ORDER AND TRACE RESULTS FOR JORDAN ALGEBRAS

John Philip Bruton

Master of Philosophy
 University of Edinburgh

September, 1983

ABSTRACT

The substance of this thesis falls into two parts. The first gives various results concerning the order structure of Jordan and von Neumann algebras and their pre-duals, relating these to such ideas as commutativity and factors.

The second part deals with the existance and uniqueness of a trace and a centre-valued trace on modular JW algebras - giving new proofs of these results, and shows that the closure of a subalgebra: in the topology induced by the trace coincides with weak closure.

CONTENTS

CHAPTER I INTRODUCTION page 1
CHAPTER II ORDER RESUITS

1. Sherman's Theorem for Jordan A'lgebras 4
2 VN Algebras whose Predualls are Antilattices 9
3 A JW Algebra is an antilattice iff it is a factor 13
4 A Condition Implying Commutativity of a Jordan
Algebra: 17
CHAPTER III CENTRE-VALUED TRACE
1 Types of JW Algebras 21
2 Existence of a Centre-Valued Trace on a Modular JW Algebra 25
3 Uniqueness of Centre-Valued Trace 47
4 Weak and Trace Closure of JC Subalgebras 56
REFERENCES 60

Acknowledgement

Many thanks are due to Dr. Guyan Robertson and Dr. Charles Batty for their advice and patience.

Declaration

I declare that this thesis has been composed by myself and
that, except where otherwise stated, the results herein are my own

CHAPTER I - INTRODUCTION

As is mentioned in the abstract, the first subject of this thesis, which is covered in Chapter $I I_{\text {, }}$ is the relationship between properties of the natural ordering (i.e. that induced by the definition of elements of an algebra as positive) of JC and von Neumann algebras,
and their degree of commutativity.

Sections II. 1 and II. 4 give sufficient conditions on the) order structure of a JC algebra for the ordinary operator product to commute on the algebra, and hence for the operator and jordan products to coincide. Section II. 3 gives a converse of II.1, showing that minimum lattice structure goes with the minimum of commutativity.

Section II. 2 gives a result for von Neumann algebras

involving the concepts used in the rest of the chapter.

Chapter III begins with a brief resumé of definitions and known results to be used, and proceeds to demonstrate that modular JW algebras are characterised by possessing a (unique) faithful,
normal centre-valued trace. The proof of this result, which is already known, is a new one based on von Neumann algebra work of F. J. Yeadon.

It is also shown that the JW subalgebras of a modular JW algebra are just those JC subalgebras that are closed in the topology induced by the real-valued trace.

§1 - SHERMAN'S THEOREM FOR JORDAN ALGEBRAS

1.1 Definitions

A functional P on a partially ordered vector space V is positive if $\varphi(a) \geqslant 0$ for all $a \in V$ such that $a \geqslant 0$.

A partially ordered set S is a lattice if each pair of elements of S has a least upper bound and a greatest lower bound in S.
1.2 Lemma

Let V be a: partially ordered normed real vector space such that for all $\forall \in V$ there exist $\nabla_{1}, \nabla_{2} \in V^{+}$such that $v=\nabla_{1}-\nabla_{2}$, and $\|\nabla\|=\max \left\{\left\|\nabla_{1}\right\|,\left\|v_{2}\right\|\right\}$.
If V is a lattice, then so is its dual V^{*} (the set of all bounded real-valued linear functions on V.)

The proof is that of Bratelli and Robinson [1] section 4.2.6. Proof

For any $\varphi \in V^{*}$, define $\varphi^{(+)}$on V^{+}, the positive cone of V by

$$
\varphi^{(+)}(a)=\sup \{\varphi(b): b \in V, 0 \leqslant b \leqslant a\} .
$$

Let $a_{1}, a_{2} \in V^{+}$and $0 \leqslant b \leqslant a_{1}+a_{2}$.
Define $\quad b_{1}=b \wedge a_{1}, \quad b_{2}=b-b_{1} \quad$ (this is possible as V is a lattice.)

So $b-a_{2} \leqslant b$ as a_{2} is positive, and $b-a_{2} \leqslant a_{1}$ by the choice of b.
Therefore $b-a_{2} \leqslant a_{1} \wedge b=b_{1}$, and
therefore $b-b_{1} \leqslant a_{i}$.
i.e. $\quad b_{2} \leqslant a_{2}$.

It follows immediately from the definitions of b_{1} and b_{2} that

$$
\begin{aligned}
0 & \leqslant b_{1} \leqslant a_{1} \\
b_{1}+b_{2} & \leqslant a_{1}+a_{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\varphi^{(+)}\left(a_{1}+a_{2}\right) & =\sup \left\{\varphi\left(b_{1}+b_{2}\right): 0 \leqslant b_{1} \leqslant a_{1}, 0 \leqslant b_{2} \leqslant a_{2}\right\} \\
& =\varphi^{(+)}\left(a_{1}\right)+\varphi^{(+)}\left(a_{2}\right) .
\end{aligned}
$$

i.e. $\varphi^{(+)}$is additive on ∇^{+}, and hence linear on ∇.

Let $\omega_{1}, \omega_{2} \in\left(V^{*}\right)+$.
Define $\omega_{1} v \omega_{2}=\left(\omega_{1}-\omega_{2}\right)^{(+)}+\omega_{2}$.
For any $a \in V$ such that $a \geqslant 0$, and any $\varepsilon>0$ there exists $b \in V$ such that $0 \leqslant b \leqslant a$ and

$$
\left(\omega_{1}-\omega_{2}\right)^{(+)}(a) \leqslant \omega_{1}(b)-\omega_{2}(b)+\varepsilon
$$

Therefore $\omega_{1} v \omega_{2} \leqslant \omega, \forall \omega \geqslant \omega_{1}, \omega_{2}$.
I.e. $\omega_{1} v \omega_{2}$ is the least upper bound of ω_{1} and ω_{2} in ∇^{*}. Similarly, the greatest lower bound of ω_{1} and ω_{2} exists and is given by

$$
\omega_{1} \wedge \omega_{2}=\omega_{1}-\left(\omega_{1}-\omega_{2}\right)^{(+)}
$$

So ∇^{*} is ai lattice.

1.3 Lemma (Kadison[5] lemma 2)

If H is a Hilbert space and eff bounded projections from H onto the manifolds M and N respectively, then e $\wedge f$, the projection onto $M \cap N$ is the greatest lower bound of e and f with respect to all
positive bounded operators on H.

Proof

Let $0 \leqslant a \leqslant e, f$ be a linear operator on H.
We shall show that $a \leqslant e \wedge f:$
For $\left.\left.\left.\left.\xi \in M^{\perp}, \quad 0=(e\},\right\}\right) \geqslant(a\},\right\}\right) \geqslant 0$.
Therefore $\left.a^{\frac{1}{2}}\right\}=0$.
Therefore a $\}=0$.
I.e. a annihilates $M+$

For all $\left.\left.\eta \in H, \quad\} \in M^{\perp}, \quad(a \eta\},\right)=(\eta, a\}\right)=0$.
Therefore an $\in M^{\perp \perp}=M$.
Therefore $\mathrm{aH} \subset \mathrm{M}$.
Similarly, aHCN.
Any $\{\in H$ can be expressed uniquely as $\}+\eta$ with $\} \in M \cap N$ and $\eta \in(M \cap N) \frac{1}{-}$

$$
\begin{aligned}
(e \wedge f h, \zeta) & =(\xi, \xi) \\
& =(e\},\}) \\
& \geqslant(a\},\}) \\
& =(a\}, \zeta)
\end{aligned}
$$

I.e. $a \leqslant e \wedge f$ as required.
1.4 Lemma (Kadison [5] theorem 1)

Let eff be projections and S a real linear space of self-adjoint operators such that :
i) e, f,e^f, ivf $f(S$
ii) e and f have an infimum in S (in the order defined by the positive cone of S)

Then e and f commute.

Proof

$e \wedge f \leqslant e, f$, but by $1.3, e \wedge f \geqslant \inf (e, f)$
So $e \wedge f=\inf (e, f)$.
Set $e^{\prime}=e-\inf (e, f)$ and

$$
f^{\prime}=f-\inf (e, f) .
$$

Then

$$
\begin{aligned}
\left(e^{\prime}\right)^{2} & =(e-e \wedge f)^{2} \\
& =e^{2}-e(e \wedge f)-(e \wedge f) e+(e \wedge f)^{2} \\
& =e-(e \wedge f)-(e \wedge f)+(e \wedge f) \\
& =e^{\prime} .
\end{aligned}
$$

I.e. e is a projection.

Similarly, f' is a projection.
$e \vee f-f^{\prime} \geqslant \operatorname{evf}-f \geqslant 0$.
So $e^{\prime-(e v f-f)}$) e^{\prime}
and $e^{\prime}-e \vee f \quad \leqslant \quad e^{-}-\mathbf{e V f} \leqslant 0$.
So $e^{\prime}-\left(e \vee f-f^{\prime}\right) \leqslant f^{\prime}$
Therefore $e^{\prime}-\left(e \vee f-f^{r}\right) \leqslant \inf \left(e^{\prime}, f^{\prime}\right)=0$
So $e^{\prime} \leqslant e v f-f($
and $f^{\prime} e^{\prime} f^{\prime} \leqslant f^{\prime}\left(e v f-f^{\prime}\right) f^{\prime}$
$=f^{\prime}-f^{\prime}=0$.
But $f^{\prime} e^{\prime} f^{\prime}=\left(e^{\prime} f^{\prime}\right) *\left(e^{\prime} f^{\prime}\right)$

Therefore e'f' $=0$.

$$
\begin{aligned}
e f & =\left(e \wedge f+e^{\prime}\right)\left(e \wedge f+f^{\prime}\right) \\
& =(e \wedge f)^{2}+(e \wedge f) f^{\prime}+e^{\prime}(e \wedge f)+e^{\prime} f^{\prime}
\end{aligned}
$$

But it follows immediately from the definitions of e^{\prime} and f^{\prime} that $(e \wedge f) f^{\prime}=e^{\prime}(e \wedge f)=0$.
herefore $\quad e f=(e \wedge f)^{2}+e^{\prime} f^{\prime}$ $=e n f$.

Similarly $\mathrm{fe}=\mathrm{e} \boldsymbol{\wedge} \mathbf{f}$
I.e. e commutes with f.

1.5 Theorem

Let J be a JC algebra.
If J is a lattice in the operator order, then $J_{\lambda}^{\text {is }}$ commutative. Proof
J is a lattice, so by $1.2 \mathrm{~J}^{*}$ and $\mathrm{J}^{* *}$ are also.
J** is a JW algebra (.Effros and Størmer [2]) and so contains the projection lattice meet (and hence join') of all pairs of projections. Therefore any pair of projections in $\mathbb{J}^{* *}$ commutes (§1.4)

Therefore any pair of operators in $J^{* *}$ commute (Finite linear combinations of projections are uniformly dence in $J^{* *}$.)

Therefore J, which is isomorphic to ai subalgebra of $J^{* *}$ is commurative.

The techniques of this theorem are those used by Green [3] in his result for the dual of C^{*} algebras.

2.1 Theorem

Let M be a σ-finite von Neumann algebra (i.e. let every family of non-zero orthogonal projections be at most countable.), acting in its standard representation on a Hilbert space H, and let $\rho, 6 \in\left(M_{*}\right)^{+}$. Also let $\}_{,} \eta \in H$ be such that $\rho=\omega_{\}}$and $\sigma=\omega_{\eta}$ (for a proof that this is always possible, see e.g. Bratelli and Robinson [1] 2.5.31).

The following are then equivalent :
i) $\operatorname{Inf}(\rho, \sigma)=0$ in $\left(M_{*}\right)^{+}$
ii) There exists a projection e in the centre of M such that

$$
\rho(e)=1, \quad \epsilon(e)=0
$$

iii) $\left.\left(a b^{i} \eta,\right\}\right)=0$ for $a l l$ ai $\in M, b^{\prime} \in M^{\prime} \quad($ the commutant of M in this representation.

Corollary

For $\sigma-f i n i t e$ algebras M, M_{*} is an antilattice iff M is a factor. (for proof of 'only if', see Green [3]).

Note Attempts to prove the analogous result for JW algebras ran into difficulties due to the need for the Double Commutant Theorem in iii) $\Rightarrow i i)$.

Proof of Theorem

$$
i i i) \Rightarrow i i)
$$

Let p be the projection onto $\left.\left\{b^{\prime}\right\}: b^{\prime} \in M^{\prime}\right\}$

$$
\text { clearly } p\}=\}
$$

For any projection $q \in M^{\prime}$

$$
\left.\left.\left.q\left(b^{\prime}\right\}\right)=\left(q b^{\prime}\right)\right\} \in p H=M^{\prime}\right\} \text { since } q b^{\prime} \in M^{\prime} .
$$

Taking limits :

$$
\left.\left.q \lambda \in\left[M^{\prime}\right\}\right] \quad \text { whenever } \lambda \in\left[M^{\prime}\right\}\right]
$$

Therefore qpH CpH .

$$
\begin{aligned}
\mathrm{qp}\} \in \mathrm{pH} & \Rightarrow \mathrm{pqp}\}=\mathrm{qp}\} \\
& \Rightarrow \mathrm{qp}=\mathrm{pqp}
\end{aligned}
$$

$$
\begin{aligned}
\text { Therefore } \mathrm{pq} & =(\mathrm{pqp})^{*} \\
& =\mathrm{pqp} \\
& =\mathrm{qp}
\end{aligned}
$$

I.e: p commutes with every projection in M'.

$$
\text { I.e. } p \in\left(M^{\prime}\right)^{\prime}=M
$$

Let e be the centralsupport of p in M.
Then e is the projection onto $\{a p\}: a \in M, \zeta \in H\}$ and $e\}=\}$.

$$
\begin{aligned}
& \left.\left(a b^{\prime} \eta,\right\}\right)=0 \text { for all } a \in M, b \in M^{\prime} \\
\Rightarrow & (a p \zeta, \eta)=0 \text { for all } a \in M, \quad \zeta \in H \\
\Rightarrow & (e \zeta, \eta)=0 \text { for all } \zeta \in H \\
\Rightarrow & e \eta=0 .
\end{aligned}
$$

So $\rho(e)=(\}, e\})=(\}\},)=1$,

$$
\sigma(e)=(\eta, e \eta)=(\eta, 0)=0
$$

i) \Rightarrow iii)

Suppose $\inf (\rho, \sigma)=0$ and there exists aG, b' $\in M^{\prime}$ such that
$\left(a b^{\prime} \eta, \xi\right) \neq 0$.
M is spanned by its positive elements, so we may assume that a and b ' are positive.

There exists $\theta \in\left[0,2 \pi\left[\right.\right.$ such that $\left(a b^{\prime} \eta, e^{i \theta}\right\}$) < 0 .
$\rho=\omega_{e^{i \theta} \theta_{\xi}}$, so we may replace $\}$ by $\left.e^{i \theta}\right\}$
Thus we can assume $\left(a b^{\prime} \eta, \xi\right)<0$.
For all $\alpha \in \mathbb{R}$, define the functional on M :

$$
\left.\left.\left.\left.\psi_{\alpha}(x)=\alpha^{2}\left(x^{\prime}\right\}, b^{\prime}\right\}\right)+\alpha^{2}\left(x^{\prime} \eta, b^{\prime} \eta\right)+\alpha(x\}, b^{\prime} \eta\right)+\alpha\left(x b^{\prime} \eta,\right\}\right)
$$

Then $\psi_{\alpha} \in\left(M_{*}\right)_{h}$ (ψ_{α} is defined by a finite sum of innerproducts and so is ultraweakly continuous.)

Let $\mathrm{X} \in \mathrm{M}^{+}$.

We then have :

$$
\left.\left.\left.\left.f(x)+\psi_{\alpha}(x)=\left(x(\}+\alpha b^{\prime} \eta\right),\right\}+\alpha b^{\prime} \eta\right)+\alpha^{2}\left(x b^{\prime}\right\}, b^{\prime}\right\}\right) \geqslant 0
$$

Since $b^{\prime} \in M^{\prime}, a, b^{\prime}>0$ we have :

$$
\begin{aligned}
\left(x b^{\prime} \xi, \eta\right) & \left.=(x\}, b^{\prime} \eta\right) \\
\text { and } \quad\left(x \eta, b^{\prime} \xi\right) & =\left(x b^{\prime} \eta, \eta\right)
\end{aligned}
$$

and so we have :

$$
\begin{aligned}
& \sigma(x)+\psi_{\alpha}(x)= \\
& \text { So }-\psi_{\alpha} \leqslant p, \quad-\psi_{\alpha} \leqslant \sigma
\end{aligned}
$$

Therefore $-\psi_{\alpha} \leqslant \inf (\rho, \sigma)=0$
I.e. $\psi_{\alpha} \geqslant 0$

Therefore $\psi_{\alpha}(a) \geqslant 0 \quad$ as a is positive.
But $\left.\left.\left.\Psi_{\alpha}(a)=\alpha^{2}\left(a b^{\prime}\right\}, b^{\prime}\right\}\right)+\alpha^{2}\left(a b^{\prime} \eta, b^{\prime} \eta\right)+2 \alpha\left(a b^{\prime} \eta,\right\}\right)$ $\langle 0$ for small $\alpha>0$, which is a contradiction.

Hence $\left.\left(a b^{\prime} \eta,\right\}\right)=0 \quad$ for all $a \in M, \quad b^{\prime} \in M^{\prime}$
ii) \Rightarrow i)

Let $\psi \in\left(M_{*}\right)_{h}, \quad \psi \leqslant \rho, \sigma$
Since e is in the centre of M, if $a \subset M^{+}$we have :

$$
\begin{gathered}
e a \geqslant 0, \quad(1-e) a \geqslant 0 \\
\left.\left.\left.\left.\left(e a=e^{2} a=\text { eae. Therefore }(\text { eae }\},\right\}\right)=(a e\}, e\right\}\right) \geqslant 0\right)
\end{gathered}
$$

Therefore

$$
\psi(e a) \leqslant \sigma(e a)=0
$$

and

$$
\psi((1-e) a) \leqslant \rho((1-e) a)=0
$$

Thus

$$
\psi(a)=\psi(e a)+\psi((1-e) a) \leqslant 0
$$

$a \in M^{+}$
Hence $\inf (\rho, \sigma)=0$

S3-A JW Algebra is an Antilattice Af it is a Factor

3.1

Topping has shown ([9]proposition 22) that if a JW algebra forms an antilattice in the usual ordering then it is a factor. The purpose of this section is to show that the converse is also true. Lemma 3.2 is based on ideas of Green [3].

3.2. Lemma

Let J be a JW algebra and $a, b \in J$.
Then $\inf (a, b)=0 \Rightarrow\{a x b\}=0 \quad$ for $a: l x \in J$

Proof
We may assume that $\|a\|,\|b\| \leqslant 1$.

For $\alpha \in \mathbb{R}$ let :

$$
x_{\alpha}=\alpha^{2} a x^{2} a+\alpha^{2} b x^{2} b+\alpha(a x b+b x a)
$$

Then

$$
\begin{aligned}
& x_{\alpha}+b^{2}=(\alpha a x+b)(\alpha x a+b)+\alpha^{2} b x^{2} b \geqslant 0 \\
& x_{\alpha}+a^{2}=(\alpha b x+a)(\alpha x b+a)+\alpha^{2} a x^{2} a \geqslant 0
\end{aligned}
$$

So $-x \ll a^{2} \leqslant a, ~$ since $\|a\|,\|b\| \leqslant 1$
So $-x^{x} \leqslant \inf (a, b)=0$
I.e. $\quad x_{\alpha} \geqslant 0$

But if $\{a x b\} \neq 0$ there exists $\} \in H$ such that $(\{a x b\}\}\},) \neq 0$
and $\left.\left.\left.\left.\left.\left.\left(x_{\alpha}\right\},\right\}\right)=\alpha^{2}(\| x a\}\left\|^{2}+\right\| x b\right\} \|^{2}\right)+2 \alpha(\{a x b\}\},\right\}\right)$
<0 for some small $\alpha<R$

Therefore $\{a x b\}=0$

3.3 Corollary

If A andB are the respective range projections of a and b then

$$
\operatorname{Inf}(a, b)=0 \Rightarrow\{A J B\}=0
$$

Proof

Assume as before that $a, b \leqslant 1$
Then $0 \leqslant a^{n} \leqslant a$ and $0 \leqslant b^{m} \leqslant b$
and $0 \leqslant \inf \left(a^{n}, b^{m}\right) \leqslant \inf (a, b)$ for all $m, n \in \mathbb{N}$
I.e. $\quad \inf \left(a^{n}, b^{m}\right)=0$

So by $\S 3.2,\left\{a^{n} x b^{m}\right\}=0 \quad$ for all $x \in J$
Therefore $\{p(a) \times q(b)\}=0 \quad$ for all polynomials p, q with zero constant term.

But A is the strong limit of a sequence of such polynomials (see e.g. Topping [8] lemma 2), and similarly sois B

Therefore $\{A \in B\}=0 \quad$ for all $x \in J$
Therefore $\{A J B\}=0$.
3.4 Lemma (Topping[9], corollary 18)

If e and f are any two projections in a JW algebra J they can be written as orthogonal sums :

$$
e=e_{1}+e_{2} \quad \mathbf{f}=f_{1}+f_{2}
$$

where e_{1} and f_{1} are exchanged by a symmetry in J and $C\left(e_{2}\right) \perp C\left(f_{2}\right)$
3.5 Lemma (Topping [9] lemma 24)

Let eff be non-zero projections in a JW algebra J.
Then $\{e J f\}=0 \Rightarrow C(e) \perp C(f)$.

Proof

```
            eon \(=e 1 f+f 1 e \in\{e J f\}=\{0\}\).
Therefore \(2 e f e=e o(e o f)+(e o f) 0 \theta-2 e o f=0\).
```

I.e. (ef)(ef)* $=0$.

Therefore

$$
e f=0
$$

Therefore eff $=e J f^{2}+f J(e f)$

$$
\begin{aligned}
& =\{e J f\} f \\
& =0
\end{aligned}
$$

Suppose $c(e) \not \subset C(f)$.
Then, in the notation of $\oint 3.4$ either $e \neq e_{2}$ or $f \neq f_{2}$: say the former, in which case $e_{1} \neq 0$ and so $f_{1} \neq 0$.

Let s be the symmetry exchanging e_{1} and f_{1}.
Now . $f_{1}=f_{1}^{2}$

$$
\begin{aligned}
& =s e_{1} s f_{1} \\
& =s e_{1}(e s f) f_{1}
\end{aligned}
$$

$$
=0, \quad \text { which is a contradiction }
$$

So $C(e) \perp C(f)$

3.6 Theorem

Any JW factor is an antilattice.

Proof

If J is not an antilatice, then there exist $0<a, b \leqslant 1$ such that $\operatorname{Inf}(a, b)=0$.

By $\S 3.3$, (and using the notation of $\oint 3.3$) $\{\mathrm{AJB}\}=0$
Therefore by $\{3.5, C(A) \perp C(B)$.
Since $C(A) \neq 0 \neq C(B)$ we have $0 \neq C(A) \neq 1$
I.e. J has a non-trivial centre and so is not a factor.

Theorem

For any: JC algebra J, if :

$$
0 \leqslant x \leqslant y \Rightarrow x^{2} \leqslant y^{2} \quad \text { for all } x, y \in J
$$

then J is commutative.
Proof
Take $x, y \in J^{+}$and $\varepsilon>0$
Then $x \leqslant x+\varepsilon y \quad$ whence

$$
\begin{aligned}
x^{2} & \leqslant(x+\varepsilon y)^{2} \\
& =x^{2}+2 \varepsilon x 0 y+\varepsilon^{2} y^{2}
\end{aligned}
$$

which gives $\quad 0 \leqslant x y+y x+\varepsilon^{2} y^{2} \quad$ for all $\varepsilon>0$
i.e.
$0 \leqslant x y+y x$
Set

$$
x y=a+i b
$$

where

$$
a=\frac{1}{2}(x y+y x) \in J \quad(\text { clearly } a \geqslant 0)
$$

and

$$
b=\frac{1}{2} i(x y-y x) \in C^{*}(J)
$$

The positive elements of J are positive in $C^{*}(J)$, so the ordering of C* (J) extends that of J.

Also if $c, d \in J$ then $c \leqslant d$ in $C^{*}(J)$ iff $c \leqslant d$ in J
i.e. for such c, d, sis unambiguous.
xyx and y are positive
and $\quad(x y x) y=(x y)^{2}$ $=a^{2}-b^{2}+i(a b+b a)$

Therefore $a^{2}-b^{2} \geqslant 0$ by (*) with x replaced by xyx.

The set E of numbers $\alpha \geqslant 1$ such that $\alpha b^{2} \leqslant a^{2}$ for all $x, y \in J^{+}$with $x y=a+i b\left(a \in J^{+}, b \in C^{*}(J)\right)$ is therefore nonempty.
E is also closed, so if it were bounded, it would have a largest
element, say λ
Thus if $x, y \in J^{+}$and $x y=a+i b$, then $a^{2}-\lambda b^{2} \geqslant 0$, and therefore by (*):

$$
\begin{aligned}
0 & \leqslant b^{2}\left(a^{2}-\lambda b^{2}\right)+\left(a^{2}-\lambda b^{2}\right) b^{2} \\
& =\left(b^{2} a^{2}+a^{2} b^{2}\right)-\left(2 \lambda b^{4}\right)
\end{aligned}
$$

From (**) we have :

$$
\lambda(a b+b a)^{2} \leqslant\left(a^{2}-b^{2}\right)^{2}
$$

That is,

$$
\lambda\left(a b^{2} a+b a^{2} b+a(b a b)+(b a b) a\right) \leqslant a^{4}+b^{4}-a^{2} b^{2}-b^{2} a^{2}(t)
$$

On LHS, $a(b a b)+(b a b) a \geqslant 0 \quad\left(\operatorname{in} C^{*}(J)\right)$ by (*)
By assumption, $\quad a^{2} \geqslant \lambda \cdot b^{2}$, so $\quad b a^{2} b \geqslant \lambda b^{4}$
And finally, $\quad a b^{2} a \geqslant 0$ in J
Using this, and inserting (***) on RHS of (\dagger)

$$
\lambda^{2} b^{4} \leqslant a^{4}+(1-2 \lambda) b^{4}
$$

That is

$$
\left(\lambda^{2}+2 \lambda-1\right) b^{4} \leqslant a^{4}
$$

By Pedersen [12] chapter 1.3 .8 we have

$$
\left(\lambda^{2}+2 \lambda-1\right)^{\frac{1}{2}} b^{2} \leqslant a^{2} \quad \text { contradicting the maximality of } \lambda,
$$

since $\lambda \geqslant 1$.
Therefore E is unbounded,
therefore $\mu b^{2} \leqslant a^{2} \quad$ for all $\forall \mu>0$

Therefore

$$
\mathrm{b}=0
$$

So

$$
\begin{aligned}
x y & =a \\
& =\frac{1}{2}(x y+y x)
\end{aligned}
$$

therefore $x y=y x$.
\square
This result also follows from the work of Topping $[17]$, which contains simplifications of Kadison's work quoted in this chapter.

§ 1 Types of JW Algebras

The purpose of this section is to bring together definitions and structure results that will be used in the rest of the chapter. All of it, except the classification of type I JW algebras which can be found in [10] chapter 5.3 can be found in Topping [3].

Definition

A lattice L is called modular if

$$
(e \cup f) \cap g=e \cup(f \cap g) \text { whenever } e \leqslant f(\forall e, f, g \in L)
$$

A projection e in a $J W$ algebra J is modular if the projection lattice of eJe is modular.

Theorem
For a JW algebra J the following are equivalent :
i) J is modular
iii) if $e, f \in J$ are projections such that $e \sim f$ and $e \leqslant f$, then $e=f$
iii) Every orthogonal family of equivalent projections in J is finite.

Theorem

If e and f are modular projections in a JW algebra J, then $e \cup f$ is modular.
corollary
Two equivalent modular projections in a JN algebra J can be exchanged by a symmetry in J.

Definitions

A projection e in a $J C$ algebra J is minimal if there exists no projection $f \in J$ such that $0<f<e$

A projection $e \in J$ is abelian if eJe is commutative.

All minimal projections are abelian, for if e is minimal and $f \in e J e$ is a projection, then $f \leqslant \theta$ and $s \sigma f=0$ or e, in which case $e J e=\mathbb{R e}$ which is commutative.

If J is a factor, all abelian projections are also minimal.

A JW algebra J is :
type I if J contains a faithful abelian projection;
continuous if J contains no abelian projection;
type II if J is continuous and contains a faithful modular projection (i.e. is locally modular);
type III or purely non-modular if J contains no non-zero, modular projection.

A JW algebra J is properly non-modular if J contains no central modular projection.

Theorem

Any JW algebra decomposes uniquely into five summands as follows:
i) type I modular
ii) type I properly non-modular, locally modular
iii) type $I I$ modular (i.e. type $I I_{1}$)
iv) type $I I$ properly non-modular, locally modular (i.e. type $I I_{\infty}$)
v) type III

A JW factor has one and only one of these types.

Definition

A JW algebra J is homogeneous if there exists an orthogonal family (e $e_{\alpha} b_{\alpha \in A}$ of abelian projections such that $c\left(e_{\alpha}\right)=1=\sum_{\alpha \in A} e_{\alpha}$ If card $(\mathbb{A})=n(n$ finite or infinite $)$ we say that J has type I_{n}

Theorem

Each JW algebra J of type I has a uqique decomposition :

$$
J=J_{1} \oplus J_{2} \oplus \cdots \oplus J_{\infty}
$$

where each J_{n} is either zero or a: $J W$ algebra of type I_{n}.

Definition

Let J_{*} be the set of all real valued ultraweakly continuous linear functionals on J. Schultz has shown ([14] Thm. 2.3) that $\left(J_{*}\right)^{*}$, the Banach space dual of J_{*} is $J . J_{*}$ can therefore be called the predual of J.

THE DEPENDENCE OF RESULTS AND THE USE OF MODULARITY IN 62

USING MODULARITY
NOT USING MODULARITY

2.1 Definition

A centre-valued trace on a $J W$ algebra J is a map T from J to its centre Z satisfying :
i) it is linear
ii) $T(z a)=z T(a)$ for all $a \in J, z \in Z$
iii) $T(a) \geqslant 0$ if $a \geqslant 0, a \in J$
iv) $T(s a s)=T(a)$ for $a \in \mathcal{J}$, s a symmetry in J
v) $T(z)=z \quad$ for all $z \in Z$

Ti is faithful if $a \geqslant 0, T(a)=0$ implies $a=0$.
T is normal if for every bounded increasing family $I \subset J^{+}$

$$
\sup T(I)=T(\sup I)
$$

Topping ([9]cor 28) gives a proofithat a JW algebra has at most one centre-valued trace. An alternative proof of this is given in $\oint\}$ of this chapter.

2.2.Definitions

Two projections e,f in a JC algebra J are said to be perspective if they possess a common complement, i.e. there exists a projection $\mathrm{g} \in \mathrm{J}$ such that :

$$
e g=0=f g \quad e \cup g=1=f \cup g
$$

Projections e,f in a JC algebra J are said to be equivalent if there exist symmetries $s_{1}, \ldots, s_{n} \in J$ such that

$$
e=s_{1} \ldots s_{n} f_{n} \ldots s_{1}
$$

e and f bear the relation $e \leqslant f$ if there exists $f_{1} \leqslant f$ such that e is equivalent to f_{1} (written e $\sim f_{1}$). If e $\langle f$ but e $\not \subset f$, we write $e<f$. Equivalently, e $\leqslant f$ if there exists $\left.e_{1}\right\rangle_{g}$ e such that $e_{1} \sim f$

Proof

If eruf $\mathrm{F}_{\mathrm{f}} \mathrm{f}$ let

$$
\begin{aligned}
& e=s_{1} \ldots s_{n} f_{1} s_{n} \ldots s_{1} \quad \text { then } \\
& e \leqslant e_{1}=s_{1} \ldots s_{n} f s_{n} \ldots s_{1} \sim f
\end{aligned}
$$

Conversely, if $e \leqslant e_{1} \sim f$ let

$$
\begin{aligned}
& r_{1} \ldots r_{m} e_{1} r_{m} \ldots r_{1}=f \text { then } \\
& r_{1} \ldots r_{m}^{e r_{m}} \ldots r_{1}=f-r_{1} \ldots r_{m}\left(e_{1}-\theta\right) r_{m} \ldots r_{1} \text {, which is a }
\end{aligned}
$$

projection ands \mathbf{f}.

An algebraic property of modular JW ailgebras is given by Topping ([9] corollary 12)

Theorem

Let J be a modular JW algebra.
Then enf iff e and f are perspective in J,
Both \sim and perspectivity are completely additive in J

2.3

If Cis a faithful, normal centre-valued trace on a JW algebra J then for projections e,f $\in J$ and any symmetry $s \in J$
i) $\tau(e)=0 \Rightarrow e=0 \quad$ (faithfulness)
ii) $\tau($ ses $)=\tau(e)$
iii) $e \perp f \Rightarrow \tau(e \cup f)=\tau(e)+\tau(f)$ (trivial case of normality $)$
i.e. the centre-valued trace satisfies the conditions of

Topping ([9] corollary 9):

Corollary

Let J be a JW allgebra on whose projection lattice L a mapping $e \rightarrow d(e)$ is defined into some abelian group such that :
i) $d(e \cup f)=d(e)+d(f)$ if $e \perp f$
ii) $\mathrm{d}($ ses $)=\mathrm{d}(\mathrm{e})$
iii) $d(e)=0 \Rightarrow e=0 \quad$ Then L is modular
i.e. the existence of a faithful, normal centre-valued trace on a JW algebra implies that the algebra is modular. The rest of this section is devoted to the proof of the reverse implication: that a modular JW algebra possesses a faithful, normal centre-valued trace (not necessarily positive) and the following section to the proof that a modular JW algebra possesses at most one such trace, and that is positive. We then have :

Theorem

A JW algebra is modular iff it possesses a faithful, normal
centre-valued trace. If it possesses such a trace it is unique

This result is already known, but a new proof is given here along the lines devised by Yeadon [10]. While writing this proof the author made use of an unpublished set of notes of lectures on von Neumann algebras given by Professor Ringrose at Newcastle.

In all the results of this and the following section, J is a. JW algebra.

2.4 Lemma

Let J be modular and $\left(e_{k}\right)$ an increasing sequence of projections in J. If for all $k, e_{k} \lesssim f$ for some projection $f \in J$, then $\sup \left(e_{k}\right) \lesssim f$ Proof

The sequence $e_{1},\left(e_{2}-e_{1}\right),\left(e_{3}-e_{2}\right), \ldots$ is orthogonal and has supremum $e=\sup \left(e_{k}\right)$. If, therefore, we can construct a sequence $\left(f_{k}\right)$ of
of orthogonal subprojections of f such that :

$$
f_{1} \sim \Theta_{1} \quad \text { and } \quad f_{k} \sim \Theta_{k}-\theta_{k-1}
$$

then, by the complete additivity of equivalence on the projection lattice of a modular JWalgebra ($\$ 2.2$ above) ,

$$
e \sim \sum f_{k} \leqslant f
$$

(f_{n}) is constructed inductively :

Since $e_{1} \delta f$ there exists $f_{1} \leqslant f$ such that $e_{1} \sim f_{1}$
If f_{1}, \ldots, f_{r} are given, it is sufficient to construct f_{r+1} such that

$$
f-\left(f_{1}+\ldots+f_{r}\right) \geqslant f_{r+1} \sim e_{r+1}=e_{r}
$$

Since $e_{r+1}<f, \quad 1-e_{r+1} \geqslant 1-f \quad\left(\right.$ if $e_{r+1} \sim z \leqslant f$, then $\left.1-e_{r+1} \sim 1-z \geqslant 1-f\right)$ i.e. there exists g such that $1-f \sim g \leqslant \mathcal{S}^{-e}{ }_{r+1}$.
$\boldsymbol{E l}^{\mathbf{e}}{ }_{\mathbf{r}}$
$f_{1}+\ldots+f_{r} \sim e_{1}+\left(e_{2}-e_{1}\right)+\ldots+\left(e_{r}-e_{r-1}\right)=e_{r} b y$ additivity of \sim, and $g \sim 1-f$.
so

$$
\begin{aligned}
& 1-f+f_{1}+\ldots+f_{r} \sim g+e_{r} \\
& f-\left(f_{1}+\ldots+f_{r}\right) \sim 1-g-e_{r}
\end{aligned}
$$

and so

$$
\begin{aligned}
f-\left(f_{1}+\ldots+f_{r}\right) & \sim 1-g-e_{r} \\
& \geqslant 1-\left(1-e_{r+1}\right)-e_{r}=e_{r+1}-e_{r} .
\end{aligned}
$$

So by the remark following the definition of equivalence, there exists

$$
\begin{aligned}
& f_{r+1} \leqslant f-\left(f_{1}+\ldots+f_{r}\right) \text { such that } \\
& f_{r+1} \sim e_{r+1}-e_{r} \text { as required. }
\end{aligned}
$$

2.5 Definition

Let J be a JC algebra and J the group:

$$
\left\{s_{1} \ldots s_{n}: s_{i} \text { is a symmetry in } J, n \in \mathbb{N}\right\}
$$

Given $u \in \mathbb{U}$, define an isometric isomorphism :

$$
\begin{aligned}
& I_{u}: J_{*} \rightarrow J_{*} \text { by : } \\
& \left(L_{u} \omega\right)(a)=\omega\left(u^{\dot{*}} a u\right) \quad\left(\omega \in J_{*}, a \in A\right)
\end{aligned}
$$

where $\left(s_{1} \ldots s_{n}\right)^{*}=s_{n} \ldots s_{1}$

We denote by Q_{ω} the norm-closed convex hull of the set :

$$
K_{\omega}=\left\{I_{u} \omega: u \in U\right\}
$$

Lemma

If J is modular, (e_{n}) an orthogonal sequence of projections in J and $\omega \in J_{*}$, then $\tau\left(e_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, uniformly for all $\tau \in Q_{\omega}$

Proof

It suffices to show that $\tau\left(e_{n}\right) \rightarrow 0$ uniformly for $\tau \in K_{\omega}$
If not, there exists $\delta>0$, a subsequence $\left(f_{n}\right)$ of $\left(e_{n}\right)$ and a
sequence $\left(\tau_{n}\right)$ in K_{ω} such that:

$$
\left|\tau_{n}\left(f_{n}\right)\right| \geqslant \delta \quad \text { for each } n
$$

$\operatorname{Then} \tau_{n}()=.\omega\left(u_{n}^{*} \cdot u_{n}\right)$ for some $u_{n} \in U$.
If $g_{n}=u_{n}^{*} f_{n} u_{n}$, then $g_{n} \sim f_{n}$ and $\left|\omega\left(g_{n}\right)\right| \geqslant \delta$

Define: $\quad p_{m, n}=\sup \left(g_{m}, g_{m+1}, \ldots, g_{n}\right)$

$$
\begin{aligned}
p_{m} & =\sup \left\{g_{j}: j \geqslant m\right\} \\
& =\sup \left\{p_{m, n}: n \geqslant m\right\}
\end{aligned}
$$

$$
p=\inf \left\{p_{m}: m \geqslant 1\right\}
$$

Then $p_{n, n} \leqslant p_{n, n+1} \leqslant \cdots$
We claim $p_{m, n}<f_{m}+\ldots+f_{n} \quad(m \leqslant n)$
Since $p_{n, n}=g_{n} \sim f_{n}\left({ }^{*}\right)$ is true when $m=n$
If $n \geqslant m$ and (*) is known to be true for n then :

$$
p_{m, n} \swarrow f_{m}+f_{m+1}+\ldots+f_{n}
$$

and

$$
\begin{aligned}
g_{n+1} \vee p_{m, n}-p_{m, n} & =g_{n+1}-g_{n+1} \wedge p_{m, n} \\
& \leqslant g_{n+1} \\
& \sim f_{n+1}
\end{aligned}
$$

So (*) holds for $n+1$, and so for all $n \geqslant m$
Therefore $p_{m, n} \lesssim \sum_{j=m}^{\infty} f_{j}$.
By $\S 2.4 \quad p_{m} \lesssim \sum_{j=m}^{\infty} f_{j} \quad$ hence

$$
1-\sum_{j=m}^{\infty} f_{j}<1-p_{m} \leqslant 1-p
$$

Again by § 2.4,

$$
1=\sup \left\{1-\sum_{j=m}^{\infty} f_{j}: n \in \mathbb{N}\right\} \leq 1-p
$$

Since J is modular, $p=0$ (Topping [g] prop 14), and so since $p=\Lambda p_{n}$ and $p_{1} \geqslant p_{2} \geqslant \ldots$ we have :

$$
\left.\left.\left.0 \leqslant\left(g_{n}\right\}, \xi\right) \leqslant\left(p_{n}\right\}, \xi\right) \leqslant \| p_{n}\right\}\|\|\xi\| \rightarrow 0 \text { for all } \xi \in H
$$

Hence $g_{n} \rightarrow 0$ ultraweakly, and so $\lim \omega\left(g_{n}\right)=0$. I.e. $\tau_{n}\left(f_{n}\right) \rightarrow 0$, contradicting the choice of $\left(\tau_{n}\right)$ and $\left(f_{n}\right)$.
So $\left(e_{n}\right) \rightarrow 0$ uniformly for $\tau \leftrightarrow K_{\omega}$ as required.

2.6 Lemma

Suppose $\omega \in \omega^{*}$ and $\eta \in \mathbb{R}$. Then :
i) If $\omega(a)>\eta$ for some positive $a \in J_{1}$, then $\omega(e)>\eta$ for some projection $\boldsymbol{e} \in \mathrm{J}$
ii) If $|\omega(f)| \leqslant \eta$ for every projection $f \in J$, then $\|\omega\| \leqslant 2 \eta$ iii) If $\omega(f) \geqslant 0$ for every projection $f \in J$, then $\omega \in J^{*}$.

Proof of Lemma 2.6

i) By the spectral theorem, there exists an orthogonal family of projections $e_{1}, \ldots, e_{n} \in J$ and $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ such that

$$
\left\|a-\sum_{1}^{n} \lambda_{j} e_{j}\right\| \leqslant\|\omega\|^{-1}(\omega(a)-\eta)
$$

Hence $\omega(a)-\sum \lambda_{j} \omega\left(e_{j}\right)<\omega(a)-\eta$
and

$$
\sum \lambda_{j} \omega\left(e_{j}\right)>\eta
$$

We can assume that

$$
\begin{array}{ll}
\omega\left(e_{j}\right)>0 & (1 \leqslant j \leqslant m) \\
\omega\left(e_{j}\right) \leqslant 0 & (m<j \leqslant n)
\end{array}
$$

Let $e=e_{1}+\ldots+e_{\text {m }}$

$$
\begin{aligned}
\omega(e) & =\sum_{j=1}^{m} \omega\left(e_{j}\right) \\
& \geqslant \sum_{j=1}^{m} \lambda_{j} \omega\left(e_{j}\right) \\
& \geqslant \sum_{j=1}^{n} \lambda_{j} \omega\left(e_{j}\right) \\
& >\eta
\end{aligned}
$$

ii) If $|\omega(a)|\rangle \eta$ for some $a \in J_{1}^{+}$, then :
either

$$
-\omega(a)>\eta
$$

or
$\omega(\mathrm{a})>\eta$
Therefore by i) there exists a projection f such that :

$$
\text { either } \quad-\omega(f)>\eta
$$

or $\omega(f)>\eta$
i.e. $|\omega(f)|\rangle \eta$, contradicting hypothesis

Therefore $|\omega(a)| \leqslant \eta$ for all $a \in J_{1}^{+}$.
Each $b \in J_{1}$ can be expressed in the form :

$$
\mathrm{b}=\mathrm{b}_{1}-\mathrm{b}_{2}
$$

where $b_{1}, b_{2} \in J_{1}^{+}$
whence $|\omega(b)| \leqslant\left|\omega\left(b_{1}\right)\right|+\left|\omega\left(b_{2}\right)\right|$ $\leqslant 2 \eta$.
iii) By hypothesis, $-\omega(f) \leqslant 0$ for all projections $f \in J$ Therefore by i) $-\omega(a) \leqslant 0$ for all $a \in J_{1}^{+}$
ie. ω is positive.

2.7 Lemma

If $\omega \in J^{*}$ is completely additive, and $e \in J$ is a projection, then there exists a subprojection f of e in J such that

$$
\omega(f) \geqslant \omega(e)
$$

and the restriction $\omega \mid f J f$ is a positive linear functional on the JW algebra ff.

Proof

Let (e_{α}) be a maximal orthogonal family of projections in J such that $e_{\alpha \leqslant e}$ and $\omega\left(e_{\alpha}\right)<0$.

With $f=e-\sum_{\alpha} e_{\alpha}$, the maximality of $\left(e_{\alpha}\right)$ implies that $\omega(g) \geqslant 0$ for every projection $g \in J$ such that $g \leqslant f$, that is for every
projection $g \in f J f$.
Thus $\omega \mid f J f$ is positive.
By the complete additivity of ω :

$$
\begin{aligned}
\omega(f) & =\omega(e)-\omega\left(\sum e_{\alpha}\right) \\
& =\omega(e)-\sum \omega\left(e_{\alpha}\right) \\
& \geqslant \omega(e) \text { as } \omega\left(e_{\alpha}\right) \leqslant 0 \text { for all } \alpha
\end{aligned}
$$

\square

2.8Lemma:

Let $\omega \in \mathrm{J}^{*}+$ be completely additive, and ω^{\prime} an extension of ω to the enveloping vol Neumann algebra of J, with $\left\|\omega^{\prime}\right\|=\|\omega\|$

If $e \in J$ is a non-zero projection, then there exists a non-zero subprojection f of e in J and a vector ξ such that

$$
\left\|\omega^{\prime}(a) \leqslant\right\| a(\xi) \| \quad \text { for all } a \in J f
$$

Proof

Let η be a vector such that $\|e \eta\|^{2}>\omega(e)$
i.e. $\left(\omega_{\eta}-\omega\right)(e)=\|e \eta\|^{2}-\omega(e)>0$

By $\S 2.7$ there exists a subprojection f of e in J such that

$$
\left(\omega_{\eta}-\omega\right)(f) \geqslant\left(\omega_{\eta}-\omega\right)(e)>0
$$

and $\left(\omega_{\eta}-\omega\right) \mid f J f$ is positive.
If $a \in J f$, then $a^{*} a \in f J f$
therefore $0 \leqslant\left(\omega_{\eta}-\omega\right)\left(a^{*} a\right)=\|a \eta\|^{2}-\omega\left(a^{*} a\right)$.
By the Cauchy - Schwartz inequality :

$$
\begin{aligned}
|\omega(a)|^{2} & \leqslant\left|\omega^{\prime}(I)\right| \omega\left(a^{*} a\right) \\
& \leqslant\left|\omega^{\prime}(I)\right|\|a\|^{2}
\end{aligned}
$$

So if $\xi=\sqrt{\left|\omega^{\prime}(I)\right|} \eta$
then $\left.\left|\omega^{\prime}(a)\right| \leqslant \| a\right\} \|$ as required

2.9 Lemma

Let $\omega \in J^{*}$ be positive.
If ω is completely additive, then ω is ultraweakly continuous.

Proof

Let $\left(f_{\alpha}\right)_{\alpha_{\in A}} \in J$ be a maximal orthogonal family of projections with the property :
(P) There exists $\}$ such that $\left.\left|\omega^{\prime}(a)\right| \leqslant \| a\right\} \propto \|$ whenever $a \in J f_{\alpha}$ (ω 'defined as in § 2.8)

If $\Sigma f_{j} \neq I$, it follows from $\oint 2.8$ that there exists a vector $\}$ and a projection $f \in J$ such that :

$$
0<f \leqslant I-\sum f_{j}
$$

and

$$
\left.\left|\omega^{\prime}(a)\right| \leqslant \| a\right\} \| \quad(\text { for } a \in J f), \text { contradicting }
$$

the maximality of (f_{α}).
Therefore $\sum f_{\alpha}=I$.

Take $\varepsilon>0$.
By the complete additivity of ω :

$$
\sum_{\alpha \in \mathbb{A}} \omega\left(f_{\alpha}\right)=\omega(I),
$$

so there exists a finite subset B of A (if A is finite take $B=A$)
such that :

$$
\omega\left(\sum_{\alpha \in \mathbb{A} \backslash B} f_{\alpha}\right)=\sum_{A \backslash B} \omega\left(f_{\alpha}\right)
$$

$\leqslant \varepsilon^{2}\|\omega\|^{-1}$

Let $e=\sum_{\alpha \in A \backslash B} f_{\alpha}$
Then $\omega(e) \leqslant \varepsilon^{2}\|\omega\|^{-1}$ and $e+\sum_{\alpha \in B} f_{\alpha}=I$
Thus $\omega^{\prime}=\omega_{1}^{\prime}+\omega_{2}^{\prime} \quad$ where

$$
\begin{gathered}
\omega_{1}^{\prime}(a)=\sum_{\alpha \in B} \omega^{\prime}\left(a f_{\alpha}\right) \quad a \in J \\
\omega_{2}^{\prime}(a)=\omega^{\prime}(a e) \\
\left.\left|\omega_{1}^{\prime}(a)\right| \leqslant \sum_{\alpha \in B} \| a f_{\alpha}\right\} \alpha \| \quad(a \in J), \text { so } \omega_{1}^{\prime} \text { is strongly continuous }
\end{gathered}
$$ on J .

I.e. $\omega_{1}^{\prime} \mid J \in J_{*}$

Also $\omega_{2}^{\prime}(a)^{2}=\omega^{\prime}(a e)^{2}$
$\leqslant \omega\left(a^{2}\right) \omega(e)$
$\leqslant\|\omega\|\|a\|^{2}\|\omega\|^{-1} \varepsilon^{2}$
$=\varepsilon^{2}\|a\|^{2}$
J_{*} is a Banach space embedded in its second dual J^{*}.
Therefore J_{*} is norm closed in J^{*} and so $\omega \in J_{*}$.

2.10 Lemma

Suppose x, y, z are real numbers such that $x, y, x y-z^{2} \geqslant 0$ and that $e, a \in B(H)$ are such that e is a projection and $\|a\| \leqslant 1$.
$T_{\text {hen }} x e+y(I-e)+z\left(e a(I-e)+(I-e) a^{*} e\right) \geqslant 0$
Proof

$$
\left.\left.x(e, p,\})+y((I-e)\},\})+z\left(\left(e a(I-e)+(I-e) a^{*} e\right)\right\},\right\}\right)=
$$

$$
\begin{aligned}
& \left.\left.\left.x \| e\}\left\|^{2}+y\right\|(I-e)\right\} \|^{2}+2 z \operatorname{Re}(e a(I-e)\},\right\}\right) \geqslant \\
& \left.\left.\left.x \| e\}\left\|^{2}+y\right\|(I-e)\right\}\left\|^{2}-2 \mid z\right\| \|(I-e)\right\}\|\| e\} \| \geqslant 0, \text { for all }\right\} \in H
\end{aligned}
$$

from which the result follows.

2.11 Theorem

$\omega \in J^{*}$ is ultraweakly continuous iff ω is completely additive.

Proof

If $\left(e_{\alpha}\right)_{\propto A}$ is an orthogonal family of projection (of norm $\leqslant 1$) and hence weak
then $e=\sum e_{\alpha}$ is the strong/limit of the net of finite subsums of (e_{α}) and $\|e\| \leqslant 1$. On the unit ball of J the weak and ultraweak topologies coincide, and so if $\boldsymbol{\omega}$ is ultra-weakly continuous it is weakly continuous there. Hence $\omega\left(e_{\alpha}\right)=\sum \omega\left(e_{\alpha}\right)$, from which it follows immediately that ω is completely additive on J.

The proof of the reverse implication is divided into two parts :

Paxt I

We can assume that $\|\omega\| \leqslant 1$
Let $\mu=\sup \{\omega(a): 0 \leqslant a \leqslant I\}$
So $0 \leqslant \mu \leqslant\|\omega\| \leqslant 1$
Given ε satisfying $0<\varepsilon<\frac{3}{4}$, there exists a positive element
e_{1} of the unit ball of J satisfying :

$$
\omega\left(e_{1}\right)>\mu-\varepsilon
$$

By $\oint 2.6(i)$ we can assume that e_{1} is a: projection.

By $\oint 2.7$ we may also assume that $\omega / e_{1} J e_{1}$ is a positive, linear functional on $e_{1} \mathrm{Je}_{1}$, and by $\oint 2.9$ we have that $\omega / e_{1} \mathrm{Je}_{1}$ is ultra-weakly continuous.

If we put $e_{2}=I-e_{1}$ we have :

$$
\begin{aligned}
\omega(a) & =\omega\left(\left\{e_{1} a e_{2}\right\}\right)+\omega\left(e_{1} a e_{1}\right)+\omega\left(e_{2} a e_{2}\right) \text { for all } a \in J \\
& =\omega_{12}(a)+\omega_{11}(a)+\omega_{22}(a), \text { say }
\end{aligned}
$$

By considering the maps :

$$
a \mapsto e_{1} a e_{1} \mapsto \omega\left(e_{1} a e_{1}\right)=\omega_{11}(a)
$$

it is clear from the fact that ω is ultraweakly continuous on $e_{1} \mathrm{Je}_{1}$ that ω_{11} is also ultraweakly continuous.

Any projection $f \in e_{2} \mathrm{Je}_{2}$ is orthogonal to $I-e_{2}=e_{1}$, so $e_{1}+f \leqslant I$ and hence:

$$
\begin{align*}
\mu & \geqslant \omega\left(e_{1}+f\right) \\
& =\omega\left(e_{1}\right)+\omega(f) \\
& >\mu-\varepsilon+\omega(f) \tag{*}
\end{align*}
$$

and so $\omega(f)<\varepsilon$ for all $f \in e_{2} \mathrm{Je}_{2}$

Suppose $t \in J_{1}$, the unit ball of J, and let

$$
s=(1-\varepsilon) e_{1}+\varepsilon e_{2}+\varepsilon^{\frac{1}{2}}(1-\varepsilon)^{\frac{1}{2}}\left\{e_{1} t e_{2}\right\}
$$

Then,

$$
1-s=\varepsilon e_{1}+(1-\varepsilon) e_{2}-\varepsilon^{\frac{1}{2}}(1-\varepsilon)^{\frac{1}{2}}\left\{e_{1} t e_{2}\right\}
$$

By $\oint 2.10, s \geqslant 0$ and $I-s \geqslant 0$
i.e. s is positive and belongs to J_{1}

Therefore $\mu \geqslant \omega(s)$, by the definition of μ

$$
\begin{aligned}
& =(1-\varepsilon) \omega\left(e_{1}\right)+\varepsilon \omega\left(e_{2}\right)+\varepsilon^{\frac{1}{2}}(1-\varepsilon)^{\frac{1}{2}} \omega\left(\left\{e_{1} t e_{2}\right\}\right) \\
& \geqslant(1-\varepsilon)(\mu-\varepsilon)-\varepsilon+\varepsilon^{\frac{1}{2}}(1-\varepsilon)^{\frac{1}{2}} \omega\left(\left\{e_{1} t e_{2}\right\}\right)
\end{aligned}
$$

Therefore $(\mu+2) \varepsilon^{\frac{1}{2}}(1-\varepsilon)^{-\frac{1}{2}} \geqslant \omega\left(\left\{e_{1} t e_{2}\right\}\right)$.
$\mu \leqslant 1$, and $(1-\varepsilon)^{-\frac{1}{2}} \leqslant 2$ (since $\varepsilon<\frac{3}{4}$)
therefore $\omega\left(\left\{e_{1} t e_{2}\right\}\right) \leqslant 6 \sqrt{ } \varepsilon$.
I.e. $\omega_{12}(t) \leqslant 6 \sqrt{ } \varepsilon$ for all $t \in J_{1}$
I.e. $\left\|\omega_{12}\right\| \leqslant 6 \sqrt{ } \varepsilon$ and so:

$$
\left\|\omega-\omega_{11}-\omega_{22}\right\|=\left\|\omega_{12}\right\| \leqslant 6 \sqrt{ } \varepsilon
$$

Part II

We next show that there exists $\omega_{0} \in J_{*}$ such that

$$
\left\|\omega_{0}+\omega_{22}\right\| \leqslant 2 \varepsilon+6 v E
$$

This completes the proof of the theorem : for then

$$
\begin{aligned}
\left\|\omega-\omega_{11}+\omega_{0}\right\| & \leqslant\left\|\omega-\omega_{11}-\omega_{22}\right\|+\left\|\omega_{0}+\omega_{22}\right\| \\
& \leqslant \quad 6 \sqrt{ } \varepsilon+2 \varepsilon+6 \sqrt{ } \varepsilon \\
& =\quad 2 \varepsilon+12 \sqrt{ } \varepsilon .
\end{aligned}
$$

Since this can be done for all ε, since $\omega_{0}-\omega_{11} \in J_{*}$, and since J_{*} is norm closed, it follows that $\omega \in J_{*}$ as required.

Let $v=-\omega / e_{2} \mathrm{Je}_{2}$.
Then U is a: completely additive linear functional on $e_{2} \mathrm{Je}_{2}$ and $\|v\| \leqslant 1$.

By (*) $\quad V(f)\rangle-\varepsilon$ for every projection $f<e_{2}{ }^{\mathrm{Je}}{ }_{2}$
Reasoning as in Part I, there exist projections $f_{1}, f_{2} \in e_{2} \mathrm{Je}_{2}$ with $f_{1}+f_{2}=\theta_{2}$, satisfying the following conditions:
i) v_{11} is ultraweakly continuous
$\left(\nu_{11}(a)=\nu\left(f_{1} a f_{1}\right)\right)$
ii) $\left\|\nu_{12}\right\| \leqslant 6 \sqrt{ } \varepsilon$
$\left(v_{12}=v\left(\left\{f_{1} a f_{2}\right\}\right)\right)$
iii) $U(f)<\varepsilon$ for every projection $f \in f_{2} \mathrm{Jf}_{2}$.

But we already have that $v(f)>-\varepsilon$
so $|V(f)|<\mathcal{E}$.
By $\oint 2.6$. $\left\|V \mid f_{2} J f_{2}\right\| \leqslant 2 \varepsilon$
so we have :

$$
\begin{aligned}
\left|\nu_{22}(a)\right| & =\left|\nu\left(f_{2} a f_{2}\right)\right| \quad \text { for all ai } \in f_{2} J f_{2} \\
& \leqslant 2 \varepsilon\left\|f_{2} a f_{2}\right\| \\
& \leqslant 2 \varepsilon\|a\|
\end{aligned}
$$

So $\quad\left\|v_{22}\right\| \leqslant 2 \varepsilon$

$$
\begin{aligned}
\left\|\nu-v_{11}\right\| & =\left\|v_{12}-v_{22}\right\| \\
& \leqslant 2 \varepsilon+6 \sqrt{ } \varepsilon
\end{aligned}
$$

Define $\omega_{0} \in J_{*}$ by :

$$
\begin{aligned}
\omega_{0}(a) & =\nu_{11}\left(e_{2} a e_{2}\right) \\
\left|\left(\omega_{0}+\omega_{22}\right)(a)\right| & =\left|\nu_{11}\left(e_{2} a e_{2}\right)+\omega\left(e_{2} a e_{2}\right)\right| \\
& =\left(\nu_{11}-\nu\right)\left(e_{2} a e_{2}\right) \\
& \leqslant\left\|\nu_{1}-v\right\| \| e_{2} a e_{2} \\
& \leqslant(2 \varepsilon+6 v \xi\|a\|
\end{aligned}
$$

So $\left\|\omega_{0}+\omega_{22}\right\| \leqslant 2 \varepsilon+6 V \varepsilon$ as required
2. 12 Lemma

If $K \subset J_{*}$ is bounded, and for any sequence (e_{n}) of orthogonal projections in $J, \omega\left(e_{n}\right) \rightarrow 0$ uniformly for $\omega \in K$,
then K is relatively compact in the topology $\sigma\left(J_{*}, J\right)$ of J_{*}.

Proof
Let K_{1} be the $\sigma\left(J^{*}, J\right)$ closure of K in J^{*}
Then K_{1} is $\sigma\left(J^{*}, J\right)$ compact in J^{*}, and the theorem follows if it is shown that $K_{1} \subset J_{*}$.

Let $\left(e_{j}\right)$ be a net of orthogonal projections in J and $e=\sum e_{j}$. \therefore For all $\omega \in J_{*}, \sum_{j=1}^{N} \omega\left(e_{j}\right) \rightarrow \omega(e)$

Therefore if the convergence is not uniform on K then there exists $6>0$, a sequence $\left(\omega_{n}\right) \in K$ and an increasing sequence $\left(N_{i}\right) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\sum_{j=1}^{N_{i}} \omega_{i}\left(e_{j}\right)-\omega_{i}(e)\right|<\delta \quad \forall i \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \left|\sum_{j=1}^{N_{i}} \omega_{i+1}\left(e_{j}\right)-\omega_{i+1}(e)\right|>2 \delta \tag{2}\\
& \left|\sum_{j=1}^{N+1} \omega_{i+1}\left(e_{j j}\right)-\omega_{i+1}(e)\right|<\delta \tag{3}
\end{align*}
$$

(2) and (3) imply :

$$
\left|\sum_{j=1}^{N_{i}} \omega_{i+1}\left(e_{j}\right)-\omega_{i+1}(e)\right|-\left|\sum_{j=1}^{N+1} \omega_{i+1}^{N}\left(e_{j}\right)-\omega_{i+1}(e)\right|>\delta
$$

Therefore

$$
\left|\sum_{j=1}^{N_{i}} \omega_{i+1}\left(e_{j}\right)-\left(\sum_{j=1}^{N} \omega_{i+1}\left(e_{j}\right)-\omega_{i+1}(e)\right)-\omega_{i+1}(e)\right|>\delta
$$

i.e. $\quad\left|\sum_{j=\mathbb{N}_{i}+1}^{\mathbb{N}_{i+1}} \omega_{i+1}\left(e_{j}\right)\right|>\delta$

Let $f_{i}=\sum_{j=N_{i}}^{N_{i+1}} e_{j}$
Then $\omega\left(f_{i}\right) \nrightarrow 0$ uniformly on K, contradicting the hypothesis of
the lemma.
So: $\quad \sum_{j=1}^{N} \omega\left(\theta_{j}\right) \rightarrow \omega(e)$ uniformly on K.

Let $\sigma \in K_{1}$
Then there exists $\left(\omega_{\alpha}\right) \in K$ such that $\omega_{\alpha} \rightarrow \sigma$ in $\sigma\left(J^{*}, J\right)$

$$
\begin{aligned}
& \omega_{\alpha}\left(e_{j}\right) \rightarrow \sigma\left(e_{j}\right) \text { and } \omega_{\alpha}(e) \rightarrow \omega(e) \\
& \begin{aligned}
\sigma(e) & =\lim _{\alpha} \omega_{\alpha}(e) \\
& =\lim _{\alpha} \sum_{i} \omega_{\alpha}\left(f_{i}\right) \\
& =\sum_{i} \lim _{\alpha} \omega_{\alpha}\left(f_{i}\right) \\
& =\sum_{i} \sigma\left(e_{j}\right) .
\end{aligned}
\end{aligned}
$$

Thus σ is completely additive, and so by $\S 2.12 \sigma \in J_{*}$
Hence $K_{1} \subseteq J_{*}$ as required.

2.13 Lemma

Let J be modular.

If $\omega \in J_{*}$, then Q_{ω} is $\sigma\left(J_{*}, J\right)$-compact (see $\S 2.5$ for notation)
Proof
Since Q_{ω} is norm closed and convex, it is also closed in the weak topology $\sigma\left(J_{*}, J\right)$ on J_{*}.
Q_{ω} is $\sigma\left(J_{*}, J\right)$-compact in J_{*} by $\S 2.5$ and 2.12.
2.14

The following is the Ryll-Nardzewski fixed point theorem, a short proof of which is given by Namioka and Asplund [6].

Theorem

If Q is a non-empty weakly compact convex subset of a Banach space X : and U is a semi-group of weakly continuous affine maps, $X \rightarrow X$, then there exists $x \in Q$ such that $u x=x$ for all $u \in U$.

2.15 Theorem

Let J be modular, and Z the centre of J.

Then each $\omega \in Z_{*}$ extends to an element $\tau \in J_{*}$ such that :
$\tau\left(u^{*} a u\right)=\tau(a)$ for $a: l l a \in J$, where u is any product of
symmetries in J.

Moreover, $\|\omega\|=\|\tau\|$

Proof
Z is ultra-weakly closed, closed under the Jordan product, and so
is a real von Neumann algebra.
Therefore $\omega \in Z_{*}$ can be expressed as a countable sum of vector states

$$
\omega=\sum_{i}^{\infty} \omega_{\}_{j} \eta_{j}} \mid z
$$

where $\sum_{j}\left\|\xi_{j}\right\|^{2} \leqslant\|\omega\|$ and $\sum_{j}\left\|\eta_{j}\right\|^{2} \leqslant\|\omega\|$
Let $\quad \rho=\sum_{i}^{\infty} \omega_{\xi_{j} \eta_{j}} \mid J$
Then $\rho \in J_{*}$ and $\rho \mid z=\omega$
$\|p\| \leqslant \sum\left\|\xi_{j}\right\|\left\|\eta_{j}\right\| \leqslant\|\omega\|$
$\left.\left.\left(\|\omega\| \geqslant \frac{1}{2} \sum(\|\rangle_{j}\left\|^{2}+\right\| \eta_{j} \|^{2}\right)\right\rangle \sum\left\|\xi_{j}\right\|\left\|\eta_{j}\right\|\right)$
For each product of symmetries, u

$$
\left\|L_{u} \rho\right\|=\|\rho\| \leqslant\|\omega\|
$$

and $\quad\left(L_{u} \rho\right)(z)=\rho\left(u^{*} z u\right)=\rho(z)=\dot{\omega}(z)$ for all $z \in Z$
Thus $\sigma \mid z=\omega$ (whence $\|\omega\| \leqslant\|\sigma\|$) for all $\sigma \in Q \rho$ so we have :

$$
\begin{equation*}
\|\sigma\|=\|\omega\| \text { and } \sigma(z=\omega \text { for all } \sigma \in Q \rho) \tag{*}
\end{equation*}
$$

The isometric linear maps $L_{u}: J_{*} \rightarrow J_{*}$ form a group, are $\sigma\left(J_{*}, J\right)$ continuous (i.e. pointwise continuous), and leave invariant the $\sigma\left(J_{*}, J\right)$ compact convex set Q_{ρ} in J_{*}.

The Ryll-Nardzewski theorem therefore asserts that there exists
$\tau \in Q_{\rho}$ such that $L_{u} \tau=\tau$ for all $u \in U$
Hence $\tau \in J_{*}, \tau\left(u^{*} a u\right)=L_{u}(\tau)(a)=\tau(a)$ for all $a \in J$
By (*) $\|\tau\|=\|\omega\|$ and $\tau \mid z=\omega$

There exists a weakly continuous linear map $T: J \rightarrow Z$ such that

$$
T(a)=T\left(u^{*} a u\right) \quad \text { and } T(z)=z
$$

whenever $a \in J, u \in U$ and $z \in Z$.
Moreover, T is norm decreasing and $T(z a)=z T(a)$ whenever
$a \in J$ and $z \in Z$.
$T(a)>0 \quad$ if $\quad a>0$.

Proof

By $\oint 3.15$ (and using the notation of $\oint 3.15$) it is possible to define an isometric linear map

$$
S: Z_{*} \rightarrow J_{*}
$$

by

$$
S(\omega)=\tau
$$

Identifying J with the Banach space dual of J_{*}, and Z with the dual of Z_{*}, the adjoint of S is a norm-decreasing linear operator $T: J \rightarrow Z$ and is continuous with respect to the topologies $\sigma\left(J, J_{*}\right)$ and $\sigma\left(2, Z_{*}\right)$.

$$
\begin{aligned}
\left(T\left(u^{*} a u\right)\right) & =(S \omega)\left(u^{*} a u\right) \\
& =(S \omega)(a) \\
& =\omega(T a) \quad \text { for all } \omega \in Z_{*}, a \in J, u \in U
\end{aligned}
$$

Also, if $a \in J, \omega \in J_{*}$ and $a \geqslant 0, \omega \geqslant 0$

$$
\begin{aligned}
\omega(\mathrm{Ta}) & =(\mathrm{S} \mathrm{\omega})(\mathrm{a}) \\
& \geqslant 0 \text { since } S \omega \text { is positive (see } \oint 4.6)
\end{aligned}
$$

Z_{*} is separating for Z (see footnote over)
Therefore $T\left(u^{*} a u\right)=T a$ as required and $a>0 \Rightarrow T a>0$

So $T(z)=z$.

Note

If $a, b \in Z$ and $a \neq b$, then there exists $\} \in H$ such that $a\} \neq b\}$ Therefore there exists $\eta \in H$ such that $(a\}, \eta) \neq(b\}, \eta)$ $x \leftrightarrow(x\}, \eta)$ is an ultraweakly continuous function.

§ 3 - UNIQUENESS OF CENTRE-VALUED TRACE

3.1 Lemma

For a non-zero projection e in a JC algebra. J to be abelian it is: sufficient that :

Each subprojection f of e in J has the form $f=q e$, where q is a projection in the centre of J.

Proof

If the condition holds, and a, b are any two projections in eJe then :

$$
a=q_{1} e, \quad b=q_{2} e \quad \text { where } 0 \leqslant q_{i}
$$

But that the q_{i} are central implies that

$$
\begin{aligned}
a b & =q_{1} e q_{2} e \\
& =q_{2} e q_{1} e \\
& =b a
\end{aligned}
$$

so since any two projections in eJe commute, eJe is abelian, and so e is an abelian projection.

3.2 Theorem

Suppose é is a projection in a continuous modular JW algebra J and that $r \in \mathbb{N}$.

Then there exist projections $e_{1}, \ldots, e_{r} \in J_{1}$ such that

$$
\begin{aligned}
& e_{1} \sim e_{2} \ldots \sim e_{r} \quad \text { and } \\
& e_{1}+e_{2}+\ldots+e_{r}=e .
\end{aligned}
$$

Proof
The proof is in three stages. Stage I does not require modularity. Stage 1

We assert that each non-zero projection f in J contains two non-zero equivalent orthogonal projections :

Since J is continuous, f is not abelian and so not minimal.
Therefore f has a proper: non-zero subprojection g, and by $\oint, 3.1$

$$
g \neq C_{g}^{f}
$$

Let

$$
\begin{aligned}
& f_{1}=C: f-g \leqslant 1-g \\
& f_{2}=g C_{f_{1}} \leqslant g
\end{aligned}
$$

So f_{1} and f_{2} are orthogonal subprojection of f and

$$
C_{f_{2}}=C_{f_{1}} C_{g}=C_{f_{1}}
$$

So by Topping [9], lemma $18, f_{1}$ and f_{2} can be written as orthogonal sums :

$$
\begin{aligned}
& f_{1}=f_{1}^{(1)}+f_{1}^{(2)} \\
& f_{2}=f_{2}^{(1)}+f_{2}^{(2)}
\end{aligned}
$$

where $f_{1}^{(1)}$ and $f_{2}^{(1)}$ are exchanged by symmetry, and $c\left(f_{1}^{(2)}\right) \perp c\left(f_{2}^{(2)}\right)$ If $f_{1}^{(1)}$ were zero, then $f_{2}^{(1)}$ would be zero also, as they are exchanged by symmetry, in which case :

$$
\begin{array}{ll}
& c\left(f_{1}^{(2)}\right)=c\left(f_{1}\right)=c\left(f_{2}\right)=C\left(f_{2}^{(2)}\right) \neq 0 \\
\text { I.e. } & c\left(f_{1}^{2)}\right) \notin C\left(f_{2}^{(2)}\right)
\end{array}
$$

Therefore f_{1} and f_{2} have nonzero subprojections exchanged by symmetry, and f has two non-zero orthogonal equivalent subprojections

Stage II

We assert that each nonzero projection f in J contains r nonzero equivalent, orthogonal subprojections in J.

The proof is by induction on r :
For $r=1$ the result is obvious, and $r=2$ is the case above.
Assume the result for $r=p$.
Choose nonzero equivalent, orthogonal projections g_{1}, \ldots, g_{r} with
each $g_{j} \leqslant f$ and $g_{1} \sim g_{2} \sim \cdots \sim g_{p}$

By stage I, there exist orthogonal nonzero subprojections h_{0} and h_{1} of g_{1} with $h_{0} \sim h_{1}$.
If $g_{j}=u_{j}^{*} g_{1} u_{j}$, where u_{j} is a product of symmetries, then

$$
g_{j} \geqslant u_{j!1}^{*} h_{j} u_{j}=h_{j}, \text { say. }
$$

Now h_{0}, \ldots, h_{p} have the required properties for the result when $r=p+1$.

Stage III

Let (f_{α}) be a maximal family of orthogonal nonzero projections in J such that $f_{\alpha} \leqslant e$ and
$f_{\alpha}=f_{\alpha}^{(1)}+f_{\alpha}^{(2)}+\ldots+f_{\alpha}^{(r)}$
where the $f_{\alpha}^{(j)}$ are projections in J and $f_{\alpha}^{(1)} \sim f_{\alpha}^{(2)} \sim \ldots \sim f_{\alpha}^{(r)}, ~$
If $f_{\alpha} \neq e$, we can by stage II find a subprojection of $e-\Sigma f_{\alpha}$
with the properties of an f_{α}, contradicting maximality.
So $e=\sum f_{\alpha}$
The projections $e_{j}=\sum_{\alpha} f_{\alpha}(j)$ are equivalent, since equivalence is completely additive on a modular JW algebra, and are orthogonal.

3. 3 Lemma

Let J be modular, and e,f $\in J$ projections such that f 苃e.
Then there exists a projection p in the centre of J such that

$$
0<p \leqslant C_{f} \quad p e<p f
$$

Proof (This result can also be deduced from Topping [9] thm 12.) Let $\left(e_{\alpha}, f_{\alpha}\right)_{\chi \in A}$ be a family of pairs of projections, maximal subject to the conditions :
i) (eq) is an orthogonal family and $0<e_{\alpha} \leqslant e$
ii) $\left(f_{\alpha}\right)$ is an orthogonal family and $0<f_{\alpha} \leqslant f$
iii) $e_{\alpha} \sim f_{\alpha}$

Let $\quad e_{0}=\sum e_{\alpha}$

$$
f_{0}=\sum f_{\alpha}
$$

$$
e_{1}=e-e_{0}
$$

$$
f_{1}=f-f_{0}
$$

Then $f_{0} \sim \theta_{0} \leqslant e$ by the complete additivity of equivalence
I.e. $f_{0} \not{ }^{2}$ e.

But f 本 e, so $f_{o} \neq f$ and $f_{1} \neq 0$.
$C_{e_{1}} C_{f_{1}}=0$, for if it did not, then there would exist $e_{2} \leqslant e_{1}$ and
$f_{2} \leqslant f_{1}$ such that $e_{2} \sim f_{2}$, which would contradict the maximality of $\left(\varepsilon_{\alpha}, f_{\alpha}\right)_{\alpha \in A}$.

Take ${ }^{p}=C_{f}$.
Then $0<p \leqslant C_{f}$ since $0<f_{1} \leqslant f$ $p e-p e_{0}=p e_{1}=C_{f_{1}}{ }^{c} e_{e_{1}}=0$.

Therefore $\mathrm{pe}=\mathrm{pe}_{\mathrm{O}} \sim \mathrm{pf}_{\mathrm{O}}$,
So pe く pf.

3.4 Definition

A nonzero projection e in a modular $J W$ algebra J is rational if there exists a finite orthogonal family e_{1}, \ldots, e_{n} of projections in J and an integer $k \leqslant n$ such that

$$
\begin{aligned}
& e_{1} \sim e_{2} \ldots \sim e_{n} \\
& e_{1}+e_{2}+\ldots+e_{k}=e \\
& e_{1}+e_{2}+\ldots+e_{n} \text { is a central projection in } J, \text { necessarily }
\end{aligned}
$$

${ }^{C}$ e

If e and f are equivalent projections in J and e is rational, then 80 is f

Proof

Let e_{1}, \ldots, e_{n} and k be as above.
If fiNe then there exists a product u of symmetries in J such that

$$
f_{i}=\sum_{i=1}^{k} u^{*} e_{i} u
$$

Put $f_{i}=u^{*} e_{i} u \quad(i \leqslant k)$
$C_{e}=C_{f}$ and e~f imply $C_{e}-e \sim C_{f}-f$
1.e. $\quad C_{f}-f=\sum_{k+1}^{m} \nabla^{*} e_{i} v$ where v is again a product of
unitaries in J.

Let $f_{i}=V^{*} e_{i} v \quad(k<i \leqslant n)$
Then $f=f_{1}+f_{2}+\ldots+f_{k}$

$$
\begin{aligned}
c_{f}= & f_{1}+f_{2}+\ldots+f_{n} \\
& f_{1} \sim f_{2} \quad \cdots \sim f_{n}
\end{aligned}
$$

I.e. f is rational.

35 Theorem

Each projection e in a modular $J W$ algebra J can be expressed as the sum of an orthogonal family of rational projections.

Proof

Let $\left(e_{\alpha}\right)$ be a maximal orthogonal family of rational projections in J with each $e_{\alpha} \leqslant e$, and let $f=e-\Sigma e_{\alpha}$

It suffices to prove $f=0$.

Since J is modular, there exist central projections $\left(p_{I_{n}}\right)$ and $P_{I I_{1}}$ such that:

$$
\begin{gathered}
\mathrm{p}_{I_{n}}+p_{I I_{1}}=1 \\
\mathrm{JP}_{I_{n}} \text { is type } \mathrm{I}_{n} \\
\text { and } \mathrm{Jp}_{\mathrm{II}_{f}} \text { is type } I I_{1}
\end{gathered}
$$

If $f \neq 0$ then either $f p_{I_{n}} \neq 0$ for some n, or $f p_{I I_{1}} \neq 0$
Case $I \quad g=f p_{I_{n}} \neq 0$

Since $0<C_{g} \leqslant P_{I_{n}}, J C_{g}$ is type I_{n}
i.e. there exist abelian projections $g_{1}, \ldots g_{n} \in J$ Cgauch that

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{g}}=\mathrm{C}_{g} \text { for all } m \\
& \mathrm{~g}_{1}+\ldots+g_{n}=C_{g}
\end{aligned}
$$

A lemma will now be proved before the proof of the theorem proceeds :

Lemma

Let K be a modular JC algebra, and e, f projections in K with e abelian and $\mathrm{C}_{\mathrm{e}} \leqslant \mathrm{C}_{\mathrm{f}}$.

Then e $\downarrow \boldsymbol{f}$.

If e and f are both abelian and $C_{e}=C_{f}$, then $e \sim f$.
Proof

The second statement follows from the first.

Suppose e is abelian and $C_{e} \leqslant C_{f}$.
If e $\neq f$, then by $\oint 3.3$ there exists a projection p in the centre of K such that $0<p \leqslant C_{f}$,

$$
\mathrm{pf}<\mathrm{pe}
$$

Replacing p by $p C_{e}$, we can suppose :

$$
0<p \leqslant C_{e}
$$

Since pf <pe there exists a projection f_{1} such that :

$$
p f \sim f_{1}<p e \leqslant e
$$

Since e is abelian, eKe coincides with its centre Ze .

So

$$
f_{1}=e f_{1} e \in e K e=Z e
$$

I.e. $\quad f_{1}=q e$ for some projection $q \in Z$.

Since $f_{1}=p f_{1}$, we can replace q by $p q_{1}$, and assume

Now,

$$
0<q \leqslant p \leqslant C_{e} \leqslant C_{f}
$$

$$
\begin{aligned}
p & =\mathrm{pC}_{f}=C_{p f} \quad \text { (by Topping [9] prop 18.) } \\
& =C_{f_{1}} \quad \text { (by Topping [9]cor 14.) } \\
& =C_{q e} \\
& =\mathrm{qC}_{e}=q .
\end{aligned}
$$

But $\quad f_{1}=q e=p e$, contradicting $f_{1}<p e$.
Hence $e \lesssim f$.

Hence the lemma follows.

By the lemma,

$$
g_{1} \sim \ldots \sim g_{n} \propto g .
$$

Therefore g_{1} is rational and there exists a projection $g_{1}^{\prime} \sim g_{1}$
which will also be rational, such that
$g_{1}^{\prime} \leqslant g \leqslant f$ contradicting the definition of f.
$\underline{\text { Case II }} \mathrm{g}=\mathrm{fp}_{\mathrm{II}}^{1} 1 \neq 0$
Since $0: C_{g} \mathrm{p}_{\mathrm{II}}^{1}, \quad, J C_{g}$ is type $I I_{1}$.

Let g_{1}, \ldots, g_{n} be a maximal orthogonal family of projections in $J C_{g}$ with $g_{j} \sim g \quad(j=1, \ldots, n)$
(Such a family is necessarily finite since g is modular : ssee e.g. Topping (9] thm 11).

Let $x=C_{g}-\left(g_{1}+\ldots+g_{n}\right)$
$g \neq x$, by the maximality of the family $\left\{g_{i}\right\}$
Since $J C_{g}$ is type $I I_{1}$ and hence continuous, Theorem 3.2 applies, and hence there exist projections $y_{0}, \cdots, y_{n} \&{ }^{J C}{ }_{g}$ such that

$$
\begin{aligned}
& y_{0} \sim y_{1} \sim \ldots \sim y_{n} \quad \text { and } \\
& y_{0}+y_{1}+\ldots+y_{n}=C_{g}
\end{aligned}
$$

$$
\begin{aligned}
c_{g}^{-x} & =g_{1}+\ldots+g_{n} \\
& \left\langle y_{1}+\ldots+y_{n}\right. \\
& =c_{g}-y_{0}
\end{aligned}
$$

I.e.

$$
\mathrm{C}_{\mathrm{g}^{-\mathrm{x}} \sim \mathrm{~h}} \leqslant \mathrm{C}_{\mathrm{g}^{-y_{0}}}
$$

Since C_{g} is the identity of JC_{g} this would imply

$$
\begin{aligned}
x & =C_{g}-\left(C_{g}-x\right) \\
& \sim C_{g}-\mathrm{h} \\
& \geqslant \mathrm{y}_{0} \gtrsim \underset{\sim}{g} \text { contradicting }(*)
\end{aligned}
$$

Hence $\mathrm{g}_{\mathrm{N}} \mathrm{K}_{0}$, and so by lemma 3.3 there exists a central projection q with $0<q \leqslant C_{g}$ and $\mathrm{qy}_{0} \prec \mathrm{qg}$.

Thus $f(\geqslant g \geqslant q g)$ contains an projection equivalent to $q y_{0}$, and this is rational since

$$
\begin{aligned}
& \mathrm{qy}_{0} \sim \mathrm{qy}_{1} \sim \ldots \sim \mathrm{qy}_{\mathrm{n}} \quad \text { and } \\
& \mathrm{qy}_{0}+\mathrm{qy}_{1}+\ldots+\mathrm{qy}_{\mathrm{n}}=\mathrm{q}
\end{aligned}
$$

which contradicts the maximality of $\left(e_{\alpha}\right)_{\alpha \in A}$

3.6 Theorem

If J is a $J W$ algebra with centre Z, the extension of any $\omega \in Z_{*}$ to a trace $\tau \in J_{*}$ is unique, and τ is positive if ω is.

The ultraweakly continuous centre-valued trace $T: J \rightarrow Z$ is also unique.

Proof

If e is a rational projection in J, choose equivalent projections $e_{1}, \ldots, e_{n} \in J$ such that :

$$
\sum_{1}^{n} e_{i}=c_{e} \quad \sum_{1}^{k} e_{i}=e \quad \text { for some } k \leqslant n
$$

there exists a product of symmetries u_{j} such that

$$
e_{j}=u_{j}^{*} e_{1} u_{j}
$$

So

$$
\tau\left(e_{j}\right)=\tau\left(e_{1}\right) \quad \text { for all } j \leqslant n
$$

and

$$
\tau(e)=\frac{k}{n} \tau\left(c_{e}\right)=\frac{k}{n} \omega\left(c_{e}\right)
$$

Thus $て(e)$ is determined by ω and is positive if ω is.
But any projection is J is the orthogonal sum of rational projections in J (§ 3.5) and τ is completely additive since it is ultraweakly continuous (\$2.11).

Thus τ is determined by Wfor all projections in J, and therefore is determined by ω on J, the closed linear span of its projections. If ω is positive, then $\tau(e) \geqslant 0$ for each projection e. Hence \mathcal{Z} is positive by lemma 2.6 (iii).

The same arguement proves the uniqueness of T.

$\$_{4}$ - WEAK AND TRACE CLOSURE OF JC SUBALGEBRAS

4.1 Definition

Let J be a modular $J W$ factor, and τ its trace. Then an inner product can be defined on J by :

$$
(a, b)=\tau(a o b) \quad \text { for } a l l a, b \in J
$$

The associated norm is denoted by $/ I_{2}$.

4. 2 Lemma

If ψ, \oint are normal linear functionals on a JW algebra J such that $0 \leqslant \psi \leqslant \varphi$, then there exists $h \in J_{1}^{+}$such that :

$$
\psi(a)=\varphi(\text { hoa })
$$

If φ is faithful, then h is unique.

Proof

The proof follows that for the analogous von Neumann algebra result given by Pedersen [12] chapter 5.3.2.

Let $\quad X=\left\{\varphi(\right.$ ho . $\left.): \mathrm{h} \in \mathrm{J}_{1}^{+}\right\}$
X is convex, since J_{1}^{+}is convex, and is compact in J_{*} since J_{1}^{+}is ultra-weakly compact (J_{*} is the set of ultraweakly continuous functionals on J).
If $\psi \& X$ then,
y the Hann-Banach theorem, there exists $a \in\left(J_{*}\right)^{*}=J$ and $t \in \mathbb{R}$ such
that : $\psi(a)\rangle t \quad$ and $X(a) \leqslant t$

Write a as $a_{+} a_{-}$, the difference of positive elements.
Let $h=\left[a_{+}\right]$, the range projection of a_{+}
$\mathrm{h} \mathrm{eJ} \mathrm{J}_{1}^{+}$

$$
a_{-} a_{+}=0
$$

therefore $\quad a_{-}\left[a_{+}\right]=0$
therefore

$$
\begin{aligned}
a h & =a\left[a_{+}\right] \\
& =a_{+}\left[a_{+}\right]=a_{+}
\end{aligned}
$$

Also

$$
\begin{aligned}
h a & =(a h)^{*} \\
& =a_{+}^{*} \\
& =a_{+}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\varphi\left(a_{+}\right) & =\varphi(\text { hoa }) \\
\psi\left(a_{+}\right) & \geqslant \psi\left(a_{+}-a_{-}\right) \\
& >t \\
& \geqslant \varphi(\text { hoa }) \\
& =\varphi\left(a_{+}\right) \quad \text { contradicting } \psi \leqslant \varphi
\end{aligned}
$$

Let k also have the property required of h.

Then

$$
(h-k)^{2}=h o(h-k)-k o(h-k)
$$

therefore $\varphi\left((h-k)^{2}\right)=\varphi(h o(h-k))-\varphi(k o(h-k))$

$$
\begin{aligned}
& =\psi(h-k)-\psi(h-k) \\
& =0
\end{aligned}
$$

Therefore if P is faithful then $h=k$: ie. h is unique.

A. 3 Lemma

Let J be a modular JW factor and K a JW subalgebra of J containing the unit of J.

Then there exists a unital positive projection $p: J \rightarrow \mathbb{K}$ such that

$$
\tau(a \circ b)=\tau(p(a) \circ b) \quad \text { for } a l l a \in J, b \in K,
$$

where τ is the faithful normal tracial state of J.

Proof.
The proof follows that of Sakai [13] chapter 4.4.23
For $h \in J, h \geqslant 0,\|h\|=1$. define φ_{h} on K by :

$$
\begin{gathered}
\varphi_{h}(y)=\tau \text { (hoy) for all } y \in K \\
\tau:(y)-\varphi_{h}(y) \geqslant 0 \quad \text { (Pedersen \& St } \phi \text { rmer }[16] \text { Theorem.) }
\end{gathered}
$$

Therefore, $\tau \geqslant P_{h}$
Therefore by $£ 4.2$ there exists a unique $k \in \mathbb{K}_{1}^{+}$such that

$$
\tau(\text { koy })=\varphi_{h}(y)
$$

Define $\mathrm{p}(\mathrm{h})=\mathrm{k}$.
p extends by linearity to the whole of J. Clearly $p^{2}=p$
p is positive and so bounded (Russo \& Dye[15]).

Also $p(1)=1$ so $\|p\|=1$.
The uniqueness follows from the faithfullness of τ

4.4 Theorem

Let J be a modular JW factor and K a Jordan subalgebra of J.
Then K is closed in the trace-norm topology iff K is weakly closed.

Proof
\Leftarrow
By $\S 4.3,(a-p(a), b)=0 \quad$ for $a l l a \in J, b \in K$
Therefore $p(a)$ is the best $\left|\left.\right|_{2}\right.$ approximation to a from K.

If a $\notin K, \quad \operatorname{dist}(a, K)=|a-p(a)|_{2}$

$$
>0 \quad \text { since } p(a) \neq a \text {, and } \mid l_{2} \text { is a norm. }
$$

Therefore K is $\left.\right|_{2}$ closed.
\Rightarrow
Let (α_{α}) be a net in K and $a_{\alpha} \rightarrow$ a ultrastrongly.
Since τ is ultraweakly continuous and positive it can be expressed in the form

$$
\tau=\sum_{i}^{\infty} \omega_{\xi_{i}}
$$

Therefore $\left.\quad\left|a_{\alpha}-a\right|_{2}=\tau\left(a_{\alpha}-a\right) *\left(a_{\alpha}-a\right)\right)$

$$
\begin{aligned}
& \left.=\sum_{i}^{\infty}\left(\left(a_{\alpha}-a\right) *\left(a_{\alpha}-a\right)\right\}_{i}, \xi_{i}\right) \\
& =\left.\sum_{i}^{\infty}\left\{\left(a_{\alpha}-a\right)\right\}_{i}\right|^{2} \\
& \rightarrow 0 \quad \text { since } a_{\alpha} \rightarrow a \text { ultrastrongly. }
\end{aligned}
$$

Therefore $a \in K$
Therefore K is ultrastrongly closed.
But in that case K is weakly closed (St申rmer[11] Lemma 4.2) \square
[1] Bratelli and Robinson : Operator Algebras and Quantum Statistical Mechanics, vol. 1.
[2] Effros and Størmer : Jordan Algebras of Self-adjoint Operators Trans. Amer Math. Soc. 127 (1967) p.314. .
[3] M. D. Green : Lattice Structure of C^{*}-algebras and their duals. Math. Proc. Camb. Phil. Soc. 81 (1977).
[4] I. Halperin : The Product of Projection Operators. Acta Sci. Math. 23 (1962) pp96-99
[5] R. V. Kadison : Order Properties of Bounded Self-adjoint Operators : Proc. Amer. Math. Soc. 2 (1951) pp505-510.
[6] I. Namioka \& E. Asplund : A Geometric Proof of Ryll-Nardzewski's Fixed Point Theorem. Bull. Amer. Math. Soc. 73 (1967) 443-445
[7] E. St申rmer \& H. Hanche-Ølsen : Jordan Operator Algebras (to appear).
[8] D. M. Topping : Lectures on von Neumann algebras
[9] D. M. Topping : Jordan Algebras of Self-adjoint Operators. Mem. Amer. Math. Soc. 53 (1965)
[10] F. J. Yeadon : A Trace in a Finite von Neumann Algebra. Bull. Amer. Math. Soc. 77 (1971) pp257-260.
[11] E. Størmer : Irreducible Jordan Algebras of Self-adjoint Operators. Trans. Amer. Math. Soc. 130 (1968) pp153-166.
[12] G. K. Pedersen : $C^{*}-a l g e b r a s$ and their Automorphism Groups.
[13] S.Sakai : C*-algebras and $W^{*}-a l g e b r a s$
[14] Fredrick W. Shultz : On Normed Jordan Algebras that are Banach Dual Spaces. J. Functional Anal. 31 (1979) pp 360-376.
[15] B. Russo \& H. A. Dye : A Note on Unitary Operators in C* algebras. Duke Math. J. 33 (1966) pp. 413-416.
[16] G. K. Pedersen \& E. Stormer : Traces on Jordan Algebras Can. J. Math. $34(2)(1982)$ pp.370-373.
[17] D. M. Topping : Vector Lattices of Self-adjoint Operators Trans. Amer. Math. Soc. 115 (1965) pp. 14-30.

