
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429731514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


F O R M A L I S I N G C RY P T O G R A P H Y U S I N G C RY P T H O L

david thomas butler

Doctor of Philosophy
School of Informatics

University of Edinburgh
2020



David Thomas Butler: Formalising Cryptography using CryptHOL c© 2020



A B S T R A C T

Security proofs are now a cornerstone of modern cryptography. Provable security
has greatly increased the level of rigour of the security statements, however proofs of
these statements often present informal or incomplete arguments. In fact, many proofs
are still considered to be unverifiable due to their complexity and length. Formal
methods offers one way to establish far higher levels of rigour and confidence in
proofs and tools have been developed to formally reason about cryptography and
obtain machine-checked proof of security statements.

In this thesis we use the CryptHOL framework, embedded inside Isabelle/HOL,
to reason about cryptography. First we consider two fundamental cryptographic
primitives: Σ-protocols and Commitment Schemes. Σ-protocols allow a Prover to
convince a Verifier that they know a value x without revealing anything beyond that
the fact they know x. Commitment Schemes allow a Committer to commit to a chosen
value while keeping it hidden, and be able to reveal the value at a later time. We first
formalise abstract definitions for both primitives and then prove multiple case studies
and general constructions secure. A highlight of this part of the work is our general
proof of the construction of commitment schemes from Σ-protocols. This result means
that within our framework for every Σ-protocol proven secure we obtain, for free, a
new commitment scheme that is secure also. We also consider compound Σ-protocols
that allow for the proof of AND and OR statements. As a result of our formalisation
effort here we are able to highlight which of the different definitions of Σ-protocols
from the literature is the correct one; in particular we show that the most widely
used definition of Σ-protocols is not sufficient for the OR construction. To show our
frameworks are usable we also formalise numerous other case studies of Σ-protocols
and commitment schemes, namely: the Σ-protocols by Schnorr, Chaum-Pedersen, and
Okamoto; and the commitment schemes by Rivest and Pedersen.

Second, we consider Multi-Party Computation (MPC). MPC allows for multiple
distrusting parties to jointly compute functions over their inputs while keeping their
inputs private. We formalise frameworks to abstractly reason about two party security
in both the semi-honest and malicious adversary models and then instantiate them
for numerous case studies and examples. A particularly important two party MPC
protocol is Oblivious Transfer (OT) which, in its simplest form, allows the Receiver
to choose one of two messages from the other party, the Sender; the Receiver learns
nothing of the other message held by the sender and the Sender does not learn which
message the Receiver chose. Due to OTs fundamental importance we choose to focus
much of our formalisation here, a highlight of this section of our work is our general
proof of security of a 1-out-of-2 OT (OT1

2 ) protocol in the semi-honest model that relies
on Extended Trapdoor Permutations (ETPs). We formalise the construction assuming
only that an ETP exists meaning any instantiations for known ETPs only require one to
prove that it is in fact an ETP — the security results on the protocol come for free. We
demonstrate this by showing how the RSA collection of functions meets the definition
of an ETP, and thus show how the security results are obtained easily from the general

iii



proof. We also provide proofs of security for the Naor Pinkas (OT1
2 ) protocol in the

semi-honest model as well as a proof that shows security for the two party GMW
protocol — a protocol that allows for the secure computation of any boolean circuit.
The malicious model is more complex as the adversary can behave arbitrarily. In this
setting we again consider an OT1

2 protocol and prove it secure with respect to our
abstract definitions.

iv



P U B L I C AT I O N S

All of this thesis has been published in the papers listed below. While the papers
below contain authors that are not David Butler he is the main, and first author, on all
the publications associated with this thesis.

Peer Reviewed Conferences and Journals:

• David Butler, David Aspinall, and Adrià Gascón. 2017. How to Simulate It in
Isabelle: Towards Formal Proof for Secure Multi-Party Computation. In ITP
(Lecture Notes in Computer Science), Vol. 10499. Springer, 114–130.

• David Butler, David Aspinall, and Adrià Gascón. 2019. On the Formalisation of
Σ-Protocols and Commitment Schemes. In POST (Lecture Notes in Computer
Science), Vol. 11426. Springer, 175–196.

• David Butler, David Aspinall and Adrià Gascón. Formalising Oblivious Transfer
in the Semi-Honest and Malicious Model in CryptHOL. In: CPP. ACM, 2020, pp.
229–243.

Under review in the Journal of Automated Reasoning:

• David Butler, Andreas Lochbihler, David Aspinall and Adrià Gascón, Formalis-
ing Σ-Protocols and Commitment Schemes using CryptHOL, Cryptology ePrint
Archive, Report 2019/1185, 2019.

Archive of Formal Proof:

• David Butler and Andreas Lochbihler, Sigma Protocols and Commitment Schemes,
Archive of Formal Proof, 2019.

• David Butler and David Aspinall, Multi-Party Computation, Archive of Formal
Proof, 2019.

v





A C K N O W L E D G M E N T S

My PhD has been a wonderful journey and I am sad it has ended. Along the way, I
have had lots of much-needed support, guidance and friendship.

Firstly I would like to thank my supervisors, David Aspinall and Adrià Gascón,
for supporting me throughout my PhD and giving me the freedom to work on the
problems I found most interesting. Moreover you have given me the chance to meet
and work with many other fantastic people. Thank you.

Much of the work I have done would not have been possible without Andreas
Lochbihler. Andreas, I have very much enjoyed working together, I have learnt so
much from our interactions and I am indebted to you for the time you have spent on
our collaboration. My only regret is we did not work together sooner!

I would also like to thank Markulf Kohlweiss, with whom I have had many dis-
cussions fleshing out the low level details of “simple” paper proofs. Markulf, your
understanding of how to “decode” a cryptographic proof majorly helped me on my
way!

I am also incredibly grateful to Ewen Denney for giving me the chance to work
with the Intelligent Systems Division at NASA Ames Research Center in the summer
of 2018. And to Iain Whiteside for all that I have learned while we worked together
there, and since.

To my friends at the Turing, often we have had little academically in common
but your friendship and advice has in its own way contributed to this thesis greatly:
Thibaut, FX, Alex, Daniel and more, thank you.

Outside of my academic work, I would like to thank those who have made the
last years full of entertainment and competition on the Fives court: in particular Sam,
Theo, Matt, you are all legends.

Lastly, I would like to thank my family. Whilst my research is most likely still a
mystery to them they have always been there to listen to my worries and provide
encouragement.

vii





C O N T E N T S

1 preliminaries 3

1.1 Motivation for the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Provable security, MPC, Σ-protocols and Commitment Schemes . . . . . 4

1.3 Theorem Proving and Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Σ-protocols , commitment schemes and mpc 11

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Game-based proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Simulation-based proofs . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 One time pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Σ-protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Compound constructions for Σ-protocols . . . . . . . . . . . . . . 17

2.3 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Commitments from Σ-protocols . . . . . . . . . . . . . . . . . . . 24

2.4 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Defining Semi-Honest Security . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Defining Malicious Security . . . . . . . . . . . . . . . . . . . . . . 31

3 introduction to isabelle and crypthol 33

3.1 Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Isabelle Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 CryptHOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Formalisation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Method of formalisation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Polynomial Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Concrete vs. asymptotic security . . . . . . . . . . . . . . . . . . . 40

i formalising Σ-protocols and commitments

4 Σ-protocols 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Formalising the definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Differences in the definitions of Σ-protocols . . . . . . . . . . . . 48

4.3 Σ-protocol instantiations and constructions . . . . . . . . . . . . . . . . . 50

4.3.1 Compound Σ-protocols . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 The Schnorr Σ-protocol . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Chaum-Pedersen Σ-protocol . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Okamoto Σ-protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 commitment schemes 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Formalising Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . 67

5.3 The Rivest Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . 69

6 commitments from Σ-protocols 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



x contents

6.2 Constructing Commitment Schemes from Σ-protocols . . . . . . . . . . 73

6.2.1 Formalising the construction . . . . . . . . . . . . . . . . . . . . . 74

6.3 Instantiating the General Result . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 The Pedersen Commitment Scheme . . . . . . . . . . . . . . . . . 77

6.3.2 Instantiating the security parameter for the Pedersen Commit-
ment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Other instantiations and conclusion . . . . . . . . . . . . . . . . . . . . . 80

ii formalising multi-party computation

7 semi-honest security 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Formalising Semi-Honest Security . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Deterministic functionalities . . . . . . . . . . . . . . . . . . . . . 85

7.2.2 Non-Deterministic Functionalities . . . . . . . . . . . . . . . . . . 88

7.2.3 Equivalence to EasyCrypt Definitions . . . . . . . . . . . . . . . . 90

7.3 1-out-of-2 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.1 ETP based OT1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.2 Naor-Pinkas OT1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 GMW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 A protocol that realises OT1
4 . . . . . . . . . . . . . . . . . . . . . . 111

7.4.2 The GMW protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.3 Formalising Secret Sharing . . . . . . . . . . . . . . . . . . . . . . 117

7.4.4 Secret sharing for the GMW . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Secure Multiplication Protocol . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5.1 Formalising the protocol . . . . . . . . . . . . . . . . . . . . . . . . 122

8 malicious security 125

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Formalising the definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 A protocol realising OT1
2 in the malicious setting . . . . . . . . . . . . . . 129

8.3.1 Formally proving OT1
2 secure in the malicious setting . . . . . . . 130

9 conclusion 139

9.1 Related work and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.1.1 MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.1.2 Σ-protocols and commitment schemes . . . . . . . . . . . . . . . 140

9.1.3 Extending this work . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2 Appeal to two communities . . . . . . . . . . . . . . . . . . . . . . . . . . 141

bibliography 143



D E C L A R AT I O N

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except as
specified.

February 2020

David Thomas Butler





1
P R E L I M I N A R I E S

In this chapter we first motivate this thesis by providing evidence for the need to
formalise cryptography. We then informally introduce the two areas whose intersection
this thesis lies in, namely: cryptography (in particular provable security) and theorem
proving.

1.1 motivation for the thesis

Since the emergence of provable security (we discuss what we mean by this in Section
1.2), security proofs have become a cornerstone of modern cryptography. Provable
security allows for reduction based security arguments and has greatly increased the
level of rigour of the security statements compared with the oftentimes informal and
intuitive arguments given previously. The authority of such proofs, however, has been
questioned [46] partially due to the proofs often presenting informal or incomplete
arguments. In fact, many proofs are still considered to be unverifiable [42], or as
Bellare and Rogaway remarked [11]:

In our opinion, many proofs in cryptography have become essentially
unverifiable. Our field may be approaching a crisis of rigor.

A classic and well cited example of provable security failing the cryptographic com-
munity is the OAEP (Optimal Asymmetric Encryption) scheme that was introduced
by Bellare and Rogaway in 1994 along with a reductionist security proof [10]. As a
result of this work the scheme was included in the SET (Secure Electronic Transaction)
electronic payment standard of MasterCard and Visa. However in 2000 Shoup found a
flaw in the proof of security [70] that he proved could not be fixed.

Proofs of security are often long, complex and technical. This, combined with the
often insufficient review process (the community tends to publish in conferences
rather than journals), can often lead to problems. Moreover, due to the nature of the
work, these problems oftentimes have dire consequences.

Many solutions have been proposed, attempting to alleviate provable security of
its problems. For example structuring proofs and security properties into games or
simulations have had some success in "taming the complexity" [71] of proofs. Such
structures include game-based proofs [11, 71] where the adversary is challenged by
a benign entity to output some knowledge it can only gain by somewhat breaking
the desired security property, Canetti’s universal composibility (UC) framework [26]
whereby a protocol is secure if it can be simulated in an ideal environment and
Maurer’s constructive cryptography [55] a similar paradigm for proving security that
allows for abstract theorems to be proven at an abstract level and inherited by lower
level instantiations if the corresponding postulated axioms are met.

The approaches listed above provide a more formal footing for provable security.
However Halevli’s call for increased rigour [42] highlighted that machine checked

3



4 preliminaries

proofs would be desirable to cryptographers to further reduce the problems associated
with provable security. Formal, machine checked proof would expel any intuitive
or informal arguments as well as reduce mistakes. The work contained in this the-
sis attempts exactly this, to provide fully machine checked proofs for public key
cryptography.

We believe machine checked proof goes a long way in increasing the confidence
of security proofs. There have been successes already; CryptoVerif [12], CertiCrypt
[5], EasyCrypt [6], FCF [64] and CryptHOL [8, 50] are all tools that have been used to
formalise various cryptographic constructions; from concrete constructions such as
ElGamal encryption or Searchable Symetric Encryption (SSE) to instances of general
frameworks such as UC and Constructive Cryptography. In this thesis we add to
the literature of formal proofs by considering the fast growing area of MPC and two
important low level primitives Σ-protocols and Commitment Schemes.

1.2 provable security, mpc , Σ-protocols and commitment schemes

Like many areas of research the idea of provable security has evolved over time and
there is not one obvious original text. Here we give a flavour of what is meant by this
notion in the context of our work, and then introduce the areas of cryptography we
concern ourselves with.

Provable security refers to defining properties pertaining to the security of cryp-
tographic constructions and then providing proof that such constructions meet the
definitions. More formally, an adversary model is constructed whereby the adversary
is given some powers, for example, we might assume the adversary has access to
certain parts of a system or can read or query certain encryptions. We also assume the
adversary is feasible i.e. it runs in polynomial time. Using the adversary model one
can define the desired security requirements. These usually take the form of requiring
the adversary cannot do something, for example, guess which message was encrypted.

At the heart of provable security is the reduction argument — often used to prove
a security property is satisfied. Informally a reduction based proof is constructed as
follows: if an adversary can break the security property then, we show we can feasibly
construct a new adversary that can break a known hard problem. Thus we have shown
that breaking security is at least as hard as breaking a hard problem H. In this instance
we say we have reduced the security to H. We comment now on the concept of hard
problems and how they relate to our work.

Hard problems — for example the so called factoring problem or discrete log problem —
lie at the heart of modern cryptography. In particular, hard problems form the basis of
the one way functions that cryptographic constructions are often based on. The problem
then is simple; if one can be certain that the problem is indeed hard and therefore that
the underlying function is indeed one way then we have security. In fact much of the
cryptographic research is focused on this and many would argue the equivalence of
such a proof, showing the invertability of the underlying one way function, to a proof
of security. However, many of the weaknesses of cryptographic constructions, in the
real world, have not been on the underlying one way function but on the surrounding
construction — the protocol. It is this latter question concerning the security of the
protocol that we are most interested in here. We do need to reason about the underlying



1.3 theorem proving and isabelle/hol 5

one way function or hard problem, but we do not consider how hard it is to invert —
we only consider a reduction to it.

In this work we take inspiration from the improvements made to the way paper
proofs are structured (as discussed in Section 1.1), along with the call for the use of
formal methods made by Halevi and consider the formalisation of Multi-Party Com-
putation (MPC), Σ-protocols and Commitment Schemes all of which are fundamental
to modern cryptography.

MPC aims to provide protocols for mutually distrusting parties who wish to jointly
compute functions over their inputs while keeping their inputs private. Work on
MPC can be traced to Yao [74] where he posed and proposed the first solution to the
problem. Initially MPC was considered an intellectual curiosity among cryptographers.
However, advances in the last decade and improvements in efficiency and increased
demand due to data protection regulations and industry needs mean it is now starting
to be deployed in the real world. For example, it has been used for auctioning [19],
secure email filtering and teleconferencing [47] and private statistical computation,
e.g., using Sharemind [18]. It is this potential large scale implementation of MPC that
heightens the need to examine it under the lens of formal verification.

Commitment Schemes and Σ-protocols are both two party primitives that are
fundamental to modern cryptography. Commitment schemes allow for a party (the
committer) to commit to a chosen message without revealing what the message is (the
hiding property) and then reveal it at a later time in such a way that the other party is
convinced that the committer has not changed the message that was committed to
(the binding property).

Σ-protocols, on the other hand, are run between a Prover and a Verifier. The idea is
that the Prover is able to convince a verifier that they know a value x without revealing
anything beyond the fact they know x. They provide a baseline for Zero-Knowledge
Proofs as they provide the Zero-Knowledge property (the Verifier learns nothing
except that the Prover knows x) if the Verifier is honest.

Both Commitment Schemes and Σ-protocols are used extensively as building blocks
for larger protocols. In particular, they are often used in MPC protocols, allowing
the protocols to prevent parties from cheating by holding them to account. In fact
both these primitives are used in converting MPC protocols secure in the semi-honest
model (a weaker adversary model) to protocols that are secure in the malicious
model (a stronger adversary model). It is in this way we see our study of MPC, and
Commitment Schemes and Σ-protocols being used in the future. We discuss this in
more detail in the Conclusion in Section 9.1.3.

1.3 theorem proving and isabelle/hol

In layman’s terms theorem proving is the process of getting computers to prove theorems,
either automatically, or by the human interacting with the machine and coding a proof.
More precisely theorem proving allows the proof of mathematical statements, that
are stated using a formal logic, using a proof language. Proofs resulting from theorem
proving come with a degree of correctness far beyond that of a traditional paper proof.



6 preliminaries

In this work we use the proof assistant Isabelle/HOL1 [59]. Isabelle/HOL is written
in Standard ML and provides an implementation of Higher-Order-Logic (HOL). At the
heart of Isabelle is a small trusted kernel [40] that implements the HOL proof axioms
(rules) and the simply typed λ-calculus. These proof rules are used to decide if a term
should be a theorem or not — a theorem is only accepted if it has been constructed
using the proof rules. In this way all theorems are reduced to the small trusted kernel
thus it is only implementation errors in the kernel (a few thousand lines of code that
has been thoroughly scrutinized) that could result in false theorems being accepted.

Having, hopefully, convinced the reader of the robustness of theorem proving in
Isabelle we move to highlight three reasons we believe Isabelle is a suitable and strong
environment to work in. The first is the level of automation available. The sledgeham-
mer tool [13] reduces the workload for the whole spectrum of Isabelle users: it points
beginners to theorems they did not know existed, and often surprises experienced
users by the proofs it can provide. To quote Paulson et al. [62] Sledgehammer "is now
seen as indispensable".

The second aspect of Isabelle we highlight is the Isar proof language and in particular
Wenzel’s Isar language of structured proofs [73]. A common issue with proof assistants
is that the proof scripts produced are incomprehensible to any human other than the
author (and as time goes on they usually become incomprehensible to the author too!).
Again to quote Paulson et al. [62]:

‘The problem with these traditional approaches is that somebody looking
at a machine proof can have no idea what is being proved at a given point:
it is like playing blindfold chess.’

The idea behind Isar is to hierarchically structure the proof and prove local goals us-
ing local assumptions. In essence the proof can be split up into parts and consequently
become considerably more readable and efficient. For example one can use the Isar
language to prove an iff statement as follows [58]:

show P←→ Q

proof

assume P
...

show Q 〈proof 〉
next

assume Q
...

show P 〈proof 〉
qed

Due to the nature of our proofs — proving relationships between probabilistic
programs — we find the Isar proof structure very useful. For example, if we wanted

1 Throughout we refer to Isabelle/HOL or Isabelle, in both cases we mean the same thing.



1.4 outline of thesis 7

to prove that the probabilistic programs A1 and An are equal the proof would be
structured as follows, where A2, . . . , An−1 are intermediate probabilistic programs we
define and use in the proof. The Isar proof allows us to chain our reasoning in a neat,
readable way. In particular, even if the proofs of the validity of the individual steps in
the overall proof are not accessible to the non-expert, the effect of each step on the
original program A1 can be seen easily.

show A1 = An

proof

have A1 = A2 〈proof 〉
also have . . . = A3 〈proof 〉
also have . . . = A4 〈proof 〉
...

also have . . . = An−1 〈proof 〉
ultimately show thesis 〈proof 〉

qed

Finally we highlight the Isabelle distribution [45] and the Archive of Formal Proofs
(AFP) [3]. The distribution comes equipped with about 750,000 lines of Isabelle/HOL
theory covering basic (and not so basic) mathematics and computer science. This
means one can pick up Isabelle and use many lemmas and theorems out the box.
The automation helps here as finding the useful statements from the distribution can
often be challenging, even with the search methods Isabelle offers. Complementing
the Isabelle/HOL distribution is the AFP. The AFP comprises of a large collection of
proof theories that have been developed by the Isabelle community. It is common that
for a conference or journal publication, where the formalisation has been completed in
Isabelle, a corresponding AFP entry will also be published. Submissions are reviewed
before entry to the AFP. Statistics regarding the AFP are available online [3], at the
time of writing (February 2020) there are: 518 entries from 342 authors with over
141,000 lemmas and nearly 2,500,000 lines of code. One main benefit of the AFP is that
it is not a static environment. For each Isabelle release there is a corresponding AFP
release, meaning that all AFP entries work with the current Isabelle release making it
easy to build on work that is in the AFP.

All the work presented in this thesis is available in the AFP [20, 24].

1.4 outline of thesis

Here we outline the contents of each chapter. After presenting the preliminary material
we split the main body of the thesis into two parts, the first concerning Σ-protocols
and Commitment Schemes and the second concerning MPC.

At the end of the section we depict our contributions in Figures 1.1 and 1.2.

chapter 2 : Σ-protocols , commitment schemes and mpc



8 preliminaries

Here we introduce the relevant security definitions and primitives we consider
throughout the rest of the thesis. Specifically we introduce the simulation-based
definitions of security for MPC and the game based definitions for Σ-protocols and
commitment schemes — the definitions for Σ-protocols have a flavour of simulation
too. Throughout the section we provide example protocols and detailed low level
proofs.

chapter 3 : isabelle and crypthol

In this chapter we introduce Isabelle/HOL and CryptHOL. In introducing CryptHOL
we focus on the parts we use heavily in our work. We also outline our workflow from
formalising a set of security properties to instantiating them for protocols in CryptHOL
and discuss how we deal with the security parameter in our work.

part i : formalising Σ-protocols and commitments

chapter 4 : Σ-protocols

In this chapter we first show how we formalise Σ-protocols before considering
multiple instantiations. We consider compound AND and OR statements for Σ-
protocols and then the Σ-protocols due to Schnorr [68], Chaum-Pedersen [27] and
Okamoto [61]. The AND and OR constructions allow us to leverage the module system
in Isabelle to produce proofs at a general level, assuming only that the underlying
Σ-protocols exist. Our work here allows us to highlight the correct definition of
Σ-protocols from the many in the literature. We take time to discuss the different
definitions of Σ-protocols given in the literature and how we are able to select the
correct one.

chapter 5 : commitment schemes

Here we formalise a framework to reason about the security of commitment schemes
and show how it can be instantiated for the Rivest commitment scheme. The Rivest
scheme uses a trusted initialiser to distribute co-related randomness to each party
and thus is not of the form of a standard commitment scheme. We also prove the
Pedersen commitment scheme secure however this is done from the general proof
of the construction of commitment schemes from Σ-protocols in Chapter 6. We do,
however, provide a proof of the Pedersen commitment scheme from scratch in our
formalisation to compare the difference in proof effort; the proof from scratch consists
of about 500 lines of proof whereas the proof we detail in the Chapter 6 comes in
about 20 lines of proof.

chapter 6 : commitment schemes from Σ-protocols

We combine our work in the previous two chapters to formalise the construction of
commitment schemes from Σ-protocols. We provide the proof of the construction at an
abstract level (like in the AND and OR constructions of Σ-protocols), assuming only



1.4 outline of thesis 9

that the underlying Σ-protocol exists. Using this we instantiate for the Σ-protocols we
consider, namely the Schnorr, Chaum-Pedersen and Okamoto protocols. In this thesis
we focus on the instantiation of the Schnorr Σ-protocol with the general proof as this
yields the Pedersen commitment scheme.

part ii : formalising multi-party computation

chapter 7 : semi-honest security

This chapter first details our formalised framework for semi-honest security in the
two party setting. We instantiate our framework for various MPC protocols. First
we consider 1-out-of-2-OT (OT1

2 ): we formalise an OT1
2 constructed from a general

Extended Trapdoor Permutation (ETP) [48] and then show how this proof can be
instantiated for the RSA collection of functions (a known ETP). Second we consider
the Naor-Pinkas OT1

2 [57], a protocol that is widely used in the real world. Next, we
build on this work in a modular way to show the two party GMW [39] protocol secure.
Finally, we consider a secure multiplication protocol. This protocol uses a trusted
initialiser, showing some of the flexibility of our framework.

chapter 8 : malicious security

Here we detail our formalised framework to consider malicious security in the two
party setting. We then instantiate our framework to prove an OT1

2 protocol [44] secure.
The proof shows how the malicious setting is considerably more complex than the
semi-honest setting.

chapter 9 : conclusion

We summarise our work in this thesis and discuss its limitations. We also consider
related work and discuss how our work fits into the literature.

contributions We summarise the contents and contribution of this thesis in
the following diagrams, Figures 1.1 and 1.2. Figure 1.1 outlines for our formalisation
on Commitment Schemes and Σ-protocols and Figure 1.2 details our formalisations
for MPC. We reproduce these diagrams in part in the relevant chapters of the thesis.
In the diagrams solid arrows represent proofs of concrete protocols; the arrows
end at the instantiated framework. The double arrow (Figure 1.1) represents our
formalisation of the general construction of commitment schemes from Σ-protocols,
and the corresponding commitment schemes from our instantiated Σ-protocols whose
security statements come for free due to the general proof. We highlight one of these
in particular in the Figure with the dotted arrow as the instantiation of the Schnorr Σ-
protocol under the general construction yields the well known Pedersen commitment
scheme — the other instantiated proofs for the Σ-protocols we consider are captured
by the double arrow representing the general proof and are not shown explicitly.



10 preliminaries

Σ-protocol defs
(Section 4.2)

Commitment
Scheme defs
(Section 5.2)

Chaum-Pedersen
(Section 4.3.3)

Schnorr
(Section 4.3.2)

Okamoto
(Section 4.3.4)

OR-Σ
(Section 4.3.1)

AND-Σ
(Appendix 4.3.1.2)

Rivest
(Section 5.3)

Pedersen
(Section 6.3.1)

(Section 6.2)

Figure 1.1: An outline of the formalisation of Σ-protocols and Commitment Schemes in this
thesis.

2-PC defs Secret Sharing defs

OT1
2 from ETPRSA

ETP defs OT1
2 defs

NP OT1
2

OT1
4 defs

OT1
4 from OT1

2

Secure Mult

GMW from OT1
4

2-PC defs

OT2
1

Malicious AdversariesSemi-Honest Adversaries

Figure 1.2: An outline of the formalisation of MPC in this thesis.



2
Σ - P R O T O C O L S , C O M M I T M E N T S C H E M E S A N D M P C

In this chapter we introduce the three areas of cryptography we study in this thesis.
We bias the presentation of material to that which is relevant for our work; this is not
a complete introduction to the three areas.

We provide the definitions we require for the rest of this thesis as well as examples of
protocols that realise the definitions. Also, in the case of Σ-protocols and commitment
schemes we show the general constructions we consider later in the thesis — namely
compound Σ-protocols and the construction of commitment schemes from Σ-protocols.
We provide detailed proofs of all examples and constructions in this chapter to allow
the reader to gain an in depth understanding of why the definitions are met. For
completeness, we reintroduce these constructions and some of the examples briefly
later in the thesis when we formalise them. This section, however, is intended as the
main reference for the rest of the thesis.

We make one comment regarding the security parameter. The security parameter
provides a measure of how hard it is to break a cryptographic scheme, and can be
increased and decreased depending on the required level of security. Typically the
security parameter determines the hardness of the underlying computational problem
of the scheme or protocol, for example if the security relied on the discrete log problem
(considered over a cyclic group) then the security parameter would determine the
size of the cyclic group over which the protocol was run. Often however the security
parameter is assumed to be implicit in the definitions, depending on the particular
paper definition. When introducing MPC we include the security parameter explicitly,
this is because nearly every modern presentation of the definitions does this [37,
48]. On the other hand, definitions for Σ-protocols and commitment schemes often
do not explicitly present the security parameter, thus, here we do not rely on it to
match the paper proofs. We explain how we deal with the security parameter in our
formalisation in Section 3.3.3.

We formalise all the definitions and examples given here, along with more case
studies in the remaining parts of this thesis.

2.1 preliminaries

In this section we introduce some notions we rely on in the rest of the chapter.

2.1.1 Game-based proofs

Security games are used to "tame complexity" [71] of security proofs. Our main use
for security games are in defining security for commitment schemes. In this case the
security games we consider can be considered as pseudo protocols played between
the Committer and the Verifier. One of the parties is controlled by an adversary and
the other is the challenger. Consider the hiding game (depicted later in Figure 2.3).

11



12 Σ-protocols , commitment schemes and mpc

In this instance the Committer is the challenger and the Verifier the adversary; the
keys are distributed and the adversary asked to output two messages of its choosing.
The Committer picks one of the messages at random (flips a coin with outcome b)
and constructs its commitment. The adversary is required to output its guess (b′) as
to which message was committed and wins the game if it guesses correctly. More
generally the definition of security with respect to a security game is tied to an event
E (in the hiding game this is b = b′). Security requires that the probability that E
occurs close to some target probability (this is 1

2 for the hiding property). The difference
between the probability of the event E occurring and target probability is called the
advantage of the adversary. Intuitively, security is achieved if this advantage is small.

The game-based approach allows the cryptographer to be more formal in their rea-
soning about security properties. In particular games afford the opportunity to provide
rigorous proofs of security. A proof is generally structured as follows: let G0, . . . , Gn

be a sequence of games where G0 is the original security game and Gn is a game
where the target probability is met. In the proof one shows that |Pr[Gi]− Pr[Gi+1]| is
small and thus the value of |Pr[G0]− Pr[Gn]| is also small. This is sometimes called
the "game hopping" technique.

2.1.2 Simulation-based proofs

Simulation-based proofs consider the real-ideal world paradigm. This method is used
to define security for MPC. The ideal world is constructed to be secure by definition.
For example the ideal world may employ a trusted party to do some computation. To
define security the real world must be indistinguishable from the ideal world.

To reason about indistinguishability the concept of computational indistinguish-
ablity is used. We take the definition from [49], adapting it only for our input type.
We note that in [49] Lindell takes inputs of type bitstring, we have inputs of arbitrary
types.

Definition (informal) 1. A probability ensemble X = {X(a, n)} is an infinite sequence
of random variables indexed by input a and security parameter n. X and Y are said to be
computationally indistinguishable, X

c≡ Y, if for every non-uniform polynomial-time algorithm
D there exists a negligible function µ such that for every a and n we have,

|Pr[D(X(a, n)) = 1]− Pr[D(Y(a, n)) = 1]| ≤ µ(n).

A function is negligible if it approaches 0 faster than any inverse polynomial as n
grows.

In general the simulation-based method allows security properties of protocols
to be captured, whereas the game-based method is used to capture the security of
primitives with games designed for each security property.

2.1.3 One time pad

Many of the properties we prove rely on the idea of a one time pad. A one time pad
provides perfect security in the sense that it totally masks a secret value.



2.2 Σ-protocols 13

Consider a cyclic group G with generator g and a secret value c ∈ G. If we sample

x $←− Z|G|, then the distributions on c · gx and gx are equal. That is an adversary
will learn nothing about c by seeing c · gx, assuming the randomness x is not used
elsewhere. Here x is the one time pad.

2.2 Σ-protocols

Σ-protocols are a two party primitive run between a Prover and a Verifier. They allow
the Prover to convince the Verifier they have some knowledge, x, without leaking
anything information about x. They provide a baseline for Zero-Knowledge protocols
as they require the Verifier to be honest.

In 1996 Cramer [29] introduced the abstract notion of a Σ-protocol, coined the
term Σ-protocol, and gave the definitions of the properties we consider here. He also
developed a rich theory of Σ-protocols that goes beyond what we formalise in this
work. The idea, however, of a Σ-protocol was conceived before this. The first efficient
Σ-protocol was introduced by Schnorr [68] in 1989 — we give this protocol in Example
1 and formalise it in Section 4.3.2.2.

Σ-protocols are a fundamental two party primitive that allow a Prover to convince
a Verifier that they know a value x without revealing anything beyond the fact they
know x. They could be considered the precursor or baseline of Zero Knowledge proofs
— Σ-protocols however provide weaker security guarantees as the Verifier is required
to act honestly. The consequence of this limitation is that Σ-protocols are usually far
more efficient than Zero Knowledge proofs. An analogy can be drawn between this
setting and the simulation based setting we will see in section 2.4: Σ-protocols lie in
the semi-honest setting as we require the Verifier to follow the protocol whereas Zero
Knowledge lies in the malicious setting as the Verifier is allowed to behave arbitrarily.

In introducing Σ-protocols and their properties we follow Damgård [31], Hazay and
Lindell [44] and Cramer [29].1

A Σ-protocol is considered with respect to a relation R. If (h, w) ∈ R then h is
considered an instance of a computational problem where w is the witness or solution
to the problem. For example consider the discrete log relation which is considered
over a group G with generator g. We say w is a witness to h ∈ G if the following
relation holds.

(h, w) ∈ RDL ⇐⇒ h = gw (2.1)

The discrete log relation is widely used in cryptography as for certain groups (e.g
Z∗p and elliptic curves over finite fields) it is considered a hard relation, that is, it is
computationally infeasible to obtain the witness w from h.

Any relation, R, gives rise to a language LR = {h. ∃w. (h, w) ∈ R} that consists of
statements in R. That is, for a statement h to be in LR there must exist a witness w
such that (h, w) ∈ R.

1 It turns out that Damgård [31] and Hazay and Lindell’s definitions[44] are too weak. Our definition of a
Σ protocol in Definition 3 therefore includes Cramer’s additional requirements. A detailed discussion
can be found in section 4.2.1.



14 Σ-protocols , commitment schemes and mpc

A Σ-protocol is a three move protocol run between a Prover (P) and a Verifier (V)
where h is common public input to both P and V and w is a private input to P such
that (h, w) ∈ R.

Definition (informal) 2. A Σ-protocol has the following three part form:

Prover Verifier
(a, r)← initial a−−−−−−−−−−−−→ a

e e←−−−−−−−−−−−− e← challenge

z← response z−−−−−−−−−−−−→ z

accepts/rejects

That is: first the Prover sends an initial message a which is created using randomness r
(sampled by the Prover), second the Verifier sends a challenge e and finally the Prover sends a
response, from which the Verifier decides if it will accept or reject the proof.

A conversation for an execution of a Σ-protocol is the transcript of the protocol —
the tuple (a, e, z). The conversation is said to be accepting if the tuple corresponds to
the outputs of the three moves in the protocol and the Verifier accepts the response z.

There are three properties that are required for a protocol of the above form to be a
Σ-protocol. The definition we provide is an extended version of Damgård [31] and
Hazay and Lindell’s definitions[44], the extension is in the HVZK property (Condition
2). This property is required by Cramer [29], but as far as we know is only ever
described in informal text in his work.

Definition (informal) 3. Assume a protocol, π, of the above form is run between P and V.
Then π is a Σ-protocol for a relation R if the following properties hold:

• Completeness: if P and V follow the protocol on public input h and private input w such
that (h, w) ∈ R, then V always accepts.

• Special soundness: there exists a polynomial time adversary, A, such that when given a
pair of accepting conversations (on public input h) (a, e, z) and (a, e′, z′) where e 6= e′

it can output w such that (h, w) ∈ R.

• Honest Verifier Zero-Knowledge (HVZK): The following conditions must hold.

1. There exists a polynomial-time simulator S that on input h (public input) and e
(a challenge) outputs an accepting conversation (a, e, z) with the same probability
distribution as the real conversations between P and V on input (h, w). That is for
all h and w such that (h, w) ∈ R and every e we have

{S(h, e)} = {〈P(h, w), V(h, e)〉}

where {S(h, e)} is the output distribution of the simulator and
{〈P(h, w), V(h, e)〉} denotes the distribution of the output transcript of an execu-
tion of the protocol between P and V.



2.2 Σ-protocols 15

2. For h /∈ LR the simulator S(h, e) must nevertheless output an accepting conversa-
tion (a, e, z).

Completeness provides a notion of correctness for the protocol, that is if the protocol
is executed honestly then the Verifier will accept. The intuition for the special sound-
ness property is that if a Prover can respond correctly to two different challenges then
it can also compute the witness, meaning it is infeasible for a Prover to cheat a Verifier
— that is, the Prover cannot convince the Verifier when a witness is not known. The
HVZK property ensures that no information about the witness is leaked during the
execution of the protocol. The first condition resembles definitions from Multi-Party
Computation (MPC) where the real view (the real conversation generated by the
Prover and Verifier) can be simulated without the private input (the witness). Condi-
tion 2 is not commonly included in literature definitions. We show is it required as it
ensures the OR construction of Σ-protocols satisfies completeness. Condition 2 deals
with the case where h /∈ LR, we note however there must still be a ‘type’ restriction on
h, for example if the Σ-protocol requires h to be a group element then this restriction
still applies — without it the definition would not be type correct. In our formalisation
we ensure this by introducing a predicate valid-input, we do not introduce this here as
sublties like this are rarely formulated in informal (paper) definitions.

Next we give an example of a Σ-protocol, namely the Schnorr Σ-protocol.

Example 1. The Schnorr protocol uses a cyclic group G with generator g and considers the
discrete log relation which on public input h requires the witness to be the discrete log of h in
G so h = gw. The protocol is run as follows.

Prover Verifier
(h, w) h

r $←− Z|G|

a← gr initial msg: a
−−−−−−−−−−−−→ a

challenge: e
←−−−−−−−−−−−− e $←− Z|G|

z← (w · e + r) mod |G|
response: z

−−−−−−−−−−−−→ z

check: a · he = gz

accepts or rejects

Here we use $←− to denote a uniform sampling and← to denote assignment.
It is easy to see the protocol has the required three phase form to satisfy Definition 2. The

Prover holds (h, w) such that h = gw and the Verifier holds only h. The initial message sent
by P to V is a uniformly sampled group element and the challenge is uniformly sampled from
the field of size |G|— it is important that the challenge is constructed honestly by the Verifier
as this is an assumption on the security properties of Σ-protocols (the Verifier cannot act
maliciously). The response is constructed by P as z = (w · e + r) mod |G| and sent to V who
accepts or rejects based on whether a · he = gz.

Theorem 1. The Schnorr protocol is a Σ-protocol.

Proof. We must prove the three properties required for Σ-protocols: completeness,
special soundness and HVZK.



16 Σ-protocols , commitment schemes and mpc

completeness Completeness can be seen by the following string of equalities:
a · he = gr · (gw)e = gr+w·e = gz.

special soundness Given two accepting conversations (a, e, z) and (a, e′, z′) a
witness can be extracted by taking w = ( z−z′

e−e′ ) mod |G|. This can be seen as follows:
we have a · he = gz and a · he′ = gz′ , as both conversations are accepting. Rearranging
this and using the fact h = gw we find w = ( z−z′

e−e′ ) mod |G|. (We note it is important
that the challenges e and e′ are distinct, otherwise w is undefined — luckily distinct
challenges is a requirement of the special soundness property.) Finally we must check
the given adversary runs in polynomial time. This is clearly the case as it only performs
elementary operations on the inputs it receives.

honest verifier zero knowledge We claim following the simulator is suffi-
cient to show HVZK. The simulator is given public input h and challenge e as inputs
and is constructed as follows:

1. z $←− Z|G|

2. a← gz · h−e

3. output (a, e, z)

We now consider the two parts of the HVZK definition:

1. We claim the output of the simulator is equivalent to the output of a real
execution of the protocol. This is easily seen by observing that the real output is
{gr, e, gw·e+r} and the simulated output is {gz−w·e, e, gz}. If we let r′ = z− w · e
and substitute it into the simulated output we get {gr′ , e, gw·e+r′}, if z is uniformly
sampled then so is r′ hence the distributions are equal. Moreover the simulator
clearly runs in polynomial time.

2. Recall for Condition 2 we still require h ∈ G. Using this we can realise the proof
in two ways. First, if h /∈ L the simulator still outputs an accepting conversation.
In particular we have a · he = gz · h−e · he = gz. Second, we note there is a
contradiction if h ∈ G and h /∈ L as G is a finite cyclic group, in particular no
h /∈ L exists2.

Thus we have shown the Schnorr Σ-protocol meets the three components of the
definition of a Σ-protocol.

The intuition behind constructing the simulator for the HVZK property is to work
backwards. We would like the response to leak no information about w, so let us
pick it uniformly at random and then try to reconstruct the initial message. If we
sample z uniformly from the field and then set a = gz · h−e we can show the resulting
conversation gives a distribution equal to the output conversation distribution of a
real execution of the protocol.

2 This contradiction will arise for all discrete log based relations



2.2 Σ-protocols 17

Prover Verifier
(w0, w1), (x0, x1) (x0, x1)

(a0, r0)← initial0

(a1, r1)← initial1
(a0, a1)−−−−−−−−−−−−→ (a0, a1)

e e←−−−−−−−−−−−− e← challenge

z0 ← response0

z1 ← response1
(z0, z1)−−−−−−−−−−−−→ (z0, z1)

checks (a0, e, z0), (a1, e, z1) are valid

accepts/rejects

Figure 2.1: The AND construction for Σ-protocols.

The HVZK property may appear to make Σ-protocols be too weak to be practically
useful, however it turns out that such protocols can be used as building blocks in
constructions that are indeed secure against malicious Verifiers.

2.2.1 Compound constructions for Σ-protocols

The theory of Σ-protocols can be extended to allow for compound statements of
multiple relations. In particular we consider OR and AND statements with respect
to two Σ-protocols Σ0 and Σ1. The OR construction allows a Prover to prove that
given two inputs x0, x1 they know w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1 hold.
Analogously the AND construction allows the Prover to prove that they know (w0, w1)

such that both (x0, w) ∈ R0 and (x1, w) ∈ R1 hold. We show both the constructions
next; the components of the respective underlying Σ-protocols are denoted with
subscript 0 and 1 respectively (e.g., the algorithm that generates the initial messages
and randomness for the Σ-protocol for R0 is denoted as initial0)

2.2.1.1 The AND construction

The AND construction is the simpler of the two constructions. The relation we consider
is as follows:

((x0, x1), (w0, w1)) ∈ RAND ⇐⇒ (x0, w0) ∈ R0 ∧ (x1, w1) ∈ R1 (2.2)

The intuition is that the two Σ-protocols are run in parallel; if the Prover knows the
witness for both public inputs then they are able to respond correctly to challenges
with respect to both underlying Σ-protocols. We sketch the protocol below in Figure
2.1.3

We highlight that the challenge must be compatible for both protocols. In practice
it would be a bitstring, in our formalisation we generalise to run the protocol over

3 We say sketch as we do not provide the inputs to the various algorithms as we have not formally defined
them yet. We introduce the protocol more formally in Figure 4.3.



18 Σ-protocols , commitment schemes and mpc

any boolean algebra. We are able to make this generalisation as the only non trivial
property we require in the proofs is the one time pad property, which we prove for a
boolean algebra. This is the same for the OR construction.

Theorem 2. The AND construction given in Figure 2.1 is a Σ-protocol.

Proof. The protocol clearly has the correct three part form required in Definition 2. We
consider the three properties we require from Definition 3 in turn.

completeness The two conversations (a0, e, z0) and (a1, e, z1) are accepting conver-
sations for their respective Σ-protocols as they are formed using the initial, challenge
and response algorithms from the corresponding underlying Σ-protocols. Thus the
proof of completeness comes from the underlying completeness properties.

special soundness We construct a special soundness adversary using the spe-
cial soundness adversaries of the underlying Σ-protocols to output the respective
witnesses.

honest verifier zero knowledge We can simulate the conversations by
combining the simulators for the respective Σ-protocols. When the inputs are not in
the respective languages we know the simulator still outputs an accepting conversation
by the second HVZK property on the underlying simulators.

2.2.1.2 The OR construction

The OR construction is more complex. The relation we consider is as follows:

((x0, x1), w) ∈ ROR ⇐⇒ (x0, w) ∈ R0 ∨ (x1, w) ∈ R1 (2.3)

The intuition for the protocol is that the Prover is asked to prove complete two
instances of the protocol, one for x0 and one for x1. For the xi for which the Prover
knows w the Prover can complete the Σ-protocol as in real life, and for the other
case the Prover can simulate the protocol. The protocol is given in Figure 2.2. Here b
denotes the Σ-protocol for which the Prover knows the witness.

Theorem 3. The OR construction given in Figure 2.2 is a Σ-protocol.

Proof. The protocol clearly has the correct three part form required in Definition 2. We
consider the three properties we require from Definition 3 in turn.

completeness The conversation generated by the simulator is valid by the HVZK
property of R1−b. We must use both properties of the HVZK property to cover the
cases where x1−b ∈ L1−b and x1−b /∈ L1−b. In either case the conversation is accepting.
The conversation generated by the real execution of the Σ-protocol for Rb produces an
accepting conversation by the completeness property of the Σ-protocol for Rb.



2.3 commitment schemes 19

Prover Verifier
(x0, x1), w (x0, x1)

(rb, ab)
$←− initialb

e1−b
$←− challenge

(a1−b, e1−b, z1−b)
$←− Sb(x1−b, e1−b)

initial msg: (a0, a1)−−−−−−−−−−−−→ (a0, a1)

s
challenge: s

←−−−−−−−−−−−− s $←− challenge

eb = s⊕ e1−b

zb ← responseb
response: (e0, z0, e1, z1)−−−−−−−−−−−−→ (e0, z0, e1, z1)

checks s = e0 ⊕ e1 and

(a0, e0, z0), (a0, e0, z0) are valid

Figure 2.2: The OR construction for Σ-protocols. Here b is the relation for which the witness
holds. That is (xb, w) ∈ Rb. Sb is the simulator for the HVZK property for Σb.

special soundness We construct the special soundness adversary to call the
special soundness adversary of the Σ-protocol for which the witness is required. We
know this exists by the special soundness property of the Σ-protocol for Rb.

honest verifier zero knowledge The real execution of the protocol can be
simulated by running the simulator for both relations. The HVZK property follows
from the HVZK property of Rb.

2.3 commitment schemes

Commitment schemes were first introduced by Blum [14] and Even [34] in 1981. The
problem Blum proposed was that of coin flipping by telephone; how do Alice and
Bob flip a coin via telephone? Blum proposed commitments to solve such a problem:
Alice calls the coin flip and commits to her call, Bob then flips the coin and reveals the
result upon which Alice reveals the value she committed to so Bob can verify her call
matches her commitment. If Alice’s call matches the coin flip she wins. A commitment
scheme, run between a Committer and Verifier, has the following structure.

Definition (informal) 4. A commitment scheme has the following three part form:



20 Σ-protocols , commitment schemes and mpc

(ck, vk)← key

Committer Verifier
(challenger) (adversary)

ck vk

(m0, m1)
(m0, m1)←−−−−−−−−−−−− (m0, m1)← A(vk)

b $←− {0, 1}
(c, d)← com(ck, mb)

c−−−−−−−−−−−−→ c

b′ ← A(c)
Adversary wins if b = b′

Figure 2.3: The hiding game played between the Committer (the challenger) and the adversary
(the Verifier).

Prover Verifier
m

Key Gen

ck ck←−−−−−−−− (ck, vk)← key vk−−−−−−−−→ vk

Commitment
(c, d)← com(ck, m)

c−−−−−−−−→ c

Verification
d, m−−−−−−−−→ b← ver(vk, c, m, d)

That is: first the keys for each party are generated in the key generation phase. Often, like in the
Pedersen commitment scheme ck = vk thus they can be created by one of the parties and sent
to the other. In the Rivest commitment scheme, however, each party receives private keys from
a trusted initialiser. The above description (and our formalisation) allows for both cases. In the
commitment phase the committer outputs the commitment c and an opening value d, which
is sent to V in the verification phase. C sends c to V. Finally, in the verification phase the
verifier takes the verification key, commitment, original message and opening value as input
and outputs a boolean depending on whether the verification is successful.

The three properties we want from a commitment scheme are correctness, hiding
and binding.

Definition (informal) 5 (Correctness). A commitment scheme is said to be correct if
whenever the protocol is run honestly between C and V, then V will always accept in the
verification phase for all messages that can be committed.

To define the hiding and binding properties, cryptographers consider two security
games that are played between an adversary and a benign challenger. Games are
used to tame complexity [71] of security proofs. The security games we consider can
be considered as pseudo protocols played between the Committer and the Verifier,
where one of the parties is controlled by an adversary and the other is the challenger.
Consider the hiding game depicted in Figure 2.3. Here the Committer is the challenger



2.3 commitment schemes 21

and the Verifier the adversary; the keys are distributed and the adversary asked to
output two messages of its choosing. The Committer picks one of the messages at
random and constructs its commitment. The adversary is required to output its guess
as to which message was committed and wins the game if it guesses correctly. More
generally the definition of security with respect to a security game is tied to an event E
(in the hiding game this is b = b′), security requires that the probability that E occurs
close to some target probability (this is 1

2 for the hiding property) — the difference
between the probability of the event E occurring and target probability is called the
advantage of the adversary. Intuitively security is achieved if this advantage is small.

To define the hiding property we consider the algorithm which plays out the hiding
game from Figure 2.3. Informally the algorithm, hid-game, is as follows where A is the
adversary playing against the challenger:

1. (ck, vk)← key

2. (m0, m1)← A(vk)

3. b $←− {0, 1}

4. (c, d)← com(ck, mb)

5. b′ ← A(c)

6. return b = b′

Definition (informal) 6 (Hiding). The hiding advantage is defined for all polynomial-time
adversaries, A, as

hid-adv(A) = |Pr[hid-game(A) = 1]− 1
2
|

The scheme is said to be perfectly hiding if for all adversaries, A, we have

hid-adv(A) = 0.

The scheme is said to be computationally hiding if for all computationally bounded adversaries,
A, the advantage value hid-adv(A) is negligible. 4

Analogously to the hiding property we define the binding property with respect to
the binding game which is depicted in Figure 2.4. The informal algorithm for playing
the binding game (bind-game) with adversary A, is as follows:

1. (ck, vk)← key

2. (c, m, d, m′, d′)← A(ck)

3. checks m 6= m′

4. b← ver(vk, c, m, d)

4 Computational bounds and negligibility are typically used in asymptotic security statements. There, all
definitions are parametrised by a security parameter η and an adversary’s run-time must be bounded by
a (polynomial) function of η. Then, the advantage is negligible if it approaches 0 faster than any inverse
polynomial as the security parameter grows.



22 Σ-protocols , commitment schemes and mpc

(ck, vk)← key

Committer Verifier
(adversary) (challenger)

ck vk

(c, m, d, m′, d′)← A(ck)
(c, m, d, m′, d′)
−−−−−−−−−−−−→ (c, m, d, m′, d′)

checks m 6= m′

b← ver(vk, c, m, d)

b′ ← ver(vk, c, m′, d′)

Adversary wins if both b, b′ are true and m 6= m′

Figure 2.4: The binding game played between the challenger (the Verifier) and the adversary
(the Committer).

5. b′ ← ver(vk, c, m′, d′)

6. return b′ ∧ b

Intuitively the challenger asks the adversary to output two messages (m, m′) and
corresponding opening values (d, d′) for the same commitment c. If the adversary can
achieve this such that both messages (and corresponding opening values) verify then
the adversary (the Committer) is not bound to the original message they commit to.

Definition (informal) 7 (Binding). The binding advantage is defined for all polynomial-time
adversaries, A, as

bind-adv(A) = Pr[bind-game(A) = 1]

The scheme is said to be perfectly binding if for all adversaries, A, we have

bind-adv(A) = 0.

The scheme is said to be computationally binding if for all computationally bounded adversaries,
A, the advantage bind-adv(A) is negligible.

We revert back to our coin flipping example to give some intuition regarding these
properties. In the example Alice is the Committer and Bob the Verifier. Firstly we want
the scheme to be correct, that is if both parties run the commitment protocol in the
prescribed way then the Verifier will always be convinced in the verification phase.
Secondly, we do not want Bob to be able to learn anything about Alice’s call (what
she commits to) from the commitment itself — we want the commitment to be hiding.
Finally we do not want Alice to be able to decommit to a different call of the coin flip
from the one she committed to, that is we want her commitment to be binding.

We next give an example of a commitment scheme, the Pedersen commitment
scheme [63] provided by Pedersen in 1991.

Example 2. The Pedersen commitment scheme is run using a cyclic group of prime order G
with generator g.



2.3 commitment schemes 23

pk $←− G

Committer Verifier

Commitment

d $←− Zq

c← gd · pkm c−−−−−−−−−−−−→ c

Verification
(m,d)−−−−−−−−−−−−→ (m, d)

checks c = gd · pkm

accepts / rejects

It can be easily seen the protocol has the desired form required in Definition 4. We next prove
the protocol meets the definitions of a commitment scheme.

Theorem 4. The Pedersen scheme given above is a commitment scheme.

Proof. We address the three properties: correctness, hiding and binding in turn.

correctness If the protocol is run honestly the Verifier will always accept in the
verification phase. This is seen trivially as the Verifier explicitly checks the value of c.

hiding We show perfect hiding for the Pedersen commitment scheme. An adver-
sary playing the hiding game receives the commitment, c = gd · pkmb , of one of the two
messages they choose (m0, m1). We show the commitment they receive reveals no in-
formation about the message mb. This is seen as the distribution over the commitment
is the same as returning a uniform sample from the group. That is, the distribution
over gd · pkmb is equal to the distribution over gd when d is uniformly sampled — this
is due to the one time pad property.5 Therefore the hiding game is equivalent to the
adversary receiving back gd and having to guess which message was used to make the
commitment. Clearly as gd does not depend on mb the adversary must guess, giving
them a 1

2 chance of guessing correctly and winning the game. Consequently perfect
hiding holds.

binding To prove the protocol is binding we show a reduction to the discrete log
problem. In particular, we show if an adversary can win the binding game then we
can construct an efficient adversary that beats the discrete log problem — it is able to
find the discrete log of pk. Let (c, m, d, m′, d′) be the output from the adversary in the
binding game. Let us also assume both messages and opening values correspond valid

commitments to c, that is c = gd · pkm and c = gd′ · pkm′ . Using this we have pk = g
d−d′

m−m′ .
This is well defined as we know m 6= m′ as it is a requirement on the output of the
adversary in the binding game. Therefore we have shown we can construct an efficient
adversary that can output the discrete log of pk — d−d′

m−m′ — which is assumed to be a
hard problem, thus our reduction holds.

5 In our formal proof we must prove this is in fact a one time pad, however here we do not provide a
proof as it is considered a well known result.



24 Σ-protocols , commitment schemes and mpc

2.3.1 Commitments from Σ-protocols

Σ-protocols and commitment schemes are strongly related. Damgård [31] showed
how Σ-protocols can be used to construct commitment schemes that are perfectly
hiding and computationally binding and thus showed how these two fundamental
cryptographic primitives are linked. The construction works as follows.

Consider a relation R for a Σ-protocol such that gen generates h and w such
that R(h, w) is satisfied. Using a Σ-protocol for the relation R we can construct
the commitment scheme given below. The only restriction is the committer must
commit to a message m that is a possible challenge. We denote this space by the set
challenge-space. In reality this does not pose any restriction on m than any standard
commitment scheme where, for example, we may require m to be in the group G, as
in the Pedersen commitment scheme. In the key generation phase the Verifier runs
the generation algorithm, (h, w)← gen and sends h to the Committer. To commit to
a message e the Committer runs the simulator on their key h and e; that is they run
(a, e′, z) ← S(h, e) and then send a to the Verifier and keep e′ and z as the opening
values. In the verification stage the Prover sends e′ and z to the Verifier who uses the
check algorithm of the Σ-protocol to confirm that (a, e′, z) is an accepting conversation,
with respect to the public input h. The protocol is seen in the diagram below.

Committer Verifier
e ∈ challenge-space

Key Gen

h h←−−−−−−−−−−−− (h, w)
$←− gen

Commitment

(a, e′, z)← S(h, e) a−−−−−−−−−−−−→ a

Verification
(e′, z)

−−−−−−−−−−−−→ e′, z

checks (a, e′, z)

accepts/rejects

Theorem 5. The scheme constructed from a Σ-protocol, shown above, is a commitment scheme.

Proof. As usual we treat the three properties in turn.

correctness The protocol is correct as the simulator is equal to the real view
when its inputs are in the relation, this is by the first condition of the HVZK property
of Σ-protocols. We know the real view always outputs an accepting conversation by
completeness of the Σ-protocol and thus the commitment scheme will always accept.

hiding For this construction we show perfect hiding. We must show the commit-
ment, that is a outputted in (a, e′, z) ← S(h, e), is independent of the message being
committed, e. By the HVZK property we know the simulated conversation is equal



2.4 multi-party computation 25

to a real conversation and in the real conversation we know that the initial message
a (in this case the commitment) is generated independently of the challenge as it
is constructed before the challenge. Thus the adversary in the hiding game must
guess which message has been committed to based on a which is independent of the
message (the challenge), therefore the adversary can at best win the hiding game with
probability 1

2 .

binding The binding property follows from the special soundness property of
the Σ-protocol; if the Committer could output the commitment a and opening values
(e, z) and (e′, z′) such that both (a, e, z) and (a, e′, z′) are both accepting conversations
then by the special soundness property there exists an adversary that can output the
witness w which contradicts the assumption on the relation being hard.

This construction allows for a new commitment scheme for every Σ-protocol that
is proved secure. In fact under this construction the Schnorr Σ-protocol given in
Example 1 gives a variant of the Pedersen commitment scheme given in Example 2.
This construction was first shown by Damgård [32] in 1989.

2.4 multi-party computation

The goal of MPC is to allow mutually distrusting parties to compute a joint function
of their inputs, while only revealing the output of the function and nothing of their
respective inputs. Work on MPC can be traced to Yao [74] in 1981 where he posed
and proposed the first solution to the problem. The problem posed by Yao was the
millionaires problem: three millionaires are having lunch and they decide the richest
among them will pay the bill but do not want to directly reveal their wealth to each
other. Let us assume there are three millionaires: they want to compute the function
Fwealth(x, y, z) = max(x, y, z) while keeping their inputs to the function — their wealth
— private. This example highlights an important point, even if they engage in MPC
they will all learn something, namely who is the most wealthy as this is the output
of the function. But they should learn no more. This scenario can be generalised for
parties to have multiple inputs and potentially where different outputs get sent to
different parties. In this work we only consider the two party setting.

MPC is realised by parties engaging in a protocol. When considering two party
protocols the property we require of an MPC protocol is that of input privacy. Archer
et al. [2] informally describes this:

The information derived from the execution of the protocol should not
allow any inference of the private data held by the parties, bar what is
inherent from the output of the function.

The theoretic results on MPC are strong. Any function that can be represented as a
boolean or arithmetic circuit can be computed under MPC. In general there are two
techniques to achieve MPC, we describe them here in the two party setting.

The first, introduced by Yao in the oral presentation of his paper in 1986 [75], are so
called Garbled Circuits. Here one party, the garbler, garbles (a randomised encoding)
the circuit representing the function and encrypts their inputs and sends both the



26 Σ-protocols , commitment schemes and mpc

encrypted input and circuit to the other party, the evaluator. The evaluator then
employs oblivious transfer to learn the encrypted values of their inputs and evaluates
the circuit to obtain the encrypted outputs. The two parties communicate to decrypt
the output.

The second technique is that of secret sharing and the GMW style protocols [39].
Here the parties first share their inputs with each other so they each hold part of
each input — to share a bit x a party would randomly sample a bit a and compute
b = x⊕ a and send b to the other party. Then the parties use their shares to compute
the gates in the circuit, after the computation of each, gate each party will hold a share
of the output of the gate — the protocol will specify how the parties are to compute
each gate using their respective shares. After computing the whole circuit together
the parties will each hold a share of the output. They then reconstruct the output by
combining their shares. To reconstruct the example sharing scheme earlier the two
parties simply xor their shares, x = a⊕ b.

There are two standard adversary (corruption) models we consider in MPC. The
first, weaker model, is the semi-honest model. Here we assume parties do not deviate
from the protocol, that is they are honest in executing the protocol transcript. This
may appear to be a weak adversary model however it provides a strong baseline for
security. Protocols that are secure in the semi-honest model can often be extended to
be secure in the malicious model. The semi-honest model is best employed when it is
in the parties interest to participate honestly in the protocol. For example, consider
two hospitals who want to compute a function over their patient records. The law
likely states that they cannot pass the data to each other in the clear to compute the
function as the data is sensitive, therefore the hospitals must take privacy preserving
measures. In this situation MPC could be used, and in particular an MPC protocol
that provides semi-honest security would suffice.

The second, stronger security model is the malicious model. Here parties are assumed
to be fully corrupted and thus behave arbitrarily. This model is much stronger than
the semi-honest model however requires more computation and overhead for the
parties participating in the protocol. Even the malicious model has its limitations, for
example it cannot stop a party refusing to participate in the protocol.

In the remaining sections of this chapter we show how semi-honest and malicious
security is defined. We take our definitions from Lindell’s tutorial [49] as it provides
a concise and detailed account of simulation-based proofs in cryptography — it is
considered a seminal tutorial in the area. We take much inspiration from Lindell’s
exposition of the definitions but take more time to emphasis parts of the definition
that are particularly relevant to the formalisation.

2.4.1 Defining Semi-Honest Security

The semi-honest adversary model allows the adversary to control one of the parties
but they must follow the protocol transcript exactly. Initially this may seem like a very
weak security model — it does not capture even small deviations from the protocol
description. It provides the guarantee that the protocol does not leak any information.
For example, this model guarantees security against corruption of a party after the
execution of the protocol. On a server on which the execution of the protocol took



2.4 multi-party computation 27

place, a later compromise cannot cause information leak beyond the server’s own
inputs.

functionality The work here is constrained to two party protocols, such a
protocol problem is defined by the notion of a functionality. A functionality is a map
from inputs to outputs of each party. Let Party 1 and 2’s inputs be of type input1 and
input2 respectively and the respective outputs be of type output1 and output2. The
functionality is denoted as

f : input1 × input2 → output1 × output2. (2.4)

This map is deconstructed to a pair of maps providing the output for each party,
that is f = ( f1, f2) where f (x, y) = ( f1(x, y), f2(x, y)). Here Party 1 obtains f1(x, y)
and Party 2 obtains f2(x, y).

The functionality can be thought of as defining the problem that is solved by a
protocol π. A protocol is the procedure the parties undertake together to finally obtain
their desired outputs — the outputs specified by the functionality. Functionalities can
be either deterministic, like Oblivious Transfer, or non-deterministic, like the secure
multiplication we consider in section 7.5. Both are seen in the example below.

Example 3 (Functionalities).

1. A fundamental two party functionality is 1-out-of-2 Oblivious transfer (OT1
2 ), it is

defined as follows.
fOT1

2
((m0, m1), σ) = (_, mσ)

where _ denotes the empty string. Party 1 holds two messages and Party 2 a choice bit,
the result of the functionality is that Party 2 learns its choice of message and Party 1
obtains nothing.

2. The secure multiplication protocol we consider in section 7.5 allows two parties to
compute the multiplication of their inputs, in fact each party obtains a share of the
multiplication. The functionality, considered over the field Zq, is as follows,

f (x, y) = (s1, x · y− s1)

where s1
$←− Zq is a uniform sample — this ensures neither of the outputs alone reveal

the value of x · y. The multiplication is obtained by adding the two parties’ outputs,
x · y = s1 + (x · y− s1).

The functionality alone provides no information regarding the security of the
protocol — in terms of guarantee’s or requirements, it is solely a definition of the
desired outcome of the protocol.

definition of security Intuitively semi-honest security is realised if whatever
can be computed by a party in the protocol can also be computed based on that party’s
input and output alone. To capture this notion the idea of simulation is used, security
is realised if the real view of the protocol can be simulated in an ideal world where the
private inputs are not used in its construction. To prove a protocol is secure against



28 Σ-protocols , commitment schemes and mpc

semi-honest adversaries for each party one must construct a simulator whose output
is indistinguishable from the party’s transcript in the real execution of the protocol.
As the simulator for a party, by definition, is not allowed to see or use the private
input(s) from the other party this implies that the parties can learn nothing from the
execution of the protocol beyond what they can learn from their input and prescribed
output — as determined by the functionality.

To define security the views of the parties are considered.

Definition (informal) 8. Let π be a two party protocol with inputs (x, y) and with security
parameter n.

• The real view of the ith party (here i ∈ {1, 2}) is denoted by

viewπ
i (x, y, n) = (w, ri, mi

1, ..., mi
t)

where w ∈ {x, y} and is dependent on which view we are considering i.e. if i = 1 then
w = x, ri accumulates random values generated by the party during the execution of
the protocol, and the mi

j are the messages received by the party.

• We denote the output of the ith party, outputπ
i (x, y, n), and the joint output as

outputπ(x, y, n) = (outputπ
1 (x, y, n), outputπ

2 (x, y, n)).

Semi-honest security is defined as follows.

Definition (informal) 9 (Semi-honest security — non-deterministic functionalities). A
protocol π is said to securely compute f in the presence of a semi-honest adversary if there
exist probabilistic polynomial time algorithms (simulators) S1, S2 such that

{S1(1n, x, f1(x, y)), f (x, y)} c≡ {viewπ
1 (x, y, n), outputπ(x, y, n)}

{S2(1n, y, f2(x, y)), f (x, y)} c≡ {viewπ
2 (x, y, n), outputπ(x, y, n)}.

Sometimes it is possible to prove a stronger notion of security (usually only for one
party in the protocol, it is known that for OT1

2 we cannot have perfect security for both
parties.), that is perfect security. For this to hold the two views are required to be equal,
this trivially implies they are computationally indistinguishable also. Perfect security
means that not even a computationally unbounded distinguisher can distinguish the
views.

For a deterministic protocol it is shown in [49] that Definition 9 can be simplified.
In particular we require a relaxed notion of security for each party along with the
correctness property.

Definition (informal) 10. [Semi-honest security — deterministic functionalities] For deter-
ministic functionalities, f , π is said to securely compute f in the presence of a semi-honest
adversary if there exist probabilistic polynomial time algorithms (simulators) S1, S2 such that

{S1(1n, x, f1(x, y))} c≡ {viewπ
1 (x, y, n)}

{S2(1n, y, f2(x, y))} c≡ {viewπ
2 (x, y, n)}

and correctness is observed, that is for all x, y and n there exists a negligible function µ such
that

Pr[outputπ(x, y, n) 6= f (x, y)] ≤ µ(n).



2.4 multi-party computation 29

This concludes the definitions of semi-honest security. In the next section we define
security in the malicious model.

To give a flavour of how these definitions can be realised we next consider a simple
OT1

2 protocol and prove it secure in the semi-honest model.

Example 4. In this example we introduce a simple OT1
2 protocol and show how it provides

security in the semi-honest model. The protocol we present uses a trusted initialiser6 to
distribute co-related randomness to the parties. While this is not always desired, a large area
of research in cryptography uses this so-called trusted initialiser model. Using a trusted
initialiser we are able to prove perfect security for both parties in the protocol, something that
is not possible when not using a trusted initialiser. In the protocol below the Sender (P1) holds
two bits (m0, m1) and the Receiver (P2) holds a choice bit σ.

r0, r1
$←− {0, 1}, d $←− {0, 1}

Sender Receiver
m0, m1 ∈ {0, 1}, r0, r1 σ ∈ {0, 1}, d, rd

e e←−−−−−−−−−−−− e = σ⊕ d

f0 = m0 ⊕ re

f1 = m1 ⊕ r1−e
f0, f1−−−−−−−−−−−−→ f0, f1

mσ = fσ ⊕ rd

In the protocol the trusted initialiser uniformly samples r0, r1 and sends them to the Sender,
and samples d uniformly and sends it to the Receiver along with rd. It is rd that provides
the co-related randomness that is important to the protocol. The Receiver masks their choice
bit σ by xoring it with d and sends the result to the Sender who then, in the same way,
masks the messages with the randomness provided by the trusted initialiser and sends the
resulting messages ( f0, f1) to the Receiver. The Receiver can then learn its choice of message by
computing fσ ⊕ rd.

Intuitively security for the Sender comes from the fact the messages are only ever sent to
the Receiver under the encryption of being xored with some randomness (r0 or r1), meaning
the Receiver cannot learn the message for which they do not have the corresponding co-related
randomness for. The security of the Receiver is due to their choice bit only being sent to the
Sender after being xored with the the uniformly sampled bit d.

Theorem 6. The OT1
2 protocol given in Example 4 is secure in the semi-honest model. In

particular we have perfect security for both parties.

Proof. The functionality we consider here is deterministic therefore we can use the
more relaxed definitions of security given in Definition 10. First we show the protocol
is correct. The output of the protocol will always equal the output of the functionality:
we see this by considering the cases on σ: if σ = 0 then fσ ⊕ rd = m0 ⊕ re ⊕ rd = m0 ⊕
r0⊕d ⊕ rd = m0 and if σ = 1 then fσ ⊕ rd = m1 ⊕ r1−e ⊕ rd = m1 ⊕ r1−(1⊕d) ⊕ rd = m1.
Using this we have

Pr[outputπ(x, y) 6= f (x, y)] = 0.

6 We note this is often calledd the pre-processing model, or correlated randomness setup model



30 Σ-protocols , commitment schemes and mpc

The security parameter does not feature in the protocol as and therefore we do not
include it as an input to outputπ.

Next we consider the security of each party in turn. We first assume the Sender is
corrupted and show how we can simulate its view of the protocol.

party 1 - the sender The distribution for the real view for the Sender is as
follows:

{(m0, m1), r0, r1, e}

where r0, r1
$←− {0, 1} and e = σ⊕ d. We construct the following simulator and show it

is equal to the real view — the simulator takes in as input (m0, m1) (note there is no
output in the protocol for the Sender):

1. r0, r1
$←− {0, 1}

2. e $←− {0, 1}

3. output {(m0, m1), r0, r1, e}

The only difference between the real and simulated view is the last component, one

outputs e and the other d⊕ σ where d, e $←− {0, 1}. These two distributions are equal
due to the one time pad nature of the samples. This combined with the rest of the view
being independent of the randomness used to construct the last component means the
real and simulated view are equal.

party 2 - the receiver The distribution for the real view for the Receiver is as
follows:

{σ, d, rd, f0, f1}

where r0, r1, d $←− {0, 1} and f0 = m0 ⊕ re and f1 = m1 ⊕ r1−e where e = σ ⊕ d. We
construct the following simulator and show it is equal to the real view — the simulator
takes in as input σ and mσ:

1. r0, r1, d $←− {0, 1}

2. f0, f1
$←− {0, 1}

3. output {σ, d, rd, f0, f1}

The only difference in the real and simulated view are the last two components f0, f1.
In the simulator they are uniform samples from {0, 1} and in the real view they are
f0 = m0 ⊕ re and f1 = m1 ⊕ r1−e. The distributions on their own are equal, as we are
using a one time pad, and as the randomness used for the one time pad is not used
elsewhere in the protocol the overall distributions are also equal. Thus we have shown
perfect security for Party 2.

Example 4 has shown how a protocol for OT1
2 can satisfy semi-honest security. The

protocol uses a trusted initialiser, which is more simple than the protocols we consider
in our formalisation later in the thesis.



2.4 multi-party computation 31

2.4.2 Defining Malicious Security

In the malicious security model an adversary fully corrupts one of the parties and
sends all messages on its behalf. There are however adversarial behaviours we cannot
account for even in the malicious setting:

1. A party refusing to take part in the protocol.

2. A party substituting their local input — and executing the protocol with an
input other than the one provided to them.

3. A party aborting the protocol early.

It is well known the malicious model has these weaknesses. Of these behaviours
the second is most interesting. In the malicious setting it is unclear what constitutes
a party’s correct input to a protocol, a corrupted party may enter the protocol with
an input that is not equal to its true local input. In particular there is no way to tell
what the correct local input is compared to the input claimed by the party. For further
discussion of these limitations see [38, section 7.2.3].

A protocol is said to be secure if the adversary’s behaviour is limited to the three
actions given above. We consider the malicious security definitions from Goldreich [38,
section 7.2.3] and Lindell [44, section 2.3.1] where an ideal and real world are consid-
ered. The intuition behind security in the malicious model is as follows: security holds
in the ideal world by its construction and use of a trusted party. The idea to prove
security is to show the real world is indistinguishable from the ideal world, and is
therefore also secure. The three limitations of the malicious model given above are
built into the ideal model, that is they are permitted attacks in the ideal world.

In the two party setting the only setting that it is reasonable to consider is when
exactly one party is corrupted; if neither party is corrupted then there is no adversary
to learn anything anyway, and if both parties are corrupted nothing can be guaranteed.

The ideal model uses a trusted party that ensures security by definition — we let x
be the input of Party 1, y be the input of Party 2 and z be the auxiliary input (a priori
information) available to the adversary. The ideal model is defined as follows [44]:

Definition (informal) 11. [Ideal model] An ideal execution of a protocol proceeds as follows.

• Send inputs to trusted party: The honest party sends its received input to the trusted
party. The input for the corrupted party is outputted by the adversary and given to the
trusted party (it could be abort, the adversary chooses the input based on the original
input and z).

• Early abort: If the trusted party receives abort from the corrupted party it sends abort
to both parties and the execution is terminated.

• Trusted party computation: The trusted party computes the functionality using the
inputs provided by both parties and sends the corrupted party its output.

• Adversary aborts or continues: The adversary, upon receiving its output, instructs
the trusted party to abort or continue. If abort is sent the execution is terminated, if
continue is sent the trusted party sends the honest party its output.



32 Σ-protocols , commitment schemes and mpc

• Outputs: The honest party outputs the output it received from the trusted party, the
corrupted party outputs nothing. The adversary outputs any arbitrary function of the
initial input, auxiliary input, and the output given to it by the trusted party.

Then the ideal execution of the functionality f for party i ∈ {0, 1} on inputs (x, y) and
auxiliary input z to adversary A and security parameter n is denoted by IDEALf ,S(z),i(x, y)
and defined to be the output pair of the honest party and the adversary in the ideal execution
described above.

We next define the execution in the real model.

Definition (informal) 12 (Real model). The real model for a two party protocol π for party
i ∈ {0, 1} on inputs (x, y) and auxiliary input z to adversary A and security parameter n is
denoted by is denoted as REALπ,A(z),i(x, y). This is defined as the output pair of the honest
party and the adversary from a real execution of π were all messages sent by the corrupted
party are constructed by the adversary.

Having defined the real and ideal worlds we can make the definition of security.
Like in the semi-honest setting we require the two worlds to be indistinguishable.
Intuitively this means the ideal model can simulate executions of the real model of
the protocol.

Definition (informal) 13. Let π be a two party protocol for computing the functionality f .
π is said to securely compute f with abort in the presence of static malicious adversaries if for
every non-uniform probabilistic polynomial-time adversary A for the real model, there exists a
non-uniform probabilistic polynomial-time adversary S for the ideal model, such that for every
i ∈ {1, 2} we have,

{IDEALf ,S(z),i(x, y)} c≡ {REALπ,A(z),i(x, y)}.

As our formalisation shows, proving security in the malicious model is far more
complex than in the semi-honest model. The reason for this is two-fold: firstly, the
definition of security is more involved, we must consider a more intricate ideal model.
Secondly, protocols that provide malicious security are generally more complex which
means reasoning about them is too.



3
I N T R O D U C T I O N T O I S A B E L L E A N D C RY P T H O L

In this chapter we introduce Isabelle/HOL and CryptHOL highlighting the parts
important to our work. For more detail on Isabelle we point the reader to the book
‘Concrete Semantics’ by Nipkow and Klein [58] and to the tutorial by Nipkow, Paulson
and Wenzel [59]. For more detail on CryptHOL we point the reader to the original
paper [50] and the extended version [8], a tutorial [52] and the formalisation [51].

3.1 isabelle/hol

Isabelle/HOL is an interactive theorem prover that implements Higher Order Logic
(HOL). HOL is built on simple set-theory, where types are interpreted as sets of
elements and terms are elements of the set corresponding to their type. Although
Isabelle has a good degree of automation a proof must still be broken down into small
steps, from which the user can guide the automation tools to find a proof. Throughout
this thesis we do not show our formal proofs, choosing to outline the proof structure
instead. The formalisation mostly uses the structured and more human-readable Isar
proof language and thus we point the interested reader towards the source theory
files in the Archive of Formal Proofs (AFP) [20, 24] for more details.

While all the formal definitions, lemmas and theorems have been mechanically
checked by Isabelle we have typeset all formal statements in this thesis manually —
thus typing errors may have slipped in.

3.1.1 Isabelle Notation

The notations we use in this thesis resemble closely the syntax of Isabelle/HOL
(Isabelle). For function application we write f (x, y) in an uncurried form for ease of
reading instead of f x y as in the sources. Basic types include booleans, naturals and
integers. To indicate that term t has type τ we write t :: τ.

Isabelle uses the symbol⇒ for the function type, so a⇒ b is the type of functions
that takes an input of type a and outputs an element of type b. The type variable ‘a
denotes an abstract type. The implication arrow −→ is used to separate assumptions
from conclusions inside a HOL statement as is =⇒ however the latter cannot be used
inside other HOL formulae. For example modus ponens is written P −→ Q =⇒ P =⇒
Q which is equivalent to:

P −→ Q Q

Q

In HOL a function may be nameless, that is, λx. s(x), is the function that maps
every value w to the results of s where x is replaced by w. In the situation where s
does not depend on x, the underscore _, replaces x in our notation.

33



34 introduction to isabelle and crypthol

Sets, of type ‘a set are isomorphic to predicates of type ‘a⇒ bool using the member-
ship map ∈.

Pairs have the type ‘a × ‘b, the projections of the first and second elements are
written fst :: ‘a× ‘b⇒ ‘a and snd :: ‘a× ‘b⇒ ‘b respectively. Tuples are nested pairs
where nesting associates to the right, for example (a, b, c) = (a, (b, c)). The type ‘a + ‘b
denotes the disjoint sum, or union type, in this case the injections are Inl :: ‘a⇒ ‘a + ‘b
and Inr :: ‘b⇒ ‘a + ‘b.

The option datatype

datatype ‘a option = None | Some ‘a

adds the element None to the datatype ‘a. All original elements of ‘a are still contained
in ‘a option.

One technical aspect of Isabelle we use heavily is the module system, called locales.
At a high level locales allow the user to prove theorems abstractly, relative to given
assumptions. These theorems can be reused in situations where the assumptions
themselves are theorems. The locale declares fixed parameters and assumptions
regarding these parameters. The locale name is the predicate that collects all the
assumptions made in the locale.

For example the locale for cyclic groups in CryptHOL1, cyclic-group, builds on the
locale group, whose parameter is the group G and makes two assumptions. The first
that the generator is in the carrier set of G, the second that the carrier set of G is
contained in the range of the map exponentiation the generator.

locale cyclic-group = group G

for G :: (‘a, b) cyclic-group-scheme (structure)+

assumes generator G ∈ carrier(G)

and carrier(G) ⊆ range(λn. (generator G)n)

(3.1)

where the cyclic group is of record type

record ‘a cyclic-group = ‘a monoid +

generator :: ‘a
(3.2)

A record of n fields is an n tuple; they can be updated and extended. The record for
cyclic groups extends the record for monoids by adding a generator.

3.2 crypthol

CryptHOL [8] is a framework for reasoning about reduction-based security arguments
that is embedded inside the Isabelle/HOL theorem prover. Originally CryptHOL
was designed to construct game-based proofs; in this case games are expressed as
probabilistic programs that are shallowly embedded in Isabelle.

1 We heavily use the construction of cyclic groups from CryptHOL as many protocols depend on them.



3.2 crypthol 35

CryptHOL, like much of modern cryptography, is based on probability theory.
Probabilistic programs in CryptHOL are shallowly embedded as subprobability mass
functions of type spmf using Isabelle’s library for discrete distributions. These can be
thought of as probability mass functions with the exception that they do not have to
sum to one — we can lose some probability mass. This allows us to model failure
events and assertions. When a sub probability mass function does sum to one, we say
it is lossless.

HOL functions cannot in themselves provide effects like probabilistic choice there-
fore all such effects are modeled using monads. A monad consists of a (poly-
morphic) type constructor, in this case spmf and two (polymorphic) operations,
return :: α⇒ α spmf and bind :: α spmf ⇒ (α⇒ β spmf )⇒ β spmf .

We now introduce the parts of CryptHOL that are relevant for this thesis.

writing probabilistic programs Probabilistic programs can be encoded as
sequences of functions that compute over values drawn from spmfs. CryptHOL pro-
vides some easy-to-read do notation, like in Haskell, to write probabilistic programs,
where do{x ← p; f (x)} is the probabilistic program that samples x from the dis-
tribution p and returns the spmf produced by f when given x. We also sometimes
write this as p B (λ x. f (x)) as it is less cumbersome than the do notation. We can
also return an spmf using the monad operation return. The following probabilistic pro-
gram, completeness-game, is used in our formalisation of the completeness property of
Σ-protocols, given in section 4.2. Here init and response are the probabilistic programs
that define the two steps of a Σ-protocol completed by the Prover and check is the func-
tion that the verifier uses to validate the response. To define the completeness-game, init
and response are sampled like in a real execution of a Σ-protocol, and the distribution
(spmf ) of check is returned. Note, check is deterministic therefore we must return the
output as a probability distribution.

completeness-game(h, w, e) = do {
(r, a)← init(h, w);

z← response(r, w, e);

return(check(h, a, e, z))}

(3.3)

We note that bind is commutative, that is, assuming no dependency conditions one
can bind spmfs in any order. In particular, given a sequence of samplings the ordering
of such samplings is irrelevant.

Under bind we also have that constant elements cancel. In particular if p is lossless
(its probability mass sums to one), then

bind(p, λ_. q) = q. (3.4)

Our proofs of security are mainly completed by manipulating the appropriate
probabilistic programs. While the proofs that each manipulation is valid are not
always accessible to non-experts, the effect of each manipulation can be easily seen
and recognised as they are explicitly written in the do notation.



36 introduction to isabelle and crypthol

assertions Making assertions inside probabilistic programs is sometimes useful.
For example we must ensure that the adversary in the hiding game (Equation 5.3)
outputs two valid messages for the game to proceed. The monad for subprobabilities
has an element,⊥, that accounts for failure meaning the current part of the probabilistic
program is aborted. This is captured by assertion statements

assert(b) = if b then return(_) else ⊥ (3.5)

where if b holds then the probabilistic program continues otherwise it fails. Here (_)
is the only element of the unit type, returning this element continues with execution
of the program with no effect. Assertions are often used in conjunction with the
TRY p ELSE q construct. For example TRY p ELSE q would distribute the probability
mass not assigned by p to the distribution according to q. Picking up on our example
of the hiding game; if the adversary fails to output two valid messages, the assertion
fails and the ELSE branch is invoked — resulting in the adversary’s output being a
coin flip meaning they do not win the resulting security game.

Assertions are not a necessity to our formalisation as the assumptions could be
made explicitly in the theorem statements, for example in any statement of the hiding
property we could assume all messages outputted by the adversary (A1) are valid as
follows:

∀vk. (m0, m1) ∈ set-spmf (A1) −→ valid-msg(m0) ∧ valid-msg(m1). (3.6)

Here set-spmf is the support set of spmf it takes as input. Assertions, in general, make
the formalisation more neat and readable.

sampling Sampling from sets is important in cryptography. CryptHOL provides
an operation uniform which returns a uniform distribution over a finite set. We use
two cases of this function extensively: by samp-uniform(q), where q is a natural, we
denote the uniform sampling from the set {0, . . . , q− 1} and by coin we denote the
uniform sampling from the set {True, False} — a coin flip.

The monad operations give rise to another function, map :: (α ⇒ β) ⇒ α spmf ⇒
β spmf .

map( f , p) = bind(p, (λx. return( f (x)))) (3.7)

The map function can be thought of as the post-processing of sampled values. It
is from this level of abstraction that we are able to reason about the equivalence of
distributions and thus complete major steps in our proofs. For example, we can apply
one time pad lemmas. Below is that statement of the one time pad for addition in the
finite group Zq.

map((λb. (y + b) mod q), (samp-uniform(q))) = samp-uniform(q) (3.8)

probabilities Security definitions are based on explicit probabilities of events
occurring. In CryptHOL the expression P [Q = x] denotes the subprobability mass



3.3 formalisation overview 37

the spmf Q assigns to the event x. In our proofs reasoning at this level is often the last
step, much of the proof effort is in showing properties of the probabilistic programs
over which the probabilities are defined.

negligible functions To reason about security in the asymptotic case we must
consider negligible functions. These are formalised as a part of CryptHOL in the
canonical way. A function, f :: nat⇒ real, is said to be negligible if

∀c > 0. f ∈ o(λx. inverse(xc)) (3.9)

where o is the little o notation. We discuss the use of such functions in our proofs in
sections 6.3.2 and 7.3.1.4 where we consider the asymptotic security setting.

cyclic groups We highlight the formalisation of cyclic groups that CryptHOL
provides; the construction provides the user with a cyclic group G and a generator
g. The formalisation extends the formalisation of monoids in Isabelle/HOL meaning
there is an armoury of lemmas immediately available for use. We use cyclic groups
in the formalisation of the Pedersen commitment scheme and the Schnorr, Chaum-
Pedersen and Okamoto Σ-protocols. In the formal parts of this thesis we denote group
multiplication by ⊗ whereas we denote the multiplication of natural numbers by ·. In
the informal parts all multiplication is written as ·.

3.3 formalisation overview

CryptHOL has been used for a number of formalisations of cryptography thus far.
Our work lends weight to the fact that CryptHOL provides a good environment for
such formalisations, in particular that the method of modularisation can be used for
considering low level cryptographic primitives.

In this section we first discuss the general method of our formalisation at a high
level, in particular how CryptHOL allows the user to make their definitions abstract
and then instantiate them for the proofs we consider. To illustrate this we look at a
running example for Σ-protocols; we only introduce this example briefly to get across
the key concepts. As a result of the ability to reason abstractly we feel the method
we use could be considered as the most general method that Isabelle and CryptHOL
allow for. Second we discuss asymptotic security statements in CryptHOL.

3.3.1 Method of formalisation

Isabelle’s module system and CryptHOL’s monadic structure allow for a natural
hierarchy in our formalisation. We begin our formalisations by abstractly defining the
security properties required. This part of the formalisation is defined over abstract
types, giving the flexibility for it to be instantiated for any protocol. The human reader
needs to only check the high level, abstract, definitions of security to have confidence
in the whole collection of proof as all instantiated proofs are made with respect to
these definitions. We are also able to prove some lemmas at the abstract level and



38 introduction to isabelle and crypthol

have them at our disposal in any instantiation, thus reducing the workload for future
proofs. Some of the properties are technical and uninteresting to the cryptographer,
for example we prove losslessness of various probabilistic programs used in the
definitions, however we are also able to reason about more interesting properties. For
example, to formalise the construction of commitment schemes from Σ-protocols we
work at an abstract level (chapter 6), only assuming the existence of a Σ-protocol. This
means the instantiated proofs (for the concrete Σ-protocols we consider) come for free
once we prove they are Σ-protocols.

We next more explicitly describe the workflow in constructing our formalisation.
Here we consider Σ-protocols as a running example. First we show the initial abstract
locale, then how we use this to define completeness, and finally how we instantiate
the abstract locale for the Schnorr Σ-protocol.

3.3.1.1 Instantiating the abstract frameworks

We use Isabelle’s locales to define properties of security relative to fixed constants
and then instantiate these definitions for explicit protocols and prove the security
properties as theorems.

1. To consider Σ-protocols abstractly and define completeness we fix in a lo-
cale the probabilistic programs (algorithms) that make up the primitive (i.e.
init, response, check) as well as other parameters of the Σ-protocol. For example
the relation Rel and Sraw, the simulator for the HVZK property. We also make
any assumptions we require on the parameters.

locale Σ-protocol-base =

fixes init :: (‘pub-input× ‘witness)⇒ (‘rand× ‘msg) spmf

and response :: ‘rand⇒ ‘witness⇒ ‘challenge⇒ response spmf

and check :: ‘pub-input⇒ ‘msg⇒ ‘challenge⇒ ‘response⇒ bool

and Rel :: (‘pub-input× ‘witness) set

and Sraw :: ‘pub-input⇒ ‘challenge⇒ (‘msg, ‘response) sim-out spmf

and Ass :: (‘pub-input, ‘msg, ‘challenge, ‘response, ‘witness) prover-adversary

and challenge-space :: ‘challenge set

and valid-pub :: ‘pub-input set

assumes Domain(Rel) ⊆ valid-pub

(3.10)

2. Using these fixed parameters we make the required definitions. Below is the
definition we construct for completeness. We construct the the probabilistic
program completeness-game, given previously in Equation 3.3 and use it to define
the completeness property.

completeness = (∀h w e. (h, w) ∈ Rel −→ e ∈ challenge-space

−→ P [completeness-game(h, w, e) = True] = 1)

Here we say the Σ-protocol is complete if for all valid challenges the completeness
game returns true.



3.3 formalisation overview 39

3. To instantiate a Σ-protocol and prove it is complete we explicitly define the fixed
parameters from the locale, Σ-protocol-base. To do this we refine the types and
define the probabilistic programs that describe the protocol.2 In the case of the
Schnorr Σ-protocol we work with a cyclic group G by fixing it in the locale
schnorr-base.

locale schnorr-base =

fixes G :: ‘grp cyclic-group

assumes prime(|G|)
(3.11)

Inside this locale we define the instantiated parameters:
initS, responseS, checkS, RelS, Sraw,Ass, challenge-spaceS and valid-pubS — here the
superscript S denotes they are the parameters for the Schnorr protocol.

For example initS is defined as follows:

initS :: (‘grp pub-in×witness)⇒ (rand× ‘grp msg) spmf

initS(h, w) = do {
r ← samp-uniform(|G|);
return(r, gr)}

(3.12)

4. We then utilise Isabelle’s locale structure by importing the abstract theory using
the sublocale command. This establishes the current context as an interpretation
of the abstract theory.

sublocale schnorr-Σ : Σ-protocol-base initS responseS checkS

RelS Sraw Ass challenge-spaceS valid-pubS

Not only must the explicit definitions be of the correct type when importing
a locale, one must also discharge any assumptions that come with the locale.
In this case we must prove that Domain(RelS) ⊆ valid-pubS. Once this has been
done our instantiation is valid with respect to the Σ-protocol-base locale and we
can use its definition of correctness.

5. Any use of a definition from the original locale (in this case Σ-protocol-base)
requires the definition name to be prefixed by the name we give to the sublocale
(in this case Schnorr-Σ). The statement of completeness for the Schnorr Σ-protocol
is now given by schnorr-Σ.completeness.

2 We note we say we refine the types rather than make them explicit. By refine we mean we make the types
more explicit but not to the bitstring level, as would be the case in a real implementation of the protocol.
For example we may instantiate the abstract type ‘witness to be a natural or the ‘pub-input to be a group
element. Note that the cyclic group instantiation is still in many ways abstract as we parameterise over a
fixes cyclic group — see the locale in 3.11.



40 introduction to isabelle and crypthol

This has given the full workflow of our formalisation process. Throughout this
method we do not consider the security parameter, instead assuming it is implicit in
all algorithms. We are able to instantiate the security parameter with ease after the
proofs in the concrete setting are complete. We discuss this in the next section.

3.3.2 Polynomial Runtime

Many of the definitions given in chapter 2 involve the adversary or simulator be-
ing bounded to run in polynomial time. This computational bound ensures that
adversaries and simulators considered are (in principle) feasible.

Unfortunately, CryptHOL cannot reason about computational runtimes, due to the
shallow embedding. We therefore cannot fully formalise notions like computational
binding (Definition 7) that quantify over computationally bounded adversaries. In-
stead, we capture the underlying reduction argument with a reduction-based security
theorem. As an example, for constructing a commitment scheme from a Σ-protocol, the
concrete security theorem has the following form: the binding advantage bind-adv(A)
of an adversary A is bounded by the advantage of a different adversary A′ against the
hardness of the underlying relation Rel. This adversary A′ is obtained by a reduction
f , which systematically transforms binding-game adversaries A into hardness game
adversaries A′ = f (A).

The example above concerns the game-based setting but an analogous argument can
be used in the simulation-based setting. Let us assume a distinguisher can distinguish
the real and ideal view for a party, then we show that this distinguisher can be used
to construct an adversary that can beat a known hard problem. Thus reducing the
security to the hard problem.

Such a reduction-based statement captures the key aspects of the security proof.
Compared to a computational statement, which quantifies over all computationally
bounded adversaries, the reduction f shows up in the security statement itself. This
makes the statement more generic in the sense that we need not commit to a particular
computational model or complexity class such as polynomial time. Conversely, the
reader must manually check that the reduction lies in the desired complexity class.

3.3.3 Concrete vs. asymptotic security

In our formalisations, we first prove concrete security bounds using reduction-style
proofs. That is, we bound on adversary’s advantage as a function of advantages of
different adversaries of the primitives used in the construction. For example, we show
in Lemma 22 in section 6.2.1 that the binding advantage for commitment schemes
constructed from Σ-protocols is bounded by the advantage that the (transformed)
adversary breaks the hard relation Rel. This is in line with other CryptHOL formalisa-
tions [21, 50].

From these concrete statements, we can easily derive more abstract asymptotic
security statements. To that end, a security parameter must be introduced. We describe
in sections 7.3.1.4 and 6.3.2 how we achieve this with little effort using Isabelle’s
locale system. Conceptually, this process replaces a locale parameter such as the cyclic



3.3 formalisation overview 41

group G :: ‘grp cyclic-group with a family of cyclic groups G :: nat⇒ ‘grp cyclic-group.
And similarly, the challenge space challenge-space becomes a family of type nat ⇒
‘challenge set. This parameterisation is also the reason for the locale parameters valid-pub
and challenge-space. Since HOL does not have dependent types, the same abstract type
‘challenge must hold the challenge spaces for every possible security parameter value.
The parameter challenge-space then carves out the right challenge space for the chosen
security parameter.

Considering the general example given in section 3.3.2 one can see that such
statements naturally yield asymptotic security statements of the following form: The
binding advantage of a family of adversaries Aη against the commitment scheme is
negligible if the family of reduced adversaries f (Aη) has negligible advantage against
the hardness of the underlying relation.

We show how the security parameter is instantiated in two places in this thesis. First
in section 7.3.1.4 we show how we instantiate it for the OT1

2 protocol constructed from
ETPs and second in section 6.3.2 we show how it is done for the Pedersen commitment
scheme. While the process of formalisation in both cases is analogous we feel by
providing two examples, in different contexts, we allow the reader to understand more
fully how it is done. In our formalisations we provide proofs in the asymptotic setting
for all the protocols we consider.

We do not believe the instantiation of the security parameter in this work is an
overly technical contribution, in fact we follow Lochbihler’s technique for achieving
it. However we do feel that it is an important step to take. It allows the formalised
security statements to be closer to the security statements proven in the literature. One
goal of formalising results such as these is to as accurately as possible capture them in
the formal language, by taking the step to consider asymptotically we have taken one
step closer to achieving this.





Part I

F O R M A L I S I N G Σ - P R O T O C O L S A N D C O M M I T M E N T S





4
Σ - P R O T O C O L S

4.1 introduction

In this chapter we first show how we formally define Σ-protocols and their secu-
rity properties and then how we instantiate our definitions for the protocols and
constructions we consider.

chapter outline First, In Section 4.2 we show our formalisation of the definitions
of security for Σ-protocols. Then in Section 4.3 we show how we instantiate various Σ-
protocols and constructions with respect our definitions. In Section 4.3.1 we formalise
compound Σ-protocols. Then we show how we formalise the Schnorr, Chaum-Pedersen
and Okamoto Σ-protocols in Sections 4.3.2, 4.3.3 and 4.3.4 respectively. The workflow
for this chapter is depicted in Figure 4.1.

The work in this chapter has been published in [22, 24, 25].

4.2 formalising the definitions

In this section we detail our formalisation of Σ-protocols based on the definitions from
section 2.2.

As explained in Section 3.3.1, our method of formalisation is to define a locale
where we fix the parameters required for the definitions of Σ-protocols. We do this in
the locale Σ-protocol-base, given in Statement 4.4. The locale fixes the components of
the Σ-protocol. These are:

• init: constructs the initial message sent from the Prover to the Verifier, and its
corresponding randomness.

• response: the response sent from the Prover to the Verifier.

• check: performs the verification the Verifier runs on the response from the Prover.

We also fix the relation Rel that the protocol is based on, the adversary Ass required
in the special soundness definition, the challenge-space which is the set of all possible

Σ-protocol defs
(section 4.2)

Chaum-Pedersen
(section 4.3.3)

Schnorr
(section 4.3.2)

Okamoto
(section 4.3.4)

OR-Σ
(section 4.3.1)

AND-Σ
(section 4.3.1.2)

Figure 4.1: Outline of our formalisation of Σ-protocols.

45



46 Σ-protocols

challenges and the set valid-pub which contains all the valid public inputs. Finally we
require a simulator for the HVZK definition. We take time to discuss our modelling of
the simulator here. The simulator outputs a conversation of the form (a, e, z), however
a subtlety is that the output challenge e must be the same as the input challenge e;
overall the simulator looks as follows:

(a, e, z)← S(h, e).

To formally model this we fix in the locale the part of the simulator, Sraw, that constructs
a and z and then define the full simulator that outputs (a, e, z) using Sraw as follows:

S(h, e) = map(λ (a, z). (a, e, z), Sraw(h, e)).

We do this to ensure the challenge outputted by the simulator is the same as the
challenge it takes as input.

To improve the readability of the formalisation we define three type synonyms; the
first defines the type of a conversation, the second the output type of Sraw and the
third the type of the special soundness adversary. Type synonyms have no semantic
meaning, our reason for constructing them it mainly to make the locale given in 4.4
more readable as we can give names to the synonyms.

type-synonym (‘msg, ‘challenge, ‘response) conv-tuple =

(‘msg × ‘challenge × ‘response) (4.1)

type-synonym (‘msg, ‘response) sim-out = (‘msg × ‘response) (4.2)

type-synonym

(‘pub-input, ‘msg, ‘challenge, ‘response, ‘witness) prover-adversary

= ‘pub-input⇒ (‘msg, ‘challenge, ‘response) conv-tuple

⇒ (‘msg, ‘challenge, ‘response) conv-tuple⇒ ‘witness spmf (4.3)

The locale for these fixed parameters, Σ-protocol-base, is given in 4.4 — note this is
the same as the locale given in the running example in section 3.3.

locale Σ-protocol-base =

fixes init :: (‘pub-input× ‘witness)⇒ (‘rand× ‘msg) spmf

and response :: ‘rand⇒ ‘witness⇒ ‘challenge⇒ ‘response spmf

and check :: ‘pub-input⇒ ‘msg⇒ ‘challenge⇒ ‘response⇒ bool

and Rel :: (‘pub-input× ‘witness) set

and Sraw :: ‘pub-input⇒ ‘challenge⇒ (‘msg, ‘response) sim-out spmf

and Ass :: (‘pub-input, ‘msg, ‘challenge, ‘response, ‘witness) Prover-adversary

and challenge-space :: ‘challenge set

and valid-pub :: ‘pub-input set

assumes Domain(Rel) ⊆ valid-pub

(4.4)



4.2 formalising the definitions 47

The assumption requires that the domain of the relation is contained in the set of
valid public inputs, put another way all elements that are in the relation are valid
public inputs.

Next, the language LR for the relation R is the set of all public inputs for which a
witness exists such that the relation holds.

LR = {x. ∃w. Rel(x, w)} (4.5)

Using the parameters we fixed in the locale Σ-protocol-base we define the properties
of Σ-protocols. First we define completeness. For this property the probabilistic
program, completeness-game, runs the components of the protocol and outputs the
output of check. We repeat the definition from Equation 3.3.

completeness-game(h, w, e) = do {
(r, a)← init(h, w);

z← response(r, w, e);

return(check(h, a, e, z))}

(4.6)

The definition of completeness is quantified over all public inputs, witnesses and
challenges.

Definition 1 (Completeness).

completeness = (∀h w e. (h, w) ∈ Rel −→ e ∈ challenge-space

−→ P [completeness-game(h, w, e) = True] = 1)

The definition of HVZK follows the simulation-based paradigm: we require the
output distribution of the simulator S to be equal to the output distribution of the real
view of the protocol which is given below.

real-view(h, w, e) = do {
(r, a)← init;

z← response(r, w, e);

return(a, c, z)}

(4.7)

The real view can be defined abstractly as we know the structure of the protocol. This
is unlike in general MPC protocols [21] where the real view has to be defined for each
MPC protocol considered. We must still construct a simulator for each instantiated
Σ-protocol. As described in Definition 3, we additionally require that the simulator’s
output produces an accepting conversation even if the public input h does not belong
to the language.

Definition 2 (Honest Verifier Zero Knowledge).

HVZK = (∀e ∈ challenge-space.

(∀(h, w) ∈ Rel. real-view(h, w, e) = S(h, e))

∧ (∀h ∈ valid-pub. ∀(a, z) ∈ set-spmf (Sraw(h, e)). check(h, a, e, z)))



48 Σ-protocols

For special soundness to hold we require the special soundness adversary (Ass) to
output the witness when given two accepting conversations (with distinct challenges)
with respect the public input h, (a, e, z) and (a, e′, z′). An accepting conversation is a
tuple upon which check is satisfied. To capture this formally we must show that for all
w′ in the support set (set-spmf ) of Ass the relation is satisfied. Together with this we
require that Ass is lossless, if not Ass may output nothing leaving no way to reason
about all outputs of Ass.

Definition 3 (Special Soundness).

special-soundness = (∀h a e z e′ z′. h ∈ valid-pub

−→ e ∈ challenge-space −→ e′ ∈ challenge-space −→ e 6= e′

−→ check(h, a, e, z) −→ check(h, a, e′, z′) −→
lossless(Ass(h, (a, e, z), (a, e′, z′))) ∧

∀w′ ∈ set-spmf (Ass(h, (a, e, z), (a, e′, z′))). Rel(h, w′))

Using these three definitions we define the notion of a Σ-protocol.

Definition 4 (Σ-protocol).

Σ-protocol = completeness ∧ special-soundness ∧HVZK

It may appear surprising that in our formalisation of Σ-protocols we do not fix a
probabilistic program to output the challenge, like we do for the other components of
the protocol. In this case it is not needed as the Verifier, who outputs the challenge,
is assumed to be honest. In particular we define the properties over all allowed
challenges (∀e ∈ challenge-space). This is valid when the challenge is always generated
honestly, however is not strong enough if the challenge was not generated honestly —
in the case of a corrupt Verifier. This extension is considered by full Zero-Knowledge
protocols [16], which we do not consider in this work.

4.2.1 Differences in the definitions of Σ-protocols

There are different definitions of Σ-protocols presented in the literature [7, 28, 29,
31, 44]. We now discuss this and the consequences of Cramer’s additional HVZK
requirement (Condition 2 in Definition 3). In particular we show how we highlight
the correct definition of Σ-protocols from the literature. We also outline how Barthe et
al. dealt with this issue in their formalisation of Σ-protocols [7].

damgård’s hvzk definition Damgård’s definition [31] of HVZK does not
require the inputs to the real view to satisfy the relation, it only requires that the
output distributions of the simulator and real view are equal. We found two problems
with this requirement. First, the real view is not well-defined if the public input is not
in the relation: to construct the real view, we must run the Prover and the Prover runs
only if it gets a witness as input, but there is no such witness when the public input is
not in the relation. Accordingly, none of the proofs of HVZK for Σ-protocols we study
work. For example, without the assumption that h = gw (from (h, w) ∈ RelS) in the



4.2 formalising the definitions 49

Schnorr Σ-protocol, we cannot reason about the real view and the simulator being
equal. Second, Damgård assumes in the proofs in [31] that the relation holds for the
input. We therefore conclude that Damgård probably intended that (h, w) ∈ Rel in his
definition.

hazay’s and lindell’s hvzk definition In [44], Hazay and Lindell credit
Damgård for providing the ‘basis’ of their presentation of Σ-protocols. Their definition
requires the relation to be satisfied on the public input and witness that are inputs to
the real view. This corresponds to Condition 1 of Definition 3 in this work.

Damgård [31] and Hazay and Lindell [44] both carry out the OR construction for
Σ-protocols with the relation RelOR as defined in section 4.3.1.1, with a proof similar
to ours. However, their proofs are flawed as the simulator for the HVZK property is
unspecified for public inputs h that are not in the language. Accordingly, completeness
need not hold. For every Σ-protocol we have encountered this property holds. It
must be included in the definition as when dealing with an arbitrary Σ-protocols in
constructions like the OR construction the property is needed for the proofs.

cramer’s hvzk definition Cramer [29] additionally requires that the simulator
outputs an accepting conversation when the public input is not in the language, which
corresponds to Condition 2 in 3. This ensures that the completeness proof of the OR
construction for Σ-protocols goes through. Lindell has confirmed that it was implicitly
assumed in his proof [private communication, 2019]. We therefore conclude that the
extended definition that we gave should be the standard one.

To our knowledge no real-world Σ-protocol violates the additional requirement
— pathological examples can of course be constructed, yet this extended property is
rarely mentioned in the literature.

barthe et al . ’s formalisation and ciampi et al . ’s hvzk definition

There is another way to rescue the OR construction without adding Cramer’s re-
quirement, namely changing the definition of RelOR. Barthe et al. [7] also noticed the
completeness issue for the OR construction in their formalisation of Σ-protocols. They
recovered the proof by defining RelOR as

RelOR = {((x0, x1), w). ((x0, w) ∈ Rel0 ∧ x1 ∈ Domain(Rel1))

∨ ((x1, w) ∈ Rel1 ∧ x0 ∈ Domain(Rel0))}, (4.8)

i.e., both the inputs x0 and x1 must be in the language. Ciampi et al. [28] use the same
definition in their paper proofs.

In contrast, our definition (and Damgard’s, Hazay’s and Lindell’s, and Cramer’s)
requires only one input x0 or x1 to be in the language; the other need only meet
syntactic constraints as formalised by valid-pub. This small difference has a substantial
impact on the expressive power of the OR construction. With (4.8), the languages
for the constituent Σ-protocols must be efficiently decidable. Indeed, Ciampi et al.
“implicitly assume that the Verifier of a protocol for relation R executes the protocol
only if the common input x belongs to LR and rejects immediately common inputs
not in LR” [28]. For relations like the discrete logarithm, this is not a problem because



50 Σ-protocols

every group element has a discrete logarithm; the hard part is computing it. However,
there are Σ-protocols where the language itself is hard, e.g., Blum’s protocol for a
Hamiltonian cycle in a graph [15]. The OR construction with the relation (4.8) does
not work for such Σ-protocols.

4.3 Σ-protocol instantiations and constructions

In this section we use the framework we defined in section 4.2 to instantiate Σ-
protocols and prove they are secure. First, in section 4.3.1, we consider the construction
of compound Σ-protocols and then in the remaining sections we consider the well
known Σ-protocols of Schnorr, Chaum-Pedersen and Okamoto.

4.3.1 Compound Σ-protocols

Σ-protocols can be combined to prove knowledge for AND and OR statements.
Consider two Σ-protocols, Σ0 and Σ1, with relations Rel0 and Rel1 respectively. The
AND construction allows the Prover to prove they know witnesses w0 and w1 such
that both Rel0(x0, w0) and Rel1(x1, w1) are true and the OR construction allows for
the proof of knowledge of a witness such that Rel0(x0, w) or Rel1(x1, w) is true —
(x0, x1) is the public input. Cryptographers have found many uses for these basic
constructions, for example the voting protocols in [29]. In this section we detail our
formalisation of both constructions.

4.3.1.1 The OR construction

The construction of the OR protocol follows the idea that the Prover can run the real
protocol for the relation for which the witness is known and run the simulator to
generate the conversation for the relation for which the witness is not known. By
the HVZK property of Σ-protocols the simulated view is equivalent to the real view,
therefore the Verifier cannot tell which was constructed by the real protocol and which
from the simulator. The protocol is shown in Figure 4.2.

In the literature [29, 31, 44] the OR construction is considered over bitstrings.
However we only require the one time pad property of the xor function thus we
are able to generalise the construction to arbitrary boolean algebras. To do this we
formalise the concept of a boolean algebra1 and prove the one time pad property,
whose statement is seen in Equation 4.9.

map((λa. a⊕ x), (uniform(carrier(L))) = uniform(carrier(L)) (4.9)

where L is the boolean algebra with xor function ⊕.
To formalise the OR construction we fix two Σ-protocols (Σ0 and Σ1) and their

respective components

initi, responsei, checki, Reli, Sraw,i, Ass,i, challenge-spacei, valid-pubi

1 The formalisation of a boolean algebra was done by Andreas Lochbilher and is contained in our AFP
entry [24]. This part of the formalisation is not extensive and consists of 227 lines.



4.3 Σ-protocol instantiations and constructions 51

Prover Verifier
(x0, x1), w (x0, x1)

(rb, ab)
$←− initb(xb, w)

e1−b
$←− L

(a1−b, e1−b, z1−b)
$←− Sb(x1−b, e1−b)

initial msg: (a0, a1)−−−−−−−−−−−−→ (a0, a1)

s
challenge: s

←−−−−−−−−−−−− s $←− L

eb = s⊕ e1−b

zb ← responseb(rb, w, eb)
response: (e0, z0, e1, z1)−−−−−−−−−−−−→ (e0, z0, e1, z1)

checks: s = e0 ⊕ e1

check0(x0, a0, e0, z0)

check1(x1, a1, e1, z1)

Figure 4.2: The OR construction for two Σ-protocols, Σ0 and Σ1. L is the boolean algebra
that the protocol is run over. (x0, x1) is the public input such that Rel0(x0, w) or
Rel1(x1, w) is satisfied and b represents the relation that holds, that is we have that
Relb(xb, w). n this section we denote the challenge as s to distinguish it from the
challenges of the underlying Σ-protocols which we will denote with e0 and e1.

for i ∈ {0, 1} as well as a boolean algebra L :: ‘bool-alg boolean-algebra. The only type
constraint on the components of Σ0 and Σ1 is that both challenges must be of type
‘bool-alg. We allow the types of Σ0 and Σ1 to be different, thus the witness must be a
sum type w :: (‘witness0 + ‘witness1).

We define the relation,

RelOR :: ((‘pub0 × ‘pub1)× (‘witness0 + ‘witness1)) set (4.10)

as an inductive set with the following introduction rules:

((x0, x1), Inl(w0)) ∈ RelOR if (x0, w0) ∈ Rel0 ∧ x1 ∈ valid-pub1 (4.11)

((x0, x1), Inr(w1)) ∈ RelOR if (x1, w1) ∈ Rel1 ∧ x0 ∈ valid-pub0 (4.12)

In particular the Prover knows a witness for one of the two relations, and knows
to which relation the witness belongs to. We also require that the public input for
which the Prover does not know the witness is a valid public input for its respective
Σ-protocol.

In the OR construction the initial message is constructed as either the real initial
message (of the Σ-protocol for which the Prover knows the witness) or the first
message of the simulator (of the other Σ-protocol). The probabilistic program initOR



52 Σ-protocols

has an output consisting of two parts: 1. the randomness consisting of the randomness
from initb (where b ∈ {0, 1} is the relation for which the Prover knows the witness),
the random challenge sampled, as well as the response from the conversation that is
simulated and 2. the initial messages sent in the protocol, one (and only one) of which
is constructed by the simulator.

initOR((x0, x1), Inl(w0)) = do {
(r0, a0)← init0(x0, w0);

e1 ← uniform(carrier(L));

(a1, e1, z1)← S1(x1, e1);

return(Inl(r0, e1, z1), (a0, a1)}

(4.13)

initOR((x0, x1), Inr(w1)) = do {
(r1, a1)← init1(x1, w1);

e0 ← uniform(carrier(L));

(a0, e0, z0)← S0(x0, e0);

return(Inr(r1, e0, z0), (a0, a1))}

(4.14)

The return type of initOR is

((((‘rand0 × ‘bool× ‘response1 + ‘rand1 × ‘bool× ‘response0))× ‘msg0 × ‘msg1)) spmf

where ‘bool is the type of the boolean algebra.
To respond to a challenge, s, the Prover constructs a new challenge to be used in

constructing the real response by xoring it with the challenge e it generated in initOR.
The response for the relation the Prover does not know is given as the simulated
response from the initOR phase. The inputs to responseOR consist of (1). the randomness
outputted by initOR (a 3-tuple) (2). the witness that is known and (3). the challenge.

responseOR(Inl(r0, e1, z1), Inl(w0), s) = do {
let e0 = s⊕ e1;

z0 ← response0(r0, w0, e0);

return((e0, z0), (e1, z1))}

(4.15)

responseOR(Inr(r1, e0, z0), Inr(w1), s) = do {
let e1 = s⊕ e0;

z0 ← response1(r1, w1, e1);

return((e0, z0), (e1, z1))}

(4.16)

To check the responses given by the Prover, the Verifier checks both conversations it
receives are valid with respect the Σ-protocols they correspond to as well as checking



4.3 Σ-protocol instantiations and constructions 53

that the challenge they provided, s, is the xor of the challenges in the respective
conversations — s = e0 ⊕ e1.

checkOR((x0, x1), (a0, a1), s, ((e0, z0), (e1, z1)))

= (s = e0 ⊕ e1 ∧ e0 ∈ challenge-space∧ e1 ∈ challenge-space

∧ check0(x0, a0, e0, z0) ∧ check1(x1, a1, e1, z1))

(4.17)

The challenge-space is defined as the carrier set of L — challenge-spaceOR = carrier(L)
and the public input (x0, x1) is valid if xi is a valid public input with respect to its
underlying Σ-protocol, that is:

valid-pubOR = {(x0, x1). x0 ∈ valid-pub0 ∧ x1 ∈ valid-pub1} (4.18)

We import the Σ-protocol-base locale — under the name Σ-OR — so we can reason
about the properties of Σ-protocols. First we show completeness.

The proof of the completeness property requires Condition 2 of the HVZK definition
in Definition 3. It is required because the simulated transcript in the OR protocol
must also produce a valid conversation if the Verifier is to accept the proof, without
Condition 2 we have no guarantee that this is the case.

Lemma 1. (in Σ-OR-proof ) shows Σ-OR.completeness

Proof. For ease we split the proof into cases depending on which relation holds. For
the case where Rel1(x1, w) holds the components corresponding to Rel1 are generated
using the Σ-protocol Σ1, whereas the components corresponding to Rel0 are simulated
using S0. For the correctly generated case (Rel1) the check outputs true due to the
completeness property of Σ1. For the simulated case (Rel0) we use the HVZK property
(Condition 2) from Σ0 to show the check outputs true.

To prove HVZK we use the following simulator. This is constructed by defining
Sraw,OR in the first instance, we only give the unfolded full definition of the simulator
here.

Σ-OR.SOR((x0, x1), s) = do {
e1 ← uniform(carrier(L));

(a1, e′1, z1)← S1(x1, e1);

let e0 = s⊕ e1;

(a0, e′0, z0)← S0(x0, e0);

let z = ((e′0, z0), (e′1, z1));

return((a0, a1), s, z)}

(4.19)

Note, in constructing the simulator we had a design choice: sample either e1 or e0

and construct the other — either choice results in the same simulator.

Lemma 2. (in Σ-OR-proof ) shows Σ-OR.HVZK



54 Σ-protocols

Proof. We simulate the real view by running the simulator (given in Equation 4.19)
for both relations. The challenges we give to the simulators (e0 and e1) are related by
s = e0 ⊕ e1, where we sample e1 uniformly (we could have sampled e0) and s is the
challenge in the OR construction. This asymmetry (we must sample one of e0 or e1) is
dealt with using the lemma given in Equation 4.9. In the case where Rel0(x0, w) holds
the result comes directly by writing the components from Σ0 in Σ-OR.R into the real
view then using the HZVK property of Σ0 to rewrite the real view as the simulator. In
the case where Rel1(x1, w) holds we follow the same process but use Equation 4.9 in
the last step.

To construct the special soundness adversary we condition on the case e0 6= e′0. The
reason for this is that in the proof of the special soundness property we show that
either e0 6= e′0 or e1 6= e′1 must hold (depending on which relation to witness pertains
to). In either case the adversary outputs the witness to the respective relation using
the special soundness adversaries from Σ0 or Σ1.

Ass,OR((x0, x1), conv, conv′) = do {
let ((a0, a1), s, (e0, z0), e1, z1) = conv;

let ((a0, a1), s′, (e′0, z′0), e′1, z′1) = conv′;

if (e0 6= e′0) then do {
w0 ← Ass,0(x0, (a0, e0, z0), (a0, e′0, z′0));

return(Inl(w0))}
else do {

w1 ← Ass,1(x1, (a1, e1, z1), (a1, e′1, z′1));

return(Inr(w1))} }

(4.20)

Lemma 3. (in Σ-OR-proof ) shows Σ-OR.special-soundness

Proof. We must show Ass,OR is lossless and always outputs a witness for RelOR. We
have two conversations ((a0, a1), s, (e0, z0), (e1, z1)) and ((a0, a1), s′, (e′0, z′0), (e

′
1, z′1)) on

public inputs x0 and x1 respectively. We can assume the following hold (the assump-
tions in the statement of special soundness):

• s 6= s′

• checkOR((x0, x1), (a0, a1), s, (e0, z0), (e1, z1))

• checkOR((x0, x1), (a0, a1), s′, (e′0, z′0), (e
′
1, z′1))

• (x0, x1) ∈ valid-pubOR

• s, s′ ∈ challenge-spaceOR

From s 6= s′ we show that e0 6= e′0 ∨ e1 6= e′1 and partition the proof on the case e0 6= e′0.
When this condition holds we know the conditions for the special soundness property
for Σ0 hold and thus Ass,0 is lossless and outputs a witness to Rel0. The branch of the
if statement that is invoked in Ass,OR in this case calls Ass,0 and therefore outputs a
witness to Rel0. The proof for the second case, e1 6= e′1, is analogous.



4.3 Σ-protocol instantiations and constructions 55

Prover Verifier
(x0, x1), w (x0, x1)

(rb, ab)
$←− initb(xb, w)

e1−b
$←− L

(a1−b, e1−b, z1−b)
$←− Sb(x1−b, e1−b)

initial msg: (a0, a1)−−−−−−−−−−−−→ (a0, a1)

s
challenge: s

←−−−−−−−−−−−− s $←− L

eb = s⊕ e1−b

zb ← responseb(rb, w, eb)
response: (e0, z0, e1, z1)−−−−−−−−−−−−→ (e0, z0, e1, z1)

check0(x0, a0, e0, z0)

check1(x1, a1, e1, z1)

Figure 4.3: Change to be AND construction

Using Lemmas 1, 2 and 3 we prove the OR construction is a Σ-protocol.

Theorem 7. (in Σ-OR-proof ) shows OR-Σ.Σ-protocol

4.3.1.2 AND construction for Σ-protocols

Section 4.3.1.1 showed how a Σ-protocol for the OR of two relations can be constructed.
Here we show how this can be done for the AND of two relations.

The relation RelAND is defined as:

RelAND = {((x0, x1), (w0, w1)). ((x0, w0) ∈ Rel0 ∧ (x1, w1) ∈ Rel1)}. (4.21)

The construction of the initial message shows the parallel execution in both sides:

initAND((x0, x1), (w0, w1)) = do {
(r0, a0)← init0(x0, w0);

(r1, a1)← init1(x1, w1);

return((r0, r1), (a0, a1))}

(4.22)

The Prover responds with responses to the challenge for each witness also and the
check function requires that both conversations are valid as shown below.

responseAND((r0, r1), (w0, w1), s) = do {
z0 ← response0(r0, w0, s);

z1 ← response1(r1, w1, s);

return(z0, z1)}

(4.23)



56 Σ-protocols

checkAND((x0, x1), (a0, a1), s, (z0, z1)) =

(check0(x0, a0, s, z0) ∧ check1(x1, a1, s, z1))
(4.24)

Analogous to the case of the OR construction we import the Σ-protocol locale as
Σ-AND. The proofs are able to directly use the corresponding properties of Σ0 and Σ1.
We first show completeness.

Lemma 4. (in Σ-AND) shows Σ-AND.completeness

Proof. The executions of Σ0 and Σ1 are run in parallel, therefore the completeness
properties of Σ0 and Σ1 can be applied straightforwardly for completeness to be
realised.

For the HVZK property we construct the following simulator, as usual we give the
unfolded version here for simplicity.

SAND((x0, x1), e) = do {
(a0, c0, z0)← S0(x0, e);

(a1, c1, z1)← S1(x1, e);

return((a0, a1), e, (z0, z1))}

(4.25)

Lemma 5. (in Σ-AND) shows Σ-AND.HVZK

Proof. The conversations for the AND construction are the conversations for Σ0 and
Σ1 combined, thus both can be simulated by the HVZK property of Σ0 and Σ1, the
simulator (given in Equation 4.25) does exactly this.

The adversary we construct to prove the special soundness property is as follows.

Ass,AND((x0, x1), conv, conv′) = do {
let ((a0, a1), e, (z0, z1)) = conv;

let ((a′0, a′1), e′, (z′0, z′1)) = conv′;

w0 ← Ass,0(x0, (a0, e, z0), (a′0, e′, z′0));

w1 ← Ass,1(x1, (a1, e, z1), (a′1, e′, z′1));

return(w0, w1)}

(4.26)

Lemma 6. (in Σ-AND) shows Σ-AND.special-soundness

Proof. The special soundness adversary, Ass,AND, runs the special soundness adver-
saries for both Σ0 and Σ1 to get the witnesses for each relation. The correct witnesses
are outputted due to the adversaries for Σ0 and Σ1 outputting the correct witnesses for
their respective protocols and Ass,AND is lossless as the adversaries it uses are lossless,
again due to the special soundness soundness property of Σ0 and Σ1.

Combining the properties we can show the construction is a Σ-protocol.

Theorem 8. (in Σ-AND) shows Σ-AND.Σ-protocol



4.3 Σ-protocol instantiations and constructions 57

Prover Verifier
(h, w) h

r $←− Z|G|

a← gr initial msg: a
−−−−−−−−−−−−→ a

challenge: e
←−−−−−−−−−−−− e $←− Z|G|

z← (w · e + r) mod |G|
response: z

−−−−−−−−−−−−→ z

check: a · he = gz

accepts or rejects

Figure 4.4: The Schnorr Σ-protocol.

4.3.2 The Schnorr Σ-protocol

The Schnorr protocol uses a cyclic group G with generator g and considers the discrete
log relation which on public input h requires the witness to be the discrete log of h in
G — h = gw. The Schnorr Σ-protocol is given in Figure 4.4. We explain the protocol
Example 1 and provide a detailed paper proof of its security in Theorem 1 in section
2.2.

The most interesting part of the formal proof is special soundness. The adversary
must output w = ( z−z′

e−e′ ) mod |G|. To formalise this part in Isabelle we were required
to formalise the inverses in a field; more specifically, as we just work modulo the size
of the field, we need to formalise what it means to be an inverse modulo the size of
the field. We take a small aside here to discuss how we do this as it is relevant for
many of the remaining proofs in this section.

4.3.2.1 Formalising Inverses

Throughout our formalisation we work with natural numbers instead of formalising a
field construction. Therefore we work modulo q whenever we actually work in a field.
One issue we encounter is constructing inverses modulo q. We are required to reason
about the inverses of elements in a field in many places in our formalisation, for
example the special soundness adversary outputs w = ( z−z′

e−e′ ) mod |G| in the Schnorr
protocol. We show how we formalise such an inverse.

Obviously, the standard division function on natural numbers is not suitable to
obtain an inverse in the field modulo q. Instead, we use the existing number theory
formalisation in Isabelle’s standard library, in particular Bezout’s function (bezw).
Bezout’s identity informally says: let a and b be integers such that gcd(a, b) = d then
there exist integers x and y such that a · x + b · y = d. In Isabelle, the function bezw(a, b)
returns the pair (x, y) of witnesses to Bezout’s identity. So we obtain the inverse of a
as fst(bezw(a, q)). For readability we define an abbreviation for the inverse.

invq(a) = fst(bezw(a, q))



58 Σ-protocols

We prove the following general lemma, which we find is sufficient in all the cases
where reasoning about the inverse is required in our formalisation.

Lemma 7. assumes gcd(a, q) = 1
shows [a · invq(a) = 1] mod q

Proof. The function bezw outputs a pair of witnesses to Bezout’s identity, using this
along with the assumption that gcd(a, q) = 1 we have

invq(a) · a + snd(bezw(a, q)) · q = 1

Considering this modulo q the result comes easily as the second term on the left hand
side vanishes.

4.3.2.2 Proving the Schnorr Σ-protocol is a Sigma-protocol

In the case of the Schnorr Σ-protocol we instantiate q as |G|. The assumption, in
general, holds in our usage as a < |G|, a 6= 0 and |G| is prime.

The Schnorr Σ-protocol is defined over a cyclic group of prime order. We use the
construction of cyclic groups from [51] to fix a group G in the locale we work in as
follows.

locale schnorr-base =

fixes G :: ‘grp cyclic-group

assumes prime(order(G))
(4.27)

To show the Schnorr Σ-protocol has the desired properties of Σ-protocols we
explicitly define the parameters required in our Σ-protocol framework. We define

initS, responseS, checkS, RS
DL, SS

raw,AS
ss, challenge-spaceS, valid-pubS

where the superscript S denotes that these constants are for the Schnorr Σ-protocol.
We make these definitions inside the context of the locale. The types of the components
of the protocol are made more concrete from the definitional theory of Σ-protocols, in
particular we define the following type synonyms.

type-synonym witness = nat

type-synonym ‘grp pub-in = ‘grp

type-synonym ‘grp msg = ‘grp

type-synonym rand = nat

type-synonym challenge = nat

type-synonym response = nat

For the Schnorr Σ-protocol the relation is the discrete log relation, as given informally
in Equation 2.1; formally this is encoded into Isabelle as

RS
DL = {(h, w). h = gw}. (4.28)



4.3 Σ-protocol instantiations and constructions 59

The programs initS, responseS and checkS correspond to the stages of the protocol given
in Figure 4.4.

initS :: (‘grp pub-in×witness)⇒ (rand× ‘grp msg) spmf

initS(h, w) = do {
r ← samp-uniform(|G|);
return(r, gr)}

(4.29)

responseS :: rand⇒ witness⇒ challenge⇒ response spmf

responseS(r, w, e) = return((w · c + r) mod |G|)
(4.30)

checkS :: ‘grp pub-in⇒ ‘grp msg⇒ challenge⇒ response⇒ bool

checkS(h, a, e, z) = (a⊗ he = gz)
(4.31)

A public input is valid if it is in the group, valid-pubS = carrier(G). And the challenge
set is the set of naturals up to the order of G, challenge-spaceS = {0, . . . , |G|}.

We show these constants are an instantiation of the Σ-protocol-base locale (Equation
4.4). As explained in section 3.3.1.1 we do this using the sublocale command; this is
an extension of the sublocale given in Equation 4.1.

sublocale Schnorr-Σ : Σ-protocol-base initS responseS checkS

RS
DL SS

raw AS
ss challenge-spaceS valid-pubS

We also inherit the cyclic group properties of the group G by forming the following
locale.

locale schnorr = schnorr-base + cyclic-group(G) (4.32)

In this context we can prove the desired properties of the Schnorr Σ-protocol.

Lemma 8. (in schnorr) shows Schnorr-Σ.completeness

Proof. Completeness follows after proving the identity gr⊗ (gw)e = gr+w·e and passing
it as a rewrite rule to the simplifier.

Second we consider special soundness. To prove this property we construct an
adversary that can extract the witness from accepting conversations of the protocol.
We informally gave the construction of this adversary in the previous section; given
two accepting conversations (a, e, z) and (a, e′, z′) the adversary outputs ( z−z′

e−e′ ) mod |G|.
When encoding of the adversary in Isabelle we must be mindful of whether e > e′;
as we are working with naturals bounded subtraction in the denominator e− e′ will
return 0 if e < e′ (we know that e 6= e′ as it is a condition on the conversations given
to the adversary).



60 Σ-protocols

AS
ss(h, c1, c2) = do {
let (a, e, z) = c1;

let (a′, e′, z′) = c2;

return(if e > e′ then (z− z′) · invG(e− e′) mod |G|
else (z′ − z) · invG(e′ − e) mod |G|)}

(4.33)

Using this adversary we prove the special soundness property for the Schnorr
Σ-protocol.

Lemma 9. (in schnorr) shows Schnorr-Σ.special-soundness

Proof. The adversary AS
ss is clearly lossless — it does not do any probabilistic sampling.

Showing the adversary outputs a witness to the relation is proven by using Lemma 7

to rewrite the output of the adversary in a similar manner to the paper proof given in
section 4.3.2.

Finally we consider the Honest Verifier Zero Knowledge property. This proof tech-
nique follows the technique of simulation-based proofs that was formally introduced
in Isabelle and CryptHOL in [21]. To prove HVZK we define the simulator, SS

raw, which
in turn defines Schnorr-Σ.SS. We then prove this mimics the real view. The unfolded
simulator is formed as follows; recall the intuition of sampling the response first and
constructing the initial message from it.

Schnorr-Σ.SS(h, e) = do {
z← samp-uniform(|G|);
let a = gz ⊗ (he)−1;

return (a, e, z)}

(4.34)

Lemma 10. (in schnorr) shows Schnorr-Σ.HVZK(h, w)

Proof. First we show the simulator and the real view are equal. The unfolded real
view can be written as:

Schnorr-Σ.real-viewS(h, w) = do {
r ← samp-uniform(|G|);
let (r, a) = (r, gr);

c← samp-uniform(|G|);
let z = (w · c + r) mod |G|;
return (a, c, z)}

(4.35)

The juxt of the proof is showing that z constructed in the real view is a uniform
sample — as it is in the simulator — this destroys any information passed to V about
the witness. To do this we use the following one time pad lemma:

map(λb. (y + b) mod q, samp-uniform(q)) = samp-uniform(q)



4.3 Σ-protocol instantiations and constructions 61

Prover Verifier
((h0, h1), w) (h0, h1)

r $←− Z|G|

a0 ← gr, a1 ← g′r
initial msg: (a0, a1)−−−−−−−−−−−−→ a

challenge: e
←−−−−−−−−−−−− e $←− Z|G|

z← (w · e + r) mod |G|
response: z

−−−−−−−−−−−−→ z

check: a0 · he
0 = gz and a1 · he

1 = g′z

Figure 4.5: The Chaum-Pedersen Σ-protocol.

To use this lemma in the proof we must rewrite some of the terms in the real view.
These rewriting statements of equality are nearly always needed when using such
lemmas as the remaining probabilistic program can no longer depend on b and must
be rewritten in terms of the other variables.

Second we show the output of the simulator is a valid transcript. This part of the
proof comes easily and in a similar manner to the proof of correctness.

Using Lemmas 8, 9 and 10 we show that the Schnorr Σ-protocol is in fact a Σ-
protocol.

Theorem 9. (in schnorr) shows Schnorr-Σ.Σ-protocol

4.3.3 Chaum-Pedersen Σ-protocol

In this section we detail our formalisation of the Chaum-Pedersen Σ-protocol [27]. The
protocol is run over a cyclic group G of prime order where g and g′ are generators
of G. The relation considered here is often described as the equality of discrete logs
relation.

RelCP = {((h0, h1), w). h0 = gw ∧ h1 = g′w} (4.36)

The protocol is shown in Figure 4.5.
In the locale chaum-ped-Σ-base we fix the group G and a natural x that we use to

construct g′ = gx.

locale chaum-ped-Σ-base =

fixes G :: ‘grp cyclic-group

and x :: nat

assumes prime(|G|)

(4.37)

As usual we define the components of the Σ-protocol.



62 Σ-protocols

initCP((h0, h1), w) = do {
r ← samp-uniform(|G|);
return(r, (gr, g′r))}

(4.38)

checkCP((h0, h1), (a0, a1), e, z)

= (a0 ⊗ he
0 = gz ∧ a1 ⊗ he

1 = g′z)
(4.39)

responseCP(r, w, e) = (return(w · e + r) mod |G|) (4.40)

After importing the Σ-protocol-base locale as CP-Σ we construct a new locale where
we import the cyclic group properties of G in which to prove the properties of the
protocol.

locale chaum-ped-Σ = chaum-ped-Σ-base + cyclic-group(G) (4.41)

The proofs of the properties for the Chaum-Pedersen Σ-protocol are similar to the
proofs of the Schnorr Σ-protocol (Lemmas 8, 9 and 10) the general difference being
we do everything twice as we have two initial messages sent compared to one in the
Schnorr protocol. The statements of the security properties are given below.

Lemma 11. (in chaum-ped-Σ) shows CP-Σ.completeness

The unfolded simulator for the HVZK property is shown below. When compared to
the Schnorr simulator we see this simulator creates two initial messages as opposed to
one. The intuition behind the construction of the simulator is to uniformly sample the
response to ensure it contains no information about the witness (by definition). The
other components of the output can then be constructed around this uniform sample.

SCP((h0, h1), e) = do {
z← samp-uniform(|G|);
let a = gz ⊗ (h−e

0 );

let a′ = g′z ⊗ (h−e
1 );

return((a, a′, e, z))}

(4.42)

Lemma 12. (in chaum-ped-Σ) shows CP-Σ.HVZK

For the special soundness property we construct the following adversary.

Ass,CP((h0, h1), c1, c2) = do {
let ((a, a′), e, z) = c1;

let ((b, b′), e′, z′) = c2;

return(if e > e′ then (z− z′) · invG(e− e′)

else (z′ − z) · invG(e′ − e))}

(4.43)



4.3 Σ-protocol instantiations and constructions 63

Prover Verifier
(h, (w0, w1)) h

r0, r1
$←− Z|G|

a← gr0 · g′r1
initial msg: a

−−−−−−−−−−−−→ a
challenge: e

←−−−−−−−−−−−− e $←− Z|G|

z0 ← (w0 · e + r0) mod |G|

z1 ← (w1 · e + r1) mod |G|
response: (z0, z1)−−−−−−−−−−−−→ (z0, z1)

check: a · he = gz0 · g′z1

Figure 4.6: The Okamoto Σ-protocol.

Lemma 13. (in chaum-ped-Σ) shows CP-Σ.special-soundness

Together Lemmas 12, 13 and 11 imply our formalisation of the Chaum-Pedersen
Σ-protocol is a Σ-protocol.

Theorem 10. (in chaum-ped-Σ) shows CP-Σ.Σ-protocol

4.3.4 Okamoto Σ-protocol

In this section we detail our formalisation of the Okamoto Σ-protocol [27]. The protocol
is run over a cyclic group G of prime order where g and g′ are generators of G. The
relation is as follows.

RelOk = {(h, (w0, w1)). h = gw0 ⊗ g′w1} (4.44)

The protocol is shown in Figure 4.6.
In the locale okamoto-Σ-base we fix the group G and a natural x that we use to

construct g′ = gx, this is equivalent to the Chaum-Pedersen Σ-protocol.

locale okamoto-Σ-base =

fixes G :: ‘grp cyclic-group

and x :: nat

assumes prime(|G|)

(4.45)

As usual we define the components of the Σ-protocol in turn.

initOk(h, w) = do {
r0 ← samp-uniform(|G|);
r1 ← samp-uniform(|G|);
return((r0, r1), (gr0 ⊗ g′r1))}

(4.46)



64 Σ-protocols

responseOk((r0, r1), (w0, w1), e) =

return((w0 · e + r0) mod |G|, (w1 · e + r1) mod |G|)
(4.47)

checkOk(h, a, e, (z0, z1)) = (a⊗ he = gz0 ⊗ g′z1) (4.48)

After importing the Σ-protocol-base locale as O-Σ we construct a new locale where
we import the cyclic group properties of G in which to prove the properties of the
protocol.

locale okamoto-Σ = okamoto-Σ-base + cyclic-group(G) (4.49)

The proofs are again of a similar flavour to those of the Schnorr and Chaum-Pedersen
Σ-protocols, therefore we do not elaborate on them here.

Lemma 14. (in okamoto-Σ) shows O-Σ.completeness

The unfolded simulator used to prove the HVZK property is shown below.

SOk(h, e) = do {
z0 ← samp-uniform(|G|);
z1 ← samp-uniform(|G|);
let a = gz0 ⊗ g′z1 ⊗ (h−e);

return(a, e, (z0, z1))}

(4.50)

Lemma 15. (in okamoto-Σ) shows O-Σ.HVZK

To prove the special soundness property we use the following adversary. We note the
only difference to the previous adversaries we have seen is that the return statement
outputs a 2-tuple.

Ass,Ok(h, c1, c2) = do {
let (a, e, (z0, z1)) = c1;

let (a′, e′, (z′0, z′1)) = c2;

return(if e > e′ then (z0 − z′0) · invG(e− e′)

else (z′0 − z0) · invG(e′ − e),

i f e > e′ then (z1 − z′1) · invG(e− e′)

else (z′1 − z1) · invG(e′ − e))}

(4.51)

Lemma 16. (in okamoto-Σ) shows O-Σ.special-soundness

Together Lemmas 15, 16 and 14 imply our formalisation of the Okamoto Σ-protocol
is a Σ-protocol.

Theorem 11. (in okamoto-Σ) shows O-Σ.Σ-protocol



4.3 Σ-protocol instantiations and constructions 65

In this section we have shown how we formally define Σ-protocols and their security
properties and how we instantiate our framework for reasoning about well known
protocols and constructions. The compound constructions we consider are proved
at a general level; if desired one could instantiate the Schnorr, Chaum-Pedersen or
Okamoto Σ-protocols for this proof in a matter of lines.





5
C O M M I T M E N T S C H E M E S

5.1 introduction

In this Chapter we introduce our framework for reasoning about commitment schemes.
Like the other definitional frameworks in this thesis we are able to instantiate commit-
ment schemes and prove they are secure relative to our definitions.

Commitment schemes are a cryptographic primitive, run between a Committer C
and a Verifier V, that allow the Committer to commit to a chosen message, while
keeping it private, and at a later time reveal the message that was committed to. We
point the reader back to Section 2.3 for our introduction to commitment schemes or to
[72] for a more thorough exposition.

chapter outline Figure 5.1 outlines the work flow in this chapter. In Section
5.2 we introduce our framework for reasoning about commitment schemes and
then instantiate it in Section 5.3 for the Rivest commitment scheme. We include the
Pedersen commitment scheme in this Figure as in our formalisation we prove it
secure from scratch. We also present the proof obtained from the general result, the
construction from Σ-protocols, in the next chapter — our formalised proof of the
Pedersen commitment scheme from scratch is given for comparison of proof effort
with the result in the next chapter.

The work in this chapter has been published in [22, 24, 25].

5.2 formalising commitment schemes

We formalise commitment schemes analogously to Σ-protocols. First we fix the re-
quired parameters (as functions) in the locale, commit-base, given in 5.1.

locale commit-base =

fixes key-gen :: (‘ck× ‘vk) spmf

and commit :: ‘ck⇒ ‘plain⇒ (‘com× ‘open) spmf

and verify :: ‘vk⇒ ‘plain⇒ ‘com⇒ ‘open⇒ bool spmf

and valid-msg :: ‘plain⇒ bool

(5.1)

The probabilistic programs key-gen, commit and verify will correspond to the three
components of a commitment scheme. The key generation function outputs the keys
that are available to the Committer and Verifier. If, for example, all the keys are shared
then we have ck = vk. The predicate valid-msg ensures the messages outputted by the
adversary in the hiding game are valid, for example we may require them to be group
elements.

Using these fixed parameters we define the correctness, hiding and binding for
commitment schemes.

67



68 commitment schemes

Commitment
Scheme Defs
(Section 5.2)

Rivest
(Section 5.3)

Pedersen
(Section 6.3.1)

Figure 5.1: Outline of the formalisation of commitment schemes in this thesis.

For the correctness property we define the probabilistic program correct-game.

correct-game(m) = do {
(ck, vk)← key-gen;

(c, d)← commit(ck, m);

return(verify(vk, m, c, d))}

(5.2)

For a commitment scheme to be correct we require that for all valid messages
correct-game always returns True.

Definition 5. (Correctness)

correct = (∀m. valid-msg(m) −→ P [correct-game(m) = True] = 1)

When considering the hiding and binding properties we define the advantage an
adversary has of winning the corresponding security game, or in the best cases, perfect
hiding or binding.

The hiding game, hiding-game is defined as follows.

hiding-game (A1,A2) = TRY do {
(ck, vk)← key-gen;

((m0, m1), σ)← A1(vk);

_ ← assert(valid-msg(m0) ∧ valid-msg(m1));

b← coin;

(c, d)← commit(ck, (i f b then m1 else m2));

b′ ← A2(c, σ);

return(b = b′)} ELSE coin

(5.3)

In this game the challenger asks the adversary to output two messages, commits
one of the messages and hands it back to the adversary who must determine which



5.3 the rivest commitment scheme 69

message was committed. The adversary is said to win the game if it guesses correctly.
Formally the adversary is split into two parts (A1,A2), the first part outputs the
messages and the second its guess at which messages was committed to. We highlight
that we must check the messages (m0, m1) outputted by the adversary are valid, if
the assertion fails then the ELSE branch is invoked and the adversary only wins the
game half the time (equivalent to if it guessed randomly). Also note the two parts of
the adversary must be allowed to pass state to each other. The hiding advantage is
defined with respect to the hiding game.

Definition 6. (Hiding Advantage)

hiding-advantage(A) = |P [hiding-game(A) = True]− 1
2
|

Definition 7. (Perfect Hiding)

perfect-hiding(A) = (hiding-advantage(A) = 0)

The binding game asks the adversary (now acting as the Committer) to output a
commitment c and two pairs of messages and opening values ((m, d), (m′, d′)) such
that they both verify — the messages outputted by the adversary must be distinct and
valid, with respect to c, which is accounted for by the assert statement.

binding-game A = TRY do {
(ck, vk)← key-gen;

(c, m, d, m′, d′)← A(ck);

_ ← assert(m 6= m′ ∧ valid-msg(m) ∧ valid-msg(m′));

b← verify(vk, m, c, d);

b′ ← verify(vk, m′, c, d′);

return(b ∧ b′)} ELSE return(False)

(5.4)

Recall that for the scheme to be secure, the Committer adversary should not be able
to win this game.

Definition 8. (Binding Advantage) binding-advantage(A) = P [binding-game(A) = True]

Definition 9. (Perfect Binding) perfect-binding(A) = (binding-advantage(A) = 0)

5.3 the rivest commitment scheme

In this section we show how we formalise the Rivest commitment scheme [66] intro-
duced by Rivest in 1999. The Rivest scheme is run using a field of prime order, Zq and
is built using a trusted initialiser. In this case the trusted initialiser provides co-related
randomness to the parties in advance of the protocol, it does not participate in the
running of the protocol thereafter. Protocols using a trusted initialiser are generally
easier to implement as the initialisation can be performed in advance of the protocol
and the co-related randomness reduces overheads in the protocol itself.



70 commitment schemes

Initialisation Phase

a, b, x1
$←− Zq

y1 ← (a · x1 + b) mod q

pk $←− G

Committer Verifier
Commitment

m, (a, b) (x1, y1)

c← m + a mod q c−−−−−−−−−−−−→ c

Verification
(m,d)

−−−−−−−−−−−−→ (m, d)

checks y1 = a · x1 + b mod q

and c = m + a mod q

Figure 5.2: The Affine Plane commitment scheme of [17] that slightly amends the Rivest
commitment scheme [66].

The protocol we formalise is shown in Figure 5.2. Note this is not quite the original
scheme proposed by Rivest [66]; as was noted by Blundo and Masucci in [17] the
original scheme did not provide perfect hiding. The original committed message was
constructed as c = a ·m + b mod q, the latter authors offered a slight amendment that
does provide perfect hiding. The trusted initialiser randomly generates a, b and x1 and
constructs y1 = a · x1 + b mod q. It sends (a, b) to the Committer and (x1, y1) to the
Verifier. To commit to the message m the Committer computes c = m + a mod q. To
reveal, they send the pair (a, b) and the message m upon which the Verifier checks
c = m + a mod q and y1 = a · x1 + b mod q.

We formalise the protocol in the locale rivest where we fix the size of the field and
assume it is of prime order. Note we do not use any field construction previously
formalised in Isabelle, preferring to work modulo q throughout the formalisation.

locale rivest =

fixes q :: nat

assumes prime(q)

(5.5)

The components of the commitment scheme are given below. Our formalisation
allows for the trusted initialiser as we treat the co-related randomness given to each



5.3 the rivest commitment scheme 71

party as the keys, the work done by the trusted initialiser in the protocol is done in
our key generation algorithm.

key-genR = do {
a← samp-uniform(q);

b← samp-uniform(q);

let y1 = (a · x1 + b) mod q

return((a, b), (x1, y1))}

(5.6)

The commit and verify algorithms are as defined in Figure 5.2.

commitR((a, b), m) = return(m + a mod q, (a, b)) (5.7)

verifyR((x1, y1), m, c, (a, b)) = (c = m + a mod q ∧ y1 = a · x1 + b mod q) (5.8)

Finally, a message is considered valid if it is in the valid range of positive naturals —
in the field of size q.

valid-msgR(m) = m ∈ {1, . . . , q− 1} (5.9)

As usual we import the commitment scheme locale, here under the name rivest-commit,
to show this is an instance with suitable properties.

We first consider the hiding property.

Lemma 17. (in rivest) shows rivest-commit.perfect-hiding(A)

Proof. The commitment c = m + a mod q reveals no information about m as it is
masked by the randomness of a, which the Verifier does not have access to. Therefore
an application of the one time pad lemma for addition in a field (Equation 5.10), which
we prove, means the committed message given to the adversary is independent of the
message.

map(λ. (c + a) mod q, samp-uniform(q)) = samp-uniform(q) (5.10)

We then show the adversary’s guess can be no better than a than flipping a coin to
determine its output, meaning its chance of winning the hiding game is 1

2 .

The binding property is proven by bounding the binding advantage by 1
q .

Lemma 18. (in rivest) shows rivest-commit.bind-advantage(A) ≤ 1
q

Proof. The conditions required on the output of the binding adversary (in the binding
game) are such that we can compute x1 (let us call the function computing x1, f ),
which is uniformly sampled in the game (as part of the key generation algorithm),
from the output of A. Intuitively this means we can correctly guess the output of
a uniform sampling from a set of q elements, the probability of which is 1

q . More
formally we have f (a, a′, b, b′) = x1 where x1 is a uniform sample. As f is independent
of x1 we show the probability of the game returning true is less than or equal to f
guessing the value of x1, that is the probability is less than 1

q .



72 commitment schemes

Correctness comes easily after unfolding the relevant definitions.

Lemma 19. (in rivest) shows rivest-commit.correctness

Together Lemmas 17, 18 and 19 show the desired properties of the commitment
scheme presented in Figure 5.2.

The Rivest commitment scheme uses the so called trusted initialiser model. The
use of a trusted initialiser to distribute co-related randomness to the parties before
the execution of the protocol means protocols can be more simple and still offer high
levels of security. As pointed out in [17], however, we still cannot have perfect hiding
and binding.

As different commitment schemes have different properties, in particular we can
only have either perfect hiding or perfect hiding, we cannot provide an overall
definition of commitment schemes in our formalisation. We can only consider the two
properties in turn.



6
C O M M I T M E N T S F R O M Σ - P R O T O C O L S

6.1 introduction

As we saw in Section 2.3.1, Σ-protocols can be used to construct commitment schemes.
In this chapter we show how we formalise this construction. This general construction
means that from any Σ-protocol we get, for free, a commitment scheme. Figure
6.2 outlines the formalisation in this chapter. In particular we use our frameworks
for Σ-protocols and commitment schemes to prove the general construction, this is
represented by the double arrow between them. Figure 6.2 highlights the instantiation
of the Pedersen commitment scheme (which comes using the general construction
instantiated for the Schnorr Σ-protocol). In our formalisation we also provide the
relevant instantiations for the other Σ-protocols we consider, however here we focus
on the Pedersen commitment scheme as it is the most widely used scheme.

chapter outline We first briefly recap the construction of commitment schemes
from Σ-protocols and then show our formalisation of the construction in Section
6.2.1. Then, in Section 6.3.1, we show how instantiate this result for the Pedersen
commitment scheme.

The work in this chapter has been published in [22, 24, 25]

6.2 constructing commitment schemes from Σ-protocols

Modern cryptography is based on hardness assumptions. These are relations that
it is considered computationally infeasible to break. For example, the discrete log
assumption (DLP — discrete log problem) given in Equation 2.1.

Consider a hard relation R for a Σ-protocol where gen generates an instance h and
witness w such that R(h, w) is satisfied. Using a Σ-protocol for the relation R we can

Σ-protocols
(Section 4.2)

Commitment
Schemes

(Section 5.2)

Schnorr
(Section 4.3.2)

Pedersen
(Section 6.3.1)

(Section 6.2)

Figure 6.1: Outline of the formalisation of the general proof of the construction of commitment
schemes from Σ-protocols, highlighting the instantiation of the Pedersen commit-
ment scheme. We note we also instantiate the other Σ-protocols we consider in the
same way.

73



74 commitments from Σ-protocols

Committer Verifier
e ∈ challenge-space

Key Gen

h h←−−−−−−−−−−−− (h, w)
$←− gen

Commitment

(a, e′, z)← S(h, e) a−−−−−−−−−−−−→ a

Verification
(e′, z)

−−−−−−−−−−−−→ e′, z

checks (a, e′, z)

accepts/rejects

Figure 6.2: A commitment scheme constructed from a Σ-protocol, m is the message being
committed to.

construct the commitment scheme given in Figure 6.2. One requirement in that the
message to be committed, e, must be in the challenge space of the Σ-protocol. In reality,
however, this is not pose a restriction at all as the challenge space is the field or group
the Σ-protocol is considered over.

Correctness comes from the HVZK property of the Σ-protocol, the simulator’s
output is the same as the output of a real execution of the protocol, meaning the check
algorithm will accept the conversation. The commitment scheme is perfectly hiding
because the commitment a is the first message of the Σ-protocol which is created
independently of the challenge (the message being committed to). The binding prop-
erty follows from the special soundness property of the Σ-protocol; if the Committer
could output the commitment a and opening values (e, z) and (e′, z′) such that both
(a, e, z) and (a, e′, z′) are both accepting conversations then by the special soundness
property there exists an adversary that can output the witness w which contradicts
the assumption of the relation being hard.

6.2.1 Formalising the construction

To formalise this construction we fix the components of a Σ-protocol in a locale and
assume they form a Σ-protocol. The locale can be seen in 6.2, where the superscript C
denotes we are using the parameters to construct a commitment scheme. The only
additional parameter we require in this construction beyond what the Σ-protocol
provides is a generator,

genC :: (‘pub-input× ‘witness) spmf (6.1)

that outputs (h, w) such that the relation is satisfied.



6.2 constructing commitment schemes from Σ-protocols 75

locale Σ-commit = Σ-protocol-base initC responseC checkC RelC SC
raw AC

ss

challenge-spaceC valid-pubC

for initC responseC checkC RelC SC
raw AC

ss challenge-spaceC valid-pubC+

and genC

assumes Σ-protocol(h, w)

and (h, w) ∈ set-spmf (genC) =⇒ (h, w) ∈ RelC

and lossless(genC)

and lossless(initC(h, w))

and lossless(responseC(r, w, e))

(6.2)

Using these fixed parameters we make the assumptions they form a Σ-protocol and
that the generator outputs a tuple for which the relation holds. The assumptions on the
lossessness of the parameters are needed, otherwise the protocol may terminate if they
do not output anything; — meaning we cannot reason about the security properties.

To formalise the general notion of a hard relation we define a security game played
by an adversary who is trying to break the relation: (h, w) is sampled from genC and h
is given to the adversary who is asked to output w′. The adversary wins the game if
(h, w′) ∈ RelC.

rel-game(A) = TRY do {
(h, w)← genC;

w′ ← A(h);
return((h, w′) ∈ RelC)} ELSE return(False)

(6.3)

Using this game we define the relation advantage — the probability an adversary has
of winning the game.

Definition 10 (Relation Advantage).

rel-advantage(A) = P [rel-game(A) = True]

We show a reduction to this advantage in the proof of the binding property.
To formalise the protocol given in Figure 6.2 we define the three components

key-genC, commitC, verifyC that make up the commitment scheme and also what consti-
tutes a valid message by defining valid-msgC = (m ∈ challenge-spaceC). The keys are
generated by sampling from genC.

key-genC = do {
(h, w)← GC;

return(h, (h, w))}
(6.4)

To commit to a message the Committer runs the simulator and outputs the initial
message from the simulator as the commitment and holds the response as the opening
value.



76 commitments from Σ-protocols

commitC(h, e) = do {
(a, e, z)← SC(h, e);

return(a, z)}
(6.5)

Finally the Verifier checks if the messages it has received from the Committer
correspond to an accepting conversation.

verifyC((h, w), e, a, z) = checkC(h, a, e, z) (6.6)

We now prove that our construction of the commitment scheme meets the desired
properties. The commit-base locale is imported under the name Σ-commit thus all
definitions are prefixed with this.

sublocale Σ-commit : commit-base key-genC commitC verifyC valid-msgC .

The formal proofs of the security properties broadly follow the intuition given in
Section 6.2. The correctness and hiding properties are given in Lemmas 20 and 21

below.

Lemma 20. (in Σ-commit) shows Σ-commit.correct

Proof. We rewrite the simulator that is called in the commitment phase as the real
view of the transcript using the HVZK property of Σ-protocols (Definition 2). After
unfolding the real view into the components of the Σ-protocol we apply the definition
of completeness (Definition 1) to show that check will always return true.

Lemma 21. (in Σ-commit) shows Σ-commit.perfect-hiding(A)

Proof. We replace the simulator in the hiding game by the real view of the Σ-protocol.
The commitment a comes from the probabilistic program initC and is therefore
independent of the message that is committed as the only inputs to initC are h
and w. Thus the adversary learns nothing of the committed message and so the chance
of it winning the hiding game is equivalent to guessing the output of a coin flip —
which implies perfect hiding.

Finally we consider the binding property. Here we show a reduction to the relation
advantage. To show this reduction we construct an adversary, adversaryrel, that interacts
with the relation game using the Σ-protocols special soundness adversary and the
adversary used in the binding game — adversaryrel calls the binding adversary and
constructs two conversations from it to pass them as inputs to the special soundness
adversary and outputs the witness given.

adversaryrel(A, h) = do {
(c, e, z, e′, z′)← A(h);
AC

ss(x, (c, e, z), (c, e′, z′))}
(6.7)



6.3 instantiating the general result 77

pk $←− G

Committer Verifier
Commitment Phase

m, pk pk

d $←− Z|G|

c← gd.pk−m c−−−−−−−−−−−−→ c

Verification Phase
(m,d)

−−−−−−−−−−−−→ (m, d)

checks gd.pk−m = c

accepts or rejects

Figure 6.3: The Pedersen commitment protocol, the Committer commits to message m. No
keys are known only to one party, we only have a shared key pk.

Lemma 22. (in Σ-commit)
shows Σ-commit.bind-advantage(A) ≤ rel-advantage(adversaryrel(A))

Proof. The binding game is equal to calling rel-game(adversaryrel) with the assertions
from the binding game incorporated in the probabilistic program. When removing the
assertions the probability mass of the probabilistic program can only increase, thus
the bound in the above statement is valid.

The next section details how we use this general proof to realise the commitment
schemes constructed from some Σ-protocols — in particular we show how the security
statements for the Pedersen commitment scheme come with very little proof effort.

6.3 instantiating the general result

6.3.1 The Pedersen Commitment Scheme

The Pedersen commitment scheme is a well known commitment scheme that allows
for the commitment to a natural number. In this section we detail how we use our
general result from Section 6.2 to realise the proof of the Pedersen commitment scheme
in only a few lines of Isabelle proof. The result comes from instantiating the general
result with the Schnorr Σ-protocol that was formalised in Section 4.3.2.

We note the exact instantiation of the general result from Section 6.2 outputs a
form of the Pedersen scheme that is slightly different from the traditional version
presented — given in Figure 2 in Section 2.2. Specifically the commitment is taken as
c = g · pk−m rather than c = g · pkm that is commonly presented in the literature, note
the verification step is also modified in the analogous way. This is due to the simulator
in the Schnorr protocol taking the inverse of the public input in constructing the initial



78 commitments from Σ-protocols

message. The Pedersen protocol that arises from our formalisation is given in Figure
6.31

To formalise the commitment scheme constructed from the Schnorr Σ-protocol the
only additional definition we must make is that of the generator. Recall the generator
generates a tuple for which the relation holds. In the case of the Schnorr Σ-protocol
the generator GS is as follows.

GS = do{
w← sample-uniform(|G|);
return(gw, w)}

(6.8)

Here G is the cyclic group we are working with. Along with the instantiated
parameters for the Schnorr Σ-protocol we are able to instantiate the locale from the
general proof as follows.

sublocale pedersen : Σ-commit initS responseS checkS

RS
DL SS

raw AS
ss challenge-spaceS valid-pubS G

To prove this import is valid we must prove that the assumptions from the locale
Σ-commitment given in Figure 6.2 hold. These properties come easily using Theorem
9 and unfolding the other relevant definitions.

We then directly prove the correctness and hiding statements using the correspond-
ing general lemmas.

Lemma 23. (in schnorr)
shows pedersen.commit-base.correct

Lemma 24. (in schnorr)
shows pedersen.commit-base.perfect-hiding(A)

Both Lemma 23 and 24 are proven in one line. The binding statement can also be
transferred and proved in one line however, we would like to relate it to the discrete
log advantage rather than the generic rel-advantage given in the general case in Lemma
22. The following lemma shows that the discrete log advantage is equal to the relation
advantage defined in the general construction.

Lemma 25. (in schnorr)
shows pedersen.rel-advantage(A) = dis-log.advantage(A)

Using Lemma 25 we prove binding by bounding the binding advantage by the
discrete log advantage.

Lemma 26. (in schnorr)
shows pedersen.commit-base.bind-advantage(A) ≤

dis-log.advantage(pedersen.adversaryrel(A))

1 There is no obvious notion of equivalence of commitment schemes, but due to the protocols being
identical up to a negative exponent we call them both the Pedersen commitment scheme, but note the
difference.



6.3 instantiating the general result 79

Figure 6.4: The Isabelle proof for instantiating the Pedersen commitment scheme using the
general proof presented in this section.

6.3.1.1 The Isabelle Code

To illustrate how efficient the proof is in Isabelle we show it in its entirety in Figure 6.4,
the code has been extracted from Isabelle. For completeness we provide a commentary
on the proof here.

First we import, under the name pedersen, the locale where the general proof is
given and prove the import is valid. The correctness and perfect hiding properties
come directly from the general proof, this is seen by the proof that only calls the on the
lemmas pedersen.correct-commit and pedersen.perfect-hiding respectively. For the binding
property in the general proof (Lemma 22) we show a reduction to the hard relation, in
any instantiation we must relate this to the hardness assumption corresponding to
the commitment scheme that has been constructed. In this case we show the relation
advantage in the general construction is equivalent to the discrete log advantage.
This is shown by the lemma rel-adv-eq-dis-log-adv. Using this we can show the binding
advantage is bound by the discrete log advantage, thus completing the reduction for
the binding property.



80 commitments from Σ-protocols

6.3.2 Instantiating the security parameter for the Pedersen Commitment Scheme

In this section we show how we instantiate the security parameter for the Pedersen
commitment scheme. The methodology we use here is analogous to the instantiation
of the security parameter in Section 7.3.1.4.

We use Isabelle’s locale instantiation mechanism to achieve the instantiation with
the security parameters with little effort. First we construct a locale that fixes the family
of cyclic groups and then import the schnorr locale for all n. That is we construct the
locale and make the following assumption and import the concrete setting for all n.

locale schnorr-asymp =

fixes G :: nat⇒ ‘grp cyclic-group (structure)

assumes schnorr(G(n))

(6.9)

sublocale schnorr(G(n)) for n

Whilst we are focusing on the Pedersen commitment scheme here, for completeness
we give the statement that the Schnorr protocol is a Σ-protocol. The statement in the
asymptotic setting comes trivially from the concrete setting.

Theorem 12. (in schnorr-asymp) shows Schnorr-Σ.Σ-protocol(n)

Like usual to prove a commitment scheme secure we consider the three properties
in turn. Correctness and perfect hiding for the Pedersen commitment scheme come
directly from the concrete setting.

Lemma 27. (in schnorr-asymp)
shows pedersen.commit-base.correct(n)

Lemma 28. (in schnorr-asymp)
shows pedersen.commit-base.perfect-hiding(n,A(n))

It is left to show computational binding for the Pedersen commitment scheme. Here
we show A’s advantage against the binding game is negligible if adversary’s advantage
against the discrete log game is negligible. This follows directly from the bound in the
concrete case.

Lemma 29. (in schnorr-asymp)
shows negligible(λ n. pedersen.commit-base.bind-advantage(n,A(n)) ⇐⇒

negligible(λ n. dis-log.advantage(pedersen.adversaryrel(n, A(n)))

6.4 other instantiations and conclusion

other instantiations Section 6.3.1 showed how we instantiated our general
result of the construction of commitment schemes from Σ-protocols for the Schnorr
Σ-protocol, giving the Pedersen commitment scheme. In this section we show the
analogous commitment schemes for the other Σ-protocols we consider; namely the



6.4 other instantiations and conclusion 81

Chaum-Pedersen and Okamoto Σ-protocols. We note, due to the modularity of the
proofs, the results look identical (up to renaming) to those for the Pedersen commit-
ment scheme in Section 6.3.1, thus here we only give the protocols.

In the case of the Chaum-Pedersen Σ-protocol the relation is as in Equation 4.36

RelCP = {((h0, h1), w). h0 = gw ∧ h1 = g′w}

where g and g′ are both generators of the cyclic group G. The corresponding commit-
ment scheme is run as follows:

Committer Verifier
e ∈ {0, . . . , |G|}

Key Gen

w $←− |G|

(gw, g′w)
(h0, h1)←−−−−−−−−−−−− (h0, h1) = (gw, g′w)

Commitment

z $←− |G|
a← gz · h−c

a′ ← g′z · h′−c (a, a′)
−−−−−−−−−−−−→ (a, a′)

Verification
(e, z)

−−−−−−−−−−−−→ e, z

checks a · he
1 = gz ∧ a1 · he

1 = g′z

accepts/rejects

In the case of the Okamoto Σ-protocol the relation is as in Equation 4.44

RelOk = {(h, (w0, w1)). h = gw0 ∧ h1 = gw1}

where g and g′ are both generators of the cyclic group G. The corresponding commit-
ment scheme is run as follows:



82 commitments from Σ-protocols

Committer Verifier
e ∈ {0, . . . , |G|}

Key Gen

w0
$←− |G|

w1
$←− |G|

(gw, g′w)
(h0, h1)←−−−−−−−−−−−− h = gw0 · g′w1

Commitment

z0
$←− |G|

z1
$←− |G|

a← gz0 · g′z1 · h−c a−−−−−−−−−−−−→ (a, a′)

Verification
(e, z)

−−−−−−−−−−−−→ e, z

checks gz0 · g′z1 = a · he

accepts/rejects

conclusion This chapter has shown how CryptHOL can be used to prove con-
structions secure at an abstract level. This methodology is important as it is often at
this level that cryptographers work. Our work here has reasoned at a high, general
level, assuming only that primitives (Σ-protocols) exist, before instantiating the results,
meaning the low level constructions are also formally proven secure. Isabelle allows
us to do this with relative ease by leveraging the module system and reusing results
where appropriate.



Part II

F O R M A L I S I N G M U LT I - PA RT Y C O M P U TAT I O N





7
S E M I - H O N E S T S E C U R I T Y

7.1 introduction

The semi-honest adversary model assumes the adversary, who corrupts a party in a
protocol, follows the protocol transcript but may try to learn more than is allowed
by analysing the messages it receives. This security model is a baseline for security
in MPC, in particular protocols that have semi-honest security can be extended to
have malicious security where the adversary is allowed to totally corrupt the party.
This Chapter details our work on formalising MPC in the semi-honest model —
throughout we consider the two party setting. We refer the reader back to Section 2.4.1
for a detailed account of the definitions.

chapter outline In Section 7.2 we show how we formalise the definitions of
semi-honest security from section 2.4.1. In Section 7.3 we consider the Oblivious
Transfer functionality and prove instantiations of it: namely the OT1

2 constructed from
Extended Trapdoor Permutations (ETPs) and the Naor Pinkas OT1

2 . Section 7.4 shows
how we prove OT1

4 from OT1
2 and subsequently use this to prove the two party GMW

protocol secure. Finally in Section 7.5 we consider a protocol for securely computing a
multiplication between two parties. The contributions we make are listed below and a
visual outline of the Chapter is given in Figure 7.1.

The work in this chapter has been published in [20, 21, 23].

7.2 formalising semi-honest security

In this section we present our formalisation of the definitions of semi-honest security.
CryptHOL cannot reason about the complexity class of adversaries, in particular

we cannot reason about polynomial-runtime. As discussed in section 3.3.2 this does
not effect the structure of our proofs as we can still employ a reduction based argu-
ment. Without this, however, we do not consider computational indistinguiability as
described in section 2.4.1. Instead we opt for the standard (among other cryptographic
frameworks) notion of an advantage — the advantage a distinguisher has of distin-
guishing the two views. In CryptHOL the notion of an advantage was introduced by
Lochbihler et al. [8, 53] when they formalised game-based cryptography.

We consider the case of deterministic and non-deterministic functionalities sepa-
rately.

7.2.1 Deterministic functionalities

Recall that for deterministic functionalities the notion of security is slightly relaxed,
however correctness must be proved separately. The locale which fixes the parameters
for this case is given in 7.1.

85



86 semi-honest security

2-PC defs
(Section 7.2)

Secret Sharing defs

OT1
2 from ETP

(Section 7.3.1.2)
RSA

(Section 7.3.1.3)

ETP defs
(Section 7.3.1.1)

OT1
2 defs

NP OT1
2

(Section 7.3.2)

OT1
4 defs

OT1
4 from OT1

2

Secure Mult
(Section 7.5)

GMW from OT1
4

(Section 7.4)

Semi-Honest Adversaries

Figure 7.1: An outline of the formalisation of semi-honest MPC in this thesis.

locale semi-honest-det =

fixes funct :: ‘msg1 ⇒ ‘msg2 ⇒ (‘out1 × ‘out2) spmf

and protocol :: ‘msg1 ⇒ ‘msg2 ⇒ (‘out1 × ‘out2) spmf

and R1 :: ‘msg1 ⇒ ‘msg2 ⇒ ‘view1 spmf

and S1 :: ‘msg1 ⇒ ‘out1 ⇒ ‘view1 spmf

and R2 :: ‘msg1 ⇒ ‘msg2 ⇒ ‘view2 spmf

and S2 :: ‘msg2 ⇒ ‘out2 ⇒ ‘view2 spmf

(7.1)

The parameter funct represents the functionality, taking in the party’s inputs and
outputting the respective outputs.

The parameter, protocol, represents the execution of the protocol modelled as a prob-
abilistic program which outputs the outputs of the respective parties, as constructed in
the protocol. It is this parameter we compare to the functionality to define correctness.
The views are captured by the parameters R1, S1, R2, S2. The definitions of security are
made with respect to these parameters.

To define security in the deterministic setting we first consider correctness.

correctness A protocol is correct if it is functionally equivalent to the functional-
ity it implements.

Definition 11 (Correctness).

correct(m1, m2) = (protocol(m1, m2) = funct(m1, m2))

Here m1 and m2 are the inputs to the protocol for party 1 and 2. Proofs of correctness
are generally proven by unfolding the relevant definitions and providing Isabelle with



7.2 formalising semi-honest security 87

some hints on how to rewrite some terms. Depending on the protocol, Isabelle requires
more or less help with the rewriting steps; more help is needed when the steps require
non-trivial assumptions. Looking at the proof scripts will show how sometimes Isabelle
really does need some very basic help to rewrite terms!

security To formally prove security we construct the ideal view for each party. In
the semi-honest setting this is just the output of the simulator for each party. Recall
the simulator is allowed two inputs, the input of the party it is simulating, and the
output of the functionality of that party. Thus to define the ideal view we sample
from the functionality and use the binding operator to hand the relevant output to the
simulator as seen in Equation 7.2. The binding notation is recapped below.

ideal1(m1, m2) = funct(m1, m2)B (λ(out1, out2). S1(m1, out1)). (7.2)

The right hand side of the statement can be read as: the output distribution of the
simulator (S1) on input m1 and the output for party 1 (out1) that has been sampled
from the functionality. More explicitly, using the monadic do notation this reads:

do {(out1, out2)← funct(m1, m2); S1(m1, out1)}.

The analogous definition is made for party 2 also:

ideal2(m1, m2) = funct(m1, m2)B (λ(out1, out2). S2(m2, out2)). (7.3)

Without looking closely at the definition it may seem suspicious that the ideal view
takes in the inputs of both parties — after all the idea is for the ideal world not to take
in the input of the other party. This input, however, is not given to the simulator, only
to the functionality.

Perfect security requires the real and simulated views to be equal. We define this
for party 1 below:

Definition 12 (Perfect security, for party 1).

perfect-sec-P1(m1, m2) ≡ (R1(m1, m2) = ideal1(m1, m2))

We make the analogous definition for party 2.

Definition 13 (Perfect security, for party 2).

perfect-sec-P2(m1, m2) ≡ (R2(m1, m2) = ideal2(m1, m2))

When perfect security cannot be proven we instead show that the probability of a
distinguisher (in principle in polytime) distinguishing the real and simulated views —
we call this probability the advantage. We define the advantage of a distinguisher, D,
for party 1 as follows.

Definition 14 (Advantage for party 1).

adv-P1(m1, m2, D) = (|P [(R1(m1, m2)B D) = True]−P [(ideal1(m1, m2)B D) = True]|)



88 semi-honest security

We also provide the analogous definition for party 2.

Definition 15 (Advantage for party 2).

adv-P2(m1, m2, D) = (|P [(R2(m1, m2)B D) = True]−P [(ideal2(m1, m2)B D) = True]|)

Clearly, if we have perfect security then the advantage is zero. When considering
security with respect the advantages we need to show they are small. To do this we
prove a reduction to a known hard problem. When we instantiate our proofs in the
asymptotic setting we show the advantage is negligible.

7.2.2 Non-Deterministic Functionalities

When considering non-deterministic functionalities the definitions of security are
tightened. Specifically the views must also include the output of the functionality
and protocol respectively. In this section we show how we incorporate this into
our framework. While the framework we provide for this case looks similar to the
deterministic setting it is not clear we can reuse the work as the underlying structure
of the parameters is different. For example, the output type of R1 is now appended
with the output of the protocol. The locale semi-honest-non-det in 7.4 shows how we
we fix the required parameters in this setting.

locale semi-honest-non-det =

fixes funct :: ‘msg1 ⇒ ‘msg2 ⇒ (‘out1 × ‘out2) spmf

and R1 :: ‘msg1 ⇒ ‘msg2 ⇒ (‘view1 × (‘out1 × ‘out2)) spmf

and S1 :: ‘msg1 ⇒ ‘out1 ⇒ ‘view1 spmf

and Out1 :: ‘msg1 ⇒ ‘msg2 ⇒ ‘out1 ⇒ (‘out1 × ‘out2) spmf

and R2 :: ‘msg1 ⇒ ‘msg2 ⇒ (‘view2 × (‘out1 × ‘out2)) spmf

and S2 :: ‘msg2 ⇒ ‘out2 ⇒ ‘view2 spmf

and Out2 :: ‘msg2 ⇒ ‘msg1 ⇒ ‘out2 ⇒ (‘out1 × ‘out2) spmf

(7.4)

The major difference to the deterministic case are the types of the views. The real
views take both inputs and output the view of the party along with the output of the
protocol. When constructing the ideal view we had a design choice to make. We could
fix the type of the ideal view and allow the user to instantiate it — that is we could fix

ideali :: ‘msg1 ⇒ ‘msg2 ⇒ (‘viewi × (‘out1 × ‘out2)) spmf . (7.5)

However we choose to fix as parameters the simulators (S1, S2) and the output
functions (Out1, Out2) that construct the output of the protocol in the manner of the
functionality. We make this design choice so the simulator can be defined by the user,
in an instantiation, without the risk of using an illegal input; namely the input from
the other party. If we fixed the ideal view (in the locale) as suggested in Equation 7.5
the user could accidentally construct a simulator that depends on the input from the
other party, which of course is not allowed. In this way we safeguard the integrity of
our framework against malicious users1 and erroneous proofs.

1 While this would pose no issue if the user of the formalisation was honest, given the area of research this
work is considering we probably have a moral duty to assume the user is not honest.



7.2 formalising semi-honest security 89

Using our fixed parameters (given in the locale in 7.4) we construct the ideal view
for both parties. We note they indeed have the same type as given in Equation 7.5 but
the simulator, which is sampled from inside the ideal view, takes only the allowed
inputs.

ideal-view1(m1, m2, out1) ≡ do {
view1 ← S1(m1, out1)

out← Out1(m1, m2, out1);

return(view1, out)}

(7.6)

ideal-view2(m1, m2, out2) ≡ do {
view2 ← S2(m2, out2)

out← Out2(m2, m1, out2);

return(view2, out)}

(7.7)

Now the ideal view has been defined we make the definitions of security. These are
the same as for the deterministic setting. The types of the views are now different
and we do not need to consider the property of correctness; this is because the output
of the protocol is now incorporated into the views. As in the deterministic case we
define the ideal world for each party. Here the output of the functionality is input to
the ideal view (in the deterministic case this the simulator).

ideal1(m1, m2) = funct(m1, m2)B (λ(out1, out2). ideal-view1(m1, m2, out1)). (7.8)

ideal2(m1, m2) = funct(m1, m2)B (λ(out1, out2). ideal-view2(m2, m1, out2)). (7.9)

Definition 16 (Perfect security, for party 1).

perfect-sec-P1(m1, m2) = (R1(m1, m2) = ideal1(m1, m2))

We make the analogous definition for party 2.

Definition 17 (Perfect security, for party 2).

perfect-sec-P2(m1, m2) = (R2(m1, m2) = ideal2(m1, m2))

Analogous to the deterministic case we define the advantage for each party also.

Definition 18 (Advantage for party 1).

adv-P1(m1, m2, D) = (|P [(R1(m1, m2)B D) = True]−P [(ideal1(m1, m2)B D) = True]|)

Definition 19 (Advantage for party 2).

adv-P2(m1, m2, D) = (|P [(R2(m1, m2)B D) = True]−P [(ideal2(m1, m2)B D) = True]|)

Our frameworks (the deterministic and non-deterministic case) require the user to
input the definitions of the parameters for any instantiation they wish to prove, that is
the parameters for the respective locale being used. Therefore the human verifier must
check that this has been done correctly and accurately.



90 semi-honest security

7.2.3 Equivalence to EasyCrypt Definitions

Almeida et al. [1] define semi-honest security using a game where a bit is flipped
to determine which view the distinguisher is given. In this section we show our
definitions are equivalent to theirs. We transcribe the definitions from the EasyCrypt
definitions into Isabelle and prove the equivalence. While there is no guarantee that
the EasyCrypt definitions are transcribed correctly (other than observation) the proof
of equivalence adds confidence to both sets of definitions. We prove the equivalence
for the deterministic case, the proof would be analogous for the non-deterministic
setting.

We transcribe the EasyCrypt definitions as follows, noting R1, S1, R2 and S2 are the
same as in our definitions.2

Definition 20 (EasyCrypt definition for party 1 (transcribed to Isabelle)). To define the
advantage given in EasyCrypt, advEC,P1, we first define the security game for party 1.

gameP1(m1, m2, D) ≡ do {
b← coin;

(out1, out2)← funct(m1, m2);

rview ← R1(m1, m2);

sview ← S1(m1, out1);

b′ ← D(if b then rview else sview);

return(b = b′)}

advEC,P1(m1, m2, D) = |2 · P [gameP1(m1, m2, D) = True]− 1|

Definition 21 (EasyCrypt definition for party 2 transcribed to Isabelle). To define the
advantage given in EasyCrypt, advEC,P2, we first define the security game for party 2.

gameP2(m1, m2, D) ≡ do {
b← coin;

(out1, out2)← funct(m1, m2);

rview ← R2(m1, m2);

rview ← S2(m1, out1);

b′ ← D(if b then rview else sview);

return(b = b′)}

advEC,P2(m1, m2, D) = |2 · P [gameP2(m1, m2, D) = True]− 1|

We show these definitions are equivalent to the definitions in our deterministic
framework. To show this we must assume the distinguishers and the views are lossless.

Lemma 30. (in semi-honest-det)
assumes ∀view. lossless-spmf (D(view))

2 We make the definitions inside the locale given in Figure 7.1 (semi-honest-det).



7.3 1-out-of-2 oblivious transfer 91

and ∀m1 m2. lossless-spmf (R1(m1, m2))

and ∀m1 out1. lossless-spmf (S1(m1, out1))

shows advEC,P1(m1, m2, D) = adv-P1(m1, m2, D)

Proof. The proof requires us to split the probability based on the coin flip in the
security game given in Definition 20. Intuitively this is where the multiplication by 2

comes from in the advantage in Definition 20. Once we have made the case split on
the coin flip in one case the distinguisher gets the real view and in the other it gets
the simulated view, which is the same as the definition of the advantage we provide.
We note the proof was shortened3 by the use of Isabelle’s monad normalisation theory
[67] which provides automation for the reordering of samples.

Lemma 31. (in semi-honest-det)
assumes ∀view. lossless-spmf (D(view))

and ∀m1 m2. lossless-spmf (R2(m1, m2))

and ∀m2 out2. lossless-spmf (S2(m2, out2))

shows advEC,P2(m1, m2, D) = adv-P2(m1, m2, D)

Proof. The proof is analogous to the proof of Lemma 30.

In this section we have defined our frameworks for reasoning about semi-honest
security in the two party setting. In the rest of this Chapter we will see how we use
these to realise the security of well known protocols. We first consider the fundamental
building block of MPC, Oblivious Transfer.

7.3 1-out-of-2 oblivious transfer

In this section we prove two OT1
2 protocols secure with respect the definitions we give

in section 7.2. First we consider a general OT1
2 protocol constructed from Extended

Trapdoor Permutations (ETPs) [35], this is the first protocol Lindell considers in his
tutorial [48]. We instantiate our general proof for a known ETP, the RSA function, in
section 7.3.1.3. Our general proof means the RSA instantiation only requires us to
prove the RSA construction is an ETP. Second we consider the Naor-Pinkas OT1

2 [57],
which is based on the DDH assumption: we prove it secure in section 7.3.2.

Oblivious Transfer (OT) was first introduced by Rabin in [65] and is a fundamental
cryptographic primitive that is central to many MPC protocols. It is a two party
protocol run between a Sender and a Receiver. In the general case the Sender holds n
many messages and the Receiver a choice of k messages. The output of the protocol is
that the Receiver obtains their choice of k messages and the Sender obtains nothing.

OT comes in many flavours, the most general being k-out-of -n OT (OTk
n , which we

have just described). We examine OT1
2 as it is the most fundamental form, and can be

used to construct other forms of OT — we will see this in section 7.4 where we use
OT1

2 to construct OT1
4 in the GMW protocol.

Recall, from Example 3 the functionality for OT1
2 is given by:

fOT1
2
((m0, m1), σ) = (_, mσ). (7.10)

3 By shortened we not only mean shortened in length, but also time. Reordering samples within a
probabilistic program is time consuming and intricate (and very boring!).



92 semi-honest security

This is encoded into Isabelle as

functOT1
2
((m0, m1), σ) = return(_, i f σ then m1 else m0). (7.11)

Recall that we require our functionalities (even the deterministic ones) to return an
spmf .

7.3.1 ETP based OT1
2

We first introduce ETPs and how we define their corresponding security properties.
We provide informal definitions before presenting the formalisation.4

7.3.1.1 ETPs and HCPs

An Extended Trapdoor Permutation (ETP) is a collection of permutations { fα}α along
with four algorithms I (index), S (sample), F (forward) and F−1 (backward). Here we
follow [38, Appendix C.1] in introducing them5, but note that there is also a brief
description of them in [49, Section 4.3].

Definition (informal) 14. The algorithms that comprise an Extended Trapdoor Permutation
(ETP) are as follows:

• I(n) samples an index α of a permutation, fα, as well as a corresponding trapdoor τ for
the permutation, (α, τ)← I(n). Here n is the security parameter: in our formalisation
this is assumed to be implicit.

• S(α) samples an (almost) uniform element in the domain of fα, in the literature S(α; r)
denotes the output of S(α) with random tape r.

• F performs the mapping of fα, F(α, x) = fα(x) when x is in the domain of fα and (α, τ)

is an output of I.

• F−1 computes the inverse of fα, F−1(α, τ, y) = f−1
α (y) for y in the range of fα and

(α, τ)← I(n).

These functions can be thought of as a collection of one way permutations with
a trapdoor with which the inverse can be obtained easily — and which without the
trapdoor, the inverse is computationally infeasible to obtain.

The definition of S in the literature requires the output to be almost uniform in the
domain (which equals the range as f is a permutation) of fα. The notion of almost
uniform is not defined in either [38] or [49]. This property of S is only used for the
security of party 1; namely, the almost uniform nature of the sample means there
is statistical closeness between the views. In our formalisation we take S to sample
uniformly and can therefore show perfect security for party 1. In the instantiation

4 Throughout the rest of the thesis we do not explicitly state and explain the sublocale structures in our
work. Like Part i we still give all the major locales we use, however do not give every sublocale where
we feel the context is clear and adds nothing that has not already been learned from Part i. Therefore we
expense with the ’.’ notation.

5 Goldreich [38] uses B for the backward algorithm, whereas we use it to denote the hard-core predicate,
in this sense our notation is in line with Lindell’s [48].



7.3 1-out-of-2 oblivious transfer 93

of RSA as an ETP S, is a uniform sample from the field of order N where N is the
RSA modulus and therefore we argue that defining S to be a uniform sampling is
reasonable in this case.

It should also be noted that the definition of S provided in [38] and [49] uses values
of randomness as inputs meaning S is considered to be deterministic. However, there
is no need for such input in our formalisation as we model S (and I) as probabilistic
programs that toss their own random coins.

The example of ETPs we instantiate is the RSA construction, we introduce this
informally in the example below.

Example 5 (RSA ETP). The RSA function provides an example of an ETP.
The RSA function is considered on input (N, e):

FRSA((N, e), x) = xe mod N (7.12)

where N = P · Q for primes P and Q and e is such that gcd(e, (P − 1) · (Q − 1)) = 1.
That is, IRSA must output (N, e) as the index. The trapdoor τ is the multiplicative inverse of
e mod (P− 1) · (Q− 1). F−1

RSA is constructed as follows:

F−1
RSA((N, e), d, y) = yd mod N. (7.13)

The following property must hold for any trapdoor function and its inverse. The property is of
course obvious if the inverse is used but it is not always so trivial when the trapdoor inverse
function is used.

F−1
RSA((N, e), d, FRSA((N, e), x)) = x (7.14)

We provide a formal proof of this property in section 7.3.1.3. The range and domain of the RSA
ETP are the same (it is a permutation), namely {0, . . . N − 1} and S(N, e) outputs a uniform
sample from this set.

In reality, when implementing RSA there are certain parameters that need to be
avoided (e.g. see [60]). The issue concerns the selection of the prime numbers P and
Q. In our instantiated formalisation here we parameterise over a prime-set from which
we sample. Thus, at an abstract level, we can assume that this set is void of any weak
parameters.

Associated with an ETP is a Hard Core Predicate (HCP), B. Intuitively, B is an
HCP of f if, given f (α, x) for a uniformly sampled x, an adversary cannot distinguish
B(α, x) from a random bit. We take the definition from [49].

Definition (informal) 15. [Hard-Core Predicate] B is a hard-core predicate (HCP) of
(I, S, F, F−1) if for every probabilistic polynomial time A there exists a negligible function µ

such that for every n we have,

Pr[A(n, α, r) = B(α, f−1(S(α; r)))] ≤ 1
2
+ µ(n)

where (α, τ)← I(n).



94 semi-honest security

formalising etps Our formalisation of ETPs fixes five parameters in the locale
etp-base: I, domain, range, F, F−1 and B.

locale etp-base =

fixes I :: (‘index× ‘trap) spmf

and domain :: ‘index⇒ ‘domain set

and range :: ‘index⇒ ‘range set

and F :: ‘index⇒ (‘domain⇒ ‘range)

and F−1 :: ‘index⇒ ‘trap⇒ (‘range⇒ ‘domain)

and B :: ‘index⇒ ‘range⇒ bool

assumes (α, τ) ∈ set-spmf (I)→ domain(α) = range(α)

and (α, τ) ∈ set-spmf (I)→ finite(range(α))

and (α, τ) ∈ set-spmf (I)→ range(α) 6= {}
and (α, τ) ∈ set-spmf (I)→ bij-betw(F(α), domain(α), range(α))

and (α, τ) ∈ set-spmf (I)→ x ∈ range(α)→ F−1(α, τ, (F(α, x))) = x

and lossless-spmf (I)

(7.15)

The assumptions made in etp-base capture the properties required of ETPs from
Definition 14 as well as the property of the inverse given in Example 5 in Equation
7.14 (here the property is instantiated for the RSA construction). There is no need to
make any assumption on B (other than it exists) as we define the security property
we require of it later and then use this to show the reduction in the general proof in
section 7.3.1.2.

We define S below.

Definition 22. S(α) = uniform(range(α))

We prove an important property on S and F, namely that F applied to a sample
from S produces the same distribution as S itself. While this property is trivial to
reason about on paper, as F is a permutation, the formal reasoning is more in depth.

Lemma 32. (in etp-base)
assumes (α, τ) ∈ set-spm f (I)
shows map-spm f ((λx. F(α, x)), S(α)) = S(α)

Proof. The left hand side is the same as the uniform sample from the set formed
by the image of F on the range. This set is, in turn, the same as the range as F is
a permutation. Using both of these we show the left hand side is equal to taking a
uniform sample from the range, which, after unfolding the definition of S is the same
as the left hand side.

To formalise the security property of HCPs given in Definition 15 we make the
definition of the HCP advantage advHCP. This captures the probability that A wins
the HCP game. The aim of the adversary A in the HCP game is to guess the value of
B — the HCP fixed in the locale etp-base (Equation 7.15) — and thus to beat the HCP
assumption. The game is defined as follows:



7.3 1-out-of-2 oblivious transfer 95

HCPgame(A, σ, bσ, D) ≡ do {
(α, τ)← I;

x ← S(α);

let b = B(α, F−1(α, τ, x));

b′ ← A(α, σ, bσ, x, D);

return(b = b′)}

(7.16)

In the HCP game A receives α, σ and bσ. as input In addition we must pass x
to A, this is because we do not carry around the randomness given to S. The HCP
advantage is defined below.

Definition 23 (HCP advantage).

advHCP(A, σ, bσ, D) = |P [HCPgame(A, σ, bσ, D) = True]− 1
2
|

7.3.1.2 Realising OT1
2 using ETPs

The OT1
2 protocol we consider is described in Protocol 1 below.

Protocol 1. P1 has input (b0, b1) ∈ {0, 1}, P2 has input σ ∈ {0, 1} and n is the security
parameter.

1. P1 samples an index and trapdoor, (α, τ)← I(n), and sends the index, α, to P2.

2. P2 samples S twice, xσ ← S(α), y1−σ ← S(α) and sets yσ = F(α, xσ).

3. P2 sends y0 and y1 to P1.

4. P1 computes x0 = F−1(α, τ, y0), x1 = F−1(α, τ, y1), β0 = B(α, x0)⊕ b0 and β1 =

B(α, x1)⊕ b1.

5. P1 sends β0, β1 to P2.

6. P2 computes bσ = B(α, xσ)⊕ βσ

Intuitively, party 2 samples yσ, y1−σ where it only knows the pre-image of one. party
1 then inverts both pre-images (as it knows the trapdoor) and sends both its input
messages to party 2 masked by the HCP of the inverted pre-images. party 2 can obtain
its chosen message as it knows the inverse of the pre-image but learns nothing of the
other message as it cannot guess the HCP (with probability greater than 1

2 ). party 1

learns nothing of party 2’s choice bit as it only receives yσ, y1−σ which share an equal
distribution.

To formalise Protocol 1 we construct a locale that uses the etp-base locale as follows.

locale etp-ot = etp : etp-base I domain range F F−1 B (7.17)



96 semi-honest security

In this locale the assumptions made on the parameters of the etp-base locale are
available, so we know the parameters form an ETP.

We formalise the execution of the protocol with the following probabilistic program.
Note the security parameter does not appear as we instantiate it (as an input to I)
later.

protocolOT1
2 ,ETP ((bσ, b1−σ), σ) ≡ do {

(α, τ)← I;

xσ ← S(α);

y1−σ ← S(α);

let yσ = F(α, xσ);

let xσ = F−1(α, τ, yσ);

let x1−σ = F−1(α, τ, y1−σ);

let βσ = B(α, xσ)⊕ bσ;

let β1−σ = B(α, x1−σ)⊕ b1−σ;

return(_, if σ then B(α, x1−σ)⊕ β1−σ else B(α, xσ)⊕ βσ)}

(7.18)

Using this definition and the functionality, for OT1
2 , given in Equation 7.11 we show

correctness of Protocol 1.

Theorem 13. (in etp-ot)
shows protocolOT1

2 ,ETP((b0, b1), σ) = functOT1
2
((b0, b1), σ)

We next show the protocol is secure. We consider each party in turn and construct
an appropriate simulator.

party 1 For party 1 the real view is as follows.

R1,OT1
2 ,ETP ((b0, b1), σ) ≡ do {

(α, τ)← I;

xσ ← S(α);

y1−σ ← S(α);

let yσ = F(α, xσ);

return((b0, b1), if σ then y1−σ else yσ, if σ then yσ else y1−σ}

(7.19)

The only part of the real view that uses the party 2’s input is in the return statement,
where σ decides between yσ and y1−σ. The difference between the two (yσ and y1−σ)
is that one is a sample direct from S and the other a sample from S that has been
permuted under F. The following simulator suffices.



7.3 1-out-of-2 oblivious transfer 97

S1,OT1
2 ,ETP(σ, bσ) ≡ do {

(α, τ)← I;

y0 ← S(α);

y1 ← S(α);

return((b0, b1), y0, y1)}

(7.20)

Theorem 14. (in etp-ot)
shows perfect-sec-P1,OT1

2 ,ETP((b0, b1), σ)

Proof. We only have to show that applying F has no effect on the output distribution.
The real view applies F to obtain yσ whereas the simulated view does not. This is the
result we proved in Lemma 32. After applying this lemma the proof is completed by
considering the cases on σ.

party 2 The proof of security for party 2 is considerably more involved. We follow
the proof method and structure from [48, Section 4.3].

The real view is constructed as follows.

R2,OT1
2 ,ETP ((b0, b1), σ) ≡ do {

(α, τ)← I;

xσ ← S(α);

y1−σ ← S(α);

let yσ = F(α, xσ);

let xσ = F−1(α, τ, yσ);

let x1−σ = F−1(α, τ, y1−σ);

let βσ = B(α, xσ)⊕ (if σ then b1 else b0);

let β1−σ = B(α, x1−σ)⊕ (if σ then b0 else b1);

return(σ, α, (βσ, β1−σ))}

(7.21)

We claim the following simulator suffices to prove security.

S2,OT1
2 ,ETP(σ, bσ) ≡ do {

(α, τ)← I;

xσ ← S(α);

y1−σ ← S(α);

let x1−σ = F−1(α, τ, y1−σ);

let βσ = B(α, xσ)⊕ bσ;

let β1−σ = B(α, x1−σ);

return(σ, α, (βσ, β1−σ))}

(7.22)



98 semi-honest security

The difference between the real view and the simulator is that the simulator cannot
construct β1−σ correctly as it does not know b1−σ. In the concrete setting we show
the advantage (adv-P2,OT1

2 ,ETP) is less than or equal to 2 · advHCP. When we instantiate
the security parameter we will show that adv-P2,OT1

2 ,ETP is negligible (as the HCP
advantage is assumed to be negligible), we discuss this in more detail in section
7.3.1.4.

As in [48] we split the proof into cases on bσ. For the case where b1−σ = False we
have perfect security as the simulator is equal to the real view.

Lemma 33. (in etp-ot)
assumes b1−σ = False
shows R2,OT1

2 ,ETP((b0, b1), σ) = S2,OT1
2 ,ETP((b0, b1), σ)

Proof. The result comes trivially by using the assumption.

The important Corollary to this Lemma is that the advantage for party 2 in this case
is less than 2 · advHCP.

Corollary 1. (in etp-ot)
assumes b1−σ = False
shows adv-P2,OT1

2 ,ETP((b0, b1), σ) ≤ 2 · advHCP(AHCP, σ, bσ, D)

Proof. We know the HCP advantage must be greater than or equal to zero, moreover
we have that adv-P2,OT1

2 ,ETP = 0 by Lemma 33 thus the result follows.

It is left to consider the case where b1−σ = True. To show security here we construct
an adversary, AHCP (given in Equation 7.23), that breaks the HCP assumption if D
(which is an input to AHCP) can distinguish the real and simulated views — in other
words we show a reduction to the HCP assumption.

AHCP(A, σ, bσ, D) ≡ do {
β1−σ ← coin;

xσ ← S(α);

let βσ = B(α, xσ)⊕ bσ;

d← D(σ, α, βσ, β1−σ);

return(if d then β1−σ else ¬β1−σ)}

(7.23)

The advantage this adversary has against the HCP assumption is the same as the
advantage a distinguisher has in distinguishing the real and simulated views.

Lemma 34. (in etp-ot)
assumes b1−σ = True

and ∀a. lossless-spmf (D(a))
shows adv-P2,OT1

2 ,ETP((b0, b1), σ, D) = 2 · advHCP(AHCP, σ, bσ, D)

Proof. The proof is technical and involved. We formally define a number of intermedi-
ate probabilistic programs that bridge the gap between the two sides of the equality
incrementally. Our formal proof follows the overall structure of Lindell’s proof in [48],



7.3 1-out-of-2 oblivious transfer 99

which consists of a chain of probabilities: starting with the probability the adversary
(AHCP) has of guessing the HCP — in our language this is advHCP — and eventually
showing this is equal to the probability of the distinguisher distinguishing the real
and simulated views — in our language this is adv-P2,OT1

2 ,ETP. For each intermediate
step Lindell takes, we define an intermediate probabilistic program.

We highlight one proof step that was formally more difficult to reason about than
the others. This is the first step of the proof in [48, first equality of p14] where we
are required to split the probability of AHCP winning the HCP game into two cases,
dependent on the coin flip AHCP makes (β1−σ, in Equation 7.23).

Informally we show that (the following is equivalent to what Lindell writes in [48]),

Pr[AHCP wins HCP game] =
1
2
· Pr[AHCP wins HCP game | β1−σ = HCP]

+
1
2
· Pr[AHCP wins HCP game | β1−σ 6= HCP].

On paper this is a step is a simple conditional probability argument. To prove
this formally we define two intermediate probabilistic programs: HCP-gametrue and
HCP-gamefalse.

HCP-gametrue(σ, bσ) = do { HCP-gamefalse(σ, bσ) = do {
(α, τ)← I; (α, τ)← I;

xσ ← S(α); xσ ← S(α);

x1−σ ← S(α); x1−σ ← S(α);

let βσ = B(α, xσ)⊕ bσ; let βσ = B(α, xσ)⊕ bσ;

let β1−σ = B(α, (F−1(α, τ, x1−σ)); let β1−σ = ¬B(α, (F−1(α, τ, x1−σ)));

d← D(σ, α, βσ, β1−σ); d← D(σ, α, βσ, β1−σ);

let b′ = (if d then β1−σ else ¬β1−σ); let b′ = (if d then β1−σ else ¬β1−σ);

let b = B(α, (F−1(α, τ, x1−σ))); let b = B(α, (F−1(α, τ, x1−σ)));

return(b = b′)} return(b = b′)}

The difference in the two programs is subtle and highlighted in the above definitions.
The formal proof for this step is challenging as β1−σ is a bound variable inside the

probabilistic program that defines AHCP. Accessing and dealing with this requires
some underlying probability (in particular results on integration) theory formalised
in Isabelle. More precisely, we are required to prove that extracting the sample from
the probabilistic program is legitimate so the cases can be reasoned about. The formal
statement of this step is as follows:

P [HCPgame(A, σ, bσ, D) = True] =
1
2
· P [HCP-gametrue(σ, bσ) = True] +

1
2
· P [HCP-gamefalse(σ, bσ) = True] (7.24)

The rest of the formal proof follows the chain of equalities given in [48] in a similar
manner as described above. We require the losslessness assumption on D because



100 semi-honest security

if the distinguisher does not produce an output we cannot reason about any of the
probabilities in the result.

Using Corollary 1 and Lemma 34 we bound the advantage for party 2.

Theorem 15. (in etp-ot)
assumes ∀a. lossless-spmf (D(a))

and advHCP(AHCP, m2, bσ, D) ≤ HCPadv
shows adv-P2,OT1

2 ,ETP((b0, b1), σ, D) ≤ 2 ·HCPadv

Together Theorems 14 and 15 show Protocol 1 is secure in the concrete setting. For
party 1 we showed perfect security and for party 2 we reduced security to the HCP
assumption.

Next we show how we instantiate this general security result for the RSA collection
of permutations, which form an ETP.

7.3.1.3 Instantiating for RSA

The result proven in section 7.3.1.2 is general, assuming only that an ETP exists. To
instantiate it we only need to prove a collection of functions satisfies the assumptions
of the locale etp-base (Equation 7.15) are satisfied.

It is known that the RSA collection of functions provides an ETP (see [37, Section
2.4.4.2] together with [38, Section C.1]). Here we formalise this RSA collection and
instantiate it for Protocol 1.

To formalise the RSA collection we fix as a parameter a set of primes (prime-set :: nat set),
in a locale, along with the assumed HCP, B, which we assume to exist. The set of
primes is required to sample the prime factors of the RSA modulus.

locale rsa-base =

fixes prime-set :: nat set

and B :: ′index⇒ nat⇒ bool

assumes prime-set ⊆ {x. prime(x) ∧ x > 2}
and finite(prime-set)

and card(prime-set) > 2

(7.25)

The assumptions ensure the the set of primes we fix have the desired properties.
The set prime-set can be chosen to not contain any weak primes for which there are
known attacks on RSA.

To define the algorithms that make up the RSA ETP we define a set of coprimes (to
the RSA modulus), we will sample from this set in the algorithm IRSA.

Definition 24 (Coprime set).

coprime-set(N) = {x. coprime(x, N) ∧ x > 1∧ x < N}

For ease we also define the uniform sampling from this set and the set of primes
and from the set of primes modulo a prime.6

6 When sampling the modulus for the RSA function we require two distinct primes.



7.3 1-out-of-2 oblivious transfer 101

Definition 25 (uniform samples for RSA ETP).

sample-coprime = uniform(coprime-set(N))

sample-prime = uniform(prime-set)

sample-prime-excl(P) = uniform(prime-set− P)

The first component of the RSA ETP to define is IRSA. The algorithm IRSA uniformly
selects two distinct primes, P and Q, and an integer e such that e is coprime to
(P− 1) · (Q− 1) so e is uniformly sampled among all admissible options. The index
of IRSA is (N, e) where N = P ·Q and the trapdoor invN′(e) which is the inverse of e
in the field of size N′ = (P− 1) · (Q− 1).

IRSA ≡ do {
P← sample-prime;

Q← sample-prime-excl(P);

let N = P ·Q;

let N′ = (P− 1) · (Q− 1);

e← sample-coprime(N′);

let d = invN′(e);

return((N, e), d)}

(7.26)

The domain and range are equal,

domainRSA(N, e) = {.. < N} (7.27)

rangeRSA(N, e) = {.. < N} (7.28)

and the RSA function and its (trapdoor) inverse is defined as follows:

FRSA((N, e), x) = xe mod N. (7.29)

F−1
RSA((N, e), d, y) = yd mod N (7.30)

The definition is contextual on N, e and d being sampled by IRSA.
Having defined the ETP for RSA we must show it is in fact an ETP with respect to

our etp locale (Equation 7.15). Here we can use Isabelle’s locale structure and show
our RSA construction is a sublocale of etp. This means all results from the original
locale are now valid and available in the new sublocale.

sublocale etpRSA : etp-base IRSA domainRSA rangeRSA FRSA F−1
RSA (7.31)

For the sublocale command to be valid we must prove our new construction meets
the assumptions made in the etp-base locale: that it is we must prove the domain equals
the range, the range is finite, the range is non-empty, that fRSA is a bijection, applying



102 semi-honest security

F−1
RSA to FRSA returns the original input and that IRSA is lossless. The two non-trivial

assumptions are to prove is that fRSA is a bijection and that the inverse is correct. We
first consider the proof of the bijection.

It is often the case when formalising paper proofs that detailed proofs of "obvious"
are in fact difficult to reconstruct and it is hard to find proofs in the literature with
sufficient detail to be useful in the formalisation.

Formally we must prove the following.

Lemma 35. (in rsa-base)
assumes prime(P)

and prime(Q)

and P 6= Q
and coprime(e, (P− 1) · (Q− 1))
and x, y < P ·Q
and xe mod (P ·Q) = ye mod (P ·Q)

shows x = y.

Proof. From the assumption that xe mod(P ·Q) = ye mod(P ·Q) we have that xe mod
N = ye mod N. In turn this implies that N divides xe− ye meaning xe mod s = ye mod s
where s is any prime factor of N — in particular we have xe mod P = ye mod P and
xe mod Q = ye mod Q.

From the assumption that e and (P− 1) · (Q− 1) are coprime we know there exists
a d such that for some k ≥ 0 we have e · d = 1 + k · (P− 1). This comes because from
the assumption we know e and P− 1 are coprime and thus the inverse of e exists
modulo P− 1. If we take xe mod P = ye mod P to the power d we get

x1+k·(P−1) mod P = y1+k·(P−1) mod P.

Using Fermat’s Little Theorem (FLT) we get x mod P = y mod Q. While reasoning
about this on paper takes a little thinking, in Isabelle we can prove it quite easily by
induction on k, however we comment that we needed to adapt the formalised result of
FLT slightly from the version provided in the Isabelle library. In particular we needed
the result where the exponent is p and not p− 1, the adapted lemma was simple to
prove.

From x mod P = y mod Q we know that P divides x− y, and analogously we have
that Q divides x− y. We know P 6= Q and therefore we know P ·Q divides x− y, that
is x mod (P ·Q) = y mod (P ·Q).

Both x and y are less than P ·Q meaning we know x = y.

Using this result we prove the fRSA is a bijection.

Corollary 2. (in rsa-base)
assumes (α, τ) ∈ set-spmf (I)
shows bij-betw( fRSA(α), domain(α), range(α))

We next prove the correctness of the inverse function by first considering the
follwoing lemma.



7.3 1-out-of-2 oblivious transfer 103

Lemma 36. (in rsa-base)
assumes prime(P)

and prime(Q)

and P 6= Q
and coprime(e, (P− 1) · (Q− 1))
and e > 1
and d > 1
and xe mod (P ·Q) = ye mod (P ·Q)

defines d = inv(P−1)·(Q−1)(e)
shows ((xe mod (P ·Q))d) mod (P ·Q) = x mod (P ·Q).

Proof. We treat the case where x = 0 ∨ x = 1 first as this causes difficulties later
otherwise. For the remaining cases we show that [xe·d − x = 0] mod P and [xe·d − x =

0] mod Q which means that P and Q both divide (xe)d − x meaning that P ·Q divides
(xe)d − x (as P and Q are both primes). Our result comes easily from this.

As an immediate Corollary to Lemma 36 we prove the assumption from the etp-base
locale. In the statement below we have unfolded the definitions for clarity.

Corollary 3. (in rsa-base)
assumes ((N, e), d) ∈ set-spmf (I)
shows ((xe mod (P ·Q))d) mod (P ·Q) = x mod (P ·Q).

Proof. The assumptions in Lemma 36 are all properties of ((N, e), d) ∈ set-spmf (I),
meaning they are all met by the assumption here.

Using these results we can prove the sublocale given in Equation 7.31 is valid, that
is the assumptions are met by the parameters defined for the RSA instance.

The security and correctness proofs now come for free (one line of proof each;
unfolding definitions). The statements can be seen below.

Theorem 16. (in rsa-base)
shows protocolOT1

2 ,RSA((b0, b1), σ) = functOT1
2
((b0, b1), σ)

Theorem 17. (in rsa-base)
shows perfect-sec-P1,OT1

2 ,RSA((b0, b1), σ)

Theorem 18. (in rsa-base)
assumes ∀a. lossless-spmf (D(a))

and advHCP(AHCP, m2, bσ, D) ≤ HCPadv
shows adv_P2,OT1

2 ,RSA(((b0, b1), σ), D) ≤ 2 · HCPadv

Finally, this has shown that, assuming an HCP exists for RSA, we can securely
compute OT1

2 in the semi-honest model using the ETP obtained from the RSA function.
This proof highlights the strengths of Isabelle’s module system. Initially we com-

pleted the proof for the RSA instantiation in full from scratch — replicating the
proof from section 7.3.1.2. Subsequent leveraging of the module system, that we have
detailed here, allowed us to halve the proof effort (in lines of proof).

Anyone wishing to prove further instantiations only needs to define the ETP and
prove that the assumptions given in the etp-base locale are valid.



104 semi-honest security

7.3.1.4 The RSA instantiation in the asymptotic setting

In this section we prove security in the asymptotic setting for the RSA instantiation.
Reasoning over the security parameter in the asymptotic setting allows a closer

equivalence to the pen and paper security properties. One area where this is realised
is in the ability to more accurately define hardness assumptions. For example in
Theorem 17 we could only bound the advantage of party 2 by the HCP advantage.
While this implies security we would like to explicitly make the assumption, as a
function of an increasing security parameter, that the HCP advantage is negligible,
and thus so is the advantage for party 2.

In the case of the RSA collection of permutations the security parameter will
determine the set of primes that is sampled from in IRSA — intuitively the larger
the security parameter the larger the primes that will be chosen. Consequently we
introduce the security parameter as an input to the set of primes we have fixed.

locale etp-rsa-asym =

fixes prime-set :: nat⇒ nat set

and B :: ′index⇒ nat⇒ bool

assumes rsa-base(prime-set(n))

(7.32)

To realise this we import the concrete setting parametrically for all n in the
etp-rsa-asym locale. Now all algorithms depend explicitly on the security parame-
ter. Moreover, due to Isabelle’s module structure we are able to use results proven in
the concrete setting in our newly constructed asymptotic setting.

As in the previous section, the concrete setting can only be used once it has been
proven that the import is valid (using the sublocale command). Once this is done we
prove the security results in the asymptotic setting. First we show correctness is still
valid and then that security holds.

Theorem 19. (in etp-rsa-asym)
shows protocolOT1

2 ,RSA(n, (b0, b1), σ) = functOT1
2
((b0, b1), σ)

The security parameter only appears as inputs to functions where it is used. Equation
7.11 shows that the security parameter is never required to define functOT1

2
, and thus n

does not appear as an input. Security is shown by the following theorems.

Theorem 20. (in etp-rsa-asym)
shows perfect-sec-P1,OT1

2 ,RSA(n, (b0, b1), σ)

Theorem 21. (in etp-rsa-asym)
assumes negligible(λ n. advHCP(n,AHCP, bσ, D))

shows negligible(λ n. adv-P2,OT1
2 ,RSA(n, (b0, b1), σ, D)

In particular Theorem 21 shows the advantage for party 2 is negligible.
Our case study of the RSA ETP shows how our general proof can be instantiated

without having to consider any secuirty properties of the underlying protocol. Any
other ETP could be instantiated in the same way.



7.3 1-out-of-2 oblivious transfer 105

P1 (Sender) P2 (Receiver)
(m0, m1) ∈ G2 σ ∈ {0, 1}

a, b $←− Z|G|

cσ = a.b, c1−σ
$←− Z|G|

x ← ga, y← gb

z0 ← gc0 , z1 ← gc1

r0, s0
$←− Z∗|G|

(x,y,z0,z1)←−−−−−
r1, s1

$←− Z∗|G|

w0 ← xs0 · gr0

z′0 ← zs0
0 · yr0

w1 ← xs1 · gr1

z′1 ← zs1
1 · yr1

encm0 ← z′0 ·m0

encm1 ← z′1 ·m1

CT0 = (w0, encm0)

CT1 = (w1, encm1)
(CT0,CT1)−−−−−→ CT0, CT1

outputs encmσ

wb
σ

Figure 7.2: The Naor-Pinkas OT protocol.

7.3.2 Naor-Pinkas OT1
2

In this section we formally prove the Naor-Pinkas OT1
2 secure.

The Naor-Pinkas OT protocol [57] uses a cyclic group G such that |G| is a prime
and generator g. The message space is taken as the group G meaning the party 1’s
messages are elements of G — (m0, m1) ∈ G2. It is assumed that the DDH assumption
holds for G. The Decisional Diffie Hellman (DDH) assumption [33] is a computational
hardness assumption on cyclic groups. Informally, the assumption states that given ga

and gb, where a and b are uniform samples from Z|G|, the group element ga·b looks
like a random element from G. A triple of the form (ga, gb, ga·b) is called a DDH triple.

The protocol is given in Figure 7.2. In the protocol the Sender holds the messages
(m0, m1) ∈ G2 and the Receiver holds its choice bit σ ∈ {0, 1}. Here G is a cyclic group
for which the Diffie Hellman assumption holds. The Receiver uniformly samples a, b
and c1−σ from Zq and computes cσ = a · b. They then compute x = ga, y = gb, z0 = gc0

and z1 = gc1 . The Sender then computes encryptions for both m0 and m1 and sends
them to the Receiver. As is common with OT1

2 only one of these encryptions is valid
and can be decrypted by the Receiver. In this case one is valid because cσ = a · b and
thus a DDH triple is formed with x and y.

Correctness of the protocol can be seen by considering the cases on σ.
For the Sender we have perfect security, intuitively the Receiver is only able to

decrypt mσ as the corresponding ciphertext is a valid ElGamal ciphertext whereas the



106 semi-honest security

other ciphertext is random, meaning nothing can be learnt of m1−σ. Security for the
Receiver is proven with a reduction to the DDH assumption. In particular the Sender
can only learn σ if they can break the DDH assumption.

7.3.2.1 The Formal Proof

ddh assumption The DDH assumption was formalised by Lochbihler et al. in [50,
53]. Here we document their formalisation for completeness. The DDH assumption is a
computational hardness assumption concerning cyclic groups. It is used in the security
of the ElGamal encryption [36], but is also used in the Cramer-Shoup cryptosystem
[30] as well as many others. In our work the security of the Receiver (Party 2) is
reduced to the DDH assumption in the Naor Pinkas OT1

2 protocol (Section 7.3.2).
Informally, the assumption states that given ga and gb, where a and b are uniform

samples from Z|G|, the group element ga·b looks like a random element from G. A
triple of the form (ga, gb, ga·b) is called a DDH triple, and a tuple of the form (ga, gb, gc)

is called a non-tuple. It is formalised by defining two games. The first provides the
adversary with a DDH tuple as follows,

ddh-0(A) = do {
x ← uniform(|G|);
y← uniform(|G|);
A(gx, gy, gx·y)}

(7.33)

and a second game where the adversary is given a non tuple as follows,

ddh-1(A) = do {
x ← uniform(|G|);
y← uniform(|G|);
z← uniform(|G|);
A(gx, gy, gz)}

(7.34)

The advantage an adversary has of beating the DDH assumption is defined as the
probability it has of telling the games apart.

Definition 26 (DDH advantage).

ddh-adv(A) = |P [ddh-0(A) = True]−P [ddh-1(A) = True]|

proving security The protocol is deterministic, so we use the simpler definitions
of security given in section 7.2.1. First we consider correctness. As usual, we define
the protocol in a probabilistic program and compare it to the functionality. To define
the protocol we define what it means to sample from Z∗|G|, the field of units, we make
the following simple definition:

Definition 27.

samp-uniform-units(q) = uniform({· · · < q} − {0})



7.3 1-out-of-2 oblivious transfer 107

The definition is contextual on q being a prime.
We construct a base locale to work in. Here we fix the cyclic group.

locale np-base =

fixes G :: ‘grp cyclic-group

assumes |G| > 0

and prime(|G|)

(7.35)

As we are working with a cyclic group structure we also work in a locale where we
inherit the cyclic group properties as follows.

locale np = np-base + cyclic-group(G) (7.36)

We define the protocol below and then prove correctness.

protocolNP((m0, m1), σ) = do {
a← samp-uniform(|G|);
b← samp-uniform(|G|);
let cσ = (a · b);
cσ ← samp-uniform(|G|);
r0 ← samp-uniform-units(|G|);
s0 ← samp-uniform-units(|G|);
let w0 = (ga)s0 ⊗ gr0 ;

let z′0 = (gif σ then c1−σ else cσ)s0 ⊗ (gb)r0 ;

r1 ← samp-uniform-units(|G|);
s1 ← samp-uniform-units(|G|);
let w1 = (ga)s1 ⊗ gr1 ;

let z′1 = (gif σ then cσ else c1−σ)s1 ⊗ (gb)r1 ;

let encm0 = z′0 ⊗m0;

let encm1 = z′1 ⊗m1;

let out2 = (if σ then encm1 ⊗ inv(wb
1) else encm0 ⊗ inv(wb

0));

return((), out2)}

(7.37)

Theorem 22. (in np)
assumes m0 ∈ carrier(G)

and m1 ∈ carrier(G)

shows protocolNP((m0, m1), σ) = functOT1
2
((m0, m1), σ)

Proof. To complete this proof Isabelle needs to be told how to rewrite identities in the
group. We proved the following before proving correctness, assuming m ∈ carrier(G):

ga·b ⊗ (gb)r1 ⊗m⊗ inv((ga)s1 ⊗ gr1)b = m.

Once Isabelle rewrites this equality the proof follows easily. Writing the intermediary
steps in just the right form help the automatic procedures find proofs more quickly.

Next we prove security for the Naor-Pinkas OT1
2 , considering each party in turn.



108 semi-honest security

party 1 The real view for party 1 is defined as follows.

R1((m0, m1), σ) = do {
a← samp-uniform(|G|);
b← samp-uniform(|G|);
let cσ = a · b;

c1−σ ← samp-uniform(|G|);
return((m0, m1), ga, gb, if σ then gc1−σ else gcσ , if σ then gcσ else gc1−σ)}

(7.38)

The intuition behind constructing the simulator is to notice that the output (last
four elements) of the real view is a DDH tuple, with one extra random element (gc1−σ ).
We know that the DDH relation is a hard problem, thus we can show a reduction to it.
In particular the simulator can output the final two elements of the output of party 1

in either order, we must choose one.

S1((m0, m1), out1) = do {
a← samp-uniform(|G|);
b← samp-uniform(|G|);
c← samp-uniform(|G|);
return((m0, m1), ga, gb, gc, ga·b)}

(7.39)

To prove security we show a reduction to the DDH assumption.

Theorem 23. (in np)
shows adv-P1,NP((m0, m1), σ, D) ≤

ddh-adv(Aint1 , D, (m0, m1)) + ddh-adv(Aint2 , D, (m0, m1))

where Aint1 and Aint2 are the intermediate adversaries we use against the DDH
assumption.

Proof. For the case σ = True the views are equal, we show this implies the advan-
tage is zero and thus the inequality is satisfied. The case where σ = False is more
complex. The real and simulated views differ in the last two elements of the output.
The simulator outputs (gc, ga·b) and the real view outputs (ga·b, gc). We show the
two outputs are indistinguishable by two reduction steps to the DDH assumption.
We first show ((m0, m1), ga, gb, gc, ga·b) (the simulated view) is indistinguishable from
((m0, m1), ga, gb, gc, gd) (where all the exponents are uniformly sampled) by show-
ing a reduction to the DDH assumption and then that ((m0, m1), ga, gb, gc, gd) and
((m0, m1), ga, gb, ga·b, gd) are indistinguishable by another reduction to the DDH as-
sumption. Aint1 and Aint2 are the adversaries we use to show the reductions. They are
constructed as follows.

Aint1(A, (m0, m1), a, b, c) = do { Aint2(A, (m0, m1), a, b, c) = do {
c′ ← samp-uniform(|G|); c′ ← samp-uniform(|G|);
A((m0, m1), a, b, c, gc′)} A((m0, m1), a, b, gc′ , c)}

Together the adversaries interact with the DDH assumption to produce the required
bound.



7.3 1-out-of-2 oblivious transfer 109

party 2 The real view for party 2 is given below.

R2((m0, m1), σ) = do {
a← samp-uniform(|G|);
b← samp-uniform(|G|);
let cσ = (a · b);
c1−σ ← samp-uniform(|G|);
r0 ← samp-uniform-units(|G|);
s0 ← samp-uniform-units(|G|);
let w0 = (ga)s0 ⊗ gr0 ;

let z = (gc1−σ)s0 ⊗ (gb)r0 ;

r1 ← samp-uniform-units(|G|);
s1 ← samp-uniform-units(|G|);
let w1 = (ga)s1 ⊗ gr1 ;

let z′ = (gcσ)s1 ⊗ (gb)r1 ;

let encmσ = z⊗ (if σ then m0 else m1);

let encm1−σ
= z′ ⊗ (if σ then m1 else m0);

return(σ, ga, gb, gc1−σ , w0, encmσ , w1, encm1−σ
)}

(7.40)

The simulator for party 2 cannot correctly form encmσ as it does not know m1−σ as
this is the message not outputted to party 2 in the protocol. The simulator however
can be constructed without this and be shown to equal the real view. The idea behind
the construction of the simulator is that it can construct encmσ = gs where s is a unique
uniform sample.



110 semi-honest security

S2(σ, m) = do {
a← samp-uniform(|G|);
b← samp-uniform(|G|);
let cσ = (a · b);
r0 ← samp-uniform-units(|G|);
s0 ← samp-uniform-units(|G|);
let w0 = (ga)s0 ⊗ gr0 ;

r1 ← samp-uniform-units(|G|);
s1 ← samp-uniform-units(|G|);
let w1 = (ga)s1 ⊗ gr1 ;

let z′ = (gcσ)s1 ⊗ (gb)r1 ;

s← samp-uniform(|G|);
let encmσ = gs;

let encm1−σ
= z′ ⊗m;

return(σ, ga, gb, gc1−σ , w0, encmσ , w1, encm1−σ
)}

(7.41)

We show perfect security in the following theorem.

Theorem 24. (in np)
assumes m0 ∈ carrier(G)

and m1 ∈ carrier(G)

shows perfect-sec-P2,NP((m0, m1), σ)

Proof. The difference between the simulator and the real view is that the simulator
cannot form encmσ in the correct way. We claim however that the distributions produced
by encmσ in the simulator and the real view are the same. In the real view encmσ =

z ⊗ (if σ then m0 else m1) where z = (gc1−σ)s0 ⊗ (gb)r0 . If we show z is a uniform
sample from the group, that is independent of any of the other variables outputted,
then we can apply the classic one time pad result for a cyclic group (proven in [50,
51]). Namely: if c ∈ carrier(G) then we have

map(λx. gx ⊗ c, samp-uniform(|G|)) = map(λx. gx, samp-uniform(|G|)) (7.42)

We rewrite z as z = gs where s = (b · r0 + c1−σ · s0) mod (|G|). Thus our problem is
reduced to showing s is a uniform sample. To show this we use the randomness from
c1−σ and apply the one time pad lemma: Assume coprime(x, |G|), then we have

map(λb. y + x · b) mod (|G|), samp-uniform(|G|)) = samp-uniform(|G|) (7.43)

We know that the assumption holds as c1−σ is sampled from the non zero elements
up to |G| and we know |G| is a prime. We must use the randomness from c1−σ and
not any of the other variables as it is the only one not used again in the output of the
real view. Having shown s is a uniform sample we apply Equation 7.42 to complete
the proof, specifically to turn encmσ = z⊗ (if σ then m0 else m1) into encmσ = z.

Together Theorems 24 and 23 show security for the Naor Pinkas OT1
2 protocol.



7.4 gmw 111

discussion about modelling OT1
2 We highlight one design choice of our mod-

eling of OT1
2 we feel is important to be transparent about. Both the OT1

2 protocols we
consider here (ETP OT1

2 and the Naor-Pinkas OT1
2 ) follow, what could be considered,

the standard form for OT1
2 protocols: the Receiver creates some randomness and sends

it to the Sender to encrypt both messages. The randomness is constructed in such
a way that the encryption of one of the Sender’s messages can be decrypted (the
message chosen by the Receiver) and the other cannot. Moreover the randomness sent
by the Receiver will not allow the Sender to learn anything about the choice bit of the
Receiver.

The randomness created by the Receiver for each message to be encrypted by the
Sender must be different, otherwise they could decrypt both messages. In the ETP OT1

2
this manifests itself in the requirement that yσ and y1−σ must not be equal and in the
NP OT1

2 z0 cannot equal z1. We however choose not to capture this in our definitions
of the protocols or views. We justify this by considering the ETP OT1

2 protocol as an
example: the statement yσ 6= y1−σ holds with overwhelming probability. Specifically
yσ and y1−σ are uniformly distributed, so the property fails to hold with probability

1
|X| where X is the sampling space. In this case X = range(α) and so is exponentially
large (otherwise the ETP is not a trapdoor permutation) thus we argue we are justified
in not capturing the property in our proofs. Note the analogous argument holds for
the Naor-Pinkas OT1

2 , here the sample space is Z|G|.

7.4 gmw

In this section we show how we prove security for the gates of the two party GMW
protocol [38, 39]. To realise the GMW protocol we require OT1

4 and secret sharing.
Here we first show how we formalise a protocol that realises OT1

4 (Section 7.4.1) and
then how we formalise secret sharing schemes, and in particular the secret sharing
scheme required for the GMW protocol (Section 7.4.3). Finally in Section 7.4.2 we
show how we prove the two party GMW protocol secure.

To formalise the two party GMW protocol we consider the building blocks in a
modular way. We assume results on OT1

2 when proving results on the OT1
4 protocol

and then assume the results we prove regarding the OT1
4 protocol when considering

the GMW protocol. The assumptions are all local to the locale (module) in which we
work for each protocol. The advantage of this is theories are more standalone, they
make assumptions on the required primitive (OT1

2 or OT1
4 ) and then prove the desired

results (regarding OT1
4 or GMW).

7.4.1 A protocol that realises OT1
4

We take the protocol that realises OT1
k from [38, Section 7.3.3, p640] and adapt it for

the case of OT1
4 . The functionality for OT1

4 is defined as,

functOT1
4
((b0,0, b0,1, b1,0, b1,1), (c0, c1)) = return((), bc0,c1). (7.44)

The Receiver (R) chooses one of four messages held by the Sender (S).

Protocol 2. S has inputs (b0,0, b0,1, b1,0, b1,1) ∈ {0, 1}4 and R has input (c0, c1) ∈ {0, 1}2.



112 semi-honest security

1. S uniformly randomly samples Sa
$←− {0, 1} for a ∈ {0, ..., 5}.

2. S calculates the following:

α0 = S0 ⊕ S2 ⊕ b0,0, α1 = S0 ⊕ S3 ⊕ b0,1

α2 = S1 ⊕ S4 ⊕ b1,0, α3 = S1 ⊕ S5 ⊕ b1,1.

3. S and R then run three OT1
2 protocols together. That is they run,

(_, Si)← OT1
2 ((S0, S1), c0)

(_, Sj)← OT1
2 ((S2, S3), c1)

(_, Sk)← OT1
2 ((S4, S5), c1)

4. R calculates

bc0,c1 = Si ⊕ (if c0 then Sk else Sj) ⊕ (if c0 then (if c1 then α3 else α2)

else (i f c1 then α1 else α0)).

Correctness of the protocol comes from the assumption of correctness of the OT1
2 .

Security comes from the masking of the messages sent from S to R in Step 2 and the
security of the OT1

2 .

7.4.1.1 Formalising the protocol and its security

To prove security of Protocol 2 we first make assumptions on the underlying OT1
2 ,

we assume: correctness, perfect security for the Receiver and bound the advantage
of party 1 by a real parameter. These are the security results of the Naor Pinkas
OT1

2 which is used in practical implementations of GMW. We fix these in the locale
OT1

4-base below.

locale OT1
4-base =

fixes protocolOT1
2

:: (bool× bool)⇒ bool⇒ (unit× bool) spmf

and R1,OT1
2

:: (bool× bool)⇒ bool⇒ ‘view1,OT1
2

spmf

and S1,OT1
2

:: (bool× bool)⇒ unit⇒ ‘view1,OT1
2

spmf

and R2,OT1
2

:: (bool× bool)⇒ bool⇒ ‘view2,OT1
2

spmf

and S2,OT1
2

:: bool⇒ bool⇒ ‘view2,OT1
2

spmf

and P1advOT1
2

:: real

assumes protocolOT1
2
((m0, m1), σ) = functOT1

2
((m0, m1), σ)

and adv-P1,OT1
2
((m0, m1), σ, D) ≤ P1advOT1

2

and P1advOT1
2
> 0

and perfect-sec-P2,OT1
2
((m0, m1), σ)

(7.45)



7.4 gmw 113

To show correctness we define the probabilistic program protocolOT1
4

that provides
the output distribution of Protocol 2 as protocolOT1

4
.

protocolOT1
4
((b0,0, b0,1, b1,0, b1,1), (c0, c1)) = do {

S0, S1, S2, S3, S4, S5 ← coin;

S1 ← coin;

S2 ← coin;

S3 ← coin;

S4 ← coin;

S5 ← coin;

let a0 = S0 ⊕ S2 ⊕m0,0;

let a1 = S0 ⊕ S3 ⊕m0,1;

let a2 = S1 ⊕ S4 ⊕m1,0;

let a3 = S1 ⊕ S5 ⊕m1,1;

(_, Si)← protocolOT1
2
((S0, S1), c0);

(_, Sj)← protocolOT1
2
((S2, S3), c1);

(_, Sk)← protocolOT1
2
((S4, S5), c1);

return((), Si ⊕ (if c0 then Sk else Sj)⊕
(if c0 then ((if c1 then a3 else a2)) else (if c1 then a1 else a0)))}

(7.46)

Theorem 25 shows the correctness of Protocol 2. Here B and C represent the inputs
for the Sender (b0,0, b0,1, b1,0, b1,1) and the Receiver (c0, c1) respectively.

Theorem 25. (in OT1
4 -base) shows protocolOT1

4
(B, C) = functOT1

4
(B, C)

Proof. We prove correctness by considering cases on C = (c0, c1) and using the
correctness of the underlying OT1

2 protocol assumed in the locale OT1
4-base.

Next we prove security for each party in turn.

party 1 security To prove security for the Sender we prove a reduction to the
security of the Sender in the underlying OT1

2 . Protocol 2 calls the OT1
2 protocol three

times, thus we bound the advantage of the Sender by 3 · P1advOT1
2
. The real and simu-

lated views are shown below. Note the difference between the views is the that one



114 semi-honest security

calls the real view and one the simulated view of the underlying OT1
2 .

R1,OT1
4
(B, (c0, c1)) = do { S1,OT1

4
(B, _) = do {

S0 ← coin; S0 ← coin;

S1 ← coin; S1 ← coin;

S2 ← coin; S2 ← coin;

S3 ← coin; S3 ← coin;

S4 ← coin; S4 ← coin;

S5 ← coin; S5 ← coin;

a← R1,OT1
2
((S0, S1), c0); a← S1,OT1

2
((S0, S1), _);

b← R1,OT1
2
((S2, S3), c1); b← S1,OT1

2
((S2, S3), _);

c← R1,OT1
2
((S4, S5), c1); c← S1,OT1

2
((S2, S3), _);

return(B, (S0, S1, S2, S3, S4, S5), return(B, (S0, S1, S2, S3, S4, S5),

a, b, c)} a, b, c)}

(7.47)

Theorem 26. (in OT1
4 -base) shows adv-P1,OT1

4
(B, C, D) ≤ 3 · P1advOT1

2

Proof. A paper proof would likely state that the reduction holds because Protocol 2

uses three calls to the OT1
2 protocol. We must work harder. We prove a distinguisher

cannot distinguish between the real and simulated views for party 1 in the Protocol 2

with greater advantage than 3 · P1advOT1
2
, by formalising what is commonly called the

hybrid method. Here we informally describe our proof method.
The main difference between the real and simulated view is that the real view calls

R1,OT1
2

three times whereas the simulated view calls S1,OT1
2

three times. To show these
two are indistinguishable we define two intermediate views (interviewi for i ∈ {1, 2}
that step-wise transform the real view into the simulated view.

interview1(B, (c0, c1)) = do { interview2(B, _) = do {
S0 ← coin; S0 ← coin;

S1 ← coin; S1 ← coin;

S2 ← coin; S2 ← coin;

S3 ← coin; S3 ← coin;

S4 ← coin; S4 ← coin;

S5 ← coin; S5 ← coin;

a← S1,OT1
2
((S0, S1), _); a← S1,OT1

2
((S0, S1), _);

b← R1,OT1
2
((S2, S3), c1); b← S1,OT1

2
((S2, S3), _);

c← R1,OT1
2
((S4, S5), c1); c← R1,OT1

2
((S4, S5), c1);

return(B, (S0, S1, S2, S3, S4, S5), return(B, (S0, S1, S2, S3, S4, S5),

a, b, c)} a, b, c)}

(7.48)



7.4 gmw 115

The first intermediate view changes the first call of R1,OT1
2

in the real view to S1,OT1
2
,

the second further changes the second call of R1,OT1
2

to S1,OT1
2
. We informally depict

this in the diagram below:

R1,OT1
2
≺P1advOT1

2

interview1 ≺P1advOT1
2

interview2 ≺P1advOT1
2

S1,OT1
2

Where A ≺P B denotes that we show a distinguisher has a probability less than P of
distinguishing the the probabilistic programs A and B. Once we have proved all three
parts in turn we can combine them to show the overall probability a distinguisher has
is less than 3 · P1advOT1

2
. In this case Theorem 26 becomes

R1,OT1
2
≺3·P1advOT1

2

S1,OT1
2
.

party 2 security To prove security for party 2 we directly use the perfect security
result we assume for party 2 in the OT1

2 . The real and simulated views are shown
below.

R1,OT1
4
(B, (c0, c1)) = do { S1,OT1

4
(B, out2) = do {

S0 ← coin; S0 ← coin;

S1 ← coin; S1 ← coin;

S2 ← coin; S2 ← coin;

S3 ← coin; S3 ← coin;

S4 ← coin; S4 ← coin;

S5 ← coin; S5 ← coin;

let a0 = S0 ⊕ S2 ⊕m0,0; let a0 = (if ¬c0 ∧ ¬c1 then (S0 ⊕ S2 ⊕ out2) else a0);

let a1 = S0 ⊕ S3 ⊕m0,1; let a1 = (if ¬c0 ∧ c1 then (S0 ⊕ S3 ⊕ out2) else a1);

let a2 = S1 ⊕ S4 ⊕m1,0; let a2 = (if c0 ∧ ¬c1 then (S1 ⊕ S4 ⊕ out2) else a2);

let a3 = S1 ⊕ S5 ⊕m1,1; let a3 = (if c0 ∧ c1 then (S1 ⊕ S5 ⊕ out2) else a3);

a← R2,OT1
2
((S0, S1), c0); a← S2,OT1

2
((S0, S1), _);

b← R2,OT1
2
((S2, S3), c1); b← S2,OT1

2
((S2, S3), _);

c← R2,OT1
2
((S4, S5), c1); c← S2,OT1

2
((S2, S3), _);

return(B, (S0, S1, S2, S3, S4, S5), return(B, (S0, S1, S2, S3, S4, S5),

a, b, c)} a, b, c)}

(7.49)

Theorem 27. (in OT1
4 -base) shows perfect-sec-P2,OT1

4
(B, C)

Proof. To show perfect security we construct a simulator S2,OT1
4

such that it is equal to
the real view of the Receiver in Protocol 2. The basis of security for the Receiver is
that the assumed perfect security for the Receiver of the underlying OT1

2 protocol. It
was semi-technical to use the assumed result on OT1

2 as we require the second input
to the simulator to be from the functionality for the assumption to be valid (this can
be seen after unfolding the definition of perfect-sec-P2,OT1

2
) — the challenge is that this

input is embedded within the probabilistic program.

Together Theorems 26 and 27 have shown security for Protocol 2 with respect to the
assumptions on the locale OT1

4 -base. That is we have proven the security of a protocol
that realises OT1

4 under the assumption that it uses a secure OT1
2 .



116 semi-honest security

7.4.2 The GMW protocol

To realise secure circuit evaluation the GMW protocol provides protocols for the
secure computation of AND and XOR gates. We formalise these security results. We
do so under the assumption of security of a protocol that realises OT1

4 . We make these
assumptions in the locale, gmw-base, which we show later after we have informally
introduced the GMW protocol. The assumptions on the security of the OT1

4 are exactly
the results we proved on OT1

4 in section 7.4.1.

7.4.2.1 Securely computing AND and XOR gates

We show how to securely compute an XOR and AND gate using the GMW protocol.
Assume party 1 has input x and party 2 has input y, after sharing and sending the
other party the appropriate share party 1 holds the shares (a1, a2), and party 2 holds
the shares (b1, b2) — that is x = a1 ⊕ b1 and y = a2 ⊕ b2.

The GMW protocol provides sub protocols to compute XOR and AND gates on the
shared inputs (that have already been shared between the parties).

xor and and protocols The functionality for the XOR protocol we wish to
compute is as follows,

fXOR((a1, a2), (b1, b2)) = ((a1 ⊕ a2, b1 ⊕ b2)) (7.50)

The protocol for an XOR gate is given in Protocol 3, all computation is done locally
by each party, meaning there is no need for communication between the parties.

Protocol 3. [XOR gate] To compute an XOR gate the parties can compute the XOR of their
shares separately, that is party 1 evaluates a1 ⊕ a2 and party 2 evaluates b1 ⊕ b2.

Because there is no communication between the parties security is trivial. Correct-
ness comes from the commutativity of the XOR operation.

Securely computing an AND gate is more involved. The functionality we want to
evaluate is

fAND((a1, a2), (b1, b2)) = (σ, σ⊕ (a1 ⊕ b1) ∧ (a2 ⊕ b2)) (7.51)

where σ is uniformly sampled from {0, 1}. The sampling of σ ensures neither party
alone learns the output, instead they each learn a share, which they must reconstruct
together to learn the output. Recall x = a1 ⊕ b1 and y = a2 ⊕ b2 then one can see party
2 learns the σ⊕ (x ∧ y) which when xor-ed (reconstructed) with party 1’s output, σ,
gives the desired result.

A GMW protocol that realises this functionality uses OT1
4 and is given in Protocol 4

below.

Protocol 4. [AND gate]

1. party 1 samples σ← {0, 1} and constructs si as follows:



7.4 gmw 117

b1 b2 (a1 ⊕ b1) ∧ (a2 ⊕ b2) si

0 0 α0 s0 = σ⊕ α0

0 1 α1 s1 = σ⊕ α1

1 0 α2 s2 = σ⊕ α2

1 1 α3 s3 = σ⊕ α3

2. The parties compute an OT1
4 with input (s0, s1, s2, s3) for party 1 and (b1, b2) for party

2.

3. party 2 keeps its output of the OT1
4 while party 1 keeps σ.

The protocol is correct as both parties hold a share of the output such that when
xored together give the desired result. Intuitively, security comes from party 1 con-
structing all possible results of the computation (in Step 1) and masking it with the
random sample σ. The parties then use OT1

4 to transfer over one and only one of
the possible values, the value that party 2 can decrypt to form their share — thus the
security reduces to the security of the underlying OT1

4 protocol.

7.4.3 Formalising Secret Sharing

Secret sharing schemes [69] are at the core of MPC protocols. They allow inputs to
be shared among a number of parties such that the share can only be reconstructed
when a critical threshold number of parties combine their shares. We consider secret
sharing for two parties, thus both shares are always needed to reconstruct correctly.
To formalise such schemes we provide two constants share and reconstruct that define
the sharing scheme. We give their types below.

share :: ‘a⇒ (‘share× ‘share) spmf (7.52)

reconstruct :: (‘share× ‘share)⇒ ‘a spmf (7.53)

The basic correctness property of a sharing scheme requires that reconstructing a
shared input returns the original input.

Definition 28 (Correctness on secret sharing).

correctshare(input) = (share(input)B (λ(s1, s2). reconstruct(s1, s2)) = return(input))

Finally we also fix a constant evaluate which a set containing all the functions we
wish to realise (in the GMW protocol these are AND and XOR).

evaluate :: (‘a⇒ ‘a⇒ ‘a spmf ) set (7.54)

In section 7.4.4.1 we show how we instantiate this parameter and show how we
prove that all functions in the set are correct with respect our sharing scheme (Lemmas
37 and 38).



118 semi-honest security

7.4.4 Secret sharing for the GMW

In the GMW protocol the input from each party to a gate is a bit, thus the parties need
to share their input bit between them.

To share a bit x a party flips a coin to obtain a bit, a. The bit a is kept by the party
and x⊕ a is sent to the other party; this is often called xor-sharing. To reconstruct the
two parties compute the xor of their shares. The formal definitions for this are given
below

shareGMW(x) = do {
a← coin;

return(a, x⊕ a)}
(7.55)

reconstructGMW(a, b) = return(a⊕ b) (7.56)

To show correctness of the sharing scheme we show that reconstructing a shared
input results in the original input.

Theorem 28. (in gmw-base) shows correctshareGMW (x)

7.4.4.1 Formalising the GMW protocol

We first consider the correctness of Protocols 3 and 4, which make up the GMW
protocol, with respect the the secret sharing scheme we use. Then we show how we
prove security for Protocols 3 and 4. In our formalisation here we assume the results
we proved on OT1

4 . We make these assumptions in the locale gmw-base. We make some
type synonyms to make the types in the locale easier to read.

type-synonym OT1
4 -msgs = (bool× bool× bool× bool) (7.57)

type-synonym OT1
4 -choice = (bool× bool) (7.58)

locale gmw-base =

fixes protocolOT1
4

:: OT1
4-msgs⇒ OT1

4-choice⇒ (unit× bool) spmf

and R1,OT1
4

:: OT1
4-msgs⇒ OT1

4-choice⇒ ‘view1,OT1
4

spmf

and S1,OT1
4

:: OT1
4-msgs⇒ unit⇒ ‘view1,OT1

4
spmf

and R2,OT1
4

:: OT1
4-msgs⇒ OT1

4-choice⇒ ‘view2,OT1
4

spmf

and S2,OT1
4

:: OT1
4-choice⇒ bool⇒ ‘view2,OT1

4
spmf

and P1advOT1
4

:: real

assumes protocolOT1
4
((m0, m1, m2, m3), σ) = functOT1

4
((m0, m1, m2, m3), σ)

and adv-P1,OT1
4
((m0, m1, m2, m3), σ, D) ≤ P1advOT1

4

and P1advOT1
4
> 0

and perfect-sec-P2,OT1
4
((m0, m1, m2, m3), σ)

(7.59)



7.4 gmw 119

correctness of secret sharing We emphasis here that we are not considering
correctness in the sense we consider correctness for deterministic protocols. Instead
here we would like to show that the XOR and AND protocols are correct with respect
the secret sharing scheme. That is that sharing inputs, computing the protocol and
reconstructing gives the desired output of the gate. We showed the functionalities for
the XOR and AND gates in Equations 7.50 and 7.51. They are formally encoded in
Isabelle as follows.

functAND((a1, a2), (b1, b2)) = do { functXOR((a1, a2), (b1, b2)) =

σ← coin; return(a1 ⊕ a2, b1 ⊕ b2)

return(σ, σ⊕ (a1 ⊕ b1) ∧ (a2 ⊕ b2))}
(7.60)

The probabilistic programs we define that describe Protocols 3 and 4 are given
below in Equations 7.61 and 7.62. These protocols take as inputs the already shares
held by the parties. Consequently it does not make sense to consider them with
respect to the definition of correctness for two party MPC we formalised in section 7.2.
Instead we prove more robust statements with respect the secret sharing scheme after
instantiating the set evaluate.

protocolXOR((a1, a2), (b1, b2)) = return(a1 ⊕ a2, b1 ⊕ b2) (7.61)

protocolAND((a1, a2), (b1, b2)) = do {
σ← coin;

let s0 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);

let s1 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);

let s2 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);

let s3 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);

(_, s)← protocolOT1
4
((s0, s1, s2, s3), (a2, b2);

return(σ, s)}

(7.62)

We define evaluate = {evaluateXOR, evaluateAND} as the set of functions we wish to
consider — these are defined over the original inputs, and not the shared inputs.

evaluateAND(x, y) = return(x∧ y) (7.63)

evaluateXOR(x, y) = return(x⊕ y) (7.64)

We prove Protocol 3 and 4 are correct with respect to the secret sharing. That is sharing
the inputs, executing the protocol and reconstructing gives the desired evaluated
result. These statements are given in Lemmas 37 and 38.



120 semi-honest security

Lemma 37. (in gmw-base)
shows (share

GMW
(x)B (λ(s1, s2). shareGMW(y)B

(λ(s3, s4). protocol
AND
((s1, s3), (s2, s4))B

(λ(S1, S2). reconstructGMW(S1, S2)))) = evaluateAND(x, y))

Lemma 38. (in gmw-base)
shows (share

GMW
(x)B (λ(s1, s2). shareGMW(y)B

(λ(s3, s4). protocol
XOR
((s1, s3), (s2, s4))B

(λ(S1, S2). reconstructGMW(S1, S2)))) = evaluateXOR(x, y))

security For Protocol 3 that realises the XOR functionality there is no commu-
nication between the parties, thus security is trivial. The trivial simulator and proof
of security is given in our formalisation [our_afp]. Here we focus on the AND gates’
security. Note that we are dealing with a non-deterministic functionality so must
consider the security definitions given in section 7.2.2. We note we provide the un-
folded ideal view in the definitions below, recall in the definitions we make in the
non deterministic setting we define the simulator and output separately and combine
them into the ideal view.

For Protocol 4 we show a reduction to the security of the OT1
4 for party 1 and show

perfect security for party 2. First we consider party 1. The real view and unfolded
ideal view for party 1 are shown below.

R1,AND((a1, a2), (b1, b2)) = do {
σ← coin;

let s0 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);

let s1 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);

let s2 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);

let s3 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);

V ← R1,OT1
4
((s0, s1, s2, s3), (b1, b2));

(_, s)← protocolOT1
4
((s0, s1, s2, s3), (b1, b2);

return(((a1, a2), σ, V), (σ, s))}

(7.65)

ideal-view1,AND((a1, a2), (b1, b2), σ) = do {
let s0 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);

let s1 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);

let s2 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);

let s3 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);

V ← S1,OT1
4
((s0, s1, s2, s3), ());

return(((a1, a2), σ, V), (σ, σ⊕ ((a1 ⊕ b1) ∧ (a2 ⊕ b2))))}

(7.66)

As in the proof of the OT1
4 construction the difference between the views is whether

the simulator or real view of the underlying OT1
4 is called. Thus the proof of security

for party 1 follows a similar argument, the statement of security is given below.



7.5 secure multiplication protocol 121

Theorem 29. (in gmw-base)
shows adv-P1,AND((a1, a2), (b1, b2), D) ≤ P1advOT1

4

Proof. The proof is similar in construction to the reduction we show for party 1 of the
OT1

4 protocol in Theorem 26. The only difference is that we only need to show one
reduction, as opposed to the three we showed there.

For party 2 we show perfect security, like in the case of the Receiver in the proof of
OT1

4 from OT1
2 . The views and the statement of security are shown below.

R2,AND((a1, a2), (b1, b2)) = do {
σ← coin;

let s0 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);

let s1 = σ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);

let s2 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);

let s3 = σ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);

V ← R2,OT1
4
((s0, s1, s2, s3), (b1, b2));

(_, out2)← protocolOT1
4
((s0, s1, s2, s3), (b1, b2);

return(((b1, b2), V), (σ, out2))}

(7.67)

ideal-view2,AND((b1, b2), (a1, a2), out2) = do {
V ← S2,OT1

4
((b0, b1), out2);

let s1 = out2 ⊕ (a1 ⊕ b1) ∧ (a2 ⊕ b2);

return(((b1, b2), V), (s1, out2))}

(7.68)

Theorem 30. (in gmw-base)
shows perfect-sec-P2,AND((a1, a2), (b1, b2))

Proof. We use the assumption that the underlying OT1
4 is perfectly secure for party

2 to replace R2,OT1
4

for S2,OT1
4

in the real view which brings it closer to equaling
the simulator. Then we consider the cases on the inputs a1, a2, b1, b2 to dismiss the
proof.

Theorems 30 and 29 show security in the semi-honest model for Protocol 4.

7.5 secure multiplication protocol

We now present a protocol that computes a secure multiplication in Zq. The function-
ality we consider is given in Equation 7.69 below,

fmult(x, y) = (s, (x · y− s) mod q) (7.69)

where s ← Zq. In the functionality we uniformly sample s so that neither output
reveals the result of the multiplication on its own. Each party receives a share of the
result. Clearly, to reconstruct the result both outputs must added together.



122 semi-honest security

Trusted Initialiser
a, b, r $←− Zq

(c1, d1)← (a, r), (c2, d2)← (b, a · b− r)

P1 P2

(c1, d1), x ∈ Zq (c2, d2), y ∈ Zq

e2 ← x + c1
e2−−−−−−−−−−−−→ e2

e1
e1←−−−−−−−−−−−− e1 ← y− c2

s1 ← x · e1 − d1 s2 ← e2 · c2 − d2

Figure 7.3: A protocol for secure multiplication

The protocol provides perfect security for both parties. To achieve this the protocol
requires some pre-generation of elements to be distributed to the parties. This is
known in MPC as the preprocessing model [9], where the parties run an offline
phase to generate correlated random triples — sometimes called Beaver triples — that
are used to perform fast secure multiplications in an online phase. For this task we
assume a trusted initialiser exists. The preprocessing model is widely accepted in
the cryptographic community as it allows for stronger notions of security (generally
perfect security guarantees) whilst the trusted initialiser does not learn either party’s
input. The protocol that realises the functionality given in Equation 7.69 is given in
Figure 7.3. In the protocol all operations are computed in Zq.

Intuitively, security results from the messages being sent in the protocol always
being masked by some randomness. There are only two messages sent in the protocol.
In the message party one sends, e2, the input (x) is masked by the uniform sample, c1.
Likewise in the message party two sends, e1, the input (y) is masked by the uniform
sample, c2. Both c1 and c2 are unique samples not used elsewhere in the protocol so
the masking provides a one time pad, so perfect security holds for both parties.

7.5.1 Formalising the protocol

Like the AND gate GMW protocol we considered in the previous section the protocol
we consider here is also non-deterministic, thus we use the definitions of security
from section 7.2.2. In particular we do not need to show correctness as this is captured
in the extended views considered in the security statement. We construct a locale in
which to consider the protocol. In the locale we fix the size of the field q and assume
it is greater than 0.

locale secure-mult =

fixes q :: nat

assumes q > 0

(7.70)

The functionality we consider in this protocol is encoded in Isabelle as follows.



7.5 secure multiplication protocol 123

functmult(x, y) = do {
s← samp-uniform(q);

return(s, (x · y− s) mod q)}
(7.71)

We note as we are dealing with naturals we must be careful for the subtraction not
to bottom out. To account for this in the formalisation we actually return (x · y + (q−
s)) mod q as the second output, however do not write this here to avoid clutter.

To formalise the protocol we first define the output of the trusted initialiser.

TI = do {
a← samp-uniform(q);

b← samp-uniform(q);

r ← samp-uniform(q);

return((a, r), (b, a · b− r) mod q)}

(7.72)

We have perfect security for both parties. For party 1 the real view and unfolded
ideal view are as follows.

R1(x, y) = do {
((c1, d1), (c2, d2))← TI;

let e1 = (y− c2) mod q;

let e2 = (x + c1) mod q;

let s1 = (x · e1 − d1) mod q;

let s2 = (e2 · c2 − d2) mod q;

return(x, c1, d1, e1, s1, s2)}

(7.73)

ideal-view1,mult(x, y, s1) = do {
c1 ← samp-uniform(q);

e1 ← samp-uniform(q);

let d1 = (x · e1 − s1) mod q;

let s2 = (x · y− s1) mod q;

return(x, c1, d1, e1, s1, s2)}

(7.74)

To show perfect security we prove that the two views given in 7.73 and are equal
when s1, the input to the simulator, is the first output of the functionality.

Theorem 31. (in secure-mult) shows perfect-sec-P1,mult(x, y)

Proof. The proof involves a series of small equality steps between intermediate proba-
bilistic programs. In particular, in the series of intermediate programs we manipulate



124 semi-honest security

the real and ideal views. In the ideal view the samples c1, e1 and s1 are uniformly ran-
dom and independent from each other, x and y. We show s2 = (x · y− s1) mod q and
d1 = (x · e1 − s1) mod q. By showing these relationships, and only these relationships,
hold for the real view too we show the two views are equal. Much of the proof effort
required in Isabelle was to show various equalities hold concerning arithmetic modulo
q. The built in techniques to aid with such arithmetic were not able to deal with the
results required here easily.

For party 2 the real and unfolded ideal view are as follows.

R2(x, y) = do {
((c1, d1), (c2, d2))← TI;

let e1 = (y− c2) mod q;

let e2 = (x + c1) mod q;

let s1 = (x · e1 − d1) mod q;

let s2 = (e2 · c2 − d2) mod q;

return(y, c2, d2, e2, s1, s2)}

(7.75)

ideal-view2,mult(y, x, s2) = do {
c2 ← samp-uniform(q);

e2 ← samp-uniform(q);

let d2 = (e2 · c2 − s2) mod q;

let s2 = (x · y− s2) mod q;

return((y, c2, d2, e2), s1, s2)}

(7.76)

Again, like for party 1, we show perfect security.

Theorem 32. (in secure-mult) shows perfect-sec-P2,mult(x, y)

Proof. The proof here is similar to the proof of Theorem 32. The relationships to
consider are s2 = (x · y− s1) mod q and d2 = (e2 · c2 − s2) mod q.

Together, Theorems 31 and 32 show security in the semi-honest model for the
Protocol given in Figure 7.3.

In this chapter we have shown how we formalised semi-honest security for two
party protocols. We have provided multiple instances of protocols that realise these def-
initions: starting from OT1

2 building to the GMW protocol and a secure multiplication
protocol. Moreover, in our proof of the GMW protocol we have shown how Isabelle’s
module system can be used to modularise the proof, for example by assuming the
security properties on OT1

4 when considering the GMW protocol.



8
M A L I C I O U S S E C U R I T Y

8.1 introduction

In this chapter we consider the malicious security model. In the malicious model the
adversary is allowed to totally corrupt the party (or parties) it controls. As we work in
the two party setting we only need to consider the case where one party is corrupted
as we cannot guarantee anything if both parties are corrupted.

chapter outline In Section 8.2 we formalise the definitions of malicious security
we gave in Section 2.4.2. We then instantiate our definitions in Section 8.3 to prove the
OT1

2 protocol from [44, p190] secure.
The work in this chapter has been published in [20, 23].

8.2 formalising the definitions

To make the definitions of malicious security we, as usual, construct a locale (malicious-base,
given in Equation 8.13) and fix the parameters we require to make our definitions.
In this case we fix: the functionality (funct), the protocol output (protocol), the real
view of each party (R1 and R2), and the simulators ((S1

1, S2
1) and (S1

2, S2
2)) — this is

the simulator that interacts in the ideal model. The roles of each component of the
simulators will become clear when we define their types and the ideal model. The real
view of each party is the transcript a party sees when the adversary sends all messages
in place of the corrupted party. In contrast, the honest party follows the instructions
of the protocol. Before we define the locale, malicious-base we construct some type
synonyms for readability, in particular we consider the types of the simulators.

We first consider party 1. We define the type of the first adversary that takes part in
the ideal game. This adversary has two components, we define their types separately
in Equations 8.1 and 8.2 and combine the types in Equation 8.3. The first component
of the ideal adversary takes as input the input of party 1 and the auxiliary input and
outputs the input it wishes to give to the trusted party on behalf of party 1 as well as
some auxiliary output, that can be passed to the second component.

type-synonym (‘in1, ‘aux, ‘s1) Aideal,1,P1 =

‘in1 ⇒ ‘aux ⇒ (‘in1 × ‘s1) spmf (8.1)

The second component of the ideal adversary for party 1 is allowed to also see the
output of the protocol, as given to it by the trusted party as well as the auxiliary output
(state) outputted by the first component of the adversary. This part of the adversary
outputs whatever it likes — we represent this by allowing it to output something of
abstract type.

125



126 malicious security

type-synonym (‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) Aideal,2,P1 =

‘in1 ⇒ ‘aux ⇒ ‘out1 ⇒ ‘s1 ⇒ ‘Aout1 spmf (8.2)

We combine the two components of the adversary for the ideal game as a tuple.

type-synonym (‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) Aideal,P1 =

(‘in1, ‘aux, ‘s1) Aideal,1,P1×
(‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) Aideal,2,P1 (8.3)

To prove security there must be simulators that can simulate each component of the
ideal game adversaries. Again we consider the types of the components separately in
Equations 8.1 and 8.2 before combining them in Equation 8.3. The simulators have
the same types as the corresponding components of the ideal game adversaries with
the additional input of the real world adversary, that is the adversary that sends the
messages on behalf of the corrupted (party 1, in this case) in the real world.

type-synonym (‘Areal,P1 , ‘in1, ‘aux, ‘s1) S1,P1 =

‘Areal,P1 ⇒ ‘in1 ⇒ ‘aux ⇒ (‘in× ‘s1) spmf (8.4)

type-synonym (‘Areal,P1 , ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S2,P1 =

Areal,P1 ⇒ ‘in1 ⇒ ‘aux ⇒ ‘out1 ⇒ ‘s1 ⇒ ‘Aout1 spmf (8.5)

type-synonym (‘Areal,P1 , ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) SP1 =

(‘Areal,P1 , ‘in1, ‘aux, ‘s1) S1,P1×
(‘Areal,P1 , ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S2,P1 (8.6)

The type synonym’s above have defined the types we need for party 1. Below we
make the analogous definitions for party 2.

type-synonym (‘in2, ‘aux, ‘s2) Aideal,1,P2 =

‘in2 ⇒ ‘aux ⇒ (‘in2 × ‘s2) spmf (8.7)

type-synonym (‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) Aideal,2,P2 =

‘in2 ⇒ ‘aux ⇒ ‘out2 ⇒ ‘auxP2,S1 ⇒ ‘Aout2 spmf (8.8)

type-synonym (‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) Aideal,P2 =

(‘in2, ‘aux, ‘s2) Aideal,1,P2 × (‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) Aideal,2,P2 (8.9)



8.2 formalising the definitions 127

type-synonym (‘Areal,P2 , ‘in2, ‘aux, ‘s2) S1,P2 =

‘Areal,P2 ⇒ ‘in2 ⇒ ‘aux ⇒ (‘in2 × ‘s2) spmf (8.10)

type-synonym (‘Areal,P1 , ‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) S2,P2 =

‘Areal,P2 ⇒ ‘in2 ⇒ ‘aux ⇒ ‘out2 ⇒ ‘s2 ⇒ ‘Aout2 spmf (8.11)

type-synonym (‘Areal,P2 , ‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) SP2 =

(‘Areal,P2 , ‘in2, ‘aux, ‘s2) S1,P2

× (‘Areal,P2 , ‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) S2,P2 (8.12)

Using these type synonyms we construct the locale malicious-base as follows.

locale malicious-base =

fixes funct :: ‘in1 ⇒ ‘in2 ⇒ (‘out1 × ‘out2) spmf

and protocol :: ‘in1 ⇒ ‘in2 ⇒ (‘out1 × ‘out2) spmf

and S1
1 :: (‘Areal,P1 , ‘in1, ‘aux, ‘s1) S1,P1

and S2
1 :: (‘Areal,P1 , ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S2,P1

and R1 :: ‘in1 ⇒ ‘in2 ⇒ ‘aux ⇒ ‘Areal,P1 ⇒ (‘Aout1 × ‘out2) spmf

and S1
2 :: (‘Areal,P2 , ‘in2, ‘aux, ‘s2) S1,P2

and S2
2 :: (‘Areal,P1 , ‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) S2,P2

and R2 :: in1 ⇒ ‘in2 ⇒ ‘aux ⇒ ‘Areal,P2 ⇒ (‘out1 × ‘Aout2) spmf

(8.13)

In the same way as the semi-honest setting for a protocol to be correct we require
the funct and protocol to be equal. Unlike in the semi-honest setting correctness and
security are not linked. When one party (out of two) is totally corrupt there can be no
guarantees that either party obtains the correct output. However, if the protocol is run
honestly we still want the correctness property to hold.

Definition 29 (Correctness).

correct(x, y) = (protocol(x, y) = funct(x, y))

We now make our definitions of malicious security. The ideal games used to
define security for each party require a call to the trusted party. This call returns the
corresponding output of the functionality, thus we make the following abbreviation.1

trusted-party(x, y) = funct(x, y) (8.14)

The ideal game for party 1 is defined as follows. This corresponds to the informal
definition Definition 11.

1 Abbreviations in Isabelle are used to rename variables, however in proofs the abbreviations are automat-
ically unfolded. In this instance we use the abbreviation to make it clear what the role of the trusted
party is without wanting to make a new definition.



128 malicious security

ideal-model1(x, y, z,A) = do {
let (A1,A2) = A;

(x′, auxout)← A1(x, z);

(out1, out2)← trusted-party(x′, y);

out′1 ← A2(x′, z, out1, auxout);

return(out′1, out2)}

(8.15)

Using this we define the ideal view for party 1 (Equation 8.16) which allows us to
define perfect security and the advantage for party 1. We make these definitions now.

mal-ideal1(x, y, z,A) = ideal-model1(x, y, z, (S1
1(A), S2

1(A))) (8.16)

Here A consists of a tuple of algorithms, one for each round of the protocol — that
is one algorithm (sub adversary) to send messages on behalf of the corrupted party
for each round of the protocol.

As in the semi-honest case we either show perfect security or show the views are
indistinguishable — in which case we refer to the advantage that a distinguisher has
of distinguishing them. For perfect security we require equality between the views.

Definition 30 (Perfect Security, party 1).

perfect-sec-P1(x, y, z,A) = (R1(x, y, z,A) = ideal1(x, y, z,A))

Definition 31 (Advantage for party 1).

adv-P1(x, y, z,A, D) =

(|P [(R1(x, y, z,A)B D) = True]−P [(mal-ideal1(x, y, z,A)B D) = True]|)

We make the analogous definitions for party 2.

ideal-model2(x, y, z,A) = do {
let (A1,A2) = A;

(y′, auxout)← A1(y, z);

(out1, out2)← trusted-party(x, y′);

out′2 ← A2(y′, z, out2, auxout);

return(out1, out′2)}

(8.17)

mal-ideal2(x, y, z,A) = ideal-model2(x, y, z, (S1
2(A), S1

2(A))) (8.18)

Definition 32 (Perfect security for party 2).

perfect-sec-P2(x, y, z,A) ≡ (mal-ideal2(x, y, z,A) = R2(x, y, z,A))



8.3 a protocol realising OT1
2 in the malicious setting 129

The advantage of a distinguisher to be is defined as follows.

Definition 33 (Advantage for party 2).

adv-P2(x, y, z,A, D) =

(|P [(R2(x, y, z,A)B D) = True]−P [(mal-ideal2(x, y, z,A)B D) = True]|)

We make two remarks about our definition of the ideal model (Equations 8.15 and
8.17); the first concerns aborts and the second the state of the adversary.

1. We do not explicitly model the abort procedures (defined informally in Definition
11), this is because they are covered by the type of spmf . When the adversary
provides output in the probabilistic program it could also output None, this
captures the abort process as it terminates the probabilistic program with no
output.

2. As we split the adversary into two parts it must be allowed to pass state. This is
rarely considered or noted in paper proofs.

The work of Haagh et al. [41] formalises the same malicious model (active security
model) in EasyCrypt, however as we discuss in the related work section in the
conclusion (section 9.1.1) a meta (paper) theorem was required to link the formalisation
to the paper definitions.

8.3 a protocol realising OT1
2 in the malicious setting

In this section we show our definitions for malicious security are satisfied by the OT1
2

protocol from [44, p.190]. This protocol is considered in the hybrid model as it uses
a call to a Zero Knowledge Proof of Knowledge (ZKPoK) functionality for the DH
relation (FDH

ZK ). A Zero Knowledge Proof is an extension of the idea of a Σ-protocol
where a Prover is able to convince another party, the Verifier, that they know a value x,
without leaking any information to the Verifier except that they know x. This is seen
in Step 4 of the protocol.

The protocol uses a cyclic group G (where it is assumed the DDH assumption holds)
of order q with generator g and is run as follows:

Protocol 5. Let party 1 be the sender (S) and party 2 be the receiver (R).

1. S has input (m0, m1) ∈ G2 and R has input σ ∈ {0, 1}.

2. R uniformly samples α0, α1, r ← {1, ..., q} and computes h0 = gα0 , h1 = gα1 , a = gr,
b0 = hr

0 · gσ and b1 = hr
1 · gσ.

3. S checks (h0, h1, a, b0, b1) ∈ G5, otherwise it aborts.

4. Let h = h0/h1 and b = b0/b1. R proves to S that (h, a, b) is a DH tuple, using ZKPoK.
That is R proves the relation

RDH = {((h, a, b), r). a = gr ∧ b = hr}



130 malicious security

5. If S accepts the proof it continues and uniformly samples u0, v0, u1, v1 ← {1, ..., q}, and
computes (e0, e1) and sends the tuple to R:
e0 = (w0, z0) where w0 = au0 · gv0 and z0 = bu0

0 · h
v0
0 ·m0.

e1 = (w1, z1) where w1 = au1 · gv1 and z1 = ( b1
g )

u1 · hv1
1 ·m1.

6. R outputs zσ

wασ
σ

and S outputs nothing.

Here ‘·’ denotes multiplication in the group and a
b denotes multiplication by the

inverse of b in the group (in the case where a, b ∈ G).
Correctness of the protocol can be seen if one splits the proof into the cases on the

value of σ. Intuitively security for the receiver is upheld because σ is sent only as an
exponent of the generator which is masked by random group element and the receiver
can learn at most one of the sender’s messages due to the construction of the DDH
tuple, which the sender is satisfied with after the ZKPoK.

8.3.1 Formally proving OT1
2 secure in the malicious setting

In this section we will discuss our formalisation of security of Protocol 5.
As usual we construct a locale where we fix the parameters of the protocol, in this

case the cyclic group G.

locale mal-ot =

fixes G :: ‘grp cyclic-group

assumes |G| > 0

and prime(|G|)

(8.19)

To define the protocol and views we first define the ideal ZKPoK functionality. In
this instance the functionality is encoded into Isabelle as follows.

FDH
ZK ((h, a, b), (((h′, a′, b′), r)) =

return(a = gr ∧ b = hr ∧ (h, a, b) = (h′, a′, b′), _). (8.20)

In the context of Protocol 5, party 1 in the functionality is the Sender and party 2

the Receiver. Both parties input a tuple, these could be different as the parties may
be malicious. The functionality returns a boolean dependent on whether the relation
is true to party 1, and nothing to party 2. In this instance the relation is the Diffie
Helman relation. party 1 also learns if the input made by party 2 is the same as their
input.

First we prove correctness of the protocol. The parameter protocolOT1
2 ,mal is defined

as follows.



8.3 a protocol realising OT1
2 in the malicious setting 131

protocolOT1
2 ,mal((m0, m1), σ) = do {

r ← samp-uniform(|G|);
α0 ← samp-uniform(|G|);
α1 ← samp-uniform(|G|);
let h0 = gα0 ;

let h1 = gα1 ;

let a = gr;

let b0 = hr
0 ⊗ g(if σ then 1 else 0);

let b1 = hr
1 ⊗ g(if σ then 1 else 0);

let h = h0 ⊗ invh1;

let b = b0 ⊗ invb1;

_← assert(a = gr ∧ b = hr);

u0 ← samp-uniform(|G|);
u1 ← samp-uniform(|G|);
v0 ← samp-uniform(|G|);
v1 ← samp-uniform(|G|);
let z0 = bu0

0 ⊗ hv0
0 ⊗m0;

let w0 = au0 ⊗ gv0 ;

let e0 = (w0, z0);

let z1 = (b1 ⊗ inv(g))u1 ⊗ hv1
1 ⊗m1;

let w1 = au1 ⊗ gv1 ;

let e1 = (w1, z1);

return((), if σ then (z1 ⊗ inv(wα1
1 )) else (z0 ⊗ inv(wα0

0 )))}

Theorem 33. (in mal-ot)
assumes m0 ∈ G

and m1 ∈ G
shows functOT1

2
((m0, m1), σ) = protocollOT1

2 ,mal((m0, m1), σ)

Proof. Isabelle had to be helped more extensively in the rewriting of terms here
compared to other proofs of correctness, mainly Isabelle requires some group identities
to be provided as rewrite rules. This was due to the more complex constructions in
the protocol.

To prove security of Protocol 5 we must first formalise a variant of the DDH
assumption and prove it is at least as hard as the traditional DDH assumption. The
security of the Sender is reduced to this assumption.

8.3.1.1 DDH assumption

Traditionally the DDH assumption states that the tuples (gx, gy, gz) and (gx, gy, gx·y)

are hard to distinguish (where x, y and z are random samples), the variant states
that (h, gr, hr) and (h, gr, hr · g) are hard to distinguish (where h ∈ G, and g is the



132 malicious security

generator of G). We formalise this variant of the assumption and prove it is as hard
as the original DDH assumption in Lemma 39. The variant is formalised using the
following two games.

DDH-0(A) = do {
s← samp-uniform(|G|);
r ← samp-uniform(|G|);
let h = gs;

A(h, gr, hr)}

(8.21)

DDH-1(A) = do {
s← uniform(|G|);
r ← uniform(|G|);
let h = gs;

A(h, gr, hr ⊗ g)}

(8.22)

The advantage an adversary has of beating this variant of the DDH assumption is
defined as the probability it has of distinguishing the games.

Definition 34 (variant of DDH advantage).

DDH-advvar(A) = |P [DDH-0(A) = True]−DDH-1(A) = True]|

We show the variant is at least as hard as the original DDH assumption by bounding
the advantage DDH-advvar from above by the original advantage in the following
Lemma.

Lemma 39. shows DDH-advvar(A) ≤ DDH-adv(A) + DDH-adv(A′(A))

Where DDH-adv is the original DDH advantage (formalised in [53], we outline
this formalisation in Appendix 7.3.2.1, DDH-advvar is the definition we make of the
advantage of the variant on the DDH assumption and A′(D, a, b, c) = D(a, b, c⊗ g) is
an adversary we construct to interact with the DDH assumption. Lemma 39 shows
the variant is at least as hard as the original assumption.

We now show security of each party in turn.

party 1 The real view for party 1 is constructed as follows.



8.3 a protocol realising OT1
2 in the malicious setting 133

R1((m0, m1), σ, z(A1,A2,A3)) = do {
r ← samp-uniform(|G|);
α0 ← samp-uniform(|G|);
α1 ← samp-uniform(|G|);
let h0 = gα0 ;

let h1 = gα1 ;

let a = gr;

let b0 = hr
0 ⊗ g(if σ then 1 else 0);

let b1 = hr
1 ⊗ g(if σ then 1 else 0);

((in1, in2, in3), s)← A((m0, m1), h0, h1, a, b0, b1, z);

let (h, a, b) = (h0 ⊗ inv(h1), a, b0 ⊗ inv(b1));

(b, _)← FDH
ZK ((in1, in2, in3), ((h, a, b), r));

_← assert(b);

(((w0, z0), (w1, z1)), s′)← A2(h0, h1, a, b0, b1, (m0, m1), s);

out1 ← A3(s′);

return(out1, if σ then (z1 ⊗ inv(wα1
1 )) else (z0 ⊗ inv(wα0

0 )))}

(8.23)

To show security for party 1 we make a case split on σ. We construct S1 = (S1,P1 , S2,P1)

as given in [44] and construct an adversary for each case (DDH-Aσ=1, DDH-Aσ=0)
that breaks the variant of the DDH assumption and prove the reduction in Lemma 40.
The components of the simulator are given below.

S1,P1((A1,A2,A3), (m0, m1), z) = do {
r ← samp-uniform(|G|);
α0 ← samp-uniform(|G|);
α1 ← samp-uniform(|G|);
let h0 = gα0 ;

let h1 = gα1 ;

let a = gr;

let b0 = hr
0

let b1 = hr
1 ⊗ g

((in1, in2, in3), s)← A((m0, m1), h0, h1, a, b0, b1, z);

let (h, a, b) = (h0 ⊗ inv(h1), a, b0 ⊗ inv(b1));

_← assert((in1, in2, in3),= (h, a, b));

(((w0, z0), (w1, z1)), s′)← A2(h0, h1, a, b0, b1, (m0, m1), s);

let x0 = z0 ⊗ (inv(wα0
0 ));

let x1 = z1 ⊗ (inv(wα1
1 ));

return((x0, x1), s′)}

(8.24)



134 malicious security

S2,P1((A1,A2,A3), (m0, m1), z, out1) = A3(s′) (8.25)

Lemma 40. (in mal-ot)
assumes σ = False
shows adv-P1((m0, m1), σ, z, S1,A, D)) = DDH-advvar(DDH-Aσ=0((m0, m1), z,A, D))

Proof. We construct the adversary that plays against the variant of the DDH assump-
tion as follows.

DDH-Aσ=0((m0, m1), z, (A1,A2,A3), D, h, a, t)

α0 ← samp-uniform(|G|);
let h0 = gα0 ;

let h1 = h;

let b0 = aα0 ;

let b1 = t;

((in1, in2, in3), s)← A1((m0, m1), h0, h1, a, b0, b1, z);

_← assert(in1 = h0 ⊗ inv(h1) ∧ in2 = a ∧ in3 = b0 ⊗ inv(b1));

(((w0, z0), (w1, z1)), s′)← A2(h0, h1, a, b0, b1, (m0, m1), s);

let x0 = z0 ⊗ (inv(w0)α0));

adv-out← A3(s′);

D(adv-out, x0)}

Here the (h, a, t) represent the tuple it takes as input. The idea behind the proof is
to show in the case that (h, a, t) is not DDH tuple, then the output of the adversary
is identical to the ideal model and if (h, a, t) is a DDH tuple then the output of the
adversary is equal to the real view. Proving this is sufficient to prove the statement
after considering the definitions of the two advantages.

The argument of proof runs as follows: if (h, a, t) is a DDH tuple then the adversary
generates (h0, h1, a, b0, b1) in the same way as an honest R would when σ = False, if
(h, a, t) is not a DDH tuple the adversary generates (h0, h1, a, b0, b1) in the same way as
the simulator. Using (h0, h1, a, b0, b1) the adversary continues the simulation. Finally
the output of the adversary is also dependent on whether the input was a DDH tuple
or not: if the input is a DDH tuple then output is equal to the output of the real view,
and if the input is not a DDH tuple then the output is equal to the simulated view.

Lemma 41. (in mal-ot)
assumes σ = True
shows adv-P1((m0, m1), σ, z,A, D)) = DDH-advvar(DDH-Aσ=1(A, D))

Proof. The proof is analogous to the proof of Lemma 40. We do not repeat it here, only
show the adversary we construct.



8.3 a protocol realising OT1
2 in the malicious setting 135

DDH-Aσ=1((m0, m1), z, (A1,A2,A3), D, h, a, t)

α1 ← samp-uniform(|G|);
let h1 = gα1 ;

let h0 = h;

let b1 = aα1 ⊗ g;

let b0 = t;

((in1, in2, in3), s)← A1((m0, m1), h0, h1, a, b0, b1, z);

_← assert(in1 = h0 ⊗ inv(h1) ∧ in2 = a ∧ in3 = b0 ⊗ inv(b1));

(((w0, z0), (w1, z1)), s′)← A2(h0, h1, a, b0, b1, (m0, m1), s);

let x1 = z1 ⊗ (inv(w1)
α1));

adv-out← A3(s′);

D(adv-out, x1)}

Comparing this to the adversary used in Lemma 40 we notice the only real difference
is the ordering on h0, h1 and b0, b1.

Using Lemma 39 we bound the malicious advantages by the traditional DDH
assumption advantage.

Theorem 34. (in mal-ot)
assumes σ = False
shows adv-P1((m0, m1), σ, z,A, D)) ≤

DDH-adv(DDH-Aσ=0(A, D)) +

DDH-adv(A′(DDH-Aσ=0(A, D)))

Theorem 35. (in mal-ot)
assumes σ = True
shows adv-P1((m0, m1), σ, z,A, D)) ≤

DDH-adv(DDH-Aσ=1(A, D)) +

DDH-adv(A′(DDH-Aσ=1(A, D)))

Together Theorems 34 and 35 show security in the case the Sender is corrupted in
Protocol 5. We have shown that in both cases (σ = True and σ = False) the advantage
is less than the sum of two DDH advantages, which we assume to be small — and
thus their sum is also small.

party 2 The real view for party 2 is constructed as follows.



136 malicious security

R1((m0, m1), σ, z(A1,A2,A3)) = do {
((h0, h1, a, b0, b1), s)← A1(σ, z);

_← assert(h0 ∈ carrier(G) ∧ h1 ∈ carrier(G) ∧ a ∈ carrier(G) ∧ b0 ∈ carrier(G) ∧ b1);

(((in1, in2, in3), r), s′)← A2((h0, h1, a, b0, b1), s);

let (h, a, b) = (h0 ⊗ inv(h1), a, b0 ⊗ inv(b1));

(b, _)← FDH
ZK ((h, a, b), ((in1, in2, in3), r));

_← assert(b);

u0 ← samp-uniform(|G|);
u1 ← samp-uniform(|G|);
v0 ← samp-uniform(|G|);
v1 ← samp-uniform(|G|);
let z0 = bu0

0 ⊗ hv0
0 ⊗m0;

let w0 = au0 ⊗ gv0 ;

let e0 = (w0, z0);

let z1 = (b1 ⊗ inv(g))u1 ⊗ hv1
1 ⊗m1;

let w1 = au1 ⊗ gv1 ;

let e1 = (w1, z1);

out2 ← A3(e0, e1, s′);

return((), out2)}
(8.26)

To show security for party 2 we construct two simulators, S1,P2 , S2,P2 that interact
with the ideal model such that the output distributions of the real and ideal model are
equal — that is we show perfect security. The components of the simulator below.

S1,P2((A1,A2,A3), σ, z) = do {
(h0, h1, a, b0, b1)← A1(σ);

_← assert(h0, h1, a, b0, b1 ∈ G);

((in1, in2, in3), r)← A2(h0, h1, a, b0, b1);

let (h, a, b) = ( h0
h1

, a, b0
b1
);

b, _)← FDH
ZK ((h, a, b), ((in1, in2, in3), r));

_← assert(b);

let l = b0
hr

0
;

return((if l = 1 then False else True), (h0, h1, a, b0, b1))}

(8.27)



8.3 a protocol realising OT1
2 in the malicious setting 137

S2,P2((A1,A2,A3), σ, z, mσ, ((h0, h1, a, b0, b1), s)) = do {
u0, v0, u1, v1 ← uniform(|G|);
v0 ← samp-uniform(|G|);
u1 ← samp-uniform(|G|);
v1 ← samp-uniform(|G|);
((in1, in2, in3), r)← A2(h0, h1, a, b0, b1);

let w0 = au0 ⊗ gv0 ;

let w1 = au1 ⊗ gv1 ;

let z0 = bu0
0 ⊗ hv0

0 ⊗ if σ then 1 else mσ);

let z1 = ( b1
g )

u1 ⊗ hv1
1 ⊗ if σ then mσ else 1);

A3((w0, z0), (w1, z1)}

(8.28)

To show equality between the real and ideal views we consider the cases on l = b0
hr

0

(constructed by S1,P2): l = 1, l = g, l /∈ {1, g}. Such a case split is easy to reason about
on paper, however due to l being defined inside a probabilistic program we cannot
easily access it to perform the case split.

To make the case split easier we introduce a case separation technique. This allows
us to more easily prove a property on a probabilistic program where the cases on a
bound variable need to be considered. We describe our method informally here.

We isolate the case splitting variable by defining a new program that replicates the
original program from the point the variable is introduced; the variable is now an
input to a probabilistic program. Case splitting on inputs is natural so we prove the
required property on the new program noting that some contextual assumptions may
be needed in the statement, these are seen in the assumptions to Lemma 42. Using
this statement we prove the required property on the original probabilistic program
by recombining the newly defined program and the property proven about it and the
original program.

More specifically we define malideal-end2 that describes the end of the ideal view’s
probabilistic program, beginning at a point where l can be taken as an input. We also
define the analogous end probabilistic program for the real view (malreal-end2) and show
the two programs are equal by case splitting on l.

Lemma 42. (in mal-ot)
assumes b0

b1
= ( h0

h1
)r

and h0, h1, b0, b1, m0, m1 ∈ G
shows malideal-end2((m0, m1), l, (h0, h1, gr, b0, b1),A3) =

malreal-end2((m0, m1), (h0, h1, gr, b0, b1),A3)

Proof. We can make the case split on l = b0
hr

0
easily. We consider the cases separately

here. The proofs for each case are not interesting from a cryptographic standpoint.
Thus we point the reader to [43, p 193-195] and our formalisation for a detailed
proof.

Using Lemma 42 we show security for party 2.



138 malicious security

Theorem 36. (in mal-ot)
assumes m0 ∈ G

and m1 ∈ G
shows perfect-sec2((m0, m1), σ, z,A)

Proof. We show the real and ideal views are equal up to the point of l being introduced
(recall the ideal view is constructed using the simulator, where l is constructed). This
fact, together with Lemma 42, is used to show equality between the views. Thus we
have shown security for Protocol 5.

We note Theorem 36 could be proven without Lemma 42 by manipulating the
probabilistic programs, however this would have required more subtleties and low
level reasoning. In fact we proved Lemma 34 without our case separation technique to
provide a comparison of the methods. Our technique does not necessarily reduce the
size of the proof however we believe it does reduce the technicality of the proof.

This section has shown how we instantiate our framework defining malicious
security in the two party setting. Completing proofs of malicious security are more
complex than proofs in the semi-honest setting. We feel, however, that this complexity
is mainly due to the protocols being longer and more elaborate rather than the
formalised definitions being more difficult to deal with.



9
C O N C L U S I O N

This thesis was motivated by the potential "crisis of rigor" in cryptography as remarked
by Bellare and Rogaway [11]. We choose to begin our formalisation effort with MPC
as this is an area of cryptography that is beginning to be widely implemented. Thus it
is important to study it under the lens of formal methods. During our study of MPC
however it became apparent that the study of low level primitives is also important.
Σ-protocols and commitment schemes are often used as building blocks for larger
protocols.

We believe the work in this thesis has contributed in two main aspects:

1. We have provided strong foundations for reasoning about modern cryptography.
The frameworks we provide are general and abstract, meaning others can use
them for further instantiations of proofs or as building blocks in modular proofs
— like we have in our general construction of commitment schemes from Σ-
protocols and our proof of the two party GMW protocol.

2. Our work has provided further evidence that CryptHOL is a suitable tool for
reasoning about reduction based cryptography. Due to the fact CryptHOL is a
relatively young framework our proofs contribute heavily to the body of proof
conducted thus far.

In the rest of this concluding chapter we first discuss the work most closely related
to that in this thesis and then suggest how we believe our work can be extended.
Finally we make an appeal to both communities, the formal methods community and
the cryptographic community, and suggest how we think they can work together in
this area of research.

9.1 related work and discussion

In this Section we pick out other formalisations of MPC and Σ-protocols and commit-
ment schemes and discuss how they relate to our work.

9.1.1 MPC

Almeida et al. [1] define two party semi-honest security for MPC in EasyCrypt. As
we describe in Section 7.2.3 they define a game formalise simulation-based security.
Our proof that our definitions are equivalent to theirs adds confidence to both sets
of formalised definitions. In [1] the authors prove security of Yao’s Secure Function
Evaluation (SFE) which requires the formalisation of OT1

2 .
The work of Haagh et al. [41] provides definitions for malicious security and

proved secure Mauer’s protocol [54] for secure addition and multiplication for n
parties. The authors also provide security definitions for the semi-honest setting,

139



140 conclusion

however do not reuse the definitions from [1]. This was the first work to consider the
malicious setting however the definitions captured in the formalisation were not the
traditional literature definitions. Instead the authors formalised their own flavour of
non interference definitions and a meta (proven on paper) theorem that they implied
the traditional paper definitions of malicious security — the definitions we consider
in our work. Their work improves on our work as they consider the n party setting
whereas we only consider the two party setting. The definitions however and proofs
they provide are only for perfect security and do not consider the reduction based
security we consider here.

9.1.2 Σ-protocols and commitment schemes

Commitment schemes have been studied in EasyCrypt by Metere et al. [56] where
the Pedersen commitment scheme was proven secure. We also consider the Pedersen
commitment scheme. One noticeable difference between the proof effort required in
Isabelle is in the construction of the adversary used to prove computational binding
— in particular in outputting the inverse of an element in a field. In EasyCrypt the
inverse function is defined with the required property, that is: x 6= 0⇒ x · inv(x) = 1
and consequently division is defined as y 6= 0 ⇒ x = x · inv(y). In Isabelle on the
other hand we do not axiomatise the property of an inverse, but derive it from the
Bezout function. This means our approach could be considered more foundational,
and thus warrants the extra proof effort required.

Σ-protocols have been considered in [7] using CertiCrypt. Here Barthe et al. first
prove secure a general construction of Σφ-protocols that prove knowledge of a preim-
age under a group homomorphism φ — the Schnorr and Okamoto Σ- protocols
that we formalise are examples of this type. Secondly they consider the compound
AND and OR statements we also formalise. Their work however only considered the
compound statements over bitstrings whereas our formalisation is over an arbitrary
boolean algebra of which bitstrings of a given length are one instance. While we do not
see this as a major contribution we feel the generalisation is useful in highlighting that
only the one time pad property for the xor function is required, and thus a boolean
algebra suffices.

Both [56] and [7] formalise some of the protocols we consider however they do so
in different frameworks. For the ongoing development of the area we believe that it
is important to have up-to-date and usable formalisations in the same framework;
therefore we feel our work provides a strong basis for further formalisations in this
area. In particular, to the best of our knowledge, our work is the first to link Σ-protocols
and commitment schemes.

9.1.3 Extending this work

This thesis is split into two parts; the formalisation of MPC and the formalisation
of Σ-protocols and commitment schemes. At present the two parts are distinct. One
concerns protocols that achieve MPC and the other concerns two low level primitives.
In reality, however, these two are not distinct. They are heavily related in that Σ-



9.2 appeal to two communities 141

protocols and commitment schemes are used in the construction of many MPC
protocols. This is especially relevant in the malicious security model for MPC. Here
we must hold parties to account so they do not cheat in the protocol, or if they do,
they get caught. In the malicious MPC protocol we have formalised we relied on a
Zero-Knowledge functionality that proved a tuple was a DDH tuple.

The first step to linking the two parts of this thesis would be to extend the formalisa-
tion of Σ-protocols to capture Zero-Knowledge proofs. Σ-protocols provide a baseline
for Zero-Knowledge, in particular they provide the HVZK property. This will allow
more malicious MPC protocols to be considered.

Using the frameworks for the primitives (Σ-protocols, ZK proofs and commitment
schemes) we envisage being able to "cut and paste" proofs using the modularity
available in Isabelle and CryptHOL. By "cut and paste" we mean prove protocols
secure assuming the required underlining primitives and constructions exist. In the
first instance this will provide an abstract proof that the protocol is secure. One
can then prove different instantiations of the underlying primitives secure. Isabelle’s
module system will then allow the general proof to be easily instantiated for the
chosen instantiation of the underlying primitive(s).

To some extent this thesis achieves this "cut and paste" method. We prove the
construction of commitment schemes from Σ-protocols at an abstract level, prove
various Σ-protocols secure and then instantiate the general proof using the results
from the Σ-protocols we consider. In principle this achieve our desired methodology,
albeit in a simple version of it.

9.2 appeal to two communities

We envisage this thesis has two sets of readers, cryptographers and formal meth-
ods experts. For the cryptographer, we hope you can see that proof is often more
involved and technical than at first sight. Often trivial things may be overlooked or
not considered. A good illustration of this is in the definitions of Σ-protocols — we
discussed the many paper definitions in detail in Section 4.2.1. We therefore hope
that you view formalisations of cryptography as worthwhile; it may take time and
much effort to formalise well known results but every field of research must start
somewhere, and stepping stones along the way, however small, are required. For the
formal methods expert we hope you can see how the tools and years of research into
foundational areas can have impact when applied to settings such as security and that
this can motivate you to continue work that oftentimes goes unrewarded outside the
community.

Like most areas that are formed from the intersection of two well established
fields real progress happens when both sides "put some skin in the game"1. For
the cryptographers we feel this should be to allow the formalisations time to catch
up. Formal methods moves at its own pace and should be allowed to do so. If the
cryptographic community indeed does feel like formal methods are important to its
continuing development then the community should be willing to engage more with

1 Jeremy Avigad appealed to mathematicians to "put some skin in the game" [4] when writing about the
"Mechanisation of Mathematics".



142 conclusion

it; tell the formal methods community exactly what you want from the work. Whether
that be complete proofs of complex protocols, which will take time, or proofs of specific
tricky parts of constructions, parts where cryptographers know their intuition and
paper proofs sometimes fail them. The contribution the formal methods community
can make is to complete the feedback loop. Study of cryptographic proof under the
lens of formal methods often highlights short comings and informal arguments. This
must be communicated so future proofs and subsequent work can be improved.



B I B L I O G R A P H Y

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir,
Benjamin Grégoire, Vincent Laporte, and Vitor Pereira. “A Fast and Verified
Software Stack for Secure Function Evaluation.” In: ACM Conference on Computer
and Communications Security. ACM, 2017, pp. 1989–2006.

[2] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,
Jakob Illeborg Pagter, Nigel P. Smart, and Rebecca N. Wright. “From Keys to
Databases - Real-World Applications of Secure Multi-Party Computation.” In:
Comput. J. 61.12 (2018), pp. 1749–1771.

[3] “Archive of Formal Proofs (AFP).” In: (). https://www.isa-afp.org.

[4] Jeremy Avigad. “Mechanization of Mathematics.” In: Notices of the AMS. 2018,
65(06):681–690,

[5] G Barthe, B Grégoire, and S Zanella Béguelin. “Formal certification of code-based
cryptographic proofs.” In: POPL. ACM, 2009, pp. 90–101.

[6] G Barthe, B Grégoire, S Heraud, and S Zanella Béguelin. “Computer-Aided
Security Proofs for the Working Cryptographer.” In: CRYPTO. Vol. 6841. Lecture
Notes in Computer Science. Springer, 2011, pp. 71–90.

[7] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and
Sylvain Heraud. “A Machine-Checked Formalization of Sigma-Protocols.” In:
CSF. IEEE Computer Society, 2010, pp. 246–260.

[8] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. “CryptHOL: Game-
based Proofs in Higher-order Logic.” In: IACR Cryptology ePrint Archive (2017),
p. 753.

[9] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization.”
In: CRYPTO. Vol. 576. Lecture Notes in Computer Science. Springer, 1991,
pp. 420–432.

[10] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption.” In:
EUROCRYPT. Vol. 950. Lecture Notes in Computer Science. Springer, 1994,
pp. 92–111.

[11] Mihir Bellare and Phillip Rogaway. “Code-Based Game-Playing Proofs and the
Security of Triple Encryption.” In: IACR Cryptology ePrint Archive 2004 (2004),
p. 331.

[12] Bruno Blanchet. “A Computationally Sound Mechanized Prover for Security
Protocols.” In: IEEE Trans. Dependable Sec. Comput. 5.4 (2008), pp. 193–207.

[13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. “Ex-
tending Sledgehammer with SMT Solvers.” In: J. Autom. Reasoning 51.1 (2013),
pp. 109–128.

[14] Manuel Blum. “Coin Flipping by Telephone.” In: CRYPTO. U. C. Santa Barbara,
Dept. of Elec. and Computer Eng., ECE Report No 82-04, 1981, pp. 11–15.

143

https://www.isa-afp.org


144 bibliography

[15] Manuel Blum. “How to prove a theorem so no one else can claim it.” In:
International Congress of Mathematicians. 1986, pp. 1444–1451.

[16] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge
and Its Applications (Extended Abstract).” In: STOC. ACM, 1988, pp. 103–112.

[17] Carlo Blundo, Barbara Masucci, Douglas R. Stinson, and Ruizhong Wei. “Con-
structions and Bounds for Unconditionally Secure Non-Interactive Commitment
Schemes.” In: Des. Codes Cryptogr. 26.1-3 (2002), pp. 97–110.

[18] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A Framework for
Fast Privacy-Preserving Computations.” In: ESORICS. Vol. 5283. Lecture Notes
in Computer Science. Springer, 2008, pp. 192–206.

[19] Peter Bogetoft et al. “Secure Multiparty Computation Goes Live.” In: Financial
Cryptography. Vol. 5628. Lecture Notes in Computer Science. Springer, 2009,
pp. 325–343.

[20] David Butler and David Aspinall. “Multi-Party Computation.” In: Archive of
Formal Proofs (May 2019). https://www.isa-afp.org/entries/Multi_Party_
Computation.html, Formal proof development.

[21] David Butler, David Aspinall, and Adrià Gascón. “How to Simulate It in Isabelle:
Towards Formal Proof for Secure Multi-Party Computation.” In: ITP. Vol. 10499.
Lecture Notes in Computer Science. Springer, 2017, pp. 114–130.

[22] David Butler, David Aspinall, and Adrià Gascón. “On the Formalisation of
Σ-Protocols and Commitment Schemes.” In: POST. Vol. 11426. Lecture Notes in
Computer Science. Springer, 2019, pp. 175–196.

[23] David Butler, David Aspinall, and Adrià Gascón. “Formalising oblivious transfer
in the semi-honest and malicious model in CryptHOL.” In: CPP. ACM, 2020,
pp. 229–243.

[24] David Butler and Andreas Lochbihler. “Sigma Protocols and Commitment
Schemes.” In: Archive of Formal Proofs (2019). https://www.isa- afp.org/
entries/Sigma_Commit_Crypto.html, Formal proof development.

[25] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón. “For-
malising Σ-Protocols and Commitment Schemes using CryptHOL.” In: IACR
Cryptology ePrint Archive 2019 (2019), p. 1185.

[26] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols.” In: FOCS. IEEE Computer Society, 2001, pp. 136–145.

[27] David Chaum and Torben P. Pedersen. “Wallet Databases with Observers.” In:
CRYPTO. Vol. 740. Lecture Notes in Computer Science. Springer, 1992, pp. 89–
105.

[28] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and
Ivan Visconti. “Improved OR-Composition of Sigma-Protocols.” In: Theory of
Cryptography. Ed. by Eyal Kushilevitz and Tal Malkin. Springer, 2016, pp. 112–
141.

[29] R. Cramer. “Modular Design of Secure, yet Practical Cryptographic Protocols.”
In: PhD thesisPhD Thesis, University of Amsterdam (1996).

https://www.isa-afp.org/entries/Multi_Party_Computation.html
https://www.isa-afp.org/entries/Multi_Party_Computation.html
https://www.isa-afp.org/entries/Sigma_Commit_Crypto.html
https://www.isa-afp.org/entries/Sigma_Commit_Crypto.html


bibliography 145

[30] Ronald Cramer and Victor Shoup. “A Practical Public Key Cryptosystem Prov-
ably Secure Against Adaptive Chosen Ciphertext Attack.” In: CRYPTO. Vol. 1462.
Lecture Notes in Computer Science. Springer, 1998, pp. 13–25.

[31] I. Damgard. “On Σ-protocols.” In: Lecture Notes, University of Aarhus, Department
for Computer Science. (2002).

[32] Ivan Damgård. “On the Existence of Bit Commitment Schemes and Zero-
Knowledge Proofs.” In: CRYPTO. Vol. 435. Lecture Notes in Computer Science.
Springer, 1989, pp. 17–27.

[33] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography.” In:
IEEE Trans. Information Theory 22.6 (1976), pp. 644–654.

[34] Shimon Even. “Protocol for Signing Contracts.” In: CRYPTO. U. C. Santa Barbara,
Dept. of Elec. and Computer Eng., ECE Report No 82-04, 1981, pp. 148–153.

[35] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Protocol
for Signing Contracts.” In: Commun. ACM 28.6 (1985), pp. 637–647.

[36] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms.” In: CRYPTO. Vol. 196. Lecture Notes in Computer Science.
Springer, 1984, pp. 10–18.

[37] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

[38] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[39] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority.” In:
STOC. ACM, 1987, pp. 218–229.

[40] Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and Christo-
pher P. Wadsworth. “A Metalanguage for Interactive Proof in LCF.” In: POPL.
ACM Press, 1978, pp. 119–130.

[41] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-
Yves Strub. “Computer-Aided Proofs for Multiparty Computation with Active
Security.” In: CSF. IEEE Computer Society, 2018, pp. 119–131.

[42] Shai Halevi. “A plausible approach to computer-aided cryptographic proofs.”
In: IACR Cryptology ePrint Archive 2005 (2005), p. 181.

[43] Carmit Hazay and Yehuda Lindell. “A Note on the Relation between the Def-
initions of Security for Semi-Honest and Malicious Adversaries.” In: IACR
Cryptology ePrint Archive 2010 (2010), p. 551.

[44] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, 2010.

[45] “Isabelle Distribution Library.” In: https://isabelle.in.tum.de/library/.

[46] Neal Koblitz and Alfred Menezes. “Another Look at "Provable Security".” In: J.
Cryptology 20.1 (2007), pp. 3–37.

https://isabelle.in.tum.de/library/


146 bibliography

[47] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens. “Application-
Scale Secure Multiparty Computation.” In: ESOP. Vol. 8410. Lecture Notes in
Computer Science. Springer, 2014, pp. 8–26.

[48] Yehuda Lindell. “How To Simulate It - A Tutorial on the Simulation Proof
Technique.” In: IACR Cryptology ePrint Archive 2016 (2016), p. 46.

[49] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation Proof
Technique.” In: Tutorials on the Foundations of Cryptography. Springer International
Publishing, 2017, pp. 277–346.

[50] Andreas Lochbihler. “Probabilistic Functions and Cryptographic Oracles in
Higher Order Logic.” In: ESOP. Vol. 9632. Lecture Notes in Computer Science.
Springer, 2016, pp. 503–531.

[51] Andreas Lochbihler. “CryptHOL.” In: Archive of Formal Proofs (2017).

[52] Andreas Lochbihler and S. Reza Sefidgar. “A tutorial introduction to CryptHOL.”
In: https://eprint.iacr.org/2018/941. 2018.

[53] Andreas Lochbihler, S. Reza Sefidgar, and Bhargav Bhatt. “Game-based cryptog-
raphy in HOL.” In: Archive of Formal Proofs 2017 ().

[54] Ueli M. Maurer. “Secure multi-party computation made simple.” In: Discrete
Applied Mathematics 154.2 (2006), pp. 370–381.

[55] Ueli Maurer. “Constructive Cryptography - A New Paradigm for Security
Definitions and Proofs.” In: TOSCA. Vol. 6993. Lecture Notes in Computer
Science. Springer, 2011, pp. 33–56.

[56] Roberto Metere and Changyu Dong. “Automated Cryptographic Analysis of
the Pedersen Commitment Scheme.” In: MMM-ACNS. Vol. 10446. Lecture Notes
in Computer Science. Springer, 2017, pp. 275–287.

[57] Moni Naor and Benny Pinkas. “Efficient oblivious transfer protocols.” In: (2001),
pp. 448–457.

[58] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer,
2014.

[59] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science.
Springer, 2002.

[60] Abderrahmane Nitaj and Tajjeeddine Rachidi. “Factoring RSA Moduli with
Weak Prime Factors.” In: C2SI. Vol. 9084. Lecture Notes in Computer Science.
Springer, 2015, pp. 361–374.

[61] Eiji Okamoto. “Key Distribution Systems Based on Identification Information.”
In: CRYPTO. Vol. 293. Lecture Notes in Computer Science. Springer, 1987,
pp. 194–202.

[62] Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. “From LCF to
Isabelle/HOL.” In: CoRR abs/1907.02836 (2019).

[63] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifi-
able Secret Sharing.” In: CRYPTO. Vol. 576. Lecture Notes in Computer Science.
Springer, 1991, pp. 129–140.

https://eprint.iacr.org/2018/941


bibliography 147

[64] A Petcher and G Morrisett. “The Foundational Cryptography Framework.” In:
POST. Vol. 9036. Lecture Notes in Computer Science. Springer, 2015, pp. 53–72.

[65] Michael O. Rabin. “How To Exchange Secrets with Oblivious Transfer.” In: IACR
Cryptology ePrint Archive 2005 (2005), p. 187.

[66] Ronald Rivest. “Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer.” In: Unpublished
manuscript (1999).

[67] Joshua Schneider, Manuel Eberl, and Andreas Lochbihler. “Monad normalisa-
tion.” In: Archive of Formal Proofs 2017 ().

[68] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards.” In: J.
Cryptology 4.3 (1991), pp. 161–174.

[69] Adi Shamir. “How to Share a Secret.” In: Commun. ACM 22.11 (1979), pp. 612–
613.

[70] Victor Shoup. “OAEP Reconsidered.” In: IACR Cryptology ePrint Archive 2000

(2000), p. 60.

[71] Victor Shoup. “Sequences of games: a tool for taming complexity in security
proofs.” In: IACR Cryptology ePrint Archive 2004 (2004), p. 332.

[72] Nigel P. Smart. Cryptography Made Simple. Information Security and Cryptogra-
phy. Available at https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf.
Springer, 2016.

[73] Markus Wenzel. “Isabelle, Isar - a versatile environment for human readable
formal proof documents.” PhD thesis. Technical University Munich, Germany,
2002.

[74] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Extended Ab-
stract).” In: FOCS. IEEE Computer Society, 1982, pp. 160–164.

[75] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended
Abstract).” In: FOCS. IEEE Computer Society, 1986, pp. 162–167.

https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf




colophon

This document was typeset using the typographical look-and-feel classicthesis

developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of June 23, 2020 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Publications
	Acknowledgments
	Contents
	Acronyms
	Declaration
	1 Preliminaries
	1.1 Motivation for the thesis
	1.2 Provable security, MPC, -protocols and Commitment Schemes
	1.3 Theorem Proving and Isabelle/HOL
	1.4 Outline of thesis

	2 -protocols, Commitment Schemes and MPC
	2.1 Preliminaries
	2.1.1 Game-based proofs
	2.1.2 Simulation-based proofs
	2.1.3 One time pad

	2.2 -protocols
	2.2.1 Compound constructions for -protocols

	2.3 Commitment Schemes
	2.3.1 Commitments from -protocols

	2.4 Multi-Party Computation
	2.4.1 Defining Semi-Honest Security
	2.4.2 Defining Malicious Security


	3 Introduction to Isabelle and CryptHOL
	3.1 Isabelle/HOL
	3.1.1 Isabelle Notation

	3.2 CryptHOL
	3.3 Formalisation overview
	3.3.1 Method of formalisation
	3.3.2 Polynomial Runtime
	3.3.3 Concrete vs. asymptotic security


	 Formalising -protocols and Commitments
	4 -Protocols
	4.1 Introduction
	4.2 Formalising the definitions
	4.2.1 Differences in the definitions of -protocols

	4.3 -protocol instantiations and constructions
	4.3.1 Compound -protocols
	4.3.2 The Schnorr -protocol
	4.3.3 Chaum-Pedersen -protocol
	4.3.4 Okamoto -protocol


	5 Commitment Schemes
	5.1 Introduction
	5.2 Formalising Commitment Schemes
	5.3 The Rivest Commitment Scheme

	6 Commitments from -protocols
	6.1 Introduction
	6.2 Constructing Commitment Schemes from -protocols
	6.2.1 Formalising the construction

	6.3 Instantiating the General Result
	6.3.1 The Pedersen Commitment Scheme
	6.3.2 Instantiating the security parameter for the Pedersen Commitment Scheme

	6.4 Other instantiations and conclusion


	 Formalising Multi-party Computation
	7 Semi-Honest Security
	7.1 Introduction
	7.2 Formalising Semi-Honest Security
	7.2.1 Deterministic functionalities
	7.2.2 Non-Deterministic Functionalities
	7.2.3 Equivalence to EasyCrypt Definitions

	7.3 1-out-of-2 Oblivious Transfer
	7.3.1 ETP based OT12
	7.3.2 Naor-Pinkas OT12

	7.4 GMW
	7.4.1 A protocol that realises OT14
	7.4.2 The GMW protocol
	7.4.3 Formalising Secret Sharing
	7.4.4 Secret sharing for the GMW

	7.5 Secure Multiplication Protocol
	7.5.1 Formalising the protocol


	8 Malicious Security
	8.1 Introduction
	8.2 Formalising the definitions
	8.3 A protocol realising OT12 in the malicious setting
	8.3.1 Formally proving OT12 secure in the malicious setting


	9 Conclusion
	9.1 Related work and discussion
	9.1.1 MPC
	9.1.2 -protocols and commitment schemes
	9.1.3 Extending this work

	9.2 Appeal to two communities

	 Bibliography
	Colophon


