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ABSTRACT 

The substance of this thesis falls into two parts. The first 

gives various results concerning the order structure of Jordan and 

von Neumann algebras and their pre—duals, relating these to such 

ideas as commutativity and factors. 

The second part deals with the existance and uniqueness of 

a trace and a centre—valued trace on modular 3W algebras - giving 

new proofs of these results, and shows that the closure of a 

subalgebra in the topology induced by the trace coippides with weak 

closure. 
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CHAPTER I - INTRODUCTION 

As is mentioned in the abstract, the first subject of this thesis, 

which is covered in Chapter. 	is the relationship) between properties 

• 

	

	- of the natural ordering (i.e. that induced by the definition of 

elements of an algebra as positive ) Of JC and von Neumann algebras ) , 

- 	
äiid their degree of commutativity. 

Sections 11.1 and 11.4 give sufficient conditions on the 

order structure of a JC algebra for the ordinary operator product 

to commute on the algebra, and hence for the operator and jordan 

products to coincide. Section 11.3 gives a converse of 11.1, 

showing that minimum lattice structure goes with the minimum of 

commutativity. 

Section 11.2 gives a result for von Neumann algebras 

involving the concepts used in the rest of the chapter. 

Chapter III begins with a brief resume of definitions and 

- 	• known results to be used, and proceeds to demonstrate that modular 

- 	JW algebras are characterised by possessing a (unicjie) faithful, 
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normal centre—valued trace. The proof of this result, which is 

- already known, is a new one based on von Neumann algebra work of 

F. J. Teadon. 

- it is also shown that the 3W subalgebras of a modular 3W 

algebra are just those JC -subalgebrasthakare closed in the 

:tppology induced by the real—valued trace. 
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CHAPTER II - ORDER RESULTS 
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ki  - SHERMAN'S THEOREM FOR JORDAN ALGEBRAS 

1.1 Definitions 

A functional f on a partially ordered vector space V is positive if 

ç (a)>, 0 for all a G V such that a>, 0. 

A partially ordered set S Is a lattice if each pair of elements of 

S has a least upper bound and a greatest lower bound in S. 

1,2 Lemma 

Let V be a partially ordered normed real vector space such that 

for all v aV there exist v 1  ,v2  V such that v = V1  -V2 , and 

v 	= mY 	( Vi il 111 v20  

If V is a lattice, then so is its dual V* ("the set of all bounded 

real—valued linear functions on v.) 

The proof is that of Bratelli and Robinson [i] section 4.2.6. 

Proof 

For any c? V*, define 	on V the positive cone of V by 

(+ 	, ct )  ( aj =sup [(b) : bV, 0ba3. 

Let a 1 , a2 t-V and Ob a+a2 . 

Define b1  = bl\a1 , 	b2  = b-b1 	(this is possible as V is a 

lattice. ) 

So b-a2 ,C b as a2  is positive, and b-a2  ( a1  by the choice of b. 

Therefore b-a 2 _< a 1 i\b = b1 , 

therefore b-b 1  

4 
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It follows immediately from the definitions of b 1  and b that 

0çb 1 ça1 	and 

b1 +b 	a1 +a2 . 

Therefore 	"ka1+a2) = sup [ (b 1 +b2 ) : 0 	. a1 , 0 b2  a2 3 
= r(a1) 

+ 	a2). 

i.e. 	is additive on V, and hence linear on V. 

Define 	 = (L1 	
2'2 

For aiy aV such that a '>, 0 , and any F >  0 there exists bEVsuch 

that 0 b \( a and 

- 	2)(a) 	1(b) - 	(b) + 

'Therefore 	2 

I.e. 	2 is the least upper bound of.L 1  and 	in V*. 

Similarly, the greatest lower bound of W and Q 2 
 exists and is 

given by 

= 
1 	2 

So V is ai lattice. 

to - (:3 )(+) 
1 	' 	1 	2 

S 

1.3 Lemma (Kadison[51 lemma 2 ) 

If H is a Hilbert space and e,f bounded projections from H onto 

the manifolds N and N respectively, then e '\f, the projection onto 

NN is the greatest lower bound of e and f with respect to all 



positive bounded operators on H. 

Proof 

Let 0 a e,f be a linear operator on H. 

We shall show that a e 

For 	, 	0 =(e))>, (a)) /> 0. 

Therefore a4 ) = 0. 

Therefore a 	= 0. 

I.e. .a annihilates M4 

For all 	H, 	M, (al,?) = (a)) = 0. 

Therefore a1 M 	M 

Therefore aHM. 

Similarly, aHN. 

Any '(H can be expressed uniquely as) + with )czNC\N and 

(M(\N) 

(etsfç,') = 

= (e)) 

I.e. a e .'f as required. 	 c 

1.4 Lemma ( Kadison ç5theorem 1 ) 

Let e,f be projections and S a real linear space of self-adjoint 

operators such that 

i) e, f, e'f, evfS 
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ii) e and f have an infiuiurn in S ( in the order defined by the 

positive cone of S ) 

Then e and f commute. 

• 	Proof 

eAf e,f, but by 1.3, eAf >inf(e,f) 

So e/\f = inf(e,f). 

• 	Set e' = e - inf(e,f) and 

• 	 f' = f - inf(e,f). 

Then 	 , )2 = ( e-e A f )2 

= e2  - e(eAf) - (eif)e + (e '\f)2 

= e - (e'f) - (eAf) + (eAf) 

= e'. 

I.e. e is a projection. 

Similarly, f' is a projection. 

evf-f' >, evf-f),O. 

So e' -- ( evf-f )< e' 

and e' -eyf • 4 e- eiJf 	0. 

So e' - ( evf -f' ) 	f' 

Therefore e' - ( e vf-f') \c inf (e' ,f') = 0 

So e' 	evf-f' 

and f'e'f' 	f'( evf-f')f' 

= f ' -f' = 0. 

But f'e'f' = (etf)*(eIf*) 



Therefore e'f' = 0. 

ef = ( 
eAf + e' )( 

e' I + r' ) 

= (eAf)2  + (eAf)f' + e'(epf) + e l f'. 

But it follows immediately from the definitions of e' and f' that 

(eAf)' = e'(e'f) = 0. 

herefore 	ef = (e /\f)2 + elf' 

e rf. 

Similarly fe = e '\f 

I.e. e commutes wiith f. 	 0 

1.5 Theorem 

Let J be a JC algebra. 

If 3 is a lattice in the operator order, then 

Proof 

J is a lattice, so by 1.2 J*  and aP* are also. 

J is a JW algebra (.Effros and St$rmer  C2 ) 
and so contains the 

projection lattice meet (and hence join ) 
of all pairs of projections. 

Therefore any pair, of projections in J**  commutes (i .4) 

Therefore any pair of operators in J**  commute ( 
Finite linear 

combinations of projections are uniformly dence in j**.) 

Therefore J, which is isomorphic to ai subalgebra of J' I 

MC4tIV.. 
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2 - VON NEU14ANN ALGEBRAS WHOSE PREDUALS ARE ANTILATTICES 

ThcL techniciues of this theorem are those used by Green (31 in his 

result for the dual of C*  algebras. 

2,1 Theorem 

Let N be ac-finite von Neumann algebra ( i.e. let every family of 

non-zero orthogonal projections be at most countable. ), acting in its 

standard representation on a Hubert space H, and let 

Also let',1cH be such that 	and 	( for a proof that this 

is always possible, see e.g. Bratelli and Robinson Cl 2.5.31 ). 

The following are then equivalent : 

i)Inf(C,c)=Oin(N* )
F  

iu) There exists a projection e in the centre of N such that 

, 

iii) (ab'1,) = 0 for all aE.N, b' fMI ( the cominutant of M in this 

representation. 

Corollary 

For 6 -finite algebras N, M  is an antilatt ice iff N is a factor. 

( for proof of 'only if', see Green [3] ). 

Note Attempts to prove the analogous result for Ji algebras ran 

into difficulties due to the need for the Double Comniutant Theorem 

in iii) - ' ui). 



Proof of Theorem 

Let p be the projection onto {b' ) : b'&M' 

clearly 
p =) 

For any projection qM' 

) = (qb') 	pH = N') since qb'M'. 

Taking limits : 

whenever > ç[M' 

Therefore qpH C pH, 

q.p) 	pH j pqp) = qp 

q•p=pqp 

Therefore pq = ()* 

9029 

game 

I.e.' p commutes with every projection in M'. 

I.e. p(M')' =M. 

Let e be the centralsuppart of p in N. 

Then e is the projection onto 	1ap : 	 and e3=). 

(abI\1)) = 0 for all aM , b-€M' 

(av) = 0 	for all aM, 	G.H 

(e,) = 0 	for all H 

= 0. 

So 	(e)  

10 
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(e) = (,eq) = 	= 0 

Suppose inf(?,)=O and there exists azN, b'N' such that 

• 	(ab'rj,) 	0. 

N is spanned by its positive elements, so we may cssume that 

a and b' are positive. 

There exists e [0,2jcU such that 	 ) ( 0. 

e = Cj ill , so we may replace by e10  

• 	• 	Thus we can assume (abt1) ( 0. 

For all (E IR, define the functional on N : 

1'o(x) = cc2 (xb'3b')) + K2(xb'1,b'11)  + 0((x,b'1) + o((xb¼)) 

Then 	M)h 
(r( is defined by a finite sum of innerproducts 

• 	and so is ultraweakly continuous.) 

Let x 

We then have : 

• 	' (x) + * 	 -- (x) = ( xb 	,+'çb') + t<
2(xbb')) ,, 0 

- ••, 	Since b '. N', a, b'> 0 we have : 

• 	• 	 (xb')r\) = (x)b ? ) 

and 	(xbt)) = (xb'1 1 ) 

• 	and so we have 

- 	
• 	 (x) +(x) = 	 + 2(xb',b')., 0 

So 
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Therefore - 	( e ,6) = 0 

I.e. 

Therefore '\t'c(a) > 0 as a is positive. 

But 	= c 2 (ab',b') + oç 2 (ab 1i,b 11) + 2t((ab'v1)) 

( 0 for small o() 0 	which is a contradiction. 

Hence (ab'1,) = 0 for all acfl, 	b'cN' 

ii) 	i) 

Let 

Since e is in the centre of 14, if a c.M+  we have 

ea >.. 0 , (1-e)a ),0 

( ea = e 
2  a = eae. Therefore (eae)) = (ae)e)) >,,,O ) 

Therefore 	'-f (ea) 	(ea) = 0 

and 	 1'((l_e)a) 	e((1-e)a) =0 

Thus 	 '\f'(a) = 'f'(ea) + 'f'((i-e)a) 	o 	acM 

Hence inf(ç,c) = 0 	 0 



- A 3W Algebra is an Antilattioe iff it is a Factor 

3.1 

Topping has shown ( 9Jpropositiofl 22) that if a 3W algebra forms 

an antilattice in the usual ordering then it is a factor. The 

purpose of this 8ection is to show that the .convese is also true. 

Lemma 3.2 is based on ideas of Green C33 

2 Lemma 

Let 3 be a 3W algebra and a,b eJ. 

Then inr(a,b)=O 	[axb)= 0 	for all xJ 

Proof 

We may assume that flafl , Itbfl 1. 

For' -lR let : 

22 	22 	/ = 	ax a + 	bx b + 	axb + bxa 

Then 	+ b2  = (oKax + b )(oxa + b ) + c(2bx2b > 0 

+ a = (v<bx + a )( xb + a ) + 2ax2a ) 0 

So -xa2  . a 

2 	
since \ a 	, t\ b \\ \(1 

-xb 'b j 

So -x \( iILf(a,b) = 0 

I.e. 	x)1  0 

But if .axbji.L 0 there exists 3 E. H such that (1 axb3 	0 

and (x,') = 
	2( flxa)(\ 2  + xbI(2) +2.{( axb 	,) 

0 	for some small o((R 

13 
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Therefore [axb!3 = 0 
	

WWI 

3,3 Corollary 

If A andB are the respective range projections of a and b then 

Inf(a,b) = 0 	AJB3= 0 

Proof 

Assume as before that a,b ( 1 

Then 0 \c  a1  a and 0 $ bm 4 b - 

and 0 inf(an , bm) inf(a,b) 	for all m,nIN 

I.e. inf(an,bm) = 

So by 53.2, {.ah1xbm = 0 	for all x(J 

• Therefore tp(a)xq(b)?3 = 0 	for all polynomials p,q with zero 

constant term. 

• 	But A is the strong limit of a sequence of such polynomials ( see 

- •- e.g. Topping Cal lemma 2 ) , and similarly sois B 

Therefore {AxB3= 0 	for all x-< J 

Therefore {AJB3 = o . 	 0 

3.4 Lemma (Topping C9J, corollary 18) 

• If e and f are any two projections in a JW algebra J they can be 

written as orthogonal sums : 

e = e 1 
 + e 2 	 f = f 1 + f 2 

• where e 1  and f1  are exchanged by symmetry in J and C(e2 )..L c(f2) 
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35 Lemma ( Topping C9) lemma 24 ) 

Let e,f benon-zero projections in a J'vl algebra J. 

Then teJf 	= 0 	) C;(e)LC(f). 

Proof 

eof = elf + fle € {eJf = 

Therefore 2efe = eo(eof) + (eof)oe - 2eof = 0 

I.e. (ef)(ef)* =0 

Therefore 	ef = 0 , 

Therefore 	eJf = eJf2  + fJ(ef) 

= eJfjf 

= 0. 

Suppose C(e)-\C(f) 

Then, in the notation of 3.4 either ee2  or ff2  : say the former, 

An which case e 1 O and so f 1 jO. 

Let s be the symmetry exchanging e 1  and f 1 . 

Now 	•f= 
	2 

= se ef 

= se 1 (esf)f 1  

= 0 , 	 which is a contradiction. 

So C(e),.LC(f) 	 0 

3.6 Theorem 

Any 3W factor is an antj]Jattice. 
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• 	Proof 

If J is not an antilattice, then there exist 0 (a,b \< 1 such that 

- 	- 	Inf(a,b) = 0. 

- - 	By §3.3, (and using the notation of 3.3) 1AJB 3 = 0 

Therefore by 3.5, C(A\) jc(B). 

Since c(A) . 0 	C:(B) we have 0 	C(A) ,t 1 

•: I.e. J has a non-trivial centre and so is not a factor. 	0 



4 - A CONDITION IMPLYING COMMIJTATIVITY OF A JORDAN ALGEBRA 

Theorem 

For any ., JCalgebra J, if 

O.xy ,,x2 y2 	for all x,yeJ 

then J is commutative. 

Proof 

Take x,yaJ and > 0 

Then x$x+cy whence 

2 	/ 
X 	x+ç3T) 

=x2 +2xoy+ ç 2y2  

whiich gives 	0 4 xy +yx + 	 for all (' 0 

i.e. 	 0 çxy+yx 
	 (*) 

Set 	 zy = a+ib 

where 	a = 4(xy + yx) i J 	( clearly a , 0 ) 

and 	 b = i(xy - yx) C* (J) 

The positive elements of J are positive in c*(J), so the ordering of 

c*(j) extends that of J. 

Also if c,dJ then c'$d in C* (J) 1ff cçd in J 

i.e. for such c, d , 	 . 	 is unambiguous. 

xyx and y are positive 

and 	(xyx)y = (xy) 2  

= a2  - b2  +i( ab+ba ) 	
(**) 

Therefore a2-b2  0 by (*) with x replaced by xyx. 

17 
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The set S of numbers ( ,1 such that 	a2  for all x,y 	with 

xy = a+ib ( aJ , bC(J) ) is therefore nonempty. 

S is also closed, so if it were bounded, it would have a largest 

element, say 

Thus if x,yJ and xy=a+ib, then a2- 7b2 ), 0 , and therefore by 

• 	
•: 	 0 b( a2- b2 ) + (a2- b2 )b2  

= ( b 	+ a
2  b2 ) - (2b4) 	 (***) 

From (**) we have : 

( ab+ba)2 	(a -b2 ) 2  

That is, 

')( ab2a + ba2b + a(bab) + (bab)a ) ,$,. a + b4  — a 
2  b  2 -. b2&2  (t) 

On LHS, a(bab) + (bab)a ), 0 	(in c*(J) ) by (*) 

• By assumption, 	a2  )b21  so ba2b >, 

And finally, 	ab2a >, 0 	in J 

using this, and inserting (***) on RHS of (t) 

b4 	a + (1-2 

That is 

(2 + 22 — 1 )b4  

By Federsen [12 chapter 1.3.8 we have 

(2 + 27k- 1iyb2 a2  contradicting the maximality of), 

since 

• 	• Therefore S is unbounded, 

• therefore p b2 . a2 	 for all k/1)O 

/ 
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• 	 Therefore 	b = 0. 

• 	So 	xy=a 

=+(xy+) 

therefore xy = yx. 	 0 

This result also follows from the work of Topping [17], which 

contains simplifications of Kadison's work quoted in this chapter.  
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§ i Types of JW Algebras 

The purpose of this section is to bring together definitions 

and structure results that will be used in the rest of the chapter. 

All of it, except the classification of type I 3W algebras which 

can be found in [io] chapter 5.3 can be found in Topping [3). 

Definition 

A lattice L is called modular if 

(e .0 f) fl g = e U (f fl g) whenever e f ( V e,f,g E L) 

A projection e in a JW algebra J is modular if the projection 

lattice of eJe is modular. 

Theorem 

For a 3W algebra 3 the following are equivalent : 

±) J is modular 

if e,f E 3 are projections such that e - f and e 4 f, then e = f 

Every orthogonal family of equivalent projections in 3 is finite. 

Theorem 

If e and f are modular projections in a 3W algebra 3, then e U f 

is modular. 

coro]i ary 

Two equivalent modular projeetions in a J1J algebra J can be exchanged 

by a symmetry in J. 

21 



Definitions 

A projection e in a JC algebra 3 is minimal if there exists no 

projection fJ such that O<fçe 

A projection e4J is abeliam if eJe is commutative. 

All minimal projections are abelian, for if e is minimal and fe eJe 

is a projection, then fe and so.. f = 0 ore, in which case eJe =Re 

which is commutative. 

If J is a factor, all abelian projections are also minimal. 

A 3W algebra 3 is : 

type I if J contains a faithful abelian projection; 

continuous if J contains no abelian projection; 

type II if J is continuous and contains a faithful modular projection 

( i.e. is locally modular ); 

type III or purely non-modular if 3 contains no non-zero, modular 

projection. 

A 3W algebra 3 is properly non-modular if J contains no central 

modular projection. 

Theorem 

Any 3W algebra decomposes uniquely into five summands as follows: 

type I modular 

type I properly non-modular, locally modular 

type II modular ( i.e. type 11  ) 

type II properly non-modular, locally modular ( i.e. type II,) 

type III 

A 3W factor has one and only one of these types. 

22 



finit ion 

A 3W algebra J is homogeneous if there exists an orthogonal family 

(eA of abelian projections such that C(e) = 1 

If card( A ) = n ( n finite or infinite ) we say that J has type I 

Theorem 

Each 3W algebra 3 of type I has a u4ique decomposition : 

TT 	 T 
- 1T 
	

"2 	W U 

where each 3 is either zero or at JW algebra of type I• 

Definition 

Let J  be the set of all real valued ultraweakly continuous linear 

functionals on J. Schultz has shown ( 	4) Thm. 2.3 ) that (J) * , 

the Banach space dual of J  is J. J can therefore be called the 

predual of J. 

23 
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USING MODULARITY 
	 NOT USING MODULARITY 

16 

15 

3 	 14 

12 ZZ, 	
1'. 

1 
 1 
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£2  - Existence of a Centre -,,'—Valued Trace on a Modular 3W Algebra 

2.1 Definition 

A centre - valued trace on a 3W algebra 3 is a map T from J to its 

centre Z satisfying : 

T is linear 

T(za).= zTa) for all aEJ, zZ 

'T(a))O if a>, 0, a€J 

T(sas) = T(a) for aEZJ,  s a symmetry in J 

V) T -(z) = z 	for all z'..Z. 

T is faithful if a)O, T(a) = 0 implies a = 0. 

T is normal if for every bounded increasing family ICJ 

sup T(I) = T(suP' i). 

Topping (t)Cor 28 ) jives a proofJthat a 3W algebra has at most one 

centre—valued trace. An alternative proof of this is given in 13 of 

this chapter. 

2.2 Definitions 

Two projections e,f in a JO algebra 3 are. said to be perspective if 

they possess a common complement, i.e. there exists a projection 

gJ such that 

eg=O=fg 	eg=1=fug 

Projections e,f in a JC algebra 3 are said to be equivalent if there 

exist symmetries s1 l, ... sE.J such that 

e=s ... sf5 •... s 
1 	nn 	.1 

e and f bear the relation ef if there exists f 1  . f such that e is 

equivalent to f 1  (written erif 1  ). If e_-\f but e )tf, we write e<f. 

Equivalently, e <f if there exists e 1  ', e such that e' £ 

25 



Proof 

If e#-.,f 1  f let 

- e=s •.. 1 	
s n  f s i 	••• 

8 1 	then 

ee1 = i •.. af s ... 

Conversely, if ee"-  
'f let 

r1 
 ... r e i 
	1 
r ... r = f then 

mm  

r 
m m 
er •.. r, = f - r 	m 1 	m 

1  •.. r (e -e)r 	.. r , which is a 

• 	projection and,< f 

An algebraic property of modular 3W algebras is given by Topping 

(03 corollary 12 ) 
Theorem 

Let J be a modular 3W algebra. 

Then e'-'f iff e and f are perspective in 3, 

Both i'and perspectivity are completely additive in J 

2 .3 

If tTis a faithful, normal centre-valued trace on a 3W algebra 3 then 

for projections e,f&J and any symmetry sJ 

t(e) = 0 => e = 0 	(faithfulness ) 

t(ses) = 

eJf =)Z(ef) =t(e)  +7(f)  (trivial case of normality ) 

i.e. the centre-valued trace satisfies the conditions of 

Topping ([9] corollary 9 ): 

Corollary 

Let 3 be a 3W algebra on whose projection lattice L a mapping e- d(e) 

is defined into some abelian group such that 

i) d(euf) = d(e) + d(f) if elf 

jj): d(ses) = d(e) 

iii) d(e) = 0 =) e=0 	 Then L is modular 

26 
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- 	 i.e. the existence of a faithful, normal centre-valued trace on a 

• 	3W algebra implies that the algebra is modular. The rest of this 

section is devoted to the proof of the reverse implication: that 

a modular 3W algebra possesses a faithful, normal centre-valued 

trace (not necessarily positive ) 
and the folidwing section to the 

proof that a modular JW algebra possesses at most one such trace, 

and that is positive. We then have 

Theorem 

A 3W algebra is modular iff it possesses a faithful, normal 

centre-valued trace. If it possesses such a trace it is unique 

This result is already known, but a new proof is given here along 

the lines devised by Yeadon[1O] . While writing this proof the 

• author made use of an unpublished set of notes of lectures on von 

Neumann algebras given by Professor Ringrose at Newcastle. 

In all the results of this and the following section, J is a 

3W algebra. 

2.4 Lemma 

Let 3 be modular and (e k) an increasing sequence of projections in J. 

If for all k, ek~ f  for some projection fEJ, then sup(ek).f 

- Proof 

-- The sequence e 1 , (e2-e1 ), (e 3-e2 ), •. is orthogonal and has supremum 

• 	 e = sup(ek). If, therefore, we can construct a sequence 	of 



of orthogonal eubprojections of f such that 

and 	fk' ek_ek_l 

then, by the complete additivity of equivalence on the projection 

• V: 

	 lattice of a modular Jwalgebra ( 2.2 above ), 

V 	
e 

(ft) is constructed inductively 

Since e 1 f there exists f 1 f such that e 1 f1  
• V 

 

­ .If fJV 	'f r  are given, it is sufficient to construct 	such 

that 

V 

• 	

- (r+ •.. +f) >, f 	rie.1 - er  

V 	
•. 

• Since e1 f, l_er+l 	 ' >1-f 	(if e71 ' a (f, then l_er+lI 1-z .1-f ) 

i.e. there exists g such that 1-f''g 1 -e1. 

V 	
gje. 

+frlvei+(e2_ei)+  •.. +(er_eri) = eby additivity of -J, and 

80 	 1 4+f1  + •.. + fJ g+e 

and • 	• : 	so • 	f-(f1  + •• 
+

1_g_e 

• 	 V 	 . 1-(1-e 	)_er  = e i,
4_1_er  , 

So by the remark following the definition of equivalence, there exists 

• 	
V 	 r4+1 	- (f1 + 	such that 

V 	

V V 
	 f 1  ,, e1 _er 	required. 
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25 Definition 

Let J be a JC algebra and U the group: 

is a symmetry in 1, nc. 

Given ueU, define an isometric isomorphism 

J 
-> 	by 

(L.ii)(Q) =(u*au) 	( 
cieJ. a€ A ) 

where (si...$)* = 

We denote by Q,the norm-closed convex hull of the set 

Kcj 	LcA.): uEU} 

Lemma 

1!' 3 is modular, (e) an orthogonal sequence 	of projections in 3 

and G)cJ, then .t(e)'O as 	uniformly for allt€Q 

Proof 

It suffices to show that'C(e ) - 
0 uniformly for t(K,. 

If not, there exists 6>0, a subsequence (f) of (e) and a 

sequence (ta) in K such that : 

for each n 

Thent(.) =Q(u. u) for some uU. 

If g = u*f u, then g-...'f and j) (g)I>, , 

Define: 	Pm.,n 
= 	 ... , 

PM  =supgj  : jm} 

=  sup ~ :n>1  m3 
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P = 
uh1[p : miJ. 

Then 	 ' 

We claim pm, n <  f m •• 	 (m n  

Since p
n,n 

 = g
n  fn 

(*) is true when m=n 

If n>,m and ('*) is known to be true for n then 

Pm,  nKf  +f 	+...+f m M44 n 

and9n+1V Pm,n - m,n = 	
- 

"-if n+i 

So (.w) holds for n+i, and so for all n) m 

CNO 

Therefore p 	< 	f. 
m,n 

By 2.4 	pm  < 4~.. 

	

j 	hence =m 3  

1 
- 	

1 	P1 
- p 

j=m 

Again by 2.4, 

1 = sup {i - 
 57'  f : ncN} i—p 

Since J is modular, p=O (Topping [9] prop 14 ), and so since 

and p> p2> •.. we have 

° 	n3'P 	n)') 	\\P,t(t 	O for all ) -(.H . 

Hence g -0 ultraweakly, and so liin4(g) = 0. I.e. t(f)-O , 

contradicting the choice of (ta) and 

So (e) ->  0 uniformly for -r-1--K,,, as required. 	0 
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2.6 Le=a 

• 	
Suppose 	T* and YEt. Then : 

If Q(a)>' for some positive ac_- J J  then (e)r for some 

• 	 projection e-eJ 

If ((f)I4q for every projection fJ, then ttL)% •2-'q 

if w(f)>,0 for every projection f&J, then 

31 

See over for Proof 



Proof of Lemma 2.6 

By the spectral theorem, there exists an orthogonal family 

of projections e 1 , ... ,eEJ and 	... ,7E.CO,1Jsuch that 

ha - 	) e <  tI. 1 (.) (a) -1) 

Hence (A)(a) - 	j (e j ) < C.'J(a) - VL 

and 

We can assume that 	W (e)>  0 	 (iE j m) 

u(e.). 0 	 (m<jn) 

Let e=e+...+e 
1 	m 

L3 (e) = 

>, 

>.Yl 

If R-)(a)I> 	for some aE.J, then : 

either 	- )(a) > 

or 

Therefore by i) there exists &.-projection f such that 

32 

either 	-L)(f)>Y1 



or 

i.e. 1c4(f)I> Y , contradicting hypothesis 

Therefore (c(a)t ( for all aEJ. 

Each bE.31  can be expressed in the form : 

b = 

where b1 ,b2 EJ 

whence IL(b)( Z ((...)(b 1 )I 	+ 

iii) By hypothesis, -L)(f)SO for all projections fEJ 

Therefore by i) —(i(á)'O for all aE.J 

i.e. Ciis positive. 	 o 

27 Lemma 

* 
If t1.aJ is completely additive, and e.J is a projection, then 

±here exists a subprojection f of e in J such that 

(4(f) >,. W(e) 

and the restriction t.)lfJf  is  positive linear functional on 

the JW algebra fJf. 

Proof 

Let (e) be a maximal orthogonal family of projections in J such 

that e e and .(e) <0. 

With f = e - Ze, the maximality of (e) implies that CJ(g)>,O 

for every projection gEJ such that gf, that is for every 
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projection g€fJf. 

Thus L)\fJf is positive. 

By the complete additivity of (..j 

CO (f 	(e) - 

= 	(e) - 

as 	e)O for all c< D 

- 2.8Leinma 

Let ()E JJ' be completely additive, and W an extension of W to the 

enveloping von Neumann algebra of J, with II 'I( = 

If eJ is a non-zero projection, then there exists a non-zero 

subprojection f of e in J and a vector ) such that 

IcJ'(a) \( 11a)JI 	for all aJf 

Proof 

Let I be a vector such that )t ev(t\2  > W(e) 

i.e. ((JY? - W )(e) = 11 e1112  - (e)> 0 

By 2.7 there exists a subprojection f of e in J such that 

Wit-( )(f)), 	 )(e)> 0 

and 	 ) fJf is positive. 

If a*.Jf, then a*aEfJf 

therefore 	0 	(cCL) )(a*a) = II 	- 	( a:* a). 

By the Cauchy - Schwartz inequality 

(J(a)j 2 <11.1(1)1 3(a*a) 

I1 a,12 
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So if) = 

then \c.'(a)f 	Uafl( as required 
	 MR 

2.9 Lernrn 

Let L,)EJ* be positive. 

If o is completely additive, then W is ultraweakly continuous. 

Proof 

Let 	 be a maximal orthogonal family of projections with 

the property : 

(p) There exists 	such that I'(a)J \ç ItaodI whenever aJf 

(c.Idefined as in § 2,8) 

If f 	I, it follows from §2.8 that there exists a vector and 

a projection fcJ such that  

0< f .< I - Y f  

and 	 I Y'(a)I 	[I a) I 

the maxiniality of (fo). 

Therefore Y f = I. 

( for a4Jf ) , contradicting 

Take t ~ O. 

By the complete additivity of W: 

=  OW 

so there exists a finite subset B of A (if A is finite take B=A) 

such that : 

A\B 
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' C2 lcaor 

Let e= 
O(E.A\B 

Then çi(e) & 	 and e + 	= I 

Thus ()'= 	+C 	where 

= 	Lw ' ('afett) 
	

a J 

= J(ae). 

1 L) (a) 	. af 	(a cJ ), 80 (..) is strongly continuous 

on J. 

i.e. 

Also (.J(a)2 = (J(ae)2 

II 	a 	l\ 

= 

is a Banach space embedded in its second dual J. 

Therefore J is norm closed in J*  and so 

2.10 Lemm 

Suppose x,y,z ae real numbers such that x,y, xy-z 0 and that 

e,aEB(H) are such that e is a projection and llat 	I. 

Then xe + y(I-e) + z( ea(I-e) + (r-e)ae ) ),, 0 

Proof 

x(1 ,)) + y((I_e)1,1) + z((ea(I-e) + (I_e)a*ey,1) = 



x  Ile 
)III + Y{)(I-e))112 + 2zRe(ea(I-e))) 

x 11 e)112  + Y(Ie))JI2 - 2(z(I-e))II(IeI( 	0, for all )EH 

from which the result follows. 

2.11 Theorem 

()EJ*  is ultraweakly continuous iff c,,) is completely additive. 

Proof 

If (e)A  is an orthogonal family of projection ( of norm41 ) 

and hence weak 
then e =Fe., is the strong/limit of the net of finite subsume of 

(e) and 4 e\ 1 • On the unit ball of 3 the weak and ultraweak 

topologies coincide, and so if 	is ultra-weakly continuous it 

is weakly continuous there. Hence 	e)= 	cz(e), from which 

it follows immediately that j is completely additive on J. 

The proof of the reverse implication is divided into two parts 

Part I 

We can assume that c.Ui 

Let ,&= sup c(a) : 0 .( a . i3 

So 0  

Given (satisfying 0 ç E < - , there exists a positive element 

e1  of the unit ball of J satisfying 

cj (e i )) 

By §2.6(i) we can assume that e 1  is áprojection. 
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By 2.7 we may also assume that (.JIe1Jei is a positive, linear 

functional on e 1  Je1 , and by § 2.9 we have that Ole 1  Jb 1  is 

ultrai-weakly continuous. 

If we put e2  = 	we have : 

W (a) = W (S' e 1 ae2  ) + (e1,ae1) + Q (see  2)  for all aJ 

= LJ12 (a) + (# 11 (a) + W22 
 (a), say . 

By considering the maps 

a-e1 ae1 I--- 	(e1 ae1 ) = L) 11 (a) 

it is clear from the fact that Co is u]itraweakly continuous on e 1 Je 1  

that L)11  is also .ultraweakly continuous. 

Any projection f E  e2Je2  is orthagon&l to I-e2  = e 1 , 

so e1 -i-fI and hence: 

ILl.. 	(J(e1+f) 

= L)(e1 ) + W(f) 

E + C4(f) 

and so L,(f)c 	for all f e eJe 	 (*) 

Suppose t J1 , the unit ball of J, and let 

s = (1- )e 1  + F e2  + c(i- E)4 [e 1 te2} 

Then, 

i-s = Ee1  + (.i- )e2  - 	i- E)4 {e 1 te2 } 

By 2.10, sO and I-s>O 

i.e. s is positive and belongs to J1 



Therefore J>,c(s),by the definition of 

= 	 E)Lj 	+c(e2) + 	(1-E)(IL e l te2 3) 

- 	+ 

Therefore (p+2) €i-O>, .)( e 1 te2  ). 

/-' 1, and (i-Y (  2 	(since EK+ ) 

therefore W(te1te23 ) . 6J. 

I. e. 01 2(t)< 6AIF for all t 

I. e. J(G) 1211 	6J and so: 

- '11 - 	 Ik) 12 t ... 64F- 

Pa rt II 

We next show that there exists w 	 E.J 	such that 

11w 	+ w22 11 2 P, + 6. 

This completes the proof of the theorem for then 

- Cj + 	Ow - 	 + 11 	+ W22 1111 

	

+ 	2(+6/C 

= 	2+12A/C. 

Since this can be done for all 	since c- 	J.1 . and since 

is norm closed, it follows that 	as required. 

Let\)= -Ie2Je2. 

Then *%) is ai completely additive linear functional on e 2Je2  

and (rvIt 	1. 
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By (*) V (t)) - for every projection f çeJe 

Reasoning as in Part I, there exist projections f, 	. eJe 

with f1 +f'2  = e2 , satisfying the following conditions: 

is ultraweakly continuous 	(V (a) = V (f 1  sf1 ) ) 

II\),..fI 	6I( 	 12 = 	12) 	). 

))(f)< C for every projection ff 2Jf2 . 

But we already have that i(f)> - 

so N(f)k c 

By 	(()f2Jf
2 11 \( 2 E 

so we have 

= ()(f2af2 )J 	for all aa .€f2J•f2 

\<2Ef2af2 t) 

\<2Ella(J 

So 	tt\) 22 

	

Yii 	= U12 -2211 

\K 2 + 6Ji 

Define 	by 

L3 0(a) = 

1(L) 0  + W22' 	= L)11(e2ae2) + 

= 

(2 	+6'Jall 

So 1IL) 0 + Li 
22 

 11 Ne, 2 + 6 %/ ç_ as required 



2.12 Lemma 

is bounded, and f or any sequence (e n) of orthogonal projections 

in J, t&i(e) 40 uniformly for wK, 	- 
then K is relatively compact in the topology '(J,J)  of J. 

Proof 

Let K1  be the cy (j*,j)  closure of K in J 

Then K1  is ø (j*,j)  compact in J, and the theorem follows if it is 

shown that K1  C J•. 

Let (e.) be a ' 	 of orthogonal projections in J and e =Ze.. 
N 

For allieJ, Lw(e )—c.4(e) 
j=1 

Therefore if the convergence is not uniform on K then there exists 

&.> 0, a sequence (c)K and an increasing sequence (N1 )Efl such that 

N. 
LJ( e ) - W. (e) 	K S 	 (i) 

N. 
1 I ) 	(e.) - L) (e)l >36 	 (2) 

j+1 I 4_ 	j+1 3 
J1 

L)j~ 1  (ed) 
- 

L) 1  (:) <I 	 (3) 

(2) and (3) imply : 

N1 	 N. 

i+1 	- I r 	+i) - 	.~ 1 (e) > S I E (A)i+1 (e.) - (.) 	(e) 	 (e I 	1+1 

j=1 	 j=1 

Therefore 

N 

i - 	 - 	(e)) .L) 	(e) 	> t 

j+1 	i+1 
j=1 	 j=1 
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N i+1
i.e. 	i 	 S 

N 1  

: Let f 1E ej 
j=Ni 

Then 	 0 uniformly on K, contradicting the hypothesis of 

the lemma. 

• 	 N 
So:. 	 . ci(e) uniformly on K. 

j=1 

Let 

Then there exists 	) cK such that 	cy in 6 (i,j) 

Jo(e) -c(e) and ti(e)-> CJ(e) 

	

(e) = urn 	e) 

	

= Urn 	(4((f. 1 ) 

= 
i 	

o(1 

= 

Thusis completely additive, and soby2.12 EEJ 

Hence K1  ç 	as required. 	 0 
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I 	• 

2.13 Lemma 

Let J be modular. 	 V 

If L)EJ, then Qis 6(J,J)-compact ( see A2.5 for notation ) 

Proof 

Since Qia norm closed and convex, it is also closed in the weak 

'.'topaogy(J,J) on  

Qis 6(JT,J)_compact in J. by §2-5 and 2.12.  

2.14 '  

The following is the Ryll-Nardzewski fixed point theorem, .a 

V 	Vshort proof of which is given by Namioka and Asplund L6 

'Theorem 

V 	
If Q-  is a non-empty weakly compact convex subset of a Banach space 

- V 

V 	".X and U - is a semi-group of weakly continuous affine maps, X 4 I, 

V V 
V  ' - 	

' •- - then 'there exists x Q such that ux = x for all UEU. 

2.15 Theorem 

Let -3 be modular, and Z -the centre of J. 

Then each 	Z-*  extends to an element 	such that 

T- (u*au) =7j(a)  for a..11 . a-c--J, where u is any product of 

symmetries in J. 

Moreover, (tI( = Ut-U 

Proof 

Z* is ultra-weakly closed, closed under the Jordan product, and so 



is a real von Neumann algebra. 

Therefore Jt Z. can be expressed as a countable sum of vector states 

= 
1 

where 	 (i&)I( and 	 \c 
jjWjj 

00 

Let 	= 

Then e c. 	and e I Z= 

. 	0( 'JII( v(IL 	I(4.(j 

( •II 	>)1.( II 	+ it v( (f2 )) all ).0 0 Y 1 
11 ) 

For each product of symmetries, u 

ULelI = 	Ifi 	Ik.ii 

and 	(L 	)(z) = 	(u*zu) = 	 z) for all zEZ
U. 

Thus 	= W (whence Jc(( 	II 	It ) for all C 

so we have 

1(II = 	and 0(Z = () for all 6EQe) 	
(*) 

The isometric linear maps L : J-+J *  form a group, are 

continuous ( i.e. pointwise continuous ), and leave invariant the 

c(ç,J) compact convex set 	in 

The Ryll-Nardzewski theorem therefore asserts that there exists 

Q such that L t.. = t for all u &U 
U 

Hence t(u*au) = L(t)(a) = r.(a) 	for all aEJ 

By (*) OT,11 = 	Ljj and c( z = to 0 
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2.16 Corelipry 

• 	There exists a weakly continuous linear map T J - Z such that 

T(a) = T(u*au) 	and T(z) = z 

• 	 whenever ac.J, u<-  U and zEZ. 

- 	-:: 

 

Moreover, T is norm decreasing and T(za) zT(a) whenever 

a J and zc,Z. 

T(a)>O if a> 0. 

Proof 

By 	3.15 (and using the notation of 	3.15 ) it is possible to 

	

-• 	define an isometric linear map 

S 

by 	s(cc)=c 

Identifying J with the Banach space dual of J., and Z with the 

dual ofZ, the adjoint of S is a norm-decreasing linear operator 

T :J --> Z and is continuous with respect to the topologies 6 

and G (Z '  Z* ). 

(T(u*au)) = (S t )(u*au) 

= (S)(a) 

= j(Ta) 	for all 	aJ, uU 

Also, if a'J, -)E3 - and a),O  , 

.3(Ta) = (Sc)(a) 

0 since s 	is positive (see ,' 4.6) 

Z. is separating for Z 	(see footnote over ) 

Therefore P(u*au) = Ta as required and a> 0 .? Ta> 0 
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Similarly L(Tz) = (St)z = 	U (z) 	for all L)€Z,  zZ 

11 

So T(z) =z. 	
WER 

Note 

If a,beZ and a/b, then there exists Je  such that a'3 /bI 
Therefore there exists 	H such that (a), I) / ( b5 , 

xt-(x) ,) is an ultraweakly continuous function. 



3 - UNIQUENESS OF CENTRE-VALUED TRACE 

31 Lemma. 

For a non-zero projection e in a JC algebra. J to be abelian it 

ia sufficient that 

Each subprojection f of e in J has the form f=qe, where q is a 

projection in the centre of J. 

Proof 

If the condition holds, and a,b are any two projections in eJe 

then 

a = q1 e, 	b=q2e 	 where 0 < q 

But that the q. are central implies that 

ab = q1  eq2e 

= q2eq1 e 

= ba 

so since any two projections in eJe commute, eJe is abelian, and so 

e is an abelian projection. 

3.2 Theorem 

Suppose e is a projection in a continuous modular JW algebra J and 

that rE. (N. 

Then there exist projections e1, ..., ,erE Ji such that 

e1 ,e2 	... .er 	and 

e 1 	2 
+e +...+e =e. r 

Proof 

The proof is in three stages. Stage I does not require modularity. 

Stage 1 

We assert that each non-zero projection f in J contains two 

non-zero equivalent orthogonal projections 
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Since J is continuous, f i8 not abelian and so not minimal. 

Therefore I has a proper non-zero subprojection g , and by 53.1 

gCf 

Let 	f 	C:f-g 	1-g 

\cg 

So f and f2  are orthogonal subprojection of f and 

C =C C =C f 2 	g 	1 

So by Topping L9] , lemma 18 ,f1  and f2  can be written as orthogonal 

sums 

= f(1) + f (2) 

(i) 	(2) 

where f)  and 
f(1)  are exchanged by symmetry, and c(f2))1C(f2)) 

f f 	 were zero, then 
f(1) 

 would be zero also, as they are 

exchanged by symmetry, in which case 

c(f2)) = c(f1 ) = c(12) = c(f 2 )) 

:i:.e. 

Therefore f and f2  have nonzero subprojections exchanged by 

symmetry, and f has two non-zero orthogonal equivalent subprojections 

Stage II 

We assert that each nonzero projection I in J contains r nonzero 

equivalent, orthogonal subprojections in J. 

The proof is by induction on r : 

For r=1 the result is obvious, and r=2 is the case above. 

Assume the result for r--p. 

Choose nonzero equivalent, orthogonal projections 91 	with 

each g <, f and g1,.,,g2, ... 01V 

9p. 
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By stage I, there exist orthogonal nonzero snbprojections h0  and h1  

of g1  with h0 jh1 . 

If gj = ug1 uj , where Uj  Is a product of symmetries, then 

gj >. UI1 Uj  =h, say. 

Now h0, ... ,h, have the required properties for the result when 

r=p+1. 

Stage III 

Let (f) be a maximal family 

such that 	e and 

f 	f+ fc)+ 

where the fi  ae projections 

If f 	e, we can by stage 

of orthogonal nonzero projections in J 

+f (r) 

in J and 
f(1) (2),, •.. ¼d f(r) 

II find a subprojection of e- Zf 

with the properties of an f , contradicting inaximality. 

So e = 

The projections ej = f3) are equivalent, since equivalence is 

completely additive on a modular JW algebra, and are orthogonal. 

3.3 Lemma 

Let J be modular, and e,fJ projections such that fe. 

Then there exists a projection p in the centre of J such that 

O<.PCf 	pepf 

Proof (This result can also be deduced from Topping 9] thin 12.) 

Let 	('4A be a family of pairs of projections, maximal subject 

to the conditions 

(eç ) is an orthogonal family and 0 C e \( e 

(r) is an orthogonal family and 0 	4 f 
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iii) erif 

Let e0 =e 

e 1  = e-e0 f = 

Then f0  ry e 0  ç e by the complete additivity of equivalence 

I.e. f0 
 As 

But f4 e, 80 f 0ft and f1 0. 

Ce.Cf = 0, for if it did not, then there would exist e2 e 1  and 
11 

such that e2 'jf2 , which would contradict the maximality of 

(,±' 	
EA 

Take PCf  
1 

Then 0 (p C  since 0 ç f 1  f 

	

pe-pe 0 	1 	f1  e1  
=pe =0 C: =0. 

Therefore pe = pe0  rv pf0  

Sope<pf. 	 £3 

3,4 Definition 

A nonzero projection e in a modular 3W algebra 3 is rational if 

there exists a finite orthogonal family e 1 , ... e 	 of projections 

in J and an integer k,En  such that 

	

e 1 r1e2 	•.. 

e1  +e2+ ... + e k = e 

e 1  + e2  + ... +e is a central projection in 3, necessarily 
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If e and f are equivalent projections in 3 and e is rational, then 

so is f. 

Proof 

Let el , ... ,e U 
 and k be as above. 

If fe.'e then there exists a product u of symmetries in J such that 

k 
f. = 	u*eu 

1 

Put f =u*eiu ( i.(k ) 

C=Cf  and ef imply Ce_ellCf_f 

i.e. 	 C 4. - f = 	v*e 4v where v is again a product of 
k+1 

unitaries in J. 

Let f = v*ev 	( k ci 4n) 

Then f = f 1  + f2  + 	+ 

C =f +f +...+f f 	1 	2 	n 

f rif 	...iv f. 
1 	2 	n 

I.e. f is rational. 	 0 

5 Theorem 

Each projection e in a modular JW algebra 3 can be expressed as 

the sum of an orthogonal family of rational projections. 

Proof 

Let (e) be a maximal orthogonal family of rational projections in 

3 with each e 	e, and let f = e - e 

It suffices to prove f--O. 

ll 

e  

el 

18 
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Since J is modular, there exist central projections (p1  )and p11  
n 

such that 

pIn+  Pil' = 1 

Jp1  is type I 
n 

and Jp11. is type 11 
t 

If fO then either fpO for somen, or fp11  0 

Case I g = fp1 O 

Since 0 çC g  p, JCis type 

i.e. there exist abelian projections g1 ,... g(such that 

C =C 	for all m n 
gm  g 

91 - 	+ ... + g=C 

A lemma will now be proved before the proof of the theorem proceeds 

Lemma 

Let K be a modular JC algebra, and e, f projections in K with e 

abelian and CCf . 

Then ef. 

If e and 1' are both abelian and C  = C f , then e-f. 

Proof 

The second statement follows from the first. 

Suppose e is abelian and C   Cf. 

If e 	, then byJ3.3  there exists a projection p in the centre of 

K such that 	 O<P<Cf 
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pfpe 

Replacing p by pC e , we can suppose 

O<P e  

Since pf pe there exists a projection f 1  such that 

pf-f1 <pee 

Since e is abelian, eKe coincides with its centre Ze. 

So f 1  = ef 1 e E eKe = Ze. 

I.e. f1  = qe for some projection qeZ. 

Since f1  = pf 1  , we can replace g by pq, and assume 

0 	P'$1e Cf. 

Now, 	 P = PCf - Cpf 	(by Topping 9] prop 18.) 

= C 	 (by Topping 9jcor 14.) 

= qe 

=qCq. 

But f = qe = pe, contradicting f l < pe. 

Hence e 4 f, -  

Hence the lemma follows. 	 ED 

By the lemma, 	91 	...g .< g. 

Therefore g1  is rational and there -exists aiprojection g
— gi 

which will also be rational, such that 

g 	contradicting the definition of f. 

'Case II g = fp11 	0 

Since 0: C 	P11 	JC is type II 9 	 9 	 I. 
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Let g1 , ... ,g be a maximal orthogonal family of projections in 

JCg  with gj .v g 	( j=i, ..., n ) 

( Such a family is necessarily finite since g is modular :see e.g. 

Topping (9) thin 11 ). 

Let x = Cg - ( g1 + ... +g) 

g $ x, by the maximality of the family 5g.3 	 (*:) 

Since JC g  is type 11 1 
 and hence continuous, Theorem 3.2 applies, and 

hence there exist projections y 0, .,. ,y 4JC g  such that 

YO .-" Yi ' ... Ov y 	and 

YO  ± 	+ ... + Y = Cg' 

If g 	then g. 	y 	( j = 1, ... ,n ) and 

Cg_X = g1  + ... + ç 

y1  + ... + yn  

= Cg Y0  

I. e. 	 Cg X'Vh Cg  _Y0  

Since C g  is the identity of JC g  this would imply 

x=C g — (C g
—x) 

,vC g_h 

g contradicting (*) 

Hence g 4. y, and so by lemma 3.3 there exists a central projection q 

with 0 < q C g  and air0 -< qg. 
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Thus f (>,.g >qg ) contains an projection equivalent to qy 0 , and 

this is rational since 

qy0  (V qy1  Aj •.. 'v qy 	and 

qy0  + qy1  + ... + qy = q. 

which contradicts the maximality of (e)A 	 0 

3.6 Theorem 

If J is a JW algebra with centre Z, the extension of any (.)C-- Z 9 

atrace CE.J  is unique , and Cis positive if L)is. 

The ultra-weakly continuous centre-valued trace T : J—>Z is also 

unique. 

Proof 

If e is a rational projection in J, choose equivalent projections 

e l , 	,e n € Jsuch that: 

ae.= c 	Z. e.=e 	for some kn 

there exists a product of symmetries u. such that 

e = u*.e u . 	 . J  j 

So 	 Z(e) = -C (e 	for all j < n 

and 	 "C(e) = 	 = 

Thus '((e) is determined by co and 	is positive if (is. 

But any projection is J is the orthogonal sum of rational projections 

in J ( 35) and -Cis completely additive since it is ultraeakly 

continuous (2.11). 
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Thus 7_Is determined by (for all projections in 3, and therefore Is 

determined by (,)on 3, the closed linear span of its projections. 

If Lis positive, then 7(e)>,,O for each projection e. 

Hence 7is positive by lemma 2.6 (iii). 

The same argxement proves the uniqueness of T. 	 9 
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14 - WEAK AND TRACE CLOSURE OF JO StJBALGEBRAS 

4.1 Definition 

Let J be a modular 3W factor, and t its trace. Then an inner product 

cqn be defined on 3 by : 

	

(a,b' = r (aob) 	for all a,b 3 

The associated norm is denoted byl 12 

4.2 Lemma 

If 1', 4) are normal linear functionals on a 3M algebra J such that 

0 4'c 	, then there exists he 	such that 

= 4)(hoa) 

If 4) is faithful, then h is unique. 

Proof 

The proof follows that for the analogous von Neumann algebra result 

given by Pedersen C12 chapter 5.3.2 

Let 	X = tcf ho .) : hcJ 

• 	
i 	 i X is convex, since + is convex, and s compact n J  since + is 

ultra—weakly compact ( J*  is the set of ultraweakly continuous 

functional-S on 3 ). 

y the Hahn—i3anach theorem, there exists aE(J * )*=J and t.IR such 

that : 	1'(a)> t 	and 	X(a) .< t 

Write a as a+—a_ , the difference of positive elements. 

Let h = [a+], the range projection of a 
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aa+ = 0 

therefore 	aCa+Tj= 0 - 

therefore 	ah = aCa+1\ 

= a+[a+  = 

Also 	 ha = (j)* 

* 
= 

= a+  

Therefore 	 = (hoa). 

?,'(a-a) 

), (hoa) 

= 	 contradicting 

Let k also have the property required of h. 

Then 	 (h-k) 2  = ho(h-k) - ko(h-k) 

therefore 	((h-k) 2 ) = 4(ho(h-k))- 4) (ko(h-k)) 

= (hk) - 'f(h_k) 

S 

Therefore if I is faithful then h=k : i.e. h is unique. 	9 

43 Leuixna 

Let J be a modular 3W factor and K a 3W subalgebra of J containing 

-- 	the unit of J. 

Then there exists a unital positive projection p: 3-+K such that 
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t(aob) = t(p(a)ob) 	for all aJ , bK , 

where t is the faithful normal tracial state of J. 

Proof. 

The proof follows that of Sakai C 1 31 chapter 4.4.23 

For hJ, hO, tthI =1. define Th  on K by 

4(y) = T(hoy) 	for all yçK 

(y) 	
0 ( Pedersen & strmer [16Theorem. ) 

Therefore 	> h 

Therefore by 9,4.2 there exists & unique ktK' such that 

-c (koy) = 

Define p(h) = k. 

p extends by linearity to the whole of J. Clearly p2  = p 

p is positive and so bounded ( Russo & DyeI..1 51 ). 

Also p(1)=1 so up  =1 

The uniqueness follows from the faithfullness of 't 	 0 

4.4 Theorem 

Let J be a modular 3W factor and K a Jordan subalgebra of J. 

Then K is closed in the trace—norm topology iff K is weakly closed. 

Proof 

By § 4.3, (a_p(a),b) = 0 	for all aEJ , bK 

Therefore p(a) is the best 112  approximation to a from K. 
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If a 	dist(a,K) = la-p(a)l 
2  

> 0 	aince:p(a) Ita, and 1­ 12 is a norm. 

Therefore K is % 	closed. 

Let (a) be a net in K and a,,-> a ultrastrongly. 

Since 7 is ultraweakly continuous and positive it can be expressed 

in the form 
00 

= 

Therefore 	i a .-aj 2 T  (ay  _a)*(a —a)) 

= 	((ak  _a)*(a 

_> 0 	since a3 a ultrastrongly. 

Therefore a.K 

Therefore K is ultrastrongly closed. 

But in that case K is weakly closed ( Strner[j1I1 Lemma 4.2) 0 
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