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Abstract— This paper investigates the automatic segmentation
of meetings into a sequence of group actions or phases. Our work
is based on a corpus of multiparty meetings collected in a meeting
room instrumented with video cameras, lapel microphones and
a microphone array. We have extracted a set of feature streams,
in this case extracted from the audio data, based on speaker
turns, prosody and a transcript of what was spoken. We have
related these signals to the higher level semantic categories
via a multistream statistical model based on dynamic Bayesian
networks (DBNs). We report on a set of experiments in which
different DBN architectures are compared, together with the
different feature streams. The resultant system has an action
error rate of 9%.

I. INTRODUCTION

Meetings form a major part of many professional activities,
in which work is planned, problems are highlighted and
solved, decisions are made, knowledge is shared, etc. Preserv-
ing and accessing [1] the information in such meetings is an
important task, to enable a deeper understanding of meeting
contents, to make links across meetings, and to disseminate
knowledge to people who did not attend a meeting. By
using multiple cameras and microphones, devices to capture
handwritten notes and other varieties of recording equipment
it becomes possible to record the multimodal information
contained in a meeting. However, simply recording a meeting
doesn’t correspond to understanding what went on, and even
relatively simple information access from meetings requires
additional processing. Features corresponding to the commu-
nicative modalities (such as speech, gestures, handwriting and
facial expressions) may be extracted from raw data streams.
These individual feature streams can then be integrated to
enable the identification of important events in a meeting.

In this paper we are concerned with the automatic segmen-
tation of meetings into a set of predefined actions or phases:
monologue (per speaker) , dialogue, note taking, presentation,
presentation at the white-board [2]. This dictionary of meeting
actions represents just one example of the possible points of
view under which meetings can be analysed. Nevertheless it
provides a useful first step in relating low level multimodal
signals to higher level categories.

The following section will provide an overview about the
meeting data set used in our experiments and the meeting
collection process. Section III describes the feature set used to
characterize these multi-party meetings. Three feature classes

will be proposed: prosodic based features (III-A), location
based speaker turn (III-B) and semantic based lexical features
(III-C). Section IV gives an introduction to dynamic Bayesian
networks (DBN) and their graphical formalism. The multi-
stream DBN model adopted to segment a meeting into actions
will be presented in section IV-A, and an enhanced version will
be outlined in section IV-B. Finally in section V we propose
and discuss some experimental results, achieved using four
different configurations of our system.

II. MEETING COLLECTION

Our experiments have been performed using a corpus of
thirty short meetings, recorded at IDIAP by Mc Cowan et
al [2].1 Each meeting has four participants and lasts about
five minutes. The meeting structure was generated a priori,
drawing “meeting actions” from the dictionary described
above (extended with two further symbols: consensus and
disagreement). Note that these symbols are mutually exclusive
and exhaustive: only one “meeting action” at a time is feasible,
and gaps between actions are not allowed. Although the
broad progress (“agenda”) of each meeting was scripted, the
behaviour and interactions of the participants was natural. The
meetings were recorded using three wall mounted cameras, an
eight element circular microphone array and four lapel micro-
phones (one for each participant). The recording conditions
were realistic and without any constraint over factors such as
noise, reverberation, cross-talk and visual occlusions.

III. FEATURES

We used three classes of features in this work: prosodic
features; speaker turn features; and lexical features. We have
based our work mainly on speech and audio communicative
modalities, since these are predominant in meetings; work in
progress is using further streams based on video features.

A. Prosodic features

The prosodic features were based on a denoised and stylised
version of the intonation contour [3], an estimate of the
syllabic rate of speech [4] and the energy. These acoustic
features comprise a 12 dimensional feature vector (3 features,
4 speakers), highlighting the currently active speakers and may
indicate the level of engagement in the conversation for each
participant.

1This corpus is publicly available from http://mmm.idiap.ch/
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Fig. 1. Overview of the “lexical features” evaluation process

B. Speaker turn features

Information about the locations of the active speakers was
extracted using a sound source localization process based on
a microphone array. A 216 element feature vector resulted
from all the 63 possible products of the 6 most probable
speaker locations (four seats and two presentation positions)
during the most recent three frames [5]. These features attempt
to find statistical patterns in the conversational process, thus
modelling how the interaction pattern evolves in time.

C. Lexical features

In addition to the lower level, continuous features outlined
above, we have also used the transcript for each speaker, re-
sulting in a feature stream consisiting of a sequence of words.
In these experiments we use human generated transcriptions;
work is in progress using automatic speech recognition on
these meetings, but this is a challenging task due to non-native
accents, natural speech, unconstrained topics and the fact that
recordings were made on lapel and table-top microphones.

To correlate low-level text transcriptions with high level
“meeting phases”, the system outlined in figure 1 has been
adopted. Monologue and dialogue classes were modelled using
multinomial distributions over words (although the principles

are valid for the other actions also). The mutual information
between each word w in the transcript and the models Mk is
computed, and the winning class k̃ is the one that maximizes
mutual information:

k̃(w) = arg max
k∈K

{I(w;Mk)}

Unfortunately the true classification output is concealed under
a constellation of mis-classified words. Therefore the rec-
ognized sequence of symbols was filtered, leaving only the
most frequent symbols. Smoothing was performed across a
sliding window of 24 words, and the resulting filtered sequence
classifies the hand labeled transcription with an accuracy of
93.6% (percentage of correct classified words). The resulting
symbols sequence is then translated into the same temporal
scale of prosodic features and speaker turns. All these features
are down-sampled to a common sampling frequency of 2Hz.

IV. DYNAMIC BAYESIAN NETWORKS

Bayesian Networks (BNs) are directed acyclic graphical
models. In a BN, nodes represent random variables, and arcs
represents conditional dependencies. Thus an arc from node
A to node B means B depends on A. An arc from C to
B means that although B is also dependent on C, C and A

are conditionally independent. Dynamic Bayesian Networks
(DBNs) are the generalization of BNs to dynamic processes.
Each temporal slice is represented by a BN, and oriented
arcs, representing the time flow, connect variables of different
time-slices. A large variety of statistical models, such as
Hidden Markov Models (HMMs), Semi-Markov HMMs, fac-
torial HMMs, etc. are unified under the graphical/mathematical
formalism provided by DBNs [6].

A. Multi stream DBN model

Compared with a basic HMM, a DBN is able to factorize
the internal hidden state using a set of connected variables.
This principle is the basis of our model (figure 2a): the state
space is decomposed in two levels of resolution: “meeting
actions” (nodes A) and “meeting sub actions” (nodes SF ). The
“meeting sub actions” space is further subdivided according to
the nature of features that are processed. We have a “sub-state”
node SF for each feature class F (prosodic features, speaker
turns, lexical features), thus independent feature streams are
modeled independently. The joint distribution for a sequence
of T temporal slices is:
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Fig. 2. Multi-stream DBN model (a) enhanced with the “Counter Structure”
(b); square nodes represent discrete hidden variables and circles must be intend
as continuous observations

Sub state nodes SF ,F = [1, 3] follow a Markov chain with
parameters determined by which meeting action it is in, which
is encoded by the current state k of the the action variable A

(At = k).

P (SF
t = j | SF

t−1
= i, At = k) = ÃF

k (i, j) (2)

ÃF
k (i, j) is the transition matrix for the sub action variable SF

t

given that the parent action variable is in state k (At = k)

P (SF
1

= j | A1 = k) = π̃F
k (j) (3)

is the initial sub state distribution for the stream F given an
initial action A1 = k.

Note that here, unlike in hierarchical HMM, there is no
feedback from SF to A, which prevents state transitions of A

until SF has not reached an “end state” [7].
The Markov chain associated with action nodes A acts like

an ordinary HMM: having an action transition matrix P (At =
j | At−1 = i) = A(i, j) and an initial state probability vector
P (A1 = i) = π(i). Sub action nodes SF , F = 1, 2, 3 are
parents of the Markov chain A. Therefore instead of directly
generating a sequence of observable discrete nodes Y through
a standard state emission matrix

P (Yt = k | At = i) = B(i, k) (4)

A generates three hidden sub-action sequences S1 , S2 , S3

through Ã1

k(i, j) , Ã2

k(i, j) and Ã3

k(i, j) respectively.
Arcs between discrete “sub-states” SF and continuous ob-

servation vectors Y F , are implemented using mixtures of MF

Gaussians:

P (Y F
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t = i) =
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∑

m=1
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(5)
where C(F,m, i) is the conditional prior weight of each mix-
ture component for each stream F , and N(y;µF,m,i,ΣF,m,i) is

the Gaussian density with mean µF,m,i and covariance ΣF,m,i,
evaluated at the point y. Note that sub-state cardinalities
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are part of the model parameter set, and each sub-action is
shared between different “meeting actions”. The cardinality
of A is equal to the dictionary number of actions: |A| = 8.
This model presents many advantages over a model where
features are “early integrated” into a single feature vector:

• feature classes are processed independently according to
their nature

• more freedom is allowed in the state space partitioning
and in the optimization of the sub-state space assigned to
each feature class

• higher flexibility, for example when the feature set need
to be modified

• knowledge from different streams is integrated together
at an higher level of the model structure

Unfortunately all this advantages, and the better performances
that can be achieved, are balanced by an increased model size,
and therefore by an increased computational complexity.

B. Counter Structure

The probability to remain in an HMM state corresponds
to an inverse exponential [8]: a similar behavior is displayed
by the above model. Unfortunately “meeting actions” don’t
fit this assumption well, and the number of wrongly inserted
actions tend to be high. In speech recognition this behaviour
is often dealt with using an explicit duration model, or (more
often) ad hoc solutions such as additional transition penalties.
In this work, we have increased the flexibility of state duration
modeling by adding an additional “counter structure” (figure
2b). The counter variable C, being ideally incremented during
each action transition, attempts to model the expected number
of recognized actions. Action variables A now also generate
the hidden sequence of counter nodes C, together with the
sequence of sub-action nodes Sj . Binary enabler variables E

have an interface role between action variables A and counter
nodes C. The joint distribution for the “counter structure”
alone, computed over T time slices is:

P (C1:T , E1:T , A1:T ) = P (C1) · P (E1) · P (A1)·

·

T
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{P (Ct | Ct−1, Et−1) · P (Et | Ct, At) · P (At | At−1)}

(7)

with initial probabilities P (C1 = 0) = 1 and P (E1 = 0) = 1.
The counter nodes C is iteratively incremented only if the
enabler variable E was high (Et−1 = 1) during the previous
temporal slice:

P (Ct = j | Ct−1 = i, Et−1 = f) =

{

j = i + 1 if f = 1
j = i if f = 0

(8)



P (Et = f | Ct = j, At = k) = Dj,k(f) (9)

Dj,k(f) represents the state transition probability for the
enabler variable Et given that the action variable is in state
k and the counter in state j. If k is the jth recognised
“meeting action” the probability to “have E activated” (and
start evaluating the j + 1th “meeting action”) is modelled
by Dj,k(f). The adoption of an enabler variable E has also
the effect to reduce the dimension of conditional probability
tables. Removing the enabler variable E and integrating (8)
and (9) into a P (Ct | Ct−1, At−1), the number of parameters
required by the “counter structure” will be increased by a
factor:

|C| |A|

2(|C| + |A|)
(10)

The joint distribution of the multi stream model enhanced with
a counter structure (figure 2a and 2b) can be easily obtained
multiplying (1) by

P (C1) · P (E1) ·

T
∏

t=2

{P (Ct | Ct−1, Et−1) · P (Et | Ct, At)}

V. EXPERIMENTS

Our experiments were conducted on 30 fully transcribed
meeting of the corpus described in section II, using the Graph-
ical Models Toolkit (GMTK)[9]. The evaluation is performed
using a leave-one-out procedure, in which the system was
trained using 29 meetings and tested on the remaining one,
iterating this procedure 30 times. For evaluation we used the
Action Error Rate, a metric that privileges the recognition of
the correct action sequence, rather than the precise tempo-
ral boundaries, obtained by summing the insertion, deletion
and substitution errors when aligned against the reference
sequence:

AER =
Substitutions + Deletions + Insertions

Correct number of actions

Table I shows experimental results achieved using our base
multi-stream approach and the counter enhanced variant.
These models are tested using two features sets. Prosodic
features and speaker turns are common to both the sets (A)
and (B); and (B) contains lexical features too. Therefore to
evaluate (A) we use a double-stream model with only sub-
actions S1 and S2. To process the set (B) we have an additional
Markov chain composed by sub-states S3 and observable
lexical features Y 3. The introduction of the lexical based
feature, independently of the adoption of a “counter structure”,
improves the percentage of correct recognized actions by about
6 % and reduces AER by 5 %. The “counter structure” allows
the number of insertions to be limited, enabling the model
to better fit experimental data and to have a further small
improvement in AER. Therefore we reached our best results
(9 % AER) employing both the fully comprehensive feature
set and the “counter structure”.

Model Corr. Sub. Del. Ins. AER
(A) multi-stream 84.6 9.0 6.4 1.3 16.7
(B) multi-stream 91.7 4.5 3.8 2.6 10.9
(A) multi-str. + counter 86.5 6.4 7.1 1.3 14.7
(B) multi-str. + counter 92.9 5.1 1.9 1.9 9.0

TABLE I

ACTION ERROR RATES (%) FOR THE MULTI-STREAM MODEL WITH AND

WITHOUT THE “COUNTER STRUCTURE” USING: (A) PROSODY AND

SPEAKER TURNS OR (B) PROSODY, SPEAKER TURNS AND LEXICAL

FEATURE.

VI. CONCLUSION

We have presented a framework for automatic segmentation
of meetings into a sequence of phases. The audio information
captured through individual lapel microphones has been ex-
ploited using a set of prosodic features. Location based speech
activities evaluated through microphone array processing has
been used to extract patterns from speaker turns. Lexical
information embedded into textual transcriptions has been
employed to build a monologue/dialogue discriminator. These
three multi-modal features are then integrated through a spe-
cialized DBN model. Individual processing of different feature
sets, and a mechanism to improve action duration modelling
are two key points of our model. Experiments conducted on
the IDIAP meeting corpus has shown that this infrastructure
is capable of AER in the range from 15% to 9%. Therefore
the DBN approach has proven to be an effective framework
for the integration of features from different communicative
modalities. Further multimodal-features will be integrated into
this system, and a multi time scale version of the model
will be soon investigated. Lexical based monologue/dialogue
discrimination provided good results, therefore its natural
extension with more than two actions will be soon integrated.
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