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Abstract 

Methylation of the carbon-5 position of cytosine is the major covalent modification 

of DNA found in multicellular organisms and is involved in a diverse range of 

biological processes in mammals, plants and fungi. In mammals, this modification 

plays a number of diverse roles in development and cellular differentiation. These 

include transcriptional gene silencing, chromosomal integrity, repression of 

transposable elements, parental imprinting and X chromosome inactivation (Bird, 

2002). Patterns of DNA methylation are established and maintained by proteins of 

the DNA methyltransferase (DNMT) family (Bestor, 2000a; Bird, 2002). 

Interestingly, genetic studies in A. thaliana and mouse have identified a protein from 

a functionally distinct family that is also required for high levels of DNA 

methylation. This protein, termed DDM1 in plants (deficient in DNA methylation 1) 

or Lsh in mouse (lymphoid specific helicase), belongs to the SNF2 chromatin 

remodelling family of ATPases (Dennis et al., 2001; Jeddeloh et al., 1999; Vongs et 

al., 1993). SNF2 enzymes have a variety of chromatin related functions that are 

based upon the ability to disrupt DNA:histone contacts in an ATP dependant manner 

(Narlikar et al., 2002). Despite the genetic characterisation of Lsh, little is known 

about its molecular function. Cytological studies and experiments with ES cells have 

shown that although Lsh co localises with Dnrntl at replication foci during late S 

phase, it is not required for maintenance methylation of satellite DNA or on 

replicating episomal plasmids. Lsh has also been shown to be required for de novo 

methylation and to co-immunoprecipitate with Dnmt3a and Dnmt3b (Zhu et al., 

2006). Taken together these studies indicate that the primary role of Lsh is in de novo 

methylation and it is dispensable for maintaining methylation during DNA 

replication. 

As a member of the SNF2 family of ATPases an attractive hypothesis is that Lsh 

may disrupt chromatin in a manner that makes it more accessible to DNMT enzymes. 

Alternatively, LSH may act as a recruitment factor for DNMTs or increase their 
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catalytic activity in some other way. The aims of this study were to characterise the 

molecular function of LSH and attempt to relate this to its role in DNA methylation 

in vivo. To address these aims the work described in this thesis uses a variety of 

approaches to address two key questions. (1) Is LSH an active SNF2 ATPase? (2) 

How does LSH interact with, and modulate, the DNA methylation machinery? 

To determine if LSH is an active SNF2 ATPase, recombinant LSH was purified from 

insect cells and biochemically characterised. These experiments revealed that LSH 

can hydrolyse ATP and its activity is stimulated by DNA. However, the rate of ATP 

hydrolysis is low and LSH does not exhibit chromatin remodelling activity. Thus, 

either LSH is a relatively weak SNF2 ATPase that cannot remodel chromatin or 

recombinant LSH may not be fully active. To identify proteins that interact with 

LSH, biophysical analysis of the native protein was performed. This indicated that 

the majority of LSH was present as a free monomeric peptide in vivo. However, I 

was able to demonstrate that LSH is an HDAC transcriptional repressor in vivo. Also, 

a weak, transient or low abundance complex including LSH, DNMT3B, DNMT1, 

HDAC1 and HDAC2 was identified. Thus, how LSH interacts with the DNA 

methylation machinery was demonstrated. Finally, I attempted to investigate how 

LSH modulates the activity of DNMTs in vitro. These experiments did not identify a 

role for LSH in stimulating DNMTs in vitro. These studies shed new light on the role 

of LSH in DNA methylation. 



Chapter one - Introduction 

1.1 Overview of Epigenetics 

1.1.1 Epigenetics 

The completion of the human genome sequence has given us a unique opportunity to 

understand the complexities of our genetic make up (Lander et al., 2001). The 

information derived from this DNA sequence however, only partly explains the 

complex biology of multicellular organisms. We consist of many diverse cell types, 

each with a specific function and role but each containing essentially the same DNA 

code. The defining factors in specifying particular cell types are the protein 

composition of the cell, which in turn is defined by the cells gene expression pattern. 

Transcription factors (TFs) help define gene expression patterns by recognizing 

specific DNA sequences in the promoters of target genes. Interaction of these factors 

with gene promoters leads to a cascade of events culminating in the expression or 

silencing of the gene. However, TFs alone are insufficient to establish and maintain 

this phenomenon as the transcription potential of the genome becomes stably 

restricted during development. Acting alongside TFs are a host of DNA:protein 

interactions revolving around covalent modifications to DNA and chromatin. These 

include methylation of DNA itself and numerous histone modifications. These 

modifications help control gene expression by regulating the accessibility of 

chromatin to transcription factors. Together these modifications are termed 

'epigenetic', literally meaning 'in addition to genetics'. Epigenetic modifications 

change the final outcome of a locus without altering the underlying DNA sequence. 

Thus without altering the sequence of DNA the same gene can be either expressed or 

silenced in different tissues. Ideally, epigenetic modifications should also be 

heritable, but so far only DNA methylation shows stable inheritance through multiple 

cell divisions (Bird, 2002). Most covalent modifications that alter the expression of 

genes are considered epigenetic, and mechanisms of their inheritance may be 

discovered in the future. 
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1.1.2 Mechanisms of action 

The human cell must store >2m of DNA in a nucleus with a diameter of only 10im. 

To achieve this DNA is tightly packaged into a DNA:protein structure known as 

chromatin. The basic repeating unit of chromatin is the nucleosome, consisting of 

146bp of DNA wrapped around an octamer of core histories; a tetramer of histone H3 

and H4 and 2 dimers of histories 1-12A and 1-1213 (Luger et al., 1997; Richmond and 

Davey, 2003a; Schaich et al., 2005). The N-terminal tails of H3 and H4 protrude 

from the nucleosome core where they are the targets of a multitude of post-

transcriptional modifications including acetylation, methylation, phosphorylation and 

ubiquitylation (Kouzarides, 2007). These modifications can alter the interactions of 

the tails with DNA and affect chromatin folding (Tremethick, 2007) or recruit 

effector proteins to further modify chromatin function. Together, it is believed that 

combinations of modifications of the N-terminal tails of H3 and H4 constitute a 

'histone code'. This 'code' is thought to regulate the accessibility of DNA to factors 

required for gene expression, DNA replication, recombination and repair. 

Eukaryotic DNA can be divided into 2 different classes broadly based on 

confirmation and accessibility; euchromatin and heterochromatin. These 

compartments are defined cytologically (Heitz, 1928) and on the basis of DNA 

methylation content, histone modification patterns and replication timing (Gilbert, 

2002). Importantly, the location of a gene in a particular chromatin class defines its 

transcriptional potential, with euchromatic genes being potentially transcribed, 

whereas heterochromatic genes are silenced. 

Euchromatin generally consists of gene rich, GC rich DNA that is less condensed 

than heterochromatin and can be transcriptionally active. It stains light-coloured 

bands when stained with Giemsa in metaphase spreads and replicates early in S-

phase. Euchromatin is enriched for 'active' histone marks including acetylation of 

H3 at lysines 9 and 14 (H3K9Ac/H3K14Ac) and H4 at lysine 12 (H4K12Ac). 

Methylation of H3 at lysine 4 (H3K4me2/me3) and lysine 79 (H3K79me2) and a 

lack of promoter DNA methylation are prevalent in euchromatin. The occurrence of 

these histone modifications and the open chromatin configuration of euchromatin 
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beget DNA accessible to transcription machinery. Thus genes found in euchromatin 

are liable to be transcribed. 

Heterochromatin is generally gene poor, AT rich DNA that is highly compacted, 

inaccessible and prohibitive to gene expression. Heterochromatin can be divided into 

2 subclasses; constitutive and facultative. Constitutive heterochromatin consists of 

the gene poor, repetitive portion of the genome which is found at centromeres and 

telorneres. Constitutive heterochromatin stains dark-coloured bands with Giemsa and 

replicates late in S-phase. Facultative heterochromatin refers to certain 

developmentally controlled loci that are not consistent within all cell types in an 

organism such as the inactive X chromosome and the mouse f3-globin locus (Trojer 

and Reinberg, 2007). Both classes of heterochromatin consist of histories that are 

hypoacetylated, enriched in H3K9me3 and H3K27me3 and DNA methylation 

(Trojer and Reinberg, 2007). An interesting feature of heterochromatin is its ability 

to propagate and spread, thus influencing the expression of nearby genes. The 

spreading of facultative heterochromatin from a nucleation site on the female 

inactive X chromosome is an example of the importance of this spreading 

mechanism (Grewal and Jia, 2007). 

Interestingly, although certain histone modifications have historically been thought 

to correlate with specific classes of chromatin recent work has shown this not to be 

the full picture. For example H3K9me3 has been found in the body of transcribed 

euchromatic genes and RNA transcripts have been found associated with 

heterochromatic regions (Grewal and Jia, 2007; Vakoc et al., 2005). These examples 

outline the addition complexities of so called epigenetic phenomena and tell us there 

is much still to understand about them. 
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1.2 DNA Methylation 

Methylation at the carbon-5 position of cytosine (m5C) is the major covalent 

modification of DNA in multicellular organisms and is involved in a diverse range of 

biological processes in mammals, plants and fungi (Figure 1.1A). In mammals m 5 

is predominantly found on both strands of DNA in the context of symmetrically 

methylated cytosine-guanine (CpG) dinucleotides (Bird, 2002). The methyl group of 

in 5C  in the double stranded helix has been shown to protrude into the major groove 

of DNA and influences DNA:protein interactions without affecting base pairing 

(Mayer-Jung et al., 1997). Importantly, the symmetry of DNA methylation permits a 

simple copying mechanism where DNA methylation patterns can be transmitted 

during DNA replication. The levels of CpG methylation varies widely within 

eukaryotes from none in yeast to 60-80% in some mammals. Also, CpG 

methylation levels differ between different cell types in multicellular organisms. For 

example, in undifferentiated mammalian ES cells about 60% of CpGs are methylated 

whereas in differentiated lung cells 80% of CpGs are methylated (Ramsahoye et al., 

2000b). 

DNA methylation plays a number of diverse roles in mammalian development and 

cellular differentiation. It is required for transcriptional gene silencing, chromosomal 

integrity, repression of transposable elements, parental imprinting and X 

chromosome inactivation (Bird, 2002). Highlighting the importance of DNA 

methylation to normal cellular function is the fact that removal of DNA methylation 

results in embryonic lethality in mammals (Li et al., 1992). DNA methylation is 

clearly important for normal development during cell differentiation but it also plays 

a role in establishing abnormal gene expression patterns observed in cancerous cells 

(Jones and Baylin, 2002). 
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1.2.1 Functions of DNA methylation 

1.2.1.1 Chemistry ofm5C 

A class of enzymes known as DNA cytosine methyltransferases (DNMTs) catalyse 

the DNA methylation reaction. The catalytic motifs of DNMT enzymes are 

conserved between prokaryotes and eukaryotes and use S-adenosyl-L-methionine 

(SAM) as a methyl donor. In prokaryotes DNA methylation is involved in DNA-

replication, post-replicative repair mechanisms, and restriction/modification systems. 

The role of DNA methylation in eukaryotes differs somewhat but the catalytic 

reaction and the DNMT enzymatic motifs are conserved (Kumar et al., 1994). 

DNMTs contain 10 characteristic motifs, of which 6 (I, IV, VI, VII, IX and X) are 

highly conserved (Kumar et al., 1994). Motifs I and X bind SAM, motif IV contains 

the PCQ motif that provides the thiolate at the active site, motif VI contains the 

glutamyl residue that stabilises the DNA:DNMT interaction, motif IX is involved in 

substrate recognition and motif VII has an as yet unknown function (Bestor, 2000a). 

The DNA methylation reaction was first elucidated in the prokaryotic DNMT 

M.HhaI (Klimasauskas et al., 1994; Wu and Santi, 1985, 1987). The C-S position of 

cytosine is rather unreactive and its methylation is considered improbable in 

physiological conditions. The DNMT enzyme must overcome the inherent inertness 

of the substrate and force it to react with SAM. To achieve this, the DNMT enzyme 

utilises a nucleophilic attack on the C-6 of the target cytosine. This attack is 

performed by the thiol group of the cysteine residue in the conserved PCQ motif 

(motif IV). This forms a covalent bond between the DNMT and C-6 and pushes 

electrons to the C-S position. This activates C-5, causing it to attack the SAM and 

receive the methyl group (Bestor, 2000a). As this occurs the DNA:DNMT reaction 

intermediate is further stabilised by transient protonation of N-3 by the glutamic acid 

of the ENV motif (motif VI) (Hermann et al., 2004). Following completion of the 

methyl transfer the reaction cycle is completed by deprotonation of C-5 and release 

of the DNMT by 3-elimination (Bestor, 2000a) (Figure 1.1B). A further hindrance to 

the DNA methylation reaction is the relative inaccessibility of the cytosine substrate 

that is buried within the double helix. Co-crystallisation studies of the MHhaI 

DNMT in complex with DNA revealed the evolution of an elegant solution to this 
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Figure 1.1. The chemistry of DNA methylation. 
Methylation of cytosine occurs at the carbon at the 5' position in the DNA base. 
The chemistry of the DNA methylation reaction. Figure adapted from (Klimasauskas et al., 

1994) 
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(Bestor, 2000b) 
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problem (Klimasauskas et al., 1994; Wu and Santi, 1985, 1987). The DNMT was 

shown to pull out the target base in a process called 'base flipping'. This process 

involves the rotation of the sugar-phosphate bonds to project the target base into the 

catalytic pocket of the enzyme (Figure 1.1 C). All other known DNMTs also utilise 

base flipping as do a number of other enzymes that require access to DNA aromatic 

rings such as DNA repair enzymes (Cheng and Roberts, 2001). 

1.2.1.2 Physiological roles of DNA methylation 

1.2.1.2.1 X-inactivation 

Mammalian sex determination is based on the heteromorphic sex chromosomes, X 

and Y (Ross et al., 2005; Vallender et al., 2005). This heteromorphic pair is thought 

to have evolved from a homologous pair of autosomes '-300mya. In this time, the 

chromosomes have diverged with the Y becoming smaller and losing most of its 

ancestral genes. This divergence has resulted in a potential imbalance in expression 

of X-linked genes between males and females. The mechanism to correct this 

imbalance is known as X inactivation and involves silencing of one of the X 

chromosomes in XX females early in development, so that gene expression is similar 

to that in XY males. The inactive X can be distinguished from its active counterpart 

on the basis of transcriptional silencing of most of the genes, heterochromatic 

condensation, accumulation of facultative heterochromatin marks, late replication in 

S-phase and hypermethylation of CpG islands (Brockdorff and Duthie, 1998). The 

process of X inactivation occurs in early development and is mediated through a 

locus known as the X-inactivation centre (Brockdorff and Duthie, 1998). A key 

component of the XIC is the Xist gene, which plays a key role in initiation of X 

chromosome gene silencing. The Xist gene encodes a 17.3kb transcript that is not 

translated into protein but rather coats the inactive X chromosome (Borsani et al., 

1991; Brockdorff et al., 1991; Brockdorff et al., 1992; Brown et al., 1991). The 

accumulation of Xist RNA on the inactive X is rapidly followed by transcriptional 

repression, accumulation of silent chromatin marks such as lysine hypoacetylation, 

H3K27 trimethylation and H3K9 trimethylation. Following transcriptional repression 

and the accumulation of theses marks on the inactive X CpG methylation of CGIs 

occurs. Recent data have suggested that most CGIs on the inactive X are methylated 



compared to its active counterpart (Weber et al., 2007). A number of studies have 

outlined the important role DNA methylation plays in the stability and maintenance 

of gene silencing on the inactive X. For example, early studies using the DNMT 

inhibitor 5-Aza-C showed de-repression of several genes on the inactive X indicative 

of an important role for CpG methylation in maintaining transcriptional silencing 

(Locket al., 1986; Wolf et al., 1984). More recently, conditional loss of Dnmtl has 

been shown to also lead to reactivation of genes on the inactive X (Csankovszki et 

al., 2001). Similarly, female patients with ICF, caused by a mutation in the 

DNMT3B genes, have an increase in the number of genes on the inactive X that are 

not silenced. This may be due to a failure to maintain COT methylation on the 

inactive X, despite X inactivation occurring normally (Hansen et al., 2000). The 

functional relevance of this finding is not clear, however as ICF males and females 

show similar phenotypes which would not be expected if the disease affected 

maintenance of X inactivation (Ehrlich et al., 2008). 

1.2.1.2.2 DNA methylation is a transcriptionally repressive mark 

DNA methylation in mammals generally elicits a transcription response either by one 

of two mechanisms, directly inhibiting TF binding or indirectly recruiting co 

repressor complexes (Bird, 2002). In the first instance the DNA binding of sequence 

specific transcription factors can be inhibited by CpG methylation. One such 

example is c-Myc, of which the ability to bind its cognate sequence is specifically 

inhibited by CpG methylation (Prendergast et al., 1991; Prendergast and Ziff, 1991). 

The second mechanism of repression by CpG methylation involves recruitment of 

proteins to methyl-CpG. The proteins that recognise methyl-CpG fall into 1 of 2 

families, proteins of the Methyl-CpG-binding domain (MBD) family and Kaiso-like 

proteins (Bird, 2002). The MBD family consists of 5 proteins, MeCP2 and MBD 1-4. 

Three of these, MeCP2, MBD1 and MBD2 have been shown to have a role in 

methylation dependent transcriptional repression. The MBD proteins act through the 

Methyl-CpG dependant recruitment of chromatin modifying co-repressor complexes 

that alter chromatin into a transcriptionally silent state (Nan et al., 1998; Sarraf and 

Stancheva, 2004; Tong et al., 1998). The Kaiso-like proteins are unrelated to MBDs 
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and bind methylated DNA through 3 zinc finger domains (Filion et al., 2006; 

Prokhortchouk et al., 2001). In the case of Kaiso this leads to transcriptional 

silencing via an interaction with the repressive N-CoR chromatin remodelling 

complex (Yoon et al., 2003). 

1.2.1.2.3 Patterns of DNA methylation 

To fully understand the physiological role of DNA methylation we must not only 

consider the chemical reaction that marks CpGs with a methyl group but also the 

distribution of methyl-CpG throughout the genome. As mentioned above the levels 

of CpG methylation vary in different organisms and also between the different cell 

types of an organism. In animals, the lowest extreme is the nematode worm 

Caenorhabditis elegans that lacks detectable m 5  C and has no conventional DNMT 

enzyme. The insect Drosophila melanogaster, also has very low m5C levels and 

DNA methylation mainly occurs at CpT dinucleotides rather than CpG (Gowher et 

al., 2000; Lyko et al., 2000). Drosophila also contains a DNMT enzyme (DNMT2) 

which has been reported to be responsible for DNA methylation at CpT and CpA 

dinuc!eotides (Hung et al., 1999; Kunert et al., 2003; Tweedie et al., 1999). Other 

invertebrate genomes, for example the sea squirt Ciona intestinalis have moderately 

high m 5  levels that are organised in mosaic patterns. Interestingly, m5C in C. 

intestinalis is targeted to transcription units and may act to suppress spurious 

transcriptional initiation (Suzuki et al., 2007). Vertebrate genomes have the highest 

levels of rn5C in the animal kingdom where around 70% of CpGs are methylated. 

The distribution of CpG methylation in the vertebrate genome does not follow the 

mosaic pattern observed in invertebrates. In fact CpG density and CpG methylation 

are distinctly separated into 2 fractions. The first fraction is in bulk genomic DNA, 

where CpGs are relatively infrequent (-1 per lOObp) and the majority of CpG 

methylation is found. The other fraction correlates with short stretches of much 

higher CpG density (-1 per lobp) where very little CpG methylation is found (Bird 

et al., 1985; Bird, 1986). These regions of high CpG density are known as CpG 

islands and frequently co localise with the transcription start sites (TSS) of genes. 
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1.2.1.2.4 CpG islands 

The most striking feature of vertebrate CpG distribution and CpG methylation is the 

non random distribution of unmethylated CpGs to regions at the 5' end of genes 

known as CpG islands (CGIs). CGIs are stretches of DNA typically 500 - 1500 bp in 

length with a G+C content of >50% and a CpG observed over expected ratio of 

>60% (Gardiner-Garden and Frommer, 1987; Takai and Jones, 2003). There are an 

estimated 25,000 CGIs in the human genome of which -76% associate with a 

transcriptional unit and -50% correspond to the TSS of a gene (Illingworth et al., 

2008). Most CGIs lack DNA methylation and are associated with transcriptionally 

active genes, including housekeeping and tissue specific genes. 

A small but significant proportion of CGIs are normally methylated. These CGIs are 

found at the differentially methylated regions (DMR) of imprinted genes or on the 

inactive X chromosome and correlate with transcriptional silencing of the associated 

gene. Interestingly, recent studies have expanded the numbers of methylated CGIs in 

normal human tissues and implied that CGI methylation may be more prevalent than 

previously thought (Illingworth et al., 2008; Weber et al., 2007). In these studies CGI 

methylation levels varied between the tissues tested perhaps indicating that COT 

methylation plays a role in specifying cell fate determination during development 

(Illingworth et al,, 2008). COT methylation was also more prevalent at 'weak' CGIs 

with low CpG density, but at these sites did not preclude gene activity (Weber et al., 

2007). CGIs have also been reported to acquire methylation in somatic tissues. De 

novo methylation of CGIs has been reported to occur during normal aging, in vitro 

cell culture and most dramatically in cancers (Antequera et al., 1990; Fraga et al., 

2005; Issa, 2000). The acquisition of CGI methylation in these cases is coincident 

with global genomic hypomethylation and associated genomic instability (Chen et 

al., 1998; Feinberg, 1988). The precise mechanism of aberrant DNA methylation 

targeting in cell culture and cancer and how it differs from naturally occurring DNA 

methylation during aging is currently unknown. 
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number of enzymes have been discovered that fit the roles described above and 

provide a functional methylation system. DNMT1, DNMT2, DNMT3A, DNMT3B 

and DNMT3L have been identified as proteins containing a conserved 

methyltransferase domain (Figure 1.2) (Hermann et al., 2004). DNMTI is the 

mammalian maintenance methyltransferase and DNMT3A and DNMT3B are the de 

novo methyltransferases. DNMT2 and DNMT3L do not appear to function as DNA 

methyltransferases but may play other roles (Bestor, 2000b; Hermann et al., 2004). 
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DNMT catalytic motifs 
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Figure 1.2. The mammalian DNA methyltransferase family. 
Members of the mammalian DNMT family contain an N-terminal regulatory region and a C-
terminal catalytic region. The catalytic region shows strong homology to bacterial DNMTs, in 
particular the catalytic motifs indicated by roman numerals. Other key domains in the 
different proteins and labelled above the proteins and a number of key interaction sites 
labelled below them. The number of amino acids contained in the human proteins is listed on 
the right. 
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All the mammalian methyltransferases share a common catalytic domain at their C-

terminus and a regulatory domain at their N-terminus. This catalytic domain is 

similar to the prokaryotic methyltransferase domain and contains the 10 

methyltransferase motifs discussed earlier. The N-terminal regions of the 

methyltransferases, although structurally unconserved all contain regulatory regions 

involved in protein:protein interactions and targeting of the enzymes. 

1.2.2.1 DNMTI 

1.2.2.1.1 DNMT1 is a maintenance DNA methyltransferase 

DNMT1 was the first mammalian DNMT to be discovered and its major role is to 

fully methylate the hemimethylated CpGs produced during DNA replication (Bestor 

et al., 1988; Bestor, 2000b). DNMTI has been shown to preferentially bind and 

methylate hemi-methylated DNA in a processive manner in vitro (Bacolla et al., 

1999; Pradhan et al., 1999; Vilkaitis et al., 2005). DNMT1 showed a 5-30 fold 

preference for this substrate over a completely unmethylated one but also showed 

significant de novo activity indicating a potential role for DNMT1 in this process 

(Pradhan et al., 1999). Further in vivo evidence for a role of DNMT1 in maintenance 

methylation was the discovery of its association with the replication fork and 

interaction with PCNA (proliferating cell nuclear antigen), a major component of the 

replication machinery (Chuang et al., 1997; Leonhardt et al., 1992; Liu et al., 1998). 

This interaction is not solely responsible for it role in maintenance methylation 

however. Deletion studies of DNMT1 have shown that removal of the PCNA 

interaction region does not prevent DNMT1 actively maintaining methylation 

(Schermelleh et al., 2007; Spada et al., 2007). Recently, DNMTI has been shown to 

interact with a protein that specifically binds hemi-methylated DNA termed Uhrfl or 

Np95 (Bostick et al., 2007; Sharifet al., 2007). This interaction provides both further 

evidence for the role of DNMT1 in maintenance methylation and also an additional 

mechanism for DNMT1 targeting. 

Although the major proposed role of DNMT1 is in maintenance methylation, 

evidence exists for a role of DNMT1 in the de novo process. As mentioned above 
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DNMT1 shows de novo methyltransferase activity in vitro (Pradhan et al., 1999). In 

fact, when compared, the de novo activity of DNMT1 appears to be higher than the 

activity of the bona fide de novo enzymes, DNMT3A and DNMT3B (Okano et al., 

1998a). Further evidence for a potential role for DNMTI in de novo methylation 

comes from a study involving a cancer cell line genetically deficient for DNMT3A 

and DNMT3B (Jair et al., 2006). In this study, cell extract from cells lacking the de 

novo methyltransferases could efficiently methylate CGI DNA in vitro. It was also 

shown that DNMT1 could de novo methylate this DNA in Drosophila cell lines thus 

implying a role for DNMT1 in de novo DNA methylation in vivo (Jair et al., 2006). 

1.2.2.1.2 Role of DNMT1 in transcriptional repression 

The N-terminal regulatory region of DNMT1 contains a number of interesting 

domains involved in regulating its function and protein:protein interactions. This 

region contains a nuclear localisation signal (NLS), a charge rich domain that 

interacts with the DMAP1 transcriptional repressor, a PCNA interacting domain, an 

HDAC interacting region, DNMT3A and DNMT3B interacting domains, a domain 

required for targeting to replication foci and a cysteine-rich zinc finger (CXXC) 

implicated in DNA binding (Figure 1.2) (Hermann et al., 2004). Of particular interest 

is the role of DNMT1 in transcriptional repression. DNMT interacts with a number 

of chromatin modifying enzymes that act to repress transcription, including the 

histone deacetylases 1 and 2 (HDAC1 and 2), the H3K9 methyltransferase 

SUV391-1 1, heterochromatin protein 1, the de novo methyltransferase enzymes 

DNMT3A and 3B and the chromatin remodelling enzyme SNF2H (Fuks et al., 2000; 

Fuks et al., 2003; Kim et al., 2002; Rountree et al., 2000). DNMT1 has also been 

shown to interact with the E2F-Rb complex and repress E217 responsive genes 

(Robertson et al., 2000). Interestingly, in the above stiidies, the catalytic domain of 

DNMT1 was dispensable for transcriptional gene silencing indicating that the roles 

of DNMT1 as a transcriptional repressor and its role in maintenance methylation are 

distinct. 
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1.2.2.1.3 Genetic studies of DNMT1 

Four DNMT1 knockout models have been described; Dnmt1, Dnmtl', Dnmtl' and 

Dnmtl (Lei et al., 1996; Li et al., 1993; Li et al., 1992; Takebayashi et al., 2007). 

The first genetic study on Dnmtl involved the creation of the Dnmt1n mutant by 

disruption of the N-terminus of Dnmtl. This mutant had very low activity and 

homozygous ES cells had methyl-CpG levels decreased to around 30% of wt. 

Consistent with an essential role of DNA methylation in development, homozygous 

mice died around Eli (Li et al., 1992). A similar mutant termed Dnmtis  disrupts the 

region involved in targeting Dnmtl to replication foci. This mutant is more severe 

than Dnmtl', with homozygous mice dying earlier in development with less DNA 

methylation. Homozygous mice also show biallelic expression of imprinted genes 

and transcription from lAP repeats (Li et al., 1993). Two Dnmtl mutants specific to 

the catalytic domain of Dnmtl have also been generated to test the requirement of 

DNA methylation for embryonic development. Dnmtl' contains a disruption of the 

highly conserved methyltransferase motifs IV and VI. Homozygous mice have a very 

severe phenotype, with a 70% reduction of CpG methylation levels compared to 

wild type and embryonic lethality by E8.5 (Lei et al., 1996; Rarnsahoye et al., 

2000b). Homozygous embryos have subsequently been shown to exhibit imprinting 

and X inactivation maintenance defects due to hypomethylation of these sites (Sado 

et al., 2000). I earlier discussed studies that separated the role of Dnmtl as a 

transcriptional repressor and its role in methylating DNA. This raises the question, is 

lethality in these mutants is due to the loss of DNA methylation or the loss of a 

global transcriptional repressor? An interesting recent study has conclusively 

answered this question (Takebayashi et al., 2007). The Dnmtl' mutant contains a 

single amino acid point mutation at C1229 in the PCQ motif. Mutation of this 

cysteine residue has been previously shown to abolish methyltransferase activity of 

Dnmtl in vitro (Wyszynski et al., 1993). Importantly, mice homozygous for this 

mutant showed a similar phenotype to Dnmtl' homozygotes with near complete loss 

of DNA methylation and developmental arrest around E8.5 (Takebayashi et al., 

2007). These studies underline the critical importance of Dnmtl and CpG 

methylation to mouse development. 
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1.2.2.2 Dnmt2 

The dnmt2 gene is conserved in eukaryotes that have a functional DNA methylation 

system, but also those that lack one such as Schizzosaccharomyces pombe. Dnmt2 is 

distinct from the maintenance and de novo methyltransferases in that it contains no 

N-terminal regulatory region, just the catalytic domain (Figure 1.2). Dnmt2 shows 

only very weak methyltransferase activity in vitro with a substrate preference for 

CpG (Hermann et al., 2003). The structure of Dnmt2 has been solved in complex 

with S-adenosyl-L-homocysteine and it shows structural conservation of the 

methyltransferase motifs indicative of a potentially active enzyme (Dong et al., 

2001). ES cells null for Dnmt2 are viable and maintain normal levels of DNA 

methylation (Okano et al., 1998b). Two studies have outlined potential roles for 

Dnmt2. The first study analysed the function of Dnmt2 in Drosophila and showed 

that siRNA knockdown led to complete loss of DNA methylation as measured by an 

a-m5C antibody (Kunert et al., 2003). They further found over expression of Dnmt2 

led to an increase in methylation at CpA and CpT dinucleotides, suggesting a role for 

Dnmt2 as a CpA/T methyltransferase in vivo. Another, recent study looked at the role 

of Dnmt2 in mouse. Using a combined genetic approach they identified tRNAASP  as a 

in vivo target of Dnmt2 (Goll et al., 2006). As this study used a Dnmt2 null mouse 

that showed no obvious phenotype the functional significance of this modification is 

currently unknown. 

1.2.2.3 De novo DNA methyltransferases 

The Dnmt3 enzymes were identified in mouse and human of EST database searches 

by their homology to bacterial methyltransferases (Okano et al., 1998a). The 2 

proteins Dnmt3a and Dnmt3b are highly homologous to each other and contain an N-

terminal regulatory region and a C-terminal catalytic domain (Figure 1.2). Their 

catalytic domains are only distantly related to that of Dnmtl and may have been 

acquired from a different ancestor (Okano et al., 1998a; Xie et al., 1999). The 

presence of residual methylation and de novo methyltransferase activity in Dnmt ls 

and Dnmtic  knockout mouse models implicated these genes as de novo 

methyltransferases. Indeed, when expressed and purified from bacteria or from 

baculovirus infected insect cells these proteins were found to methylate CpG without 
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preference for hemimethylated DNA, thus these enzymes were assigned de novo 

methyltransferases (Gowher and Jeltsch, 2001; Okano et al., 1998a; Suetake et al., 

2003). Their mechanism of methylation differs however, with Dnmt3a being 

distributive but Dnmt3b being processive (Gowher and Jeltsch, 2002). An ability to 

methylate non CpGs was also detected but the significance of this is unknown 

(Ramsahoye et al., 2000a). Several studies have shown that these enzymes are also 

able to de novo methylate in vivo. Firstly, Dnmt3a and Dnmt3b are highly expressed 

during the early developmental stages and is it at this time that most de novo 

methylation occurs (Okano et al., 1999; Okano et al., 1998a). Secondly, when over 

expressed in murine ES cells, Dnmt3a and Dnmt3b but not Dnmtl were able to 

methylate a stable episomal target (Hsieh, 1999). Thirdly, when expressed in 

Drosophila, Dnmt3a but not Dnrntl could introduce DNA methylation to the 

genome, resulting in lethality (Lyko et al., 1999). Finally, disruption of Dnmt3a and 

Dnmt3b genes in mouse ES cells leads to a gradual loss of DNA methylation that can 

be rescued by transfection of Dnmt3a or Dnmt3b but not Dnmtl (Chen et al., 2003; 

Jackson et al., 2004). This final interesting result also indicates that Dnmtl alone is 

not sufficient for maintenance methylation and Dnmt3a and Dnmt3b also play a role. 

This is supported by a number of studies that have shown maintenance methylation 

by Dnmtl to have an error rate of around 4% per cell division (Laird et al., 2004; 

Riggs et al., 1998; Silva et al., 1993). Together, these results indicate that Dnmt3a 

and Dnmt3b are de novo methyltransferases that also have a role in maintenance 

methylation. 

1.2.2.3.1 Role of Dnmt3a and Dnmt3b in gene repression 

The N-terminal regions of Dnmt3a and Dnmt3b both contain 2 highly conserved 

domains, a PWWP domain and a cysteine rich plant homeobox domain (PHD) 

(Figure 1.2). The PWWP domain is found in many chromatin binding proteins and is 

named after a Pro-Trp-Trp-Pro motif. The PWWP motif found in Dnmt3a and 

Dnmt3b is required for targeting the proteins to chromatin (Chen et al., 2004; Ge et 

al., 2004). Disruption of these domains leads to a loss of association of the enzymes 

with heterochromatin and is required for rescuing DNA methylation at these sites in 

Dnmt3a/Dnmt3b KO ES cells (Chen et al., 2004). The role of this domain in 
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associating the proteins with heterochromatin is not clear but the PWWP domain of 

Dnmt3b can bind DNA in vitro suggesting this may have a role (Chen et al., 2004). 

The cysteine-rich PHD zinc finger domain is similar to the PHD-like domain in the 

chromatin remodelling enzyme ATRX. This domain is characterised by a conserved 

cysteine rich zinc-binding motif and is found mainly in proteins that regulate 

eukaryotic transcription. Its function is to regulate protein:protein interactions and in 

Dnmt3a and Dnmt3b its is required for interactions with a host of repressive 

chromatin modifying enzymes and associated repressors such as RP58, HP!, HDACs 

1 and 2, SUV39H1 and SNF2h (Bachman et al., 2001; Fuks et al., 2001; Geiman et 

al., 2004a). The PWWP domain of Dnmt3a and Dnmt3b is also sufficient to repress 

transcription in a HDAC dependant manner (Bachman et al., 2001; Fuks et al., 2001; 

Gelman et al., 2004a). Similar to Dnmtl, the catalytic domains of Dnmt3a and 

Dnmt3b are dispensable for this. In addition to these interactions both Dnmt3a and 

Dnmt3b interact with Dnmtl suggesting a dual and combined role for the proteins of 

the de novo and maintenance methyltransferase families (Kim et al., 2002). 

1.2.2.3.2 Genetic studies of Dnmt3a and Dnmt3b 

Mice with targeted disruption of the Dnmt3a and Dnmt3b genes revealed the 

enzymes have non-overlapping roles in development (Okano et al., 1999). Dnmt3a - 

/- mice developed to term and appeared normal at birth. At around 4 weeks of age 

however, the mice became runted and died. Dnmt3b mutant mice however develop 

normally until E9.5 but die around E13.5 with multiple developmental defects 

including growth impairment and neural tube defects. The Dnmt3a/Dnmt3b double 

mutant has an even more severe phenotype and dies before El 1.5 (Okano et al., 

1999). 

Comparisons of the three mutants before they died (E9.5) also indicated their distinct 

roles in establishing DNA methylation. Interestingly, it was shown that Dnmt3b is 

almost solely required for methylation of the minor satellite repeats. Methylation of 

these repeats was as low in the Dnmt3b mutant as the double mutant and not affected 

in the Dnmt3a mutant. Strikingly, this loss of methylation correlates with the loss of 



methylation at pericentromeric satellite regions observed in the human autosomal 

recessive condition ICF (immunodeficiency, centromeric instability, facial 

abnormalities). ICF is caused by mutations in the human DNMT3B gene (Xu et al., 

1999). 

Observations of DNA methylation patterns in Dnmt3 mutant ES cells confirmed the 

effects seen in mice (Chen et al., 2003). Progressive loss of DNA methylation at 

various repeats and single-copy genes was observed in these cells that could be 

differentially rescued using different Dnmt3s. While both enzymes could rescue 

methylation at pMO and lAP repeats equally well Dnmt3a was more efficient at 

rescuing the major satellite and Dnmt3b the minor satellite (Chen et al., 2003). In 

addition, Dnmt3a but not Dnmt3b could rescue methylation at two out of five 

imprinted genes investigated (Chen et al., 2003). Further evidence for distinct roles 

of Dnmt3a and Dnmt3b came from a conditional knockout of the enzymes in germ 

cells (Kaneda et al., 2004). Offspring from the Dnmt3a conditional mutant females 

died around E10.5 and lacked methylation of maternal but not paternal imprints. 

Dnmt3a conditional males had impaired sperrnatogenesis and lacked methylation at 

two out of three paternally imprinted loci in spermatogonia. Contrastingly, Dnmt3b 

conditional mutants and their offspring showed no apparent phenotype and 

maintained their imprints. Interestingly, the phenotype of the Dnmt3a conditional 

mutant was virtually indistinguishable from that of Dnmt3L suggesting a key role for 

Dnmt3a/Dnmt3L but not Dnmt3b in imprinting. 

1.2.3.3 Dnmt3L 

Dnmt3L shows homology to Dnmt3a and Dnmt3b but is truncated at both N and C 

termini. It lacks the catalytic motifs VIII and X and most of the regulatory domain, 

only the PHD-like domain remains intact (Aapola et al., 2001; Hata et al., 2002) 

(Figure 1.2). The absence of the catalytic motifs and mutations in many of the other 

key residues means this proteins is catalytically inactive (Chedin et al., 2002). The 

protein does, however play a role in DNA methylation as disruption of the Dnmt3L 

gene leads to a loss of DNA methylation at maternal imprints in mice (Hata et al., 

2002). Also, like Dnmt3a, Dnmt3L is required for proper spermatogenesis as its loss 
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leads to meiotic failure (Bourchis and Bestor, 2004; Webster et al., 2005). These 

studies strongly suggest a functional interaction between Dnmt3a and Dnmt3L. 

Several experiments have shown that Dnmt3L acts as a co-factor of de novo 

methyltransferases, in particular Dnmt3a. Initial in vivo studies showed that over 

expressed Dnmt3a and Dnmt3b co-immunoprecipitate and co-localise with Dnmt3L 

(Hata et al., 2002). Dnmt3L has subsequently been shown to have a stimulatory 

effect on de novo methylation at episomal and endogenous targets in ES cells 

(Chedin et al., 2002; Chen et al., 2005; Nimura et al., 2006). Subsequent in vitro 

experiments with Dnmt3L have been quite revealing about its role in DNA 

methylation. Dnmt3L has been shown to bind to and stimulate the activities of 

Dnmt3a and Dnmt3b by up to 15 fold but has no effect on Dnmtl (Gowher et al., 

2005a; Suetake et al., 2004). The stimulatory effect of Dnmt3L involves a direct 

interaction between the catalytic domains of the enzymes. This interaction does not 

affect the binding of Dnmt3a or Dnmt3b to DNA but increases the binding affinity of 

SAM (Gowher et al., 2005a; Kareta et al., 2006). Recent structural studies have 

further clarified the role of Dnmt3L in stimulating Dnmt3a (Jia et al., 2007). This 

study revealed that Dnmt3L and Dnmt3a forrn a heterotetramer structure with 2 

active sites. Dnmt3L appears to stabilise the confirmation of the active-site loop of 

Dnmt3a by interacting with the C-terminal portion of it. This loop stabilisation may 

explain the stimulatory activity of Dnmt3L (Jia et al., 2007). 

1.2.3.4 Targeting de novo methyltransferases 

The targeting of de novo methyltransferases to specific gene loci can be envisaged to 

occur in one and/or two ways. Firstly, the DNMT could bind to another molecule 

which directs it to its target via DNA sequence or chromatin signature. As previously 

mentioned the PWWP domain of Dnmt3a associates with the transcriptional 

repressor RP58 and can act as a co-repressor (Fuks et al., 2001). This mechanism 

however is not dependent on the catalytic domain of Dnmt3a and DNA methylation 

of these sites was not shown. Recently the Dnmt3a interacting partner Dnmt3L has 

been strongly implicated in its targeting. Dnmt3L has been shown to bind H3 

peptides in vitro with the association completely lost upon di or tri methylation of 
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H3K4 (Ooi et al., 2007). Co-crystal structures of Dnmt3L in complex with H3 1-24 

showed recognition of the peptide via the PHD domain of Dnmt3L. Steric occlusion 

of the interaction between aspartic acid 90 in DNMT3L and methyl-lysine 4 of 

histone H3 regulates this interaction (Ooi et al., 2007). This study strongly implicated 

Dnmt3L in targeting Dnmt3a to sites lacking H3K4me. As Dnmt3L also stimulates 

the activity of Dnmt3a it may perform a dual role as a targeting and activating factor 

(Jia et al., 2007). 

Alternatively, Dnmt3a and/or Dnmt3b may possess a substrate preference. Analysis 

of CpG methylation sites in human genome have shown a preference for meCpG to 

occur when it is flanked by a pyrimidine (C or T = Y) 5' and a purine (A or G = R) 

3' (YCGR) (Handa and Jeltsch, 2005). When tested in vitro, this consensus sequence 

was methylated at a -13 fold higher rate by Dnmt3a and Dnmt3b than a non 

consensus sequence (RCGY). This sequence preference cannot explain the 

differential targeting of Dnmt3a and Dnmt3b however, as both exhibited the same 

sequence preference in vitro (Handa and Jeltsch, 2005). Further sequence specificity 

for Dnmt3a has been implied from its co-crystal structure with Dnm3L (Jia et al., 

2007). As mentioned above this structure revealed a heterotetramer structure 

containing 2 active sites. Further biochemical analysis showed that Dnmt3a 

preferentially methylated CpG sites with lObp periodicity in vitro. Interestingly, the 

CGIs of 12 known maternally methylated DMRs show an average CpG periodicity 

of lObp (Jia et al., 2007). In contrast 3 paternally methylated DMRs and 10 randomly 

selected unmethylated CGIs do not show the same CpG periodicity. Together these 

data imply that for Dnmt3a, targeting may be achieved through recognition of 

unmethylated H3K4 at CGIs containing a particular CpG consensus and spacing 

(Handa and Jeltsch, 2005; Jia et al., 2007; Ooi et al., 2007). 

1.2.3 DNA methylation in disease 

DNA methylation is implicated in human carcinogenesis in at least 3 distinct ways 

that will now be discussed. The first is the enhanced mutability of meSC that leads to 

C to T transition mutations at CpG sites. The second is the role of DNA 

hypomethylation in genomic instability. The third is the inappropriate silencing of 
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tumour suppressor genes via methylation of CpGs in their promoters. I will look at 

these 3 issues separately, focusing particularly on the role of promoter methylation 

and how it may be aberrantly targeted. 

1.2.3.1 Increased mutability of meCpG 

The human genome is strikingly deficient in CpG dinucleotides due to the 

spontaneous deamination of me5C to T (Shen et al., 1994). This spontaneous 

mutation is often not properly corrected by DNA repair enzymes and can become a 

heritable TpG mutation, thus depleting the genome of CpG. The consequences of 

unrepaired me5C/T transitions may include mutations important for cancer 

progression. The p53 tumour suppressor gene is a particularly interesting and well 

studied example of the impact of me5C/T transitions. Around 50% of all cancers 

have a mutation in the p53 gene and over 290 of the 393 codons in p53 have been 

reported to harbour mutations. 25% of mutations in p53 occur at CpG sites which are 

heavily methylated in all human tissues examined so far (Pfeifer et al., 2000). In fact, 

methylated CpGs are the most important mutational target in p53 and 5 major 

mutational hotspots (codons 175, 245, 248, 273 and 282) contain meCpG. The role 

of me5C/T transitions in p53 mutagenesis is not restricted to spontaneous 

deamination. Several mutagenic agents such as UV and benzo[a]pyrene which is 

found in tobacco smoke have been shown to preferentially cause mutations at 

meCpG sites in p53 (Denissenko et al., 1997; Denissenko et al., 1996; Pfeifer et al., 

2000). Thus meCpG plays a major role in DNA mutagenesis through enhanced 

spontaneous deamination and increased mutability by DNA reactive molecules. 

1.2.3.2 Genome wide hypomethylation 

The genomes of human cancers tend to be hypomethylated compared to normal cells 

(Feinberg and Vogelstein, 1983; Gama-Sosa et al., 1983). Although this fact is often 

used simply as a biomarker of cancer it is possible that it plays a role in 

tumourogenesis as well (Manel Esteller, 2002; Moore et al., 2008). Genomic 

hypomethylation could be implicated in tumourogenesis in 3 ways; by inducing 

chromosomal instability, reactivation of transposable elements, and leading to loss of 

imprinting. Direct evidence of DNA hypomethylation leading to human cancers via 



these three mechanisms is currently lacking. However, genetic studies in mice 

carrying hypomorphic alleles of Dnmtl have shown that DNA hypomethylation 

leads to genomic instability and turnourogenesis. Also, studies crossing mice 

carrying hypomorphic Dnmtl alleles to the tumour susceptible ApcM+  background 

showed inhibition of intestinal tumourogenesis but increased numbers of liver 

tumours. Together these studies strongly implicate DNA hypomethylation as a 

causative agent of cancer (Eden et al., 2003; Gaudet et al., 2003). 

1.2.3.3 Promoter methylation 

As previously discussed the promoters of many human genes contain CpG rich 

islands that tend to be unmethylated in normal tissues. Aberrant hypermethylation of 

the promoters of tumour suppressor genes is one of the most frequent causes of gene 

function loss in cancer (Jones and Baylin, 2002). It is nearly as common as genetic 

mutations and is responsible for silencing genes such as pI6 in melanoma, RBI in 

retinoblastoma, APC in colorectal cancer and VHL in renal-cell carcinomas (Jones 

and Baylin, 2002). In these cases promoter hypermethylation can account for at least 

one of the two 'hits' required by Knudson's two hit hypothesis for tumour suppressor 

inactivation (Knudson, 1971). Interestingly, promoter hyperrnethylation is thought to 

be able to account for either of the 2 inactivating hits. The mismatch-repair gene 

MLHJ (mutL homologue 1, colon cancer, non-polyposis type 2) often shows 

promoter methylation in sporadic tumours with microsatellite instability. Promoter 

methylation has been implicated as a 'first hit' event as in the normal colonic 

epithelium of patients with colorectal cancer, the promoter of MLH] has also been 

found to be methylated. This indicates that in this case promoter methylation may be 

responsible for the first inactivating hit that is later followed by another mutational 

event (Herman et al., 1998; Nakagawa et al., 2001). It has also been reported that in 

many cases of familial cancer, promoter hypermethylation can account for the 

'second hit' and that it only occurs at the wild type allele (Esteller et al., 2001). 

There are several reasons why promoter methylation is such an important and 

common inactivation mechanism. Firstly, inactivation of a gene by promoter 

methylation appears to be equivalent to loss of function via a coding region mutation. 
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For example methylation of the p16 promoter results in near complete transcriptional 

block and an effectively null allele (Merlo et al., 1995). Secondly, promoter 

methylation is fully heritable through the actions of Dnmtl. This stable inheritance of 

promoter methylation is observed in the colon cancer cell line HCT 116 (Myohanen 

et al., 1998). This cell line has one mutated and one wildtype allele of p16. The 

promoter of the wild-type allele is stably and selectively hypermethylated and 

silenced. Thus promoter hypermethylation is effective because it can lead to 

complete, heritable loss of function of tumour suppressor genes. 

How aberrant promoter methylation is targeted is not currently clear. It may be a 

completely random event followed by growth selection or due to specific targeting 

via currently unknown mechanisms. A number of studies have provided tentative 

evidence for targeting of promoter methylation during cancer. For instance, specific 

groups of genes tend to be methylated in colorectal cancers leading to the 'CpG 

island methylator phenotype' (CIMP) (Toyota et al., 1999; Weisenberger et al., 

2006). Also, during progression of a T/natural killer acute lymphoblastic leukaemia 

mouse model, specific genomic methylation does not appear to be random (Yu et al., 

2005). Furthermore, it has recently been reported that stem cell PcG targets are 20-

fold more likely to have cancer specific promoter methylation than non targets (Ohm 

et al., 2007; Schlesinger et al., 2007; Widschwendter et al., 2007). Together, these 

data indicate that promoter methylation in cancer may be a directed event, possibly 

via pre-existing repressive chromatin marks. Alternatively, it is possible that gene 

silencing via other mechanisms such as PcG merely 'predispose' promoters to 

methylation in cancer. In this case, DNA methylation follows inactivation by another 

mechanism and is therefore correlated with tumourogenesis but not causative of it. 
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1.3 Chromatin remodelling 

The organisation of DNA and histories into chromatin provides an important role in 

compacting long stretches of DNA into tiny nuclei. This compact structure however 

affects the accessibility of DNA to the proteins that act on it. Thus in order for the 

proteins involved in transcription, replication, repair and recombination to access 

DNA, this barrier must be overcome. There are 2 recognised pathways for transiently 

facilitating accessibility to the genome. The first is the posttranslational modification 

of histone tails at numerous residues by proteins or protein complexes. The second is 

the modulation of histone:DNA interactions by ATP hydrolysing protein machines. 

Both of these processes are highly dynamic, functionally linked and influence 

chromatin accessibility both positively and negatively (Narlikar et al., 2002). This 

section will briefly discuss the influence of chromatin modifications to different 

chromatin related processes before discussing the roles and mechanisms of ATP 

dependant chromatin remodelling in more depth. 

1.3.1 Chromatin remodelling by histone modification 

The N-terminal tails of histories are the targets of several different classes of 

posttranslational modification of which methylation, acetylation and phosphoiylation 

are the best characterised (Kouzarides, 2007). The roles of these modifications are to 

disrupt the local chromatin environment and/or recruit other proteins. Thus histone 

modifications are able to influence the biological processes inhibited by chromatin 

inaccessibility. 

1.3.1.1 Disruption of chromatin structure by histone modifications 

Chromatin structure can be disrupted by histone modifications affecting the contact 

between different histories or the interaction between histories and DNA. Lysine 

acetylation has the most potential to influence chromatin structure as it neutralises 

the basic charge of lysine. A number of studies have shown that internucleosomal 

contacts between the N-terminal tail of H4 and an acidic patch in 1-12A are required 

for higher order chromatin compaction (Dorigo et al., 2003; Dorigo et al., 2004). Due 
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to the neutralising effect of lysine acetylation it would be predicted that this 

modification would inhibit this interaction. In fact, biophysical studies on 

recombinant nucleosome arrays have directly addressed this expectation. Using 

chemical ligation to construct core histories with modified tail peptides, it has been 

possible to show that H4K16 acetylation directly inhibits formation of 30nm 

chromatin fibres and higher order chromatin structures (Shogren-Knaak et al., 2006). 

Thus modification of this specific histone tail residue is able to directly impact higher 

order chromatin structure. Thus far this is the only histone modification shown to be 

a direct effector of chromatin structure but others may yet to be discovered. 

1.3.1.2 Recruitment of proteins by histone modifications 

The second way histone modifications can influence chromatin structure is through 

recruitment or exclusion of non-histone proteins that recognise modification via 

specific domains. For example methylation is recognised by chromo-like domains 

and PHD domains, acetylation by bromodomains and phosphorylation by a domain 

in 14-3-3 proteins (Kouzarides, 2007). These domains are found in a number of 

proteins that are recruited to specific modifications and influence chromatin function 

and structure. One well characterised example is the chromodornain of HP1 that 

specifically binds di and tri methylated H3K9 (Bannister et al., 2001; Jacobs and 

Khorasanizadeh, 2002). This interaction has been shown to be required for HP1 

localisation to heterochromatic regions and its transcriptional silencing ability 

(Bannister et al., 2001; Nakayama et al., 2001; Platero et al., 1995). Once recruited, 

HP 1 can influence chromatin structure through interactions with a host of other 

chromatin modifying enzymes such as Dnmtl, Dnmt3b and the H3K9 

methyltransferase Suv39hl. HP1 can also dimerise, thus potentially directly 

influencing chromatin structure via internucleosomal contacts (Maison and 

Almouzni, 2004). A number of recent studies have shown the importance of methyl-

lysine recognition by PHD domain containing proteins in influencing chromatin 

structure. For example the NURF chromatin-remodelling complex subunit BPTF 

recognises H3K4me3 via a PHD domain (Li et al., 2006a; Wysocka et al., 2006). 

This interaction is believed to recruit the SNF2L ATPase to activate expression of 

the HOXC8 gene (Li et al., 2006a; Wysocka et al., 2006). H3K4me3 recognition by 
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PHD domain containing proteins can also lead to gene repression. For example, the 

PHD domain containing protein ING2 recruits the repressive deacetylase complex 

Sin3a-HDAC1 to the cyclinDi promoter and silences it (Pena et al., 2006; Shi et al., 

2006). Thus the actual effect on chromatin does not depend on the recognition 

domain, rather the proteins that interact with it. 

Histone modifications can also have a negative effect on Protein:histone interactions. 

H3K4 methylation for instance has been shown to inhibit binding of the repressive 

NuRD complex to chromatin thus facilitating transcription (Nishioka et al., 2002). 

H3K4 methylation has also been shown to disrupt the binding of the PHD domain of 

Dnmt3L to histone tails, perhaps indicating a mechanism to protect actively 

transcribed genes from inappropriate DNA methylation (Ooi et al., 2007). Another 

interesting example of this phenomenon is the methylation of H3R2. This 

modification has been found at transcriptionally inactive regions of the genome and 

inhibits the binding and function of the H3K4 methyltransferase MLL (Guccione et 

al., 2007; Kirmizis et al., 2007). 

The prevalence of modification sites on histone tails makes it very likely that several 

modifications may occur on each tail concurrently. These modifications could then 

influence the binding of chromatin modifying proteins. A number of examples of this 

so called 'crosstalk' have been identified. As discussed above H3K9 methylation 

recruits HP1 to chromatin. This interaction is lost during mitosis, but H3K9 

methylation is not (Fischle et al., 2005; Hirota et al., 2005). Recent work has 

identified phosphorylation of H3S1O as a key modification regulating this 

interaction. When H3S1O is phosphorylated by Aurora B, the interaction between 

HP! and H3K9me3 is lost (Fischle et al., 2005; Hirota et al., 2005). Thus 

combinations of histone modifications can differentially affect protein recruitment 

and the downstream effects of them. 

1.3.2 ATP dependant chromatin remodelling 

Chromatin structure can also be altered by a family of enzymes that use the energy 

derived from ATP hydrolysis to directly modulate histone:DNA interactions. This 
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family of genes was originally identified as a result of genetic screens for genes 

involved in regulating mating type switching (SWI) and sucrose fermentation 

(Sucrose Non-Fermenting). One of the mutants was found to be complemented by 

the protein Snf2p which was subsequently found to be the catalytic core of the multi-

subunit SWI/SNF complex (Abrams et al., 1986). Since then, many proteins have 

been identified that are related to Snf2p through sequence similarity. Enzymes of this 

family tend to reside in large protein complexes and are involved in a wide range of 

processes including transcription, DNA repair, recombination, replication and 

chromatin assembly (Narlikar et al., 2002). These enzymes use the energy from ATP 

hydrolysis to disrupt the binding of DNA around histones. This in turn facilitates the 

repositioning of nucleosomes to a new translational position or the eviction of the 

histone octamer (Flaus and Owen-Hughes, 2004). The change in nucleosornal 

positioning and/or density is believed to lead to local changes in chromatin structure. 

1.3.2.1 The SNF2 family of chromatin remodelling enzymes 

Although functionally diverse, all of these enzymes contain a core SNF2 ATPase 

region homologous to the large helicase superfamily 2 (SF2) (Eisen et al., 1995; 

Flaus and Owen-Hughes, 2004) (Figure 13A). In particular, SNF2 ATPases share 

the seven conserved sequence motifs common to the SF2 superfamily of helicases. 

These are labelled sequentially I, la, II, III, IV, V and VI and cluster in a region 400 

amino acids in length (Bork and Koonin, 1993; Eisen et al., 1995). These helicase 

motifs are the core ATPase domains involved in binding to DNA and binding and 

hydrolysing ATP (Figure 1.313). Although the overall structure of the helicase 

domains is conserved throughout the SF2 superfamily, SNF2 family members have 

some distinguishing features. In particular, the helicase domain is significantly 

longer than in other S172 helicases due to increased spacing between helicase motifs 

III and IV (Flaus et al., 2006). Interestingly, this linker region contains a number of 

amino acid blocks conserved throughout the SNF2 family (Flaus et al., 2006) (Figure 

1.313).  As this feature is so highly conserved it is likely to confer unique properties to 

the ATPase motor of SNF2 enzymes. 



SNF2 remodelers can be split into at least 4 classes based on sequence homology of 

the ATPase core: SWI2/SNF2, ISWI, NuRD/Mi-2/CHD and 1N080/SWR1 (Cairns, 

2007; Eisen et al., 1995; Flaus et al., 2006) (Figure 1.3A). Other classes such as 

Rad54 also exist but these are more distantly related to the others and exhibit 

divergent activities (Flaus et al., 2006). Homology of the core ATPase domains is 

also linked to additional domains found within the different classes of enzyme. Most 

chromatin remodelling enzymes are found in multisubunit complexes containing 

additional proteins involved in targeting the complexes to chromatin and modulating 

their activities (Narlikar et al., 2002) (Figure 1.3C). 

1.3.2.1.1 The SWI2/SNF2 class 

The SWI2/SNF2 class consists of the enzymatic cores of a number of large stable 

multisubunit complexes. These include the yeast mating-type switching/sucrose non-

fermenting (SWI2/SNF2) and STH 1 proteins that are members of the SWI/SNF and 

RSC (restructure of chromatin) complexes respectively (Cairns et al., 1996). The 

human hBrm (Brahma) and Brg 1 (Brahma related gene) proteins are alternative 

catalytic subunits of the hSWI/SNF complex and Brm is the core of Drosophila 

dSWI/SNF (Elfring et al., 1994; Kim et al., 2002). In addition to the conserved 

ATPase domain SWI2/SNF2 enzymes contain a bromodomain at their C-terminus 

(Figure 1.3C). Bromodomains recognise acetylated lysines and in the case of 

SWI2/SNF2 is required for stable association with a target promoter (Hassan et al., 

2002). SWI2/SNF2 enzymes have a wide range of in vivo functions including 

transcriptional regulation, cell cycle progression, immune responses, chromosome 

segregation and DNA repair (Chi, 2004; Moshkin et al., 2007). In vitro, enzymes of 

this class can bind hyper acetylated nucleosomes in correlation with their in vivo 

function in transcriptional activation. They also exhibit DNA translocase and 

chromatin remodelling activities (Narlikar et al., 2002). 
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Figure 1.3. The SNF2 family of chromatin remodelling enzymes. 
The SNF2 family of chromatin remodelling enzymes is a member of the larger, SF2 

superfamily. This family can be further subdivided in to classes, of which five are shown. The 
red line follows the different classes through their classification. 

Illustration of the seven conserved helicase motifs defined by Gorbalenya and Koonin 
indicated by roman numerals. The letters within the boxes indicate the conserved amino 
acids found in these motifs. The two RecA like domains are labelled alongside their 
ENSEMBL classification. Note the extended linker region that links the two RecA like 
domains. Boxes coloured red denote motifs involved in ATP binding and hydrolysis, the blue 
box denotes the motif involved in binding DNA. 

Diagram of the protein complexes in which a number of SNF2 enzymes of three different 
classes reside. Figure adapted from (Narlikar et al., 2002). 

1.3.2.1.2 The ISWI class 

Members of the ISWI (Imitation Switch) class are the core ATPases of a number of 

different complexes. In yeast the proteins ISWI and ISW2 are found in the ISWI and 

ISW2 complexes respectively. The human ISWI homologue hSNF2h is found in a 

number of different complexes including hACF (ATP-utilizing hromatin assembly 

and remodeling factor), hCHRAC (chromatin-accessibility complex) and NoRC 

(Poot et al., 2000; Strohner et al., 2001). The Drosophila ISWI is also found in 

several complexes including NURF (nucleosome-emodeling factor), CHRAC and 

ACF (Ito et al., 1997; Tsukiyama et al., 1995; Tsukiyama and Wu, 1995; Varga-

Weisz et al., 1997). Members of the ISWI class contain 2 SANT domains, one of 

which facilitates binding to histones (Boyer et al., 2002) (Figure 1.3C). ISWI class 

members are involved in transcription, DNA replication through heterochromatin, 

chromatin assembly and Wnt signalling (Corona and Tamkun, 2004). Purified 

enzymes of this class are able to assemble nucleosomes in an ATP independent 

manner in vitro. They are also able catalyse the formation of regularly spaced 

nucleosomal arrays and facilitate transcriptional activation (Langst and Becker, 

2001; Langst et al., 1999). 

1.3.2.1.3 The NuRD/Mi-2/CHD class 

NuRD/Mi-2/CHD class members are components of complexes such as human and 

Drosophila NuRD (nucleosome remodelling and deacetylation). NuRD is a large 

complex that includes transcriptional repressors and co-repressors such as HDACs 
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and MBD proteins. The catalytic members of this family contain additional PHD 

fingers and CHD domains that are required for protein-protein interactions and 

complex formation (Zhang etal., 1998) (Figure 1.3C). The in vivo function of NuRD 

is transcriptional repression which in turn regulates development (Bowen et al., 

2004; Le Guezennec et al., 2006). In agreement with its in vivo role, the NuRD 

complex deacetylates chromatin and promotes the formation of regularly spaced 

nucleosomal arrays in vitro (Tong et al., 1998; Zhang et al., 1998). 

1.3.2.1.4 1N080/SWR1 

The 1N080/SWR1 family consists of 'split ATPases' which have an insertion 

between their ATPase domains. Out with the catalytic domains, these proteins show 

no homology to other SNF2 family members. IN080 is found in a large multisubunit 

complex in yeast, Drosophila and mammals. The N-terminal domains of 1N080 

interact with other proteins in the IN080 complex in yeast (Shen et al., 2000; Shen et 

al., 2003). This complex is involved in a number of remodelling processes such as 

transcription, recombination and DNA repair. It also has ATP-dependent nucleosome 

mobilisation activity in vitro (Bao and Shen, 2007). SWR1 is also found in large 

complexes in a number of species. These complexes are involved in a number of 

processes including deposition of histone H2AZ at sites of active transcription, 

chromosome stability and cell-cycle checkpoint adaptation. In vitro, SWR1 can 

catalyse histone dimer exchange of H2A-H2B for H2AZ-H2B (Mizuguchi et al., 

2004). 

1.3.2.2 Roles of the additional subunits present in SNF2 protein complexes 

Most tested SNF2 enzymes have remodelling activities out with the complexes they 

are found in raising questions as to the roles of the other complex members. It can be 

envisaged that these proteins act either to target the complex to chromatin, or to 

modulate its activity. 

1.3.2.2.1 Targeting chromatin remodelling complexes 

Chromatin remodelling complexes can be targeted via recognition of histone 

modifications by recognition domains within the proteins as mentioned above. They 
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can also be targeted to chromatin via interactions with sequence specific transcription 

factors. For example the Snf5, Swi 1, and Swi2/Snf2 subunits of yeast SWI/SNF have 

been shown to interact with the yeast activators Gcn4 and Hap4 in a redundant 

manner targeting the complex to chromatin (Neely et al., 2002). The murine 

SWI/SNF complex is also indirectly targeted via Baf60c. This protein has also been 

shown to be required for Brgl interaction with cardiac transcription factors, and loss 

of Baf60c leads to defects in heart morphogenesis (Lickert et al., 2004). Another 

mammalian SWI/SNF complex PBAF is believed to be directly targeted via a 

specific component termed BAF200. This protein has a number of zinc fingers and is 

believed to specifically target PBAF to a subset of interferon inducible genes (Yan et 

al., 2005). Other chromatin remodelling enzymes are directly recruited by repressor 

proteins. For example ISWI is recruited to the PH08 promoter by Cbflp where it 

represses transcription by causing dissociation of TBP (Moreau et al., 2003). Another 

ISWI enzyme ISW2 is recruited to repress early meiotic genes by the sequence 

specific transcription factor Ume6 (Goldrnark et al., 2000). Thus the composition of 

different chromatin remodelling complexes can play a role in directly or indirectly 

targeting them to specific genomic loci. 

1.3.2.2.2 Modulating remodeler activities 

Another function of additional subunits present in chromatin remodelling complexes 

is modulation of the ATPase activity. This is best understood in the ISWI containing 

complexes where the additional subunits affect both the efficiency and outcome of 

remodelling. For example, the ISWI complexes ACF and CHRAC, which both 

contain Acfl show enhanced ability to mobilise histone octamers than ISWI alone 

(Langst et al., 1999). Interestingly the presence of Acfl also alters the product of the 

remodelling reaction. On its own ISWI moves nucleosomes to the end of the DNA 

fragment used for analysis, but in the presence of Acfl it positions nucleosomes at 

the centre of the DNA fragment (Langst et al., 1999). Another ISWI complex, NURF 

has yet another reaction outcome, where nucleosomes are moved to an intermediate 

position. This is dependant on the NURF301 subunit in this complex (Hamiche et al., 

1999). Thus in the case of ISWI different interacting partners can lead to entirely 

different reaction outcomes. A possible explanation for these differences is that 
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additional subunits may act to stabilise energetically unfavourable products, such as 

centrally positioned nucleosomes. Additionally, it has recently been shown that ACF 

activity is sensitive to the length of DNA flanking nucleosomes. The remodelling 

activity of the enzyme decreases as the length of flanking DNA decreases. This 

sensitivity drives ACF1 to reposition nucleosomes to a central position as this 

positioning gives rise to dynamic equilibrium (Yang et al., 2006). Monomeric ISWI 

does not show the same sensitivity and thus does not provide the same reaction 

outcome. 

1.3.2.3 Mechanisms of ATP dependant chromatin remodelling 

Although SNF2 enzymes vary functionally, they are all molecular motors that utilize 

ATP hydrolysis to rearranging the histone:DNA contacts within a nucleosome. 

Several biochemical assays have been used to demonstrate that modulation of 

histone:DNA interactions by SNF2 enzymes expose non-nucleosomal DNA. These 

include the generation of altered patterns of nuclease and/or restriction enzyme 

accessibility to nucleosomal DNA and direct observation of changes in the 

translational positions of histone octamers (Hamiche et al., 1999; Langst et al., 1999; 

Meersseman et al., 1992) . The most commonly used assay is the classical 'sliding 

assay' that directly observes the repositioning of the histone octamer on DNA 

(Eberharter et al., 2004). In this assay nucleosomes are assembled on DNA that 

contains a high affinity octamer positioning sequence. This positions the nucleosome 

at this site. Addition of the SNF2 enzyme and ATP can lead to octamer repositioning 

that can be observed by migration change through a native acrylamide gel 

(Eberharter et al., 2004). Members of all 4 classes of chromatin remodelling enzyme 

can change the translational position of nucleosomes on DNA in sliding assays but 

the outcome and efficiency of remodelling varies. For example, the ISWI containing 

complexes CHRAC and ACF are able to efficiently reposition nucleosomes to 

central positions and promote equal spacing of DNA between nucleosomes 

(Hamiche et al., 1999; Langst and Becker, 2001; Langst et al., 1999). On the other 

hand, the SWI2/SNF2 rernodelers act in the opposite manner, moving nucleosomes 

to DNA ends and randomizing equally spaced nucleosomes (Jaskelioff et al., 2000; 

Owen-Hughes et al., 1996; Whitehouse et al., 1999). These different outcomes may 



indicate different in vivo roles at altering chromatin structure for the remodelers. For 

example, enzymes that disrupt ordered nucleosomes may give rise to relatively open 

and accessible chromatin. Conversely, enzymes that generate evenly spaced 

nucleosomes may promote formation of tightly packed, closed chromatin. Despite 

the differences in outcome of the different remodeler families a common outcome 

was that all tested enzymes are able to transiently disrupt histone:DNA contacts, thus 

facilitating sliding to the nucleosome to a new position. This has led to speculation 

that all chromatin remodelers act on nucleosomes in a common manner. These 

modes of repositioning could theoretically expose small stretches of previously 

inaccessible DNA to factors that interact with them. It is important to acknowledge 

however, that nucleosome repositioning by classical sliding may not be sufficient to 

expose substantial tracts of DNA within tightly packed nucleosomes. To achieve this 

other mechanisms including covalent modification of histone tails may be required to 

occur simultaneously. Alternatively, SNF2 enzymes may use other means to 

facilitate or complement this including conformational changes to nucleosome 

structure, release of the histone octamer or histone dimer exchange (Lorch et al., 

1999; Mizuguchi et al., 2004; Studitsky et al., 1994). 

1.3.2.3.1 Bulge diffusion and twist defect diffusion 

For nucleosomes.to  be repositioned on DNA the 14 histone:DNA contacts need to be 

broken. This requires 14 kcal/mol of energy, thus providing a substantial energetic 

obstacle for remodelling enzymes to overcome. As ATP hydrolysis provides only 7.3 

kcal/mol it is unlikely that the remodelling process involves simultaneous disruption 

of all the contacts. Models for nucleosome remodelling take this into account and 

reason that it is likely to occur through a series of smaller dissociation steps. These 

transient dissociations can then propagate around the nucleosome, leading to 

repositioning. Two models have been proposed to explain the mechanisms of SNF2 

chromatin remodelling enzymes: "Bulge Diffusion" and "Twist Defect Diffusion". 

The first model (Bulge Diffusion) involves the creation of a DNA bulge or loop on 

the surface of the nucleosome that can be propagated around the surface of the 

nucleosome. In this model a small number of DNA:histone contacts are transiently 
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disrupted by peeling the DNA off the nucleosome in an ATP dependant manner. If 

this transient peeling of DNA is followed by rebinding of a more distal DNA 

sequence a DNA loop will form. This loop is able to stochastically diffuse around the 

nucleosome giving rise to a distribution of repositioned nucleosomes (Figure 1.4A). 

The actions of the particular remodeler, including where it binds the nucleosome will 

then drive the reaction towards a particular outcome. Depending on the size of the 

loop generated on the nucleosome surface the DNA may be more accessible to 

nucleases, other DNA binding proteins and various DNA binding chemicals. A 

number of studies have exploited this property to provide evidence for the creation of 

a DNA loop as an intermediate step in chromatin remodelling. One study utilised a 

novel assay based on the preferred intercalation of ethidium bromide (EB) into free 

DNA (Strohner et al., 2005). In this assay, nucleosomes with no flanking DNA were 

incubated with the remodelling complex ACF and EB. Using a laser to induce single 

strand breaks at intercalation sites they observed ACF dependent DNA exposure 

within the nucleosome. This provides evidence for the formation of a DNA loop by 

ACF. Another study observed the formation of DNA loops on the surface on 

nucleosomes by the RSC and SWT/SNF complexes. Using optical tweezers they 

detected shortening of free and nucleosomal DNA over a range of force conditions in 

the presence of the remodelers (Zhang et al., 2006b). DNA shortening was 

interpreted as formation of a DNA loop on the surface of the nucleosome. 

Interestingly, the shortening of DNA was more stable to higher forces when the 

DNA was assembled into nucleosomes indicating that the remodelers were being 

tethered to the nucleosome (Zhang et al., 2006b). 
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Figure 1.4. Proposed mechanisms of chromatin remodelling by SNF2 enzymes. 
Bulge diffusion - This model proposes the generation and propagation of a transient DNA 

loop around the nucleosome can lead to its repositioning. 
Twist defect diffusion - This model proposes that DNA distortions caused by local twist 

defects can disrupt DNA:histone contacts. The twist can then propagate around the 
nucleosome leading the repositioning. 
C + D. The 'DNA inchworm' model of DNA translocation that may provide the motor force to 
drive the above mechanisms. Binding and hydrolysis of ATP leads to conformational 
changes in the SNF2 motor that cause it to translocate DNA 3-5'. The model illustrated in C 
envisages the DNA binding domain (DBD) providing a passive anchor for the DNA tracking 
domain (DTD) to inch along DNA. In D the DBD is actively feeding DNA into the DTD which 
subsequently rebinds DNA in an advanced position leading to translocation. 

The second mode! (Twist Defect Diffusion) takes advantage of the high torsional 

flexibility of DNA. This model assumes that DNA is distorted by local twist defects 

that disrupt histone:DNA contacts. The twist is then able to migrate stochastically 

along the DNA allowing it to propagate over the surface of the nucleosome in a 

manner analogous to a cork-screw (Figure 1.413). In this model the propagation of 

twist would lead to incremental replacement of histone:DNA contacts with 

neighbouring ones. The twist defect model is supported by crystal structures of 

nucleosome core particles that contain 1 less base pair than would be expected for a 

symmetrical structure (Edayathumangalam et al., 2005; Richmond and Davey, 

2003b). This is because the DNA is over twisted within the core indicating that twist 

defects can be accommodated within the nucleosome. Experimental evidence for the 

twist defect model has come from studies looking at the ability of SNF2 enzymes to 

generate DNA twist (Gavin et al., 2001; Havas et al., 2000). In one study the ability 

of a number of different enzymes to form DNA cruciforms as a measure of 

superhelical torsion was assayed. It was demonstrated that a range of SNF2 enzymes 

possess this ability. This indicates that these enzymes have the ability to twist DNA 

and that this may be a primary activity of these enzymes (Havas et al., 2000). 

Another study looked at the ability of SWI/SNF to remodel nucleosomes 

topologically constrained on short DNA loops. It was found that SWI/SNF is unable 

to remodel nucleosomes on these short DNA loops but this ability is rescued by 

topoisomerases indicating that SNF2 enzymes have the ability to twist DNA (Gavin 

et al., 2001). 



1.3.2.3.2 DNA translocation provides the motor for breaking DNA:histone contacts 

The two proposed mechanisms both give reasonable, testable predictions of 

nucleosome remodelling but do not completely explain what the motor force driving 

remodelling is. Evidence that SNF2 enzymes are DNA translocases indicates that 

this may be the mechanism by which DNA:histone contacts are broken and DNA is 

driven around the nucleosome (Saha et al., 2005; Whitehouse et al., 2003; Zofall et 

al., 2006). It could be envisaged that if the remodeler binds the histone octamer at a 

defined location, DNA would then be pumped around the nucleosome by the 

translocase activity. A number of studies have shed light on the mechanism by which 

DNA translocation may occur by SF2 enzymes, and how this may be translated by 

SNF2 members into nucleosome repositioning. Monomeric SF2 DNA translocases 

conform to a 'DNA inchworm' model of movement. This model involves 

coordinated movement of a DNA binding domain (DBD) and a DNA tracking 

domain (DTD) (Singleton et al., 2007) (Figure 1.4C). The DTD contains two RecA 

like domains flanking an ATP binding pocket and a DNA binding module. ATP 

binding and hydrolysis induces a conformational change between the domains 

resulting in a movement of the domain lbp 3' to 5' along the DNA (Dillingham et 

al., 2002; Velankar et al., 1999). The role of the DBD is envisaged to be either to 

anchor the DNA at an advanced position following the action of the DTD or to 

actively feed DNA into the DTD. In the first of the possibilities the DBD binds the 

DNA in front of the DTD and provides an anchoring point on the DNA. During ATP 

hydrolysis the DBD releases and rebinds further along the DNA providing a new 

anchor (Figure 1 .4C 1-2). The release of ADP and binding of fresh ATP completes 

the reaction cycle and leads to an inching forward of the motor (Fitzgerald et al., 

2004) (Figure 1 .4C 3-4). The alternative is that the DBD is already bound at the 

advanced position, from where it actively pulls DNA into the DTD upon ATP 

hydrolysis (Figure 1.41) 1-2). The DTD subsequently rebinds to DNA at an advanced 

position when ADP is released leading to movement along DNA (Figure 1 .4D 3). 

This would then be followed by release and rebinding of the DBD further along the 

DNA (Figure 1.41) 4). 
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The effect of this inchworm type of translocation can explain nucleosome movement 

by SNF2 enzymes such as ISWI and SWI/SNF. Although the exact mechanism of 

theses enzymes may differ, the basic assumption that DNA translocation drives 

remodelling holds for them both. In both cases the enzymes appear to use DNA 

inchworm translocation to cause local disruptions in histone:DNA contacts. For 

SWI/SNF, these disruptions are proposed to occur by pumping small segments of 

DNA towards the dyad by the DTD (Saha et al., 2005). An interaction of the enzyme 

with the histone octamer is believed to hold it in place and release and recapture of 

the DBD to guide translocation across the nucleosome (Zhang et al., 2006b). In 

contrast ISWI is believed to initially cause disruptions that are propagated by the 

DTD from an internal site to the nucleosome entry/exit site. The DBD binds tightly 

to DNA here and this causes a DNA loop to form (Kagalwala et al., 2004; Zofall et 

al., 2006). This loop may then propagate back past the DTD and through the 

nucleosome. Thus the initial direction of DNA translocation is opposite to the 

direction of nucleosome movement. As is the case for SWI/SNF, ISWI can bind to 

the histone octamer and in fact this interaction is crucial for proper nucleosome 

sliding (Clapier et al., 2001; Shogren-Knaak et al., 2006). Thus, the motor force for 

driving chromatin remodelling is believed to be the ability of these enzymes to 

translocate DNA across the nucleosome (Cairns, 2007). 

1.3.2.4 In vivo roles of chromatin remodelling enzymes 

SNF2 ATPases play a role in modulating protein:DNA reactions critical for 

processes such as transcriptional control, DNA replication, DNA repair and 

recombination. As such, mutations in these enzymes often have severe consequences 

for the organism. For example ISWI mutations in Drosophila affect cell viability and 

gene expression during development leading to larval lethality (Deuring et al., 2000). 

Additionally, mice genetically deficient for the mammalian ISWI homologue SNF2h 

also show early embryonic lethality (Stopka and Skoultchi, 2003). Mutations in other 

SNF2 family members are also fatal. Homozygous null mutations in the SWI/SNF 

class member BRG 1 leads to periimplantation stage death for example (Bultman et 

al., 2000). Interestingly, heterozygous BRG1 mutations predisposed the mice to 

tumours indicating a possible role of SNF2 enzymes in cancer (Bultman et al., 2000). 
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Additionally, a number of human diseases have been associated with mutations of 

SNF2 ATPases. For example the X-linked alpha thalassemia I mental retardation 

syndrome (ATR-X syndrome) is caused by mutations of the ATRX gene (Borgione 

et al., 2003; Gibbons et al., 2003; Gibbons et al., 1995). This disease is characterised 

by severe mental retardation, a characteristic facial appearance, a form of anaemia 

known as alpha thalassaemia and abnormal genital development (Villard and Fontes, 

2002). The role mutations of ATRX play in causing this disease are currently not 

well understood but may be linked to its role in DNA methylation (Gibbons, 2006). 

Another disease caused by mutations in a SNF2 enzyme is Cockayne Syndrome B, 

caused by mutations in the CSB protein (Troelstra et al., 1992). The disease is 

characterised by increased sensitivity to UV radiation and neurodevelopmental 

abnormalities. CSB protein is believed to be involved in DNA repair, thus 

demonstrating the importance of SNF2 enzymes in a variety of processes (Osterod et 

al., 2002). Finally, as would be expected from a large group of proteins with 

fundamental roles in DNA processes, mutations in a number of SNF2 enzymes are 

implicated in cancer. These include the SWI/SNF proteins BRG1 and BRM that are 

found to be mutated or showing decreased expression in a variety of different cancer 

cell lines (Decristofaro et al., 2001; Reisman et al., 2003; Wong et al., 2000). Other 

remodelers linked to cancer include the NuRD complex ATPase subunit CHD5 and 

the SWI/SNF core subunit SNF5 (Bagchi et al., 2007; Biegel et al., 1999; Sevenet et 

al., 1999; Versteege et al., 1998). 
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1.4 Chromatin remodelling and DNA methylation 

Although mechanistically completely different, there is strong evidence that the 

processes of DNA methylation and chromatin remodelling are intrinsically linked. 

Genetic studies in Arabidopsis thaliana uncovered a role for a SNF2 enzyme termed 

DDM1 (decrease in DNA methylation 1) in DNA methylation (Jeddeloh et al., 1999; 

Vongs et al., 1993). Subsequent knockout studies on the murine homologue termed 

LSH (lymphoid specific helicase) revealed the requirement of this protein for proper 

DNA methylation is conserved (Dennis et al., 2001). There are also at least 2 other 

SNF2 enzymes believed to play a role in DNA methylation in mammals, the ATRX 

protein and SNF2h. The current understanding of the role of SNF2 enzymes in DNA 

methylation will now be discussed, with particular focus on DDM1 and LSH. 

1.4.1 ATRX and SNF2h influence DNA methylation 

Mutations in the ATRX gene cause X-linked alpha thalassemia / mental retardation 

syndrome (ATR-X) (Borgione et al., 2003; Gibbons et al., 2003; Gibbons et al., 

1995). Aside the characteristic disease phenotypes discussed above ATR-X patients 

also show specific changes in DNA methylation patterns. This is characterised by 

DNA hypomethylation at rDNA repeats, DNA hypermethylation at Y-specific 

satellite and perturbed DNA methylation at subtelomeric repeats (Gibbons et al., 

2000). The precise role of ATR-X in DNA methylation is currently unknown and no 

interaction between ATR-X and DNMTs has been reported. However, ATR-X has 

been shown to interact with other members of the DNA methylation and chromatin 

machinery including HP1c, the polycomb protein EZH2, the transcriptional co-

repressor Daxx and the MeCpG binding protein MeCP2 (Cardoso et al., 1998; 

Gibbons et al., 2003; Guerrini et al., 2000; McDowell et al., 1999; Nan et al., 2007; 

Tang et al., 2004; Xue et al., 2003). Thus ATRX may play a role in many chromatin 

related processes and mutations may lead indirectly to changes in DNA methylation 

patterns. 
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SNF2h, the human homologue of ISWI is a member of the Nucleolar Remodeling 

Complex (NoRC) (Strohner et al., 2001). This complex contains at least 2 proteins, 

SNF2h and TIPS (TTF interaction protein 5) and is believed to directly mediate 

epigenetic gene silencing of rDNA (Santoro and Grummt, 2005; Santoro et al., 2002; 

Zhou et al., 2002). Epigenetic silencing of rDNA repeats has been studied artificially 

using over expression of TIPS. This has shown that repression of the repeats involves 

a temporal programme of NoRC recruitment followed by histone deacetylation and 

H3K9 dimethylation. These histone modifications are in turn followed by, and 

required for, DNA methylation at a CpG site within the rDNA promoter (Santoro and 

Grummt, 2005). The role of NoRC however is not merely that of recruitment as 

catalytically inactive SNF2hK22R,  presumably acting as a dominant negative protein 

still induces histone deacetylation of the rDNA promoter. Surprisingly, in this system 

transcriptional repression and DNA methylation do not occur (Santoro and Grummt, 

2005). A subsequent study has shown that TIP5 over expression leads to 

repositioning of nucleosomes at the rDNA promoter (Li et al., 2006b). This 

repositioning is also seen in differentiating adipocytes without protein over 

expression. Crucially, this repositioning leads to exposure of the CpG site whose 

methylation is critical for gene silencing (Li et al., 2006b). Thus SNF2h may be 

acting to move a nucleosome at the rDNA promoter that is protecting a CpG site 

from methylation. The CpG site is then exposed and can be methylated and this, in 

conjunction with histone modifications, leads to gene silencing (Li et al., 2006b). 

ATRX and SNF2h both appear to have important roles DNA methylation. In both 

cases, they are required for DNA methylation at specific sequences, but do not 

appear to have a role in global DNA methylation (Gibbons et al., 2000; Santoro et 

al., 2002). The SNF2 enzymes DDM1 and LSH have been shown to have a role in 

both global and locus specific DNA methylation indicating that they may be more 

general regulators of DNA methylation. 
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1.4.2 The plant SNF2 protein DDMI is required for global DNA methylation in 

Arabidopsis thaliana 

Screening of DNA methylation mutants of the plant Arabidopsis thaliana revealed 

mutations in a gene termed DDMI (decrease in DNA methylation) (Jeddeloh et al., 

1999; Vongs et al., 1993). The major phenotype of DDMI mutants was global 

reduction in DNA methylation to around 30% of normal levels. The DNA 

methylation phenotype is irreversible as backcrossing to a wild-type background did 

not result in recovery of CpG methylation indicating that de novo CpG methylation is 

a slow process in vivo (Vongs et al., 1993) Further characterisation of the mutants 

showed that DNMT activity and intracellular levels of SAM were not affected, 

indicating a direct role for DDMI in DNA methylation (Kakutani et al., 1995). 

Phenotypically, DDMI mutants show morphological abnormalities including defects 

in leaf structure, flowering time, and flower structure. These phenotypes become 

more severe in later generations indicating that the loss of DNA methylation is 

progressively deleterious (Kakutani, 1997; Kakutani et al., 1996). One of the DDMI 

mutants (ddn2l-2) was mapped to the lower arm of chromosome 5 by chromosome 

walking (Jeddeloh et al., 1999). DDMI was subsequently identified as a SNF2 

ATPase as all the DDMI mutations mapped to the gene at this locus. The mutations 

all disrupted regions of the core ATPase domain of DDM1 indicating that the 

ATPase function of this protein is required for DNA methylation (Jeddeloh et al., 

1999). Homology within the catalytic domains of DDMI place it within the ISWI 

related LSH subfamily of chromatin remodelers (Flaus et al., 2006). The LSH family 

has homologues in a wide range of organisms including mammals and most 

vertebrates. Interestingly there is a homologue in S. cerevisiae although DNA 

methylation is not found in this species, perhaps indicative of a divergent role for this 

protein (Flaus et al., 2006). 

DDMI plays a key role in silencing transcription of transposable elements and its 

loss of function leads to their mobilization (Miura et al., 2001; Singer et al., 2001). 

This indicates that a major role of DNA methylation in plants is the suppression of 

transposition events. DDMI also plays a role in regulating H3 methylation at 

heterochromatin (Gendrel et al., 2002). In wildtype plants heterochromatic H3 is 
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dimethylated at K9 but not at K4. In ddml-2 mutants however, H3K9 dimethylation 

at a number of heterochrornatic loci is lost and replaced with H3K4 dimethylation. 

This leads to transcriptional activation of heterochromatic sequences reinforcing the 

proposed role ofDDM1 in transcriptional silencing (Gendrel et al., 2002; Lippman et 

al., 2004). 

Biochemically, DDM 1 has been shown to be a DNA stimulated ATPase that can 

reposition mononucleosomes from the end of a DNA fragment to the centre in vitro 

(Brzeski and Jerzmanowski, 2003). How this is correlated to the decrease in DNA 

methylation phenotype is currently unknown but a number of mechanisms have been 

proposed. 

One mechanism relates to the ability of DDM1 to reposition nucleosomes in a way 

that would directly facilitate access of DNMTs to DNA. This could occur in two 

ways and depends on the ability of DNMTs to efficiently methylate nucleosomal 

DNA. The first assumes that specific cytosine residues are protected from 

methylation by precisely positioned nucleosomes. DDM1 could move these 

nucleosomes to provide access to the cytosine in a manner analogous to SNF2h at the 

rDNA promoter (Li et al., 2006b). This mechanism presumes that nucleosomal DNA 

is less accessible to DNMTs than naked DNA. This is currently not clear with some 

groups reporting a strong inhibition of DNMT activity on nucleosomal rather than 

naked DNA in vitro and others observing little difference (Gowher et al., 2005b; 

Robertson et al., 2004; Takeshima et al., 2006). As this is ambiguous, but assuming 

that large, highly compacted nucleosomal domains would be inaccessible to DNMTs 

another related mechanism can be proposed. This mechanism involves disruption of 

the positions of many ordered nucleosomes within a compacted domain to facilitate a 

more 'open' chromatin structure. This 'open' chromatin would then be generally 

more accessible for DNMTs to methylate the DNA. Of course, DDM1 may use a 

combination of these mechanisms to facilitate an 'open' chromatin structure and also 

to move specific positioned nucleosomes. Alternatively, DDM1 may act in the 

opposite manner and produce highly compact, transcriptionally silenced chromatin. 
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This chromatin may then become methylated due to its lack of transcription and 

associated chromatin modifications. 

Another possible mechanism relates to the requirement of H3K9 dimethylation for 

DNA methylation and the necessity of DDM1 for proper H3K9 dimethylation 

(Gendrel et al., 2002; Jackson et al., 2002; Lindroth et al., 2001; Tamaru and Selker, 

2001). In this model DDM1 is necessary for proper deposition of H3K9 

dimethylation, possibly via displacement of non-modified nucleosomes during 

replication (Gendrel et al., 2002). A lack of H3K9 dimethylation, would in turn lead 

to loss of DNA methylation. Thus, DDM1 may be indirectly affecting DNA 

methylation via a related chromatin modification. 

1.4.3 Lsh, the mouse homologue of DDM1 has a conserved role in global DNA 

methylation 

The murine homologue of DDM 1 has been cloned from fetal thymocytes and termed 

lymphoid specific helicase (Lsh) or proliferation associated SNF2-like gene (PASG) 

(Jarvis et al., 1996; Lee et al., 2000) (Figure 1.5). The human homologue has also 

been cloned and its genomic location mapped to chromosome 10q23-q24 (Geiman et 

al., 1998). The human gene has been termed helicase lymphoid specific (HELLS). 

For the purpose of clarity I will subsequently refer to the mammalian 

Lsh/PASG/HELLS as Lsh. As mentioned previously the ATPase domains of Lsh are 

most closely related to the ISWI subfamily of SNF2 enzymes (Flaus et al., 2006). 

Lsh does not however, contain the SANT domain characteristic of the ISWI family 

of rernodelers. Lsh also contains a coiled-coil region that would be expected to 

facilitate dimerisation or interact with other proteins and a bipartite NLS (Figure 

1.5). 
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SNF2_N 	 Helicase_C 
Coiled Coils NLS 	 4 

* 

Figure 1.5. Structure of Lsh protein. 
Lsh protein structure is illustrated with all relevant domains indicated. The conserved 
helicase motifs corresponding to the SNF2_N and Helicase_C domains are indicated by 
roman numerals. The extended linker between these two domains is flanked by dashed 
lines. Also indicated are the N-terminal coiled-coil domain and the nuclear localisation signal. 
In several experiments outlined during this thesis a mutation in the ATP binding site of motif I 
(K254Q) of Lsh is used as a control protein. The site of this mutation is indicated (*). 

Initial studies showed that Lsh is predominantly expressed in proliferative tissues 

such as the testis, bone marrow and lymphoid tissue (Geiman et al., 1998; Jarvis et 

al., 1996; Lee et al., 2000). In agreement with its lymphoid expression Lsh is 

required for proliferation of mature T-lymphocytes and its expression appears to 

correlate with S-phase (Geiman and Muegge, 2000; Yan et at., 2003a). Later studies 

indicated that Lsh may be ubiquitously expressed, particularly during embryogenesis 

and development (Geiman et al., 2001). 

To further investigate the role of Lsh two independent studies have generated mice 

carrying targeted deletions of Lsh. These deletions have resulted in functional null 

(Lsh) and hypomorphic alleles (PASG) (Dennis et al., 2001; Geiman et al., 2001; 

Sun et al., 2004). 

Lsh 	mice contain a deletion of exons 6 and 7 that encode the conserved helicase 

domains I, la and part of II. This knockout produced no detectable truncated forms of 

the protein indicating it is a null allele. Importantly the knockout strategy removes 

the ATP binding site of Lsh which if produced would be enzymatically inactive. 

Embryonic development appeared normal but the mice died soon after birth with 

severe renal lesions (Geiman et al., 2001). Importantly these mice showed substantial 
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loss of CpG methylation throughout the genome (Dennis et al., 2001). This loss of 

methylation was widespread affecting repetitive elements such as minor and major 

satellite repeats, lAP particles, Sine BI and Linel elements as well as single copy 

genes like 3-globin, pgk-1, pgk-2 and H19. The amount of methylation lost was 

quantified by assessing the ability of Lsh DNA to accept methylation. This 

technique estimated global DNA methylation loss in Lsh mice to be 60-70% 

(Geiman et al., 2001). Importantly, the levels and methyltransferase activity of 

Dnrnt 1, Dnmt3a and Dnmt3b were unaffected indicating a direct role of Lsh in 

mammalian DNA methylation. 

In an unrelated study Sun and colleagues generated mice carrying a deletion in the 

PASG (Lsh) gene in exons 10-12 containing helicase motifs II, III and IV (Sun et al., 

2004). This deletion resulted in a hypomorphic allele. Mice homozygous for this 

mutation also show genornic hypomethylation (-43% loss) at the same regions as the 

Lsh 	mice. PASG' mice are born at just below mendelian frequency and --60% die 

just after birth. Interestingly the 40% of PAS0 1  mice that survive display low birth 

weight, growth retardation and a premature aging phenotype. The premature aging 

phenotype is associated with increased replicative senescence correlated with 

induction of the tumour suppressor genes p16' 4' and p19" (Sun at al., 2004). 

Embryonic fibroblasts derived from these mice and the Lsh mice also show mitotic 

abnormalities leading to aneuploidy at high passage numbers (Fan et al., 2003; Sun et 

al., 2004). Thus two unrelated studies have shown that Lsh is involved and genome 

wide and locus specific DNA methylation. 

Lsh has also been shown to be required for normal histone modification as its 

absence leads to accumulation of di and tri methyl H3K4 at pericentromeric DNA 

(Yan et al., 2003b). A concurrent loss of H3K9 methylation at these regions does not 

occur indicating that, although its role in DNA methylation and H3K4 methylation 

deposition is conserved between mammals and plants, its role in regulating H3K9 

methylation is not (Gendrel et al., 2002; Yan et al., 2003b). Lsh cells also show 

increased histone acetylation and activated transcription of repetitive elements 

indicating a role for Lsh in DNA methylation-dependent transcriptional repression 



(Huang et al., 2004). The function of Lsh in transcriptional repression is not 

restricted to repetitive sequences as it is required for imprinting of the Cdknlc gene 

and silencing of some Hox genes (Fan et al., 2005b; Xi etal., 2007). In these studies 

Lsh was shown by ChIP to associate with the differentially methylated region 

(DMR) of the Cdknlc gene and the promoters of several Hox genes. It was also 

shown to be essential for DNA methylation at these regions and in the case of the 

Hox promoters for recruitment of Dnmt3b and the polycomb repressive complex -1 

(PRC-l) components Bmil, Me!18, andM33 (Fan et al., 2005b; Xi etal., 2007). Lsh 

has further been shown to be involved in de novo but not maintenance methylation of 

DNA in embryonic stem (ES) cells and can interact with the de novo 

methyltransferases (Zhu et al., 2006). 

As Lsh has no methyltransferase activity and expression of the DNMTs in knockout 

mice were normal it is possible that Lsh regulates global methylation levels in a 

manner similar to those proposed for DDM1. Alternatively, Lsh may target DNA 

methyltransferase enzymes to genomic loci in a sequence specific manner or simply 

by increasing their affinity to DNA. Another possibility is that Lsh, as a putative 

SNF2 DNA translocase, may translocate DNA pulling the DNMTs along with it, 

thus facilitating processive DNA methylation. 

Some evidence also indicates that Lsh may have a role in carcinogenesis. Firstly, 

human LSH maps to chromosomal region 10q23-24, which frequently shows 

abnormalities in human leukaemia, mycosis fungoides and Sezary syndrome 

(Geiman et al., 1998; Wain et al., 2005). Secondly, an alternative LSH transcript with 

a 75bp deletion has been observed in a variety of human acute leukaemia's (Lee et 

al., 2000). Also a tumour-specific splicing event introducing a premature stop codon 

into the LSH gene has recently been identified in non-small cell lung cancer (Yano et 

al., 2004). Thus, it could be envisaged that aberrant gene methylation patterns seen in 

many cancer types may be partly attributed to defects in targeting of DNA 

methyltransferases by LSH. 
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1.5 Project Aims 

The aims of this study are to investigate the molecular function of LSH and attempt 

to relate this to its role in DNA methylation. To address these aims the work 

described in this thesis uses a variety of approaches to address two key questions. (1) 

Is LSH an active SNF2 ATPase? (2) How does LSH interact with, and modulate, the 

DNA methylation machinery? 

Chapters three and five address question (1) through characterisation of the 

enzymatic function of LSH using purified recombinant LSH. The results obtained in 

these chapters illustrate that although LSH does exhibit a low level of ATPase 

activity it does not appear to disrupt chromatin structure in vitro. Chapters four and 

five addresses question (2) using a variety of biochemical, and cell biology 

approaches. Chapter four outlines that, although not stably associated with DNMT 

enzymes, LSH functionally and physically interacts with them. However, 

experiments described in chapter five do not identify a key role for LSH in 

modulating DNMT activity in vitro. Together, these studies reveal new insight into 

how LSH interacts with the DNA methylation machinery. 
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Chapter two - Materials and Methods 

2.1 Materials 

Frequently used materials for standard molecular biology techniques are outlined in 

this section. Additional materials utilised for specific tasks such as protein 

purification and biochemical assays are referred to in the Methods section. All 

materials were stored at room temperature unless otherwise stated 

2.1.1 Common Buffers 

Phosphate-buffered saline (PBS): 140 mM NaCl, 3 mM KC1, 2 mM KH2PO4, 10 

mM Na2HPO4. 

Tris-glycine-EDTA (TGE): 25mM Tris-HCI pH 8.3, 190mM Glycine, 1mM EDTA 

Tris-glycine SDS (TGS): 25 mM Tris, 250 mM Glycine, 0.1 % SDS. 

Tris-buffered saline (TBS): 50 mM Tris-HC1 pH 8.0, 150 mM NaCl 

Tris-acetate EDTA (TAE): 40 mM Tris, 20 mM glacial acetic acid, 1 mM EDTA 

and pH adjusted to 8.0. 

Tris-borate EDTA (TBE): 89 mM Tris, 89 mM Boric Acid, 2 mM EDTA and pH 

adjusted to 8.0. 

Tris-EDTA (TE): 10mM Tris-HC1 pH 7.5, 1mM EDTA pH 8.0 

2.1.2 Reagents for manipulation of DNA 

Bisuiphite modification solution: 3.8g sodium hydrogensulphite (this is a mixture 

of sodium bisulphite, NaHS03, and sodium metabisuiphite, Na2S205) was dissolved 

in Sml dH20 and 1.5m! 2M NaOH protected from light. 0.11g hydroquinone was 

dissolved in !ml dH20 at 50°C. The sodium bisulphite and the hydroquinone 

solutions were then mixed to give a solution with a final pH of 5.0. Bisulphite 

modification solution was prepared immediately prior to use. 

DNA isolation buffer: 10mM Tris HC1 pH8.0, 10mM EDTA pH8.0. 
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Orange G loading buffer (6x): 0.198% (w/v) orange G, 12% (w/v) Ficoll, 120mM 

EDTA pH8.0. 

2.1.3 Reagents for manipulation of proteins 

Coomassie Brilliant Blue R-250 staining solution: 30% (v/v) methanol, 10% (v/v) 

glacial acetic acid, 0.1% (w/v) Coomassie Brilliant Blue R-250. Filtered through a 

Whatman number 1 filter. 

ECL solution: 100mM Tris-HC1 pH8.8, 1.25mM luminal, 0.2mM p-coumaric acid, 

0.04% H202  

NEI: 20mM Hepes pH7.0, 10mM KC1, 1mM MgC12, 0.1% (v/v) Triton X-100, 20% 

(v/v) glycerol, 0.5mM DTT and complete protease inhibitors (Sigma). DTT, and 

complete protease inhibitors were added immediately prior to use. Stored at 4°C. 

NE2: 20mM Hepes pH7.0, 420mM NaCl, 10mM KC1, 1mM MgCl2,  0.1% (v/v) 

Triton X-100, 20% (v/v) glycerol, 0.5mM DTT and complete protease inhibitors 

(Sigma). DTT, and complete protease inhibitors were added immediately prior to 

use. Stored at 4°C. 

Ponceau S staining solution: 1% (v/v) glacial acetic acid, 0.5% (w/v) Ponceau S 

SDS PAGE loading buffer (5x): 225mM Tris-HC1 pH6.8, 50% glycerol, 5% SDS, 

0.05% brornophenol blue, 250mM DTT. Stored at room temperature, DTT added just 

prior to use 

SDS PAGE separating gel: 7-15% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% 

(w/v) SDS, 390mM Tris HC1 pH8.8, 0.08% (v/v) TEMED, 0.1% (w/v) APS. 

Prepared immediately prior to use. 

SDS PAGE stacking gel: 5% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% (w/v) 

SDS, 129mM Tris HC1 pH6.8, 0.1% (v/v) TEMED, 0.1% (w/v) APS. Prepared 

immediately prior to use. 

Transfer buffer: 25 mlvi Tris, 250 mM Glycine. 

2.1.4 Bacterial Strains 

DH5cz: supE44 AlacU169 (080 1acZAM15) hsdRl7 recAl endAl gyrA96 thi-1 re/Al. 

Laboratory stock. 
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Nova-blue: endAl hsdRl7 (rK12- mK12+) supE44 thi-1 recAl gyrA96 re/Al lac F' 

[proA +B+ 1acIqZAMl5: :Tnl 0]. Laboratory stock. 

ER2566: F— X— thuA2 [ion] ompT lacZ::T7 genel gal sulAll A(rncrC-

mrr) 114:: IS 10 R(mcr-73 : :miniTn 1 0—TetS)2 R(zgb-2 10: :Tn 10 )(TetS) endA 1 [dcm]. 

2.1.5 Bacterial cell culture media and related reagents 

Ampicillin stock solution: 50mg/mi ampicillin in dH20. 0.2tm filter sterilised and 

stored at —20°C. Added to LB medium to l00ig/mi. 

Blue/white selection LB agar plates: 40j.ii 100mM IPTG, and 40p1 40mg/ml X-gal, 

was spread over LB agar plates containing the appropriate antibiotic(s). The plates 

were dried at r/t before being used the same day. 

Competent cell buffer: 100mM MgCl2, 70mM CaCl2. 0.2im filter sterilised and 

stored at 4°C. 

Gentamicin: Purchased from Invitrogen (SKU# 15750-037) as a stock concentration 

of 50mg/ml and stored at 4 °C. Added to LB medium to7jig/ml. 

IPTG stock solution: 1M IPTG in dH20. 0.2 jim filter sterilised and stored at —20°C. 

Kanamycin stock solution: SOmg/ml kanamycin in dH20. 0.2jim filter sterilised 

and stored at —20°C. Added to LB medium to SOjig/rnl. 

LB medium: lOg/l Bacto tryptone (Difco), 5g/l Bacto yeast extract (Difco), log/l 

NaCl. pH adjusted to 7.0 with NaOH. 15g/l Bacto agar (Difco) added if making LB 

agar then autoclaved. LB agar plates (20ml volume) were stored inverted at 4°C and 

LB broth was stored at nt. 

Tetracycline: 10mg/mi in ethanol. Stored at -20°C. Added to LB medium to 

10 ~tg/m 1. 

X-gal stock solution: 40mg/ml X-gal in dimethylformamide (DMF). Stored at 

—20°C protected from light. 

2.1.6 Yeast strains 

AH109:. MA Ta, trpl-901, leu2-3, 112, ura3-52, his3-200, ga144, ga180A, LYS2 

GAL1UAS-GAL1TATA-HIS3, GAL2UAS- GAL2TATA-ADE2 URA3: MEL1UAS- MEL] 

TATA-LaCZ MEL]. Clontech. 
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Y187: MATa, ura3-52, his3-200, ade2-101, trpl-901, leu2-3, 112, gaI4A, gal8OA, 

met—, URA3 : GAL 1UAS-GAL1TATA-LaCZ MEL!. Clontech. 

2.1.7 Yeast cell culture media and related reagents 

Dropout supplements (lOx): Dropout supplements are components of minimal 

yeast media, and contain a specific mixture of amino acids and nucleosides (one or 

more constituents may be missing from a particular dropout supplement, thereby 

enabling selection of yeasts with a particular phenotype). Dropout supplements 

(Sigma) were dissolved in dH20 to IN concentration, then 0.2jim filter sterilised 

and stored at 4°C. 

PEG/LiAc: 40% (w/v) PEG 3,350, 100mM LiOAc, 10mM Tris HC1 pH7.5, 1mM 

EDTA. 0.2tm filter sterilised. 

SD medium: A minimal yeast medium used to select for specific phenotypes. SD 

medium is prepared by combining minimal SD base with a specific dropout 

supplement. 27g/l minimal SD base (BD Biosciences) was dissolved and made up to 

900m1 with dH20. 20g/l BactoAgar added if making SD agar then autoclaved and 

cooled to 55°C. lox dropout supplement (warmed to 55°C) added to ix. SD agar 

plates were stored inverted at 4°C and SD broth was stored at nt. 

TE/LiAc: 100mM LiOAc, 10mM Tris HC1 pH7.5, 1mM EDTA. 0.2im filter 

sterilised. 

YPDA medium: Complete yeast medium. lOg/l yeast extract, 20g/l peptone, 0.003% 

(w/v) adenine hemisulphate made up to 900ml with dH20. 20g/l BactoAgar added if 

making YPDA agar then autoclaved and cooled to 55°C. 20% (w/v) glucose 

(warmed to 55°C) added to 2%. YPDA agar plates were stored inverted at 4°C and 

YPDA broth was stored at nt. 

2.1.8 Mammalian cell lines 

HCT116: Human colon cancer cell line obtained from Vogelstein laboratory. Grown 

in RPM! medium containing 10% (vlv) FBS, non essential amino acids (Invitrogen), 

Sodium Pyruvate (Invitrogen), supplemented with a mix of 1 OOu/mL penicillin, 

100 jtg/ml of a streptomycin and 2mM L-glutamine (Sigma). DNMT1 (DNMT1-/-), 



DNMT3B (DNMT3B-/-), DNMT1 and DNMT3B (DKO) and DNMT1+/-, 

DNMT3A and DNMT3B (TKO) derivative cell lines obtained from Vogeistein and 

Scheubel laboratories (Jair et al., 2006; Rhee et al., 2002; Rhee et al., 2000). 

11226: Human lung squamous carcinoma cell line (laboratory stock). Grown in 

RPM! medium containing 10% (v/v) FBS, supplemented with a mix of lOOu/mL 

penicillin, 100 j.tg/ml of a streptomycin and 2mM L-glutamine (Sigma). 

H520: Human non-small cell lung carcinoma cell lines (laboratory stock). Grown in 

RPMI medium containing 10% (v/v) FBS, supplemented with a mix of 100u/mL 

penicillin, 100tg/ml of a streptomycin and 2mM L-glutamine (Sigma). 

HeLa: Human epithelial carcinoma cell line (laboratory stock). Grown in DMEM 

medium containing 10% (v/v) FBS, supplemented with a mix of lOOu/mL penicillin, 

1 00 jig/mI of a streptomycin and 2mM L-glutamine (Sigma). 

Lsh-/- mouse embryonic fibroblasts: Mouse embryonic fibroblasts genetically 

deficient for Lsh obtained from the Muegge lab (Dennis et al., 2001). Grown in 

DMEM medium containing 10% (v/v) FBS, supplemented with a mix of lOOu/mL 

penicillin, I 00tg/ml of a streptomycin and 2mM L-glutamine (Sigma). 

MRC5: Derived from normal lung tissue of a 14-week-old male fetus. Grown in 

DMEM medium containing 10% (v/v) FBS, supplemented with a mix of lOOu/mL 

penicillin, 1 00tg/ml of a streptomycin and 2mM L-glutamine (Sigma). 

Mouse embryonic fibroblasts: Mouse embryonic fibroblasts strain matched to those 

genetically defiecient for Lsh obtained from the Muegge lab (Dennis et al., 2001). 

Grown in DMEM medium containing 10% (v/v) FBS, supplemented with a mix of 

1 OOu/mL penicillin, 1 00jig/ml of a streptomycin and 2mM L-glutamine (Sigma). 

Mouse embryonic stem cells: Embryonic stem (ES) cells are derived from the inner 

cell mass of a blastocyst embryo (laboratory stock). Grown in DMEM medium 

containing 10% (v/v) FBS, supplemented with leukemia inhibitory factor and a mix 

of lOOu/mL penicillin, 100g/ml of a streptomycin and 2mM L-glutamine (Sigma). 

VA13: The VA13 cell line was established from the fetal human diploid fibroblast 

cell line WI-38 after transformation with simian virus 40 (5V40) (laboratory stock). 

Grown in DMEM medium containing 10% (v/v) FBS, supplemented with a mix of 

lOOu/mL penicillin, 100g/ml of a streptomycin and 2mM L-glutamine (Sigma). 
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2.1.9 Mammalian cell culture media 

PBS: 140mM NaCl, 3mM KCI, 2mM KH2PO4, 10mM Na2HPO4 (Gibco) 

Trypsin-EDTA: lOx trypsin-EDTA (Gibco) diluted in PBS to 0.25% (w/v) trypsin, 

1mM EDTA. Stored at —20°C. 

2.1.10 Insect cell lines and culture media 

Sf9: All baculovirus stock generation and expression was done using SF9 cells 

(Invitrogen) which are derived from the papal ovarian tissue of the fall army worm 

Spodoptera frugiperda. Cells were grown in serum free SF900 II medium containing 

L-glutamine (Gibco) supplemented with penicillin and streptomycin (100g/ml), and 

incubated at 27°C. 

2.1.11 Oligonucleotides 

Custom oligonucleotides were purchased from MWG. Lyophilised oligonucleotides 

were resuspended in dH20 to 1 00iM and stored at —20°C. 

2.1.12 PCR primers 

Table 21: PCR nrimcrs used in this thesis 

Name Sequence (5'-3') Description I use 

M13 F TGTAAAACGACGGCCAGT Ml 3 forward primer for PCR 

amplification of bacmid DNA 

M13 R GTTTTCCCAGTCACGAC M13 reverse primer for PCR 

amplification of bacmid DNA 

SP6 CTAGCATTTAGGTGACACTA Sequencing 

T7 AATACGACTCACTATAGGGA Sequencing 

LSH 

NcoI/F 

CCATGGATGCCAGCGGAACG 

GCCCGC 

Cloning LSH into Ncol /Not l sites 

of pFAST-BAC HTA 

LSH 

NotI/R 

GCGGCCGCAAACAAACATTC 

AGGACTGGAATC 

Cloning LSH into Ncol /Not l sites 

of pFAST-BAC HTA 

LSH 

NcoI/F 

CCATGGATGCCAGCGGGACG 

GCCCGC 

Cloning LSH into NcoI/SmaI sites 

of pGBKT7 



Name Sequence (5'-3') Description I use 

LSH StuI/R AGGCCTAAACAAACATTCAG Cloning LSH into NcoI/Smal sites 

GACTGGAATC of pGBKT7 

LSH 1-226 AGGCCTGTACCATCGCATCA Cloning LSH(1-226) into 

StuI/R CTCCTC NcoT/SmaI sites of pGBKT7 

LSH 227- CCATGGGGTACCAAGTAGAA Cloning LSH(1-226) into 

838 NcoI/F GGCATGG NcoI/SmaI sites of pGBKT7 

Lsh 1-333 AGGCCTCAAATGACGTGATT Cloning LSH(l-333) into 

StuI/R ACCACA NcoI/SmaI sites of pGBKT7 

G4-LSH GCTAGCATGAAGCTACTGTC Cloning GAL4BD-LSH into the 

NheI/F TTCTATCGA NhelIApaI sites of pCDNA3.1 

G4-LSH GGGCCCAAACAAACATTCAG Cloning GAL4BD-LSH into the 

ApaI/R GACTGGAAT Nhel/ApaI sites of pCDNA3.1 

DNMT3B GGATCCATGAAGGGAGACAC Cloning 1-1 200bp of hDNMT3B 

1200 CAGGCA into BarnHI/SalI sites of pGEX- 

BarnHI/F 4T I 

DNMT3B GTCGACCATTTGTTCTCGGCT Cloning l-1200bp of hDNMT3B 

1200 CTGAT into BamHI/SalI sites of pGEX- 

SalI/R 4T1 

DNMT3B GGATCCGCTTCAGATGTTGC Cloning 120 1-2502bp of 

2502 CAACAA hDNMT3B into BamHI/SalI sites 

BamHI/F of pGEX-4T 1 

DNMT3B GTCGACCTATTCACATGCAA Cloning 1201-25 O2bp of 

2502 AGTAGTCC hDNMT3B into BamHI/SalI sites 

SalI/R ofpGEX-4T1 

DNMT1 GAATTCTGCGGGCAGTACCT Cloning 751-3375bp ofhDNMT1 

751 GGACGA into EcoRI/NotI sites of pGEX- 

EcoRI/F 4T1 

DNMT 1 GCGGCCGCATGCCGCTGAAG Cloning 751 -3375bp of hDNMT 1 

751 NotI/R CCCTGGCA into EcoRI/NotI sites of pGEX- 

4T 1 
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Name Sequence (5'-3') Description / use 

DNMT3B ATTGGCGGAAGCCCATCCAA Primers for C/S mutagenisis of 

640C/S F CGATCTCTCAAATG hDNMT3B C640 (catalytic site) 

DNMT3B CATTTGAGAGATCGTTGGAT Primers for C/S mutagenisis of 

640C/S R GGGCTTCCGCCAAT hDNMT3B C640 (catalytic site) 

LSH GAAACAATTGAGTTA GCT Point mutagenesis of serine 503 to 

S503A F CCTACTGGTCGACC alanine in LSH 

LSH GGTCGACCAGTAGG AGC Point mutagenesis of serine 503 to 

S503A R TAACTCAATTGTTTC alanine in LSH 

LSH GAAACAATTGAGTTA GAT Point mutagenesis of serine 503 to 

S503D F CCTACTGGTCGACC aspartic acid in LSH 

LSH GGTCGACCAGTAGG ATC Point mutagenesis of serine 503 to 

S503D R TAACTCAATTGTTTC aspartic acid in LSH 

LSH ATTAGCGGCCGCGATGCCAG For cloning LSH into p3XFLAG- 

Notl/F CGGAACGGCCCGC CMV-10 

LSH ATTACCCGGGAAACAAACAT For cloning LSH into p3XFLAG- 

Xrnal/R TCAGGACTGGAATC CMV-10 

pFastBAC CCGAAACCATGTCGTACTAC Removing 6xHis tag from pfastbac 

His Off F GATTACGATATCCCAACGAC vectors 

C 

FastBac GGTCGTTGGGATATCGTAAT Removing 6xHis tag from pfastbac 

His Off R CGTAGTACGACATGGTTTCG vectors 

G 

54A 18 F TATGTAAATGCTTATGTAAA Amplification of MMTV NucA 

54A 18 R TACATCTAGAAAAAGGAGCA Amplification of MMTV NucA 

54A54 R AGCACATGTGAAAGTTAAAA Amplification of MMTV NucA 

OAO F ACTTGCAACAGTCCTAACAT Amplification of MMTV NucA 

OAO R CAAAAAACTGTGCCGCAGTC Amplification of MMTV NucA 

67A0 F TGTTCTATTTTCCTATGTTC Amplification of MMTV NucA 

TK-prom F AATTGCTCAACAGTATGAAC Amplification of TK promoter in 

ATTTC ChIP experiments 



Name Sequence (5'-3') Description / use 

TK-prom R CAATTGTTTTGTCACGATCAA Amplification of TK promoter in 

AGGA ChIP experiments 

GAPDH F GAGGCTGTGAGCTGGCTGTC Amplification of control GAPDH 

promoter in ChIP experiments 

GAPDH R CAGAGCAGAGTAGCAAGAG Amplification of control GAPDH 

CAAGG promoter in ChIP experiments 

pTK/bis/F TGAGTTAGTTTATTTATTAGG Bisulphite sequencing of TK 

TATT promoter 

pTKlbis/R CTATAATTTATATTCAACCCA Bisulphite sequencing of TK 

TATC promoter 

4+5GsIF CGGGTG0000TGCGGAGCGC DNA probe containing runs of Gs 

TCTCGCTTTG000CTG used for EMSA experiments 

4+5Gs/R CAGCCCCAAAGCGAGAGCGC DNA probe containing runs of Gs 

TCCGCACCCCCACCCG used for EMSA experiments 

OGs/F GCAGATGAATGACTGATATT DNA probe without runs of Gs 

ACTCAGAAGTTTCATG used for EMSA experiments 

OGs/R CATGAAACTTCTGAGTAATA DNA probe without runs of Gs 

TCAGTCATTCATCTGC used for EMSA experiments 

2.1.13 Plasmids 

ThhI 22 PIsmids iisd in this thesis 

Name Source Selectable 

marker 

Description 

pGEX 4T GE Healthcare Amp Bacterial expression vector, 

GST fusion 

pFAST-BAC Invitrogen Amp Shuttle vector for production 

of recombinant BACMID 

pGEM T-Easy Promega Amp PCR cloning vector 

pGBKT7 Clonetech Kan Yeast 2-hybrid bait vector 

zo 



Name Source Selectable Description 

marker 

pGADT7 Clonetech Amp Yeast 2-hybrid activator 

vector 

p3xFlag Sigma Amp Mammalian expression 

vector, N-terminal 3xFlag tag 

GAL4-TK-LUC A. Bird Amp Luciferase gene driven by TK 

promoter upstream of 

5xGAL4 binding sites 

pact-f3geo A. Bird Amp 3-geo gene under control of 

-actin promoter 

pCDNA3.1 Invitrogen Amp Mammalian expression 

Hygro+ vector 

pFAST-BAC A. Jerzmanowski Amp Shuttle vector for production 

DDM1 of recombinant BACMID 

pReceiver 101 RZPD Amp Shuttle vector for production 

DNMT3B of recombinant BACMID 

pFAST-BAC Amp Shuttle vector for production 

DNMT1 of recombinant BACMID 

pReceiver M03 RZPD Amp DNMT3B-GFP fusion for 

DNMT3 B-GFP mammalian expression 

pEGFP-Cl Dnmtl- H. Leonhardt Amp Dnmtl-GFP fusion for 

GFP mammalian expression 

pCDNA3.1 R.J. Arceci Amp Full length, human LSH 

Hygro+ LSH cloned into a mammalian 

expression vector 

pCDNA3.1 R.J. Arceci Amp Full length, human LSHK2S4Q 

Hygro+ LSHK254Q cloned into a mammalian 

expression vector 
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2.1.14 Antibodies 

Table 2.3: Primary antibodies used in this thesis 

Name Source, catalogue 

number 

Type Dilution for 

Western blot 

a-DNMT 1 NEB (M023 1 L) Rabbit polyclonal 1:1,000 

a-FLAG M2 Sigma (F 1804) Mouse monoclonal 1:500 

a-HA CRUK (12CA5) Mouse monoclonal 1:500 

a-HIS Santa Cruz Biotechnology 

(sc-803) 

Rabbit polyclonal 1:1,000 

a-LSH Santa Cruz Biotechnology 

(sc-46665) 

Mouse monoclonal 1:500 

a-Myc CRUK (9E10) Mouse monoclonal 1:500 

a-DNMT1 Santa Cruz Biotechnology 

(sc-2070 1) 

Rabbit polyclonal 1:500 

a-DNMT3B Affinity Bioreagents 

(PAl -884) 

Rabbit polyclonal 1:1,000 

a-HDAC1 Santa Cruz Biotechnology 

(sc-7872) 

Rabbit polyclonal 1:500 

a-HDAC2 Santa Cruz Biotechnology 

(sc-7899) 

Rabbit polyclonal 1:500 

a-GAL4131) Santa Cruz Biotechnology 

(sc-S 10) 

Mouse monoclonal 1:500 

a-Brgl Santa Cruz Biotechnology 

(sc- 10786) 

Rabbit polyclonal 1:500 

a-H3 Upstate (05-499) Rabbit polyclonal NA 

a-H4 Upstate (07-108) Rabbit polyclonal NA 

a-H3K9Ac Upstate (07-352) Rabbit polyclonal NA 

a-H4K12Ac Upstate (07-353) Rabbit polyclonal NA 

Table 2.4: Secondary antibodies used in this thesis 
Name Source, catalogue number Dilution for western blot 

a-goat HRP Sigma (G4-34) 1:2000 
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Name Source, catalogue number Dilution for western blot 

a-mouse HRP Sigma (A6782) 1:2000 

a-rabbit HRP Sigma (A0545) 1:2000 

2.1.15 Chromatogrpahy 

Chromatography media: All chromatography media was purchased from GE 

Healthcare. Use of Superose 6 and Superose 12 columns was kindly provided by 

Prof Adrian Bird. 

Chelating Sepharose affinity chromatography (bound with Co) 

Mono Q anion exchange resin (mono dispersed beads) 

Superose 12 Size exclusion chromatography (24 ml analytical) 

Superose 6 Size exclusion chromatography (24 ml analytical) 

Chromatography solutions: 

Size exclusion chromatography buffer (GF300) consisted of 20 mM HepesKOH (pH 

7.9), 3mM MgCl2, 10 % glycerol and 300 mM KC1. 
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2.2 Methods 

2.2.1 DNA manipulation 

Small scale plasmid DNA preparation: Small scale preparation of plasmid DNA 

was carried out according to the Qiagen Miniprep Kit instruction manual. DNA was 

eluted in 50 jil 10mM Tris pH8.8 and stored at -20 °C. 

Large scale plasmid DNA preparation: Large scale preparation of plasmid DNA 

was done according to the Qiagen Maxiprep Kit instruction manual. Precipitated 

DNA was resuspended in 10 mM Tris pH 8.0 and stored at -20 °C. 

Large scale preparation of Bacmid DNA: Large scale preparation of Bacmid DNA 

was done according to the Qiagen Midiprep Kit. The Bacmid DNA pellet was 

resuspended in 10 mM Tris pH 8.0 and stored in 5 tg aliquots at - 20 °C. 

Extraction of mammalian genomic DNA: For extraction of mammalian genornic 

DNA, 1 x 106  cells were resuspended in 500p1 of DNA isolation buffer. The cells 

were treated with 100tg/m1 RNase A for 15 minutes at 37°C. Following RNase 

treatment, SDS and Proteinase K were added to 0.5% (w/v) and 100ig/ml 

respectively and incubated overnight at 65°C. Digested peptides were removed by 3 

extractions with phenol: chloroform: isoamyl alcohol and a single extraction with 

chloroform. DNA was precipitated by addition of 0.7 volumes isopropanol and 

centrifuged at 13000rpm for 15 minutes at 4°C. The DNA was washed twice with 

70% ethanol, allowed to dry and resuspended in lOOpi of TE. 

Restriction endonuclease digestion of DNA: Restriction digest were generally done 

in 30 jil volumes in the appropriate buffers supplied with the restriction enzyme 

(Fermentas). Most digests were carried out at 37 °C for lh, or at the temperature 

given in the product literature. Efficiency and completeness of digestion was verified 

by agarose gel electrophoresis in 1 X TAE and visualization by ethidium bromide 

staining. 
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Dephosphorylation of DNA fragments: The 5' phosphate of DNA molecules was 

removed with Antarctic alkaline phosphatase (NEB). Typically, ltg of DNA 

dephosphorylated by 10 units of enzyme in 30jil volume. The reaction was allowed 

to proceed for 1 hr at 37°C, the reaction stopped by incubation at 65°C for 5 minutes 

and the DNA re-purified on a PCR purification column (Qiagen). 

Methylation of DNA fragments: Methylation reactions using M.HhaI, or M.SssI 

methyltransferases (NEB) were carried out according to manufactures instructions. 

Polymerase chain reaction (PCR): Polymerase chain reactions were carried out in 

25 tl or 50 pJ reaction volumes using a Biometra T3 Thermocycler. Generally 0.5 

tM of each primer was used per reaction. If template DNA was plasmid 5 ng of 

DNA was used and if genomic DNA 100 ng was used. Cycling parameters varied 

depending on DNA source and primer properties. If the PCR was for analytical 

purposes Taq polymerase (Roche) was used to amplify the DNA. If the PCR 

products were subsequently to be cloned for protein expression lu PFU polymerase 

(Fermentas) / 50u Taq was used to amplify the DNA. In each case the reaction buffer 

and salt solution provided with these commercial polymerases were used. 

Purification of PCR fragments: PCR fragments were purified with the Qiagen PCR 

purification kit according to the manufacturer's protocol. 

Molecular cloning of PCR products: PCR products were cloned using the pGEM-T 

Easy Vector system (Promega) according to the manufacturers instructions 

DNA Sequencing: Sequencing reactions were assembled using the Big Dye 

terminator V3 kit (Roche). Reactions were assembled in 10 pJ volumes containing 2 

l of Big Dye sequencing mix, 0.3 tM of sequencing primer, and 500 ng of template 

DNA. The sequencing reactions used the following program: 96 °C for 1 minute 

followed by 25 cycles at 96 °C for 10 seconds, 50 °C for 5 seconds, and 60 °C for 4 
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mm. Sequences were analyzed by the sequencing facility at the University of 

Edinburgh. 

Agarose gel extraction of DNA fragments: DNA was extracted from agarose gels 

using the Qiagen gel extraction kit according to the manufacturer's instructions and 

the DNA eluted in 30 ll of TE heated to 55 °C. 

Ligations: Ligation reactions were carried out in a 20 tl reaction volume using 10 

units of T4 DNA ligase (NEB) according to the manufactures recommendations. 

Site directed mutagenesis: Site directed mutagenesis was carried out with the 

QuikchangeXL mutagenesis kit (Stratagene) according to the manufacturers 

recommendations. 

Radioactive labelling DNA fragments: 3 tg of template DNA was end labelled in a 

50 p1 reaction volume with 10 units of T4 polynucleotide kinase (NEB) and 1 p1 of 

10 mCi / ml of gamma-32P dATP for 1 hour at 37 °C. Unincorporated isotope was 

removed by purification of the labelled DNA using illustra Micrcospin G25 Columns 

(GE Healthcare). 

Bisulphite treatment of DNA: Genomic DNA was isolated from transfected 

HCT1 16 cells and digested with a restriction endonuclease that cuts out with the 

region of DNA being analysed. The digested DNA was purified using the QlAquick 

PCR Purification kit (QIAGEN) according to the manufacturer's instructions. lj..tg 

digested DNA in 25p1 TE was denatured by incubation at 100°C for 5mm, and the 

subsequent addition of 2.5tl 3M NaOH and incubation at 37°C for 20mm. 270il 

Bisulphite modification solution was added to the denatured DNA, and the sample 

was covered with a mineral oil overlay and incubated at 55°C overnight protected 

from light. The modified DNA was then isopropanol precipitated (in the presence of 

50ig glycogen carrier) and resuspended in 25tl TE pH7.4. The DNA was then 

desulphonated by the addition of 2.5il 3M NaOH and incubation at 37°C for 15mm. 
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The bisuiphite-modified DNA was purified using the QlAquick PCR Purification kit 

(QIAGEN) and eluted in 30il 10mM Tris HC1 pH8.5. 

5tl of the bisuiphite-modified DNA was used in a PCR reaction containing primers 

specific to the bisuiphite-modified TK-promoter sequence, and the whole PCR 

resolved by agarose gel electrophoresis. The amplified DNA was purified from the 

gel using the QlAquick Gel Extraction kit (QIAGEN), and was cloned into the 

pGEM-T Easy plasmid using the pGEM-T Easy cloning kit (Proniega) according to 

the manufacturer's instructions. The cloning reactions were transformed into Nova-

blue competent cells and plated onto LB agar plates containing ampicillin, IPTG and 

X-gal. 

Bacterial colonies transformed with an insert-containing plasmid were identified by 

blue/white selection and the plasmid DNA isolated by Qiagen Miniprep. Analytical 

digests with EcoRI identified true positive clones containing insert of the expected 

size. SOOng of insert containing plasmid was used in a BigDye sequencing reaction 

with T7 and SP6 sequencing primers. 

2.2.2 Protein manipulation 

Measuring protein concentration: Protein concentration was measured using the 

BCA Protein Assay (Pierce Biotechnology). Briefly, stock reagents A and B were 

mixed together at a 50:1 ratio and increasing amounts of protein sample added to 1 

ml of the mixture. The reagent was incubated at 65 °C for 15 minutes after which 

absorbance at 562nm was measured. Known concentrations of BSA were added to 

the BCA reagent in parallel to generate a standard curve by which the concentration 

of the test protein sample could be determined. 

SDS-PAGE: Proteins were diluted in SDS-PAGE loading buffer and boiled for 5 

min at 100 °C. 0.75 mm thick gels were assembled in a Bio-Rad Mini-PROTEAN 3 

apparatus. Gels consisted of a stacking gel buffered at pH 6.8 and a separating gel at 

pH 8.8. All gels used an acrylamide to bis-acrylamide ratio of 29:1 with 0.1% SDS. 

The acrylamide was polymerized by the addition of ammonium persulfate and 
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TEMED as a catalyst. Gels were run in TGS at 270V until the loading dye migrated 

off the bottom of the gel. 

Coomassie blue stain: SDS PAGE gels were incubated with fresh Coornassie 

Brilliant Blue R-250 staining solution, heated briefly in the microwave and rocked 

for one hour. Excess stain was removed with H20 and the gel was immersed in de-

stain solution consisting of 30 % methanol and 10% acetic acid. The de-stain was 

allowed to proceed for several hours until the background staining was no longer 

visible. Gels were then soaked overnight in H20, dried on Whatman paper and 

imaged. 

Silver stain: SDS-PAGE gels were silver stained using the SilverQuest Silver 

Staining Kit (Invitrogen), using the Basic Staining Protocol, according to the 

manufacturer's guidelines. 

Wet transfer to nitrocellulose membrane: Wet transfer was carried out on a Bio-

Rad Mini Trans-Blot Electrophoretic Transfer Cell according to the manufacturer's 

recommendations. Briefly, one layer of 0.3 mm Whatman paper was soaked in 

transfer buffer and the SDS-PAGE gel placed on it. A single layer of nitrocellulose 

filter paper was pre-wetted in dH20, soaked in transfer buffer and placed on top of 

the gel. An additional layer of 0.3 mm Whatman paper pre-soaked in transfer buffer 

was placed on top on the gel. Bubbles were removed by rolling a 15 ml falcon tube 

several times over the assembled gel sandwich. The gel sandwich was assembled into 

the gel holder cassette between two fiber pads also pre-soaked in transfer buffer. The 

assembled cassette was inserted into the electrode module and transferred with 270V 

for 1 hour. After transfer the gel sandwich was disassembled and the membrane 

stained with Ponceau stain to ensure efficient transfer. 

Western blotting: For most antibodies the following Western blot procedure was 

used. After a 1 hour block in a 2% milk, 0.1% Tween, 1 X TBS solution, fresh 

blocking solution containing a 1:500 to 1:1000 dilution of the primary antibody was 

applied. The primary antibody was incubated overnight at 4 °C followed by three 
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consecutive twenty minute washes in PBS / 0.1% Tween. The membrane was 

blocked again for one hour at room temperature in 2% milk, 0.1% Tween, I X TBS. 

The secondary antibody was applied at a dilution of 1:2000 in the same solution for 

three hours at room temperature. Four consecutive fifteen minute washes in PBS / 

0.1% Tween removed unbound secondary antibody. The nitrocellulose membrane 

was incubated with lOmI ECL solution for 1 minute then wrapped in Saran wrap and 

exposed to RPNew Medical X-Ray film (CEA). 

Immunoprecipitation of proteins: 100ig of nuclear extract was used for 

imrnunoprecipitations experiments. Nuclear extract was diluted to 150mM NaCl with 

NE! buffer and applied to Protein G Sepharose 4 fast flow beads (GE Healthcare) for 

1 hour at 4°C to remove proteins that bind to them non-specifically. 1 ig of antibody 

was added to the pre cleared nuclear extract and incubated at 4°C for 1 hour on a 

spinning fly wheel. The antibody was captured for 1 hour at 4°C with 25d of Protein 

G beads pre washed with NE1 buffer supplemented with 150mM NaCl. Following 

capture the beads were collected by centrifugation at 6000g for 1 minute at 4°C. The 

beads were washed 3 times with 500tl ofNEl buffer containing 150mM NaCl. After 

each wash the beads were collected by centrifugation at 6000g for 1 minute at 4°C. 

After the final wash 20 jil of 2 X SIDS PAGE loading buffer was added to the beads 

and they were boiled at 100°C for 10 minutes to liberate the proteins. 10tl of the 

immunoprecipitated sample was subsequently analysed by SDS-PAGE. 

Chromatin I mmunoprecipitation: Chromatin immunoprecipitations experiments 

were performed to assess the impact of LSH binding to the TK promoter. 5 x 106  

HEK293 cells containing a stably integrated 5x GAL4-TK-LUC construct (Ishizuka 

and Lazar, 2003) were transiently transfected with 10 Vtg of GAL4-LSH 226 or 10 tg 

of pCDNA3.1 GAL4BD control plasmid. At 48 h post transfeëtion, the cells were 

recovered by trypsin treatment and cross-linked with 1% formaldehyde. Cross 

linking was quenched by addition of glycine to a final concentration of 125mM. 

Crosslinked cells were washed twice with ice cold PBS + complete protease 

inhibitors (Sigma) by centrifugation at 2000g for 10 minutes at 4°C. The cells were 

then resuspended in a buffer containing 10mM Tris-HC1 pH8.0, 200mM NaCI, 1mM 
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EDTA and 0.5mM EGTA + complete protease inhibitors (Sigma) and incubated at 

room temperature for 10 minutes. The cells were centrifuged as above and 

resuspended in TE + complete protease inhibitors (Sigma) at a concentration of 5 x 

106  per ml. 500 jil aliquots of cells were sonicated in a SoniPrep sonifier six times for 

20 seconds at power 5 microns. Sonication was assessed by phenol-chloroform 

extraction of 10 p1 of sonicated material. Chromatin sonicated to -500bp was used 

for subsequent immunoprecipitations. Chromatin concentration was measured at 

0D250. 25tg of chromatin was immunoprecipitated for 2 hours at 4°C on a spinning 

fly wheel with 0. 25tg of the following antibodies: anti-HA control (CRUK), anti-H3 

(Upstate; 05-499, lot 25198), anti-H3K9ac (Upstate; 07-352, lot 28741), anti-H4 

(Upstate; 07-108, lot 25296), and anti-H4Kl2ac (Upstate; 07-595, lot 28885). 

Immunoprecipitated complexes were captured on protein G Dynabeads (Invitrogen) 

for 1 hour at 4°C on a spinning fly wheel. Dynabeads were captured using a 

magnetic strip and washed 10 times with RIPA buffer (50mM Hepes, pH8.0, 1mM 

EDTA, 1% NP40, 0.7% DOC, 500mM LiCl). Following the final wash all the liquid 

was removed and DNA eluted from the beads by overnight incubation at 65°C with 

100 jil TE supplemented with 100ig/ml Proteinase K (Sigma) and 0.5% SDS. The 

next day, the beads were extracted twice with phenol: chloroform and once with 

chloroform. The DNA was precipitated with 300p1 isopropanol, 150j.il ammonium 

acetate with 5jig of glycine as a carrier. The precipitated DNA was washed with 70% 

ethanol and resuspended in 15[d of dH20. 1 p1 of chromatin-immunoprecipitated 

DNA was used in 30 cycles ofPCR. 

Purification of 3xFlag tagged proteins from HeLa cells: For purification of 3xFlag 

tagged proteins 5 x 106 HeLa cells were transfected with 10 jig of expression 

plasmid using JetPEI transfection reagent (Section 2.2.6). 48 hour after transfection 

cells were harvested by trypsinlEDTA treatment and washed twice with ice cold PBS 

+ complete protease inhibitors (Sigma). Nuclear extract was obtained with 500 jil 

NE2 buffer (Section 2.2.6) and applied to 100p1 of anti-Flag M2 affinity gel (Sigma) 

that had been pre-washed with lml 0.1M Glycine pH3.5 and 3 x imI TBS. The beads 

were mixed with the nuclear extract for 2 hours at 4°C on a spinning fly wheel. 

Beads were then collected by centrifugation for 1 minute at 6000g and supernatant 
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removed. The beads were washed 4 times with imi of buffer containing 20mM 

Hepes pH7.0, 500mM NaCl, 10mM KC1, 1mM MgC12, 0.1% (v/v) Triton X-100, 

20% (v/v) glycerol, 0.5mM DTT and complete protease inhibitors (Sigma). Washes 

were carried out for 5 minutes each at 4°C on a spinning fly wheel. The beads were 

then further washed three times with lml TBS. Elution of Flag fusion proteins was 

carried out using an elution buffer consisting of TBS with 300 tg/ml 3xFlag peptide 

and complete protease inhibitors (Sigma). 30 tl elution buffer was added to the 

washed and left for 30 minutes at room temperature on a spinning fly wheel. The 

beads were collected by centrifugation for 1 minute at 6000g and supernatant 

removed. Elution was repeated a further 3 times. Efficiency of elution was analysed 

by SDS-PAGE followed by silver staining. 

In vitro translation of peptides: In vitro translation of peptide was carried out using 

the TnT T7 Quick for PCR DNA kit (Promega) according to the manufacturer's 

instructions. Typically, 500ng of plasmid was used in the reaction that was incubated 

at 30°C for 2 hours. Following completion of the reaction lil of the mix was 

analysed by Western blot to assess efficiency of translation. Translated peptides were 

stored at -20°C. 

-phosphatase treatment of proteins: Recombinant LSH was dephosphorylated in 

vitro using X-phosphatase (NEB). 2tg of LSH was incubated with 10 units of 

phosphatase for 1 hour at 37°C in the supplied buffer in a total volume of 20jil. 

Following incubation 1 il of treated protein was analysed by SDS-PAGE for integrity 

and the rest used for biochemical analysis. 

In vitro pulldown of peptides using GST-tagged proteins: Interactions between 

recombinant GST-tagged proteins and in vitro translated peptides were analysed by 

incubating 10 j.tl of GST-tagged protein immobilised on GST Sepharose beads with 5 

W of in vitro translation mix diluted in 100 .il of NE2 buffer. Incubations were 

performed for 1 hour at 4°C on a spinning fly wheel. The immobilised protein was 

pelleted by centrifugation at 6000g for 1 minute at 4°C and washed 3 times with 500 

il of NE2 buffer. Following the final wash most of the liquid was removed and the 
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GST Sepharose beads resuspended in 20 l of 2X SDS-PAGE loading buffer. The 

beads were boiled at 100°C for 5 minutes, centrifuged at 13000g for 1 minute and 10 

tl of the supernatant run on SDS-PAGE and analysed by Western blot. 

2.2.3 Bacterial Methods 

Bacterial growth on plates: L.B. agar was melted in a microwave and allowed to 

cool to 50 °C before antibiotic was added. The L.B. agar mix was poured into round 

10 cm dishes at a depth of 5mm and allowed to cool at room temperature until 

solidified. The plates were then stored inverted at 4 °C. Prior to use plates were 

warmed to 37 °C. Bacteria were grown by streaking a single colony on the plate, or 

by diluting liquid culture and spreading evenly over the surface of the plate using 

sterile glass beads. Plates were inverted and incubated overnight at 37 °C. 

Bacterial growth in Liquid culture: Antibiotic was added to L.B. media and mixed 

thoroughly. For 5m1 cultures a single bacterial colony was scraped from the plate 

using a Gilson pipette tip and dropped into a 15 ml falcon tube. The culture was 

grown shaking at 250 rpm overnight at 37 °C. For larger cultures a single colony was 

incubated in a conical flask with a volume four times larger than the culture volume. 

Preparing chemically competent strains: Bacterial cells (DH5a or Nova blue) 

were streaked from a glycerol stock onto LB agar plates and incubated overnight at 

37 °C. A single colony was inoculated in 10 ml of LB overnight shaking at 37 °C. 

The 10 ml culture was then inoculated into a 200 ml flask of LB and incubated 

shaking at 37 °C until cell density reached an absorbance ob 0.15 at 600 nm (-1 

hour). The cells were collected by centrifugation at 4000 rpm, 10 min at 4 °C and 

placed on ice for 10 minutes. Using sterile techniques the cells were gently 

resuspended in 3 ml of sterile ice cold 100 mM CaCl2, 70 mM MgC12. The same 

buffer was then added to SOml and the cells left on ice for 1 hour. The cells were next 

collected by centrifugation at 4000 rpm, 10 min at 4 ° and resuspended gently in 3 ml 

of 100 mM CaC12, 70 mM MgCl2. lml of glycerol was added and mixed gently. 

Aliquots of competent cells (200 j.tl) were stored at - 80 °C. Competency was 

evaluated by transforming 0 ng, 10 ng, or 100 ng of super-coiled plasmid DNA into 
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aliquots of competent cells following 1 day at - 80 °C. Transformants per tg plasmid 

were derived by counting viable plasmid selected colonies arising the next day on LB 

agar plates. Competent cells were typically 105 to 106 colonies per tg of plasmid 

DNA. 

Bacterial Transformation: Competent cells were defrosted on ice and DNA was 

added to the competent cell mix and gently mixed with a pipette tip. The 

transformation reaction was incubated on ice for 2 mm. The cells were heat shocked 

for 2 min at 42 °C in a water bath, immediately followed by at 2 minute resting 

period on ice. 800 tl L.B. was then added to the transformation mixture and it was 

incubated at 37 °C shaking for 30 mins - 1 hr. For ligation reactions the cells were 

collected at 6000g for 1 min and resuspended in 200 1.11 of LB before plating on 

selective LB agar. If the transformed DNA was supercoiled plasmid 50 tl of the 

transformation reaction was directly plated on selective LB agar. 

Expression of recombinant proteins in bacteria: E. coli strain ER2566 was used as 

a host strain to over-express target genes under the control of a T7 promoter and a lac 

operator. Both ER2566 and the plasmid encoding the target protein also encode the 

lacl repressor protein. ER2566 cells carry a chromosomal copy of the bacteriophage 

T7 RNA polymerase gene inserted into the endogenous lacZ gene, and thus under the 

control of the lac promoter and operator. In the absence of the non-cleavable lactose 

analog isopropyl-j3-D-thiogalactoside (IPTG), the lacl repressor protein binds to the 

lac operators upstream of both T7 RNA polymerase and the target gene, and their 

expression is repressed. In the presence of IPTG, an IPTG-lacl complex forms; this 

complex cannot bind to the lac operators, and the T7 RNA polymerase gene is 

expressed. The T7 RNA polymerase protein then transcribes the target gene. The 

genes encoding the Ion and OmpT proteases are deleted in strain ER2566, which 

may increase the yields of some target proteins. 

ER2566 cells were transformed with a plasmid(s) carrying a T7 promoter/lac 

operator-controlled target gene. A lOml 0/n bacterial culture in LB broth with 

appropriate antibiotic selection was prepared. The o/n culture was added to 500m1 
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LB broth the following morning, and the diluted culture was incubated at 37°C with 

shaking until an 0D600  of 0.5 was reached. Protein expression was induced by the 

addition of IPTG to 1mM, and the bacterial culture was incubated at 37°C with 

shaking for a further 4h. Bacterial cells were pelleted by centrifugation for 30 

minutes at 5000g at 4°C. Pellets were stored at -20°C until processing. 

2.2.4 Purification of GST-tagged proteins from E. coli 

Cell pellets were washed twice in ice-cold PBS and resuspended in 20ml PBS 

supplemented with complete protease inhibitors (Sigma). Cells were lysed by 

sonication using a Branson T250 Sonifier at setting 4, output 40%, for five minutes. 

The lysate was centrifuged at 20,000g for 30 minutes at 4°C and the supernatant 

further clarified by filtering it through a 0.45 J.tm filter. The lysate was applied to 2m1 

of GST-sepharose beads pre-washed with PBS and incubated for 1 hour at 4°C. The 

protein bound beads were washed extensively with 50m1 of PBS and stored at 4°C 

with 0.01% azide as a preservative. 5il of beads were boiled in 2 X SDS-PAGE 

loading buffer and analysed by SDS-PAGE to assess yield and purity. 

2.2.5 Yeast cell culture and two-hybrid screen 

Yeast growth conditions: Yeast cells were recovered from frozen glycerol stocks by 

scraping the surface of the frozen stock with a sterile loop, and then streaking the 

loop across a YPDA agar plate. Plates were sealed with Paraflim to prevent 

desiccation, and were incubated inverted at 30°C until colonies grew to 2-3mm in 

diameter (2-3 days). Working stock plates were then stored at 4°C for up to two 

months. 

Liquid yeast cultures were grown in YPDA. A single yeast colony of 2-3mm in 

diameter was inoculated into lml broth. The broth was vortexed at high speed for 

5min to disperse the cells, then diluted into a larger volume (up to 50ml). Liquid 

yeast cultures were incubated at 30°C with shaking at 200rpm o/n. 
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Lithium acetate-mediated transformation of yeast: Plasmid DNA was introduced 

into yeast cells by lithium acetate (LiAc)-mediated transformation, as described in 

the Yeast protocols handbook (Stratagene, 1998). A 50m] o/n yeast culture in YPDA 

broth was prepared, and the 0D600  was measured the following morning. The culture 

was deemed to be in stationary phase when the 0D600 > 1.5. The culture was diluted 

into 300m1 YPDA broth to an 0D600  of 0.2-0.3 (early log phase), then incubated at 

30°C with shaking until an 0D600  of 0.4-0.6 was reached (mid log phase). The yeast 

cells were pelleted by centrifugation at 1,000g for 5mm, and were washed with 25m1 

TE pH7.5. The cells were then resuspended in l.Sml TE/LiAc. 100.il resuspended 

yeast cells was added to a tube containing lOOng of each plasmid DNA to be 

transformed (i.e. 200ng plasmid DNA/co-transformation) and 100ig herring sperm 

ssDNA. The tube was then vortexed at high speed for lOs. 600111 PEG/LiAc was 

added and the transformations were mixed again by vortexing. The transformations 

were then incubated at 30°C with shaking for 30mm. 70p1 dimethylsuphoxide 

(DMSO) was added and the transformations were mixed gently by inversion, before 

being heat shocked in a 42°C water bath for 15min then incubated on ice for 2mm. 

Finally, the transformed yeast cells were pelleted by a brief centrifugation and were 

resuspended in lml TE pH7.5. 100111 of the resuspended yeast cells was plated onto 

the appropriate SD agar plates, and the plates were incubated inverted at 30°C for 3-

4days. 

Yeast 2-hybrid screen: Yeast 2-hybrid screening of a Matchmaker Pretransformed 

HeLa cDNA library (Clonetech) with LSH and LSH(227-838) was carried out 

according to the manufacturers recommendations. Briefly, pGBTK7 plasmids 

expressing GAL4BD-LSH and GAL4BD-LSH(227-838) were transformed into the 

bait AH109 yeast strain as above. Expression of the fusion proteins was confirmed 

by Western blotting. For the screen, an overnight culture of the bait strain was grown 

overnight in 50m1 SD/-Trp until the 0D600 reached 0.8. The cells were pelleted by 

centrifugation at 1 000g for 5 minutes and the supernatant discarded. The cells were 

resuspended in Sml of SDI-Trp to obtain a high concentration culture. The 

concentrated bait strain was combined with lml of the pretransformed library strain 



(Y187) in a sterile 2 litre flask. 45 ml of 2xYPDA liquid medium was added to the 

flask and mating proceeded at 30°C for 24 hours with gentle shaking (40rpm). The 

cells were pelleted by centrifugation at l000g for 5 minutes and resuspended in lOml 

of 0.5x YPDA liquid medium. From the mated culture lOOp1 of 1/10, 1/100, 1/1,000, 

1/10,000 dilutions were plated on SD/-Trp, SD/-Leu and SD/-Leu/-Trp plates to 

assess mating efficiency. The remainder of the culture was plated, 200p1 per 150mm 

SD/-Ade/-His/-Leu/-Trp/X-a-gal agar plate (--50 plates). The plates were incubated 

for 14 days and checked for positive colonies. 

2.2.6 Mammalian cell culture methods 

Mammalian cell culture: Mammalian cells were grown in defined growth media 

(DMEM or RPMI (Invitrogen)) with 10% donor calf serum, supplemented with 

100tg/ml of a penicillin/streptomycin antibiotic mix and 2mM glutamine (Sigma). 

The cells were maintained at 37°C in 5% CO2. Adherent cells were dislodged at 75 

% confluence by washing with a dilute solution of trypsinlEDTA and replating at a 1 

4 ratio. 

Cryogenic storage of mammalian cells: Cells were collected by centrifugation at 

500 g for 5 min and resuspended in lml of media containing 10% DMSO per 2.5 X 

106 cells. Cells were frozen and stored at -80°C overnight. The following day the 

cells were transferred to liquid nitrogen for long term storage. 

Transfection of mammalian cells: Cells were transfected with JetPEI (Polyplus 

Transfection) according to the manufacturer's recommendations. The next day the 

cells were washed with fresh media and allowed to recover for 24 hours before 

assaying for transfection efficiency and further manipulation. 

Isolation of nuclei from tissue culture cells: Adherent tissue culture cells were 

dislodged from culture vessels using trypsin and collected by centrifugation at 500 g 

for 5 min at room temperature. The cells were washed once with PBS and 

resuspended in 2 ml of buffer NE2 per 107 cells. Nuclei were released by 10 plunges 



of a tight fitting dounce homogeniser. Nuclei were recovered by centrifugation at 

3000 rpm for 5 min at4°C. 

Nuclear protein extracts from mammalian cells: Recovered nuclei were 

resuspended in 500tl buffer NE2 per 107 cells. Extraction of nuclear proteins was 

allowed to proceed for I  at 4°C on a spinning fly wheel. Insoluble cellular material 

was pelleted at 13,000 rpm for 20 minutes at 4°C. The supernatant was taken as the 

nuclear extract. Nuclear extract was either used immediately or stored at —80 °C. The 

insoluble nuclear pellet was further extracted using the same buffer supplemented 

with IM NaCl. The resuspended material was sonicated using a Branson T250 

Sonifier for power setting 4, 40% output for 15 seconds. DNase and micrococcal 

nuclease were both added to the solution at 100u/ml along with 1mM CaC12. 

Nuclease digestion was performed for 1 hour at 4°C. Centrifugation at 13,000 rpm 

for 20 minutes at 4°C liberated the soluble nuclear pellet fraction which was either 

used immediately or stored at —80°C. 

Cell cycle synchronisation of mammalian cells: HeLa cells grown in DMEM were 

synchronised in S-phase by a double block with thyrnidine and mimosine. 

Asynchronously growing cells at 25% confluence were blocked by addition of 

2mM thyrnidine for 16 hours. The thymidine was washed off with PBS and fresh 

media added, allowing recovery from the block for 4 hours. Mimosine was then 

added to 40mM and the cells incubated for a further 16 hours. The cells were then 

washed with PBS and replenished with fresh media. Cells were allowed to grow for a 

further 3 hours to produce cells synchronously growing in S-phase or 8 hours to 

produce cells synchronously growing in G2/M-phase. At these points the cells were 

processed for both flow cytometric analysis to determine success of synchronisation 

and nuclear extraction. 

Flow cytometric analysis of HeLa cells: Asynchronous or synchronised HeLa cells 

were isolated by treatment with trypsin/EDTA. Cells were pelleted by centrifugation 

at 1000g for 5 minutes and washed twice with PBS. The cell pellet was resuspended 

in 500 p1 PBS and Sml ice cold ethanol added dropwise. Cells were fixed at 4°C 

Mv 



overnight. 5 x 106 cells were pelleted as above and washed twice in 5m1 PBS + 1% 

BSA. The washed cells were resuspended in 800 tl PBS + 1% BSA. 100 R'  of 500 

tg/ml propidium iodide in 38mM sodium citrate pH7.0 was added to the 

resuspended cells. RNase A was added to a final concentration of lmg/ml and the 

cells incubated at 37°C for 30 minutes. Stained cells were analysed by flow 

cytometry on a FACsCalibur machine. 

RNAi knock down of HDAC1 and HDAC2: SMART pool siRNA designed to 

target HDAC1, HDAC2, HDAC3 and GFP were purchased from Dharmacon.1.6 x 

106 HCT116 cells were transfected with 5 jig SMART pool siRNA using 

nucleofector device and nucleofector reagents kit V (AmaxA Biosysterns). 48 hours 

later 2.5x 105 of RNA treated cells were co-transfected with reporter and effector 

plasmids using JetPEI reagent (Autogen Bioclear). The cells were collected for 

luciferase and 3-galactisidase assays 24 hours after the reporter plasmids were 

introduced. The levels of HDAC 1 and HDAC2 in nuclear extracts of RNAi treated 

cells were investigated 72 hours after RNAi transfection on Western blots with anti-

HDAC 1 and anti-HDAC2 antibodies. 

2.2.7 Insect cell and baculovirus culture methods 

Insect cell culture: All baculovirus stock generation and expression was done using 

SF9 cells (Invitrogen) which are derived from the papal ovarian tissue of the fall 

army worm Spodoptera frugiperda. Cells were grown in serum free SF900 II medium 

containing L-glutarnine (Gibco) supplemented with penicillin and streptomycin 

(lOOjig/ml), and incubated at 27°C. Cells were grown as a monolayer in tissue 

culture flasks and split when confluent by dislodging the cells physically. Cells were 

diluted 1:10 to 1:20 in fresh SF900 II medium and either re-plated in new tissue 

culture flasks or inoculated as 50 ml cultures in a 200 ml spinner culture flask at 70 

rpm. SF9 cells grown as suspension cultures in spinner flasks were maintained at 

densities of less than 2.5 x 106  cells per ml. Cells were passaged by centrifuging the 

cells at 500 rpm for 5 minutes to isolate the cells, and the old media was removed 

and replaced with fresh SF900 II media at 0.5 x 106  cells per ml. 



Cryogenic storage of insect cells (SF9): Cells were collected by centrifugation at 

500 g for 5 min and resuspended in lml of media containing 10% DMSO per 2.5 X 

106 cells. Cells were frozen and stored at - 80 °C overnight. The following day the 

cells were transferred to liquid nitrogen for long term storage. 

Generation of recombinant baculovirus genome: The Fastbac system (Invitrogen) 

was used to generate recombinant baculovirus genome. The Invitrogen system takes 

advantage of site specific recombination to produce recombinant baculovirus 

genomes in bacteria (Luckow et al., 1993). This system relies on cloning the gene of 

interest into a shuttle vector followed by transformation into the bacterial strain 

DH 1 OBac which contain a recombination proficient baculoviral genome. 

Recombinant virus was generated according to instructions of the manufacturer and 

described briefly here. 10 ng of recombinant pFastbac plasmid DNA was added to 

100 tl of competent DH1OBac cells which had been defrosted on ice. Cells were 

incubated on ice for 30 mm. Cells were then heat shocked for 45 seconds at 42 °C, 

and immediately chilled on ice for 2 mm. 900 tl of L.B. broth was added and the 

tubes were shaken for 4 hours at 37 °C to allow recombination into the viral genome. 

The cells were then plated as 100 tl of the transformation mix or 100 p1 each of a 10 

-1, 10 -2, and 10 -3 dilution. The recombinant viral genomes are maintained in the 

bacteria through selection for the co-integrated gentR marker gene Cells were grown 

on plates containing kanamycin, gentamicin, tetracycline, X-gal, and IPTG for 48 

hours at 37 °C. White colonies should contain transposed baculovirus genome. 10 

white colonies and 2 blue colonies were re-streaked onto the same selective media 

and incubated overnight at 37 °C. A single, confirmed white colony from the 

streaked plate was selected and grown in L.B. media overnight under the same 

selective pressure. In the morning cells were pelleted and the baculovirus genome 

recovered by Midi prep (Qiagen). To verify the transposition of the protein coding 

sequence into the baculovirus genome, diagnostic PCR was carried out on Sng of 

bacmid DNA using M13 forward and reverse primers that flank the insertion site, 

and additional internal gene specific primers. Bacmid DNA isolated from a single 

blue colony was used as a negative control. PCR amplification was carried out with 

an initial denaturation of 96 °C for 5 min followed by 24 cycles of 95 °C for 30 



second, 55 °C for 30 seconds, and 72°C for 7 min was carried out. A final extension 

of 72 °C for 10 min was used to extend PCR products. 

The recombinant viral genomes are maintained in the bacteria through selection for 

the co-integrated gentR marker gene (Figure 3.1). The viral DNA is purified from the 

bacteria and used to transfect Sf9 insect cells which express the recombinant protein 

and also generate infectious recombinant viral particles. Recombinant baculovirus 

was isolated from the transfected Sf9 cells, amplified and used for large scale 

infection and protein expression. Typically, for protein expression and purification 

x 108 Sf9 cells were infected with virus at a multiplicity of infection of -7 for 

48h. Nuclei were prepared from these cells and a high salt buffer used to extract 

soluble protein. Both proteins were purified from the extract using a Cobalt affinity 

resin and analysed by SDS-PAGE to determine purity 

Transfection of SF9 cells and isolation of P1 baculovirus stocks: Infectious P1 

baculovirus stocks were generated according to the manufacturer's instructions 

(Invitrogen). Briefly, SF9 cells were seeded at a density of 9 X 10 5 in six well 

plates. 1 tg of baculovirus genome was diluted in 100 tl with un-supplemented 

Graces Medium (Invitrogen) and mixed with 6 tl of Ceilfectin (Invitrogen) diluted in 

100 j.il Graces Medium. The mixture was left at room temperature for 45. During this 

incubation period the cells were washed once with 2rnl Graces Medium which was 

replaced with 800 tl of the same media. The DNA / Celifectin mixture was added to 

the plates and incubated at 27 °C for 5 hours. After 5 hours the transfection mix was 

removed and 2 ml of SF900 II medium was added. Cells were incubated at 27 °C for 

72 hours and the supernatant collected as the viral P1 stock. The P1 stock was used 

immediately for subsequence amplification of virus. For storage, sterile FBS was 

added to the P1 stock to a final concentration of 2% and the virus stored at 4 °C for 

no longer than 1 week. The cells from the transfection were lysed on the plate with 

200 p.1 of 2 X SDS loading buffer. The lysate was analyzed by western blotting for 

the expressed protein as a verification of baculovirus genome transfection. 



Amplification of viral stock: To amplify the P1 viral stock 2 X 10 6 cells were 

plated in a 6 well dish in 2m! of SF900 II medium and 0.2m1 of P1 stock added. The 

cells were incubated at 27 °C for at least 48 hours until cells began to detach. The 

media was collected from the cells and centrifuged at 500g for 5 minutes to remove 

cellular debris. The supernatant was saved as P2 stock, FBS added to 2% and stored 

at 4 °C protected from light. For long term storage aliquots of the P2 stock were 

frozen at - 70 °C. 

Infection of SF9 cells for protein production: Prior to large scale protein 

expression and purification of protein using Baculovirus, P3 viral stocks were 

prepared. 5 x 107 Sf9 cells growing in suspension cultures at a density of 1 X 106 

cells per ml were infected with 2ml of P2 stock for 72 hours at 27 °C. P3 viral stocks 

were isolated by centrifuging the cell culture at 500g for 5 minutes at room 

temperature. 35m1 of P3 stock was used to infect 5 X 108 cells growing in 

suspension cultures at a density of 2 X 106 cells per ml for 48 hours 27 °C. Cells 

were collected by centrifugation at 500g for 5 min and the supernatant removed and 

discarded. Cell pellets were processed immediately as described below. 

2.2.8 Protein purification from insect cells 

Preparation of Cobalt affinity Sepharose: For purification of 6xHIS tagged 

proteins chelating Sepharose resin prebound with CoC12  was used. To generate the 

Cobalt affinity resin lml of chelating Sepharose was washed with 30 column 

volumes of dH20. One column volume of 100mM CoC12  was then added to the 

Sepharose and mixed by vortexing. Unbound Cobalt was removed by washing with 

30 column volumes of dH20. Cobalt affinity resin was prepared fresh prior to protein 

purification. For protein purification a batch method was typically utilised, using lml 

of Cobalt affinity resin in a 15 ml falcon tube. Following binding and two washes the 

affinity resin was transferred to a 10 ml poly-prep column (Bio-Rad) for two further 

washes and protein elution. 

Purification of recombinant DDM1: HIS-DDM 1 was expressed in 5 x 108  Sf9 cells 

for 48 hours at 27°C. Cells were collected by centrifugation at 500g for 5 minutes at 
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4°C and the cell pellet washed twice with ice cold PBS + complete protease 

inhibitors (Sigma). After this point all procedures were carried out at 4°C or on ice. 

The cell pellet was resuspended in lOml of extraction buffer (50mM Tris HC1 pH 

7.8, 300mM NaCl, 10% glycerol, 0.1% NP40 (vlv), complete protease inhibitors 

(Sigma)) and incubated on ice for 30 minutes. During incubation the cells were 

dounce homogenised with a tight dounce for 30 strokes. Cellular debris was pelleted 

by centrifugation at 13,000g for 30 minutes at 4°C. The supernatant was recovered 

and added to a lml MonoQ column pre-equilibrated with extraction buffer. The 

flow-through was recovered, imidazole added to 20mM and applied to a imi Cobalt 

affinity Sepharose column pre-equilibrated with extraction buffer + 20mM imidazole 

After 1 hour binding, the supernatant was removed and the column washed four 

times with lOmi extraction buffer + 20mM imidazole. HIS-DDM1 was eluted five 

times with lml extraction buffer supplemented with 250mM imidazole. The eluted 

protein was filtered through a 0.45 im  filter and DTT added to 1mM. The protein was 

aliquoted and stored at -80°C. 

Purification of recombinant DNMT1: HIS-DNMT1 was expressed in 1 x 10 Sf9 

cells for 62 hours at 27°C. Cells were collected by centrifugation at 500g for 5 

minutes at 4°C and the cell pellet washed twice with ice cold PBS + complete 

protease inhibitors (Sigma). After this point all procedures were carried out at 4°C or 

on ice. The cell pellet was resuspended in lOml of homogenisation buffer (20mM 

Pipes pH 6.2, 10% (w/v) Sucrose, 3mM MgC12, 0.1% NP40, complete protease 

inhibitors (Sigma)) and dounce homogenised on ice for 15 strokes with a tight 

dounce. Following homogenisation, SM NaCl was added to a final concentration of 

250mM and homogenisation repeated as before and the cells incubated on ice for 30 

minutes. The cell debris was pelleted by centrifugation at 13,000g for 30 minutes at 

4°C. The supernatant was recovered and applied to a lml Cobalt affinity Sepharose 

column pre-equilibrated with buffer A (20mM Pipes pH 6.2, 250mM NaCl, 10% 

(w/v) Sucrose, 3mM MgC12, 0.1% (v/v) NP40, complete protease inhibitors 

(Sigma)). The column was washed four times with 1 Oml of buffer A and then eluted 

five times with lml buffer A supplemented with 250mM imidazole. The fractions 
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were pooled, filtered through a 0.45im and DTT added to 1mM. The protein was 

aliquoted and stored at -80°C. 

Purification of recombinant DNMT3B: HIS-DNMT3B was expressed in 5 x 108  

Sf9 cells for 60 hours at 27°C. Cells were collected by centrifugation at 500g for 5 

minutes at 4°C and the cell pellet washed twice with ice cold PBS + complete 

protease inhibitors (Sigma). After this point all procedures were carried out at 4°C or 

on ice. The cell pellet was resuspended in lOml of buffer A (20mM Tris HC1 pH 7.4, 

IM NaCl, 1M Sucrose, 3mM M902,  0.3% Triton X 100 (v/v), complete protease 

inhibitors (Sigma)) and incubated on ice for 20 minutes. Following incubation the 

cells were dounce homogenised with a tight dounce for 30 strokes and left on ice for 

a further 20 minutes. The cell debris was pelleted by centrifugation at 13,000g for 30 

minutes at 4°C. The supernatant was recovered and added to a lml MonoQ column 

equilibrated with buffer A. The flow-through was recovered and applied to a imi 

Cobalt affinity Sepharose column pre-equilibrated with buffer B (70mM Tris HC1 pH 

7.6, 1M NaCl, 0.29M Sucrose, 3mM MgCl2, 0.1% Triton X 100 (v/v), complete 

protease inhibitors (Sigma)). After 1 hour binding, the supernatant was removed and 

the column washed four times with lOml buffer B. HIS-DNMT3B was eluted five 

times with lml buffer B supplemented with 250mM imidazole. The eluted protein 

was filtered through a 0.45im filter and DTT added to 1mM. The protein was 

aliquoted and stored at -80°C. 

Purification of recombinant LSH: HIS-LSH was expressed in 5 x 108  Sf9 cells for 

48 hours at 27°C. Cells were collected by centrifugation at 500g for 5 minutes at 4°C 

and the cell pellet washed twice with ice cold PBS + complete protease inhibitors 

(Sigma). After this point all procedures were carried out at 4°C or on ice. The cell 

pellet was resuspended in lOml of extraction buffer (50mM Tris HC1 pH 8.0, 300mM 

NaCl, 10% glycerol, 0.1% NP40 (v/v), complete protease inhibitors (Sigma)) and 

incubated on ice for 30 minutes. During incubation the cells were dounce 

homogenised with a tight dounce for 30 strokes. Following homogenisation, the 

nuclei were sonicated on ice using a Branson T250 Sonifier at setting 4, output 40%, 

for one minute. Cellular debris was pelleted by centrifugation at 13,000g for 30 
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minutes at 4°C. The supernatant was recovered and added to a lml MonoQ column 

pre-equilibrated with extraction buffer. The flow-through was recovered, imidazole 

added to 20mM and applied to a lml Cobalt affinity Sepharose column pre-

equilibrated with extraction buffer + 20mM imidazole After 1 hour binding, the 

supernatant was removed and the column washed four times with lOmi extraction 

buffer + 20mM imidazole. HIS-LSH was eluted five times with 1 ml extraction buffer 

supplemented with 250mM imidazole. The eluted protein was filtered through a 

0.45lm filter and DTT added to 1mM. The protein was aliquoted and stored at - 

80°C. 

2.2.9 Generating DNA probes for binding experiments 

Generation of probes using PCR: DNA probes based on the natural MMTV 

nucleosome A (NucA) or unnatural 601.3 (W) sequences used for binding 

experiments with LSH were generated by PCR. The MMTV plasmid contains 485bp 

of MMTV promoter DNA cloned into pDONOR201 (Invitrogen) and was supplied 

by the Owen-Hughes laboratory (Flaus and Richmond, 1998) (Appendix I). The 

601.3 template is cloned into the Smal site of pGEM-3Z (Promega) and was supplied 

by the Widom laboratory (Anderson et al., 2002; Lowary and Widom, 1998). The 

primer sequences for amplifying the different fragments are listed in Table 2.1. For 

binding experiments using 36W36 nucleosomes and nucleosome mobilisation assays 

the primers were labelled with Cy5 dye at the 5' end for visualisation. 

PCRs were carried out in 96 50111 reactions using a Biometra T3 Thermocycler in 

order to generate large amounts of product. Reaction included 1 1tM of each primer, 

0.4ng/jtl template plasmid, 120 jtM each dNTP, 2mM MgC12 and 5 units / reaction of 

Taq polymerase (Roche). The reaction conditions were 94°C for 2 minutes, followed 

by 30 cycles of 94°C for 30 seconds, 50°C for 30 seconds and 72°C for 1 minute; 

after this the reactions were incubated at 72°C for 5 minutes. Following 

amplification the DNA in the reaction was precipitated by adding three volumes of 

100% ethanol and one tenth volume of 3M sodium acetate pH 5.2. The DNA was 

pelleted by centrifugation at 13,000 rpm for 15 minutes and the DNA resuspended in 

500d of TE. The concentrated DNA was subsequently purified using ten PCR 
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purification columns (Qiagen) and eluted twice with 50l TE. The purified DNA was 

then precipitated again as before and following two washes with 70% ethanol 

resuspended in 20111 TE. 

Generation of probes using single stranded oligonucleotides: Equal molar 

amounts of a complementary single stranded oligonucleotides (X base pairs) were 

incubated in 10 mM Tris pH 8.0 with 100mM NaCl for 10 min on a 100°C hot block. 

The hot block was removed from the heat source and allowed to cool to room 

temperature. The product was analysed by agarose gel electrophoresis and ethidiurn 

bromide staining to assay for integrity. 

2.2.10 Electrophoretic Mobility Shift Assay (EMSA) 

Probes used for EMSA were generated either by PCR amplification from plasmid 

DNA or by annealing single stranded oligonucleotides (Section 2.2.10). The probes 

were either labelled with 32P (Section 2.2. 1) or contained a Cy5 labelled primer 

(Section 2.2.9). EMSA reactions were assembled at room temperature by combining 

protein and specific probe in binding buffer (25mM Tris-HC1 pH7.5, 50mM KC1, 

0.5mM MgCl2, 10% glycerol, 100tg/ml BSA and 1mM DTT) with or without non 

specific competitor DNA. The reaction was incubated at 37°C for 30 minutes to 

reach equilibrium and bromophenol blue added to 0.01%. The binding reaction was 

loaded on to a 5 % non denaturing polyacrylamide gel made with TGE that had been 

pre run for 1 hour at 200 V in TGE. The samples were electrophoresed for 2 hours at 

200 V. Gels using 32P labelled probes were transferred to 2 layers of 0.2 mm 

Whatman paper and dried at 80 °C for 1 hour. Dried gels were exposed to a 

phosphor-imager screen overnight and developed the next day. Gels using Cy5 

labelled primers were imaged immediately following electrophoresis using a Fuji 

Phosphoimager FLA-5 100. 

2.2.11 Biochemical Assays 

Histone octamer preparation: 

Histone octamers were a kind gift from the Owen-Hughes laboratory. They were 

prepared as follows. Xenopus laevis histories H2A, H2B, H3 and H4 were expressed 
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and purified from E. co/i inclusion bodies individually and stored as powders at - 

20°C as described (Luger et al., 1999). The pure histories were dissolved in unfolding 

buffer (20mM Tris-HC1 pH7.5, 7M guanidinium hydrochloride, 10mM DTT) and 

mixed together in equimolar ratios. The mixture of histories was diluted with 

unfolding buffer to a concentration of lmg/ml. The mixture was dialysed at 4°C 

against 2 litres refolding buffer (2M NaCl, 10mM Tris-HC1 pH7.5, 1mM EDTA, 

5mM mercaptoethanol) three times using 6000-8000 molecular weight dialysis 

tubing (Spectrum). Precipitate was removed by centrifugation at 12000g for 30 

minutes at 4°C. Using Superdex 200 16/60 gel filtration chromatography, refolded 

octamers were separated from other arrangements of histone proteins. Refolded 

octamers eluted from the column were concentrated to 15 - 30tM using Amicon 

Ultra 4ml 5000 molecular weight cut off concentrators (Millipore) spun at 4°C at 

4000g. Octamers were stored at 4°C. 

Nucleosome reconstitution: To assemble nucleosomes a stepwise dialysis method 

was used. Histone octamer and DNA were added in equimolar ratios at 2jxM to a 

buffer containing 2M NaCl and 10mM Tris HCl pH 7.5 in a volume of 25d. The 

mixture was added to a 25tl dialysis button (Hampton Research) and covered with 

dialysis tubing. The samples were dialysed against 2.5ml 0.85M NaCl, 10mM Tris 

HC1 pH 7.5 for two hours with gentle agitation. This was repeated with buffers 

containing 0.65M NaCl and 0.5M NaCl. The final dialysis step, into 10mM Tris HCl 

pH 7.5 was carried out once for two hours and then again overnight. Reconstitutions 

were carried out at 4°C. Following reconstitution a small amount of the sample was 

run on a IX TBE 5% acrylamide gel for 1 hour at 100V alongside free DNA. The gel 

was stained with ethidium bromide and assembly of nucleosomes determined by shift 

in migration of the DNA. 

ATPase assay: ATPase assays used ATP 32P labelled at the ' phosphate position. 

Hydrolysis of ATP therefore produced radioactive phosphate and unlabelled ADP. 

To allow calculation of the amount of hydrolysis ATP and Pi were separated using 

thin layer chromatography (TLC). TLC plates were 20cmx20cm FE! cellulose plastic 

plates (Merck). These were pre run with water and allowed to dry before use. 
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Reactions contained the indicated concentration of 32P- y-ATP and were carried out 

in a buffer of 20mM Tris-HC1, pH8.0, 50mM NaCl, 1.5mM MgCl2, 1mM 

mercaptoethanol and 100tg/ml BSA. For stimulated reactions 200nM of stimulus 

was used. Following incubation at 37°C for the appropriate time, reactions were 

stopped by incubation on ice. 0.3tl of each reaction was spotted onto plates and 

allowed to dry. Separation was achieved using a buffer of 0.5M lithium chloride and 

IM formic acid. The plates were dried, exposed to a phosphoimaging screen and 

ATP hydrolysis calculated using ImageJ software. 

Nucleosome mobilisation assay: Nucleosome mobilisation assays were carried out 

in the Owen-Hughes laboratory. Nucleosomes mobilisation assays take advantage of 

the different mobilities through native polyacrylamide gels of nucleosomes at 

different positions on the same DNA fragment (Meersseman et a!,, 1992). Reactions 

contained lOOnM of nucleosomes assembled on Cy5 labelled DNA or mM of 

nucleosomes assembled on 32P labelled DNA. Reactions were carried out in a buffer 

of 50mM Tris-HC1, pH8.0, 50mM NaCl, 3mM M902,  100pg/ml BSA and 1mM 

ATP and concentrations of LSH and DDM 1 as indicated in the figures. Reactions 

were incubated 37°C for 1 hour then stopped by addition of NaCl to 200mM and 

pUC 18 DNA to a final concentration of 0.5pg/jil and further incubation at 37°C for 

10 minutes. Sucrose was added to a final concentration of 2% as a loading buffer and 

reactions run for 3.5 hours on a 0.2X TBE 5% acrylamide gel at 4°C and 300V with 

0.2X TBE as running buffer. 

SssI methyltransferase assay: SssI methylation of CpG sites protected by 

nucleosome position in 67A0 nucleosomes was used as an assay of nucleosome 

disruption by LSH. Reaction were carried out in a buffer of 10mM Tris-HC1 pH7.9, 

50mM NaCl, 10mM MgCl2, 1mM DTT, 1mM ATP, 160iM SAM and 100jtg/ml 

BSA with the amount of SssI and LSH indicated in the figure. lOOnM 67A0 

nucleosome was used as a substrate for SssI methylation. Reactions were incubated 

for 15 minutes at 37°C and stopped by addition of equal volume of phenol-

chloroform-isoamyl alcohol. Two phenol extractions and one chloroform extraction 

liberated the nucleosomal DNA which was precipitated with ethanol as previously 
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described and resuspended in 20il of TE. The resuspended DNA was digested with 

the methylsensitive restriction enzyme Acil (NEB) in the recommended buffer for 1 

hour at 37°C and the digested DNA run on a IX TOE 7% acrylarnide gel at IOOV for 

1 hour. DNA was stained with SYBR gold (Invitrogen) and protection from Acil 

digestion due to SssI methylation analysed. 

DNA methyltransferase assay: DNA methyltransferase assays were carried out in a 

buffer consisting of 10mM Tris-HCl pH7.9, 50mM NaCl, 10mM MgCl2, 1mM DTT, 

1mM ATP, 1.tCi of 3H-SAM and 1001g/ml BSA. 200ng dGdC, lOOnM nucleosomal 

DNA or lO0nM nucleosome was used as a substrate in a total volume of 25 j.iJ. The 

amount of enzyme added was indicated in the figure. Reactions were incubated at 

37°C for 2 hours after which the entire reaction was spotted onto DE8I paper 

(Whatman) and left to dry. The paper was then washed three times with 200mM 

ammonium bicarbonate, once with dH20 and once with 100% ethanol. Each wash 

lasted five minutes. Following the final was the paper was dried at 65°C and each 

reaction added to a scintillation vial. 5m1 of ecoscint (National Diagnostics) was 

added and radioactivity incorporation measured by scintillation counting on a 

TriCarb 21 OOTR machine. 

2.2.12 Analysis of protein complexes 

Gel filtration chromatography: Proteins were applied directly to a Superose 6 or 

Superose 12 gel filtration column equilibrated according to the manufactures 

recommendations. Molecular weight size standards (Sigma) were run over the 

column and their elution volumes monitored by absorbance at 280 nm (Table 2.5). 

Protein samples were applied to the column with volumes not exceeding that 

recommended by the manufacturer and eluted with a constant buffer flow rate of 0.2 

ml / minute collecting fractions within the inclusion limit. These columns were run 

on a ACTA purifier FPLC machine. Samples were stored at —80 °C or used 

immediately. 
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Marker Size (kDa) Elution 

volume (ml) 

Elution 

fraction 

Stokes 	radius 

IRI (nm) 

Thyroglobulin 669 12.4 12 8.5 

Apoferritin 443 14.1 15.5 6.1 

Alcohol 

dehydrogenase 

150 15.8 18.5 4.55 

Bovine 	serum 

albumin 

66 16.4 22 3.55 

Table 2.5. Elution ot size standards trom buperose b column. 
The molecular size, elution volume, elution fraction and Stokes radius of the protein size 

standards used to equilibrate the Superose 6 column are listed. 

Sucrose gradient sedimentation: Sucrose gradients were manually formed at room 

temperature in 2 ml 1-3/8 UC tubes (Beckman). 500il of NE2 buffer without 

glycerol containing 5% stepwise increases in sucrose concentration from 20 - 5% 

were carefully pippeted on top of each other. Following addition of the final layer the 

gradient was allowed to sit at room temperature for one hour. 100il of nuclear 

protein extracted with NE2 buffer without glycerol was added to the top of the 

gradient. An identical gradient was loaded with 50ig of standard proteins BSA, 

appoferritin, 3-amylase and ADH. The gradients were centrifuged at 55,000 rpm in a 

TLS-55 rotor for 4 hours at 4 °C. lOOj.tl fractions were collected manually from the 

top of the gradient using wide bore pipette tip. lOj.tl of each fraction was used for an 

SDS PAGE gel followed by Coomassie stain to identify marker proteins or a western 

blot to identify nuclear protein of interest. 

Calculating the native molecular mass of a protein: Calculations to determine the 

molecular weight of native LSH were applied as described previously (Siegel and 

Monty, 1965) using the equation M = 6Ti20, 4;'s20,,R.N/(1 - P20,j'), where R is the 

Stoke's radius (nm), 520,w  is the sedimentation velocity (S x 10 1), 12O' is the 

viscosity of water at 20°C (0.0 1002 gs cm 1 ), N is Avogadro's number (6.022 x 



1023 molecu1es 1 ), 	is the density of water at 20°C (0.9981 gcm3), and cis the 

partial specific volume of protein (used 0.725 cm 3/g). 

2.2.13 Analysing the effect of LSH on transcription 

Luciferase Reporter assay: In reporter assays, GAL4-TK-LUC (500 ng) and pact-

geo (500 ng) plasmids were cotransfected with lOOng or 500ng of the indicated 

effector plasmids into 2.5 x 105 HCT1 16 cells or DNMT knockout (KO), using 

JetPEI reagent (Autogen Bioclear). To test whether LSH-mediated repression was 

sensitive to HDAC inhibitors, trichostatin A (TSA) was added to the tissue culture 

medium after transfection to a 100 nM final concentration 24 h prior to lysing the 

cells. For rescue experiments with HCT1I6 KO cell lines, 3000 ng of DNMT1-green 

fluorescent protein (GFP) or DNMT3B-GFP plasmid was cotransfected with the 

reporter plasmids in the presence or absence of GAL4-LSH or GAL4-LSH(1-226). 

All transfection experiments were performed in triplicate. At 48 h post transfection, 

cells were harvested using reporter lysis buffer (Promega), and detection of 

luciferase activity was carried out according to the manufacturer's guidelines. 

Briefly, cells were washed twice on the plate with PBS then incubated with 1X 

reporter lysis buffer and subjected to a single freeze thaw cycle. Lysed cells were 

transferred to eppendorf tubes and centrifuged at 13,000 rpm for 1 minute to remove 

cellular debris. 20pJ of cell lysate was added to 100tl of Luciferase Assay Reagent 

(Promega) and luminescence was measured in a TD20/20 luminometer (Turner 

Designs). 

B-gal assay: Cell lysate was prepared from transfected cells using 1X reporter lysis 

buffer (Promega). 150 il of lysate was added to 150 il of a buffer containing 

200mM sodium phosphate pH7.3, 2mM MgC12, 100mM mercaptoethanol, 

1 .33mg/ml ortho-Nitrophenyl-3-galactoside. The reactions were incubated for 30 

minutes at 37°C until a faint yellow colour developed. Reactions were stopped by 

addition of 500 jil I  sodium carbonate and absorbance determined at 420nm. 
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Chapter three - ATPase activity and chromatin 

remodelling by LSH 

3.1 Introduction 

The SNF2 family of enzymes was first identified in genetic screens for genes 

involved in regulating mating type switching (SWI) and sucrose fermentation 

(Sucrose Non-Fermenting (SNF)) in yeast. Subsequent cloning of one of the mutants 

involved in this process identified it as the protein Snf2p which is the catalytic core 

of the multi-subunit SWI/SNF complex (Abrams et al., 1986). Several other proteins 

homologous to yeast Snf2p were cloned from a number of organisms and were 

shown to contain the seven conserved sequence motifs common to the SF2 

superfamily of helicases (Davis et al., 1992; Laurent et al., 1992; Okabe et al., 1992). 

Sequence analysis placed these proteins in a distinct family of helicases which was 

termed SNF2 (Bork and Koonin, 1993). Laurent and colleagues were the first to 

demonstrate the catalytic activity of a SNF2 family member and showed that similar 

to other helicases Snf2p is an ATPase stimulated by DNA in vitro. Unlike other 

helicases however, the purified SWI/SNF complex showed no detectable helicase 

activity (Cote et al., 1994). This study and others that followed outlined another 

important function for SNF2 proteins, ATP dependant disruption of chromatin 

structure (Cairns et al., 1996; Owen-Hughes et al., 1996). 

3.1.1 The enzymatic activity of SNF2 enzymes are believed to determine their 

function in vivo 

Following these pioneering experiments ATPase activity has been demonstrated for 

members of all four SNF2 classes of protein in vitro. This activity is found in protein 

complexes purified biochemically from native sources and in recombinant SNF2 

proteins purified from E. coli or insect cells. Depending on the protein, the ATPase 

activity is stimulated either by DNA, nucleosomes or both and is required for its 

chromatin remodelling role. The biochemistry of SNF2 enzymes has been 
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extensively studied and a wide range of activities have been detected including 

nucleosome repositioning, DNA translocation and histone dimer exchange (Narlikar 

et al., 2002). The specific in vitro activities of different SNF2 enzymes are 

intrinsically linked to their function in vivo. For example, nucleosome repositioning 

at the promoters of rDNA genes is catalysed by SNF2h and mutants deficient for 

ATP hydrolysis are deficient in remodelling, indicating that nucleosome 

repositioning in vivo is an ATP dependant process (Li et al., 2006b). Also, the SNF2 

enzyme Mot 1, a conserved transcriptional regulator has been shown to displace the 

TATA binding protein (TBP) from TATA Box sequence DNA in an ATP dependant 

manner (Auble et al., 1994). The mechanism of this action has been investigated and 

appears to involve relocation of TBP to a position upstream of the TATA box 

(Sprouse et al., 2006). This data suggests a mechanism by which Motl utilises ATP 

hydrolysis to displace TBP from TATA Boxes by translocating DNA. Thus, the 

DNA dependant ATPase and suggested, but currently unconfirmed translocase 

activity of Moti is critical to its in vivo function (Auble and Steggerda, 1999; 

Sprouse et al., 2006). 

3.1.2 The enzymatic activities of SNF2 enzymes involved in DNA methylation 

How the biochemical activities of several SNF2 enzymes involved in DNA 

methylation relate to their in vivo function has been investigated. Recombinant 

SNF2h for example has nucleosome stimulated ATPase activity and can reposition 

nucleosomes in vitro (Aalfs et al., 2001; Fan et al., 2005a). Also, as outlined above, 

an attractive model for its in vivo function has been developed based on evidence 

obtained at the promoters of rDNA genes. This model proposes ATP dependant 

nucleosome sliding of a specific nucleosome positioned at —157 to —2 relative to the 

transcription start site to a location 25bp upstream. This repositioning leads to 

exposure of a single CpG site that subsequently becomes methylated, leading to 

transcriptional silencing of the gene (Li et al., 2006b). Another SNF2 protein 

involved in DNA methylation, ATRX has also been studied biochemically. When 

purified from HeLa cells, native ATRX-Daxx complex is an efficient DNA 

stimulated ATPase that shows DNA translocase activity (Xue et al., 2003). The 

purified complex also has the ability to disrupt DNA:histone contacts at the entry site 

101 



of nucleosomes but does not appear able to reposition nucleosomes (Xue et al., 

2003). How this correlates with its in vivo function and role in DNA methylation is 

unclear but a model where ATRX peels DNA off the surface of the nucleosome at 

the entry site to allow DNMTs access is plausible. The roles of SNF2h and ATRX in 

DNA methylation appear to be very specific and relate only to a limited number of 

loci (Gibbons et al., 2000; Santoro et al., 2002). The other SNF2 enzymes with a 

known role in DNA methylation are plant DDM1 and it mammalian homologue Lsh. 

These enzymes have been shown to have a role in both global and locus specific 

DNA methylation indicating that they may be more general regulators of DNA 

methylation (Dennis et al., 2001; Jeddeloh et al., 1999; Vongs et al., 1993). To date, 

only DDM1 has been characterised biochemically and the data available is limited. 

Using recombinant protein expressed in insect cells, Brzeski and Jerzrnanowski 

demonstrated that DDM1 is an efficient DNA and nucleosome dependant ATPase 

that hydrolyses ATP at a maximum rate (400 ATP/minIDDM 1) comparable to other 

SNF2 enzymes. They also show that DDM1 binds DNA and nucleosomes and can 

reposition mononucleosomes from the end to the centre of a DNA fragment (Brzeski 

and Jerzmanowski, 2003). They also show that the methylation status of the DNA 

used for the ATPase assays does not affect the activity of DDM 1. These experiments 

determined that DDM1 is an active enzyme that has nucleosome sliding activity but 

gave no indication of how this relates to the critical role of DDM1 in DNA 

methylation. They do however indicate that DNA methylation in plants requires 

active chromatin remodelling. The mammalian homologue of DDM1, Lsh/LSH has 

not been characterised biochemically. As outlined above the enzymatic function of 

SNF2 enzymes is intrinsically linked to their in vivo roles and can give indications as 

to their function. As the molecular function of LSH is largely unknown I attempted 

to biochemically characterise it. Hopefully, in vitro kinetic data from these 

experiments would allude to the mechanism by which LSH facilitates DNA 

methylation in vivo. 
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3.2 Results - Recombinant LSH binds DNA 

3.2.1 Cloning, baculovirus expression and purification of LSH 

The activities of several SNF2 ATPases from several different species have been 

determined. In most cases the activity determined for the native remodelling complex 

purified biochemically is very similar to that of recombinant protein expressed and 

purified in E. co/i or insect cells. The notable exception is the previously discussed 

modulation of ISWI activity by its cofactor Acfl (Langst et al., 1999). I chose to 

initially test whether LSH displays ATPase and chromatin remodelling activities 

using recombinant protein. I chose to derive this from insect cells using a baculovirus 

expression system. This system is advantageous over bacterial systems for 

expressing mammalian proteins as the insect cells used for expression have a post 

translational modification system more closely related to mammals. 

Full length human LSH cDNA and LSH carrying a point mutation at a conserved 

lysine critical for ATP binding (K245Q) were obtained from the Arceci laboratory 

(Raabe et al., 2001). Other SNF2 enzymes carrying mutations at this residue are 

catalytically inactive so LSHK254Q  served as a negative control in enzymatic 

experiments (Fitzgerald et al., 2004). These plasmids were sequenced to confirm the 

cDNAs were not carrying mutations and then cloned into the Invitrogen baculovirus 

shuttle vector pFAST-BAC. Following this cloning step both plasmids were 

sequenced to ensure PCR amplification had not introduced any mutations (Appendix 

II). The Invitrogen system takes advantage of site specific recombination to produce 

recombinant baculovirus genomes in bacteria (Luckow et al., 1993). This system 

relies on cloning the gene of interest into a shuttle vector followed by transformation 

into the bacterial strain DH10Bac which contain a recombination proficient 

baculoviral genome (Figure 3.1B). The recombinant viral genomes are maintained in 

the bacteria through selection for the co-integrated gentR marker gene (Figure 3.1 B). 

The viral DNA is purified from the bacteria and used to transfect Sf9 insect cells 

which express the recombinant protein and also generate infectious recombinant viral 

particles. Recombinant baculovirus was isolated from the transfected Sf9 cells, 
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amplified and used for large scale infection and protein expression. Typically, for 

protein expression and purification -5 x 108  Sf9 cells were infected with virus at a 

multiplicity of infection of -7 for 48h. Nuclei were prepared from these cells and a 

high salt buffer used to extract soluble protein. Both proteins were purified from the 

extract using a Cobalt affinity resin and analysed by SDS-PAGE to determine purity 

(Figure 3.2A). In order to remove DNA and other contaminants that may interfere 

with downstream applications I applied purified HIS-LSH proteins to a MonoQ 

anion exchange column. HIS-LSH did not bind this column but DNA as analysed by 

agarose gel electrophoresis was removed (Figure 3.213 and Q. The concentration of 

the purified proteins was determined by BCA protein assay in relation to BSA 

standards. I estimated the concentration of my purified recombinant proteins to be 

100ng/.tl and the purity 90% (Figure 3.213). 
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pFastBac donor plasmid 

Clone Gene of Interest 

Transformation 
Transposition 	

J 

Antibiotic 
/ 	 Selection 

Recombinant 	
Competent DH1QBac E.col/ Cells 

Donor Plasmid 	 Recombinant Bacmid 

Recombinant 
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/ 	--------. 
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/ Infection of 
Insect Cells 
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Bacmid 

Transfection of --
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Recombinant Gene Expression 
or Viral Amplification 

Figure 3.1. Bac-2-bac baculovirus expression system 
Schematic of the bac-2-bac baculovirus expression system is shown. Gene of interest is 
cloned into pFAST-BAC shuttle vector, which is transformed into DH1OBac E.coli cells. 
Transposition into the baculoviral genome occurs in this strain. The recombinant baculovirus 
genome is isolated from these cells and used to transfect Sf9 insect cells. Recombinant 
baculovirus particles are formed in the insect cells and released into the media. The virus is 
amplified and used for large scale expression experiments. 
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Figure 3.2. Purification of recombinant LSH from insect cells. 
Coomassie stained gel outlining the purification of HIS-LSH via Cobalt affinity 

chromatography. 5pl, 2pl and 1 p of cell lysate, 5pl of flow-through (Fl) from the Cobalt 
column and 5pl of elution (F) from the Cobalt column loaded. Size markers in kDa listed to 
the left. 

Coomassie stained gel of 1 p1 of purified recombinant LSH and LSHK254Q  following Cobalt 
affinity and anion exchange (MonoQ) chromatography. Size markers in kDa listed to the left. 

Ethidium bromide stained agarose gel of 5pl of recombinant LSH purified via Cobalt 
affinity or Cobalt affinity and anion exchange chromatography. High molecular weight DNA 
present following Cobalt affinity chromatography is removed by anion exchange (MonoQ) 
chromatography. 

3.2.2 LSH binds DNA and mononucleosomes with linker DNA 

3.2.2.1 LSH binds DNA 

To characterise LSH biochemically I used a number of controlled reagents. Several 

DNA sequences that direct nucleosome assembly to defined locations have been 

isolated and are commonly used for studies involving SNF2 enzymes (Lowary and 

Widom, 1998). 1 used two such sequences in this study: the artificial 601.3 sequence 



and the MMTV nucleosorne A; also known as NucA. The nomenclature for the 

fragments used is xAy (for NucA) and xWy (for 601.3); x and y indicate the length 

of DNA extension in base pairs on either side of the nucleosome assembly site. 

These DNA sequences were initially used to test the DNA binding ability of LSH. I 

also used these sequences to reconstitute nucleosomes with purified recombinant 

histones for binding studies. I first performed an electrophoretic mobility shift assay 

(EMSA) with recombinant LSH and radio labelled NucA DNA probe. I found that 

increasing concentrations of LSH shifted the mobility of increasing amounts of the 

probe to a higher molecular weight and depleted free probe indicating that LSH can 

bind DNA (Figure 3.3A; bottom arrow). I noted that the LSH:DNA complex did not 

appear as a single discreet band in the gel but rather formed a smear with a 

proportion of it not entering the gel at the highest concentrations of LSH (Figure 

3.3A; top arrow). This led me to believe that multiple LSH molecules may be 

binding to the 147bp DNA fragment or the conditions may not be optimised for 

detecting a soluble LSH:DNA complex. I therefore sought to confirm DNA binding 

by LSH using a shorter probe with a single central CpG site and optimised 

conditions. I repeated the experiment using a 68bp DNA probe with or without 

unlabelled competitor DNA (Figure 3.313). This experiment gave a clearer result with 

a soluble LSH:DNA complex clearly identifiable. Addition of an excess of the same 

unlabelled, non methylated DNA successfully depleted the LSH:DNA complex 

indicating formation of a specific complex. I therefore conclude that LSH is able to 

bind DNA in EMSA experiments. Due to its role in DNA methylation I thought it 

pertinent to ask whether the DNA methylation status of the probe affected the ability 

of LSH to bind it. In parallel, I performed the EMSA experiment using the same 

probe that had been in vitro methylated by the bacterial DNMT Sssl. I found that the 

ability of LSH to shift the probes was not significantly altered by methylation of the 

single CpG site (Figure 3.313). There did appear to be a very slight difference in the 

efficiency of competition of the two probes by unlabelled non methylated competitor 

(Figure 3.313; compare lanes 6+7 to 13+14). However, this difference is very minor 

and could be due to the slightly unequal loading of the probes (Figure 3.313; compare 

lanes 1 and 8). Thus, the binding of LSH to this probe is not significantly affected by 

methylation of a single CpG site. 
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Figure 3.3. LSH binds DNA in electrophoretic mobility shift assays. 
This experiment was carried out with the help of Dr Chris Stockdale. Electrophoretic 

mobility shift assay (EMSA) with recombinant LSH and radio labelled 0A0 DNA probe. 
Increasing concentrations of LSH (indicated on the top of the panel) mixed with lOnM probe 
for 30 minutes at 37°C. Free probe separated from LSH bound DNA by native 
polyacrylamide gel electrophoresis. Following electrophoresis, the gel was dried, exposed to 
a phosphor imager screen and developed using a Storm Phosphorlmager (GE Healthcare). 
Free probe and LSH:DNA complex (Wells) indicated to the right. 

EMSA with recombinant LSH and radio labelled 68bp DNA probe with a single central 
CpG site. Increasing concentrations of LSH (indicated on the top of the panel) mixed with 
lOnM of methylated (M+, left panel) or unmethylated (M-, right panel) probe for 30 minutes 
at 37°C. lOnM (+) or 20nM (++) of the same cold unmethylated probe included as competitor 
where indicated. Free probe separated from LSH bound DNA by native polyacrylamide gel 
electrophoresis. Following electrophoresis, the gel was dried and exposed to photographic 
film. Free probe and LSH:DNA complex indicated to the right. 



3.2.2.2 LSH bind nucleosomes with linker DNA 

I next tested whether LSH can bind DNA assembled into nucleosomes and whether 

this interaction requires linker DNA. For this I used the two positioning sequences to 

assemble nucleosomes with recombinant core histone octamers. As mentioned above 

the DNA sequence flanking the nucleosome assembly site determines the amount of 

linker DNA present and is designated as the number of bp 5' or 3' of it. For example 

54A0 is a 3' end positioned NucA nucleosome with 54bp of DNA 5' to the 

nucleosome and Obp 3' of it. A variety of nucleosomes with different linker lengths 

were assembled and run on native polyacrylamide gels to determine assembly of the 

constitute parts into nucleosomes. A representative gel of a typical nucleosome 

reconstitution shows that the migration of DNA is retarded following reconstitution, 

indicative of nucleosome assembly (Figure 3.4A). EMSA experiments using 

reconstituted 54A0 nucleosomes gave similar results to those using free NucA DNA. 

That is, increasing amounts of a slower migrating population was generated upon 

addition of increasing amounts of LSH and free probe was depleted (Figure 3.413; 

left panel). The shifted probe did not form a clear band and again, a proportion of it 

did not enter the gel at all. I was unable to optimise these experiments using 

unlabelled competitor DNA or nucleosomes so had to assess LSH binding by 

depletion of free probe. The reconstitution of nucleosomes is not 100% efficient and 

a small proportion of free, non nucleosomal DNA can be observed in these reactions. 

Depletion of this was not considered when analysing nucleosome binding (Figure 

3.413; bottom arrow) Interestingly, LSH was able to deplete the free nucleosome with 

linker DNA but was much less efficient at depleting OAO nucleosomes that lack 

linker DNA (Figure 3.413; right panel). This indicates that LSH is able to bind 

nucleosomes but binds with greater affinity if linker DNA is present. Depletion of 

free OAO DNA indicates that LSH was active for DNA binding in this experiment 

and acts as an internal control (Figure 3.413; right panel). The role of LSH in DNA 

methylation is largely uncharacterised but the role of the plant protein DDM 1 

appears to be correlated with H3K9 methylation (Gendrel et al., 2002). I therefore 

determined whether LSH bound nucleosomes containing H3K9me3 with higher 
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Figure 3.4. LSH binds nucleosomes with linker DNA in EMSA. 
Native polyacrylamide gel of nucleosome reconstitutions using recombinant core histone 

octamers and various DNA templates (indicated on the top of the panels). Success of the 
reconstitutions was judged by depletion of the faster migrating DNA into a slower migrating 
species. This was judged by running free DNA template on the same gel and comparing its 
migration to that of reconstituted nucleosomes. 

This experiment was carried out with the help of Dr Chris Stockdale. EMSA with 
recombinant LSH and radio labelled 54A0 (left panel) and OAO (right panel) nucleosomes. 
Increasing concentrations of LSH (indicated on the top of the panel) mixed with lOnM 
nucleosomes for 30 minutes at 4°C. Nucleosome substrate indicated above the gels. Free 
nucleosomes separated from those bound by LSH by native polyacrylamide gel 
electrophoresis. Following electrophoresis, the gel was dried, exposed to a phosphor imager 
screen and developed using a Storm Phosphorimager (GE Healthcare). Free DNA, free 
nucleosome and LSH:DNA/nucleosome complexes (Wells) indicated to the right. 

This experiment was carried out with the help of Dr Helder Ferreira. EMSA with 
recombinant LSH and fluorescently labelled 36W36 H3K9me3 (left panel) and 36W36 (right 
panel) nucleosomes. Increasing concentrations of LSH (indicated on the top of the panel) 
mixed with lOnM nucleosomes for 30 minutes at 4°C. Nucleosome substrate indicated 
above the gels. Free nucleosomes separated from those bound by LSH by native 
polyacrylamide gel electrophoresis. Following electrophoresis, the wet gel was developed 
using a Fuji Phosphoimager FLA-5100. Free DNA, free nucleosome and 
LSH:DNAlnucleosome complexes (Wells) are indicated to the right. 

affinity than unmodified nucleosomes. Recombinant H3 tri-methylated at K9 

generated by peptide ligation was used to reconstitute nucleosomes for use in this 

experiment. I found that the ability of LSH to deplete free probe as a measure of 

binding ability was unchanged by the presence of H3K9me3 indicating this histone 

modification does not impact LSH binding to nucleosomes. These binding studies 

show that LSH has the ability to bind DNA and bind nucleosomes efficiently only 

when linker DNA is present. Together, this would imply that LSH is primarily a 

DNA binding protein (Figures 3.3 and 3.4). 

3.2.2.3 LSH binds DNA with a Kj of1O0nM 

I next determined the dissociation constant (Kd) of the LSH:DNA interaction. I 

performed EMSA with 1 OnM of probe and a range of LSH concentrations from 8nM 

to 500nM. The titration was carried out in the absence of competitor DNA to 

improve the accuracy of the experiment. Because of this, at higher LSH 

concentrations, large DNA:protein complexes are visible that have difficulty entering 

the gel. I included these large complexes in calculations of DNA binding by LSH 
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Figure 3.5. Measuring the dissociation constant of the LSH - DNA interaction. 
EMSA with recombinant LSH and radio labelled 4+5Gs (36bp) DNA probe. Two-fold 

increasing concentrations of LSH (indicated on the top of the panel) mixed with 10nM probe 
for 30 minutes at 37°C. Free probe separated from LSH bound DNA by native 
polyacrylamide gel electrophoresis. Following electrophoresis, the gel was dried, exposed to 
a phosphor imager screen and developed using a Storm Phosphorimager (GE Healthcare). 
Band intensity calculated using Image Quant TM software (GE Healthcare). Free probe and 
LSH:DNA complexes indicated to the right. 

Saturation curve of LSH binding to 4+5Gs (36bp) DNA probe. Percentage probe bound 
plotted against LSH concentration. The percentage probe bound was calculated using the 
following equation with intensities derived using Image Quant TM software (GE Healthcare): 
(B / (U + B)) x 100. Where B is bound and U is unbound DNA probe. Curve fitting and 
calculation of Kd performed by non-linear regression using GraphPad Prism software 
(GraphPad Software). Error bars are the standard deviation from the mean of three 
independent experiments. 

(Figure 3.5A). DNA binding by LSH was calculated as the percentage of total probe 

shifted (shifted probe / (shifted probe + free probe)) and plotted against LSH 

concentration. Nonlinear regression was used to calculate the Kd for the LSH:DNA 

interaction to be 105 ± 45 nM (Figure 3.5A + B). The dissociation constants of a 

number of SNF2 enzymes interactions with DNA have been published and range 

from 01M to -300nM. DNA dependant ATPase A has a calculated Kd of -0.1nM, 

SWI/SNF mM, ISWI l-lOnM, yeast Rad54 100nM and SsoRad54 -300nM 

(Fitzgerald et al., 2004; Lewis et al., 2008; Muthuswami et al., 2000; Quinn et al., 

1996; Raschle et al., 2004). Thus the strength of the interaction between LSH and 

DNA is at the lower end of the scale recorded for other SNF2 enzymes but 

comparable to a number of them. This is not entirely unexpected as recombinant 

LSH is a monomeric protein whereas SWT/SNF and ISWI are present within multi 

protein complexes. It is possible that other members of these complexes provide 

additional DNA binding motifs that strengthen their interaction with DNA. 
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3.3 LSH is a weak DNA stimulated ATPase in vitro 

3.3.1 LSH hydrolyses ATP and is stimulated by DNA and nucleosomes with 

linker DNA 

As outlined above the enzymatic activity of SNF2 enzymes in vitro gives an 

indication to their in vivo function. I therefore sought to determine whether LSH is an 

active ATPase and how it is stimulated in vitro. To do this I used a highly sensitive 

ATPase assay that measures the hydrolysis of ATP to ADP + Pi via thin layer 

chromatography (Whitehouse et al., 2003). I performed the ATPase assay with 

recombinant LSH in the presence of a range of stimuli and used LSHK254Q  in each 

case as a control (Figure 3.6A + B). I found that LSH showed a low level of ATPase 

activity, that was stimulated 2 fold by the addition of DNA or nucleosomes with 

linker DNA. In a result correlated to the lack of LSH binding to nucleosomes with no 

linker DNA, LSH activity was not stimulated by OAO nucleosomes. Thus LSH 

appears to be a DNA stimulated ATPase. The nucleosomes used in the ATPase 

experiments are derived from recombinant core histones and thus lack any post-

translational modification. It has been reported that the catalytic activity of the ISWI 

containing ACF complex is dependant on residues 16-19 of the histone H4 tail and is 

inhibited by acetylation of H4K16 in particular (Hamiche, et al., 2001; Shogren-

Knaak et al., 2006). I thus tested the ability of LSH to hydrolyse ATP in the presence 

of native nucleosomes purified from chicken erythrocytes (Figure 3.613). As before, 

LSH activity was stimulated 2 fold by these nucleosomes indicating that post-

translational modifications of histories do not affect LSH activity. I purified 

recombinant DDM1 to use as a positive control (Figure 3.6C) and found that it 

showed higher levels of ATPase activity and was more strongly stimulated by DNA 

(Figure 3.6D) (Brzeski and Jerzmanowski, 2003). Thus, I concluded that the ATPase 

assays were working and that LSH has a low level of ATPase activity. 
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Figure 3.6. LSH is a DNA dependent ATPase. 
Thin layer chromatography plate showing ATP hydrolysis by recombinant LSH or 

LSH K2540  and a range of stimuli. Reactions (10p1) contained lOOnM LSH, 200nM stimulus, 
50pM ATP and were incubated for 20 minutes at 37°C. Plates were dried, exposed to 
Phosphoimager screens and developed using a Storm Phosphorlmager (GE Healthcare). 
Intensity of the spots was calculated using ImageQuant TM software (GE Healthcare). Free 
phosphate (32P-Pi) and unhydrolysed ATP (32P -ATP) are indicated to the right. 

Graphical representation of (A). Recombinant LSH (lOOnM) was used in ATPase assays 
in the presence of a range of stimuli (indicated on the X axis). The number of ATP molecules 
hydrolysed per minute per LSH calculated by analysis of thin layer chromatography plates (Y 
axis). ATP hydrolysis rate observed for LSH (blue bars) and LSHK2S4Q  (red bars) for each 
stimulus is displayed. Error bars denote standard deviation from the mean of three 
independent experiments. 

Coomassie stained gel of recombinant DDM1 purified from insect cells. Size markers (M) 
indicated to the left. 

Recombinant DDM1 (lOOnM) was used in ATPase assays in the absence or presence 
200nM DNA (indicated on the X axis). Rate of ATP hydrolysis as ATP molecules hydrolysed 
per minute per DDM1 indicated on the Y axis. ATP hydrolysis rates observed for DDM1 (blue 
bars) and buffer only control (red bars) are displayed. Error bars denote standard deviation 
from the mean of three independent experiments. 

I next determined some kinetic parameters of ATP hydrolysis by recombinant LSH. I 

first determined that ATP hydrolysis was linear over time by performing a time-

course experiment (Figure 3.7A). This showed that ATP hydrolysis both in the 

presence of DNA and without stimulus was linear for at least 30 minutes. Subsequent 

experiments were carried out for 15 minutes to ensure linearity. I next determined the 

velocities of the ATP hydrolysis by recombinant LSH in the absence or presence of 

DNA by titrating ATP (Figure 3.7B). The maximal velocity (Vmax) and the 

Micheal is-Menton constant (Km) were determined by non linear regression of the 

plotted data (Figure 3.7B, GraphPad Prism 5). The Vmax value for LSH was found to 

be 12.2 ± 0.25 ATP/min/LSH without DNA and 22.4 + 1.5 ATP/min/LSH with 

DNA. The K values were found to be 4.6jtM and 8,7jiM, in the absence and 

presence of DNA respectively. Thus, the presence of DNA appears to increase the 

affinity of LSH for ATP and approximately double its rate of turnover. Both the Vrnax 

and K1  are at least an order of magnitude lower than those calculated for other SNF2 

enzymes such as plant DDM1 and mammalian Mi2a indicating that under the 

conditions tested, LSH is a relatively inefficient ATPase (Brzeski and Jerzmanowski, 

2003; Wang and Zhang, 2001b) (Table 3.1). 
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Figure 3.7. Kinetic analysis of LSH ATPase activity. 
TLC plate showing a time course of ATP hydrolysis with no stimulus, DNA and 

nucleosomes. Reactions (10 IJI) contained lOOnM LSH, 200nM stimulus and 50iJM ATP 
were incubated at 37°C. Error bars denote standard deviation from the mean of three 
independent experiments. 

Recombinant LSH (lOOnM) was used in ATPase assays in the absence of any cofactor 
(circles) or in the presence of 200nM free DNA (squares). The assays were performed with 
increasing concentrations of ATP ranging from 10 pM to 270 pM and the rate of hydrolysis at 
each concentration plotted. Curve fitting and calculation of Vmax  and Km  performed by non-
linear regression using GraphPad Prism software (GraphPad Software). 

Protein Kd  / nM Stimulated Vmax Translocase References 

(DNA) / ATP/min/mol distance I bp 

M12cx ND 200 ND (Wang 	and 	Zhang, 

2001 a) 

NuRD ND 4000 ND (Wang 	and 	Zhang, 

2001a) 

DDM 1 ND --400 ND (Brzeski 	and 

This study >70 Jerzmanowski, 	2003) 

and this study 

SWI/SNF 1 -1000 --100 (Logie 	et 	al., 	1999; 

Zhang et al., 2006a) 

ISWI 1-10 >75 40 (Corona 	et al., 	1999; 

Whitehouse 	et 	al., 

2003) 

RAD54 100 --1000 80-300 (Kiianitsa et al., 2002; 

Li et al., 2007b) 

LSH 100 -20 ND This study 

Table 3.1 Catalytic properties of selected SNF2 enzymes. 
The catalytic properties of a range of SNF2 enzymes are shown. These include, the Kd of 
binding to DNA, V max  and approximate distance of DNA translocation where known. 

3.3.2 Recombinant LSH is -50% active for DNA binding 

The low level of ATP hydrolysis measured for LSH could be due to a number of 

reasons. It is possible that LSH is simply not a particularly efficient ATPase and this 



level of activity is sufficient for its in vivo function. Another alternative is the 

recombinant protein I have produced is not as active as the native protein. A further 

possibility is that a co factor required for full ATPase activity is missing. I first asked 

whether recombinant LSH was active and chose to assess this by determining the 

proportion of my protein that can bind DNA. To achieve this I first determined the 

amount of DNA required to fully saturate 50nM LSH (Figure 3.8A). This initial step 

is required because in the second step, the concentrations of both LSH and DNA 

need to be above the affinity constant of their interaction (Chmiel et al., 2006). By 

quantifying the shifted probe at the different concentrations it was determined that 

200nM of DNA was sufficient to saturate LSH binding (Figure 3.813). Using this 

concentration of probe a titration of LSH concentration was used to saturate DNA 

binding and thus determine the active fraction of the purified protein. The vast 

majority of probe was depleted with 400nM LSH (Figure 3.8C and D). This 

indicates that -50% of recombinant LSH is active for DNA binding or LSH is 

binding DNA as a dimer. In chapter four I describe experiments that did not detect 

native or recombinant LSH as a dimer biochemically. I therefore think it unlikely 

that LSH is binding DNA as a dimer and that 50% of the recombinant protein is 

inactive. The implications of this experiment are twofold. Firstly, the rate of ATP 

hydrolysis by LSH should be recalculated accordingly to take into account the 

inactive fraction, but this level of ATPase activity is still relatively low. Secondly, it 

is important to consider the possibility that the potentially inactive fraction of LSH is 

acting as a dominant negative mutant thus explaining the relatively low level of 

ATPase activity. Future work to determine if inactive LSH acts as a dominant 

negative mutant could be carried out by spiking the ATPase assays with increasing 

concentrations of LSHK254Q  and assessing inhibition of ATPase activity. 
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Figure 3.8. At least half of purified recombinant LSH is active for DNA binding. 
EMSA with recombinant LSH and radio labelled 4+5Gs (36bp) DNA probe. 50nM LSH 

was mixed with increasing concentrations of radio labelled DNA (indicated on the top of the 
panel) and incubated for 30 minutes at 37°C. Free probe was separated from LSH bound 
DNA by native polyacrylamide gel electrophoresis. Following electrophoresis, the gel was 
dried, exposed to a phosphor imager screen and developed using a Storm Phosphorlmager 
(GE Healthcare). Band intensity calculated using lmageQuant TM software (GE Healthcare). 

Saturation curve of LSH binding to DNA. Phosphorlmager counts of shifted LSH:DNA 
complex plotted against probe concentration. 

EMSA with recombinant LSH and radio labelled 4+5Gs (36bp) DNA probe. Increasing 
concentrations LSH (indicated on the top of the panel) were mixed with 200nM of radio 
labelled DNA and incubated for 30 minutes at 37°C. Free probe was separated from LSH 
bound DNA by native polyacrylamide gel electrophoresis. Following electrophoresis, the gel 
was dried, exposed to a phosphor imager screen and developed using a Storm 
Phosphorlmager (GE Healthcare). Band intensity calculated using ImageQuant TM software 
(GE Healthcare). 

Saturation curve of LSH binding to DNA. Phosphorlmager counts of free probe plotted 
against LSH concentration 

3.3.3 Mass spectrometry of recombinant LSH detects phosphorylation at serines 

115 and 503. 

Western blot experiments show native LSH is detected by Western blot from a 

number of cell lines as a doublet (Figure 3.9A). Interestingly, when over expressing 

different GAL41313 tagged LSH deletion constructs I also observed the appearance of 

doublet bands that appear to map to amino acids 227-838 (Figure 3.913). As this 

doublet is observed following overexpression of LSH cDNA this indicates that it 

could be due to a post translational modification of LSH. I was interested to test 

whether this potential modification could have some impact on activity of LSH so in 

collaboration with Dr Juri Rappsilber had recombinant LSH analysed by mass 

spectrometry. Interestingly, mass spectrometry identified two phosphorylated 

peptides: ETIELSPTGRPK, phosphorylated on S6 and GKNSIDASEEKPVMR, 

phosphorylated on S4. These phosphorylation sites map to serines 115 and serine 503 

respectively. The phosphorylation at S503 was of particular interest as this residue 

resides in the linker region between helicase motifs III and IV (Figure 3.9C). This 

linker region is extended in SNF2 enzymes compared to other SF2 helicases and is 

one of the defining characteristics of the SNF2 family. Interestingly, the part of this 

region in which S503 resides is longer in LSH subfamily members than other SNF2 

ATPases and S503 is found only in certain members of this subfamily (Figure 3.913; 
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red box) (Flaus et al., 2006). An attractive hypothesis would be that phosphorylation 

of this serine could modulate the activity of LSH in vivo. I thus attempted to probe 

whether S503 is a phosphorylation site in mammalian cells also. To achieve this I 

expressed GAL4BD-LSH mutants where this serine is mutated to alanine (S503A) or 

aspartic acid (S503D) and thus no longer able to be phosphorylated in HCT1 16 cells. 

I made NE from these cells and probed the extracts with antibodies specific to 

GAL4BD and LSH. Unfortunately, GAL4BD-LSH 5503' and GAL4BDLSHs503D  still 

showed a doublet migration pattern identical to GAL4BD-LSH (Figure 3.9E). This 

indicated that either this serine is not subject to phosphorylation in these cells or the 

change in charge due to its loss is not sufficient to alter the migration of LSH. It is 

also possible that this site is phosphorylated in vivo but S 115 is also phosphorylated 

and both would need to be mutated to remove the doublet pattern. Mutation of the 

second site proved problematic so this issue remains unresolved. 
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Figure 3.9. Analysis of potential post translational modification of LSH. 
Nuclear extracts from HeLa and HCT116 cells were separated by SDS-PAGE and LSH 

detected with a-LSH antibodies. Size marker in kDa indicated to the left. 
Nuclear extracts from HCT116 cells over expressing various GAL4BD-LSH constructs 

(indicated above the panel) were separated by SDS-PAGE and protein detected with a-
GAL4BD antibodies. Size marker in kDa indicated to the left. Non-specific band that controls 
for equal loading indicated (*) 

Schematic representation of the seven conserved helicase motifs defined by Gorbalenya 
and Koonin, indicated by roman numerals. The letters within the boxes indicate the 
conserved amino acids found in these motifs. The two RecA like domains are labelled 
alongside their ENSEMBL classification. Boxes coloured red denote motifs involved in ATP 
binding and hydrolysis, the blue box denotes the motif involved in binding DNA. The position 
of serine 503 within the extended linker region that links the two RecA like domains is 
indicated (red). 

Schematic outlining the spacing between the different defined helicase domains in 
different SNF2 enzymes. Serine 503 of LSH resides in the spacer region between motifs Ill-
B and C-IV. This region is specifically extended in LSH members compared to other SNF2 
enzymes (red box). Adapted from (Flaus et al., 2006). 

Nuclear extracts from HCT116 cells over expressing GAL4BD-LSH serine 503 mutants 
(indicated above the panel) were separated by SDS-PAGE and protein detected with a-LSH 
antibodies. Size marker in kDa indicated to the left. Endogenous and GAL4BD-LSH fusions 
indicated to the right. 

Despite being unable to confirm that S503 is a phosphorylation site in vivo I 

reasoned that due to its location within the catalytic domain of LSH it may still have 

an effect on the activity of recombinant LSH. I thus expressed and purified two LSH 

mutants where serine 503 is mutated to either alanine or aspartic acid (Figure 3.1OA). 

These mutations are commonly used in studies on the effects of phosphorylation as 

aspartic acid mimics the negative charge of phosphorylation (Wassmann et al., 

2003). I tested the ATPase activity of both of these mutants using DNA as a 

stimulus. Surprisingly, both of these mutants displayed no ATPase activity above 

that of the control LSHK254Q  (Figure 3. 1013). Also, no stimulation of activity upon the 

addition of DNA was observed. Together, these results indicate that S503 itself is 

critical to the ATPase function of LSH. Thus, the potential role phosphorylation of 

this residue plays in modulating LSH activity in vitro cannot be investigated using 

these mutant proteins. Thus I attempted to investigate the role of S503 

phosphorylation by dephosphorylating recombinant LSH using X phosphatase. 

Analysis of LSH by SDS-PAGE following X phosphatase treatment did not show a 

noticeable shift in LSH migration so the effectiveness of this treatment could not be 
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Figure 310. Phosphorylation of serine 503 does not inhibit LSH ATPase activit. 
Coomassie stained gel outlining the purification of HIS=LSHs503A  and HIS-LSH 

503D  via 
Cobalt affinity chromatography. 5p1 cell lysate input (I), 5pl of flow-through (FT) from the 
Cobalt column and 5pl of elution (E) from the Cobalt column loaded. Size markers in kDa 
listed to the left. 

lOOnM of a number of mutated, recombinant LSH proteins (indicated on the X-axis) were 
used in ATPase assays in the absence (blue bar) or presence (purple bar) of 200nM DNA. 
The number of ATP molecules hydrolysed per minute per LSH calculated by analysis of thin 
layer chromatography plates (Y axis). 

Coomassie stained gel of recombinant LSH incubate with A-phosphatase (+) or mock 
treated (-) for 1 hour at 37°C. Size markers in kDa listed to the left 

lOOnM of A-phosphatase or mock treated LSH proteins (indicated on the X-axis) were 
used in ATPase assays with non stimulus (red bar), 200nM DNA (yellow bar) or 200nM 
nucleosomes (blue bar). The number of AlP molecules hydrolysed per minute per LSH 

calculated by analysis of thin layer chromatography plates (Y axis). 
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assayed by this method (Figure 3.1OC). ATPase assays using X phosphatase treated 

LSH showed only a modest (-1.5 fold) increase in ATPase activity compared to 

untreated LSH indicating that the DNA stimulated ATPase activity of LSH is not 

inhibited by phosphorylation of S503 (Figure 3.1OD). 

3.3.4 Flag-LSH purified from HeLa cells does not have ATPase activity 

As recombinant LSH purified from insect cells has very low activity I wanted to 

investigate whether LSH purified from human cells was more active. I decided to 

over express and purify 3xFlag-LSH, 3xFlag LSH K254Q and 3xFlag from HeLa 

cells as purification using u-Flag M2 antibody is an efficient method of obtaining 

pure protein. Following overexpression and extraction of nuclear proteins I 

performed Western blots to confirm presence of 3xFlag tagged proteins (Figure 

3.1 1A). As the proteins were expressed I subjected the nuclear extract to affinity 

purification using u-Flag M2 affinity gel. I washed the beads extensively, eluted 

bound protein with 3xFlag peptide and subjected a portion of the eluate to SDS-

PAGE. I then silver stained the gel to assess yield and purity. 3xFlag-LSH and 

3xFlag-LSH K254Q were clearly visible by silver stain although a number of other 

bands were also present (Figure 3.11 B). Some of these bands were unique to the 

Flag-LSH sample and were not seen in the Flag control (Figure 3.11C). As these 

bands could correspond to potential interaction partners of LSH the samples were 

analysed by mass spectrometry. This analysis identified the protein WD repeat 

domain 76 as the only unique protein in the Flag-LSH and Flag-LSH K254Q 

samples. This -70kDa protein is largely uncharacterised and contains 4 WD40 repeat 

domains. WD40 repeats are believed to mediate protein - protein interactions and are 

found in proteins involved in a variety of processes including transcriptional 

regulation, signal transduction and cell cycle progression (Li and Roberts, 2001). 

Further investigation of this potential interaction would be an interesting future 

project. Interestingly, mass spectrometric analysis did not detect any 

serine/threonine/tyrosine phosphorylation or Arginine methylation sites within 

purified Flag-LSH. Additionally I did not detect purified Flag-LSH as a dimer 

perhaps indicating that it is not subject to the same post-translational modifications 

as native LSH. 
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I carried out ATPase assays with 3xFlag-LSH using DNA as a stimulus (Figure 

3.11 D). Surprisingly, 3xFlag-LSH showed no ATPase activity above the two control 

proteins and its activity was not stimulated by DNA (Figure 3.111)). Thus, 

overexpressed 3xFlag-LSH purified from HeLa cells is not an active ATPase or has 

an activity too low to be detected in this assay. This possibility must be recognised as 

I had to use much lower concentrations of LSH (2.5nM) in these assays. However, I 

can conclude that Flag-LSH does not exhibit ATPase activity comparable to that of 

other SNF2 enzymes as that level of activity would be well within the detection 

limits of this assay. A further possibility is that purification and elution of 3xFlag-

LSH has resulted in a loss of the low level of ATPase activity observed for HIS-

LSH. Thus over expressing and purifying HIS-LSH from HeLa cells would perhaps 

be a viable option in the future. 
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Figure 3.11. Flag-LSH purified from HeLa cells displays no ATPase activity. 
Nuclear extracts from HCT116 cells transfected with constructs encoding 3xFlag, 3xFlag-

LSH or 3xFlag-LSH'<254  (indicated above the panel) were separated by SDS-PAGE and 
protein detected with a-Flag antibodies. Size markers in kDa indicated to the left. 

Silver stained gel of M2-Flag Sepharose purified 3xFlag (F), 3xFlag-LSH (WT) or 3xFlag-
LSH 12111  (KQ). 10p1 of each elution or the beads following 4 elution's was loaded onto the 
gel. 
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Close up of the silver stained gel of purification from 3xFlag-LSH and 3xFlag expressing 
HCT116 cells. A number of bands, specific to the 3xFIag-LSH purification are indicated 
(yellow arrows). Size markers in kDa indicated to the right. 

8l of the eluted a-Flag purified proteins (indicated on the X-axis) were used in ATPase 
assays in the absence (red bar) or presence (blue bar) of 200nM DNA with 5pM ATP in 10 p1 
reactions for 15 minutes. The percentage ATP hydrolysed is indicated (Y axis). Error bars 
denote standard deviation from the mean of three independent experiments. 
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3.4 LSH does not show detectable nucleosome remodelling activity in 

vitro 

In parallel with the experiments described above I tested the ability of recombinant 

LSH to remodel chromatin. Nucleosomes at different positions on the same DNA 

fragment have different mobilities on native polyacrylamide gels (Meersseman et al., 

1992). I took advantage of this mobility shift to test for the ability of LSH to 

reposition nucleosomes. I incubated 10-200nM of LSH with 200nM of 54A0 or 

54A54 nucleosomes in the presence or absence of ATP. Following a lh reaction at 

37°C 1 analysed nucleosome repositioning by native PAGE. I initially chose these 

nucleosomal templates as they would allow me to assess whether LSH repositions 

nucleosomes to the end or centre of the DNA template. Addition of LSH led to a 

slight increase in centrally positioned nucleosomes above the no protein control. This 

increase was not dependant on LSH concentration or the presence of ATP indicating 

that LSH does not exhibit ATP dependant nucleosome sliding activity (Figure 3.12A; 

lanes 5-11). LSH was also unable to slide centrally positioned nucleosomes (Figure 

3.12A; lanes 13-15) The positive control protein CHD1 efficiently repositioned the 

end positioned nucleosomes to the centre of the DNA fragment indicating that the 

assay had worked (Figure 3.12A; lane 12). I wanted to be sure the low level of 

ATPase activity exhibited by LSH and its inability to remodel chromatin was not due 

to problems with my protein purification. I therefore sought to reproduce the 

nucleosome remodelling activity previously demonstrated for DDM1 using protein I 

had purified (Brzeski and Jerzmanowski, 2003) (Figure 36C). I used this 

recombinant protein in the same sliding assays with 54A0 nucleosomes and detected 

a low level of repositioning by DDM 1 that is dependant on the presence of ATP and 

increases with higher amounts of DDM 1. The level of repositioning with DDM 1 is 

very low however, particularly compared to that observed with CHD 1. Thus, DDM 1 

appears to be weakly active, indicating my protein purification protocol is working. 

However, it is important that this experiment is repeated to be sure that this low level 

of activity is significant and reproducible (Figure 3.12A; lanes 1-4). I reasoned that 

the lack of remodelling activity detected in the assays with LSH could be explained 
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Figure 3.12. LSH does not reposition nucleosomes 
Nucleosome sliding assay with nucleosomes positioned at the end (54A0) or the centre 

(54A54) of a DNA fragment. Increasing concentrations of DDM1 LSH or LSH 2540  (indicated 
above the gel) were incubated with 200nM fluorescently labelled nucleosomes in the 
presence (+) or absence (-) of ATP for 1 hour at 37°C. 5nM CHD1 incubated at 3000  was 
used as a positive control. Following incubation, reactions were stopped by addition of 
plasmid DNA and reaction products separated by native polyacrylamide gel electrophoresis. 
Following electrophoresis, the wet gel was developed using a Fuji Phosphoimager FLA-
5100. Band intensity was calculated using Aida software (FujiFilm) and the proportion of the 
slower migrating (centrally positioned nucleosome) band in each reaction indicated below 
the gel. The migration of central and end positioned 54A0 nucleosomes are indicated to the 
left. Non nucleosomal free DNA is also indicated (purple line). 

Nucleosome sliding assay with 54A18 nucleosomes. Increasing concentrations of LSH or 
LSH 11141  (indicated above the gel) were incubated with 0.5nM radiolabel nucleosomes in the 
presence (+) or absence (-) of ATP for 1 hour at 37°C. Following incubation, reactions were 
stopped by addition of plasmid DNA and reaction products separated by native 
polyacrylamide gel electrophoresis. Following electrophoresis, the gel was dried, exposed to 
a phosphor imager screen and developed using a Storm Phosphorlmager (GE Healthcare). 
Band intensity calculated using ImageQuant TM software (GE Healthcare) and the 
proportion of the slower migrating (centrally positioned nucleosome) band in each reaction 
indicated below the gel. The migration of off centre, central and end positioned 54A18 
nucleosomes are indicated to the left. Non nucleosomal free DNA is also indicated (purple 
line). 

by its relatively low ATPase activity. I therefore used a more sensitive sliding assay 

utilising radio labelled nucleosomes to assay for low levels of remodelling activity. 

This assay is more sensitive as it allows the use of much lower concentrations of 

nucleosomes. However, using 0.5nM of 54A18 nucleosomes I was still unable to 

detect nucleosome sliding in this assay that was dependant on the presence of ATP 

(Figure 3.12C). This assay showed a similar result as the previous one with no ATP 

dependant nucleosome sliding activity by LSH. Together, these data indicate that 

although able to hydrolyse ATP, LSH does not show detectable levels of nucleosome 

remodelling in classical sliding assays in vitro. 

It is possible that LSH uses ATP hydrolysis to remodel histone:DNA interactions in a 

manner that does not result in nucleosome sliding. I tested this hypothesis by 

assessing the accessibility of nucleosomal DNA to the bacterial DNMT SssI in the 

presence of LSH (Figure 3.13A). This assay uses a methyl sensitive restriction 

digestion step by Acil to assess methylation by SssI. The digestion pattern of the 

isolated 67A0 nucleosomal DNA following SssI incubation should be indicative of 

the exposure of naked DNA as SssI is inefficient at methylating nucleosomal DNA 
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(Gal-Yam et al., 2006) (Figure 3.13A and B). This assay should be able to detect 

chromatin remodelling and the generation of DNA loops on the nucleosome surface 

even in the absence of repositioning (Figure 3.13A). I first assessed the protection 

offered by the nucleosome against SssI methylation by comparing the activity of SssI 

towards 54A18 DNA or nucleosomes. I first assessed the protection offered by the 

nucleosome against SssI methylation by comparing the activity of SssI towards 67A0 

DNA or nucleosomes. A restriction map of the nucleosomal template is shown to aid 

interpretation of this experiment (Figure 3.1313). I found that assembly of this 

sequence into nucleosomes offered protection from the methyltransferase as judged 

by the increased Acil digestion of the DNA isolated from nucleosomes (Figure 

3.13C). However, I did note that there appeared to be less DNA in some of the 

samples recovered from the nucleosome reactions (Figure 3.13C). The reason for this 

is unclear but may be due to inefficiencies in the phenol extraction methods used to 

isolate this DNA. As the nucleosome appeared to be conferring protection to the 

DNA from SssI activity I next tested whether LSH could expose the DNA. However, 

I was unable to detect an increase in SssI methylation in the presence of LSH 

indicating that it is not generating accessible DNA on the surface of nucleosomes 

(Figure 3.13C). 

The experiments described above show that LSH is an active ATPase that is 

stimulated by DNA. The level of ATPase activity is low compared to other SNF2 

enzymes, as is the relative stimulation by DNA. I have not been able to detect 

nucleosome remodelling activity by LSH using two distinct assays suggesting that 

recombinant LSH does not possess such an activity. 
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Figure 3.13 LSH does not increase the accessibility of nucleosomal DNA to Sssl 
methyltransferase. 

Schematic outlining the Sssl methyltransferase assay. Chromatin remodelling by 
nucleosome sliding or disruption of DNA:histone contacts may lead to exposure to CpG 
sites. If methylated the site becomes resistant to restriction enzyme digestion. 

Diagram of the 67A0 nucleosome used for this assay. Acil digestion sites are indicated on 
the DNA. The positioned nucleosome, which should protect the Acil sites from methylation is 
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indicated in green. The size of the expected digestion products following Acil digestion are 
indicated. 

lOOnM 67A0 DNA or 67A0 nucleosomes (indicated) were incubated with increasing 
amounts of Sssl methyltransferase for 15 minutes at 37°C. Following incubation, the reaction 
was stopped and DNA liberated by two phenol: chloroform and a single chloroform extraction 
step. DNA was ethanol precipitated, washed and resuspended in 20pl of TE. The DNA was 
digested with 10 units Acil in a reaction volume of 30 p1 and 10 1.11 separated by native 
polyacrylamide gel electrophoresis. The gel was stained with SYBR-gold (Invitrogen) and 
imaged using a transilluminator. 

lOOnM 67A0 nucleosomes were incubated with increasing amounts of Sssl 
methyltransferase with or without lOOnM LSH for 15 minutes at 37°C. Following incubation, 
the reaction was stopped and DNA liberated by two phenol: chloroform and a single 
chloroform extraction step. DNA was ethanol precipitated, washed and resuspended in 20pl 
of TE. The DNA was digested with 10 units Acil in a reaction volume of 30 p1 and 10 p1 
separated by native polyacrylamide gel electrophoresis. The gel was stained with SYBR-gold 
(Invitrogen) and imaged using a transilluminator. 
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3.5 Summary 

The plant SNF2 family protein DDM1 and its mammalian homologue Lsh were 

originally identified as proteins essential for high levels of DNA methylation in vivo 

(Dennis et al., 2001; Jeddeloh et al., 1999; Vongs et al., 1993). The roles of these 

proteins in DNA methylation has been characterised genetically using plants lacking 

DDM1 and mice deficient for Lsh. Further experiments using cell lines lacking Lsh 

has shown that Lsh is required for de novo but not maintenance methylation of 

replicating episomal plasmids and can interact with Dnmt3a and Dnmt3b (Zhu et al., 

2006). This indicates that Lsh has a direct role in de novo methylation of DNA 

(Dennis et al., 2001; Zhu et al., 2006). The biochemical role of LSH and how this 

relates to its function in vivo are currently unknown. As a member of the SNF2 

family of chromatin remodelling enzymes an attractive hypothesis is that the 

enzymatic activity of LSH is related to its role in vivo. SNF2 enzymes use ATP 

hydrolysis to disrupt chromatin structure in a manner that alters the accessibility of 

DNA (Narlikar et al., 2002). It could be envisaged that if LSH also has this function 

it could alter the accessibility of nucleosomal DNA to DNMT enzymes. In agreement 

with this hypothesis, data on the enzymatic activity ofDDMI indicates that it has the 

ability to slide nucleosomes in vitro. As the information gained from biochemical 

studies would provide useful insights into the role of LSH, I attempted to elucidate 

its function in vitro. 

I was able to obtain highly pure, recombinant LSH and LSH 11245Q  from insect cells 

using a baculovirus expression system. I used the recombinant proteins to show that 

LSH binds DNA and mononucleosomes with linker DNA. This binding was not seen 

with mononucleosomes without linker DNA suggesting that LSH is predominantly a 

DNA binding protein. I determined the Kd for the interaction between LSH and DNA 

to be 100nM. In comparison with the Kds of other SNF2 enzymes and DNA, such 

as SWI/SNF and ISWI, this interaction appears rather weak. As mentioned above 

this may not be entirely surprising as the K js for these proteins was determined for 

the protein complexes these enzymes reside in (Fitzgerald et al., 2004; Lewis et al., 
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2008; Muthuswami et al., 2000; Quinn et al., 1996; Raschle et al., 2004). Thus, 

different members of these complexes may contribute towards DNA binding. How 

the DNA binding efficiencies of SNF2 enzymes relate to other catalytic functions or 

in vivo roles is unknown. Something that does not appear to be directly linked to 

efficiency with which these enzymes bind DNA is their ability to hydrolyse ATP. 

The DNA binding constants and maximal rates of ATP hydrolysis for a number of 

SNF2 enzymes shown above display no correlation between Kd and Vmax (Table 3.1). 

Thus, the affinity of SNF2 enzyme for DNA does not appear to be directly linked to 

their ATPase activity. As some of these enzymes function as DNA translocases it is 

possible that the affinity of the SNF2 protein for DNA is linked to their ability to 

translocate DNA. Limited data is available on the kinetics of DNA translocation by 

SNF2 enzymes but no correlation has been detected between DNA translocation and 

affinity for DNA (Table 3.1). It is possible that the ability of SNF2 enzymes to bind 

DNA has a role in their targeting to genomic loci or their ability to remodel 

chromatin but this is currently unknown. A further caveat to this data is that it is not 

clear how relevant binding constants derived in vitro from EMSAs are to in vivo 

function. 

The core SNF2 ATPase domain consists of seven conserved sequence motifs 

common to the SF2 superfamily of helicases. Together, these motifs are involved in 

binding to DNA and binding and hydrolysing ATP. A common characteristic of 

SNF2 enzymes is the ability to hydrolyse ATP when exposed to different substrates 

such as DNA or chromatin. SNF2 enzymes appear to form two distinct groups based 

on their ATPase activities. Enzymes such as SWI/SNF are maximally stimulated by 

DNA, while enzymes such as ISWI and SNF2h require nucleosomes for maximal 

stimulation (Aalfs et al., 2001; Tsukiyama and Wu, 1995). I tested the ability of LSH 

to hydrolyse ATP and found that it exhibited a low level of activity that was 

stimulated -2 fold by DNA. The same level of stimulation was also seen when 

nucleosomes with linker DNA were used as a substrate but not when nucleosomes 

lacking linker DNA were used. Together these data indicate that LSH is a weak DNA 

stimulated ATPase and correlates well with ability of LSH to bind DNA in vitro. 

These observations also correlate with data on the enzyme kinetics of DDM 1 which 
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has been shown to be a DNA stimulated ATPase (Brzeski and Jerzrnanowski, 2003). 

Thus DDM 1 and LSH belong to the DNA stimulated group of SNF2 ATPases. 

However, the activity of LSH differs from that recorded for other SNF2 enzymes in 

two ways. The first is the maximal rate of ATP hydrolysis which I calculated by 

titrating ATP concentration. I found the Vmax of unstimulated LSH to be 10 

ATP/min/LSH and DNA stimulated LSH to be 20 ATP/min/LSH. These levels are 

low compared to other SNF2 enzymes including DDM 1 which has a Vmax of 400 

ATP/minIDDM 1. The second difference is the low level of stimulation of LSH by 

DNA which is only 2 fold. Other SNF2 enzymes tend to be stimulated to a higher 

degree by their substrate. For example, SWI/SNF and ISWI are stimulated 5 and 

10 fold by their substrates, respectively (Corona et al., 1999; Laurent et al., 1993). 

However, the ATPase activity of DDMI is only -3 fold higher in the presence of 

DNA. Thus, although the level of stimulation shown by LSH is low compared to 

SWI/SNF and ISWI, it is comparable to that of DDM1. This may indicate a 

functional difference between the LSH subfamily of SNF2 enzymes compared to 

other subfamilies. On the other hand, it may indicate that the full stimulation of these 

enzymes has not yet been observed and another co-factor or different substrate may 

be required. 

To ensure that the low level of activity shown by recombinant LSH was not due to 

the purified protein being unable to bind substrate the fraction of LSH that actively 

binds DNA was determined using EMSAs. These assays showed that using 

saturating concentrations of DNA, 800nM of LSH can completely shift '-400nM of 

DNA. Thus either 50% of LSH is active for DNA binding or LSH bind DNA as a 

dimer. I have not been able to detect LSH as a dimer in vivo or in vitro using 

biochemical methods so this possibility seems unlikely (Chapter 4). I cannot 

completely rule out this possibility but it seems reasonable to conclude that at least 

50% of recombinant LSH is active for DNA binding. The consequence of having a 

50% inactive fraction of protein is that the dissociation constant of LSH should be 

adjusted accordingly. Thus the Kd of LSH:DNA is 50nM and the Vmax of 

stimulated LSH is 40ATP/minILSH. These modest adjustments do no alter the 

conclusions made previously regarding the weak DNA binding and low level of 

138 



ATPase activity observed for LSH. These adjustments may be more significant if the 

inactive LSH was acting as a dominant negative mutant. However, this is unlikely as 

the inactive fraction of protein that cannot bind DNA should not interfere with the 

activity of the active protein unless they dimerise. As mentioned above, I have not 

seen evidence of dimerisation and if it were the case, then it would appear that 100% 

of LSH dimers are active for DNA binding. Also, it is unlikely that inactive LSH 

could prevent DNA binding by the active protein by saturating it as 20 fold molar 

excess of DNA was used for stimulating the ATPase activity. 

The observation of native and overexpressed LSH running as a doublet band in 

human cells by Western blot indicates that it may be subject to post translational 

modification. Mass spectroscopy analysis of purified recombinant LSH detected 

phosphorylation at serines 115 and 503. The phosphorylation of S503 is particularly 

intriguing as this serine resides within a region of the SNF2 catalytic domain that is 

specifically extended in the LSH subfamily (Flaus et al., 2006). S503 is present in 

LSH homologues in mouse and Xenopus but not in S. cerevisiae or DDM1. 

Therefore if LSH activity is regulated by phosphorylation of this residue, its function 

is not conserved in plants. Despite being unable to determine if S503 is a 

phosphorylation target in human cells, I asked whether it may be inhibiting the 

activity of LSH in vitro. Unfortunately, the LSH mutants generated to test this were 

completely inactive and dephosphorylation of LSH by X-phosphatase had little effect 

on its activity. Thus, I was not able to conclusively determine whether 

phosphorylation of S503 or S115 have an impact on LSH activity in vitro. If it were 

possible to determine whether LSH is phosphorylated at either of these sites in vivo, 

then further work on the effect of this modification in regulating LSH activity may 

prove fruitful. 

Two distinct assays were used to analyse the ability of LSH to disrupt histone:DNA 

contacts in vitro. The first assay was a classical sliding assay that can be used to 

observe repositioning of nucleosomes on a stretch of DNA. In these experiments no 

ATP dependant nucleosome sliding activity by LSH was observed. Thus it would 

appear that although able to hydrolyse ATP, LSH is not able to reposition 
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nucleosomes in vitro. However, it should be cautioned that as the ATPase activity of 

LSH is much lower than other SNF2 enzymes that do exhibit this activity it may be 

the case that LSH requires some other stimulus for full ATPase and nucleosome 

sliding activities. Despite being unable to reposition nucleosomes in vitro, it is 

possible that LSH can alter chromatin structure in some other way. This is the case 

for ATRX, which has not been reported to slide nucleosomes but can increase the 

accessibility of nucleosomal DNA in vitro (Xue et al., 2003). It could be envisaged 

that the increase in accessibility is due to formation of DNA loops on the nucleosome 

surface, as has been demonstrated for ACF (Strohner et al., 2005). The ability of 

LSH to generate regions of increased DNA accessibility on nucleosomal templates 

was assayed indirectly using SssI methyltransferase. The activity of this bacterial 

DNMT is strongly inhibited by nucleosomes (Gal-Yam et al., 2006). Formation of a 

DNA loop on the surface of the nucleosome would lead to exposed DNA that can be 

methylated by the SssI. Methylation sensitive restriction digests are then used to 

assess the levels of DNA methylation. This assay did not detect any changes in DNA 

methylation in the presence of LSH indicating that LSH was not causing changes in 

nucleosome structure detectable by this assay. Looking for changes in nucleosome 

structure using this assay is limited in several ways. Firstly, it can only detect 

generation of DNA loops if they contain CpG sites. Thus, if LSH is producing a 

specific alteration in nucleosome structure at a particular region of the nucleosome 

surface not containing a CpG, this will not be detected. Also, if the DNA loops 

generated are small and/or very transient, these may not be prone to SssI 

methylation. Therefore, it would be useful in the future to confirm this result using a 

higher resolution technique that is not biased to particular DNA sequences. DNase I 

digestion of nucleosomes is often used to assess changes in nucleosomal DNA 

accessibility in response to SNF2 enzyme activity and may be informative of LSH 

activity (Saha et al., 2005; Strohner et al., 2005). 

The ability to translocate DNA has been observed for several SNF2 enzymes and 

complexes including ISWI, SWI/SNF, RSC and ATRX (Saha et al., 2005; 

Whitehouse et al., 2003; Xue et al., 2003; Zhang et al., 2006b; Zofall et al., 2006). As 

LSH shows a low level of DNA stimulated ATPase activity but cannot remodel 
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chromatin it is possible that it may exhibit translocase activity. During the 

biochemical characterisation of LSH I attempted to test whether LSH exhibits 

translocase activity by performing a triple helix displacement assay. This involves 

generating a DNA triple helix between a double helical d(GA) d(TC) tract and a 

third strand, consisting of a single stranded homopyrimidine repeat dTC20. The triple 

stranded DNA forms via Hoogsteen hydrogen bonds between the pyrimidine bases of 

the single stranded DNA and the purine bases of the double stranded DNA. 

Displacement of the single stranded DNA from the triple helix is indicative of DNA 

translocation (Saha et al., 2002). Interestingly, ATRX is able to efficiently disrupt 

triple helical DNA but is not able to reposition nucleosomes (Xue et al., 2003). I was 

not able to perform this assay as reconstitution of the triple helix was unsuccessful 

and so the question of whether LSH displays DNA translocase activity remains to be 

answered. 

The inability of recombinant LSH to remodel chromatin allied to its low level of 

ATPase activity raises the question of whether recombinant protein is fully active. It 

is possible that LSH requires a different stimulus or additional co-factors to display 

its maximal activity. It is worth noting that most SNF2 enzymes reside in multi-

subunit complexes and it has been reported that these subunits can modulate 

enzymatic activity (Langst et al., 1999). Thus, I next sought to determine whether 

LSH is associated with other proteins in vivo and if so, determine their functional 

significance. 
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Chapter four - LSH cooperates with DNMTs to 

repress transcription 

4.1 Introduction 

SWI2/SNF2 chromatin remodelling enzymes are commonly found associated with at 

least one other stably bound protein (Narlikar et al., 2002). The specific subunits 

found within these multisubunit complexes can modulate the activity of the 

remodelling enzyme and are often involved in their targeting. The number of 

different associated subunits varies considerably between different classes of 

remodeler. SWI2/SNF2 family members tend to be found in huge mega Dalton 

(MDa) sized complexes with many different associated subunits. The yeast RSC 

complex for example contains at least 14 additional subunits in addition to its 

SWI2/SNF2 remodeler core (Cairns et al., 1996). ISWI complexes tend to be smaller 

and contain up to four subunits in addition to the SWI2/SNF2 enzyme (Figure 1.3C). 

The human ACF complex for example contains just one stably bound protein hACF, 

whereas huCHRAC contains ISWI, hACF, p17 and p15 (He et al., 2006; Poot et al., 

2000). The Mi-2/CHD family is slightly different in that different subfamily 

members show different protein complex preferences. On the one hand members of 

the Mi-2/CHD subfamily stably associate with the large NuRD complex (Tong et al., 

1998). Conversely members of the CHD1 subfamily do not associate with other 

proteins and are found predominantly as monomers (Lusser et al., 2005; Tong et al., 

1998). 

There are three distinct roles for proteins that stably interact with SWI2/SNF2 

chromatin remodelling enzymes, modulation of remodeler activity, genomic 

targeting or concurrent covalent modification of chromatin. The most striking 

example of a protein cofactor influencing remodeler activity is that of the Acfl 

interaction with ISWI in the ACF and CHRAC complexes (Langst et al., 1999). In 

this example, Acfl increases both the rate of remodelling and the outcome of the 
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remodelling reaction by ISWI (Langst et al., 1999). Genomic targeting of 

remodelling complexes via specific subunits can occur via direct or indirect 

mechanisms. The BAF200 subunit of the PBAF complex for example is believed to 

directly target it to genomic loci (Yan et al., 2005). Indirect targeting involves the 

interaction of stable subunits with transcription factors as is the case for targeting 

yeast and mammalian SWI/SNF complexes (Lickert et al., 2004; Neely et al., 2002). 

The subunits of several SWI2/SNF2 complexes also act as covalent modifiers of 

chromatin. The NuRD complex for example contains historic deacetylase (UDAC) 

enzymes and forms a large transcriptionally repressive complex (Tong et al., 1998). 

The proteins that interact with SWI2/SNF2 enzymes have a critical role in their 

function. Thus their identification is a crucial step in understanding the role of 

particular remodelers in vivo. As the molecular function of LSH is largely unknown 

and as it displayed very low ATPase activity in vitro I have attempted to determine 

whether it is present in a stable multiprotein complex. If it were then identification of 

the associated factors would potentially provide crucial insight into the regulation of 

its activity, its targeting to chromatin and its role in DNA methylation. 
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4.2 Results - LSH does not form a stable multisubunit complex 

4.2.1 Native LSH is not part of a large stable complex 

Before testing whether LSH is part of a stable complex I first characterised a 

commercial LSH antibody (Santa Cruz: sc-46665). I used the antibody to perform 

Western blots on nuclear extract (NE) from the colon cancer cell line HCT1 16 and 

6xHIS tagged recombinant LSH produced using the baculovirus system (Figure 

4.1A). The antibody detected a doublet band in HCTII6 NE at around lOOkDa and 

the single band of the tagged purified protein slightly larger than this indicating the 

antibody is specific to LSH. To provide further confirmation of the specificity of the 

antibody I used it to Western blot NE from mouse embryonic fibroblasts (MEFs) 

derived from wild-type and LSH-/_embryos (Figure 4.113; top panel, lanes I and 2). 

A single band was detected in wild-type MEFs but not in LSH-/_MEFs. Together 

these data strongly indicate that this LSH antibody is highly specific to LSH in 

Western blots. I next assessed the expression of LSH in a number of commonly 

utilised cell lines; mouse embryonic stem (ES) cells, HCT1I6, HeLa, H520, H226 

and MRC5 (Figure 4.1B; top panel, lanes 3-8). As can be seen from the blot, LSH is 

expressed in all the tested cell lines but appears to be most strongly expressed in ES 

cells and least expressed in H226 cells. HDAC2 served as a loading control for this 

experiment (Figure 4.113; bottom panel). As LSH was ubiquitously expressed, I 

decided to initially investigate whether an LSH complex can be detected in the colon 

cancer cell line HCT1 16. 

In order to investigate whether LSH forms a stable multisubunit complex I used size 

exclusion chromatography to separate proteins on the basis of size. I used a Superose 

6 column from which large proteins and protein complexes elute from the column 

early and small proteins elute later. The Superose 6 column was first equilibrated 

using a range of size markers (Materials and Methods). 

I initially applied HCT1 16 nuclear extract to the column and assayed for the presence 

of LSH in the eluted fractions by Western blot (Figure 4.2A; top panel). As can be 
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seen, the majority of LSH eluted in fractions 18-19 - with a peak at approximate 

mass of 150kDa. This is similar to the estimated molecular mass of LSH, 97kDa. I 

next assayed the integrity of the nuclear extract in 420mM NaCl to make sure this 

low size was not due to dissociation of protein complexes. To achieve this I reprobed 

the Western blot with an antibody that specifically recognises the SWI/SNF 

component Brgl (Figure 4.2A; middle pane!). This experiment revealed that Brgl 

eluted in fractions 5-7 corresponding to a molecular mass greater than 669kDa. Brgl 

has an estimated molecular mass of (200kDa) and the SWI/SNF complex has an 

estimated molecular mass of2MDa. Thus I conclude that Brgl is most likely still 

associated with the intact SWI/SNF complex and lack of NE integrity is unlikely to 

have caused dissociation of a stable LSH complex. The elution of native LSH at a 

relatively small size does not rule out the possibility that it stably associates with 

another protein of —50kDa. In an attempt to rule out this possibility I compared 

purified recombinant LSH produced by the baculovirus expression system to the 

native LSH protein. Western blotting of the eluted fractions showed elution of 

recombinant LSH from the Superose 6 column in the same fractions as native LSH, 

indicating that the majority of LSH does not stably associate with other proteins in 

HCT1 16 NE (Figure 4.2A; bottom panel). 
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Figure 4.1. Expression of LSH in various cell lines. 
Nuclear extract from HCT1 16 cells and purified recombinant protein (indicated above the 

gel) separated by SDS-PAGE. LSH detected by Western blot using commercial o-LSH 
antibody (sc-46665). Size in kDa indicated to the left of the gel. 

Nuclear extract from the cell lines indicated above the gel separated by SDS-PAGE. LSH 
expression (top panel) detected by Western blot and compared to that of the loading control 
HDAC2 (bottom panel). Size in kDa indicated to the left. 
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Figure 4.2. Native LSH is a monomer in nuclear extracts of human cells. 
HCT116 nuclear extracts and recombinant LSH purified from insect cells were 

fractionated on a Superose 6 size exclusion column and run on sodium dodecyl sulfate-
polyacrylamide gels. LSH and BRG1 proteins were detected in the collected fractions by 
Western blotting with appropriate antibodies. The molecular masses and Stokes radii (Rs) of 
marker proteins used to calibrate the column are indicated at the top. 

HCT1I6 nuclear extracts and recombinant LSH were fractionated in 5 to 20% sucrose 
gradients. LSH and BRG1 proteins were detected in gradient fractions on Western blots with 
appropriate antibodies. Sedimentation coefficients of marker proteins are indicated above 
the blot. 

The lack of an obvious large stable LSH complex in HCT116 NE does not 

completely exclude the possibility that LSH associates with other proteins. It is 

possible this complex exists in other cell lines, at specific points during the cell cycle 

or that the nuclear extraction methods used had disrupted it. To test these 

possibilities I repeated the gel filtration experiment using NE derived from a number 

of different cell lines including HeLa, a VA13 cell line stably expressing Lsh-GFP 

and mouse embryonic stem (ES) cells (Figure 4.3A). Of particular interest were the 

ES cells as Lsh is highly expressed and has been shown to co-immunoprecipitate 

with Dnmt3a and Dnmt3b from nuclear extract made from these cells (Zhu et al., 
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2006). As can be seen from this experiment, similar to HCT1 16 nuclear extract the 

majority of LSH/Lsh or Lsh-GFP does not appear to form a large stable complex in 

HeLa, VA 13 or ES cells (Figure 4.3A). The majority of native LSH is not part of a 

stable complex in asynchronously growing cells. It is possible however that LSH 

may form a low abundance cell cycle stage specific complex that is below the 

detection limit of the experiment. To test this hypothesis I synchronised HeLa cells 

in S phase and G2/M and assayed nuclear extract derived from these cells for an LSH 

complex. Using a double S-phase block and release synchronisation protocol, I was 

able to highly enrich my HeLa sample for cells in S-phase (-90%) and G2/M (-80%) 

compared to asynchronously growing cells (S-phase - —15%; G2/M - —10%) (Figure 

4.313; compare top left with bottom left and bottom right panels). I was unable to 

enrich for cells in G  using this protocol but, as —75% of asynchronously growing 

cells are in GI, I assumed I would be able to see a G  specific complex in these cells. 

Using nuclear extract from the synchronised cells I did not detect a cell cycle stage 

specific LSH complex (Figure 4.3C). The preparation of nuclear extract for these 

experiments followed the Dignam protocol that uses a relatively high salt 

concentration (420mM NaCl) to elute nuclear proteins from prepared nuclei (Dignarn 

et al., 1983). To ensure that the salt extraction method had not disrupted an unstable 

LSH complex I performed the same experiment using a lower salt concentration 

(210mM). The low salt extracted LSH was also not present in a large complex 

(Figure 4.31); top panel). Alternatively a stable LSH complex may be tightly bound 

to chromatin and 420mM NaCl may not be high enough to elute it. To determine if a 

fraction of LSH associates with the insoluble nuclear pellet fraction that remains 

following nuclear extraction I attempted to solubilise it. I found that high salt 

extraction (IM NaC1), in conjunction with sonication, DNase and MNase treatment 

successfully solubilised the nuclear pellet. LSH was present in the HCT1 16 nuclear 

pellet as can be seen from the Western blot of the gel filtration (Figure 4.31); bottom 

panel). When run through the gel filtration column however, the nuclear pellet 

fraction of LSH eluted as before, at —l5OkDa (Figure 4.3D; bottom panel). 
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Figure 4.3. Native LSH is not a member of a large stable complex. 
Gel filtration with mouse ES cell extract was performed by Melanie Lawrence. Nuclear 

extract from HeLa, VA13 and mouse ES cells was fractionated on a Superose 6 size 
exclusion column and run on sodium dodecyl sulfate-polyacrylamide gels. LSH/Lsh or Lsh-
GFP protein was detected in the collected fractions by Western blotting with appropriate 
antibodies. The molecular masses and Stokes radii (Rs) of marker proteins used to calibrate 
the column are indicated at the top. 

FACS analyses are shown of asynchronously growing HeLa cells (AS) and cells in Gi, S 
and G2/M phases of the cell cycle after synchronization by thymidine block followed by 
mimosine arrest and release into S-phase. The numbers below the vertical bars represent % 
of cell in Gi S and G2/M in each of the four samples. 1 N and 2N indicate DNA content. 

S and G2/M extracts were fractionated on Superose 6 size exclusion column and 
individual fractions were analyzed on Western blots with anti-LSH antibodies. In all cases, 
LSH eluted at about 150 kDa suggesting that the majority of endogenous LSH is not involved 
in a protein complex that assembles at some specific time of the cell cycle 

Low (220mM) and high (1M) NaCl extracts were fractionated on Superose 6 size 
exclusion column and individual fractions were analyzed on Western blots with anti-LSH 
antibodies. In both cases, LSH eluted at about 150 kDa suggesting that the majority of 
endogenous LSH is not involved in a protein complex that is unstable in high salt or tightly 
associated with chromatin. 

4.2.2 Native LSH is present as a monomer 

The molecular mass of a native protein or a protein complex can be determined 

accurately by an equation derived by Siegel and Monty which combines the Stokes 

radius (a hydrodynamic radius of a molecule freely tumbling in solution) calculated 

from size exclusion chromatography with the sedimentation coefficient determined 

by separation in sucrose gradient (Siegel and Monty, 1965). As the size exclusion 

chromatography does not rule out the possibility that LSH associates with itself, I 

sought to determine its native molecular mass using this method. Based on the 

elution profile of protein standards from size exclusion chromatography I calculated 

the Stokes radius of LSH to be 4.94 rim. To establish the sedimentation coefficient 

of LSH, I fractionated HCT1 16 and mouse ES nuclear extracts and recombinant 

purified LSH on 5 to 20% sucrose gradients and detected LSH in the gradient 

fractions by Western blots. In these experiments the sedimentation coefficient of 

native and recombinant human LSH was calculated to be 4.5S, relative to protein 

standards (Figure 4.213; top and middle panels). As in the gel filtration experiments 

Brgl was used to control for NE integrity (Figure 4.213, bottom panel). To determine 

the molecular weight of LSH the stokes radius and sedimentation co-efficient were 

applied to the Siegel and Monty formula as follows: 
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Mr = 6it1i20,s2o,RN/(1 - p2o v) 

M,=91,500 kDa 

Where: 

R is the Stoke's radius (nm) determined by Superose 6 gel filtration chromatography, 

RS (LSH) = 4.94nm 

s20W is the sedimentation velocity (S x 10_13)  determined from the sucrose gradient, 

S20w (LSI-1) = 4.5 S 

1120,0 is the viscosity of water at 20°C (0.0 1002 gs cnf'), 

Nis Avogadro's number (6.022 x l023 molecules), 

20, 	is the density of water at 20°C (0.9981 gcm3 ), 

v is the partial specific volume of protein (used 0.725 cm 3 /g). 

Using this equation, the native molecular mass of LSH was determined to be 91,500 

kDa, which is very close to the predicted mass of monomeric LSH (97,000 kDa). 

Thus, the majority of LSH protein in nuclear extracts of mouse and human cells is 

present as a free monomeric peptide. 

Theoretical 	mass Sedimentation Stokes radius IR1 Derived 

(Da) coefficient (5) (nm) molecular 	mass 

(Da) 

97000 4.5 4.94 91500 

Table 4.1 Hydrodynamic properties of native LSH. 
Hydrodynamic analysis of LSH was carried out using the Siegel and Monty equation (Siegel 
and Monty, 1965). The sedimentation coefficient (determined by sucrose gradient) and 
Stokes radius (determined by gel filtration) were used to derive the molecular mass of native 
LSH. 
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4.3 Yeast 2-hybrid screen for LSH interacting proteins 

4.3.1 Yeast 2-hybrid screen with GAL4BD-LSH did not uncover any positive 

clones 

In addition to the stably bound proteins in SWI2/SNF2 complexes a wide range of 

less stable interactions have been reported. Of particular interest in the case of the 

DNA methylation phenotype reported for LSH is the reported interaction between 

SNF2H and DNMT3B (Geiman et al., 2004b). This interaction can be detected in 

coimmunoprecipitation experiments but not via gel filtration chromatography 

(Strohner et al., 2001). In order to identify proteins that interact with LSH less stably 

I employed a yeast 2-hybrid (Y2H) screen. The Y2H system I used was the 

Clonetech Matchmaker GAL4 Two-Hybrid System. In this system expression of four 

selectable markers is dependent on an interaction between a bait protein fused to the 

GAL4 binding domain (BD) and a prey protein fused to the GAL4 activation domain 

(AD). The bait protein is expressed in the MATa yeast strain AH109 and is present 

on a plasmid containing a tryptophan (TRP) marker. The library of prey proteins are 

expressed in the MATcL strain Y187 from a plasmid containing a leucine (LEU) 

marker. An interaction between the bait protein and any of the screened prey proteins 

leads to expression of adenine (ADE) and histidine (HIS) selectable markers and 

growth on media lacking TRP, LEU, ADE and HIS (QDO media). Another two 

markers MEL 1 and LacZ are also activated and can be used for blue-white screening 

and semi-quantitative fi-galactosidase assays respectively. 

I successfully cloned full length LSH into the GAL4BD vector and confirmed its 

expression in the AH109 yeast strain by Western blotting with a-LSH and a-

GAL4BD antibodies (Figure 4.4). I used this fusion as a bait to screen a HeLa eDNA 

library of '-4x106  unique GAL4AD clones. Surprisingly the Y2H screen did not 

return any colonies that I was able to verify by DNA sequencing. 
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Figure 4.4. GAL4BD-LSH overexpression in yeast. 
Yeast extract from strains expressing LSH or LSHK254Q  were separated by SDS-PAGE. 
GAL4BD-LSH was detected by Western blot with a-GAL4BD (top panel) or ci-LSH (bottom 
panel) antibodies. GAL4BD-MBD1 and non transfected yeast were included as positive 
control and negative controls respectively. 

4.3.2 GAL4BD-LSH represses the yeast 2-hybrid reporters 

The lack of positive colonies obtained by the Y2H screen was surprising as most 

Y2H screens yield hundreds of colonies, including many false positives. This 

indicated that either the Y2H screen had failed, that LSH does not interact with many 

proteins, is inhibitory to yeast cell survival or represses activation of the Y2H 

reporter genes. 

4.3.2.1 The Y2H screen successfully screened over one million clones 

I first assessed the efficiency of yeast mating and how many individual clones had 

been screened. These experiments aimed to determine whether the screen was 

successful or not. The yeast strains used for the screen are genetically deficient for 

genes required to make tryptophan, leucine, adenine and histidine. The bait and 

activator plasmids used for the screen provide the missing genes required for 

tryptophan and leucine synthesis respectively. It is therefore possible to calculate 

mating efficiency by comparing the respective viability of the mated yeast on plates 

lacking tryptophan or leucine or both amino acids. The viability of the mated yeast 

on the single dropout plates is calculated and the strain with the lower viability is the 

'limiting partner'. The Y187 library strain was limiting in this screen and had a 

viability of -4 x 106  colony forming units / ml (cfu/ml). The mated strain had a 
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viability of —1 x 105  cfu/ml, thus the efficiency of mating for this screen was -2.5%. 

The number of individual clones screened can be calculated from the mated strain 

viability multiplied by the volume of yeast plated. I plated 11 .5ml in this screen so 

managed to screen -1.l5 x 106  GAL4AD clones for interaction with GAL4BD-LSH. 

The relatively good mating efficiency combined with the high number of clones 

screened indicated that the Y2H screen had been successful. 

I next tested whether GAL4BD-LSH was toxic to the yeast strains used in the Y2H 

screen. GAL4BD-LSH is present on the pGBKT7 plasmid that contains a tryptophan 

selectable marker. This plasmid is transformed into the yeast strain AH 109 for the 

screen. Strains transformed with the empty vector or GAL4BD-LSH containing 

vector grew at the same rate under selection indicating that LSH is not toxic to this 

yeast strain. Also, these strains mated to the Y187 strain containing the activator 

plasmid pGADT7 grew at the same rate. Together these data suggest that GAL4BD-

LSH is not toxic to either the AH1O9 or AH1O9/Y187 mated strains. 

4.3.2.2 GAL4BD-LSH represses the Y2H reporter genes 

I finally tested the possibility that GAL4BD-LSH repressed the reporter genes that 

assay for protein-protein interactions. I felt this was particularly likely as false 

positives are common in Y2H screens but none occurred during this one. To test this, 

I used the K1AA0737 protein that self activates the selectable Y2H reporter genes 

and causes yeast growth on QDO dropout media in the absence of an interacting 

protein (Table 4.4). Interestingly, like the repressive control protein GAL4BD-

MeCP2, GAL4BD-LSH prevented yeast growth when mated to the K1AA0737 strain 

indicating it is able to repress transcription of the reporter genes (Table 4.2). I was 

able to map the repressive domain of LSH in this system using deletion constructs to 

the coiled-coils at the N-terminus of the protein. This indicates that a yeast protein 

interacting with this region of GAL4BD-LSH was responsible for the low number of 

positive clones obtained by the screen (Table 4.2). 
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Growth on QDO media and 0-galactosidase assay 

Bait Plasmid pGADT7 pACT2-K1AA0737 

pGBKT7 - ++ 

pGBKT7-LSH - - 

pGBKT7-LSH(1-568) - - 

pGBKT7-LSH(227-838) - ++ 

pGBKT7-LSH(569-838) - ++ 

pGBKT7-MeCP2(TRD) - 

Table 4.2. GAL4BD-LSH prevents activation ot Y2H reporter genes 
The AH109 yeast strain carrying the bait plasmid indicated was mated with the Y187 strain 
carrying either empty pGADT7 or pACT2-K1AA0737 plasmids. Yeast survival on QDO media 
was scored by growth (I+)  and 3-galactosidase assays (++). 

4.3.2.3 Y2H screen with GAL4BD-LSH(227-838) did not uncover any other 

interacting proteins 

As the domain of LSH that repressed transcription mapped to the coiled-coil domains 

I repeated the Y2H screen with a deletion construct not containing this part of the 

protein, GAL4BD-LSH(227-838). This screen yielded only five clones that were 

sequenced to determine their identity. All of these were found to be false positives 

that did not encode recognised proteins. As previously, I confirmed the success of the 

screen by calculating the mating efficiency and the number of clones screened. I 

calculated the mating efficiency at -2.3% and that 1.7xlO6  clones had been 

screened. As the GAL4BD-LSH(227-838) fusion is not inhibitory to yeast survival 

and does not inhibit reporter expression I would conclude that this region of LSH 

does not have many interacting proteins (Table 4.2). The lack of interactions between 

the SNF2_N and Helicase_C domains of LSH and other proteins is not entirely 

surprising as these domains are believed to be primarily involved in interactions with 

DNA and not with other proteins (Dun et al., 2005). 

Y2H screens are a powerful method of discovering protein-protein interactions that 

are not stable enough to be detected by conventional chromatography. In an attempt 

to determine the role of LSH in DNA methylation I have attempted to determine the 
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proteins it interacts with using this method. Using full length LSH to screen a HeLa 

cDNA library I did not uncover any proteins that interact with LSH. Interestingly, I 

have found that a possible reason for the low number of positive clones is the potent 

repression by GAL4BD-LSH of the Y2H reporter genes. I have mapped this 

repressive ability to the N-terminal coiled-coil domain of LSH, which would be 

expected to mediate protein-protein interactions (Table 4.2). Thus, this type of Y2H 

screen is not appropriate for detecting proteins that potentially interact with LSH via 

this domain. In the future it would be possible to screen for potential LSH interaction 

partners by other means such as fluorescence resonance energy transfer (FRET) or 

bimolecular fluorescence complementation (BiFC) (Ding et al., 2006; You et al., 

2006). However, this result did open up other interesting avenues for research, which 

were subsequently undertaken and will now be discussed. 
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4.4 GAL4BD-LSH cooperates with DNMTs to repress transcription 

4.4.1 GAL4BD-LSH is a HDAC dependant transcriptional repressor 

A key role of SWI2/SNF2 enzymes is in regulating transcription (Abrams et al., 

1986). Remodelling enzymes can have either activatory of repressive effects on 

transcription, with the specific effects in part depending on interacting proteins 

(Cheng et al., 1999; Tong et al., 1998; Zhang et al., 1998). LSH has crucial a role in 

determining proper DNA methylation in mammals. As DNA methylation is a 

transcriptionally repressive mark and as GAL4BD-LSH repressed transcription in 

yeast I investigated whether LSH acts as a transcriptional repressor in mammalian 

cells. 

To achieve this I cotransfected HCT1 16 cells with a plasmid expressing full-length 

LSH fused to GAL4131) and two reporter plasmids. The first reporter plasmid carried 

five GAL4 binding sites upstream of a thymidine kinase (TK) promoter driving the 

expression of the firefly luciferase gene. The other, control plasmid lacked GAL4 

binding sites and expressed 3-galactosidase from an actin promoter (Figure 4.5A). 

The effect of either full length LSH or the coiled coil domain of LSH on transcription 

from the targeted and non targeted reporter was measured as a ratio of luciferase to 3-

galactosidase expression (Figure 4.513). A GAL4131)-tagged transcriptional 

repression domain (TRD) of methyl-CpG binding protein MeCP2, which is known to 

strongly repress transcription in such assays, served as a control (Nan et al., 1997). 

Western blot experiments confirmed expression of all the GAL4BD-LSH fusions in 

HCT1 16 cells (Figure 3.5C) In these experiments the full-length GAL4BD-LSH as 

well as GAL4BD-MeCP2(TRD) consistently reduced the expression of the luciferase 

reporter to about 20% and 10%, respectively, of the levels observed in cells 

transfected with an empty vector (Figure 4.51)). This suggests that like MeCP2, LSH 

can function as an efficient transcriptional repressor when targeted to a promoter of a 

reporter gene inhuman cells. 
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Figure 4.5. LSH efficiently represses transcription when targeted to the promoter of a 
reporter gene. 

Schematic drawing of the reporter constructs used in this study. Fusion proteins are 
targeted to the 5xGAL4 binding sites upstream of the TK promoter. Expression of luciferase 
determines transcriptional effect. A control plasmid not containing GAL4 binding sites acts as 
a control for transfection and GAL4BD independent effects. 

Schematic drawing of the full-length LSH and truncated LSH proteins fused to a GAL4BD. 
The functional domains of LSH, such as the coiled-coil domain (CC), the nuclear localization 
signal (NLS), and the eight conserved SNF2 motifs in the SNF2N and helicase domains, are 
indicated. 

GAL4BD fusions of LSH were transfected into HCT1 16 cells, the cells lysed with 2 x SDS-
PAGE buffer and proteins separated by SDS-PAGE. Fusion proteins were detected by 
Western blot with a-GAL4BD antibodies. Size markers are indicated to the left. Non-specific 
band that controls for equal loading indicated (*) 

GAL4BD fusions of LSH were cotransfected into HCT116 cells with the two reporter 
constructs. The relative expression of the reporters represents the ratio of luciferase to 3- 
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galactosidase products. MeCP2 was used as a control. The white bars represent 
experiments carried out in the presence of 100 nM TSA, which partially alleviates LSH and 
MeCP2-mediated repression of the luciferase reporter. The error bars represent standard 
deviations of the means. 
E. Increasing amounts of GAL4BD-LSH and GAL4BD-LSH(1-226) were cotransfected into 
HCT116 cells with the two reporter constructs. Expression of the individual reporters was 
measured to determine GAL413D independent transcriptional effects on 3- galactosidase 
expression. 

To investigate whether a specific domain of LSH was responsible for transcriptional 

repression, I tested a number of LSH deletion constructs in the luciferase reporter 

assay (Figure 4.513). The expression of full length GAL4B-LSH and two deletion 

constructs was monitored by Western blot and found to be similar (Figure 4.5Q. 

Interestingly, the N-terminal portion of LSH (amino acids I to 226), containing the 

predicted coiled-coil motif, was sufficient to repress the reporter gene to levels 

comparable to those observed with full-length LSH. A polypeptide corresponding to 

the SNF2 and helicase domains of LSH (amino acids 227 to 838), did not 

significantly affect the expression of the luciferase reporter (Figure 4.5C and D). 

These experiments indicate that the 226-amino-acid coiled-coil region of LSH 

functions as a TRD and is sufficient for silencing of the luciferase reporter. 

Importantly, this result uncouples the supposed catalytic role of LSH from its role in 

transcriptional repression. To control for GAL4BD independent repression of the non 

targeted 3-gal reporter and to confirm that repression was dose dependent I repeated 

the reporter assays using a titration of effector plasmid (Figure 4.5E). As can be seen 

from the titration experiment both LSH and LSH(1-226) repress transcription in a 

dose dependent manner with LSH(l-226) being a slightly more efficient 

transcriptional repressor. Both proteins also showed a significant level of non 

specific repression of the J3-gal control plasmid in particular LSH at 1 000ng (Figure 

4.5E). This non specific repression may be due to GAL4BD independent binding of 

the over-expressed protein to the control plasmid. If this is the case it would explain 

why high levels of full length LSH, containing the SNF2 DNA binding domain 

showed greater repression of the control plasmid than LSH(l-226). Due to this 

GAL4BD independent repression I determined the optimal amounts of each plasmid 
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to use in further experiments to maximise targeted, whilst minimising non-targeted 

repression to be 500ng LSH and 200ng LSH(1-226). 

Coiled-coil regions of proteins often mediate protein-protein interactions. In an 

attempt to dissect the mechanism of LSH mediated transcriptional repression I next 

asked whether LSH functionally cooperates with co-repressor proteins such as 

HDACs as is the case for MeCP2 (Nan et al., 1997). Consistent with this hypothesis, 

transcriptional repression by GAL4BD-MeCP2(TRD), GAL4BD-LSH and 

GAL4BD-LSH(1-226) was partially alleviated when I performed the reporter assays 

in the presence of lOOnM of the HDAC inhibitor trichostatin A (TSA) (Figure 4.513). 

This indicates that transcriptional repression by LSH may be mediated via an 

interaction between the coiled-coil domain of LSH and HDACs. To provide further 

evidence for this hypothesis I asked whether endogenous HDACs and LSH can co-

immunoprecipitate from HCT1 16 NE. Antibodies against LSH, but not control (X-HA 

antibodies (mock) immunoprecipitated LSH and co-immunoprecipitated HDAC 1 and 

HDAC2 (Figure 4.6A). I also detected LSH in reciprocal immunoprecipitates with a-

HDAC1 and a-HDAC2 antibodies (Figure 4.6A). In addition to this I performed 

chromatin immunoprecipitation experiments in cells carrying stably integrated copies 

of the reporter construct transfected with GAL4BD-LSH (Ishizuka and Lazar, 2003). 

These experiments showed a three-fold decrease of acetylated lysine 9 of histone H3 

and a two-fold decrease of acetylated lysine 12 of H4 at the targeted TK promoter 

compared to a non-targeted control (Figure 4.613). I further characterised GAL4-LSH 

mediated repression of the reporter constructs by performing RNA interference 

knockdown experiments on HDAC 1, HDAC2 and HDAC3 in HCT1 16 cells. The 

RNAi experiments were successful as each RNAi specifically depleted expression of 

its target (Figure 4.6C). These cells were subsequently used for reporter assays and 

revealed that successful, simultaneous depletion of HDAC 1 and HDAC2, but not 

HDAC3, could similar to TSA treatment, alleviate the repression of luciferase 

reporter (Figure 4.613). Together, these experiments provide strong evidence that 

transcriptional repression by GAL4-LSH in the reporter assay system requires 

HDAC1 and HDAC2 (Figure 4.6). 
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Figure 4.6. LSH functions as an HDAC-dependent transcriptional repressor in vivo. 
Coimmunoprecipitation experiments with anti-LSH, anti-HDAC1, and anti-HDAC2 

antibodies from HCT116 nuclear extracts. Anti-HA antibodies were used in mock 
immunoprecipitations (IF) to control for non-specific protein binding. 

Chromatin immunoprecipitation with antibodies against acetylated H3-K9 and H4-K12. 
The TK promoter in cells transfected with GAL4BD-LSH is hypoacetylated compared to the 
GAPDH promoter used as an internal control. Anti-HA is a non-specific control antibody 

SMART pool siRNAs efficiently reduce the levels of HDAC1 and HDAC2 in HCT1 16 cells 
compared with control GFP and HDAC3 siRNAs. 

Reporter expression assay indicate that neither full length LSH (GAL4-LSH) nor the coiled 
coil domain of LSH repress the luciferase reporter in HCT116 cells treated simultaneously 
with HDAC1 and HDAC2 siRNA compared to controls. 

4.4.2 Transcriptional repression by GAL4BD-LSH requires DNMT1 and 

DNMT3B 

4.4.2.1 GALBD-LSH cannot repress transcription in cells deficient for DNMTI or 

DNMT3B 

The major phenotype of the LSH mouse is a genome wide loss of DNA 

methylation (Dennis et al., 2001). A recent study has shown that Lsh interacts with 

Dnmt3a and Dnmt3b but not Dnmtl in MEFs (Zhu et al., 2006). Dnmtl, Dnmt3a and 

Dnmt3b have also been shown to interact with each other and with histone 

deacetylases (Fuks et al., 2000; Fuks et al., 2001; Kim et al., 2002; Rountree et al., 

2000) (Figure 4.7A). Given these complex interactions and the role of LSH in DNA 

methylation, we reasoned that DNMTs may also play a role in GAL4BD-LSH 

mediated transcriptional repression. 

HCT1 16 cell lines genetically deficient for DNMT1 (DNIvJTF), DNMT3B 

(DNMT3B), DNMT1 and DNMT3B (DKO) and DNMT1', DNMT3A and 

DNMT3B (TKO) have been generated by homologous recombination (Jair et al., 

2006; Rhee et al., 2002; Rhee et al., 2000). It has recently been shown, however, that 

the DNMT1 KO cell lines, including the DKO, express low levels of a truncated 

DNMT1 protein missing 150 amino acids of the N terminus. This region includes the 

sites of interaction with DNMT3A, DNMT3B, and PCNA (Egger et al., 2006; Spada 

et al., 2007) (Figure 4.7A). To assay for the involvement of DNMTs in LSH 

mediated repression I repeated the reporter assays in the DNMT1', DNMT3B and 

TKO cell lines. Surprisingly, I found that GAL4BD-LSH and GAL4BD-LSH(1-226) 

mediated repression was completely absent in the KO cell lines tested (Figure 4.7) 
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Figure 4.7. Transcriptional repression by LSH requires DNMT3B and the N-terminal 
portion of DNMT1. 

Schematic representation of DNMT1 and DNMT3B proteins with their functional domains. 
The cysteine-rich putative DNA binding CxxC domain, bromo-adjacent homeobox motifs 
(BAH), GK-rich repeats, the domain involved in targeting to replication foci, and the catalytic 
part of DNMT1 are indicated. Mapped interactions with DNMT3A, DNMT3B, PCNA, and 
HDAC1 and -2 are shown above the diagram. The dashed line indicates the portion of 
DNMT1 that has been spliced out in DNMT1 KO HCT116 cells with targeted disruption of the 
DNMT1 gene (Egger et al., 2006; Rhee et al., 2002). The grey lines below the schematic 
indicate the fragments of the protein used for rescue experiment. The DNMT3A and 
DNMT3B proteins contain a DNA binding PWWP motif, a PHD, domain and a conserved 
catalytic DNMT domain. The portions of DNMT3A interacting with DNMT1 and DNMT3B and 
the portion of DNMT3B interacting with DNMT1 and DNMT3A are indicated above the 
schematic. The HDAC interacting region is indicated for both proteins below the drawing. 

Neither full-length GAL4BD-LSH nor the TRD of LSH, GAL4-LSH(1-226), could silence 
the luciferase reporter in DNMTV' cells. Cotransfection of GAL4BD-LSH proteins together 
with wild-type GFP-tagged DNMT1, catalytically 
inactive DNMT1CIW,  and the N-terminal portion of DNMT1(1-1125) can rescue the 
repression of luciferase reporter in DNMTV' cells. Shorter N-terminal DNMT1 proteins 
[DNMT1 (1-250) and DNMT1 (1-701)1 did not rescue the repression of the luciferase reporter 
gene. DNMT3B was used as an additional control. Error bars indicate standard deviations. 

GAL4BD-LSH and GAL4BD-LSH(1-226) did not repress the luciferase reporter in 
DNMT3B-I- cells. Cotransfection of LSH proteins with either GFP-DNMT3B or a catalytically 
inactive GFP-DNMT3Bc/s  restored the repression of the reporter to levels observed in wild-
type HCTII6 cells. Cotransfection of GAL4BD-LSH with GFP-DNMT1 also reduced the 
repression of luciferase in DNMT3B KO cells, although not as efficiently as DNMT3B 

GAL4BD-LSH and GAL4BD-LSH(1-226) did not repress the luciferase reporter in TKO 
cells. Cotransfection of LSH proteins with GFP-DNMT3B restored the repression of the 
reporter to levels observed in wild-type HCT116 cells. Cotransfection of GAL4BD-LSH with 
GFP-DNMT1 also reduced the repression of luciferase in DNMT3B KO cells, although not as 
efficiently as DNMT3B. Cotransfection of GAL4BD-LSH with GFP-DNMT3A did not rescue 
repression as efficiently as DNMT3B either. 

To test that the observed effect was due to lack of DNMT protein and not a 

phenotypic effect in these cells, I measured GAL4BD-LSH mediated repression 

following co-transfection with the corresponding DNMT plasmid. In the DNMT1 

cells, co-transfection of Dnmtl-GFP efficiently rescued GAL4BD-LSH and 

GAL4BD-LSH(1-226) mediated transcriptional repression to near wild-type levels 

(Figure 4.713), Interestingly, repression was also rescued in DNMT1 ' cells by a 

catalytically inactive mutant of Dnmtl, C1229W (Schermelleh et al., 2005). This 

indicates that the transcriptional repression by GAL4BD-LSH does not depend on 

DNA methylation by DNMT1 (Figure 4.713). I next sought to map the region of 

DNMT1 required to restore GAL4-LSH mediated repression in DNMTT' cells using 

a number of deletion constructs (Figure 4.7A). DNMT1(1-1125)-GFP, which 

contains the known interaction sites with DNMT3A, DNMT3B, and HDACs but is 
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lacking the C-terminal catalytic domain, could partially restore the repression by 

GAL4BD-LSH and GAL4BD-LSH(l-226), while the shorter proteins DNMT1(1-

701)-GFP and DNMT1(1-250)-GFP could not (Figure 4.713). This is suggestive that 

a fairly large portion of the DNMT1 N-terminus and perhaps some of the catalytic C-

terminus is involved in protein-protein interactions that are critical for GAL4BD-

LSH mediated repression. Cotransfection of DNMT3B-GFP with either LSH 

construct into the DNMTI' cells also led to a modest (25 - 30%) decrease in 

transcription from the reporter gene (Figure 4.713). This indicates that overexpression 

of DNMT3B, although having a slight effect is not sufficient to restore LSH-

mediated repression in this cell line. I next attempted to rescue GAL4BD-LSH 

mediated repression in DNMT3B and TKO cells. As in the case of DNMT1, when I 

cotransfected DNMT3B cells with GAL4BD-LSH or GAL4BD-LSH(l-226) and 

either wild-type GFP-DNMT3B or catalytically inactive GFPDNMT3Bc641s,  the 

repression of the luciferase gene was largely restored (Figure 4.7C). Interestingly, 

cotransfection of Dnmtl-GFP and GAL4BD-LSH into the DNMT3B-I- cells also led 

to partial restoration of repression. This indicates that overexpression of Dnmtl can 

partially compensate for loss of DNMT3B in GAL4BD-LSH mediated repression 

(Figure 4.7C). To investigate the role of DNMT3A in GAL4-LSH mediated 

repression I cotransfected the reporter constructs along with either DNMT3A-GFP or 

DNMT3B-GFP into TKO cells (Figure 4.71)). Interestingly, overexpression of 

DNMT3B-GFP alone was sufficient to rescue repression by both GAL4-LSH and 

GAL4BD-LSH(1-226) in these cells. Conversely, DNMT3A-GFP overexpression 

could only partially rescue repression by GAL4BD-LSH and not at all for GAL4BD-

LSH(1-226) indicating that in this system DNMT3A is not absolutely required for 

LSH mediated repression. Again, DNMT1-GFP showed an ability to partially 

compensate for the lack of DNMT3A and DNMT3B (Figure 4.71)). 

Together, these data indicate that DNMT1 and DNMT3B are both required for 

efficient GAL4-LSH mediated repression of the reporter gene but DNMT3A is not. 

The role of DNMT3A in LSH mediated repression in other cell types, particularly ES 

cells where Dnmt3A is known to be strongly expressed and to physically interact 

with Lsh should not be completely discounted. Interestingly, in the experiments 
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described above the catalytic activity of the DNMT proteins was not required for 

repression. To further investigate whether CpG methylation occurred upon targeting 

of GAL4BD-LSH to the reporter gene construct, I performed bisuiphite sequencing 

on the promoter region of the luciferase reporter construct following 4 days targeting 

by GAL4BD-LSH (Figure 4.8). As can be seen from the sequenced clones no 

signification DNA methylation occurs at the TK promoter, the GAL413S or the 5' of 

the luciferase gene after GAL4BD-LSH targeting compared to the GAL4BD targeted 

control (Figure 4.8). This is despite extended targeting of the region by GAL4BD-

LSH leading to transcriptional repression and deacetylation of histones (Figures 4.5 

and 4.6). Thus, the role of LSH in transcriptional repression is distinct from its 

presumed enzymatic activity and is independent of DNA methylation. 
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Figure 4.8. Recruitment of LSH to reporter plasmid does not immediately result in 
methylation of TK promoter sequences. 
DNA was purified from HCTI16 cells co-transfected either with luciferase reporter and either 
pGAL4BD or pGAL4BD-LSH 4 days post-transfection. DNA methylation was analyzed by 
bisulfite sequencing. The circles represent individual CpGs in the indicated plasmid regions. 
Each line of circles corresponds to an individual clone that was sequenced. Empty circles 
are unmethylated CpGs, black circles are methylated CpGs. 

4.4.2.2 The interaction between LSH and HDACs is lost in cells deficient for 

DNMT1 or DNMT3B 

Given that the repression by GAL4BD-LSH was sensitive to TSA and that HDAC 1 

and HDAC2 coimmunoprecipitated with LSH from nuclear extracts of wild-type 

HCT1 16 cells, I next examined whether these interactions remain intact in DNMT1 



cells. Interestingly, when I immunoprecipitated endogenous LSH from either 

DNMTF' or DNMT3B nuclear extract, I did not detect HDAC 1 or HDAC2 in the 

a-LSH immunoprecipitation (Figure 4.9A-D, top panels; compare with Figure 4.6A). 

Consistent with this result the reciprocal a-HDAC1 and a-HDAC2 

immunoprecipitations failed to co-immunoprecipitate LSH (Figure 4.9A-D, bottom 

panels; compare with Figure 4.6A). These experiments indicate that DNMT1 and/or 

DNMT3B could either directly or indirectly recruit HDAC1 and HDAC2 to LSH. 

Notably, the presence of both DNMTs is required to promote the association of 

HDACs with LSH. 
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Figure 4.9. The interactions of LSH with HDACs are lost in DNMT KO cells. 
A and B. Endogenous LSH, HDAC1, and HDAC2 could be efficiently immunoprecipitated 
(IF) from extracts of DNMT1 KO cells. However, LSH could not be detected in HDAC 
immunoprecipitations, nor was HDAC1 or HDAC2 detected in LSH immunoprecipitations. 
lgG, immunoglobulin G. 
C and D. LSH, HDAC1 and HDAC2 do not coimmunoprecipitate from extracts of DNMT3B 
KO cells. Anti-HA antibodies were used as a control for non-specific interactions. 
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4.4.2.3 The TRD of LSH interacts with DNMTI and DNMT3B 

Thus far I have provided evidence supporting a functional role of DNMTs in 

GAL4BD-LSH mediated repression. To investigate whether LSH and DNMTI 

physically interact I looked for an interaction between GAL4BD-LSH and Dnmtl-

GFP by cotransfecting GAL4BD-LSH and Dnmtl-GFP in DNMTI-I-  cells and used 

u-GAL41313 to immunoprecipitate LSH. DNMTI-GFP was detected by ct-GFP 

antibodies in ct-GAL41313 immunoprecipitates but not in control o-HA IFs, 

suggesting that GAL4BD-LSH and DNMTI-GFP interact with each other (Figure 

4.10A, top panel). In a similar experiment I found that GAL4DB-LSH and 

DNMT3B-GFP cotransfected into DNMT3B' cells also co-immunoprecipitate (Fig. 

4.1 OA bottom panel). Consistent with the reporter assays, when I cotransfected the 

cells with the coiled-coil TRD domain of LSH and either DNMTI-GFP or 

DNMT3B-GFP, I could detect CAL4BD-LSH(1-333) coimmunoprecipitating with 

each of the two DNMTs (Figure 4.1013). These experiments demonstrate that LSH 

and DNMTs physically interact in vivo and that the TRD of LSH is sufficient for 

these interactions. 

4.4.2.4 LSH interacts indirectly with DNMTI and HDAC1/2 via a direct interaction 

with DNMT3B 

As the reporter assays and co-immunoprecipitations described above relied on 

overexpression of tagged proteins, we next examined whether endogenous LSH 

interacts with DNMTs in wild-type, DNMTI -I- 	DNMT3B HCT1 16 cells. We 

first sought to determine the precise nature of the KO cells lines. Consistent with 

other studies we found that an antibody against the C terminus of DNMTI detected a 

truncated DNMTI protein in nuclear extracts of DNMT1 and DNMTF'/DNIVJT3B 

DKO1 cells (Egger et al., 2006; Spada et al., 2007) (Figure 4.11A, top panel). We 

found that this truncated form of DNMTI was more abundant in the DKO1 cell line 

than the DNMTT' cell line and that the cell line DK08 contained significant levels 

of full length DNMTI (Figure 4.11A, top panel). We did not detect DNMT3B 

protein in extracts from any of the KO cell lines indicating that these cells are null 

for DNMT3B (Figure 4.11A, bottom panel). For further experiments we used 

extracts from four of the cell lines, HCT1 16 , DNMT1, DNMT3B' and DNMTJ 
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Figure 4.10. The coiled-coil TRD domain of LSH interacts with DNMTs. 
GAL4BD-LSH coimmunoprecipitated with GFP-DNMT1 when both proteins were co 

expressed in DNMT1 KO cells. We could detect only about 20% of GFP-DNMT1 in the 
immunoprecipitations 	(IF) 	with 	anti-GAL4131D 	antibodies. 	GAL4BD-LSH 
coimmunoprecipitated more efficiently with GFP-DNMT3B when both proteins were co 
expressed in DNMT3B KO cells. WB, Western blot. 

GAL4BD-LSH(1-333) protein, containing the coiled-coil TRD domain of LSH, 
coimmunoprecipitates with GFP-DNMT1 and GFP-DNMT3B from extracts of DNMT1 and 
DNMT3B KO cells, respectively. Anti-HA antibodies (mock immunoprecipitation) were used 
as a control. 

/DNMT3B DKOJ for endogenous Co -immunoprecipitations. We 

immunoprecipitated LSH from extracts of the different cell lines and then asked 

whether DNMT1 and DNMT3B could be detected in the immunoprecipitates (Figure 

4.11B, top panel). DNMT3B was detected in ct-LSH immunoprecipitates from 

HCT1 16 cells as expected, and was also detectable in a-LSH immunoprecipitates 

from DNMTF' cells (Figure 4.11B, middle panel). However, DNMT1 co-

immunoprecipitated with LSH only from extracts of wild-type HCT 116 cells and not 

from the extracts of DNMT3B" or DNMT1-1/DNMT3B cells (Figure 4.1 1B, bottom 

panel). These results indicate that DNMT1 does not efficiently interact with LSH in 

the absence of DNMT3B. Conversely the presence of DNMT1 may not be required 

for the interaction of DNMT3B with LSH. This appears to be the case as 
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approximately equal amounts of DNMT3B co-immunoprecipitates with LSH from 

HCTI 16 and DNMTF cells expressing a truncated DNMT1 that does not contain 

the DNMT3B interaction domain (Egger et al., 2006; Kim et al., 2002; Spada et al,, 

2007) (Figure 4.7A and 4.11 A). Taken together with the luciferase reporter assays, 

these immunoprecipitation experiment suggest that LSH may exist in a complex with 

DNMT3B with or without DNMT1. However, an LSH complex containing DNMT1, 

HDAC1 and HDAC2 must also include DNMT3B. 
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Figure 4.11. The interaction of LSH with DNMT1 in vivo requires DNMT313. 
These experiments were carried out by Dr Irma Stancheva. 
A Western blots (WB) with antibodies against the C terminus of DNMT1 and the N terminus 
of DNMT3B on nuclear extracts of HCT116 and KO cell lines. Note that a truncated form of 
DNMT1 is detectable in DNMTI' (Dl KO) cells as well as in DNMTV'/DNMT3B' DKO 
(DKO1) cells, while a second DKO cell line (DK08) expresses full-length DNMT1. DNMT3B 
is detectable only in HCT116 and Dl KO cells. In the top panel, the full-length and the 
truncated DNMT1s are indicated with arrowheads. The asterisks indicate non-specific bands 
that serve as loading controls. 
B Anti-LSH antibodies efficiently immunoprecipitate LSH from nuclear extracts of HCT1I6 
and KO cells. In identical anti-LSH immunoprecipitations (IP), DNMT313 immunoprecipitates 
with LSH from HCT116 and Dl KO extracts, indicating that the N terminus of DNMT1 is not 
required for the interaction of DNMT3B with LSH. In contrast, DNMT1 coimmunoprecipitates 
with LSH only from HCT116 cells, suggesting that the presence of DNMT313 mediates the 
recruitment of DNMT1 to LSH. 
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To explore whether any of the proteins that co-immunoprecipitate with LSH bind it 

directly we expressed and purified from E. coli two glutathione S-transferase (GST) 

tagged recombinant mouse Lsh polypeptides. These were designated Lsh-N and Lsh-

C (Figure 4.12A). Lsh-N contains amino acids 1 to 503 of Lsh including the N-

terminal coiled-coil and the SNF2_N domain. A shorter fragment consisting of just 

the coiled-coils domain was insoluble in E. coli so this larger fragment had to be 

used. Lsh-C contains amino acids 248-883 and includes the SNF2_N and HelicaseC 

domains. We used these two polypeptides bound to glutathione-Sepharose beads or a 

control GST-GFP protein to pull down in vitro translated HA-tagged DNMT1(l-

1125) and full length DNMT3B (Figure 4.1213). Interestingly, neither Lsh-N or Lsh-

C could bind DNMT1(1-1 125) in these assays (Figure 4.1213). Lsh-N but not Lsh-C 

or the GFP control could efficiently bind DNMT3B indicating that LSH and 

DNMT3B can interact directly (Figure 4.1213). 

DNMT1 and DNMT3B are known to interact with each other via the extreme N-

terminus of DNMT1 and the N-terminus of DNMT3B (Kim et al., 2002). As LSH 

did not co-immunoprecipitate with DNMT1 from extracts of DNMT3B cells but did 

co-immunoprecipitate in the extracts of wild-type cells we next asked whether 

DNMT3B is required for the interaction between LSH and DNMT1. To investigate 

this we added increasing amounts of recombinant DNMT3B purified from insect 

cells to in vitro translated DNMT1(1-1125) and asked whether LSH-N could now 

pull down DNMTI(l-1125) (Figure 4.12C). We could detect increasing amounts of 

DNMT1(1-1125) being pulled down by GST-LSH-N only when the purified 

DNMT3B was present (Figure 4.12C). Consistent with our co-immunoprecipitation 

assays, these experiments provide evidence for a direct interaction between 

DNMT3B and the N-terminus of LSH, mediating an indirect interaction between 

LSH and DNMT1 (Figure 4.1 lB and 4.1213 and C) 
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Figure 4.12. LSH directly interacts with DNMT3B but not with DNMT1 or HDACs 
These experiments were carried out by Dr Irma Stancheva. 

A Coomassie blue-stained gel shows GST-tagged purified OFF, LSH-N, and LSH-C 
proteins used in the pull-down assays (B and C). 

The N terminus of LSH binds in vitro-translated DNMT3B. Neither the N terminus nor the 
C terminus of LSH pulls down in vitro-translated DNMT1 (amino acids 1 to 1125). WB, 
Western blot. 

GST-LSH-N can pull down DNMT1 in the presence of recombinant DNMT3B (0.5 and 1 
pg). 

A Coomassie blue-stained gel shows purified GST-HDAC1, HDAC2, and HCAC3. 
GST-HDAC1 and GST-HDAC2 pull down in vitro-translated DNMT1 but not DNMT3B or 

LSH. 

We next sought to examine whether HDAC1 and HDAC2 could directly bind to 

LSH, DNMT1 or DNMT3B. For this experiment we expressed GST-tagged full-

length HDAC1, HDAC2 and as a control, HDAC3 in E. co/i and bound them to 

glutathione-Sepharose beads (Figure 4.12D). We used the immobilised HDAC 

proteins to pull down in vitro translated HA-tagged DNMT1(l-1125), HA-DNMT3B 

and Myc-LSH (Figure 4.11 E). In agreement with previous reports, we could detect 
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an interaction between DNMT1(1-1 125) and HDAC1 and HDAC2 but not with 

HDAC3 (Figure 4.12E; top panel) (Fuks et al., 2000; Robertson et al., 2000; 

Rountree et al., 2000). However, Myc-LSH could not bind any of the GST-HDACs 

in this in vitro system and HA-DNMT3B could only very weakly interact with 

HDAC3 (Figure 4.12E; middle and bottom panels). These in vitro experiments are 

consistent with our reporter assays and co-immunoprecipitation results and allow us 

to construct a model of GAL4BD-LSH mediated transcriptional repression in our 

reporter assay system (Figure 4.13). 

The data presented from this study suggest that GAL4BD-LSH recruited to the 

reporter promoter by the GAL413D recruits DNMT3B via a direct interaction. 

DNMT3B in turn interacts with the DNMT1-HDAC1-HDAC2 complex and recruits 

it to LSH. The HDAC containing LSH complex is then associated with the promoter 

region of the reporter gene leading to deacetylation of histone H3 and H4 and 

transcriptional repression (Figure 4.13). An alternative, thus far unexplained 

mechanism of recruiting the DNMT1-HDAC complex to LSH may also exist (Figure 

4.13; arrow) as it which would explain the partial rescue of repression by GFP-

DNMT1 in DNMT3B' cells (Figure 4.7C and D). Our model does not indicate how 

this repressive complex is recruited to chromatin in vivo. This may occur via one or a 

combination of the members binding directly to chromatin or via an as yet 

unidentified recruitment factor. 
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Figure 4.13. A model of how the LSH-associated protein complex acts to repress 
transcription. 
Our experiments are consistent with a mode! where DNA-bound LSH recruits a complex that 
includes DNMT3B, DNMT1, HDAC1, and HDAC2. LSH-associated HDACs remove acetyl 
groups (Ac) from histone tails, generating deacetylated chromatin incompatible with 
transcriptional activation. LSH does not directly interact with DNMT1 and HDACs but 
requires DNMT3B for the assembly of the repressive complex. On the other hand, HDAC1 
and HDAC2 require both DNMT1 and DNMT3B for association with the LSH complex. The 
order of these interactions explains why in cells expressing N-terminally truncated DNMT1, 
which does not bind DNMT3B, or in cells lacking DNMT3B, LSH-mediated repression is 
disrupted. 
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4.5 Summary 

The plant SNF2 protein DDM1 and its mammalian homologue LSH were initially 

discovered as proteins essential for the establishment of proper DNA methylation 

patterns in vivo (Dennis et al., 2001; Jeddeloh et al., 1999; Vongs et al., 1993). 

DDM1 deficient plants and mice lacking functional Lsh develop with dramatically 

reduced levels of DNA methylation and are defective in silencing transposable 

elements and a number of genes (Fan et al., 2005b; Huang et al., 2004; Miura et al., 

2001). Despite the requirement of Lsh for genomic methylation it is not required for 

embryonic development but leads to death a few hours after birth and runted growth 

(Geiman et al., 2001). This phenotype is dissimilar to the Dnmt mutants indicating 

that the role of Lsh in DNA methylation is unlikely to act as a stimulatory factor for a 

single Dnmt in a manner similar to Dnmt3L (Kaneda et al., 2004). Cytological 

studies and experiments with ES cells have shown that although Lsh co localises 

with Dnmtl at replication foci during late S phase, Lsh is not required for 

maintenance methylation of satellite DNA or on replicating episomal plasmids. Lsh 

has also been shown to be required for de novo methylation and to co-

immunoprecipitate with Dnmt3a and Dnmt3b (Zhu et al., 2006). Taken together 

these studies indicate that the primary role of Lsh is in de novo methylation and it is 

dispensable for maintaining methylation during DNA replication. 

Despite the crucial role of Lsh in assisting efficient DNA methylation in mammalian 

cells, very little is known about how it interacts with the DNA methylation 

machinery. As mentioned above the interaction partners of SNF2 enzymes are 

crucial to their function and identifying them provides much important information 

to dissecting their function. To provide insight into the molecular role of LSH I have 

attempted to identify proteins that associate with LSH in a stable complex. By 

combining the biophysical properties of LSH obtained using gel filtration 

chromatography and sucrose gradients I have shown that LSH is present mostly as a 

free monomeric peptide in HCT116 and other human and mouse cells. I have 

furthermore been unable to detect an LSH complex at any cell cycle stage or with 
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any protein extraction method used, which indicates that unlike most SNF2 proteins 

LSH does not stably interact with other proteins. Therefore, using biochemical 

fractionation to purify a low abundance, transient or unstable LSH complex would 

not have been feasible. The lack of detectable, stably bound interaction partners is 

unusual for SNF2 enzymes and indicates that LSH most likely interacts transiently 

with the DNA methylation machinery. 

In addition to using protein chromatography to identify a stable LSH complex I have 

also utilised a Y2H screen to identify transiently interacting proteins. This screen did 

not identify any interacting proteins which I believe was not due to failure of the 

Y2H screen or a lack of other LSH interacting proteins. On the contrary, I was able 

to demonstrate that LSH prevents activation of the Y2H reporter genes through its N-

terminal coiled-coil domain and this was the most likely explanation the Y2H screen 

did not identify any targets. Unfortunately, this domain of LSH is the one most likely 

to interact with other proteins, as shown in further experiments, so this type of screen 

is not an effective tool to screen for proteins that interact with LSH. Although this 

result complicated identification of LSH interacting partners, it allied with many 

studies on the transcriptional effects of SNF2 enzymes, led me to ask whether LSH 

can repress transcription in mammalian cells. 

I used luciferase reporter assays to show that LSH can act as a transcriptional 

repressor in mammalian cells and used these assays as a tool to identify proteins that 

functionally interact with LSH. By recruiting various deletion fragments of LSH to 

the promoter of the luciferase reporter via GAL4 binding sites I was able to show 

that the N-terminal coiled-coil domain of LSH spanning amino acids 1 to 226 was 

necessary and sufficient for transcriptional silencing of the reporter. I designated this 

fragment of LSH the TRD and reasoned it likely that this region interacts with other 

co-repressor proteins that modify chromatin into a transcriptionally nonpermissive 

state. 

I was able to use the reporter assays to investigate the mechanism of LSH mediated 

transcriptional repression. I first showed that repression is sensitive to TSA treatment 
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indicating a role of HDAC enzymes in this process. This led me to perform co-

immunoprecipitation experiments between LSH and HDACI and HDAC2. I found 

that LSH successfully co-immunoprecipitated both of these proteins indicating a 

physical interaction between these proteins. Furthermore, I was able to demonstrate 

that targeting LSH to the promoter of the reporter plasmid induced deacetylation of 

histone H3K9 and H4K12. Together, these data indicate that LSH can function as an 

HDAC dependent transcriptional repressor. 

Regions of transcriptionally silenced chromatin share a number of signature 

chromatin signals. These include histone hypoacetylation, H3K9me3 and H3K27me3 

and DNA methylation (Trojer and Reinberg, 2007). Given that these chromatin 

marks are found at silenced regions, that Lsh has a key role in DNA methylation and 

that a previous study has shown an interaction between Lsh and Dnmt3a and 

Dnmt3b, I also examined whether LSH mediated repression requires DNMT 

enzymes. In human colorectal carcinoma HCT1 16 cells with targeted disruptions of 

the DNMT3B (DNMT3B') gene, the DNMT3A and DNMT3B (TKO) genes as well 

as cells expressing low levels of a truncated DNMT1 proteins (DNMTF), I observed 

a significant reduction in LSH mediated repression. I was able to rescue repression to 

wild type levels by over expressing DNMT3B in the DNMT3B' or TKO cell lines 

and DNMT1 in the DNMTF cell line indicating that DNMT3B and DNMT1, but 

not DNMT3A is involved in recruiting HDACI and HDAC2 to LSH in this system. 

Interestingly, the DNMT function of DNMT3B or DNMT1 was not required for this 

rescuing ability and targeting of LSH to the reporter construct did not lead to CpG 

methylation. This result is in agreement with previous studies that have shown the 

repressive ability of DNMTs to be independent of their role in DNA methylation 

(Fuks et al., 2001; Robertson et al., 2000; Rountree et al., 2000). In addition, studies 

on the Oct4 locus, which becomes transcriptionally silenced during development 

indicate that histone deacetylation is an early event that precedes DNA methylation 

in vivo (Deb-Rinker et al., 2005; Feldman et al., 2006; Jeong-Heon Lee, 2004). 

Further experiments confirmed that LSH is able to co-immunoprecipitate with both 

tagged and endogenous DNMT3B and DNMTI indicating that these proteins 

functionally interact. Interestingly, I was unable to co-immunoprecipitate LSH with 
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HDACs from extracts of DNMT3B-I- and DNMTF' cells. This indicates that the 

primary role of DNMT1 and DNMT3B in LSH mediated repression in this system is 

to provide a scaffold for the interaction between LSH and HDAC1 and HDAC2. This 

was further verified as LSH did not show a direct interaction with either HDAC 1 or 

HDAC2 in in vitro pull down assays. 

Previous studies have reported that both DNMT1 and DNMT3B interact with 

HDAC1 and HDAC2 in vitro and in vivo (Fuks et al., 2000; Geiman et al., 2004a; 

Robertson et al., 2000). It was therefore possible that either one of the DNMTs, or a 

combination of both, could recruit HDACs to LSH-targeted chromatin. Given that 

LSH mediated repression was deficient in both DNMT3B-I- and DNMTF' cells the 

association of the different members of this complex was investigated. Interestingly, 

we found that LSH was able to co-immunoprecipitate with DNMT3B in all the cell 

lines tested but DNMT1 could not interact with LSH in cells lacking DNMT3B. This 

indicates that the interaction between LSH and DNMT1 requires DNMT3B in vivo. 

This result was confirmed using pulldown assays, which detected a direct interaction 

between LSH and DNMT3B but no direct interaction between LSH and DNMT1. In 

addition to this, only DNMT1 was shown to interact with HDAC1 and HDAC2 in 

our pull down assays. Taken together, the data suggest that DNMT 1-bound HDAC 1 

and HDAC2 are recruited to LSH indirectly via DNMT3B (Figure 4.13). 

Interestingly, we observed that when DNMT1 was overexpressed in DNMT3B' 

cells, it could partially rescue the transcriptional repression effect of GAL4BD-LSH. 

As we did not detect a direct interaction between LSH and DNMT1, it is possible 

that recruitment of DNMT1 to LSH may be an artefact of overexpression or may 

occur by some other, inefficient mechanism. The most likely candidate for this 

would be DNMT3A due to its previously detected interaction with Lsh and its 

homology and functional similarity to DNMT3B (Zhu et al., 2006). This does not 

appear likely as DNMT3A expression was not detected in these cells and 

overexpression of DNMT3A in TKO cells did not completely rescue LSH mediated 

repression. However, I do not wish to rule out the potential role of DNMT3A in this 

process as it may have an effect in cells where it is normally highly expressed. Given 

that overexpression of DNMT3B in DNMT1 cells transfected with GAL4DB-LSH 
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also reduced the expression of the luciferase reporter by about 25-30%, it is possible 

that DNMT3B can either function in transcriptional repression independently of the 

truncated DNMT1 or, to some extent but not very efficiently, interact with the C 

terminus of DNMT1. The second interpretation seems plausible, since the N-terminal 

portion of DNMTI(1-1125) did not fully rescue LSH-mediated repression in 

DNMT1 KO cells compared to the full-length DNMT1, indicating a potential role for 

the C-terminus of DNMT1 in this process. Again, I would caution against drawing 

strong conclusions from this result as it is based on experiments involving protein 

overexpression. 

In summary, I have used a variety of techniques to investigate whether and how LSH 

interacts with the DNA methylation machinery in human cells. I have identified an 

LSH associated complex containing at least four proteins: DNMT3B, DNMT1, 

HDACI and HDAC2. This complex is not detectable using conventional 

chromatography techniques indicating that it is either very low abundance, transient 

or not stable to the methods used to extract proteins. The ability to detect protein-

protein interactions by co-immunoprecipitation and in vitro pull down but not by 

chromatography is not particularly unusual and has been previously shown for other 

SNF2 and chromatin related enzymes such as the interaction between SN172h and 

DNMT3B and the interaction between MeCP2 and Sin3A (Geiman et al., 2004a; 

Klose and Bird, 2004). I was able to utilise the ability of GAL4BD-LSH to repress 

transcription of a targeted reporter to dissect proteins that functionally interact with 

LSH for this process. I subsequently confirmed these interactions using physical 

methods such as co-immunoprecipitate and in vitro pull down. I showed that 

repression is dependent on recruitment of HDACs via DNMT3B and DNMT1 and 

but does not required the DNMT activity of the enzymes or lead to DNA 

methylation. Thus although LSH protein serves as a scaffold for assembly of the 

DNMT/HDAC complex the primary function of the LSH complex in this system 

may not be to methylate DNA but to establish deacetylated inactive chromatin. 

Transcriptional repression caused by deacetylation of histone tails by LSH-

interacting HDACl/2 can be viewed as an initial and, perhaps reversible step in LSH-

mediated gene silencing. A longer-term association of LSH with specific loci and a 
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persistently high local concentration of DNMT1 and DNMT3B may result in 

methylation of CpGs at these loci. As the experiments described utilise a targeted 

reporter system, it is important to confirm them on endogenous targets for two 

reasons. Firstly, it is important to establish how general these findings are and to test 

whether endogenous LSH targets lose histone acetylation and transcriptional 

repression upon loss of LSH. A number of studies have provided evidence that in 

Lsh MEFs histone hyperacetylation and transcriptional activation occurs at 

pericentromeric major satellite repeats and at a subset of Hox genes believed to be 

Lsh targets (Huang et al., 2004; Xi et al., 2007). Thus my data provides a 

mechanistic explanation of these findings by indicating that gain of histone 

acetylation is due to loss of HDAC1 and HDAC2 from these loci. Further 

experiments in human cells using siRNA against LSH and looking at a number of 

specific LSH target genes would also be useful to confirm these results. Secondly, it 

will be important to determine how this complex is recruited to chromatin in vivo and 

how it is targeted to specific genomic loci. As the reporter assays used the GAL4131) 

to target the LSH complex to chromatin it is impossible to determine if LSH recruits 

the complex in vivo. Thus, a ChIP-chip approach or similar should be utilised to 

identify genomic targets of LSH. Upon identification of targets different members of 

the complex can be knockdown using siRNA to determine which member of the 

complex is responsible for recruiting it to chromatin. In addition to this a 

biochemical approach can be undertaken to determine which member of the complex 

binds DNA and chromatin most strongly in vitro. It is also unclear how LSH and/or 

the LSH-associated DNMT complex could be recruited to specific genomic loci. One 

could envisage that as a potential DNA translocase LSH continuously scans 

chromatin for regions that challenge the processivity of DNMT enzymes or 

alternatively, sequence specific recruitment to particular genomic loci may occur. 

Experiments with unmethylated episomal plasmids capable of replicating in 

mammalian cells indicate that Lsh-facilitated DNA methylation was observed weeks 

rather than days after the plasmids were introduced into these cells, indicating the 

long timescale of this process (Zhu et al., 2006). Together with my results, this data 

suggests that LSH cooperates with DNMTs and HDAC1/2 to act as a general 
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transcriptional repressor in mammalian cells which may lead to later DNA 

methylation events. 

The previous chapter described experiments investigating the catalytic function of 

LSH. These experiments showed that LSH is a DNA stimulated ATPase with an 

activity much lower than that recorded for other SNF2 enzymes. I reasoned that LSH 

activity may depend on additional protein co-factors so sought to identify proteins 

that interact with LSH in vivo. This chapter has outlined experiments that have 

identified a transient, unstable or low abundance complex of LSH, DNMT3B, 

DNMTI, HDACI and HDAC2. If LSH activity is modulated by protein co-factors 

then these proteins would be interesting to test. 
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Chapter five - Analysis of LSH-DNMT complex 

in vitro 

5.1 Outline - LSH is required for high levels of DNA methylation in 

mammals 

The assembly of euchromatic DNA into chromatin provides an inhibitory structure to 

enzymes that require access to it. The demonstration that LSH is required for high 

levels of DNA methylation in mammals outlined the potential importance of SNF2 

chromatin remodelling enzymes to this process. SNF2 enzymes use the energy 

derived from ATP hydrolysis to transiently disrupt histone:DNA contacts in a 

manner that increases DNA accessibility (Narlikar et al., 2002). Thus, an attractive 

hypothesis for the role LSH plays in DNA methylation is that it disrupts nucleosornal 

DNA in a manner that facilitates its accessibility to DNMT enzymes. If this is the 

role of LSH, then it could be envisaged to occur either by repositioning nucleosomes 

or by liberating loops of DNA from their surface. Another characteristic activity 

displayed by SNF2 enzymes is the ability to translocate DNA (Lia et al., 2006; Saha 

et al., 2002, 2005; Whitehouse et al., 2003). Thus, if LSH also possess this activity it 

may be involved in scanning the genome for DNMT target sites. Alternatively, LSH 

may have a more passive role that does not involve its putative ATPase activity, for 

example targeting or tethering DNMTs to chromatin. 

5.1.1 LSH does not exhibit nucleosome remodelling activity in vitro 

In chapter 3 I discussed experiments designed to test whether LSH is an active 

ATPase that can remodel nucleosomes in vitro. These experiments would be 

indicative of the in vivo function of LSH. Interestingly, although exhibiting modest 

DNA stimulated ATPase activity, LSH did not display detectable levels of 

nucleosome remodelling activity using two distinct assays. These assays were a 

classical sliding assay to assess the ability of LSH to slide nucleosomes on DNA, and 

an SssI methyltransferase protection assay to investigate if LSH can liberate DNA 
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loops from the surface of the nucleosome. However, these assays have limitations as 

chromatin remodelling may not necessarily lead to nucleosome repositioning and the 

SssI assay is dependant on DNA loops being formed at CpG sites. Therefore, I am 

not able to completely rule out LSH having chromatin remodelling ability. It is also 

possible that LSH requires a co factor, or specific stimulus to achieve full activity 

and efficiently remodel nucleosomes. For example, interactions with partner proteins 

may lead to conformational changes in LSH which could stimulate ATPase activity. 

5.1.2 LSH interacts with DNMTI and DNMT3B in vivo 

The ATPase activity of purified recombinant SNF2 enzymes is usually highly similar 

to that of purified native protein complexes. However, in the case of IS WI, it is clear 

that its activity is modulated by its cofactor Acfl (Langst et al., 1999). Thus, it is 

possible that LSH requires additional proteins to remodel chromatin to its full 

capacity. Chapter 4 described experiments that aimed to identify proteins that 

interact with LSH in vivo. Although, no proteins were identified that stably bound 

LSH, I was able to identify a transient, or low abundance repressive complex of 

LSH, DNMT3B, DNMT1, HDAC1 and HDAC2. Within this complex, it appears 

that LSH directly interacts with DNMT3B and indirectly with the other members via 

this interaction. Thus, if LSH activity is dependant on a protein co-factor it would be 

useful to test DNMT3B. A further interesting question raised by these experiments is 

how this complex is targeted to chromatin in vivo. 

This chapter will discuss experiments devised to ask if a single member of the 

repressive LSH complex could have a prominent role in tethering it to DNA. These 

experiments provide the basis for future work to identify how this complex is 

targeted in vivo. I will also discuss experiments to test if LSH activity is stimulated 

by DNMT3B and reciprocally, whether the ability of DNMTs to methylate 

nucleosomes is stimulated by LSH. 
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5.2 DNA binding properties of LSH and DNMT3B 

5.2.1 Comparative binding of LSH, DNMTI and DNMT3B to DNA 

The experiments described in chapter 4 gave rise to a model of LSH mediated 

transcriptional repression requiring DNMT3B and DNMT1. The model did not 

allude to a mechanism by which this complex is targeted to chromatin or which 

member/s of the complex is/are required for binding DNA (Figure 4.13). To address 

these questions I expressed recombinant 6xHIS tagged DNMTI and DNMT3B in 

insect cells using the baculovirus system and purified these proteins using Cobalt 

affinity chromatography (Figure 5.1A). I used the recombinant proteins to investigate 

whether a single member of this complex has a dominant role in binding DNA. To 

assay this I optimised electrophoretic mobility shift assays (EMSAs) using equal 

concentrations of the different recombinant protein and a variety of competitor DNA 

(Figure 5.1B). As can be seen from this experiment LSH and DNMT3B both shifted 

the DNA probe with LSH forming a single DNA:protein complex and DNMT3B 

giving rise to multiple products. DNMT1 showed little or no ability to bind DNA in 

this assay. DNMT3B also formed non-specific aggregates and addition of competitor 

DNA, in particular dAdT gave rise to clearer DNA:protein complexes. The 

additional bands formed with DNMT3B were not removed upon addition of 

unlabelled competitor and their origin is not known. As the EMSA with dAdT gave 

rise to the clearest DNA:protein complexes of the conditions tested it was added in 

subsequent experiments. I repeated the EMSA over a range of protein concentrations 

for LSH and DNMT3B with two distinct DNA probes. These probes were 36mers 

either containing a central CG site and runs of Gs or no central CG site and no runs 

of Gs. In these experiments it was clear that LSH bound the probe with lO fold 

greater affinity than DNMT3B (Figure 5.1C; left and right panels). This result 

perhaps suggests that LSH is the member of the complex that is responsible for 

tethering it to DNA. This data provides tentative evidence for this model and requires 

further verification. In particular, future work could focus on confirmation of this 

result in vivo using ChIP and siRNA knockdown against LSH, DNMT1 and 

DNMT3B. 
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Figure 5.1. LSH binds DNA with greater affinity than DNMTs. 
Coomassie stained gel outlining the purification of HIS-DNMT1 and HIS-DNMT3B via 

Cobalt affinity chromatography. 5pl of cell lysate input (IN P), 5p1 of flow-through (FT) and 1 p1 
of elution (F) from the Cobalt column loaded. Size markers (M) in kDa listed to the left. 

Electrophoretic mobility shift assay (EMSA) with 200nM recombinant DNMT1, DNMT3B 
and LSH (indicated above the gel) and radio labelled 4+5Gs DNA probe. lOnM probe with or 
without various non specific competitor DNA (indicated above the gel) was incubated with 
protein for 30 minutes at 37°C. Free probe separated from specific complexes by native 
polyacrylamide gel electrophoresis. Following electrophoresis, the gel was dried and 
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exposed to photographic film. Free probe, specific complexes and wells indicated to the 
right. 
C. Electrophoretic mobility shift assay (EMSA) with increasing concentrations of DNMT3B or 
LSH (indicated above the gel) and lOnM 4+5Gs (left panel) or OGs (right panel) radio 
labelled probe. Radio labelled probe was incubated with protein for 30 minutes at 37°C. Free 
probe separated from specific complexes by native polyacrylamide gel electrophoresis. 
Following electrophoresis, the gel was dried and exposed to photographic film. Free probe 
and specific complexes indicated between the two panels. 
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5.3 Analysis of the effect of LSH on DNMT activity in vitro 

Biochemical characterisation of LSH in vitro has shown that it is a DNA binding 

protein and a weak DNA stimulated ATPase. Both of these activities are relatively 

inefficient compared to other SNF2 enzymes, in particular the ability to hydrolyse 

ATP. I have not been able to detect the ability of LSH to remodel nucleosomes 

indicating that either this is not an activity LSH possesses or that the assays I have 

used are not sensitive enough. It is possible that LSH requires additional co factors in 

order to efficiently hydrolyse ATP and remodel chromatin. I have identified a LSH 

complex that contains DNMT3B, DNMT1, HDAC1 and HDAC2. Thus, if LSH 

requires a protein co-factor to exhibit full ATPase and chromatin remodelling 

activity it may be one of these proteins. As DNMT3B interacts with LSH directly, I 

thought this protein would be most likely to influence these potential abilities. The 

role of LSH in DNA methylation is well established genetically but there is no data 

on its molecular function in this process. I attempted to elucidate this function by 

asking what effect LSH has on the ability of DNMTs to methylate a variety of 

templates in vitro. 

5.3.1 Recombinant DNMT3B and DNMT1 do not stimulate the activity of LSH 

in vitro 

In order to test if recombinant DNMT3B and DNMT1 can affect the rate of ATP 

hydrolysis by LSH, reconstitution of this complex was attempted. Equimolar ratios 

of these three proteins were mixed on ice for one hour and formation of a complex 

monitored by Superose 12 gel filtration. Formation of a stable protein complex 

should lead to a shift in elution of the three proteins to a higher molecular weight. No 

shift in the elution fraction was observed following incubation indicating that the 

majority of these proteins stayed monomeric (Figure 5.2A). As I did not detect a 

stable complex of these three proteins in vivo I reasoned it possible that this complex 

may be functional if only transiently associated. Thus, I assayed its ATPase activity 

upon addition of a range of stimuli. Similar to the previously observed results with 

recombinant LSH, the pre-mixed proteins displayed a low level of ATPase activity 



that was stimulated --2 fold upon addition of DNA or nucleosomes (Figure 5.213). 

Therefore, the presence of DNMT1 and DNMT313 do not significantly alter the 

ATPase activity of LSH in vitro. 

5.3.2 Recombinant DNMT1 and DNMT3B have methyltransferase activity 

towards DNA 

In order to assess if the presence of LSH affects the activity of DNMT1 and 

DNMT3B I tested the activity of the recombinant DNMTs I had purified. I incubated 

40nM of each enzyme with poly dGdC template in the presence of 3H-SAM for I  at 

37C. The poly dGdC substrate contains many CpG sites that are the substrate of 

DNMTs and is therefore a good initial starting point for determining DNMT activity. 

After incubation I spotted the reactions on DE81 filter paper and washed extensively 

with ammonium carbonate, water and ethanol. Incorporation of 3H to the washed 

DNA was determined by scintillation counting. Both of the recombinant proteins 

incorporated 3H into the DNA compared to no protein controls indicating that they 

are active DNMTs (Figure 5.3A). 0.05u of the bacterial DNMT SssI served as a 

positive control. Interestingly, the de novo activity of DNMT3B to this substrate was 

very low, and much lower than DNMT 1, which is in agreement with previously 

published data (Li et al., 2007a; Okano et al., 1998a) (Figure 5.3A). Addition of 

equimolar amounts of LSH along with ATP did not have a stimulatory effect on the 

activity of the methyltransferases towards this substrate (Figure 5.3A). 
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Figure 5.2 DNMTs do not stimulate LSH activity 
Recombinant LSH, DNMT1 and DNMT3B purified from insect cells were mixed on ice for 

one hour and fractionated on a Superose 12 size exclusion column. The fractions were run 
on sodium dodecyl sulfate-polyacrylamide gels and silver stained. The molecular masses of 
marker proteins used to calibrate the column are indicated at the top. 

Recombinant LSH, DNMT3B and DNMT1 (lOOnM of each) were premixed and used in 
ATPase assays with 50pM ATP in the presence of 200nM DNA or nucleosomes (indicated 
on the X axis). The number of ATP molecules hydrolysed per minute per LSH calculated by 
analysis of thin layer chromatography plates (Y axis). ATP hydrolysis rate observed for LSH 
(red bars), LSH+DNMT3B (yellow bars) or LSH+DNMT3B+DNMTI (blue bars) for each 
stimulus is displayed. Error bars denote standard deviation from the mean of three 
independent experiments. 
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Figure 5.3 LSH does not stimulate DNMTs activity 
40nM recombinant DNMT1, DNMT3B or 0.05 units Sssl was used in DNA 

methyltransferase assays on 200ng dGdC temlate in the absence (red bars) or presence 
(blue bars) of 40nM LSH. Reactions including H-SAM were incubated at 37°C for 1 hour, 
spotted on DE81 paper, washed extensively and radioactivity incorporation measured by 
scintillation counting. Error bars denote standard deviation from the mean of three 
independent experiments. 

40nM recombinant DNMT1, DNMT3B, DNMT1 + DNMT3B or 0.05 units Sssl was used in 
DNA methyltransferase assays on lOOnM 67A0 DNA in the absence (red bars) or presence 
(blue bars) of 40nM LSH. Reactions including 3H-SAM were incubated at 37°C for 1 hour, 
spotted on DE81 paper, washed extensively and radioactivity incorporation measured by 
scintillation counting. Error bars denote standard deviation from the mean of three 
independent experiments. 

40nM recombinant DNMT1, DNMT3B, DNMT1 + DNMT3B or 0.05 units Sssl was used in 
DNA methyltransferase assays on lOOnM 67A0 nucleosomes in the absence (red bars) or 
presence (blue bars) of 40nM LSH. Reactions including 3H-SAM were incubated at 37°C for 
1 hour, spotted on DE81 paper, washed extensively and radioactivity incorporation 
measured by scintillation counting. Error bars denote standard deviation from the mean of 
three independent experiments. 

5.3.3 DNMT1 and DNMT3B show DNMT activity towards 67A0 DNA which is 

not stimulated by LSH 

In addition to showing activity towards the CpG rich poly dGdC I tested the activity 

of purified DNMTs towards the 67A0 nucleosome positioning DNA sequence (Flaus 

and Richmond, 1998). This sequence contains 10 CpGs in total so approximately 1 

per 20 bp of DNA. DNA methyltransferase assays showed that the purified DNMTs 

could methylate this template, but with lower affinity compared to the poly dGdC 

template presumably due to the reduction of total number of CpGs in the substrate. 

This was particularly noticeable for DNMT1 which showed a 4 fold reduction in 

activity towards this substrate (Figure 5.313). Surprisingly, when mixed together, 

DNMT3B appeared to have an inhibitory effect on DNMT1 when added to the same 

reaction. This could be explained if the less active DNMT3B is saturating the 

substrate and preventing binding by the more active DNMT1. Addition of LSH and 

ATP to this assay did not increase the methyltransferase activity of DNMT1, 

DNMT3B or DNMT1 mixed with DNMT3B towards this substrate (Figure 5.313). I 

next assayed the activity of DNMT1 and DNMT3B on nucleosomal DNA using the 

67A0 template assembled into nucleosomes. I found that the ability of DNMT1 and 

Sssl to methylate the 67A0 nucleosomal arrays was strongly inhibited (>10 fold), 
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with the low level of DNMT3B activity not affected (Figure 5.3C). Addition of LSH 

and ATP did not significantly increase the activity of the DNMTs towards this 

substrate (Figure 5.3C). In conclusion, it appears that the presence of LSH in these 

assays does not enhance the ability of DNMTI or DNMT3B to methylate DNA or 

nucleosomes. 

5.3.4 Co-purification of LSH-DNMT3B complex from insect cells 

For LSH, DNMT3B and DNMT1 to stimulate each others activity they may have to 

be bound together in an active complex. The previous experiments used individual 

purified recombinant proteins, mixed in equimolar ratios. Mixing purified protein 

does not guarantee that an active complex will be formed. In fact, when run on 

Superose 6 or Superose 12 sizing columns I did not see LSH and DNMT3B co-

eluting with DNMT1 indicating a complex between these proteins had not been 

formed (Figure 5.2A). Additionally, I did not detect a shift in elution of LSH when 

mixed with DNMT3B as would be expected if these proteins were bound to each 

other (Figure 5.2A). In order to ensure these proteins were present together in a 

complex I attempted to co-purify them following expression in insect cells. I used 

PCR mutagenesis to remove the 6xHIS tags from the pFAST-BAC vectors and used 

them to make recombinant baculovirus. I infected insect cells at a multiplicity of 

infection of-JO with each recombinant virus to ensure co-infection and expression. 

Initial attempts to purify the complex via HIS-LSH failed as no DNMT3B or 

DNMT1 were detected (Figure 5.4A). However, I was able to successfully co-purify 

LSH and DNMT3B using HIS-DNMT3B indicating that these proteins form a 

purifiable complex when overexpressed in insect cells (Figure 5.4A). Surprisingly, 

DNMT1 was only detected at very low levels in this purification despite its 

previously reported interaction with DNMT3B (Figure 5.4A) (Kim et al., 2002). I 

used SDS-PAGE to monitor the purity of the purified complex compared to 

DNMT3B purified the same way without LSH (Figure 5.413). The complex was 

impure with only a small quantity of LSH and several other contaminating proteins 

present in both samples (Figure 5.413). The most likely reason for the relative 

impurity of the protein complex compared to the individually purified proteins was 

191 



180 

130 - 

100  

70 

55 - 

a-DNMT3B 	 a-LSH 	 a-DNMT1 

180 

130 

i— LSH 
100 law 	 DNMT3B 

70w ,  

55 

Figure 5.4 Co-purification of LSH and DNMT313 from insect cells 
Sf9 insect cells were infected with baculovirus encoding recombinant HIS-LSH, DNMT3B 

and DNMT1 (labelled HIS-LSH) or HIS-DNMT3B, LSH and DNMT1 (labelled HIS-DNMT3B). 
The proteins were purified via Cobalt affinity chromatography, separated by SIDS-PAGE and 
detected by the appropriate antibodies (indicated below panels). As a positive.cbntrol, bOng 
of each individually purified recombinant proteins were mixed and run alongside the purified 
complexes (labelled MIX). 

Coomassie stained gel showing 4pl of co-purified HIS-DNMT3B + LSH and HIS-DNMT3B 
alone. Size markers in kDa listed to the left. 
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the low stringency purification protocol utilised in purification. I had previously used 

1M NaCl for solubilisation and purification of DNMT3B. This high level of salt was 

not efficient for co-purification of LSH so lower salt (200mM) was used. I think it 

likely that the relatively low level of salt used for the co-purification and subsequent 

washing resulted in the high level of background proteins. 

I performed ATPase assays with the partially purified LSH-DNMT3B complex using 

the partially purified DNMT3B as a control. The LSH-DNMT3B complex exhibited 

a low level of ATPase activity that was significantly higher than the background 

level exhibited by the DNMT3B control. As before this activity was weakly 

stimulated by DNA, nucleosomes with linker DNA and native nucleosomes (Figure 

5.5A). I subtracted the background level of ATPase activity exhibited by DNMT3B 

to determine if LSH activity was higher when bound to DNMT3B. This revealed that 

neither the activity nor the level of stimulation were significantly higher than that of 

recombinant LSH alone (Figure 5.5B). Together, this indicates that DNMT3B does 

not stimulate LSH activity in vitro. 

I also used the partially purified complex to assess the impact of the LSH interaction 

on DNMT3B activity. I found that, similar to recombinant DNMT3B the complex 

had very low activity in vitro (Figure 5.5C). Again, I found LSH had no stimulatory 

effect on DNMT3B activity on native nucleosomal templates (Figure 5.5C). 

Together, these results indicate that recombinant LSH is unable to affect the activity 

of DNMT3B in vitro. 
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Figure 5.5 Analysis of the activity of LSH-DNMT3B complex 
A. Co-purified LSH and DNMT3B or DNMT3B (25nM of each) were premixed and used in 
ATPase assays with 50pM ATP and 200nM of a range of stimuli (indicated on the X axis). 
The number of ATP molecules hydrolysed per minute per LSH was calculated by analysis of 
thin layer chromatography plates (Y axis). ATP hydrolysis rate observed for DNMT3B+LSH 
(blue bars) or DNMT3B (yellow bars) for each stimulus is displayed. Error bars denote 
standard deviation from the mean of three independent experiments. 
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Rate of ATP hydrolysis by the LSH-DNMT3B complex subtracted from that of DNMT3B 
background levels. 

50nM recombinant DNMT3B or LSH+DNMT3B complex was used in DNA 
methyltransferase assays on 200ng dGdC DNA or lOOnM nucleosomes. Reactions including 
3H-SAM were incubated at 37°C for 1 hour, spotted on DE81 paper, washed extensively and 
radioactivity incorporation measured by scintillation counting. Error bars denote standard 
deviation from the mean of three independent experiments. 
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5.4 Summary 

The genetic function of LSH as a crucial modulator of mammalian CpG methylation 

has been well established in studies of mice lacking in this protein (Dennis et al., 

2001; Sun et al., 2004). The finding that cells missing LSH are deficient in de novo 

but not maintenance methylation of replicating episomal plasmids and interacts with 

Dnmt3a and Dnmt3b indicates LSH has a direct role in this process (Zhu et al., 

2006). How the enzymatic activity of LSH relates to its function in vivo are currently 

unknown. As a member of the SNF2 family of chromatin remodelling enzymes it 

would be expected that its enzymatic activity is related to its in vivo function. SNF2 

enzymes use ATP hydrolysis to disrupt chromatin structure and can alter the 

accessibility of nucleosomal DNA (Narlikar et al., 2002). Thus, it could be envisaged 

that LSH could increase the accessibility of DNA to DNMT enzymes. Experiments 

described in chapter 3 sought to determine the catalytic function of LSH. I 

determined that LSH is an active ATPase whose activity is stimulated by DNA. 

However, both the activity and the level of stimulation were relatively low compared 

to other SNF2 enzymes. Additionally, LSH did not exhibit the ability to slide 

nucleosomes using two distinct assays. These results led me to question whether the 

recombinant LSH I had used was fully active or if LSH perhaps required additional 

co factors for maximal activity. I therefore used a number of approaches to identify 

proteins that interact with LSH and could potentially modulate its activity. I used a 

reporter assay system to identify proteins required for LSH-mediated repression. This 

identified members of the DNA methylation and histone modification pathways as 

crucial for transcriptional silencing by LSH. Further experiments confirmed that LSH 

directly interacts with DNMT3B and indirectly with DNMT1, HDAC1 and HDAC2. 

This raised two important questions that I have attempted to answer in this chapter. 

How the repressive LSH complex is targeted in vivo and does this complex have 

increased ATPase and DNMTase activity compared to its individual components? 

By comparing the relative DNA binding affinities of the DNA associated 

components of the LSH complex I determined that LSH is the most efficient binder. 
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It binds DNA with '-40 fold higher affinity than DNMT3B, whereas DNMT1 shows 

no detectable binding to DNA. Thus it would appear that LSH is the predominant 

DNA binding protein in this complex. However, the cellular situation is far more 

complex than this in vitro binding experiment and it is entirely possible that other 

members of this complex would bind DNA in the context of chromatin with greater 

efficiency. It will be interesting to test this binding in vivo as this will take into 

account other factors that may influence the tethering of this complex to genomic 

loci. . The tethering of DNMTs to chromatin in vivo is likely to be due to cumulative 

binding affinities of several proteins to both DNA and histories. A recent example of 

this is the proposed role of Dnmt3L in recruiting Dnmt3a to genomic loci lacking 

H3K4me (Ooi et al., 2007). In addition to this Dnmt3a has been shown to 

preferentially methylate CpG sites spaced lObp apart in vitro (Jia et al., 2007). Thus 

it can be envisaged that targeting Dnmt3a activity in vivo may occur via a 

combination of Dnmt3L tethering it to unmodified H3K4 and its intrinsic substrate 

preference. Thus determining if and how LSH is involved in targeting and tethering 

DNMTs to chromatin would provide useful insight into its role in DNA methylation. 

Future work could focus on identifying in vivo targets of LSH using a ChIP-chip 

approach. As in vivo LSH targets are largely unknown it would be preferable to use 

an unbiased approach across a chromosome. Once identified, the presence of the rest 

of the LSH complex at the target sites could be attempted. If confirmed this would 

allow assaying of in vivo targeting of the complex by knocking down individual 

components of the complex and using ChIP to determine the crucial members 

required for targeting. These experiments were outside the scope of the current 

project but would provide interesting insights into the in vivo targeting of LSH. 

In order to test the in vitro activity of the LSH complex I expressed and purified 

recombinant DNMT1 and DNMT3B from insect cells using a baculovirus system. I 

confirmed that both enzymes were catalytically active and attempted to reconstitute 

the LSH complex in vitro. Reconstitution of the complex was monitored by size 

exclusion chromatography but appeared to be unsuccessful. Also, the mixed proteins 

did not enhance each others activity. Reasoning it possible that the proteins may 

require being in a complex to influence each others activity, I co-expressed and co- 
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purified them from insect cells. Using relatively low salt extraction and washes I 

successfully co-purified LSH, but not DNMT1, via tagged DNMT3B. Although not 

particularly pure, this complex was used to test how DNMT3B affects LSH activity 

and vice versa. Disappointingly, I did not detect a significant change in the ATPase 

activity of LSH or the DNMTase activity of DNMT3B in this complex compared to 

monomeric protein. These results indicate that if LSH requires a co-factor for 

maximal activity it is not DNMT3B. I also failed to find a stimulatory role for LSH 

on DNMT3B activity. It is entirely possible that LSH, if fully active, would augment 

the activity of DNMT3B on DNA or nucleosomal templates. As LSH was bound to 

DNMT3B in these experiments but did not influence its activity, I think it is unlikely 

that it stimulates DNMT3B in a manner analogous to how Dnmt3L enhances the 

activity of Dnmt3a. In this example stimulation is believed to occur via stabilisation 

of the active site loop of Dnmt3a by Dnrnt3L (Jia et al., 2007). Thus, Dnrnt3L 

appears to be an inactive, protein co factor for Dnmt3a. Due to the complete lack of 

effect on DNMT3B activity by the relatively inactive LSH in vitro I think it unlikely 

that LSH provides a similar role. It would be possible to address this issue in vivo 

using a genetic approach. Lsh MEFs have been obtained from the Muegge lab and 

will be used to generate cell lines stably expressing LSH and LSHK254Q  (Dennis et 

al., 2001). Investigating the dynamics of recovery of DNA methylation in these cell 

lines will establish whether the catalytic activity of LSH is required for DNA 

methylation in vivo. This will provide insight into whether LSH is simply providing a 

passive anchor to DNA for DNMTs or whether it is actively altering chromatin to 

increase its accessibility. The result of this experiment would indicate whether it is 

worthwhile to continue searching for potential modulators of LSH activity. 



Chapter six - Discussion 

Methylation of the carbon-5 position of cytosine is the major covalent modification 

of DNA found in eukaryotes. In mammals, this modification plays a number of 

diverse roles in development and cellular differentiation. These include 

transcriptional gene silencing, chromosomal integrity, repression of transposable 

elements, parental imprinting and X chromosome inactivation (Bird, 2002). Patterns 

of DNA methylation are established and maintained by proteins of the DNA 

methyltransferase (DNMT) family (Bestor, 2000a; Bird, 2002). Interestingly, genetic 

studies in A. thaliana and mouse have identified a protein from a functionally distinct 

family that is also required for high levels of DNA methylation. This protein, termed 

DDMI in plants (deficient in DNA methylation 1) or Lsh in mouse (lymphoid 

specific helicase), belongs to the SNF2 chromatin remodelling family of ATPases 

(Dennis et al., 2001; Jeddeloh et al., 1999; Vongs et al., 1993). SNF2 enzymes have a 

variety of chromatin related functions that are based upon the ability to disrupt 

DNA:histone contacts in an ATP dependant manner (Narlikar et al., 2002). Despite 

the genetic characterisation of these proteins, little is known about their molecular 

function. A number of studies using Lsh deficient cells have indicated that it is 

primarily involved in de novo methylation of DNA (Zhu et al., 2006). Furthermore, a 

physical interaction between Lsh and Dnmt3a and Dnmt3b has been demonstrated, 

indicative of a direct role for Lsh in establishing genomic DNA methylation (Zhu et 

al., 2006). As a member of the SNF2 family of ATPases an attractive hypothesis is 

that Lsh may disrupt chromatin in a manner that makes it more accessible to DNMT 

enzymes. Alternatively, LSH may act as a recruitment factor for DNMTs or increase 

their catalytic activity in some other way. The aim of this study was to characterise 

LSH biochemically and attempt to relate this to its role in DNA methylation in vivo. 
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6.1 Determining the enzymatic function of LSH 

To investigate the enzymatic function of LSH I purified recombinant protein from 

insect cells. I used this protein to demonstrate that LSH is a DNA binding protein 

with low levels of DNA stimulated ATPase activity. This data correlates well with 

that shown for DDM1 which is also a DNA stimulated ATPase (Brzeski and 

Jerzmanowski, 2003). However, the maximal velocity of ATP hydrolysis displayed 

by recombinant LSH is much lower than that recorded for other SNF2 enzymes. I 

also tested whether LSH is able to remodel chromatin using a nucleosome sliding 

assay and an SssI accessibility assay. I did not detect any remodelling activity by 

LSH in either assay indicating that recombinant LSH is not able to remodel 

chromatin. The inability of LSH to remodel chromatin does not correlate with the 

nucleosome repositioning activity demonstrated for DDM 1 (Brzeski and 

Jerzmanowski, 2003) and confirmed by myself in this study. There are three possible 

explanations for this. The first is that LSH does not possess such an activity and is 

therefore functionally different from DDM1. The second is that LSH displays a type 

remodelling activity out with the detection limitations of these assays. Such an 

activity could involve transient disruptions of DNA:histone contacts that do not lead 

to nucleosome repositioning. This has been previously demonstrated for ATRX 

protein (Xue et al., 2003). As the SssI based assay was not particularly successful 

and is limited to detecting exposed sites containing CpGs it may not have detected 

remodeling events like this. The third possible explanation is that due to the 

inefficiency of ATP hydrolysis, very low levels of chromatin remodelling by LSH is 

not detectable in these assays. Obtaining fully active protein or identifying a co-

factor required for activation may lead to LSH displaying chromatin remodelling 

activity. 

The low level of ATPase activity exhibited by LSH and its inability to remodel 

chromatin suggest one of four possibilities - (1) LSH is an inefficient SNF2 ATPase. 

(2) The conditions are not optimised for optimal activity. (3) The recombinant 

protein is not as active as the native one. (4) A co-factor is missing. As the first two 
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issues are difficult to address I focused on dissecting if native LSH is more active 

than recombinant and whether LSH requires a protein co-factor. I purified Flag-LSH 

expressed in HeLa cells and assessed its ability to hydrolyse ATP. Surprisingly, this 

protein was completely inactive indicating that this method was not efficient at 

generating active LSH for biochemical studies. I was only able to purify very small 

quantities of protein by this method. Therefore, it is possible that the ATPase assay I 

used is not sensitive enough to detect the very low levels of ATPase activity 

exhibited by LSH. The purification of Flag-LSH involved stringent washes with a 

buffer containing 500mM NaCl. It is possible that the inability of this protein to 

hydrolyse ATP was due to a required protein co-factor being washed from it during 

purification. It is worth noting that most SNF2 enzymes reside in multi-subunit 

complexes and it has been reported that these subunits can modulate enzymatic 

activity (Langst et al., 1999). Thus, I next sought to determine whether LSH is 

associated with other proteins in vivo and if so, determine their functional 

significance. 
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6.2 LSH cooperates with DNMTs to repress transcription 

My initial attempts to identify proteins that interact with LSH focused on biophysical 

analysis of the protein using gel filtration chromatography and sucrose gradients. 

These data strongly suggest that LSH is present predominantly as a free monomeric 

peptide in mammalian cells. The lack of detectable, stably bound interaction partners 

is unusual for SNF2 enzymes, and indicates that LSH most likely interacts transiently 

with the DNA methylation machinery. In addition to using protein chromatography 

to identify a stable LSH complex, I also performed a Y21-1 screen in search of 

transiently interacting proteins. This screen did not identify any interacting proteins, 

which I believe was due to LSH preventing activation of the Y21-1 reporter genes. 

Although this result complicated identification of LSH interacting partners it, allied 

with many studies on the transcriptional effects of SNF2 enzymes, led me to ask 

whether LSH can repress transcription in mammalian cells. 

I used luciferase reporter assays to show that LSH can act as a transcriptional 

repressor in mammalian cells and used these assays as a tool to identify proteins that 

functionally interact with LSH. Using this system, I successfully identified a key role 

for histone deacetylase activity, DNMT1 and DNMT3B in LSH mediated repression. 

I used co-immunoprecipitation experiments to identify an interaction between LSH 

and HDAC1 and HDAC2 indicating that LSH is an HDAC dependant transcriptional 

repressor. Furthermore, in collaboration with Dr Irma Stancheva I was able to show 

using co-immunoprecipitation and in vitro pull down experiments that LSH 

physically interacts with DNMT3B and DNMT1 and both of these proteins are 

required for the interaction with HDACs. These experiments led us to propose a 

model for LSH mediated repression (Figure 4.13). In this model LSH recruits 

DNMT 1, HDAC 1 and HDAC2 indirectly, via a direct interaction with DNMT3B. 

Thus LSH directly binds at least one member of the DNA methylation machinery, 

strongly indicative of a direct role in the DNA methylation process. Interestingly, 

although repression by LSH required DNMT enzymes, it was not dependant on their 

catalytic function, and did not lead to DNA methylation of the targeted promoter in 
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the time scale measured. This is in agreement with previous studies which have 

shown that the repressive ability of DNMTs is independent of their role in DNA 

methylation (Fuks et al., 2001; Robertson et al., 2000; Rountree et al., 2000). 

Additionally, several studies have indicated that histone deacetylation and 

transcriptional silencing precede DNA methylation. For example, at the Oct4 locus, 

which becomes transcriptionally silenced during development, histone deacetylation 

is an early event indicate that that precedes DNA methylation in vivo (Deb-Rinker et 

al., 2005; Feldman et al., 2006; Jeong-Heon Lee, 2004). Also, during silencing of 

integrated transgenes and the tumour suppressor RASSF1A, histone deacetylation is 

an early event that comes before DNA methylation (Mutskov and Felsenfeld, 2004; 

Strunnikova et al., 2005). Thus, the HDAC dependent repressive function of LSH 

appears to be independent of its role in DNA methylation. Transcriptional repression 

caused by deacetylation of histone tails by LSH-interactingHDACl/2 can be viewed 

as an initial and, perhaps reversible step in LSH-mediated gene silencing. A longer-

term association of LSH with specific loci and a persistently high local concentration 

of DNMT1 and DNMT3B may result in methylation of CpGs at these loci. Whether 

long-term LSH association with specific regions does lead to DNA methylation 

could be tested by artificially targeting LSH to the promoter of a stably integrated 

reporter gene in HEK293 cells (Ishizuka and Lazar, 2003). This experiment could 

also help resolve whether the catalytic activity of LSH is required for its role in DNA 

methylation by comparing the dynamics of DNA methylation with the LSHK254Q 

mutant. Importantly, accumulation of DNA methylation could be designated as an 

LSH, not transcriptional repression, mediated effect by using another transcriptional 

repressor, such as GAL4BD-MBD1 as a control. MBD1 has not been reported to 

interact with DNMTs so would determine whether DNA methylation, if it occurs, is 

specific to recruitment by LSH. 

The experiments that identified LSH as an HDAC dependant transcriptional 

repressor utilised a targeted reporter system. Therefore, it is important to confirm 

these observations on endogenous targets to ensure that these findings are generally 

applicable. A number of endogenous targets of Lsh have been identified by 

chromatin immunoprecipitations. These include major and minor satellite repeats, 
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LINE and SINE elements, the differentially methylated region of the cdknlc 

promoter and the promoters of several Hox genes (Fan et al., 2005b; Huang et al., 

2004; Xi et al., 2007). Interestingly, these studies also provided evidence that these 

regions are hyperacetylated in Lsh MEFs (Huang et al., 2004; Xi et al., 2007). Thus 

my data provides a mechanistic explanation of these findings by indicating that lack 

of histone acetylation is due to loss of HDAC1 and HDAC2 from these loci. An 

interesting future project could involve confirming that these loci are bound by LSH 

and identifying new binding sites using an unbiased chromatin immunoprecipitation 

approach. Crucially, Lsh MEFs have been obtained and are available to use as a 

negative control in this experiment (Dennis et al., 2001). As mentioned above an 

unbiased approach should be used to identify Lsh targets, such as a ChIP-chip tiling 

array across a single chromosome or Solexa sequencing. This is because little is 

known about Lsh target sites in vivo so using promoter arrays or such like may miss 

crucial targets of the protein. Additionally, microarray analysis of RNA obtained 

from Lsh MEFs did not detect deregulation of many genes indicating that promoter 

arrays would not be efficient at finding Lsh binding sites (Huang et al., 2004). Once 

identified, Lsh targets could then be used to test for recruitment of Dnmt 1, Dnmt3b, 

Hdacl and Hdac2. DNA methylation and histone acetylation levels at the identified 

loci could also be analysed. Following the identification of Lsh binding sites it would 

also be interesting to ask how this complex is targeted to chromatin. In the reporter 

assays the GAL4BD fused to LSH targeted it but the situation in vivo may be 

completely different. By knocking down the separate members of the LSH complex 

individually and performing chromatin immunoprecipitations against the other 

members this issue could be addressed. 



6.3 Analysing the activity of the LSH-DNMT3B complex in vitro 

The identification of proteins that interact with LSH in vivo encouraged me to test if 

they modulated the activity of LSH in vitro. As DNMT3B and LSH directly interact 

this was a particularly promising candidate for activating LSH. Mixing individually 

purified recombinant DNMT3B and DNMT1 with LSH did not lead to generation of 

a stable complex as analysed by gel filtration. Additionally, these proteins, when 

mixed together, did not affect the ATPase activity of LSH. As the individually 

purified proteins did not appear to form a complex when added together I was unable 

to rule out the possibility that they did not affect the ability of LSH to hydrolyse ATP 

as they did not reconstitute a stable complex. I attempted to overcome this problem 

by co-expressing and co-purifying the three proteins via HIS-tagged DNMT3B. This 

method was successful in co-purifying LSH but not DNMT1 although the purity and 

yield of the protein complex was low. Despite this, I analyzed whether the 

DNMT3B-LSH complex was more efficient in hydrolysing ATP than the monomeric 

LSH. Unfortunately, the complex did not display levels of ATPase activity that were 

significantly higher than the monomeric protein. These experiments led me to 

conclude that if recombinant LSH requires a co-factor to reach maximal rates of ATP 

hydrolysis it is not DNMT3B. The biochemical characterisation of LSH focused on 

the use of recombinant protein purified from insect cells. In the future it may be 

pertinent to attempt purification of native LSH from human cells. This could be 

attempted by conventional chromatography techniques as accomplished for human 

NuRD complex (Zhang et al., 1998). However, there are two potential problems that 

could be envisaged with such a project. The first is that I tested the activity of 

recombinant LSH produced and purified from human cells and found it to be 

indistinguishable from the controls. Thus, it is not immediately apparent that the 

production method of recombinant LSH is the reason for it being an inefficient 

ATPase. The second potential problem that can be foreseen is that LSH may require 

transient interactions with other protein co-factors for full activity. Biophysical 

analysis of LSH determined that the majority of the native protein is not part of a 

stable complex. Thus attempts to biochemically purify LSH with transiently 
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associated proteins would likely be inefficient. In this respect it would perhaps be 

more advisable to partially purify Lsh from mouse embryonic fibroblasts by 

immunoprecipitation using the Lsh cells as a negative control. Thus, comparing the 

purified samples could distinguish between background and Lsh specific activity. 

Additionally, this technique could potentially be used to identify additional Lsh 

interacting partners and potential co-factors. 

One possible explanation for the low level of ATPase activity exhibited by LSH is if 

it is a naturally inefficient enzyme. It is possible that it acts merely as a recruitment 

or stabilisation factor for DNMTs and is not required to alter chromatin structure in 

any way. This hypothesis was tested in vitro by assessing the ability of DNMT1 and 

DNMT3B to methylate DNA or nucleosomes with or without LSH. I reasoned that if 

the presumed chromatin remodelling activity of LSH is not required to enhance 

DNMT function the relatively inactive LSH should still have a positive effect on 

DNMT activity. Using mixed proteins that had been individually purified and the co-

purified DNMT3B-LSH complex I did not detect any stimulatory effect of LSH on 

the ability of DNMTs to methylate DNA or nucleosomes. Of course, this result may 

be completely dependant on the ability of LSH to remodel chromatin and a highly 

active protein may significantly affect DNMT function. A key experiment in 

determining this will be to use LSH and LSHK254Q  to attempt to rescue DNA 

methylation patterns in Lsh MEFs. By comparing the dynamics of DNA 

methylation recovery between these samples it will become clear whether the 

catalytic activity of LSH is required for its function in vivo. Initially, the recovery of 

DNA methylation at major and minor satellites will be analysed by Southern blot 

(Dennis et al., 2001). This could be complemented by looking at specific promoter 

regions that lose methylation in these cells. Such promoter could potentially be 

identified by methylated CpG affinity chromatography (Illingworth et al., 2008). 

These experiments are currently being attempted using retroviral constructs to stably 

infect Lsh MEFs. Unfortunately, stable cell lines have not yet been generated and 

the timescale for this experiment is unknown. As de novo DNA methylation in 

somatic cells is relatively inefficient, extended incubation periods may be required to 

observe restoration of DNA methylation patterns. Additionally, it is not clear 
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whether a rescue experiment like this would be successful as the time window for 

establishing DNA methylation patterns, which occur in early embryogenesis, may 

have been passed (Bird, 2002). Despite these reservations, these experiments, if 

successful, would give excellent insight into whether the proposed catalytic activity 

of LSH is required for its role in DNA methylation. 

A number of preliminary experiments investigating the relative binding efficiencies 

of different members of the LSH, DNMT3B and DNMT1 complex were described in 

chapter five. These showed that LSH binds DNA more efficiently than DNMT3B or 

DNMT1. The physiological relevance of these experiments is unclear at present. 

However, they may provide useful biochemical verification of experiments 

performed in vivo, particularly if the chromatin immunoprecipitation and knockdown 

experiments discussed above revealed that LSH tethers this complex to chromatin. 
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6.4 Concluding Remarks 

The results obtained during my studies have provided an improved understanding of 

the molecular function of LSH. They have shown that recombinant LSH is a weak, 

DNA stimulated ATPase that does not remodel chromatin in vitro. Additionally, I 

have used a variety of techniques to identify an LSH complex consisting of 

DNMT3B, DNMT1, HDAC1 and HDAC2. This has established a mechanism by 

which LSH can repress transcription and perhaps give rise to a silenced chromatin 

state that is susceptible to stable silencing via DNA methylation. Disappointingly, I 

have not been able to detect a role for LSH in stimulating the activity of the DNA 

methylation machinery in vitro. It is possible that this is due to the low ATPase 

activity demonstrated by the recombinant protein. Future studies should attempt to 

resolve two key issues arising from this study. Firstly, is the LSH complex I 

identified found at endogenous LSH binding sites and if so how is it targeted? And 

secondly, is the proposed catalytic activity of LSH required for its function in vivo? 



Appendix I 

MMTV promoter DNA sequence (NucA) 

CAAAPACTTATGGCATGAGTTATTATGA1TAGCCTTTATTGGCCCAZCCTTGCGGTT 
CC CAGGGCTTAAGTAAGTTTTTGGTTACAAACTGTTCTTAAAACGAGGATGTGAGAC 
AAGTGGTTTCCTGACTTGGTTTGGTATC?AAGGTTCTGATCTGAGCTCTGAGTGTTC 
TATTTTCCTATGTTCTTTTGGAATTTATCCAAATCTTATGTAAATGCTTATGTAPJC 
CAAGATATAPAGAGTGCTGATTTTTTGAGTAA.ACTTGCAACAGT C CThACATTCAC 
CTCTTGTGTGTTTGTGTCTGTTCGCCATCCCGTCTCCGCTCGTCACTTATCCTTCAC 
TTTCCAGAGGGTCCCCCCGCAGACCCCGGCGACCCTCAGGTCGGCCGACTGCGGCAC 
AGTTTTTTGCTCCTTTTTCTAGATGTAATTTTTAAAGCTTATTTTTTACTTTCACA 
TGTGCTACACTCACATGTGCAATGAGTGA 

Underlined: 	NucA sequence 
Bold: 	 Central base in nucleosome 
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Appendix II 

LSH cDNA sequenced following cloning into pFAST-BAC vector 
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Project: his-IshSQD Contig 1 

	

10 	 20 	30 	40 	50 	60 	70 	80 	90 	100 

035_Fl 0_KM_6 - abi (1>798) 	—9 NGGTTTCGTACGGTTTTGTAATAAAAAAACCTATAAATATTCCGGATTATTCATACCGTCCCACCATCGGGCGCGGATCTCGGTCCG.ACCATGTCGT 
040_Ai0_Kevin_1 abi (17>816 (-9 	 TITTGTAATAAAAAAACCTATAAATATTCCGGATTATTCATACCGTOCCACCATC000C000GATCTCGGTCCGAAACCATGTCGT 

	

110 	120 	130 	140 	150 	160 	170 	180 	190 	200 

035_F1O_KE_6 abi (1>798) 	—9 CTACCATCACCATCACCATCACGATTACGATATCCCAACGACCGAACCTGTATTTTCAGGGCGCCATG1TGCCAGCGGjCGGCCCGc(7cccAGcGGc 
040_A10_Kevin_1 - abi (17>836) —9 
lab. SEQ)i>2 517) 	 —) 	 atgccagcggaacggcccgcgggcagcggc 

210 	220 	230 	240 	250 	260 	270 	200 	290 	300 

GcTCGGAGGcTccAGcAATGGTTcAcAAcTGGAcAcTGcTGTGATTAccccGcccATGcTAcAAGAGGAAGAAcAGcTTGGcTGcTGcAcTAGAGAGA 
035_Fl 0_KM6 abl (1>798) 	--9 
O4OAlO Kevin l - abl (17>816 )-9 GCTCCCAGGCTCCAGCAATGGTTGAACAACTC0ACAC?GCTGTGATTACCCCGCCCATGCTAGAGAGC0GCAGCTTGJJGCTGCTGGACTAGAGAG 
lab - SEQ (1>2517) 	 —9 

310 	320 	330 	340 	350 	360 	370 	380 	390 	400 

035_Fl 0_KM_6 - abl (1>798) 	—9 
040_Al 0_Kevin_i - abl (17>816) -) 
lsh.SEQ(1>2517) 	 —5gagcggaagatgctggaaaaggctcgcatgtcttgggatagagagtcgacagaaattcggtaccgtagacttcaacattEgcttgaaaaaagcaatatat 

410 	420 	430 	440 	450 	460 	470 	400 	490 	500 

CTCCAAATTTTTATTGACGAAAATGGAACAGCAACAATTAGAGGAACAGAAGAAGAAAGAAAAATTGGAGAGAAAAAAGGAGTCTTTAGTTAAAAAGG 
035_Fl 0_KN_6 - abi (1>798) 	—9 
040_Al 0_Kevin_i - abi (17>816) —9 CTCCAAATrTTTATTGACGAAAATGGAACAGCAACAATTAGAGGAACAGAAGAAGAGATTGGAGAGA AGpcTTTGTTJc 
lsh.SEQ(112517( 	 -4ctccaaatttttattgacgaaaaLggaacagcaacaactagaggaacagaagaagaaagaaaaattggagagaaaaaaggagtctttaaaagttaaaaag 

510 	520 	530 	540 	550 	560 	970 	580 	590 	600 

035_Fl OKM6 - abl (1>798) 	—9 
040_A1 0_Kevin_l - abl ) 17>816) 4 GTAAAATTCAATTGATGCAAGTGAAGAGAAGCCAG3TATGAGGAAAAAAGAGGAKGAGAAGATGA9TCATACTATTTCACACGTCATGTCAJJGA 
lsh.SEQ)1>2517) 	 —9 

610 	620 	630 	640 	650 	660 	670 	680 	690 	700 

035_Fl 0_KM_6 - abi (1>790) 	-4 
04 0_A10_Kevin_1 - abl (37>816) —9 
lshSEQ)1>2517) 	 —9 
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710 	720 	730 	740 	750 	760 	770 	780 	790 	800 

GTAGTATAATTaGATAGATTGTCTGCGGTTAGGCAGAJTACTA?J½TTCTTTTTTGACCCAGTCCCGAaCTGT>ATGGTCAGCCAGTACCTTTTC 
035_Fl 0K846 - abi (1>798) 	—8 GAATAGTATAATTAA-CATAGATTGTCTGAACGCTTACCCAGAATACTAATTCTTTTTTGACCCAGTCCGCAAGTGTAATGCTCAGCCAG 
040_A1 0_Kevin_i - abl (17>816) —8 GAATAGTATAATTAAGATAGATTGTCTCAA$,CGCTTAGGCAGAATACTZ7rCTTTTTPGACCCAGTCCGGAAGTCTAATGGTCAGCCAGTACCTTTT 
ish. SEQ(l>2517( 	 —) 
039_Bl0_KM_2 .abl(l5>795( 	-4 	 GTCCGGA-GTGTAATGGTCAGCCAGTACCTTTT 
034_G10_KN_7.abl (14>795) 	—8 	 5 -CGGA--GTGTAATGGTCAGCCACTACCTTTT 

810 	820 	830 	840 	050 	860 	870 	880 	090 	900 

040_A10_Kevin_1.abi(17>816(-4 -ACAACN 
lsh.SEQ(1>2517) 	 -9aacaaccaaagcacttcactggaggagtgatgcgatggtaccaagtagaaggcatggaatggcttaggatgctttgggaaaatggaattaatggcatttta 
039 BI 0_KM_2 - abi (15>795) 	—8 
034 - G1 0_KM_7 - abl (14>705) -9 AACAACCAAAGCACTTCACTGGAGGAGTGATGCGATGGTACCAAGTAGAAGGCATCIGAATGGCTTAGGATGCTTTGGGZAAATGGAATTAATGGCATTTT 
045_D1 1_KM 12. abl (81>651) -9 	 GAGTGATGCGATGGTACCAAGTAGAAGGCATC-GAATGCCTTAGGATGCTTTCCGA6TCG0J5TT5ATGGCATTTT 

910 	920 	930 	940 	950 	960 	970 	980 	990 	1000 	1010 

lsh.SEQ)1>2517) 	 -9 
03 9_Bi 0Kt42 - abl (15>795) 	-9 
034_G10_KM_7 - abi (14>795) 	-9 
04 5_Di 1_KM_i 2 - abi (81>651) -4GCAGATGAAATGGGATTCGGTAAGACAGTTCAGTGCATTGCTACTATTGCATTGATCATTCAGAGAGGAGTACCAGGACCTTTTCTTGTCTGTGGCCCTTq 

	

1020 	1.1,3.1 	10,4.1 	1050 	1060 	1070 	1080 	1090 	1100 	1110 

lsh.SEQ(1>2517( 	 -9 
03 9_Bl 0_KM_2 - abl (15>795) 	—) 
034_G1OKM7 - abi (14>795) —> CTCTACACTLTCCTAACTGGATGGCTGPATTCAAA-AGATTTACACCAGATALTCCCTACAATGTTATATCATGGAACCCAGGAGGAACGTCAAAAATTGGTAI  
045_DO 1_KM 12 - abl (81>651) -9 

1120 	11,3.0 	1140 	1150 	1160 	1170 	1180 
i,. 	

1190 	1200 	1210 
,, 

GAAATATTTACAACGGAACCGACTTTGCAGATTCATCCTGTGGT6TrCGTCATTTCAAATAGCCATGAGAGACCC5ATGCGTTACAGCATTGCTAT 

ish. SEQ (1>2517) 	 —8 
039_BiD_KM 2 - abi (15>795) 	9 GAAA  TAT TTACAACGGAGGGACTTTGCAGFTOCATCCTGTGGTATCACGTCAT1PGAAATAGCCATGAGAGACCGTCCGTTACAGCATTGCTA 
034_Cl 0_KM 7 - abi (14>795) —) GAAATATTTACAAACGGAAGGGACTTTGCAGATTCATCCTGTGGTPTCACGTCATTTGAAATAGCCATGAGAGACCGJJJTGCGTTACAGCATTGCTA 
045_D11KM12 - abl (81>651) -9 

1220 	1230 	1240 	1250 	1260 	1270 	1280 
,_.I.. .,I 

90 	1300 	1310 
I, 

12  

lsh. SEQ(1>2517( 	 —8 
03 0_Bi OKM2 - abi (15>795) 	—8 
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1220 	1230 	1240 	1250 	1260 	1270 	1280 	1290 	1300 	1310 

034_C10_KM_7 abl(14>7 95) 	-9 
0 45_Cl 1 KM 12 abi (81>651) -9 

1320 	1330 	1340 	1350 	13,60, 	1370 	1380 
	219?... 

3 90 	1400 	1410 
I ,,,, I ,,. , I., . , I 

lsh SEQ)1>2517) 	 -9 
039_B10_K8t_2 .abl (15>795) 	-4 TT TTGCCP.GATGTATTTGATGACTTGAAPAGCTTTGAGICTTGGq 
034_Gi0_KM_7 - abl (14>795) 	-9 
045_Cl 1_KM_i 2 - abi (81>611) -9 GACTGGTACTCCCTTGC??.AACAA0TTATCAGAACTTTGGTCATTGCTAAACTTTTTG71GCCAGATGTATTTGATGACTTGAAAAGCTT 
037_D10_KM_4 abi (12>760) 3- 	 TTGTTGCCAGATCTATTTGATGACTTGAAAACCTTTCAGTCTTGG 
048_  All-KM _9 - abl (1>758) 	 TTGTTGCCAGATCTATTTGATGACTTGAAAAGCTTTCAGTCTTGG 

1420 	1430 	1440 	1450 	1460 	1 	1480 	1490 	1500 	1510 
.

470  

lsh. SEQ)1>2517) 	 -9 
039 Bl C_KM_2 - abi (15>795) 	-9 
034_Cl 0_KM_7 - abl (14>795) 	-4 
037_Cl 0_KM_4 - abi ) 12>760) 	3- 
048_All_KM_9 - abl (1>758) 	<- 
043_Fll_KM_14 .abl (69>638) (- 	 CTGCACCAGATTTTAACACCTTTCTT. 

1520 	1530 	1540 	1550 	15 	10 	1580 	1590 	1600 	1610 
I
60
.

57
I,,,, ,,,I,,,,I,,,,I,,,,I 

ish. SEQ)l>2517) 	 -9 
039_B10_KM_2 - abl (15>795) 	-3 TTGAGAAGACTGAAGTCTCATGTTCCTCTTGAAGTNCCTCCT 
034_C10_KM_7 - abi (14>795) -3 TTCAGAAGACTGAACTCTCATCTTCCTCTTCAAGTTCCTCCTAA-C 
03 7_Dl 0_KM_4 - abi (12>760) 	<- 
048_  All-KM _9 - abl (1>758) 	3- 
043_Fl l_Ktl_l 4 - abl (69>638)3- 

1620 	1 	 1650 	 1 	 1690 	1700 
.

630 1640 1660 670 1680 	 1710 
 

lsh.SEQ)1>2517) 	 -9 
037_Cl 0_KM_4 . abi (12>760) 	3-- 
048_A11_KM_9 - abl (1>758) 	3- 
043_Fl 1_KM_1 4 - ahi (69>638) 4- CATTGTGAACCCTACAATTGCAAACATGTTTGGATCCAGTGAGAA.AGAAACAATTGAGTTAAGTCCTACTGGTCGACCAAAA.CGACGAACTAGAA-kATCAS  
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1720 	1730 	1740 	1750 	1760 	1770 	1780 	1790 	1800 	1810 

1=hSEO(1'2517) 	 —9 
03 7_D1 0_KN_4 - abl (12>760) 	— 

048_  All _KM_9 - abl (1>758) 	<— 
043_F11_KM_14 abi (69>638) 	— 

1820 	1930 	1840 	1850 	1860 	1970 	1880 	1890 	1900 	1910 

ATCCCTGTAGAATCTGAACTTAATCTCAAGCTGCA0ATATAATCATGCTACCGTATCTTGTTCATCCATATTTGATTCTATCCTATAGACCC 

ish. sEQ(1>2517( 	 —3 
037_D10_KN_4 - abi (12>760) < 	ATCCCTGTAGAATCTCAAGTTAATCTG?AGCTGCAG?ATATAATGATGCTACTTCGTATGTTGTTCATCCATATTTGATTGTATCCTATAGACC 

04 8A1 1_KM_9 - abl (1>758) 	— ATCCCTGTAGAATCTGAAGTTAATCTGAAGCTGCAGAATATAATGATGCTACTTCGTAAATGTTGTTCATCCATATTTCATTGTATCCTATAGACC 

043_Fl l_KI4_14 abl (69>638) E 
038_Cl OKM3 - abi (14>801) 	—3 
033  _Hi 0_mi_a - abl (21>753) 	—3 	 CAATCTCAAGTT - ATCTGAAGCTGCAGATATAATCATGCTAC:.JTCGTAAATGTTGTAATCATCCATATTTGATTGTATCCTATAGICC 

	

044_El1_KM_13 - abi (52>730) —9 	 JGAAGCTGCAGAATATAATGATGCTACCCC:TAAA:G::TGT9.ATCATCCATATTTGATTGA8TATCCTANACACC 

036_E10_KM_5.abl)1>815( 	9- 

1920 	1930 	1940 	1950 	19,6.0 	1970 	1980 	1990 	2000 	2010 	2020 

lsh.SEQ)1>2517) 	 —9 
037 DIOKM 4 - abi (12>760) 	9- TGTTACACAAGAATTTAAGATCGATGAAGAATTGGTAACAAATTCTGGGAAGTTCTTGATTTTCGATCGAATGCTGCCAGAACTAAAAAAAAGAGGTCACT- 

04 8_Al 1_KN_9 - abl (1>758) 	9-- 
043_Fl 1_KM_14 - abl (69>638) <- 
038_Cl 0_mi_3 - abl (14>801) 	—3 
03 3H10_KM_8 - abi (21>753) 	9 
044_  Ell _mi_13 - abl (52>730) —9 
036_El 0_KM_S - abi (1>815) 	9- 

2030
.  

2040 2050 2060 2070 2080 2090 2100 2110 2120 

AGGTGCTGCTTTTTTCAC?TGACAAGCATGTTGGACATTGATGGATTACTGCCATCTCAGAGATTTCCTTCAGCAGGCTTGATGGGTCCATGTCT 

ish . SOQ)l>2517( 	 —9 
037_D10_}C4_4 - abi (12>760) 	- 	AGGTGCTGCTTTTTTCACATGACAAGCATGTTGCATTTTGATGGATTACTGCCATCTCAGAGATTTCCTTCAAGGCT GAT-GGTCC T-TC 

048_  All—KM _9 . abi (1>758) 	9 	ACGTGCTGCTTTTTTCACAATGACAAGCATGTTGGACATTTTGATATTACTGCCATCTCAGAGATTTCCTCAAGGC -TGAT-GGTCCAT-T- 
043_F11_KM_14 - abl (69>638) 9-- AGGTGCTGCTTTTTCCACAAATGACAAGCATGTTGGAC 
038_C10_KM_3 - abl (14>801) —9 ACGTGCTGCTTTTTTCACAAATGACAAGCATGTTGGACA?TGATGGATTACTGCCATCTCAGACATTCTTCAGCAGGCTTCATGGGTCCATGTC 
033_H10_KM_8 - abi (21>753) —9 AGGTCCTGCTTTTTTCACATGACGCATGTTGGACATTTGATGGATTACTGCCATCTCAGAGATTTCCTTCAGCAGCCTTGATGGGTCCATGTC 
044_E11_KM_13 - abl (52>730) —) ACGTGCTGCTTTTTTCACAAATGACACCATGTTGGACATTTTGATATTACTGCCATCAGAGATTTCCTTCAGCAGGCTTGATGGGTCCATGTC 

036_E10_KM_5 - abl (1>815) 	(— AGGTGCTGCTTTTTTCACAATGACATGTTGCATTTTGATGGATTACTGCCATCTCAGAGATTTCCTTCAGCAGGCTTGATGGGTCCATGTC 

042_G11_KM_15.abl(76>626( 	
ATGTC 
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2130 	2140 	2150 	2160 	2170 	2100 	2190 	2200 	2210 	2220 

ish.SEQ)1s2517) 	 -3 
048-All KM 9.abl(1>758) 	*- T--TC1G -GA -A 
038 dO KM3 abS (14>801) 	-9 
033_1110_KM_8 abS (21>753) -9 TACTCAGAGAGAG CATGCCAGCTTC5JCACGGATCCAGAGGTGTTTATCTTCTTAGTCAGTACACGAGCTGGTGGCCTGGGCATTTCTGA 
044_Eli_KM 13. abl (52>730) -9 TACTCAGAGAGOGAACATGCACAGC7TCPkCACGGATCCAGAGGT(rTATCTTCTTAGTGAGTACACGAGCTGGTGGCCTGGGCATTJJTCTGA 
036_E1OKM5 .abl (1>815) 	- TACTCAGAGAGAG?ACATGCACAGCTrCCACGGATCCAGAGGTGT'TATCTPCTTAGTG0GTACACGAGCTGGTGGCCTGGGCATTITCTGA 
042_Gli KM 15 .abl(76>626) <- TACTCAGAGAGAGACATGCACAGCTTC55CGGATCCAGAGGTG>>.TATCTTCTTAGTGAGTACACGAGCTGGTGGCCTGGGCATTTCTGA 

2230 	2240 	2250 	2260 	2270 	2280 	2290 	2300 	2310 	2320 

lsh.SEQ)1>2517) 	 -3 
03 8_010_KM3 - abi (14>801) 	-9 
033_Hi 0_KM_8 - abi (21>753) 	-9 
044_Eli KM 13 - abl (52>730) --3 
03 6_ElO KM5 - abl (1>815) 	4- 
042_G1 1_K4_15. abi (76>626) 4- 

2330 	2340 	2350 	2360 	2370 	2380 	2350 	2400 	2410 	2420 I.,..I 

lsh.SEQ(1>2517) 	 -3ttgtLtatcgccttgttacagcaaatactatcgatcagaaaattgtggaaagagcagczgctaaaaggaaactggaaaagttgatcatccataaaaatcat 
038_Cl 0_KM 3 - abi (14>801) 	-3 
03 3_Mb KM8 - abi (21>753 ( 	-3 
044_Eli KM 13 - abi (52>730) -9 
03 6_E10_KM_5 - abl (1>815) 	4- 
042_Gil_KM_is - abl (76>626)4- 

2430 	2440 	2450 	2460 	2470 	2480 	2490 	2500 	2510 	2520 .  
lsh.SEQ(1>2517) 	 -3 
038_Cl 0_KM_3 - abl ) 14>801) 	-3 
03 3_Hl0_KM8 - abi (21>753) 	-3 
044 Eli KM 13 - abl(52>730) 	3 
036_El 0_KM_S - abi (1>815) 	4- 
042_Gil KM 15 - abi (76>626) 4- 

2530 
... 	,I 

2540 .,.I._.  2550 ,I,,,_I,,,,  2560 I____I...  2570 I,,,_I._,  2580 ,p—fill 
 2590 i_ 	2600 	2610 	2620  

lsh.SEQ(1>2517( 	 -9 az  
 038 CIO KM  3 - abl (14>801) 	-3 C

c 

 033_H10_KM_8 .abl (21>753) -3FAaG.

g-4g 

TCASGAGAGAAGGTCATTAGTGATAAAGAa-C 

ggaccaattaaagag 

(13 
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2530 	2540 	2550 	2560 	2570 	2580 	2590 	2600 	2610 	2620 

03 6_E10_KM_5 - abl(1>815) 	4- 
042_Gil_KM 15 - abl ) 76>626) 4- 

2630 	2640 	2650 	2660 	2670 	2680 	2690 	2700 	2710 	2720 

AGATGCGGATATTCAGATATTAGAATTCTGAAGATTCCAGTCCTGAATGTTTGrFTTAAGCCGCTTTCGOATCTAGAGCCTGCAGTCTCGSGGCATGC 
lsh.SEQ)1>2517) 	 —3 a>atggggatattcaagatattagaaaattccgaagactccagccctgaatgtttgltccaa 
036_El 0_EN_S - aM ) 1>815) 	4— 
042_Gil_KM_is .abl(76>626) 4— AGATGGGGATATTCAAGATATTAGA5ATTCTGAAGATTC 

2730 

-1CG 
036_E10_KM_5abi)1>815) 	4- I GTCCA 

®r", 
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LSH, a protein related to the SNF2 family of chromatin-remodeling ATPases, is required for efficient DNA 
methylation in mammals. How LSH functions to support DNA methylation and whether it associates with a 
large protein complex containing DNA m ethyl trans ferase (DNMT) enzymes is currently unclear. Here we show 
that, unlike many other chromatin-remodeling ATPases, native LSH is present mostly as a monomeric protein 
in nuclear extracts of mammalian cells and cannot be detected in a large multisubunit complex. However, when 
targeted to a promoter of a reporter gene, LSH acts as an efficient transcriptional repressor. Using this as an 
assay to identify proteins that are required for LSH-mediated repression we found that LSH cooperates with 
the DNMTs DNMT1 and DNMT3B and with the histone deacetylases (HDACs) HDACI and HDAC2 to silence 
transcription. We show that transcriptional repression by LSH and interactions with HDACs are lost in 
DNMT1 and DNMT3B knockout cells but that the enzymatic activities of DNMTs are not required for 
LSH-mediated silencing. Our data suggest that LSH serves as a recruiting factor for DNMTs and HDACs to 
establish transcriptionally repressive chromatin which is perhaps further stabilized by DNA inethylation at 
targeted loci. 

In vertebrate genomes, DNA methylation patterns are es-
tablished during gametogenesis, embryo development, and cell 
differentiation by enzymes of the DNA cytosine methyltrans-
ferase family, which includes the maintenance DNA methyl-
transferase (DNMT) DNMTI and the de novo methyltrans-
ferases DNMT3A and DNMT313 (1, 24,45). DNMT1 binds to 
PCNA and functions primarily during S phase to restore fully 
methylated CpGs on hemimethylated daughter DNA strands 
generated during DNA replication (3, 4). DNMT3A and -313 
are able to methylate unmethylated DNA and in mouse em-
bryogenesis are required during gastrulation, when DNA 
methylation patterns are established in differentiating cell lin-
eages of the embryo (24). Mice lacking DNMT proteins die 
early during embryogenesis and display aberrant expression of 
retrotransposons and various imprinted and nonimprinted 
genes (14, 18, 24). Genetic studies with plants and mammals 
have revealed that additional factors besides DNMTs are re-
quired for the establishment of DNA methylation patterns in 
vivo. Loss-of-function mutations in SNF2 family-related puta-
tive chromatin-remodeling ATPases such as the Arabidopsis 
thaliana DDM1 (decrease in DNA niethylation 1) protein and 
its murine homolog Lsh (lymphoid-specific helicase) lead to 
dramatic hypomethylation of the genome in Arabidopsis thali-
ana and mice, respectively (5, 16). Unlike animals that are null 
for DNMTs, Lsh-deficient mice develop to term but die soon 
after birth with symptoms of renal failure (5). Interestingly, 
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mice expressing a hypomorph allele of Lsh with targeted dis-
ruption of the SNF2 domain survive much longer and display 
modest hypomethylation of DNA and premature aging (39). 
Collectively, these studies indicate that the low levels of DNA 
methylation (-30 to 35% of the wild-type level) in Lsh-defi-
cient mice are compatible with embryonic development. 

It is largely unknown how DDMI and Lsh function to assist 
DNA methylation. Given the homology of DDM1 and Lsh 
with chromatin-remodeling ATPases of the SNF2 family, it has 
been suggested that chromatin remodeling by DDM1 and Lsh 
may facilitate the processivity of DNMT enzymes on nucleo-
somal DNA templates (20, 28). In agreement with the require-
ment for SNF2-like proteins to support DNA methylation in 
vivo, several studies have demonstrated that in vitro DNMT 
enzymes methylate DNA assembled into chromatin 10- to 20-
fold less efficiently than naked DNA (11, 25, 31). Whether 
DDM1 or Lsh is able to stimulate DNA methylation on nu-
cleosomal templates in vitro has not been demonstrated. How-
ever, it was reported that DDM1 exhibits features common to 
the SNF2 family of chromatin-remodeling proteins, such as 
ATP hydrolysis upon stimulation by DNA or nucleosomes and 
active sliding of mononucleososomes on DNA templates in 
vitro (2). 

The biochemical properties of mammalian Lsh protein have 
not been investigated in detail, nor has it been determined 
whether, similar to many other chromatin-remodeling 
ATPases, Lsh associates with a large protein complex (22). It is 
also unclear whether Lsh directly interacts with DNMTs and 
actively recruits them to chromatin. A recent study has found 
that Lsh coimmunoprecipitates with de novo DNMTs Dnmt3a 
and Dnmt3b and stimulates methylation of nonmethylated ep-
isomal plasmids introduced into mouse embryonic fibroblasts 
(45). No interaction between L.sh and maintenance methyl-
transferase Dnmtl was detected in these assays, suggesting 
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that Lsh is involved primarily in de novo DNA methylation of 
nonmethylated sequences (45). 

To address some of these questions, we focused on the 
properties of human Lsh protein, also known as HELLS (for 
helicase lymphoid-specific) or PASG (for proliferation-associ-
ated SNF2-like gene). For convenience we refer to this protein 
as LSH throughout this paper. Using size exclusion chroma-
tography and sedimentation in sucrose gradients, we demon-
strate that native LSH can be detected mostly as a free mono-
meric protein in nuclear extracts of human cells. Thus, if LSH 
associates with other proteins, such complexes are either un-
stable or not very abundant. Nevertheless, when targeted to 
GAL4 binding sites upstream of a reporter gene promoter, 
LSH acts as an efficient histone deacetylase (HDAC)-depcn-
dent transcriptional repressor. The region of LSH required for 
transcriptional silencing maps to the N-terminal coiled-coil 
motif, suggesting that transcriptional silencing by LSH is inde-
pendent of its putative chromatin-remodeling activity. We fur-
ther demonstrate that LSH coimmunoprecipitates with the 
HDACs HDACI and HDAC2 and that the DNMTs DNMTI 
and DNMT313 interact with LSH in vitro and are essential for 
recruitment of HDACs to LSH in vivo. In cells expressing 
N-terminally truncated DNMTI or null for DNMT313, HDACs 
do not efficiently coimmunoprecipitate with LSH, suggesting 
that stable association of HDACs with the rest of the LSH 
complex requires both DNMTs to be present simultaneously. 
Taken together, our data demonstrate that LSH forms a tran-
sient or not very abundant protein complex in vivo and directly 
recruits DNMTI, DNMT313, and HDACs to establish tran-
scriptionally inactive chromatin. Transcriptional silencing by 
the LSH complex does not immediately result in methyl-
ation of DNA, but LSH-mediated increase in the local con-
centration of DNMTs on chromatin may eventually lead to 
DNA methylation and further stabilize a silenced chromatin 
state. 

MATERIALS AND METHODS 

Size exclusion chromatography and sucrose gradients. A Superose 6 10/ 
300GL gel filtration column was calibrated with gel filtration standards thyro-
globulin (669 kDa; Stokes radius [R,] = 8,5), apoferritin (443 kDa; R = 6.1), 
alcohol dehyrdogenase (150 kDa; R = 4.55), bovine serum albumin (66 kDa; 

= 3.55), and carbonic anhydrase (29 kDa; R, = 2). One milligram of HeLa 
nuclear extract or I jig of purified recombinant LSH was loaded onto a column 
precquilibrated with buffer GFI50 (20 mM HEPES-KOH [pH 7.91, 3 mM 
MgCl, 10% glycerol, and ISO mM KCI). Fractions (0.5 ml) were collected, 
trichloroacetic acid precipitated, and separated on 7% or 10% polyacrylamide 
gels. Native and recombinant LSH and native BRGI were detected by Western 
blotting using anti-LSH (sc-46665) and anti-BRGI (sc-H88) antibodies (Santa 
Cruz). The R, of LSH was derived from the plotted standards. For sucrose 
gradients, 50 I.Lg of carbonic anhydrase (2.8S), 50 l.Lg of bovine serum albumin 
(4.3S) 50 ag of alcohol dehydrogenase (7.4S), and 30 ag of -amylase (9S) were 
loaded as standards through a 2-ml linear 5 to 20% sucrose gradient made in 
buffer NE2 without glycerol (211 mM HEPES-KOH [p1-1 7.01, 10 mM KCI, I mM 
MgCl2, 0.5 mM dithiothreitol, (1.1% Triton X- 100, 420 mM NaCl, and protease 
inhibitor mix [Sigma P8340]). The protein standard gradient together with an 
identical gradient loaded with 5110 p.g HeLa nuclear extract or 1 p.g recombinant 
LSH was spun for 4 Ii at 50,1100 rpm in a Beckman TLS-55 rotor at 4C. Fractions 
(100 al) were taken from the top of the gradient and run on 10% polyacrylamide 
gels. Protein standards were detected by Coomassie blue staining, and LSH was 
detected by Western blotting. The sedimentation coefficient of LSH was derived 
from the plotted standards. Calculations to determine the molecular weight of 
native LSH were applied as described previously (35) using the equation M, = 
6'rrq2,. . 50.,, ' R, ' N/(1 	p,s u), where R, is the Stoke's radius (non), s25., is 
the sedimentation velocity (S >< 10 3), 	is the viscosity of water at 20°C 

(0.01002 g s' cm'), N is Avogadro's number (6.022 x 10'- molecules''), 

P20., is the density of water at 20°C (0.9981 g con'), and v is the partial specific 
volume of protein (used 0.725 cm'/g). 

Plasmids and reporter assays. Full-length human LSH (kindly provided by 
Robert Arceci, The John Hopkins University School of Medicine) or LSH 
fragments corresponding to amino acids I to 226 and 227 to 838 as well as the 
GALA DNA binding domain were PCR amplified and cloned into the pcDNA 
3.1 vector (Invitrogen). DNMT3B and DNMTI were cloned into the pEGFP 
vector (Clontech). The catalytically inactive DNMTIcIW  point mutant was previ-
ously described (34) and was provided by Heinrich Leonhardt. DNMT3B"' was 
generated by site-directed mutagenic PCR. In reporter assays, GAL4-TK-LUC 
(500 ng) and pact-l3geo (500 ng) plasmids were cotransfected with 500 ng of the 
indicated effector plasmids into 2.5 X I0 HCTI 16 cells or DNMT knockout 
(KO), cells kindly provided by Bert Vogelstein, using JeIPEI reagent (Autogen 
Bioclear). To test whether LSH-mediated repression was sensitive to 1-IDAC 
inhibitors, trichostatin A (TSA) was added to the tissue culture medium after 
transfection to a 1011 nM final concentration 24 It prior to lysing the cells. For 
rescue experiments with HTll6 KO cell lines, 500 ng of DNMTI-green fluo-
rescent protein (GFP) or DNMT3B.GFP plasmid was cotransfected with the 
reporter plasmids in the presence or absence of GAL4-LSI-I or GAL4-LSH(1-
226). All transfection experiments were performed in triplicate. At 48 It post-
transfection, cells were harvested using reporter lysis buffer (Promega), and 
detection of luciferase activity was carried out according to the manufacturer's 
guidelines. Luminescence was measured in a TD20/20 luminometer (Turner 
Designs). Detection of -galactosidase activity in the same lysates (as described 
above) was carried out as described previously (44). 

Coimmunoprecipitation experiments. Imniunoprecipitations were performed 
from I-ICT1 16 nuclear extracts (401) lag  of total nuclear protein) with 4 p.g 
anli-LSH (sc-46665), anti-HDACI (sc-7872), anti-HDAC2 (sc-7899), polyctonal 
anti-GFP antibody (a kind gift from K. Sawin, Wellcome Trust Centre for Cell 
Biology, Edinburgh), anti-Myc (CRUK), or mock control anlihemaggtutinin 
(anti-HA) (CRUK) antibodies. Immunoprecipitated complexes bound to protein 
0 heads were washed with NEI 50 buffer (20 mM HEPES-KOH ]pH 7.0], tO mM 
KCI, 1 mM MgCl2, 0.5 mM dithiothreitol, 0.1% Triton X-tOO, 150 mM NaCI, 
and protease inhibitors) and run on 7% or 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis. The gels were transferred to nitrocellulose mem-
branes and proteins detected by appropriate primary antibodies (as described 
above), secondary horseradish peroxidase-conjugated anti-mouse or anti-rabbit 
antibodies (Sigma), and ECL reagent (Aniersham). The antibodies used for the 
detection of DNMTs were anti-DNMT313 (PAI-884) and anti-DNMTI (sc-
2070 1). 

In vitro pull-down assays. LSH fragments corresponding to amino acids I to 
503 and 248 to 883 were cloned into the pOEX 4TI plasmid in frame with 
glutathione S-lransfer,tse (GST) tag and designated GST-LSH.N and LSH-C, 
respectively. pGEX-HDACt, -2, and -3 were provided by Ronald Evans (Salk 
Institute, La Jolla, CA) and GST-GFP by Ken Sawin. All GST fusion proteins 
were expressed in Eschthchia coli BL2I(DE3) and purified on glutathione-
Scpharose by standard methods. Full-length DNMT3B and a fragment of 
DNMTI corresponding to amino acids Ito 1125 were cloned into pGAD-T7Rcc 
(Clontech) in frame with an HA tag. Full-length LSH was cloned into pGBK-T7 
(Clontech) in frame with a Myc tag. One microgram of pGADT7-DNMT3B, 
pGADT7-DNMTI, or pGBK.LSH was translated in rabbit reticulocyte lysates 
(TnT T7 kit; Promega). One hundred nanograms of each GST fusion protein 
immobilized on glutathione-Sepharose beads and 5 .l of the translation reaction 
mixtures were used in pull-down experiments performed in 100 p.! of NE2 buffer 
for 1 It at 4C on a rotating wheel. The beads were washed four times with 700 ld 
NE2 buffer, and LSH-bound DNMT proteins were detected on Western blots 
with appropriate antibodies. To detect interactions of LSH with DNMTI in the 
presence of DNMT3B, 0.5 or I p.g of baculovirus-produced DNMT3B was added 
to the pull-down assay mixtures. LSH and DNMT3B were expressed in insect 
cells and purified as described previously (2, 38). 

Chromatin immunoprecipitattons. Chromatin immunoprecipitation assays 
were carried out as previously described (13). Briefly, HEK293 cells containing 
a stably integrated 5X GAL4-TK-LUC construct (13) were transiently trans-
fected with 10 tLg of GAL4-LSH 226 or 10 p.g of pCDNA3.1 GALYBD control 
plasmid. At 48 h posttransfection, the cells were cross-linked with formaldehyde, 
sheared by sonieation, and immunoprecipitatcd for 2 h at 4°C with the following 
antibodies: anti-HA control (CRUK), anti-H3 (Upstate; 05-499, lot 25198), 
anti-H3K9ae (Upstate; 07-352, lot 28741), anti-H4 (Upstate; 07-108, lot 25296), 
and anti-H4Kl2ac (Upstate; 07-595, lot 28885). Immunoprecipitated complexes 
were then captured on protein 0 Dyttabeads (Invitrogen). Following extensive 
washing, DNA was recovered and 1 VLI of chromatin-immunoprecipitated DNA 
was used in 30 cycles of PCR. Primers for the 5x GAL4-TK promoter were 
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A 	 8.5 	6.1 	4.94 	3.55 
	

R. (nm) 
Void 	 669 	443 	150 	66 

	
kDa 

cx-LSH — 	 - 

ti-BRG 1 	 — - 

tz-LSH 	 am 
recomb. 
Fraction: 	1 2 	3 4 5 6 7 8 9 10 11 12 13 

	
14 15 16 17 18 19 20 21 22 23 24 25 26 

B 
	

2.8S 	4.3S 	 7.4S 	9S 

(X-LSH 	 native 

(X-LSH 	 — 	— 	 recomb. 

Fraction: 	1 2 3 4 5 6 7 5 9 10 11 12 13 14 	15 16 17 18 19 20 21 22 

Top 	 Bottom 

FIG. 1, Native LSH is  monomer in nuclear extracts of human cells. (A) HeLa nuclear extracts and recombinant LSH purified from insect cells 
were fractionated on a Superose 6 size exclusion column and run on sodium dodecyl sulfate-polyacrylamide gels. LSH and BRGI proteins were 
detected in the collected fractions by Western blotting with appropriate antibodies. The molecular masses and Stokes radii (R,) of marker proteins 
used to calibrate the column are indicated at the top. (B) HeLa nuclear extracts and recombinant LSH were fractionated in 5 to 20% sucrose 
gradients. LSH was detected in gradient fractions on Western blots with anti-LSH antibodies. Sedimentation coefficients of marker proteins are 
indicated above the blot. 

5 AATFGCTCAACAGTATGAACATVrC and 3 CAATI'GTlTTGTCACGA 
TCAAAGGA. Primers for the GAPDH (glyceraldehyde-3-phosphate dehydro. 
genase) promoter were 5'-GAGGCTGTGAGTGGCTGTC and 3-CAGAOC 
AGAGTAGCAAGAGCAAGG. 

RESULTS 

Native LSH cannot be detected in a large protein complex. 
Within the SNF2 family of ATPases, LSH is most closely 
related to the ISWI subfamily of chromatin-remodeling fac-
tors, which have diverse functions in transcriptional regulation 
(16, 20). Most SNF2 family members, including ISWI proteins, 
have intrinsic ATPase activity but usually associate with more 
than one additional polypeptide in vivo (8, 22). These addi-
tional subunits of chromatin-remodeling complexes either 
modulate the activity of SNF2 ATPases or target them to 
specific chromatin regions (22). Given the possibility that LSH 
may act as an accessibility factor for DNMTs and that mouse 
Lsh coimmunoprecipitates with Dnmt3a and Dnmt3b, we in-
vestigated whether LSH in human cells can be detected in a 
large protein complex. We fractionated HeLa nuclear extract 
by size exclusion chromatography and analyzed the elution 
profile of LSH by Western blotting. LSH appeared in four of 
the eluted fractions (fractions 17 to 20) with a peak corre-
sponding to a molecular mass of about 150 kDa (Fig. 1A, top). 
In comparison, another chromatin-remodeling protein, BRGI, 
which is usually present within a 2-MDa complex (26, 36), 
eluted at a much higher molecular mass as expected (fractions 
5 to 11) (Fig. 1A, middle). Since LSH eluted at an apparent 
molecular mass slightly greater than its theoretical mass of --97 
kDa, we considered the possibility that it may associate with a  

relatively small protein(s). However, in a similar experiment 
recombinant LSH purified from insect cells eluted with a pro-
file very similar to that of the native LSH, suggesting that the 
vast majority of LSH in HeLa nuclear extracts does not asso-
ciate with additional proteins (Fig. 1A, bottom). Nuclear ex-
tracts from other human cell lines, cells synchronized in dif-
ferent stages of the cell cycle (see Fig. Si in the supplemental 
material), and mouse embryonic stem (ES) cells, as well as 
extracts prepared from nuclear pellets, containing most of the 
insoluble chromatin, showed identical elution of LSH at --150 
kDa (not shown). 

The molecular mass of a native protein or a protein complex 
can be determined accurately by an equation derived by Siegel 
and Monty, which combines the Stokes radius (a hydrodynamic 
radius of a molecule freely tumbling in solution) calculated 
from size exclusion chromatography with the sedimentation 
coefficient determined by separation in sucrose gradient (35). 
Based on the elution profile of protein standards from size 
exclusion chromatography we calculated the Stokes radius of 
LSH to be 4.94 nm. To establish the sedimentation coefficient 
of LSH, we fractionated HeLa and mouse ES cell nuclear 
extracts on 5 to 20% sucrose gradients and detected LSH in the 
gradient fractions by Western blots (Fig. 113). In these exper-
iments the sedimentation coefficient of both human and mouse 
LSH was calculated to be 4.5S, relative to protein standards. 
Applying the calculated Stokes radius and sedimentation co-
efficient of LSH in the Siegel-Monty equation, we derived a 
molecular mass of 91.5 kDa. The calculated molecular mass of 
native LSH is close to the predicted theoretical mass of LSH 
monomer (97 kDa), confirming that the vast majority of LSH 
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FIG. 2. LSH functions as an HDAC-dependent transcriptional repressor in vivo. (A) Schematic drawing of the full-length LSH and truncated 
LSH proteins fused to a GAL4BD. The functional domains of LSH, such as the coiled-coil domain (CC), the nuclear localization signal (NLS), 
and the eight conserved SNF2 motifs in the SNF2N and helicase domains, are indicated. (B) GAL4BD fusions of LSH were cotransfected into 
HT1 16 cells with a luciferase reporter plasmid carrying GAL4 binding sites upstream of TK promoter and a control plasmid expressing 
p-galactosidase from an actin promoter. The relative expression of the reporters represents the ratio of luciferase to -galactosidase products. 
MeCP2 was used as a control. The white bars represent experiments carried Out in the presence of 100 nM TSA, which partially alleviates LSH-
and MeCP2-mediated repression of the luciferase reporter. The error bars represent standard deviations of the means. (C) Coimmunoprecipitation 
experiments with anti-LSH, anti-HDACI, and anti-HDAC2 antibodies from HCT116 nuclear extracts. Anti-HA antibodies were used in mock 
immunoprecipitations (IP) to control for nonspecific protein binding. (D) Chromatin immunoprecipitation with antibodies against acetylated 
H3-K9 and H4-K12. The TK promoter in cells transfected with GAL4BD-LSH is hypoacetylated compared to the GAPDH promoter used as an 
internal control. Anti-HA is a nonspecific control antibody. 

protein in nuclear extracts of mouse and human cells is present 
as a free monomeric peptide. 

LSH is an HDAC-dependent transcriptional repressor. 
Given that in fractionation experiments we failed to detect 
LSH within a large protein complex, we decided to explore 
whether LSH could interact transiently with other proteins. 
We initially intended to use a full-length GAL4 binding do-
main (GAL4BD)-tagged LSH in a yeast two-hybrid screen. 
However, we found that GAL4BD-LSH strongly repressed 
adenine and histidine genes in yeast reporter strains. The Sac-
charomyces cerevisiae genome encodes a protein, YFR038W, 
which shares 39% identity and 57% similarity with human 
LSH. Therefore, it was possible that the mammalian protein 
could mimic some of the protein-protein interactions of 
YFR038W that facilitate transcriptional repression. To inves-
tigate further whether LSH could act as a transcriptional re-
pressor in mammalian cells, we cotransfected colorectal 
HCT1I6 cells with a plasmid expressing full-length LSH fused  

to GAL413D and two reporter plasmids. The first reporter 
plasmid carried five GAL4 binding sites upstream of a thymi-
dine kinase (TK) promoter driving the expression of the firefly 
luciferase gene, while the other control plasmid lacked GAL4 
binding sites and expressed 3-galactosidase from an actin pro-
moter. The effect of LSH on transcription from the targeted 
and nontargeted reporter was measured as a ratio of luciferase 
to 3-galactosidase expression. A GAL41313-tagged transcrip-
tional repression domain (TRD) of methyl-CpG binding pro-
tein MeCP2, which is known to strongly repress transcription 
in such assays, served as a control (21). In these experiments 
the full-length GAL4BD-LSH as well as GAL4BD-MeCP2 
consistently reduced the expression of the luciferase reporter 
to about 20 to 25% and 10%, respectively, of the levels ob-
served in cells transfected with an empty vector (Fig. 213). This 
suggests that, like MeCP2, LSH can function as an efficient 
transcriptional repressor when targeted to a promoter of a 
reporter gene in human cells. 
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To investigate whether a specific domain of LSH was re-
sponsible for transcriptional silencing, we tested several LSH 
deletion constructs in the luciferase reporter assay. Interest-
ingly, the N-terminal portion of LSH (amino acids 1 to 226), 
containing a predicted coiled-coil motif, was sufficient to re-
press the reporter gene to levels comparable to those observed 
with full-length LSH. A polypeptide corresponding to the 
SNF2 and helicase domains of LSH (amino acids 226 to 238), 
did not significantly affect the expression of the luciferase re-
porter (Fig. 2A and B). These experiments indicate that the 
226-amino-acid coiled-coil region in the N terminus of LSH 
functions as a TRD and is sufficient for silencing of the lucif-
erase reporter. 

Since coiled-coil regions of many proteins are engaged in 
protein-protein interactions, we asked whether the TRD of 
LSH functionally cooperates with corepressor proteins such as 
HDACs. Consistent with this hypothesis, transcriptional re-
pression by MeCP2, full-length LSH, and LSH(1-226) was 
partially alleviated when we repeated the luciferase reporter 
assays in the presence of the deacetylase inhibitor TSA (Fig. 
213). This indicates that transcriptional repression by LSH may 
operate through an interaction between the coiled-coil domain 
and HDACs. To explore this further, we asked whether 
HDACs coimmunoprecipitate with the endogenous LSH from 
HCT1 16 nuclear extracts. Antibodies against LSH but not con-
trol anti-GFP antibodies (mock immunoprecipitation) immu-
noprecipitated LSH and coimmunoprecipitated HDACI and 
HDAC2 (Fig. 2C). We could also detect LSH in reciprocal 
immunoprecipitations with anti-HDACI and anti-HDAC2 an-
tibodies (Fig. 2C). Additionally, chromatin immunoprecipita-
tions from cells carrying stably integrated copies of the lucif-
erase reporter showed a threefold decrease of acetylated lysine 
9 of histone H3 and a twofold decrease of acetylated lysine 12 
of H4 at the TK promoter after the cells were transfected with 
GAL4BD-LSH (Fig. 2D). Further RNA interference knock-
down experiments with HDAC1 and HDAC2 in HCT116 cells 
revealed that depletion of these two HDACs, but not HDAC3, 
could, similarly to TSA treatment, alleviate the repression of 
luciferase reporter (see Fig. S2 in the supplemental material). 
This indicates that HDAC1 and HDAC2 are essential for 
LSH-mediated repression. 

Transcriptional repression by LSH requires DNMT1 and 
DNMT313. Zhu et al. have recently reported that mouse Lsh 
coimmunoprecipitates with the de novo DNMTs Dnmt3a and 
Dnmt3b, but not with the maintenance DNMT Dnmtl, from 
extracts of mouse embryonic fibroblasts (45). Dnmtl, Dnmt3b, 
and Dnmt3a have also been shown to interact with each other 
and to coimmunoprecipitate and copurify with HDACI and 
HDAC2 (Fig. 3A) (9, 17, 31-33). Given all these complex 
interactions, we next investigated whether DNMTs contribute 
to LSH-mediated transcriptional repression. KU HCT116 cell 
lines that are genetically null for DNMT1, DNMT313, DNMT1 
and DNMT313, or DNMT3A and DNMT313 have been gener-
ated by homologous recombination (15, 29, 30). Subsequently 
it was found that most DNMTI KU cell lines, including the 
DNMTI/DNMT3B double-KU (DKU) line, express a trun-
cated DNMTI protein missing 150 amino acids of the N 
terminus, including the regions essential for binding to 
DNMT3A, DNMT313, and PCNA (Fig. 3A; see Fig. 6A) (6, 
37). To our surprise, neither GAL4BD-LSH nor GAL4BD- 

LSH(1-226) repressed the reporter luciferase gene in DNMTI 
KU and DNMT313 KU HCT116 cells (Fig. 313 and Q. The 
same was observed in DNMTI/DNMT3B DKU and DNMT3A! 
DNMT313 DKU cells (not shown). However, when we cotrans-
fected Dnmtl-GFP with either GAL4BD-LSH or GAL4BD-
LSH(1-226) and the reporter plasmids into DNMTI KU cells, 
luciferase expression was reduced to levels comparable to 
those observed in wild-type HCT116 cells (Fig. 313). Interest-
ingly, a catalytically inactive Dnmtl carrying a single point 
mutation, C1229W (34), also rescued LSH-mediated repres-
sion in DNMTI KU cells as well as wild-type Dnmtl. This 
indicates that the enzymatic activity of DNMTI is not required 
for transcriptional silencing of the luciferase reporter. 

To determine which region of DNMTI is required for LSH-
mediated repression, we tested whether shorter DNMT1 con-
structs could restore the repression of the luciferase reporter in 
DNMTI KU cells (Fig. 3A). DNMT1(1-1125)-GFP, which 
contains the known interaction sites with DNMT3A, 
DNMT313, and HDACs but is lacking the C-terminal catalytic 
domain, could partially restore the repression by GAL4BD-
LSH and GAL4BD-LSH(1-226), while the shorter proteins 
DNMT1(1-701)-GFP and DNMT1(1-250)-GFP did not (Fig. 
313). This suggests that a relatively large portion of the 
DNMTI N terminus and perhaps some of the C-terminal 
amino acids are involved in protein-protein interactions that 
are crucial for LSH-mediated repression. Cotransfection of 
DNMT3B-GFP with GAL413D-LSH or GAL4BD-LSH(1-
226) into DNMT1 KU cells also led to a modest (-30%) 
decrease of transcription from the reporter gene (Fig. 313). 
This indicates that elevated levels of DNMT313 are not suffi-
cient to restore LSH-mediated repression in cells expressing 
low levels of truncated DNMTI. 

We next attempted to rescue the LSH-mediated repression 
of the luciferase reporter in DNMT313 KU cells, As in the case 
of DNMT1, when we cotransfected either GAL413D-LSH or 
GAL4BD-LSH(1-226) and the reporter plasmids with either 
wild-type GFP-DNMT3B or catalytically inactive GFP-
DNMT313C640S, the repression of the luciferase gene was 
largely restored (Fig. 3C). Interestingly, cotransfection of 
GAL4BD-LSH with DNMT1-GFP into DNMT313 KU cells 
could also reduce the expression of the luciferase reporter by 
approximately 45 to 50%, indicating that DNMT1, when over-
expressed, could (although not very efficiently) compensate for 
the lack of DNMT313 (Fig. 3C). Collectively, these experiments 
demonstrate that both DNMT1 and DNMT313 are required 
for effective GAL4-LSH-mediated transcriptional silencing. 

The interaction of LSH with HDAC1 and HDAC2 is lost in 
DNMT KO cells. Given that the repression by LSH was sen-
sitive to TSA and that HDAC1 and HDAC2 coimmunopre-
cipitated with LSH from nuclear extracts of wild-type HCT116 
cells, we next examined whether these interactions remain 
intact in DNMT KU cells, where GAL4BD-LSH was unable to 
silence the reporter gene. When we immunoprecipitated the 
endogenous LSH from either DNMT1 KU or DNMT313 KU 
extracts, we could not detect HDAC1 and HDAC2 in anti-LSH 
immunoprecipitations (Fig. 4A, B, C, and D, top panels; com-
pare with Fig. 2C). Consistently, anti-HDAC1 and anti-
HDAC2 antibodies efficiently immunoprecipitated HDACs 
but failed to coimmunoprecipitate LSH from extracts of 
DNMTI and DNMT313 KU cells (Fig. 4A, B, C, and D, bottom 
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FIG. 3. Transcriptional repression by LSH requires DNMT3B and the N-terminal portion of DNMT1. (A) Schematic representation of 
DNMT1 and DNMT3B proteins with their functional domains. The cysteine-rich putative DNA binding CxxC domain, bromo-adjacent homeobox 
motifs (BAH), GK-rich repeats, the domain involved in targeting to replication foci, and the catalytic part of DNMT1 are indicated. Mapped 
interactions with DNMT3A, DNMT3B, PCNA, and HDACI and -2 are shown above the diagram. The dashed line indicates the portion of 
DNMT1 that has been spliced Out in DNMT1 KO HT116 cells with targeted disruption of the DNMT1 gene (6, 37). The DNMT3B protein 
contains a DNA binding PWWP motif, a PHD, domain and a conserved catalytic DNMT domain. The portions of DNMT3B interacting with 
DNMT1 and DNMT3A are indicated. (B) Neither full-length GAL4BD-LSH nor the TRD of LSH, GAL44-SH(1-226), could silence the 
luciferase reporter in DNMT1 KO cells. Cotransfection of GAL4BD-LSH proteins together with wild-type GFP-tagged DNMT1, catalytically 
inactive DNMTI C/W  and the N-terminal portion of DNMT1(1-1 125) can rescue the repression of luciferase reporter in DNMT1 KO cells. Shorter 
N-terminal DNMT1 proteins [DNMTI(1-250) and DNMT1(1-701)] did not rescue the repression of the luciferase reporter gene. DNMT3B was 
used as an additional control. Error bars indicate standard deviations. (C) GAL4BD-LSH and GAL4BD-LSH(1-226) did not repress the luciferase 
reporter in DNMT3B KO cells. Cotransfection of LSH proteins with either GFP-DNMT3B or a catalytically inactive GFP-DNMT3B°'5  restored 
the repression of the reporter to levels observed in wild-type HCT1 16 cells. Cotransfection of GAL4BD-LSH with GFP-DNMT1 also reduced the 
repression of luciferase in DNMT3B KO cells, although not as efficiently as DNMT3B. 
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FIG. 4. The interactions of LSH with HDACs are lost in DNMT KO cells. (A and B) Endogenous LSH, HDAC1, and HDAC2 could be 
efficiently immunoprecipitated (IP) from extracts of DNMT1 KO cells. However, LSH could not be detected in HDAC immunoprecipitations, nor 
was HDACI or HDAC2 detected in LSH immunoprecipitations. IgG, immunoglohulin G. (C and D) LSH, HDACI and HDAC2 do not 
coimmunoprecipitate from extracts of DNMT3B KO cells. Anti-GFP antibodies were used as a control for nonspecific interactions. 

panels). As the protein levels of LSH, HDACI, and HDAC2 in 
KO cells did not differ significantly from those in the wild-type 
HCT1I6 cells, these experiments indicate that DNMT1 and/or 
DNMT313 could either directly or indirectly recruit HDACI 
and HDAC2 to LSH. Notably, the presence of both DNMTs is 
required to promote stable interactions of HDACs with LSH. 

LSH coimmunoprecipitates with DNMT1 and DNMT3B. 
Our experiments thus far suggested that LSH participates in a 
protein complex (or complexes) that contains DNMT1, 
DNMT313, HDACI, and/or HDAC2. To investigate further 
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whether we could detect an interaction between LSH and 
DNMT1, we cotransfected DNMT1 KO cells with GAL4DB-
LSH and DNMT1-GFP and used anti-GAL4 and anti-GFP 
antibodies for immunoprecipitation experiments. Anti-GFP 
antibodies detected DNMT1-GFP in anti-GAL4 immunopre-
cipitations but not in control anti-HA immunoprecipitations, 
suggesting that GAL4BD-LSH and DNMT1-GFP interact 
with each other (Fig. 5A, top panel). In similar experiments we 
found that GAL4DB-LSH and DNMT3B-GFP cotransfected 
into DNMT313 KO cells also coimmunoprecipitate (Fig. 5A, 
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FIG. 5. The coiled-coil TRD domain of LSH interacts with DNMTs. (A) GAL4BD-LSH coimmunoprecipitated with GFP-DNMT1 when both 
proteins were coexpressed in DNMT1 KO cells. We could detect only about 20% of GFP-DNMT1 in the immunoprecipitations (IF) with 
anti-GAL4131) antibodies. GAL4BD-LSH coimmunoprecipitated more efficiently with GFP-DNMT3B when both proteins were coexpressed in 
DNMT3B KO cells. WB, Western blot. (B) GAL.4BD-LSH(1-333) protein, containing the coiled-coil TRD domain of LSH, coimmunoprecipitates 
with GFP-DNMTI and GFP-DNMT3B from extracts of DNMT1 and DNMT3B KO cells, respectively. Anti-HA antibodies (mock immunopre-
cipitation) were used as a control. 
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DNMT1 and the N terminus of DBMT3B on nuclear extracts of HCT116 and KO cell lines. Note that a truncated form of DNMT1 is detectable 
in DNMTI KO (Dl K02) cells as well as in DNMTI/DNMT3B DKO (DKOI) cells, while a second DKO cell line (DKOS) expresses full-length 
DNMTI. DNMT3B is detectable only in HCT116 and DNMT1 K02 cells. In the top panel, the full-length and the truncated DNMTIs are 
indicated with arrowheads. The asterisks indicate nonspecific bands that serve as loading controls. (B) Anti-LSH antibodies efficiently immuno-
precipitate LSH from nuclear extracts of HCTI 16 and KO cells. In identical anti-LSH immunoprecipitations (IP), DNMT313 immunoprecipitates 
with LSH from HCTI 16 and DNMT1 KO extracts, indicating that the N terminus of DNMT1 is not required for the interaction of DNMT3B with 
LSH. In contrast, DNMTI coimmunoprecipitates with LSH only from HCTI 16 cells, suggesting that the presence of DNMT3B mediates the 
recruitment of DNMTI to LSH. 

bottom panel). Consistent with our reporter assays, when we 
cotransfected the cells with the coiled-coil TRD domain of 
LSH and either DNMTI-GFP or DNMT3B-GFP, we could 
detect LSH(1-333) coimmunoprecipitating with each of the 
two DNMTs (Fig. SB). These experiments clearly demonstrate 
that the TRD of LSH is necessary and sufficient for the inter-
action of LSH with DNMT1 and DNMT3B in vivo. 

DNMT3B is required for the recruitment of DNMT1 to 
LSH. As the luciferase reporter assays and eoimmunoprecipi-
tation experiments described above relied on overexpression of 
tagged proteins, we next examined whether the endogenous 
LSH interacts with DNMTs in HCT116, DNMT1, and 
DNMT3B KO cells. In agreement with other studies (6, 37), an 
antibody against the C terminus of DNMT1 detected a trun-
cated DNMT1 protein in nuclear extracts of DNMT1 KO and 
DNMT1/DNMT3B DKO1 cells compared to the wild-type 
HCT116 and DNMTI/DNMT3B DK08 cells (Fig. 6A, top 
panel). As observed by others, the truncated DNMTI protein 
was significantly more abundant in one of the DKO cell lines 
(DKO1) than in the KO cell line, where DNMT1 was barely 
detectable (Fig. 6A, top panel). We did not detect DNMT3B 
protein either in DNMT3B KO or in any of the two DKO cell 
lines (Fig. 6A, bottom panel). We further used extracts from 
four of these cell lines, HCT116, DNMT1 KO, DNMT3B KO, 
and DKO1, to immunoprecipitate LSH and asked whether 
DNMT1 and DNMT3B could be detected in LSH immuno-
precipitations (Fig. 613, top panel). DNMT3B was present in 
anti-LSH immunoprecipitations from HCT116 cells, as ex-
pected, but it was also detectable in anti-LSH immunoprecipi-
tations from DNMTI KO cells (Fig. 613, middle panel). How-
ever, DNMTI coimmunoprecipitated with LSH only from 
extracts of wild-type HCT116 cells and not from extracts of 
DNMT3B KO or DKO1 cells (Fig. 613, bottom panel). These 
results indicate that DNMT1 does not efficiently interact with 
LSH in the absence of DNMT3B (Fig. 6A). On the other hand,  

the presence of DNMT1 may not be required for the interac-
tion of DNMT3B with LSH, given that approximately equal 
amounts of DNMT3B coimmunoprecipitate with LSH from 
HCT116 and DNMT1 KO cells expressing a truncated 
DNMTI that does not contain the DNMT3B interaction do-
main (Fig. 3A and 6A). Taken together with the reporter 
luciferase assays, these immunoprecipitation experiments sug-
gest that LSH may exist in a complex with DNMT3B with or 
without DNMTI. However, an LSH complex containing 
DNMTI, HDAC1, and HDAC2 must also include DNMT3B. 

DNMT3B directly binds to LSH, while DNMT1 and HDACs 
do not. To explore whether any of the proteins that coimmu-
noprecipitate with LSH bind to LSH directly, we expressed and 
purified from E. coli two GST-tagged recombinant LSH 
polypeptides, designated LSH-N and LSH-C (Fig. 7A). LSH-N 
contains amino acids 1 to 503 of LSH and includes the N-
terminal coiled-coil and the SNF2 domain. LSH-C corre-
sponds to amino acids 248 to 883 and includes the SNF2 
domain and the remainder of the LSH C terminus. We used 
these two proteins bound to glutathione-Sepharose beads or a 
control GST-GFP protein to pull down HA-tagged DNMT1 
(amino acids 1 to 1125) and full-length DNMT3B in vitro 
translated in rabbit reticulocyte lysate. Neither LSH-N nor 
LSH-C could bind DNMT1 in these assays (Fig. 713). In con-
trast, LSH-N but not LSH-C or GFP efficiently pulled down 
DNMT3B (Fig. 713). As DNMT1 and DNMT3B are known to 
bind each other (17) and LSH did not coimmunoprecipitate 
with DNMT1 from extracts of DNMT313-deficient cells, we 
asked whether LSH-N would be able to pull down DNMT1 
when DNMT3B was present. To investigate this, we added 
increasing amounts of recombinant DNMT3B expressed and 
purified from insect cells to reticulocyte lysate containing in 
vitro-translated DNMT1 (Fig. 7C, bottom panel). We could 
detect increasing amounts of DNMTI being pulled down by 
GST-LSH-N only when the baculovirus-produced DNMT3B 
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HDAC2, and HCAC3. (E) GST-HDAC1 and GST-HDAC2 pull down in vitro-translated DNMT1 but not DNMT3B or LSH. 

was present (Fig. 7C). Consistent with our coimmunoprecipi-
tation assays, these experiments imply that DNMT313 directly 
binds to the N terminus of LSH, while the interaction of 
DNMT1 with LSH in vitro and in vivo requires, the presence of 
DNMT3B. 

In order to examine whether HDAC1 and HDAC2 could 
directly bind to LSH, DNMT1, or DNMT313, we expressed 
GST-tagged full-length HDAC1, HDAC2, and, as a control, 
HDAC3 in E. co/i and bound them to glutathione-Sepharose 
(Fig. 7D). We next used the Sepharose-bound HDAC proteins 
to pull down in vitro-translated HA-tagged DNMT1(1_1125), 
full-length DNMT3B, and Myc-tagged LSH (Fig. 7E). In 
agreement with previous reports, we could detect DNMT1 
bound to HDACI and HDAC2 but not to FIDAC3 (Fig. 7E, 
top panel). However, neither DNMT3B nor LSH was pulled 
down by GST-HDAC1, -2, or -3 (Fig. 7E, middle and bottom 
panels). These in vitro experiments are consistent with our 
reporter assays and coimmunoprecipitation results suggesting 
that DNMT1 recruits HDAC1 and HDAC2 to the LSH-bound 
DNMT3B (Fig. 8). 

DISCUSSION 

The plant SNF2 family protein DDM1 and its mammalian 
homolog LSH were initially identified as proteins essential for 
the establishment of DNA methylation in vivo (5, 16). DDM1-
deficient plants and mice with targeted disruption of the Lsh 
gene develop with dramatically reduced levels of methylated  

cytosine within their genomes and are defective in silencing of 
various transposable elements and a few specific genes (7, 12, 
19). In mice, lack of Lsh is not essential for embryonic devel-
opment but leads to postnatal death (5). Cytological studies 
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FIG. 8. A model of how the LSH-associated protein complex acts 
to repress transcription. Our experiments are consistent with a model 
where DNA-bound LSH recruits a complex that includes DNMT3B, 
DNMT1, HDAC1, and HDAC2. LSH-associated HDACs remove 
acetyl groups (Ac) from histone tails, generating deacetylated chro-
matin incompatible with transcriptional activation. LSH does not di-
rectly interact with DNMT1 and HDACs but requires DNMT3B for 
the assembly of the repressive complex. On the other hand, HDAC1 
and HDAC2 require both DNMT1 and DNMT3B for association with 
the LSH complex. The order of these interactions explains why in cells 
expressing N-terminally truncated DNMT1, which does not bind 
DNMT3B, or in cells lacking DNMT3B, LSH-mediated repression is 
disrupted. 
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and experiments with ES cells have shown that although Lsh is 
present together with DNMT1 at replication foci during late S 
phase, Lsh is dispensable for maintenance of DNA methyl-
ation on replicating episomal plasmids (42, 45). It was further 
found that Lsh coimmunoprecipitates with de novo methyl-
transferases Dnmt3a and Dnmt3b and that cells treated with 
Lsh small interfering RNA have reduced de novo DNA meth-
ylation (45). Taken together, these studies led to the conclu-
sion that Lsh is involved primarily in de novo DNA methyl-
ation but is dispensable for the maintenance of DNA 
methylation during DNA replication. 

Despite the important role of Lsh in supporting efficient 
DNA methylation in mammalian cells, very little is known 
about how this protein interacts with the DNA methylation 
machinery. This lack of information may be due to difficulties 
in identifying proteins that interact with Lsh. Indeed, based on 
the observed molecular mass of the native LSH calculated 
from biochemical fractionation experiments, we found that the 
vast majority of the nuclear pool of LSH in human and mouse 
cells appears to consist of free monomeric LSH. Therefore, 
purification of a low-abundance LSH complex by traditional 
chromatography methods would not have been feasible. Addi-
tionally, we observed that the full-length LSH had a strong 
repressive effect when recruited to the promoters of reporter 
genes in yeast, further complicating the use of yeast two-hybrid 
screens for identification of LSH-interacting partners. Taking 
advantage of our discovery that LSH behaved as a transcrip-
tional repressor in mammalian cells as well as in yeast, we used 
luciferase reporter assays as a tool to determine which region 
of LSH mediates transcriptional repression and to identify 
proteins that interact with LSH in vivo. By recruiting truncated 
LSH polypeptides to GAL binding sites upstream of the lucif-
erase reporter gene driven by the TK promoter, we found that 
the N-terminal coiled-coil domain of LSH spanning amino 
acids I to 226 was necessary and sufficient for transcriptional 
silencing of the reporter. Therefore, it seemed plausible that 
this region of LSH, which we designated the TRD, interacts 
with corepressor proteins that modify chromatin into a tran-
scriptionally nonpermissive state. 

As LSH-mediated silencing of the luciferase reporter was 
sensitive to the deacetylase inhibitor TSA, we performed co-
immunoprecipitation assays and found that two HDACs, 
HDAC1 and HDAC2, interact with LSH in vivo. Further, in 
vitro experiments revealed that neither HDAC1 nor HDAC2 
directly binds to LSH, suggesting that they are recruited to 
LSH by other proteins. Given the previous reports that LSH 
coimmunoprecipitates with de novo DNMTs from extracts of 
mouse cells, we examined whether transcriptional silencing of 
the luciferase reporter required the presence of DNMTs. In 
human colorectal carcinoma HCTII6 cells with targeted dis-
ruption of the DNMT3B gene (DNMT3B KO I) as well as cells 
expressing low levels of N-terminally truncated DNMT1 pro-
tein (DNMT1 K02), we observed a significant reduction of 
LSH-mediated repression, indicating that these two DNMTs 
could be involved in the recruitment of HDAC1 and HDAC2 
to LSH. Our further experiments confirmed that LSH does not 
coimmunoprecipitate with HDACs from extracts of DNMT3B 
KO1 and DNMT1 K02 cells. We also observed that the en-
dogenous LSH as well as GAL4BD-tagged LSH coimmuno- 

precipitated with DNMT1 and DNMT3B from extracts of 
HCT1I6 cells. 

It has been previously reported that both DNMT1 and 
DNMT3B interact with HDAC1 and HDAC2 in vitro and in 
vivo (9, 10, 32). Therefore, it was possible that DNMT1 and 
DNMT3B bind to LSH independently of each other and pro-
mote the recruitment of HDACs to LSH-targeted chromatin. 
However, we found that although LSH coimmunoprecipitated 
with DNMT3B from DNMT1 KO cells, it did not interact with 
HDACs or the truncated DNMTI in these cells and was un-
able to silence the luciferase reporter. Taken together, our 
data suggest that DNMTI-bound HDAC1 and HDAC2 are 
recruited to LSH indirectly via DNMT3B (Fig. 8). Our in vitro 
pull-down experiments further support the in vivo reporter 
assays and coimmunoprecipitation data. Interestingly, we ob-
served that when DNMT1 was overexpressed in DNMT3B KO 
cells, it could, to some extent, rescue the transcriptional re-
pression of luciferase reporter mediated by GAL4BD-LSH. As 
DNMT1 does not directly bind to LSH, it is possible that the 
recruitment of DNMTI to LSH may occur via DNMT3A or 
some other protein. However, the first possibility seems un-
likely, since we did not detect DNMT3A protein in any of the 
HCT116 wild-type or KO cell lines except DKO cells (not 
shown). Given that overexpression of DNMT3B in DNMT1 
KO cells transfected with GAL4DB-LSH also reduced the 
expression of the luciferase reporter by about 30%, it is pos-
sible that DNMT3B can either function in transcriptional re-
pression independently of the truncated DNMT1 or, to some 
extent but not very efficiently, interact with the C terminus of 
DNMT1. The second interpretation seems plausible, since the 
N-terminal portion of DNMT1(1-1125) did not fully rescue 
LSH-mediated repression in DNMT1 KO cells compared to 
the full-length DNMTI. 

In summary, we have investigated whether and how LSH 
interacts with the DNA methylation machinery in human cells 
and found that the LSH-associated complex contains at least 
four proteins: DNMT3B, DNMT1, HDAC1, and HDAC2. We 
show that GAL413D-mediated targeting of LSH to a TK pro-
moter driving the expression of a reporter gene results in 
transcriptional silencing, which is dependent upon the recruit-
ment of HDACs via DNMT3B and DNMT1. However, tran-
scriptional repression and recruitment of DNMTs did not im-
mediately result in DNA methylation, as bisulfite sequencing 
did not detect methylated CpGs at TK promoter sequences 4 
days after GAL4BD-LSH and the reporter plasmid were co-
transfected into cells (see Fig. S3 in the supplemental mate-
rial). These observations are consistent with previous reports 
that DNA methylation follows rather than precedes transcrip-
tional silencing established by negative transcriptional regula-
tors, including chromatin-related mechanisms (23, 40). Thus, 
although LSH protein serves as a scaffold for assembly of the 
DNMT/HDAC complex, the primary function of the LSH 
complex may not be to methylate DNA but to establish 
deacetylated inactive chromatin. Transcriptional repression 
caused by deacetylation of historic tails by LSH-interacting 
HDAC1/2 can be viewed as an initial and, perhaps, reversible 
step in LSH-mediated heterochromatin formation. A longer-
term association of LSH with specific loci and a persistently 
high local concentration of DNMT1 and DNMT3B may result 
in methylation of CpGs at these loci. The kinetics of DNA 
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methylation induced by the LSH-associated complex requires a 
more detailed investigation. Nevertheless, experiments with 
unmethylated episomal plasmids capable of replicating in 
mammalian cells indicate that Lsh-facilitated DNA methyl-
ation was observed weeks after the plasmids were introduced 
into these cells (45). Taken together, these data suggest that 
LSH cooperates with DNMTs and HDACl/2 to act as a gen-
eral transcriptional repressor in mammalian cells. 

In mouse cells, Lsh as well as DNMT1 and DNMT3B are 
required for DNA methylation of pericentromeric major sat-
ellite repeats. Yan et al. have reported that in Lsh-deficient 
mouse embryonic fibroblasts, H3K4 dimethylation, a histone 
modification associated with transcriptionally permissive chro-
matin, accumulates at normally heterochromatic, Lsh-bound 
and H3K4-depleted pericentromeric sequences (43). Our ex-
periments provide a mechanistic explanation for the observed 
increase of histone acetylation and other positive histone mod-
ifications at pericentric heterochromatin and other loci in 
Lsh' 	cells (41, 43). 

It is still unclear whether and how LSH and/or the LSH-
associated DNMT complex is recruited to chromatin to estab-
lish transcriptionally silenced chromatin and DNA methylation 
at specific loci. One could also envision that LSH continuously 
scans chromatin for regions that challenge the processivity of 
DNMT enzymes. How LSH recruitment is related to func-
tional states of chromatin and what makes certain loci pre-
ferred targets for LSH would be intriguing questions to answer. 
Based on observations in plants that DNA methylation of 
transposable elements and related tandem repeats is depen-
dent on small interfering RNA and DDM1, it has been sug-
gested that small interfering RNA may guide DDM1 to establish 
heterochromatin at specific genomic locations (19). However, this 
proposed model still awaits experimental proof in both plants and 
in animal cells. 

Thus far our preliminary experiments indicate that LSH 
binds to DNA and to linker DNA regions of reconstituted 
chromatin more efficiently than either DNMT3B or DNMT1 
(data not shown) (27, 31). It is possible to envision that the 
binding properties of the LSH complex as a whole are deter-
mined by the additive affinities of individual proteins, i.e., LSH, 
DNMTs, and HDACs, for DNA and/or histones. In vitro re-
constitution of the LSH complex and further investigation of 
how this complex interacts with nucleosomal DNA in vitro and 
in vivo may provide interesting insights. 
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