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Abstract 

EcoKJ cuts or modifies DNA according to the methylation states of specific adenine 

residues in its target recognition site. If these residues are unmethylated the DNA is 

cut, often thousands of base pairs away from the recognition site. Communication 

between EcoKI bound to the recognition site and the cleavage site occurs by DNA 

translocation, which is driven by ATP hydrolysis. 

The amino acid sequence of the subunit required for restriction contains seven 

motifs that are conserved in the DEAD box family of proteins. This family is a sub-

group of the superfamily of DNA and RNA helicases. Previous studies on DEAD box 

proteins have found these motifs are involved in the ATPase and helicase activities of 

these proteins. 

To assess the importance of the DEAD box motifs in the restriction of DNA 

by EcoKI, amino acid residues in each of the seven motifs were changed and the 

effects of these substitutions on restriction phenotype were investigated. Eight 

proteins, each containing a different amino acid substitution were purified and the 

DNA binding abilities, nuclease activities and ATPase activities of the proteins were 

studied. 

All changes had an effect on restriction except those changes in motif IV. 

Motif IV was defined prior to the discovery of a frame-shift in the hsdR DNA 

sequence and these results suggest motif IV has been incorrectly identified. An 

A619G substitution in motif III slightly impaired restriction, but other substitutions at 

this position (A619D and A619V) abolished restriction. All other changes prevented 

any DNA restriction. The nuclease assays with the purified proteins confirmed the in 

vivo results. None of the available evidence indicates that the amino acid substitutions 

prevent interaction with ATP. The protein with a D577H substitution in motif II 

showed a reduced DNA binding ability, none of the other changes investigated 

affected DNA binding. The amino acid substitutions A619G and F730S, which 

showed some in vivo DNA restriction activity, showed wild-type levels of ATPase 

activity. ATPase activity was not detected with proteins containing changes that 

abolished restriction, but was observed for the protein with a D502Y substitution in 



motif Ta, which showed a reduced but significant level of ATPase activity. 

These results show that the sequences in HsdR identified as DEAD box motifs 

have an important role in restriction by EcoKI, particularly in the ATPase activity 

predicted to be necessary for the translocation of DNA that precedes the 

endonucleolytic activity of the enzyme. 
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symbol eg. 2.K means the phage was grown on an EcoM-modifying strain, X.O 

means the phage was grown on a strain that lacks a R/M system. 
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Introduction 

Identification of Restriction/Modification (R/M) systems in bacteria 

The existence of R/M systems was first detected while investigating the ability of 

bacteriophage (phage) to propagate on different bacterial strains (Luria and Human, 

1952; Bertani and Weigle, 1953). Phage grown on E. coli K-12 (?.K) were found to 

grow well on E. coli C and E. coli K-12, but phage grown on E. coli C (?.C) could 

only grow well on E. coli C. The few X.0 phage that grew on E. coli K-12 were 

modified so that they could grow well on E. coli K-12 in subsequent generations. 

This phenomenon was called host-controlled modification. 

It was soon found that the restriction in growth of bacteriophage was 

associated with the degradation of phage DNA (Lederberg, 1957; Dussoix and Arber, 

1962; Arber et al., 1963). The mechanism of host-controlled modification was 

predicted in the early 1960s (Arber and Dussoix 1962; Dussoix and Arber, 1962). A 

two-enzyme system was proposed (Arber, 1965a), with one enzyme that could 

recognise a specific site on DNA and introduce double-strand breaks and one enzyme 

that recognised the same nucleotide sequence but modified this sequence so the DNA 

was no longer sensitive to restriction. 

The modification enzyme was proposed to be a DNA methylase (Arber, 

1965a). This was supported by the observation that when A phage were grown on 

methionine auxotrophs in the absence of methionine, the progeny phage lacked any 

modification (Arber, 1965b). The specific N6 methylation of adenine residues was 

identified and proposed to protect the DNA from restriction (Smith et al., 1972). 

This mechanism of protection was soon confirmed (Kühnlein and Arber, 1972; 

Ravetch et al., 1978; Lautenberger et al., 1978). 

The first restriction enzymes were isolated from E. coli K-12 (EcoKI) and E. 

coli B (EcoBI), (Meselson and Yuan, 1968; Linn and Arber, 1968; Roulland-Dussoix 

and Boyer, 1969; Kühnlein et al., 1969). Smith and Wilcox (1970) isolated a 

restriction enzyme from Haemophilus influenzae (Hindll), which was simpler than 

EcoKlI or EcoBI. As more restriction enzymes were isolated they were grouped into 
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two types (I and II) according to enzyme complexity, cofactor requirements, position 

of DNA cleavage and the symmetry of the target sequence. The ATP-dependent R/M 

systems including EcoKI and EcoPI, originally identified as type I, were later 

subdivided into types I and Ill according to different cofactor requirements, subunit 

structures and biochemical activities (Kauc and Piekarowicz, 1978). 

Roles for R/M systems 

One reason for the presence and maintenance of these systems in bacteria, could be to 

protect the host from invading foreign DNA (Wood, 1966). However this advantage 

is soon lost as surviving phages are modified and the host would not be protected in 

subsequent infections. Levin (1986) suggested that a novel restriction system would 

be advantageous to a bacterial strain establishing itself in a new phage-infested 

habitat. RIM systems give the bacteria simultaneous protection against different 

species of phage. The ends of molecules that result from DNA cutting by a restriction 

endonuclease can promote recombination with homologous chromosomes, allowing 

the bacteria to generate variability, and also facilitating the acquisition of foreign DNA 

(Lederberg, 1973; Price and Bickle, 1986; Naussbaum et al., 1992). 

Type I R/M systems 

Type I R/M genes in E. coli map at 98.5 minutes on the E. coli chromosome, close to 

serB (Boyer, 1964; Arber and Wauters-Wifiems, 1970; Glover, 1970; Bullas et al., 

1980; Bachmann and Low, 1980). In E. coli K-12 the type I R/M genes are flanked 

on one side by mrr and on the other by mcrBC (Raleigh, 1992). mrr and mcrBC also 

encode restriction systems, but these are activated, not protected, by methylated 

bases. This 15kb region of the chromosome is called the Immigration Control Region 

(ICR). 

Three genes are involved in host specificity for DNA (hsd) genes (Boyer and 

2 



Roulland-DussoiX, 1969; Glover, 1970; Hubacek and Glover, 1970): hsdR 

(Restriction), hsdM (Modification) and hsdS (Specificity). The hsd genes are tightly 

clustered, in the order hsdR, hsdM and hsdS in E. coli K-12. The expression of hsdR 

is controlled from one promoter (P) upstream of hsdR and expression of the hsdM 

and hsdS genes is regulated by a separate promoter (P m ) (Sain and Murray, 1980; 

Loenen et al., 1987). Transcription from both promoters occurs in the same direction 

(Sain and Murray, 1980). 

The three genes encode three polypeptides: HsdR (135kDa), HsdM (62kDa) 

and HsdS (55kDa) (Sain and Murray, 1980). One HsdS and two HsdM subunits form 

a methylase (Dryden et al., 1993). Two HsdR subunits combine with the methylase 

to form a bifunctional methylase/endonuclease (Dryden et al., 1997). The existence 

of two separate promoters allows synthesis of the methylase independent of the 

endonuclease. On the transfer of hsd genes to a new host the methylase is effective 

before the endonuclease (Prakash-Cheng and Ryu, 1993), this delay in expression of 

an in vivo restriction activity allows unmodified target sites to be methylated before 

host DNA is destroyed. 

The type I RIM systems have been subdivided into the IA, lB. IC and ID 

families based on subunit complementation, DNA hybridisation and antibody cross-

reactivity (Murray et al., 1982; Price et al., 1987; Barcus et al., 1995; Titheradge et 

al., 1996). The DNA sequences of hsdM and hsdR are highly conserved within 

families (Murray et al., 1993) and subunits of enzymes from the same family are 

interchangeable; a complex of methylase from EcoKI and HsdR polypeptides from 

EcoBI will cut DNA with unmethylated EcoKI sites. Antibodies against EcoKl (IA) 

cross-react with EcoBI (IA), but do not cross-react with EcoAI (IB) (Murray et al., 

1982). The majority of type IC R/M systems are found on plasmids, which can be 

readily transferred between E. coli and Salmonella. 

Table 1 shows different examples of each of the four families of type I R/M 

systems and the DNA sequence recognised. 
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Family 	R/M system Recognition site 	Reference 

IA 

Ic 

EcoKI 

EcoBI 

SZyLTffl 

SIySPI 

EcoAI 

EcoEI 

StySKI 

EcoR 1241 

EcoDXXI 

Ecoprrl 

AAC (N6) GTGC 

TGC (N8) TGCT 

GAG (N6) RTAYG 

AAC(N6) GTRC 

GAG (N7) GTCA 

GAG (N7) ATGC 

COAT (N7) GTFA 

GAA (N6) RTCG 

TCA (N7) RTTC 

CCA (N7) RTGC 

Kan etal., 1979 

Lautenberger et al., 1978 

Nagaraja et al., 1985 

Nagaraja et at., 1985 

Surietal., 1984 

Cowan et al., 1989 

Thorpe et at., 1997 

Price etal., 1989 

Gubler et at., 1992 

Tyndall etal., 1994 

.I 
	

StySBLI 
	

CGA (N6) TACC 
	

Titheradge et al., 1996 

EcoR9I 
	

Barcus et at., 1995 

KpnAI 
	

Lee et at., 1997 

Table I. Examples of the four families of type I R/M systems and their recognition 

sequences, if known. 

HsdS determines the specificity of the enzyme (Boyer and Roulland-Dussoix, 

1969; Arber and Linn, 1969; Hubacek and Glover, 1970). The hsdS gene contains 

two regions of variable sequence, each variable region encoding a target recognition 

domain (TRD) that recognises half of the bipartite target sequence (Gough and 

Murray, 1983; Fuller-Pace et al., 1985; Nagaraja et al., 1985; Gann et at., 1987; 

Cowan et al., 1989). UV crosslinking showed that the N-terminal TRD of the EcoKI 
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HsdS subunit interacts with the AAC half of the target sequence (Chen et al., 1995). 

The two TRDs can be switched between HsdS subunits of enzymes in the same 

family, to create enzymes with new specificities (Fuller-Pace et al., 1984; Gann et al., 

1987; Gubler et al., 1992; Thorpe et al., 1997). In the HsdS amino acid sequence 

there is some sequence similarity in regions other than those encoding the recognition 

domains. These regions may encode domains that interact with the HsdM subunits 

(Gough and Murray, 1983; Taylor et al., 1993; Meister et al., 1993; Abadjieva et al., 

1994; Cooper etal., 1994). 

Two HAM subunits combine with one HsdS subunit to form an active 

methylase (Dryden et al., 1993). S-adenosyl-methionine (AdoMet) is the methyl 

donor in the methylation reaction. The HsdM subunits contain two conserved amino 

acid elements: (DIE/S)XFXGXG involved in binding of AdoMet and (D/N)PP(F/Y) 

which has a role in catalysis of DNA methylation (Loenen et al., 1987; Willcock et 

al., 1994). The target adenine residues are a conserved distance of 10-11 bps apart, 

with N3 of adenine in the minor groove and N6 in the major groove. The target 

recognition domains of HsdS may recognise the DNA sequence via the major groove 

with the HsdS subunit spacer covering the intervening minor groove. UV 

crosslinking experiments and methylation interference studies agree with this 

suggestion (Chen etal., 1995; Powell and Murray, 1995). Methylation is predicted to 

occur via a base flipping mechanism where the adenine base is displaced out of the 

DNA helix into the catalytic pocket of the HsdM subunit (Klimasauskas et al., 1994; 

Dryden et al., 1995). 

As mentioned earlier, a type I R/M enzyme needs to recognise different 

methylation states of the target recognition site. ATP has an important role in this 

recognition. EcoKI undergoes a series of conformational changes during DNA 

recognition (Yuan et al., 1975) as shown in Figure 1. EcoKI rapidly binds AdoMet 

and then undergoes a slow allosteric transition to an activated form. This activated 

complex will then interact with DNA forming an initial complex with a non-specific 

site until it reaches a recognition site, when it forms a stable recognition complex. 

ATP enables the enzyme to distinguish the methylation state of the recognition site. 



EcoKJ 

+AdoMet 

EcolU-AdoMet 

+DNA 

Initial complex 

+ recognition site 

Recognition complex 

+ATP 

Methylation state? 

Fully methylated 	 hemi-methylated 	unmethylated 

I 
EcoKI dissociates 	 methylation of the 	filter binding form 

from the DNA 	 unmodified adenine 

DNA cleavage 

Figure 1. Stages in DNA recognition by EcoKI, adapted from Bickle et al., 1978, 

described in detail in the text. 

If both target adenine residues are methylated, ATP reduces the affinity of the 

enzyme for DNA. If the site is hemi-methylated ATP stimulates the methylation of 



the unmodified adenine (Vovis et al., 1974; Burkhardt et al., 1981; Suri et at., 1984). 

If the site is unmethylated the recognition complex undergoes a transition to a form 

that can be trapped on filters (Meselson et al., 1972; Bickle et at., 1978). Formation 

of this complex requires all three cofactors and an unmodified recognition site (Yuan 

and Meselson, 1970) and always precedes DNA cleavage. Cleavage occurs far from 

the recognition site, often thousands of base pairs away and is accompanied by large 

amounts of ATP hydrolysis. 

Type II RIM systems 

Type II R/M systems consist of two independent enzymes, a methylase and an 

endonuclease (Roberts and Macelis, 1996; Review: Pingoud and Jeltsch, 1997). The 

endonuclease requires only Mg 2  as a cofactor and the methylase only requires 

AdoMet. These proteins are encoded by two genes: res and mod. Expression of 

each gene is controlled by a separate promoter. Both enzymes recognise the same 

short palindromic sequence, normally 4-8bp in length. Cleavage occurs symmetrically 

at a defined position within this site. For this reason they are important as molecular 

tools and screening has identified over 2500 type II RIM systems. 

The methylase, usually a monomer, transfers a methyl group from AdoMet to 

either a specific adenine or cytosine residue within the recognition sequence. One 

residue on each DNA strand is methylated to N6-methyladenine, N4-methylcytosine 

or 5-methylcytosine. The methylase includes one TRD that determines specificity and 

a catalytic domain that binds AdoMet. DNA methylation by HhaI has been shown to 

involve a base-flipping mechanism where the target residue is flipped out of the DNA 

helix into the active site of the methylase (Klimasauskas et al., 1994). In the presence 

of Mg2 , the endonuclease usually a homodimer, will cleave DNA if it contains an 

unmodified recognition site. EcoRV requires cations for specific DNA binding 

(Taylor et al., 1991), whereas most type II endonucleases only require them for 

catalysis. A few endonucleases have been crystallized; EcoRI-DNA, EcoRV and 

EcoRV-DNA, Pvull and Pvull-DNA, BamR[-DNA (Kim, 1990; Winkler, 1993; 
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Cheng et al., 1994, Athanasiadis et al., 1994; Newman et al., 1995). The cocrystal 

structures show differences in protein-DNA interaction, which seem to be related to 

cleavage. EcoRI and BamHI approach the DNA from the major groove and produce 

5' overhangs on cleavage. Pvull contacts the DNA via the minor groove and 

produces blunt ends. The scissile phosphoester bonds that are cleaved by Pvull are 

more accessible from the minor groove. It is likely that enzymes that produce 3' 

overhangs also approach the DNA from the minor groove (Anderson, 1993). A 

motif: PDX(DIE)XK conserved in the amino acid sequence of many restriction 

endonucleases is essential for cleavage (Thielking et al., 1991). The acidic residues 

are thought to chelate Mg 2  ions. The two identical subunits of the endonuclease 

cooperate to ensure that both strands of the DNA are cleaved in a concerted reaction. 

On transfer of a type II RIM system to a new host the methylase must modify 

all the recognition sites to prevent the endonuclease from degrading host DNA. 

Conversely cleavage of invading phage DNA must occur before the methylase 

modifies the recognition sites and protects phage DNA from restriction. Therefore it 

is important to tightly regulate these two enzymes. An additional open reading frame 

is often found close to the R/M gene cluster, these encode proteins that share 

homology with helix-turn-helix DNA binding proteins and therefore may act as 

transcriptional repressors or activators (Tao et al., 1991). 

Some type H RIM enzymes have unusual properties. These have been 

grouped into two separate families: Hs and lie. Type Hs RIM systems recognise an 

asymmetrical 4-7 bp sequence. The endonuclease, which acts as a monomer cleaves 

DNA at a fixed distance of 1 to 20 base pairs away from the recognition site (review: 

Szybalski, 1991). FokI is a type us RIM system, its methylase contains two 

independent N6 methyltransferase domains, each specific for one strand of the DNA. 

The HgaI methylase consists of two independent 5-meC methylases to ensure both 

DNA strands are methylated. Type Ile endonucleases only cut the DNA when 

allosterically activated by the binding of a second recognition site. This site can either 

be on the same, looped DNA strand, or on a different molecule and does not 

necessarily have to be cleaved or even be cleavable (Kruger et al., 1988; Conrad and 

Topal, 1989; review: Kruger et al., 1995). Therefore cleavage depends on the 
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distance between two adjacent sites, if they are too close to form a loop of DNA or 

too far apart, the DNA will not be cut. Examples of type He enzymes include EcoRll 

and NaeI. 

Type III R/M systems 

Type III R/M systems are similar to type I RIM systems in their requirement for ATP, 

but have different subunit structures and different systems of recognition. They are 

the smallest class of R/M systems and only four examples have been identified: EcoPI 

(encoded by the P1 prophage), EcoPl5 (coded by the E. coli plasmid pl5B), Hiniful 

(present in the Haemophilus influenzae strain Rf) and S1yLTI (in most Salmonella 

strains) (Arber and Dussoix, 1962; Arber and Wauters-Willems, 1970; Piekarowicz 

and Kalinowska, 1974; Dartois et al., 1993). 

Two genes mod and res (lida et al., 1983) encode two polypeptides, Mod and 

Res (75kDa and 106kDa in EcoPI respectively) (Hadi et al., 1983). The Mod subunit 

can recognise a specific DNA site and act as a methylase (Hornby et al., 1987). Mod 

is the functional equivalent of the HsdS and HsdM subunits that form type I 

methylases. Both the Mod and Res polypeptides are necessary for the restriction 

endonuclease function. The endonuclease requires Mg 2  and ATP as cofactors and is 

stimulated by AdoMet. Cleavage occurs on the 3' side of the recognition sequence 25 

to 27bp away. The cleavage distance is fixed for any given site but varies from site to 

site. Modification is stimulated by Mg 2  and ATP and requires AdoMet as a cofactor. 

In the presence of ATP the methylase competes with the endonuclease, in contrast to 

type I enzymes which either restrict or modify the DNA, but do not do both 

simultaneously. Mod recognises a non-symmetrical 5-6 base pair sequence and only 

methylates one of the DNA strands (De Backer and Colson, 1991a). An adenine 

residue in the recognition sequence is modified to N6-methyladenine. The 5' and 3' 

ends of the mod genes for known type III systems are conserved and are separated by 

a central unconserved region (lida et al., 1983). This region controls the specificity of 

the methylase and the conserved regions may code for the domains of the protein that 



interact with the Res subunit. The mod and res genes are contiguous with the mod 

gene preceding the res gene in the DNA sequence. Both genes are transcribed in the 

same direction (HUmbelin et al., 1988; Dartois et al., 1993). Each gene is transcribed 

from a separate promoter, but there is evidence for the involvement of at least four 

promoters in expression (Sharrocks and Hornby, 1991). The expression of type ifi 

R/M genes is controlled by different mechanisms; EcoPI and EcoP 151 systems can be 

transferred from cell to cell, but transfer of the StyLTI system causes cell death from 

extensive DNA breakdown (De Backer and Colson, 1991b). There is a temporal delay 

of expression of EcoPI restriction activity, methylase activity is detected a few 

minutes after transfer but restriction activity is not detected for a few hours (Arber, 

1974). 

EcoP15I recognises the sequence CAGCAG and methylates the second 

adenine (Meisel et al., 1991). This is the only residue that is methylated, therefore 

when a modified site is replicated one daughter molecule will remain completely 

modified and one daughter molecule will be completely unmodifed and ought to be 

subject to restriction (Hadi et al., 1979). It was observed that phage T3 DNA was 

restricted by EcoP 151 but T7 DNA was not, although T7 DNA contains 36 

recognition sites for EcoP15I (Dunn and Studier, 1983). In phage T7 DNA these 

recognition sites are all in the same orientation; all the CAGCAG sequences are on 

one strand with the complementary CTGCTG sequence in the other strand (Schroeder 

et al., 1986). This led to the hypothesis that the restriction endonuclease requires two 

target sites in inverse orientation as a substrate for restriction (Meisel et al., 1992). 

This was confirmed by studying restriction on M13 derivatives with different 

arrangements of EcoP15I recognition sites (Meisel et al., 1992). The recognition site 

for the endonuclease can be regarded as a symmetrical sequence interrupted by a 

nonspecific spacer of variable length. The maximum and minimum lengths of this 

spacer has not been determined, but restriction can occur with a spacer as short as 65 

bps or as long as 3500 bps. A small amount of ATPase activity occurs during 

restriction (Reiser and Yuan, 1977; Meisel, et al., 1995; Saha and Rao, 1995). 
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Type IV R/M systems 

Based on the characterisation of the restriction system Eco571 from E. coli strain 

RFL57 a new class of R/M systems has been proposed. This group shares 

characteristics with type Hs RIM systems and others with type ifi RIM systems 

(Janulaitis et al., 1992a, b). 

One gene encodes an endonuclease (108kDa) and a second the methylase 

(63kDa); both enzymes act as monomers. The enzymes recognise the DNA sequence 

CTGAAG. The methylase modifies the second adenine in this site, and the adenine in 

the complementary strand, to N6-methyladenifle. Unusually the endonuclease 

possesses some methylase activity and can modify one of the adenine residues in the 

recognition site. The methylase requires AdoMet and is stimulated by Ca 2  and Mg2 . 

The endonuclease requires Mg 2  and unlike type II enzymes is stimulated by AdoMet. 

Unlike type ff1 endonucleases, ATP is not required for restriction. The endonuclease 

cleaves the DNA 14/16 nucleotides away from the 3' side of the recognition site. 

Table 2 illustrates the characteristics that distinguish each class of R/M 

systems. 
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Type Structural features 	Requirements for 	Cleavage 
restriction 

I Multi-functional, ATP Cuts far from recognition 
3 different subunits AdoMet site 	with 	much 	ATP 

Mg2  hydrolysis 

II Simple, independent Mg2  Cuts at a fixed position 
of methylase within recognition site 

He Simple, independent Mg2  Cuts 	within 	recognition 
of methylase site when activated by a 

second site 

ils Simple, independent Mg2  Cuts 	1-20bps 	from 
of methylase recognition site 

III Multi-functional, ATP Cuts 25 bps away from 
2 different subunits Mg2  one site with some ATP 

Stimulated by hydrolysis, 	needs 	two 
AdoMet inversely oriented sites 

IV Simple, posesses 	Mg 2+ 
	 Cuts 14/16 bp away from 

methylase activity 	Stimulated by 	site 
AdoMet 

Table 2. The characteristic features of the endonucleases of different classes of each 

RIM system. 
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Mechanism of ATP-dependent restriction 

Cleavage by type I endonucleases requires communication between the endonuclease 

which remains bound to its recognition site and the cleavage site which is often 

thousands of base pairs from the recognition site. The substrate for type ifi 

endonucleases is two inversely orientated recognition sites, also sometimes thousands 

of base pairs apart. The mechanism of restriction is thought to be similar for both 

systems. 

Restriction by type I enzymes is accompanied by extensive ATP hydrolysis 

(Eskin and Linn, 1972; Rosamund et al., 1979; Dreier and Bickle, 1996). In contrast 

only 1% of the level of ATPase activity produced by EcoKI is detected during type ifi 

restriction (Reiser and Yuan, 1977; Meisel, et al., 1995; Saha and Rao, 1995). This 

ATP hydrolysis is proposed to drive translocation of DNA past the enzyme which 

remains bound to its recognition site (Bickle, 1993). Translocation would produce 

double-stranded loops of DNA (Studier and Bandyopadhyay, 1988), both relaxed and 

supercoiled loops have been observed under the electron microscope when studying 

restriction by EcoBI and EcoIU (Rosamund et al., 1979; Yuan et al., 1980; Endlich 

and Linn, 1985). Translocation during type I restriction has been proposed to occur 

in a unidirectional motion with cleavage on one side of the recognition site 

(Rosamund et al., 1979; Endlich and Linn, 1985), or with a bidirectional motion with 

cleavage on either side of the recognition site (Yuan et al., 1980). 

One model for restriction by type I endonucleases is the Studier model, where 

the DNA is cut when two adjacent, translocating enzymes meet (Studier and 

Bandyopadhyay, 1988) see Figure 2. Studier and Bandyopadhyay investigated 

restriction of phage T7 DNA by EcoKI in vitro. The sites were saturated with EcoKI 

in the presence of AdoMet and the reaction started by adding ATP. Instead of 

producing smears of DNA of different sizes, discrete bands were observed when the 

products of restriction were run on agarose gels. The sizes of these bands indicated 

that cleavage clustered at the midpoints between adjacent recognition sites. 
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Figure 2. The Studier model for the restriction of DNA by type I endonucleases. In 

the presence of ATP EcoKI translocates DNA past itself simultaneously on both sides 

producing double-stranded DNA loops (i). The DNA is cut when two neighbouring 

enzymes meet as a consequence of this translocation, the arrow indicates DNA 

cleavage which occurs between the two DNA loops (ii). After this primary cleavage 

event has occurred the endonuclease remains bound, ATP hydrolysis continues and 

secondary cleavage events take place. 
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With this information they proposed a model where the endonuclease 

translocates DNA past itself on both sides simultaneously and the DNA is cut when 

two adjacent enzymes interact. Restriction occurs between the two adjacent DNA 

loops. 

A similar model has been proposed for restriction by type III endonucleases, 

with cleavage occurring as a result of communication between two endonucleases 

which remain bound at their recognition sites (Meisel et al., 1995). In the case of the 

type III enzymes the DNA is translocated on only one side of the target sequence, the 

inversely orientated target sequences may impose the directionality on the 

translocation (Murray et al., 1993). A model requiring translocation is supported by 

the finding that restriction is blocked if the Lac repressor is bound to its operator 

sequence in the intervening sequence between two EcoP 151 sites (Meisel et al., 

1995). Cleavage occurs at a site between the target sequence and the loop, 25 base 

pairs away from the recognition sequence. 

One question arising from the Studier model is how substrates containing only 

one recognition site are cut. Limited cleavage of linear substrates or plasmids 

containing one site has been demonstrated with type I endonucleases (Murray et al., 

1973b; Webb et al., 1996; Janscak et al., 1996). Unbound endonucleases are 

proposed to cooperate with the bound endonuclease to cut the DNA (Murray, et al., 

1973b; Rosamund et al., 1979; Yuan et al., 1980; Studier and Bandyopadhyay, 

1988). 

The involvement of DNA translocation is supported by studies on restriction 

by EcoR 1241, using catenanes as substrates. Cleavage always occurred on the 

plasmid containing the recognition site and not on the interlinked plasmid, therefore 

communication between recognition and cleavage sites did not occur by random 

looping of the DNA (Szczelkun et al., 1996). As DNA is moved past the recognition 

site it is twisted (Yuan et al., 1980; Endlich and Linn, 1985). When DNA 

translocation occurs topological barriers may cause the endonuclease to stall. The 

endonuclease is bound to both the recognition site and non-specific DNA that is being 

translocated past, this means it is fixed and cannot rotate around the DNA. If the 
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DNA is twisted to the right hand during translocation this would cause the twist to be 

reduced behind the complex and increased ahead of the complex (Gellert et al., 1978; 

Liu and Wang, 1987), eventually creating a barrier against any further translocation. 

If the endonuclease is stalled it is proposed to nick the DNA in one strand and 

cleavage occurs when an unbound endonuclease cooperates to cut the second strand 

(Studier and Bandyopadhyay, 1988; Janscak, et al., 1996). 

Szczelkun et al., 1997, found evidence for cleavage by EcoR 1241 in a region 

close to the recognition site in addition to cleavage mid-way between sites. They 

propose this represents cleavage occurring between the DNA loop and the 

recognition site or occurs as a result of nicks that have occurred in this region of the 

DNA during the initiation of translocation. 

After restriction, type I enzymes remain bound to the DNA (Yuan et al., 

1975) and electron microscopy results suggest that DNA translocation continues 

(Endlich and Linn, 1985). In contrast type III endonucleases dissociate after cleavage 

(Meisel et al., 1995). This could be one reason for the difference in levels of ATP 

hydrolysis observed. 

DEAD box proteins 

The HsdR and Res amino acid sequences contain motifs conserved in the DEAD box 

family of proteins (Gorbalenya and Koonin, 1991; Dartois et al., 1993). Named after 

the single letter amino acid sequence present in one of the conserved motifs (Asp-Glu-

Ala-Asp) (Linder et al., 1989). The DEAD box family is a subdivision of the helicase 

superfamily II. Some of these proteins are known to be helicases, the rest remain 

putative helicases (Schmid and Linder, 1992). Helicases catalyse the unwinding of 

DNA or RNA, using energy from ATP hydrolysis to break the hydrogen bonds 

between DNA strands and to fuel translocation along DNA (reviews: Lohman and 

Bjornson, 1996; West, 1996). These proteins are found in a wide range of organisms 

from E. coli to Drosophila to humans and are involved in a diverse range of important 

functions such as DNA repair, recombination, splicing and replication. 
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Conservation of amino acid sequence within the HsdR polypeptide between 

EcoA1 and EcoEI has high identity in the DEAD box motifs (89%) but has lower 

overall identity (Murray et al., 1993). This implies that these motifs may have an 

important role in the restriction mechanism. Figure 3 shows the DEAD box motifs in 

the HsdR and Res sequences aligned with the sequence of eIF-4A, the prototype of 

this family. Eukaryotic initiation factor 4A (elF-4A) is required for mRNA-ribosome 

binding and plays a central role in translation initiation. It is an RNA-dependent 

ATPase and exhibits bidirectional RNA unwinding activity in vitro, in the presence of 

e1F-4B and ATP (Grifo etal., 1984; Ray etal., 1985; Rozen etal., 1990). 

From the alignment in figure 3 it is clear that the HsdR and Res protein 

sequences deviate from the eIF-4A sequence. In motif Ia, eIF-4A has the sequence 

PTRELA, motif II contains DEAD and in motif VI eIF-4A has a histidine residue 

where the other sequences have a glutamine residue. As more DEAD box proteins 

were sequenced these deviations were used to subdivide the family into DEAD and 

DEXH proteins, where X is commonly A or C (Fuller-Pace and Lane, 1992). Type I 

and Ill endonucleases are members of the DEXH family. As yet there does not 

appear to be a relationship with protein function and this subgrouping. Table 3 shows 

some examples of DEXH and DEAD proteins. 
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eIF-4A 
EcoAI 
EcoKI 
EcoR 1241 
EcoPI 
Consensus 

I 	 Ia 

YDVIAQAQSGKTAT 	 ALVLAPTRELIAQQI 
VLLVMATGTGKTYT 	 ILFLADRNILVDQT 
ILLAMATGTGKTRT 	 ILFLVDRRSLGEQA 
GYIWHTTGSGKTLT 	 VFFVVDRKDLDYQT 
IDVSMETGTGKTYT 	 Fl I IVPTI S IKAGT 
+++ tg GKt 	 ++++p r + 

S 	s 	 k 

II 	 III 	 IV 

eIF-4A 
	

MFVLDEAD 
	

VLLSATM 
	

AVIFINTRRK 
EcoAI 
	

LIVIDECH 
	

IGLTATP 
	

TIVFCNDIDH 
EcoKI 
	

CIVVDEAH 
	

IALTATP 
	

TIVFCVTNAH 
EcoR 1241 
	

VFIFDECH 
	

FGFTGTP 
	

ANLAVSSVDA 
EcoPI 
	

FIIIDEPH 
	

IRYGATFS 
	

TLFFIDDIEG 
Consensus 	+ + + +DEah 
	

+++ tat 
	

+++F t 
sgs 	 Y  

V 	 VI 

elF-4A 
EcoA1 
EcoKI 
EcoR 1241 
EcoPI 
Consensus 

VLITTDLLARGIDVQ 
IATTSELMTTGVDAK 
IVVTVDLLTTGVDIP 
LLIVVGMFLTGFDAP 
FIFSKWTLREGWDNP 
++++t + g+ + 

B 

ENYIHRIGRGGR 
TKFKQI IGRGTG 
ILYEQGRATR 
HGLMQAFSRTNR 
TSKLQEVGRGIR 

q +GR+gr 
a 

Figure 3. The alignment of DEAD box motifs in HsdR and Res protein sequences 

(Gorbalenya and Koonin 1991) compared to eIF-4A. With corrected motif III EcoKI 

sequence (Webb et al., 1996) and EcoAI sequence (Murray et al., 1993; Titheradge et 

al., 1996). The consensus residues, derived from proteins in helicase superfamily II, 

are shown underneath the protein sequences (Gorbalenya et al., 1989). Plus signs 

represent conserved hydrophobic residues, capital letters indicate conserved amino 

acids and lower-case letters indicate alternative deviations. 
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Protein Motif 
II 

Role Biochemical 
Activities 

Reference 

Rad3, DEAD Excision repair of DNA dependent Reynolds and 
yeast UV damaged DNA ATPase and DNA Friedberg, 1981 

helicase activities. Sung et al., 1987a 
Sung etal. 1987b 
Haroshetal., 1989 

RecG, DEXH Recombination and ATPase activity Lloyd and Sharples 
E. coli DNA repair, and DNA helicase 1993 

catalyses branch activity on 
migration branched substrates 

Prp16, DEXH Pre-mRNA splicing ATPase and RNA Schwer and 
yeast helicase activities Guthrie, 1991 

SrmB, DEAD Ribosomal RNA dependent Nishi etal., 1988 
E. coli biogenesis ATPase and RNA 

helicase activity 

p68, DEAD Cell growth and ATPase and RNA Hirling et. al., 1989 
mammals division helicase activity 

RecQ, DEXH Repair of UV DNA dependent Umezu et. al., 1990 
E. coli damaged DNA ATPase and DNA 

helicase activities. 

Table 3. Examples of DEAD and DEXH proteins, their roles in vivo and biochemical 

activities of the purified protein. 
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Roles of DEAD box motifs 

Mutagenesis has begun to reveal roles for each motif in the biochemical activities 

involved in DNA or RNA unwinding. 

Motif I and motif II have been previously described as the Walker ATPase A 

and B motifs respectively, as they are also conserved in ATPases (Walker et al., 1982; 

Hodgman, 1988a, b). Motif II is an abridged form of the ATPase B motif. The 

crystal structure of adenylate kinase, an ATPase, revealed that motif I was an ATP 

binding site (Pai et al., 1977). The lysine residue in this motif is directly involved in 

binding the 'y-phosphate of the nucleotide (Schulz, 1992). Replacement of this residue 

abolished the ATPase and helicase activities of Rad3, UvrAB complex, eIF-4AB 

complex, RecB and PriA (Sung et al., 1988; Seeley and Grossman, 1989; Pause and 

Sonenberg, 1992; Hsieh and Julin, 1992; Zavitz and Marians, 1992). 

Motif II (DEAD or DEXH) forms a hydrophobic n-sheet structure. The first 

aspartic acid residue is in close proximity to motif I and binds Mg 2  through a water 

molecule (Pai et al., 1990; Story and Steitz, 1992). The Mg 2  ion is bound to the 

and y phosphates of the nucleotide. In eIF-4A a mutation from DEAD to EEAD, 

which retains an acidic residue, gave wild type levels of ATPase activity but abolished 

helicase activity. DEAD to DEAR in eIF-4A showed elevated levels of ATPase 

activity, but only 10% of RNA helicase activity (Pause and Sonenberg, 1992). A 

change from DEAD to NEAD or DQAD abolished both ATPase and helicase 

activities (Pause and Sonenberg, 1992). These results confirm that the first two 

negatively charged residues in motif II (D and E) are important for Mg 2  coordinated 

ATP hydrolysis. Whilst helicase superfamily II contains DEAD and DEXH box 

proteins, proteins in helicase superfamily I are DEXX box proteins. This superfamily 

includes the E. coli proteins Rep and UvrD, both of which possess helicase activity, 

suggesting the highly conserved D and E residues are likely to be essential for DNA 

or RNA unwinding activity. 

The roles of the remaining conserved motifs remain unconfirmed. In eIF-4A 

mutations in motif III of SAT to AAA enhanced ATPase activity 3-fold but abolished 
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RNA unwinding, therefore uncoupling the ATPase and helicase activities (Pause and 

Sonenberg, 1992). In RecG a mutation from TAT to TVT in this motif reduced ATP 

hydrolysis and stopped branch migration of Holliday junctions (Sharples et al., 1993). 

In eIF-4A the histidine residue in motif VI (HRIGRGGR) was changed to 

QRIGRGGR, the motif conserved in the DEXH family. In addition a double mutant 

with this change and a change in motif II to DEAH was created. ATPase activity was 

increased in the double mutant, which retained a small amount of helicase activity. In 

the single mutant both ATPase and helicase activity were abolished. In some RNA 

helicases motif VI has been implicated in RNA binding (Gorbalenya et al., 1989; 

Linder et al., 1989). However mutations in this motif in the vaccinia virus DEXH 

protein, RNA helicase NPH-II, did not affect RNA binding but reduced and abolished 

ATPase and helicase activities respectively (Gross and Shuman, 1996). 

Two heicases have been crystaffised, these proteins are PcrA 

(B. stearothermophilus) complexed with ATP and Rep (E. coli) co-crystallised with 

DNA and ADP (Subramanya et al., 1996; Korolev et al., 1997). Both are members 

of superfamily 1 so they are not DEAD or DEAH proteins and some of the conserved 

motifs have very different amino acid sequences from those in DEAD box proteins. 

Consequently the motifs may have different roles in the mechanism of unwinding. 

However their structure may provide some clues for the function of the motifs in 

DEAD or DEAH proteins. Both structures reveal that motifs I and IV are in direct 

contact with the bound nucleotide. For PcrA, motifs V and VI are at the interface 

between the nucleotide binding site and the protein domain. The Rep crystal structure 

shows motifs la, III and V are in contact with the bound single-stranded DNA, 

residues in motif VI are in contact with residues in motifs IV and III and residues in 

motif IV are in contact with residues in motif V. These contacts indicate a role for 

some motifs in coordinating activities controlled by other motifs. 
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Materials and Methods 

Materials 

Bacterial strains 

Strain Relevant 	genotypes 	and 
restriction phenotype 

Reference/Source 

NM679 (hsdRMS) A , (r1m1) King and Murray, 1995 

DH5cc hsdR, (rKmK) Hanahan, 1983 

Ymel supF, (rKmK) Rickenberg and Lester, 1955 

NM526 hsdRiM derivative of Ymel King and Murray, 1995 

ED8654 supE, supF, hsdR, (rKm) Borck et al., 1976 

AB1157 rac, (rK mK ) Low, 1973 

NM795 hsdR derivative of AB1157, King and Murray, 1995 
(rKmK) 

C600 supE, (rKmK) Appleyard, 1954 

NM495 hsdRE,4 derivative of C600, N. E. Murray 
(rKmK) 

XL1-blue recA, hsdR, F, (rKmK) Bullock et al., 1987 
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Bacteriophage 

X virulent (laboratory collection), either unmodified (Xvir.0) after propagation on 

NM679 or EcoKi-modified (vir.K) by growth on C600, were used to measure 

restriction phenotype. Hybrid phages with the left arm of phi80 substituted for that of 

?, which reduces the number of targets for EcoKI (Franklin and Dove, 1969), were 

also used; these were A.NM175 and ANM176 with one EcoKI recognition site and 

XNM 105 with two EcoKJ recognition sites (Murray et al., 1973a). 

To transfer mutations to the E. coli chromosome the mutations were 

transferred from pSB2 to a X vector. The EcoRI-SmaI fragment containing the 

mutation in hsdR was excised from mutant derivatives of pSB2 and inserted between 

the left arm of the Pam phage ?NM 1265 (Whittaker et al., 1988) cut with Smal, and 

the right arm of the Earn c1857 phage ?NM 1347 (Whittaker et al., 1988) cut with 

EcoPJ. The recombinants were selected on NM679, a sup' hsdA host. 
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Plasmids 

The Results section details the construction of plasmids made during this study. 

Plasmid Features 	- 	 Reference 

pUC18 ColE 1 replicon, carrying bla, Plac  and multiple Yanisch-Perron etal., 
cloning sites (mcs) 	 1985 

pT7-7 	ColE 1 replicon, carrying P, bla, mcs and Tabor, 1990 
translational initiation region (tir) of T7 gene 10 

pSB2 	derivative of pT7-7 carrying the EcoKJ hsdR Webb et al., 1996 
gene 

pRH3 	Derivative of pBR322 contains 1.8kb HindIll Sain and Murray, 1980 
fragment from hsd region of E. coli K- 12 

phsd 	Derivative of pBR322 with hsdR, M and S genes O'Neill etal., 1997 
of E. coliK-12 

pJW2 	KpnI to BamHT fragment of hsdR encoding GKT This thesis 
to Gil' change in motif I, inserted in pUC 18 

pJW3 	As pJW2 with GKT to GRT change 	 This thesis 

pJW4 	As pJW2 with GKT to GTT change 	 This thesis 

pJW5 	As pJW2 with TAT to TDT change in motif ifi This thesis 

pJW6 	As pJW2 with TAT to TOT change in motif ifi This thesis 

pJW7 	As pJW2 with TAT to TVT change in motif ifi This thesis 

pJW8- KpnI to BamHI fragment with mutation in hsdR This thesis 
13 	replacing wild-type hsdR sequence in pSB2 (in 

the same order as pJW2-7) 

pJW14 pSB2 with change encoding GRAT to GHAT in This thesis 
motif VI 

pJW15 pSB2 with change encoding GRAT to GLAT in This thesis 
motif VI 
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pJW16 pSB2 with change encoding GRAT to GPAT in This thesis 
motif VI 

pJW17 phsal with change encoding GKT to GRT in This thesis 
motif I 

pJW18 phsct with change encoding FLVD to FLVH in This thesis 
motif Ia 

pJW19 phsd with change encoding FLVD to FLVN in This thesis 
motif Ia 

pJW20 phsal with change encoding FLVD to FLVY in This thesis 
motif Ia 

pJW21 phsd with change encoding DEAR to DEAD in This thesis 
motif II 

pJW22 phsd with change encoding TAT to TGT in This thesis 
motif IH 

pJW23 phsd with change encoding FCVT to SCVT in This thesis 
motif IV 

pJW24 phsd with change encoding TTGV to TTCV in This thesis 
motif V 

pJW25 phsX with change encoding TTGV to TTRV in This thesis 
motif V 

pJW26 phsd with change encoding TTGV to TTSV in This thesis 
motif V 

pJW27 phsd with change encoding GRAT to GHAT in This thesis 
motif VI 

phsd 	phsd with change encoding TAT to TVT in Angela Chen 
TVT 	motif ifi 
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CGCCGAC1T7AACCGTGGCC 

CGTCTCTGDCTACCGTCG 

CGACGGTAGHCAGAGACG 

GGCGGATCCTGGTCGATC 

GCGATGGCGACCGGTACCGG 

sequencing primer 

sequencing primer 

sequencing primer 

PCR I sequencing primer 
contains BamHI site 

PCR I sequencing primer 
contains KpnI site 

Oligonucleotides 

Oligonucleotides were bought from Oswell DNA service, Medical and Biological 

Science Building, University of Southampton. Restriction sites and mutation sites are 

underlined. Degeneracies: B=C, G or 1; D=A, G or T; H=A, C or T; V=A, C or G. 

The use of the oligonucleotide is stated. Some oligonucleotides used as sequencing 

primers contain degeneracies because they were originally designed to introduce 

mutations. 

Oligonucleotide 5'—*3' sequence 	 Use 

M5244 	GACCGGTACCGGTABAACCCG Motif I mutagenesis 

M6010 

M6011 

V5076 

V5077 

M6975 

T9140 

T6273 

G5036 

G5037 

G5040 

G5038 

CGCTCTCACCGDCACCCCGG 	Motif ifi mutagenesis 
top strand 

CCGGGGTGHCGGTGAGAGCG 	Motif ffi mutagenesis 
bottom strand 

CGAACAGATGAAAGGCCHCGCC Motif VI mutagenesis 
ACGCGCTFATGC 	 top strand 

GCATAAGCGCGTGGCGDGGCCT Motif VI mutagenesis 
TTCATCTGTTCG 	 bottom strand 

CGACAAGGAAGAGAATGCG 	sequencing primer 

CGGGCGCACCACCACCGGACGC sequencing primer 
ATGG 
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G5039 	GCCGCGATCGCTTCGTC 	sequencing primer 

1209 	 TGTCTAGATATCGGCCTAACCA Top strand 45mer substrate 
CGTGGTGCGTACGAGCTCAGGC in ATPase and DNA 
G 	 binding assays 

1208 	 CGCCTGAGCTCGTACGCACCAC Bottom strand 45mer 
GTGGUAGGCCGATATCTAGAC substrate in ATPase and 
A 	 DNA binding assays 

W1827 	TGTCTAGATATCGGCCTCCACA top 	strand 	non-specific 
CGTGTGTAGTACGAGCTCAGGC 45mer, used in competition 
G binding assay 

W1828 	CGCCTGAGCTCGTACTACACAC bottom strand, non-specific 
GTGTGGAGGCCGATATCTAGAC 45mer, used in competition 
A binding assay 
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Media 

All media were sterilised by autoclaving at 151b/in 2  for 15 minutes. 

LB broth: lOgf 1  NaCl, 10g1' Difco Bacto tryptone, 5g1 ' Dilco Bacto yeast extract, 

pH adjusted to 7.2 with NaOH. 

LB agar was made by adding 1.5 g1' Difco agar to LB. 

LB-ampicillin-methicillin agar: 20mg of filter-sterilized ampicillin and 80mg of filter 

sterilized methicillin were added to 1 litre of molten agar. 

NZY + broth: 10 g1 NZ amine (casein hydrolysate), 5g F' yeast extract, 5g 1 -1  NaCl 

and 12.5m1 of 1M MgC12, 12.5m1 of 1M MgSO4 . lOmi 2M filter-sterilized glucose 

solution were added after autoclaving. 

Baltimore Biological Laboratory (BBL) agar: 5g1 NaCl, 10gF 1  BBL trypticase, lOgF 
1  Difco agar (6.5g1' for BBL top agar). 

2x TY: 16g Difco Bacto tryptone, lOg Difco Bacto yeast extract, 5g NaCl, made up 

to ilitre with water and autoclaved. 

SOC: 1.8m1 20% glucose, lml 1M MgSO 4 , imi 1M MgC12  was added to lOOmI LB. 

Solutions 

All solutions were made using sterile, deionised water. 

20x TBE buffer: 1.78M Tris, 1.78M boric acid, 50mM EDTA (pH8.3). 

50x TAE buffer: 242g Tris base, 57. lml glacial acetic acid and lOOm! 0.5M EDTA 

(pH8.0). 

lOx TBS buffer: 60.5g Tris, 87.6g NaCl in 1 litre H 20 pH7.5, stored at 4°C. 

lx TGS buffer: 6g Tris, 28.8g glycine to 990m1 with dH 20 + lOmi 10% SDS. 

TE buffer: 10mM Tris (pH7.5), 1mM EDTA (pH8.0). 

Phage buffer: 3g KH 2PO4, 7g Na2PO4, 5g NaCl, imI of 100mM MgS043H20, lOml 

of 100mM CaC12 , 1 m of 1% w/v gelatine in 1 litre water. 

Binding buffer: 20mM Tris pH8.0, 100mM NaCl made up fresh before use. 

Western Blotting buffer: 9g tris, 43.2g glycine in 3 litres water. 



R buffer: 20mM Tris-HC1, 10mM MgC12, 7mM 3 mercaptoethanol, 10% glycerol, 

10 M PMSF and 10 M benzamidine, pH adjusted to 7.5. 

TLC buffer: 0.5M LiC1, 1M formic acid. 

Phenol: 250m1 water saturated phenol (Rathburn chemicals), 200m1 1M Iris (pH7.8), 

14m1 Cresol, 500p.1 f3-mercaptoethanol, 0.28g hydroxyquinoline. 

Ethidium bromide: stock solution lOmgml' stored at 4°C in dark. 

Ampicillin: stock solution lOOmgmf' used at 100.Lgrnf' stored at -20°C. 

ATP stock solution (0.1M): 60mg ATP was dissolved in 0.8m1 H 20 and pH adjusted 

to 7.0 with 0. 1M NaOH and volume corrected to imi with H 20. Stored in aliquots at 

-70°C. 

Lysis solution: 25mM Tris.HC1 pH 8.0, 10mM EDTA pH 8.0, 1% w/v glucose. 

DNA load dye: 20mg bromophenol blue, 2g Ficoll 400 dissolved in lOmis 1xTBE. 

SDS load dye: 2.5m1 0.5M Tris, 2m1 20% SDS, 2m1 glycerol, 0.lml 0.1% 

bromophenol blue, 3.2m1 H20. 

Non-denaturing PAGE load dye: 20mg bromophenol blue, 50% glycerol in lOmi 

Reagents 

DNA sequencing kits, sequenase and radiochemicals were obtained from Amersham 

International. Type II restriction enzymes were obtained from Boehringer Mannheim 

and New England BioLabs. ATP was obtained from Boehringer Mannheim. DNA 

ligase and Vent DNA polymerase were purchased from New England BioLabs and 

Red Hot DNA polymerase was obtained from Advanced Biotechnologies. S-adenosyl 

methionine was from New England BioLabs. Polynucleotide kinase was a kind gift 

from Sandra Bruce in Ken Murray's laboratory. AgarAce enzyme and Packaging 

extracts were obtained from Promega. Ampicillin was from Beecham 

Pharmaceuticals. The plasmid Flexiprep kit and Sephadex G-50 were bought from 

Pharmacia Biotech. QuikChange Site-Directed Mutagenesis kit was bought from 

Stratagene. PEI-cellulose TLC plates, low melting point agarose, N,N,N',N'-

tetramethylethylenediamine (TEMED), ethidium bromide, DEAE-Sepharose and 
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Heparin-agarose were bought from Sigma. Caesium chloride was from ICN 

Biomedicals Inc. Urea and 2-amino-2-(hydroxymethyl)-1,2-propandiol (Tris) were 

from GibcoBRL. Dialysis tubing was from Medicell International. X-ray film was 

bought from Dupont (Cronex 4) and Kodak (Biornax MR). Anti-rabbit IgG 

peroxidase conjugate was bought from Sigma. Agarose, microsep concentrators and 

Long-Ranger sequencing gel solution were bought from Flowgen. 40% (19:1) and 

30% (37.5:1) w/v acrylaniide/bis-aciylamide were bought from NBL Gene Sciences 

Ltd. General laboratory chemicals used were obtained from Fisher, GibcoBRL or 

Sigma. 

Methods 

Microbial techniques 

Bacterial cultures 

5mls of LB was inoculated with a single colony and the culture was grown overnight 

at 37°C in a 1/2 oz glass bottle and then stored at 4°C. For longer storage the 

overnight culture was used to inoculate L-agar in a small glass vial, this was incubated 

overnight at 37°C and stored at room temperature. 

Plating cells 

A one in 50 dilution of overnight culture in LB was grown to mid-log phase (O.D. 650  

0.6) to about 5xl0 8  cfu m14  and harvested by centrifugation at 3000g for 5 minutes. 

The cells were resuspended in 1/2 the original culture volume with 10mM MgSO 4  and 

stored at 4°C. 

Plate lysates 

A single plaque was picked into 500p.I phage buffer containing a drop of chloroform, 
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200pi of this was mixed with 200p1 plating cells. After 15minutes 3m! of BBL-top 

agar was added and the mixture poured onto fresh BBL agar plates. The plates were 

incubated for 6-8hours at 37°C. 5mls of LB was added onto the plate and this was 

kept overnight at 4°C. The broth was decanted from the agar plate, a drop of 

chloroform added and the solution vortexed. The lysate was clarified by 

centrifugation to remove debris for 10 minutes at 3000g and titred overnight by 

making serial dilutions of the phage stock and spotting onto an appropriate bacterial 

lawn. The lysate was stored at 4°C. 

Transferring mutations onto the E. coli chromosome 

Phage containing a temperature sensitive mutation (2cI857) which prevents 

repression at temperatures above 37°C and a mutation in their attachment site (-b527) 

were used. The lysate was diluted 102,  10, 10 in phage buffer and spotted onto a 

lawn of AB1 157 using a Gilson pipette. The spots were dried and the plate was 

incubated overnight at 32°C. Turbid plaques were picked using a sterile loop and 

streaked onto LB plates seeded with c.10 9  ?cr (7NM63) and h80imm& (XNM220) 

homoimmune phage, which lyse cells that don't contain a prophage. These plates 

were incubated overnight at 32°C. Colonies growing on these plates were purified on 

fresh LB plates overnight at 32°C. The purified colonies were picked into 250p1 LB 

and grown for 7 hours at 32°C. These cultures were spotted onto an AB 1157 lawn 

and incubated overnight at 37°C. The cultures were also streaked onto LB plates in 

duplicate, one plate incubated at 32°C and one at 42°C. A circle of lysis around the 

spots on the AB 1157 lawn and lysogens that were easily cured at 42°C were 

indications that the phage had integrated via homologous recombination and not via 

the defective att site on lambda. Once identified the cured colonies were tested for 

restriction to see if the mutation had been transferred to the chromosome. 

Tests for restriction phenotype 

Purified colonies were picked into 250p1 LB (with 10pgml' ampicillin if required) and 

incubated at 37°C (32°C for lysogens) for 6-7 hours, the culture was mixed with 3n -As 
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BBL-agar and then poured onto a BBL plate. Serial dilutions of modified and 

unmodified phage were spotted onto the lawn. The spots were dried and the plates 

incubated overnight at 37°C. Once an approximate phenotype was known the test 

was repeated on whole plates by mixing an appropriate dilution of phage with 200p.l 

cells, incubating at room temperature for 15 minutes, plating onto BBL plates then 

incubating overnight at 37°C. The number of plaque forming units per ml was 

calculated. 

Transformation of cells with DNA 

Electroporation (Heery and Dunican, 1989) 

A 1 in 50 dilution of a fresh overnight culture was grown to an O.D 650  of 0.5 in 2x TY 

broth. The cells were centrifuged at 3000g at 4°C for 5 minutes and the pellet was 

washed three times with lOml water by resuspending and centrifuging at each wash. 

After removing the water after the final spin, the cells were resuspended in the 

residual water and 40p1 of this cell suspension was mixed with 1j.il of the ligation 

reaction and 5pJ water. This was dispensed into a 0.2cm electroporation cuvette and 

pulsed for 4.8msec with an electric field of 12.5KVcm' using a Gene Pulser 

electroporator (Biorad Laboratories Ltd), set at 25p.F, 2.5 kV and 20092. imi SOC 

solution was immediately added to the cells and the solution was incubated at 37°C 

for 30 minutes, shaking. lOpi, lOOpJ and 300R1  of this culture was spread onto LB-

agar plates containing ampicillin at lOngml' and incubated overnight at 37°C. 

Colonies were purified overnight by streaking onto another LB-ampicillin plate. 

CaC12  transformation 

When supercoiled DNA was introduced into bacterial cells the CaC1 2  method for 

transformation was used, as high efficiencies of transformation were not necessary. 

Competent cells were prepared by adding 0.5m1 of an overnight culture to 25m1 LB 

and growing to an O.D 650  of 0.5. The cells were harvested by centrifugation at 

3000g for 10mm and resuspended in lOmi ice cold UM CaC1 2, this suspension was 

left on ice for 10-20 minutes then harvested again as before and resuspended in 800 pd 

of ice cold 0. 1M CaC1 2  and 200 jil of glycerol. Cell solutions were divided into lOOpI 
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aliquots and stored at -70°C. 

To transform these cells with DNA, ltl of plasmid stock solution was mixed 

with 20pJ of thawed competent cells and left on ice for 20 minutes. The cells were 

then heat shocked at 42°C for 90 seconds. lml of LB was added and the cells 

incubated at 37°C for 30 minutes. This was plated onto an LB-ampicillin plate and 

incubated overnight at 37°C. 

DNA Techniques 

Restriction digests 

The digest was normally carried out in a lOjfl volume with 1-2jig DNA, in the 

appropriate restriction buffer, using 5 units of enzyme. Most reactions were 

incubated at 37°C for at least two hours, Smal digests were incubated for at least 8 

hours or overnight at 25°C. 

Gel electrophoresis of DNA 

Horizontal submerged gel electrophoresis tanks were used to separate DNA 

fragments. Samples were mixed with DNA load dye and loaded onto 0.8%-1.5% 

agarose gels made up in lx TBE or lx TAE buffer. Gels were run at 5Vcm', with 

lOngml' ethidium bromide added to the running buffer. Fragments were visualized 

over a UV-light transilluminator and photographed with a video copy processor 

(Mitsubishi Electronics Corp). 

Extraction of DNA from agarose gels 

Electroelution 

Dialysis tubing was prepared by boiling for 20 minutes in water containing 2% w/v 

sodium bicarbonate and 1mM EDTA (pH 8.0). The DNA band was cut from the gel 

using a scalpel and placed in dialysis tubing containing lx TBE buffer. The tubing 

was sealed at both ends and submerged in lx TBE buffer, the DNA was eluted into 

the buffer by electrophoresis at 5Vcm' 1  and the direction of electrophoresis reversed 
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after 30 minutes for 10 seconds, to release DNA from the side of the dialysis tubing. 

The DNA was precipitated in 2 volumes ethanol and 1/10 volume sodium acetate pH 

8.0 at -20°C overnight. 

Agarose digestion 

The DNA sample was run on 1% low melting point agarose gels, made up in lx TAE 

buffer. The desired band was cut out of the gel using a scalpel and placed in a 

microcentrifuge tube. The agarose was melted by incubation at 70°C for 15 minutes. 

This solution was transferred to 40°C for 5 minutes before AgarACErM enzyme 

(Promega) was added at 1:100 v/v. The tubes were left for an hour at 40°C. The 

DNA was precipitated by adding 2 volumes of ice-cold ethanol and incubating 

overnight at -20°C. The DNA was centrifuged at 1 l000g for 40 minutes and the 

pellet dried under vacuum for 10 minutes before resuspending in an appropriate 

volume of H20. 

Ligations 

DNA fragments were joined together using 1 unit of T4 DNA ligase (Boehringer 

Mannheim) in lxligase buffer in a lOpi volume and incubated overnight at 16°C. 

Packaging phage DNA into a ? vector 

Ligations were incubated at 65°C for 10 minutes to denature the ligase. 15pJ of 

packaging extract (Promega) was added to the ligation mix and this was left at room 

temperature for 2 hours. 500p1 of phage buffer was added to the packaging mixture 

and various dilutions were spotted onto bacterial lawns and incubated overnight at 

37°C to calculate the packaging efficiency. 

Small-scale preparation of plasmid DNA 

Small quantities of DNA were prepared using spin columns (Qiagen). The method is 

based on adsorption of DNA on silica-gel membranes incorporated in the spin 

columns. The suggested protocol was slightly modified to increase yields. 

A Sml overnight culture of cells freshly transformed with the plasmid 
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(normally DH5(x cells) was harvested by centrifugation at 1 1000g for 3 minutes. The 

cell pellet was resuspended in 500.tl buffer P1 (contains RNaseA). 500p1 of buffer P2 

(NaOHJSDS) was then added to lyse the cells, followed by 500g]. of buffer N3, which 

causes denatured proteins and cellular debris to precipitate. The tubes were 

centrifuged at 1 1000g for 10 minutes and the supernatant added to a QlAprep spin 

column. The columns were centrifuged at 1 1000g for 45 seconds. The flow-through 

from the column was discarded and the column was washed with 0.5m1 buffer PB 

(which removes any nucleases) by centrifugation at 1 1000g for 45 seconds. The 

flow-through was discarded then the columns washed with 0.75m1 buffer PE (which 

removes salt) by centrifugation at 11 OOOg  for 45 seconds. The flow-through was 

discarded and the columns centrifuged again for 30 seconds, the columns were then 

placed in clean microcentrifuge tubes and 50jil H 20 was added to elute the DNA. 

These were left for 10 minutes then centrifuged at 11 OOOg  for 5 minutes, the DNA 

solution was stored at -20°C. 

Midi-scale preparation of plasmid DNA 

For a midi-scale preparation of plasmid DNA the Flexiprep kit was used (Pharmacia 

Biotech), which uses a glass matrix (Sephaglas) to purify the plasmid DNA. 50mls of 

overnight culture were harvested at 7700g for 10 minutes. The cell pellet was then 

resuspended in 5mls solution I (100mM Tris-HC1 (pH7.5), 10mM EDTA, 400j.tg/ml 

RNase I) and mixed with 5mls of freshly prepared solution II (1M NaOH, 5.3% (w/v) 

SDS) then incubated at room temperature for 5 minutes. Smls of solution III (3M 

potassium, SM acetate solution) was then added and the tube placed on ice for 10 

minutes. This was centrifuged at 12000g for 15 minutes and the supernatant mixed 

with 0.7 volume of ambient-temperature isopropanol and incubated at room 

temperature for 10 minutes to precipitate the DNA. This was centrifuged at 8000g for 

20 minutes and the pellet air-dried. 5m1 of Sephaglas Tm  FP suspension was added and 

the pellet was resuspended by vortexing for 1 minute. The Sephaglas is suspended in a 

buffered solution of guanidine-HC1, 50mM Tris-HC1 (pH7.5) and 10mM CDTA, 

which promotes binding of DNA to the glass. This is incubated for 10 minutes at 

room temperature, keeping the Sephaglas in suspension, then pelleted by 
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centrifugation at 3000g for 2 minutes. The sephaglas-DNA pellet is washed in 5m1 

wash buffer (20mM Tris-HC1 (pH7.5), 2mM EDTA, 200mM NaCl 60% ethanol) 

followed by 70% ethanol, spinning the pellet down after each wash step. The pellet is 

air dried for 30 minutes and then resuspended in water (normally 300-500pJ 

depending on the concentration required) and stored at -20°C. 

Large-scale preparation of plasmid DNA 

Large amounts of DNA were prepared using a method adapted from Clewell and 

Helsinki (1969). 250m1 of cells freshly transformed with the plasmid were harvested 

by centrifugation at 10000g for 10 minutes. The cell pellet was resuspended in 7mls 

lysis solution, then 10mg of lysozyme in 0.5m1 lysis solution was added and the 

mixture was left on ice for 5 minutes. 14mls alkaline-SDS (0.2M NaOH, 1%SDS) 

was then added and this was incubated on ice for 10 more minutes. 3.5n -As 3MKAc 

(pH5.0) was added, tubes were left on ice for a further 5 minutes then centrifuged at 

8000g for 10 minutes. The supernatant was separated from the debris by filtering the 

mixture using glass wool. lSml of ice-cold isopropanol was added to the supernatant 

and incubated on ice for 30 minutes. The DNA was precipitated by centrifugation at 

8000g for 10 minutes. The pellet was rinsed in 70% ethanol and then air dried, before 

resuspending in 110. The volume was corrected to 9.4m1 and 9.4g of caesium 

chloride was added, followed by 0.6m1 of ethidium bromide solution (lOmgml'). The 

solution was transferred to a Sorvall Ultracrimp tube (DuPont Ltd) and the tubes 

were balanced to within 0.02g and heat-sealed. The tubes were centrifuged at 

130000g. for 36 hours at 18°C, which formed a density gradient. The DNA bands 

were visualized using UV-light and the plasmid band (lower band) was removed using 

a lml syringe and a hypodermic needle. Ethidium bromide was extracted from the 

DNA solution by mixing with TEINaC1 saturated isopropanol, allowing the phases to 

separate and removing the solvent layer. This was repeated at least four times, or 

until the ethidium was completely removed. Two volumes of water were then added 

to the DNA solution followed by twice the new volume with ethanol. The DNA was 

sedimented by centrifugation at 29000g for 15 minutes. The pellet was rinsed in 70% 

ethanol and air-dried. It was then resuspended in 500il TE buffer. Protein was 
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removed by adding the same volume of phenol, vortexing, then centrifugation at 

11 000g for 5 minutes and removing the phenol layer. This was repeated, then the 

plasmid DNA was precipitated by adding two volumes of ice-cold ethanol and 

incubating at -20°C for at least 30 minutes. The DNA pellet was sedimented by 

centrifugation at 1 l000g for 20 minutes. The pellet was rinsed in 70% ethanol and 

dried under vacuum, then the DNA was resuspended in 500tl TB buffer. 

Small-scale preparation of phage X DNA 

lOOj.iJ of fresh overnight culture was added to 4m1 LB plus 40jtl 1M MgSO 4  and 

lx 108  phage added. This was grown at 37°C for 3-5 hours or until lysis occurred. A 

drop of chloroform was added to the phage solution and the mixture was vortexed, 

then centrifuged at 3000g for 10 minutes to remove cell debris. The supernatant was 

transferred to a 1/2 ounce bottle and 51.11  of lomgmr' RNase and 5j.iJ of lomgmf' 

DNase was added. This was incubated at 37°C for 30 minutes then transferred to a 

lSml corex tube containing 4rnl PEG solution (20g Polyethylene glycol, 11.7g NaC1 

dissolved in 78 mIs phage buffer). Phage was precipitated by incubation overnight at 

4°C and pelleted by centrifugation at 13000g for 20 minutes. The pellet was dried by 

inverting the tube for 5 minutes then resuspended in 0.5m1 phage buffer, this solution 

was transferred to a microcentrifuge tube and centrifuged at 1 1000g for 10 seconds to 

remove insoluble material. 0.5m1 chloroform was added and the mixture vortexed 3 

times for a few seconds before centrifugation at 1 1000g for 1 minute. The 

chloroform layer was removed then 500i1 phenol and 10091 TE buffer was added. 

This was mixed by inversion then centrifuged at 1 1000g for two minutes, the phenol 

layer was removed then 5001.Ll phenol: chloroform (1:1) mixture was added and mixed 

by inversion. This was centrifuged again at 1 l000g for 2 minutes to separate the 

layers. 4501.11 of the DNA layer was transferred to a fresh microcentrifuge tube and 

5001.11 of chloroform was added and layers were separated by centrifugation at 1 1000g 

for 2 minutes. 400p.1 of phage solution was removed to a clean tube and mixed with 

8001.11 of ethanol. This was incubated on ice for 10 minutes and phage DNA was 

sedimented by centrifugation at 1 1000g for 10 minutes. The DNA pellet was rinsed 
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in 70% ethanol then resuspended in 400p.l TE buffer and left for 10 minutes before 

adding 3M NaAC and 800p1 ethanol. After incubation on ice for 10 minutes the 

DNA was sedimented at 1 l000g for 10 minutes, air-dried and resuspended in lOOj.il 

TE buffer. The phage DNA solution was stored at -20°C. 

Measuring DNA concentration 

DNA concentrations were calculated by measuring UV-light absorption on a Perkin 

Elmer Lambda 5 spectrophotometer. An O.D. 260  of 1 = 50j.tg /ml, for double-

stranded DNA solutions. 

The Polymerase Chain Reaction 

DNA was amplified using the polymerase chain reaction, as described by Saiki et al. 

(1988). Reactions were performed in an OmniGene thermal cycler (Hybaid Ltd). 

PCR was used to insert specific mutations, screen colonies or plasmids for certain 

sequences and to provide a clean template for sequencing reactions. When screening 

colonies for specific mutations or quickly checking certain regions of DNA, Red Hot 

DNA polymerase (Advanced Biotechnologies) was used. To insert specific mutations 

Vent® DNA polymerase (New England BioLabs) was used as this possesses 3'-5' 

proof reading exonuclease activity to ensure additional mutations were not inserted 

during the reaction. 

Primers were designed to be about 24 base pairs long with CG base pairs at 

both ends. The melting temperature (T m) was calculated: T. 4(C+G) + 2(A+T), the 

annealing temperature used in each reaction was 5 degrees lower than the Tm• 

Typically the reaction was performed in lOOpJ, with lx reaction buffer containing 

2mM MgSO4, 2 units of polymerase, 200p.M dNTP mix, 0.4j.tM primers and lOng of 

DNA template. Primer concentration was reduced to 0.21.LM and only 50p.M of 

dNTP mix was used when amplifying DNA with Red Hot DNA polymerase. A layer 

of mineral oil was added to cover each reaction mix. A typical reaction cycle was: 

96°C for 5 minutes, then 20 cycles of (96°C for 1 minute, 52°C for 40 seconds, 72°C 

for 40 seconds), then 72°C for 5 minutes. The denaturing temperature was adjusted 
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to 94°C and cycles increased to 30 when using Red Hot DNA polymerase. 

Site specific mutagenesis-Recombinant PCR (Higuchi, 1990) 

To insert specific amino acid substitutions, primers containing base substitutions at the 

desired site of mutation were used (see oligonucleotides listed in materials section). 

Two separate primary reaction cycles were performed, each reaction used one 

flanking primer and one of the complementary primers across the site of mutagenesis. 

After the first round of PCR lOp1 of the products was run on an agarose gel to check 

the fragment had been successfully amplified. The remaining reaction mix was then 

cleaned to remove the original primers (see PCR purification). 25il of this DNA mix 

was then used as a template for a second round of PCR. This amplification cycle used 

the two flanking primers containing restriction sites to produce the final amplification 

product containing the desired mutation. 

Purification of PCR products 

After PCR the products were purified from the original primers using QlAquick 

purification columns (QIAgen). 500p1 buffer PB was added to the whole lOOj.tl PCR 

solution including the mineral oil layer. This was mixed, applied to a QlAquick 

column and centrifuged at 11 OOOg  for 45 seconds. The flow-through was discarded 

and the column was washed with 0.75m1 buffer PE and centrifuged at 1 1000g for 45 

seconds. The flow-through was discarded and the columns centrifuged for 1 minute 

at 1 1000g to ensure all ethanol buffer had been eluted. The PCR product was 

recovered by elution in 50j.tl H20. 

QuikChange Site-Directed Mutagenesis (Stratagene) 

The plasmid pSB2 was used as the substrate for the mutagenesis reaction. Two 

complementary 35mer oligonucleotides containing the desired base pair substitutions 

were used to incorporate the changes directly into the hsdR gene on pSB2. 10-50ng 

of plasmid was used as the template in 50pJ reactions containing: lx reaction buffer, 

125ng of each primer, 1p1 of 10mM dNTP mix (containing 2.5mM of each NTP). lpi 
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of Pfu DNA polymerase (2.5UIj.il) was then added and 30R1  of mineral oil was layered 

on top of this mixture. The reaction cycle consisted of 95°C for 30 seconds and 12 

cycles of (95°C for 30 seconds, 55°C for 1 minute and 68°C for 12 minutes). Then 

ipi of DpnI endonuclease was added to the reaction and the tubes were incubated at 

37°C for 30 minutes (this digests the original template). Epicurian Coli® XL1-Blue 

cells (Stratagene) were thawed on ice and 50p.l of these were mixed with lp.l of DNA 

and incubated on ice for 30 minutes. These were transferred for 45 seconds to 42°C 

then placed on ice for a further 2 minutes. 0.5m1 of NZY broth, preheated to 42°C, 

was added to the transformation reactions and this was incubated at 37°C for 1 hour 

shaking, before plating onto agar-ampicillin plates. 

DNA sequencing 

DNA sequence was determined by dideoxy chain-termination sequencing (Sanger et 

al., 1977). Three alternative sequencing methods were used, all using reagents 

supplied in SequenaseTm kits obtained from Amersham International plc. 

Standard double-strand DNA sequencing 

3-5p.g of plasmid DNA was mixed with ijil of primer, boiled for 4 minutes and snap-

freezed on dry ice. This primer/DNA solution was mixed with: 2j11 DTT, 0.7j.tl 

labelling mix, 2p.l reaction buffer, 0.5p.l a- 35S dATP and 2.5i.tl diluted sequenase (1:8) 

and incubated at room temperature for 4 minutes. 4jil of this mixture was added to 

2j.tl of each ddNTP, which had been pre-warmed to 37°C. These were left at 37°C 

for 3 minutes then 4p1 of stop solution was added. Samples were boiled for 2 minutes 

before loading 4j.Ll onto a 6% polyacrylamide sequencing gel. 

Plasmid quick-denature sequencing 

This method was essentially the same as i) except using an alternative denaturation 

method. 2p.g of DNA was mixed with 2p.l of 1M NaOH and lp.l of primer then 

incubated for 10 minutes at 37°C, before placing on ice. 2p.l of 1M HC1 and 2pl of 

plasmid reaction buffer was added and the tubes placed at 37°C for a further 10 

minutes. 5.5pl of reaction mix was added to the denatured DNA/primer. The 

reaction mix was 1pl DTT, 2p.l labelling mix, 0.5.tl a-S35  dATP and 2p.l diluted 
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enzyme (1:8 v/v in dilution buffer). This was left at room temperature for 3 minutes 

then 4.5pJ of this was added to 2.5jil of each ddNTP, which had been pre-warmed to 

37°C. The tubes were incubated at 37°C for 5 minutes and reactions terminated by 

adding 4p.l stop buffer. Samples were boiled for 3 minutes before loading 4.t1 onto a 

sequencing gel. 

Sequencing directly from PCR amplified DNA 

8p.1 was removed from the PCR tube and mixed with 1t1 of alkaline phosphatase and 

lp.l exonuclease I. This was incubated at 37°C for 15 minutes and then 80°C for 15 

minutes. 1tl of primer was added and the tubes were heated at 100°C for 4 minutes, 

then placed on dry ice. 7.5.tl of reaction mix was added to the denatured 

DNA/primer solution. The reaction mix was: 2j.tl label mix, 21.tl  of diluted sequenase 

(1:1 v/v in dilution buffer), lj.t1 of DTT, 2p.l of reaction buffer and 0.5j.il of (X-S" 

dATP. This was incubated for 4 minutes at room temperature before adding 4p.l to 

4pJ of each ddNTP, which had been pre-warmed to 37°C. These reactions were 

incubated at 37°C for 3 minutes, before adding 4p1 of stop solution. 4jtl of each 

sample was loaded on a sequencing gel after heating at 100°C for 3 minutes. 

Sequencing gels 

The products of sequencing reactions were run on 6% polyacrylamide gels in 

SequiGen gel apparatus (BioRad). Long Ranger sequencing 50% acrylamide gel 

solution (Flowgen) was used, which compresses the bands and does not necessitate 

fixing. Fresh gel mix was prepared by mixing 20g urea, 22m1 H 20, 5.6m1 lOx TBE 

and 4.7m1 long ranger gel solution. To seal the base of the gel plates, lOmi of gel mix 

with 100.tl 10% ammonium persuiphate (AMPS) and 36j.tl TEMED added, was 

poured into gel sealer containers and the plates were stood in these containers until 

the bottom edge was sealed. lOOp.l 10% AMPS and 36j.tl TEMIED was added to the 

remaining gel mix and the plates were carefully filled with this solution using a 25m1 

glass pipette. The gel was left for an hour at room temperature to ensure it had fully 

polymerised. Once set, the gel plates were positioned in the lower buffer tank which 

contained lx TBE buffer and buffer was added to the top tank until the top edge of 

the gel was covered. The gel was pre-warmed to 55°C before loading the samples. 
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Gels were run at 37 Watts, occasionally altering the power to keep the gel 

temperature at 55°C. The gel was dried at 80°C for 90 minutes under vacuum and 

was visualised by exposing to X-ray film (BioMax) overnight. 

5' end-labelling of oligonucleotides 

7-32P ATP (Amersharn, 10mCi/ml) was used as a label and T4 polynucleotide kinase 

was used to label the 5' end of the oligonucleotide (Midgley and Murray, 1985). A 

20j.il reaction contained lx PNK buffer (0.5M Tris-HC1 pH7.5, 10mM i-

mercaptoethanol and 50% glycerol), 2p1 y-32P ATP, 2!.tl  PNK and the desired 

concentration of oligonucleotide. This was incubated at 37°C for 45 minutes, then 

68°C for 10 minutes. Unincorporated label was removed by size-exclusion 

chromatography through lml G25 sepharose spun-columns by centrifugation at 

3000g for 3 minutes (Sambrook et al., 1989). The labelled oligonucleotide was 

annealed to a complementary unlabelled oligonucleotide by heating at 100°C for 5 

minutes, 68°C for 10 minutes, 42°C for 10 minutes, 37°C for 10 minutes and finally 

incubating on ice for 10 minutes. Labelled oligonucleotides were stored at -20°C. 

Protein Techniques 

Polyacrylamide Gel Electrophoresis (PAGE) 

SDS-PAGE (Laemmli, 1970) 

To separate proteins on the basis of size samples were run on SDS-PAGE mini-gels 

(Pharmacia Biotech). Each gel consisted of a stacking gel and a separating gel. The 

stacking gel was: 250il 30% acrylamide, 188.tl Tris pH6.8, 15p.1 10% ammonium 

persulphate, 5p.l TEMED and 1.04m1 H 20. The separating gel was: 1.5m1 30% 

acrylarnide, 1.88m1 Tris (pH8.8), 50p1 10% ammonium persuiphate, SOp.! 10% SDS 

and 7.5p.l TEMED. The separating gel mix was poured between two sealed glass 

plates and a layer of water added to obtain a smooth gel edge. Once set the water 

was removed, a comb inserted and stacking gel mix was layered on top of the 
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separating gel. Samples were mixed with SDS load dye before loading and gels were 

run in lx TGS buffer at 35mA. High molecular weight markers (Sigma-Aldrich) were 

used as standards. Gels were stained with Coomassie (500m11' methanol, lOOrnif' 

acetic acid and lgr' brilliant blue R250) by gently shaking at 37°C for 30 minutes. 

They were then destained in 10% v/v methanol 10% v/v acetic acid, by gently shaking 

at room temperature. 

Non-denaturing PAGE 

To separate protein and DNA samples were run on native PAGE gels. The gel mix 

was freshly prepared: 8.4m1 30% acrylamide, 38.9m1 H 20, 2.5m1 20xTBE, 500il 10% 

AMPs, 50il TEMED. This was poured between two glass plates held together with 

bulldog clips with a 1mm spacer to seal the gel (ATTO Corp). Gels were run in 1 

litre lx TBE buffer at 35mA. Native load dye was run in one lane to mark the gel 

front. 

Testing for protein expression 

A 1:50 dilution of a fresh overnight culture was grown in a 25m1 sterile disposable 

universal for 6-7 hours at 37°C. 0.5ml of this culture was harvested by centrifugation 

at I l000g for 5 minutes, the cell pellet was resuspended in 40p1 SDS load dye and 

lOp.l was loaded onto an SDS-PAGE mini gel. Protein expression was determined by 

transferring proteins to nylon filters using Western blotting and detecting protein with 

specific antibody. 

Western Blotting 

Proteins were transferred to PVDF membranes (Millipore) by wet electrophoretic 

transfer (Towbin et al., 1979). After electrophoresis the SDS-PAGE gel was 

sandwiched between 3 layers of blotting paper pre-soaked in blotting buffer and a 

PVDF membrane which was pre-soaked in methanol. 3 more layers of pre-soaked 

blotting paper were placed on top of the membrane. This was placed between two 

foam pads also pre-soaked in blotting buffer and inserted into the blotting apparatus, 

making certain that the membrane was on the side nearest the anode. The tank was 

filled with blotting buffer and run for one hour at 40V at 4°C. The membrane was 
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removed and protein detected using specific antibody. 

Detecting proteins with antibody 

The POD detection method (Boehringer Mannheim) was used to detect proteins on 

nylon filters. All solutions were made up with lx TBS buffer as suggested in the 

protocol. This method uses secondary antibody labelled with horse radish peroxidase 

which catalyzes the oxidation of diacythydrazides (luminol) to give an activated 

intermediate which decays to ground state and emits light. The membrane was 

blocked overnight in 1% block solution at 4°C. The block solution was removed and 

lOpi of primary antibody to EcoKI in 0.5% block solution (1:1000 v/v) was added. 

This was left shaking at room temperature for one hour. The filter was then washed 

in 20m1 TBST (1% tween in lx TBS buffer) for 10 minutes, shaking. The buffer was 

removed, replaced with a fresh solution of TBST and shaken for a further 10 minutes. 

This buffer was removed and the filter was washed in 0.5% blocking solution for 20 

minutes, replacing this solution with fresh 0.5 % blocking solution after 10 minutes. 

This was removed and the filter was probed with secondary antibody. 25fl of 

antibody was added to 25m1s 0.5% blocking solution and this was left shaking for 30 

minutes. The filter was washed in TBST buffer for an hour, replacing the buffer every 

15 minutes, using about 40m1 buffer at each step. The antibody was detected by 

adding detection solution for 1 minute, then the membrane was wrapped in Saran 

wrap (Dow Chemical Corp) and immediately exposed to X-ray film (Curix) for 2 

seconds. This film was developed and exposure time altered to achieve the best 

result. 

Protein purification 

EcoKI nuclease was prepared from 5 litres of cells freshly transformed with plasmid, 

grown in LB plus ampicilhin at 37°C for 7-8 hours, shaking at 220rpm in baffled 2 litre 

flasks to maxirnise aeration. The cells were harvested at 8000g for 10 minutes and 

stored at -70°C until required. The cell pellet was weighed and resuspended in 4x w/v 

R buffer, with fresh phenylmethylsulphonyl fluoride (PMSF) and Benzamidine added. 

The cells were sonicated for one minute per gram of cells at 4°C and cell debris was 
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removed by centrifugation for an hour at 12000g. The volume of supernatant was 

measured, NaC1 was added to a final concentration of 0.4M followed by the addition 

of 10% neutralized polyethylenimine to 0.4% v/v. This was stirred at 4°C for 15 

minutes and then centrifuged at 12000g for 30 minutes. Again the volume of 

supernatant was measured and 70% w/v NH 4SO4  was added. This was dissolved by 

stirring at room temperature for 5 minutes and then stirred at 4°C for 15 minutes to 

precipitate the protein. The suspension was centrifuged at 12000g for 30 minutes and 

the pellet was resuspended in 50mls R buffer. This solution was dialysed against 2 

litres of R buffer for 3 hours at 4°C to remove salt. The protein solution was then 

loaded onto a DEAE-Sepharose column (20cm x 1.4cm) at 48m1s hour', the column 

had been pre-equilibrated in R buffer. Once the protein had been loaded onto the 

column it was washed in R buffer at 48m1s hour' until all unbound protein had eluted. 

The column was then washed in 500m1 0—*0.5M NaCl gradient overnight at 12mls hr - 

1 . 'OR' of selected fractions were run on two 9% SDS-PAGE gels to identify 

fractions containing nuclease. These fractions were pooled and dialysed at 4°C for 3 

hours against 2 litres of R buffer. The protein solution was then loaded onto a 

heparin-agarose column (12 x 1.5cm) at 48mls hf', which had been pre-equilibrated 

in R buffer at 48m1s hr - '. Unbound protein was eluted by washing at 48mls hr' in R 

buffer and the nuclease was eluted by washing in 500mls 0-1M NaCl gradient at 

l2mls hr- '. Fractions containing the eluted nuclease were identified, pooled and 

dialysed against 2 litres of R buffer for 3 hours at 4°C. This was loaded onto a pre-

equilibrated heparin-agarose column (1 x 15cm) at 36m1s hr'. The column was then 

washed in R buffer at 36m1s hr for 30 minutes. Protein was eluted from the column 

by washing at 36m1s hr -1  in 1M NaCl. Fractions containing protein were pooled and 

the volume measured. The protein sample was usually divided into two; one half of 

the protein fraction was kept at 4°C overnight, while the other half was loaded onto a 

Superdex 200 column (60 x 1.5cm) at 48n- 1s hi'. This column had been pre-washed 

in 0.2M NaCl at 48m1s hi' for at least 4 hours. To elute the nuclease the column was 

washed in 0.2M NaC1 overnight at 12mls hi'. The fractions containing nuclease were 

identified, pooled and stored at 4°C while the second sample of nuclease was run on 

the superdex column overnight. Both nuclease samples were pooled and the protein 
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concentration measured on a spectrophotometer. The solution was added into 

microconcentrators (Microsep) and centrifuged at 8000g until micromolar 

concentrations of protein were obtained. The volume of protein solution was 

carefully measured and this was diluted to give a final concentration of 50% glycerol 

and stored at -20°C. 

Measuring protein concentration 

The concentration of protein solutions were determined by measuring UV-light 

absorbance at 280nm and calculating the concentration from the molar extinction 

coefficient (a) estimated from the sum of values of the absorbance of tyrosine, 

tryptophan and phenylalanine residues in the protein (Mihalyi, 1970). EcoKI nuclease 

has a molar extinction coefficient of 371606. 

Biochemical assays 

Nuclease assay 

Nuclease activity was assessed by measuring the digestion of a plasmid over 60 

minutes. The plasmid, pRH3, contains two unmodified recognition sites for EcoKT 

(Sain and Murray, 1980). Reactions were performed in lOOp.l volumes containing 

lOnM EcoKI, 5nM pRR3, 0.1mM S-adenosyl-methionine and 50j.tgml' BSA. The 

buffer was 33mM Tris-acetate, 10mM magnesium acetate, 66mM potassium acetate, 

and 0.5mM dithiothreitol, pH 7.9. The reaction was started with the addition of 2mM 

ATP. lOpi samples were removed after 0.5, 1,2, 5, 10, 20, 40 and 60 minutes and 

then heated to 68°C for 10 minutes to stop the reaction. The aliquots were placed on 

ice until the assay had been completed. 5j.t1 of load dye was added to each sample and 

these were loaded onto 1% agarose gels. After electrophoresis, the gels were washed 

in ethidium bromide solution for 30 minutes, washed in water for 5 minutes and 

visualised under UV light. 
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DNA binding assay 

DNA binding ability and ATP interaction were investigated using gel retardation 

assays. A 45mer containing one EcoKI recognition site (made from complementary 

synthetic oligonucleotides) was used as DNA substrate: 

5' TGTCTAGATATCGGCCTAACCACGTGGTGCGTACGAGCTCAGGCG 3' 

3' ACAGATCTATAGCCGGATTGGTGCACCACGCATGCTCGAGTCCGC 5' 

The EcoKI recognition site is underlined. The 5' end of the bottom strand was 

labelled with y- 32pusing polynucleotide kinase and hybridised to the complementary 

strand. Increasing concentrations of protein (0-20nM) were mixed with 0.1nM of 

45mer in the presence of lOOjiM SAM, 5% glycerol, with or without 2mM ATP, in 

freshly prepared lx binding buffer. This was incubated at room temperature for 10 

minutes before running on 5% PAGE gels. Native load dye was loaded into one lane 

and the gel was run at 35mA until the dye was near to the end of the glass plate. The 

gels were dried at 80°C for 90 minutes under vacuum and then exposed to 

photographic film overnight. To measure the binding affinity of the nucleases for 

DNA the gel was placed in a phosphorimager cassette and the amount of unbound 

DNA was quantified using Imagequant software. 

ATPase assay 

ATPase activity was measured by following the release of radiolabelled inorganic 

phosphate (Pi) from ATP. Two substrates were used in the reaction; either pRH3 or 

the 45mer oligonucleotide duplex used in the DNA binding assay (without the 

radioactive label). 1001.11 reactions contained lOnM nuclease, 5nM pRH3 or lOnM 

45mer, lOOp.M AdoMet, 50Lgmr' BSA and 2mM ATP. The buffer was 33mM Tris-

acetate, 10mM magnesium acetate, 66mM potassium acetate, and 0.5mM 

dithiothreitol, pH 7.9. Everything except ATP was mixed and tubes were left for 5 

minutes at 37°C before starting the reaction with ATP. The ATP solution contained 

0.2pCi y 2P Alp. lOp! samples were removed after 0.5, 1, 2, 5, 10, 15, 20, 40 and 

60 minutes and mixed with 2.5Rl  0.5M EDTA pH 8.0 to stop the reaction. The 

release of inorganic phosphate was followed by spotting lj.tl of each sample onto a 

PEI-cellulose TLC plate, spots were placed on top of dried 10mM ATP/lOmM ADP 
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spots used as an internal marker. The spots were dried, then the plate was 

sandwiched between two glass plates and held in place using bulldog clips. The plate 

was stood in TLC buffer and left until the solution front had stopped moving up the 

plate. The plate was dried using a hairdryer, then exposed in a phosphorimager 

cassette overnight. The spots were scanned using a phosphorimager and analysed 

using Imagequant software to quantify the amount of inorganic phosphate released. 

To measure any contaminating ATPase activity a negative control was performed in 

parallel with each reaction. This was the same reaction mix without AdoMet. 

Samples were removed at the same time as reaction samples and the background 

ATPase activity plotted. The equation of this line was calculated and each point from 

the reaction was corrected by subtracting the amount of background ATPase activity 

in the reaction mix at that time. 
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Results 

Site-directed mutagenesis of hsdR to make changes in DEAD box motifs 

A mutational analysis of the DEAD box motifs of the HsdR polypeptide of 

EcoKI was used to investigate the role of these sequences in the restriction of DNA. 

To introduce mutations for each motif degenerate oligonucleotides were designed, 

which produced three different amino acids at a chosen position. At least one amino 

acid was substituted in each of the seven DEAD box motifs. The amino acid residue 

selected for mutational analysis was one predicted to be relevant, because it was 

commonly conserved, but generally one for which an alternative residue had been 

identified in known DEAD box proteins. The results of previous mutational studies in 

other DEAD box proteins were also considered, particularly for motifs I (GKT), II 

(DEAR) and III (TAT) which have been extensively investigated. The mutations 

made and the resulting amino acid substitutions are shown in table 1. 

In motif I (GKT) the conserved lysine residue was substituted. From 

crystallization studies of the ATPases adenylate kinase and recA, the lysine residue of 

this motif was shown to interact with the 3 and y phosphates of the nucleotide (Fry et 

al., 1986, Story and Steitz, 1992). A change from lysine to asparagine in eIF-4A 

abolished ATP binding (Rozen et al., 1989) and in Rad3 protein of yeast a change of 

lysine to arginine did not affect ATP binding, but abolished ATPase and DNA helicase 

activities (Sung et al., 1988). This result indicates that the positive charge on the 

amino acid is important for ATP binding. In EcoKI the lysine residue was changed to 

an arginine to retain this positive charge and to two less similar amino acids. 

Motif II, the so-called DEAD motif shows variation that is characteristic of 

the two different subgroups of DEAD box proteins (DEXH and DEAD) (Fuller-Pace 

and Lane, 1992). In both the HsdR and Res polypeptides of type I and type III type 

restriction endonucleases respectively, motif II has the sequence DEXH rather than 

DEAD, where X indicates a variable amino acid at this position. 
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Motif Ammo acid sequence Mutation 	Amino acid 
substitutions 

I GTGKT ata K4771 
aga K477R 
aca K477T 

la LFLVDRR cac D502H 
aac D502N 
tac D502Y 

II IVVDEAH gat H577D 
- aat H577N 

tat H577Y 

III LTATP gc A619D 
ggc A619G 
gc A619V 

IV LVFCVT tgc F730C 
tcc F730S 
tac F730T 

V LLTTGVD jgc G799C 
gc G799R 

agc G799S 

VI QMKGRATR cac Q822H 
cac R826H 
ctc R826L 
ccc R826P 

Table 1. The changes made within each DEAD box motif. The mutated nucleotide 

within the relevant codon is shown and the resulting amino acid substitution is given. 

The number defines the position of the amino acid in the HsdR sequence. 
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A change from DEAD to DEAH in eIF-4A caused loss of activity in vivo and 

gave only 10% of wild-type levels of helicase activity in vitro (Schmid and Linder, 

1991; Pause and Sonenberg, 1992). In EcoKI the substitutions made included the 

reverse change of DEAH to DEAD. 

In RecG a substitution of valine for alanine in motif ifi (TAT) abolished the 

ability of RecG to catalyse branch migration of Holliday junctions (Sharples et al., 

1994). In EcoKl motif ffi (TAT) the alanine residue was changed to valine, other 

substitutions also included a change to glycine, the residue present at this position in 

motif ifi of the type IC restriction endonuclease EcoR 1241. 

There have been few mutational analyses of the remaining motifs and therefore 

residues were selected for change entirely on the basis of their conservation in DEAD 

box proteins. In motif la (FLVDR) the conserved aspartic acid residue was 

substituted. Motif IV (FCVT) is not well conserved in type I restriction enzymes and 

therefore phenylalanine, the most conserved residue, was targeted. In motif V 

(LTTGVD) a glycine residue conserved in type I restriction enzymes was changed to 

serine which is present in other DEAD box proteins at this position. In motif VI 

(QMKGRATR) the glutamine residue (Q822) was changed for a histidine residue 

which is conserved in proteins with the DEAD sequence in motif II. When it was 

discovered that the HsdR polypeptide including this change could not be detected in 

vitro, alternative substitutions were made for an arginine residue (R826). When this 

arginine is changed to alanine in vaccinia virus RNA helicase NPH-H, ATPase activity 

is reduced to 10% of wild-type levels (Gross and Shuman, 1996). 

To make mutations in hsdR encoding these changes, two different procedures 

were used. PCR was used to introduce changes in motifs I (GKT), la (FLVDR), II 

(DEAR) and III (TAT). The degenerate oligonucleotide used to make the changes in 

motif I had the sequence: GACCGGTACCGGTABAACCCG, where B indicates a 

C, G or T at this position instead of the wild-type adenine nucleotide. The sequence 

in bold identifies the KpnI restriction site. The second primer was the complement of 

a region 551 bp downstream which included a unique BamHJ site. The plasmid 

pSB2, which contains the whole hsdR gene was used as a template in the reaction. 

Motifs Ia (FLVDR), II (DEAR) and III (TAT) were not sufficiently close to either of 

51 



these restriction sites to be included in the same primer as the restriction target. 

Therefore the mutations in these motifs were made using a technique called 

recombinant PCR (Higuchi, 1990). This method involved two successive rounds of 

PCR (see figure 1). The first round of PCR involved two separate reactions; each 

flanking primer was used in combination with one of the complementary 

oligonucleotides containing the mutation. The two products were pooled and the 

original primers were removed by purification through Qiagen PCR purification 

columns. This DNA mix was used as the template for a second round of PCR that 

used the two flanking primers, one containing the KpnI target and the other the 

BamHI site. The products of amplification were digested with KpnI and BamHI, 

cloned in pUC 18 and the complete nucleotide sequence of the insert was determined. 

The choice of polymerase used in these reactions was critical, when "Red 

Hot" DNA polymerase (Advanced Biotechnologies) was used extra changes were 

incorporated during the reaction at a frequency of about 2 errors per 500 base pairs. 

Therefore Vent®  polymerase (New England BioLabs) was chosen as it possesses 3' to 

5' proof reading exonuclease activity to correct mistakes that may have been 

incorporated into the product during the reaction. 

Once the nucleotide sequence of the fragment was determined to identify the 

presence of the required mutation and the absence of additional changes, the mutation 

was introduced into the context of the whole hsdR gene by replacing the KpnI to 

BamHI wild-type sequence in plasmid pSB2 (figure 2a). 

Changes in motifs la (FLVDR) and II (DEAH) were incorporated using this 

method by Tanya Prokhorova and Gareth King respectively. 

Changes in motifs IV (FCVT), V (LTTGVD) and VI (QMKGRATR) were 

made directly during the amplification of plasmid pSB2 taking advantage of the 

Quikchange site-directed mutagenesis procedure (Stratagene). This method uses 

two oligonucleotides containing the mutation, each complementary to opposite 

strands of pSB2, as primers to amplify the whole plasmid (see figure 2b). Pfu DNA 

polymerase replicates both plasmid strands without displacing the mutant 

oligonucleotides. On incorporation of the primers a mutated plasmid containing 

staggered nicks is generated. 

52 



i) 	_____ 	__/•s.,_ 

Remove primers and 
denature/renature 

5' 	
—5' 

iv) 	 1 	3' extension 

V) 

Figure 1. Recombinant PCR (Higuchi, 1990) used to make mutations in motifs la 

(FLVDR), H (DEAH) and ifi (TAT). i) Lines represent the target DNA sequence, 

with arrows indicating the directionality of each strand (5' to 3'). Two PCR products 

that overlap in sequence are produced, containing the same mutation introduced using 

the PCR primers (ii). The primary products are denatured and allowed to reanneal 

which produces two heteroduplex products (iii). The heteroduplexes with 3' ends are 

extended by DNA polymerase and the full-length product is produced using the 

outside primers (v). This PCR product can be digested with KpnI and BamHI and 

cloned in pUC18. 
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'Hindifi 
-- 	/BamHI 

/ KpnI 
7/ 	

- -EcuRI 
pUC1S '\ 

bla 	2.69kb 
KpnI 	 BamHI 

_1 

GKT to GIT 

pJW2 

\ 3.24kb 	-1  to GIT 

/ KpnI. 
Ma 

big 

pJWS 	AAR 

6.10kb 

GKr to CAT 

EcoRI 	 KpI 

Figure 2a. The steps used to transfer a mutation to the hsdR gene. Plasmids pJW2 

and pJW8 with a mutation encoding the GIT change in motif I are shown. The PCR 

product containing the mutation was inserted into pUC 18 via KpnI and BamHl 

restriction sites to give pJW2. The fragment was excised from pJW2 and transferred 

to the plasmid including hsdR (pSB2) to replace the KpnI-BainHI fragment of 

wild-type sequence, giving pJW8. 
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Figure 2b. The Quikchange site-directed mutagenesis method used to incorporate 

mutations directly in hsdR in the plasmid pSB2. (i) pSB2 was used as a template in 

the mutagenesis reaction. Oligonucleotide primers containing the desired mutation 

were annealed to the denatured template (ii). Pfu DNA polymerase extends and 

incorporates the primers into the hsdR sequence, resulting in nicked circular strands 

(iii). The original template DNA was removed by digestion with DpnI and the new 

products were isolated after transformation of XLI-Blue supercompetent cells. 
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The original template was removed by digestion with DpnI, which is specific for 

methylated or hemi-methylated target sequences. The nicked plasmid products were 

recovered in Epicurian Coli ®  XLI-Blue supercompetent cells. 

The conditions specified in the Stratagene protocol are intended to decrease 

the potential for random mutations occurring during the reaction. Pfu DNA 

polymerase has a high fidelity with an average error rate of 1.3x10 mutation 

frequency/bp/duplication (Cline et al., 1996), so for every twenty plasmids made 

using this method one may have an extra mutation in the hsdR sequence. To confirm 

that the phenotype produced was a result of the desired mutation, two independent 

reactions were used to make two plasmids with the same mutation. The presence of 

the intended mutation was confirmed by sequencing and the restriction phenotypes of 

both plasmids were assessed. It is extremely unlikely that the rK phenotype resulted 

from additional mutations in both clones (plasmids), when each clone is of 

independent origin. It was assumed that the r phenotype obtained was a result of 

the intended substitution. All of the six plasmids with substitutions made in motif IV 

retained an rK phenotype, consistent with the absence of additional mutations. 

One set of mutations in motifs IV, V and the Q to H change in motif VI were 

made by an undergraduate student under my supervision (lain Cheeseman), a second 

set were made by me. 

Figure 3 shows the DNA sequence of motifs I (GKT), III (TAT) and VI 

(QMKGRATR) and the mutations introduced in these motifs. 
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Figure 3i to 3iii. The DNA sequence of motifs I (GKT), III (TAT) and VI 

(QMKGRATR) and the mutations inserted in these motifs. The wild-type DNA 

sequences are shown in the sequencing gels on the left, the other sequencing gels 

show the three mutations inserted. An arrow indicates the nucleotide changed in each 

of the three sequences. The amino acid substitutions are shown with the codon 

change in brackets. The sequencing gels in figure 3i must be read from the top, the 

gels in figure 3ii must be read from the bottom and the gels in figure 3m should be 

read from the top. 
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Effects of mutations on the restriction phenotype of E. ccli K-12 

To assess the effect of changes in the DEAD box motifs restriction phenotypes were 

determined for the E. coli strain AB 1157 and its congenic hsdR derivative NM795 

transformed with pSB2 and its mutant derivatives. AB 1157 was used because it is 

rac and the presence of the Rac prophage has been found to reduce levels of 

restriction (Loenen and Murray, 1986; King and Murray, 1995). 

The restriction phenotype of the transformed cells was determined by assaying 

the efficiency of plating (e.o.p) of ?vir.O. The e.o.p. was calculated relative to the 

titre on the hsdR strain NM795. A low e.o.p. indicates a restriction-proficient 

phenotype (rK). Table 2 shows the results obtained when the strains carry pSB2, the 

plasmid encoding wild-type HsdR. 

Strain 	 Efficiency of plating 
(e.o.p.) 

AB 1157 	 3.18x10 6  
2.82x10 6  
2.67x10 6  

NM795 + pSB2 	 6x10 6  
1.45x10 5  
3.47x10 6  

AB1157+pSB2 	 6x10 7  
1.45x10 6  
1.83x 10-7 

Table 2. The efficiency of plating of ?.vir.O on AB 1157 relative to NM795 and the 

effect on the restriction phenotype when AB 1157 and NM795 are transformed with 

pSB2. 



When NM795 is transformed with pSB2, the hsdR gene is expressed and the 

polypeptide combines with host methylase to generate a restriction-proficient strain 

(rK ). When the rK strain AB1 157 is transformed with pSB2, slightly increased levels 

of restriction are detected in comparison to AB 1157 without the plasmid. The 

relative subunit concentrations normally present in an hsd cell are 

[HsdR]cz[HsdS]=0.5[HsdM] (Weiserova et al., 1993). This ratio of polypeptides 

means that there is more methylase than endonuclease in the cell. The presence of 

pSB2 in AB 1157 increases the copy number of hsdR. The consequent increase in 

HsdR polypeptide leads to an increased concentration of EcoK1 endonuclease. 

Table 3 shows the restriction phenotypes when the mutant derivatives of pSB2 

were used to transform AB 1157 and NM795. When NM795 is transformed with 

pSB2 containing the mutation in hsdR, the effect of the mutation can be assessed by 

assaying the efficiency of plating of Xvir.O relative to that on NM795 transformed 

with wild-type pSB2. The effectiveness of this test is absolutely dependent on the 

cells retaining the plasmid. If the HsdR polypeptide is functional but the cells lose the 

plasmid, the phage will not be restricted but their progeny will be modified and 

protected from any subsequent restriction, giving a false rK result. If a mutation that 

confers a rK phenotype in NM795 is present in AB 1157, the high levels of mutant 

HsdR produced by the plasmid can compete with host HsdR for the methylase and 

give a rK phenotype. This evidence for an rK phenotype in AB 1157 is more reliable 

than evidence obtained with NM795 because it can only be obtained if the plasmid is 

retained. 
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Table 3. Efficiency of plating of ?tvir.O on AB 1157 and NM795, when the cells carry 

mutant derivatives of pSB2. The e.o.p. was calculated relative to NM795. The 

amino acid substitution encoded by the mutation is shown. The number indicates the 

position of the amino acid in the HsdR polypeptide. The three results shown are from 

independent tests with the same plasmid, with the exception of the test with the 

Q822H change which gives results from two plasmids containing the same mutation 

(see text). *These  tests were performed by Diane Ternent and the exact figures were 

not available, approximate figures are shown. 
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Motif 	Amino 	acid e.o.p. on e.o.p on 
substitution NM795 + AB1157 + 

plasmid plasmid 

0.32 1.30 
K4771 0.28 1.16 

0.26 1.05 

GTGKT 0.72 1.28 
K477R 0.97 1.05 

0.64 1.16 

0.88 1.30 
K477T 0.90 1.02 

1.57 0.71 

0.86 0.02 
D502H 	 0.68 0.08 

Ia 	 0.77 0.01 

FLVDR 	 0.26 0.02 
D502N 	 0.29 0.08 

0.20 0.01 

0.34 0.04 
D502Y 	 0.28 0.04 

0.21 0.01 

Il H577D 1 1 

IVVDEAH* 
- H577N 1 1 

H577Y 1 -1x10 6  

0.53 1.89 
A619D 0.43 1.30 

HI 
0.70 0.91 

LTATP 2.0x10 1.7x10 3  
A619G 6.9x104  3.3x10 3  

2.4x104  1.5x10 3  

0.29 0.50 
A619V 0.41 0.78 

0.39 0.36 
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Motif 	Amino 	acid e.o.p. on e.o.p. on 
substitution NM795 + AB1157 + 

plasmid plasmid 

2.1x10 6  8.3x10 7  
F730C 2.5x10 6  1.2x10 6  

IV 
2.1x10 6  1.1x10 6  

LVFCVT 

2.3x10 6  3.4x10 8  
F730T 2.9x10 6  7.4x10 8  

6.9x10 6  5.1x10 8  

2.5x10 7  9.6x10 8  
F730S 5.0x10 7  4.5x10 7  

2.8x10 6  1.0x10 7  

0.62 0.47 

v 	G799C 	 0.74 0.91 
0.61 0.92 

LLTTIiVD 

0.69 0.75 

G799R 	 1.07 1.25 

0.61 0.91 

0.84 0.25 

G799S 	 0.47 0.83 
0.74 0.63 

0.22 3.7x10 

Q822H 0.21 0.24 
0.57 0.23 

VI 

QMKGATR 0.11 0.29 

R826H 0.18 0.25 
0.19 0.06 

0.16 0.15 

R826L 0.27 0.16 
0.13 0.12 

0.11 0.13 

R826P 0.11 0.17 

0.06 0.03 
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The results in table 3 show that most of the mutations in the DEAD box 

motifs block restriction activity but leave a mutant HsdR polypeptide that can 

compete with the resident HsdR for host methylase to give a rK phenotype in 

AB1 157. An exception was the H577Y mutation in motif H (DEAH) which gave a 

rK phenotype in NM795, but did not prevent restriction in AB1 157. The substitution 

of a bulky tyrosine residue may have disrupted correct folding of the HsdR subunit 

and consequently prevented effective competition with host HsdR for host methylase. 

The Q822H substitution in motif VI (QMKGRATR) was made using the 

Quikchange mutagenesis procedure, therefore two plasmids were made from 

independent reactions with the same primers. The first plasmid tested gave a ri 

phenotype in NM795 but did not block restriction in AB 1157 (first result in both 

columns for Q822H in table 3). In contrast, tests with the second plasmid gave a rK 

phenotype in AB1 157. This result suggests the rK phenotype of AB1 157 

transformed with the first plasmid made may have been a consequence of the cells 

losing the plasmid, or the plasmid may have had an extra mutation which disrupted 

folding and prevented competition with AB 1157 HsdR for host methylase. 

Detectable levels of protein were not observed when the first plasmid made was tested 

for HsdR production. Production of HsdR polypeptide from the second plasmid 

made was not tested due to time limitations. A second amino acid residue, arginine 

826, was changed in motif VI (QMKGRATR). 

Plasmids with changes in motifs Ia (FLVDR), IV (FCVT), V (LTTGVD) and 

VI (QMKGRATR) were tested for their ability to produce detectable levels of HsdR 

before selecting a mutation to transfer to the AB 1157 chromosome. It was fortunate 

that the original mutations in motifs I (GKT), II (DEAH) and Ill (TAT) that were 

transferred to the chromosome earlier, all produced detectable levels of HsdR 

polypeptide from the mutant derivatives of pSB2. 
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Detection of HsdR polypeptide containing changes in the DEAD box motifs 

The plasmid pSB2 only encodes HsdR, therefore in order to investigate the effect of 

the changes on EcoKI in vitro the mutation had to be transferred to a plasmid 

encoding all three hsd genes (phsd). A DNA fragment (KpnI to BamHI) was excised 

from hsdR in pSB2 and transferred to the hsdR sequence in phst in place of the wild-

type fragment. The effects of the amino acid substitutions on the production of 

nuclease from phsd was tested using antibody to the HsdR and HsdM subunits. 

Some mutations resulted in a loss of detectable levels of HsdR, figure 4 shows a 

Western blot that illustrates the effect of different amino acid changes on production 

of HsdR polypeptide detected by antibody to EcoKI. Occasionally a subunit smaller 

than HsdR, but larger than HsdM, was visible on a Western blot, for example lanes 7 

and 8 in figure 4. This may indicate that the substitution has disrupted correct folding 

of HsdR and the protein has been partially degraded by proteases in the cell. The 

HsdR band in the lane where purified nuclease was loaded (lane 9) has 'burnt out', 

leaving a space in the middle of the band. This is a consequence of the detection 

method used and occurs when high concentrations of protein are detected. 

If the mutant HsdR showed competition with host HsdR in the AB 1157 

restriction phenotype tests (table 3), this provided some evidence that the subunit was 

folding sufficiently well that it would interact with HsdM and HsdS polypeptides. 

However this result was not necessarily an indication that HsdR would be produced at 

levels detectable with antibody. Table 4 summarises the effects of the different amino 

acid substitutions on the detection of HsdR and indicates which mutations were 

selected for analysis in vitro. Expression of the hsd genes depended on the hsd 

promoters and the increase in copy number provided by the plasmid vector produced 

detectable amounts of protein. 



Figure 4. The effect of changes in the DEAD box motifs in HsdR on the production 

of EcoKl. Protein samples were run on SDS-PAGE, transferred to PVDF membrane 

and detected with antibody to the HsdR and HsdM subunits using the POD detection 

system (Boehringer Mannheim). The arrows indicate the position of HsdR and HsdM 

on the gel. Lane 1 shows the background from cells without plasmid and lane 2 

shows protein detected when these cells are transformed with phsd. Full length 

HsdR was detected for polypeptides with the changes H577D (motif II), A619G 

(motif ifi) and A619V (motif III). No polypeptides were detected for the change 

D502H (motif Ta) and fragments of HsdR were seen for the G799S (motif V) and 

Q822H (motif VI) substitutions. 
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Lanes: 1)NM679, 2) Wild-type, 3) D502H, 4) U577D, 5) A619(i. 6) AÔI9V, 

7) (i799S. 8) Q822H. 91 Purified LcoKl. 



Motif 	Amino acid 	Detection of HsdR 	Protein purified 
substitution 

I 	 K4771 	 nt 
K477R 	 + 	 K477R 
K477T 	 nt 

la 	 D502H 	 - 
D502N 	 - 	 D502Y 
D502Y 	 + 

II 	 H577D 	 + 
H577N 	 nt 	 H577D 
H577Y 	 nt 

ifi A619D nt 
A619G + A619G and 
A619V + A619V 

IV F730C nt 
F730S + F730S 
F730T nt 

V G799C + 
G799R - G799C 
G799S f 

VI Q822H f 
R826H + R826H 
R826L nt 
R826P nt 

Table 4. The effects of changes in the DEAD box motifs on the detection of HsdR by 

Western blots. The proteins selected for purification are shown. + indicates full 

length HsdR was detected, - indicates no HsdR detected and f indicates a fragment of 

HsdR was produced. nt indicates not tested. 
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I GTGKT (K477R) 

la. LFLVDRR (D502Y) 

II IVVDEAH (H577D) 

ifi LTATP (A619G) 

IV LVFCVT (F730S) 

V LLTTGVDI (G799C) 

VI QMKGRATR (R826H) 

(A619V) 

1.01 ± 0.22 

0.92 ± 0.05 

_l* 

2.09x10 5  ± 2.22x10 5  

0.97 ± 0.22 

1.37x10 5  ±5.9 1XIO-6  

1.25 ± 0.21 

1.04 ± 0.47 

To quantify levels of restriction in vivo, one mutation in each motif (two in 

motif ifi) was transferred to the AB 1157 chromosome, as described in the methods 

section. Once on the chromosome the mutation is stably maintained and in single 

copy, under the control of its normal promoter. These results can then be compared 

with a wild-type E. coli strain. These restriction phenotype results are shown in table 

5. 

The restriction phenotype of the TGT mutant in motif ifi was studied further 

by testing the restriction of unmodified phage containing one or two recognition sites 

for EcoKJ, rather than the five found in wild-type lambda. Reducing the number if 

targets increased the sensitivity of the assay. These results are shown in table 6. 

Motif and amino acid substitution 	Efficiency of plating 

Table 5. The efficiency of plating of A,vir.0 on mutant derivatives of AB 1157, relative 

to an rK derivative of AB1 157. The amino acid changed in each motif is in bold and 

the amino acid substitution is indicated in brackets. The mean e.o.p. was calculated 

from at least four results and the standard deviation is shown. *The  H577D mutant 

was tested by Diane Ternent and the exact e.o.p. is not shown. 



Phage 	Efficiency of plating 	Restriction 

(targets for 	Wild-type 	Mutant 	Wild-type 	Mutant 

EcoKI) 	 (TGT) 

?NM105 
	

2.7x10 
	

1.1 xl 02 
	

3227 ±1007 
	

121 ±51 

(skXl + skA2) 
	

2.9x10 
	

9.6x10 3  

	

5.7x104 
	

1.1 10-2  

	

2.5x 1 .4 	5.1 xl 

?NM 175 

(skXl) 

?NM176 

(sk2) 

1 .6x10 2  

1.6x10 2  

7.7x10 2  

3.8x10 2  

4.3x10 2  

2.3x 10-2 

2.8x10 2  

2.9x10 2  

5.0x10 2  

8.6x 10.2 

1.2x10 

1.4x10' 

1.1X10-1  

1.9x104  

1x10 

8x 101 

3. 1x10' 

1.8x10' 

38 ± 23 

33 ± 10 

8.3 ± 2.4 

3.5 ± 1.5 

Table 6. The efficiency of plating of phage with one or two recognition sites for 

EcoKI and the corresponding restriction phenotype of the mutant TGT (A619G) and 

AB1 157. Published in Webb et al., 1996. In all experiments a hybrid phage with no 

targets for EcoKI gave an e.o.p. of -1. The value for restriction was estimated from 

the inverse of each e.o.p, the means and standard deviations are shown. 



The results in table 5 confirm the plasmid phenotype results and show that the 

DEAD box motifs have an important role in restriction by EcoKI. Changes in all 

motifs affected restriction except changes in motif IV (FCVT), which gave wild-type 

levels of restriction. The H577D substitution, a conservative change of DEAH to 

DEAD in motif II, abolished restriction. The A619G substitution in motif ifi creates 

the amino acid sequence TGT, which is the sequence present in motif ifi in 

EcoR124I. When infected with ?vir.O phage, which contains five recognition sites for 

EcoKI, levels of restriction in the A619G mutant appeared much the same as wild-

type levels. The sensitivity of the restriction phenotype assay was increased by 

infecting the cells with phage containing one or two EcoKI recognition sites, results 

are shown in table 6. A noticeable decrease in restriction levels was detected with the 

A6 19G mutant compared to wild-type. This was the only mutation that merely 

impaired restriction, all other changes that had an effect totally abolished restriction. 

To gain more insight into how these mutations were affecting restriction, the 

effects of these changes on different biochemical activities were assessed. The 

activities tested were those associated with DEAD box motifs such as DNA binding, 

ATP binding and ATPase activity. Eight proteins with changes representing each of 

the seven DEAD box motifs, including two proteins with changes in motif Ill, were 

purified for in vitro analysis. In every case mutations that were transferred to the E. 

coli chromosome encoded the change selected for purification. 
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Purification of EcoKI with changes in the DEAD box motifs 

EcoKL was harvested from NM679 cells transformed with the derivatives of phsd 

and purified through a series of chromatography columns, as described in detail in the 

methods section. 

Figures 5a-c show the steps involved in purification of EcoKJ, with the results 

obtained when purifying EcoKI with a D502Y change in motif la (FLVDR). Figure 

5a shows the protein elution profile from the first column, a DEAE column. The 

protein mixture was loaded onto this column, the column was washed and bound 

proteins were eluted using a salt gradient. The elution profile identifies the fractions 

that contain protein. Samples (of fractions) were loaded on a 9% SDS-PAGE gel to 

identify fractions containing EcoKI. The gel is shown in the lower panel of figure 5a. 

A large amount of protein binds to the DEAE column and fractions containing EcoKiI 

also contain many other proteins. Fractions containing nuclease (32-40) were pooled, 

the protein solution dialysed and then loaded onto a heparin column (see fig 5b). This 

column effectively separates many of the contaminating proteins from EcoKI, with 

just a protein smaller in size than HsdS detected in some fractions that contain EcoKI. 

Fractions containing EcoK[ (41-47) were pooled, the protein solution was dialysed 

and then loaded onto a smaller heparin column to concentrate the sample. Once 

concentrated, up to 3mls of the protein solution was loaded onto a Superdex gel 

filtration column. Figure 5c shows the protein elution profile from this column. The 

column efficiently removed the small contaminating protein to give apparently pure 

EcoKI. Fractions containing nuclease were pooled and concentrated using 

microconcentrators (Microsep) until micromolar concentrations of protein were 

obtained. 

Each of the nucleases behaved in the same way as wild-type EcoKI, eluting 

from the columns at similar times. The yields of the purified proteins are compared in 

table 7. 
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Figure 5a. Purification of EcoKI with a D502Y substitution in motif Ia (FLVDR). 

The upper panel shows the protein elution profile from the DEAE column. The lower 

panel is a 9% SDS-PAGE gel with fractions from this column, the gel was stained 

with Coomassie Blue to identify which fractions contain nuclease. 
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Figure 5b. The purification of EcoKI with the amino acid substitution D502Y in 

motif la (FLVDR). The upper panel shows the elution profile of protein from the 

heparin column. The lower panel is a 9% SDS-PAGE gel with some fractions from 

this column, stained with Coomassie Blue to show the polypeptides in each fraction. 
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Figure 5c. The purification of EcoKJ with a D502Y substitution in DEAD box motif 

la (FLVDR) in HsdR. The upper panel shows the elution profile of protein from the 

Superdex gel filtration column. The lower panel is a 9% SDS-PAGE gel loaded with 

some of these fractions and stained with Coomassie Blue to identify fractions that 

contain EcoKJ. 
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Motif Amino acid substitution Amount of protein 

purified 

I GKT K477R 0.59mg 

la FLVDR D502Y 2.09mg 

II DEAH H577D 5.36mg 

III TAT A6190 1.80mg 

A619V 2.76mg 

IV FCVT F730S 3.44mg 

V LTTGVD G799C 0.48mg 

VI QMKGRATR R826H 3.37mg 

Table 7. Yields of purified EcoKI with changes in the DEAD box motifs of HsdR. 

All proteins were harvested from 5 litres of cells transformed with derivatives of phsd 

containing the mutation specifying the intended change. 

These figures contradict the relative amounts of protein detected in the 

Western blot in figure 4, page 66, where higher levels of HsdR polypeptide with the 

A619G change compared to HsdR with the A619V change were detected. In 

contrast table 7 shows a greater yield of the A619V mutant was achieved after 

purification. The Westerns were used to determine whether or not the mutations 

would allow production of detectable amounts of protein and not to compare relative 

levels of protein production. Protein samples were often difficult to load onto the 

SDS-PAGE gels and consequently the Western blots could not be used to compare 

levels of protein production. This difference in sample loading can be seen by 

comparing the intensity of the background smear that is detected in the Western blot 

in figure 4. This background in the lane with the A619G mutant (lane 5) is more 

intense than the background in the lane loaded with the A619V mutant (lane 6), 

indicating that more of the A619G protein sample was loaded onto the gel. 
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Nuclease activities of purified proteins 

The purified proteins were tested for nuclease activity. The substrate for this assay 

was the plasmid pRH3, which has two recognition sites for EcoKI. This DNA is 

efficiently cleaved within 20 minutes at 37°C when one molecule of EcoKI per 

recognition site is used (Dryden et al., 1997). In this study, the assays were done to 

check whether the in vitro activity of the enzyme correlated with the in vivo 

restriction phenotypes and not to compare rates of nuclease activity. 

The reaction was started with the addition of ATP and samples were removed 

at different time points from 0.5 to 60 minutes. The samples were heated at 68°C for 

10 minutes to stop the reaction and the products analysed on an agarose gel. 

Experiments were done in parallel with negative and positive controls. The negative 

control was a sample taken after 60 minutes from an identical reaction without 

AdoMet. The positive control, used when assaying rK mutants, was an aliquot from a 

reaction with wild-type EcoKiE that was stopped after 60 minutes. 

Figures 6a to 6i show the effects of the mutations on nuclease activity. The 

results were consistent with the corresponding in vivo restriction phenotypes of the 

mutants shown in table 5. Figure 6a shows the nuclease activity of wild-type EcoKI, 

which first linearizes the plasmid and then further degrades the DNA to produce a 

smear of DNA fragments of different sizes. Figure 6b shows that the protein with a 

K477R substitution in motif I (GKT) does not possess a nuclease activity. The two 

bands on the agarose gel represent supercoiled and open-circle (nicked) plasmid 

DNA. A faint band representing linear DNA can be seen, an indication that the 

plasmid stock used in the assay included some degraded DNA. A similar result is 

seen with EcoKI with changes in motifs Ta (FLVDR) (fig 6c), motif V (LLTGVD) 

(fig 6h), motif VI (QMKGRATR) (fig 6i) and the A619V change in motif Ill (TAT) 

(fig 6f). The protein with a change in motif II (DEAH) (fig 6d) also does not have 

any nuclease activity, most of the DNA runs as supercoiled plasmid consistent with 

the use of a fresh preparation of plasmid DNA in the assay. Unusually, a distinct band 

can be seen in the positive control lane. However for the purpose of this assay the 

positive control still shows DNA restriction has occurred and allows a distinction to 
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be made between a positive and negative result. EcoKl with the A619G change in 

motif ifi (TAT) (fig 6e) and the F730S (fig 6g) substitution in motif IV both showed 

nuclease activity similar to wild-type. 



Figures 6a to 6i. The effect of the mutations on nuclease activity. Reactions were 

performed in lOOpl volumes containing lOnM EcoKI, 5nM pRH3, 0.1mM 

S-adenosyl-methionine, lx buffer A (Boehringer Mannheim) and 50pgm1' BSA. The 

reaction was started with the addition of ATP to 2mM. lOp! samples were removed 

after 0.5, 1, 2, 5, 10, 20, 40 and 60 minutes and then heated to 68°C for 10 minutes to 

stop the reaction. Three DNA bands can be seen: open circle (nicked) DNA, 

linearized plasmid and supercoiled plasmid in order of increasing migration. The 

numbers indicate the time of reaction in minutes. M is the marker, u is uncut pRH3, - 

ye is a sample taken from the negative control after 60 minutes reaction time and +ve 

is a sample from a positive control after 60 minutes of reaction. 
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DNA binding and ATP interaction of the purified proteins 

To assess the effect of each amino acid substitution on DNA binding, the gel 

retardation of a 45bp duplex that included one unmodified EcoKI recognition site was 

measured following incubation with increasing concentrations of the relevant protein. 

DNA (0. iniM) labelled with 7- 32P ATP was mixed with protein (0 to 20nM), 

incubated for 10 minutes and the products were separated on a 5% non-denaturing 

polyacrylamide gel. 

Results are shown in figures 7a to 7r. Figures 7a and 7b show that as 

wild-type EcoKI protein concentration is increased more of the labelled DNA is 

complexed to protein. Some of the gels show what appears to be labelled 

single-stranded DNA running below the free DNA, this is most apparent in figures 7m 

and 7n. This is probably a result of mixing the labelled 45mer with insufficient 

amounts of unlabelled complementary 45mer during hybridization. The presence of 

single-stranded DNA does not affect the gel retardation results and a decrease of this 

single-stranded DNA is not seen over the protein concentration range examined. 

Figure 7b shows gel retardation of the 45bp duplex by wild-type EcoKI in the 

presence of ATP. Three different protein-DNA bands are seen; tests using Western 

blots suggest that these complexes contain the different subunit assemblies of M 2S 1 , 

R1 M2S 1  and R2M2S 1  in order of decreasing mobility and indeed a complex of purified 

methylase with DNA migrates at the same position as the band with the highest 

mobility (Lynn Powell, pers comm). Without ATP the major protein-DNA complex 

contains R2M2S 1 , with the addition of ATP the major species is R 1 M2S 1 -DNA. The 

gel retardation assays using EcoKI with amino acid substitutions in HsdR are shown 

in figures 7c to 7r. All mutant proteins showed an increased tendency to yield the 

methylase-DNA complex, irrespective of the presence or absence of ATP when 

compared to wild-type EcoKI. As with the wild-type, the addition of ATP increased 

the dissociation of HsdR subunits from the nuclease-DNA complex for most of the 

mutant proteins. An ATP-dependent influence on the protein-DNA products detected 

in the gel is taken as evidence for the interaction of ATP with the EcoKI enzyme. 

However, for EcoKI with a H577D change in motif II (DEAR) (figs 7g and 7h) and a 
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R826H substitution in motif VI (QMKGRATR) (figs 7q and 7r) the retarded DNA 

ran as DNA-M 2S 1  even in the absence of ATP and consequently no ATP effect was 

observed for these two proteins. The assays should be performed with higher 

concentrations of these proteins (30, 40 and 60nM) to try to achieve R 2M2S 1  or 

R 1 M2S 1 -DNA complexes. 

Direct assays could be used to assess ATP binding. One assay tried followed 

the elution time of [y_32  P]ATP through a G-25 Sephadex gel filtration column and 

observed the effect on elution of ATP when EcoKI was added before loading onto the 

column. When wild-type EcoKl was added, ATP eluted earlier as a result of the 

protein binding ATP and preventing ATP molecules from becoming trapped in the 

pores of the gel matrix. The other proteins tested were EcoKI with A619G and 

A619V substitutions in motif ifi (TAT). A619G showed some ATP binding but 

A6 19V did not show any binding. This assay required high amounts of nuclease and 

once some gel retardation assays had been done, it was evident that both of these 

proteins interacted with ATP. The ATP-EcoKI complex for the A619V substitution 

was apparently not sufficiently stable to allow coelution of ATP and nuclease. An 

alternative way of measuring ATP-binding would be to study UV cross-linking of [(x-

32p] labelled ATP to the proteins. 

To check that retardation of the 45bp duplex was the result of a specific 

protein-DNA interaction, competition experiments were performed using a similar 

45bp duplex without the EcoKI recognition site. 100-fold excess cold non-specific 

DNA or cold specific DNA was mixed with the protein in addition to the labelled 

specific 45bp duplex. This result is shown in figure 8. When excess cold specific 

DNA was added it competed with the radiolabelled DNA for protein, so no complex 

was detected by autoradiography. When excess cold non-specific DNA was added, it 

did not compete with the radiolabelled DNA for protein binding and a retarded 

protein-DNA complex was detected. When excess non-specific DNA was added, the 

species observed were as seen at this protein concentration in the absence of 

competitor (fig 7b, d, f, h, j, 1, n, p, r, 8nM protein track), except for TVT. For this 

mutant no R2M2S 1  or R 1 M2S 1  complexes were observed in the presence of competitor 

in contrast to fig 71 track 8. 8nM protein was used in this assay as some free DNA 
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can still be seen on the gels at this concentration (figures 7a to 7r). This assay proved 

that the bound complexes observed represent a specific interaction of the protein with 

the EcoKJ recognition site. 

Dissociation constant (Kd) values were estimated by calculating the 

concentration of protein needed to bind half of the DNA under conditions where the 

protein was in excess over the DNA (Fried, 1989). These values were determined by 

plotting log protein concentration against % DNA bound from assays in the presence 

of ATP and AdoMet (see fig 7 for examples). The proportion of bound DNA was 

calculated after quantifying the amount of free DNA (using the phosphorimager) for 

each protein concentration, because this is more accurate than measuring the amount 

of protein bound DNA (Revzin, 1989). Free DNA does not change once it enters the 

gel but complexed DNA can dissociate producing a smear which is difficult to 

quantify. The Kd estimates for the wild-type and mutant proteins are shown in table 8. 

The accuracy of the Kd estimates is limited by the dissociation of the protein, as the 

amount of protein in the R 2M2S 1  form changes at different protein concentrations. 

Figures 7a and 7b show that the addition of ATP reduces the binding affinity 

of wild-type EcoKlI for DNA. In contrast the K477R and H577D mutants in figures 

7c and 7d, 7g and 7h respectively, show that the addition of ATP has the opposite 

effect and increases the binding affinity of the protein for DNA. The other mutant 

proteins do not show significant differences but most show a slight increase in DNA 

binding affinity in the presence of ATP. It would be informative to measure binding 

affinities of the proteins without ATP and compare then to the figures calculated in 

the presence of ATP shown in table 8, p108. The addition of ATP changes the 

conformation of EcoKll to give a different footprint (Lynn Powell, pers comm) in 

wild-type EcoKI this conformational change decreases DNA binding affinity. It is 

possible that the amino acid substitutions in the mutant proteins have affected this 

change in conformation in such a way as to stimulate DNA binding. 



Figures 7a and 7b. Gel retardation by wild-type EcoKI endonuclease. A 45bp duplex 

including one recognition site for EcoKl was used as a substrate. Protein (at 

concentrations ranging from 0 to 20nM) was mixed with DNA (0. mM) in the 

presence of AdoMet (100pM), glycerol (5%), ATP (0 or 2mM), in binding buffer. 

Samples were incubated at room temperature for 10 minutes before running on 5% 

PAGE gels. The reactions in a) were done in the absence of ATP, those in b) in the 

presence of ATP. Numbers indicate concentration of protein in nM. 
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Figures 7c and 7d. Gel retardation by EcoKI with a K477R substitution in motif I 

(GKT) (rK). Conditions for 7c and 7d were as described for 7a and 7b respectively. 

Numbers indicate concentration of protein in nM. 
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Figures 7e and 7f. Gel retardation by EcoKI with a D502Y substitution in motif Ia 

(FLVDR) (rK). Conditions for 7e and 7f were as described for 7a and 7b 

respectively. Numbers indicate concentration of protein in nM. 
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Figures 7g and 7h. Gel retardation by EcoK]I with a H577D substitution in motif II 

(DEAH) (rK). Conditions for 7g and 7h were as described for 7a and 7b respectively 

Numbers indicate concentration of protein in nM. 
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Figures 7i and 7j. Gel retardation by EcoKI with a A619G substitution in motif III 

(TAT) (rK ' ). Conditions for 7i and 7j were as described for 7a and 7b respectively. 

Numbers indicate concentration of protein in nM. 
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Figures 7k and 71. Gel retardation by EcoKI with a A619V substitution in motif ifi 

(TAT) (rK). Conditions for 7k and 71 were as described for 7a and 7b respectively. 

Numbers indicate concentration of protein in nM. 
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Figures 7m and 7n. Gel retardation by EcoKI with a F730S substitution in motif IV 

(FCVT) (rK). Conditions for 7m and 7n were as described for 7a and 7b 

respectively. Numbers indicate concentration of protein in nM. 
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Figures 7o and 7p. Gel retardation by EcoKI with a G799C substitution in motif V 

(LTTGVD) (rK). Conditions for 7o and 7p were as described for 7a and 7b 

respectively. Numbers indicate concentration of protein in nM. 
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Figures 7q and 7r. Gel retardation by EcoKI with a R826H substitution in motif VI 

(QMKGRATR) (rK). Conditions for 7q and 7r were as described for 7a and 7b 

respectively. Numbers indicate concentration of protein in nM. 
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Figure 8. Gel retardation of a radiolabeiled specific 45bp duplex (0. mM) by 8nM 

EcoKT with lOOx excess of cold specific or cold non-specific 45bp duplex DNA 

included in the reaction in the presence of AdoMet (1009M) and ATP (2mM). Lanes 

I and 2 are wild-type EcoKI. Lanes 3 and 4: EcoKJ with a K477R substitution in 
motif I (GKT). Lanes 5 and 6: EcoKJ with a D502Y substitution in motif la 

(FLVDR). Lanes 7 and 8: EcoKJ with a H577D substitution in motif II (DEAH). 

Lanes 9 and 10 are EcoKI with a A619G change in motif Ill (TAT). Lanes 11 and 12 

are EcoKI with a A619V change in motif III (TAT). Lanes 13 and 14 are EcoKI with 

a F730S change in motif IV (FCVT). Lanes 15 and 16 are EcoKI with a G799C 

change in motif V (LTTGVD). Lanes 17 and 18 are EcoKI with a R826H change in 

motif VI (QMKGRATR). The first lane of each protein has excess specific 45bp 

duplex, the second lane excess non-specific 45bp duplex in the reaction. 
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Motif 	 Amino acid 	Kd (aM) 

substitution 

Wild-type 	 2.22 ± 1.13 

I 	 K477R 	 3.92 

Ia 	 D502Y 	 3.48 

II 	 H577D 	 6.03± 1.81 

III A619G 2.30± 1.22 

A619V 2.12±0.37 

IV F730S 2.94 

V G799C 2.87 

VI R826H 2.61 

Table 8. The effects of the amino acid substitutions on the binding affinity of EcoKI 

for DNA. The values were determined by gel retardation for binding of a 45bp 

duplex containing one unmodified EcoKlI recognition site, in the presence of ATP and 

AdoMet. For results performed in duplicate or triplicate, mean values and standard 

deviations are given. 



Other than the H577D substitution in motif II (DEAH) the amino acid changes 

do not affect the binding affinity of EcoKI endonuclease for DNA. Calculated binding 

affinities were in the range 2-3nM, the same Kd for DNA as EcoKI methylase (Powell 

et al., 1993). The H577D protein has a Kd of about 6nM. At this concentration, 

indeed up to 20nM, the protein-DNA complex observed with H577D is the M 2S 1 -

DNA complex (see fig 7h). EcoIU with the R826H substitution in motif VI 

(QMKGRATR) also readily loses HsdR subunits (see fig 7r). The difference in Kd is 

clear when comparing the gel retardation results from these two proteins. The 

H577D protein requires concentrations of 4 or 5nM before a retarded DNA band is 

apparent, whereas the R826H mutant gives a visible band at mM. The Kd for the 

F730S mutant was 2.94nM, this is not consistent with the gels in figures 7m and 7n 

which indicate that the mutant does not readily bind DNA. This gel photo was 

included to show the apparent single-stranded DNA and a different gel without this 

extra DNA band were used to calculate the Kd for this mutant. 

The gel retardation results for wild-type EcoKI show that at lOnM protein 

concentration most of the bound DNA is in the R 1 M2S 1  form, which is not active 

nuclease. lOnM is the concentration of EcoKI used in the nuclease assay and this 

suggests that either the complexes observed on the gel are not representative of those 

in solution or the small amount of R 2M2S 1  present at lOnM wild-type EcoKI is 

responsible for activity. To test if the apparent dissociation of HsdR subunits from 

the methylase was affecting results in other in vitro assays, the nuclease assay 

described earlier was repeated using EcoKI containing the A619V substitution in 

motif III (TAT) at higher concentrations of protein (40nM as opposed to lOnM). At 

40nM, in the presence of ATP, the DNA-protein complex runs as the active nuclease 

form (R2M2S 1 ). A619V, which showed no nuclease activity at lOnM, gave the same 

result in the nuclease assay at 40nM, indicating that the increased dissociation of the 

mutant proteins observed in the binding assays is not responsible for the negative 

results obtained in the nuclease assays. It is likely that the relative proportions of the 

complexes in solution are different from those in the gel due to dilution upon loading. 

In summary, the gel retardation results show that the substitutions in the 

DEAD box motifs do not generally prevent ATP interaction, as the addition of ATP 
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to the binding reactions for most of the mutant proteins affected the pattern of 

protein-DNA complexes. These results do not show if the changes alter affinities for 

ATP as excess ATP was used. Only the H577D substitution in motif II (DEAH) 

affected DNA binding, causing a reduction in affinity. The binding observed was 

tested for specificity and shown to indicate specific interaction of the proteins with the 

EcoKlI recognition sequence. 

Effect of changes in DEAD box motifs on ATPase activity 

Restriction of DNA is accompanied and followed by extensive ATP hydrolysis (Eskin 

and Linn, 1972; Rosamund et al., 1979; Dreier and Bickle, 1996). This activity is 

necessary for DNA cleavage (Eskin and Linn, 1972). Previous studies on DEAD box 

proteins have shown some of the conserved motifs to be essential to ATPase activity 

(Pause and Sonenberg, 1992; Sharples et al., 1994; Gross and Shuman, 1996). Motif 

I and motif II have been previously described as the Walker ATPase A and B motifs 

respectively and are also conserved in ATPases (Walker et al., 1982; Hodgman, 

1988a+b). 

pRH3, the plasmid with two EcoKll recognition sites that was used in the 

nuclease assay, was used as a substrate in ATPase assays. In addition, any proteins 

that showed some activity using pRH3 as a substrate were tested for their activity on 

the 45bp duplex containing one EcoKlI site, used previously in the DNA binding 

assay. Both substrates were used in an attempt to identify whether separable ATPase 

activities exist; activities preceding, during and after cleavage. In contrast to the 

plasmid, the 45bp duplex is not degraded by EcoKI (Lynn Powell, pers comm) and if 

separate activities existed this substrate would only support ATP hydrolysis prior to 

the cleavage step. To allow comparison of the results, pRH3 was used at half the 

molar concentration of the 45bp duplex so the same amount of EcoKI was used in 

each assay, with one molecule of EcoK1 added for every recognition site. 
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ATPase activity was measured by following the release of radiolabelled 

inorganic phosphate from ATP. Aliquots were removed from the reaction and mixed 

with EDTA to stop ATPase activity. The products of the reaction were applied to 

PEI-cellulose TLC plates and ATP was separated from inorganic phosphate by 

chromatography. The amount of inorganic phosphate released was measured on a 

phosphorimager. The results are plotted in figures 9a to 9i and they show that the 

DEAD box motifs in HsdR are important for the ATPase activity involved in 

restriction of DNA by EcoKI. Results were corrected for any background ATPase 

activity as described in the Methods section, page 48. Levels of background activity 

were low, usually up to 2% ATP hydrolysis after 60 minutes. Any ATPase activity 

remaining after correcting for background levels indicates that the mutant can 

hydrolyase a certain amount of ATP (see figures 9b, 9d and 90.  Results where no 

ATPase activity is plotted represent mutant proteins that produced similar levels of 

ATP hydrolysis as the negative control without AdoMet (see figures 9h and 9i). 

The ATPase activity of wild-type EcoKI is shown in figure 9a. The plasmid 

and the 45bp duplex support similar levels of ATP hydrolysis with slightly more 

activity detected with the plasmid, although this difference does not appear significant 

as the error bars overlap. 

Figures 9b to 9i show that most of the amino acid changes that conferred an 

rK phenotype abolished or severely impaired ATPase activity, this is consistent with 

ATPase activity being essential for restriction. EcoKI with a change in motif Ia 

(FLVDR) is rK but shows a reduced, but significant level of ATPase activity in the 

assay with pRH3 as a substrate (fig 9c). Little, if any ATPase activity was detected 

with the 45bp duplex as a DNA substrate. EcoKJ with the substitution in motif IV 

(FCVT) showed levels of ATPase activity similar to wild-type EcoKlI, which is 

consistent with previous results that suggest the phenotype of this mutant is as wild-

type. The protein with a A619G substitution in motif III (TAT) shows similar levels 

of ATPase activity with the plasmid substrate, but a slightly decreased rate of reaction 

with the 45bp duplex. This decrease may be related to the slightly impaired levels of 

restriction detected in vivo, for this protein. 
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Figures 9a to 9i. The effect of changes in the DEAD box motifs on the ATPase 

activity of EcoKI. lOOj.il  reactions contained lOnM nuclease, 5nM pRH3 or lOnM 

45bp duplex, 100pM AdoMet, 50pgmr' BSA, lx buffer A (Boehringer Mannheim) 

and 2mM ATP. The ATP solution contained 0.2pCi 'y32P ATP. lOpi samples were 

removed after 0.5, 1, 2, 5, 10, 15, 20, 40 and 60 minutes and mixed with 2.5pi 0.5M 

EDTA pH 8.0 to stop the reaction. Mean figures are shown calculated from at least 

three results, with standard deviations illustrated using error bars. 
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EcoK1 with a F730S substitution in motif IV (FCVT) (rK 4). 

2000 

1600 
0) 

0 

5 

1 1200  
.o 800 
.0 
0 
1- 
< 400 

0 	 I 	
I 

0 	 20 	40 	 60 

Time (mm) 

o pRH3 

• 45bp duplex 

EcoK1 with a G799C substitution in motif V (LTFGVD) (rK ). 

2000 

1600 
0) 

0 
S 

1200 

800 

0 pRH3 

400 

0 	 20 	 40 	60 

Time (mm) 

EcoKI with a R826H substitution in motif VT (QMKGRATR) (rK ). 

2000 

1600 
0 
S 

1200 

}800 

0 pRH3 

400 

0 	 20 	 40 
	

60 

Time (mm) 

115 



General discussion 

To investigate the role of DEAD box motifs in restriction of DNA by EcoKI, amino 

acid residues in these motifs were targeted for mutational analysis. Many proteins 

with these motifs are known to be helicases (Schmid and Linder, 1992). In EcoKI the 

DEAD box motifs may have a role in the DNA translocation that is proposed to occur 

during restriction (Murray et al., 1993). Motifs I and II are also conserved in 

ATPases and are known as the Walker ATPase A and B motifs (Hodgman, 1988a+b; 

Walker et al., 1993). Restriction by type I enzymes is accompanied by extensive ATP 

hydrolysis (Eskin and Linn, 1972; Rosamund et al., 1979; Dreier and Bickle, 1996), 

that is proposed to drive DNA translocation (Yuan et al., 1980). 

To study the role of the DEAD box motifs in EcoKT, an amino acid residue in 

each of the seven motifs (I, la, II to VI) was changed by site-directed mutagenesis. 

Representative mutations were transferred to the chromosome of E. coli. The effect 

of these mutations on the ability of EcoKI to cleave DNA was investigated by 

measuring the restriction phenotype of the mutant bacteria, and proteins containing 

the same changes were purified. None of the changes affected the elution profile of 

the proteins from the columns used to purify them. The proteins were tested for 

nuclease activity, DNA binding and ATPase activity. 

The results show that six of the seven sequences identified as DEAD box 

motifs have an essential role in restriction. Only changes within the sequence 

originally proposed to be motif IV had no effect on restriction. The properties of the 

protein with a F730S substitution in motif IV were indistinguishable from wild-type 

EcoKI. These results support the suggestion (Titheradge et al., 1996) that motif IV 

was incorrectly identified in the EcoKL HsdR sequence (Gorbalenya and Koonin, 

1991). Gorbalenya and Koonin (1991) identified the DEAD box motifs in the 

sequences of type I (EcoKI and EcoR124I) and Ill (EcoPI) restriction endonucleases. 

They found motif Ill in EcoKI and motif IV in EcoR124I difficult to identify. A 

frame-shift discovered in the HsdR sequence (Burland et al., 1995), together with 

additional sequences of type I endonucleases (Titheradge et al., 1996), allowed the 

easy identification of motif ifi in EcoKI (Webb et al., 1996) and also indicated a 
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region of similarity located between motifs III and V, which is an alternative candidate 

for motif IV (Titheradge et al., 1996). Mutations in this alternative region, designated 

region Y, confer a restriction-deficient phenotype (Graham Davies pers comm). 

Purified EcoKI protein with a F629Y change in this region (FGEPVYRY) lacked 

both ATPase and nuclease activities (my results). In the crystal structure of PcrA, a 

helicase isolated from B. stearorhermophilus, a tyrosine residue in motif IV was 

shown to be involved in stacking the bound nucleotide (Subramanya et al., 1996). 

Region Y contains a tyrosine residue which is strictly conserved in type I restriction 

endonucleases. - 

On the assumption that region Y identifies motif IV, mutations in all seven 

DEAD box motifs affected DNA restriction; all changes prevented DNA restriction, 

except an A619G change in motif HI, which only impaired DNA restriction. This 

difference was only detected when the sensitivity of the test for the restriction 

phenotype of the mutant bacteria was increased, by using phage with only one or two 

EcoKl recognition sites. The purified protein containing this change showed 

apparently wild-type levels of nuclease and ATPase activity. This amino acid 

substitution changed the sequence in motif Ill from TAT to TGT, the amino acid 

sequence in motif Ill of the type IC restriction/modification system EcoR124I and 

therefore functional in the context of EcoR 1241. The two other changes at this 

position, A619V and A619D, abolished restriction. 

The conservative change of DEAH to DEAD (H577D) in motif II prevented 

DNA restriction. In vitro, EcoKI with the H577D change had neither ATPase nor 

nuclease activity. In eIF-4A the converse change of DEAD to DEAH showed 

elevated levels of ATPase activity and only 10% of RNA helicase activity (Pause and 

Sonenberg, 1992). A conservative change of Q822H in motif VI (QMKGRATR) 

abolished both the ATPase and nuclease activities of EcoKI. The opposite change of 

H to Q in motif VI in eIF-4A (HRIGRGGR) prevented ATPase and helicase 

activities. A double mutant that also had the change of DEAD to DEAH in motif II in 

eIF-4A showed increased levels of ATP hydrolysis and retained some heicase activity 

(Pause and Sonenberg, 1992). It would be interesting to see the effects of creating a 

double mutant with both H577D and Q822H changes in EcoKI, as this might be 
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predicted to have some ATPase activity and perhaps show a small amount of 

restriction. 

Mutations in motif I (GKT) abolished DNA restriction activity in vivo. Motif 

I is directly involved in ATP binding (Pai et al., 1977); the 3-1) structures of ATPases 

adenylate kinase and RecA show that the lysine residue of this motif interacts with the 

3 and i phosphates of the nucleotide (Fry et al., 1986; Story and Steitz, 1992). A 

change of lysine to asparagine in eIF-4A abolished ATP binding (Rozen et al., 1989). 

EcoKl in which the lysine of this motif was changed to arginine and therefore retained 

a positively charged amino acid at this position, interacted with ATP but showed no 

ATPase or nuclease activities. The same change in Rad3 abolished ATPase and 

helicase activities but retained ATP binding activity (Sung et al., 1988). It would be 

appropriate to purify EcoKI containing one of the other changes introduced at this 

position to check the prediction that ATP interaction would be abolished. 

Changes in motifs V (LTTGVD) and VI (QMKGRATR) conferred r1 

phenotypes. Purified proteins with these changes showed no ATPase activity. The r 

phenotypes resulting from mutations in the DEAD box motifs correlate with 

deficiencies in ATPase activity. Yuan et al. (1980) found that the DNA loops 

produced from DNA translocation were not observed in the absence of ATP 

hydrolysis and suggested that this hydrolysis drives DNA translocation. Meisel et al. 

(1995) proposed a model for restriction by the type ifi endonuclease EcoP 151, which 

involved DNA translocation driven by ATP hydrolysis. It is interesting that only 1% 

of the level of ATP hydrolysis with type I endonucleases occurs with restriction by 

type III enzymes. This implies that a reduction in ATP hydrolysis in EcoKI may not 

prevent DNA translocation. Type ifi enzymes dissociate after cleavage, but type I 

enzymes continue to translocate DNA after the initial cut, which may be one reason 

for the difference in ATP hydrolysis. 

Results from assays with the 45bp duplex show that ATP hydrolysis can be 

supported by a non-cleavable substrate. Studies on restriction by EcoR 1241 found 

non-cleavable substrates supported ATPase activity (Dreier and Bickle, 1996). 

ATPase activity of EcoKI was also tested using a 25bp duplex with one recognition 

site as a substrate. EcoKI methylase specifically binds to this 25mer and the EcoKI 
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endonuclease gives the same footprint as the methylase which suggests it will also 

bind the 25bp duplex (Lynn Powell, pers comm). However the shorter 

oligonucleotide did not support any detectable ATPase activity. The EcoKI 

endonuclease would require most if not all of the 25 base pairs for specific DNA 

binding and would not be able to support any DNA translocation as there would be 

insufficient nucleotides outside the bound complex. This result could imply that ATP 

is not hydrolysed if DNA translocation cannot occur, this suggestion is supported by 

results that show the addition of DNaseI stops ATP hydrolysis during restriction by 

EcoR124I (Dreier and Bickle, 1996). The protein D502Y with a change in motif la 

(FLVDR) lacked nuclease activity, but possessed a reduced level of ATPase activity. 

Either the level of ATP hydrolysis did not allow sufficient DNA translocation or DNA 

translocation occurred but the mutation prevented cleavage. 

All the mutant proteins except the protein with the H577D change in motif II 

(DEAH) had the same binding affinity for DNA as wild-type (Kd = 2-3nM). The 

substitution in motif II may have slightly distorted folding of the polypeptide to 

interfere with specific binding resulting in the higher Kd (6nM). It is likely that one or 

more of these motifs are involved in the non-specific DNA binding that would be 

necessary to initiate DNA translocation. The crystal structure of E. coli Rep helicase 

bound to single-stranded DNA shows that amino acid residues of motifs la, ifi and V 

are in contact with the DNA (Korolev et al., 1997). This information, and the lack of 

ATPase activity found for proteins with changes in motifs III and V. suggests that 

these motifs may participate in the initiation of translocation or some other essential 

aspect of the translocation process. 

The only previous investigation of the role of the DEAD box motifs in 

restriction endonucleases has been in EcoPI (Saha and Rao, 1997). They studied the 

effects of changes in motifs I and II (DEPH in EcoPI), the changes reduced or 

abolished ATPase activity and prevented DNA restriction. It would be interesting to 

see the results of changes in the remaining DEAD box motifs and compare them to 

the results of this study. 

It is now possible to test the effects of these mutations on DNA translocation. 

An assay has been adapted from one that measures the rate of phage T7 entry into the 
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cell (Garcia and Molineux, 1995). 	This assay uses bacteria containing a 

Dam-overproducing plasmid to provide methylation of GATC sequences within the 

cell. The transfer of the phage genome into the cell can be monitored by digesting 

DNA with DpnI, as methylation makes the DNA sensitive to DpnI. Fragments of T7 

DNA within the cell can be identified using labelled DNA as a probe. Normally T7 

ejects 850bps of its DNA into the cell, E. coil RNA polymerase transcribes the early 

genes on this DNA and once T7 RNA polymerase is produced it takes over 

transcription of the phage genome. The DNA is pulled into the cell as it is 

transcribed. To measure the rate of translocation by EcoKI rifampicin is added to the 

cell to inhibit E. coli RNA polymerase and hence transcription of the gene encoding 

T7 RNA polymerase. The phage genome has been altered so the leading end that is 

first ejected into the cell contains one EcoKI recognition site, whilst all other EcoKI 

sites in T7 have been removed. EcoKl binds to the recognition site and begins to 

translocate the DNA, as it does so it pulls the phage DNA into the E. coli cell. In this 

assay wild-type EcoKI translocated DNA at an average rate of 120bp per second at 

30°C (Ian Molineux, pers comm). Initial studies found that the K477R, H577D and 

A619V changes in motifs I (GKT), II (DEAR) and ifi (TAT) respectively, prevented 

DNA translocation and the A619G change in motif ifi shows apparently wild-type 

levels of DNA translocation (Ian Molineux pers comm). These experiments were 

done using mutant derivatives of AB 1157. Unfortunately, AB 1157 was not an ideal 

recipient in these experiments, and the experiments with all the mutations must be 

done using derivatives of the strain described by Garcia and Molineux (1995). It 

would be interesting to see whether the D502Y change in motif la (FLVDR), which 

confers an ATPase positive and restriction-negative phenotype, will allow DNA 

translocation. 

None of the mutant proteins has been tested to see if they remain capable of 

interaction with DNA to form a filter-binding complex. As described earlier EcoKJ 

binds AdoMet and then undergoes a transition to an activated form. When this 

activated complex interacts with an unmethylated recognition site the complex 

undergoes a transition to a form that can be trapped on filters (Meselson et al., 1972; 

Bickle et al., 1978). Formation of this complex requires ATP binding but is 
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independent of ATP hydrolysis. Results from filter-binding assays would show if the 

mutations disrupt activation of the endonuclease, an initial step crucial for restriction 

activity. 

Many DEAD box proteins investigated have been shown to be helicases 

(Schmid and Linder, 1992). Therefore it is important to ascertain if EcoKI 

endonuclease possesses a helicase activity. The presence of DEAD box motifs do not 

prove helicase activity, indeed a few proteins with these motifs do not possess 

helicase activity. These include E. coli transcription repair coupling factor and Rad5 

in yeast (Selby and Sancar, 1993; Johnson et al., 1994). The E. coli transcription 

repair coupling factor is encoded by the mfd gene and is necessary for strand-specific 

repair. The protein recognizes a stalled RNA polymerase enzyme and recruits the 

excision repair enzyme, (A)BC excinuclease. The amino acid sequence contains all 

seven DEAD box motifs and, like EcoKJ, is a member of the DEXH subgroup. 

Biochemical studies found the protein possesses ATPase activity but not helicase 

activity (Selby and Sancar, 1993). Rad5 functions in postreplication repair of UV-

damaged DNA. Purified RadS protein was found to have a single-stranded DNA 

dependent ATPase activity but no helicase activity (Johnson et al., 1994). If EcoKI 

does possess a DNA unwinding activity it could be involved in DNA translocation 

(Gorbalenya and Koonin, 1991; Murray et al., 1993; Webb et al., 1996) or DNA 

unwinding at the cleavage site (Gorbalenya and Koonin, 1991; Dartois etal., 1993). 

The standard biochemical test for unwinding activity measures the 

displacement of a short radiolabelled oligonucleotide from a single-stranded DNA 

circle (an example can be found in Tsaneva et al., 1993). This assay would not be 

appropriate for measuring DNA unwinding by EcoKI as the enzyme remains bound to 

DNA at one point and does not move along the DNA unwinding it like conventional 

helicases. Consequently the oligonucleotide would not be displaced, as it would be 

fixed to the single-stranded circle by EcoKI. One alternative helicase assay was 

attempted during this study. This measured the intrinsic fluorescence of SSB protein 

when included in the EcoKI nuclease reaction and looked for a quenching of this 

fluorescence which would indicate the SSB protein had bound to single-stranded 

DNA (Roman and Kowalczykowski, 1989). A drop in fluorescence was not detected, 
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which may have indicated a lack of unwinding. It is possible that the large SSB 

protein did not have sufficient access to bind to single-stranded DNA, if unwinding 

occurred close to EcoKI 

To date a helicase activity has not been shown for any restriction 

endonucleases. Saha and Rao (1997) failed to fmd any unwinding activity with the 

type Ill restriction endonuclease EcoPI. However they used the previously described 

method of measuring the displacement of a labelled oligonucleotide and the lack of 

activity observed could be a result of problems with this assay. If unwinding occurs 

during translocation, the extent of unwinding may be small with reannealing of the 

DNA following soon after unwinding. Unwinding may act to relieve the steric 

problems proposed to occur during translocation. Alternatively the co-operation of a 

topoisomerase during translocation could overcome steric problems (Graham Davies 

and Noreen Murray, pers comm). 

This study shows the DEAD box motifs are important for the nuclease and 

ATPase activities of EcoKI. Further assays for DNA translocation and DNA binding,. 

as observed by the filter-binding assay, may provide additional information on the 

roles of these sequences in the pathway that progresses from DNA-binding to the 

eventual cutting of the DNA. The relevance of the DEAD box motifs to either a 

helicase or an alternative activity is critical to the understanding of the mechanism of 

restriction of type I R/M enzymes. The crystal structure of EcoKI, or domains of this 

enzyme, in the presence and absence of cofactors and substrate, is an ultimate but 

difficult goal. At present comparisons with proteins of known structure may provide 

additional insight as they have done for domains of the methyltransferase component 

of EcoIU (Dryden etal., 1995). 
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Appendix 

Published paper: Restriction by EcoKI is enhanced by co-operative interactions 

between target sequences and is dependent on DEAD box motifs. 
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