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ABSTRACT

The substance of this thesis falls into two parts. The first
gives various results concérning the order structure of Jordan and
von Neumann algebras and their pre-duals, relating these to such
ideas as commutativity and factors.

The second part deals with the existance and uniqueness of
a trace and a centre-valued trace on modular JW glgebras - giving
new proofs of these results, and shows that the closure of a
subalgebra: in the topology induced by the trace coincides with weak

closure.
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CHAPTER I - INTRODUCTION

As ig mentioned in the abstract, the first subject of this thesis,
'Tléﬁich is covergd in Chaptep{IIﬁis the relationship between proﬁerties
e the natural ordering (i.e. Athat induced by the definitiion of
. é}éﬁeﬁts of an algebra as positive ),of JC and von Neumann &lgebrasy
«{éﬁd their degree of commutativity.
. Sections II.1 and II.4 give'éufficient conditions on the
R
. .order structure of a JC algebra for the ordinary operator product
.-(t? 9ommute on the algebra, and hence for the oper?tor and jordan
' products to coinéide. Section II.3 gives»a conversé of II.1,
:éhowing that minimum Jattice structure goes with the minimum of
" commrtativitys
Section II.2 gives a result for von Néumann algebras

invoIving-the concepts used in the rest of the chapter,

Chapter III begins with a brief resumé of definitions and
" known results to be used, and proceeds to demonstrate that modular

JW algebras are characterised by possessing a (uniqne) faithful,

p



normal centre-valued trace. The proof of this result, which is
".aiready known, is a new one based on von Neumann algebra work of
Af. J, Yeado#.
‘ It is also shown that the JW subalgebras of a modular JW

" algebra are - just those JC'subglgebraé5fha¢zaré closed in the

T_ﬁtppology induced by the real-valued trace,




CHAPTER IT —~ ORDER RESULTS




%1 - SHERMAN'S THEOREM FOR_JORDAN ALGEBRAS

1,1 Definitions

A functional P on a partially ordered vector space V is positive if
q)(a) > O for all a ¢ V such that a ) O.
A partially ordered set S is a lattice if each pair of elements of

S has a least upper bound and a greatest lower bound in S.

1,2 Lemma
Let V be a: partially ordered normed real vector space such that

+ b
for all veV there exist v1 ,VZQ—V such that v = v1—v2, and

hvy = max { fivyl 0wl - {
|

" If V is a lattice, then so is its dual V* (\’the set of all bounded

real-valued linear functions on v.) N
The proof is that of Bratelli and Robinson [1] section 4.2.6.

Proof

For any c? e V*, define d?(+) on VT the positive cone of V by

CQ (+)(a) = sup {Q(b) : beV, 0(b¢ aj_
Let a,, a,&¥" and o'gb Sagte,.
Define b, =bAa,, b, = b-b, (this is possible as V is a
lattice. )
So b—a2 £ bas a, is positive, and ‘n—a2 g a, by the choice of b.

Therefore b-a2 \<a1r\b = b1,cw\A

therefore ‘n—b1 \( a.2



It follows immediately from the definitions of 'b1 and b2 that

0§ b, € 8, and

b1 “’é’ g a1 +a2 .

‘ (<)
Therefore “{ )(a1+a2) sup {? (b1+b2) : 08b,$ 8,0 $h, €8 }

(
V@) + ¢y,

+
i.e. ‘Q( ) is additive on V+, and hence linear on V.

Let W, W, < (V*)+,

. _ w +)
Define W VW, = ( QZ} +Q,,.

1 1

For any a < V such that a > O, and any £y 0 there exists b € V such

that Ogb\

C a and
(o, - 0@ ¢9,() - 0,0 + €
Therefore W,V WO, § W, .VNS, W,, Wy.

I.e. W VW, is the least upper bound of L, and 4 in V*.
Similarly, the greatest lower bound of CQ1 and QZ exists and is

given by

R LW (W - (+)
1N, y = (94— %)

So V* is a: lattice. (]

1.3 Lemma (Kadison[ 5] lemma 2 )
If H is a BHilbert space and e,f bounded projections from H onto
the manifolds M and N respectively, then e Af, the projection onto

M QN is the greatest lower bound of e and f with respect to all



positive bounded operators on H.

Proof

Let 0 (a {e,f be a linear operator on H.
We shall show that a { e Af :

For 3&1‘4"" , O =(e7,>) > (a},))} 0.

Therefore a% }

n
o

n
e

Therefore a>
I.e. a annihilates M-l
" For all "te H, }Q M'l', (av(,}) = (V‘,a}) = 0.
" Pherefore af»«\ € M'L‘L = M,
Therefore aHc M.
Similarly, aHcN.
~Any }2 <H can be expressed uniquely as \i +V\ Witil }QMQN and

e )t

(entft) = (1)
e}y
(a},})
(at,)

\\/

IT.e. a Le Af as required.

1.4 Lemma ( Kadison (5 Jtheorem 1 )
Let e,f be projections and S a real linear space of self-ad joint
operators such that :

i) e, f, enf, evfe$s



ii) e and f have an infimum in S ( in the order defined by the
positive cone of S )

 Then e and f commute.

~ Broof

| enf < e,f, but by 1.3, eaf ) inf(e,f)

So eAf = inf(e,f).

Set e' = e — inf(e,f) and
f' = f - inf(e,f).
‘Then (e')2 =( e-eAf )2

=e° - e(ent) - (eaf)e + (e I\f)2

]

e - (enf) - (enf) + (eA £)
= e, |
I.e. e is a projection.
Similarly, f' is a projection.
evf -f' ) evf-f) 0.
Soe' - (evf-f ) ( e’
and e'-evyf . & e-=evf ( O.
So et - (e vi-f' ) N &
. Therefore e' - ( evf-f") ( inf (e',f'). =0
So e' & évf—f'
and fle'f' { £'( evf-£')f!’
= f'-f' = O,

But fle'f' = (e'f')¥(e'f"')



Therefore e'f' = 0.

of = ( enf +e' )( enf + £')

= (eAf)2 + (e/\f)f' +e'(enft) + e'f',
But it follows immediately from the definitions of e' and f' that
(enf)f = e'(ef\f) = 0.

herefore ef = (e /\f)2 + e'f!

= e Nf,
Similarly fe = e Af

- I.e., e commutes wiith f. (|

1.5 Theorem
. Let J be a JC algeﬁia. .
. B

If J is a lattice in the operator order, then J,\commuto.bwa,

Proof

J is a lattice, so by 1.2 J* and J** are also.

J** is a JW algebra ( Effros and Stdrmer [2 7)) and so contains the
proje;ction lattice meet (and hence join ) of all pairs of projections .
Therefo?e any pair of projections in J** commutes (§1 .4)
Thereforé any pair of operators in J** commute ( Pinite linear

combinations of projections are uniformly dence in Jex)

Therefore J, which is isomorphic to a subalgebra of J** 1§

commvativg ,



2 - VON NEUMANN ALGEBRAS WHOSE PRZDUALS ARE ANTILATTICES

The techniques of this theorem are those used by Green [3] in his
result for the dual of C* algebras.
2,1 Theorem
Let M be a6 -finite von Neumann algebra ( i.e. let every family of
non-zero orthogonal projections be at most countable. ), acting in its
standard representation on a Hilbert space H, and leé @1?6(M*)+.
Also let }pv\QH be such that Q;C;)> and &= CJ(( ( for a proof that this
is always possible, see e.g. Bratelli and Robinson [ﬁ] 2.5.31 ).
The following are then equivalent :

i) Inf (p,0) = 0 in (m,)"

ii) There exists a projection e in the centre of M such that

e(e) =1 , f?(e) =0

iii) (abt«‘,}) = 0 for all a€M, b' €M ( the commutant of M in this
fepresentation.
Corollary
For ¢ —finite algebras M, M, is an antilattice iff M is a factor.
( for proof of 'only if', see Green [3]).
Note  Attempts to prove the analogous result for JW algebras ran
into difficulties dué to the need for the Double Commutant Theorem

in iii)=)ii).



Proof of Theorem

111) D 14)
Let p be the projection onto {b' > : b'QM'}
clearly p7 =} <
For am} pro:jecfion Q&M
q(b'} ) = (qu')7 ¢ B = My since gbleM'.
Taking limits :
aN e [M'}] whenever A ¢ (M’ }J

Therefore qpH cpH,

qp} ¢ pH i)pqp§ = qp}

>qp = pap
Therefore pq = (pap)*
= Ppqp
= qp

I.e. p commutes with every projection in M'.

I.e. pc(M')' = M,

Let e be the centralsuppart of p in M.
Then e is the projection onto {aps : aQM,qeﬂg and e\} =3,

(ab'\'(,7) = 0 for all aeM , becM'

..é (apg,vk) =0 for all aecM, §eH

> (e§,r() -0 for all §€ H
_9 _ e'\‘l = 0.
So ple) = (j,e7) = (7,}) =1

10
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11

o (e) = (queq) = (,0) = 0

i) Jiii) ' )

.~ Suppose inf(p,s)=0 and there exists ac M, b'c M' such that

(ab'q.}) £ 0.

"M is spanned by its positive elements', s0 we may essume that

a and b' are positive,

There exists © « [0,2n[ such that (ab'v(,eie} ) < o.

7

e = wie , 80 we may replace } vby eie
e

Thus we can assume (ab'\1,>) ¢ 0.
For all € R, define the functional on M :

Yo (x) = qz(xb‘},b'}) + G (xvr,p1q) + X (x3,0) + O((xb'vk,})
Then "{’qq(lvl*)h (Yo is defined by a finite sum of innerproducts
and so is ultfa:weakly continuous, ) |

Let x <M.

We then have :

€ (1) + Wlx) = (xGar),3orq) + «E(xb13,07)) 3 0
Since b'€ M', a,b'> 0 we have :
S (xbf};r‘) = (x‘};b'v‘)
and -(x(l,b"}) (xb"(,>) A

and so we have :

o (x) + %(x) = (x40, (+ X0+ (xdrqq) ¥ 0

S0 Ve X P, R



Therefore -'\h(\( inf (e ,6) =0
I.e. Y>O© |
Therefore ’\k,((a) > 0 as a is positive.
But “Yy(a) = qZ(abv}',b-p + o(z(ab'(l,b'vt) + Zx(ab'vl,})
{ 0 for small o) o, which is a contradiction.

Hence (ab'vl,}) =0 for all acM, b'¢M!

ii) i)

Let ~ye(M),, e SANN 9T

Since e is in the centre of M, if a <M’ we have :
ea >0, (1-e)a 0

(ea = ea = eme. Therefore (eae},}) = (ae},e}) 20 )
0

Therefore Y (ea) < 6 (ea) =
and \f’((1—e)a) N (’((1-—e)a) =0
Thus ‘\-f’(a) = Y(ea) + “f((1—e)a) o acMt

Hence 1ni‘(€, §) =0 O

12



Noee

'We may assume that llal , [Ibli€1.

" Then Xoe + b2

'§73 _ A JW Algebra is an Antilattice iff it is a Factor

. :'1
- Topping has shown ( [9Jpropositi‘0n 22) that if a JW algebra forms

| an antilattice in the usual ordering then it is a factor. The-

purpose of this section is to show that the .converse is also true,

Lemma 3.2 is based on ideas of Green (37 .

3.2 Lemma

Let J be a JW algebra and a,b ¢J.

Then inf(a,b)=0 => {axb}=0 for all xeJ

Proof

Foroc€R let :

2 2

X = X ax a + o(szz

b + 0(( axb + bxa )

(Xax + b )(xza + b ) + «%bx°b % 0

(xbx + a ) yxb + a ) + Q(za'xza ) 0

2
Xy +a
2
So -xy & @ { a

since {\a \\ , \\b \\ {1

So -xy  inf(a,b) =0

Le. x¢%0

But if {gxb} £ 0 there existsﬁ&ﬁ such that ( {axb} 3 ,5) L0
ama (xg ) - Gl uxadi? +\\xb3|(2) 2X( {axbp? 3)

{0 for some small ¢ R
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Therefore {axb.s =0 (|

Ry 3,3 Corollary

= If A andB are the respective range projections of a and b _'t};éﬁ
Inf(a,b) = 0 > {aJB}=0

i

. Assume as before that a,b L1

,¢h§n 0 ga® & and 0 (b (b
" and O sinf(an,bm) § inf(a,b) for all m,n €[N
-"-I.e. inf(a®,b") = 0

So by §3.2, {a%xb®J =0 for all x CJ

'i‘herefore .{p(a)xq(b)} =0 for all polynomials p,q witﬁ zZero
constaxit tern.
‘But A is the strong limit of a -s.equence of such polynomials ( see
- -e.g. Topping {(8) 1lemma 2 ) , and similarly sois B
Therefore {&xB}: 0 for all x€J
Therefore {AJB} =0, _ | | |

:.A: Lemma (Topping (_:9] , corollary 18)
If e and f are any two projections in a JW algebra J they can be
written as orthogonal sums :
e = e, +e f = f, +°f

1 2 1 2

where e, and f, are exchanged by a symmetry in J and C(e2)_L' C(fz)



3.5 lemma ( Topping (9] lemma 24 )

Let o,f be non-zero projections in a JW algebra J.

'?.,-‘Then {lej = 0 P cle).Le(s):

. Therefore 2efe

Proof

eof = eif + fle € {ejf} = {03,

eo(eof) +'(eof)oe - 2e0f = 0,
I.e. (ef)(ef)* =.0
-. Therefore ef =0 "

. Therefore eJf = eJf° + fJ(ef)

fere}r

= 0.

" Suppose C(e) X C(£),

Tj:len, in the notétion of §3.4 either e;éez or f;éfz : say the former,
in which case e,#0 and so £, #0. |

Let s be the symmetry exchanging e, and f1 .

Now £y = ff

= se, sf1

= se1(es:t‘)f1

= 0 , ) which is a co>ntradiction.
So c(e)Lc(f) | O

4 3.6 Theorem

Any JW factor is an antilattice.
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Proof
If J is not an antilattice, then there exist 0 ( a,b {1 such that
Inf(a,b) = O.
By §3.3, (gnd using the notation of §3.3) farB) =0
; fl‘ﬁgrefore by §3.5, C‘(A‘) 1 c(B).
_Since ¢(a) £ 0 £ C(B) we have O # c(a) # 1

.- I.e. J has a non-trivial centre and so is not a factor. O



& 4 — A CONDITION IMPLYING COMMUTATIVITY OF A JORDAN ALGEBRA

Theorem
For any . JC algebra J, if :
0Cxgy > 2 ¥° for all J
K9 y ; S 4 or a X,y €
then J is commutative,
Proof
Take x,yeJ+ and £ O

. Then x { x+ £y  whence

£ g (x+ ¢¥)?

= x2 + 2 € X0y + €2y2
.. R 2.2
which gives O Lxy+yx+ €75 for all €7 O
‘i.e. 0 <Xy + ¥x _ (*)
Set Xy = a+ib
where a=3zxy+yx) € J ( clearly a% 0 )
and b = +ilxy - yx) eC*(J)

The positive elements of J are positive in C*(J), so the ordering of
c*(J) extends that of J.

~ Also if c¢,d €J then c:¢d in c*(J) iff cgdl in J

i.e. for such ¢, d , {is unambiiguous.

xyx and y are positive

(xy)°

a.~.2 - b2 +i( ab+ba ) (**)

and (xyx)y

Therefore a’~b y 0 by (*) with x replaced by xyx.



2

The set E of numbers % )1 such that b~ ¢ az for all x,y eJ+ with

xy = a+ib ( acJt , beC*(J) ) is therefore nonempty.
'E is also closed, so0 if it were bounded, it would have a largest
. element, say A

" Thus if x,yQJ"' and xy=a+ib, then a2- ')\bz % 0, and therefore by (%) :

0 ¢ b2( a2=Av2) + ( &%= Hp?)?

(12a + a%b2 ) - (2av%) (%)
i;:t';)m (**) we have :
Al abrba )2 ¢ ( a%p?)?

el ’i‘h&t is,

4 .4

- Al abza + bazb + a(bab) + (bab)a ) L a’ +b - a2b2 - ba? 1)

._dn LES, a(bab) + (bab)a ) 0  (in c*(J) ) by (*)

o 2 2
. By assumption, a 3 Xb, 8o bab P ')\b4

And finally, ab’a %0 inJ
Using this, and inserting (***) .on RHS of +)
')\2b4 RS at + (125 )t
- That is
(22 +2a - 1)t ¢at

By Pedersen’ [12] chapter 1.,3.8 we have

: (7\2 + 2N 11)4‘%2 < a2 contradicting the maximality of A,
since A 1.
Therefore E is unbounded,‘
2

therefore 44 b2\< a for all Vmo

18



Therefore b

= 0,
So Xy =&
=¥ xy + yx )
" therefore xy = yX. o a

This result also follows from the work of Topping [J7), which

" contains simplifications of Kadison's work quoted in this chapter.

19
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8 1 Types of JW Algebras

The purpose of this section is to bring together definitions
and structure results that will be used in the rest of the chapter.
 All of it, except the classification of type I JW algebras which

can be found in [10] chapter 5.3 can be found in Topping [3].

Definition
A lattice L is called modular if .

(eUf)Ng=eU(fNg) whenever e € £ ( V e,f,g € L)
A projection e in a JW algebra J is modular if the projection
lattice of eJe is modular. N
Theorem
‘For a JW algebra J the following are equivalent :
i) J is modular |
ii) if e,f’ € J are projections such that e ~ f and e € f, thene =f

iii) Every orthogonal family of equivalent projections in J is finite.

Theorem

If e and f are modular projections in a JW algebra J, then e U f
is modular.

corollary

Two equivalent modular projéctions in a JW algebra J can be exchanged

by a symmetry in J.

21
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Definitions
A projection e in a JC algebra J is minimal if there exists no
projection fe J such that 0<f<e

A projection e« J is abeliamn if eJe is commutative.

A1l minimal projections are abelian, for if e is minimal and fc eJe
is a projection, then f {e and se: f = O or e, in which case eJe = Re
which is commutative.

If J is a factor, all abelian projections are also minimal.

A JW algebra J is :

type 1 if J contains a faithful abelian projection;

continuous if J contains no abelian projection;

type II if J is continuous and contains a faithful modular projection

( i.e. is locally modular );

type ITII or purely non-modular if J contains no non-zero, modular

projection, -

A I algebra J is properly non-modular if J contains no central
modular projection.
Theorem
Any JW algebra decomposes uniquely into five summands as follows:
i) type I modular
ii) type I properly non-modular, locally modular
iii) type II modular ( i.e. type II, )
iv) type II properly non-modular, locally modular ( i.e. type IIbo)
v) type III

A JW factor has one and only one of these types.



Definition

A JW algebra J is homogeneous if there exists an orthogonal family

(eﬂLeA of abelian projections such that C(e«) =1 E;E Ry
A

If card( & ) =n ( n finite or infinite ) we say that J has type I

Theorem

Each JW algebra J of type I has a ugique decomposition :

J=3 07,8 o J

where each J’n is either zero or a. JW algebra of type In.
Defini‘t;ioﬁ

Let J, be the set of all real valued ultraweakly continuous linear
funcfionals on J. Schultz has shown ( [:14] Thm. 2.3 ) that (J,)*,
. the Banach space dual of J; is J. J, can therefore be called the

. predual of J.

23
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THE DEPENDENCE OF RESULTS AND THE USE OF MODULARITY IN §2

USING MODULARITY ' NOT USING MODULARITY
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'§ 2 - Existence of a Centre —Valued Trace on a Modular JW Algebra

2.1 Definition

A centre - valued trace on a JW algebra J is a map T from J to its

centre Z satisfying :

i) T is linear
ji) T(za) = 2T(a) for all aeJ, z¢2
iii) ™a)> 0 if 230, ae J
| iv) T(sas) = 7(a) for a¢¥, s a symmetry in J

v) T(z) =z for all zeZ

' is faithful if a0, T(a) = O implies a = O.

‘P is normal if for every bounded increasing family IC:J+
sup T(I) = T(sup I).

Topping ([Q)Cor 28 ) gives a proof that a JW algebra has at most one
centre—-valued trace. An alternative proof of this is given in §3 of

"~ this chapter.

2 .2 Definitions

Two projections e,f in a JC algebra J are said to be perspective if
they possess a common complement, i.e. there exists a projection
ge¢ J such that :

eg = 0 = fg eug=1=fug
Projections e,f in a JC algebra J are said to be equivalent if there
exist symmetries s,, ... ,sne_J such that

e =58, ... smfc‘sn cee 8y

e and f bear the relation _e_/_<v_f_ if there exists f1 & f such that e is
equivalent tlo T, (written enf, ). If e &f but e~f, werwrite e{f,

Equivalently, e <f if there exists e,) e such that e1~'f

25
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Proof

If eruf, T let

1

e = 51 oo snf1an PR 31 then

egey =8y ..o snf B eee s1rvf
Conversely, if e§e1'vf let

r1 coe rme1rm ces r‘| = f then

r

1 LI rmerm oo I'1 = f - r1 oece rm(e1-e)rm oo r1, Which is a

projection andg f .

- An algebraic property of modular JW algebras is given by Topping
([9 Jcorollary 12 )

Theorem

Let J be a modular JW algebra.’

Then e~f iff e and f are perspective in J,

Both ~nsand perspectivity are completely additive in J

2.3
If Tis a faithful, normal centre-valued trace on a JW algebra J then
for projections e,f &J and any symmetry s J
i)T(e) =0=) e=0 . (faithfulness )
ii) T(ses) = T(e)
iii) e Lf = T(eut) =T(e) + T(f) -(trivial case of normality )
i.e. the centre~valued trace satisfies the conditions of
Topping ([9] corollary 9 ):
Corollary
Let J be & JW algebra on whose projection lattice L a mapping e d(e)
is defined into some abelian group: such that :
1) d(eut) = dle) + da(f) if eif
ii)?d(ses) = d(e)

iii) d(e) = 0 = e=0 Then L is modular
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i,e. the existence of a faithful, normal centre-valued trace on a
7 JW algebra implies that the algebra is modular., The rest of this

. -gection is devoted to the proof of the reverse implication: that

“”:; modular JW algebra possesses a faifhful, normal centre-valued

.'ffi tr;ce (not necessarily positive ) and the folldwing section to fhe

- proof that a'ﬁodular JW algebra possesses at most one such trace,
;iand that is pdsitive. We then have :

“ " . Theorem

A JW algebra is modular iff it possesses a faithful, normal

;T centre—valued trace., If it possesses such a trace it is unique

:f This result is already known, but a new proof is given here along
V_ the lines. devised by Yeadon|:10] . While writing this proof the -
‘author made use of an unpublished set of notes of lectures on von

1Neumann algebras given by Professor Ringrose at Newcastle,

In all the results of this and the following section, J is &

JW algebdbra.

2.4 lLemma
.Let J be modular and (ek) an increasing sequence of projectiéns in J,
ﬁ If for all k, eks f f{or some projection f&J, then sup(ek)s f
' Broof |
- - The sequence e, (e2—e1), (e3—e2), ... is orthogonal and has supremum

‘e = sup(ek). If, therefore, we can construct a sequence (fk) of



of orthogonal subprojections of f such that :
f1o\_,e1 and fkcv e e 4
then, by the complete additivity of equivalence on the projection

- ‘lattice of a modular JWalgebra ( §2.2 above ),

('fn) is constructed inductively :

"1 “Since e, S f there exists £, £ such that e~ £,

IR L, ... 'fr are given, it is sufficient to construct fr+1 such

1’
" that
o
. as _ _ _ o S
Since e, & T, ! Oryq 21-F (if o, v = f, then 1-e o~ 1-221-f )
g i.e. there exists g such that 1-f~g 51-31%,1 .
- B '
--~.f1+ +fr'v e‘1+(e2—e1 M+ ... +(er—er_1 ) = e by additivity of ~, and
. 3 ~ - g
-80 1-f+f1 + ... + fr'g g~+er ’
c.and so f_(f1 + oeee + fr) ~ 1-g-e_
2 1—(1-er+1 )-er = e 47, -

~ So by the remark following the definition of equivalence, there exists

f ., <f =~ (f1+ +fr) such that

i N

f -e, &s reguired.

1~ €p
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2.5 Definition

Let J be a JC algebra and U the group:

{81...5n 2 o8y is a symmetry in J, n€ IN}

Given ue U, define an isometric isomorphism :

Lix: Jde = J, by :
(L )(a) = w(u*au) (weJ, aea)
, ‘.
where (s1...sn)* =8 ...8

We denote by Q,,the norm-closed convex hull of the set :
Ky= {Luw: ueU}

Lemma
If J is modular, (en) an orthogonal sequence of projections in J
‘and weJ,, then .r‘(en)~} 0 as n> 0, uniformly  for all TeQgu
Proof
It suffices to show that “C(en) - O uniformly for TRK,,.
If not, there exists § > 0, a subsequence (fn) of (en) and a
sequence ('Cn) in K¢, such that :

‘tn(fn)‘ 5 § = for each n
Then‘Cn(.) =L0(u;,. un) for some u_&U.

= u¥
If g =wif u, then g ~/f and {w (gn)l % %

Define: pm,n Sup(gm, gm—l—1 9 ececo 9 ,gn)

= sup{gj : jlmj-

= sup {pﬁx,n :tnY m}

=]
I



p=inf{p_ : my1}.
Then Pp, /< Pp,n+t € *°°

We claim pm,n-s £+ ... +fn (mgn ) {*)

Since Pan = g1t (*) is true when m=n

If n>m and (*) is known to be true for n then :

4+ v + T

Pm,n :(fm"'fm-m n

and g, 4V Poon = Pm,n = &n#t ~ En+1/\Pn,n

N €n+1

~ fn+1

L 4

So (*) holds for n+t, and so for all n);m

s
2
Therefore pm,n S .<—fj .
j=m
L]
By§2.4 Pn £ ‘_)%mfj ' hence
Qo
1= 2, L1-p, L1 -
J=m

Again by$ 2.4,
Oop
1 = sup:{1 -2 £, n&\N}s 1-p
j=m J
Since J is modular, p=0 (Topping [9] prop 14 ), and so since p:/\pn
and p1)/p2>1 ... we have :
o0& (g3,3) ¢ (pn},}) <\lpa (N3l — 0 for a1l }e.H .
Hence g, 3, 0 ultraweakly, and so limw(gn) = 0. I.e. 'Cn(_fn)~)o )

contradicting the choice of (Tn) and (fn).

So (en) > 0 uniformly for T«K.as required. a
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2,6 Lemma
Suppose weJ* and v\eﬁ. Then :
i) 1If w(a)>\f\ for some positive acJ,, then w(e)7\f‘( for some
projection e€J
11)' If \w(f)Kq for every projection f €J, then {1LOWL :p(l

" '134) Tf w(£)y O for every projection f<J, then wel*'.

See over for Proof
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Proof of Lemma 2.6

i) By the spectral theorem, there exists an orthogonal family

of projections e,, ... ,e & J and Ay oo ,'Anico,ﬂeuch that
a =1
la - 5 %jeylf¢ il («(a) 1)
-1

Hence W(a) - Z_'Ajw(ej) < W(a) - '1

and Z',\jw(ej) >N
We can assume that Co(ej) >0 (1€ 3¢&m)
w(ej)\< 0 (m<jgn)

Let e=e,+ ... -i-em

1
W(e) = Y o)
&

m
” 21%3”(93)
J—.:

% 5 Ae))
3=
7 |

ii) If [W(a)]> \Z for some aE.Jr, then :
either - w(a) > 9
or W(a). > \1

Therefore by i) there exists aprojection f such that :

either -w(f) > 1



or W (£)> Y
i.e. |w(£)]>q , contradicting hypothesis

Therefore lw(a)\§ "( for all aeJ:‘.

- Each ‘neJ1 can be expressed in the form :

b = 'b1-b2

where b,,b &J‘H

172 1
whence |w(b)| L lw(b1), + to‘)(bz)’
L Zf( .

iii) By hypothesis, -W(f)\K O for all projections f¢J

Therefore by i) - (a)<€ 0 for all a{J:

i.e. GO is positive. ' O

2.7 Lemma

. * . '
IfweJ is completely additive, and e <J is a projection, then

~‘there exists a subprojection f of e in J such that

W (f) > W(e)

and the restriction wlf.]’f is'a positive linear functional on

~ "the JW "algebra fJf.

Proof

Let (e°<) be a maximal orthogonal family of projections in J such

that eyge and wl(ey) <O.

With f = e - £ e,, the maximality of (e,,() implies that «(g)> 0
*

for every projection g€ J such that gg¢f, that is for every
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projection gefJf.
Thus co\fJf is positive.

By the complete additivity of ) :

w(£) = w(e) - (S ey)
= W(e) - T wl(ay)
JQ(e) as w(ec()\(O for all O

2,8Lemma:
E Let We .B*+ be completely add:"Ltive, and w'an extension of w to the
enveloping von Neumann algebra of J, with Nl = (jw |
If e<J is & non-zero projection, then there exists a' non-zero

subprojection f of e in J and a vector } such that

[wla) L l(a(})“ for all a€Jf

Proof
Let 1 be a vector such that |le «\\2 > w(e)
e, (wo- w)(e)= lleqqli® - w(e) > o
‘ By §2.7 there exists a subprojection f of e in J such that
(W~w)(2) Y (Wq = W)(e)> o
and (O\Qsc«s ) \f.]'f is positive.
If a €Jf, then a*a €fJf
therefore 0 ( ((A)Ilsh) Y(a*a) = |l av(hz - )(a*a).
By the Cauchy - Schwartz inequality :
(0 (@) 2 gl(D)] (axa)

<
SO e



So if\} = )l V(

then \cg’(a)' < (\9,}" as required _ Lj

2.9 lemma

Let we&J* be positive.

If Wis completeiy additive, then ) is ultraweakly continuous.
Proof

Let (fc,()o<€ &7 be a maximal orthogonal family of projections with
the property :

(P) There exists }Ksuch that (Co’(a)l < a}o(“ whenever a ¢Jfy
(w’defineda as in§2.8)

If f_fj ;é I, it follows from §2.8 that there exists a vector} and
a projection f&J such that :
0K £&I-2F 3
and fwi(a)l lla} I\ ( for acJf ) , contradicting
the maximality of (f°()

Therefore ifo‘ = I.

Take ©p O,

By the complete additivity of O :

Yo(g) = X1),

XeA
so there exists a finite subset B of A (if A is finite take B=A)

such that :

w( I o£g)= 28

« €ANB A\B
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Let e = & foy
X&A\B

Then W(e) £ 'g’~|\w“" and e+ 2 fy =1

x¢B
Thus CO':Q" ._+w2’ where
()
Wia) = 2w(ag) acd
«&B
Wy(a) = w(ae).

lw;(a)l SQ(EB"&:K§°(]] (agJd ), so Lo'1 is strongly continuous
on J.
Te. W] es
Also (;x)lz(a.)2 = LxJ,(ae)2
L Co(az)‘o(e)
¢ lolflafPho)e?
_ E2 I af 2
Jy is a Bamach Space embedded in its second dﬁal J*, [I C]
Therefore J, is norm closed in J* and so & € J,.
2,10 Lemms
Suppose x,¥,z are real numbers such that x,y, xy—zz), 0 and that
e,aeB(H) are such that e is a projection and Naf § 1.
Then xe + y(I-e) + z( ea(I-e) + (I-e)are ))/ o]

Proof

x(es ,7) + y((I-e)?,})# z((ea(I-e) + (I—e)a*e)i,?) =

36



xf|e311? + yll(-e)}* + 2ee(ea(1-0)},3) |
x “e}ﬂ2 + Y“(I—e)} “2 - 2‘2]“(1-9)}"“9}” ) 0, for eall 3&3

from which the result follows.

2.11 Theorem

W&J* is ultraweakly continuous iff Wis completely additive.

Proof

If (eQ()lxA is an orthogonal family of projection (' of norm <1 ) ‘
and hence weak )

then e =3 e o is the strong/limit of the net of finite subsums of

(ea() and fe\l¢1. On the unit ball of J the weak and ultraweak

topolbgies coincide, and so if & ‘is ultra-weakly continuous it

is weakly continuous there. Hence (,ogeﬂz Zw(e«), from which

it follows immediately that ¢) is completely additive on J.

The proof of the reverse implication is divided into two parts
' Pext I

We can assume that lwlig1

Let M = sup {w(a) :O§a$1j '

So 0 M & o %1

Given £ satisfying O £ < % , there exists a positive element

e, of the unit ball of J satisfying :
w(e)>m-€

By §2.6(i) we can assume that e, is a projection.
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By §2.7 we may also assume that c.ole‘l.J’e‘l is a positive, linear
functional on e1Je1, and by §2.9 we have that Q‘e1JTe1 is
ultra~weakly continuous.
If we put e, = I-e1 we have :

W (a) = w({e1aez} ) + w(e1,ae1) + w(ezaez) for all aeJ

w
W,,(a) + Q,(a) + W,,(a), say.
By considering the maps :

al>e

ae, > w(e1ae1) = («)11(a)

17

it is clear from the fact that cv is ultraweakly continuous on e, Je1

that w” is also ultraweakly continuous.

Any projection f eezJez’2 is orthogonal to 1-92 = ey

so e1+f &I and hence:
| M2 w(e1+f)
= L,.)(e1) + w(f)
D M- £+ w(f)
and so W(£)< & for all f e e Je; (*)

2ve2

Suppose t « .Il'1 , the unit ball of J, and let

1 1
s = (1- g)e1 + Ee, + £2(1- €)? {e1te2}

Then,

g + (1= Oy = €2(1- ©)F Lo te, ]

1-8
By §2.10, s3>0 and I-s8>0

i.e. 8 is positive and belongs to J1



Therefore ) ) (s),by the definition of ju
= (1-8)wle,) +ewl(e,) + e¥(1- £)%w( fe te, )
30-8)k-€) - €+ £71- OF({e e, )
Therefore (x+2) e%(1-0‘%>, Q( {e te,d).
M1, and (1-&)"’}«' 2 ' (stnce £<% )
therefore W ( {e te,}) & 6./,
i.‘e. Q, (%) € 6J € for all t eJ,

- IL.e, {(co12|] £ 6+/€ and so:

N & 6vE

“‘o—vcoﬁ - Qull = e,

Part II

We next show that there exists w

OQJ* such that

lw o+ W, ll & 28 +6ve.
.'This completes the proof of the theorem : for then
O - Qup + ol g lfe- @y -l + g+ Wy

N 6/ € + 2€ + 6./¢

2€ + 124¢ .
Since this can be done for all £ , since Cm 9 < J, and since
y

J

x 18 norm closed, it follows that &€J, as required.

Let V= -Q ezJeZ.

Then O is a: completely additive linear functional on eZJe2

and (Vg 1.
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By (*) ~ (£)> - € for every projection f <e,Je,
Reasoning as in Part I, there exist projections f1 ,f2 € 92J92

with f1 +f2 = e,, satisfying the following conditions:

i) v, is ultraweakly contimuous ( v, (a) = v(far,))
i1) [V, 1l ¢ 6/€ (v, =v({faf,}))
iii) v(f)¢ & f;r every projection f &f Jf,,.
But we already have that VW(f)> - &
s [NI<E . |
By §x6. [ vlf,f, 1l & 2€

80 we have :

[V (&) = {W(s,a,)] for all a € £,Jf,
Caglieaf,|l
L2¢tllaf)
So it Vool g2¢
V-l =y, - v,
L 2¢ +6V¢g

‘ Define («)o &«J, by :

w(a) =V, (eyae,)
@+ o, )@ = [V (e,8e,) + Neyae,) |
= (V- V)(e,8e,
< “\)1-\)””e2ae2
L (2 +6v9llall
So oy + w,,ll £ 2¢€ + 6J/¢ as required : 1
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2,12 Lemma

If K< J, is bounded, and for any sequence (en) of orthogonal projections
o in J, w(e ) + O unifornly for weK,

- - then K is relatively compact in the topology o (T, J) of Jy.

Proof

_Let K, be the & (J*,J) closure of K in J*

1
A Then K1 is o (J*,J) compact in J*, and the theorem follows if it is

"shown that K1CJ .

Let (e ) ve a mz)c - of orthogonal projections in J and e =Zej.
For all weJ,, Lw(ej)~7 w(e)
=1

Therefore if the convergence is not uniform on K then there exists

5> 0, a sequence (wn)eK and an increasing sequence (Ni)etN such that

N.

| T we)-wEel<$ vA - (1)
=1 13 i
Ni

l g;“’iﬂ (ej) - 1+1(e)‘ > (2)
1\Ti+1 | N\

| 3 winley) - a@|<s (3)
3=1

(2) and (3) imply =

N .
l Zi L‘~‘i-|-1(ej) - 1+1(e)| - | i+1(.)1+1( ) - wi+1(e)l >y
J= 3=1
Therefore
| zwm e = (Fh (o)) =0, (@) -9, @) | > 5

3=1




N
i+

e, | D Wygle) |28
j=Ni+1

N4
Let £, = 2 e
J=Ni

Then Q(fi)-l-) O uniformly on K, contradicting the hypothesis of

the lemma,

N ‘
‘So: Zw(ej) » w(e) uniformly on K.
5
Let gekK

1
Then there exists (W) € K such that W+ < in < (I*,J)
Wxle,) 2ia(e )’ and wle)> w(e)
S (o) = Lim wy(e)
=1 %“’“((fi)

= %ol

= S o(e,).
i >
Thus &~ is completely aciditive, and so rbyj§2.12 s €Jd,

Hence K

1 € J, as required. Cl

42



2,13 Lemma

Let J be modular.

ﬁfwej,;‘, then Q_is & (J,,J)-compact ( see §2.5 for notation )
" Proof |
o _Since Qis norm closed and convex, it is also closed in the weak

~“topelogy 6(JyyJ) on J,.

‘@ is 6(Jy,T)-compact in J, by §2.5 and 2.12.

24

The vfollowing is the Ryll-Nardzewski fixed point theorem, a

.ishort proof of which is given by Namioka and Asplund (_6‘3.

~

“Theorem

. If Q is a non-empty weakly compadt convex subset of a Banach space

V'"',’X:and U .is a semi-group of weakly continuous affine maps, X 9 X,

<ithen there exists x &Q such that ux = x for all uel.,

" 2,15 Theorem

‘.Le_‘l% J ‘pe modular, and Z the centre of J.
Tizen each e 7, extends to an element TeJ, such that :
| T (u*au) ='t(a) for all a-«J, where u is any’product of
symetries in ‘J .
ﬁoreover, fwlf = AT\

Proof

VZ‘ is ultra-weakly closed, closed under the Jordan product, and so

>

T4




is a real von Neumann algebra.

Therefore W€ Z, can be expressed as a countable sum of vector states

u.}ﬂsh
- wmere ZlI3IP < ([ ena Zfiy 1% < Mo
e e= o
Then ped, and 0|2 = w
nes{ & Zu;jﬂuv(jn < e

HQi Y £XCN3 112 + liv SF 2\ A

For each product of symmetries, u
Mrgelt = Het < Hleal

and - (LuQ z) = f(u*zu) = e(z)_= b:)(z) fsr all zeZ

 Thus 6|z = (O (whence NIl S & H ) for all & eQe'
.80 we have :

leoll = lwl{ ana G’(Z =W for all 6“€Qe) (*)
The isometric linear maps Lu : Jy—>J, form a group, are G(J*,J)
contj_nuous ( i.e, pointwise continuous ), and 4leave invariant the
'G(J*,J) compact convex set Qe in J,.
The Ryll-Nardzewski theorem therefore asserts that there exists
Te Qe such that I T =T for all uel
Hence Te J, T (u*au) = Lu( T)(a) = T(a) for all a<€J

By (*) T = {wlland T|lz = w O



2.16 Corecllory

There exists a weakly continuous linear map T : J—®Z such that

T(a) = T(u*au) and T(z) =z
whenever a<J, ucU and zeZ.
Moreover, T is norm decreasing and T(za) = zT(a) whenever
acJ and z< 2.
T(a)> 0 if ad 0.
Proof
By §3.15 (and using the notation of §3.15 ) it is possible to
define an isometric linear map

S Z,—>Jy

by s(w) = T
Identifying J with the Banach space dual of J,, and Z with the
dual ofZ,, the adjoint of S is a norm-decreasing linear operator
T +J = Z and is continuous with respect to the topologies & (J,J*)
and & (2,2,).

(s ws)(u*au)
(s w(a)

= W(Ta) for all w<Z,, ac¢d, ue€l

(T(u*au))

0

Also, if a<€J, W€J, and a>/0 ; W20

W(ra) = (sw)(a)

), 0 since S« is positive (see 9 4.6)
Z, is separating for Z (see footnote over )

Therefore T(u*au) = Ta as required and a» 0 3 Ta) O



Similarly Tz) = (Sw)z = L-.)(z) for all WEZ,, z¢Z

So T(z) =z.

Note

If a,beZ and a;éb, then there exists §€H such that a\; 7éb3

Therefore there exists r\é H such that (a } ,Vk) ;é (bs , '])

> (x} ,‘K) is an ultraweakly continuous function.

1
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& 3 — UNIQUENESS OF CENTRE-VALUED TRACE

3.1 Lemma.

For a non-zero projection e in a JC algebra. J to be abelian it
is: sufficient that :
Each subprojection f of e in J has the form f=qe, where q is a
projection in the centre of J,
Proof
If the condition holds, and a,b are any two projections in eJe
then :

a = q,e, b=qze where O ( 9
But that the 9 are central implies that

ab = q4eq,€

1,€9,¢
= ba
so since any two projections in eJe commute, eJe is abelian, and so

e is an abelian projection.

-

3.2 Theorem

Suppose e is- a projection in a continuous modular JW algebra J and
that re .

Then there exist projections €19 eeey 96, € Jv such that

e1r\,e2 v »ver and

e, +e, + ..., te_ = e,
r

1 2

Proof | |
The PI‘O‘Of is in three stages. Stage I does not require modularity.
Stage 1

We assert that each non-zero projection f in J contains two

non-zero equivalent orthogonal projections :
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Since J is continuous, f is not abelian and so not minimal.
Therefore £ has a proper. non-zero subprojection g , and by §5.1
cf
g#C,
Let f, = C:gf—g \( 1"'8

So f1 and f2 are orthogonal subprojection of f and

So by Topping>£ﬁ] , lemma 18,f1 and f2 can be written as orthogonal

sums :

RO IR

1

f2 = f§1) + féz)

where f$1) and féT) are exchanged by symmetry, and C(f$2))J~C(f§2))

If f$1) were zero, then f§1) ﬁould be zero also, as they are

exchanged by symmetry, in which case :

C(f§2)) = ch1) = C(fé) = C(féz)) £ 0

D 2) (2)
I.e. c(f1 ) X e(£37%)
Therefore f1 and f2 have nonzero subprojections exchanged by

symmetry, and f has two non-zero orthogonal equivalent subprojections
Stage 1T

We assert that each nonzero projection f in J contains r nonzero
équivalent,.orthogonal subprojections in J,

The proof is by induction on r :

For r=1 the result is oévious, and r=2 is the case above.

Assume the result for r=p,

Choose nonzero equivalent, orthogonal projections g{, cee 38, with .



By stage I, there exist orthogonal nonzero subprojections ho and h1
of &, with hofv h1.
If g:j = u3g1u3, where u:j is a product of symmetries, then
> u*h,u, = h,, say.

85> W3f"y T By oY
Now ho, cee 'hp have the required properties for the result when
r=p+1.
Stage III
Let (fo() be a maximal family éf orthogonal nonzero projections in J

such that f e and

fo = fg)+ f(§)+

+f£(r)
where the ij)are projections in J and f

(01()~f(°2()~ ~-f(°2-)
If  fg # e, we can by stage II find a subprojection of e- fo
with the properties of an fh( , contradicting maximality.
So e = Zfo(
The projections e j = éfij) are equivaient, since equivalence is
completely additive on a modular JW algebra, and are orthogonal,

.3 Lemma
Let J be modular, and e,f €J projections such that f$e.
Then there exists a projection p in the centre of J such that

0<Lp<( Cf pe £ pf

m (This result can also be deduced from Topping [9] thn 12.‘”) .
Let (eﬁ(,f;,(&eA be a family of pair§ of projections, maximal subject
to the conditioms :

i) (eg() is an orthogonal family and 0CexSe

ii) (fy) is an orthogonal family and 0 (fy f
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1ii) ey~ Ty
Let en =3 e, £, =1y
91 = e—eo f1 = f-fo

Then fo ne, e by the complete additivity of equivalence

I.e. fo-’se .

But f;¥A e, 80 fdéf and f1¥0.

C C. =0, for if it did not, then there would exist e g e, and
ey f1 2\

1‘2\<f1 such that ezufz, which would contradict the maximality of

(q’('f‘L(eA'

" Take p=Cf .
1-.

Then O < p \(Cf since 0 < T, \(f
pe - peo = pe1 = cf1ce1 = 0:’
‘Therefore pe = peq~ Pfy

So pe < pf. )

% 4 Definition

A nonzero projection e in a modular JW algebra J is ratiomnal if
there exists a finite orthogonal family €1 eee 98y of projections
in J and an integer k§n such that

e1 Nez o0 '\/en

e1+e2+...+ek=e

e, + e2 + ... +en is a central projection in J, necessarily



If e and f are equivalent projections in J and e is rational,A then
so is f.
Proof

Let e ey and k be as above.

1, coe

If fave then there exists a product u of symmetries in J such that

z
f. = u*e. u
i 191 i

Put fi =u*eiu ( i\(k )

Ce=(?f and e~ f imply Ce‘-ech-f
m
l.e. C,~f = Zv*e v where v is again a product of
f i
k+1
unitaries in J.
Let f, = v¥e,v (x <i ¢n)
Then f=f1 +f2 + ... +fk
Cf=f1 +f2+ +fn
f1 ~ f2 cee IV fn.
I.e. f is rational. 4
35 Theorem

Each projection e in a modular JW algebra J can be expressed as
the sum of an .orthogonal family of rational projectionms.

Proof

Let (ex) be a maximal orthogonal family of rational projeqtions in
J with each ey g e, and let f=e=-F eqg

It suffices to prove f=0.
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Since J is modular, there exist central projections (pI )and T
’ n 1

such that :

Py *+ Prp <!
n 1

JpI is type In
n

and JpII.4 ' is type II1
If £#0 then either pr’ #£0 for some' n, or prI1;é 0
. “m

-

CaseIg=priéO
n .

Since O <Cg < pIn, JCgis type In
i.e. there exist abelian projections Bys oo gne;'J(sguch that

C =Cg for allm n

A Yemma will now be proved before the proof of the theorem proceeds :

Lemma
Let XK be a modular JC algebra, and e, f projections in K with e

abelian and C_LC..

Then e A f.

If e and f are both abelian and Ce =C then e~ T,

£
Proof

The second statement follows from the first.
Suppose e is abelian and Ce\< Cf.
If e*f , then by§ 3.3 there exists a projection p in the centre of

K such that , O<p\(Cf ’
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pf<{ pe .
Replacing p by pCe , We can suppose :
O0(Kp ‘<Ce .
Since pf {pe there exists a projection f1 such that :
pfrvf1 (pele .
Since e is abelian, eKe coincides with its centre Ze. .
So £, = ef1e € eKe = Ze.

1

I.e. f1 = ge for some projection q&« Z.

Since f‘l = pf1 , we can replace q by pq, and assume

0<gq \Cp\QC'e ng.

Now, p = pC, = Cpf (by Topping [9] prop 18.)
= Cf1 (by Topping {9 ]cor 14.)
=C

. qe
= qce = q.

But f‘l = ge = pe, contradicting f1<pe.
Hence eff, sl V N

Hence the lemma follows.

a

By the lemma, By ~ eee o~ gn&é g.
Therefore g4 is rational and there exists a projection g1'~g1

which will also be rational, such that

81 48 < contradicting the definition of f.

Case II g = prI £0
1
Since O Cg pII1 ’ ."ICg is type II1.
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Let Byr oo 18, be a maximal orthogonal family of projections in _
Jc, with gsv g (31, .y n)

( Such a family is necessarily finite since g is modular ::see e.g.
Topping (9] thm 11 ).

Let x = Cy = ( 8t .o +gn)

g $x, by the maximality of the family §_.gi‘lj (%)
Since JCg is type II1 and hence continuous, Theorem‘ 3.2 applies, and
hence there exist projections Yor o Yo QJCg such that

y0~ Y1N e v e Nyn and

yo+y1+...+y =C .

If géxa then gj;Syj (3=1, ... ,n ) and

C—x=g1+...+g£

g .
AYy + eee ¥,
I.e. Cg—x'vh \(Cg—yo

Since C g is the identity of JCg this would imply
X = C - (C =x '
g ( g )
~C -h
g
1 3 *
2,3, &, & contradicting (*)

Hence g % Y and so by lemma 3.3 there exists a central projection q

with O g \<Cg and qyo‘(qg.
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Thus £ (}/g )/qg ) contains an projection equivalent to 9Yqs and
this is rational since
qyoN qy1/v. ...qun and
Wy, +tayy + ... v Ay, = q

which contradicts the maximality of (e"()o(eA 1

2,6 Theorem

If J is a JW algebra with centre Z, the extension of any W< 2, 13(3
a trace Te J, is unique , and Tis positive if Wis.

The ultraweakly continuous centre-valued trace T : J>7Z is also
unique.

Proof

If e is a rational projection in J, choose equivalent projections

e ,en€ J such that :

1’

n k
1Zei= Co 1Zei=e for some k { n

there exists a product of symmetries'uj such that

e. = u¥e,u

J J 13
So t(ej) = ‘C(e1) for all j < n
k- k
and _ T(e) = n dCe) = W(Ce).

Thus ((e) is determined by & and is positive if (3is.
But any projection is J is the orthogonal sum of rational projections
in J (§ 35) and {is completely additive since it is ultraweakly

continuous (8§2.11).
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Thus T is determined by «(for all projections in J, and therefore is

determined by ()Jon J, the closed linear span of its projections.

If 3 is positive, then T (e))> 0 for each projection e.

Hence “{is positive by lemma 2.6 (iii).

The same arguement proves the uniqueness of T.



.§4:- WEAK AND TRACE CLOSURE OF JU SUBALGEBRAS

4.1 Definition

Let J be a modular JW factor, and T its trace. Then an inner product

cgn be defined on J by 3 | \
(a,b) = T (aod) for all a,b ¢ J

The associated norm is denoted by| 12 .

4.2 Lemma

IfY, ¢ are normal linear functionais on a JW algebra J _such that

0 &Y« @, then there exists he JT such that :

W(a) = Q(noa)

T If 4) is faithful, then h is unique.

Proof

The proof follows that for the analogous von Neumann algebra result
given by Pedersen ({12 ) chapter 5.3.2 .

Let  X={P(ho.) : hed]}

X is convex, since JT is convex, and is compact in J, since JT is
ultra-weakly compact ( J, is the set of ultraweakly continuous
fmﬁctionals on J ).

I ef: X then,
y the Hahn-Banach theorem, there exists ae(J,)*=J and t€ R such

that : Y(a)) t and X(a) £ ¢t
Write a as a_-a_ , the difference of positive elements.

+

Let h = [a+], the range projection of a,

h e.J';

.
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a_a, = o)
therefore a_(a;]= o
therefore ah = aCa;)
=aflal = 8,
Also ha = (ah)*
*
= a+
= a, ,

Therefore q) (a+)

"
£
~
a2
0]
o]
~

(=) ) Y(a,-a)

= ?(a_*_) contradicting \(J\( ¢

Let k also have the property required of h.

‘Then (h—k)2 ho(h-k) - ko(h-k)

therefore: c? ( (h—k)z)

¢ (ho(h-x))- @ (ko(h-k))
W(h-k) - "{/(h-k)

=0

Therefoi‘e if Q ig faithful then h=k : i.e. h is unique. O
4.3 Lemma

Let J be a modular JW factor and K a JW subalgebra of J containing
the unit of J.

Then there exists a unital positive projection p: J3K such that
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T (aob) = T(p(a)od) for all aeJ , bekK ,
where T is the faithful normal tracial state of J.
Proof .

The proof follows that of Sakai [13j chapter 4.4.23
| For heJ, h20, {lhll =1, definé 'fh on X by :
- ¢ ,(y) = Thoy) for all y<K
< (y) -(‘;h(y) > 0 ( Pedersen & Stérmer (16 Theorem. )|
Therefofe . T > ? h
Therefore by § 4.2 there exists a unique ke‘-K:T such that
T (koy) = 9,(y) .
Define p(h) = k.
p extends by linearity to the whqle of J. Clearly p2 =p
| p is positive and so bounded ( Russo & Dye[15] ).
“Also p(1)=1 so lipi =t

The uniqueness follows from the faithfullness of T a

4 .4 Theorem

Let J be a modular JW factor and K a Jordan subalgebra of J.
Then K is closed in the trace-norm to'pology iff K is weakly closed.
Proof

&

By 4.3, (a-p(a),b) =0 for all a€J , b<K

Therefore p(a) is the best | \2 approximation to a from K.
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If a éK, dist(a,K) = Ia—p(a)l >
> 0 sinceip(a) #a, and '|--|2 is a norm.

Therefore K is | \2 closed.
Let (30() be a net in K and ay>a ultrastrongly.
Since T is ultraweakly continuous and positive it can be expressed

»

in the form
- _ = Wy
T % 3;
Therefore | a -a1 o= T (ay -a)*(a.q -a))
= 3 ((a -a)*(ag -2)}40Y,)

= 2
= 2 Wag -a)yi\
]
> 0 since 98; ultrastrongly.
Therefore a €k

Therefore K is ultrastrongly closed.

_ "But in that case K is weakly closed ( Stg{merﬁ 1] Lemma 4.2) O
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