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Abstract

Hardware evolves faster than software. While a hardware system might need replace-

ment every one to five years, the average lifespan of a software system is a decade,

with some instances living up to several decades. Inevitably, code outlives the plat-

form it was developed for and may become legacy: development of the software stops,

but maintenance has to continue to keep up with the evolving ecosystem. No new fea-

tures are added, but the software is still used to fulfil its original purpose. Even in the

cases where it is still functional (which discourages its replacement), legacy code is

inefficient, costly to maintain, and a risk to security.

This thesis proposes methods to leverage the expertise put in the development of

legacy code and to extend its useful lifespan, rather than to throw it away. A novel

methodology is proposed, for automatically exploiting platform specific optimisations

when retargeting a program to another platform. The key idea is to leverage the op-

timisation information embedded in vector processing intrinsic functions. The per-

formance of the resulting code is shown to be close to the performance of manually

retargeted programs, however with the human labour removed.

Building on top of that, the question of discovering optimisation information when

there are no hints in the form of intrinsics or annotations is investigated. This thesis

postulates that such information can potentially be extracted from profiling the data

flow during executions of the program. A context-aware data dependence profiling

system is described, detailing previously overlooked aspects in related research. The

system is shown to be essential in surpassing the information that can be inferred stat-

ically, in particular about loop iterators.

Loop iterators are the controlling part of a loop. This thesis describes and evalu-

ates a system for extracting the loop iterators in a program. It is found to significantly

outperform previously known techniques and further increases the amount of informa-

tion about the structure of a program that is available to a compiler. Combining this

system with data dependence profiling improves its results even more. Loop iterator

recognition enables other code modernising techniques, like source code rejuvenation

and commutativity analysis. The former increases the use of idiomatic code and as

a result increases the maintainability of the program. The latter can potentially drive

parallelisation and thus dramatically improve runtime performance.
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Chapter 1

Introduction

1.1 Hypothesis

Executing legacy software on modern computer architectures is hampered by multiple

issues. At the same time, until replacement systems are implemented – a non-trivial

task worthy of consideration on its own – people, companies, and governments are

forced to continue doing it. Following are three main challenges that come with run-

ning legacy software, together with techniques for addressing them.

First, some of the software – programs written to be optimised for an obsolete plat-

form, in particular – cannot even be compiled for a new architecture. In such cases

preliminary transformations need to be performed. Second, when programs can be

compiled, analysing the source code only does not provide enough information for

compiling them into efficiently executing binaries. Profiling and analysing the be-

haviour of example executions of these programs, i.e. applying dynamic analysis to

them, dramatically increases the amount of information available to the compiler for

making optimisation decisions. Third and last, once a program has been successfully

compiled, and static and dynamic analysis have been performed, the resulting informa-

tion still needs to be digested in a way that informs transformations aiming to optimise

the efficient execution of the program. Focusing on program loops and separating each

one of them into two parts – the collection of instructions that drive the execution of

the loop and the collection of instructions that compute the information used later in

the program – enables new approaches to transforming such loops.

These techniques for addressing the challenges that hamper the execution of legacy

software on modern architectures are the focus of this thesis. Chapter 2 explores the

preliminary transformations necessary for compiling platform-dependent legacy soft-
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2 Chapter 1. Introduction

ware. Chapter 3 develops a dynamic analysis system specialised for extracting fine-

detailed program information. Chapter 4 describes and evaluates an optimisation en-

abling loop separation analysis which combines static and dynamic program informa-

tion.

1.2 Introduction

Hardware is evolving faster than software. The typical life span of a hardware sys-

tem is between one and five years, while for software systems this is up to several

decades1. As a consequence of this discrepancy, the execution platform for a given

program can change to hardware systems it was not developed for. Even if a software

system evolves functionally, it has been shown that with time it degrades structurally:

its complexity increases, while its manageability decreases [13]. As a result, there is a

point in time when it is judged more cost effective to stop the development of a system

and to recreate it. Often, however, the old version would remain in use, at which point

it becomes legacy.

There is no agreed-upon definition of what ‘legacy code’ means. For the purpose

of this thesis, legacy code is a program (or a version of a program) that is no longer

extended functionally but is still used for its original purpose. If there is any ongoing

development work it is mostly done for maintenance or fixing security weaknesses.

Ideally, legacy code would not exist and users would move on to the newest version

of a program because that promises to provide the most up-to-date features, active

support, and recent security upgrades. Practically, there are various reasons this is not

the case and legacy software remains in use, including the financial cost of upgrading,

the cost of retraining users due to major interface changes, the lack of compatibility

of a newer version with other outdated elements of the hardware/software ecosystem,

and others.

There are multiple issues with legacy code. Firstly, some systems are so old that

there are no experts left who can maintain them. In late 2015, a Paris airport was

brought to a standstill, because of a failure in its communication software. The soft-

ware was so old that it was compatible only with Windows 3.1 [20] - a twenty-five-

year-old operating system - and at the time there were only three people in France

who could maintain that communication system. One of them retired soon after the

incident.
1USA’s air traffic control software infrastructure is reportedly forty years of age [19].
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Legacy systems that do not suffer from such severe lack of maintenance experts,

have another problem: the programming language used for their development can be-

come outdated. Tools to compile and optimise the program on newer hardware might

not be sufficiently mature and performance utilisation might suffer. The banking in-

dustry, for example, is notorious for its reluctance to update its software systems [29].

Even when senior managers recognize the problem the cost of modernisation is inhibit-

ing as there are few tools to help with the endeavour. The work has to be performed

manually and thus would take a long time and, inevitably, introduce numerous defects2.

As a result, there are an estimated 220 billion lines of COBOL still in use today as part

of various banking systems worldwide [41]. At the same time, COBOL has dropped

in popularity in the past few decades [4] and there are few modern tools developed for

it.

However, even if a legacy system is developed in a language that does not lose its

popularity over time, there is a third problem. While there are cutting edge compilers

and build systems capable of producing an application out of a legacy code base, these

systems still need to analyse the structure of the source code if they are to produce

efficient machine code that fully utilises the target hardware architecture. The rise of

chip-level multiprocessing exacerbates this problem. Since 2005 the increase in pro-

cessor frequencies has slowed down and the number of cores capable of parallel com-

puting has started increasing instead (see Figure 1.1). In fact, single core performance

of high-end chips has even started to drop in some cases, where system designers have

focused on energy efficiency and multiprocessing performance. For such systems, and

without any additional analysis, software designed for the single-core era will not ex-

ecute faster or more efficiently and the hardware will be underutilised.

Although the emergence of the multicore era was largely unexpected3, the com-

puter industry was little concerned at the start. There were few indications that the end

of frequency scaling would prove to be such an insurmountable issue for continuous

hardware performance improvement. Crucially, however, the necessary compiler anal-

yses needed to transform a general program, from a sequentially flowing string of logic

and computations to an orchestra of communicating and collaborating, yet independent

2A rule of thumb in software engineering is that the number of errors per one thousand lines of code
is between fifteen and fifty, regardless of the programming language used [60].

3Notably, the International Technology Roadmap for Semiconductors for 2005 and even 2007 was
predicting continuing exponential growth of processor frequencies up to 2022 [1]. If that was the case
there would be much less pressure on processor manufacturers to find alternative ways of delivering on
the promise of performance growth, and the employment of multicore designs would have been optional,
rather than the only option.
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Figure 1.1: Comparison of key microprocessor characteristics over the last forty years
(the data is taken from [87] whereas the graph is an original reproduction). The year of
2005 signifies the emergence of multicore processors while maximum frequency and
single-core performance begins to stagnate.

execution threads, was discovered to be a formidable task.

The problem of this compiler transformation is known as automatic parallelisation.

And while the research into this problem is almost as old as the first computers capable

of parallel execution (see [53], e.g.) state-of-the-art industry compilers achieve no per-

formance improvement due to automatic parallelisation, for the average program [92].

The reason for this failure is that while there have been promising speed improvements

for specific types of programming constructs (for example simple loops that perform

the same operation on each element of an array), in general, programs spend the most

of their execution time in parts of the code which cannot be so simply described. A

more abstract view of a program is necessary in such cases so that an analysis does

not apply only to for loops, but to all loops, and that it does not apply only to array

accesses, but to any kind of data structure accesses.

This leads to analysing legacy programs in a control flow graph (CFG) represen-

tation, and treating all data accesses equally by representing them as pointer derefer-

encing. If the semantics of the program is to be preserved by a parallelising transfor-

mation, the order of operations that depend on each other for their inputs needs to be

maintained. This task, however, known as dependence analysis, has been proven to
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be mathematically undecidable statically [54], i.e. by only analysing the source code

and not inferring information from the execution of the program. For this reason, it

is impossible for a perfect solution of automatic parallelisation that works for all pro-

grams to exist. Nevertheless, state-of-the-art automatically parallelising compilers still

either analyse a very limited part of the code subject to compilation, or attempt to find

a perfect solution to this impossible problem and fail.

The approach taken in this thesis is more pragmatic. Instead of attempting to start

from a completely sequential program and produce a perfectly parallel equivalent – a

task that is provably impossible in general – this thesis first focuses on programs that

contain some information about their potential parallel execution, but they have that

information expressed in a form that is not directly accessible for different hardware

architectures, being target specific instead. This approach to improving the perfor-

mance of a program is popular in signal processing: there, widely used audio and

image processing libraries are written in a high-level language (like C or C++) but also

make use of vector processing intrinsic functions to speed up their execution. These

intrinsic functions are not implemented in the programming language of choice, but

are rather instructing the compiler to generate specific high-performance processor in-

structions. As such, they are unique for each different instruction set architecture and

make the program non-portable.

The technique described in Chapter 2 identifies intrinsic functions in programs and,

leveraging the parallel execution information contained within, transforms the program

to use identical or similar intrinsic functions in a different instruction set architec-

ture: one that was not anticipated when the original source code was written. This is

not always possible, so the functionality sometimes needs to be emulated and this is

achieved by implementing the unmatched functionality in the high-level programming

language. This emulation is only done when necessary, as it fails to translate the per-

formance benefit of using the intrinsic functions with the original hardware platform.

Nevertheless, the evaluation in Chapter 2 demonstrates that with the technique pre-

sented, performance close to that achieved by an expert manual translation can often

be achieved. This means that the methodology can be applied to save large amounts of

manual labour for all but the most performance critical applications.

Following Chapter 2, a larger problem is considered: what can be done when there

is no parallel execution information available in the first place. As already mentioned,

the problem is mathematically unsolvable. Still, that does not stop people from at-

tempting to parallelise programs manually, and often succeeding. This fact leads to the
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following insight: the main advantage human parallelisers have over compilers is that

they do not restrict themselves to the source code only. People often exceed compilers

in the complexity of their understanding of the structure of a program. That advantage

comes from an understanding of the relationships between program modules, from an

understanding of the algorithms involved, and from an understanding of properties of

the data structures that are not explicit in the source code. A typical example is that

of a sparse matrix data structure. Sparse matrices can be compactly expressed as a

list of pairs: an index and a non-zero value. For a human it is obvious that no two

elements will have the same index, but this (as well as many other restrictions on data

structures) is often not expressed in source code. As a result, a compiler that analyses

a loop iterating over the elements of a sparse matrix cannot safely assume that the in-

dex contained in these elements is going to be unique for each of them and thus can

potentially miss a parallelisation opportunity, if it observes its requirement to maintain

the semantics of the program.

A possible solution of this problem is to add the missing information in the source

code or teach future programmers to specify such restrictions as part of the initial

crafting of the program. This, however, inevitably requires manual effort which goes

against the very objective of automatic parallelisation. Alternatively, a compiler should

be allowed to infer this information independently of human guidance. The program

input data can be identified as the source of that information missing from the pro-

gram’s code. Data access profiling has been used for several decades in order to gain

insights from the program input data and the way it flows through the instructions4.

However, research has mainly focused on runtime and memory performance optimi-

sation. This has been achieved at the price of sacrificing robustness and precision.

There is no data profiling framework that has been reported to be able to profile all

of the SPEC CPU2006 benchmarks and that is able to track all dependencies between

individual instructions.

Chapter 3 approaches the need for such a framework capturing the information

about the flow of the data of a running program. A system tackling the data profil-

ing problem is developed. It tracks data dependencies while identifying the execution

context down to a loop-level granularity. The major contribution is carefully handling

recursion and indirect function calls, which leads to the system achieving the speci-

fied goals of robustness and precision: it manages to profile all of the SPEC CPU2006

4Some early research efforts on using data dependence profiling to measure parallelisation are [52]
and [55], while [23] are the first to focus on the problem of data dependence profiling exclusively.
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benchmarks and builds an instruction-level dependency graph. As a result, the frame-

work is used to build data access profiles crucial for the success of the methodology

developed in Chapter 4. The runtime of the profiling framework developed in Chap-

ter 3 is not as good as other state-of-the-art techniques, but it is not prohibitive and at

the same time it manages to extract information from programs that other tools cannot

analyse.

Chapter 4 focuses on the analysis of looping constructs in the CFG of programs.

The goal is to cover as many different syntactic structures as possible under one defini-

tion of a loop. An analysis is developed, to separate these loops into an iterator (driving

part) and payload (part doing useful work). The chapter shows that by focusing on this

specific problem the analysis is able to extract this information for substantially more

of these loops than previous state-of-the-art techniques. The success of the analysis is

further extended by combining it with the data access profiling framework presented

in Chapter 3.

Once a loop has been thus separated, further complex analyses can be performed

on the two parts. One could analyse the loop iterator, looking for data structure ac-

cess patterns, e.g. discovering that each element of a structure is accessed only once

or in a particular order. Approaches like this can drive source code rejuvenation: the

transformation of ad hoc syntactic structures into idiomatic code. Alternatively, com-

mutativity analysis can be performed on the loop payload in order to experimentally

discover whether the execution order of the loop iterations is part of the program se-

mantics. If the order can be changed, then loop iterations can potentially be executed

in parallel, given that access to shared memory is synchronised. These transformations

are outside the scope of this thesis, but the analysis in Chapter 4 provides the critical

information for their execution.

1.3 Contributions

The issues of legacy code can be summarised as two main problems:

1. functional portability: due to the use of non-standard language features or ex-

tensions, e.g. intrinsic functions, legacy programs sometimes cannot readily be

compiled on a new hardware platform, even if there are mature programming

tools for it;

2. performance portability: due to changes in hardware architectures – the advent of
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the multicore era, in particular – legacy programs written for an old architecture

rarely can automatically achieve the same amount of system utilization on a

newer one.

This thesis approaches these problems via the following contributions:

1. A novel source-to-source compilation approach is described, for retargeting pro-

grams written in a high level imperative language that have been optimised

through the use of platform-specific intrinsic functions. The main objective of

this approach is to restore functional portability, but it is shown that a high-

performance portability is also achieved, by reaching 96% of the performance of

manually retargeted codes.

2. A framework for building data access profiles is introduced. The technique de-

scribed in this thesis robustly handles the issues of recursive and indirect function

calls when computing context identifiers and a set of formal definitions is pre-

sented, defining terms relating to loops, necessary for the accurate description of

the instrumentation procedure.

3. The problem of performance portability is addressed by introducing a compiler

analysis pass that detects generalised loop iterators: the part of a loop that is

responsible for ‘driving’ the loop. This analysis is shown to detect consider-

ably more loop iterators than the state-of-the-art scalar evolution analysis. This,

however, is a statically undecidable problem in general, since it is based on de-

pendence analysis. Thus, the analysis is further augmented by using data access

profiling information collected by the profiling framework. This increases the

detection rate from 53% to 81% for the SPEC CPU2006 C++ benchmarks and

from 89% to 95% on average across all three languages (C, C++, and Fortran).

1.4 Structure

This thesis investigates modernising legacy code through the lens of compilation the-

ory. Chapter 2 investigates the problem of restoring functional portability. In particular,

it attacks the problem of retargeting a program written in a higher level language but

having platform specific optimisations via intrinsic functions to another platform. The

technique also achieves a reasonable performance portability by leveraging the opti-

misation information expressed by said intrinsics. When this information is missing,
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optimisation opportunities need to be discovered. Chapter 3, builds the theory for, and

describes, a robust context-aware data dependency profiling system. Such a system is

needed in order to surpass static analysis during the effort of automatically analysing

the structure of legacy software. Chapter 4 leverages the profiling system developed in

Chapter 3 to develop a technique for recognising loop iterators. This technique can fur-

ther enable different compiler analyses aiming to modernise code, for example source

code rejuvenation, or commutativity analysis and, eventually, parallelisation. Chapter

5 summarises and finishes with a critical analysis of the contributions.

1.5 Publications

During the research of this thesis the following articles were published:

Generalized Profile-Guided Iterator Recognition. In Proceedings of the 268th

International Conference on Compiler Construction (CC), February 2018. Stanislav

Manilov, Christos Vasiladiotis, Björn Franke. Extended here as Chapter 4.

Free Rider: A Source-Level Transformation Tool for Retargeting Platform-
Specific Intrinsic Functions. In ACM Transactions on Embedded Computing Systems

(TECS), December 2016. Stanislav Manilov, Björn Franke, Anthony Magrath, and

Cedric Andrieu. Presented here as Chapter 2.

Free Rider: A Tool for Retargeting Platform-Specific Intrinsic Functions. In

Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Compil-

ers and Tools for Embedded Systems (LCTES), June 2015. Stanislav Manilov, Björn

Franke, Anthony Magrath, and Cedric Andrieu. Extended by the TECS’16 publication.

Chapter 3 is based on and extends a master’s thesis [45]. The scope of extension

is, as mentioned in Sections 1.3 and 1.4, a formal definition of terms related to loops

for a more precise description of the instrumentation phase and a general solution to

recursive functions and indirect function calls. In addition, Chapter 4 evaluates the

profiler on all of the SPEC CPU2006 benchmarks.

Finally, contributions have been made to:

Towards a Compiler Analysis for Parallel Algorithmic Skeletons. In Proceed-

ings of the 268th International Conference on Compiler Construction (CC), February

2018. Tobias J.K. Edler von Koch, Stanislav Manilov, Christos Vasiladiotis, Murray

Cole, Björn Franke. This publication presents a compiling technique which leverages

the analysis presented in Chapter 4 and is discussed as further work in this thesis.





Chapter 2

Free Rider

A Source-Level Transformation Tool for Retargeting

Platform-Specific Intrinsic Functions

Short-vector SIMD and DSP instructions are popular extensions to common ISAs.

These extensions deliver excellent performance and compact code for some compute-

intensive applications, but they require specialised compiler support. To enable the pro-

grammer to explicitly request the use of such an instruction, many C compilers provide

platform-specific intrinsic functions, whose implementation is handled specially by the

compiler. The use of such intrinsics, however, inevitably results in non-portable code.

As the platform targeted by this optimisation becomes unavailable, code optimised in

this way becomes legacy. This chapter describes a novel methodology for retargeting

such non-portable code, which maps intrinsics from one platform to another, taking

advantage of similar intrinsics on the target platform. A description language is em-

ployed, to specify the signature and semantics of intrinsics and perform graph-based

pattern matching and high-level code transformations to derive optimised implementa-

tions exploiting the target’s intrinsics, wherever possible. The effectiveness of the new

methodology, implemented in the FREE RIDER tool, is demonstrated by automatically

retargeting benchmarks derived from OPENCV sample programs and a complex em-

bedded application optimised to run on an ARM CORTEX-M4 to an INTEL EDISON

module with SSE4.2 instructions (and vice-versa). The tool achieves a speedup of up

to 3.73 over a plain C baseline, and on average 96.0% of the speedup of manually

ported and optimised versions of the benchmarks.

11
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2.1 Introduction

Instruction set extensions are computer architects’ favourite weapon of choice when

adding domain-specific acceleration to processor cores with their mature and proven

software and hardware ecosystems. For example, INTEL has devised various streaming

SIMD extensions (first MMX, then SSE to SSE4 and AVX) to speed up graphics and dig-

ital signal processing. Similar capabilities are offered by the ALTIVEC floating point

and integer SIMD extensions designed by APPLE, IBM and FREESCALE SEMICON-

DUCTOR. In the embedded space, ARM offers DSP and multimedia support through

their SIMD extensions for multimedia and NEON extensions. Whilst conceptually sim-

ilar, these different instruction set extensions differ significantly in detail, e.g. in their

word and sub-word size, supported data types, and use of processor registers.

Despite improvements in compiler technology, including automatic vectorisation

[72, 71], short-vector instructions offered by the architecture are typically accessed

through platform-specific compiler built-in functions. This is due to the superior per-

formance of hand-tuned vector code, which often outperforms auto-vectorised code

[63]. Built-in functions, also called intrinsics, are functions available for use in C,

but their implementation is handled specially in the compiler: the original intrinsic

call is directly substituted by a machine instruction. For example, MICROSOFT’s and

INTEL’s C/C++ compilers as well as GCC and LLVM implement intrinsics that map

directly to the X86 SIMD instructions. The use of intrinsics enables programmers to

exploit the underlying instruction set extensions and to increase the efficiency of their

programs, but their use inevitably results in non-portable code. Obviously, this seri-

ously restricts the re-use and porting of software components such as libraries, which

have been heavily optimised for one particular instruction set extension and where no

plain C sources are available.

In this chapter, based on a published journal article [59], a novel technique is de-

veloped, for cross-platform retargeting of code comprising platform-specific intrinsics.

The key idea is to accept the presence of intrinsics as an opportunity and a source of

information, rather than an obstacle. A graph based matching approach is developed,

which aims at substituting existing intrinsics with those available on the target machine

and possibly additional code providing compatibility. Descriptions of intrinsics are

provided for a number of different instruction set extensions using a custom descrip-

tion language, covering the syntactic and semantic specification of intrinsics. These

descriptions are translated to graph representations by the FREE RIDER tool, which
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then translates any C program written using one set of intrinsics (e.g. those for an

ARM CORTEX-M4 core) to make use of intrinsics of any other platform (e.g. INTEL

SSE). Any pair of the available architectures can be used, in either direction. This

translation process might also include additional source code transformations such as

loop unrolling to account for different SIMD word sizes of the source and target plat-

forms, respectively.

2.1.1 Motivating Example

Consider the example in Figure 2.1, which illustrates the steps involved in translating

a vector addition loop using intrinsics for an ARM CORTEX-M4 to an INTEL SSE-

enabled processor.

In Figure 2.1(a) ARM-optimised code is shown, which exploits the UADD8 intrinsic

available on the CORTEX-M4 platform and which provides convenient C-level access

to a quad 8-bit unsigned addition instruction implemented in the processor’s ISA. Us-

ing the UADD8 intrinsic four pairs of one-byte values are added using a single processor

instruction (line 10). To account for this implicit loop unrolling the surrounding loop

is incremented in steps of four (in line 9), whilst also enabling 32-bit data accesses

(rather than four individual 8-bit accesses). This is achieved by the access macro PV,

which performs the necessary 32-bit cast operation. The measurable benefit of us-

ing the UADD8 intrinsic in Figure 2.1(a) is a speedup of about four over a plain C

implementation such as shown in Figure 2.1(b) (on a FREESCALE KINETIS K70 im-

plementation of the ARM CORTEX-M4 core). However, higher performance for the

platform-specific code comes at a price – the code in Figure 2.1(a) is not portable and

does not work on platforms other than the ARM CORTEX-M4.

Porting of the code in Figure 2.1(a) to another platform is hindered by the fact

that a plain C version such as shown in Figure 2.1(b) is often not available. In this

situation, the user could (a) manually derive the plain C implementation and then try

to vectorise this code, either manually or using an auto-vectoriser, or (b) use the FREE

RIDER tool and methodology for automatic retargeting.

Now consider the automatically retargetted code, optimised for an INTEL processor

with SSE extensions, in Figure 2.1(c). It exploits the _mm_add_epi8 intrinsic, which

provides access to an 8-bit addition instruction that operates on two groups of sixteen

elements. Using the _mm_add_epi8 intrinsic sixteen pairs of one-byte values are added

in a single processor instruction (line 7). Accordingly, the loop increment has been
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1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;

2

3 / / . . . i n i t i a l i z e A and B . . .

4

5 / / Packed v e c t o r a c c e s s

6 # d e f i n e PV ( x ) ( ∗ ( ( u i n t 3 2 _ t ∗ ) (&x ) ) )

7

8 / / Compute loop wi th UADD8 i n t r i n s i c

9 f o r ( i n t i = 0 ; i < 128 ; i += 4 ) {

10 PV (C[ i ] ) =__UADD8 ( PV (A[ i ] ) ,PV (B[ i ] ) ) ;

11 }

12

(a) Platform-specific code using the ARM

UADD8 intrinsic. This code cannot be com-

piled with a compiler, that does not support

that intrinsic, and thus cannot be executed on

non-ARM platforms.

1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;

2

3 / / . . . i n i t i a l i z e A and B . . .

4

5 . . .

6 . . .

7

8 / / Compute loop

9 f o r ( i n t i = 0 ; i < 128 ; ++ i ) {

10 C[ i ] = A[ i ] + B[ i ] ;

11 }

12

(b) Portable, but frequently unavailable plain-

C implementation. Portable code versions are

often not maintained or even dropped from

code repositories as platform-specific opti-

mizations are introduced.

1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;

2

3 / / . . . i n i t i a l i z e A and B . . .

4

5 / / Compute loop wi th I n t e l SSE i n t r i n s i c

6 f o r ( i n t i = 0 ; i < 128 ; i += 16 ) {

7 SV (C[ i ] , _mm_add_epi8 ( LV (A[ i ] ) ,

8 LV (B[ i ] ) ) ) ;

9 }

(c) Platform-specific code using INTEL

_mm_add_epi8 intrinsic. Conceptually, the

code looks similar to (a), but features a

larger loop unrolling factor due to the target

architecture’s wider SIMD word size.

1

2 / / Load v e c t o r

3 # d e f i n e LV( x ) \

4 ( _mm_loadu_si128 ( ( __m128i∗ ) (&x ) ) )

5

6 / / S t o r e v e c t o r

7 # d e f i n e SV( x , y ) \

8 ( _mm_storeu_si128 ( ( __m128i∗ ) (&x ) , y ) )

9

(d) Auxiliary load/store macros for INTEL SSE

vectors complement the code in (c). On IN-

TEL, vector accesses require special vector

load and store intrinsics, whereas the ARM

code in (a) only requires suitable casting.

Figure 2.1: Motivating example illustrating the use of the intrinsics to speed up a vector addi-

tion loop. The code in Figure 2.1(a) is optimised for an ARM CORTEX-M4. This code makes

use of the ARM-specific UADD8 intrinsic and will not compile for e.g. an INTEL platform. Equiv-

alent plain-C code as shown in Figure 2.1(b) is often not available. Figure 2.1(c) shows the

vector addition loop from Figure 2.1(a) translated to an INTEL platform, now using the INTEL

_mm_add_epi8 SSE intrinsic. This translation requires not only substitution of the ARM intrinsic,

but additional code transformations. These comprise the introduction of suitable short vec-

tor accesses (Figure 2.1(d)), further loop unrolling to match the wider SIMD word size of the

INTEL architecture and dead store elimination of redundant flag setting operations implicitly

contained in the original ARM UADD8 intrinsic, which are not used in this example, but need to

be emulated where required.
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adjusted to sixteen (line 6), and 128-bit data accesses are provided by the access macros

LV and SV, shown in Figure 2.1(d). Without user intervention platform-specific ARM

code has been retargetted to an INTEL platform whilst retaining the performance
benefit of the original ARM intrinsic. Compared to a plain C baseline (such as the one

in Figure 2.1(b)) the code in Figure 2.1(c) is about ten times faster1.

FREE RIDER does not require a plain C implementation such as the one in Figure

2.1(b), but directly retargets platform-specific code where no plain C implementation

exists. Translation of intrinsics involves a number of processing steps briefly outlined

in Figure 2.2. We start with the code in Figure 2.1(a), but we do not have access to a

plain C implementation such as the one shown in Figure 2.1(b). As a first step of the

transformation process the UADD8 intrinsic is expanded in the internal representation

of FREE RIDER – it is essentially expressed as a vector of four additions followed by a

vector of four compare-and-set operations. This is shown in Figure 2.2(b) and follows

closely the specification of the UADD8 intrinsic from Figure 2.2(a). The next step is to

analyse which output of the intrinsic is actually used by the program. In the case of

the motivating example the result of the addition is later used (for outputting the result,

further computations, etc.), but the APSR register is never read. This register exists in

the ARM CORTEX-M4 core to set flags indicating different program status - zero re-

sult, negative result, overflow (as is the case of UADD8), and others. Since the register

is not read, writing to it is a waste of processing resources, so the compare-and-set op-

erations are removed altogether. In general, a whole-program analysis is performed to

check whether such writes to status registers are redundant or not. Another operation

performed at this step is to find appropriate target SIMD intrinsic that consists of the re-

maining core operation – addition. In the case of INTEL SSE this is the _mm_add_epi8

intrinsic, which has internal representation (c = a + b) x 16 - it is a vector of six-

teen additions. Since the widths of the vector operations do not match, the loop is

unrolled to fit an _mm_add_epi8 operation. This step is shown in Figure 2.2(c). Fi-

nally, when the resulting abstract representation matches exactly a target instruction it

is replaced by that instruction together with appropriate access macros. The resulting

code after retargeting, shown in Figure 2.2(d), matches the INTEL SSE implementation

from Figure 2.1(d).

This methodology has been implemented in the FREE RIDER tool and its effec-

tiveness is demonstrated using a set of compute-intensive OPENCV computer vision

benchmarks [18]. Automatically retargeting these benchmarks from an ARM NEON

1Memory access overheads prevent the speedup to reach its ideal value of sixteen.
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The __uadd8 intrinsic returns:

• the addition of the first bytes in each operand, in the first byte

of the return value

• the addition of the second bytes in each operand, in the second

byte of the return value

• the addition of the third bytes in each operand, in the third byte

of the return value

• the addition of the fourth bytes in each operand, in the fourth

byte of the return value.

Each bit in APSR.GE is set or cleared for each byte in the return value,

depending on the results of the operation. If res is the return value, then:

• if res[7:0] ≥ 0x100 then APSR.GE[0] = 1 else 0

• if res[15:8] ≥ 0x100 then APSR.GE[1] = 1 else 0

• if res[23:16] ≥ 0x100 then APSR.GE[2] = 1 else 0

• if res[31:24] ≥ 0x100 then APSR.GE[3] = 1 else 0.

(a) Specification of the ARM CORTEX-M4 __uadd8 intrinsic

[10].

1 / / Compute loop −
2 / / A b s t r a c t v e c t o r form

3

4

5 f o r ( i n t i = 0 ; i < 128 ; i +=4)

6 {

7 vector_4 [j = 0 .. 3]
8 {
9 C[ i + j ] = A[ i + j ] + B[ i + j ] ;

10 APSR.GE[j] = (C[i+j] > 0x100) ? 1:0;
11 }
12 }

13

14

15

16

17

18

(b) Code in abstract vector representa-

tion.

1 / / Reduced a b s t r a c t r e p r e s e n t a t i o n

2 f o r ( i n t i = 0 ; i < 128 ; i += 16 ) {

3 (C[ i ] = A[ i ] + B[ i ] ) x 16
4 }

(c) Unnecessary writes to APSR removed.

Unroll factor increased.

1 / / Compute loop − I n t e l SSE i n t r i n s i c

2 f o r ( i n t i = 0 ; i < 128 ; i += 16) {

3 SV (C[ i ] , _mm_add_epi8 ( LV (A[ i ] ) ,LV (B[ i ] ) ) ) ;

4 }

(d) Equivalent INTEL SSE code, which makes use of

the _mm_add_epi8 intrinsic.

Figure 2.2: Motivating example illustrating the transformation from the use of the

UADD8 intrinsic on the ARM CORTEX-M4 core (in Figure 2.1(a)) to the use of the IN-

TEL _mm_add_epi8 SSE intrinsic (in Figure 2.1(c)). The specification of the source

intrinsic (Figure 2.2(a)) is taken into account to convert the code to an abstract vector

representation (Figure 2.2(b)). The transformation requires not only substitution of the

ARM intrinsic, but additional code transformations, which comprise suitable short vector

accesses and further loop unrolling to match the wider SIMD word size of the INTEL

architecture. In addition, the overflow checking logic is removed, as the APSR register

is not read later in the program, making the writes to it unnecessary (Figure 2.2(c)).

Finally, the representation is lowered by using the target intrinsics (Figure 2.2(d)).
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platform to an INTEL EDISON module with short-vector SSE4.2 instructions, achieves

on average 96.0% of the performance of manually retargetted and optimised ports. Fur-

thermore, an evaluation against a full-scale robotic application [61], which implements

the computer vision component of a high-end autopilot for unmanned aerial vehicles

(UAV) delivers a speedup of 3.73 over a plain C baseline, when ported from an ARM

CORTEX-M4 platform to INTEL EDISON using the methodology presented here.

2.1.2 Contributions

This chapter makes the following contributions:

1. a novel, automated methodology for retargeting C code containing platform-

specific intrinsics, whilst making efficient use of those intrinsics offered by the

target platform is developed;

2. high-level descriptions of intrinsics, graph based matching and source-level code

transformations to account for differences in the SIMD word sizes between ma-

chines are combined in the presented approach; and

3. the methodology is evaluated using compute-intensive OPENCV benchmarks as

well as full applications and demonstrate performance levels competitive with

manual retargeting efforts.

This chapter is based on a published journal article [59], which in turn extends an

earlier conference article [58] in the following ways: a more complete specification

of the FREE RIDER Description Language and the structure of the files generated by

the FREE RIDER tool (in Section 2.3.3.1) is provided, the methodology is addition-

ally evaluated and the OPENCV benchmarks are retargetted from INTEL SSE to ARM

NEON to demonstrate both directions of translation, and the impact of the methodology

on code size is discussed (in Section 2.4).

2.1.3 Overview

The remainder of this chapter is structured as follows. Section 2.2 introduces the back-

ground on compiler intrinsics, target platforms and applications. Section 2.3 presents

the methodology for retargeting platform-specific intrinsics involving a high-level de-

scription of intrinsics, a graph-based matching algorithm, and source-level code trans-

formations. The results of the evaluation on benchmarks and full applications are
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presented in Section 2.4, before the context of related work is established in Section

2.5. Finally, Section 2.6 summarises and concludes.

2.2 Background

2.2.1 Target Platforms

The specific target platforms used in this research are the ARM CORTEX-M4 core, the

INTEL X86 processor, with short-vector SSE4.2 instructions, and the ARM CORTEX-

A9 processor, with ARM NEON SIMD instructions. The hardware implementations

used for evaluation are an NXP KINETIS K70 MCU, an INTEL EDISON, and a PAND-

ABOARD ES system, respectively. By providing further target descriptions (as de-

scribed later in this chapter) other platforms such as POWERPC/ALTIVEC could be

supported, but this is beyond the scope of this work.

The CORTEX-M4 processor is specifically developed to address digital signal con-

trol markets. It is designed so that it has low power consumption while offering high-

efficiency signal processing functionality, provided by instruction set extensions ac-

cessible through ARM specific intrinsics.

ARM NEON is ARM’s SIMD extension that targets more computationally demand-

ing tasks, e.g. video processing, voice recognition, or computer graphics rendering.

Architectures that support NEON have higher computational performance compared to

the CORTEX-M4 processor and are typically found as application processors within

mobile devices such as smartphones or tablets.

INTEL X86 on the other hand includes a huge family of processors, from embedded

low-power chips to high-end server CPU’s offering a one-size-fits-all instruction set.

SSE4.2 is an instruction set extension that allows INTEL X86 processors to execute

SIMD instructions on vectors up to 128-bit wide. This allows such processors to be

used efficiently for multimedia and graphics processing.

SIMD operations, both for ARM and INTEL, are accessible to the C programmer

by means of intrinsic functions. An intrinsic function is not explicitly defined by the

programmer, but is provided (as a built-in function) by the compiler, which replaces

an intrinsic function call with a hard-coded sequence of low-level instructions [12].

Examples for intrinsic functions are the UADD8 intrinsic for the ARM CORTEX-M4

processor and the _mm_add_epi8 intrinsic for the SSE instruction set extension, both

of which are part of the motivating example (Figure 2.1).
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In general, the operands of CORTEX-M4 SIMD instructions are 32-bit wide fields.

Depending on the instruction each operand is treated as a single 32-bit number, two

16-bit numbers, or four 8-bit numbers. The available operations that can be performed

range from simple operations like addition, to very specialised operations like the

SMLALDX instruction which performs dual 16-bit exchange and multiply with addition

of products and 64-bit accumulation. A list of the groups of available operations are:

addition (13 instructions), subtraction (13 instructions), sum of absolute differences

with or without accumulation (2 instructions), half-word multiply with addition or sub-

traction, with or without exchange, and with or without accumulation (12 instructions),

parallel add and subtract half-words with exchange (12 instructions), sign-extend byte,

with or without addition (4 instructions), half-word saturation (2 instructions), status

register based selection (1 instruction).

At the same time, the operands of INTEL SSE4.2 instructions are 128-bit wide

fields when they signify a vector, or any other type from the C programming language

when they signify vector elements, bitmasks, or shift values. The 128-bit wide fields

can be treated as vectors of two, four, eight, or sixteen elements of 64, 32, 16, or 8 bit

values, respectively, depending on the instruction. The available operations are not as

specialised as those of the CORTEX-M4 SIMD processor, but rather resemble standard

processor instructions that operate on vectors instead of single elements.

While there are also miscellaneous utility (e.g. cache control) instructions for the

INTEL SSE instruction set, primarily arithmetic instructions are targeted in this chap-

ter. The integer instructions can be grouped in the following categories: addition (8

instructions), subtraction (8 instructions), sum of absolute differences (1 instruction),

half-word multiply with addition (1 instruction), multiplication (5 instructions), maxi-

mum, minimum and average (6 instructions), shifts and bit-wise operations(22 instruc-

tions), comparison (9 instructions). The miscellaneous instructions that are of interest

are shuffle instructions and pack/unpack instructions. They can be used to implement

more complicated SIMD operations that include exchanging of vector elements.

Finally, the NEON extension is similar to SSE. Vectors can be either 64-bit or

128-bit wide and can contain signed or unsigned 8-bit, 16-bit, 32-bit, 64-bit integers,

or single precision float numbers. The operations that are supported include stan-

dard arithmetic and logical operations, comparison operations, memory operations and

shuffling operations. The more specialised operations which are not taken into consid-

eration include table lookup and complicated mathematical operations, like reciprocal

square-root estimate.
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2.2.2 Benchmark Kernels and Application

There are no readily available standard benchmarks, which make explicit use of intrin-

sic functions due to the resulting undesirable restriction to a single platform. Therefore,

a compute-intensive, open-source application extensively used in the academic, hobby

and industrial communities is used for evaluation here. This application is PX4 [61] –

a high-end autopilot for unmanned aerial vehicles (UAV) using computer vision algo-

rithms – jointly developed by researchers from the Computer Vision and Geometry, the

Autonomous Systems and the Automatic Control Labs at ETH Zurich (Swiss Federal

Institute of Technology).

PX4 has been developed and optimised for an ARM CORTEX M4F CPU and, in

particular, the optical flow module makes extensive use of SIMD intrinsics. Among

the most computationally intensive functions in the computer vision component are

those for the calculation of the Hessian matrix at a pixel location, the average pixel

gradient of all horizontal and vertical steps, the Sum of Absolute Differences (SAD)

of sub-pixel shift of two 8×8 pixel patterns, the SAD of two 8×8 pixel windows, and

the pixel flow between two images. These functions have been extracted and used in

isolation (to avoid system benchmarking involving the whole UAV) for the empirical

evaluation. A single function (absdiff ) is written entirely using ARM assembly, for

which we provide a portable C implementation.

In addition, a number of benchmarks extracted from the popular OPENCV com-

puter vision library [18] are used. These benchmarks comprise reference implemen-

tations, manually ported and optimised by an independent third party, supporting both

ARM and INTEL through platform-specific intrinsics. The benchmarks are used to

evaluate the performance and capabilities of the FREE RIDER retargeting tool in com-

parison to a manual effort.

2.3 FREE RIDER Methodology

2.3.1 Overview

The FREE RIDER tool performs four major transformation steps as shown in the overview

diagram in Figure 2.3: header generation, data-flow extraction, graph matching, and

source-level code transformation.

Initially descriptions of the source and target intrinsics are taken as inputs and

emulation C header files (in the style of [101]) are generated. These header files declare
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Figure 2.3: Stages of execution of the FREE RIDER tool
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Figure 2.4: Graph representation of the __UADD8 intrinsic. Arithmetic operations –

circled in red – represent the transferable core of the vector add instruction, whereas

the remaining parts implement the necessary comparisons for overflow checking and

flag setting. Frequently, the flag setting operations can be eliminated if the flags are not

used later on, i.e. they are “dead variables”.

and define portable C inline functions for the intrinsics of the source platform. Section

2.4 shows that the use of these "emulated" intrinsics results in portable code, but yields

a low performance level of only 82% of a plain C implementation of the corresponding

functionality on the target platform. This means that emulation of intrinsics through

inline C functions provides compatibility, but results in a performance penalty.

In a second step the header files are used as input to the next stage, in which data

flow graphs for each intrinsic are generated (see Figure 2.4 for example). These graphs,

annotated with the types of inputs and outputs, serve as intermediate representation.

Nodes of the graphs are also annotated with the operations performed, for example

vector addition or vector sum reduction. These data flow graphs are later used for

graph based pattern matching.

In the next step the C header files, the data flow graphs, and the source code of

the program under consideration are all fed to the matching stage of FREE RIDER. It

employs a greedy sub-graph isomorphism algorithm (similar to [57]) to match the data

flow graph of each intrinsic encountered in the source code with data flow graphs of

target intrinsics. The graphs of two target intrinsics can connect into a single graph,
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_mm_add_epi8

Figure 2.5: Matching of four __UADD8 intrinsics (in red) and one _mm_add_epi8 intrinsic

(in green) resulting from sub-graph isomorphism detection, loop unrolling and dead

variable/code elimination. The redundant flag setting computations have no counterpart

in SSE and either require additional scalar C code or can be eliminated if there are no

further uses of the flags (see also Figure 2.4).

by connecting the output nodes of one of them to the input nodes of the other by

an assignment edge. In this way multiple target intrinsics can cover completely or

partially a source intrinsic. For source intrinsics, which can only be partially covered

by target intrinsics, scalar C code is generated for the remaining, non-covered parts of

the data flow graphs. The output of this stage is C code of the target application with

its source intrinsics partly or fully replaced with those of the target platform, wherever

possible, and additional plain C code where a direct match is not possible.

Finally, the code resulting from substituting source intrinsics with target intrinsics

is further optimised. Checks are performed to remove dead computations and variables

(e.g. introduced as part of the flag setting operations in ARM intrinsics, see also Figure

2.5). Additionally, loop unrolling might be performed to adjust the possibly different

SIMD word sizes of the two platforms (also shown in Figure 2.5).

2.3.2 Description of Intrinsics

Intrinsics are described in a high-level, human readable format. The description com-

prises the following items: name of native platform, list of operand names and types,

output name and type, and the behaviour (a snippet of restricted C code). An ab-

breviated example of such a description is provided in Figure 2.6, which shows the

specification of the ARM UADD8 intrinsic.

The platform declaration of an intrinsic describes the SIMD instruction set that is

targeted, e.g. ARM NEON, ARM CORTEX M4, or INTEL SSE 4.2. Operand and result

types can be standard C types, or vector types which should also be described in a

format comprising the name of the native platform, total size in bits, and the type of a

single element (atom type). While this allows for nested types of vectors of vectors,
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1 d e f i n e i n t r i n s i c UADD8

2 {

3 p l a t f o r m ARM_CORTEX_M4

4 o p e r a n d s v a l 0 : uint8x4_t@32 , v a l 1 : u in t8x4_t@32

5 r e s u l t r e s : u in t8x4_t@32

6 b e h a v i o u r {

7 u i n t 8 x 4 _ t r e s ;

8

9 / / Load d a t a and c a s t t o p r e p a r e f o r

10 / / main o p e r a t i o n

11 u i n t 1 6 _ t a0 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 0 ) ;

12 u i n t 1 6 _ t a1 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 1 ) ;

13 u i n t 1 6 _ t a2 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 2 ) ;

14 u i n t 1 6 _ t a3 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 3 ) ;

15

16 u i n t 1 6 _ t b0 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 0 ) ;

17 u i n t 1 6 _ t b1 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 1 ) ;

18 u i n t 1 6 _ t b2 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 2 ) ;

19 u i n t 1 6 _ t b3 = ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 3 ) ;

20

21 / / Pe r fo rm a d d i t i o n s

22 / / Need 16− b i t i n t e r m e d i a t e r e s u l t s

23 / / t o d e t e r m i n e o v e r f l o w f l a g s

24 u i n t 1 6 _ t c0 = a0 + b0 ;

25 u i n t 1 6 _ t c1 = a1 + b1 ;

26 u i n t 1 6 _ t c2 = a2 + b2 ;

27 u i n t 1 6 _ t c3 = a3 + b3 ;

28

29 / / Ass ign r e s u l t s , c a s t i n g t o 8− b i t

30 UINT8X4_T_WRITE ( r e s , 0 , ( u i n t 8 _ t ) c0 ) ;

31 UINT8X4_T_WRITE ( r e s , 1 , ( u i n t 8 _ t ) c1 ) ;

32 UINT8X4_T_WRITE ( r e s , 2 , ( u i n t 8 _ t ) c2 ) ;

33 UINT8X4_T_WRITE ( r e s , 3 , ( u i n t 8 _ t ) c3 ) ;

34

35 / / F l ag s e t t i n g , depend ing on

36 / / 16− b i t i n t e r m e d i a t e r e s u l t s

37 i f ( c0 >= 0 x100 ) APSR_GE_SET ( 0 ) ; e l s e APSR_GE_RESET ( 0 ) ;

38 i f ( c1 >= 0 x100 ) APSR_GE_SET ( 1 ) ; e l s e APSR_GE_RESET ( 1 ) ;

39 i f ( c2 >= 0 x100 ) APSR_GE_SET ( 2 ) ; e l s e APSR_GE_RESET ( 2 ) ;

40 i f ( c3 >= 0 x100 ) APSR_GE_SET ( 3 ) ; e l s e APSR_GE_RESET ( 3 ) ;

41

42 / / Re tu r n r e s u l t

43 r e t u r n r e s ;

44 }

45 }

Figure 2.6: Example showing the high-level description of the ARM UADD8 intrinsic.
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this feature is not used as there are no instructions that operate on such complex types.

Thus, the atom type is a standard C type.

Behaviours of intrinsics, i.e. semantic actions, are expressed in a restricted subset of

the C language. During generation of header files, behaviours are used as the function

body of the generated inline function for the intrinsic.

Finally, platform-specific special registers can be described if they are used as part

of the side effects of an intrinsic function execution. An example of such register is the

ARM CORTEX-M4 APSR (Application Program Status Register), which is used e.g. for

indicating arithmetic overflow.

2.3.2.1 FREE RIDER Description Language (FDL)

Figure 2.7 shows the FDL grammar in BNF form. As described earlier, the intrinsic

definition includes a platform declaration, operand types, result type, and behaviour

description.

The architecture, also called platform in the description, is specified by a unique

identifying string, for example ARM_CORTEX_M4. As with the following constructs, an

example of this is shown in Figure 2.6.

The types of the operands and the output of the intrinsic are either types defined

in the stdint.h C header file (uint8_t, int16_t, etc.), or user defined types (shown

later in Figure 2.9). Most of the time, the last would be used, as there are no standard-

ized vector types in the C programming language, however the other two options are

necessary for supporting particular operations e.g. operations involving accumulator

variables. Alignment of the variables can be specified, by appending @<align-size>

after the types.

The descriptions of the intrinsics are provided in a simplified code in the C pro-

gramming language. The following guidelines have been observed during writing the

behaviours for the experimental evaluation.

Behaviour descriptions should begin with reading of the separate elements of each

of the argument vectors into separate variables. The names of these variables should be

a0, a1, etc. for the elements of val0; b0, b1, etc. for the elements of val1 and so on.

Operations should then be performed on each pairs of elements consecutively, storing

the results in a new variable every time. When all operations are performed, the results

need to be stored in the different elements of the output vector res. Afterwards flag

setting can be performed if needed and a single return statement should be present.

While this is a rather restrictive way of representing the behaviours of the intrinsics,
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1 < f d l−f i l e > : : = ( " d e f i n e " ( < i n t r i n s i c > | < r e g i s t e r > | < t y p e d e f >) ) ∗
2

3 < i n t r i n s i c > : : = " i n t r i n s i c " <name> " { "

4 " p l a t f o r m " <name>

5 " o p e r a n d s " < operands >

6 " r e s u l t " < v a r i a b l e >

7 " b e h a v i o u r " < b e h a v i o u r >

8 " } "

9 < operands > : : = < v a r i a b l e > ( " , " < v a r i a b l e >) ∗
10 < v a r i a b l e > : : = <name> " : " <name> "@" <number >

11 <name> : : = " [ a−zA−Z_ ] [ a−zA−Z0−9_ ]∗ "

12 <number > : : = " [1−9][0−9]∗ "

13

14 < r e g i s t e r > : : = " r e g i s t e r " <name> " { "

15 " p l a t f o r m " <name>

16 " wid th " <number >

17 ( " f i e l d s " " { " < f i e l d > ( " , " < f i e l d >) ∗ " } " ) ∗
18 " } "

19 < f i e l d > : : = <name> " [ " <number > ( " . . " <number >) ? " ] "

20

21 < t y p e d e f > : : = " t y p e " <name> " { "

22 " p l a t f o r m " <name>

23 " b i t w i d t h " <number >

24 " a tomtype " <name>

25 " mapping " " ( " " x " " : " " y " " [ " <number > " ] " " ) " " { "

26 < b i t−mapping >

27 < b i t−mapping >∗
28 " } "

29 " } "

30 < b i t−mapping > : : = " x " " [ " <number > " . . " <number > " ] " "−>"

31 " y " " [ " <number > " ] " " [ " <number > " . . " <number > " ] "

Figure 2.7: The formal grammar of the FREE RIDER Description Language in BNF. A

<behaviour> is a plain C function body and parsed using an embedded C parser.
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1 define register APSR

2 {

3 platform ARM_CORTEX_M4

4 width 32

5 fields { N[31], Z[30], C[29], V[28], Q[27], GE[19..16] }

6 }

Figure 2.8: Example showing the high-level description of the ARM APSR register.

there are several advantages to it. Firstly, it is relatively easy to analyse the resulting C

code and build a control-flow graph from it. Furthermore, due to the repetition of oper-

ations for each element, the graph can be manipulated to a control-flow graph of vector

operations, rather than single element operations. At the same time the code represent-

ing the behaviour can be directly compiled by using any standard C compiler and thus

no further modification of the code is needed to achieve portability. Furthermore, the

format allows many default optimizations to be performed, which would eliminate the

performance overhead of repetitive code. Finally, since the behaviour description is

very explicit and does not include obscure statements involving multiple operations or

potentially confusing pointer operations then it is easier to verify the correctness just

by looking at the code and before using more detailed and robust verification mecha-

nisms.

It is important to note that by no means are these restrictions imposed by the

methodology, but are merely guidelines. The level of complication that is allowed

in the behaviour description is limited only by the C language analysis sub-module

of FREE RIDER, which is independent of the rest of the system and can be easily

improved or replaced.

Moving on to defining a custom register, in order to do so one needs to specify

its platform, bit width, and fields, each corresponding to a sequence of bits within the

register. The platform declaration requirement is the same as for intrinsics and the bit

width is a valid integer - usually a power of 2. Fields are specified as a list of named

elements, each followed by its bit position within the register. If a field spans multiple

bits then this can be specified by field[bitstart . . .bitend]. Figure 2.8 shows an

example description of a register.

To conclude the section on FDL, platform specific vector types are defined using

the type declaration construct. Users need to specify the platform, the total bit width



2.3. FREE RIDER Methodology 27

1 define type uint8x4_t

2 {

3 platform ARM_CORTEX_M4

4 bitwidth 32

5 atomtype uint8_t

6 mapping (x:y[4]) {

7 x[7..0] -> y[0][7..0]

8 x[15..8] -> y[1][7..0]

9 x[23..16] -> y[2][7..0]

10 x[31..24] -> y[3][7..0]

11 }

12 }

Figure 2.9: Example showing the high-level description of the ARM type for a vector of

4, byte-sized unsigned integers.

of the vector, the type of a single element from it, and the mapping from bit ranges to

vector elements. The platform declaration agrees with that of intrinsics and registers.

The total bit width of the vector is the amount of memory that is required to store all

of its elements. As an example, a vector of 8 elements, 8-bit wide each, has a total bit

width of 64 bits.

The type of the single element of a vector type is called atom type in the description

file. It must be one of the default types of the C programming language or a type

defined in the stdint.h header file.

Finally, in the mapping field, one needs to specify the vector width as w in y[w].

It should agree with the total bit width divided by the width of the atom type. Each

element k is mapped by a declaration of the form

x[startx . . .endx]→ y[k][starty . . .endy]

where an index = 0 represents the least significant bit. This allows for conversions

of endianness (by reversing the bit-range) and elements split over multiple locations.

Figure 2.9 shows an example of a vector type definition.

2.3.3 Generation of C Header Files

After the intrinsic descriptions are provided they are used to generate one C header

file per platform. Definitions of the custom types are output first together with macro
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functions to read and write separate elements of a vector. Then, special registers are

implemented as bit field structures and access macros for them are generated.

After this supporting code has been created, the implementation of the intrinsic

functions as inline C functions is generated. Signatures are generated using the type

information for the operands and the result, and the body of the functions are copied

from the behaviour descriptions.

Using the generated header files, a data flow graph is derived for each intrinsic

using standard data flow analysis techniques. These data flow graphs, together with

the input/output type information of each intrinsic are used in the matching stage as

descriptions of the intrinsics.

2.3.3.1 Structure of the generated files

Each generated header file describes all the information FREE RIDER has about the

corresponding platform. Types are implemented as C structs that contain an array

representing the vector. The type of the array is the same as the atom type in the

definition, while its size is the total bitsize of the vector divided by the bitsize of an

individual element.

In order to access the elements of a vector type READ and WRITE access macros are

generated as part of the definition. These macros implement the switch of endiannes if

there is one, and splitting and combining of fragmented elements, if there are any. In

their simplest form, they just use the elements of the underlying C array as the elements

of the vector. Figure 2.10 shows an example of a generated type.

1 typedef struct {

2 uint8_t _[4];

3 } uint8x4_t;

4

5 #define UINT8X4_T_READ(v, i) (v._[i])

6 #define UINT8X4_T_WRITE(v, i, x) (v._[i] = x)

Figure 2.10: Example showing the representation of the ARM type for a vector of 4,

byte-sized unsigned integers. This representation is generated by FREE RIDER.

As mentioned earlier, platform specific registers are implemented as bitfields, with

each flag given its required number of bits. Access macros are generated for each flag,

so that they set and reset in an implementation independent manner. Flags that cover
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multiple bits of the register have more complicated access macros, that take the index

of the bit to be modified as an argument. Figure 2.11 shows an example of a generated

register together with its access macros.

1 typedef struct {

2 int _ : 23;

3 int GE : 4;

4 int Q : 1;

5 int V : 1;

6 int C : 1;

7 int Z : 1;

8 int N : 1;

9 } _APSR;

10

11 _APSR APSR;

12

13 #define APSR_N_SET() (APSR.N = 1)

14 #define APSR_Z_SET() (APSR.Z = 1)

15 #define APSR_C_SET() (APSR.C = 1)

16 #define APSR_V_SET() (APSR.V = 1)

17 #define APSR_Q_SET() (APSR.Q = 1)

18 #define APSR_GE_SET(i) (APSR.GE |= (1 << i))

19

20 #define APSR_N_RESET() (APSR.N = 0)

21 #define APSR_Z_RESET() (APSR.Z = 0)

22 #define APSR_C_RESET() (APSR.C = 0)

23 #define APSR_V_RESET() (APSR.V = 0)

24 #define APSR_Q_RESET() (APSR.Q = 0)

25 #define APSR_GE_RESET(i) (APSR.GE &= ((1 << 4) - (1 << i) - 1)

)

Figure 2.11: Example showing the representation of the ARM APSR register. This rep-

resentation and access macros are generated by FREE RIDER.

Finally, the C functions implementing the intrinsics are generated. The return type

is copied from the type of the result variable in the description, and the arguments

have the types and names of the specified operands. The body of the function is directly

pasted from the behaviour block in the description. Figure 2.12 shows an example of
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a generated function emulating an intrinsic, with the body of the function omitted, as

it is exactly the same as the one shown in 2.6.

1 uint8x4_t UADD8(uint8x4_t val0 , uint8x4_t val1) {

2 ...

3 }

Figure 2.12: Example showing the implementation of the ARM UADD8 intrinsic. The

body of the function is equivalent with the behaviour block in Figure 2.6.

2.3.4 Graph Matching and Source-level Transformation

The process of matching intrinsics is outlined in Figure 2.13. Given the data flow graph

of a source intrinsic, an intrinsic from the target platform is searched for using the VF2

graph/sub-graph isomorphism algorithm and library described in [24].

Since graph matching is an NP-complete problem, but one with great importance

to many areas in computer science, there are multiple approaches to efficiently finding

a solution. The one used for the FREE RIDER tool employs a deterministic algorithm

and a State Space Representation (SSR) of the problem, to iteratively build a solution.

There are five feasibility rules that are applied to pairs of nodes from the graphs being

matched to help prune the search tree quickly. A total order relation guarantees that

the applied Depth-First Search (DFS) does not reach the same state of the SSR twice,

but via different paths. All of these techniques add up to an efficient graph-subgraph

isomorphism algorithm. For more details, please refer to the original article [24].

The overhead that is added to the compilation time by using this algorithm is im-

measurably small for all test cases. Its authors evaluate that it can match graphs up to

2000 nodes in under a tenth of a second. Since the graphs built by FREE RIDER used

to represent the intrinsics are quite small in comparison (under 20 nodes for the most

complicated intrinsics) the added overhead due to graph matching is negligible.

When a structural and operational match is found, the type information of the found

operation is compared with the type information at the source location of the match. If

the vector widths of the operands and the result match, the matching part of the graph

is directly replaced with the found intrinsic and the process is repeated until no further

unmatched parts of the source dataflow graph can be found or there are no more target

operations that can cover the remaining graph.
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Figure 2.13: High-level algorithm for matching source and target intrinsics including

loop unrolling for adjusting different SIMD word sizes and alignments. This algorithm

is performed once per source intrinsic. In the case where the unrolling of the loop

containing the intrinsic fails (e.g. when there is no such loop) then the matching of

that intrinsic fails too. No further attempts are performed and instead, the intrinsic is

emulated by replacing it with the equivalent C code.
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There are two reasons for possible mismatches of vector widths: (a) The target

intrinsic is too narrow (i.e. it contains fewer operands than the corresponding source

intrinsic), or (b) it is too wide (i.e. it contains more operands than the source intrinsic).

In the first case, the target intrinsic can be invoked as many times as it takes to match

the width of the source vector (e.g. using four 4-element additions to implement one

16-element addition). In the second case, loop unrolling is required in order to enable

a match (e.g. unroll a loop containing a 4-element addition in order to use a 16-element

addition to implement four 4-element additions from four iterations).

In case loop unrolling is required it is performed alongside further data alignment.

The latter might be necessary if arrays are not accessed in order, but some elements

are skipped over. If either the unrolling or the data alignment steps fails, the matching

fails and the default replacement with plain C code is performed to ensure correctness

of the result. However, if they succeed the whole process is repeated again, until no

further matches can be found.

Substitution of intrinsics as well as optimisation (loop unrolling, alignment, dead

code/variable elimination) are implemented as source-level transformations. This means

that C code enhanced with target intrinsics is generated, which can be compiled with

the standard compiler for the target platform.

2.3.5 Limitations

As described in Section 2.2, intrinsics available for one platform cannot always be ex-

pressed by intrinsics available on another platform, or even in standard C code. Exam-

ples of such intrinsics are cache-ability and synchronisation operations. The approach

presented in this chapter is limited to standard data processing operations and does not

consider complex intrinsics whose behaviours cannot be expressed in C.

2.4 Empirical Evaluation

2.4.1 Evaluation Methodology

In order to evaluate it, the FREE RIDER methodology was applied to automatically

retarget ARM-specific benchmarks and applications to an INTEL SSE enabled platform.

The system used for performance evaluation is an INTEL EDISON module running at

500 MHz. The available physical memory is 1GB and the operating system is YOCTO

LINUX, kernel version 3.10.17. All the benchmarks run on a single processor core.
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In addition, INTEL SSE-optimised applications have been retargeted to an ARM

NEON enabled platform. The system that was used for this part of the evaluation is a

PANDABOARD ES device, containing an OMAP4460 system-on-chip that implements

ARM CORTEX-A9 and running at 1.2 GHz. The available physical memory is 1GB

and the operating system is UBUNTU LINUX, version 12.04. For this part, all bench-

marks run on a single processor core too.

Performance is measured by using the UNIX program time to retrieve the total

execution time of each benchmark. This is repeated between 30 and 100 times, de-

pending on the variation of the measurements (until the 95 % confidence interval is 0.5

% around the mean). The average of all runtimes per benchmark is considered to be

the representative runtime for that benchmark. Error bounds are not included, as they

are too small to plot (less than 0.5 % for all benchmarks).

The OPENCV benchmarks are selected from the default sample programs that are

provided with the OPENCV library, version 3.0.0-beta. They have been prepared

by removing the user interaction and substituting it with command line arguments

and stdout messages. The eight benchmark programs selected for the evaluation of

this chapter each contain a significant part (> 10% of CPU time) executing vectoris-

able code. This was computed by compiling OPENCV with and without the included

manual vector optimisations and comparing the runtimes of each benchmark for the

two cases. Each of the benchmarks makes heavy use of functions provided by the

OPENCV library. Many of these OPENCV functions have been manually ported and

optimised for different target architectures, including ARM and INTEL. Benchmarks

take between 0.3 and 100 seconds to execute, depending on the benchmark.

For the first part of the evaluation, the ARM ports of these functions are taken, they

are automatically retargetted to INTEL, and then the performance of these automati-

cally retargetted codes is evaluated in comparison to the manual INTEL port provided

with OPENCV. For the second part, the opposite is done: the INTEL ports of the func-

tions are taken, they are automatically retargetted to ARM-optimised code, and then

their performance is evaluated in comparison to the manual ARM port provided with

OPENCV.

Table 2.1 provides descriptions of the benchmarks. All of these benchmarks are

real-world examples of programs from the computer vision domain.

The SSE intrinsics that were implemented include 14 arithmetic operations, 15

logical and comparison operations, 16 memory and initialisation operations, 4 conver-

sion operations, and 8 shuffling operations. These correspond roughly to the NEON
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Benchmark Summary

calib Calibrates a camera given a sequence of images.

bgfg Split of background and foreground of video.

edge Canny edge detection on an image.

align Automatic alignment of an image.

polar Polar transformation on a video.

segm Automatic segmentation of objects in a video.

stitch Stitching multiple images into a mosaic.

vstab Automatic stabilisation of a video.

Table 2.1: OPENCV benchmark applications.

intrinsics that were implemented which include 21 arithmetic operations, 13 logical

and comparison operations, 19 memory and initialisation operations, 12 conversion

operations, and 8 shuffling operations. The greatest discrepancy is in the number of

conversion operations. There are more NEON conversion operations because NEON

allows for two vector widths (64- and 128-bit), and can convert between them, adding

8 operations.

The arithmetic operations comprise different versions of additions, subtractions,

and multiplications, in addition to a single operation for division, maximum, minimum,

and square root. The logical operations comprise different versions of logical ands, ors,

xors, and shifts, whereas the comparison operations are comparisons for equality and

strict inequalities.

The implemented memory operations comprise different loads and stores, whereas

the initialisation operations are generating vectors, all depending on the data type of the

given argument. The conversion operations convert the elements of the vector between

different datatypes. Finally, the shuffling operations comprise instructions that reorder

the elements of a vector in different ways.

On the target INTEL system, the CLANG/LLVM compiler is used to produce exe-

cutable binaries. For comparison, an experiment where plain C sources are presented

to the compiler for auto-vectorisation of the PX4 application was also conducted.

When targeting ARM, CLANG/LLVM was used for compilation again, this time

however cross-compiling from an INTEL host.
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2.4.2 Benchmark Performance Results

Figure 2.14 shows the results from running the automatically ported OPENCV ARM

benchmarks on the INTEL evaluation system. While manually ported SSE code deliv-

ers a speedup of 1.26 over a plain C baseline, the FREE RIDER ports approach this

performance delivering a speedup of 1.21. On average, FREE RIDER produced code

that delivers a performance of about 96% of a manually ported and optimised INTEL

SSE implementation. For every single benchmark the FREE RIDER port outperforms

its plain C baseline, despite attempts of the compiler to auto-vectorise this plain C

code. Even for the worst performing benchmark (polar) the automatically retargetted

implementation outperforms the plain C baseline and delivers a speedup just about 6%

lower than that of the manual port.
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Figure 2.14: These OPENCV applications have been ported automatically from ARM

NEON to INTEL SSE. Each bar reports the speedup per benchmark over a plain C

baseline. In each case, the automatically retargetted version produced by FREE RIDER

outperforms the plain C baseline. In fact, the performance of the auto-generated ports

approaches that of the manually ported OPENCV applications, tuned extensively by the

OPENCV community developers. On average, 96% of the speedup of a manual port is

achieved, without paying the cost involved in manual code rewriting.

Similarly, Figure 2.15 shows the results from running the automatically ported

OPENCV INTEL benchmarks on the ARM evaluation system. The manually optimized

NEON code delivers a speedup of 1.31 over a plain C baseline, the FREE RIDER-ported

applications perform comparatively well, with an average speedup of 1.26. Thus, FREE
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RIDER produced code that again delivers a performance of about 96% of the manually

ported and optimised ARM NEON implementation.
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Figure 2.15: The same OPENCV applications as in Figure 2.14, this time ported au-

tomatically from INTEL SSE to ARM NEON. Expectedly, the results are similar to those

shown in the previous Figure. 96% of the speedup of a manual port is still achieved,

without paying the cost involved in manual code rewriting.

Closer inspection of the generated code revealed that the remaining performance

differences between the manual and the auto-generated ports are mainly due to addi-

tional code restructuring performed by the expert programmers and optimisations to

the scalar code surrounding the intrinsics.

For the evaluation of the impact on code size, the executable segments of the com-

piled OPENCV library were compared before and after optimization. It was observed

that the difference between the two versions was negligible, with the optimized version

less than 1% larger than before. The reason for this relatively small impact on code

size is that the volume of code transformation is minuscule in comparison to the whole

code base of the library. At the same time the resulting optimized code is contained in

performance hotspots and contributes substantially to the overall runtime performance.

2.4.3 Application Performance Results

Next, let us focus on porting a larger application – the PX4 computer vision system –

from ARM CORTEX-M4 to INTEL SSE. Figure 2.16 shows a set of results from run-

ning the target application in different configurations on the INTEL evaluation system.
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The first configuration is a plain C baseline derived from the application’s original

sources. All further results are relative to this baseline configuration. As shown in

Figure 2.16 the compiler fails to automatically vectorise this application, hence perfor-

mance levels with and without compiler vectorisation are the same.
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Figure 2.16: Relative performance of the ported PX4 application on the INTEL platform

relative to a plain C baseline. Compiler vectorisation is not effective as it fails to de-

tect and exploit vectorisation opportunities. Emulation of ARM intrinsics through inline

functions, implemented in plain C, eases portability, but degrades performance with and

without compiler vectorisation efforts. The automatically generated FREE RIDER port

is capable of exploiting SIMD parallelism on the INTEL platform and delivers an almost

four-fold speedup over the plain C baseline.

If ARM intrinsics are emulated by inline C functions, following an approach out-

lined in [101], performance suffers resulting in a drop of execution speed of about

18%. Again, the LLVM compiler’s auto-vectoriser fails to exploit any vectorisation

opportunities.

In contrast, the port produced by FREE RIDER substantially outperforms the base-

line implementation. The reason for this is that even though FREE RIDER fails to

exploit some optimisation opportunities due to irregularity of data accesses, it man-

ages to vectorise the code in the most critical loop of the program and achieves a 3.73

performance speedup. It clearly demonstrates that FREE RIDER is capable of exploit-

ing the source platform’s intrinsics and mapping them onto corresponding intrinsics of

the target platform. For the INTEL target platform used in this study this is close to the

ideal four-fold speedup attainable using four-way SIMD processing.

Finally, Figure 2.17 illustrates how code size of the program is affected by the



38 Chapter 2. Free Rider

px4
0

0.5

1

1.5

2

1 1.
05 1.
11

O
ut

pu
tc

od
e

si
ze

plain C
CM4 emulation

FREE RIDER port

Figure 2.17: Relative code size of the ported PX4 application on the INTEL platform

relative to a plain C baseline. In this example, the baseline application is optimized for

code size and the emulation version is 5% larger. This is expected, as instructions which

would include intrinsics in the original program are implemented as inline functions in

the emulated one. The ported program is even larger, at 11% code size increase from

the baseline. This is the case, because the translation of the intrinsics was produced

after an aggressive transformation that results in multiple target intrinsics. This size

growth is justified by the performance benefit discussed earlier.

transformation performed by FREE RIDER tool. The net effect is a 11% increase in

code size, while performance increases by 273% over a plain C implementation. The

increase in code size can be largely attributed to the source level transformations ap-

plied to the programme, in particular loop unrolling.

2.4.4 Coverage and Frequency of Intrinsics

Tables 2.2 and 2.3 list those intrinsics that were encountered in the translation pro-

cess of the benchmarks (ARM NEON to INTEL SSE) and the larger application (ARM

CORTEX-M4 to INTEL SSE). In addition, the frequency of occurrence in the bench-

mark sources is listed for each intrinsic. The first part of each table lists the intrinsics

involved in the translation of the target application, while the second part lists the in-

trinsics involved in the translation of the benchmarks.

Some of the lines in the table represent multiple intrinsics, which is indicated by

the names ending in an asterisk. An example is the _mm_add* line from the SSE table,

which represents four intrinsics: _mm_add_epi16, _mm_add_epi32, _mm_add_ps, and

_mm_adds_epi16. Also, some of the lines represent a group of instructions separated

by a forward slash, for example vceq*/vcgt*/vcge*/vlt*/vle*.
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Intrinsic Frequency

__USADA8 36

__UHADD8 24

__UADD8 3

__USAD8 2

vld* 50

vadd* 38

vsh* 35

vdupq_n_* 27

vget_* 26

vmov* 26

vst* 24

vqmov* 22

vand* 16

vmul* 16

vcombine_* 15

vceq*/vcgt*/vcge*/vlt*/vle* 8

vsub* 7

vmin*/vmax*/vabs* 5

vqdmulhq_s16 4

vmla* 4

vbslq_f32 3

vzip_s16 2

vsqrt* 2

Table 2.2: Frequency of occurrence of ARM CORTEX-M4 and ARM NEON intrinsics in

the benchmarks and application. Each line represents a single or multiple intrinsics.

In the latter case the name ends with an asterisk to indicate that there are different

variants available. The number of multiple intrinsics per line varies from 2 to 5.
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Intrinsic Frequency

_mm_srli_epi32 40

_mm_add_epi16 40

_mm_loadu_si128 34

_mm_store_si128 27

_mm_and_si128 24

_mm_set1_epi32 22

_mm_sub_epi16 20

_mm_abs_epi16 20

_mm_unpackhi_epi8 20

_mm_unpacklo_epi8 20

_mm_add_epi8 7

_mm_or_si128 6

_mm_load* 66

_mm_sll/sra/srl* 51

_mm_pack/unpack* 43

_mm_store* 40

_mm_add* 39

_mm_mul* 30

_mm_set* 27

_mm_and* 17

_mm_xor* 17

_mm_cmp* 16

_mm_cvt* 13

_mm_sub* 11

_mm_andnot_si128 7

_mm_sqrt_ps* 2

_mm_min/max_ps 2

_mm_div* 1

_mm_or_si128 1

_mm_movemask_epi8 1

Table 2.3: Frequency of occurrence of INTEL SSE intrinsics in the retargetted bench-

marks and application. Asterisks are used similarly to Table 2.2. The first part of the ta-

ble summarises statistics for the automatic translation of the target application, whereas

the second part summarises statistics for the benchmarks.
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The following a couple of interesting observations in Tables 2.2 and 2.3. Firstly,

there are a lot more occurrences of INTEL intrinsics when compared to ARM intrinsics.

This is because INTEL SSE was the destination platform during the experiments and

a single source intrinsic might be mapped to one or more destination intrinsics. As

a result, the code ends up with more target intrinsics than source intrinsics after the

translation. This is more pronounced in the translation between ARM CORTEX-M4

and INTEL SSE compared to the translation between ARM NEON and INTEL SSE

since the first pair of platforms is more dissimilar (as explained in Section 2.2.1) than

the second. Secondly, the tables show that FREE RIDER is capable to cover wide range

of intrinsics, which enable one to automatically process not only isolated benchmarks,

but complex real-world applications resulting in performance levels approaching those

of manual retargeting and optimisation.

2.5 Related Work

Handling of intrinsic functions by the compiler has found little attention in the aca-

demic community, possibly due to their normally straight-forward, but target- and

compiler-specific implementation. Among the few publications dealing with various

aspects related to intrinsic functions are the following.

Compilation for multimedia instructions has been an active research area for over a

decade [89, 49, 78, 42, 90, 36]. Krall and Lelait [49] describe basic compilation tech-

niques for multimedia processors. They compare classical vectorisation, borrowed

from the age of the vector supercomputers, to using loop unrolling for vectorisation.

The mentioned classical vectorisation employs a dependency analysis and might fail

if the operations within the loop are not vectorisable. Loop unrolling is more likely

to succeed, as the operations of consecutive loop iterations are the same – thus vec-

torisable. The only reason for failure is that there might be loop carried dependencies.

The authors also explore the problem of unaligned memory accesses. FREE RIDER al-

lows alignment to be specified in the description of architectures and honours it during

translation.

Pokam et al. propose SWARP [78] – a retargetable preprocessor for multimedia

instructions that is extendable by the user. Their work allows taking advantage of vec-

tor operations, without the programmer specifying that intention in the source code,

i.e. the input provided to SWARP is plain C and it generates C code, which uses SIMD

extensions. A flexible idiom recognition phase eases the retargeting of the system to
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new machines without changing SWARP itself. The approach presented in this chapter

is different in that it is retargeting platform-specific intrinsics. FREE RIDER leverages

the expertise already invested in optimising the application to one platform and tries

to maintain this information when translating to another platform. The idiom recogni-

tion is replaced by the matching phase of the technique presented in this chapter, and

flexibility is achieved by the intrinsic description language, which is used to describe

different targets.

Similar approaches, all operating on plain C input and trying to extract super-word

level parallelism within an optimising or vectorising compiler are described in [90, 89,

42, 36]. Whilst these techniques are useful for the initial identification of vectorisation

opportunities in C code, they fail to process applications, which have already been

vectorised for a particular platform using intrinsics.

A graph based instruction selection technique has been developed in [70], where

the compiler targets automatically generated instruction set extensions, where instruc-

tion patterns are not tree shaped, but highly irregular and sometimes larger (up to 12

inputs and 8 outputs) than typical multimedia instructions. The graph pattern matching

approach used in this chapter is somewhat comparable to that in [70], however, the pur-

pose of the work presented here is to aid the user retargeting an application optimised

for a platform other than the current target platform, whereas graph pattern matching

is used in [70] to match highly idiosyncratic instructions.

Modelling of instruction semantics in ADL processor descriptions for C compiler

retargeting has been presented in [22]. The focus of this work is more on generating

a basic compiler using an architecture description, rather than retargeting of existing,

optimised code.

Implementation of intrinsic functions for a DSP compiler is subject of [12]. This

article proposes and implements a new approach to intrinsic functions where the pro-

grammer targets a compiler’s intermediate representation rather than the assembly lan-

guage of a particular processor.

A general introduction to intrinsics for vector processing in the GCC compiler is

provided in [48].

Possibly most relevant to the work presented in this chapter is [101], where a set of

hand-coded inline functions compatible with ARM NEON intrinsics is provided for an

INTEL platform with SSE. The result is a similar “emulation” layer providing porta-

bility for a particular combination of intrinsics (ARM NEON to INTEL SSE), but unlike

FREE RIDER this is not automated and retargetable to any platform, but the result of a
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major manual implementation effort for one specific pair of platforms.

2.6 Summary & Conclusions

This chapter has described a new methodology for retargeting platform-specific intrin-

sics from one platform to another. A description language is used to specify signatures

and semantics of intrinsics of both platforms. These descriptions are processed by the

FREE RIDER tool, which performs subgraph isomorphism checking to substitute one

set of intrinsics with one or more intrinsics of the target platform, plus additional scalar

code wherever needed. In addition, FREE RIDER performs source-level loop unrolling

in order to account for differences in SIMD word sizes and alignment, and dead vari-

able/code elimination to remove artefacts introduced by the substitution of intrinsics.

The methodology has been evaluated by automatically porting OPENCV benchmarks

optimised for ARM NEON and a compute-intensive application optimised for the ARM

CORTEX-M4 processor to SSE4.2 enabled INTEL X86 processors (and vice-versa).

This chapter demonstrates that FREE RIDER can take advantage of intrinsics, and that

automatically retargetted code delivers performance levels comparable to manually op-

timised code for the target platform. A speedup of up to 3.73 over a plain C baseline

is achieved on an INTEL EDISON module for the target application, and on average

96.0% of the speedup of manually ported and optimised versions of the benchmarks.

With this, a crucial aspect of the problem of functional portability has been ad-

dressed: usage of platform-specific intrinsic functions and how to overcome it when

retargeting legacy programs to newer architectures. The approach presented in this

chapter is also shown to maintain high enough performance portability so that the

need for manual translation or performance tuning is alleviated except in the most per-

formance critical applications. The main inspiration for this chapter (as the name of

the project illustrates) is the leveraging of information about performance improvement

opportunities that is already present in the program source code. The rest of the thesis

focuses on discovering such opportunities instead, maximizing performance portabil-

ity. Chapter 4 presents a novel generalised iterator recognition technique that combines

static analysis and profiling information. Leading up to that, Chapter 3 presents an im-

provement of a recent context aware data profiling framework that is used to gather the

necessary profiling information for the analysis in Chapter 4.





Chapter 3

Data Access Profiling

3.1 Introduction

Data dependence analysis for imperative languages is statically undecidable in the gen-

eral case [54]. While it is possible to obtain concrete results for some limited cases,

in general, if programs have calls to functions that cannot be inlined (e.g. external

libraries) and perform pointer arithmetic with variables of unknown values (e.g. pro-

gram inputs), then there might be dependencies where the source or target variables are

impossible to pinpoint at compile time. Sophisticated static analyses can try to work

around these obstacles and achieve practical (albeit partial) results, but even then, find-

ing an example program that defeats these analyses is not a hard task.

A way to overcome the undecidability of static analysis is to use dynamic analysis:

incorporating information about the program behaviour during runtime, in addition

to the information that can be extracted from the source code statically. A dynamic

system that tracks data dependencies is called a dependence profiling framework and

consists of an instrumentation phase and a profiling phase. The subject program is first

instrumented – calls to the profiling runtime are inserted at key points – and then it is

profiled: the instrumented program is executed and runtime information is collected.

This chapter considers four features of dependence profiling frameworks: com-

pleteness, context precision, granularity, and runtime performance. A complete pro-

filing framework can be used to profile any program written in the programming lan-

guage it is made to handle, regardless of the way the language is used. While it is hard

to quantify completeness, a framework that can be used to profile a superset of the

programs that another framework can be used to profile can informally be said to be

‘more complete’. The framework presented here is complete enough to analyse all of

45
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the SPEC CPU2006 benchmarks. As such, it is strictly more complete than any other

state-of-the-art dependence profiling framework.

Context precision concerns the amount of runtime information associated with a

dependence, that the profiling framework collects. There could be no context at all,

where only the static IR instructions which result in the dependence are recorded and

in such cases there is zero context precision. When context is collected, however, it can

include the function call stack at the point where an instruction is executed, loop nest-

ing in the most recent function or inter-procedural loop nesting across the whole call

stack, and even information about the state of data structures. This chapter presents a

technique that collects call stack information and inter-procedural loop nesting infor-

mation, as this is crucial information for its major application: the iterator recognition

framework presented in Chapter 4. In order to achieve that, a new approach to up-

dating the runtime context information during recursive and indirect function calls is

presented here.

The granularity of profiling relates to the program elements that dependencies are

built between. When it is fine-grained, profiling considers the smallest elements of the

intermediate representation: instructions. The granularity spectrum goes through sets

of instructions, whole basic blocks, groups of blocks, or entire function bodies. Most

state-of-the art frameworks work above the instruction level granularity in order to

achieve better runtime performance. In contrast, this framework tracks dependencies

between instructions, as the desired outcome is a detailed dependence graph for every

loop, needed by the iterator recognition framework presented in Chapter 4.

Finally, runtime performance is higher if the time taken to execute the instrumented

program is shorter and the amount of memory used is smaller. Traditionally, re-

search has been mainly concerned with reducing the runtime performance of profiling

frameworks to the detriment of completeness, granularity, and context precision. The

framework described in this chapter is complete enough to profile the SPEC CPU2006

benchmarks, has the context precision of inter-procedural loop nesting information

combined with the call stack, and has instruction level granularity. At the same time,

Section 3.5 shows that the runtime performance is good enough for the main applica-

tion of the framework – enhancing the analysis presented in Chapter 4 – as profiling

the SPEC CPU2006 benchmarks takes on average 7.1 hours and 9.4 GB of additional

memory.
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3.1.1 Contributions

This chapter presents a data dependence profiling framework. The main contributions

of the work are the following:

1. The framework is strictly more complete than any other state-of-the-art frame-

work as it is capable of profiling all of the SPEC CPU2006 benchmarks.

2. A new approach to updating the runtime context information during recursive

and indirect function calls is presented, which allows efficient tracking of this

information.

3. Evaluation shows that the performance of the technique is good enough for the

main application of the framework: the one-off analysis presented in Chapter 4.

3.1.2 Overview

The rest of this chapter is structured as follows. Section 3.2 discusses the features

of the LLVM compiler infrastructure, the intermediate representation, and the assem-

bly language, after discussing the features of the SPEC CPU2006 benchmark suite.

Section 3.3 builds a set of definitions and uses them to accurately describe the instru-

mentation phase of the profiling framework. Section 3.4 describes the functions and

data structures that comprise the profiling runtime. Section 3.5 discusses the runtime

performance of the framework, after which Section 3.6 presents the related work and

Section 3.7 summarizes and concludes this chapter.

3.2 Background

3.2.1 SPEC CPU2006

The SPEC CPU2006 benchmark suite [39] was published in 2006 and replaced the

previous CPU2000 suite. It contains 31 benchmarks that are written in three languages

(C, C++, and Fortran), and are grouped in a set of integer benchmarks and a set of

floating point benchmarks. The aim of SPEC is to provide honest data for the perfor-

mance of computer systems including processors, memory subsystems, and compilers.

For this reasons the benchmarks are drawn from real life applications, rather than using

synthetic benchmarks and contrived programs.
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3.2.1.1 Nature of Computation

The benchmarks in the CPU2006 suite cover a range of real life applications. The

integer benchmarks include programming language implementations, artificial intelli-

gence programs, discrete simulations, and compression algorithms. The floating point

benchmarks include physics and chemistry simulations, mathematical solvers, a ray-

tracer, and a speech recognition library. There is a special benchmark – specrand –

which is not used for performance measurement, but rather as a fast test of system

integrity: if it fails, the rest of the benchmarks are likely to fail too, as they include

code from it. Excluding specrand1, there are 29 benchmarks suitable for performance

evaluation.

3.2.1.2 Parallelism

A study [7] of the speedup that can be achieved by compilers due to automatically

detecting parallelism in the SPEC CPU2006 benchmarks, concludes that state-of-the-

art industry compilers are highly incapable of utilising multi-core processors. Over the

floating point set (the programs of which are more suitable for parallelisation), due to

the many independent and regular computations that physics simulations comprise, the

average speed-up due to parallelisation is reported to be 1.2x on a four-core machine.

The result for the integer benchmarks is even more disheartening: the study reports no

runtime improvement whatsoever over sequential execution.

3.2.1.3 Development

The CPU2006 benchmark suite was not updated for almost twice the life-span of the

previous iteration: CPU2000. In June 2017, SPEC announced the release of CPU2017

[3], finally replacing the popular suite with a collection of modern programs. Unfor-

tunately, this release was too late for the updated suite to be used for the evaluation of

the techniques presented in this thesis. Nevertheless, this section summarizes some of

the developments in the new iteration of SPEC CPU.

In addition to the integer/floating point divide, there is another dimension of cate-

gorisation introduced in SPEC CPU2017. Benchmarks are split into a ‘speed’ group:

designed to measure runtime; and a ‘rate’ group: designed to measure throughput. The

‘speed’ group is similar to the way SPEC CPU2006 benchmarks are evaluated: one

1Technically, there are two versions of specrand, that is why the number of benchmarks is reduced
from 31 to 29.
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copy of the benchmark is executed and OpenMP can be used to speed up benchmarks

that have been manually optimised to employ the multi-processing library. Bench-

marks from the ‘rate’ group are evaluated by running multiple concurrent copies of the

benchmark and OpenMP is disabled. In general, the benchmarks in ‘speed’ and ‘rate’

are derived from the same applications, although four programs are only available as

‘rate’ benchmarks and one is only available as a ‘speed’ benchmark.

Some programs from the CPU2006 suite have been retired and new ones have

been introduced, but the general areas within the integer and floating point sets remain

the same. The new programs in the integer set include more artificial intelligence

algorithms and a different compression program. The new programs in the floating

point set include more physics and weather simulations and different image rendering

and manipulation tools.

3.2.2 LLVM

The LLVM compiler infrastructure [56] is an industry standard, extensible compiler

library. It is open source and actively developed by contributors from a multitude

of top computer industry companies including Apple, Google, Microsoft, Intel, Arm,

and Qualcomm. It has also surpassed other compilers, both commercial and research

ones, as the framework of choice when implementing prototype compiler analyses

and transformations. As such, LLVM has become the de facto standard in compiler

research too.

There are multiple advantages of LLVM that contribute to its popularity. The fact

that it is open source and is freely available is one reason. More importantly from a

technical perspective, however, is the modular design of the infrastructure and the uni-

fied intermediate representation. It is possible to combine different LLVM frontends,

optimisations, and backends, and add support for languages which would otherwise

require a tailor-made compiler. Alternatively, one can implement a single optimisation

and combine it with the available tools in order to evaluate a novel idea without the

overhead of implementing a frontend or a backend.

The profiling framework described in this chapter is implemented on top of LLVM

(version 3.9). The rest of this section discusses important aspects of the infrastructure.
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3.2.2.1 Optimisation Passes

The compilation process of LLVM proceeds in three stages: frontend, responsible

for converting the high-level language source code into the intermediate representation

(IR); optimisation, responsible for platform-independent analyses and transformations;

and backend, responsible for lowering the IR to machine code. The whole process can

be performed by a compiler driver (e.g. the clang tool) or it can be performed stage-

by-stage while serialising the intermediate results to disc. This is enabled by the fact

that the LLVM IR is designed to be serialisable as the LLVM assembly language.

While in theory it is irrelevant how optimisations are invoked, in practice the most

convenient way is to configure the build system to generate a single LLVM module file

just before invoking the assembler, process it with the desired optimisation pass, and

then to assemble the result. This gives the optimisation a view of the whole program

and allows it to analyse all functions encountered throughout the source code, as long

as they are not implemented in dynamically linked libraries. The alternative would be

to perform the optimisation on each of the compilation modules before linking and thus

it would be impossible for certain information to be inferred, e.g. building a complete

call graph.

In a setup where the desired optimisation is performed only once (by processing

the module resulting from linking together all of the sub-modules of the program) this

can be done using the opt tool provided by the LLVM project. Figure 3.1 shows an

example compilation. This functionality allows for an optimisation to be developed

outside the actual source code of the compiler and to be used as a plugin: simplifying

further distribution and usage of the optimisation library.

1 clang <submodule -files > -c -emit -llvm -o preopt.bc

2 opt -load <opt-lib> -<opt-pass > preopt.bc -o <output -program >

Figure 3.1: Linking project sub-modules together and performing a custom whole pro-

gram optimisation on the result. The <opt-lib> argument should be the library file that

contains the implementation of the optimisation and <opt-pass> should be the name

of the desired optimisation specified in the library.
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3.2.2.2 Language

The LLVM assembly language is the textual representation of the LLVM IR. It is typed

and in Static Single Assignment (SSA) form. A program is organised in modules which

can be stored as separate files on disc, and each module is comprised of functions,

global variables, and symbol table entries, alongside platform information and optional

debugging information (named metadata). The code in functions resembles machine

assembly code: it is organised in basic blocks of instructions, each having a single entry

and exit points. Control between blocks is explicit and is implemented by terminator

instructions.

The basic blocks of a function, together with the explicit control flow between

them, form the Control Flow Graph (CFG) of the function. Instructions can be one of

the following categories: terminator, binary, memory, or miscellaneous. The termina-

tor instructions are control-flow changing instructions including branches and function

returns. The binary instructions generally perform arithmetic computations including

bitwise operations. Memory instructions are used to read and write from memory.

(Memory locations in LLVM are not in SSA form, unlike the identifiers.) And the

miscellaneous instructions include comparisons, function calls, phi instructions, and

some special control flow instructions.

Although the LLVM language is designed to be human readable (and to some ex-

tent writable) this is done with the intention to aid debugging. It is not intended as a

language for programs to be written in independently.

3.3 Instrumentation

The process of instrumenting a program involves inserting calls to a profiling runtime

library at key points in the program. When the so modified program is then executed

the profiling library collects information about the intermediate state and builds a pro-

file.

The framework presented in this chapter inserts calls to indicate when memory is

accessed: read or written; and calls to indicate context changes: loop entry/exit/iter-

ation and function calls/returns in the original program. Although the process of in-

strumentation seems straight-forward at first, there are hurdles to be overcome before

it can be successfully implemented, as illustrated by this section.
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3.3.1 Memory Accesses

Instrumenting memory accesses is the trivial step of the instrumentation process. It

consists of the following two rules:

• Before every memory store insert a call to profile_store(memory_address, store_id).

• Before every memory load insert a call to profile_load(memory_address, load_id).

The identifiers are assigned uniquely to loads and stores during a single pass of

the whole program. This chapter assumes that all libraries of interest are linked at this

point. Dynamically linked libraries will not be included in the profiling, which may

result in incomplete information produced by the profiler. Incorporating dynamically

linked libraries into the profiling is left as future work.

Note that memory access size is not included in the profiling. This is based on

the assumption that the type of the variable stored in a given memory location does

not change over its lifetime. When this assumption does not hold, e.g. when a binary

subpart of a variable can be accessed as in a union from the C language, then some

profiling precision will be lost. However, the rest of the extracted profiling information

will still be correct.

3.3.2 Loops

It is important to precisely specify what is meant by a loop before the mechanism of

instrumenting one can be described. This section builds a vocabulary of terms - entry

and exit; start, restart and finish; iteration and traversal - in order to make explanations

in the context of control flow changes easier. Only then are the profiling calls that deal

with loop control changes specified.

3.3.2.1 Background

Traditionally, compiler analysis theory has been focusing on loops such as Fortran ‘do-

loops’ (see [53] and [11]). For programmers in the past several decades the concept

is usually introduced by syntactic constructs like ‘for’ and ‘while’ in newer languages,

like C, C++, Java, Python, etc. As such, loops in programs usually arise from the use

of one or more of these constructs.

Here, however, we work towards the definition of a loop as a recognisable object

on the control-flow graph (CFG) level, that encompasses all such intuitions and more.
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In particular, the goal is to obtain a single definition of the notion of a loop which deals

with the majority of the CFG structures that can lead to the repetitive execution of the

same code. The definition here is based on [6] and is compared to the one in [67].

First, recall some definitions from [6].

Definition 1. Let F be a flow graph and S a subset of blocks of F . We say that S is a

strongly connected region(region for short) of F if:

1. There is a unique block B of S (the entry) such that there is a path from the begin

node of F to B which does not pass through any other block in S.

2. There is a path (of nonzero length) that is wholly within S from every block in S

to every other block in S.

Furthermore, a region is maximal if it contains every other region that has the same

entry (see [6], Example 11.34).

[6] do not provide a concrete definition of what a loop is, instead only mentioning

‘generalized loops in flow graphs are called “strongly connected regions”.’ This is not

a sufficient definition, since it allows for the construction of partial loops and multi-

ple distinct loops with the same entry. For the purposes of this thesis, a loop shall be

defined as a maximal region, which is a more narrow definition than that of a ‘gener-

alized loop’ (see Figure 3.2). Loops defined in this way are always either disjoint or

completely contained in each other and never share their entry blocks.

Note that the notion of a strongly connected region is more narrow than the notion

of strongly connected components (SCC) of a graph, where there is no requirement

for the uniqueness of the entry node. If there is an SCC in the CFG of a function that

has more than one entry node, then the CFG of that function is said to be irreducible.

While these do appear in practice, a cursory check shows that they comprise 0.02%

of the functions found in the SPEC CPU2006 benchmark suite. Luckily, despite the

name, irreducible flow graphs (IFG) can be turned into reducible ones by applying a

standard transformation which duplicates some of the blocks of the IFG (again, see

[6], Section 11.4.3). Once a CFG is reducible all of its SCCs will have unique entries

and thus will belong to a loop as defined in this chapter.

Now, let us compare this with the definition of a loop in [67]. It is based on the

notion of dominance.
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Figure 3.2: An example CFG from [6] and the loops found in it. In addition to the

outermost loop (here marked with a red dashed outline) there are four more ‘generalized

loops’ that have block 2 as their entry: {2,3,7}, {2,3,4,5}, {2,3,4,5,6}, and {2,3,4,5,7}.

This makes them five in total. ([6] claim there are three in total which is a mistake. See

[6], page 924). For the purposes of this thesis, there is a single loop with entry 2 - the

corresponding maximal region. Two more loops can be identified: 3,4,5,6 and 4. The

edges marked as A are loop starts, B are loop restarts, and C are loop finishes.
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Definition 2. Let F be a flow graph and B and C be two blocks of F . We say that B

dominates C if every possible execution path from the begin node of F to to C includes

B.

[67] uses this to define the term back edge as ‘one whose head dominates its tail’

and builds his definition of a ‘natural loop’2 on top of that.

Definition 3. Let F be a flow graph and M and N be two blocks of F such that M→ N

is a back edge. The natural loop of M → N is the sub-graph consisting of the set

of nodes containing N and all the nodes in F from which M can be reached without

passing through N and the edge set connecting all the nodes in its node set.

Defining a loop by its back edges is not the most intuitive way to go. Even then, it

is not clear what would the result be if a loop has multiple back edges. Indeed, by this

definition natural loops can share an entry block, which is misleading since it can lead

to a situation where execution alternates between the two loops without either of them

terminating in the meantime. The notion of a loop presented here is based on maximal

strongly connected regions infers a single loop entity and avoids this problem.

3.3.2.2 Terminology

For convenience, the earlier definition of a loop is repeated here.

Definition 4. Let F be a flow graph and L a subgraph of F . We say that L is a loop in

F if:

1. There is a unique block B of L (the entry) such that there is a path from the begin

node of F to B which does not pass through any other block in L.

2. There is a path (of nonzero length) that is wholly within L from every block in L

to every block in L.

3. L is maximal: adding more blocks and edges from F to L will invalidate either 1

or 2.

The following is a definition of a loop start, which is intuitively an edge in the

CFG which leads to the loop is:

2[67] does not specify what other loops there might be, but uses the term as a synonym for a cycle
in the CFG.
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Definition 5. Let L be a loop and E be the entry of L. If P is a block that is not in L

and there is an edge from P to E, then we call that edge a start of L.

Example 1. In Figure 3.2, the edges marked as A are loop starts.

Next, loop exit and loop finish are defined. Intuitively, a loop exit is the last block

of the loop to be executed and a loop finish is the edge in the CFG that leads from the

loop exit to outside the loop.

Definition 6. Let L be a loop. An exit of L is a block B such that B precedes at least

one block N that is not in L. We call the edge from B to N a finish of L.

Example 2. In Figure 3.2, nodes 3 and 6 are exits for loop {3,4,5,6}, node 4 is an exit
for loop {4}, node 6 is an exit for loop {2,3,4,5,6,7}, and the edges marked as C are

loop finishes.

Next, loop traversal is defined:

Definition 7. Let L be a loop of the flow graph F and T a sub-graph of F such that

the nodes of T are a subset of L and the edges of T are all edges in L that connect the

nodes in T . We say that T is a traversal of L if:

1. T contains the entry E of L (we call E the beginning of T );

2. There is a unique node H in T such that there is an edge in T from H to E. H

might be an exit of L, but it need not be. We call H the end of the traversal T .

We also call the edge from H to E the restart of T (also, a restart of L); and

3. There is a path that is wholly within T from every block in T to every other block

in T .

For clarity, traversals will be identified by their set of nodes, but note that they

contain all edges connecting these nodes in L too, since they are sub-graphs of a CFG

by definition.

Example 3. In Figure 3.2 the traversals of loop L = {2,3,4,5,6,7} are T1 = {2,3,7},
T2 = {2,3,4,5}, T3 = {2,3,4,5,6}, and T4 = {2,3,4,5,6,7}. Their corresponding

ends are 7, 5, 5, and 7. Note that 5 cannot be the end of T4, because due to uniqueness

of ends (see Definition 7, Item 2) there would be no path from 7 to any other node of

T4 if it was.



3.3. Instrumentation 57

To make an intuitive sense of the definition of a traversal it helps to consider a

loop iteration:

Definition 8. Let T be a traversal of a loop L and let S be a (possibly repeating) se-

quence of nodes in T . We call S an iteration of L associated with T if:

1. S contains each node of T at least once;

2. S contains the start of T exactly once - as its first element;

3. The last element of S is the end of T ;

4. If block B is followed by block C in S, then there is an edge from B to C in T .

Example 4. Continuing Example 3, some iterations of L are:

1. associated with T1: only I11 = {2,3,7};

2. associated with T2: I21 = {2,3,4,5} and I22 = {2,3,4,4,4,5};

3. associated with T3: I31 = {2,3,4,5,6,3,4,5} and I32 = {2,3,4,5,6,3,4,4,5}
and I33 = {2,3,4,4,5,6,3,4,4,4,5,6,3,4,5};

4. associated with T4: I41 = {2,3,4,5,6,3,7} and I42 = {2,3,4,5,6,3,4,5,6,3,7}.

Informally, a traversal of a loop is a subgraph of blocks that might be executed

during any iteration of the loop in an execution of a program. Note that while a

traversal is not a multi-set (the elements of the set are unique), a loop iteration might

repeatedly execute the same block an arbitrary amount of times before terminating -

usually when there is a nested loop, as defined in Definition 9.

Later, in Chapter 4, the notion of a loop iterator is defined. While the names of

the terms loop iterator and loop iteration are very similar, the concepts are notably

different. Intuitively, a loop iterator is the collection of variables and the operations

performed on these variables that determine the execution of a loop, i.e. when different

loop restarts or finishes are taken. These could comprise a part, or all of the loop. In

contrast, a loop iteration is all of the operations executed at runtime between a loop

start and a loop finish or restart. There could be multiple different loop iterations for a

given loop while there is a unique loop iterator. Some part of an iteration necessarily

is a part of the loop iterator, while the loop iterator does not have to contain the whole

of any of the iterations. For more details about loop iterators see Chapter 4.
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Definition 9. A loop K is nested in a loop L if K is completely contained in L. Further-

more, K is directly nested in L if for any iteration of L the start of K is encountered

only once. Conversely, if there is an iteration of L that follows the start of K more

than once there must exist another loop M, such that M is directly nested in L and K is

nested in M.

To summarize, based on [6], a loop was defined as a maximal region. A definition

for a loop exit was provided to complement the traditional definition of a loop entry.

Loop start, restart, and finish were defined in order to simplify explanations in the

context of control flow changes. A traversal of a loop was also defined, together

with its beginning, end, and restart, and based on that a loop iteration was defined.

Finally, the notions of a loop, a loop start, and a loop iteration are combined to define

nested and directly nested loops.

3.3.2.3 Instrumentation

Using these definitions, this section specifies the way loops are instrumented.

A call to begin_loop() is inserted immediately before each jump to the entry of

a loop. For unconditional branches this is a trivial transformation, but for condi-

tional branches it is more involved. The same is true for calls to end_loop() and

next_iteration(), the difference being that the jump being instrumented is of a dif-

ferent nature. Here is a list to clarify the correspondence:

1. If the jump is a start of the loop (see Definition 5; edge A in Figure 3.3) - insert

a call to begin_loop;

2. If the jump is a restart of the loop (see Definition 7, Item 2; edge B in Figure

3.3) - insert a call to next_iteration;

3. If the jump is a finish of the loop (see Definition 6; edge C in Figure 3.3) -

insert a call to end_loop.

Note that this covers all possible control flow changes from a loop, including

breaks, continues, and even arbitrary gotos. Breaks result in finish edges, contin-

ues - in restart edges, and gotos result in any of the three types, depending on the

position and target of the jump.

Figure 3.3 illustrates how an example CFG representing a do-while loop is trans-

formed by the algorithm.
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A

B

C

start

restart

finish

loop

(a) Example CFG before loop profiling.

profiler call

φ

modified

(b) Same CFG after loop profiling.

Figure 3.3: An example control flow graph before and after loop profiling. A profiler

call is inserted before the start of the loop. Since the finish and restart result from a

conditional branch a new basic block needs to be created for each of the two. In those

new basic blocks, a single profiling instruction is inserted and an unconditional jump to

the original target. Notice the φ node that had to be changed due to the change in the

CFG: its second incoming block has changed.
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The procedure for adding calls to the three loop profiling functions is described in

Algorithm 1. In a nutshell, the algorithm checks whether the branch instruction that

results in an edge is conditional or not. If not, then a call to the profiling runtime is

simply inserted before the branch instruction. Otherwise, a new basic block is created

and injected in place of the edge: the edge is redirected to that new basic block and the

basic block is made to point to the original target unconditionally. The profiling call is

the only instruction in the new basic block other than the unconditional jump.

ALGORITHM 1: Inserting calls to loop profiling functions. If E is a start then the corre-

sponding function is begin_loop(), if it is a restart then the function is next_iteration(), and if

it is a finish then the function is end_loop().
Input: flow graph F , edge E in F (a start, restart, or finish of a loop)

Result: instruments E in F

create a call C to corresponding loop profiling function (begin_loop(), next_iteration(), or

end_loop());

if E is the only edge leaving from its source then

let I be the unconditional branch that results in E;

let B be the block of F that contains I;

insert C immediately before I in B;

else

let I be the conditional branch that results in E;

let B be the block of F that contains I;

let T be the target of E;

create a new block N in F ;

create an unconditional branch J to T ;

insert C, followed by J in N;

change I so that it points to N instead of T ;

for each φ node in T : change references from B to N;

end

Note that a single control flow edge can potentially be a finish of one loop and a

start of another (edge A in Figure 3.4(a)), or the finish of one loop and the restart

of a parent loop (edge B in Figure 3.4(a)). For this reason the order of applying

algorithm 1 matters, as it defines the order in which calls to the profiling library will be

inserted in the code. Thus, start edges should be profiled first, restart edges second, and

finish edges last, leading to calls to end_loop() prepended to calls to next_iteration()
prepended to calls to begin_loop().
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The reason for this order is twofold. The first key observation is that finish edges

always result from conditional jumps. To see why this is the case, consider the possi-

bility that a finish edge results from an unconditional jump. Since the edge is a finish

it must be to a block that has no path back to the loop. But then the block that contains

the branch instruction has no path back to the loop either, so it cannot be in it and a

contradiction is reached.

The second key observation is that an edge cannot be a start of one loop and a

restart of another at the same time. This is because loops are defined as maximal
regions (See Section 3.3.2.1) and therefore no two loops can have the same entry.

As a result, because there is no need to worry about starts colliding with restarts,

the nature of finishes is the defining one - that they come from conditional jumps.

Algorithm 1 will insert the profiling call corresponding to the type of the edge after
the jump. As a result, if calls are first inserted to begin_loop(), followed by calls to

next_iteration(), followed by calls to end_loop(), that will guarantee that these will

occur in reverse order during execution: end_loop() first, followed by next_iteration()
or begin_loop().

Finally, it is also possible that an edge is the finish of multiple loops at the same

time (edge C in Figure 3.4(a)). In such cases, multiple calls to end_loop() need to be

added after the jump instruction that results in the finish edge – as many as the number

of loops that need to be finished.

3.3.3 Function Calls

As mentioned earlier, in this chapter, it is assumed that the program under analysis

can be statically linked into a single translation unit. Profiling dynamically linked

libraries and multiple translation units is left as further work. In order to instrument

function calls, a complete static call graph of the program is first computed: a directed

multi-graph, the edges of which are labelled with the corresponding call sites. Indirect

function calls get in the way of this, and section 3.3.3.2 discusses how to handle them.

But first, the problem of recursive functions is discussed.

3.3.3.1 Recursion

One of the major areas for improvement of [45] is the lack of a robust mechanism to

handle recursive functions. The approach taken in that master’s thesis is the following:

‘To prevent from generating a context tree infinitely, the CAMP compiler marks re-
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(a) Some CFG edges change control for multi-

ple loops. For example, an edge can be at the

same time a finish for one loop and a start for

another (edge A), a finish for one and a restart

for another (edge B), or a finish for multiple

loops (edge C).
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(b) The order of instrumentation in such cases

matters. If it is reversed it will lead to ei-

ther inferring non-existent loops and failing to

end existent ones (in the former case), or mis-

counting iterations of parent loops (in the latter

case).

Figure 3.4: Examples of CFG edges that change control for multiple loops. There are

three cases: finish-start (A), finish-restart (B), and finish-finish (C). Multiple profiling

calls need to be added for these edges, whereas single calls are inserted for simple

edges.
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cursive functions before generating the context tree, and inserts only the first recursive

function call site as a leaf loop context node. Here, the compiler considers the recur-

sive function call site node as a loop node, so the CAMP profiler can find its recursion

depth by counting iteration numbers.’

While it is true that some recursive functions can be expressed as loops, this is

generally not the case (see [64], [65]). In fact, described in this way, this approach

can only be applied to functions directly calling themselves (although the examples

in [45] suggest that mutually recursive functions can also be handled). This recursive

call should appear immediately before a return instruction that returns the result of the

recursive call (also known as a tail-call). Otherwise, the mapping between invocations

of the recursive function and the iterations of a loop fails, because ‘iterations’ of this

hypothetical loop will not have a strict order - they would sometimes interrupt their

execution and then continue after the execution of a later ‘iteration’.

Furthermore, while it seems possible to transform recursive functions to loops in

the general case by converting them to tail-recursive functions, [64] and [65] show that

this is a non-trivial transformation for humans, let alone for compilers. This is because

it involves analysis of the nature of operations performed inside the function, finding

identities and arithmetic properties. Thus this chapter does not associate recursive

functions with loops.

The last issue with this approach is that it is unclear how calls to non-recursive

functions from within a recursive function are handled. If recursive function calls are

inserted as leaf nodes, then these calls to non-recursive functions seem to be ignored

and thus the result would be inaccurate.

The approach to handling recursion presented here is the following: all strongly

connected components in the call graph are detected. If an SCC contains more than

one node, or nodes that point to themselves in the original graph, then these nodes

form chains of mutually recursive functions. A derivative graph is built – the graph

of the strongly connected components of the call graph. For each edge between two

nodes of the call graph a corresponding edge between the corresponding SCCs that the

nodes belong to is created, unless they belong to the same SCC in which case no edge

is created. Figure 3.5 illustrates this approach.

After recursive calls have been handled, paths from the starting node to each node

of the SCC graph with unique context IDs are assigned. This is done implicitly, by

assigning offsets to the edges of the SCC graph. The SCC graph is necessarily a DAG

since cycles have been reduced to single nodes.
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SCC

(a) An example call graph. (b) Derived SCC DAG.

Figure 3.5: Handling recursion robustly. The strongly connected component in Figure

3.5(a) is represented by a single node in the derived graph in Figure 3.5(b). Note that

the resulting graph does not contain any loops by construction, i.e. it is a directed

acyclic graph (DAG).

The recursive Algorithm 2 is performed to assign offsets to the function calls in

the SCC graph. Necessary for the recursive accumulation, the algorithm returns the

number ‘contexts’ in the sub-DAG at the node passed as an argument. A ‘context’ is

a unique path from the root of a DAG to one of its nodes and corresponds to a unique

call stack at runtime. This number of contexts is represented by the current_offset
variable which is recursively computed by adding one for each child (because of the

new path that leads to it) and the number of contexts in the sub-DAG rooted in that

child.

Each child is assigned an offset equal to one plus the current number of sub-

contexts that have been taken into account. This results in a unique and compact

numbering for each context.

Example 5. Figure 3.7 shows an example call graph with offsets assigned to function

calls by applying Algorithm 2. Starting at node A, the edge to node B is assigned offset

1+0 = 1. Then offsets are recursively assigned for node B.

Similarly, at node B, the edge to node D is assigned offset 1 and offsets are re-

cursively assigned for node D. There, the edge to node F is assigned offset 1 and the

algorithm recurses on node F.

Since node F has no children, it returns 0 as the number of edges in its sub-DAG.
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ALGORITHM 2: Assign offsets to all call sites of a call graph. The call graph should have

recursive SCCs reduced to a single node to guarantee that it is a DAG. Call on each node of

the DAG to obtain offsets of all call sites. The asymptotic complexity of this algorithm is

O(|E|+ |V |), since each edge and each node are visited exactly once.
Input: Node N of a DAG G

Result: Assigns offsets to all edges in the sub-DAG of G rooted at N. Returns the number of

contexts in that sub-DAG.

if N has already been visited then
return cached result

else

current_offset = 0;

for each successor S of N do

offset of edge to S = 1 + current_offset;

current_offset += 1 + assign offsets for S;

end

cache current_offset as the result for N;

return current_offset
end

Stepping back to the call for node D, current_offset is updated to 1+0 = 1. There are

no more children, so 1 is returned as the number of edges in the sub-DAG rooted at D.

Stepping back to node B, current_offset is updated to 0+ 1+ 1 = 2 and offset

1+2= 3 is assigned to the edge to E. Then the algorithm recurses on E, which behaves

the same way as the call for D and returns 1. Still at the call for B, current_offset is

updated to 2+1+1 = 4, and because there are no more children, 4 is returned as the

number of edges of the sub-DAG.

Stepping back to node A, current_offset is updated to 0+1+4 = 5. Then offset

1+ 5 = 6 is assigned to the edge to node C and the algorithm recurses on C. This

behaves the same way as the call to B and thus assigns the same offsets to the edges

to D and E. A notable difference is that the return values for the calls to D and E have

been cached and thus are not recomputed again.

Finally, the call for C returns to the call for A and current_offset is updated to

5+1+4 = 10 which is the total number of (non-zero length) paths in the DAG. These

are listed in Table 3.6 with their contexts computed by adding up all the edges in the

path.
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Path Context ID

A 0

A→ B 1

A→ B→ D 2

A→ B→ D→ F 3

A→ B→ E 4

A→ B→ E→ F 5

A→C 6

A→C→ D 7

A→C→ D→ F 8

A→C→ E 9

A→C→ E→ F 10

Figure 3.6: A list of all paths in the graph of Figure 3.7 and the unique context assigned

to each of them by accumulating the offsets assigned to the edges.
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3
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Figure 3.7: An SCC DAG derived from a call graph with associated offsets to its edges:

function calls in the program IR.
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3.3.3.2 Indirect calls

The other major area for improvement for [45] is the handling of indirect function calls:

‘For indirect function calls, the compiler analyses all the possible target candidates and

inserts the candidates as children nodes.’ A footnote further elaborates: ‘Given full

access to the source code, the CAMP compiler determines the candidates by matching

type signatures of all functions.’ While this is reasonable heuristic, it still allows for a

potentially exponential growth in the number of possible contexts.

In general, the problem of detecting all possible target candidates for an indirect

call cannot be solved statically. This is due to the fact that the result of any arbitrary

pointer computation can be used as a function pointer. Using the type signature of the

function call is not a scalable solution. There are two approaches to the problem of

indirect calls: one is to treat indirect calls as leaves in the call graph and the other is

to treat them the same way as direct function calls. While the former results in loss

of context precision the latter requires complete recomputation of the call graph every

time a new indirect call is performed if it is to be correct.

A hybrid solution is also possible, but for simplicity the first approach was im-

plemented as part of the prototype framework presented here. An example call graph

resulting from this approach is depicted in Figure 3.8. See Figure 3.9 for the difference

in the offset assignment for an example execution of the call graph in Figure 3.8 versus

the offset assignment for the call graph that would result from changing the indirect

calls to explicit ones.
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Figure 3.8: Call graph containing indirect calls (represented by squares).
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ones.
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3.3.4 Putting it together

After discussing the problems of recursive and indirect calls and the proposed ap-

proaches to dealing with them, this chapter presents an integrated methodology of

instrumenting function calls. In a nutshell, given a function call the framework checks

whether there is a corresponding edge E in the SCC DAG. If not, then the function call

is an internal recursive call and it is ignored.

Otherwise, calls to change_context(+offset) are inserted and change_context(-
offset) before and after the instruction that is being profiled. The offset variable is the

one associated with E by applying Algorithm 2 to the SCC DAG.

Finally, if the function call is indirect then calls to indirect_push() and indi-
rect_pop() are also inserted before and after it.

Algorithm 3 formalizes this procedure.

3.4 Profiling

3.4.1 Data Structures

There are several runtime variables used to keep track of the state of the profiled pro-

gram:

1. context_id - a non-negative integer representing the current context;

2. loop_iterators - a re-sizable array of non-negative integers representing the iter-

ation count of all nested loops currently executing. Note that this includes loops

that are nested indirectly via function calls;

3. indirection_stack_depth - a non-negative integer keeping track of the number

of indirect function calls on the call stack;

4. top_indirect_context_id - a non-negative integer keeping track of the context

of the first indirect function call on the call stack;

5. load_iters - an array of non-negative integers representing the number of initial

executions of a load instruction left before sampling is applied. This array is

indexed by the IDs of load instructions;

6. loads - a map from memory addresses to the set of load instructions that accessed

these addresses since the last write to them;
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ALGORITHM 3: Inserting calls to function call profiling functions. Calls to recursive func-

tions are ignored if they come from another function in the recursion cycle. All other calls,

including calls to recursive functions from non-recursive functions (or recursive functions in a

different recursion cycle), are instrumented with two change_context() calls to update the con-

text for the function call in question and then restore the context when the call returns. Indirect

calls are additionally instrumented with a call to indirect_push() and a call to indirect_pop()

in order to change the behaviour of the memory profiler when there is an indirect call on the

call stack.
Input: flow graph F , call instruction I in some block B of F , SCC derivative graph G of the

call graph of F

Result: instruments I in F

let E be the edge in G corresponding to I;

if E does not exist then

I is an internal recursive call - ignore it;

return
end

let offset be the offset associated with E;

create a call instruction J to change_context(+offset);

create a call instruction K to change_context(-offset);

insert J in B, immediately before I;

insert K in B, immediately after I;

if I is indirect then

create a call instruction L to indirect_push();

create a call instruction M to indirect_pop();

insert L in B, immediately before I;

insert M in B, immediately after I;

end
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7. store - a map from memory addresses to the last store instruction that accessed

these addresses;

8. dependencies - a set of memory dependencies discovered by the runtime.

A memory access (store or load) is represented by a structure that has the following

fields:

1. access_id - the identifier of the memory access. This ID is unique within the set

of loads and the set of stores, but a load can have the same ID as a store. This

does not correspond to any relation between the instructions, but is rather a result

of the continuous assignment of identifiers. It allows for a compact storage for

the load_iters array. The conflicts between loads and stores is not a problem,

since they are stored in different data structures (loads and store respectively);

2. context_id - the ID of the context where the memory access occurred. This

is either the current context_id during the execution of the profiling call, or

top_indirect_context_id if indirection_stack_depth is larger than 0;

3. loop_iterators - the loop_iterators re-sizable array during the execution of the

profiling call. This is independent of the indirection_stack_depth variable

and can provide additional (although incomplete) locality information whenever

there are indirect calls on the call stack.

Finally, a memory dependence is represented by a structure that has the following

fields:

1. type - a small integer taking values 0, 1, or 2: 0 indicates a RAW dependence, 1

- a WAW dependence, and 2 - a WAR dependence;

2. from_id - the ID of the instruction which is depended on, e.g. the store instruc-

tion in a RAW dependence or the load instruction in a WAR dependence;

3. to_id - the ID of the instruction which depends, e.g. the load instruction in a

RAW dependence or the store instruction in a WAR dependence;

4. from_ctx - the context ID of the runtime when the instruction which is depended

on was executed;

5. to_ctx - the context ID of the runtime when the instruction which depends was

executed;



72 Chapter 3. Data Access Profiling

6. from_loop_iterators - a copy of the re-sizable array of loop iterators at the point

when the instruction which is depended on was executed;

7. to_loop_iterators - a copy of the re-sizable array of loop iterators at the point

when the instruction which depends was executed.

3.4.2 Routines

When the program is started load_iters is allocated to be as large as the total amount of

load instructions. Then each of its elements is initialized to be INIT_ITERATIONS -

the constant indicating how many initial executions of each load instruction should be

taken into account before sampling starts. Also during the startup of the program, the

random number generator is initialized to be used for sampling.

When a store instruction is encountered (profile_store is called) the runtime checks

if there are any loads to the same address in the loads map and creates WAR depen-

dencies between them and the store instruction just encountered. If there is a store

instruction to the same address in the store map, a WAW dependence is created. After

that the new store instruction is stored in the store map for the current address and the

load instructions in the loads map for the current address are erased, if there were any.

Any dependencies created in this function call are stored in dependencies.

When a load instruction is encountered (profile_load is called) the runtime checks

the counter stored for that instruction in loop_iterators. If it is positive it is decreased

and the instruction is profiled. If it is zero, then using the sampling frequency specified

by SAMPLE_DIVISOR it is randomly decided whether to profile the instruction or

not. If the instruction is to be profiled it is added to the set that is associated to the

address being loaded inside the loads map. Furthermore, if there is a store associated

to the same address in the store map, a RAW dependence is created and stored in

dependencies.

When a loop start is encountered (begin_loop is called) the runtime adds a new

element to the loop_iterators re-sizable array and when a loop finish is encountered

(end_loop is called) the runtime removes the last element of the loop_iterators re-

sizable array. When a loop restart is encountered (next_iteration is called) the runtime

increments the last element of the loop_iterators re-sizable array.

When a call instruction is encountered or returns (change_offset is called) the run-

time accumulates the given offset to the context_id variable. When an indirect function

call occurs (indirect_push is encountered), indirection_stack_depth is compared to
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zero. If it equals, then context_id is stored in top_indirect_context_id, otherwise - it

is not. Then indirection_stack_depth is incremented.

Finally, when an indirect function call returns (indirect_pop is encountered), indi-
rection_stack_depth is decremented. If it then equals zero, top_indirect_context_id
is set to zero to indicate that there is no indirect call on the call stack.

3.5 Evaluation

The instrumenting and profiling framework was implemented on top of the LLVM

compiler toolchain (version 3.9) [56]. For the C and C++ benchmarks the established

clang frontend was used, while for the Fortran benchmarks the flang frontend, recently

open-sourced by NVIDIA [2], was used. The evaluation of the profiling framework

presented here consists of building data access profiles for all of the SPEC CPU2006

benchmarks and reporting the runtime slowdown (Figure 3.10) and the memory over-

head of the profiler (Figure 3.11). The hardware system used for the experiments has

four AMD Opteron 6376 CPUs (64 logical cores in total) and has 1TB of RAM avail-

able. For inputs for the programs the test input set provided with the benchmarks

were used.
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Figure 3.10: Performance slowdown of the SPEC CPU2006 benchmarks due to profil-

ing. The geometric mean of the slowdown for the C benchmarks is 1180×, for the C++

benchmarks is 1420×, and for the Fortran benchmarks is 290×. The geometric mean

across all benchmarks is 760×.
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Figure 3.11: Memory overhead of data dependency profiling. The average overhead

for the C benchmarks is 6.0GB, for the C++ benchmarks is 7.6GB, and for the Fortran

benchmarks is 14.7GB. The average across all benchmarks is 9.4GB.

The application of the technique presented in this chapter results in an average

slowdown of 760× and an average memory overhead of 9.4GB. This is worse than

state-of-the-art profiling frameworks, some of which claim slowdown as low as 20×.

However, as discussed in Section 3.6, none of these faster profiling frameworks has

been reported to cope with the whole SPEC CPU2006 benchmark suite. The longest it

takes to profile a benchmark is 34 hours, which is still acceptable, given that trying to

use a faster technique might yield no results at all. The goal of maximum applicability

of the technique has been achieved, as no other profiling framework that the author is

aware of reports results for all of the SPEC CPU2006 benchmarks. The framework

also achieves instruction-level accuracy, and the coverage of the generated profile is

limited by the default input sets provided with the SPEC benchmarks.

3.5.1 Runtime

Figure 3.10 shows that there are two benchmarks for which the runtime slowdown is

an order of magnitude larger than for the rest. The reason for this discrepancy is not

completely clear, but in both cases the runtime of the unprofiled benchmark is close

to the lower limit of precision of the measurement tool (the Linux bash command

time): in the order of hundreds of milliseconds. As a result, it is possible that the huge
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slowdown is more due to the low precision of the measurement tool for this lower limit,

rather than any structural feature of the benchmarks in question. These benchmarks

are 416.gamess with a slowdown of 17,000× and 483.xalancbmk with a slowdown of

32,750×. At the same time, from Figure 3.12 it can be seen that the former takes only

30 minutes to execute: a lot less than the average of seven hours, while the latter takes

eight hours: close to that average. For this reason the high slowdown is not considered

to be a critical problem.
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Figure 3.12: Runtimes of the profiled versions of benchmarks. The average runtime

for the C benchmarks is 7.5 hours, for the C++ benchmarks is 7.2 hours, and for the

Fortran benchmarks is 6.7 hours. The average across all benchmarks is 7.1 hours.

3.5.2 Memory Overhead

Figure 3.11 shows that there is a wide range of memory overhead for the different

benchmarks. While it can be as high as 49.2GB and 41.6GB for benchmarks like

459.GemsFDTD and 481.wrf, it can also be as low as 85MB, 131MB, or 181MB

for benchmarks like 462.libquantum, 416.gamess, and 400.perbench. The amount of

memory used by profiling dominates the amount of memory required by the programs

themselves. On average it is 98.6% of the total memory consumed, and ranges from

94.2% to 99.9%. This means that there are some program-input combinations which

the framework presented here is better suited for in the case where there is a limited

amount of memory available, but this chapter shows that the proposed framework can

profile all of the SPEC CPU2006 benchmarks on a computer that has access to 64GB
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of main memory.

3.5.3 Choice of Input

When using the test input set, the profiler presented in this chapter achieved the cov-

erage reported in Figure 3.13. The figure shows that the percentage of the total number

of loops in all benchmarks that is exercised during profiling is only 19. Intuitively it

may seem that using the larger ref input set instead might give better coverage results.

However, after running eight of the benchmarks with the ref input set, it turned out

that there is little improvement in coverage that can be achieved in this way. For four

benchmarks the loop coverage did not change at all, for two others the increase was

negligible (2 and 3 additional loops out of 297 and 329, respectively), and, surpris-

ingly, for one of the benchmarks two loops less were covered. There was only one

benchmark, 445.gobmk, which saw a significant increase in the coverage, raising from

23% to 73% of the total loops in the benchmark. Time for profiling, however, increased

185× on a geometric average over the eight benchmarks that were measured.

A workaround for the problem of limited coverage is to devise a test harness dedi-

cated for the task of profiling. While it should still be representative of real-use values,

code regions of interest could be isolated and profiled independently, in order to min-

imise the runtime and memory overhead of profiling. Techniques from software testing

could be employed, for example unit testing, in order to maximise the code coverage,

while minimising the execution time. The design and collection of such input sets,

however, is outside the scope of this thesis.

3.6 Related Work

Dynamic data access profiling has been employed for measuring and detecting par-

allelism for several decades, with important early work developed by [52] and [55].

In [52], Kumar et al. aim to measure the amount of parallelism available in a set of

computation-intensive scientific applications. They introduce the notion of shadow

memory that keeps information about memory accesses, and control variables to com-

pute statistics of the directions taken at control branches. In [55], Larus et al. present

pp: a system that first computes a trace of a program that includes memory access

information and then uses that trace to simulate the parallel execution of the program

and predict its performance. Chen et al. are the first to investigate the problem of
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Figure 3.13: Percentages of loops covered by the SPEC CPU2006 test data set com-

pared to all loops contained in the benchmarks. The average coverage of C bench-

marks is 39%, of C++ benchmarks is 17%, and of Fortran benchmarks is 15%. The

total average coverage is 19%.

software-only data dependence profiling, in [23]. The authors introduce the funda-

mental hash-based memory access recording technique and frequency sampling for

runtime reduction that are used in this chapter too. However, since the target appli-

cation is speculative optimisations, their framework focuses on solving relevant prob-

lems, e.g. computing dependence probabilities, and thus is not as general.

The framework described in this chapter is inspired by the CAMP profiler [45] and

as such shares many its features. CAMP handles recursive functions as loops, which

this chapter shows is not general enough to describe all types of recursion. Instead,

groups of mutually recursive functions (indicated as strongly connected components

of the call graph) are treated here as a single context. While this adds some inaccu-

racy to the location of instructions in these recursive groups, it solves the problem of

the explosion of the amount of contexts as a result of generating a new one for every

recursive call. The other major difference from CAMP is the way the framework pre-

sented here handles indirect function calls. CAMP generates contexts for all possible

functions that can be called at every indirect call site using the type signatures of func-

tions. While this heuristic somewhat reduces the number of possibilities there is still a

potentially exponential growth in the number of unique contexts when there are many

functions with the same signature in the program. Instead, this framework notifies the
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runtime when an indirect call site is encountered and the context is not updated until

that call returns. Similarly to the approach for recursive functions presented here, this

results in loss of accuracy, but an increase in robustness. This is demonstrated by the

fact that evaluation of the technique involves all 29 of the SPEC CPU2006 benchmarks

compared to the six benchmarks from the CINT2006 subset that CAMP is evaluated

on.

While this chapter develops a technique with the main goal of wide applicability

and then the goal of accuracy, other work focuses on minimizing the execution time of

profiling. The SD3 system, presented in [46], addresses runtime and memory overhead

for data dependence profiling in a scalable way. Kim et al. employ a compression

algorithm to deal with the rapidly growing memory needs of deep loop nests, and

they also use a hybrid pipeline and data-level parallelisation to address performance

concerns. However, SD3 does not take into account different call sites when recording

dependencies and thus does not achieve the accuracy that is aimed for in this chapter.

Also, it is not clear how the SD3 system handles recursive calls if at all. The techniques

from SD3 can be leveraged to optimize the framework presented here in a similar

manner, but this is outside the scope of this thesis.

Parwiz, presented in [44], uses dynamic binary instrumentation to insert calls to

a profiling runtime directly in the compiled program. Then it collects dynamic de-

pendence information and combines that with static dependence analysis in order to

suggest parallelisation opportunities to the user programmer. It uses coalescing of con-

secutive memory accesses in order to represent data structures on the heap as single

objects. Furthermore, program loops which can be categorised as static control loops

(i.e. the control does not depend on the computation of the loop) are parametrised: the

memory accesses they make are described by storing the loop parameters. These two

techniques allow Parwiz to reduce its memory and runtime overheads.

Another binary level profiler is developed in [88]. Sato et al. represent executed

programs as context trees that contain both function calls and loop invocations, similar

to the approach taken in this chapter. The nodes of this tree are further connected by the

dependencies discovered by the runtime, essentially producing a dependence overlay

of the tree. The authors present a way to use this representation to identify different

types of parallelism in the profiled program. While the focus of that work is on a low

runtime overhead and the accuracy of the profiler is good enough for the application

for which it is used, it is a lot coarser than the accuracy that the framework presented

in this chapter achieves.
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In [95], Vanka et al. try to find a better trade-off between speed and accuracy of data

dependence profiling for speculative optimization than previous works. The proposed

approach is to group instructions into sets and track dependencies between these sets

only. The sets are computed depending on the needs of the optimisation which will use

the profiling information. This leads to improved runtime and good-enough accuracy

for the optimisation of choice. However, being tailor made for a specific optimisa-

tion, the profiling information is not as general as the one produced by the technique

presented here.

In [100], Yu et al. also focus on reducing the memory and performance overhead

of data dependence profiling. The proposed approach involves using type consistency

and alias analysis to group memory locations into alias clusters, using a partial de-

pendence graph without enumerating all dependencies, and partitioning the profiling

into complementary slices. This allows them to run profiling in parallel and reduce the

memory requirement of each slice. The authors prove that using a partial dependence

graph is sufficient for the loop-level reordering transformations that they are interested

in enabling, but it is not general enough for the applications the approach presented

here aims to enable.

3.7 Summary and Conclusions

When it comes to data accesses, static analysis can derive a limited amount of informa-

tion. In order to extend this information, this chapter has presented a dynamic context

aware data access profiling framework. It extends previous work [45] by implement-

ing robust mechanisms for handling recursive and indirect function calls. Furthermore,

formal definitions for loop related terms are presented and the technical details of the

framework are explicitly described in order to facilitate future improvements.

The framework presented in this chapter achieves its main goal of being complete

enough to be able to profile the whole of the SPEC CPU2006 benchmark suite, un-

like more complex techniques. At the same time, the precision is of the level required

for augmenting the iterator recognition analysis presented in the next chapter: depen-

dencies are recorded on the instruction level and relative to a context including the

call-stack and inter-procedural loop nesting. The framework is not as fast as other

methods, but still manages to profile each SPEC CPU2006 benchmark in an accept-

able time. If runtime efficiency and memory overhead are critical for an application,

techniques from more complex profilers can be employed to extend the profiler, in
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particular parallelising by pipelining the tracer and analyser steps and running mul-

tiple trace analyses in parallel, and by compressing the collected information before

analysing it as proposed by [46].



Chapter 4

Generalized Loop Iterator Recognition

Iterators prescribe the traversal of data structures and determine loop termination, and

many loop transformations require exact knowledge of iterators for their analysis and

manipulation. While recognition of iterators is a straight-forward task for loops with

affine loop indices, the situation is different for loops with more complex iterators, e.g.

iterating over dynamic data structures or involving control flow dependent computation

to determine the next loop element. This chapter proposes a compiler analysis for rec-

ognizing and separating out loop iterator code from instructions representing the loop

“payload”. A static analysis is initially developed for this task, which is then enhanced

by incorporating profiling information to support speculative code optimizations. The

new analysis has been prototyped in the LLVM framework and demonstrate its capa-

bilities using the SPEC CPU2006 benchmarks. The approach is applicable to all loops

and this chapter shows that it can recognize explicit iterators in, on average, 88.1% of

over 75,000 loops using static analysis alone, and up to 94.9% using additional profil-

ing information. Existing techniques perform substantially worse, especially for C and

C++ applications, and cover only 35–44% of the loops. The analysis presented here

enables advanced loop optimizations such as decoupled software pipelining, commuta-

tivity analysis and source code rejuvenation for real-world applications, which escape

analysis and transformation if loop iterators are not recognized accurately.

4.1 Introduction

Advanced compiler optimization [91] is largely concerned with the optimization of

loops as the largest proportion of time executing a program is spent in loops, where

small per-iteration improvements multiply to greater overall effect. In fact, mathemat-

81
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ical frameworks – such as the polyhedral model [15] – underpinning loop optimization

and parallelisation have been specifically designed to capture loop behaviour for anal-

ysis and transformation. Central to loop analysis is knowledge of loop iterators, which

determine the iteration ranges of loops, are updated in every iteration and prescribe

how data structures are traversed. Whereas recognition of loop iterators for Fortran-

style do-loops is trivial and can be accomplished using syntactic pattern matching,

most compilers employ some variation of induction variable recognition at the in-

termediate representation level to capture a wider range of iterators resulting from a

multitude of idioms and programming styles.

While advanced loop optimizations have been developed in the academic literature

their deployment in commercial or open-source compilers such as LLVM has been

hampered by the fact that real-world source code often defeats existing compiler anal-

yses. The generalized iterator recognition analysis developed in this chapter represents

a critical step towards enabling advanced transformations to be applied to a wider range

of codes. To motivate the technique developed in this chapter three loop analyses and

transformations are considered, which have in common that each of them relies on the

separation of code constituting the loop iterator from the rest of the code, forming the

per-iteration “payload” of the loop.

Use Case 1: Decoupled software pipelining (DSWP) [84], a parallelisation tech-

nique for loops with a loop-carried dependence through a pointer-chasing load. While

the initial implementation of this transformation in [84] relies on ad-hoc syntactic pat-

tern matching for iterator recognition, later versions [93, 40] use an enhanced analysis

for splitting “recursive data structure (RDS) traversal loops” into separate loops for

traversal and per-element processing, respectively. Still, DSWP iterator recognition

is currently limited to pointer-chasing loops without complex inner control flow or

function calls.

Use Case 2: Commutativity analysis [85] aims at automatically parallelizing com-

putations that manipulate dynamic, pointer based data structures. In principle, com-

mutativity analysis enables parallelisation in the presence of data dependencies, but its

underlying algorithm is restricted to just two forms of for-loops with constant bounds

and increments. In fact, the combined restrictions‘’ of the formalism and prototype im-

plementation prohibit application of commutativity analysis to e.g. SPEC CPU2006,

where every single benchmark defeats loop commutativity analysis. Among the rea-

sons is – apart from practical issues relating to the prototype implementation – that the

formalism developed in [85] cannot handle loops in a general way due to its inability
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to identify generalized iterators.

Use Case 3: Source code rejuvenation [77] leverages enhanced program language

and library facilities by finding and replacing coding patterns that can be expressed

through higher-level software abstractions. This includes, among other transforma-

tions, the identification of user-defined container data structures, e.g. singly-linked

lists, their traversals and replacement with equivalent STL or Boost containers and

iterator methods. It is clear that in order to replace user-defined iterator code over

complex, possibly recursively defined and dynamically created data structures these

iterators need to be identified and separated from the operations performed on the ele-

ments of the data structure.

4.1.1 Motivating Examples and Use Cases

Consider the affine loop in Figure 4.1, where the iterator i can be trivially recognized

using syntactic pattern matching1. Optimizing and parallelizing compilers typically

rely on the recognition of basic loop iterators to enable further analyses and transfor-

mations [62]. Induction variables induced by the surrounding loop (not present in this

example) can be identified and substituted by closed form expressions using techniques

developed in e.g. [81, 80].

1 int array[100];

2 ...

3 for(i = 0; i < 100; i++) {

4 array[i]++;

5 }

Figure 4.1: A simple affine loop, where the highlighted loop iterator is trivially recognized

using syntactic pattern matching. Further induction variables depending on this iterator

i may be recognized using techniques developed in e.g. [81, 80, 62].

Now consider the example in Figure 4.2. This loop traverses a recursive data struc-

ture – a singly-linked list – and applies a local update to each element of the list. It is

clear that this loop does not have a natural iterator in the sense of an integer value loop

index incremented by a fixed amount in every iteration [81], but instead a pointer is

1Please note that examples in this chapter are shown using C/C++ source code for ease of illustration,
whereas the techniques and their implementations operate on internal representations such as LLVM IR
and are language agnostic (with exception of source code rejuvenation in Figure 4.3).
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updated and checked. Such pointer chasing iterators can be recognized using ad-hoc

pattern matching [84] or using an algorithm developed as part of DSWP+ [93, 40].

Following successful recognition of the loop iterator, highlighted in the example, the

loop can be parallelized using the decoupled software pipelining approach.

1 my_list ptr;

2 ...

3 while(ptr) {

4 ptr->val++;

5 ptr = ptr->next;

6 }

Figure 4.2: A traversal of a recursive data structure loop with highlighted iterator code.

RDS loop iterators can be recognized using ad-hoc pattern matching [84] or using a

partitioning algorithm developed as part of DSWP+ [93, 40].

An alternative use of iterator recognition is in source code rejuvenation [77], where

the loop from Figure 4.2 may be converted to the form shown in Figure 4.3, where the

user-defined singly-linked list and its traversal have been replaced with an STL list

container and its hidden iterator methods, another common programming language ab-

straction of iterators offered by the C++ programming language. Generalized iterator

recognition enables this kind of loop transformation aimed at raising code abstraction.

1 std::list <int> list;

2 ...

3 for(int &val : list) {

4 val++;

5 }

Figure 4.3: The loop from Figure 4.2 after source code rejuvenation, where the traversal

of the user-defined linked list has been replaced with an equivalent STL list container

and abstracted iterator methods. Iterator recognition enables further analyses driving

this kind of loop transformation.

The third example in Figure 4.4 is a code excerpt showing breadth-first graph

search implemented in the C++ programming language. Conceptually, the loop span-

ning lines 15–30 of this example is similar to the loop in the pointer-chasing loop in
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Figure 4.2, but now the code makes use of STL’s list container to store lists of adja-

cent nodes (adj) and a queue of nodes (queue) needed for BFS traversal. Within the

loop, methods for checking and updating the iterator are invoked. Additionally, the

loop contains an inner loop in lines 24–29 with its own iterator and further conditional

inner control flow, adding to the complexity of the code contributing to the traversal of

the graph data structure. Conceptually, we can say that a BFS graph iterator involves a

queue and operations on it as well as an additional loop to enqueue newly discovered

nodes, which matches the expectations for this algorithm.

In this example, we can separate out the output statements in line 18, which do not

contribute to the loop traversal and its termination, and therefore consider to form the

loop “payload”. RDS loop recognition [84, 93, 40] is defeated by this loop comprising

method invocations and complex control flow, whereas the technique presented in this

chapter successfully identifies the code forming the (highlighted) iterator of the outer

while-loop. Accurate recognition of the iterator in this example can be used to en-

able further analysis, e.g. to drive DSWP-style parallelisation or loop commutativity

analysis [? ].

The examples in this section exemplify different notions of iterators in use today,

which require different analysis for their recognition. They also demonstrate that cur-

rent techniques for iterator recognition are limited in their ability to process complex

iterators, which may involve additional control flow or function calls. As a result,

the success of advanced loop transformations which require separation of loop iter-

ator code from the payload is hampered. What is needed is a technique capable of

processing real-world codes employing a broad range of different styles of loop itera-

tors, which may make use of user-defined data structures, STL or Boost containers and

iterators, and complex control flow alike.

4.1.2 Contributions

This chapter initially proposes a new definition of generalized loop iterators, which

subsumes existing notions of iterators including Fortran-style DO-loop iterators, affine

loop iterators, pointer-chasing iterators and object-oriented iterators, e.g. it.begin()

or it.next(). A novel iterator recognition algorithm is then developed, which oper-

ates at the intermediate representation level and which can be used to separate iterator

code from the “payload” for any loop. This includes iterators which make use of STL

or Boost constructs, or involve nested, conditional control flow or function calls. This
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1 void Graph::BFS(int s)

2 {

3 // Mark all the vertices as not visited

4 bool *visited = new bool[V];

5 for(int i = 0; i < V; i++)

6 visited[i] = false;

7

8 // Create a queue for BFS

9 list <int> queue;

10

11 // Mark the current node as visited and enqueue it

12 visited[s] = true;

13 queue.push_back(s);

14

15 while(!queue.empty()) {

16 // De-queue a vertex from queue and print it

17 s = queue.front();

18 cout << s << " ";

19 queue.pop_front();

20

21 // Get all adjacent vertices of the de-queued

22 // vertex s. If a adjacent has not been visited ,

23 // then mark it visited and enqueue it

24 for(auto i : adj[s]) {

25 if(!visited[i]) {

26 visited[i] = true;

27 queue.push_back(i);

28 }

29 }

30 }

31 }

Figure 4.4: Breadth-first search of a graph implemented in C++ and using STL’s list

container to store lists of adjacent nodes (adj) and a queue of nodes (queue) needed

for BFS traversal. The iterator of the while-loop spanning lines 15-30 comprises com-

plex control flow and method invocations, and can be separated from the loop “payload”

in line 18, which prints a vertex id.
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chapter develops two versions of the iterator recognition algorithm: (a) based on static

analysis only, which is fast, but conservative, and (b) using additional profiling infor-

mation to enable more aggressive speculative optimizations. The LLVM prototype im-

plementation is evaluated against the SPEC CPU2006 benchmark suite and its ability

to successfully recognize more loop iterators than any other technique is demonstrated.

4.1.3 Overview

The remainder of this chapter is structured as follows. Section 4.2 provides the back-

ground on existing techniques for iterator recognition, in particular, induction variable

recognition and RDS loop partitioning. This is followed by the presentation of a new

technique in Section 4.3, incorporating both static and profiling information, and ca-

pable of driving more aggressive speculative optimizations. Relevant details of the

LLVM prototype implementation are also provided. Section 4.4 evaluates the new

technique and demonstrates performance results. This is followed by a discussion of

related work in Section 4.5 and further analyses in Section 4.6 before Section 4.7 sum-

marizes and concludes.

4.2 Background

This section briefly revisits existing notions of iterators, namely affine loop iterators,

induction variables, object-oriented iterators and iterators of recursive data structure

(RDS) loops. Loops which do not have any iterators at all or where iterators are inher-

ently and inseparably tied to the loop computation are also observed.

4.2.1 Affine Iterators

In compiler theory iterators are typically associated with structured for-loops, where

a normalized loop iterates over a sequence of consecutive integer numbers between

affine lower and upper bounds. The iteration space of such a loop or loop nest is

an ordered set of loop iterations, in which each iteration is represented by a point

(i1, . . . , in) for a loop nest of depth n. Loop iterators are then the space represented

by a column vector I = [i1, . . . , in]T , and loop ranges form a system of inequalities

LBn(i1, . . . , in−1)
T ≤ in ≤UBn(i1, . . . , in−1)

T , where LBk and UBk are lower and upper

loops bounds, respectively, at nesting level k.
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4.2.2 Induction Variable Recognition

Informally, an induction variable is a variable whose value on each loop iteration is

a linear function of the iteration index (=iterator). A basic induction variable is a

variable X whose only assignments within the loop are of the form X ← X +C or

X ← X −C, where C is a constant or a loop-invariant variable. More generally, an

induction variable is recursively defined as either a basic induction variable or a linear

function of some induction variable.

Induction variable recognition uses a reaching definitions analysis, finding all def-

initions of X and Y in X ← Y ⊕ Z, which reach the beginning of the loop. Basic

induction variables can then be found by a simple scan of the loop. To find the remain-

ing induction variables, we find variables W such that W ← A×X +B, where A and B

are constants or loop invariants, and X is an induction variable. These can be found by

iterating through the loop until no more induction variables are found.

Approaches to induction variable recognition in many modern compilers, including

LLVM, are based on scalar evolution, e.g. [79]. The approach to iterator recognition

that is presented in this chapter is compared against existing techniques and, in par-

ticular, the LLVM associated Polly tool [35], which provides convenient access to this

functionality.

4.2.3 RDS/DSWP Loop Partitioning

Parallelisation of recursive data structure (RDS) loops is the main concern of DSWP

[84]. In order to parallelize loops DSWP must identify which pieces of code are re-

sponsible for the traversal of the recursive data structure (= iterator recognition). Since

a data structure is recursive if elements in the data structure point to other instances of

the data structure, either directly or indirectly, RDS loops can be identified by search-

ing for this pattern in the code. Specifically, DSWP searches for load instructions that

are data dependent on previous instances of the same instruction. These induction

pointer loads (IPL) form the kernel of the traversal slice [73]. IPLs can be identified

using augmented techniques for identifying induction variables [31, 73]. While RDS

loop detection involves iterator recognition for a class of loops comprising pointer

based memory references it is based on matching a specific code pattern and does not

generalize to a broader class of loops and iterators.

RDS loop recognition has been further developed in [75, 93, 40] as part of DSWP+.

Through manual transformation and parallelisation it tries to exploit parallelism on
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multicore hardware. The relevant part here is that DSWP+ comprises an algorithm for

systematic separation of dependence cycles, some of which may be involved in loop

iterators. For this DSWP+ builds the program dependence graph (PDG) [28] of the

loop. It contains all data (both register and memory) and control dependencies, both

intra- and inter-iteration. Then DSWP+ finds the loop recurrences, i.e. instructions

participating in dependence cycles. DSWP+ groups dependence cycles into strongly-

connected components (SCCs) that form an acyclic graph. These SCCs form the min-

imum scheduling units so that there are no cross-thread cyclic dependencies. The

simple algorithm from [75] is used as a starting point for the novel iterator recognition

technique presented here and enhanced with support for arbitrarily complex iterators

such as those often encountered in STL-enhanced C++ code. The profiling framework

from Chapter 3 is also used in order to enhance accuracy for otherwise hard-to-analyse

applications.

4.2.4 Object-oriented Iterators

On a programming language level iterators often have a broader meaning [47, 17] and

include constructs such as C++ STL iterators, which often escape the stricter iterator

notion developed in compiler theory. Specifically, in C++ an iterator is any object that,

pointing to some element in a range of elements (such as an array or a container), has

the ability to iterate through the elements of that range using a set of operators (with at

least the increment (++) and de-reference (*) operators).

This chapter generalizes these existing notions of iterators and introduces a uniform

definition subsuming all of the existing, previous definitions of iterators. A technique

is developed, which is generally applicable and covers all affine and non-affine, regular

and irregular as well as object-oriented iterators in a single, unified framework.

4.2.5 Iteratorless and Inseparable Loops

Not all loops have iterators, which naturally advance the position in an iteration space

or data structure. For example, consider the spin-lock loop in Figure 4.5, which spins

until a flag is set by e.g. an interrupt handler or another thread. Another example of an

iteratorless loops is an infinite event loop, possibly as part of a GUI.

In some cases iterators can not be separated from a distinct loop “payload”, i.e.

code which does not contribute to the advancement of the loop iterator. An example of

such an inseparable loop is shown in Figure 4.6. While inseparable, this loop may still
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1 while (!flag) {}

Figure 4.5: An example of an iteratorless loop, where loop termination is determined

by setting a flag externally, e.g. in an asynchronous interrupt handler or a different

execution thread.

be speculatively parallelisable. For example, the technique described in [93] breaks

the loop exit control dependencies originating from loop condition in line 3 to facilitate

speculative DSWP.

1 cost = 0;

2 node = list ->head;

3 while(cost < T && node) {

4 ncost = doit(node);

5 cost += ncost;

6 node = node->next;

7 }

Figure 4.6: An example of an inseparable loop from [93], where the loop iterator and

the “payload” cannot be separated. Inseparable loops may still be parallelisable using

speculative DSWP.

4.3 Methodology

This section presents a methodology for iterator recognition. Initially, an overview

is provided and both an intuitive and a formal definition of the concept of iterators

is given. This is followed by a static analysis for iterator recognition, which – as a

useful addition for speculative loop transformation – is subsequently complemented

with profiling information to significantly enhance its capability to separate iterator

code. Finally, this section shares insights from the LLVM prototype implementation.

4.3.1 Definitions

Intuitively, a loop iterator is a variable (or a set of variables), which is updated in

every iteration of a loop and which is involved in controlling loop exits, e.g. as part
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of a conditional expression. This intuitive understanding is captured in the following

definition:

Definition 4.3.1. Generalized Loop Iterator. A generalized loop iterator is a minimal

set of variables and operations manipulating these variables, which form an SCC in the

PDG and exhibit a loop-carried dependence of distance 1. Furthermore, this SCC has

no incoming edges from other SCCs in the PDG.

This definition exploits the fact that conditional expressions controlling loop ex-

its will introduce control dependencies to every operation contained in the loop body.

Since variables which are updated in every loop iteration are also of interest, this ap-

proach also looks for data dependencies in the other direction, i.e. from update op-

erations in the loop body towards read operations in loop termination expressions.

Together these two dependencies will form a loop-carried dependence cycle, or more

generally an SCC in the PDG. Other operations may depend on this SCC, but it is

the dominant SCC of operations, which does not depend on any other operations and

variables that determines loop termination and, thus, constitutes the loop iterator.

In counted or affine loops the conventional iterator is intuitively covered by the

definition given here, as it is this variable (often i) and its updates and checks that form

the dominant SCC controlling execution of the remaining loop operations, which in

turn form the loop “payload”. Similarly, iterators of pointer-chasing loops are covered

by the same definition as pointer updates and checks introduce a cyclic dependence

relation on which the remaining loop body depends. However, Definition 4.3.1 also

covers STL-like iterators, which are updated and checked in every single loop iteration,

possibly involving calls to methods in other classes, though, which necessitate the use

of inter-procedural analysis for their identification.

Abstraction and generalization of the properties of a loop iterator in the definition

above now allows the development of an iterator recognition analysis operating on the

compiler IR, thus enabling a source-language agnostic approach.

4.3.2 Static Analysis

The analysis for determining loop iterators presented here involves three stages closely

following Definition 4.3.1:

1. PDG construction. The IR is assumed to provide a control flow graph (CFG)

in static single assignment (SSA) form (Figure 4.7a). The algorithm from [26]
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is applied to construct the control dependence graph (CDG) of the loop (Figure

4.7b). Additionally, the implicit def-use chain present in the intermediate rep-

resentation is combined with a static dependence analysis of memory accesses

based on [34] to build the data dependence graph (DDG) of the loop (Figure

4.7c). The PDG is produced by combining the CDG and DDG (Figure 4.7d).

2. Determine SCCs. Once the program dependence graph of a loop is constructed,

its strongly connected components are determined. A directed acyclic graph

(DAG) connecting the SCCs is built using Kosaraju’s algorithm [5].

3. Dominant SCC and iterator recognition. Finally, the dominant SCC, i.e. the

one that has no incoming edges in the SCC DAG, is taken. This dominant SCC

represents the loop iterator and the algorithm labels instructions represented by

the SCC as “iterator instructions” and variables involved as “iterator variables”

(Figure 4.7e). Inspection of the properties of these iterator instructions and vari-

ables reveals that together they satisfy Definition 4.3.1 by construction, showing

that the loop iterator has indeed been recognised. Figure 4.8 illustrates an ex-

ample labeling of the IR nodes of a loop extracted from the SPEC CPU2006

benchmarks.

4.3.3 Incorporating Profiling Information

Conservatism of the static analysis used as part of the construction of the DDG in

section 4.3.2 is a limiting factor. May dependencies introduce spurious dependence re-

lations, which may not materialize for any program execution on valid input data. This

section investigates how incorporating profiling information obtained from instrumen-

tation and execution of the target program can be used to improve iterator recognition.

The profiling framework described in Chapter 3 is used to capture data dependencies.

Clearly, any approach relying on profiling information for the computation of data

dependencies is prone to errors such as missing a dependence, which did not material-

ize in a specific execution trace, but could well occur in another [97]. However, there

is still benefit in incorporating such unsafe information for two reasons: (a) an upper

bound of the available dependencies can be determined, which enables the quantifica-

tion of the scope for improvements of static analyses, and (b) some transformations,

e.g. speculative parallelisation [76], are inherently resilient against data dependence

violations and can benefit from more aggressive loop transformations.
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entry

exit
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s = queue.front();
cout� s� " ";
queue.pop_front();
i = adj[s].begin()
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(e) Strongly connected components (SCCs) of the PDG. The green SCC has no incoming

edges and constitutes the iterator.

Figure 4.7: CFG, CDG, DDG, PDG and SCC for the while-loop in Fig. 4.4.
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.

Figure 4.8: Illustration of the labeling of the CFG of a loop extracted from the SPEC

CPU2006 benchmarks. The nodes in green are the iterator instructions, while the ones

in blue are the payload. The remaining nodes are part of the CFG of the function

containing the loop.

In principle, the PDG construction algorithm (stage 1 above) is complemented with

profiling information similar to [43], i.e. for each of the statically detected may data

dependencies the technique presented here refers to profiling information to resolve

this may dependence as either must dependence or no dependence, based on whether

or not a dependence was observed in the execution profile. The remaining stages of

the algorithm remain unchanged.

Users are expected to profile their applications using representative, but reduced

data sets, e.g. [27], and to focus their efforts on those parts of the program relevant to

their targeted transformation in order to avoid excessive profiling costs.

4.3.4 Implementation

4.3.4.1 LLVM Implementation

A prototype of the technique presented here has been implemented as an analysis pass

in the LLVM compiler infrastructure. This allows one to analyse all of the SPEC

CPU2006 benchmarks, since there are LLVM front-ends available for C/C++ (clang)

and Fortran (flang). The LLVM IR is a CFG in SSA form as needed by the tech-

nique. Standard LLVM analyses allow for detecting loops in this graph and promoting

memory accesses to virtual registers and thus simplifying the IR.
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4.3.4.2 Instrumentation & Profiling

In order to collect memory access information about a subject program, the context

aware memory profiler developed in Chapter 3 is applied. This begins with building a

complete call graph of the program and computing context offsets for function calls.

When these context offsets are accumulated for a given stack trace (i.e. a sequence

of function calls) the result is always a context identifier that is unique for the given

stack trace. Groups of recursive functions and indirect function calls are handled. The

former is done by reducing the call graph to an SCC DAG and assigning a unique

context ID to every SCC: the calls within the recursive groups have offsets of zero (see

Figure 4.9). The latter – by adding calls to the runtime that indicate indirect function

calls and function returns and keeping a stack of indirect calls at runtime.

SCC

(a) A recursive call graph. (b) Contracted SCC DAG.

Figure 4.9: Handling recursion robustly. The strongly connected component in Fig-

ure 4.9a is represented by a single node in the contracted graph in Figure 4.9b. The

resulting graph does not contain any further cycles, i.e. it is a DAG.

Once this map from function calls to context offsets is computed, each call is instru-

mented with calls to the runtime to advance and then the context ID is restored. Once

this is done, all memory accesses are instrumented with a call to a runtime function

that records the instruction ID and the address that is accessed.

Lastly, loops are also instrumented, since the analysis needs to know which itera-

tions triggered a dependence and across which loop nesting level did the dependence

occur. For this, loop entering and loop exiting edges in the CFG are instrumented, as
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well as loop back-edges.

Once instrumentation is complete, the program is executed and a profile that con-

sists of a list of the dependencies and the code coverage is collected. Each dependence

is described by its

1. Type (RAW, WAW, WAR);

2. Source and target instructions;

3. Source and target contexts; and

4. List of loop iteration counters.

Iteration counters are obtained by counting the number of times a back-edge was en-

countered, rather than relating to the complex notion of iterators that the analysis pre-

sented in this chapter aims to extract.

4.3.4.3 Incorporating Profiling Information

Once the profiling information is collected, it is incorporated back in the analysis to

augment the static analysis results. Because unique contexts need to be mapped back

to the functions in which they occur, the tree of all possible context IDs needs to be

explicitly built. This is the call tree of the program (see Figure 4.10a). Each node of the

call tree represents a runtime context: a specific sequence of call sites, starting with a

call site in the main function. There is a unique context ID associated with each node.

Each edge of the call tree represents a call site which might be encountered during the

execution of the context that is represented by the source node of the edge. Note that a

single function can appear many times in the call tree as the target of the last element

in the sequence of call sites represented by a node. Similarly, a call site can appear

many times as an edge in the tree: as often as the containing function is represented by

a node.

The size of the call tree is asymptotically exponential in the number of distinct

functions in the program, so it is impossible to construct in an efficient manner. For

this reason, a lazy tree access procedure is implemented, which builds only parts of

the tree which are required to compute the nodes for context IDs which have actually

been observed during the profiling run. The results are cached, so that the same part

of the tree does not need to be computed twice. This puts a limit on the complexity

of the analysis and ensures that the number of nodes in the tree that will be explicitly



4.3. Methodology 97

main

foo

qux bar

(a) The call tree of the program that profiling

data is being incorporated for. Each node

represents a context and each edge repre-

sents a function call in that context.

main foo

main foo

path 1:

path 2:

(b) The two paths are the same. The mem-

ory access instructions are in the same func-

tion (foo). They should be used themselves

to record the dependence.

main foo

main foo qux

path 1:

path 2:

(c) One path is a prefix of the other. One

memory access happens behind one or mul-

tiple function calls: in this case a call to qux.

The top-level function call instruction should

be used to record the dependence together

with the memory access instruction that is on

the same level in the call tree.

main foo bar

main foo qux

path 1:

path 2:

(d) The two paths share a prefix. There is a

function which contains two different function

call sites that eventually lead to the memory

instructions that participate in the runtime de-

pendence. Similarly to 4.10c, these call sites

are used to record the dependence, instead

of the instructions behind them.

Figure 4.10: Comparing the paths from the root of the call tree to the instructions in an

observed dependence is necessary in order to decide which instructions to associate

with the dependence. When the instructions are in the same runtime context (Figure

4.10b), then a dependence is constructed between them by the profiling information

incorporation module. When the instructions do not happen to be in the same runtime

context, the dependence should be constructed between a memory instruction and a

function call instruction (Figure 4.10c) or two function call instructions (Figure 4.10d).
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computed will be at most the number of contexts seen during the profiling run, which

is less than exponential.

With the call tree built, for each dependence in the gathered profile, the paths from

the root of the call tree to the context in which the source and target instructions of the

dependence were encountered is computed. By taking the longest common prefix of

these two paths the analysis finds the appropriate instructions to build the dependence

between:

1. Between two memory instructions, if the paths are the same (the instructions are

part of the same function: Figure 4.10b);

2. Between a memory instruction and a call instruction, if one path is a prefix of

the other (one instruction happens behind a function call in the function in which

the other instruction belongs to: Figure 4.10c);

3. Between two call instructions, if no path is a prefix of the other (the memory in-

structions happen behind different function calls within the same function: Fig-

ure 4.10d).

4.3.4.4 PDG Construction

Each of the dependencies encountered during profiling is added to the PDG built by

static analysis, where may dependencies are treated as absent dependencies for the pur-

pose of enabling aggressive, speculative transformation, but are re-inserted as encoun-

tered. In Section 4.4, the impact of resolving statically determined may dependencies

which have not been covered by profiling, as either must dependence (=conservative

lower bound) or no dependence (=aggressive upper bound) is discussed.

4.4 Evaluation

This section describes the experimental setup and the evaluation process of this chapter.

It presents the results and offers an analysis explaining the stated observations.

4.4.1 Experimental Set-up

The methodology for iterator recognition and separation is evaluated against SPEC

CPU2006 application benchmarks. All integer and floating-point benchmarks, cover-

ing codes written in C, C++ and Fortran are included. This is in contrast to e.g. [93]



4.4. Evaluation 99

where loop partitioning was applied to loops in selected functions, or [69] where small

benchmarks kernel have been used for evaluation. In order to limit the time required

for profiling, this section uses the test input data set, as no justified improvement from

using the ref data set instead (see section 4.4.2.4) was discovered.

An LLVM implementation (version 3.9) of the technique as described in the previ-

ous section is used. For the iterator recognition pass two experiments are conducted:

(a) the results rely on static analysis only for PDG construction, and (b) the analysis

uses both static analysis and additional profiling information obtained from running

an instrumented version of the benchmarks, where profiling information is fed back to

the dependence analysis pass of the LLVM compiler. The host system uses four AMD

Opteron 6376 CPUs (64 logical cores in total) and has 1TB of RAM available.

For each benchmark this section reports the total number of loops, the number of

loops with affine iterators identified by Polly [35], the number of statically separable

loops by the iterator recognition technique presented in this chapter, and the number

of separable loops using additional profiling information.

The technique presented here is compared against Polly, since its scalar evolution

based handling of induction variables and iterators can be considered state-of-the-art.

Polly has been modified such that loops with affine iterators are counted even if the

loop body violates additional constraints required for affine loops, e.g. affine array

index functions. In particular, the comparison considers all loops where:

1. For each loop, there exists a single integer induction variable that is incremented

from a lower to an upper bound by a constant stride.

2. Lower and upper bounds are affine expressions involving loop-invariant integer

expressions and surrounding loop induction variables.

4.4.2 Results

The main results are presented in the table in Figure 4.1. For each benchmark the total

number of loops and how many of them have affine iterators (=syntactically separable)

is presented. This is compared to the generalized iterator recognition pass presented

here when driven (a) by static dependence analysis and (b) profile-guided dependence

analysis indicating lower and upper bounds, respectively. It can be observed that the

novel iterator recognition pass can identify and separate substantially more loop iter-

ators – for either programming language – than what is possible with affine iterator
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recognition alone. Profiling information always increases the number of separable

loops, in particular for the C++ benchmarks.

Results for > 75.000 loops across all SPEC CPU2006 applications, both integer

and floating-point, are shown, grouped by programming language (C, C++ and For-

tran). For each benchmark the total number of loops, the number of affine loops and

their percentage of the total number of loops, the number and percentage of statically

separable loops using the technique presented in this chapter, and the number and per-

centage of dynamically separable loops, are reported. Since profiling with standard

data sets does not guarantee that a particular loop is executed, this report presents a

range, i.e. a lower and an upper bound, for each benchmark for the dynamically sep-

arable loops. The lower bound corresponds to cases where may dependencies in non-

profiled loops are conservatively approximated, whereas the upper bounds corresponds

to a scheme where such unobserved may dependencies are resolved aggressively.

4.4.2.1 Comparison to Affine Loop Iterators

Inspection of the data in Figure 4.1 reveals that affine loop iterators are common in

Fortran based programs and account for 90.5% of all loops in these applications, but

are less frequently encountered in programs written in C and C++ (35.3% and 43.5%,

respectively). However, even for C and C++ applications there exists great variance

with individual programs, e.g. 458.sjeng, 403.gcc or 483.xalancbmk, exhibiting

only few affine iterators, whereas others including 470.lbm make frequent use of such

iterators.

Given that affine loop iterators are a prerequisite to the application of polyhedral

loop transformations these results confirm that there is limited scope for such transfor-

mations on the SPEC CPU2006 C and C++ applications2.

In contrast, the static analysis for iterator recognition and separation presented here

is applicable to all benchmarks. For most C and Fortran programs almost all loop iter-

ators can be separated from loop “payload”, resulting in 94.5% and 98.4% of statically

separable loops. Note that failure to separate iterators is not a failure of this technique,

but an inherent loop property (“inseparable loop”).

For C++ codes fewer separable iterators are observed, although this figure (56.9%)

is still well above that for affine iterators (43.5%) and can be improved substantially

using profiling information. We will see later that iterator separation for C++ appli-

2In recent work [15] some attempts have been made to extend the polytope model for general data-
dependent control-flow.



102 Chapter 4. Generalized Loop Iterator Recognition

C C++ Fortran
0

20

40

60

80

100

It
er

at
or

s
se

pa
ra

te
d

(%
)

affine static
+ profiling (lower) + profiling (upper)

Figure 4.11: Breakdown of iterators recognized by affine, static and profile-guided anal-

ysis and further broken down by programming language.

cations can be vastly improved using profiling information, which suggests that static

analysis is hampered by specific traits exhibited by C++ in general or by the specific set

of applications in the benchmark suite, which is discussed in the following paragraph.

4.4.2.2 Evaluation By Programming Language

Again, consider the table in Figure 4.1 and also the chart in Figure 4.11. Static it-

erator recognition works well for Fortran and C programs with 94.5% and 98.4%,

respectively, of all loops separable using static analysis alone. This is a slightly sur-

prising result given that the C based SPEC applications tend to be more irregular and

pointer based than their Fortran counterparts. However, we find that some C bench-

marks such as 401.bzip2 and some mixed Fortran/C codes such as 436.cactusADM

and 454.calculix have a lower than average number of statically separable loops.

The majority of the unseparable loops in the mixed Fortran/C benchmarks are found

in the part written in C.

The situation is different for the applications written in C++, where the average

percentage of statically separable loops is substantially lower at 56.9% than for C or

Fortran based codes. For some applications, e.g. 471.omnetpp this percentage can be

as low as 33.7%, whereas for 444.namd 88.0% of its loops are statically separable.

Lower separability figures for C++ applications can be attributed to following three

reasons: (a) the C++ applications comprise fewer separable loops as can be seen when
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comparing results to the upper bound obtained by profiling, and (b) C++ applications

are harder to analyse statically using the analyses provided in the LLVM compiler. This

later point can be validated by comparison against the lower bound of the profiling data,

which suggests that even modest amounts and conservative use of dynamic information

can lead to improvements for C++ programs over static analysis alone.

Some of the C++ applications in the SPEC CPU2006 suite contain a large number

of non-natural and multi-exit loops [86], which defeat LLVM’s static analysis. During

the research prototyping related to this chapter it has also been observed that LLVM’s

ability to disambiguate accesses to fields and members in structures (and classes) is

limited. For example, in 473.astar it has been observed that LLVM’s analyses con-

servatively report possible dependencies between array and other members contained

in a class, where profiling information can help to disambiguate accesses.

4.4.2.3 Impact of Profiling Information

Profile information is complementary to static analysis and only adds to number of

separable loops. It works best where static analysis is conservative and reports may

dependencies, which do not materialize in actual program executions. However, for

cases where static analysis already enables iterator separation for e.g. > 98% of all

loops there is obviously limited scope for improvement (other than minimizing iterator

instructions). This is the case for most Fortran and C benchmarks, although there are a

number of notable exceptions. While only 191 out of 238 loops are statically separable

for 401.bzip2 profiling enables separation of, at least, 235 loops, thus increasing

recognition from 80.3% to 98.7%.

For C++ applications with their lower number of separable loops and iterators pro-

filing improves separability by, on average, 5% (lower bound) and up to 24%. For

450.soplex, for example, static analysis enables separation of 59.7% of all loops,

whereas profiling contributes to an increase of greater than 10% and up to almost 26%

depending on whether a conservative or aggressive scheme is used.

4.4.2.4 Coping with Limited Profiling Coverage

Table 4.2 presents the amount of loops executed during profiling the SPEC CPU2006

benchmarks using the test input set. Profiling with standard data sets does not guaran-

tee loop coverage, i.e. some loops may not be executed during profiling. A breakdown

of loops executed during profiling with SPEC CPU2006 test data sets is presented,
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and it is compared to how many of these have affine iterators, or are statically separable

or dynamically separable with the technique presented here, respectively.

Profiling inevitably incurs a substantial overhead and it is in the interest of the

user to reduce the time for profiling. This can be achieved by using a smaller input

data set, e.g. the test instead of the ref data set for SPEC CPU2006. However,

a typical data set often does not fully exercise every code path, i.e. there is limited

loop coverage. The test input data set for SPEC CPU2006 has been found to cover,

on average, only 19% of all loops (see Figure 4.12a). As discussed in section 3.5.3,

the ref input data set has also been used for eight (out of the 29) benchmarks for

comparison. For four benchmarks the loop coverage did not change, for two others

the increase was negligible (2 and 3 additional loops out of 297 and 329, respectively),

and, surprisingly, for one of the benchmarks two loops fewer were covered. There was

only one benchmark, 445.gobmk, which saw a significant increase in the coverage,

raising from 23% to 73% of the total loops in the benchmark. Time for profiling,

however, increased 185× on a geometric average over the eight benchmarks that were

measured.

In general, loop coverage is important and in Figures 4.12b, 4.12c, and 4.12d we

see that profiling information has a substantial impact on the ability to separate iter-

ators, especially for the C++ applications. These findings suggest that profiling with

standard data sets is not ideal, but a more targeted approach supported by techniques

from the field of software testing, e.g. automated test case generation [9], should be

considered, but this is beyond the scope of this chapter.

In practical terms end users would likely isolate code regions of interest, e.g. per-

formance bottlenecks, and use targeted test harnesses to drive profiling specifically for

these regions.

4.4.2.5 Evaluation of Iterator Size and Complexity

This section considers iterator size and complexity, i.e. what percentage of the instruc-

tions in a loop are part of the iterator and payload, respectively. This information is

useful to evaluate the potential benefit of advanced parallelisation schemes as parallel

speedup is related to the size of the payload, i.e. non-iterator code in the loop.

Consider the three diagrams in Figure 4.13, where the distribution of relative itera-

tor sizes and their frequency across the SPEC CPU2006 benchmarks is plotted, broken

down by programming language (C, C++, Fortran). There are two interesting observa-

tions: (a) Iterator sizes are not uniformly distributed, and (b) the distribution of iterator
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(a) Percentages of loops covered by the SPEC CPU2006 test data set out of all loops.
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(c) Percentages of separated iterators from covered loops of C++ benchmarks.
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(d) Percentages of separated iterators from covered loops of Fortran benchmarks.

Figure 4.12: Profiling with the SPEC CPU2006 test data set does not cover all loops

(a), yet even limited profiling information improves on static analysis alone for programs

written in either programming language (b, c, d). Colours correspond to Table 4.2. Note

that Figure 4.12(a) is a repeat of Figure 3.13 from page 77.
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(a) C benchmarks.
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(b) C++ benchmarks.
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(c) Fortran benchmarks.

Figure 4.13: Distribution of relative loop iterator sizes as percentages of the total num-

ber of IR instructions in a loop (0% = iteratorless, 100% = inseparable) across all loops

and SPEC CPU2006 benchmarks, broken down by programming language (C, C++,

Fortran).

sizes varies significantly for the three programming languages used in the benchmark

suite.

For the C benchmarks a bimodal distribution of iterator sizes is observed, where

iterators are either very small (around 5-10% of loop instructions) or large (around

85% of loop instructions). The situation is different for Fortran codes, where the vast

majority of iterators is small. The C++ applications exhibit the same bimodal trait as

the C codes, but the peaks at the lower and higher end of the scale are less distinct.

Further inspection of the iterators reveals that small iterators are typically affine

or near-affine iterators, which only require a few instructions to update and compare.

Larger iterators are often complex and comprise additional control flow. Given that

the Fortran benchmarks contain substantially more affine iterators, these dominate the

distribution as expected. For the C and also C++ benchmarks, however, additional

complex iterators similar to the motivating example in Figure 4.4 are observed.
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4.4.2.6 Analysis and Profiling Overhead

Table 4.3 presents the runtimes of static analysis and dynamic analysis for the bench-

marks in the SPEC CPU2006 suite. Note that the data is the same as that in Figure

3.12 on page 75. The time for static analysis increases with the number of IR instruc-

tions that are processed and the number of dependencies that are computed. The time

for profiling depends on the behaviour of the respective benchmark for the given input

set: in this case the test input set for SPEC CPU2006. In general, profiling incurs a

substantial overhead and its use should be targeted at otherwise hard-to-analyse loops

to avoid excessive profiling runs.

Static analysis needs to consider pairwise all instructions contained in a loop for de-

pendence testing (using LLVM’s DependenceAnalysis pass), resulting in O(n2) com-

plexity. However, for most of the SPEC CPU2006 applications analysis is reasonably

fast and only adds a few seconds to the overall compilation time. Figure 4.14 shows

that in practice, the runtime of static analysis is roughly linear in the number of IR

instructions (a) and in the number of static dependencies (b). A notable exception is

the 416.gamess application, which with its 2M+ IR instructions and 17.5M+ static

dependencies spread over 21k+ loops, takes almost 11 minutes to analyse statically.

For an application, which contributes almost 30% of all loops of the entire benchmark

suite this is still acceptable. None of the C or C++ benchmarks takes longer than 30

seconds to analyse, though, and most of them can be processed in under 10 seconds.
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Figure 4.14: Runtime of static analysis versus number of IR instructions and number

of static dependencies. In both cases, the relationship is roughly linear. Colours corre-

spond to Table 4.3.
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Profiling naturally incurs a much greater overhead than static analysis. For exam-

ple, profiling of the SPEC CPU2006 applications using the test data sets requires

several minutes and up to several hours as detailed in Table 4.3. With this framework,

the overhead resulting from instrumented execution of a program yields, on average,

a 760× slowdown. This means that for every second of non-instrumented execution

the instrumented version of the same program will take around thirteen minutes to ex-

ecute. This is clearly prohibitive in a continuous edit-compile-test cycle or on very

large data sets. However, these are not the envisaged use cases of the profiling tech-

nique. Instead, the preferred application - as enabler of one-off transformations such as

DSWP, source code rejuvenation or commutativity analysis supporting parallelisation

- is inherently more tolerant to the observed profiling overhead in exchange for greater

accuracy, especially on some complex C++ applications.

4.5 Related Work

Loop concepts and iterators are as old as the oldest high-level programming languages

[32] and have received attention, in particular, in polyhedral loop analysis and pro-

gramming language design. Loop identification [83] is the general problem of finding

loops in programs. It is often based on Tarjan’s interval-finding algorithm and is an

essential step in performing various loop optimizations and transformations, but it is

not concerned with identifying loop iterators.

Decidability of termination of several variants of simple integer loops, without

branching in the loop body and with affine constraints as the loop guard (and possibly

a precondition) has been considered in [14]. Whilst this work is related to iterator

recognition it follows a decision theoretical approach. Reducible and irreducible loops

are the subject of [38].

Efficient symbolic analysis of chains of recurrences supporting induction recogni-

tion is presented in [94]. Pointer-based array traversals are analysed and transformed

to closed form array expressions in [30].

Static analysis is employed in [25] to determine loop iteration counts using polytope-

based loop evaluation and program slicing. A constraint based approach to recognition

of reductions is presented in [33], where a wide class of reductions including their

loop iterators is recognized in the LLVM framework. However, generalized iterators

as presented in this chapter are beyond the scope of their work.

HELIX [21, 69] is a speculatively parallelizing compiler, which would benefit from
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iterator recognition. While HELIX applies parallelizing loop transformations, it relies

on normalizable loops (equivalent to while loops), but it does not attempt to separate

out loop iterator code. Instead, HELIX monitors all loop carried data dependencies

without further distinction.

In [82] automatic parallelisation of loops that iterate over user-defined contain-

ers that have interfaces similar to the lists, vectors and sets in the Standard Template

Library (STL) is demonstrated. However, this approach relies on the user inserting

OpenMP directives into a serial program and, effectively, marking up loop iterators.

Partitioning of heap-allocated data structures and transformation of pointer-manipulating

programs is a concern for high-level synthesis supporting FPGA design flows. Sepa-

ration logic is used in [98] for the static analysis driving source-to-source transforma-

tion enabling loop parallelisation of programs comprising dynamic data structures and

pointer-based memory accesses.

4.6 Further Analyses

Section 4.1 introduced some possible uses of the iterator recognition algorithm: decou-

pled software pipelining, code rejuvenation, and commutativity analysis. This section

gives more detail of how iterator recognition can improve these techniques.

4.6.1 Decoupled Software Pipelining

Decoupled Software Pipelining (DSWP, [75]) is a technique powered by a static analy-

sis, similar to the one presented in this chapter. Firstly, the program dependence graph

of the CFG of a loop is constructed, and then the strongly connected components of this

PDG are taken. In the analysis presented in this chapter the top-most dominant SCC is

recognised as the iterator of the loop and the rest as the payload. In comparison, DSWP

performs a load balancing technique, after evaluating the execution cost of each SCC,

with the aim of achieving an equal separation of the runtime of the loop. DSWP then

uses the parts separated in this way as the stages of a software pipeline. All of these

steps are performed statically, and as such the grouping into SCCs is overly conserva-

tive: in the sense that it discovers fewer SCCs than there actually are (as shown by the

authors of DSWP); and the load balancing algorithm is possibly inaccurate (especially

in the case of input-dependent control flow inside the loops).

In [93], Vachharajani et al. propose adding speculation to DSWP in order to violate
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rarely occurring dependencies and produce more fine-grain SCC decomposition of the

PDG of the loop. This is an aggressive approach that alleviates the first of the problems

– the prohibitively small number of strongly connected components – but selection of

the pipeline stages is still done based on a static cost analysis, which can be highly

inaccurate.

The technique presented in this chapter can be used in place of speculation to

augment DSWP. In particular, Section 4.4 demonstrates that the addition of a pro-

file driven data dependence analysis can increase the iterator detection by as much as

32% of the total amount of profiled loops (from 40% to 72%) for a single benchmark

(483.xalancbmk) and by 6% (from 89% to 95%) across all loops. This leads to the con-

clusion that it will have the same or greater effect on the detection of pipeline stages

for DSWP: in addition to separating loops that are statically inseparable, loops that

are statically separable might end up with more stages due to the reduced number of

dependencies reported by the dynamic analysis stage.

Using profiling information is more aggressive than static analysis, but also more

conservative than using speculation: static may dependencies that are violated have

never been encountered during the profiling stage. In comparison, speculation uses

a dependence probability threshold. If this probability is, for example, five percent,

then one in every twenty dependence speculations will result in a mis-speculation and

increased runtime overhead. Contrary to speculation, using profiling information does

not directly add any runtime overhead to the subject program.

Another advantage of using profiling over speculation is that since the framework

is already in place and it has been decided that the time for profiling is not prohibitively

large for the desired optimization, the profiling framework can easily be extended to

include runtime measurements of parts of the loop. This will result in a more accurate

runtime cost estimation of the different SCC of the CFG of the loop body and more

balanced separation during the pipelining stage, especially if the loop contains data

driven/dynamic control flow.

4.6.2 Code Rejuvenation

Source code rejuvenation is a relatively recent concept, introduced by Pirkelbauer et

al. [77]. In contrast with refactoring, source code rejuvenation is used as a one-off

transformation that automatically, or semi-automatically updates the source code of a

legacy system so that it uses idioms and language features introduced by a new evo-
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lution of the programming language that it is written in. Notable work in the field

includes the ‘demacrofier’ introduced by Kumar et al. [50, 51]. The tool uses a classi-

fication of different C-style macros used in a C++ program in order to detect the ones

that can be replaced with one of the following: a constant expression declaration, a

lambda function, a function template, or an alias declaration. The time it takes for a

complete transformation is in the order of magnitude of several hours.

Another important work is that of Wright et al. [99]. The authors present an auto-

matic approach to minimizing the ‘API surface’ of their code-base: ensuring that the

usage of old APIs is replaced with the usage of new ones. The system is highly par-

allelised and is configured so that it allows distributed analysis and transformation. A

specific use case example is described, where 45,000 calls to a string splitting function

were successfully migrated to use an updated interface. A specific runtime for that

experiment is not reported, but it is stated that the system ‘allows complex transforma-

tions across millions of lines of C++ code in a manner of minutes’. This is due to the

massive parallelisation of the framework.

Mooij et al. propose using domain-specific models for software rejuvenation in

[66]. This work revolves around a one-year effort of a complex rewrite of an X-ray

software, involving the replacement of an ad-hoc XML and C# front-end framework

with an easier to maintain C++ code and off-the-shelf GUI components that fit better

with the rest of the code-base (written in C++ as well). The length of the project is ne-

cessitated by the size and complexity of the legacy software and the size of the desired

change, and the hybrid approach involving both manual and automated techniques.

The authors point out that the information about the original code base is stored in

four distinct sources: documentation, developers, code base, and runtime behaviour;

not all of which can be automatically processed. The presented approach is to perform

rejuvenation as a three step process: first, extract the valuable business logic from the

available sources and store them in domain-specific models, abstracting away imple-

mentation details; second, transform these models into redesigned generation models;

third, generate the redesigned software using the transformed domain-specific models.

In none of these stages do the authors completely automatically approach the problem

at hand, but instead they take a more pragmatic approach aiming to minimise the com-

bined time of automation execution and tool development. In pure research the latter

is generally ignored, but in industry it can be more cost effective to trade some of the

tool development time for manual effort [68].

Oikonomopoulos et al. take a different approach and suggest binary rejuvenation
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[74]. The motivation for this idea is manifold. In addition to hardware evolution, the

authors point out that there are security implications stemming from using ‘stale’ bina-

ries. Despite static linking becoming outdated, developers sometimes shy away from

using dynamically linked libraries, mainly due to the quality of such libraries and their

failure to preserve source or binary compatibility. Finally, sometimes programmers

add fallback functions to deal with platform-specific functionality (e.g. intrinsic func-

tions as presented in Chapter 2) and these fallback functions become inadvertently

exposed even in binaries for architectures that support said functionality. To attack

these problems the authors suggest focusing on two problems: equivalence (proving

a replacement candidate code is equivalent to a rejuvenated version) and granularity

(should fragments of the CFG be replaced, or whole functions and libraries). The pa-

per is only foundational and does not formalise any particular algorithm, but proposes

initial directions of research in the area.

A rejuvenation transformation, that can be enabled by the iterator recognition tech-

nique presented in this chapter and that is categorically different than these develop-

ments is envisioned. Following the iterator separation stage, the iterator part of a loop

can be further analysed and properties can be inferred. Similar to the examples pre-

sented in Section 4.1, the nature of the structure that is traversed can be analysed and

then it can be replaced with an idiom or an STL object that does the same thing in

a more maintainable manner. Part of this analysis can be access pattern analysis –

perhaps the elements of the underlying structure are accessed only once – or memory

layout analysis: if the data structure is spread around in memory then it could possibly

be a linked list or a graph structure; if it’s contiguous, then it’s maybe a vector or an

array. Such transformations can improve both maintainability and performance.

4.6.3 Commutativity Analysis

The concept of commutative code blocks has been studied as early as [16]. After as-

serting the importance of parallel computing, Bernstein explains how the notion relates

to that of commutativity. Then, the author formally specifies the memory access condi-

tions that are necessary for parallel and commutative transformations. More recently,

Dinaz et al. have presented separability-based commutativity [85] and Aleen and Clark

have presented output-based commutativity [8].

Separability-based commutativity is based on an object-oriented programming model.

The notion of separability from [85] is different than the one presented in this chapter,
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and concerns the separability of the methods subject to analysis into two parts: object

modifying section and invocation section. This is necessary because if the method is

deemed commutative it can only be executed in parallel if accesses to the object are

performed atomically: in essence, only the invocation part is executed in parallel. Di-

naz et al. use symbolic computation of expressions in order to determine whether an

operation is commutative or not. The applications they demonstrate their technique

on are embarrassingly parallel programs, e.g. an n-body solver and a water molecule

simulation.

Output-based commutativity attempts to abstract away direct memory layout com-

parisons. In [8], Aleen and Clark propose a framework where commutativity is equiv-

alent to the identity of the output of the program before and after reordering the exe-

cution of the subject function. Even if the memory state is different for the two exe-

cutions, they can still be labelled as commutative if all the users of this memory state

result in the same output. This process can continue until a function affects the pro-

gram output and then a last comparison is performed on that. The authors also propose

using random interpretation [37] to significantly speed-up symbolic interpretation.

More recently, von Koch studies the application of commutativity analysis for the

detection of algorithmic skeletons in [96]. The author proposes a hybrid static/dy-

namic analysis approach to detecting commutativity and then presents a formal defini-

tion for a range of algorithmic skeletons based on their notion of commutativity. The

framework is incomplete, however, and a major point of improvement is enabling the

analysis of loops. This is where iterator recognition can prove critically important.

After separating a loop into an iterator and payload parts, it is possible to extract

the payload into a separate function. Commutativity analysis can then be performed

on this function, by recording the inputs presented to it during an ordinary loop pass,

and then replaying them in different orders. If the output of the execution of the loop

is always the same, the loop can be labelled as commutative, and based on the skele-

ton definitions developed in [96], opportunities for parallel execution can be detected.

This approach is currently investigated by other researchers at the University of Edin-

burgh and the implementation uses the iterator recognition prototype presented in this

chapter.
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4.7 Summary, Conclusions & Future Work

Exact knowledge of loop iterators is critical to many loop analyses and transformations,

yet existing compiler techniques are limited in their ability to accurately recognize

irregular or complex loop iterators.

This chapter developed a generalized approach to iterator recognition, which en-

ables multiple uses including loop optimization, parallelisation and general loop rewrit-

ing. Static analysis is shown to work well for C and Fortran applications, but complex

C++ code benefits from additional profiling information. The approach to iterator

recognition presented in this chapter was shown to work in practice and the LLVM pro-

totype implementation is was found to be capable of separating a substantially larger

number of loops and iterators than previous techniques. This was based on an evalua-

tion against the full set of applications contained in the SPEC CPU2006 suite. Future

work will focus on integration of the iterator recognition technique presented here with

advanced loop parallelisation techniques.
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Summary

This thesis has investigated the analysis of legacy source codes and methods for trans-

lating their functionality and performance to architectures that the program was not

originally intended to run on. It presents three complementary techniques that ad-

vance such analysis: the automatic extraction of information encoded in the usage of

target-specific SIMD intrinsic functions, the tracking and recording of runtime data

dependencies, and the automatic separation of loops into an iterator and payload. This

chapter summarises these contributions and the related experimental results, and dis-

cusses the limitations and potential improvements of the methodologies presented.

5.1 Contributions

5.1.1 Intrinsic Translation

Chapter 2 presented FREE RIDER: a novel methodology for taking advantage of target-

specific intrinsic functions when retargeting a legacy software. The key idea is that

instead of trying to de-optimise a program which uses such functions with the aim

of making it portable again, the optimisation information encoded in the usage of the

intrinsic function can be used in order to produce an optimised program for the target

architecture ‘for free’. This is done by employing a graph-based intermediate represen-

tation descriptions of the intrinsic functions available on the two platforms. Intrinsic

functions and their surroundings in the source code are combined into a graph which is

then covered with sub-graphs corresponding to target intrinsics. If there are any parts

left uncovered, they are implemented using portable source code.

The experiments show that this methodology allows FREE RIDER to reach 96%
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of the speedup that a human expert can achieve by manually retargeting the program,

but without any of the added development overhead. The set of benchmarks used

for this experiment consisted of eight sample programs from the OpenCV computer

vision library, which are available in optimised form for both the source and target

architectures. Another experiment was also performed, where the subject program –

a UAV autopilot – was only available for the source architecture. The automatically

retargeted version managed to achieve a speedup of 3.73 on a processor with a vector

unit of width four.

5.1.2 Data Dependence Profiling

After showing that target-specific optimisations can be used to achieve high-performing

retargetted versions of a legacy program, this thesis moves on to investigating the anal-

ysis of programs that do not have such optimisations in place. Static analysis is identi-

fied as a limiting factor in the success of achieving fast execution on multi-core archi-

tectures, and a data dependence profiling framework is developed.

Chapter 3 builds the theory for, and describes such a framework, with the goal of

achieving completeness, fine granularity, and precise context tracking, over a range of

different programs. For this reason the chapter tackles problems generally ignored in

other profiling systems, in particular the treatment of indirect and recursive function

calls while tracking the runtime context of a program. The framework is evaluated on

the whole of the SPEC CPU2006 benchmark suite and manages to build data depen-

dence profiles for each of the programs, achieving the completeness goal.

The granularity achieved by the profiler is fine: it builds a dependence graph be-

tween individual instructions for each function of the program. If a memory access that

results in a dependence occurs behind a function call, a dependence is constructed us-

ing the corresponding call instruction rather than the memory access instruction from

the other function. The recorded contexts include inter-procedural loop nesting in-

formation, as well as information about the call stack. The resulting data structure is

exposed via the LLVM compiler infrastructure and as such is easily accessible from

following compiler passes.

5.1.3 Iterator Recognition

The concept of a loop iterator is then presented. It is a generalisation of ideas like

induction variables, C++ iterators, and recursive data structures used for traversal. In
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a nutshell, a loop iterator is defined as the collection of variables and operations per-

formed in a loop, that affect the decision of when the loop terminates. The other part

of the loop, which might be empty, is called the ‘payload’ of the loop.

Chapter 4 compares different notions of concepts similar to loop iterator and then

presents a technique based on dependence analysis for detecting loop iterators. The

technique involves building a program dependence graph that combines control and

data dependencies, extracting the strongly connected components of that graph, and

identifying the top-most SCC as the loop iterator. The chapter discusses why this

algorithm works and then applies it to the SPEC CPU2006 benchmarks in order to

compare it with the state-of-the-art scalar evolution technique.

The approach is discovered to be able to detect the iterator of 98%, 57%, and

95% of the loops of the benchmarks written in C, C++, and Fortran respectively. The

same result for the scalar evolution technique (which detects only ‘affine iterators’) is

35%, 44%, and 91%, respectively. The chapter further shows that adding dynamic

dependence information the recognition can be increased to the ranges 99%–99%,

62%–81%, and 95%-98%. The uncertainty comes from the incomplete coverage of

the amount of loops that are profiled.

If we look only at the loops that are exercised by the dynamic data profiling, affine

loops are detected by scalar evolution in 32%, 33%, and 90% for C, C++, and Fortran,

respectively. In contrast, the approach presented here can detect 98%, 53%, and 94%

of the iterators statically, and 99%, 81%, and 97% of the iterators using dynamic infor-

mation. This goes to show the importance of coverage when using dynamic profiling

and Chapter 4 asserts that increasing coverage will provide more precise detection of

more of the program loops.

5.2 Critical Analysis and Further Work

5.2.1 Limitations of Intrinsic Translation

The methodology presented in Chapter 2 focuses on intrinsic functions that provide

access to the vector operations available on a processor. Other operations available

via intrinsics are not supported, in particular operations that enable the control of the

memory hierarchy or intrinsics for synchronisation of multiprocessing or atomic op-

erations. This is partly due to limitations in the intermediate representation language.

The choice of this language is not a critical part of the technique, and it can be modi-
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fied to allow the expression of any special functionality shared by multiple platforms.

The difficulty is in the implementation of this functionality in a portable way, in case a

platform does not support it.

A more fundamental limitation is the fact that platforms can be categorically dif-

ferent. An optimisation that is beneficial on one platform might be cost-ineffective on

another one. Ultimately, the methodology’s strength is also its weakness: it can only

translate optimisations that are already present in the source code; it cannot come up

with new optimisations without the intervention of an expert.

5.2.2 Performance of Data Dependence Profiling

The framework for data dependence profiling presented in this thesis achieves instruction-

level context-sensitive precision. It is robust enough to profile all of the SPEC CPU2006

benchmarks, with all of their idiosyncrasies. However, it is considerably slower and

takes more memory than other frameworks for data dependence profiling. Innovations

from these frameworks can be incorporated into the one presented in Chapter 3 in order

to improve its runtime and memory performance.

In particular, parallelisation can be added to the profiling runtime. Multiple data

accesses can be recorded at the same time in a pipelining fashion. The largest part

of the execution time is spent in constructing a dependence when one is detected and

updating the relevant structures. Since this is a multistep process it is appropriate for

pipelining.

To simplify the development of the framework, traces and temporary files are in a

human readable format. This results in an increase of the memory footprint and can

be avoided if these information streams are encoded in a binary form. Also, applying

a compression on the data can further reduce the memory demand and increase the

domain of programs that can be profiled in practice.

5.2.3 Specialisation of Iterator Recognition

The approach presented in Chapter 4 outperforms the state-of-the-art scalar evolu-

tion technique in discovering the iterators of loops. This improvement is increased by

adding dynamic data dependence information. However, it is possible that a loop can

be separable for some inputs or some call sites and not separable for others. In such

cases, it might be beneficial to duplicate the subject loop and call one of the versions

in one case (for one type of call sites/input data) and the other in another case. This
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will allow the separable version of the loop to be detected as such and create more

optimisation opportunities. The complexity of this approach lies in the categorisation

of data inputs/call sites.

Chapter 4 discussed potential applications of the iterator recognition analysis. One

application is the improvement of decoupled software pipelining via the addition of

dynamic data profiling information. This can potentially provide the benefit offered by

adding speculation to DSWP, but without the added runtime overhead. This claim has

not been verified, however.

Another use of iterator recognition is automatic source code rejuvenation. While

research in this area is focusing on syntactic rewrite tools, like demacrofication or API

rejuvenation, the technique presented here can potentially be used to enable an trans-

formation which replaces ad-hoc loop iterators that can be recognised as idiomatic

constructs with the respective idioms. The complexity of this research is in the devel-

opment of such idiom recognition techniques.

A last application of iterator recognition is commutativity analysis. If the payload

of a loop – the set of variables and operations which do not affect the iterator – can be

executed in an order different than the original and produce the same results, then the

loop payload can potentially be executed in parallel. There is already some research in

this area, but it has not been successfully applied to loops yet. This thesis provides the

necessary analysis that can support the extension of commutativity analysis to loops.
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