction problems (§2), which involve the use of

inference functions that are more complicated and time-consuming than predictors for

binary classification. Thus, it has become virtually universal to train complex struc-

tured predictors, like parsers (Collins, 2002; McDonald et al., 2005) and translation

systems with many features (Chiang, 2012) using stochastic training, in which esti-

mates of the optimal weight vector are updated after each example, rather than use

batch training systems (stochastic and batch training are reviewed in §3). Thus, an

important desideratum for any algorithm that solves the distributed optimization prob-

lem (1.2) is that it uses stochastic training. The experiments of (5.8.6) corroborate this

finding, and show that, in the distributed setting tested, distributed stochastic methods

out-perform distributed batch ones for the training of structured predictors.

Iterative Parameter Mixing for Distributed Optimization McDonald et al. (2010) study

a perceptron-based (see §2.3) solution to the distributed training problem called itera-
tive parameter mixing, shown as Algorithm 1. Training data is partitioned into sepa-

rate shards pSnqnPrNs, where each part Sn resides on node n P rNs. The algorithm takes

place in rounds. On each round, each processing node makes a single perceptron pass

over its own training data. After each such pass, the nodes communicate with a central

server, which averages each node’s estimates of the optimal weight vector. The central

server then broadcasts the last round’s average to each node, to begin the next pass

over the data. Following the usual perceptron-style analysis (Block, 1962; Novikoff,

1962; Collins, 2002), this algorithm is not conceived of or analyzed by McDonald

et al. (2010) as solving an optimization problem, per se. Rather, it is thought of as the

search for a separating hyper-plane, and McDonald et al. (2010) give a convergence

proof bounding convergence time for training assuming the training data are perfectly

separable by a certain margin. McDonald et al. (2010) contrast the IPM training algo-

rithm with another strategy that we will call the single-mixture perceptron, shown as
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Algorithm 2. In the single-mixture algorithm, each node repeatedly iterates through its

own data set, doing perceptron training as usual. Nodes do not communicate until the

final stage, at which time the estimates of the different nodes in the network are aver-

aged. The IPM and single-mixture algorithms are almost entirely alike, except for the

communication (or lack thereof) after each epoch through the data. The single-mixture

algorithm is arguably optimal from the point of communication cost, since it involves

only one round of communication. However McDonald et al. (2010) show that IPM

can return models as accurate as those trained sequentially, but that the performance

of models trained using the single-mixture strategy is significantly worse than models

trained with a single-core perceptron algorithm. Note that Algorithms 1 and 2 return

output simply the final weight vector from training, but can be modified to instead

output the average weight vector over all rounds on all nodes (§5.6).

Algorithm 1 Iterative Parameter Mixing Perceptron
1: procedure IPM-PERCEPTRON(Data set shards: pSnqnPrNs)

2: w̄0 � 0

3: for e � 1, � � � ,E do � Do E epochs of training

4: we,n � OneE pochPerceptronpSn, w̄e�1q � N threads run in parallel

5: w̄e �
1
N

°
nPrNs we,n � averaging step

6: return w̄E

1: procedure ONEEPOCHPERCEPTRON(S,w)

2: w0 � w

3: for m P 1, � � � , |S| do

4: draw example pxm,ymq from S

5: ŷm � argmaxyPCpxmqxwm�1,Φpyqy

6: if ŷm � ym then

7: wm Ð wm�1�rΦpymq�Φpŷqs

8: else

9: wm Ð wm�1

10: return w|S|

As we use the term, defining characteristic of the IPM training strategy, is the mix

of rounds of local stochastic training on each node in the network, interspersed with

communication between nodes by averaging of estimates of the sought-after weight

vector across the network. This general form for IPM is depicted in Algorithm 3,

where each s is an optimizer state, representing an estimate of the optimal weight
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Algorithm 2 Single-Mixture Perceptron
1: procedure SM-PERCEPTRON(Data set shards: pSnqnPrNs)

2: for n � 1, � � �N do � Each n P rNs nodes runs in parallel

3: w0,n � 0 for n P rNs

4: for e � 1, � � � ,E do � Do E epochs of training

5: we,n � OneE pochPerceptronpSn,we�1,nq

6: return 1
N

°
nPrNs wE,n

vector according to some representation that supports averaging. For example, the op-

timizer state might simply be a vector w P RD representing the estimate of the optimal

vector directly. Or, it might be a dual average representation, which can be quickly

mapped to some w P RD according to a determinstic rule (this is the approach taken

in §4). The defining characteristic of single-mixture optimization is that local rounds

of stochastic training are done, until some convergence criterion is satisfied, at which

point the output of the algorithm is the average of the estimates across the network.

Communication does not occur here until the end of training. The generic form of the

single-mixture algorithm is shown as Algorithm 4, in which, again s is a representation

of the optimal weight vector in either the primal or dual space. We analyze the IPM and

single-mixture strategies from the perspective of the consensus optimization problem,

and show that the IPM strategy does yield an optimization procedure that will converge

to the optimal objective value, while the single-mixture strategy, in general, does not.

Algorithm 3 Generic Iterative Parameter Mixing
1: procedure IPM-GENERIC(Data set shards: pSnqnPrNs)

2: s0 � 0

3: for e � 1, � � � ,E do � Do E epochs of training

4: se,n � OneE pochStochasticpSn, s̄e�1q � N threads run in parallel

5: s̄e �
1
N

°
nPrNs se,n � averaging step

6: deterministically map average state s̄E to primal estimate ŵ

7: return ŵ

Our analysis is an application of the Duchi et al. (2012) analysis of their dis-
tributed dual averaging algorithm. This algorithm allows optimization by a network

of processors in a truly decentralized setting. That is, the algorithm can function even

in absence of a central server, and in which messages sent by one given node only

reach their immediate neighbours in the network. Duchi et al.’s (2012) analysis is
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Algorithm 4 Single-Mixture Generic
1: procedure SM-GENERIC(Data set shards: pSnqnPrNs)

2: for n � 1, � � �N do � Each n P rNs nodes runs in parallel

3: s0,n � 0 for n P rNs

4: for e � 1, � � � ,E do � Do E epochs of training

5: se,n � OneE pochStochasticpSn,se�1,nq

6: deterministically map average state 1
N

°
nPrNs sE,n to primal estimate ŵ

7: return ŵ

based on a connection to the mixing of Markov chains (see §5). Compared to the work

of McDonald et al. (2010), our work is a generalization. Since we take an optimization

perspective, and perceptron training can be cast as optimization, our includes the case

of perceptron training. However, our analysis can also apply to any (potentially non-

smooth) convex objective function, including the large-margin linear SVM objective,

which, as we said above, can often lead to more accurate models. Compared to the

work of Duchi et al. (2012), our work is an application of their framework. Duchi et al.

(2012) focus on a very general set of network architectures, but do not analyze the

IPM, or the single-mixture strategy, or their relation to each other, nor do they experi-

ment with either. Our contribution is to relate the iterative parameter mixing strategy

to the single-mixture strategy using the distributed dual averaging framework, and to

compare the theoretical predictions to empirical observation. Our theoretical predic-

tion is that IPM optimization will allow the network to reach a better objective value

than does single-mixture optimization. This is borne out by experiments, in which

IPM training leads to both better training objective values and better performance than

single-mixture training. The fact that the superiority in test-set performance of IPM

correlates with the ability to reach a better training objective provides a novel insight

on the reason for the test-set performance difference between IPM and single-mixture

perceptron training. We also show that distributed SVM training outperforms percep-

tron training in this distributed setting, as it often does in the sequential training setting.

This motivates the desire to generalize the IPM analysis. In line with past work, we also

find that IPM stochastic training out-performs the simple distribution of batch train-

ing, which like past work, suggests that distributed training strategies should include a

stochastic component.

Regularization and Distributed Dual Averaging The distributed dual averaging al-

gorithm (Duchi et al., 2012) was initially intended for the decentralized optimization
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of arbitrary convex functions. We want to use this algorithm to solve the distributed

regularized average loss problem (1.5). The use of this regularizer allows tighter con-

vergence bounds and a simpler algorithm, which we present in §4. Also, our analysis

in §4 bounds an important error quantity (in Lemma 2) which we will need in §5.

Higher-Order Features in Phrase-Structure Parsing: An Application of Iterative Pa-

rameter Mixing Our experiments with IPM training, recounted in §5 show that, for

certain network sizes and certain problems, IPM training leverages the use of multiple

processors to provide a speed-up in training time. As §5 shows, this speed-up is most

evident when one only can or wants to wait for a single iteration of sequential training.

We exploited the reduction in training time that IPM training allows in order to ex-

periment with parsing models with higher-order dependency features. Higher-order

dependency features are those that refer to 3- and 4- gram relationships between the

word-tag pairs in the dependency parse (see §6). We show that the use of higher-order

dependency features improve the out-of-domain dependency recovery of a state-of-

the-art phrase-structure parsing model. To our knowledge, this is a novel contribution.

We use a cube decoding parsing algorithm, which, by allowing a mix of generative

and discriminative features, gives state-of-the-art performance at the expense of slower

training and decoding speed. Aside from demonstrating the out-of-domain impact of

higher-order dependency features, we show that a feature-bagging strategy, in which

component models are trained separately and later combined, is sometimes necessary

to avoid under-training and get the best performance out of large feature sets.

1.2 Contributions of this Thesis

Our contributions are as follows:

1. We provide a novel decentralized optimization algorithm, the distributed reg-

ularized dual averaging algorithm, which is used in subsequent chapters, and

which improves over published work (Duchi et al., 2012) in three ways:

(a) It offers improved bounds for regularized objective functions.

(b) It offers a simpler algorithm, that does not require the user to set any step-

size parameters.

(c) It bounds the regret and cost of weight sequences needed in §5 that are not

bounded in Duchi et al. (2012) (see Lemma 2 in §4 for specifics).
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2. We provide a theoretical justification for the iterative parameter mixing distri-

bution strategy for optimization of potentially non-smooth objective functions,

like the large-margin linear SVM training objective, based on the Markov-chain

mixing perspective of Duchi et al. (2012):

(a) We show that IPM dual averaging is guaranteed to converge to the optimal

objective value, while single-mixture dual averaging will not always do so.

(b) This provides a novel explanation for the superior test-set performance of

IPM, compared to single-mixture: that training set objective is better opti-

mized using IPM.

(c) Our analysis applies to all non-smooth objective functions, including the

SVM objective, whereas previous theoretical results on IPM only applied to

the perceptron.

3. We conduct extensive experiments to investigate the relationship between itera-

tive parameter mixing and single-mixture distribution under a range of experi-

mental settings:

(a) First of all, our results replicate the perceptron experiments of McDonald

et al. (2010), showing again that IPM out-performs single-mixture training

in terms of test performance for the perceptron. However, we do so on more

data sets and more tasks than the original study, and with larger variation

in the number of network nodes.

(b) We then show that IPM trained models also out-perform those trained using

single-mixture in terms of test performance in the case of the SVM objec-

tive.

(c) We show that, among models trained in a distributed fashion with IPM,

those trained with the large-margin SVM objective out-perform those trained

with the perceptron, thus improving upon the past perceptron-based work

in this area.

(d) Our results confirm that the training value objective is indeed better for

IPM than for single-mixture optimization. This supports the hypothesis

that superior test-set performance of IPM is due to better optimization of

the training objective.

(e) We show that, when only a limited amount of training time is available,

IPM distributed training can yield a better model in the time given than
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sequential training, confirming that multi-core optimization can be useful

for training models more quickly.

4. We apply the faster training times to investigate the effect of adding higher-order

dependency features to a phrase-structure parsing model:

(a) We show that higher-order dependencies improve dependency recovery on

out-of-domain tests, even for the state-of-the-art phrase-structure parsing

models, a previously undocumented result.

(b) This yields a new state-of-the-art performance, for the popular train-test set

pairs compared.

(c) For models with very many features, we show that a strategy of “feature

bagging” can be necessary to avoid under-training achieve the best perfor-

mance in some cases.



Chapter 2

Training of Structured Predictors

In this section we will give an overview of training methods for structured predictors.

§2.1 reviews the basic setting for statistical structured prediction tasks, as well as the

formalisms that we try to predict in this thesis. §s 2.2, 2.3 and 2.4 review three im-

portant supervised training methods often used in NLP: probabilistic, perceptron, and

large-margin training. Probabilistic training does not play a major role in this thesis

but is simply reviewed due to its importance, and so that it can be contrasted with the

margin-based approaches presented later. Perceptron training and large-margin train-

ing will both be used extensively in the sequel.

2.1 Structured Prediction

2.1.1 The Concept of Prediction

NLP tasks are normally cast as prediction problems (Magerman, 1994; Charniak, 1997;

Collins, 1999). In the context of machine learning and its applications, a prediction

function is one which maps observed input objects to corresponding unobserved out-
put objects (Bishop, 2006). The predicted output is meant to be compared against a

gold standard output. Put informally, the goal of the system designer is to create a

prediction function which will perform well on randomly drawn test inputs, predicting

as many correct outputs as possible.

Throughout this text, whatever the specific prediction context, we will denote the

space of inputs by X and the space of outputs by Y . Thus, the prediction function

is a function h : X Ñ Y . We can define a cost function ρ : Y �Y Ñ R, which gives

the cost, or loss, suffered for a misprediction. That is, ρpy, ŷq is the cost of predicting

19
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hpxq � ŷ when the correct answer is y. We assume that input-output pairs are drawn

according to some fixed distribution D . We can define the expected risk of a given

hypothesis as:

errDphq � Epx,yq`py,hpxqq (2.1)

That is the expected risk is the expected loss suffered on a pair px,yq drawn randomly

according to D . This is a central quantity of interest, since, for any application, we

will be drawing some examples, for which we will want predictions, from the world,

according to some D , and we will want our hypothesis to perform as well as possible on

these. So, the goal of the system designer, more formally stated, is to find a hypothesis

h with as low an expected risk as possible.

The simplest example of a prediction function is binary prediction, or binary
classification. In this task, whatever the input space, the output space is binary, e.g.,

Y �t�1,1u. The cost of a prediction ρpy, ŷq is 0 if ŷ� y, and 1 otherwise. Beyond this,

we can speak of multi-class prediction problems. Here, for a given x P X , the goal is

to predict one outcome among a finite set of alternatives, i.e., a set isomorphic to rKs.
For example, predicting whether a sports team will win, lose, or draw is a multi-class

prediction problem, which goes beyond the binary prediction framework. NLP tasks—

such as part-of-speech tagging, named entity recognition, parsing, word alignment

(Manning & Schütze, 1999)—are not binary prediction problems, but instead a certain

kind of multi-class prediction problem referred to as structured prediction, which we

will discuss in detail now.

2.1.2 The Role and Nature of Training

The central philosophy of machine learning is that a prediction function should not be

written directly by the designer. Instead, the designer should specify how the predic-

tion function can be learned from training data. In practice this leads to much better

hypotheses, and does so in a way which is more easily ported to new data sets (Bishop,

2006).

Concretely, we begin by specifying a set of hypotheses H , from which a training

procedure will select a single h P H . This process can be effected by parameterizing

the prediction function, where the parameters are a vector of objects of some kind,

often simply real numbers. That is, we choose some parameter space Θ, such that the

choice of a particular parameter setting θ P Θ specifies a particular h P H . The job of

the system designer, then, is twofold. First, he must specify the hypothesis class H ,
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parameterized by the space Θ. Then, he must specify a training procedure that can

map a set of training data, T , to a set of parameters, θ.

In the case of supervised learning, the training set consists of a set of labelled
examples, or example input-output pairs, drawn from the distribution D . That is the

training set is a set of pairs tpxm,ymqumPrMs. This training set can be used to estimate

the expected risk, by a function called the empirical risk, which is the average loss of

a hypothesis over the M examples in the training set:

errD̂phq �
1
M

¸
mPrMs

`pym,hpxmqq (2.2)

Thus, supervised training often consists of finding the hypothesis that minimizes em-

pirical risk. Various guarantees exist that, in important cases, a hypothesis that mini-

mizes empirical risk will converge to one that minimizes expected risk as the training

set size grows (Vapnik, 2000; Cristianini & Shawe-Taylor, 2000; Cesa-Bianchi et al.,

2004). Supervised training methods often predominate in NLP, especially for prac-

tical applications. Another possibility is unsupervised learning, in which case one

attempts to train a prediction function, or perhaps only to estimate density functions,

from only unlabelled examples, i.e. a set of inputs txmumPrMs (Bishop, 2006). When

used as a means to train prediction functions, unsupervised methods typically yield

accuracies which remain well short of supervised methods for the NLP tasks listed

in §2.1.3. Other possibilities, such as semi-supervised learning, mixes these two

paradigms, attempting to learn from a mix of labelled and unlabelled data (for more on

semi-supervised parser training, see §6.1.2.2).

2.1.3 The Structured Outputs Used in this Thesis

The set of structured objects predicted in this thesis are canonical examples in struc-

tured prediction. We review them here for completeness.

Part-of-Speech Tagging The part-of-speech tagging problem, with an example shown

in Figure 2.1, is an example of the much-studied sequence labelling task (Manning &

Schütze, 1999). Here, given a sequence of inputs taken from a finite alphabet pxiqiPrns,
the goal is to predict an associated sequence of labels pyiqiPrns. The number of potential

labellings is exponential in the length of the input, and potential interdependencies

between labels mean that it is often best to predict some of the yi together, rather than

predicting each individually (Rabiner, 1989; McCallum et al., 2000; Lafferty et al.,

2001).
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EX VBD DT NN IN DT NN .
There was a cat on the mat .

Figure 2.1: A sentence tagged with its part-of-speech.

Phrase-Structure Parse Trees Phrase-structure parse trees correspond to left-most

derivations with a context-free grammar (Aho & Ullman, 1972). Phrase-structure

trees, with an example shown in Figure 2.2, formed the basis of a lot of early work

in parsing. Here, the number of sentences for a given parse and a given context-free

grammar is finite, but grows exponentially in the length of the sentence, and so efficient

algorithms are necessary to search the space of possible outputs.

Figure 2.2: A CFG parse tree.

From a psychological point of view, phrase-structure parsing is arguably of little in-

terest. However, general techniques for their improvement can be motivated on the

grounds that techniques used in these formalisms invariably have direct analogues in

the case of the better-motivated linguistic formalisms (e.g., Sarkar (2000); Hocken-

maier & Steedman (2002); Riezler et al. (2002); Clark & Curran (2007); Miyao &

Tsujii (2005)).

Dependency Grammar Parse Trees The dependency grammar approach, illustrated

by an example dependency parse in Figure 2.3, eschews the use of phrasal nodes and

phrasal categories, and instead represents directly the syntactic or semantic dependen-

cies between the words of a sentence. It is a style of analysis with old roots (Tesnière &

Fourquet, 1959), but which has seen a resurgence of interest due to fast parsing times

(Nivre & Scholz, 2004; Nivre et al., 2007), allowed by the formalism, and the ability to

construct dependency treebanks for lower cost than phrase-structure treebanks (Kübler

et al., 2009). Once again, the number of parses for a sentence grows exponentially in

the sentence length.
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EX VBD DT NN IN DT NN .
There was a cat on the mat .

nsubj

dobj

det

prep

pobj

det

punct

Figure 2.3: A dependency grammar parse tree.

2.1.4 Managing a Structured Search Space

In general, structured prediction problems, like those seen in §2.1.3, are multi-class

prediction problems, in which the output space for a given input is finite, but gen-

erally too large to tractably enumerate. Usually, the number of candidates grows at

least exponentially as a function of the size of the input. In the structured prediction

setting, given an input space X and output space Y , we assume a candidate function,

C : X Ñ PpY q, where PpY q is the power set of Y . That is, C maps a given input to a

subset of the space of all possible outputs that are applicable to the input X . For ex-

ample, in the dependency parsing problem, C maps a sentence to the set of all possible

dependency parses for that sentence. If a sentence x has n words, then, for example,

parses for sentences with n1 � n words are not possible parses for x, and are filtered by

the function C .

In a structured prediction problem, the fact that the output space is too large to

feasibly enumerate means that dynamic programming, pruning, or both must be used

to search the output space in tractable time. Sequence labelling can be efficiently per-

formed using the well-known Viterbi algorithm (Viterbi, 1967), which is a dynamic

programming algorithm, that corresponds to finding the best-scoring path through a

kind of directed acyclic graph (actually, a lattice), from a start state to a goal state. The

original Viterbi algorithm of Viterbi (1967) is not directly applicable to the prediction

of tree structures. However, tree prediction, as well as other NLP tasks, such as machine

translation, can be seen as instances of the generalized Viterbi algorithm (Klein &

Manning, 2001; Eisner et al., 2005; Huang, 2008a). The switch from the Viterbi al-

gorithm to the generalized Viterbi algorithm corresponds to the switch from finding a

path through an acyclic graph to finding a hyper-path through a hyper-graph. The key

difference between the two is that a hyper-graph has hyper-edges, rather than edges.
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A hyper-edge, e� ph,pt1, � � � , tNqq is a pair of a head node h PV and a sequence of tail

nodes tn P N for n P rNs. In the case of phrase-structure parsing, for example, a hyper-

edge corresponds to a rule production. For the formal details, we refer the reader to,

e.g., Klein & Manning (2001). However, intuitively, a hyper-path proceeds from a set

of initial nodes (e.g., the words in a sentence), to a single goal node. These paths can

be given scores, and prediction amounts to selecting the highest-scoring hyper-path

from the initial nodes to the goal state.

The generalized Viterbi algorithm, which is an exact dynamic programming al-

gorithm, requires that each edge can be scored in isolation. Since each edge can be

scored in isolation, the score of a path is simply the sums of the scores of the edges.

The lack of interaction between edges means that the best-scoring path to a given

node v will be the best scoring sub-path in any larger path that passes through v.

Well-known parsing algorithms such the CKY algorithm for phrase-structure parsing

(Kasami, 1965; Younger, 1967; Cocke & Schwartz, 1969) and Eisner’s algorithm for

dependency parsing (Eisner, 1996) are instances of the generalized Viterbi algorithm.

In §6, we examine the use of the cube decoding algorithm, which is useful when the

scores of the edges are not independent.

2.1.5 Ranking with Linear Hypotheses

We adopt the framework of global linear models for structured prediction. Here, the

possible outputs, C pxq, for input x are ranked according to an inner product with a real-

valued parameter vector. For this, we use a feature embedding function Φ : X �Y Ñ
RD, along with a weight vector, w P RD:

ŷ � argmax
yPC pxq

xw,Φpx,yqy (2.3)

In the sequel, to simplify presentation, we will assume that each output y PY can corre-

spond to a single input x P X .1 Adopting this convention, writing Φpx,yq is redundant,

so (2.3) can be rewritten as:

ŷ � argmax
yPC pxq

xw,Φpyqy (2.4)

For multi-class prediction problems with a small number of classes, it is possible

to predict the class label using a collection of binary classifiers using a one-versus-

all or a one-versus-one strategy. For k classes, the one-versus-all approach results
1That is, we assume a function INPUT : Y Ñ X and that, for any Y under consideration INPUTpyq is

defined for each y P Y .
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in the training of k classifiers, while the one-versus-one approach results in training
kpk�1q

2 classifiers. Hsu & Lin (2002) and Rifkin & Klautau (2004) have compared these

methods to those that work on the basis of a single objective formulation. The authors

find that the binary methods work as well as the multi-class objective (2.13) but, at

that time, trained faster. However, training methods for the multi-class objective have

improved, and, for structured prediction, the number of classes is intractably large.

Thus, a ranking formulation such as (2.4) is necessary.

2.2 Probabilistic Training

Much early work on parsing focused on models parameterized to maximize the joint
likelihood of the training data. We can specify the probability of an input-output pair

as a function of the parameters. In this case, the goal is to find parameters θ in some

parameter space Θ that maximize the log-probability of the training set:

argmax
θPΘ

¸
mPrMs

log pppxm,ymq;θq (2.5)

Early models worked on this basis (Charniak, 1997; Collins, 1997; Hockenmaier &

Steedman, 2002). In such models, the probability of an input-output pair is modelled

as the product of a number of sub-events of the pair. For example, in a probabilistic

context-free grammar (PCFG), each rule production is associated with a probability,

and the probability of a parse is the product of the probabilities of the rule productions

that appear in the parse (Jelinek et al., 1992). Typically, each sub-event is associated

with a multinomial draw, whose probability is given by some element of θ (Collins,

1999).

One of the problems with maximizing joint likelihood is that it requires modelling

the inputs x. A model of the likelihood of the inputs is unnecessary for prediction,

because the inputs are observed as part of the prediction task, by definition. In a sense,

one can suppose that modelling conditional likelihood directly allows all variability

allowed within a parameterization to focus on the discriminative aspect of the task

(Minka, 2005). This concern prompted a movement in NLP to training using condi-

tional likelihood (Collins, 2000; Johnson, 2001; Charniak & Johnson, 2005; Clark &

Curran, 2007; Finkel et al., 2008). In such a training regime, one adjusts the param-

eters only to maximize the regularized log-probability of the outputs in the training

data given the inputs. Where Ψ : Θ Ñ R is a regularization function, the regularized
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conditional likelihood objective is:

argmax
θPΘ

1
M

¸
mPrMs

log ppym | xm;θq�Ψpθq (2.6)

Modelling of conditional likelihood with powerful, possibly overlapping features

can be accomplished by the use of conditional random fields (CRFs), a generalization

of logistic regression to graphical models (Lafferty et al., 2001; Sutton & McCallum,

2012). Such techniques allow conditional likelihood training of structured predictors.

A CRF model, is parameterized by a real-valued vector, i.e. θ P RD. The conditional

probability of an output, given an input, is defined as:

ppy | x;θq � exppxΦpyq,θyq°
y1PC pxq exppxΦpy1q,θyq (2.7)

The normalization term in (2.7) involves, if looked at naively, a sum over |C pxq| can-

didates. In the case of a structured prediction task, this is, of course, intractable to

compute naively. Thus, dynamic programming techniques are required to compute

this sum. Such techniques are based on the forward-backward (Levinson et al., 1983)

and inside-outside algorithms (Baker, 1979), which are closely related to the Viterbi

algorithms.

One advantage of probabilistic training, compared to the distribution-free methods

of perceptron training (§2.3) and maximum margin training (§2.4) is that a probabilis-

tic interpretation can sometimes be useful. For example, one can straightforwardly use

latent variables in an effort to maximize conditional likelihood (Quattoni et al., 2004;

Koo & Collins, 2005; Petrov & Klein, 2007a). Also, certain semi-supervised learning

strategies allow for a discriminative conditional likelihood model to be trained on unla-

belled data using exogenous constraints (e.g., that each sentence has at least one verb,

to help with part-of-speech tagging) (Bellare et al., 2009; Druck & McCallum, 2010;

Ganchev et al., 2010). This family of techniques requires a probabilistic interpretation.

One drawback of probabilistic training can be the requirement that the normaliza-

tion factor must be computed. Although dynamic programming algorithms can often

make the computation of the normalization term tractable, there are some important

cases in which the normalization factor cannot be computed. For example, the CKY al-

gorithm requires that the feature functions used factor according to the rule productions

of the parse. CRF parsers have been built that obey this constraint (Clark & Curran,

2007; Finkel et al., 2008). However, using the cube decoding approximate inference

algorithm of Huang & Chiang (2007), Huang (2008b) has shown that better phrase-

structure parsers can be made using non-local feature functions, that do not so factor
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according to the rule productions of the parse. Following Huang (2008b), we will, in

§6, want to make use of non-local features. In Huang & Chiang’s (2007) cube decod-

ing framework, whether for parsing or for any other structured task, it is not known

how to efficiently compute the partition function (though, some work exists, Gimpel

& Smith (2009); Eisner et al. (2005)), and so maximum conditional likelihood (much

less maximum joint likelihood) is not currently an option when using this decoding

algorithm. As we will see, training methods like the structured perceptron and struc-

tured SVM allow training to take place, even without being able to compute such a

normalization factor.

2.3 Perceptron Training

Collins’s (2002) structured perceptron algorithm generalizes the well-known binary

perceptron algorithm (Rosenblatt, 1958; Block, 1962; Novikoff, 1962) to the case of

structured prediction. This has been a very influential algorithm in NLP, continues

to be arguably the most-used training algorithm, and will form an important compar-

ison algorithm in §5. The algorithm is easy to implement, as, aside from some trivial

calculations, it only requires the ability to make a prediction. This is the minimum

architecture that must be built in any case for any prediction function. The structured

perceptron algorithm is illustrated as Algorithm 5.

Algorithm 5 Structured Perceptron Algorithm
1: procedure PERCEPTRON(S � tpxm,ymqumPrMs)

2: w0 Ð 0 P RD

3: for t P rT s do

4: draw example pxt ,ytq from S

5: ŷt � argmaxyPCpxtqxwt�1,Φpyqy

6: if ŷt � yt then

7: wt Ð wt�1�rΦpytq�Φpŷtqs

8: return wT , or w̄T �
1
T

°
tPrT s wt

The input to the algorithm is a training set S � tpxm,ymqumPrMs. The algorithm

involves repeated prediction with a sequence of estimates, pwtqtPrT s of a weight vector

that separates (see below), or comes close to separating, the training data. From this

training set, on each round t P rT s, we draw some training example pxt ,ytq, and at-

tempt to predict yt on the basis of xt . Whenever a misprediction is made, the algorithm
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updates the current estimate of the weight vector by rΦpytq�Φpŷqs (line 7). When

training is finished, one can either return the final estimate of the weight vector wT ,

or else the average over all rounds w̄T � 1
T
°

tPrT swt . Collins (2002) gives experimen-

tal evidence that it can be better to return the average of the parameter vectors over

the T rounds. This is also supported by theoretical arguments about generalization

guarantees (Freund & Schapire, 1999; Cesa-Bianchi et al., 2004).

Theoretical Justification As theoretical justification for this algorithm, Collins (2002)

shows that convergence bounds, analogous to those of Block (1962), Novikoff (1962)

and Freund & Schapire (1999) for the binary perceptron, hold for this structured train-

ing algorithm. First, we define the notion of separation by a margin:

Definition 1. We say that a vector w P RD separates the training set SM by margin γ

if for all m P rMs, y P C pxmq, xw,Φpymqy�xw,Φpyqy ¥ γ

Then, we can give the following bound on the convergence of the structured per-

ceptron algorithm on a separable data set:

Theorem 1. Suppose R bounds the norms ‖Φpyq�Φpymq‖ for each m P rMs, y P
C pxmq, in the training set S, and there exists a wopt ,

∥∥wopt
∥∥ � 1, that separates SM

by a margin of γ. Then, the number of mistakes made by the perceptron algorithm on

repeated passes through SM is at most: �
R
γ


2

This bound will play a role in the discussion of the distributed perceptron algorithm

in §5.2.2. A variant of this bound for non-separable data sets also exists (see Collins

(2002)). In practice, though the perceptron is perhaps the most widely-used training

algorithm, it is not always as accurate as the large-margin alternative, to which we turn

now.

Objective Value The perceptron algorithm can be viewed a sub-gradient optimization

of unregularized average loss using the following per-example loss function (Martins

et al., 2010):

`perceptronpw;px,yqq ∆� max
yPC pxq

txw,Φpyqyu�xw,Φpyqy (2.8)

A problem with this interpretation is that w � 0 is a solution, as it achieves 0 loss on

each example. But, w � 0 is not useful as a prediction vector. And, with regulariza-

tion towards 0, 0 becomes the only solution. Since interpretation of the perceptron
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algorithm as loss minimization is somewhat deficient, we will usually speak of the

perceptron in algorithmic terms, rather than as minimization of a loss function.

2.4 Maximum-Margin Training

Maximum-margin training, or support vector machine training, of structured predictors

is of particular interest in this thesis. This method of training is shown to outperform

the perceptron for distributed training in §5. And, this is the training strategy used to

train all models in §6. Practical experience has shown that, for many NLP tasks, es-

pecially parsing, maximum-margin training will outperform perceptron training (Mc-

Donald et al., 2005; Tsochantaridis et al., 2005; Koo et al., 2007).

2.4.1 Motivation for Maximum-Margin Parsing

For a separable data set, there is not a single separating hyperplane, but in fact an

infinite number of them. Thus, the problem of returning a separating hyperplane is

ill-posed. This non-determinism is a problem because some hyperplanes are “better”

than others. The generalization performance of a unit length weight vector is known

to be a function of the margin, as defined in Definition 1, by which it separates the

data (Valiant, 1984). This reasoning suggests that, for a separable data set, the goal

should be to return the optimal hyperplane that correctly classifies the data by the

largest possible margin (Vapnik, 2000). In the case of non-separable data, the analysis

is more complex, but, intuition and practical experience suggests that better general-

ization performance can be gained by specifying and achieving a single hyper-plane,

with the largest margin possible. Similar results to those obtained for binary prediction

have been shown in the structured prediction case by Collins (2005).

Also, in a multi-class prediction setting, one answer (or, some subset of the an-

swers) will be correct, and the rest will be wrong. However, unlike in the binary

prediction setting, since there are now multiple wrong answers, it might be that certain

wrong answers are better than others. In fact, in many tasks, like parsing, an output

that is, e.g., 99% correct is satisfactory, even if it is “wrong” in the sense that it is

not the perfectly correct answer. Thus, we will want to incorporate the cost function

ρ : Y �Y Ñ R into our training procedure, and use it to discourage worse answers

even more strongly.
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2.4.2 Objective Formulations

We now review three ways of formulating the maximum-margin training problem for

structured predictors. The method discussed in §2.4.2.3 is the one that will be used in

§5 and §6.

2.4.2.1 Constrained Optimization Formulation

Separable Data In the structured prediction setting, for input x, a prediction will be

chosen from candidate set C pxq. Our goal will be to find the smallest weight vector that

separates correct from incorrect candidates for each example by a sufficient margin.2

Formally, this is encoded as a constrained optimization problem. For each example

pxm,ymq, we will introduce one margin constraint per y P C pxmq,y � ym of the form:

xw,Φpymq�Φpyqy ¥ ρpym,yq (2.9)

That is, for example xm, we require that the weight vector, w, separates the correct

prediction ym from the incorrect alternative y by a margin that is at least equal to the

cost, ρpym,yq, of predicting y when the gold answer is ym. In order to simply future

presentation, we introduce the following shorthand:

δpy1,y2q � Φpy1q�Φpy2q (2.10)

The resulting constrained optimization problem, incorporating these constraints, is

then (Weston & Watkins, 1998; Crammer & Singer, 2002):

argmin
w

1
2
‖w‖2

2 (2.11)

subject to xw,δpym,yqy ¥ ρpym,yq,@m P rMs,y � ym P C pxmq (2.12)

If such an optimal, separating w exists, then the generalization results of Collins (2005)

apply. However, perfect separation of the training set is not possible in practice, and so

a solution to (2.12) cannot be found on most data sets. However, this formulation does

serve as a useful starting point for the following, more realistic, large-margin training

formulation.
2We want the smallest weight vector separating the data set by the required margin because theoret-

ical guarantees on the generalization performance of a weight vector get better as the separating margin
grows, and better as the weight vector shrinks.
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Slack Variables To deal with inevitable cases of imperfect separability, we introduce

non-negative slack variables pεmqmPrMs. These allow the margin constraints to be vio-

lated, at the cost of paying a penalty in the objective value:

argmin
w

λ

2
‖w‖2

2�
1
M

¸
mPrMs

εm (2.13)

subject to xw,δpym,yqy ¥ ρpym,yq� εm,@m P rMs,y � ym P C pxmq (2.14)

εm ¥ 0,@m P rMs (2.15)

In contrast to (2.12), a solution to (2.13) can always be found, since the slack variables

can be made arbitrarily large, to allow for any sort of margin violation. However, a

price must be paid in the objective value for such margin violations. The positively

valued regularization parameter λ allows the user to trade off between penalizing large

weight vectors relatively more than constraint violations (large λ), and penalizing con-

straint violations relatively more than large weight vectors (small λ).

We have said that a characteristic property of structured prediction problems is

that C pxq is finite but intractable to enumerate. Thus, the requirement (2.14) actually

involves an intractable number of constraints. Taskar et al. (2004) deal with this prob-

lem by reformulating the exponential number of constraints as a polynomial number

of constraints. Another, perhaps more useful, strategy for dealing with the problem

of satisfying an intractable number of constraints is to replace the intractably many

constraints in (2.14) with a single constraint. This can be done by rewriting (2.14) as

follows:

xw,δpym,yqy ¥ ρpym,yq� εm (2.16)

xw,Φpymq�Φpyqy ¥ ρpym,yq� εm (2.17)

xw,Φpymqy�xw,Φpyqy ¥ ρpym,yq� εm (2.18)

txw,Φpyqy�ρpym,yqu�xw,Φpymqy ¤ εm (2.19)

Let:

`SVM pw;px,yqq ∆� max
yPC pxq

txw,Φpyqy�ρpy,yqu�xw,Φpyqy (2.20)

Clearly, (2.19) is satisfied for all y P C pxmq if and only if `SVMppxm,ymq;wq ¤ εm. Thus,

we can replace the |C pxmq| constraints for each xm with a single constraint per xm as
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follows:

argmin
w

λ

2
‖w‖2

2�
1
M

¸
mPrMs

εm (2.21)

subject to `SVM pw;pxm,ymqq ¤ εm,@m P rMs (2.22)

εm ¥ 0,@m P rMs (2.23)

This single-constraint formulation can be much easier to work with.

2.4.2.2 Dual Formulation

Though we will not make use of this formulation directly, it is perhaps worth noting

that, just as the binary SVM problem is often solved using a dual program, the struc-

tured SVM has also often been approached using a dual program. Crammer & Singer

(2002); Tsochantaridis et al. (2005); Bordes et al. (2007) derive the following dual

program for (2.13). First, the dual function is:

Dpαq �
¸

m,y�ym

ρpym,yqαy
m�

1
2

¸
m,y�ym

m1,y1�ym1

α
y
mα

y1

m1xδpym,yq,δpym1,y1qy (2.24)

The dual program is then:

max
α

Dpαq (2.25)

subject to α
y
m ¥ 0,@m P rMs,y � ym P C pxmq (2.26)¸

y�ymPC pxmq
α

y
m �

1
λ

(2.27)

One drawback, compared to the approach of unconstrained optimization presented in

the next section, of optimizing in the dual space is that a lot of bookkeeping is required.

2.4.2.3 Unconstrained Optimization Formulation

It is possible to reformulate the constrained optimization problem (2.21) as an equiv-

alent unconstrained optimization problem. Note that, at the optimal solution for w
and pεmqmPrMs, we must have that `SVM pw;pxm,ymqq � εm, otherwise a better objec-

tive value could be reached by lowering some εm, without violating the constraints.

Thus, we can remove the εm altogether, to obtain the following unconstrained objec-

tive (Shalev-Shwartz et al., 2007):

argmin
w

λ

2
‖w‖2

2�
1
M

¸
mPrMs

`SVM pw;pxm,ymqq (2.28)
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One benefit of using this unconstrained formulation is that we can now use a broad

range of convex optimization techniques (Ratliff et al. (2006); Shalev-Shwartz et al.

(2011), §3). This is the version of the structured large-margin objective we will op-

timize using distributed optimization in §5. Like the hinge-loss function for binary

predictors (Shalev-Shwartz et al., 2011), this function is non-smooth, meaning that

two-sided derivatives do not exist at all points.

2.4.3 Solution Methods

A variety of ways have been explored to do optimization for structured maximum-

margin training formulations. Ratliff et al. (2006) take the sub-gradient descent ap-

proach to training structured predictors. Here, analogously to the Pegasos algorithm

for binary prediction (Shalev-Shwartz et al., 2011), the unconstrained primal objective

(2.28) is optimized using sub-gradient descent. Using sub-gradient descent with the

step-size schedule of Hazan et al. (2006), they can converge on an ε-accurate primal

solution in time Op 1
λε
q, ignoring logarithmic factors. The sub-gradient descent opti-

mization strategy is discussed further in §3.3. It is interesting to note that, in contrast

to some methods proposed below, the convergence of this algorithm is not a function

of the training set size M.

Apart from the primal approach to structured SVM optimization, numerous dual op-

timization approaches also exist. In this case, since SVM objectives (2.13) and (2.25)

introduce one constraint per potential output y P C pxq per input x, the major obsta-

cle to optimization of a structured SVM objective is the intractably large number of

constraints that are involved per input. Methods that explicitly represent the k cate-

gories, such as Crammer & Singer (2002) and Keerthi et al. (2008) are not feasible for

structured prediction.

Taskar et al. (2004) devise a factorization that expresses the original exponential

number of constraints as a polynomial number of marginal constraints. The number of

variables per sentence in this factorization is cubic in the length of the sentence, and the

number of constraints is quadratic. Although a polynomial number of constraints is, in

coarse terms, considered tractable, this is still more computation than other methods

have shown to be necessary, and Taskar et al. (2004) were only able to run their model

on sentences of length ¤ 15.

Tsochantaridis et al. (2005) approach the structured SVM problem using a cutting

planes approach. Their algorithm repeatedly cycles through the examples and, for
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each one, selects a maximally violated constraint according to (2.20). This is then

added to a constraint set. A quadratic optimizer is repeatedly run after each addition

to the constraint set. Tsochantaridis et al. (2005) show that, only a limited number

of constraints need be added and that, the satisfaction of this limited number of con-

straints can result in a ε-accurate solution for all the (intractably many) constraints

specified in the problem. Specifically, to obtain a ε-accurate solution for a training

set with M examples, they show that the number of constraints added to the work-

ing set is Opmax
!

M
ε
, 1

λε2

)
q, which, crucially, does not depend on maxm |C pxmq|, nor

does it introduce the polynomial number of constraints of Taskar et al. (2004). Smola

et al. (2007) use bundle methods (Hiriart-Urruty & Lemaréchal, 1996) to tackle the

training of a structured SVM. This involves approximating the true objective function

with a sequence of approximate functions based on the pointwise supremum of a set

of hyperplanes (together with a fixed regularizer). They show that the time to reach an

ε-accurate solution is bounded by Op 1
ελ
q.

Bordes et al. (2007) take an online approach. Optimization is done in the dual

using an SMO-like approach (Platt, 1998). On each round, two components of the

dual are adjusted. An interesting feature of their approach is that, following Bordes

& Bottou (2005), it alternates between fresh examples, and previously seen examples

that contributed support vectors. Bordes & Bottou (2005) had earlier reported that

an analogous strategy for the binary SVM optimization case worked better than using

only fresh examples. This parallels the strategy in batch solutions that emphasizes

the importance of focussing on those examples that contribute support vectors. They

show that convergence is bounded by OpM
λε
q. Collins et al. (2008) explore the use of

exponentiated gradient descent to solve the dual problem (2.25). The online involves

block co-ordinate descent, in which the components αm
∆� �

α
y
m
�

yPC pxmq are updated

at the same time. As this is an exponential number of components, the effect of this

update cannot be done naively, but instead makes use of a factorization that updates

only a polynomial number of components per example m, which implicitly amounts to

updating αm. This factorization requires that the predicted object factor according to

a set of parts, exactly as required by the generalized Viterbi algorithm. This algorithm

reaches an ε-accurate solution of the dual problem in time OpM
ε
q, times a factor that

penalizes the distance of the ultimate solution from the starting point.
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Distributed Gradient-Based

Optimization

The focus of §4 and §5 is on distributed optimization. In this chapter, we will give an

overview of the notion of convex optimization, in general, and then discuss a variety

of distributed and parallel optimization strategies.

3.1 Mathematical Background

A convex set, C �RD, is a set such that if u,v PC, then the entire line segment joining

u and v is also in C. A convex function, f : RD Ñ R, is a function such that for every

u,v P RD, 0 ¤ α ¤ 1,

f pαu�p1�αqvq ¤ α f puq�p1�αq f pvq

That is, the line segment from pu, f puqq to pv, f pvqq passes never below the curve

f itself. In a convex function, all local minima are global minima, and so convex

functions make convenient objective functions for statistical learning. We assume a

norm of interest ‖.‖. A function g is called λ-strongly convex with respect to ‖.‖ if

λ ¡ 0 and gpvq� λ

2 ‖v‖
2 is convex, where the higher λ, the more sharply curved the

function. Stronger curvature usually corresponds greater regularization of an objective

function, and leads to faster optimization times (§3.3). A strongly convex function will

always have a unique local minimum (Rockafellar, 1970).

A vector x� is called a sub-gradient of f at x P RD if

f pyq ¥ f pxq�xy�x,x�y, @y P RD (3.1)

35
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The set of all sub-gradients at x is called the sub-differential of f at x and is denoted

B f pxq. A convex function is sub-differentiable everywhere.

3.2 The Convex Optimization Problem

We now briefly review the goal of convex optimization, which is to solve some form

of convex optimization problem. As we said in §1, the reason for our interest in solv-

ing the convex optimization problem is to solve the regularized average loss problem,

which is reiterated in §3.2.3.

3.2.1 Basic Form

Let f : RD Ñ R be a convex function and let W be a convex set. If f is an arbitrary

convex function, then argminwPW f pwq will, in general, be a set of points. If f is

strictly convex, then argminwPW f pwq will be a single point. We often use w� to

denote a (or, the) optimal value for any function under discussion. Then, the goal of the

convex optimization task is to return a point ŵ such that f pŵq is as close as possible to

f pw�q. Optimization schemes are generally iterative. An iterative optimization scheme

will produce a series of estimates pw0,w1, � � � ,wT q. The quality of a solution can be

measured in terms of the optimization cost:

ε f pwT q ∆� f pwT q� f pw�q (3.2)

To be of any use, an optimization scheme must come with some guarantee that ε f pwT qÑ
0 as T Ñ8, at least with high probability or in expectation.

3.2.2 Distributed Form

When interested in optimization of a function by a network of N processors, the follow-

ing form of the optimization problem is very useful. Suppose that we have a network of

N nodes. Each node n P rNs has access (usually by the ability to query sub-gradients)

to a local function fn : RD Ñ R. As we said in §1, the goal of distributed optimization

can be cast as the solution of the consensus optimization problem (Nedic & Ozdaglar,

2009; Duchi et al., 2012; Boyd et al., 2011):

argmin
wPW

1
N

¸
nPrNs

fnpwq (1.2)
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That is, the goal is to find a single vector that achieves optimal average performance

over the function defined over the network. This is, of course, non-trivial because the

weight vector which is optimal on one node might be very different from the weight

vector which is optimal on another node.

3.2.3 Regularized Average Loss

For training schemes in machine learning, the function that we want to optimize is al-

most always the regularized average loss function. A regularized average loss func-

tion is defined in terms of a convex regularization function Ψ : RD Ñ R, introduced

to prevent over-fitting and to keep weights from tending towards infinity, and a per-

example loss function ` : RD�Y Ñ R, which measures the loss, or inappropriateness

of vector w for example z in the space of examples Y . Suppose our store of training

examples is the set S. Then, the minimization of regularized average loss problem is

to solve:

argmin
w

Ψpwq� 1
|S|

¸
zPS

`pw,zq (3.3)

Many training regimes can be cast in this form, including the probabilistic training

method of §2.2, and the unconstrained large-margin training method of §2.4.2.3. A

popular choice of regularizer is the `2 regularization function Ψpwq � λ

2 ‖w‖
2
2, which

will be used in the experiments of §5 and §6.

In the distributed setting, we have a network of N nodes, and each node n P rNs has

access to its own store of training examples Sn, such that the entire store of examples S

is equal to the union of the disjoint sets pSnqnPrNs. For simplicity, we will assume each

shard Sn has the same size as any other shard.1 Then, in order to minimize average

regularized loss across all examples, the optimization problem we need to solve is:

argmin
w

Ψpwq� 1
|S|

¸
zPS

`pw,zq (3.4)

�argmin
w

Ψpwq� 1
|S|

¸
nPrNs

¸
zPSn

`pw,zq (3.5)

�argmin
w

1
N

¸
nPrNs

�
Ψpwq� 1

|Sn|
¸
zPSn

`pw,zq
�

(3.6)

1If this were not true, it would be possible to weight the various parts of the objective function
according to the number of examples in each, if desired.
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Thus, the fn of (1.2) is the Ψpwq� 1
|Sn|

°
zPSn

`pw,zq of (1.5). It is important to note that,

since each shard Sn is different, each node has access to a potentially very different

function. In this work, we will not make any assumptions about similarities between

the optimal vectors for each fn, though this would be an interesting direction for future

work.

3.3 Sub-Gradient Optimization Algorithms

A standard approach to the single-core convex optimization problem is gradient de-

scent. This basic scheme comes in many different varieties. The SVM objective of

§2.4.2.3 is non-smooth, and thus gradient-descent (Bertsekas, 1999) and its variants

like LBFGS (Liu & Nocedal, 1989) are not applicable. However, algorithms using sub-

gradients are applicable. Most optimization algorithms for non-smooth functions to be

discussed make use of first-order sub-gradient oracles. Suppose that f : RD Ñ R is a

convex function. Then, we can define an associated first-order sub-gradient oracle,

Ω f : RD Ñ RD, which takes as input a test point w P RD and returns a sub-gradient of

f at w. In this section, we will look at two canonical sub-gradient oracle optimization

schemes, but the use of such an oracle is typical, and is used in the dual averaging

algorithm explored in §s 4 and 5.

3.3.1 Batch Sub-Gradient Descent

The most basic algorithm for optimizing a potentially non-smooth function is the sub-
gradient descent algorithm, shown as Algorithm 6. The algorithm takes as input

a sub-gradient oracle, Ω f , for the function f of interest, and a step-size schedule

pηtqtPrT s. Much like the gradient descent algorithm for differentiable functions (Bert-

sekas, 1999), this algorithm operates by repeatedly querying for sub-gradients of f and

then taking a step in the opposite direction according to the schedule pηtq. For an ar-

bitrary convex function, we can choose the step-size schedule ηt � Θp1{?tq to obtain

an optimization cost that shrinks at the rate Op1{?T q (Goffin, 1977; Nesterov, 2005).

For a λ-strongly convex function, we can choose ηt � Θp1{λtq to obtain an optimiza-

tion cost that shrinks at the rate OplnT{λT q (Shalev-Shwartz et al., 2007). It should

be noted that, if the function is known to be differentiable (as are the probabilistic

training methods of §2.2, much faster rates are possible using second-order gradient-

descent methods (Bertsekas, 1999), but we focus on algorithms for non-differentiable
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functions due to our interest in the non-smooth SVM function (§2.4).

Algorithm 6 Sub-Gradient Descent
1: procedure SUB-GRADIENT-DESCEND(Ω f ,pηtqtPrT s)

2: w0 � 0

3: for t � 1, � � � ,T do

4: receive gt P B f pwt�1q by querying Ω f pwt�1q

5: wt � wt�1�ηtgt
return wT or

°
tPrT s wt

3.3.2 Stochastic Sub-Gradient Descent

The sub-gradient descent algorithm is very simple, but the time required for each call to

Ω f is a problem in practice when the function being minimized is regularized average

loss (3.3). This is because each computation of the gradient requires an entire pass

through the data set. This produces an accurate gradient update, but takes time ΩpMq
in the size of the data set, which is more costly as the data set grows. This cost turns out

to be prohibitive (see §3.3.3). Fortunately, it turns out to be sufficient to work only with

unbiased random vectors whose expected values are sub-gradient of f . Suppose that,

we have some index set Z and some indexed function fZ :RD�Z ÑR, and associated

oracle function Ω fZ : RD �Z Ñ RD. Suppose we can draw indices z P Z according

to some distribution Z, and Ez
�
Ω fZ pw,zq� P B f pwq for any w, and the Ω fZ pw,zq have

bounded size. Then, with an appropriate step-size schedule, a sub-gradient descent

algorithm using only the ability to query Ω fZ will converge to the optimal value of f .

The interesting thing to note is that we do not need to query sub-gradients of f directly.

A useful example of this scheme is when the function f we want to minimize is average

loss (3.3), and we select an example at random, and compute the sub-gradient for the

loss on that example alone. Here, the indices for the function are simply the examples

in the training set. This is an unbiased estimate of the sub-gradient of the average loss

on the entire data set, but can be computed quickly, in time that is Op1q with respect to

the data set size.

One such convergent stochastic algorithm is the stochastic sub-gradient descent
algorithm in Algorithm 7. This function minimizes a function f , and its input con-

sists of an oracle Ω fZ for the indexed function fZ , a step-size schedule pηtqtPrT s, and a

distribution Z. For an arbitrary convex function, we can choose the step-size schedule

ηt � Θp1{?tq to obtain an optimization cost that shrinks at the rate Op1{?T q (Zinke-
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vich, 2003). For a λ-strongly convex function, we can choose ηt � Θp1{λtq to obtain

an optimization cost that shrinks at the rate OplnT{λT q Hazan et al. (2006). A variety

of schemes have been suggested to set the step-size automatically, such as the passive

aggressive algorithm of Crammer et al. (2006).

Algorithm 7 Stochastic Sub-Gradient Descent
1: procedure STOCHASTIC-SUB-GRADIENT-DESCEND(Ω fZ ,pηtqtPrT s ,Z)

2: w0 � 0

3: for t � 1, � � � ,T do

4: draw an index z according to distribution Z

5: receive gt P B fZpwt�1,zq by querying Ω fZ pwt�1,zq

6: wt � wt�1�ηtgt
return wT or

°
tPrT s wt

3.3.3 Stochastic Optimization for Large Data Sets

It is interesting to note that, with respect to sub-gradient descent variants, the number

of calls required to be made to a stochastic oracle are, asymptotically, of the same num-

ber of calls that must be made to a batch oracle. However, as noted, for any regularized

average loss objective, while the time taken by the full oracle Ω f is ΘpMq, the stochas-

tic oracle only needs to look at a single example, and therefore runs in 1
M the time of the

full oracle. Thus, it would seem that the stochastic approach should lead to much faster

training, in the case of a non-smooth function. In fact, the advantage grows as the data

set size grows. The situation is slightly different for smooth objective functions, but,

still, several theoretical and empirical analyses in the general field of machine learning

show that stochastic algorithms are theoretical expected to be, and empirically in fact,

faster learners than their batch counterparts, even for smooth functions (Bottou, 2004;

Bottou & Le Cun, 2005; Bottou & Bousquet, 2008; Shalev-Shwartz & Srebro, 2008).

Stochastic algorithms have also come to dominate for many NLP applications (Collins,

2002; McDonald et al., 2005), and in a distributed setting (Hall et al., 2010). For this

reason, there is a focus on stochastic algorithms in §4 and §5.

3.4 Parallel Optimization Schemes

In this section, we review some schemes for multi-core optimization on a shared mem-

ory system. The focus of this thesis is on optimization for distributed network archi-
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tectures, for which past work is reviewed in the next section. But, we include this

information about shared memory parallel schemes for completeness.

Synchronous Methods Synchronous shared memory methods are characterized by the

need for all threads to co-ordinate after one batch of work, before beginning a new

batch. One natural synchronous parallel memory method is to do optimization in mini-

batches. Mini-batch optimization sits between the two poles of stochastic and batch

optimization, and involves drawing k examples, with 1   k ! M, at a time from which

to compute gradient updates. Mini-batch updates should be more accurate than single-

example stochastic updates, since each gradient update is based on a greater number

of examples, but the updates happen less frequently, and can be parallelized easily on

a shared-memory architecture using a master-workers architecture. With N processor

cores, and a mini-batch of size k, each core can be sent k
N examples. The workers then

communicate their gradients back to the master, who incorporates these into the weight

vector. Such an architecture requires that each worker finish one batch before the next

batch can begin. The synchronous mini-batch approach has been used in NLP by Finkel

et al. (2008) in the context of training a CRF parsing model, which otherwise would

have been impractical to train. And, mini-batches have been used by Zhao & Huang

(2013) in the context of the perceptron. Takác et al. (2013) study mini-batches for

SSGD in the case of the binary SVM optimization problem. They show that speed-ups

can be achieved, but that such improvements are a function of the differences among

the data points: greater efficiency improvements are found when the training examples

in the training set (and thus in each randomly drawn batch) are more different, because

the batches are less redundant.

Asynchronous Methods The synchronous mini-batch strategy requires that each worker

finishes a given round before any worker can begin the next round. In practice, if the

time required to process the examples sent to the various workers is unevenly balanced,

this can mean that certain worker will often be idle, in the time between when it fin-

ishes its mini-batch, and when the last worker does. Asynchronous strategies avoid

this problem by eschewing the requirement that workers wait for others to finish their

batch. One approach to the problem uses locking (Nedić et al., 2001; Langford et al.,

2009). Here, a worker can obtain a mini-batch of examples, compute the gradient over

those examples, and then acquire a lock from the central server to update the weight

vector, without co-ordinating with other workers. In this set-up, each worker operates

with a weight vector is stale. That is, on round t worker n P rNs has access to a work-
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ing weight vector that only incorporates the first t �N examples. Nedić et al. (2001)

show that such an algorithm will eventually converge to the true solution. And, where

α is a number that quantifies the correlation of the gradients, Langford et al. (2009)

show that the use of stale vectors can be shown to require no more than αN number

of examples. Thus, if the gradients have low correlation, the use of stale gradients has

less harm. Gimpel et al. (2010) adapt this strategy to allow asynchronous training with

mini-batches. Here, each worker draws a mini-batch of k examples, computes the gra-

dient over these, and then communicates with the central server. This communication

requires the acquisition of a lock, at which time the worker updates the central weight

vector, and makes a copy of the latest version of the weight vector. Gimpel et al.

(2010) show empirically that asynchronous updates out-perform synchronous updates,

and scale better with the number of cores. It should also be noted that, for many appli-

cations, the gradients computed for any given example are sparse. That is, compared

to the number of components of the weight vector, the gradient will have only a very

small number of non-zero components. Niu et al.’s (2011) HogWild algorithm exploits

this fact to show that, if there is suitable sparsity among the gradients, it can be practi-

cal to avoid locking the weight vector at all. Here, N worker cores can update the same

weight vector, without any locking or thread-safe mechanisms, allowing for near linear

speed-ups in both theory and practice, if the gradient updates are suitably sparse.

3.5 Distributed Optimization Schemes

A main focus of this thesis is on the distinction between the iterative parameter mixing

and single-mixture approaches to the distributed consensus optimization problem (1.2).

Here, we review some alternative approaches to solving the distributed optimization

problem.

Sub-Sampling A trivial solution to the problem of having lots of data spread across

many computers is simply to discard some of it. In other words,rather than optimize
1
N
°

nPrNs fnpwq, we can simply choose some i P rNs and minimize fipwq on a single

core. This amounts to a local optimization problem, for which many algorithms exist.

Such an approach would seem reasonable if there were great redundancy in the func-

tions fn, perhaps because the data are all very similar. It would also be reasonable if

there are very few parameters to tune. However, practical experience has shown that,

for many tasks, simply ignoring data is not a useful solution. McDonald et al. (2010)
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and Agarwal et al. (2011) both report that using only a single part of the data con-

sistently performs worse using all of it. In terms of parsing, Steedman et al. (2003b)

show that the performance of the Collins (1999) parser on the WSJ levels off after see-

ing about 60% of the WSJ training data. Petrov (2009) shows that the performance

of his parser on the WSJ levels off after seeing about 70% of the WSJ training data.

Thus, limiting one’s attention a smaller fraction of the data than this would lead to

under-performing models.

Distributed Gradient Computation Using a batch optimization strategy, like the sub-

gradient descent of Algorithm 6, computation of the gradient can be parallelized with-

out changing the computation. As we said, computing a sub-gradient of the average

loss function for any test point takes time ΩpMq, linear in the number of examples.

The same gradient can be computed in roughly 1
N the time using N computer cores.

And, since the exact same result is computed, the same number of iterations is re-

quired as with a sequential algorithm, leading to perfectly linear speed-up compared to

the original batch algorithm. Indeed, Chu et al. (2007) do exactly this. However, batch

algorithms are usually slower than stochastic algorithms (see §3.3.2) to reach a level of

test-set performance, so a linear improvement over batch training does not constitute

a linear improvement over the state-of-the-art. Distributed gradient approaches, when

tested, have been found to lag behind those that use distributed stochastic training.

Hall et al. (2010) have investigated the use of distributed gradient computation and

report that it performs worse and takes longer than both single-core SGD and SGD with

iterative parameter mixing. However, hybrid approaches,like Agarwal et al. (2011),

discussed in later in this section, that mix stochastic and batch training are interesting.

Majority Vote Method We now mention a distributed training strategy which is not,

strictly speaking, an optimization algorithm. Nevertheless, since we are interested in

optimization, here, primarily as a means of training a predictor, we should mention the

majority vote method. The idea here is to avoid the problem of distributed optimiza-

tion, and simply train N predictors, each on the local set of examples Sn. Each predictor

can be trained in parallel on 1
N of the data, perhaps in less time than would be needed

to train on all the data. Then, at inference time, we can use a vote amongst the N

predictors to arrive at a prediction. This strategy is reminiscent of the voted perceptron

strategy of Freund & Schapire (1999), who advocate voting on noisy or unseparable

data. One problem with this strategy is that it requires N decoding steps at test-time,

which will be expensive for structured prediction models. Indeed, it is non-trivial to
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even combine the output of structured prediction models. In any event, Mann et al.

(2009) have reported that voting was not a high-performing distribution strategy.

Single-Mixture Distribution Several facts are known about what we, in §1, called the

single-mixture communication method. This strategy comes with performance guar-

antees in the case of maximum entropy objectives. Suppose we have N nodes with M

examples each. Mann et al. (2009) compare a single node training on NM examples,

to N nodes training on M examples each. In their analysis, in both cases the weight

vector will converge to the optimal weight vector at the speed Op1{pλ?NMq in both

cases. Zinkevich et al. (2010) study the post-hoc mixture method for SGD. Assuming

each machine has access to all of the data, they show empirically that a speed-up can

be achieved with multiple cores. From a statistical learning perspective, Zhang et al.

(2012) show that, if the objective function being optimized is suitably smooth, then,

the empirical risk of a post-hoc mixture of properly optimized sub-problems will ap-

proach the expected risk, or population risk, at a rate Op 1
NM � 1

N2 q. If the number of

machines, N, is less than the number of examples per machine, M, then this rate of

convergence to the population risk is optimal, i.e. as fast as could be achieved with all

examples on a single machine.

Alternating Directions Method of Multipliers Another interesting distributed opti-

mization approach, which has gained popularity lately, is alternating directions method

of multipliers (Boyd et al., 2011), is to rewrite (1.2) as the following constrained opti-

mization problem:

argmin
w1,...,wN ,z

1
N

¸
nPrNs

fnpwnq (3.7)

such that wn � z,@n P rNs (3.8)

Here, we have introduced the auxiliary variable z P RD, which technically allows the

problem to be elegantly stated, and which effectively represents the desired solution

to the problem. Using an augmented Lagrangian approach (Boyd et al., 2011), this

problem can be solved by the following distributed scheme. Let w̄t � 1
N
°

nPrNswt
n,

ρ ¡ 0 be a constant set by tuning, and:

wt�1
n � argmin

wn

�
fnpwnq�yt

n
�
wn� w̄t�� ρ

2

∥∥wn� w̄t∥∥2
2

�
(3.9)

yt�1
n � yt

n�ρ
�
wt�1

n � w̄t�1� (3.10)

Here, each (3.9) step is solved in parallel by the N worker cores. The resulting weight
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vectors must be averaged by a central server, which can also handle the very low-

cost computation (3.10), and the vectors yt
n and w̄ must be communicated to each

worker at the beginning of each round. The interesting feature of this approach is

that the dual and auxiliary vectors serve to change the optimization problem solved

by each worker to increasingly bias it towards consensus with the rest of the group.

Preliminary experiments with this strategy conducted by the author, however, did not

show significant difference in performance to the IPM optimization algorithm discussed

in §5.

Hybrid Batch and Stochastic Agarwal et al. (2011) use a combination of stochastic

and batch learning. Each node has its own local store of data. The first pass over

the data uses SGD, while remaining passes implement LBFGS. Communication takes

place using the All-Reduce algorithm, discussed in §3.6, the importance of which was

first stressed in this article. Empirically, they show superior performance using this

mix of stochastic and batch learning to either fully stochastic or fully batch distributed

optimization.

Distributed Mini-Batch Dekel et al. (2012) look at the case of streaming data. That

is, each node in the network can always draw a fresh example from a given underlying

distribution. Suppose that we have M examples split over N machines. For arbitrary

convex functions, the optimal regret (difference between loss suffered during the run

of a training algorithm and that loss which would have been suffered by the optimal

test vector, see §4.2.2.1) suffered by a single processor processing the M examples in

sequence is Ωp?Mq (Nemirovski & Yudin, 1983; Cesa-Bianchi & Lugosi, 2006; Aber-

nethy et al., 2009). Dekel et al. (2012) demonstrate that, using a distributed mini-batch

approach, they can achieve Op?Mq regret even though the processing is distributed

over N nodes, so that each node only sees M
N of the examples. This work is notable in

that it clearly demonstrates a benefit to using multiple processors. However, this algo-

rithm relies on the ability to always select new examples from the target distribution.

This holds in practice on infinite streams of identical data, and also when all data fits

on a single hard drive. The assumption that all new examples on each machine are

drawn from the same machine does not hold when repeated passes are made over data

held on a distributed network of machines, since each machine has access only to its

own set of examples.

Asynchronous SGD Dean et al. (2012) explore the use of asynchronous stochastic
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methods in a distributed network for the training of deep belief networks, using the

GraphLab distributed training framework (Low et al., 2010). They do not give theo-

retical guarantees. However, in contrast the results of Hall et al. (2010), they find that

asynchronous methods worked well on their network, and allow them to reach a higher

accuracy than single-core SGD in the time allowed.

3.6 Distributed Network Interfaces

While interfaces for shared memory architectures are rather standard—we assume a

number of processing cores, with a single memory, to which access can be regulated

using concurrency constructs such as locks (mutual exclusion mechanisms)—systems

for co-ordinating distributed networks can display a wider range of variability, in terms

of the software interfaces available to the programmer to co-ordinate distributed com-

putation. We briefly review some of these here to give an idea of how the IPM and

single-mixture optimization algorithms of §1 could be implemented on a distributed

system in practice.

MPI, which stands for message passing interface, is a set of protocols for com-

municating between nodes in a distributed environment (Gropp et al., 1999). This

framework is very general and powerful, but, since its inception, more higher-level

constructs have become popular, since large classes of distributed programs follow

specific patterns, which are not all reflected in this rather low-level interface.

Map-Reduce (Dean & Ghemawat, 2008) was an early popular framework for dis-

tributed computation that provides the user with two functions from a common func-

tional programming interface. Simplifying somewhat, the map function maps objects

of type A to those of type B, and the reduce function collates objects of type B. A

data set of very many objects of type A can be split into N smaller shards of objects

of type A, so that each map task can run in parallel. Then, the results created by these

map tasks can be reduced in parallel, to output a single object of type B. A great many

programs have such a structure. For example, one might want to count the number of

times a word w occurs in a corpus. Here, the map task can map each shard Sn of the

corpus to the number of times w occurs in Sn, and the reduce task can simply sum up

the counts produced by the first task. Hadoop (White, 2009) is a popular open-source

implementation of Map-Reduce. One problem with Map-Reduce for machine learning

applications is that many machine learning problems involve repeated passes through

the data, while the design of Map-Reduce (Dean & Ghemawat, 2008) seems primarily
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focused towards a single pass. Input to a map job must be read from disk. Each input

to a reduce job must be written to and then read from disk. And, a lot of overhead

is invested in providing fault-tolerance. In the special case in which the reduce job is

simply a summing or an averaging of vectors, as is the case for the IPM optimization

algorithms of §1, it is possible to greatly speed-up the process, as shown by Agarwal

et al. (2011). They provide an All-Reduce framework, in which the network of pro-

cessors is connected using a spanning tree. Messages work their way from the leaves

of the tree to the root, which sums up the vector in memory, and result is sent back to

each node through the tree. This avoids any stage involving writing writing vectors to

disk. Agarwal et al. (2011) show that this can lead to speed-ups for iterative gradient-

based algorithms of between 3 and 20 times. At the moment, it seems All-Reduce

can be the recommended way of implementing the IPM algorithms in a distributed

network. In addition, further similar alternatives exist, such as the Spark framework

(Zaharia et al., 2012), which allows memory read from disk to persist in main memory

for faster re-use, and the GraphLab framework (Low et al., 2010), which allows better

for asynchronous jobs.



Chapter 4

Distributed Regularized Dual

Averaging

This chapter describes a novel distributed optimization algorithm called the distributed

regularized dual averaging (DRDA) algorithm. This algorithm will be used in the anal-

ysis of the iterative parameter mixing and single-mixture distribution strategies of §5.

This new algorithm is a novel extension of the distributed dual averaging algorithm of

Duchi et al. (2012). The sequential dual averaging algorithm (Nesterov, 2009; Xiao,

2010) is a stochastic optimization algorithm that has been shown to perform well when

using L1 regularization, and has formed the basis for the popular AdaGrad algorithm

(Duchi et al., 2011a), which sets different step-sizes for different features, depending

on the number of prior updates that have been made for that feature. The distributed

dual averaging algorithm (Duchi et al., 2012) applies dual averaging in a decentralized

network setting.

Like the distributed dual averaging algorithm of Duchi et al. (2012), the DRDA al-

gorithm presented here provides a provably convergent stochastic optimization frame-

work for a stochastic version of the distributed consensus optimization problem (1.2).

This version incorporates results from Xiao (2010) to allow better better handling of

a strongly convex regularization term, which is useful for the online, stochastic opti-

mization of a regularized average loss problem (3.6). This work improves over that

of Duchi et al. (2011b, 2012) in three ways. First, it gives a stronger regret bound in

the case of strongly regularized stochastic functions. Second, it provides a simplified

algorithm, that avoids the need to set step-size parameters. Third, we show how to

bound the regret of local sequences of parameter estimates, that are not discussed in

past work with composite objectives (Duchi et al., 2011b). These improvements are

48
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reiterated in §4.3.3, where they can be better explained when the terminology of this

chapter has been introduced.

4.1 Stochastic and Online Optimization

In this section, we define the paradigms used for sequential and distributed optimiza-

tion later in the chapter.

4.1.1 Sequential Online Optimization

Assume we are given some indexed convex loss function ` : Rn �Z Ñ R, such that

`p.,zq : Rn Ñ R is a convex function for each index z P Z. Assume we are also given

a regularization function Ψ : Rn Ñ R, which is λ-strongly convex on W with respect

to some norm of interest ‖.‖. Finally, assume we are able to draw indices z according

to some fixed but unknown distribution Z. From these components, we create, θ`,Z,Ψ :

Rn Ñ R, a regularized stochastic convex function defined as:

θ`,Z,Ψpwq ∆� Ez r`pw;zqs�Ψpwq (4.1)

That is, θ`,Z,Ψpwq is the regularized expected loss for weight w, where the expectation

is taken with respect to drawing indices z according to the distribution Z. Note that,

by choosing the uniform distribution over a set of M examples, we simply recover

the regularized average loss problem (3.3). We sometimes omit the subscripts on θ,

in which case some sub-scripted arguments should be clear from the context. The

associated minimization task is:

argmin
wPW

 
θ`,Z,Ψpwq

(
(4.2)

To minimize a function of the form (4.1), we adopt the approach of sampling. That

is, we will sample a series of indices zT
∆� pztqtPrT s according to Z, creating a function

¸
tPrT s

r`pw,ztq�Ψpwqs , (4.3)

which will be optimized in an online fashion, meaning that, for each round t P rT s, we

produce a test weight wt�1, which is a function only of the indices pzτqτPrts.
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4.1.2 Decentralized Online Optimization

In the sequential online optimization scenario, all examples are available to a single

processing node. But, as we said (§1), to leverage multiple cores and train on data

stored in a distributed fashion, we want to look at distributed optimization, and the

consensus optimization problem (1.2). The regularized stochastic version of the dis-

tributed optimization problem is similar to (1.2). Assume we are given an indexed

convex loss function ` : Rn �Z Ñ R, a fixed λ-strongly convex regularizer Ψ and N

distributions over indices pZnqnPrNs. As in the sequential case above, by letting Zn, for

each n P rNs be the uniform distribution over the set Sn of examples, we recover the

regularized average loss problem (3.6) that we are interested in. From these, we can

create N regularized stochastic objectives θ`,Zn,Ψpwq, for n P rNs, each of which repre-

sents the part of the problem seen by the n’th node of the network.1 From this, we can

create a composite function:

Θ`,pZnqnPrNs,Ψ
pwq � 1

N

¸
nPrNs

θ`,Zn,Ψpwq (4.4)

Again, the subscripts of Θ will sometimes be suppressed where possible. The associ-

ated optimization task is then:

argmin
wPW

!
Θ`,pZnqnPrNs,Ψ

pwq
)

(4.5)

We again adopt the strategy of sampling to approach the distributed stochastic problem

(4.5). This time, each of the N nodes will sample T examples. That is, we will sample

a sequence of sequences of indices zN
T

∆�
�
pzn

t qtPrT s
	

nPrNs
, creating the function

1
N

¸
tPrT s

¸
nPrNs

r`pw,zn
t q�Ψpwqs , (4.6)

which will be optimized in an online fashion, so that on each round t P rT s, we pro-

duce a test weight wt�1, which is a function only of the indices
�
pzτqτPrts

	
nPrNs

. We

underline that node n has access directly only to the indices pzn
t qtPrT s drawn from Zn.

In the machine learning setting, this corresponds to the fact that node n has access only

to its own supply of examples.

1We could let the loss function ` vary according to n as well, although such a presentation seems less
natural to us. In any event, the restriction to a single ` is with loss of generality, since, apart from the
requirement that `p.,zq be convex, ` is an arbitrary function z anyway.
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4.1.3 Assumptions

That Ψ is a λ-strongly convex function is stated in the problem definition. We assume

that argminwPW Ψpwq P W . Then, we can assume that minwPW Ψpwq � 0 and that

argminwPW Ψpwq � 0 without loss of generality, since we can simply translate the co-

ordinates of the problem so that this is so. We also assume that `p.,zq is G-Lipschitz

continuous on W for each z P Z. That is, there exists some G P R such that:

|`pw2,zq� `pw1,zq| ¤ G‖w2�w1‖ ,@w1,w2 P W ,z P Z (4.7)

A norm ‖.‖ induces a dual norm, ‖g‖��max‖w‖�1 |xw,gy|. The dual norm can be used

to measure the sizes of sub-gradients. (4.7) implies that sub-gradients are bounded over

the domain of interest (Duchi et al., 2012). That is, that there exists some G P R such

that:

g P B`pw,zq Ñ ‖g‖� ¤ G,@w P W ,z P Z (4.8)

This assumption holds, for example, on an unbounded domain if `p.,zq is polyhedral

for each z, and also holds for arbitrary convex functions if W is a compact set (Duchi

et al., 2012).

4.2 Sequential Regularized Dual Averaging

We begin by reviewing the sequential regularized dual averaging algorithm and quote

some results about it (Nesterov, 2009; Xiao, 2010).

4.2.1 Sequential Dual Averaging Algorithm

The regularized dual averaging algorithm (Nesterov, 2009; Xiao, 2010) is depicted in

Algorithm 8. The goal of the this algorithm is to solve a problem of the form (4.2).

Corresponding to the definition of θ`,Z,Ψ, the input to the optimization algorithm is

threefold. The first input is an oracle function ΩB` :Rn�Z ÑRn, of the kind discussed

in §3.3. The second input is Ψ : Rn Ñ R, a λ-strongly convex regularization function.

And, third input is a concrete sequence of examples zT � pztqtPrT s, drawn according to

distribution Z, with each zt P Z.

The state maintained between rounds is the called dual average. The dual average

on round t P rT s is denoted dt , and constitutes a sum (implicitly, an average) of the
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Algorithm 8 Regularized Stochastic Dual Averaging
1: procedure RSDA-MINIMIZE(ΩB`,Ψ,zT )

2: d0 Ð 0 P Rn

3: w1 Ð argminwPW Ψpwq

4: for t P rT s do

5: receive gt P B`pwt ,ztq by calling ΩB`pwt ,ztq

6: dt Ð dt�1�gt

7: wt�1 Ð argminwPW txdt ,wy� tΨpwqu

8: return w̄ � 1
T

°
tPrT s wt

sub-gradients, gτ for τ P rts . That is, for t ¥ 1:

dt � dt�1�gt �
¸

τPrts
gτ (4.9)

The test points wt are not related directly to one another as in stochastic gradient de-

scent, but instead are obtained by projecting the dual averages into the primal space.

The projection step takes place on line 7 of the algorithm. For future reference, let:

ΠΨ,tpdq ∆� argmin
wPW

txd,wy� tΨpwqu (4.10)

Using this notation, the projection steps amount to:

wt�1 Ð ΠΨ,tpdtq, t ¥ 1 (4.11)

w1 Ð ΠΨ,1pd0q (4.12)

The test points are elements of the primal space, the domain of the original problem.

The “dual average” is so called because sub-gradients, conceptually, are elements of

the dual space (i.e., the space of linear mappings into the primal space). The output

of the program given indices zT is w̄T � 1
T
°

tPrT swt , the average test point over all

iterations.

4.2.2 Sequential Dual Averaging Analysis

4.2.2.1 Sequential Regret and Cost

The regret of a sequence of test vectors pvtqtPrT s, with respect to a stochastic function

being optimized θ and a sequence of indices zT , is denoted RzT ,θppvtqtPrT sq, and is
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defined as:

RzT ,θppvtqtPrT sq ∆�
�
� ¸

tPrT s
r`pvt ,ztq�Ψpvtqs

�
��

�
� ¸

tPrT s
r`pw�,ztq�Ψpw�qs

�
� (4.13)

That is, the regret is the difference between the online loss that was suffered by the

sequence pvtqtPrT s, and that which would be suffered by the optimal vector w� �
argminwPW tθpwqu, on the observed sequence of examples zT . We are primarily pri-

marily interested in RzT ,θppwtqtPrT sq, the regret of the sequence pwtqtPrT s of test points

produced by Algorithm 8 when run on the sequence zT .

The quality of a proposed solution v to the problem (4.1) can be quantified using its

cost, θpvq�θpw�q (3.2). The output of Algorithm 8 is w̄T � 1
T
°

tPrT swt , the average

of the test points. When the output of the algorithm is the average test point, in this

way, then regret and expected cost of the output vector are related by the following

standard theorem (Xiao, 2010):

Theorem 2. Suppose some stochastic function θ`,Z,Ψ is given. Suppose that, when run

on indices zT , drawn according to Z, some algorithm produces test points pwtqtPrT s.
And, suppose we have some ∆ PR such that for all sequences zT , RzT ,θppwtqtPrT sq ¤ ∆.

Then:

EzT rθpw̄T qs�θpw�q ¤ 1
T

∆

Here the expectation is taken over the probability of drawing the sequence zT , accord-

ing to Z.

4.2.2.2 Bounding Regret

We will now quote a theorem of Xiao (2010), bounding the regret of Algorithm 8. We

include only a part of the proof, that which will be used in the next section:

Theorem 3. (Xiao, 2010) Suppose we are given some indexed convex loss function

`, λ-strongly convex regularizer Ψ, and some distribution Z over examples. From

these, we create the regularized stochastic objective θ`,Ψ,Z . Let zT be an arbitrary

sequence of examples. Suppose that the test points pwtqtPrT s are generated according

to Algorithm 8 on input zT . Suppose that there exists a G P R, such that for all t P rT s,
‖gt‖� ¤ G. Then, the regret is bounded by:

RzT ,θppwtqtPrT sq ¤
G2

2λ
p6� logT q
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Proof. Suppose that a sequence of weights pwtqtPrT s is generated according to w1 �
ΠΨ,1p0q, and for t ¥ 1, wt�1 � ΠΨ,tp

°
τPrts gτq, and define the following gap function:

δ
�ppgtqtPrT s ,Ψq ∆� max

wPW

$&
%
�
� ¸

tPrT s
xgt ,wt �wy�Ψpwtq

�
��T Ψpwq

,.
- (4.14)

The wt are not passed explicitly as an argument to δ�, but are determined on the basis

of the gradients according to Algorithm 8. δ� is a bound on the regret for any w� P Rn

(Nesterov, 2009; Xiao, 2010), and Xiao (2010) shows:

δ
�ppgtqtPrT s ,Ψq ¤

5‖g1‖2
�

2λ
�

Ţ

t�2

‖gt‖2
�

2λpt�1q (4.15)

Recall that G P R is a constant such that ‖gt‖� ¤ G for all t P rT s. Then, we have:

RzT ,θ

�
pwtqtPrT s

	
¤ δ

�ppgtqtPrT s ,Ψq ¤
5G2

2λ
�

Ţ

t�2

G2

2λpt�1q ¤
G2

2λ
p6� logT q (4.16)

This implies (by Theorem 2) that the expected error of the output is bounded by:

EzT rθpw̄T qs�θpw�q ¤ O
�

G2 logT
λT



(4.17)

4.2.3 Comparison with Other Work

We here discuss the RDA algorithm in the context of other sequential stochastic op-

timizers, in order to better understand how the distributed variant relates to other

optimization strategies. The canonical stochastic optimization approach to the task

argminwPW Fpwq is to adopt the random first-order oracle model of optimization (§3.3).

Suppose F is λ-strongly convex, and the norms of the vectors returned by the oracle

are bounded by H. Hazan & Kale (2011) have shown that, under these conditions, the

optimal regret of any algorithm constrained to the random first-order oracle model is

ΩpH2 logT
λ

q. Similarly, Agarwal et al. (2012) have shown that the optimal convergence

rate for any random first-order oracle model algorithm is ΩpH2

λT q. Hazan & Kale (2011)

and Juditsky & Nesterov (2014) achieve the optimal convergence rate, both using a

strategy of exponentially decreasing step sizes, with decreases coming after exponen-

tially growing intervals. Table 4.1 compares Xiao’s (2010) regularized dual averaging

to important reference algorithms.
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Algorithm Regret Convergence Rate

Xiao’s (2010) RDA OpG2 logT
λ

q OpG2 logT
λT q

Hazan et al. (2007) OpH2 logT
λ

q OpH2 logT
λT q

Hazan & Kale (2011) OpH2 logT
λ

q OpH2

λT q

Table 4.1: A comparison of regret bounds and stochastic optimization convergence

rate bounds for three sequential algorithms. H bounds regularized gradients, G bounds

unregularized gradients, λ is the convexity parameter, and T counts the number of

iterations.

Due to the short-comings of the online-to-batch method of convergence proof

(Hazan & Kale, 2011), Xiao’s (2010) bound does not attain the asymptotically optimal

convergence rate as a function of T . However, the results of §5.8.1 show that regular-

ized dual averaging is as good an optimizer in practice as Hazan & Kale (2011). In

theoretical terms, one interesting difference between the dual averaging bound and the

others is the dependence on the constant term bounding sub-gradient norms for a reg-

ularized loss function of the form θ`,Z,Ψ (cf. equation 4.1). H, in our notation, bounds

the sub-gradients of the regularized function (i.e. elements of B r`pw,zq�Ψpwqs). In

contrast, G, as it has been used in this paper, bounds the sub-gradients of the unregular-

ized function (i.e. elements of B r`pw,zqs). It is unclear, however, that this will lead to

a meaningful difference in practice. As for modifying the dual averaging algorithm to

attain the optimal convergence rate, it should be noted that the algorithms of Hazan &

Kale (2011) and Juditsky & Nesterov (2014) each use an unfamiliar step-size regime,

and subsequent authors have looked at ways to modify familiar algorithms to achieve

the optimal rate. Shamir (2011) and Lacoste-Julien et al. (2012) have shown that sim-

ply modifying the averaging step of stochastic gradient descent algorithms can lead to

the asymptotically optimal rate. And, Chen et al. (2012) have shown that a change to

the proximal projection step of regularized dual averaging can produce a regularized

dual averaging algorithm with the asymptotically optimal rate. We leave the question

of modifying the algorithm to obtain optimal rates to future work, and use the simpler

online-to-batch analysis here, which will be enough to yield an improvement over past

work in the distributed dual averaging case and provide a useful algorithm for the work

of §5.
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4.3 Distributed Regularized Dual Averaging

We now present the distributed regularized dual averaging algorithm. This algorithm

and these bounds broadly follow Duchi et al. (2011b, 2012), but offer improved bounds

and a simplified algorithm for the strongly regularized case by incorporating tech-

niques adapted from Xiao (2010). Also, Lemma 2 is novel.

4.3.1 Distributed Dual Averaging Algorithm

In the distributed version of the algorithm, we have N worker nodes, each of which

has access to its own T examples. From this sequence of sequences of samples, we

iteratively approximate the optimizer for the Θ in an online fashion. Communication

between nodes on any round t P rT s can be modelled using graph, G � pVN ,Etq. An

edge between two nodes ni and n j in Et specifies that ni and n j communicate on round

t. The communication and aggregation of opinion at round t is described by a doubly

stochastic matrix Pptq. T rounds of the algorithm will require a sequence of communi-

cation matrices, pPptqqtPrT s, of length T . Let Pptqi, j be the entry in the i’th row and j’th

column of the square matrix Pptq. To say that an N�N matrix P is doubly stochastic

is to say that Pi, j ¥ 0 for each i, j P rNs and that:

¸
iPrNs

Pi, j � 1 and
¸

jPrNs
Pi, j � 1 (4.18)

The relevance of the choice of a doubly stochastic matrix is that it ensures that in-

formation will eventually propagate throughout the network, and will be discussed in

greater detail in §5. The fact that Pptq can change as a function of the round index

t means that there can be different communication patterns at different rounds. And,

Pptqi, j may only be greater than 0 if ni and n j are connected in E.

As shown in Algorithm 9, each node n P rNs will maintain its own copy of a dual

average at round t, called dn
t . But, now, instead of line 6 of Algorithm 8, we have the

following update rule for node n at time t:

dn
t Ð

¸
iPrNs

Pptqn,idn
t�1�gn

t (4.19)

In other words, the update at node n, at time t, involves the gradient gn
t , along with a

pooled estimate of the dual averages from all neighbouring nodes, according to Pptq.
From this we can use the same projection step (4.10) as before to obtain a primal

variable wn
t . The input to the distributed algorithm is oracle ΩB` and regularizer Ψ, as
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before, along with a sequence of sequences of indices zN
T

∆�
�
pzn

t qtPrT s
	

nPrNs
, instead

of just a sequence zT , and a sequence of communication matrices pPptqqtPrT s. The

output of the algorithm, depending on one’s application environment, can either be

w̄T � 1
T N

°
tPrT s

°
nPrNsw

n
t , the average of the average of the test points over all rounds

and nodes, or else w̄n
T � 1

T
°

tPrT sw
n
t , the average of the test points for the single node

n P rNs.

Algorithm 9 Distributed Regularized Stochastic Dual Averaging

1: procedure DISTRIBUTED-RSDA-MINIMIZE(ΩB`,Ψ,zN
T ,pPptqqtPrT s)

2: for n P rNs do in parallel

3: dn
0 Ð 0 P Rn

4: wn
1 Ð argminwPW Ψpwq

5: for t P rT s do

6: receive gn
t P B`pwn

t ,z
n
t q by calling ΩB`pwn

t ,z
n
t q

7: dn
t Ð

°
iPrNs Pptqn,idn

t�1�gn
t

8: wn
t�1 Ð argminwPW txdn

t ,wy� tΨpwqu

9: global: return w̄T �
1

T N

°
tPrT s

°
nPrNs wn

t

10: local n: return w̄n
T �

1
T

°
tPrT s wn

t

Examples There are two types of sequences pPptqqtPrT s that we will focus on in this

thesis, which are the two types of sequence that can be used to model the iterative

parameter mixing distribution optimization algorithms (Algorithms 1 and 3) and the

single-mixture distributed optimization algorithms (Algorithms 2 and 4). As §5.5 de-

scribes in more detail, the single-mixture distribution algorithm, in which nodes do not

communicate during the optimization process, can be modelled as a process that sets

the communication matrix Pptq equal to the identity matrix on each round t P rT s. The

intuition is that information is shared between nodes i and j on round t requires that

Pptqi, j ¡ 0. In the case of the identity matrix, we have Pptqi, j ¡ 0 if and only if i � j.

And, as §5.5 also describes, we can model the iterative parameter mixing algorithm

using a mix of uniform and identity matrices. The N�N uniform matrix has all entries

equal to 1
N (see §5.1). The uniform matrix models a round of full communication. That

is, each node is connected to each other node, and weights are combined equally. Sup-

pose that communication takes place every M rounds. Then, we can model iterative

parameter mixing as an algorithm that communicates according to the uniform matrix

every round m such that m mod M � 1, and uses the identity matrix on each of the
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other and the other M�1 out of each M rounds using the identity matrix.

4.3.2 Distributed Dual Averaging Analysis

We now want to consider the convergence of the distributed version of the regularized

dual averaging algorithm. Our main quantity of interest is the expected cost of each

local vector n P rNs:

EzN
T
rΘpw̄n

T qs�Θpw�q (4.20)

This will allow us to bound the error of the average of these local vectors,

EzN
T

�
�Θp 1

N

¸
nPrNs

w̄n
T q
�
��Θpw�q, (4.21)

which will be used in §5 (see, 5.67). This will involve bounding the distributed regret

of these sequence of vectors, defined in the next section. Along the way, we will also

need to bound the regret of an auxiliary centralized primal sequence. The organiza-

tion of this section is as follows. §4.3.2.1 defines the notion of distributed regret and

explains the relation to expected cost. §4.3.2.2 gives an important lemma to allow a

bound of the regret of a useful auxiliary central sequence. §4.3.2.3 gives an important

lemma to allow a bound of the regret of the local sequences pwn
t qtPrT s. Finally, §4.3.2.4

uses these lemmas to bound expected cost in concrete cases.

4.3.2.1 Distributed Regret and Cost

We want to define a distributed notion of regret. We begin by introducing two auxiliary

sequences of variables that will be central to the analysis:

et
∆� 1

N

¸
nPrNs

dn
t (4.22)

ut�1
∆� ΠΨ,tpetq, t ¥ 1 (4.23)

u1
∆� ΠΨ,1pe0q � ΠΨ,1p0q (4.24)

et is the average of dual averages dn
t across all nodes n. ut is the projection of this

central dual average into the primal space by the same rules as (4.11), (4.12).

Distributed regret is defined for an arbitrary sequence test points pvtqtPrT s, with

respect to a distributed stochastic objective Θ being optimized and a sequence of se-
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quence of indices zN
T :

RzN
T ,Θ

��
pvn

t qtPrT s
	

nPrNs



∆��

� ¸
tPrT s

1
N

¸
nPrNs

r`pvt ,zn
t q�Ψpvtqs

�
��

�
� ¸

tPrT s

1
N

¸
nPrNs

r`pw�,zn
t q�Ψpw�qs

�
� (4.25)

Distributed regret compares the performance of the sequence pvtqtPrT s to that of the

solution w� on the observed sequence of sequences of examples zN
T . By arguments

nearly identical to those that proved Theorem 2, we have the following relationship

between regret and expected cost in the distributed case:

Theorem 4. Suppose some distributed stochastic function Θ`,pZnqnPrNs,Ψ
is given. Let

pvtqtPrT s be the test points emitted by a given optimization algorithm when run on the

indices zN
T (the test points are a function of the indices). Suppose the zN

T are drawn

according to the pZnqnPrNs. And, suppose we have some ∆ P R such that for all zN
T ,

RzN
T ,Θ

ppvtqtPrT sq ¤ ∆. Then, where v̄T
∆� 1

T
°

tPrT s vt , we have:

EzN
T
rΘpv̄T qs�Θpw�q ¤ 1

T
∆

Here the expectation is taken over the probabilities of drawing the sequence of se-

quences pzn
t qtPrT s, according to the Zn, for n P rNs.

4.3.2.2 A Lemma About the Central Primal Sequence

In this section, we will show how to bound the regret of the central sequence putqtPrT s.
This result will be used in the next section to give regret bounds for the sequences

pwn
t qtPrT s. Before this, let us make an observation about the evolution of the sequence
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petqtPrT s. By the definition of et (4.22), we have:2

et�1 � 1
N

¸
nPrNs

dn
t�1 (4.28)

�et � 1
N

¸
nPrNs

gn
t (4.29)

The following Lemma follows Duchi et al. (2012) closely, but, uses the assumption

of strong convexity to use a stronger bound on the gap function (4.49) using Xiao

(2010):

Lemma 1. Suppose we are given some loss function `, λ-strongly convex regularizer

Ψ, and N distributions over examples pZnqnPrNs. From these, we create the distributed

stochastic objective Θ`,pZnqnPrNs,Ψ
. Let zN

T be an arbitrary sequence of sequences of

examples drawn according to the pZnqnPrNs. Suppose that the central sequence putqtPrT s
are generated according to Algorithm 9, along with equations 4.22 4.23 and 4.24.

Suppose that, there exists a G P R, such that for all t P rT s,n P rNs, ‖gn
t ‖� ¤ G. And,

suppose there exists a DPT G PR such that ‖et �dn
t ‖� ¤DPT G given G and pPptqqtPrT s.

Then, the regret of the central sequence putqtPrT s is bounded by:

RzN
T ,Θ

pputqtPrT sq ¤
p6� logT q

λ

�
G2

2
�2GDPT G




Proof. We begin by noting that:

¸
tPrT s

¸
nPrNs

r`put ,zn
t q� `pw�,zn

t qs (4.30)

�
¸

tPrT s

¸
nPrNs

r`pwn
t ,z

n
t q� `pw�,zn

t qs�
¸

tPrT s

¸
nPrNs

r`put ,zn
t q� `pwn

t ,z
n
t qs (4.31)

¤
¸

tPrT s

¸
nPrNs

r`pwn
t ,z

n
t q� `pw�,zn

t qs�
¸

tPrT s

¸
nPrNs

G‖ut �wn
t ‖ (4.32)

2This is because:

et�1 �
1
N

¸
nPrNs

dn
t�1 �

1
N

¸
nPrNs

¸
jPrNs

rPptqn, jdn
t �gn

t s (4.26)

And:

1
N

�
� ¸

nPrNs

¸
jPrNs

Pptqn, jdn
t

�
��

1
N

�
� ¸

jPrNs

dn
t

¸
nPrNs

Pptqn, j

�
��

1
N

�
� ¸

jPrNs

dn
t

�
�� et (4.27)
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In the last step we have used the G-Lipschitz continuity of `p.,zn
t q.

Now, suppose that gn
t P B`pwn

t ,z
n
t q is a sub-gradient of ` at pwn

t ,z
n
t q. Then, by the

definition of a sub-gradient and the convexity of `p.,zn
t q we have that:

¸
tPrT s

¸
nPrNs

`pwn
t ,z

n
t q� `pw�,zn

t q ¤
¸

tPrT s

¸
nPrNs

xgn
t ,w

n
t �w�y (4.33)

Then:

¸
tPrT s

¸
nPrNs

xgn
t ,w

n
t �w�y (4.34)

�
¸

tPrT s

¸
nPrNs

xgn
t ,ut �w�y�

¸
tPrT s

¸
nPrNs

xgn
t ,w

n
t �uty (4.35)

¤
¸

tPrT s

¸
nPrNs

xgn
t ,ut �w�y�

¸
tPrT s

¸
nPrNs

G‖wn
t �ut‖ (4.36)

Thus: ¸
tPrT s

¸
nPrNs

r`put ,zn
t q� `pw�,zn

t qs

¤
¸

tPrT s

¸
nPrNs

xgn
t ,ut �w�y�2

¸
tPrT s

¸
nPrNs

G‖wn
t �ut‖

(4.37)

Clearly, then, the key is to bound ‖ut �wn
t ‖, for arbitrary t, n. We use the fol-

lowing well-known result, based on the Lipschitz smoothness of the conjugate of a

strongly convex function (Hiriart-Urruty & Lemaréchal, 1996; Nesterov, 2009; Xiao,

2010; Duchi et al., 2012):∥∥ΠΨ,tpd1q�ΠΨ,tpd2q
∥∥¤ 1

λt
‖d1�d2‖� (4.38)

For t ¥ 2, ut � ΠΨ,t�1pet�1q and wt � ΠΨ,t�1pdn
t�1q. Thus, we have, for t ¥ 2:

‖ut �wn
t ‖¤

1
λpt�1q

∥∥et�1�dn
t�1

∥∥� (4.39)

For t � 1 we have wn
1 � argminwPW Ψpwq for all n. Thus u1 � wn

1 for all n so∥∥u1�wn
1

∥∥� 0 for all n.

We will delay the question of how to bound ‖et �dn
t ‖� until after this lemma. But,

recall the assumption that DPT G P R is such that ‖et �dn
t ‖� ¤ DPT G for all t P rT s and
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n P rNs. Thus:

¸
tPrT s

¸
nPrNs
‖wn

t �ut‖¤
¸

nPrNs
‖wn

1�u1‖�
Ţ

t�2

¸
nPrNs
‖wn

t �ut‖ (4.40)

¤ 0�
Ţ

t�2

¸
nPrNs

1
λpt�1q ‖d

n
t � et‖� (4.41)

¤
Ţ

t�2

¸
nPrNs

DPT G

λpt�1q (4.42)

¤
¸

tPrT s

¸
nPrNs

DPT G

λt
(4.43)

Thus, we have that:

RzN
T ,Θ

pputqtPrT sq (4.44)

�
¸

tPrT s

1
N

�
� ¸

nPrNs
r`put ,zn

t q� `pw�,zn
t qs� rΨputq�Ψpw�qs

�
� (4.45)

¤
¸

tPrT s

1
N

�
� ¸

nPrNs
xgn

t ,ut �w�y� rΨputq�Ψpw�qs
�
�� 2

N

¸
tPrT s

¸
nPrNs

G‖ut �wn
t ‖ (4.46)

¤
¸

tPrT s

1
N

�
� ¸

nPrNs
xgn

t ,ut �w�y� rΨputq�Ψpw�qs
�
�� 2

N

¸
tPrT s

¸
nPrNs

GDPT G

λt
(4.47)

For the first inequality, we used (4.37). In the second, we used (4.43).

We now seek to bound the first term in (4.47). Note that:

¸
tPrT s

1
N

¸
nPrNs

xgn
t ,ut �w�y �

¸
tPrT s

x 1
N

¸
nPrNs

gn
t ,ut �w�y (4.48)

We quoted Xiao’s (2010) result (4.15) about the gap function δ, which said that, if

pftqtPrT s is an arbitrary sequence of vectors, and if, v1 �ΠΨ,1p0q, and for t ¥ 1, vt�1 �
ΠΨ,tp

°
τPrts fτq, then:

¸
tPrT s

rxft ,vt �w�y� rΨpvtq�Ψpw�qss ¤
¸

tPrT s

5‖ft‖�
2λ

� 1
2t
‖ft‖2

� (4.49)

This is true whether fτ takes on the value gτ, or else 1
N
°

nPrNs g
n
τ . Therefore, given the

evolution of the et , as described by (4.29), and the fact that the ut , described by (4.23)
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and (4.24), meet the requirements for (4.49) to hold, we have:�
� ¸

tPrT s

1
N

�
� ¸

nPrNs
xgn

t ,ut �w�y� rΨputq�Ψpw�qs
�
�
�
� (4.50)

�
¸

tPrT s

�
�x 1

N

¸
nPrNs

gn
t ,ut �w�y� 1

N

�
� ¸

nPrNs
rΨputq�Ψpw�qs

�
�
�
� (4.51)

�
¸

tPrT s

�
�x 1

N

¸
nPrNs

gn
t ,ut �w�y� rΨputq�Ψpw�qs

�
� (4.52)

¤
5
∥∥∥ 1

N
°

nPrNs gn
1

∥∥∥�
2λ

�
Ţ

t�2

1
2λt

∥∥∥∥∥∥ 1
N

¸
nPrNs

gn
t

∥∥∥∥∥∥
2

�
(4.53)

¤5G2

2λ
�

¸
tPrT s

1
2λt

G2 (4.54)

¤G2

2λ
p6� logT q (4.55)

The first inequality uses (4.49).

We can now assemble the above results to complete the lemma. Starting from line

(4.47):

RzN
T ,Θ

pputqtPrT sq (4.56)

¤
¸

tPrT s

1
N

�
� ¸

nPrNs
xgn

t ,ut �w�y� rΨputq�Ψpw�qs
�
�� 2

N

¸
tPrT s

¸
nPrNs

GDPT G

λt
(4.57)

¤G2

2λ
p6� logT q�2

¸
tPrT s

GDPT G

λt
(4.58)

¤G2

2λ
p6� logT q� 2GDPT G

λ
p1� logT q (4.59)

¤p6� logT q
λ

pG2

2
�2GDPT Gq (4.60)

4.3.2.3 A Lemma About the Local Sequences

The next lemma will show how to bound the regret of each local sequence pwn
t qtPrT s,

for n P rNs. This section departs the furthest from past work. While Duchi et al.

(2011b) contains something close to Lemma 1, it does not contain anything similar to

Lemma 2.
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First, for future use, we want to show that:

‖dn
t ‖� ¤ Gt,@t P rT s,n P rNs (4.61)

We prove this by induction. For t � 0, we have dn
t � 0 for all n P rNs, and ‖0‖� � 0 ¤

G � 0. For t ¥ 1, assume the induction hypothesis holds for t � 1. Then, we have, for

any n P rNs:∥∥∥∥∥∥
¸

iPrNs
Pptqn,idi

t�1

∥∥∥∥∥∥� ¤
¸

iPrNs
Pptqn,i

∥∥di
t�1

∥∥� ¤ ¸
iPrNs

rPptqn,iGpt�1qs � Gpt�1q (4.62)

The first step uses the triangle inequality. The second step uses the induction hypoth-

esis. The third step uses the fact that
°

iPrNsPptqn,i � 1. Using the triangle inequality

once more:∥∥∥∥∥∥
¸

iPrNs
Pptqn,idn

t�1�gn
t

∥∥∥∥∥∥� ¤
∥∥∥∥∥∥
¸

iPrNs
Pptqn,idn

t�1

∥∥∥∥∥∥��‖g
n
t ‖� ¤ Gpt�1q�G � Gt (4.63)

Thus, by induction, (4.61) holds for all t P rT s.
The following Lemma is novel:

Lemma 2. Suppose the conditions of Lemma 1 hold. Suppose that pwn
t qtPrT s are the

test points for the n’th node when Algorithm 9 is run on the sequence zN
T . Then, the

regret for the local sequence pwn
t qtPrT s is bounded by:

RzN
T ,Θ

ppwn
t qtPrT sq ¤

p6� logT q
λ

�
G2

2
�4GDPT G




Proof. For brevity, let `Ψpw,zq ∆� `pw,zq�Ψpwq. Then:

RzN
T ,Θ

ppwn
t qtPrT sq (4.64)

� 1
N

¸
tPrT s

¸
nPrNs

r`Ψpwn
t ,z

n
t q� `Ψpw�,zn

t qs (4.65)

� 1
N

¸
tPrT s

¸
nPrNs

r`Ψput ,zn
t q� `Ψpw�,zn

t qs�
1
N

¸
tPrT s

¸
nPrNs

r`Ψpwn
t ,z

n
t q� `Ψput ,zn

t qs (4.66)

The term on the left is just RzN
T ,Θ

pputqtPrT sq, which we bounded in Lemma 1. The

term on the right, which we need to bound now, is equal to 1
N times:¸

tPrT s

¸
nPrNs

r`pwn
t ,z

n
t q� `put ,zn

t qs�
¸

tPrT s

¸
nPrNs

rΨpwn
t q�Ψputqs (4.67)
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We bound `pwn
t ,z

n
t q� `put ,zn

t q as before. By the G-Lipschitz continuity of ` for any

index zn
t , we have:

`pwn
t ,z

n
t q� `put ,zn

t q ¤ G‖wn
t �ut‖ (4.68)

Now, we want to bound Ψpwn
t q�Ψputq. We have

wn
1 � u1 � argmin

wPW
Ψpwq � 0

so Ψpwn
1q�Ψpu1q � 0. Then, for t ¥ 2,

wn
t � argmin

wPW

 xdn
t�1,wy�pt�1qΨpwq(

This implies that, for t ¥ 2:

xdn
t�1,w

n
t y�pt�1qΨpwn

t q ¤ xdn
t�1,uty�pt�1qΨputq (4.69)

pt�1qΨpwn
t q�pt�1qΨputq ¤ xdn

t�1,ut �wn
t y (4.70)

pt�1qΨpwn
t q�pt�1qΨputq ¤

∥∥dn
t�1

∥∥� ‖ut �wn
t ‖ (4.71)

Ψpwn
t q�Ψputq ¤

∥∥dn
t�1

∥∥
�

pt�1q ‖ut �wn
t ‖ (4.72)

Ψpwn
t q�Ψputq ¤ Gpt�1q

pt�1q ‖ut �wn
t ‖ (4.73)

Ψpwn
t q�Ψputq ¤ G‖ut �wn

t ‖ (4.74)

On line (4.73), we have used the fact, shown in (4.61), that
∥∥dn

t�1

∥∥
� ¤ Gpt�1q for all

t ¥ 2, n P rNs.
Thus:

1
N

�
� ¸

tPrT s

¸
nPrNs

r`pwn
t ,z

n
t q� `put ,zn

t qs�
¸

tPrT s

¸
nPrNs

rΨpwn
t q�Ψputqs

�
� (4.75)

¤2G
N

¸
tPrT s

¸
nPrNs
‖ut �wn

t ‖ (4.76)

¤2G
N

¸
tPrT s

¸
nPrNs

DPT G

λt
(4.77)

¤2GDPT Gp1� logT q (4.78)

On line (4.77), we used (4.43). Putting (4.66) together with (4.78) and Lemma 1

completes the lemma.
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4.3.2.4 Bounding Regret and Expected Cost

To move from Lemmas 1 and 2 to concrete bounds on run-time we need to bound the

quantity DPT G, for gradient bound G, and communication sequence pPptqqtPrT s. We

will consider two possibilities for the communication pattern. The first is a fixed com-

munication pattern, in which the communication matrix is the same for each iteration.

The second is a stochastic communication pattern, in which the communication matrix

can vary over iterations, being drawn from a fixed distribution.

4.3.2.4.1 Fixed Communication Pattern We first consider the case in which the

communication matrix is fixed. Suppose we have some fixed matrix N �N matrix P

such that, P � Pptq for all t P rT s. And, suppose that the dn
t are updated according to

(4.19). In this case, Duchi et al. (2012) show that:

‖et �dn
t ‖� ¤ 2G

logpT?Nq
1�σ2pPq �3G (4.79)

We will review the arguments for this bound in §5. This leads immediately to the

following theorem bounding regret in the case of a fixed communication pattern.

Theorem 5. Suppose that the conditions of Lemma 1 hold. And, suppose that there

exists a doubly stochastic N �N matrix P such that P � Pptq for each t P rT s. Then,

the regret of the central sequence putqtPrT s produced by Algorithm 9, when run on the

index sequence zN
T , is bounded by:

RzN
T ,Θ

pputqtPrT sq ¤ O
�

G2 logT logpT?Nq
1�σ2pPq




The expected cost of the average central vector ūT is bounded by:

EzN
T
rΘpūT qs�Θpw�q ¤ O

�
G2 logT logpT?Nq

T p1�σ2pPqq



The regret of the local sequence pwn
t qtPrT s for any n P rNs is bounded by:

RzN
T ,Θ

ppwn
t qtPrT sq ¤ O

�
G2 logT logpT?Nq

1�σ2pPq



The expected cost of the average local vector w̄n
T for any n P rNs is bounded by:

EzN
T
rΘpw̄n

T qs�Θpw�q ¤ O
�

G2 logT logpT?Nq
T p1�σ2pPqq
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4.3.2.4.2 Stochastic Communication Pattern A fixed communication pattern may

be undesirable or impossible. We now allow a sequence of communication matrices

pPptqqtPrT s, possibly each distinct. Suppose that the communication matrices Pptq are

treated as draws of a random matrix, according to a fixed distribution, such that each

Pptq being doubly stochastic and N �N. Note that, in this case, EPptq rPptqs is also

doubly stochastic. Suppose that the dn
t are updated according to (4.19). In this case,

Duchi et al. (2012) show that, with probability 1� 1
T , we have:

max
tPrT s

max
nPrNs
‖et �dn

t ‖� ¤
6G logpT 2Nq

1�λ2pEC rpPptqqT Pptqsq �
G

T
?

N
�2G (4.80)

This leads immediately to the following theorem bounding regret in the case of a

stochastic communication pattern.

Theorem 6. Suppose that the conditions of Lemma 1 hold. And, suppose that for

each t P rT s, Pt is a doubly stochastic N�N matrix. Then, with probability 1� 1
T , the

following hold. The regret of the central sequence putqtPrT s produced by Algorithm 9,

when run on the index sequence zN
T , is bounded by:

RzN
T ,Θ

pputqtPrT sq ¤ O
�

G2 logT logpT 2Nq
1�λ2pEPptq rpPptqqT Pptqsq




The expected cost of average central vector ūT is bounded by:

EzN
T
rΘpūT qs�Θpw�q ¤ O

�
G2 logT logpT 2Nq

T p1�λ2pEPptq rpPptqqT Pptqsqq



The regret of the local sequence pwn
t qtPrT s, for any n P rNs, is bounded by:

RzN
T ,Θ

ppwn
t qtPrT sq ¤ O

�
G2 logT logpT 2Nq

1�λ2pEPptq rpPptqqT Pptqsq



The expected cost of average local vector w̄n
T for any n P rNs, is bounded by:

EzN
T
rΘpw̄n

T qs�Θpw�q ¤ O
�

G2 logT logpT 2Nq
T p1�λ2pEPptq rpPptqqT Pptqsqq




4.3.3 Comparison with Past Work

Duchi et al. (2012) Duchi et al. (2011b, 2012) discuss several optimization scenarios,

each of which deals with optimization of general convex functions, and none of which
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can exploit the special structure of strongly regularized functions. We will discuss the

variant of the algorithm (from Duchi et al. (2011b)) most similar to Algorithm 9, where

they present an algorithm to optimize a stochastic function regularized by a convex

regularization function. This task is exactly like (4.5), except that the regularizer is not

assumed to be strongly convex.

Let ϒ : Rn Ñ R be a known closed, convex function. Now, we can use ϒ as a

(not necessarily strongly convex) regularizer, to create the following stochastic convex

objective, in the form of (4.4):

Θ`,pZnqnPrNs,ϒ
pwq � 1

N

¸
nPrNs

θ`,Zn,ϒpwq (4.81)

� ϒpwq� 1
N

¸
nPrNs

Ez r`pw;zqs (4.82)

The associated optimization task is:

argmin
wPW

!
Θ`,pZnqnPrNs,ϒ

pwq
)

(4.83)

As a solution to (4.83), Duchi et al. (2011b) propose an algorithm just like Algo-

rithm 9, except that it uses the following projection rule instead of (4.10). Let ψpwq :

Rn Ñ R be a 1-strongly convex function with respect to some norm ‖.‖, and assume

argminwPW ψpwq P argminwPW ϒpwq. Then:

wt�1 � argmin
wPW

txdt ,wy� tϒpwq�βtψpwqu (4.84)

Here, pβtqtPrT s is a non-decreasing sequence of positive real values, specified as input

to the algorithm. In this case, Duchi et al. (2011b) show that the centralized sequence

putqtPrT s, as defined in (4.23), (4.24), has regret bounded by:

RzN
T ,Θ

pputqtPrT sq ¤ βT ψpw�q� G2

2

¸
tPrT s

1
βt�1

�2GDPT G
¸

tPrT s

1
βt

(4.85)

Here, G and DPT G have the same meaning as in Lemma 1. Duchi et al. (2011b) do not

discuss how to bound the regret of the local sequences pwn
t qtPrT s.

Compared to this work, our work offers three improvements:

1. The optimal rate for (4.85) is achieved using βt � γ
?

t for t P rT s and fixed

γ ¡ 0. In this case, we have convergence in expectation of the central sequence

putqtPrT s bounded as E rΘpūT qs�Θpw�q ¤ OpGDPT G?
T
q. This is in contrast to our

bound on the regret of the central sequence, which is asymptotically lower at

E rΘpūT qs�Θpw�q ¤ OpGDPT G logT
T q.
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Algorithm Convergence Rate

Duchi et al. (2012) OpHDPT G
λ
?

T
q

This work OpGDPT G logT
λT q

Tsianos & Rabbat (2012) OpHDPT G
λT q

Table 4.2: A comparison of regret bounds and stochastic optimization convergence rate

bounds for three distributed algorithms. H bounds regularized gradients, G bounds

unregularized gradients, DPT G bounds the contribution of the network to the error, λ is

the convexity parameter, and T counts the number of iterations.

2. The projection rule (4.84) requires the setting of the parameters pβtqtPrT s. This

should be done with knowledge of the function being optimized (Duchi et al.,

2011b), which might have to be guessed. In contrast, our projection rule (4.10)

does not require the setting of any parameter values, and so is much more user-

friendly in practice.

3. Duchi et al. (2011b) do not discuss, in the context of composite functions, how

to bound the convergence of each local sequence pwn
t qtPrT s. They only bound the

convergence of the central sequence (which we have called putqtPrT s). We ana-

lyzed the convergence of each local sequence pwn
t qtPrT s in Lemma 2, to show that

convergence in expectation is bounded by E rΘpw̄n
T qs�Θpw�q ¤ OpGDPT G logT

T q.
The proof techniques of Lemma 2 are significantly different from any of those

used in Duchi et al. (2011b).

Tsianos & Rabbat (2012) Tsianos & Rabbat (2012) give a Hazan & Kale (2011)-style

algorithm (see §4.2.3) for distributed optimization of strongly convex functions, which

also uses ideas of Duchi et al. (2012) to bound the contribution of the network to the

error. Table 4.2 compares the convergence rates of Tsianos & Rabbat (2012), Duchi

et al. (2012) and the present work. The difference between the algorithm of Tsianos &

Rabbat (2012) and ours is directly analogous to the difference between the algorithm

of Hazan & Kale (2011) and that of Xiao (2010). Practically, the Hazan & Kale (2011)

and Xiao (2010) algorithms perform roughly the same in our experiments (§5.8.1). The

online-to-batch conversion in our convergence proof results in the non-optimal factor

of logT . On the other hand, our regularized dual averaging algorithm has dependence

on G to bound sub-gradients, rather than H. As noted in §4.2.3, suggestions have been

made that point the way towards modifying known algorithms to achieve the optimal
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Op1{T q-like rate (Shamir, 2011; Lacoste-Julien et al., 2012; Chen et al., 2012). We

leave the question of modifying our algorithm to achieve the optimal rate to future

work. An important reason that we chose to work within the framework of Duchi et al.

(2012) instead of Tsianos & Rabbat (2012) is that the former makes clear the effect

of using stochastic communication matrices, which are central for the analysis of §5,

while the latter, as far as we are aware, does not.

4.4 Conclusion

We have have presented a novel variant of the distributed dual averaging algorithm

for optimization of strongly regularized stochastic functions. This algorithm improves

over the previous state-of-the-art in distributed dual averaging algorithms (Duchi et al.,

2011b, 2012) for the case of optimizing distributed stochastic functions with strongly

convex regularizers in three ways. First, the regret bound is tighter. Second, we obvi-

ate the need to give the step-size schedule pβtqtPrT s required to optimize a composite

objective in the previous work (Duchi et al., 2011b). Finally, we show how to bound

the regret and cost for each local sequence pwn
t qtPrT s, which is not shown in Duchi et al.

(2011b), and which is used in §5.



Chapter 5

A Markov Chain Mixing Approach to

Understanding Iterative Parameter

Mixing

This chapter presents new theoretical and empirical results on the distinction between

the iterative parameter mixing and single-mixture strategies of distributed optimization

discussed in §1. Based on the Markov Chain-inspired work of Duchi et al. (2012),

we show that the IPM version of the distributed dual averaging algorithm of the last

chapter constitutes a convergent solution to the distributed optimization problem, (1.2),

repeated here:

argmin
wPW

1
N

¸
nPrNs

fnpwq (1.2)

We demonstrate the convergence of this method, and compare it to the single-mixture

method, for which, on the basis of work by Duchi et al. (2012), it can be shown that

there exist functions for which single-mixture dual averaging will not converge.

This theoretical perspective is novel because, to our knowledge, past work on the

distinction between IPM and single-mixture has focused only on reporting test-time

results. Our analysis suggests suggests that the root of the distinction in test-time

performance may be in the ability to optimize the training set. We present experimental

results which agree with this analysis, showing that for an average regularized SVM-

loss objective, IPM results in a better training objective value than does single-mixture

optimization.

Our novel perspective on IPM training supports the use of the non-smooth linear

71
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structured SVM training objective (2.28), repeated here:

argmin
w

λ

2
‖w‖2

2�
1
M

¸
mPrMs

`SVM pw;pxm,ymqq (2.28)

To our knowledge this is the first theoretical justification for the IPM, as opposed to the

single-mixture distribution algorithm, beyond the perceptron-based work of McDonald

et al. (2010), and is more general in that it is a general result about convex optimization,

which includes the perceptron as a special case. We show the benefit of our more

general analysis by demonstrating that distributively SVM-trained structured-prediction

models for NLP outperform those trained using the perceptron, thereby improving the

state-of-the-art in this area. Also, testing three structured-prediction tasks, on three

data sets, and on a wide range of network sizes, the research of this chapter investigates

the presence of a network speed-up due to multi-core optimization (showing a speed-

up in some cases), as well as the effect of communication frequency, and the usefulness

of iterate averaging (Collins, 2002) in the distributed setting.

5.1 Notation and Relevant Linear Algebra

Before beginning with the chapter, we briefly review some concepts from linear algebra

and introduce some notation that will be used in the sequel.

Where A is any N�M rectangular matrix, Ai, j, with i P rNs and j P rMs is the entry

of A in the i’th row, j’th column. Also, we use 1N to denote the column vector whose

entries are all equal to 1. We use IN to denote the N �N identity matrix (i.e., that

matrix with 1’s on the main diagonal and 0’s elsewhere):

IN �

�
��������

1 0 � � � 0 0

0 1 � � � 0 0
...

0 0 � � � 1 0

0 0 � � � 0 1

�
��������

(5.1)

We use UN to denote the uniform matrix, which is a N�N matrix in which each entry
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is 1
N , i.e., 1

N 1T 1:

UN �

�
��������

1
N

1
N � � � 1

N
1
N

1
N

1
N � � � 1

N
1
N

...
1
N

1
N � � � 1

N
1
N

1
N

1
N � � � 1

N
1
N

�
��������

(5.2)

Also, let ∆N be the N-dimensional simplex, which is the set of all N-dimensional col-

umn vectors whose elements form a probability distribution. The sub-script on any of

these objects might be omitted if the dimensions are clear from context.

For a square matrix A, an eigenvalue and an eigenvector are a scalar λ P R and a

non-zero vector v P RD such that:

Av � λv (5.3)

The eigenvectors of A are precisely those vectors v whose images under A are parallel

to their original forms. The eigenvectors of A are orthogonal if and only if A is sym-

metric. For any real-valued m� n rectangular matrix B, the singular values of B are

the non-negative square roots of the square matrix BT B. Singular values have many

interesting properties, which are beyond the scope here. However, we do mention that

the singular values play a central role in the well-known singular value decomposition

of an arbitrary rectangular matrix B, and this decomposition plays an important role in

many branches of statistics and machine learning.

We can order the eigenvalues of a matrix from largest to smallest, writing λ1pAq ¥
� � � ¥ λNpAq. Similarly, we can order the singular values, writing σ1pAq ¥ � � � ¥ σNpAq.
Let ρpAq �maxt|λ| : λ is an eigenvalue of Au. For a real-valued matrix A, it is possible

to show that:

max
‖x‖2�1

‖Ax‖2 �
b

ρpAT Aq (5.4)

A column stochastic matrix is a square N�N matrix with only non-negative en-

tries, where the entries in each column sum to 1 (i.e., constitute a probability distribu-

tion):

¸
iPrNs

Pi, j � 1,@ j P rNs (5.5)
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And, we recall from §4 that a doubly stochastic matrix P is a matrix with only non-

negative entries in which the entries of each column and each row sum 1:

¸
iPrNs

Pi, j � 1,@ j P rNs and
¸

jPrNs
Pi, j � 1,@i P rNs (5.6)

The largest eigenvalue of a doubly stochastic matrix is always 1 (Horn & Johnson,

1985). And, the square of a doubly stochastic matrix is also doubly stochastic (Horn

& Johnson, 1985).

5.2 The IPM and Single-Mixture Optimization Algorithms

5.2.1 Forms of IPM and Single-Mixture Algorithms

5.2.1.1 The Perceptron

The iterative parameter mixing strategy for the perceptron was reviewed as Algorithm

1. As we said in §1, this algorithm involves repeated rounds of perceptron training

on each node, interspersed with communication at the end of each epoch between the

nodes, in which the estimates of the optimal weight vector are averaged throughout the

network. This algorithm is to be contrasted with the single-mixture perceptron, already

shown as 2. As we said, the definition of the single-mixture perceptron algorithm is

the combination of local perceptron training, parameters being averaged at the end.

5.2.1.2 General Form

We considered a general form for the IPM strategy in Algorithm 3 (page 14). We also

considered a general form for the single-mixture strategy in Algorithm 4. The defining

characteristics of the IPM strategy in general are:

• Each node performs local stochastic optimization.

• Nodes communicate after each pass through the training data by averaging esti-

mates of the optimal weight vector (either using a primal or dual representation).

On the other hand, the defining characteristics of the single-mixture strategy are:

• Each node performs local stochastic optimization.

• Nodes communicate only at the end, and do not communicate during training.
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Algorithm 10 Iterative Parameter Mixing for Dual Averaging
1: procedure IPM-DA(Data set shards: pSnqnPrNs ,Ψ)

2: d̄0 � 0, τ0,n � 0 for n P rNs

3: for e � 1, � � � ,E do � Do E epochs of training

4: dn,e,τn,e, w̄n,e � OneE pochDAn,epSn, d̄e�1,τe�1,nq � N threads run in parallel

5: d̄e �
1
N

°
nPrNs sn,e � communication by averaging

6: return 1
E

1
N

°
ePrEs

°
nPrNs w̄n,e � return average over iterates

1: procedure ONEEPOCHDAn,e(S,d0,τ)

2: w1 Ð argminwPW
 
xdn,e

0 ,wy� τΨpwq
(

3: M Ð |S|

4: for m � 1, � � � ,M do

5: receive gn,e
m P B`pwt ,zmq

6: dn,e
m Ð dn,e

m�1�gn,e
m

7: wm�1 Ð argminwPW
 
xdn,e

m ,wy�pτ�mqΨpwq
(

8: w̄ � 1
M

°
mPrMs wm

9: return dn,e
m ,τ�m, w̄

Algorithm 11 Single-Mixture Dual Averaging
1: procedure SM-DA(Data set shards: pSnqnPrNs ,Ψ)

2: for n � 1, � � � ,N do � Each n P rNs nodes runs in parallel

3: d0,n � 0 , τ0,n � 0

4: for e � 1, � � � ,E do � Do E epochs of training

5: dn,e,τn,e, w̄n,e � OneE pochDApSn,de�1,n,τe�1,nq

6: return 1
E

1
N

°
ePrEs

°
nPrNs w̄n,e � return average over iterates



Chapter 5. A Markov Chain Mixing Approach to Understanding Iterative Parameter Mixing76

5.2.1.3 Dual Averaging

Our analysis will focus on the distinction between IPM and single-mixture communi-

cation in the context of the regularized distributed dual averaging algorithm presented

in §4. An iterative parameter mixing dual averaging algorithm is given in Algorithms

10, and a single-mixture dual averaging algorithm is shown in Algorithm 11. Both

algorithms have been written to take as input N shards of data pSnqnPrNs, and a regular-

ization function Ψ.

We can see that Algorithms 10 and 11 can be seen as instances of the generic

IPM and single-mixture template Algorithms 3 and 4, respectively. Here, the generic

OneE pochStochastic specifically takes the form of the function OneE pochDA. The

vector sn,e of Algorithms 3 and 4, which constitutes node n’s optimizer state takes the

form of the pair pdt,n,τt,nq. This constitutes a dual representation of the optimal weight

vector. In §5.5.1 we will verify that Algorithms 10 and 11 are indeed forms of the

distributed dual averaging algorithm of Algorithm 9.

5.2.2 Past Work with the IPM Algorithm

5.2.2.1 Empirical

Distributed Training Studies McDonald et al. (2010) investigate the training of a non-

projective dependency parser for Czech (with about 70,000 training examples, Hajic

et al. (2004)) and a named-entity recognizer (with about 14,000 training examples,

Tjong Kim Sang & De Meulder (2003)). They find that distributed training allows for

faster training times than sequential training, but do not report the factor of the speed-

up. And, they find that only IPM, but not single-mixture or sub-sampling, can reach

the same level of accuracy as the sequential solution. They also report, for named-

entity recognition experiments, that performance peaks at about a network size of 25-

30 nodes. Hall et al. (2010) investigate the training of a web-site click-through model,

on training set sizes of about 370 million examples, in one experiment, and 1.6 billion

in another. They compare sequential SGD, IPM SGD, and distributed gradient optimiza-

tion for training with the maximum entropy objective, and compare this to IPM for the

perceptron. Hall et al. (2010) find very large improvements for distributed training

using IPM SGD compared to single-core SGD, reporting a speed-up factor of about 75.

They also show that IPM SGD training returns better models much more quickly than

the batch distributed gradient method. Simianer et al. (2012) look at SGD training of a
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synchronous CFG translation system (Chiang, 2007) with a perceptron-like loss. They

measure test-set performance and find that IPM-based optimization strategies allow op-

timal test-set performance, while single-mixture SGD does not. Simianer et al. (2012)

do not, however, report training times.

Shared Memory Studies At least three additional studies have compared IPM training

to shared-memory parallel strategies. (It is important to reiterate, here, that shared-

memory parallel programming is more permissive, for a given number of cores, be-

cause memory is shared between cores, and so better performance is to be expected.)

Chiang (2012) advocates an asynchronous margin-based training algorithm, showing it

out-performs IPM training. Zhao & Huang (2013) study and advocate a parallel mini-

batch form of structured perceptron training. Here, a collection of nodes on a shared

memory machine process each mini-batch in parallel (see §3.4). Zhao & Huang (2013)

compare this parallelization technique to IPM, in the training of a shift-reduce depen-

dency parser (Huang & Sagae, 2010), and show that the speed-up of IPM is limited to

about 3 times faster, even as the number of cores is increased to 12, whereas they can

achieve a speed-up of about 6 times using the parallel mini-batch approach. Chang

et al. (2013) compare IPM for the perceptron to a shared-memory parallel SVM train-

ing algorithm for part-of-speech tagging and relation extraction, and find that their

SVM implementation usually reaches better accuracies in less time in 16 core experi-

ments. It is unclear, however, whether these differences are due to IPM training or the

SVM-vs-perceptron difference. Chang et al. (2013) do not make clear how the perfor-

mance of IPM training scales with the number of processors, but they do show that, for

their shared-memory method, it is difficult to increase performance by adding more

cores beyond about 8.

5.2.2.2 Theoretical

5.2.2.2.1 McDonald et al. (2010) Their Analysis McDonald et al. (2010) analyze

the IPM perceptron training strategy and compare it to the single-mixture perceptron.

They first prove the following negative result about the single-mixture distributed per-

ceptron:

Theorem 7. There exists a separable data set S, and a partition of S into pSnqnPrNs
such that, though S is separable, SM-PERCEPTRON (the single-mixture perceptron

algorithm of Algorithm 2) will not return a separating hyper-plane.
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This theorem is proven using an example of such a set, with 4 training instances

and 2 shards. In contrast to the possibility that the single-mixture perceptron will find

an existing separating hyper-plane, McDonald et al. (2010) also prove the following

theorem:

Theorem 8. Suppose R bounds the norms ‖Φpyq�Φpymq‖ for each pxm,ymq P S, each

y P C pxmq, and that there exists a wopt ,
∥∥wopt

∥∥ � 1, that separates S by a margin of

γ. Let pSnqnPrNs be any partition of S into N shards. Let kn,t be the number of mistakes

made by the n’th node on the t’th epoch of training. Then, the number of mistakes

made by the IPM-PERCEPTRON algorithm will be bounded as:

1
N

¸
nPrNs

¸
tPrT s

kn,t ¤
�

R
γ


2

Recall from Theorem 1 that the number of mistakes for the ordinary sequential

perceptron algorithm is bounded by
�

R
γ

	2
. Thus, the bound on the number of mistakes

made by the sequential perceptron algorithm and the average number of mistakes made

by each node in the IPM-PERCEPTRON algorithm is the same. McDonald et al. (2010)

show that, if one uses a more sophisticated averaging step instead of line 5 of Algo-

rithm 1, where, instead of the uniform average w̄t � 1
N
°

nPrNswt,n, components are

weighted according to the number of mistakes made on each shard in the past round,

one can show that the number of rounds of distributed training is also bounded, in

the worse cast, by
�

R
γ

	2
. Thus, in the worst case, the number of rounds of training

required for sequential perceptron training, and the number of rounds required for dis-

tributed perceptron training, are predicted to be the same. But, the distributed training

processes each epoch N time faster, ignoring communication cost. Thus, distributed

perceptron training is predicted to provide a speed-up of a factor of around N, ignoring

communication.

Discussion One problem with this style of analysis is that it relies on the assumption

that the training data is separable. This is not a realistic assumption for real-life NLP

data sets. In virtually all applications, the best that can hope for is that the loss on the

training set will reach a fairly low value. A related problem is that what is analyzed

is time to convergence, but what is measured, by McDonald et al. (2010) is test-set

performance. Thus, what is analyzed and what is measured are different.

5.2.2.2.2 Duchi et al. (2012) Duchi et al. (2012) note that the IPM perceptron al-

gorithm McDonald et al. (2010) algorithm is a special case of their distributed dual
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averaging algorithm. They do not elaborate on this point. They do not analyze the IPM

algorithm in particular, nor discuss predictions for IPM versus single-mixture commu-

nication, and do not experiment with either strategy. The analysis of this algorithm

within the framework provided by Duchi et al. (2012), and the attending experiments,

are the contribution of this thesis.

5.3 Markov Chains and Mixing Times

5.3.1 Markov Chains

Sampling from a distribution is a central problem for applications of statistical sci-

ence. The goal of sampling is to draw elements from an output space Ω according

to a probability distribution π, and Monte Carlo methods, in general, are computa-

tional techniques that make use of the ability to computationally generate uniformly

distributed pseudo-random numbers in order to sample from, or simulate draws from,

an arbitrary target distribution π (MacKay, 2003).1

Sometimes it is difficult to sample from π directly. There are various reasons why

this might be so. It might be that π is not known. For example, one might know π only

up to a multiplicative constant (MacKay, 2003).2 Or, it might be that Ω is so large

that is is not possible to even enumerate the space in order to compute the probability

of each (MacKay, 2003; Levin et al., 2009). And, sometimes, both situations may

obtain at once. In some cases in which it is not possible to sample from a distribution

directly, it is still possible to specify the distribution indirectly, using a Markov chain

(Guruswami, 2000; Levin et al., 2009). Such a situation obtains, for example, in the

case of the Ising Model from statistical physics (MacKay, 2003).

A Markov chain over state space Ω is a sequence of random variables pX0,X1, � � �q,
each Xt PΩ, in which the value of Xt�1 is independent of pX0, � � � ,Xt�1q given Xt (Neal,

1993). That is:

PrpXt�1 � y | X0 � x0,X1 � x1, � � � ,Xt�1 � xt�1,Xt � xq � PrpXt�1 � y | Xt � xq
(5.7)

The indices t are often viewed as representing “times” (Neal, 1993). A Markov chain

can be specified using an initial distribution over states µ0pxq, and a transition distribu-
1From the ability to sample in this way, it is also straightforward to compute the expectation of some

function f : Ω Ñ R given π (MacKay, 2003).
2That is, we might have a function f : Ω Ñ R such that, for some scalar Z, f pxq{Z � πpxq for all

x P Ω, but Z is not known.
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tion Qtpx, �q for each t and each x. Qt�1px,yq is the probability that the t�1’th state is

y if the t’th state is x. A sequence generated in this way obeys the Markov property if

and only if Qt is chosen independently of px0, � � � ,xt�1q, e.g., before hand or at inde-

pendently random. A (time-)homogeneous Markov Chain is one on which Qt does

not vary as a function of t. That is, for the given chain there exists some matrix Q such

that Qt � Q for all rounds t, in which case:

PrpXt�1 � y | Xt � xq � Qpx,yq (5.8)

A homogeneous Markov chain can be conveniently expressed in matrix form. We

can enumerate the finite set Ω, so that each x P Ω can be identified with an integer in

r1, � � � , |Ω|s. Then, we can construct a matrix P such that the x’th column of P contains

the distribution Qpx, �q. That is, the y’th row of the x’th column contains Qpx,yq. And,

we can let µ0 P ∆|Ω|, the |Ω| entry column vector, specify an initial distribution over

states.

Suppose we start a homogeneous Markov chain with initial distribution µ0. That is,

PrpX0 � xq � µ0pxq. Now, suppose we want to know the probability distribution over

states that the system will be in at time t ¡ 0. That is, we want to know the distribution

PrpXt � y | X0 � µ0q. Standard reasoning shows that µt , for t ¡ 0, is equal to:

µt � Ptµ0 (5.9)

In certain cases, if P is chosen properly, the limiting distribution will be π itself. Thus,

if π cannot be sampled from directly, one can sometimes sample from this distribution

by instead sampling from Ptµ0.

In the interesting applications, |Ω| is very large, so the operation of raising the

matrix P to the power of t is not feasible. Despite this apparent difficulty, the simulation

of a Markov chain can be conducted at low computational cost, using a random walk
(Levin et al., 2009). We simply sample state X0 � x0 according to µ0. Then, we for

any t ¡ 0, we sample state xt according to PrpXt | Xt�1 � xt�1q using the distribution

Qpxt�1, �q. Often, such a distribution is easy to compute.

5.3.2 Mixing and Mixing Times

We saw that, in a properly specified homogeneous Markov chain, after t iterations,

Ptµ0 is equal to the distribution π that one hopes to sample from. A central question

when sampling using a Markov chain concerns how long one must run the random
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walk for until one is sampling from π. Though the random walk representation does

not explicitly make use of the matrix representation of the Markov chain, the equiva-

lence between the two means that this question can be studied from a matrix theoretic

perspective.

In order to state some formal properties of Markov chains, we introduce the fol-

lowing definitions. A matrix P is called irreducible if, for any pair of states x,y P Ω,

there exists an integer t such that Pt
x,y ¡ 0. This means that it is eventually possible

to get from any state x to any other state y, by taking enough steps, even if it is not

possible in a single step. The matrix P is called aperiodic if gcdtt : Ptpx,q ¡ 0u � 1

for all x PΩ. The total variation distance between two probability distributions (over

finite event spaces) is defined as:

‖µ�ν‖TV � max
A�Ω

|µpAq�νpAq| (5.10)

Then, the following convergence theorems give the conditions under which we can

guarantee the convergence of a homogeneous Markov chain to its stationary distribu-

tion:

Theorem 9. Let P be the transition matrix of an irreducible Markov chain. Then there

exists a probability distribution π on Ω such that Pπ � π.

Theorem 10. Suppose that P is irreducible and aperiodic, with stationary distribution

π. Then, there exists an α, 0   α   1 such that:

max
µ0P∆|Ω|

∥∥Ptµ0�π
∥∥

TV ¤ α
t

Given that convergence of an appropriately specified Markov to its stationary dis-

tribution is guaranteed, we can speak of the amount of time it takes for this to happen.

The mixing time for a homogeneous Markov chain, and for a given tolerance ε, as:

mixing timepP,εq � min

#
t : max

µ0P∆|Ω|

∥∥Ptµ0�π
∥∥

TV

+
(5.11)

5.3.3 Stationary Distribution for a Doubly Stochastic Matrix

Recall that, in §4, we chose the communication matrix to be doubly stochastic, where,

as noted, a doubly stochastic matrix is a matrix P with non-negative entries such that

the entries in each row and in each column sum to 1:¸
iPrNs

Pi, j � 1 and
¸

jPrNs
Pi, j � 1 (5.12)
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The relevance of choosing a doubly stochastic matrix is that the limiting distribu-

tion for any N �N doubly stochastic matrix is the uniform vector (Horn & Johnson,

1985):

1{N �

�
���

1{N
...

1{N

�
��� (5.13)

It is easy to verify that this is indeed the stationary distribution for any doubly stochas-

tic matrix.3

And, how long does it take a Markov chain specified by doubly stochastic matrix

P to mix? Duchi et al. (2012) show the following:

Lemma 3. Suppose P is a doubly stochastic N�N matrix. Then:

max
µ0P∆N

∥∥Ptµ0�1{N∥∥
TV � 1

2
max
µ0P∆N

∥∥Ptµ0�1{N∥∥
1 ¤

1
2

σ2pPqt
?

N (5.14)

Here, as per §5.1, σ2pPq is the second largest singular value of P. Thus, we see

that the mixing time of a chain specified by doubly stochastic matrix P chain is closely

related to the singular value spectrum of P. The relationship between mixing time and

spectral properties holds more generally (Guruswami, 2000; Levin et al., 2009). In §5.4

we will see that the convergence of distributed dual averaging algorithms is closely

related to the mixing of an implied Markov chain, and thus the spectral properties of the

matrix describing communication in the network is the crucial property for determining

convergence of the network of optimizers.

5.4 Convergence Rates for Decentralized Networks

In this section, we will show the connection between the mixing of Markov chains

discussed in §5.3, and the convergence results of Duchi et al. (2012), reviewed in (4).

We review these results to set up the analysis of §5.5, but is important to note that,

in this section, we are only reviewing the work of Duchi et al. (2012), and are not

providing any novel analysis of our own.

3Assume that P is doubly stochastic. Since the limiting distribution is unique, we need only show
that P1{N � 1{N. This is so, as the i’th entry of P1{N is:

¸
jPrNs

1
N

Pi, j �
1
N

¸
jPrNs

Pi, j �
1
N

1 �
1
N
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5.4.1 Fixed Communication Pattern

We saw in Lemma 1 that the bound on the centralized regret of the regularized dis-

tributed dual averaging algorithm can be bounded as a function of G, which bounds the

sub-gradients received by the nodes, T , which is the number of rounds the algorithm

has been run for, λ, which is the convexity parameter of the optimization function,

and DPT G, which is a bound on the quantity ‖et �dn
t ‖� for all t P rT s, with associated

pPptqqtPrT s, and all n P rNs. Combining Lemma 1 with Theorem 4, we have the follow-

ing bound on the expected distance between ūT , the auxiliary central sequence that we

saw allowed us to bound all quantities of interest, and w�, the optimal weight vector

sought:

EzN
T
rΦpūT qs�Φpw�q ¤ p6� logT q

λT

�
G2

2
�2GDPT G



(5.15)

The only quantity here that depends on the network is DPT G. As we saw, bounding

‖et �dn
t ‖� is they key to bounding the error of the solution returned by the network,

because the regret of the central sequence ut is a function of ‖ut �wn
t ‖, and this is, in

turn, a function of ‖et �dn
t ‖�, as shown in (4.39), repeated here:

‖ut �wn
t ‖¤

1
λpt�1q

∥∥et�1�dn
t�1

∥∥� (4.39)

So, how far apart can et and dn
t , for any n P rNs get? Well, recall that the nodes

are communicating by combining their estimates of the optimal dual vector, using the

following update rule:

dn
t Ð

¸
iPrNs

Pn,idi
t�1�gn

t (5.16)

(5.17)

Intuitively, gradient information received by some node i P rNs will eventually

reach any other node j P rNs via this communication. Even if Pi, j is 0, meaning i and

j are not directly connected, if P is irreducible, all gradient information received by i

will eventually reach j, and vice versa. This can be more clearly seen by expressing
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the value of each dn
t in a non-recursive form:

dn
t Ð

¸
iPrNs

Pn,idi
t�1�gn

t (5.18)

�
¸

iPrNs
Pn,i

�
� ¸

jPrNs
Pi, jd

j
t�2�gi

t�1

�
��gn

t (5.19)

�
¸

jPrNs

�
� ¸

iPrNs
Pn,iPi, j

�
�d j

t�2�
¸

iPrNs
Pn,igi

t�1�gn
t (5.20)

�
¸

jPrNs
P2

n, jd
j
t�2�

¸
iPrNs

Pn,igi
t�1�gn

t (5.21)

�
¸

iPrNs
P2

n,id
i
t�2�

¸
iPrNs

Pn,igi
t�1�gn

t (5.22)

�
¸

iPrNs
P3

n,id
i
t�3�

¸
iPrNs

P2
n,ig

i
t�2�

¸
iPrNs

Pn,igi
t�1�gn

t (5.23)

(5.21) follows by the definition of matrix multiplication,4 and (5.23) shows the effect

of repeating the expansion process just demonstrated.

Let Πpt,sq �Pt�s. That is, Πpt,sq represents P raised to the power t�s. From what

we have just seen, an inductive argument can be used to show that dn
t can be written

without recursion as:

dn
t �

�
� ¸

sPrt�1s

¸
iPrNs

Πpt,sqn,igi
s

�
��gn

t (5.24)

Since P is doubly stochastic, where U is the uniform matrix, Pt Ñ U as t Ñ8. Thus,

Πpt,0q Ñ U, as t Ñ8, and Πpt, t�1q � P. Thus, intuitively, if t is much bigger than

s, then Πpt,sq is closer to U. If t and s are close together, then Πpt,sq is closer to P

itself.

On the other hand, as for expressing et , this can be written non-recursively as:

et � 1
N

¸
nPrNs

dn
t (5.25)

� 1
N

¸
nPrNs

¸
jPrNs

�
Pt�1

n, j dn
t�1�gn

t

�
(5.26)

�et�1� 1
N

¸
nPrNs

gn
t (5.27)

� 1
N

¸
sPrts

¸
nPrNs

gn
s (5.28)

4That is, if A is an m�n matrix, and B is an n�o matrix, pABqi, j �
°

kPrns Ai,kBk, j.
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So, the difference between et and dn
t can be written in non-recursive form as:

et �dn
t (5.29)

�
�
� 1

N

¸
sPrts

¸
iPrNs

gi
s

�
��

�
�
�
� ¸

sPrt�1s

¸
iPrNs

Πpt,sqn,igi
s

�
��gn

t

�
� (5.30)

�
�
� ¸

sPrt�1s

¸
iPrNs

�
1
N

gi
s�Πpt,sqn,igi

s


���
�
� 1

N

¸
iPrNs

�
gi

t �gn
t
��� (5.31)

�
�
� ¸

sPrt�1s

¸
iPrNs

gi
s

�
1
N
�Πpt,sqn,i


���
�
� 1

N

¸
iPrNs

�
gi

t �gn
t
��� (5.32)

Let Πpt,sqi denote the i’th column of Πpt,sq. Then, given the above and assuming

‖gn
t ‖� ¤ G for all t P rT s, n P rNs:

‖et �dn
t ‖� (5.33)

¤
�
� ¸

sPrt�1s

¸
iPrNs

∥∥gi
s
∥∥�� 1

N
�Πpt,sqn,i


���
�
� 1

N

¸
iPrNs

∥∥gi
t �gn

t
∥∥�
�
� (5.34)

¤
¸

sPrt�1s
G‖Πpt,sqi�1{N‖1�2G (5.35)

Here, we see the utility of the perspective of the mixing of Markov chains. For those

pairs of t and s that are far apart, Πpt,sqi is close to the uniform vector, meaning a

gradient that was received by node i at time s, will have been fully communicated to

most other nodes in the network. Thus, the number of iterations that we have to wait

for ‖Πpt,sqi�1{N‖1 to be below some threshold ε ¡ 0 is the same as the number of

iterations that we have to wait for a Markov chain specified by matrix P to mix to an

accuracy of ε.

Using this basic insight, some technical steps can be used to bound ‖et �dn
t ‖�.

Lemma 3 implies that ‖Πpt,sqi�1{N‖1 ¤
?

N rσ2pPqst�s. Suppose that T is the total

number of rounds of training that we will do. Of course, t ¤ T for all round t P rT s. If

t� s ¥ logpT?Nq
logrσ2pPq�1s , then:

‖Πpt,sqi�1{N‖1 ¤
1
T

(5.36)

Let t̂ �
R

logpT?Nq
logrσ2pPq�1s

V
. Thus, for all s ¤ t � t̂,

°
sPt̂ ‖Πpt,sqi�1{N‖1 ¤ 1. And the

number of s such that s ¡ t� t̂ is just t̂ �
R

logpT?Nq
logrσ2pPq�1s

V
. That is, for many values of s
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(those less than or equal to t� t̂), ‖Πpt,sqi�1{N‖1 is so small it contributes very little

to the error. And, the number of s that do contribute a non-negligible amount to the

error is bounded. These considerations can be combined to show (Duchi et al., 2012)

that:

‖et �dn
t ‖� ¤ 2L

R
logpT?Nq

log rσ2pPq�1s
V
�3L (5.37)

¤ 2L
R

logpT?Nq
1�σ2pPq

V
�3L (5.38)

The last line uses the basic fact that log
�
σ2pPq�1

�¥ 1�σ2pPq (Duchi et al., 2012).

The important point here is that the spectral properties of the matrix determine the

number of steps that it takes for information to reach the entire network. If the spectral

gap is smaller, it will take information longer to propagate through the network, and

there will be more past iterations for which ‖Πpt,sqi�1{N‖1 is significant.

5.4.2 Varying Communication Matrix

When the communication matrix can vary in between rounds, the analysis is somewhat

changed, but carries on in the same spirit (Duchi et al., 2012). The principal difference

is that, in the case of a stochastic communication matrix, one must speak about the

spectral properties of the expected communication matrix, rather than a fixed commu-

nication matrix as in (5.38). Duchi et al.’s (2012) result here is probabilistic. With

probability 1� 1
T :

max
tPrT s

max
nPrNs
‖et �dn

t ‖¤
6G logpT 2Nq

1�λ2pEPptq rPptqT Pptqsq �
G

T
?

N
�2G (5.39)

In comparison with (5.38), this bound holds with high probability, rather than with

certainty, and the effect of the network is characterized by 1� λ2pE
�
PT P

�q, which

references the second eigenvalue (rather than singular value) of the expected matrix,

E
�
PptqT Pptq�.

5.5 Analyzing IPM and Single-Mixture Optimization

In this section, we cast the IPM and single-mixture optimization algorithms as instances

of the DRDA algorithm, and then analyze the convergence of both. This gives a central

result whose implications will be investigated in the experiments.
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5.5.1 IPM and Single-Mixture as Distributed Dual Averaging

Let us now consider how the IPM and single-mixture versions of the dual averaging

algorithm can be cast as instances of the DRDA algorithm.

Conversion of Indices Algorithms 10 and 11 proceed in epochs, by calling the func-

tion OneE pochDAn,e, and the indexing on the dual averages and primal weights reflect

this. For each node n P rNs and epoch e P rEs, these algorithms produce a sequence of

dual averages indexed as follows:

dn,1
1 , � � � ,dn,1

M , � � � ,dn,e
1 , � � � ,dn,e

M , � � � ,dn,E
1 , � � � ,dn,E

M (5.40)

And, it produces for each n P rNs a sequence of primal weights
��

wn,e
m
�

mPrMs
	

ePrEs
with the same indices. The DRDA Algorithm 9 uses the indexing, for each n P rNs:

dn
1,d

n
2, � � � ,dn

T (5.41)

Similarly, we have primal weights pwn
t qtPrT s.

To align the two algorithms, we will use the following, natural conversion of in-

dices:

te,m,M � pe�1q �M�m (5.42)

Using this conversion, we see that IPM and single-mixture dual averaging algorithms

produce a sequence of dual averages and primal weights�
pdn

t qtPrT s
	

nPrNs
and

�
pwn

t qtPrT s
	

nPrNs

and we will show that this is within the framework allowed by the DRDA algorithm

(Algorithm 9).

Return Value We briefly note that the return values of Algorithms 10 and 11 are:

1
E

1
N

¸
ePrEs

¸
nPrNs

w̄n,e (5.43)

Some simple algebraic manipulation shows that this is equivalent to the global return

value of Algorithm 9:

1
T

1
N

¸
tPrT s

¸
nPrNs

wn
t (5.44)
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Thus, assuming that the dual and primal sequences produced by Algorithms 10 and 11

conform to those that would be generated by some instance of DRDA, then the output

values will as well.

Epochs Through the Data versus Random Selection of Examples The IPM and single-

mixture dual averaging algorithms both proceed in repeated epochs through the avail-

able training data. However, the DRDA algorithm of §4 is analyzed in terms of exam-

ples randomly selected on each iteration. This gap between theory and practice is a

matter of choice. This gap would be closed if we were to simply select M examples

at random from the available data on each call to OneE pochDA. However, although

analyses of stochastic optimization algorithms usually proceed on the assumption that

examples are randomly selected (e.g., Robbins & Monro, 1951; Polyak & Juditsky,

1992; Hazan et al., 2007; Hazan & Kale, 2011), it has been found to be better for test-

set performance in practice to make repeated full passes through the training, perhaps

with a random ordering (Shalev-Shwartz et al., 2011). Thus, we take the approach of

repeated epochs through the data here.

Communication Patterns Behind IPM and Single-Mixture Communication for each

round of the DRDA algorithm (Algorithm 9) is characterized by, for each round t P rT s,
a communication matrix Pptq. We now look at which what Pptq must be set to in order

to yield the IPM and single-mixture algorithms.

The common part of both the IPM and the single-mixture dual averaging algorithms

is OneE pochDAn,e, which is called by both. For each n P rNs, e P rEs, and all rounds

m ¥ 2, the update rule on line 6 is:

dn,e
m Ðdn,e

m�1�gn,e
m (5.45)

�
¸

iPrNs
In,idn,e

m�1�gn,e
m (5.46)

Thus, to have N cores running OneE pochDAn,e over M � 1 examples in the range

r2, � � � ,Ms corresponds to running the DRDA algorithm with N nodes for M�1 rounds

using I as the communication matrix.

The difference between the two algorithms, of course, is in the value of dn,e
0 used to

begin each round of OneE pochDAn,e. In the case of IPM dual averaging, the dn,e
0 given

as input to each node n on epoch e is actually the average dual average over all nodes
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from the previous epoch e�1. This means that, for each node n, and each e ¥ 1:

dn,e
1 Ðdn,e

0 �gn,e
1 (5.47)

�
¸

iPrNs

1
N

di,e�1
M �gn,e

1 (5.48)

�
¸

iPrNs
Un,idn,e

0 �gn,e
1 (5.49)

Thus, for each node n P rNs and each epoch e P rEs, the first iteration m� 1 corresponds

to the DRDA algorithm with communication matrix Ppte,m,Mq �U, the uniform matrix.

In contrast, in the case of the single-mixture dual averaging algorithm, the first

round for each node n P rNs and each e P rEs is:

dn,e
1 Ðdn,e

0 �gn,e
1 (5.50)

�di,e�1
M �gn,e

1 (5.51)

�
¸

iPrNs
In,idi,e�1

M �gn,e
1 (5.52)

Thus, for each node n P rNs and each epoch e P rEs, the first iteration m� 1 corresponds

to the DRDA algorithm with communication matrix Ppte,1q � I, the identity matrix.

So, the dual updates in both algorithms correspond to instances of the DRDA algo-

rithm using a mixture of the communication matrices I and U.

5.5.2 Spectral Analysis

We will now look at the spectra of eigenvalues and singular values for the iden-

tity matrix IN , the uniform matrix UN and the matrix describing communication for

the IPM distribution strategy. These results will be referred to in §5.5.3, in order to

make predictions about the relationship between IPM and single-mixture dual averag-

ing. Recall, from §5.1 we order the eigenvalues of a matrix from largest to small-

est, writing λ1pAq ¥ � � � ¥ λNpAq, and do the same for the singular values, writing

σ1pAq ¥ � � � ¥ σNpAq.

The Identity Matrix The eigenspectrum of the identity matrix IN can be characterized

as follows:

Theorem 11. The eigenvalues of the N�N identity matrix IN are:

λ1pINq � 1,λ2pINq � 1, � � � ,λNpINq � 1
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The singular values of this matrix are:

σ1pINq � 1,σ2pINq � 1, � � � ,σNpINq � 1

Proof. Self-evident.

The Uniform Matrix The eigenspectrum of the identity matrix IN can be characterized

as follows:

Theorem 12. The eigenvalues of the N�N uniform matrix UN are:

λ1pINq � 1,λ2pINq � 0, � � � ,λNpINq � 0

The singular values of this matrix are:

σ1pINq � 1,σ2pINq � 0, � � � ,σNpINq � 0

Proof. To verify this, let u �Uv, where v P RN is arbitrary. Let ui be the i’th compo-

nent of u, and v j the j’th component of v. Then:

ui �
¸

jPrNs
Ui, jv j �

¸
jPrNs

1
N

v j (5.53)

So, all components of u � Uv are identical, meaning Uv is a multiple of 1, the all

one’s vector. Thus, we can only have Uv � λv if v is parallel to 1. There are no other

non-zero eigenvectors, and thus no other non-zero eigenvalues. Also, UT U�U, so the

singular value spectrum is the same.

Iterative Parameter Mixing Iterative parameter mixing, as we saw in §5.5.1, can be

modelled as a mix of using the uniform matrix and using the identity matrix. We can

view Pptq as a random matrix, drawn according to the following probability distribu-

tion:

Pptq �
#

IN : with probability M�1
M

UN : with probability 1
M

(5.54)

Of course, the value of Pptq for any t P rT s is not actually random, since it is determined

according to a deterministic and predictable schedule. However,this seems to us to be

a good approximation since, whether communication rounds are chosen randomly or

according to this schedule, the expected number of communication rounds in M DRDA

rounds is 1.
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Now, for the analysis of the next section, we will want to compute λ2pEPptq
�
PptqT Pptq�q

according to this distribution. Let γI � M�1
M and γU � 1

M . From (5.54), we have that:

EPptq rPptqs � γIIN � γU UN (5.55)

Since I and U are both symmetric, we have:

pγIIN � γU UNqT � γIIN � γU UN (5.56)

So, since I2 � I and U2 � IU � U:

EPptq
�
PptqT Pptq� (5.57)

�pγIIN � γU UNqT pγIIN � γU UNq (5.58)

�pγIIN � γU UNq2 (5.59)

�γ
2
I I2

N �2γIγU INUN � γ
2
U U2

N (5.60)

�γ
2
I IN �p2γIγU � γ

2
UqUN (5.61)

Theorem 13. The eigenspectrum of ZγI ,γU
∆� �

γ2
I IN �p2γIγU � γ2

UqUN
�

is:

λ1pZγI ,γU q � 1

and

λnpZγI ,γU q � γ
2
I ,@n,2 ¤ n ¤ N

That is, the largest eigenvalue is 1, and all others are γ2
I �

�M�1
M

�2
.

Proof. That the largest eigenvalue of ZγI ,γU is 1 follows from the fact that it is doubly

stochastic (§5.1). To determine the other eigenvalues of ZγI ,γU , we can use Weyl’s

theorem (Horn & Johnson, 1985), used here as a lemma:

Lemma 4. Suppose that A and B are two N�N symmetric matrices. As in the text, the

eigenvalues of matrix A be written as λ1pAq ¥ � � � ¥ λNpAq and likewise for B. Then,

for each n P rNs:

λnpAq�λNpBq ¤ λnpA�Bq ¤ λnpAq�λ1pBq

Suppose n ¥ 2. Let the A of Weyl’s theorem be p2γIγU � γ2
UqUN and let the B be

γ2
I IN . Then, we have λ2pp2γIγU � γ2

UqU2
Nq � 0, and λNpγIINq � λ1pγIIq � γ2

I . Thus:

λnpZγI ,γU q ¥ λnpp2γIγU � γ
2
UqUNq�λNpγ2

I INq (5.62)

¥ 0� γ
2
I (5.63)
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And:

λnpZγI ,γU q ¤ λnpγUUNq�λ1pγIINq (5.64)

¤ 0� γ
2
I (5.65)

Thus, for all n ¥ 2, λnpZγI ,γU q � γ2
I .

5.5.3 Implications

Iterative Parameter Mixing The first conclusion we can draw from mathematical facts

noted so far is that IPM dual averaging can indeed be proven to be convergent, in

the sense that the expected cost of the output can be made arbitrarily close to zero,

with arbitrarily high probability, by running the algorithm for long enough. We saw

in Theorem 6 that, if communication in a network is characterized by the stochastic

communication matrices pPptqqtPrT s, drawn according to a fixed distribution, then the

expected cost of average local vector w̄n
T for some T , and any n P rNs, when optimizing

distributed stochastic objective Θ`,pZnqnPrNs,Ψ
, is bounded with probability 1� 1

T by:

EzN
T
rΘpw̄n

T qs�Θpw�q ¤ O
�

logT logpT 2Nq
T p1�λ2pEPptq rpPptqqT Pptqsqq



(5.66)

Also, by the convexity of Θ,

Θp 1
N

¸
nPrNs

w̄n
T q ¤

1
N

¸
nPrNs

Θpw̄n
T q, (5.67)

(5.66) is also a bound on the error of the program output 1
N
°

nPrNs w̄
n
T .

We saw in §5.5.2 that λ2pErPptqT Pptqsq � �M�1
M

�2
. And,

1�
�

M�1
M


2

(5.68)

�1� M2�2M�1
M2 (5.69)

�M2�M2�2M�1
M2 (5.70)

�2M�1
M2 (5.71)

Thus, 1
1�γ2

I
� OpMq.

Thus, when running the IPM dual averaging algorithm over shards of size M, we

have:

EzN
T
rΘpw̄n

T qs�Θpw�q ¤ O
�

M logT logpT 2Nq
T



, (5.72)
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with probability 1� 1
T . In other words, the IPM algorithm is convergent.

Single-Mixture We saw in §4.3.2.4 that, if communication in a network is character-

ized by the fixed communication matrix P, then the expected cost of the average local

vector w̄n
T for any n P rNs, when optimizing Θ`,pZnqnPrNs,Ψ

, is bounded by:

EzN
T
rΘpw̄n

T qs�Θpw�q ¤ O
�

lnT lnpT?Nq
T p1�σ2pPqq



(5.73)

We have seen, as we said in §5.5.1, that single-mixture dual averaging corresponds

to running the DRDA algorithm with communication on every round described by the

identity matrix, IN . And, we saw that:

σ2pINq � 1 (5.74)

1�σ2pINq � 0 (5.75)

In other words, no bound at all can be placed on convergence based on (5.73) using

the IN as the communication matrix, since the fraction 1
1�σ2pPq diverges as σ2pPq Ñ

1. From a Markov Chain perspective, the single-mixture algorithm corresponds to

the specification of a Markov chain by a matrix that is not irreducible, for which the

associated Markov chain will never mix.

In fact, a stronger statement than this can be made, because Duchi et al. (2012)

show that the dependence on the 1
1�σ2pPq is tight. That is, for any graph structure

in which communication is characterized by matrix P, there exists a set of functions

p fnqnPrNs such that convergence is lower-bounded by:

Ω

�
1

1�σ2pPq



(5.76)

So, the single-mixture dual averaging algorithm, it is possible to construct an objective

function such that the algorithm will never converge. This is analogous to the finding

of McDonald et al. (2010) that there exist separable data sets that the single-mixture

perceptron cannot separate.

Summary Thus, the points we have shown are:

• Convergence will eventually occur (with high probability) using IPM dual aver-

aging.

• Convergence cannot be guaranteed for single-mixture dual averaging.
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• Moreover, it is possible to constructive an objective function such that single-

mixture dual averaging will never converge.

This gives us a novel perspective on the difference between the IPM and single-mixture

distribution strategies. Namely, one is a convergent optimization algorithm, while the

other is not. Past work has mostly focused on the difference in test-time performance

between models trained using the two methods (see §5.2.2). However, we have shown

that this difference might be explained by a difference in the ability of the two algo-

rithms to optimize their training objective. This is something we will test for in §5.7.

Indeed, we will see that test set performance of SVM-trained models is correlated with

training objective value reach.

Discussion This bound is interesting and novel in that it demonstrates that IPM is a

convergent optimization algorithm, while single-mixture, in general, is not. However,

the bound (5.72), unfortunately, does not predict a speed-up for IPM due to paralleliza-

tion. In fact, an OpMq penalty is incurred, where M is the frequency of averaging

between vectors. According to the usual interpretation of the IPM algorithm (McDon-

ald et al., 2010; Hall et al., 2010; Simianer et al., 2012), we have averaged parameters

across the network after each pass through the data. It is of course possible to let the

frequency of averaging be different from the size of each data shard, averaging more

or less frequently than after each pass through the data. If the frequency of averaging

is less than N, the number of optimization cores, we would predict a speed-up. This is

not the normal case, however.

Also, the bound is not sensitive to the similarity between the optimal vectors for

each shard. Progress can be made more quickly if each shard is assumed to be identical,

which is effectively what is assumed by Dekel et al. (2012), when the assume that N

cores each repeatedly draw new examples from the exact same distribution. So, in this

sense, our bound must be considered pessimistic, since it must account for all kinds

of functions spread across N computers. Similarly, it is interesting that our IPM bound

is not a function of the network size N. Suppose we split a fixed-size (but, perhaps

large) data set into N shards. As N grows, each shard becomes more idiosyncratic

and we might expect the distribution strategy to become less efficient. In §5.8, we see

that, indeed, the efficiency of training on the fixed-size data sets investigated seems to

decrease for larger network sizes, like 64, compared to network sizes like 8 and 16.

Experiments in §5.8.5 show the effect of varying the averaging frequency, and shows

that, as one might expect, more frequent averaging leads to better objective values in
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less time.

5.5.4 Distributed Dual Averaging Compared to Other Frameworks

for this Analysis

The framework in which we have conducted this analysis initially appeared in Duchi

et al. (2011b, 2012). Clearly, this framework does provide a way to prove that the IPM

algorithm is convergent. We might then ask whether there would be any better way.

Tsianos & Rabbat (2012) give an algorithm for distributed optimization of a strongly

convex function which, as we said in Table 4.2 of §4.3.3 has a slightly convergence

bound (lower by a factor of logT , where T is the number of iterations). This would

certainly be an alternative direction for research, although, since they do not discuss

the case of varying communication matrices, it was a choice between extending their

paradigm or extending that of Duchi et al. (2012). As the experiments of this chapter

show, the dual averaging algorithm performs as well as the Hazan & Kale (2011) algo-

rithm on which Tsianos & Rabbat (2012) is based, despite having different theoretical

analyses. Perhaps more refined dual averaging analysis will show that it too achieves

Op 1
λT q-like bounds. Also, the dual averaging framework is interesting because im-

portant ongoing work, such as the AdaGrad algorithm (Duchi et al., 2011a), which

has been popular for using different step-sizes for different features depending on the

number of times that feature has been seen, is happening in this framework.

5.6 Efficient Dual Average Updates and Averaging

The goal of optimization is to find an optimal weight w� PRD. Suppose the number of

non-zero components (otherwise known as the `0 size) of the gradients received by the

perceptron or dual averaging algorithm is bounded by some integer d. Usually, D is

much larger than d (i.e., D" d). For example, in the case of the parsers used below, D

is on the order of millions, while d is on the order of hundreds or thousands. If gradient

updates took time ΘpDq, training would be far more inefficient than if these gradient

updates were Θpdq. (In fact, training might even be impractical in such a case.)

In the case of the dual averaging algorithm, the update of the dual average,

dt�1 � dt �gt ,

is trivial to compute sparsely. And, the projection of the dual average into the primal
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space,

i.e., the solving of wt�1 Ð argmin
wPW

txdt ,wy� tΨpwqu,

is known to be sparse for many regularizers (Xiao, 2010), because (as discussed in

§5.6.1) one only needs to compute those components of wt�1 if and when they are

needed to compute the next gradient (see §5.6.1). However, we are not aware of any

previously published or existing algorithm for efficiently (i.e. sparsely) computing the

average primal vector over all iterates,

1
T

¸
tPrT s

wt ,

during a run of the dual averaging algorithm. One difficulty, or at least novel feature of

the problem, is that the sparsity requirement means that the primal weight wt is never

computed in full for any t.

We require such an efficient algorithm for computing the primal average in order

to test the effects of averaging iterates in the experiment section. So, in §5.6.2, we ex-

plain our novel, efficient algorithm for averaging primal weights in the dual averaging

algorithm. First, §5.6.1 reviews why (Nesterov, 2009; Xiao, 2010) updates are sparse

in the ordinary dual averaging algorithm.

5.6.1 Efficient Gradient Updates

Ordinary gradient updates, like (5.77) or (5.78), are both Opdq since both only involve

updating the d components of gt of either the primal weight w or dual average d:

wt�1 � wt �ηtgt (5.77)

dt�1 � dt �gt (5.78)

The non-trivial part for the dual averaging algorithm is the projection step that projects

the dual average into the primal space. The projection step is:

wt�1 Ð argmin
wPW

txdt ,wy� tΨpwqu (5.79)

With `2 regularization (Ψpwq � λ

2 ‖w‖
2
2), this argmin has a closed form solution Xiao

(2010):

wt�1 � 1
λt

dt (5.80)
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This can be computed on the fly. Where, wtpiq is the i’th component of wt , when the

gradient computation routine B` requests wt�1piq, it can be computed in time Op1q as
1
λt dtpiq. We only compute those indices needed, and the number needed will be much

smaller than D.

5.6.2 Efficient Averaging

The problem of computing the average over primal iterates 1
T
°

tPrT swt is the problem

of computing the sum
°

tPrT swt , since the 1
T factor is trivial to introduce at any time.

We begin by reviewing an efficient algorithm for summing the primal weights wt for

the perceptron algorithm, which seems to be implied in Collins (2002). Then, we

discuss how this algorithm can be modified to support summing of primal weights wt

on the basis of sparse updates to the dual average dt .

Perceptron If operating directly on the primal weights, as in the perceptron algorithm,

efficient averaging can be achieved with Opdq updates by using the following data

structure. For each index i of the weight vector, let wtpiq again be the value of the i’th

component of wt . Our goal is to compute
°

tPrT swtpiq efficiently for each i P rDs. As

state, we maintain the following triple:

pvi, tσi,σiq

vi is value of wtpiq when it was last changed, tσi stores the round inex at which vi was

last changed, and σi stores the sum
°

sPrtσi swspiq. At some future round index t̂, in

order to adjust the i’th component by some amount ∆ P R, we use Algorithm 12. This

Algorithm 12 Efficient Sum Updates for Averaging Primal Weights
1: procedure UPDATE-FROM-SUM-PRIMAL(i, t̂,∆)

2: σi Ð pt̂� tσiq � vi

3: tσi Ð t̂

4: vi Ð vi�∆

algorithm can be proved correct by induction on the number of updates. If σi stores°
sPrtσi swspiq before an update at time t̂, it will store

°
sPrt̂swspiq afterwards. (Note that°

sPrt̂swspiq is not a function of ∆. The first iterate that ∆ affects is wt̂�1.)

Dual Averaging In the case of the regularized dual averaging algorithm, the task is

to sum the primal weights wt , even though these primal weights are never computed
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explicitly. The correctness of Algorithm 12 relies on the fact that the components of

the primal weight wt only change if they are part of the gradient update gt . This is not

the case for `2 regularized dual averaging, in which case each component of the primal

weight does change on every iteration, shrinking due to regularization. Specifically,

the sum that we need to compute now is:

¸
tPrT s

wt �
¸

tPrT s

dt

λt
(5.81)

To do so, we can maintain the following state:

pdi, tσi,σiq

And, let Σλ : NÑ R such that:

Σλptq �
¸
sPrts

1
λt

(5.82)

Then, efficient summation can be accomplished using 13.

Algorithm 13 Efficient Sum Updates for Averaging Primal Weights
1: procedure UPDATE-SUM-DUAL(i, t̂,∆)

2: σi Ð rΣλpt̂q�Σλptσiqs �di

3: tσi Ð t̂

4: vi Ð vi�∆

Again, the correctness of this algorithm can be proven by induction on the number

of updates. If σi stores
°

sPrtσi s
dspiq

λt before an update at time t̂, it will store
°

sPrt̂s
dspiq

λt

afterwards. The value of Σλptq can of course be computed on the basis of Σλpt � 1q
in time Op1q. A number of past values must be cached, since we need to compute

Σpt̂q �Σptσiq. However, we only need values as old as miniPrDs tσi . If storing many

values of Σ is a problem, one can simply update a all σi at some time t̂, and then

discard values for Σ older than t̂.

5.7 Experimental Methods

5.7.1 Questions Addressed

The goal of the experiments below is to provide evidence towards answering the fol-

lowing questions:
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1. Does the IPM distributed optimization strategy result in more accurate models

than the single-mixture strategy? If so, does greater test-time accuracy co-occur

with a lower objective value reached on the training set?

2. Does distributed training allow for models which are as accurate as those trained

sequentially?

3. Does SVM training improve over perceptron training in the context of distributed

optimization?

4. Does the IPM distribution strategy result in more quickly trained models than

sequential training? That is, does the addition of processing nodes allow a speed-

up?

5. How does distributed batch sub-gradient descent compare to IPM?

6. Does any potential speed-up vary with the data set or prediction algorithm?

7. Is the averaging of iterates during optimization, important for sequential stochas-

tic training, still important under the IPM and no-communication strategies?

All of our distributed experiments use either: i) the distributed dual averaging algo-

rithm to train a linear SVM objective, or ii) the perceptron training algorithm. In or-

der to place the distributed dual averaging method of conducting linear SVM training,

we first conduct, in §5.8.1, a small number of sequential training experiments, which

compare the dual averaging method to forms of stochastic gradient descent and the

well-known passive aggressive training algorithm.

5.7.2 Experiment Details

Prediction Tasks Tested The below experiments report results with the following three

structured prediction tasks:

1. An n-best parser re-ranker.

This 50-best parser, based on the features of Collins (2000); Charniak & John-

son (2005), re-ranks the output of a first-stage generative parser. The particular

features used are those in the set Φphrase in §6.2.1.
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2. A chart-based dependency parser.

This is the sibling-factored MST projective dependency parsing model of Mc-

Donald & Pereira (2006).

3. A trigram part-of-speech tagger.

This a standard trigram tagger, included as part of the BUBS NLP library (Dunlop

et al., 2011), which recovers part-of-speech tags from the Penn treebank (Marcus

et al., 1994) tag set.

For efficiency, the tagger uses greedy decoding, rather than Viterbi decoding.5

Training Methods We compare sequential and distributed perceptron training to se-

quential and distributed SVM training. The sequential, IPM and single-mixture per-

ceptron algorithms were given as Algorithms 5, 1 and 2. SVM training consists of the

regularized SVM training objective (2.28), optimized by the sequential, IPM and single-

mixture versions of the dual averaging algorithm, which were given as Algorithms 8,

10 and 11.

Cost Functions The structured hinge-loss function was defined in (2.20), and is re-

peated here:

`SVM pw;px,yqq ∆� max
yPC pxq

txw,Φpyqy�ρpy,yqu�xw,Φpyqy (2.20)

Apart from the vector w being optimized over, loss function per example is thus a

function of the feature embedding Φ, the candidate function C , and the cost function

ρ. The feature embedding and candidate functions, Φ and C , for each of the three

tasks are those that are described in the papers or that are included by default with the

software. The cost functions used are:

1. For the n-best parser re-ranker: ρpy,yq is the sum of the number of labelled and

unlabelled dependency attachment errors in parse y compared to gold y.

2. For the chart-based dependency parser: ρpy,yq is the sum of the number of la-

belled and unlabelled dependency attachment errors in parse y compared to gold

y.

5Viterbi decoding finds the globally optimal tagging for a word. But, for a tag vocabulary of size K,
and a sentence of length n, Viterbi for a trigram tagger runs in time OpK3nq, which is very slow. Greedy
decoding runs in time OpKnq. When tagging the sentence w1, � � � ,wn, determines tags for the words in
the order i � 1, � � � ,n. When considering possible tags for the j’th word, all previously predicted tags
are considered fixed, and the suitability for tags for indices i ¡ j are not considered.
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3. For the trigram part-of-speech tagger: ρpy,yq is 0 if tag y equals the gold tag y,

and 1 otherwise.

According to the original architectures of the models used, the n-best re-ranker and the

MST parser use array-based weight vectors, and the trigram tagger uses a map-backed

weight vector. This distinction is discussed further on page 5.7.2, and §5.8.7.3.

Test Metrics We use one metric only for each task to measure test accuracies. The use

of multiple correlated metrics would make the trends too difficult to interpret. With

respect to the dependency parses, and dependencies extracted from phrase-structure

parses, the two main metrics typically reported are: 1) unlabelled attachment ac-
curacy, UAS, which measures the percentage of unlabelled dependency arcs that are

guessed correctly in a predicted parse, compared to the gold, and 2) labelled attach-
ment accuracy, LAS, which measures the percentage of labelled arcs that are guessed

correctly in a parse. Rather than choose between the two, for the two parsers, the

n-best and the dependency parser, we aggregate the two, by reporting the arithmetic

average between UAS and LAS, i.e., UAS�LAS
2 . For the part-of-speech tagger, accuracy

is measured as the percentage of tags guessed correctly in the entire data set.

Data Sets Used We investigate the performance of these optimization algorithms on

three data sets of varying sizes created from the Penn treebank (Marcus et al., 1994).

These are: i) the BROWN part of the Penn Treebank, ii) the WSJ part of the Penn

Treebank, and iii) a BIG data set, which is the conjunction of the BROWN and WSJ

data sets. The WSJ data is taken from 1980’s newswire text. The BROWN corpus is

taken from an assorted set of American literature from the 1960’s (Francis & Kucera,

1979), and the division into 10 sections (with the first indexed as 0 below) are as

introduced by Gildea (2001). All experiments done in this chapter report results from a

development test set: we do not report results from the traditional test sets for these data

sets, because with repeated testing of models, we thought that would lead to corruption

of the traditional test sets. The data set sizes are shown in Table 5.7.2. The BIG training

set is a concatenation of the WSJ and BROWN training sets, with a random permutation

of the examples. The test set combines an equal number of examples from each of the

WSJ and BROWN test sets used.
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Data Set Train Sections Train Size Dev. Test Section Dev. Test Size

WSJ 2–19 36,149 20 2012

BROWN 0–7 19,740 first 1
2 of 8 1039

BIG union of above 55,889 union of above 2078

Table 5.1: Data set sizes for experiments in this chapter.

Creating Shards For each training set, for each network of N processors, the training

set was split into N equally-sized contiguous shards. The first M
N examples when to the

first shard, the next M
N examples went to the next shard, and so on. We chose to leaven

contiguous examples together in order to better simulate data drawn from different

distributions.

Averaging Theoretical analysis assumes averaging of iterates (Xiao, 2010; Duchi

et al., 2012), i.e., that program output is 1
T
°

tPrT swt instead of simply wT . And, past

empirical work (Collins, 2002) has stressed the averaging of iterates. But, past work

using IPM distribution has shown it to be less important in the distributed setting for the

perceptron algorithm. Averaging increases the run-time by a constant factor (§5.6.2),

so we would like to know whether the averaging step can be avoided. We seek to

replicate the results of perceptron training, and to investigate how important iterate

averaging is for dual averaging optimization of the SVM objective. Recent work has

suggested that averaging only relatively recent iterates actually works better than aver-

aging all iterates (Rakhlin et al., 2011). So, we compare the following two conditions:

1. No averaging of iterates. Simply output the weight vector from the final round.

2. Return an average of all iterates from the last epoch through the training data.

Determining Regularization Parameter The optimal value of λ for each prediction

task, and for each data set, was determined using a grid search using sequential dual

averaging for 10 iterations over the entire data set. We tried values

λ P r10,1, .1, .01, .001, .0001, .00001s

and picked the value for each task and set that led to best performance on the develop-

ment test set. The values chosen are shown in Table 5.7.2.
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WSJ BROWN BIG

the n-best re-ranker 10�3 10�3 10�3

the MST parser 10�3 10�2 10�3

the trigram tagger 10�5 10�4 10�5

Table 5.2: Regularization values used for distributed experiments.

Network Sizes We simulate networks of nodes of sizes 1, 8, 16, 32, and 64. This

should give a rather complete picture of how performance scales. Some past work

has suggested that, actually, the performance improvement starts to degrade as many

cores are added (McDonald et al., 2010; Zinkevich et al., 2010). Thus, we wanted to

use a broad range of node numbers, in order to better capture the point at which this

degradation occurs.

Computing Architecture The n-best ranking experiments were each conducted on a

shared memory multi-core computer using 8 out of its 16 1.8 Ghz AMD Opteron pro-

cessing cores. The amount of RAM allocated for the WSJ, BROWN, and BIG training

sets was 40G, 40G and 60G respectively. Examples were loaded into memory before

training, so hard disk access time does not play a role in the numbers to be reported.

Access to computing cores and resources is not explicitly scheduled on this machine,

so system load is a possible source of variance in observed results, but we observed that

the experiments were run at times in which no other large processing was taking place.

The MST parser and trigram tagger experiments were each conducted using 8 cores of

a shared-memory multi-core computer of 2.4 Ghz Intel Xeon processors with hyper-

threading. The MST parsing experiments were alloted 16 G of RAM and the trigram

tagging experiments were alloted 40G. The MST parser training involves caching of

features to disk, so disk read times on the cluster are a potential source of variability in

training time. The trigram tagger extracts features on the fly based on a set of lexicons

stored in memory, and so disk read times are not a source of fluctuation in that case.

Access to processor cores and RAM is explicitly controlled by the scheduler on the

Intel Xeon cluster used for the MST and tagging experiments. Jobs are given exclusive

access to the resources they reserve for the duration of each experiment, and so system

load is not a source of variability for the MST parser and trigram tagger experiments.

Simulating Large Networks with Available Architecture While network sizes of

t1,8,16,32,64u
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are simulated, all such simulations are actually done using only 8 cores at a time.

Given this, in order to report the wall-clock time that would have passed on a network

of size n ¡ 8 required a calculation based on times observed on the 8 core network.

Also, this network is a shared memory network, meaning that that there is no actual

communication cost, the communication cost of a truly distributed network must be

simulated. Time spent in an epoch is computed as a sum of four quantities:

1. Time spent processing examples.

2. Time spent on network communication.

3. Time spent to compute the averaging primal weights (perceptron) or dual aver-

ages (dual averaging) between rounds.

4. Time spent by each node initializing their weight vector for the next iteration.

Since the nodes are meant to run in parallel, the time spent processing examples by the

network (1) is calculated by taking the maximum time spent processing the examples

of the epoch of any individual node in the network. Time spent in network commu-

nication (2) is, in our actual shared memory implementation, 0. However, in §5.8.7,

we also experiment with a simulated network delay based on the All-Reduce network

delays reported in Agarwal et al. (2011). We find that these delays make little qualita-

tive difference. Time spent averaging weights (3) and time spent by nodes initializing

weight vectors for the next iteration (4) depend on the representation of the weight

vector. Weight vectors can either be represented by an array data structure, or by a

map data structure. This component of training time required is looked at in §5.8.7.3.

Output Data In the distributed experiments, after each epoch e through the training

data, we output:

1. Total wall-clock time taken to train to end of epoch e.

2. Training set objective value using output vector from end of epoch e.

3. Test-set performance on the development test set using output vector from end

of epoch e.

By wall-clock time, we mean the amount of time for the network to reach the end

of epoch. For IPM algorithms, this constitutes the time until the network reaches the

end of line (5) of Algorithm 3, which pools (averages) the estimates of the network.
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For single-mixture algorithms, this constitutes the time until all nodes reach the end of

the given epoch. Wall-clock time is, of course, system dependent. For each task, all

experiments for that task were run on the same type of hardware.

Total Number of Epochs If the cost of communicating between the nodes were negli-

gible, we would expect a network of size n¥ 1 to run n times as many iterations as a 1

core network in a given time frame. So, in theory, it would be ideal to run n times the

number of iterations on an network of size n, in order to compare performance up to a

given wall-clock time. However, as we said above, networks of size ¥ 8 are actually

simulated using an 8 core network. Thus, the amount of time needed for us to run an

optimization experiment up to E epochs with, e.g., 64 nodes is no faster than with 8

cores. Thus, it was not practical to increase the number of epochs linearly with the

number of cores. And, there appeared to be diminishing returns on later iterations. So,

we chose to increase the number of training epochs as a function of network size as

shown in Table 5.3. Furthermore, the MST and tagging experiments were run on a clus-

ter in which each computing job was limited to 48 hours. Simulations of longer than

48 hours could have been by writing program state to disk, and re-starting. However,

due to limited access to this cluster and the length of time needed to be spent queueing

for each job, we chose to simply work within the 48 hour execution limit. We simply

perform as many epochs as are possible as were possible in 48 hours, where the num-

ber actually completed may be less than the number attempted as listed in Table 5.3.

Network Size (in cores) Number of training epochs attempted

1 15

8 60

16 75

32 90

64 105

Table 5.3: Number of training epochs attempted by network size.

Epochs Versus Randomly Drawn Examples As discussed in §5.5.1, on page 88, we

make repeated passes through the training data in epochs. Although the theory dis-

cussed in §4 prescribes each new example trained on be drawn randomly, we make

passes through the data in a fixed order. This is done to avoid the potential confound-
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ing affect of different example selection orders, i.e., if one condition seems to be better

or worse simply due to its drawing a better or worse example selection order for train-

ing on.

5.7.3 Graphing of Results

Linear Interpolation Test vectors are output and evaluated at the end of each epoch of

training. Line graphs show either test-time performance or training set objective value

as a function of training time. In between two data points, the graphing software we

have used uses linear interpolation. That is, a simple line is drawn between any two

data points on a graph of, e.g., performance versus time. Test-time performance versus

time is plotted using a linear scale for the vertical axis, whereas objective values are

plotted using a log-scale. Test performance before training has started is assumed to

be 0. This is perhaps somewhat inaccurate because one might suppose that, especially

within the first epoch, learning happens faster at the beginning of the epoch than at the

end. However, this seems to be standard practice, and we do not feel that this distorts

the image relayed by the data. The first objective value plotted is the value after the

first iteration of training.6

Averaging over Curves In this chapter, we want to summarize the data obtained from

experiments involving a large Cartesian product of conditions. In order to highlight key

trends, we will want to average over sets of curves. For example, we will often want

present curves of performance versus time for a single task. Looking at such curves for

each of the three data sets, for each task, might make it difficult to identify the dominant

trend. So, we will often average over the curves of the three data sets. Alternatively, we

might want to better understand the performance of distributed networks by averaging

over the curves for all network sizes ¡ 1. The averaging of curves is performed in the

obvious way. Given the set of curves
��pxk

t ,y
k
t q
�

tPrTKs
	

kPrKs
, the average curve is, with

6The starting weight for each run of dual averaging is w1 � 0. The regularized loss for this vector can
be computed. However, due to the mechanics of the dual averaging algorithm, the weight vectors in the
first iterations have very large norms. This can mean a large regularization penalty and also large per-
example loss. Thus, there may be several output weights that actually have loss greater than the original
weight w1 � 0. We found it confusing to plot this value, since that would mean that the objective value
is non-monotonic.
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tPrT s
(5.83)

5.7.4 Limits of Our Experimental Design

The purpose of these experiments is to provide evidence to address the questions listed

in §5.7.1. We were limited in the amount of time and computational resources with

which to run these experiments. As such, only a subset of the relevant experimental

settings were investigated. We do believe that through judicious choices and use of

resources, we were able to provide meaningful evidence towards the questions of in-

terest. Nevertheless, we would like to give here some deliberate consideration to the

ways in which the (necessarily) limited number of experimental conditions might be

argued to constrain our ability to draw the intended conclusions. For a given task and

data set, there are a number of experimental parameters to fix (or, in the case of a con-

cern like, e.g., computer load, which are fixed to some extent by external factors). For

each varying parameter, we can imagine that we are actually interested in results given

a distribution over values for this parameter, and view a single experiment as a sample

from this distribution. This might be a sample from a distribution with variance, in

which we are unsure whether our sample has a value above or below the mean. Or, it

might be that our choice of setting for the parameter in question introduces a system-

atic bias. So, we should consider how variance and bias may play a role in the results

reported.

Shard Selection The method by which examples are distributed to the various shards

is a variable that can affect the comparison between multi-core and sequential train-

ing. Shard selection determines the distribution of examples given to each node in the

network, and so the similarity or dissimilarity of the local optimization problems on

the various nodes. One might conjecture that distributions that vary more extremely

present a problem to the distributed optimizer, since the various shards may come to

work at cross purposes. As described in §5.7.2, we allocate contiguous blocks of the

original training sets to each of the shards. For a data set in which examples are more

similar to their neighbouring examples than to examples further away, the use of con-

tiguous blocks compared to a random shuffle, or to the assignment of the kN � n’th

example (where k is a non-negative integer) to shard n, should make the distributions

in each shard more different. Ultimately, the chosen selection method may constitute
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a biasing factor, and a serious limitation of this study is that it does not investigate the

extent to which similarity or difference of shard distributions affects the usefulness of

the IPM and single-mixture distributed algorithms. We leave such an investigation to

future work.

Stochastic Example Selection Algorithm As discussed in §5.5.1, the theory of stochas-

tic optimization is predicated on the assumption that the order through which the exam-

ples are traversed by the stochastic algorithm is random. Thus, to measure the results

using a single order through the data is to take a single sample from the population of

all randomly chosen orders through the data, and we can expect there to be variance

of the statistics measured. The set of experiments done was all that could be afforded

in the time available and so it was not possible to vary order through the data in order

to estimate this variance or to average parameter estimates across runs. However, our

personal experience, together with the fact that many researchers have actually trained

their models using a fixed order through the data (e.g., McDonald & Pereira, 2006),

suggests that the typical variation in test performance due to example selection order is

quite small—probably, within one or two tenths of a percentage point—and such noise

is small compared to the magnitude and trend of the key results reported in §5.7.

Regularization We chose, for each task and data set, the value of the regularization

parameter that worked best for sequential training for that task and data set. We have

noted several times (§3, §4) that convergence rate for optimization is inversely pro-

portional to the regularization parameter. So, it may be that, with high regularization,

sequential training converges very quickly and thus compares very well to multi-core

training. However, Table 5.7.2 shows that low levels of regularization worked better

in practice, so, though we could not afford to explore all settings of regularization pa-

rameters, and may be introducing a bias into the results by choosing only small values

for the regularization parameter, the low values investigated are presumably the values

that are most relevant for producing NLP models in practice.

Computer Load We reviewed the computing architecture used in the experiments in

§5.7.2. For each task, the computing architecture on which the distributed experiments

were run was held fixed. However, computer system load due to other jobs running on

the machine at the same time as our experiments is a conceivable source of variance

in our results—one that operates, to an extent, outside of our control. It might be

that, during one experimental run the system was quite quiet, while during another
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it was quite busy. This would lead to one condition spuriously seeming faster than

another. For the MST parsing and trigram tagging experiments, the scheduler on the

system that these experiments were run on guarantees each job dedicated access to

the resources requested. So, for these experiments, system load is not an expected

source of variability. For the n-best parsing experiments, dedicated access to resources

was not guaranteed by a scheduler, but, we observed that jobs typically ran without

other major competing resources. Thus, we do not suppose that system load was an

important source of variance in these experiments.

5.8 Experimental Results

5.8.1 Sequential Experiments

In the next sections, all experiments will either involve perceptron training or SVM

training using the dual averaging algorithm. Dual averaging is new and less widely

used than stochastic sub-gradient descent, and its variants. We have used the dual

averaging algorithm primarily because it allows us to apply the analysis of Duchi et al.

(2012), which, to our knowledge, does not have an analogous result in the case of

stochastic gradient descent. In order to get an understanding of how the dual averaging

method of optimizing the SVM objective compares to better-known methods, we begin

with some comparisons in the sequential setting.

Objective Value We begin by comparing three methods for optimizing the regularized

SVM primal objective. The first is stochastic sub-gradient descent, called Sgd in the

graphs, for optimization of the SVM objective (see §3.3.2). Following Bottou (2004)

we use the step size sequence pηtqtPrT s given by ηt � η0
1�λη0t . The definition of this

step-size involves a line search for the parameter η0 on a sub-set of the data of size

Ms � 400. The number of iterations depends on the initial point used for the line

search. We did not include this as part of the training time, in an effort to simplify the

results, and on the basis that such a parameter might only need be tuned once for any

given application. However, this choice is of course charitable to the SGD algorithm.

Second, we look at “optimal” variant of sub-gradient descent, due to Hazan & Kale

(2011), that decreases the step-size on an exponential schedule. This algorithm, shown

as HazanSgd in the graphs, involves a similar search for an initial step-size, which is

not depicted as part of the training time. This was the first SGD-based algorithm to

be shown to converge at the rate Op 1
λT q for a λ-strongly convex function. Finally, we
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look at the dual averaging algorithm, shown as DA in the graphs. We do not perform

averaging of the iterates in these experiments.
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Figure 5.1: Sequential optimization performance of three methods of optimizing the

SVM objective for training of the n-best re-ranker. Left figure shows results for BROWN

corpus, right figure shows WSJ.
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Figure 5.2: Sequential optimization performance of three methods of optimizing the SVM

objective for training of the MST parser. Left figure shows results for BROWN corpus, right

figure shows WSJ.
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Figure 5.3: Sequential optimization performance of three methods of optimizing the

SVM objective for training of the trigram tagger. Left figure shows results for BROWN

corpus, right figure shows WSJ.

The objective values reached as a function of iteration are shown in Figures 5.1–

5.3. All algorithms find similar objective values eventually. Compared to SGD, the

dual averaging algorithm tends to produce weight vectors of larger magnitudes than

are appropriate in the first few iterations, but settles down as t, the number of exam-

ples seen, grows. Note that the grid search for a suitable η0 undertaken for the SGD

algorithm is done precisely for the purpose of ensuring that initial vector norms are

appropriate. Curiously, we find that the HAZANSGD variant of SGD, also needs a few

iterations for the objective value to settle down, even though it benefits from a search

for suitable starting η0. It seems the HAZANSGD algorithm performs less well than

SGD in practice, here, despite its strong asymptotic guarantees.

Accuracy We now look at the accuracy levels reached for the three optimization meth-

ods just discussed. And, we compare these accuracies to accuracies reached by two

other training methods. The first is the perceptron algorithm, which we have discussed

at length. The second is the max-loss variant of the passive-aggressive algorithm

(Crammer et al., 2006) of SVM training. This method can be seen as doing co-ordinate

ascent in the dual of an SVM objective. As in the last set of experiments, we do not

perform averaging of the iterates in these experiments.
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Figure 5.4: Performance of trained models for five methods of sequentially training the

n-best re-ranker. Left figure shows results for BROWN corpus, right figure shows WSJ.
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Figure 5.5: Performance of trained models for five methods of sequentially training the

MST parser. Left figure shows results for BROWN corpus, right figure shows WSJ.
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Figure 5.6: Performance of trained models for five methods of sequentially training the

trigram tagger. Left figure shows results for BROWN corpus, right figure shows WSJ.

We find that the four SVM-based methods produce similar results. The passive-

aggressive algorithm is perhaps the most reliable, but dual averaging fares at least as

well, if not better than the SGD variants. The perceptron seems to lag further behind the

alternatives. Its inferiority is probably exaggerated by the fact that averaging of iterates

is not used. As demonstrated in §5.8.3, averaging of iterates has a bigger impact on

perceptron training than on SVM training with the dual averaging algorithm.

5.8.2 IPM versus Single-Mixture

We begin our series of distributed comparisons with the central comparison of this

chapter: the difference in objective values and test accuracies reached by optimizing

with the IPM and single-mixture distributed optimization and training strategies. We do

so by comparing IPM and single-mixture training of the n-best ranker and MST parser
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using both dual averaging for the SVM objective, and the perceptron algorithm. In

order to condense the results reported, all graphs in this section constitute an average

over the three data sets BROWN, WSJ, and BIG.

5.8.2.1 Accuracy

We begin by looking at accuracy. Past work such as McDonald et al. (2010); Hall et al.

(2010); Simianer et al. (2012) has found that iterative parameter mixing outperforms

single-mixture strategies. Figures 5.7–5.10 compare IPM to single-mixture training for

SVM for the n-best re-ranker and the MST parser. In each figure, the graph on the left

averages over data set. The graph on the right averages over both data set and network

size, for networks of size greater than 1, which gives a different, and perhaps clearer,

perspective on the trend for distributed training. The results in this section show a

consistent pattern for both dual averaging SVM training and for perceptron training.

The perceptron results replicate those of McDonald et al. (2010), with different tasks,

and a wider range of network sizes. The SVM results are novel. Models trained using

IPM can reach the same accuracy as sequentially trained models, while models trained

using the single-mixture algorithm do not reach this level of accuracy.
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Figure 5.7: IPM versus no communication for SVM training of the n-best re-ranker.

Curves on the right represent an average over both data sets, and network sizes greater

than 1.
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Figure 5.8: IPM versus no communication for perceptron training of the n-best re-ranker.

Curves on the right represent an average over both data sets, and network sizes greater

than 1.
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Figure 5.9: IPM versus no communication for SVM training of the MST parser. Curves

on the right represent an average over both data sets, and network sizes greater than

1.
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Figure 5.10: IPM versus no communication for perceptron training of the MST parser.

Curves on the right represent an average over both data sets, and network sizes greater

than 1.
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5.8.2.2 Objective Value

5.8.2.2.1 Results The theoretical considerations produced in this chapter do not

deal directly with test-time performance. Instead, they deal with objective value over

the training set. Thus, in this section, we want to investigate whether the objective

value reached also parallels the findings for test-time performance. Since the percep-

tron does not have a meaningful interpretation as regularized average loss, we look

only at the SVM objective value reached for both the n-best ranker and the MST parser.

This objective value is averaged regularized loss over the entire training set, i.e., over

all shards of the data. Figures 5.11 and 5.13 show the objective value reached by each

network as a function of time for each of the two tasks investigated. In case it is hard to

see the final objective value reached by each network in the graphs with many curves,

Figures 5.12 and 5.14 show bar graphs depicting just the final objective values reached

by each network.
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Figure 5.11: IPM versus no communication for SVM training of the n-best re-ranker.

Curves on the right represent an average over both data sets, and network sizes greater

than 1.
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Figure 5.12: This chart shows the final objective values reached for each network size

and strategy for the SVM objective in training the n-best re-ranker.
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Figure 5.13: IPM versus no communication for SVM training of the MST parser. Curves

on the right represent an average over both data sets, and network sizes greater than

1.

IPM-1 IPM-8 IPM-16 IPM-32 IPM-64 SM-1 SM-8 SM-16 SM-32 SM-64
Distribution Strategy and Network Size

0

2

4

6

8

10

12

14

Ob
je

ct
iv

e 
va

lu
e 

re
ac

he
d

Figure 5.14: This chart shows the final objective values reached for each network size

and strategy for the SVM objective in training the MST parser.

IPM is the Better Optimizer The clear trend is that IPM is the better optimizer, as

the theory predicts. While the performance of the single-mixture models decays as

the network size grows, the performance of the IPM networks either doesn’t decay (as

seems to be the case for the n-best ranker) or seems to decay slowly (as seems to be

the case for the MST parser). However, we now more closely investigate the decay in

objective value reached for both types of network, and find that the decay of the IPM

models may be an artifact of the fact that these models did not have time to run to

convergence.
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On the Degradation of Objective Value as Network Size Grows We see in Figure 5.12

that the n-best ranking objective value for the single-mixture networks decay quite

sharply as network sizes grows. And, in Figure 5.14, we see that the MST objective

value decays for both IPM and single-mixture conditions, with the decay being more

pronounced for single-mixture than for IPM. One question raised as to why objective

value decays more for the IPM MST training than it does for IPM n-best ranking. We

believe this may be an artifact of the way that the experiment was conducted. We said

on page 103 of §5.7.2 that networks larger than 8 cores were always simulated with

actual networks of 8 cores. And, all experiments had to be run in a roughly fixed pe-

riod of time, due to constraints on the availability of resources. In a fixed period of

time, if we can make E epochs through the data with an 8 core network, we can still

only make E actual epochs though the data for any network size simulated in the same

time, since each simulation was actually conducted with 8 cores. But, the amount of

time simulated on the larger network would have been smaller. E.g., a 64 node network

moves roughly 8 times faster than an 8 node network, so the amount of wall-clock time

simulated in the larger network is roughly 1
8 the time spent computing by the 8 core

network. (In other words, a 64 node network could have done 8 times more computa-

tion than what was simulated.) In the case of the MST parsing experiments, there was

a hard limit of 48 hours per job.7 In the case of the n-best parsing experiments, there

was not a hard limit but rather a soft limit imposted by the need to share the machine

amicably with other researchers. This set-up is unfair to the larger networks, since the

fair thing would be to run them for the same amount of (simulated) time. And, a closer

look reveals that, in some cases, the larger networks were sometimes before the opti-

mization procedure had converged. To give a sense of how much time each network

was run for, Figure 5.15 shows just the final point in the objective value versus time

curve for each network structure, on both tasks.
7This limit could have been worked around by caching results to disk, and restarting jobs. However,

we judged this to require considerable bookkeeping and increase in the chance of an error, given that so
many conditions were being run in limited time.
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Figure 5.15: Final objective value reached and amount of time simulated for each net-

work in the SVM training of the n-best re-ranker (left) and the MST parser (right). Time-

value curves are averaged as discussed in §5.7.3.

In order to get a better idea of the extent to which each condition converged, we

calculated and graphed the slopes between the last two points of each objective value

versus time curve for each data set. That is, let pxT ,yT q be the final pair of time (xT )

and objective value (yT ), and let pxT�1,yT�1q be the second to last time-value pair.

Then, the slope

SLOPEpxT ,yT ,xT�1,yT�1q � yT � yT�1

xT � xT�1

characterizes the amount of progress in the objective value that was being made by the

optimizer when it was stopped due to computing time limits. The results are shown

in Figure 5.16. Convergence would correspond to a value of 0 or greater. Note that,

since the single-mixture algorithm is not a convergent optimization algorithm, it is not

guaranteed that more time spent optimizing will lead to better solutions, and it may be

that, while each node is locally getting a better estimate of its local optimal parameter

vector, the overall objective of the network is actually worsening. Thus, in many cases

the single-mixture curves end with positive slope. We can see that, for the WSJ and

BIG data sets, the IPM conditions did not converge for larger network sizes.
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Figure 5.16: Final slope of curves in objective value versus times for the SVM training

of the MST parser. Left figure shows results for BROWN, middle figures shows WSJ, and

right figure shows BIG.
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Figure 5.17: Final objective value reached for the SVM training of the MST parser. Left

figure shows results for BROWN, middle figures shows WSJ, and right figure shows BIG.

The data set for MST parsing on which convergence was overall the best was the

BROWN data set. This makes sense, since this is the smallest data set, and so more

passes through it can be made in a given period of time. The final objective values

reached for each data set are shown in 5.17. In the case of the best-converged condition,

BROWN, we see that the objective values reached for the IPM conditions do not degrade

much as network size grows. Indeed, this trend resembles the one seen in Figure 5.12.

Thus, we conclude that, while degradation of objective value as network size grows

is quite pronounced for single-mixture distributed optimization, degradation in IPM

objective value reached would likely have been non-existent if available resources had

allowed each such network to be run to convergence.
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Figure 5.18: Final slope of curves in objective value versus times for the SVM training

of the n-best re-ranker. Left figure shows results for BROWN, middle figures shows WSJ,

and right figure shows BIG.
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Figure 5.19: Final objective value reached for the SVM training of the n-best re-ranker.

Left figure shows results for BROWN, middle figures shows WSJ, and right figure shows

BIG.

Finally, for completeness, in Figures 5.18 and 5.19 we show the same breakdown

for the n-best ranker. In general, the trend is similar. The IPM models were usually

stopped while still converging. In the cases of the BROWN and WSJ data sets, it seems

that the SM-64 was actually also still converging, though the general trend for all single-

mixture models that had converged suggests each SM-64 model would have converged

to an objective value worse than SM-32 if it had been allowed to run to convergence.

5.8.2.2.2 Discussion IPM Converges while Single-Mixture Does Not We have con-

cluded that IPM networks always either reach the optimal objective value (or, at least

the same one reached by a sequential optimizer), or else would have reached it if

available resources had allowed the network to be run to convergence. In contrast,

single-mixture networks do not converge to the correct objective value and the distance

between the solution of single-mixture networks and the correct objective degrades as

the network size increases. Both facts accord with the predictions of §5.5.

Better Optimization Performance Correlates with Better Performance The IPM net-

works all reach essentially the same test-time performance of the sequentially trained

model, and also reach essentially the same objective value on the training set as the

sequential model. In contrast, the test-time performance of the single-mixture mod-

els degrades as the network size increases, as does the objective value reached on the

training set. Thus, we can say that ultimate optimization performance and test-time

performance are correlated.

Degradation in Objective Reached as Cores Added The IPM algorithm is predicted to

be a convergent optimization algorithm and so we do expect that, regardless of the net-

work size, the true optimal objective value will be reached. In fact, the theory does not
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mention network size as a factor in convergence rate at all for the IPM model. Empiri-

cal results do seem to corroborate this as each IPM network either reached the objective

value, or else was still improving in objective value when stopped. The degradation

in objective value reached in the case of the single-mixture optimization algorithm is

perfectly consistent with, and indeed arguably to be expected given, the theory that

we have presented. We have said that the single-mixture algorithm is not convergent.

Indeed, the theory showed that there exist objectives for which the single-mixture al-

gorithm will never converge. In other words, objectives can be found for which the

error is arbitrarily large after even an infinite number of iterations. Thus, we should

expect that real-world cases with very large error are possible. However, on the other

hand, there is also the possibility for extremely benign cases. Simply imagine a sin-

gle optimization problem replicated on N nodes. Since each node is solving the same

problem, they will be able to reach the optimal solution at least as fast as a single node

working on a single copy of that problem. The general bound (in which convergence

may not occur at all) is too pessimistic for this benign case. We expect that, as the

number of shards into which a finite data set is divided grows, the examples in the

shards become more idiosyncratic, and so local optimization problems become more

dissimilar. So, when the number of nodes is small, the optimization problems become

more similar (i.e., more like the benign case of a single optimization problem repli-

cated on N nodes). As the problem gets more benign, the worst-case bound becomes

overly pessimistic. Conversely, as we increase the number of nodes, the dissimilarity

of the local optimization problems increases, and we approach a situation in which the

pessimistic bound (which says that the single-mixture algorithm may not converge at

all) becomes more relevant. Thus, it does make perfect sense that the objective value

should degrade as a function of network size given the theory presented.

A Remaining Discrepancy Between Empirical and Expected Risk Though we can

conclude that final objective values reached and test-time performance do correlate,

there were cases in which IPM networks (which had not yet converged) reached worse

objective values but produced better test-time models than single-mixture trained mod-

els. For example, in the case of the MST parsing results shown in Figures 5.9 and 5.14,

the IPM-8 network never reaches (in the time-frame of the experiment) as good of an

objective as the SM-64 network. But, the test-set performance of the IPM-8 model is

better. It may be that, for whatever reason, the convergence of the IPM algorithm to the

optimum of the expected risk (performance on new examples sampled from the target
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distribution), is even more rapid, compare to single-mixture, than its convergence to

the empirical risk (performance on the training set). It is unclear why this might be,

but the issue presents an interesting question for further research.

5.8.3 Averaging of Iterates

This section investigates whether it helps to average the iterates during stochastic train-

ing. Like most work on analysis of stochastic optimization (e.g., Nesterov (2009); Xiao

(2010); Duchi et al. (2012)), the analysis of §4 analyzes the convergence of the average

test vector over all iterations of the algorithm. Collins (2002) showed iterate averaging

to be important for perceptron training, but McDonald et al. (2010) showed that the

effect of averaging each iterate was less important using the IPM strategy, as averaging

across nodes accomplishes the same thing. Averaging can be accomplished efficiently,

with Opdq updates where d is the size of the gradient. However, the constant factor

penalty in both time and space used means that one would want to avoid the averag-

ing step if it is not necessary. In this section, we compare both SVM and perceptron

training for the n-best ranker and the MST parser, and results presented average over

the training set.

5.8.3.1 Test Performance

We begin by looking at test-time performance. Differences due to averaging are rather

slight. When the number of optimization nodes and the averaging method are shown

together, the results can be difficult to interpret. This difficulty can be seen, for exam-

ple, in Figure 5.20:
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Figure 5.20: Effect on accuracy of averaging of iterates versus no averaging of iterates

for SVM training of the the n-best re-ranker. Curves represent an average over three

data sets.

Thus, in Figures 5.21–5.24, we depict two graphs each. The graph on the left shows the

results for sequential training, and the graph on the right averages over all distributed

networks of size greater than 1. Of all cases tested, averaging only seems to be impor-

tant for the sequentially trained models, and mainly then only in the case of the MST

parser. We conclude that averaging of iterates does not seem to be necessary for the

test performance distributed training algorithms on the tasks and data sets investigated.
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Figure 5.21: Test performance as a function of time, for averaging versus no averaging

of iterates in the SVM training of the n-best re-ranker with IPM. Left figure shows se-

quential training (single node), and right figure averages over numbers of nodes greater

than 1.
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Figure 5.22: Test performance as a function of time, for averaging versus no aver-

aging of iterates in the perceptron training of the n-best re-ranker with IPM. Left fig-

ure shows sequential training (single node), and right figure averages over numbers of

nodes greater than 1.
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Figure 5.23: Test performance as a function of time, for averaging versus no averaging

of iterates in the SVM training of the MST parser with IPM. Left figure shows sequential

training (single node), and right figure averages over numbers of nodes greater than 1.
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Figure 5.24: Test performance as a function of time, for averaging versus no averaging

of iterates in the SVM training of the MST parser with IPM. Left figure shows sequential

training (single node), and right figure averages over numbers of nodes greater than 1.

5.8.3.2 Objective Value

The story for the objective value, shown in Figures 5.25 and 5.26, largely parallels that

for test-time performance. There is actually appears to be a slight advantage to not

averaging in the case of distributed training of the MST parser.
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Figure 5.25: Objective value as a function of time, for averaging versus no averaging of

iterates in the SVM training of the n-best re-ranker with IPM. Left figure shows sequential

training (single node), and right figure averages over numbers of nodes greater than 1.
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Figure 5.26: Objective value as a function of time, for averaging versus no averaging

of iterates in the SVM training of the MST parser with IPM. Left figure shows sequential

training (single node), and right figure averages over numbers of nodes greater than 1.

On the Use of Averaging in the Following Experiments The following experiments

all assume averaging of iterates. Though we have seen that this is not necessary for

distributed networks, it would be unfair to the sequential paradigm to not use averag-

ing, as the lack of averaging can weaken sequential results, and it seemed fairest not

to mix averaging and non-averaging paradigms. On the other hand, the use of aver-

age does slow down the distributed models by a constant factor, and, thus, perhaps

under-represents the potential speed-up they can bring.
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5.8.4 Large-Margin Learning

In this section, we examine the use of large-margin training (SVM) versus perceptron

training, for each of the three tasks under investigation. The fact that our IPM analysis

supports a justification for distributed SVM training with IPM is one of the benefits of

the analysis conducted in this section. Here we present the differences in accuracy

level reached between SVM and perceptron training. Figures 5.27, 5.29, and 5.31 show

accuracy versus time for distributed networks, and Figures 5.28, 5.30, and 5.32 show

results for sequentially trained models.
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Figure 5.27: SVM training versus perceptron training of the n-best re-ranker using dis-

tributed training. Curves are averaged over three data sets. Left figure depicts perfor-

mance for each network size greater than 1. The right figure averages over all network

sizes greater than 1.
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Figure 5.28: SVM training versus perceptron training of the n-best re-ranker using se-

quential training. Curves are averaged over three data sets.
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Figure 5.29: SVM training versus perceptron training of the MST parser using distributed

training. Curves are averaged over three data sets. Left figure depicts performance

for each network size greater than 1. The right figure averages over all network sizes

greater than 1.
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Figure 5.30: SVM training versus perceptron training of the MST parser using sequential

training. Curves are averaged over three data sets.
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Figure 5.31: SVM training versus perceptron training of a trigram tagger using distributed

training. Curves are averaged over three data sets. Left figure depicts performance for

each network size greater than 1. The right figure averages over all network sizes

greater than 1.
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Figure 5.32: SVM training versus perceptron training of the trigram tagger using sequen-

tial training. Curves are averaged over three data sets.

We can see that SVM training often allows us to reach a slightly better accuracy than

perceptron training. In the case of the MST parser, training with the SVM objective is

more stable than perceptron training. The accuracy of perceptron trained models peaks

after a few iterations, and then degrades. This does not happen with the SVM models,

and suggests that perhaps the SVM training procedure can be run indefinitely in an

online setting, if need be. The benefit of SVM training is least pronounced in the case

of the tagger. This is perhaps because the cost function in that case is 0{1, and thus

makes less of an impact than truly cost-sensitive loss functions.

5.8.5 Communication Frequency

The analysis of §5.5 suggests that the convergence rate of the network depends on the

frequency of communication, rather than the size of the network. We now investigate

whether or not more frequent averaging does indeed lead to better convergence. Here,

we focus only the n-best ranker. We use a fixed network size of N � 12 nodes, and

give each the same problem to optimize: the SVM objective for the BIG data set. Unlike

the other experiments in this chapter, each node is not working on a shard but on the

entire data set, and each of the 12 nodes chooses examples randomly on each iteration.
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Nodes either communicate after each 100, 1000 or 10,000 examples. And, we track

the test-set performance and objective value reached, as a function of the total number

of examples processed. In Figures 5.33 and 5.33, we see that though the difference is

slight, there is indeed an advantage to communicating more frequently, especially for

objective value reached, as the theory predicts. This is especially visible in terms of

the training objective value.
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Figure 5.33: Test set performance reached on BIG data set for network of size 12, as

frequency of communication varies.
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Figure 5.34: Training objective reached on BIG data set for network of size 12, as fre-

quency of communication varies.

5.8.6 Distributed Gradient

We said in §1 that stochastic training is very popular for NLP. We also noted that batch

training is very simple to analyze, since the computation is unchanged compared to
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sequential batch training, but happens roughly N times faster on an N core network.

The problem with batch training for non-smooth functions is that the iteration com-

plexity is the same as for stochastic algorithms (§3.3), even though a batch iteration

takes M times longer (where M measures data set size) than a stochastic iteration. Past

work has suggested that distributed batch learning does not out-perform distributed

stochastic learning (Hall et al., 2010; Agarwal et al., 2011). We conduct a small num-

ber of experiments to examine whether this result holds in our scenario. We look at

batch sub-gradient descent optimization of the SVM objective. The step-size schedule

is chosen as it would be for stochastic sub-gradient descent (§5.8.1). In order to do

150 iterations of batch optimization, we pick the step size schedule that results in the

largest objective value decrease after 150 stochastic iterations. This schedule may be

too slow for batch optimization, but it can be hard to suggest an alternative. Fixing a

step-size to optimize progress of 150 batch iterations would not be practical, as this

would involve repeatedly making 150 iterations over the entire data set which, by as-

sumption, we can only afford to do once. Similarly, the line search required by LBFGS

can require multiple passes over the entire data set per gradient step (although, this is

apparently done by Agarwal et al., 2011), so an iterative line search to find the optimal

step-size also seems impractical. In order to determine whether the step-size schedule

was a problem, we experimented with the use of adaptive step-sizes using the pas-

sive aggressive scheme of Crammer et al. (2006), but this did not make a difference

to progress in accuracy to that reported. The left chart in Figure 5.35 shows the test

set performance over time of a distributed batch sub-gradient descent in an 8-core net-

work, compared to IPM optimization with the same number of cores, and the right side

shows the progress of the objective value. Although the batch algorithm does get to a

decent solution after one iteration, it makes very slow progress beyond that.
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Figure 5.35: SVM training versus perceptron training of the MST parser using distributed

training. Curves are averaged over three data sets. Left figure depicts performance

for each network size greater than 1. The right figure averages over all network sizes

greater than 1.

5.8.7 Speed-Up Due to Multi-Core

Aside from the ability to train on data that is collected in a distributed fashion, the main

reasons of interest in distributed training is the ability to speed up the training process.

We now investigate whether the IPM training method allows faster training than does

sequential training. We consider this from two perspectives. First, we look at low

long it takes for distributed networks to reach a given level of accuracy of sequentially

trained models. Second, we look at how much training can be gotten done with a fixed

wall-clock budget.

Simulating Network Delays Results are presented in two sets. First, we report the

wall-clock time with 0 network delay, as was observed on our actual shared memory

architecture. Second, we report results with simulated network delay of 5 seconds per

iteration, which was the per-iteration delay reported by Agarwal et al. (2011) reported

for a 100 node network in their distributed experiments using an All-Reduce cluster

architecture (see §3.6). Since all of our network sizes are less than this, this seems like

a conservative estimate.

5.8.7.1 Time to Given Accuracy

In looking at the time needed to reach given accuracy, we look at plots that indicate

the amount of time needed for a network of size N to reach 99%, 99.5%, and 100% of

the best accuracy reached by the sequential model. This information is depicted in bar

graphs in Figures 5.36–5.44. The amount of time taken, as a fraction of the sequential

optimizer’s time to reach the same accuracy, is shown as a fraction above each bar.

If the required level of accuracy is not reached by the network size, then the letters

NR are written in lieu of a bar. Figures 5.36–5.38 show results averaged over data set

for both perceptron and SVM training, while Figures 5.42–5.44 show results for SVM

training on each data set separately.

Averaging over Data Sets Figures 5.36–5.38 show times needed to reach given ac-

curacy levels with 0 seconds of network delay per iteration, averaging performance
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across all data sets. Figures 5.39–5.41 with 5 seconds of delay per iteration, averaging

performance across all data sets. The network delay seems to make little difference to

the overall trend. For the n-best ranker and the MST parser, there is a substantial speed-

up to reach the level of 99% test accuracy of the best sequential model. There is overall

a speed-up to reach 99.5%. But, 100% of accuracy of the best sequential model, is not

always reached. This seems to be the general trend of the data.8 For the case of the

trigram tagger, the results are quite different. In these experiments, multi-core training

seems only to slow down training of the tagger. But, the results of §5.8.7.3 show that

this is largely due to the fact that the weight vector, in this case, is represented using a

map, rather than a vector, which can be avoided using by feature hashing (Weinberger

et al., 2009).

First of all, this suggests that if only 99% accuracy is desired, a distributed strategy

can be highly preferable to a sequential strategy, provided network communication

times are sufficiently low. Also, the ability of distributed stochastic training to reach

a decent accuracy level quickly might suggest the benefits of a hybrid approach, that

starts with stochastic training and later switches do distributed batch training, as is

suggested by Agarwal et al. (2011). Finally, we see that speed-ups appear greater for

the perceptron than for the SVM training. This seems to be an artifact of the fact that

sequential perceptron training results in weaker models than sequential SVM training,

so there is a lower threshold to be reached. To quantify this, the accuracy required to

be reached is noted in the label of vertical axis for each bar graph.
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8The data do exhibit some variance. For example, in the SVM training results of Figure 5.37, we see
that, for 8 and 16 cores, a greater savings is achieved to 99% and 100% of the accuracy of the sequential
model than is achieved to 99.5% accuracy. This seems to be, at least in some part, because the sequential
model reaches 99.5% accuracy in roughly the amount of time that it takes to reach 99% accuracy, but
then takes much longer to reach its full (100%) accuracy. This is perhaps just an artifact of a small
number of examples from the test set benefiting from some fluctuation in later iterations of sequential
training (probably in part a result of the order of training examples, see §5.7.4), and may, in any case,
constitute over-fitting of the test set.
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Figure 5.36: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the n-best re-ranker with a 0 second between-round network commu-

nication delay. Graphs represent an average over three data sets.
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Figure 5.37: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the MST parser with a 0 second between-round network communica-

tion delay. Graphs represent an average over three data sets.
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Figure 5.38: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the trigram tagger with a 0 second between-round network communi-

cation delay. Graphs represent an average over three data sets.
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Figure 5.39: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the n-best re-ranker with a 5 second between-round network commu-

nication delay. Graphs represent an average over three data sets.
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Figure 5.40: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the MST parser with a 5 second between-round network communica-

tion delay. Graphs represent an average over three data sets.
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Figure 5.41: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the trigram tagger with a 5 second between-round network communi-

cation delay. Graphs represent an average over three data sets.

Results by Data Set We now plot the bar graphs depicting time needed to reach a

given accuracy for each data set individually. This allows us to investigate whether the

peculiar features of each data set lead to differing behaviours. It does not seem to be

the case that there are discernible trends between data sets.
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Figure 5.42: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the n-best re-ranker. Left graph depicts performance on BROWN data,

middle on WSJ and right on BIG data sets.
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Figure 5.43: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the MST parser. Left graph depicts performance on BROWN data,

middle on WSJ and right on BIG data sets.
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Figure 5.44: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the trigram tagger. Left graph depicts performance on BROWN data,

middle on WSJ and right on BIG data sets.

5.8.7.2 Training with a Wall-Clock Budget

In the §5.8.7, we looked at the question of how long it would take for the networks of

various sizes to reach comparable levels of accuracy to a sequentially trained model.

Usually, there is a speed-up to reach the level of 99% accuracy, but often do not reach

the level of 100% accuracy. Clearly, the models trained using distributed training get

up to a reasonable accuracy more quickly than the sequential algorithm, but then are
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sometimes eventually surpassed by the sequentially trained model. We now look at the

question of speed-up in another way, by assuming that there is a fixed budget of training

time. Suppose we are only able to or want to wait enough time to run one iteration of

sequential training. We now inquire into what level of accuracy can be reached with

that amount of time in a distributed network. Figures 5.45–5.47 show the accuracy

that can be reached with a budget of 1, 2, and 10 sequential training iterations without

any network delay. Clearly, with time for only 1 sequential iteration, one can reach a

much better accuracy using IPM distribution. With enough time to make 2 iterations,

one can get a better model using distribution, but usually only marginally so. With

enough time to make 10 iterations, the accuracy of the sequentially trained model is

better. Figures 5.48–5.50 show the accuracy that can be reached with a budget of 1, 2,

and 10 sequential training iterations with a network delay of 5 seconds per iteration.
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Figure 5.45: Accuracy reachable with given budgets for SVM training of the n-best re-

ranker with a network delay of 0 seconds per iteration.
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Figure 5.46: Accuracy reachable with given budgets for SVM training of the MST parser

with a network delay of 0 seconds per iteration.
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Figure 5.47: Accuracy reachable with given budgets for SVM training of the trigram

tagger with a network delay of 0 seconds per iteration.
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Figure 5.48: Accuracy reachable with given budgets for SVM training of the n-best re-

ranker with a network delay of 5 seconds per iteration.
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Figure 5.49: Accuracy reachable with given budgets for SVM training of the MST parser

with a network delay of 5 seconds per iteration.
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Figure 5.50: Accuracy reachable with given budgets for SVM training of the trigram

tagger with a network delay of 5 seconds per iteration.

5.8.7.3 Contribution of Weight Representation to Training Time

The weights for the n-best re-ranker and the MST parser are backed by arrays. The

weights for the the trigram tagger are backed by a hash table-based map. Time taken

to average any number of arrays up to 64 is negligible. However, the averaging of

vectors of several million entries that is backed by a hash map, in our implementation,

took considerable time as the network size grew. The time taken to compute the sum

of N vectors of dimension D is OpNDq for an array. And, in terms of amortized time,

the same asymptotic bound is roughly true for adding N D-dimensional vectors using

a hash map (Cormen et al., 2001). However, the constant term is much higher for
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hash tables due to the need to the computation of the hash function for each look-

up, as well as time spent resizing the hash table when it grows. The fraction of time

spent in the parameter averaging step of the IPM algorithm for each network size in

SVM training of the the trigram tagger on the BIG data set is given in Figure 5.51.

In order to understand whether this time spent averaging vectors was impeding the

speed-up due to parallelization, in Figures 5.52, we depict the time needed to reach

level of accuracy for both perceptron and SVM training of the trigram tagger on the

BIG data set, in which time spent averaging the weight vector was removed. Now, we

see that distributed SVM training does actually provide a speed-up to reach 99% of

the accuracy of the sequentially trained SVM model. The behaviour for training with

a budget is similar to the original results. An alternative to using map-backed weight

vectors for large dimension weights is to use feature hashing, in which a fixed array

size H is chosen, and all features are hashed to one of H values. Here, two features

with the same hash value will share a feature, even if they are different. However, in

practice this approach works well (Weinberger et al., 2009). This would mean that,

during the averaging step, one is simply adding N arrays.
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Figure 5.52: Time needed to reach given level of accuracy for SVM (left) and perceptron

(right) training of the trigram tagger with a scond between-round network communica-

tion delay. Graphs represent an average over three data sets.
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Figure 5.51: Fraction of total training time used for computing the average dual vector,

for each network size, for SVM training of the the trigram tagger on the BIG data set.
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Figure 5.53: Accuracy reachable with given budgets for SVM training of the trigram tag-

ger with a network delay of 0 seconds per iteration, if weight averaging time is excluded.

5.8.8 Summary

Using n-best ranking and MST parser training experiments, the results just discussed

have corroborated past results that the IPM distribution strategy outperforms the single-

mixture distribution strategy in terms of test performance for the perceptron, and ex-

tended these results to training using the SVM objective. Furthermore, we have seen

that the superior test-set performance of IPM optimization of the SVM objective corre-

lates with better optimization of the training objective. This corroborates the predic-

tions of the theory discussed in §5.5. The combination of this new theory and new

results gives better understanding to the result that has been reported in the past that

IPM performs better at test time than single-mixture, with the explanation being a better

training objective is reached. Distributed training using the IPM distribution strategy

can almost always reach a model that is 99.5% as accurate as a sequentially trained

model and often one which is 100% as accurate. In contrast, single-mixture distri-

bution strategies cannot reach this level of accuracy, and distributed batch processing

seemed to progress far too slowly to compete with the IPM algorithm. This implies that

IPM distributed training is at least a viable option for reaching the true level of accuracy

training in a case in which the data set cannot fit on a single computer and distribute

training is necessary. We have also seen that SVM training out-performs perceptron

training, even in the distributed training case, which justifies the use of the more gen-

eral version of the IPM algorithm presented in this chapter. In the distributed case, as in

the sequential case, this difference seems to be most important when the cost function
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has a gradient nature, like the dependency loss function as opposed to the 0{1 loss of

the trigram tagger.

In terms of whether or not there is a speed-up to be derived from IPM distributed

training, we have seen mixed results. For models that are backed by arrays, with a

number of features on the order of millions, like n-best ranking and the MST parser,

if communication cost is negligible, distributed training methods can reach the level

of 99% of the accuracy of a sequential method in a small fraction of the time as can

sequential training. Also, in such cases, if one only has enough time to make a single

sequential pass through the data, one can train a much better model using the IPM

distribution strategy. With enough time to make two passes through the data with

a sequential algorithm, one can get a better method using IPM distribution, but only

marginally so. However, as the distributed algorithms often can only get to 99.5% of

the accuracy of the sequentially trained model, they are eventually overtaken by the

sequential training method. Again, this may point the way towards hybrid strategies

that begin with IPM and later switch to batch training, as suggested by Agarwal et al.

(2011). For models backed by a map vector, a speed-up is also achieved if the time

spent averaging estimates is removed, suggesting that an approach that uses feature

hashing (Weinberger et al., 2009) may yield speed-ups in the same cases as for array-

backed vectors.

5.9 Discussion

We believe that the results in this section will help to provide a better understanding

of the IPM distribution strategy, which seems to remain a competitive in practice al-

gorithm at the moment in practice for distributed systems (Hall et al., 2010; Simianer

et al., 2012). Theoretically, we have shown IPM to be a convergent algorithm, and, em-

pirically, we have shown that, on a wide variety of data sets and for a wide variety of

tasks IPM distribution can reach 99.5% of the accuracy of a sequentially trained model.

For cases in which data sets must be distributed due to their size, this is important be-

cause such models cannot be trained sequentially in any case, and so knowing that the

true solution can be reached using distributed training is crucial.

An important limitation of this study is the rather small sizes of the training sets

used. They range from about 20,000 to about 60,000. In terms of labelled NLP data

sets, these are rather large. It was not practical for us to run any larger experiments on

the available hardware. However, it may be that training on a very large data set allows
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even more of a speed-up than training on smaller data sets. For example, with a training

set of 370 million click-through examples, and 9 million features, Hall et al. (2010)

show a speed-up factor of about 75, compared to sequential training, on a network

with 240 machines. Larger shard sizes might allow each node to be more productive

in each epoch, leading to better training times over all.

5.10 Conclusion

The superior test-time performance of models trained using iterative parameter mix-

ing (IPM) to those trained using single-mixture distributed training methods has been

noted in the past (McDonald et al., 2010; Hall et al., 2010; Simianer et al., 2012). We

give a novel perspective on this result by showing, using the distributed dual averag-

ing framework of Duchi et al. (2012), that the IPM distributed optimization algorithm

is guaranteed to converge, whereas the single-mixture training algorithm is not. This

suggests that the test-time difference between these two kinds of training is due to

superior optimization of the training objective by the IPM-optimized models. Our ex-

periments have verified that the superior test-time performance of IPM-trained models

does indeed correlate with better optimization of the objective value. The optimization-

theoretic analysis of this chapter is more general than the perceptron-based analysis of

McDonald et al. (2010), and supports optimization of the SVM objective. We exploit

this fact to conduct distributed SVM training, which we show to be superior in test-time

performance to distributed perceptron training. Corroborating the findings of McDon-

ald et al. (2010), we find that averaging of iterates does not seem to be as important

in the distributed settings test, for the perceptron or for SVM training, as it is in the

sequential case. We investigate the presence of a speed-up due to distributed training.

We find that, in some cases, a speed-up exists. In particular, if one has a budget of 1-2

iterations of sequential training, one can can use distributed training to return a much

better model in the same time than one could do with sequential training.



Chapter 6

Higher-Order Dependency Features

and Out-of-Domain Performance

The last chapter showed that multi-core training using the iterative parameter mix-

ing algorithm allows us to reach a greater level of accuracy, compared to sequential

training, when operating with a limited budget of training time. When developing and

prototyping a model, we are often in the situation that we are training with a budget,

since we are trying to iterate through the develop, debug and evaluate cycle as quickly

as possible. In this chapter, we present work that actually exploited the multi-core

speed-up to accelerate the development of a new state-of-the-art parsing model. The

parser that we present in this chapter advances the state-of-the-art in parsing accuracy

on out-of-domain tests, and isolates the contribution of various kinds of features to both

in- and out-of-domain parse accuracy. We estimate that that the savings in time during

the prototyping and development phase due to the use of IPM multi-core training were

considerable, and give specific calculations in §6.6.

Moving on to the contribution of this chapter, we will demonstrate the impact on

out-of-domain parsing performance gained by using higher-order dependency features

in a phrase-structure parser. Such features (see §6.2) encode dependency relationships

beyond the bigram head-modifier relationships used since Collins (1997), and have

been shown to improve in-domain parsing performance (McDonald & Pereira, 2006;

Carreras, 2007; Koo & Collins, 2010). We demonstrate that such features also show a

significant benefit when parsing out-of-domain material (see §6.1), even when added

to a state-of-the-art phrase structure parser along the lines of Charniak & Johnson

(2005); Huang (2008b), and so results in a new state-of-the-art for the popular train/test

domain pairs investigated. The documentation of this out-of-domain effect of such

144
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features is, as far as we are aware, a novel contribution. Through feature ablation tests,

we characterize exactly which kinds of features contribute most to in-domain versus

out-of-domain accuracy. We investigate the presence of a feature under-training by

comparing models trained using a single round of SVM training to models trained using

feature-bagging approach (Sutton et al., 2005), and show that, in some but not all cases,

feature-bagging gives a slight edge in performance. Finally, we conduct performance

experiments to demonstrate the parsing times under various parser parameter settings

of a Huang (2008b)-style cube decoding parser (see §6.3). This work was published

as Coppola & Steedman (2013).1

6.1 The Problem of Out-of-Domain Parsing

6.1.1 The Problem

The Concept of Domain A well-documented fact in the field of NLP generally, and

for parsing in particular, is that a model trained on data from one “domain” does not

perform as well when tested on another “domain.” We can think of each domain,

formally, as distribution over input-output pairs px,yq (Ben-David et al., 2007). Thus,

creating a training or test set from a domain A corresponds to repeatedly drawing ex-

amples according to the distribution, DA, associated with domain A, to create a training

set DA. In a newswire domain for sentence-parse pairs, we might be very likely to draw

sentences that discuss stocks, mergers, vice-presidents, etc. In a literature domain, in

contrast, we might be more likely to draw sentence that discuss plots, content, authors,

etc. Perhaps the newswire domain is described by distribution pnews and the litera-

ture domain is described by distribution plit . Then, for any given sentence-parse pair,

px,yq, we might expect to find that pnewsppx,yqq � plitppx,yqq. In practice, we can

expect that domains can be refined to an almost unbounded degree. That is, “newswire

text” can be refined to distinguish between publications, sections of publications, year

of publication, author, etc. But, in practice, identifying a natural level of granularity is

not a problem.

Problems Associated with a Change in Domain Suppose we have a distribution D
over input-output pairs, pDpx,yq. This induces a marginal distribution over just the

1The numbers reported in this paper come from new runs of the experiments compared to Coppola
& Steedman (2013). The results are qualitatively the same, but exhibit slight differences. These are
discussed at the end of §6.5.1.
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inputs pDpxq, and a conditional distribution over outputs given inputs, pDpy | xq. This

can be factored as follows:

pDpx,yq � pDpy | xqpDpxq (6.1)

This sort of decomposition is used by Ben-David et al. (2007) in the case of binary

classification, and Jiang & Zhai (2007) in the case of multi-class classification for

NLP. From this point of view, we can look at domain change as consisting of:

1. A change in ppxq but not ppy | xq.

2. A change in ppy | xq (possibly, as well as ppxq).

We will consider briefly the effects of a change in ppxq alone versus a situation

in which ppy | xq also changes. Let us assume, for the purposes of this discussion,

that prediction is done using ranking according a global linear model, in which each

candidate output y P C pxq for input x is characterized by Φpyq PRn, its embedding into

a real-valued feature space.

In the case of a change in ppxq but not ppy | xq, we can expect that, if a feature has

been seen in training, the weight associated with that feature is roughly correctly set.

This would be true in the case of probabilistic training §2.2. And, it should also be

true in the case of margin-based training, in which we assume the prediction function

learned will do well on examples generated by the underlying distribution (Vapnik,

1998; Collins, 2005). The problem that domain shift presents in this case, is that

many of the features that distinguish candidate outputs in the target domain will not

have been seen in the source domain training data. Thus, the weights associated with

unseen features will be 0, and so will not be able to help distinguish correct outputs

from incorrect ones in the target domain. In the case of a change in ppy | xq, we might

expect that feature weights which have been set to profitable values for the source

domain are set to the wrong values in the target domain. That is, not only might

some necessary feature values be set to 0, but those that are set might have the wrong

sign, or the wrong magnitude. One might suppose that the first type of shift is more

benign. Unfortunately, as Daumé III (2007) demonstrates in his error analysis on a

variety of NLP tasks a shift in conditional distribution is possible. But, to the extent

that domain adaptation has been successful (see §6.1.2, it seems to indicate that either

the conditional distribution ppy | xq does not always change too drastically, or else that

this is not fatal.



Chapter 6. Higher-Order Dependency Features and Out-of-Domain Performance 147

6.1.2 Proposed Solutions

6.1.2.1 Labelled Data from Target Domain

A number of approaches exist which attempt to augment a large source domain training

set with a small number of examples from the target domain. Compared to semi-

supervised learning (see below), which attempts to augment a large labelled training

set with unlabelled examples from the target domain, this approach has the advantage

that techniques similar to those for learning from labelled data, which are powerful

and well-understood, can be used. This approach has received a great deal of attention

(Roark & Bacchiani, 2003; Blitzer et al., 2006; Daumé III & Marcu, 2006; Daumé III,

2007; Jiang & Zhai, 2007). The drawback, of course, is that adding labelled data is

expensive, and so it is not possible to annotate data for all domains of interest.

6.1.2.2 Semi-Supervised Learning

An important approach to domain adaptation is to develop the technique of semi-

supervised parser training. This involves training from a mix of labelled and unlabelled

data. The rationale for doing so is that unlabelled data is essentially free, whereas la-

belled data is costly. It is universally considered impractical to pay human annotators

to label data from every domain of interest, especially since, for many applications,

the distribution over examples continues to change. For example, text on the web dis-

plays continually changing vocabulary and even style (Petrov & McDonald, 2012). We

review some semi-supervised training approaches here.

Clusters Koo et al. (2008) use unlabelled data to create clusters using the Brown et al.

(1992) clustering algorithm. These clusters are then used in place of lexical items as

features in a parser trained on labelled data. Though they use only in-domain tests,

they demonstrate that they can roughly half the amount of data required to achieve the

same performance as a parser trained without the clusters. The use of clusters was also

very popular in a recent shared task on semi-supervised learning for parsing the web

(Seddah et al., 2012; Bohnet et al., 2012; Hayashi et al., 2012).

Feature Statistics from Unlabelled Data A related approach to the use of clusters is to

count the number of times that features occur or co-occur in a large unlabelled corpus.

These feature counts can then be incorporated into discriminative features to train a

supervised classifier. This technique has its early roots in techniques that collect co-

occurrence counts, which, in turn, are used to arrive at a prediction in a deterministic
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way. For example, Hindle & Rooth (1993) collect co-occurrence counts from a large

unlabelled corpus and use the relative magnitudes of the counts, according to a hand-

written formula, to make a prediction about prepositional phrase attachment. The same

approach has been applied to noun-compound bracketing (Lauer, 1995). Lapata &

Keller (2004), however, conduct an investigation of a variety of NLP tasks and caution

that such deterministic use of co-occurrence counts fails to out-perform the state-of-

the-art supervised statistical methods. In contrast to the pessimistic result of Lapata &

Keller (2004) in the case of deterministic application of co-occurrence counts, statis-

tical approaches that use co-occurrence counts as features have been more successful.

Nakov & Hearst (2005) show that using co-occurrence statistics in a supervised clas-

sifier can out-perform the deterministic models studied by Lapata & Keller (2004).

Pitler et al. (2010) use co-occurrence counts as features for noun-compound brack-

eting to obtain better accuracies than work without access to such counts (Vadas &

Curran, 2007). Bansal & Klein (2011) show that co-occurrence counts and paraphrase

features from unlabelled text can be used to improve the performance of dependency

and phrase-structure parsers.

Automatic Labelling of Unlabeled Data Given the existence of powerful supervised

training methods for parsers, a simple and sometimes effective way to make use of

unlabelled data is the automatic labelling approach. First, one trains one ore more su-

pervised parsers on the available labelled data. Then, the supervised parser(s) are used

to automatically label a large quantity of unlabeled data. Finally, another supervised

classifier (or classifiers) can be trained on the automatically labelled corpus. Since the

original labelled data (labelled by humans) is presumably of much higher quality than

the automatically labelled data, interpolation between the model trained on the orig-

inal labelled data and that trained on the automatically labelled data can be tuned to

maximize performance.

The simplest example of automatic labelling is self-training, in which a single

parser is used to create an automatically labelled data set, and in which the same (or a

similar) parser is then trained on the automatically created output. One obvious draw-

back of the self-training approach is that, if the automatically labelled data contains

mistakes, the resulting parser will incorporate these mistakes, presumably degrading

performance. This is a likely problem, since we expect a fair number of errors from

any parser, especially when parsing out-of-domain. However, modest-to-strong im-

provements from self-training in practice suggest that the benefits of additional data
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outweigh, to an extent, the accumulation of errors. Early on, Charniak (1997) demon-

strated modest improvements to a generative parser by self-training on unlabelled data.

McClosky et al. (2006a) show that self-training can improve the in-domain perfor-

mance of the Charniak (2000) and Charniak & Johnson (2005) parsers, but only if the

Charniak & Johnson (2005) re-ranker is used. This result is notable for demonstrating

that self-training could significantly improve the performance of a then state-of-the-art

parsing model trained on a full-sized corpus. McClosky et al. (2006b) demonstrated

that this self-training method could also improve out-of-domain parsing performance

of the Charniak (2000) parser even without the re-ranker. Sagae (2010) shows that

the re-ranking step is not necessary to obtain out-of-domain improvements. Huang &

Harper (2009) and Huang et al. (2010) demonstrate improvements from self-training

over the state-of-the-art LA-PCFG parser of Petrov & Klein (2007b). Interestingly,

Petrov et al. (2010) show that, when training a fast but relatively less-accurate parser

(Nivre et al., 2007), it can be better to use a more accurate, but slower, parser (Petrov

& Klein, 2007b), rather than simply training the fast parser on its own output.

Also, there exists variants of self-training that attempt to lessen the chance of bad

parses (or outputs, generally) being added to the automatically created training sets.

Example selection techniques attempt to discern between automatically created out-

puts. Sarkar (2001) and Steedman et al. (2003a) use confidence, in terms of, as a

means to select the correct parses. A related technique is that of co-training, tri-
training, etc., (Blum & Mitchell, 1998) In these approaches, multiple predictors are

used to automatically label an unlabelled data set. The hope is that these different

predictors will have different “views” of the data, i.e., they will use different kinds of

features or search strategies. In some cases, this can have connections with example

selection, because agreement between different predictors can be used as a test of out-

put correctness. Sarkar (2001) demonstrates that co-training can improve over a parser

trained with only a limited amount of labelled seed data. Steedman et al. (2003b)

show that co-training is more effective than self-training, and that it can improve the

performance of a parser given access to a small amount of labelled seed data. Clark

et al. (2003) found that co-training could improve the performance of taggers trained

on a small amount of seed data, but not those trained on full-sized data sets. Søgaard

& Rishøj (2010) demonstrate that semi-supervised learning via tri-training improves

over both supervised and self-trained systems, and could improve over the accuracy of

then state-of-the-art models trained on full data sets.
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Expectation Maximization An alternative to automatic labelling is to use some variant

of expectation maximization. Unlike automatic labelling, expectation maximization

allows for the range of possible parses for a sentence, which are weighted according

to their posterior distribution. In comparison with automatic labelling approaches, one

might hope that the consideration of all possible parses for each sentence will allow

patterns to emerge in the posteriors for the unlabelled sentences, even if the patterns

come from parses that would not have been the 1-best output from any supervised

parser based on the labelled data. The drawback of such methods can be that, in order

to maximize joint likelihood over the data, one needs to work with a generative model,

but generative models are typically not competitive with discriminative models for

parsing (Collins, 2000; Charniak & Johnson, 2005).

Some expectation maximization-like approaches have been successful in parsing.

Bacchiani et al. (2006) have reported improvements over a baseline generative parser

by incorporating the weighted posteriors of the top 20 parses for each unlabelled sen-

tence as training data for a re-trained generative parser. Suzuki et al. (2009) train gen-

erative models over the posterior over parses for unlabelled sentences, and then use the

estimated generative model parameters as features in a new discriminative models. De-

oskar et al. (2014) demonstrate that repeated Viterbi expectation maximization passes

(Spitkovsky et al., 2010) out-performs a single pass of self-training. And, Coppola

et al. (2011) show that the opinion of a supervised classifier and a generative model

trained with expectation maximization on unlabelled data can outperform a supervised

classifier alone, for the problem of prepositional phrase attachment.

In machine learning more generally, a number of approaches have arisen that at-

tempt to allow the user to constrain expectation maximization training by specifying

constraints, either from intuition or from a supervised statistical model (Chang et al.,

2007; Ganchev et al., 2010; Bellare et al., 2009). Ganchev et al. (2009) have used this

training method to train weakly supervised parsing models from unlabelled data. There

is, however, no results yet that show that such a method can outperform state-of-the-art

supervised models.

6.1.2.3 Better Use of Labelled Data

A final option for better out-of-domain parsing, of course, is simply to make better

use of labelled data. The Charniak & Johnson (2005) parser discriminatively re-ranks

the n-best output of the Charniak (2000) parser using a variety of structural and lexical

features described in §6.2.1. The difference in F1 between the two parsers when trained
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and tested on the Wall Street Journal part of the Penn Treebank (Marcus et al., 1993)

is about 1.6%F1 (91.3 versus 89.7) (McClosky et al., 2006a). And, McClosky et al.

(2006b) reports that, when these parsers are trained on the Wall Street Journal part,

and tested on the Brown part, of the Penn Treebank, the difference between the two

is about 1.9%F1 (85.8 versus 83.9). Thus, by making better use of labelled data, we

can improve out-of-domain parsing performance. And, in the context of semantic role

labelling, Meza-Ruiz & Riedel (2009) show that, by modelling the several stages of

semantic role labelling jointly, significant improvement out-of-domain can be achieved

compared to a prediction cascade. In this vein, this chapter will adopt the strategy of

demonstrating that better performance can be achieved on out-of-domain tests using

only the labelled data.

6.2 Feature Sets

We investigate the interaction of three feature sets, in terms of their effect on parsing

performance both in- and out-of-domain. The first is a phrase-structure feature set,

based on the work of Collins (2000); Charniak & Johnson (2005); Huang (2008b). The

second is a set of higher-order dependency features, based on the work of (McDonald

& Pereira, 2006; Carreras, 2007; Koo & Collins, 2010). While it is known that such

features improve parsing performance in-domain, we are not aware of any work that

systematically demonstrates their effect out-of-domain. Finally, the third feature set

contains a single feature expressing a score resembling the conditional probability of a

given parse according to a strong generative paring model (Petrov & Klein, 2007b).

6.2.1 Phrase-Structure Features

Our phrase structure features are taken from the influential model of Charniak & John-

son (2005), which draws on Collins (2000). This was the feature set used by Huang

(2008b). Some of Charniak & Johnson’s (2005) features are omitted, with choices

made based on the ablation studies of Johnson & Ural (2010). We will use XP to rep-

resent any internal non-terminal node. The phrase structure feature set, Φphrase, then

contains:

• CoPar The depth (number of levels) of parallelism between adjacent conjoined

XPs

• CoParLen The difference in length between adjacent conjoined XPs
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• Edges The words or (part-of-speech) tags on the outside and inside edges of a

given XP 2

• NGrams Parent node P of a rule production, along with n-grams of the children

of P

• NGramTree An n-gram of the input sentence, or the tags, along with the mini-

mal tree containing that n-gram

• HeadTree A sub-tree containing the path from a word to its maximal projection,

along with all siblings of all nodes in that path

• Heads Head-modifier bi-grams between each word and its head

• Rule A entire single rule production

• Tag The tag of a given word

• Word The tag of and first XP above a word

• WProj The tag of and maximal projection of a word

Several of the features are sometimes annotated with the parent category of the given

phrase. NGrams and Rule have versions that indicate the head-word of the phrase.

For alternative descriptions, see Charniak & Johnson (2005); Huang (2008b).

6.2.2 Dependency Parsing Features

McDonald et al. (2005) showed that chart-based dependency parsing could profitably

be approached in a discriminative framework. In this early work, each feature function

was restricted to only being able to reference a single head-modifier relationship. Such

a feature, indicating a bigram dependency relationship between pos-tag pairs is called

a first-order dependency feature, and is exemplified by Child below. Subsequent

work looked at allowing features to access more complex, higher-order relationships,

such as Child+Sib and Child+GrandKid below (McDonald & Pereira, 2006; Car-

reras, 2007; Koo & Collins, 2010). Such higher-order dependency features indicate

pos-tag relationships beyond the bigram, such as trigram or 4-gram. Then, Zhang &

McDonald (2012) went on to show how arbitrarily complex relationships could be

incorporated on top of the original Eisner-algorithm backbone using a “cube” approxi-

mation similar to the one described in §6.3. Our work can be seen as a phrase-structure

analog of this work.

2The tags on the outside edges of a given XP are not definitely known when we visit that XP’s vertex.
For this reason, Huang excludes them. We approximate a tag on the outside edge of an XP using the
marginally most likely tag for that word according to the first-stage parser.
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The dependency features that we will use are, Φdeps, are:

• Child Parent and child

• Child+Sib Parent, child c, and c’s inner sibling

• Child+GrandChild Parent, child, and grand child

• Child+Sib+GrandChild Parent, child c, c’s inner sibling, and one of c’s chil-

dren

• Child+GrandChild+GrandSib Parent, child, grand child g, and g’s inner sib-

ling

Note that, here, notions of parent, child, etc., refer to relationships in the dependency

tree induced from the CFG tree, rather than relationships between the nodes in the CFG

tree itself. For reasons of efficiency, features are insensitive to arc labels (i.e., are

unlabelled).3 The dependency features induce m-grams, with m being either 2, 3, or

4, depending on the feature. With each m gram, we lexicalize up to am of the words,

where a2 � 2, a3 � 3, and a4 � 1. Each of these features has two versions. The full

version uses the full lexical items and tags, and the reduced version uses the stems in

place of the lexical items, and reduced tags in place of the tags.4

6.2.3 Generative Model Score Feature

Finally, we have a feature set, Φgen, with only one feature. That is, Φgenpyq will al-

ways have exactly one non-zero element, which is the logarithm of the MAX-RULE-

PRODUCT score of the LA-PCFG parser. This score has the character of a conditional

likelihood for the parse, and is described by Petrov et al. (2006); Petrov & Klein

(2007b). The basic idea of the LA-PCFG parser of Petrov et al. (2006) is that each

rule production A Ñ B C in a binarized treebank is assumed to be an instance of a rule

Ax Ñ By Cz, where x,y,z are latent states, from a finite set of possibilities, that are not

observed directly in the data. An expectation-maximization-based procedure is run on

the training data to estimate the posterior probability that each nodes is in each given

latent state. Given that this parser makes use of automatically posited latent states, an

important parameter is the number of split-merge iterations conducted during training

and inference (Petrov et al., 2006). Typically set to 5 or 6, each split-merge iteration

3We are testing against the labelled dependencies of de Marneffe & Manning (2008). We found
it impractical to extract these at parse time. Perhaps this could be improved with optimization of the
dependency labelling routine, but we felt this would not be worth the time involved.

4Following Koo and Collins, the reduced tag is the first two letters of the tag, unless the tag is PRP
or PRP$.
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refines the set of latent categories, creating a larger grammar. Each refinement cor-

responds to a stage of inference, so that a model that is trained using 6 split-merge

iterations will require one more iteration of a decoding loop at inference time than a

model using 5 split-merge iterations. This distinction will be relevant later, since the

LA-PCFG parser is the first-stage parser in our cube decoding architecture (see §6.3).

6.3 Cube Decoding

6.3.1 Non-Local Features

Recall the general framework for viewing structured prediction discussed in §2.1.4.

Structured prediction is viewed as finding the highest-scoring hyper-path, through a

packed forest, from a collection of nodes representing the input, to a designated target

node. The generalized Viterbi algorithm is an exact dynamic programming algorithm

that requires the assumption that each hyper-edge can be assigned a score indepen-

dently of all other edges. In the case of CFG parsing, this translates to the requirement

that each rule production can be assigned a score independently of any others. Since

the input is constant across all proposed outputs, it is possible to refer to any part of

the input without breaking the independence assumption. Suppose that Rpyq are the set

of rule productions in the parse y, and R is the set of CFG rule productions (includ-

ing those for pre-terminals). Then, in order for Viterbi-style dynamic programming to

work, we require the existence of a function Φ1 : X �R Ñ Rn such that:

Φpx,yq �
¸

rPRpyq
Φ
1pr,xq (6.2)

Following Huang (2008a), those feature functions that factor according to the hyper-

edges are called local, and that do not are called non-local.
Most of the features referred to in §6.2 are non-local. For example, the NGramTree

feature of Charniak & Johnson (2005) indicates an n-gram of the input sentence, along

with the minimal tree containing that n-gram. This can include phrasal nodes from any

number of layers of rule productions. Also, CoPar measures the maximum depth at

which at which two adjacent trees that are conjoined by a conjunction word (e.g., and,

or) are identical. This again requires inspecting more than one level of rule production.

Crucially, in a phrase-structure parsing framework, any features that refer to the

head word (or head part-of-speech) of a phrase are non-local. Consider the algorithm,

shown as Algorithm 14, for finding the head word of a phrasal node. f ind-head-child
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Algorithm 14 Finding the Head Word
1: procedure FIND-HEAD-WORD( f ind-head-child, P, t)

2: if P is terminal then

3: return P

4: else

5: Ph � f ind-head-childpP, tq

6: return Find-Head-Wordp f ind-head-child, Ph, tq

takes a pair of a phrasal node P and a tree t and returns the head child Ph of node P in

tree t. In our implementation, as is usual, the head child of a CFG node can be found

by looking only at the local rule production below P in t (Collins, 1999; Yamada &

Matsumoto, 2003). Thus, if a feature were only to refer to the head child of a given

phrasal node, that feature would still be local. But, as Algorithm 14 makes clear, the

recursive nature of determining a head word (or tag) means that the head word of a

phrasal node is, for any interior node, a non-local feature. The non-locality of features

mentioning the head word is crucial for this chapter because of the emphasis on the in-

clusion of higher-order dependency features in a phrase-structure parsing model. Each

of these features is non-local. Interestingly, as we will see in §6.3, the solution that

allows first-order dependency features like Child also allows dependency features of

arbitrary order.

6.3.2 The Cube Decoding Algorithm

In order to parse with non-local features, we cannot use the Viterbi algorithm. How-

ever, chart-based parsing with non-local features is possible using the cube decoding
algorithm of Huang & Chiang (2007); Huang (2008b,a). The cube decoding algorithm,

shown as Algorithm 15, is an inexact dynamic programming algorithm that relies on

beam search to allow tractable parsing time.

Algorithm 15 Cube Decoding

1: procedure CUBE(Hx � pV ,Eq ,w,ΦF ,k)

2: Let D be an empty map

3: for v PV in topological order do

4: Dpvq Ð KBESTpv,H,D,k,w,Φq

5: return DpTOPq1 � Return first (highest-scoring) element from DpTOPq

The input to the algorithm is: 1) a hyper-graph Hx � pV ,Eq, which is a packed
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forest compactly representing possible outputs for the input x, 2) a weight vector, w,

3) a feature function Φ, and 4) an integer beam width k. The nodes of the acyclic hyper-

graph are visited in a topological order that starts with the nodes representing the input,

and ends with the node TOP. (In the CKY algorithm, this corresponds to using spans

of increasing sizes and, for each span, considering each node label for that span.) For

each node v, although there are exponentially many possible derivations of (or, hyper-

paths to) v, we only maintain the k highest-scoring derivations. These are assembled

by the function called KBEST in Algorithm 15. We omit details of this algorithm here

(the reader is referred to Huang (2008b,a)). However, the important point to note is that

KBESTpv,H,D,kw,Φq returns the k-best derivations for the node v in the hyper-graph

Hx, according to weight function w and feature function Φ, given that the map from

nodes to lists of k-best derivations so far is D. Along with each of the k-best derivations,

the algorithm also records the score of the feature vector of that derivation. By caching

these values, we prevent their needless re-computation later in the run of the algorithm.

Only the derivations in D are used, which means that, in creating a derivation for node

v, only the top k derivations for those nodes earlier in the traversal are available. Each

call to KBEST involves k extractions from a priority queue. Huang (2008b,a) gives

the time complexity of this algorithm as Op|E | � |V |Fk logkq, where F is a constant

that bounds the feature extraction time. This algorithm is not exact, in that it can make

search errors. A search error is said to occur when there exists a candidate y P C pxq
that has a higher model score than the one that is returned by the approximate search

algorithm, but search errors are not a great problem in practice (Zhang & McDonald,

2012).

Suppose we want to use the feature function Φ : Y Ñ Rn, such that Φpyq is a

feature vector for the full parse y. Suppose SpY q is the set of sub-trees in y. In order to

parse efficiently in the cube decoding framework, we must convert Φ into a function

ΦF : X �SpY q Ñ Rn. ΦF must be constructed such that:

Φpyq �
¸
tPy

ΦFpx, tq (6.3)

Because we cache the feature vector of each derivation of each node v, this computation

is not repeated. Thus, ΦFpx, tq only computes those features about the sub-tree t that

were not computed yet for any sub-tree of t.
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6.3.3 Pruning the Parse Forest

From an asymptotic perspective, the cube decoding algorithm runs in time which is lin-

ear in both |E | and |V |. In the case of standard CKY parsing, the number of nodes, |V |,
for a sentence of length n is Opn2gq, where g bounds the number of non-terminal sym-

bols in the grammar. For a binary branching tree, the number of edges, |E |, is Opn3g3q.
These numbers imply that the Op|E |� |V |Fk logkq run-time of the cube decoding al-

gorithm is tractable, in the sense of polynomial, in n. However, of course, simply

having a polynomial run-time does not imply that the algorithm will be fast enough for

any particular purpose in practice. In order to make the cube decoding algorithm fast

enough to be at all practical, it is necessary to prune |V | to be something like linear in

n. (In fact, the cube decoding algorithm remains a very slow algorithm, relative to the

shift-reduce alternatives. See §6.3.5 for discussion, and §6.5.2.3 for timing results.)

Pruning of the packed forest can be accomplished by first running a Viterbi-style first-
stage parser over the sentence, for which we use the LA-PCFG parser discussed in

§6.2.3, and pruning edges according to a figure-of-merit (Huang, 2008b; Charniak &

Johnson, 2005). Since the LA-PCFG parser uses binary trees internally, but our features

refer to de-binarized trees. So, we prune before debinarizing.

6.3.4 Margin-Based Training with the Cube Decoding Algorithm

Huang (2008b) trains his cube decoding parser using the perceptron. We will focus on

training with the linear SVM objective. In the case of the perceptron, training requires

two candidate outputs: the gold candidate and the prediction under the current weight

vector. In the case of linear SVM training, we also require two candidate outputs: the

gold candidate and the max-loss candidate.

6.3.4.1 The Oracle Candidate

As for the gold candidate, note that this candidate may not be reachable from the

pruned parse forest returned by the first stage parser (§6.3.3). It is well-established

wisdom in the NLP and machine learning communities that, when using an approxi-

mation to the full output space, often better results can be obtained by treating as the

gold candidate the best reachable candidate, rather than the true gold. This best candi-

date is customarily called the oracle candidate. Huang (2008b) presents an algorithm

for constructing an oracle from a packed forest. It exactly returns the candidate from

the parse forest with the highest F1 score. We use this same algorithm. Though we are
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primarily interested in dependency loss functions in this chapter, our initial implemen-

tation of the oracle construction function was done to return the best tree by F1, which

usually produces a tree with near-perfect dependency accuracy.

6.3.4.2 The Max-Loss Candidate

The max-loss candidate is the maximizing argument of (2.20). That is:

ỹ � argmax
yPC pxq

ttxw,Φpyqy�ρpy,yqu�xw,Φpyqyu (6.4)

We saw in (6.5) that, in order to be compatible with the cube decoding algorithm,

the feature function must factor according to the sub-trees of the parse. Similarly,

given a desired cost function ρ : Y �Y Ñ R, in order for this function to be used

in a cube decoding framework, we require the existence of a factored cost function

ρF : Y �SpY q Ñ R such that:

ρpy,yq �
¸
tPy

ρFpy, tq (6.5)

Interestingly, although we use a CFG parsing algorithm, we can use a dependency-

based loss function. This would not be possible if the loss function were required to

factor according to the rule productions of the parse, as is the case in CKY-based SVM

formulations (Taskar et al., 2004; Tsochantaridis et al., 2005).

6.3.4.3 Probabilistic Cube Decoding is Not Yet Possible

Now that the mechanics of perceptron and linear SVM training for a model using a

cube decoding architecture have been introduced, we can discuss the contrast between

these model types and probabilistic training. It is currently not known how to train

a cube decoding model using a maximum entropy conditional likelihood objective.

There are two principal problems in this regard. First, as usually construed, the use

of conditional maximum entropy requires the computation of the normalization factor

(2.7), which, for a sentence x and a given weight vector, is the sum of the potentials

of all parses in C pxq. Second, we require the ability to sum up the contributions to the

expected feature vector. Computing this sum in a framework in which a beam is being

applied, especially such an extreme beam, is not well understood, although Gimpel &

Smith (2009) have suggested a technique for approximating the normalization factor,

and shown its connections to weighted dynamic programming (Eisner et al., 2005), but

have not given any experiments to demonstrate the effectiveness of their method.
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6.3.5 Cube Decoding versus Alternative Parsing Algorithms

Standard CKY-based parsing algorithms, in which each node in the hyper-graph is con-

stituent is characterized as a pair of i) label and ii) span cannot accommodate the use

of non-local features, including head-modifier relationships. The basic CKY algorithm

for binary trees, as noted, runs in time OpGn3q. Collins (1997) introduced the idea

of modifying the dynamic programming for parsing, so that each node in the graph

is actually a triple of i) label, ii) span, and iii) head word. This idea has also been

adopted by Hockenmaier & Steedman (2002); Clark & Curran (2007). The inclusion

of the head word into the dynamic programming factorization increases the run-time

of the algorithm to OpGn5q, and thus requires heavy pruning. However, while allowing

an additional important class of features (including bi-lexical head-modifier dependen-

cies), this kind of factorization does not allow the other non-local features of §6.2.1.

The initial means of using non-local features was to re-rank an k-best list of candidates

(Collins, 2000; Charniak & Johnson, 2005). Of course, decoding time of the re-ranking

stage is linear in k. The problem with re-ranking is that often-times the list has much

redundancy, and the best option in the list, especially for longer sentences, can be quite

far from the gold parse.

Another option for using non-local features in a phrase-structure parser is to use a

shift-reduce phrase-structure parser Sagae & Lavie (2005); Wang et al. (2006); Zhang

& Clark (2009, 2011); Zhu et al. (2013). Such a system works like a shift-reduce

dependency parser (Yamada & Matsumoto, 2003; Nivre & Scholz, 2004), storing the

input sentence as a queue, from which words are shifted onto a working stack, on

which sub-trees are combined (or, reduced) to create larger ones. The run-time of such

a system in terms of the input size and grammar constant is OpGnq, which is much

faster than chart-based parsers. If a beam width of k is used (as opposed to maintaining

only a single working hypothesis), then the run-time becomes OpGnk logkq. In the case

of a shift-reduce system, it is possible to look arbitrarily deeply at any aspect of those

sub-trees already built. As such, features which would not be allowed in a vanilla CKY-

style parsing system can be easily included in a shift-reduce system. For example, it

is common to include a feature that references the head words (or tags) of the top two

sub-trees on the stack. The use of the head words of the two sub-trees combined in a

reduce operation is equivalent to using bi-lexical dependencies. Zhang & Clark (2009,

2011) also include features that reference the head words (or tags) of the top three

constituents on the stack. This is very similar, although perhaps not exactly equivalent,
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to the use of higher-order dependency features.5

Compared to cube decoding, shift-reduce parsing is faster and may be a better

choice in practice. However, for experimenting with feature sets, we thought that the

chart-based cube decoding framework would be a better choice. First of all, although

the algorithm is inexact, search errors are very rare (Zhang & McDonald, 2012). Thus,

we can compare features in a more idealized environment. Second, using this frame-

work allows us to examine the well-known feature set of Collins (2000); Charniak &

Johnson (2005). The Charniak & Johnson (2005) parser has been the basis for much

work in NLP, especially in out-of-domain parsing settings. It is difficult to use this

feature set in a shift-reduce setting, because trees in that case must be binarized. Fi-

nally, the use of the cube decoding framework allows us to investigate the inclusion

of the generative model score feature that has been common in many discriminative

parsing model. This allows us to quantify the contribution of the generative model to

overall parse accuracy. In other words, it allows us to quantify how much performance

lacks in a framework that does not include a generative first-stage parser as part of its

architecture.

6.4 Feature Bagging and Model Combination

6.4.1 The Problem of Under-Training

We want to examine the combinations of parsing feature sets. Each of these feature

sets constitutes a fairly good basis for a model on its own. We thus might run the risk

of feature under-training, a problem was discussed in the context of conditional ran-

dom fields by Sutton et al. (2005). Under-training refers to a situation in which feature

weights are not set as strongly as they should be, because there are many other features

that can also be used to explain the training set. In the case of a conditional likeli-

hood model, this means that making the correct output most likely might only require

each of the features to have small magnitudes. In the case of SVM training, it means

that the required margin for each example can be achieved with small weight magni-

tudes. The problem with under-training is that, while many features may be active for

the training examples, it might be that on test examples, especially on out-of-domain

tests, some features used in training might not be present, and other features that are

5The lack equivalence comes from the fact that the relationship of the third sub-tree on the stack
from the first two is not yet determined. In contrast, in the features of §6.2.2, the relationship is always
included as a part of the feature.
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present might have weights with smaller magnitudes than they should have. Sutton

et al. (2005) refer to a case discussed by Pomerleau (1995) in which a driving robot

trained with a neural network came to rely entirely on a single feature, the location of a

ditch by the right side of the road, during training, and was unable to perform during a

test in which it was asked to drive in the opposite direction, in which the ditch was no

longer to its right. In the case of discriminative parsing models that re-rank generative

parsing models, there is, as with Pomerleau’s (1995) example, a very strong feature

that the re-ranked model might come to rely on. That feature is the model score of

the underlying generative parser (Φgen, here). This single feature actually represents

a sophisticated statistical collation of very many features—those on which the genera-

tive model’s score is based—and so is much more indicative than any boolean feature

describing some raw characteristic of the input.

Sutton et al. (2005) suggest, as an antidote to under-training, a strategy of feature
bagging. Feature bagging involves splitting one’s entire feature set into n groups, or

bags, of features. Then, for CRFs, one trains CRF models containing the n subsets

(bags) of features to create component models. Then, finally, one uses the conditional

probabilities of these smaller models as features in a new CRF model, which is then the

one used for prediction. Sutton et al. (2005) show examples in which models trained

using feature bagging outperform those trained without. Smith et al. (2005) show that

this architecture can be used to train CRF models without a regularization. This allows

“parameter-free” training, as it obviates the need to tune the regularization parameter

λ.

6.4.2 Model Combination by Minimum Error-Rate

Since we are not using CRF training, we cannot adopt the exact probabilistic model

combination exact that Sutton et al. (2005) used. Instead, we will train component

models using the linear SVM training objective (2.28). The scores of these component

models could then be used as features to a model combination trained using another

linear SVM. However, given that the combined models will only have up to three

components, we were concerned that SVM training with such few features might be

somewhat unstable. When training a model for small number of features (around 12

or less), an interesting and very accurate option is to simply set the weights directly to

minimize test error on the training set according to one’s chosen error metric.
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6.4.2.1 The Form of the Combination

Suppose we have some expert functions, phnqnPrNs, hn : Y Ñ R, each of which takes

an output and returns a real number representing the quality of that output according

to some model.6 Given combination weights µ � pµnqnPrNs, µn P R, we can combine

the opinions in turn in another linear combination as Σiµihipyq. Our prediction strategy

would then be:

ŷphnq,pµnq,C pxq � argmax
yPC pxq

¸
nPrNs

µnhnpyq (6.6)

Here, the component experts hn will be linear models associated with the feature sets

Φphrase, Φdeps, and Φgen, trained using maximum-margin training.

We should perhaps take a moment to distinguish this sort of model combination

from another sense of the term “model combination” that exists in the parsing liter-

ature (Henderson & Brill, 1999; Zeman & Žabokrtskỳ, 2005; Sagae & Lavie, 2006;

Fossum & Knight, 2009; Zhang et al., 2009). The works referred to combine the out-

put of diverse parsers using the 1-best or n-best outputs from a range of parsers, with

have both heterogeneous models and heterogeneous search strategies. Our method

simply involves a combination of model scores, but the same search strategy is used

for each model. (We do not claim one method is better than the other, but only note

the difference.) Somewhat similarly, Petrov (2010) presents a model combination of

generative LA-PCFG parsers, in which the models are combined with equal weights

(i.e., µn � 1 for all n) and a single search strategy is used.

6.4.2.2 Training by Minimum Error-Rate

The setting of weights to directly minimize an error metric on the training set is

called minimum error-rate training (Och, 2003). Here, space of tuning parameters

is searched to find combination weights that lead to predictions with the lowest loss on

the training set. Such an objective is non-convex, and would be very difficult to search

naively. However, Och (2003) uses an n-best version of the decoding problem, which

allows a piece-wise linear representation of the function to optimize, which allows fast

and exact search in any single-dimension search direction. However, as the problem is

6More positive values should correspond to better outputs according to the model and more negative
values should correspond to worse outputs. In practice, though, the system would work just as well
if more negative values correspond to better outputs, and more positive values correspond to worse
outputs, so long as the sign of the combination weights are reversed.
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non-convex, it is still not always possible to find the globally optimal parameter setting,

because a different ordering of search directions will produce different results.

We chose to use simple grid search, as opposed to Och’s (2003) algorithm. It

is much simpler to implement—especially because it allows us to avoid alternating

between n-best and full prediction stages, and because it seemed to work well for the

small number of parameters tuned. Parameters are fixed in a greedy fashion. In order

to fix pµ1, � � � ,µNq, we first set µ1 � 1. Then, for n ¡ 2, choose:

µn � argmin
µ

Eptµ1, . . . ,µi�1,µ,0, . . . ,0uq (6.7)

In all experiments, the order in which the combination weights are set (if present) are:

Φphrase, Φdeps, and then Φgen. Tuning is performed on 400 examples taken from section

21. These examples are withheld in all earlier rounds of training, so that neither the

LA-PCFG parser nor any of they discriminative models have seen these examples.

6.5 Experiments

6.5.1 Methods

Data Sets The data sets involved were the Wall Street Journal (WSJ) and Brown

(BROWN) portions of the Penn Treebank (Marcus et al., 1994). The training/test splits

for these results are standard. For the WSJ, we use sections 2-21 for training, 22 for

tuning, and 23 for reporting results. For BROWN, we use Gildea’s (2001) sections 0-7

for training, 8 for tuning, and 9 for reporting results. The sizes of these data sets is

shown in Table 6.5.1.

Data Set Train Size Tune Size Test Size

WSJ 39,832 1,700 2,416

BROWN 19,740 2,078 2,425

Table 6.1: Data set sizes for experiments in this chapter.

MERT Tuning Set In order to tune the model weights in the MERT stage, we withheld

400 examples from the end of both the BROWN and WSJ training sets, from both the

generative and SVM stages of training. This means that all training conducted was

done with data from the training sets, and not from the tuning or test sets. These with-

held examples were only used to train the MERT combination weights for combination
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models, but not to train weights during the SVM phase. This means that models trained

using a MERT combination actually have access to 400 extra examples. This might be

argued to bias results towards preferring MERT combination, since they have access to

more training data. However, these extra examples are only used to tune 1 or 2 combi-

nation weights, so this was judged to be a negligible advantage, and greatly simplified

the experimental structure.

Training Set Preparation In order to create first-stage parsers for the training stage of

the discriminative parser, we use a jack-knifing procedure (Collins, 2000; Charniak &

Johnson, 2005). Each parser was an LA-PCFG parser trained 5 iterations of the split-

merge procedure (see Petrov et al. (2006)). During training, decoding is done with a

beam width of 12 individual CFG trees per node for phrase-structure feature sets, and

5 individual unlabelled dependency structures per node (cf. §6.3) for the dependency-

only feature set Φdeps.

SVM Training Details Linear SVM training is done using the objective (2.28), which

we have discussed several times. As the cost function, ρ, we use arithmetic average of

the number unlabelled dependency mistakes plus the number of labelled dependency

mistakes. This objective function is optimized using the IPM distributed dual averaging

algorithm (Algorithm 10) discussed in §5. Each case of training uses 12 nodes (com-

puter cores), using 25 epochs through the data, with parameter mixing between nodes

after every epoch through the data. These experiments were run on a shared memory

multi-core computer containing 16 1.8 Ghz AMD Opteron processors. Models con-

taining Φphrase or Φdeps, but not both, were trained with 40 GB of RAM and models

containing both Φphrase and Φdeps were trained with 50. The iteration used is the one

that performs best on the tuning set. A filter was applied to the features. We kept only

features that were seen in candidate parses for at least 3 inputs from the training set.

The regularization parameters λ used for each training set in pBROWN,WSJq was taken

from the optimal values found determined in the n-best re-ranking experiments in §3.

MERT Training Details For the MERT-trained model combinations, MERT tuning was

done on using the 400 held-out examples for the given training set, according to the

method described in §6.4.2.

Test Metrics The test loss functions used are shown in Table 6.5.1.
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Function name Description

F1 Measures harmonic average of precision and recall of the

number of labelled brackets in the predicted parse compared

to the gold parse.

UAS The percentage of unlabelled dependencies correct in

the dependency tree extracted from the predicted phrase-

structure parse.

LAS The percentage of unlabelled dependencies correct in

the dependency tree extracted from the predicted phrase-

structure parse.

Table 6.2: Loss functions used to report results of parsing experiments.

Parameter Settings For all accuracy experiments, we use a beam width (i.e., the k

of Algorithm 15) of 12. The cube pruning algorithm is set to output a maximum of 6

brackets per word. All training is done using forests output by a 5 split-merge LA-PCFG

parser (see §6.2.3).

Significance Tests For significance tests reported in the next section, we used the

version of the paired bootstrap (Efron & Tibshirani, 1994) recommended in Berg-

Kirkpatrick et al. (2012).

Differences from Coppola & Steedman (2013) The results presented in this chapter

are qualitatively the same but do differ slightly from those reported in Coppola &

Steedman (2013). This is because these results constitute new runs of the training and

testing procedures, with slight changes to certain parameters. For one, we switched to

the regularized SVM training objective to the prediction-based MIRA learning algorithm

of Crammer et al. (2006). Second, we broke the training data into distinct shards, in

accordance with the IPM algorithm analyzed in §5. Third, we made slight changes to

the MERT tuning stage. In Coppola & Steedman (2013), tuning was done using n-best

lists, whereas below tuning is done directly with the cube decoding algorithm. It would

seem that none of these changes should work towards or against any result with respect

to the differences in feature sets, but only produce slight fluctuations.
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6.5.2 Results

We begin by comparing accuracies of the various feature sets (§6.5.2.1), and then move

on to some experiments that document the variation in parsing speed versus accuracy

as parameters of the parsing algorithm are varied (§6.5.2.3).

6.5.2.1 Accuracy

Initial Presentation of the Results We begin by comparing accuracies. The test-time

prediction results for the final test sets are shown in Tables 6.3 to 6.10. Tables 6.3,

6.5, 6.7 and 6.9 depict the performance results, while Tables 6.4, 6.6, 6.8 and 6.10

depict the results of the significance tests done on the important model comparisons.

We begin with numerical charts that convey the results in detail. Some salient points

from this data will be illustrated in graphical charts later in this section.

Bearing on the question of the effectiveness of feature bagging (§6.4.2), charts

distinguish models trained using a single round of SVM training, denoted Single, and

those trained using a MERT model combination, denoted MERT. For models containing

only a single atomic feature set (i.e., either Φphrase, Φdeps or Φgen), the only possibil-

ity is to have been trained in a single round of training, and so the entries in MERT

category for these models are empty. The model Type of each model is shown on the

left. Those models which contain only the generative model score feature are given

type G. Those models using only discriminative features are given type D. Those mod-

els using a mix of generative and discriminative features are given type G+D. The

generative/discriminative combinations are the strongest, but we make the distinction

between model type in order to highlight the relative contributions of the generative

and discriminative components. The best score for each metric overall is indicated by

bold face, while the best score for a fully discriminative model is indicated by being

underlined. In the architecture we have used, the generative model score feature can

be used at no additional cost. However, in other architectures, such as shift-reduce

parsers Zhang & Clark (2009, 2011); Zhu et al. (2013), the generative model score

is not available, and so we want to quantify what is lost by these models. We com-

pare two versions of each generative model. One uses 5 rounds of SM training for the

Petrov et al. (2006) parser, and the other uses 6. Since the best setting for each of these

data sets should either be 5 or 6, we can be quite sure that the best setting has been tried

for each train-test pair, and so the strength of the generative component is not being

under-estimated.
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Training Method

Single MERT

Type Model F1 UAS LAS F1 UAS LAS

G gen5 89.7 93.1 90.9 — — —

gen6 90.4 93.6 91.3 — — —

D phrase 90.9 93.7 91.0 — — —

deps 85.6 93.0 88.1 — — —

phrase+deps 91.3 94.3 91.7 91.2 94.2 91.6

G+D phrase+gen5 91.6 94.4 92.4 91.6 94.3 92.3

phrase+gen6 91.8 94.6 92.5 92.0 94.6 92.6

phrase+deps+gen5 91.7 94.7 92.6 91.9 94.7 92.7

phrase+deps+gen6 92.0 94.8 92.7 92.4 95.0 93.0

Table 6.3: Cube decoding parsing results, for models trained on WSJ, and tested on

WSJ.

Significance Tests The significance tests attempt to answer the following two ques-

tions:

1. Does the MERT feature-bagging strategy lead to improved models?

2. Does the addition of the higher-order dependency feature sets, Φdeps, improve

performance?

Towards this end, the first group of pairs tested in each significance test table compares

combined models trained with the MERT combination to those trained in a single round

of SVM training. The second group of pairs compares models that include Φdeps to the

corresponding models that do not. We write nb. a cell of the significance table to

indicate that the performance of the model under the category Better was not actually

better than that list under Worse on that metric and train-test pair.

Main Trends In the parsing literature, usually an absolute difference of about .4� .5%

on any metric is considered interesting enough to warrant publication (cf. Charniak &

Johnson (2005); McDonald & Pereira (2006); Koo et al. (2008)). Using this standard

to evaluate the size of a performance increase, we can identify the following four trends

in the results in Tables 6.3 to 6.10:

1. Among models using only discriminative features, Φphrase+deps always out-performs
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Better Worse F1 UAS LAS

phrase+deps (MERT) phrase+deps (Single) nb. nb. nb.

phrase+gen5 (MERT) phrase+gen5 (Single) nb. nb. nb.

phrase+gen6 (MERT) phrase+gen6 (Single) .011 .384 .240

phrase+deps+gen5 (MERT) phrase+deps+gen5 (Single) .137 .269 .047

phrase+deps+gen6 (MERT) phrase+deps+gen6 (Single)  .001 .016 .001

phrase+deps (MERT) phrase .018  .001  .001

phrase+deps+gen5 (MERT) phrase+gen5 (MERT) .001  .001  .001

phrase+deps+gen6 (MERT) phrase+gen6 (MERT)  .001  .001  .001

Table 6.4: Cube decoding significance results, for models trained on WSJ, and tested

on WSJ.

Training Method

Single MERT

Type Model F1 UAS LAS F1 UAS LAS

G gen5 85.0 88.6 84.9 — — —

gen6 85.2 88.9 85.1 — — —

D phrase 85.5 89.1 84.8 — — —

deps 81.2 88.8 82.5 — — —

phrase+deps 86.0 89.6 85.5 86.0 89.7 85.5

G+D phrase+gen5 86.9 90.0 86.6 87.2 90.0 86.5

phrase+gen6 86.7 90.0 86.5 87.1 90.1 86.7

phrase+deps+gen5 87.0 90.1 86.7 87.4 90.4 86.9

phrase+deps+gen6 86.8 90.1 86.7 87.4 90.6 87.2

Table 6.5: Cube decoding parsing results, for models trained on WSJ, and tested on

BROWN.
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Better Worse F1 UAS LAS

phrase+deps (MERT) phrase+deps (Single) .440 .183 .439

phrase+gen5 (MERT) phrase+gen5 (Single) .010 nb. nb.

phrase+gen6 (MERT) phrase+gen6 (Single) .002 .146 .090

phrase+deps+gen5 (MERT) phrase+deps+gen5 (Single) .002 .003 .019

phrase+deps+gen6 (MERT) phrase+deps+gen6 (Single)  .001  .001  .001

phrase+deps (MERT) phrase  .001  .001  .001

phrase+deps+gen5 (MERT) phrase+gen5 (MERT) .016  .001  .001

phrase+deps+gen6 (MERT) phrase+gen6 (MERT) .004  .001  .001

Table 6.6: Cube decoding significance results, for models trained on WSJ, and tested

on BROWN.

Training Method

Single MERT

Type Model F1 UAS LAS F1 UAS LAS

G gen5 87.4 90.3 87.3 — — —

gen6 87.1 90.4 87.4 — — —

D phrase 87.8 91.0 87.4 — — —

deps — 89.9 — — — —

phrase+deps 87.9 91.1 87.5 88.3 91.3 87.8

G+D phrase+gen5 89.0 91.6 88.8 89.1 91.5 88.7

phrase+gen6 88.7 91.6 88.8 88.6 91.6 88.8

phrase+deps+gen5 89.1 91.7 88.9 89.5 92.0 89.3

phrase+deps+gen6 88.7 91.7 88.9 89.1 92.2 89.4

Table 6.7: Cube decoding parsing results, for models trained on BROWN, and tested on

BROWN.
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Better Worse F1 UAS LAS

phrase+deps (MERT) phrase+deps (Single)  .001 .036 .011

phrase+gen5 (MERT) phrase+gen5 (Single) .442 nb. nb.

phrase+gen6 (MERT) phrase+gen6 (Single) nb. nb. .270

phrase+deps+gen5 (MERT) phrase+deps+gen5 (Single) .003 .001  .001

phrase+deps+gen6 (MERT) phrase+deps+gen6 (Single)  .001  .001  .001

phrase+deps (MERT) phrase  .001 .017 .002

phrase+deps+gen5 (MERT) phrase+gen5 (MERT)  .001  .001  .001

phrase+deps+gen6 (MERT) phrase+gen6 (MERT)  .001  .001  .001

Table 6.8: Cube decoding significance results, for models trained on BROWN, and tested

on BROWN.

Training Method

Single MERT

Type Model F1 UAS LAS F1 UAS LAS

G gen5 81.7 86.4 82.5 — — —

gen6 81.3 86.0 82.0 — — —

D phrase 82.3 87.1 81.9 — — —

deps 79.1 86.7 80.5 — — —

phrase+deps 82.4 87.2 82.0 83.0 87.8 82.6

G+D phrase+gen5 83.5 87.8 83.9 83.4 87.7 83.8

phrase+gen6 83.3 87.2 83.3 83.3 87.5 83.6

phrase+deps+gen5 83.8 88.1 84.1 83.8 88.3 84.4

phrase+deps+gen6 83.6 87.4 83.5 83.8 87.9 83.9

Table 6.9: Cube decoding parsing results, for models trained on BROWN, and tested on

WSJ.
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Better Worse F1 UAS LAS

phrase+deps (MERT) phrase+deps (Single)  .001  .001  .001

phrase+gen5 (MERT) phrase+gen5 (Single) nb. nb. nb.

phrase+gen6 (MERT) phrase+gen6 (Single) .258 .008 .007

phrase+deps+gen5 (MERT) phrase+deps+gen5 (Single) nb. .124 .036

phrase+deps+gen6 (MERT) phrase+deps+gen6 (Single) .096  .001  .001

phrase+deps (MERT) phrase  .001  .001  .001

phrase+deps+gen5 (MERT) phrase+gen5 (MERT)  .001  .001  .001

phrase+deps+gen6 (MERT) phrase+gen6 (MERT)  .001  .001  .001

Table 6.10: Cube decoding significance results, for models trained on BROWN, and

tested on WSJ.

Φphrase or Φdeps by a significant margin. This trend is at least as strong on out-

of-domain tests as on in-domain tests.

2. Among models using a generative/discriminative combination, Φphrase+deps+gen

always out-performs its corresponding Φphrase+gen counterpart. The increase is

not as dramatic as in the case of Φphrase+deps versus Φphrase, but still quite not-

icable. This trend is at least as strong on out-of-domain tests as on in-domain

tests.

3. The models trained using the MERT combination are usually better than those

trained with a single round of SVM training, but sometimes are worse. In some

cases, especially when BROWN is the training set, the advantage to the MERT

combination is rather large.

4. Significance tests find significant differences in most cases that differences exist.

This may be due to the large sizes of the test sets used.

Graphical Visualization of Key Comparisons We now summarize key comparisons

graphically in Figures 6.1 and 6.2. Each of the data points plotted shows a differ-

ence between scores. For example, the left side of Figure 6.1 shows the scores for

Φphrase+deps less those for the Φphrase model for each train/test pair. The explanation of

the other figures is analogous. All models in this section use the version of Φgen with

5 SM rounds of training for the LA-PCFG parser.
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Figure 6.1: Difference made by adding the dependency features, for each train/test

pair. The left figure shows scores for Φphrase+deps minus those for Φphrase. The right fig-

ure shows scores for Φphrase+deps+gen minus Φphrase+gen. Combined models are trained

using the MERT model combination.
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Figure 6.2: Difference made by using a MERT combination for training, for each train/test

pair. The left figure shows scores for Φphrase+deps models trained with MERT minus

scores for the same model trained with a single SVM round. The right figure shows the

same comparison for models using the Φphrase+deps+gen feature set.

In Figure 6.1, we see consistent gains for adding in the Φdeps feature set, especially

when testing out of domain and especially when the training set is the BROWN corpus.

In 6.2, we see that the difference made by the use of the MERT model combination is

often important, and seems, again to be most important for the largest Φphrase+deps+gen

feature set, as well as when the training set is BROWN. Perhaps the reason that these

additions help more when training on the BROWN corpus is that it is smaller. Though

there is not time to run more experiments now, it would be interesting to know whether

a smaller version of the WSJ corpus would behave more like the BROWN corpus in this

regard.



Chapter 6. Higher-Order Dependency Features and Out-of-Domain Performance 173

6.5.2.2 Ablation Tests

We have seen that higher-order dependency features seem to offer some improvement

in the parsing of out-of-domain material. This is perhaps surprising because higher-

order dependency features involve 3- and 4-grams of words and part-of-speech tags.

One might expect that more specific features will be less likely to be of use on out-

of-domain test material. Is it possible that a 3-gram dependency relationship between

lexical items found in one domain is useful in another domain? In this section, we

look more closely at what is happening. Specifically, we conduct ablation tests that

look at which kinds of features are most helpful. There are two ways in which we will

characterize feature types. First, we will characterize a feature by how many lexical

items they refer to. Second, we will characterize it by its feature class.

Ablation According to Lexicalization Level On the number of lexical items referred

to by a feature, note that, e.g., a 3-gram feature like Child+GrandChild will output

several features for the same trigram. Suppose we have the dependency trigram:

ppdrove,V BDq ,pto, INq ,pstore,NNqq

This trigram as input will result the firing of multiple overlapping features, including:

ppdrove,V BDq ,pto, INq ,pstore,NNqq (6.8)

ppdrove,V BDq ,pto, INq ,p�,NNqq (6.9)

ppdrove,V BDq ,p�, INq ,p�,NNqq (6.10)

pp�,V BDq ,p�, INq ,p�,NNqq (6.11)

Here, the � masks the word, so that any word-tag pair with the same tag will activate

the same feature. We can naturally say that feature (6.8) refers to 3 lexical items, while

feature (6.11) refers to 0. The first set of ablation experiments with ablating features

according to the number of lexical items referred to. The results are shown in Figure

6.3.
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Figure 6.3: Results of ablating features according to the number of lexical items in

the feature for each of the train/test set pairs. Top row shows train/test WSJ/WSJ and

BROWN/BROWN (in-domain tests). Bottom row shows WSJ/BROWN and BROWN/WSJ

(out-of-domain-tests).

It seems that features of lexicalization levels between 0 and 2, inclusive, play a role.

Overall, the single most important level of lexicalization, both in- and out-of-domain

is 1, i.e., with only a single lexical item mentioned in the feature.

Ablation According to Feature Class Having seen that features with higher levels of

lexicalization do not seem to be important, we now ask whether it is still important to

use higher-order dependency features. Figure 6.4 shows how performance is affected

when each feature class is removed.
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Figure 6.4: Results of ablating features according to feature class for each of the

train/test set pairs. Top row shows train/test WSJ/WSJ and BROWN/BROWN (in-domain

tests). Bottom row shows WSJ/BROWN and BROWN/WSJ (out-of-domain-tests).

We see that, for most feature classes, the removal of that class does indeed lead to

some drop in performance. This suggests that features that mention 3- and 4-grams

dependency relationships are useful, but, as we saw in the last series of ablation tests,

not because they mention 3- and 4-gram relationships between words. It must instead

be that these features capture relationships between part-of-speech tags, thus encoding

something about the non-lexical structure of the language (written English, in this

case).

6.5.2.3 Parsing Times

Having looked at the accuracies of the feature sets, we now look at how parsing time

varies as certain experimental parameters vary. We will see that, although the accuracy

of this parser is rather high, parsing times are extremely high and unlikely to be of use

in practice. This is as is to be expected from the theoretical run-time complexity of the

cube decoding algorithm (discussed on page 6.3.2), and, as we said, one major reason

for being interested in this parser is that it allows us to investigate the combination of
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generative and discriminative modelling techniques. All experiments listed here look

at parsing section 22 of the WSJ data (the development test set), having trained on the

WSJ data.

Time to Create Forests First Figure 6.5 at the time taken to create the pruned forests

that are input to the discriminative stage of the parsing algorithm, as a function the

number of split-merge iterations of the Petrov et al. (2006) LA-PCFG parser (see §6.2.3).

It seems that creating forests using the 4SM versus the 5SM parser makes little differ-

ence, however, using the 6SM parser adds considerably to the time required to create

the forests.
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Figure 6.5: Oracle F1 score of forests versus time to create forest, for different numbers

of Split-Merge iterations of the Petrov et al. (2006) parser.

Nodes Per Word Here, we look at how varying the size of the forest, measured in

number of nodes per word, from the first-stage parser affects parsing scores and parsing

time. Figure 6.6 shows how oracle parse performance and actual cube decoding parser

performance, with a beam width of 12, and discriminative-stage parsing time varies as

a function of average forest size, which is varied by changing the pruning threshold.

It seems that around 3.4 nodes per word provides a good trade-off between speed and

accuracy.



Chapter 6. Higher-Order Dependency Features and Out-of-Domain Performance 177

2.5 3.0 3.5 4.0 4.5 5.0
Brackets Per Word

95.5

96.0

96.5

97.0

97.5

98.0

98.5

Or
ac

le
 M

et
ric

 A
cc

ur
ac

y

2.7

3.4

4.1

4.6

2.7

3.4

4.1
4.6

2.7

3.4

4.1
4.6

f1
las
uas

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Forest Re-scoring Time (s)

91.5

92.0

92.5

93.0

93.5

94.0

94.5

M
et

ric
 A

cc
ur

ac
y

2.7

3.4 4.14.6
2.7

3.4
4.14.6

2.7
3.4

4.14.6

f1
las
uas

Figure 6.6: Oracle performance and actual parsing performance as a function of nodes

per word in the parse forest passed on by the first-stage parser, for parser trained on

WSJ, tested on WSJ development set.

Parsing Times by Feature Sets Here, using a beam of width 12 and an average forest

size of 4.6 nodes per word, we look at the total parsing time for the various features

sets tested (i.e., from sentence to parse). Figure 6.7 depicts parsing performance as

a function of parsing time per sentence as the feature set varies. These parsing times

are very slow compared to shift-reduce parsers (Nivre et al., 2007), and those that use

super-tagging (Clark & Curran, 2007), which can parse on the order of a hundred or

hundreds of sentences a second (depending on computing hardware). Thus, while our

work with feature sets is hopefully of interest, the parser described does not seem to

be efficient enough for use in practice.
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Type Model WSJ

G+D Huang (2008) 91.7

D phrase+deps (MERT) 91.2

G+D phrase+gen6 (MERT) 92.0

G+D phrase+deps+gen (MERT) 92.4

Table 6.11: Comparison of constituency parsing results in the cube decoding frame-

work, on the WSJ test set.
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Figure 6.7: Average per-sentence parsing time for the full parser as a function of feature

set, for models trained on WSJ, tested on WSJ development.

6.6 Discussion

Contribution to Knowledge about Parsing In terms of the discussion of §6.1, we have

demonstrated a means of getting better out-of-domain performance using only super-

vised training. The accuracies of the models presented are compared to past work

with the cube decoding algorithm in Table 6.11, and with past work on out-of-domain

parsing in 6.12. We believe that the results presented in this chapter can help to guide

out-of-domain parsing efforts in the future. For example, Huang et al. (2010) have
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Parser Training Data BROWN F1

CJ WSJ 85.2

CJ WSJ+NANC 87.8

CJ BROWN 88.4

Our Best WSJ 87.4

Table 6.12: Comparison of our best model, Φphrase+deps+gen, on BROWN, with the Char-

niak & Johnson (2005) parser, denoted CJ, as reported in McClosky et al. (2006b).

Underline indicates best trained on WSJ, bold face indicates best overall.

Φphrase(Φphrase+gen) Φphrase+deps(Φphrase+deps+gen)

Per-sentence re-scoring time 1.2 seconds 2.4 seconds

WSJ training set size 40,000 examples 40,000 examples

One training epoch 13.3 hours 26.6 hours

Two training epochs 26.6 hours 53.2 hours

Table 6.13: Statistics describing estimated sequential sub-gradient training time for

Φphrase and Φphrase+deps models. (Note that adding the single feature Φgen does not

add measurably to training time.)

shown that better supervised parsers can lead to better self-trained parsers, because

self-training works better when the parser used for automatic labelling is stronger.

Thus, improved supervised parsing, especially for out-of-domain results, can hope-

fully help improve semi-supervised parsing as well. Also, our ablation studies have

shown that tri-lexical features are not that helpful, so these can probably be omitted

in the future. A major limitation of our parser as it is is clearly its speed. This is

not a practical parser for parsing, e.g., the world wide web. But, hopefully this work

can inform the building of faster shift-reduce parsers (Zhang & Nivre, 2011; Zhang &

Clark, 2011), by demonstrating what is gained by adding each feature set tested (or,

what is lost by removing it). Furthermore, our demonstration that feature combinations

can sometimes be useful may also be helpful in practical applications that must get the

very best performance out of parsers.

Speed-Up in Development Time Using Iterative Parameter Mixing Prototyping and

development of these models was done using multi-core training in the form of the

iterative parameter mixing algorithm. In this passage, we will try to quantify the extent
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to which the use of multi-core training sped up the development process. In actual fact,

training times during development of the model and debugging of associated software

were not carefully measured, since collection of such statistics are not usually the focus

during the model development phase. However, we feel that the following calculations,

based on data presented in this chapter and §5 are illustrative of the nature of the

savings that were observed in practice.

When training the discriminative re-ranking component of our parser, the parse

forests produced by the first-stage parser are computed once and cached. Thus, the

significant part of training time is determined entirely by the time taken to discrimi-

natively re-rank the parse forests, for which feature extraction is in turn the dominant

factor. The average time needed by the discriminative component to re-rank a single

forest (measured on WSJ 22) for the Φphrase and Φphrase+deps feature sets are shown in

Table 6.13. From this average per-sentence parsing time, we can estimate the amount

of time needed to make one or more passes over the training data, where we use the

WSJ training set as an example. We saw in §5 that, using multi-core training with the

IPM distribution strategy, one can get a model of fairly good quality with a budget of a

single sequential pass through the data. In contrast, a sequential model needs at least

about two epochs to reach a decent quality. During model development, we only need

an estimate of the quality of a model, in order to determine whether there are bugs,

or whether a new feature set is helping. Thus, during development, we only need to

run IPM training for the time of a single epoch of sequential training time. But, using

sequential training, we need to run for at least two epochs. So, we can say that the

savings in training time, during the development phase, for training a single model is

the difference in time between one and two sequential training epochs. From Table

6.13, we can see that, in the case of training a model with the feature set Φphrase (or

Φphrase+gen, since Φgen does not add measurably to training time), this amounts to a

savings of about 13.3 hours. In the case of a model with feature set Φphrase+deps (or

Φphrase+deps+gen), the savings is about 26.6 hours. Clearly, these sorts of savings speed

the development process, and show the benefits we derived from multi-core training

during model development.

6.7 Conclusion

This chapter has demonstrated that higher-order dependency features benefit out-of-

domain parsing, even when added to a state-of-the-art phrase structure parser along
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the lines of Charniak & Johnson (2005); Huang (2008b). To our knowledge, our new

parser constitutes a new state-of-the-art for the train-test domains studied (see Table

6.12). Through feature ablation tests, we have found that all feature classes seem to

be important, and that lexicalization levels between 0 and 2 seem to be most important

for out-of-domain accuracy. We have investigated the use of a MERT-based feature-

bagging approach to training and shown that feature bagging gives a slight edge in

performance. Finally, we have conducted performance experiments to demonstrate the

parsing times under various parser parameter settings of a cube decoding parser.



Chapter 7

Conclusion

This thesis has studied, improved, and applied the iterative parameter mixing algorithm

for distributed training of structured predictors for NLP.

In §4, we presented a novel algorithm for decentralized optimization of a regular-

ized average loss function, the distributed regularized dual averaging algorithm. This

algorithm improves over past work (Duchi et al., 2011b, 2012), in terms of conver-

gence bound and algorithmic simplicity. And, it added the analysis of a regret bound

(Lemma 2) not present in past work on composite functions (Duchi et al., 2011b),

which was needed in §5.

In §5, we presented a novel theoretical and empirical comparison of the iterative

parameter mixing (IPM) distributed optimization algorithm to the single-mixture op-

timization algorithm. The distinction in test performance between these algorithms

has been a theme in recent work (McDonald et al., 2010; Hall et al., 2010; Simi-

aner et al., 2012), but little has been known theoretically about where this difference

comes from. We show that the IPM optimization algorithm is a convergent optimiza-

tion algorithm—i.e., one which will converge on the true optimal objective value given

enough time—while the single-mixture optimization algorithm is not. This suggests

that the difference in test-time performance might be explained by the difference in

optimization of the objective over the training set. The results of our experiments sup-

port this hypothesis by showing that better optimization of the training objective does

indeed correlate with better test-time performance. We used this convergence analysis

to justify distributed SVM training of structured predictors, which we showed led to

better test-time performance than the perceptron algorithm, the only version of IPM to

have been theoretically justified previously. Finally, we showed that distributed train-

ing can lead to better objective values reached if one has a budget of training time of

182
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one or two sequential iterations.

In §6, leveraging the speed-up of distributed training for training with a time bud-

get, we analyzed the use of higher-order dependency features in the context of out-

of-domain phrase-structure parsing. We showed that these features lead to significant

improvements in dependency recovery, even out-of-domain. This fact was previously

unreported and led to a new state-of-art in accuracies for the popular train-test pairs

investigated. Our work also showed that, in some cases, it is preferable to train models

using a feature-bagging approach for the best test-time accuracy.

In terms of future work, we said that our bound in §5 for the IPM algorithm was

pessimistic because was not a function of the similarity or dissimilarity between the

functions on the various noes being optimized. Presumably, similarity between func-

tion values should lead to an easier optimization problem. Future work on under-

standing the iterative parameter mixing algorithm could look at exploiting similarity

between the objective functions optimized at each node to achieve better bounds on

convergence. For high-accuracy phrase-structure parsing, we have shown that both the

addition of the generative model and higher-order dependency features both improve

parse accuracy. The cube decoding algorithm is one way to combine both a generative

model score feature along with non-local higher-order dependency features. Future

work should investigate whether there are faster ways to combine these kinds of feature

sets. Also, our ablation tests demonstrated that the benefit of higher-order dependency

features comes entirely from those with 0, 1 and 2 lexical items mentioned. Future

work should look at the speed-up achieved by using only these higher-order features

in various parsing architectures.
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