CCS for Industrial Sources of CO₂ in Europe

- Industry direct CO₂ emissions are one quarter of total EU emissions
- 60% of this is from four sectors:
 - Iron and steel
 - Chemical industry
 - Petroleum refining
 - Cement and lime
- 25% of industrial emissions are inherent to process chemistry of some key materials
 - Steel blast furnace, reduction of iron ore
 - Cement calcination, lime from limestone
 - Hydrogen steam reforming, for fuel upgrading, methanol and ammonia/fertiliser production
- IPPC targets for industry emission reductions in EU
 - 34-40% by 2030
 - 83-87% by 2050
- CCS necessary to make deep cuts in industry emissions
- CCS for high-emission processes could achieve 200-300 Mt/yr CO₂ reduction
 - Processes listed above plus:
 - Fluid catalytic cracking catalyst regeneration
 - Steam cracking for olefin production

Identified CCS Options - Contribution to CO₂ emission reduction targets

- Energy intensive industries in Europe contribute significantly to GDP, employment and innovation
 - Iron and steel, cement, refineries, chemicals combined have turnover of € 900 billion, c.7% of EU GDP, 25% of EU industry
 - These sectors employ directly 1.75 million, 0.7% of EU labour force, 2.9% of EU industry employment
 - Materials and innovations skills from these industries needed to grow green economy
- Identified options for CCS from large industrial sources could contribute most of reductions required by 2030
- Needs concerted action now to achieve this
- But CCS from these large sources alone not sufficient for 2050 target, even at highend estimates

Sector	Assumption for estimate (SCCS, 2013)	CO ₂ emission reduction, Mt/yr
Iron and Steel	50% of emissions from blast furnaces captured	89
Cement	50% of emissions from cement plant captured	50
Refineries	Most emissions from hydrogen production captured, some emissions from combustion plant captured, totalling 25%	33
Chemicals	Available (W Europe) ammonia plant emissions captured, 80% cracker emissions captured, 10% combustion emissions captured	36
Total		208

- CCS is a key technology to achieve deep cuts in emissions from industry
- Fundamental industrial processes have inherent CO₂ formation where capture is only option for avoiding emissions
- Industry with high emissions clustered in several areas in Europe
- Storage sites identified in feasibility studies
- NW Europe clusters match well with storage availability in North Sea

Distribution in Europe of refineries, integrated steel plants, cement plants emitting >0.5 Mt/yr CO₂

Key: ▲ refineries, ● integrated steel plants, ★ cement plant Mid grey: regions with large industry sources totalling >5 Mt/yr, Dark grey: regions totalling >10 Mt/yr, Pecked lines: potential capture clusters.

Adapted from: Rootzén, et al, Management of Environmental Quality, **22**, (1), 2011

CO₂ from ammonia production

- 6-7 Mt/yr CO₂ already separated at ammonia plants and available for use
 - Figures adjusted for estimated bulk CO₂ sales and consumption in urea
- · Most close to North Sea coasts
- Could be used to prove CO₂ transport and storage infrastructure

Key: yellow circle - ammonia plant; green flag - excess CO₂ available; red flag - CO₂ unlikely to be available. Source: SCCS analysis, 2013

CO₂ storage sites and volumes around Europe

Source: Feasibility Study for Europe-Wide CO2 Infrastructures, Haszeldine et al, 2010. ARUP, Leeds, UK.

Availability of CO₂ from ammonia production in Europe

- CCS from large industrial sources can play major role in achieving 2030 emission reduction targets
- Appropriate policies and support mechanisms needed to achieve rate of deployment required
- Need wider measures to achieve 2050 targets
 - Efficiency improvements, fuel switching, CCS in wider and smaller applications