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Abstract

The Semantic Web promises a way of linking distributed information at a granular

level by interconnecting compact data items instead of complete HTML pages. New

data is gradually being added to the Semantic Web but there is a need to incorporate ex-

isting knowledge. This thesis explores ways to convert a coherent body of information

from various structured and unstructured formats into the necessary graph form. The

transformation work crosses several currently active disciplines, and there are further

research questions that can be addressed once the graph has been built.

Hybrid databases, such as the cultural heritage one used here, consist of structured

relational tables associated with free text documents. Access to the data is hampered by

complex schemas, confusing terminology and difficulties in searching the text effec-

tively. This thesis describes how hybrid data can be unified by assembly into a graph.

A major component task is the conversion of relational database content to RDF. This

is an active research field, to which this work contributes by examining weaknesses in

some existing methods and proposing alternatives.

The next significant element of the work is an attempt to extract structure automat-

ically from English text using natural language processing methods. The first claim

made is that the semantic content of the text documents can be adequately captured as

a set of binary relations forming a directed graph. It is shown that the data can then

be grounded using existing domain thesauri, by building an upper ontology structure

from these. A schema for cultural heritage data is proposed, intended to be generic for

that domain and as compact as possible.

Another hypothesis is that use of a graph will assist retrieval. The structure is

uniform and very simple, and the graph can be queried even if the predicates (or edge

labels) are unknown. Additional benefits of the graph structure are examined, such as

using path length between nodes as a measure of relatedness (unavailable in a relational

database where there is no equivalent concept of locality), and building information

summaries by grouping the attributes of nodes that share predicates.

These claims are tested by comparing queries across the original and the new

data structures. The graph must be able to answer correctly queries that the original

database dealt with, and should also demonstrate valid answers to queries that could

not previously be answered or where the results were incomplete.
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Chapter 1

Introduction

There is a cartoon that appeared in The New Yorker magazine in May 20071 depicting a

group of cavemen sitting around a fire whilst one of them announces “We’ll start out by

speaking in simple declarative sentences”. The world might be an easier place, at least

for the computational linguists, if only they had continued. Instead, natural language

processing seems so often to be working at one of the extremes: either with a series

of isolated keywords or with reams of sesquipedalian verbiage. Information retrieval

specialists often bemoan the fact that users cannot be persuaded to frame queries in

sentences, nor to use punctuation or capitalisation. On the other hand automatic pars-

ing algorithms still struggle to interpret the sentences found in everyday text, which

ramble on, generating an exponential number of possible parses, and defying transla-

tion into logical expressions that a computer could process.

The Semantic Web can be seen as an attempt to rehabilitate the simple declarative

sentence. More seriously, it has been billed as the next step in the evolution of the

Web we have known for years [Berners-Lee et al., 2001]. The Semantic Web is a

network of interconnected statements, each one of which is expressed in precisely the

same format, as a subject–verb–object triple. The interconnection arises because

the object of one statement can be the subject of another, so they can be chained

together. Where, in the “old” Web, there would be a text document—given basic

structure by HTML tags but still, essentially, text—the new Web will have a portion of

the network of statements for software agents to read, whilst something more visually

pleasing is displayed for humans, if a human needs to be involved at all. Ultimately

we should have to spend less time searching for information on the Web ourselves,

1Copyright restrictions preclude its reproduction here but the image can be seen at http://www.
cartoonbank.com/item/123995. The artist is Frank Cotham.

1
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Chapter 1. Introduction 2

because our computer will be able to do the work for us, and will only report back to

us with its findings, neatly packaged and beautifully presented. Star Trek TNG fans

will recognise this scenario as what happens when Captain Picard says “Computer...

summarise”.

We are a long way from realising this dream. Some are approaching the task by

starting to write all their new Web material as Semantic Web triples, and connecting

the little islands they build to those of their colleagues. This is the spirit behind one of

the first applications to appear: the FOAF project, or “Friend of a Friend”,2 that started

in 2000. Numerous other social network applications have grown up alongside this

one, where an individual’s figurative closeness to another is measured by the actual

distance between their positions in the interconnected network. This kind of approach

makes good sense: we start from here and move forward, building new structures to

fill the empty Semantic Web. But what of all the information we already have—the

knowledge accumulated over centuries?

The work described in this thesis aims to contribute to a complementary approach

to populating the Semantic Web: one which seeks to extract the necessary structure

from existing information. The dataset to be worked on comes, appropriately enough,

from the cultural heritage domain, where knowledge from the past is highly valued.

The particular problem tackled is to try to combine data that is already structured

(being held in traditional relational databases) with unstructured text documents, by

converting both of them into a network of Semantic Web triples. Alongside Seman-

tic Web development, there is a more immediate goal of seeking better access to the

knowledge locked within cultural archives in structures that are only partially search-

able at present. The target audience for that knowledge is the general, non-expert user.

A nation’s cultural archives can be an essential resource for the community, giving

a sense of place and identity by showing us where we came from and how we have

shaped our environment. Unfortunately it often takes an expert to interpret the data, as

it was prepared with specialists in mind and written in convoluted language. One step

towards opening up access is to find ways of automatically extracting and arranging

the basic facts so that they can be retrieved easily and presented in a digestible form.

The core of this thesis is an exploration of whether it is in fact possible to do this.

Can structured and unstructured data be usefully combined? Can a sufficient num-

ber of factual statements be extracted by natural language processing (NLP) tools?

If they can, is the precision adequate for information retrieval purposes or is the risk

2http://www.foaf-project.org/

http://www.foaf-project.org/


Chapter 1. Introduction 3

of misleading the user with false statements too great? For the NLP aspects of this

multi-disciplinary work, several separate tools were employed in combination; so an

ancillary goal was to assess the capability of different techniques (each known to per-

form well independently) when used together.

This document is laid out in chapters that deal with each successive aspect of the

programme. The key ideas are explained first, followed by the context of related work

against which they are set (Chap. 2, 3). The nature of the data is then described in

detail because this is central to how it is manipulated (Chap. 4). Chapter 5 deals with

the conversion of relational database material into triples, a process which proved to

be a great deal less straightforward than expected. This RDB2RDF conversion, as it is

known, constitutes an open research question in its own right, and this thesis aims to

contribute to that field.

As will be explained, a key component of the retrieval framework is the connection

of extracted facts from the dataset to existing thesauri or ontologies of inter-related

domain terminology. Chapter 6 deals with this step. The next two chapters cover the

principal NLP exercises: named entity recognition (NER) and relation extraction (RE).

The NER step uses a novel approach that improves the handling of nested entities. It is

a preliminary to extracting relations between entities, whence we can progess to build

and evaluate a sequential “pipeline” that will take in plain English text and produce a

set of triples as output. After this, a complete network of triples can be constructed, and

Chap.9 describes a series of experiments in running queries against this structure. The

aim of course is to implement techniques that are as generic as possible, and Chap. 10

looks at some limited trials using text from related but different domains. Finally, the

overall conclusions of the thesis are presented in Chap. 11.

In the course of the work, a large physical dataset of triples was created, along with

an extensive suite of supporting software. The system was christened Tether, and is

referred to by this name throughout. “Tether” is a dialect word for “three”, used in the

north of England for counting sheep, as in “yan, tan, tether, mether, pip”.



Chapter 2

Central Ideas

This chapter outlines the plan of work: what has been done and why. Section 2.1

explains the motivation and why cultural heritage data was chosen as the focus. In the

short term it may be possible to increase access to such data by improving retrieval

techniques. Taking a longer view, historical information is perhaps at risk of being

marginalised as the Web evolves, and it is important to find ways of embedding it

securely in the Semantic Web.

The overall plan of this work is straightforward: to find a simple representation that

unifies hybrid data structures and allows them to be interconnected—this is covered in

Sect. 2.2, with the natural language processing (NLP) elements explained in Sect. 2.3.

One reason for doing it is to promote better access for non-experts, as described in

Sect. 2.4. Another reason, looked at in Sect. 2.5, is to show how information like this

can be made part of the Semantic Web.

The data volumes used throughout are substantial, and Sect. 2.6 discusses the rea-

sons for choosing to work on a large scale instead of with more manageable samples.

The formal and informal objectives of this investigative research are listed in Sect. 2.7.

Finally, Sect. 2.8 provides an explanatory gloss of some of the terminology that will

be used repeatedly throughout this thesis, and the chapter concludes (as do subsequent

ones) with a brief summary.

2.1 The Nature of the Problem

Hybrid datasets, that consist of highly structured data in RDB fields associated with

unstructured text notes, are common everywhere and are almost ubiquitous in the cul-

tural heritage domain. This domain therefore provides an excellent test-bed for re-

4
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search with hybrid material. Cultural collections (maintained by archives, galleries

and museums) typically describe historic sites, buildings, objects and art works, and

comprise a mixture of structured data, text, and graphical material such as photographs,

maps, plans and so forth. (See CODONC [2002] or Scottish-Executive [2006] for an

overview of such collections in Scotland.) Although digitising the entire collections

will take many years, the stage has been reached where most of the text-based data is

on computers along with a growing body of accompanying graphical archive.

Cultural archives are typically publicly funded, and are under considerable pressure

nowadays to provide access to their material to a diverse audience, via the Internet.

Governments everywhere have a social inclusion agenda, on which shared cultural

experience and “sense of place” rightly feature prominently. Data collections that were

put together over decades or even centuries, with highly variable recording standards

and often with a specialist or scholarly audience in mind, are now being adapted hastily

for users with low levels of subject knowledge but high expectations. Every cultural

body is desperately trying to make its own possibly rather dusty archive exciting to

school-children and pensioners and all the “life-long learners” between, whilst not

compromising the standards expected by professional experts, and upon which the

reputation of the organisation depends. Where NLP and Semantic Web research can

assist is by finding ways of transforming the information into structures from which

any number of different styles of presentation can be generated.

At the same time heritage bodies are endeavouring to interconnect their holdings

as well, to provide a “one-stop shop” for enquiries that cross collection boundaries—

museum finds and the sites they came from, genealogical searches with images of the

streets where great-grandparents lived, and so on. There are considerable technical

difficulties about linking conventional RDB systems, whereas the Semantic Web is

designed with exactly this kind of interconnection in mind.

The textual parts of hybrid datasets are generally under-exploited. The text can be

presented in response to a query but often cannot be satisfactorily searched. At best,

simple keyword matching may be available, but this does not encompass the context in

which the search string occurs. For example, a query may wish to retrieve documents

mentioning a particular date, but only where that date relates to a particular kind of

event such as, in our domain, when a survey of a site was made. One of the goals here

is to extract structure from the text so that these kinds of associations between terms

are available.

Query expansion using synonyms and hyponyms for search terms has been shown
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to work well (see Chap. 3 for discussion) but this presupposes access to some sort of

hierarchy of related terminology. An advantage of using cultural data is that there are

plenty of published thesauri available (as described in Sect. 4.2), and the approaches

used here demonstrate that they can be integrated quite easily. Developing new ontolo-

gies for the Semantic Web is a growth industry at present and any relevant ones could

be linked to Tether, using the principles that are explained in Chap. 6.

RCAHMS,1 one of the National Collections of Scotland, has kindly contributed a

copy of its data for this research. See Chap. 4 for a description. This collection forms

the National Monument Record of Scotland (NMRS). It is almost identically structured

to its Welsh and English counterparts (NMRW and NMRE) and displays characteristics

which are common to the whole of the cultural heritage domain, in Europe and further

afield. It is also of a good size: large enough to exemplify all the relevant issues and

not so large as to be completely unmanageable. The graph generated from it is in the

order of 20 million triples without the free text, and nearer 30 million when that is

included.

2.2 A Unified Format

One of the key problems is to find a way of representing the information expressed

in the free text notes so that it can be easily queried alongside fixed-field data. The

solution proposed is to turn both of them into a graph structure in which each “fact”

or statement from the dataset is represented as a subject–verb–object triple, on

the lines of “Skara Brae”–“has location”–“Orkney”. (Since the physical imple-

mentation is in RDF (Resource Description Format [Klyne and Carroll, 2004]), the

components are URIs rather than text strings. The details are explained in Sect. 3.3.)

Having found a common format for the two chief data components—the text and

the fixed database fields—it is comparatively easy to add other relevant material such

as domain thesauri. Including these as an integral part of the dataset means that re-

trieval applications can guide users towards standard terminology by providing pick-

lists of terms with definitions, or by interchanging preferred and non-preferred terms

in queries. Expansion of the query to include broader, narrower or related terms also

becomes possible. This goes a long way towards removing the difficulty of the mis-

match between the specialised vocabulary of the collection data and the ignorance of

1The Royal Commission on the Ancient and Historical Monuments of Scotland, http://www.
rcahms.gov.uk/.

http://www.rcahms.gov.uk/
http://www.rcahms.gov.uk/
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Figure 2.1: An overview of the Tether system. See Fig. 8.5 for the txt2rdf pipeline.

the average lay user.

This, in a nutshell, is the practical basis for the work: dispense with all the sepa-

rate data structures and hold everything in the same format. Figure 2.1 illustrates the

proposed system, which takes in material from different sources and converts it into a

unified graph format. Every triple has exactly the same form as every other, and each

has its place within an organised schema, itself defined using triples. The details of the

RDF design are covered in Sect. 3.3 and the schemas are listed in full at Appendix A.

I propose a generic schema design suitable for any cultural heritage dataset, based

around the “People, Places, Events and Things”, or “Who? What? Where? When?”,

model commonly used in that domain.

Actually accomplishing the three transformations—of database, text and various

thesauri—turns out to be a major undertaking. Much of the work carried out has been

exploratory research into how best to tackle it: deciding what can be automated and

what should be hand-tailored, where the graph needs pruning for efficiency and how

data from different sources should be mingled. For example, there are simple and

obvious approaches to dealing with structured database fields, but in order to create

a system with the compact schema desired these basic methods need to be altered

substantially (as described in Chap. 5).
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2.3 Natural Language Processing Tasks

The method used to translate text into graph triples is Relation Extraction (RE), a

technique rapidly becoming established as a key task within NLP. My approach uses

another well-established NLP technique, Named Entity Recognition (NER), as a pre-

liminary. (See Sect. 3.1 for a review of NER work, and Sect. 3.2 for RE.) Named En-

tities (NEs) are the content-carrying terms in a piece of text, such as dates, the names

of people or places or, in the RCAHMS dataset, the names of historic sites and the

terms that classify them. The NER step consists of recognising such terms within the

text and labelling each according to which category (“date”, “place”, “site type” and

so on) it belongs to. Once this has been done the RE step involves searching for rela-

tionships between pairs of NEs and labelling the relationship appropriately using, for

example, “has location” for a link between a historic site and the place name of where

it is. A machine learning approach to the NER and RE steps is taken, using a specially

annotated corpus of RCAHMS data based on a random selection of database free text

fields. All of the text is in English.

Before the NER step can be done the text from all sources has to be formatted

as individual documents, each with a unique identifier that can be tied to a record

in the relational database. Then each document is pre-processed using a sequence

of standard NLP techniques: tokenising, sentence and paragraph splitting, POS (part

of speech) tagging. Tokenising means splitting the text up into separate units called

tokens, which roughly correspond to the words but also deal systematically with punc-

tuation, abbreviations, apostrophes and so forth. In the POS tagging step, each token

is assigned a label indicating its part of speech in the given context. The labels used

are taken from the Penn Treebank2 set where, for example, “NNS” is a plural common

noun and “VBD” is a verb in the past tense.3 These preliminaries are needed to get the

text into a suitable format for the NE recogniser to work on.

The entire sequence of NLP steps is combined as a Natural Language processing

“pipeline” that takes in raw text and outputs triples, by reformatting the RE output into

RDF. The pipeline is described fully in Sect. 8.4.

2http://www.cis.upenn.edu/˜treebank/
3See http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html for a list of the POS tags

with explanation of their meaning. The (much longer) definitive guide is at the main Treebank site.

http://www.cis.upenn.edu/~treebank/
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
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2.4 Improving Retrieval and Presentation

My contention is that, once all the relevant information has been translated into the

standardised format of an RDF graph, retrieval becomes more flexible. For one thing, it

is possible to run meaningful queries across RDF with very limited schema knowledge.

In a relational database, using SQL4 queries, the relationships and entity attributes

have to be known in advance; in effect one can only look for what one knows is there,

and web query interfaces can only allow users to fill in gaps in predetermined query

commands. Using SPARQL5 over RDF, the query works by subgraph matching, and

the subgraph can be as under-specified as one wishes. This means that it isn’t necessary

to know what the relationship between data items is, only that one is interested in

contexts in which they are related: in other words, one can construct SPARQL queries

without knowing what the graph predicates are called.

Another possibility, easier in a graph than in a relational database, is to create

a query mechanism that can guide the user through the data by summarising across

subcategories. If the query is too vague, and produces too long a list of hits, one can

analyse the list by adding up frequency counts within each of the attribute groups (such

as location, period, associated persons, etc.), and present the user with an intermediate

summary giving some context to their request. The user can be invited to refine the

original query by picking additional attributes from the summary information. This

kind of approach is now becoming popular in query applications (particularly in cul-

tural heritage), and it—or something quite like it—is usually known as “faceted search”

(see, for example, Tudhope and Binding [2004]). For example, suppose the query is

for “burial customs”. In CANMORE (the existing query interface on the RCAHMS

website) this will produce over 2,500 hits in either alphabetic or geographical order

with no subdivision between, say, 20th Century or Iron Age burial grounds. It would

be helpful to provide instead an intermediate response grouping the hits by period,

location and so on, and then generate a better query as a second step.

I argue that strictly limiting the predicate set (i.e. the number of different graph

edge labels that can be used) is a prerequisite for summarisation in practice. It reduces

the number of categories or “facets” to search within, so that analysis by category at

query time becomes a computationally tractable proposition.

Another advantage of having a very simple schema, with a small number of predi-

4Structured Query Language—the standard way of accessing RDB data.
5Simple Protocol And RDF Query Language—established in 2008 as the recommended query lan-

guage for RDF.
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cates, is that it can be interpreted by software agents without enormous programming

effort. A generic cultural heritage RDF schema, such as is proposed here, would en-

able standardised web services to explore distributed datasets and assemble results

from them in a way that is quite impossible at present. Many portal sites already exist

in the cultural domain, but all are specifically designed for particular databases and

have generally taken years to develop. The whole procedure outlined here is adaptable

to related datasets in the same domain, and could potentially deliver a distributed but

connected web of cultural heritage data.

The matter of presentation is clearly linked to retrieval. One of the difficulties for

organisations that want to make their material available to a wider audience is that it

may not be in a suitable form for presenting to the target audience. A text written for

professional archaeologists may be almost unintelligible to, say, a school-child study-

ing Scottish history. Ideally one would like to be able to present information on the

same topics in different ways to different types of user, and perhaps even in the reader’s

native language. The subject–verb–object triple of RDF irresistably suggests the

possibility of using Natural Language Generation to turn the data back into (simpler)

text when it is presented to the user. The M-PIRO project [Isard et al., 2003] produced

a system for doing exactly this, using a small hand-built ontology. In principle at least,

that ontology could be replaced with a large RDF database, which suggests exciting

possibilties for future work. When one considers the scope for integrating the graph

with geospatial and multimedia data, the opportunities really seem almost unlimited.

2.5 Populating the Semantic Web

The advantages of using a graph format have been explained above. Even if they

were less clear, if the present Web does turn into the Semantic Web then it is vital

that historical information does not get left behind. Few would want to see educa-

tional resources limited to what has been generated in the digital era only, yet we are

approaching a situation where “If it’s not on the Web, it’s not knowledge”. (See, for

example, Bilal and Kirby [2002] on the strong preference for web information over tra-

ditional libraries amongst school-age children.) It is therefore important to find ways

of automatically converting data—especially natural language text, which has been our

preferred medium for storing knowledge for at least two millennia—into the latest for-

mats, extracting structure from it in the process so that it can hold its own in the next

generation Web.
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The Semantic Web has actually been around for quite a long time. Its history and

development are covered in Sect. 3.3, where it is noted that the first reference to it was

made as long ago as 1994. The fact that adoption has been so slow—compared with

the phenomenal growth of the original World Wide Web—is an indication that putting

data in the necessary format is not as straightforward as one would like. Nevertheless,

interest continues to grow steadily and it may be that, once critical mass is reached,

expansion of the Semantic Web will be explosive. The basic idea is that information

is held in as granular a form as possible, and each tiny piece of data is individually

located in the giant RDF graph by its own URI.6 A query from anywhere in the world

will be able to pull together very specific statements from remote data providers if it

knows, or can work out, the correct URIs.

This means that URIs have to be generated for each and every data item that one

wants to publish on the Semantic Web. The production of suitable URIs turns out to

be a very involved process, and is discussed at some length in Chap.5. A choice has to

be made between making each URI carry the full provenance of the data item (which

database field it came from, perhaps which language it is in, maybe some temporal ref-

erence to when it existed etc.) or alternatively aiming for simpler, canonical references

to actual things or “resources”, such as a particular person or place name. The latter

approach is preferred in Tether, as explained in Sect. 5.2.2, mainly because it allows

what I refer to as “serendipitous linking”, where separate references to the same thing

become automatically aligned in the graph.

2.6 Sampling and Scalability

The data used for Tether is a complete snapshot of a real archive, rather than a subset,

or a portion of relatively “clean” material, such as is often used in research projects.

The decision to use the entire dataset was fundamental to the planning of Tether and

there are a number of reasons for it. Many of the component tasks would have been

faster and easier with a smaller set of tidier data (i.e. a set with more standardised

record lengths, fewer non-ASCII characters, and so on) but nevertheless using the

whole dataset, “warts and all”, still seems the right choice.

It is an established principle in statistical NLP that one cannot have too much train-

6A URI (Uniform Resource Identifier) gives either a location on the Web where a resource (such as
a document, file, image, or RDF node) can be found, or just a name for it (without an address). Very
commonly, URIs are Web addresses using the HTTP protocol. Each distinct resource node in an RDF
graph has a separate URI. See Sect. 3.3 for a description of RDF graphs.
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ing data. Improved results have frequently been obtained simply through having a

larger sample. The components of the Tether pipeline that use machine learning meth-

ods are the NER step (see Chap.7) and relation extraction (Chap.8), and in these cases

an annotated corpus of around 1,500 documents is used for training and testing (see

Sect. 4.3), not the entire dataset—for the practical reason that it would be impossible

to annotate all of the 216,000 documents that were available—but this is the exception

to the rule of using the whole RCAHMS dataset wherever feasible. It was found (see

Sect. 8.2.4.1) that there is considerable variation within the corpus, suggesting that, if

one wanted to work with only a sample instead of the whole dataset for the main graph,

it would be difficult to ensure a representative sample.

Another reason for not using a subset of the data (except where forced to, as just

explained) is that it makes it much more difficult to design queries and to compare their

power with what can be done using existing tools against the relational database. One

would have to choose a subset based on some attribute—such as all the records for a

particular part of Scotland—which automatically limits the queries over the selection

feature (location in this example). Furthermore, the need to choose a coherent subset

is probably at odds with the desire for a representative sample.

No attempt is made to prove consistency over the whole graph, which in any case

would probably be beyond the power of existing reasoning tools. In fact there seems

no reason to suppose that “real-world” data will be consistent: it is full of statements of

opinion and of facts that are only true at a certain, often unstated, time. As is argued by

Fensel and van Harmelen [2007], a lot of current research on Semantic Web reasoning

uses small, consistent and static domains, and will not transfer to Web-scale. There is

a need to build larger resources such as that produced here.

Thus the main reason for wanting to use as much of the RCAHMS data as possible

was to build a really useful,7 large RDF graph as one of the outputs of this programme

of work. On the other hand sheer size was not the issue—on the contrary, strenuous

efforts were made to prune the graph to a fraction of the size it could have been (see

Sect. 5.2). The RCAHMS dataset provides a test-bed of manageable size that encom-

passes plenty of variation, with a final graph size of over 21.7 million triples.

7Section 11.1 discusses potential future research projects made possible by the creation of the Tether
graph.
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2.7 Research Objectives

This chapter has tried to give a flavour of the ideas that are central to this work, and

the range of possibilities that flow from the simple proposition of unifying hybrid data.

More options have been suggested than could be attempted by one person in less than a

decade of work, so it is now time to retrench and stipulate what the necessarily limited

ambitions of this thesis are.

2.7.1 Formal Goals and Evaluation

2.7.1.1 NLP tasks

Two of the main component tasks are named entity recognition and relation extraction.

These were each evaluated against the gold standard provided by an annotated corpus

of RCAHMS material. Neither of these tasks is absolutely central to this work so only a

limited amount of time could be allocated to each. Nevertheless some new contribution

is made in the NER work in dealing with nested entities, and also in the RE task which

is applied to a new domain where results were not previously available.

2.7.1.2 RDB to RDF conversion

Exploring ways of translating RDB data to RDF is an active research area (often re-

ferred to as “RDB2RDF”) and a W3C Incubator Group is currently working towards

producing guidance on best practice. Two contributions are made to this field:

a) A checklist of recommendations for RDB to RDF translation in any domain.

b) A schema design that is generic for the cultural heritage domain.

2.7.1.3 Comparison of RDB and RDF retrieval

The final graph produced was evaluated through retrieval tasks, with two sets of exper-

iments being carried out. As explained in Sect. 3.4, SPARQL is now established as the

standard RDF query language, so it was used in all the retrieval experiments.

The first experiments compare queries against the original RDB data with ones

over the RDF graph. The aims were:

a) To assess whether queries for the same information are possible with each method

(SQL over RDB tables and SPARQL over RDF).
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b) To compare performance in terms of retrieval time.

2.7.1.4 Retrieval over text relations

The second set of experiments examine queries over the RDF graph extended through

the addition of the relations derived from text. The aims were:

a) To evaluate the augmentation of the graph with text relations, by finding queries

that cannot be answered without the presence of the text relations.

b) To assess the possibility of faceted search.

2.7.2 Informal Goals

The project has other very real but unquantifiable objectives. The main one is to ex-

plore the use of graph data on a large scale and assess whether the proposed transfor-

mation to a Semantic Web format is actually worthwhile. Is this really the “next big

thing” in serious data curation work? Is the relational database on its last legs? Formal

evaluation measures are helpful in such an assessment but there are issues (such as use-

fulness, elegance, scalability, usability, longevity, portability and other such nebulous

but crucial concepts) that are difficult to measure numerically.

The second area of interest is to examine how well disparate NLP and database

techniques work in combination instead of independently. Most published evaluations

concentrate on a single tool, but it is not obvious that separately high-performing tools

will necessarily work well together, nor that they will transfer to a specialist domain

like cultural heritage.

The final objective is to produce a robust data structure that can form the foundation

for future work. As has been explained, there are countless possibilities inherent in

having a real dataset available in graph form.

2.8 A Note on Terminology

It may be useful to explain some of the terms that will recur throughout this document.

The RDF data model is a directed graph of triples.8 An RDF triple consists of

a subject node and an object node joined by an arc or edge (to use standard graph

terminology) pointing from subject to object. The arc is known synonymously as a

8See Sect. 3.3 for a description.



Chapter 2. Central Ideas 15

“property” or a “predicate”, as one can think of the triple as expressing a given property

of the subject and pointing to its value. The term “attribute” is sometimes used for the

same thing. In a parallel set of terminology, it is sometimes helpful to think of the triple

as subject–verb–object, where the subject and object have their normal syntactical

meanings, so the triple expresses a declarative statement. In this guise, an RDF graph

is a collection of “things” connected by “actions” they perform or experience.

The word “ontology” crops up a great deal in discussion of the Semantic Web. For

some authors it may mean a well defined hierarchy of classes with a set of rules gov-

erning their behaviour. Such an ontology can be operated on using various branches of

logic, Description Logic being that most commonly used in Semantic Web reasoning.

On the other hand, “ontology” sometimes means no more than a graph held in RDF,

with at least some sort of class structure, but containing instance data as well as class

relationships and not necessarily having any associated rules. Sometimes this kind of

structure is called a “populated ontology”. To avoid confusion I have tried to stick to

the broader but less ambiguous term, “graph”, whenever there is potential for doubt

about what is meant. By “graph” I mean a collection of directed triples, such as may

be stored in RDF. (The term “RDF” itself refers to the W3C recommendation [Klyne

and Carroll, 2004] described in Sect. 3.3, and RDFS is the RDF schema language.)

The “ontology” word has a little cluster of related terms around it, including “the-

saurus” and “gazetteer”. I use “thesaurus” for a hierarchical arrangement of class terms

with no ruleset. There may be other relationships present besides hierarchy (which is

“subclass of” in RDFS, or rdfs:subClassOf), such as relatedness and preferred or non-

preferred. By “gazetteer” I mean a term list, generally with no hierarchical structure.

Hierarchies, or subclass relationships, are sometimes expressed in the literature

using “ISA” relations. To avoid confusion with instance relations expressing mem-

bership of a class, I avoid “ISA” and use “instanceOf” or “type” (rdf:type in fact) and

“subClassOf” (rdfs:subClassOf). So, for example, stone+of+destiny–instanceOf–

Artefact, and Artefact–subClassOf–Object. This example illustrates another

convention—that instance names start with lower case letters, predicates use camel

case, and class names are in title case.

2.9 Discussion and Summary

The central theme of this work is unifying hybrid data, keeping existing structure where

available and using a graph format to include information from free text. This promises
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better retrieval possibilities from the textual data, and also means that hybrid datasets

like the RCAHMS one can become part of the Semantic Web, which in turn will allow

greater interoperability with other resources.

To accomplish the necessary component tasks a multi-disciplinary approach is re-

quired. Techniques are used from the relational database (RDB) field, from Infor-

mation Retrieval and Information Extraction under the NLP umbrella, and from the

Semantic Web world. Inevitably it is not always possible to go as deeply as one might

like into a particular branch, because of the need to follow the critical path towards

constructing the Tether graph. The specific research questions to be dealt with have

been listed above. Chapter 11, which draws together the results achieved, also notes

the opportunities for future work uncovered along the way.



Chapter 3

Related Work

This thesis covers several separate but overlapping fields. Detection of named entities

in RCAHMS documents is fundamental to the text-handling aspects, and dealing with

nested entities is particularly important when named entity recognition (NER) is used

as a step towards relation extraction, as in this programme of work. Section 3.1 looks

at relevant work in the NER field. The extraction of relation triples from text has been

approached in a number of quite different ways, and a brief survey is given in Sect.3.2.

The extracted relations are held as an RDF graph, which leads us on to the Semantic

Web (Sect. 3.3) and graph query languages (Sect. 3.4).

Section 3.5 looks at automatic ontology building. The term “ontology” is used by

different people to mean different things and I have generally stuck with the broader

but unambiguous term “graph”. Nevertheless, what is known as “ontology building”

is relevant here, and some of the main research systems are examined.

When large datasets are translated to RDF the management of the graph data is an

important consideration. A lot of research has been done in recent years on storing

large RDF graphs efficiently, and Sect. 3.6 gives an overview of work on triple stores.

3.1 Named Entity Recognition and Nesting

Named entity recognition is the process of finding content-bearing nouns and noun

phrases within a text using rule-based or statistical approaches or a combination. It

is generally considered as an Information Extraction task with two parts: finding the

entity boundaries and then categorising the text strings found into types. The text

strings are “entity mentions” that refer to unique individual entities. For example, “Mr.

Salmond”, “The First Minister” and “Alex Salmond” are all entity mentions for the

17
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same NE, of type “person”. Successful NER systems have been available for over a

decade: see Bikel et al. [1997] for a description of “Nymble” or Borthwick et al. [1998]

for “MENE” (Maximum Entropy Named Entity). These systems both used machine

learning (Hidden Markov Models and a Maximum Entropy model respectively) with a

set of features extracted from training data, to find entity mentions in seven categories:

person, organisation, location, date, time, percentage and monetary amount.

The categories to be recognised depend very much on the subject domain of the

text. In general texts the traditional classes are the names of people and places and so

on, as listed above, but a great deal of work has been done in bioinformatics and the

life sciences where the categories are usually gene names, proteins and so on (see, for

example, McDonald and Pereira [2004], Settles [2004]). Natural Language Processing

(NLP) for cultural heritage is a growing field (see Sect. 4.4) with another specialist set

of domain terminology for NER work. In non-specialist domains, such as newswire

texts (where simple features like capitalised words work well), NER can be considered

a solved problem, with the best recognisers achieving F-scores1 of 90–93% (compared

with human performance of around 97%). Performance in specialist domains or with

multilingual text is usually a good deal lower—typically in the region of 75–80%—

though naturally it depends very much on how many entity categories are used and

how well differentiated they are.

Various conferences have evaluated NER systems in shared task competitions, in

particular MUC2 and CoNLL3. The CoNLL 2002 and 2003 competitions are particu-

larly good sources of information (see, for example, Malouf [2002], Curran and Clark

[2003b]). The “CandC” system [Curran and Clark, 2003a] used for NER in the con-

struction of Tether was developed for CoNLL-2003.

It is not uncommon for entity strings to contain shorter entity names within them.

The following string shows three levels of nesting (each entity mention is delimited

with square brackets and the NE types are shown in superscript):

[[[Edinburgh]PLACE University]ORG Library]ORG

The outermost entity, “Edinburgh University Library” is an organisation and so is “Ed-

inburgh University”, whilst the innermost entity is a PLACE, “Edinburgh”. When

entities are being detected as a step towards finding relations between them, as here,

1The F-score (sometimes “F1 score” to distinguish it from variants) is the standard measure used in
tagging or categorisation tasks such as NER. It is the harmonic mean of precision (P) and recall (R):
2PR/(P+R).

2Message Understanding Conference, http://www-nlpir.nist.gov/related_projects/muc/.
3Conference on Natural Language Learning, http://www.ifarm.nl/signll/conll/.

http://www-nlpir.nist.gov/related_projects/muc/
http://www.ifarm.nl/signll/conll/
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nested entities are of especial interest, as there is almost always a relationship between

the levels: Edinburgh University Library is part of the University, which is located in

Edinburgh. These useful relations are missed altogether if the entity recogniser cannot

cope with nesting and, by contrast, are almost free gifts if it can.

Interest in nested NE detection has increased in recent years, though it is still the

case that most NER work deals with only one level at a time. Various methods docu-

mented in the literature are examined in Chap.7 (Sect. 7.1) before going on to describe

my experiments using a novel approach to the problem.

A problem in NER is how to recognise the same entity in the multiple different

surface forms in which it will be encountered. This problem is variously known as

coreference resolution, deduplication, normalisation, schema matching, merge/purge,

and record linking—depending on the field in which it arises. For an approach from

a database viewpoint see Hernandez and Stolfo [1995]. In contrast, Ng and Cardie

[2003] and Uryupina [2004] describe methods from the linguistics field.

3.2 Relation Extraction

Methods of relation extraction (RE) range from those using exclusively hand-crafted

patterns and rules at one end of the spectrum, to those relying entirely on probabilistic

methods at the other. Very often, a combination of approaches is employed, perhaps

seeding machine learning with hand-written rules, or alternatively using supervised

learning as a first step to inform manual pattern design (as in Huang et al. [2004],

described below).

Riloff and Lorenzen [1999] exemplify the pattern-based approach, using “signa-

tures” such as (passive verb + ‘‘murdered’’) augmented with “slot triples” of

the form (event-type, slot-type, feature), such as (murder, perpetrator,

TERRORIST) or (murder, victim, MILITARY), where the labels TERRORIST

and MILITARY identify classes to which individual terms in the source text belong.

The only prior annotation required is in assigning a classification to each text; this is

used to work out relevancy scores for the signatures detected. The approach is fairly

similar to that of Schutz [Schutz, 2005, Schutz and Buitelaar, 2005] who uses a hand-

built ontology (for a football domain) as the starting point, corresponding to the “slot

triples” described by Riloff and Lorenzen. The method involves several standard pre-

processing steps such as POS (part of speech) tagging and NER,4 but also uses deeper

4Refer to Sect. 2.3 for a description of basic NLP tasks like POS tagging.
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analysis to determine grammatical functions like subject and object. Relevance within

domain is assessed using a χ2 test (see, for example, Manning and Schütze, 2002,

p169). Another approach [Huang et al., 2004] extracts the patterns automatically—

by aligning word sequences between sentences and looking for similar portions—and

then filters the candidate patterns using hand-written rules.

The drawback with most machine learning approaches is the need for annotated

data, whilst the alternative of hand-coding detailed and specific rules may be as time-

consuming as doing annotation. Unsupervised methods which can learn from unan-

notated raw text are therefore of great interest, and Yangarber and Grishman [2001]

provide an example for relation extraction over large bodies of text. They start with a

small set of seed documents known to be relevant to a topic and try to deduce patterns

from them by looking for pairs of co-occurring entities and examining the phrases con-

taining them (for example, company and location names in strings such as “company

X is located in Y”, “company X has headquarters at Y” and so forth). So far this has a

certain resemblance to the work described above, but Yangarber and Grishman add an

active learning element, by asking an interactive user for similarity judgments in the

least certain cases, instead of relying on preclassification and statistical tests.

In the ODIE system (On-demand Information Extraction) [Sekine, 2006], the aim

is to minimise the effort of transferring to a new domain by first using TF-IDF5 re-

trieval to obtain a small set of documents (from a news domain) to work with, and

then automatically generating patterns for relation extraction from them using a de-

pendency analyser. Only the patterns that contain previously identified named entities

are used, after the NEs are found by a specially developed rule-based tagger—which

presumably entails some degree of domain tailoring. Another issue in tailoring to new

domains is determining the relation types, and the goal of doing this automatically has

been addressed by various authors; see for example, Hachey [2006], who proposes a

method for clustering pairs of co-occurring entities so that each cluster can be allocated

a relation label.

In the development of Tether some experiments were done to assess the possibility

of automatic derivation of relation type labels, by finding the highest frequency verb

phrase types and then clustering them using the “Similarity” measure developed by

Pedersen et al. [2004] over WordNet [Miller et al., 1990], following the lines suggested

by Budanitsky and Hirst [2006]. Results were inconclusive and a pragmatic decision
5“Term Frequency – Inverse Document Frequency”: an indexing method that assigns high weight

to terms that, whilst being comparatively rare in the corpus as a whole, occur frequently in a particular
document and are therefore good indicators of the document topic.
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was made to determine the relation types by hand, on the basis that it is a task that only

has to be done once for each domain and needs to be reliable as a foundation for the

rest of the RE work.

While most methods of relation extraction start with some linguistic analysis steps,

some (such as Schutz 2005, mentioned earlier, and Riedel and Klein 2005) do full

parsing, to extract relations directly from the sentence structure. Riedel and Klein go

further, and experiment with inference rules over the resulting relations. For these ap-

proaches a lexicalised grammar, such as CCG or link grammars, is needed. There are

various tools which will convert parses in such grammars into discourse structures with

semantic labelling. I carried out some experiments with Cass (by Steve Abney), CDE6

[Bos et al., 2004, Bos, 2005] and a Link Grammar parser [Sleator and Temperley,

1993] to assess full parsing as a route towards RE for Tether, using a small, randomly

chosen sample of sentences from the RCAHMS corpus. This line was not pursued fur-

ther however, partly because too little of the RCAHMS text is in grammatical English

sentences for the parsers to succeed, and partly because of speed considerations where

the ultimate aim was to deal with hundreds of thousands of documents.

There are a number of toolsets and general purpose utilities for Information Ex-

traction (IE) and some of these now include relation extraction tools. An example

is the CAFETIERE suite developed at Manchester University [Black et al., 2005],

which is based on the GATE (General Architecture for Text Engineering7) software

and uses mainly hand-crafted rules to extract two place relations between pairs of en-

tities. GATE itself arose out of the earlier TIPSTER architecture and, as described

in Cowie and Wilks [2000], forms the framework underlying other IE tools like VIE

(Vanilla Extraction System) and LaSIE.

In general, interest in the relation extraction problem has grown considerably over

the last few years. The NIST-sponsored ACE (Automatic Content Extraction) pro-

gramme8 has been running since 2000, with research goals of detecting and character-

ising entities, relations, and events. Each year since 2001 there has been an increas-

ingly ambitious series of competitive tasks, including relation detection and recog-

nition (RDR)—though in 2008 the complexity of the tasks has been scaled back, to

include only one entity and one relation task, EDR (entity detection and recognition)

6CDE stands for “CCG and DRT Environment”. It is a package that translates CCG (Combina-
tory Categorial Grammar) output to Discourse Representation Structures (DRS), as used in Discourse
Representation Theory.

7http://gate.ac.uk/
8http://www.nist.gov/speech/tests/ace/, http://www.ldc.upenn.edu/Projects/ACE/

http://gate.ac.uk/
http://www.nist.gov/speech/tests/ace/
http://www.ldc.upenn.edu/Projects/ACE/
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and RDR. Evaluation results for the RDR task are available for 2005 and 2007. Instead

of precision and recall measures ACE uses its own scoring method based on matching

outputs against a reference set in which each relation (in the case of the RDR task) has

a collection of attributes. The system under evaluation is scored according to how well

it reproduces the attributes and their values. The maximum score is 100, for a perfect

match, but negative scores are possible if spurious attributes are produced. In 2005 the

published scores for the RDR task on English text were in the range 20.1 to 25.2. In

2007 the best RDR score was 21.6.

The ACE tasks are complex and include many more characteristics of text relations

than are needed for the purposes of Tether, where the aim is to find pairs of related enti-

ties and label the relationship between them. This produces an RDF triple, where each

entity corresponds to a resource node and the relationship label becomes the predicate

for the arc joining the two nodes.

Broadly similar kinds of problems are dealt with in otherwise unrelated fields.

Statistical Relational Learning [see Neville et al., 2003, Popescul and Ungar, 2003,

Bunescu and Mooney, 2004] is concerned with machine learning to extract latent in-

formation about correlations of data items, typically in relational databases (RDBs)

or other organised sets or matrices. (This “SRL” has no connection with the other

SRL, Semantic Role Labelling, which is another possible approach to the RE task,

but using linguistic dependency analysis not statistical correlation. The only similar-

ity is that both detect connections between separate entities.) Probabilistic Relational

Models [Getoor et al., 2001] over RDB data have some similarities, and in turn the

Probabilistic Entity Relationship model [Heckerman et al., 2004] is a generalisation of

PRMs. All of these favour conditional models, and Bayesian nets in particular. For

a discussion of mining from databases with the specific aim of populating ontologies,

see Meersman [2001], who also stresses the importance of database-like features for

maintaining ontologies, such as ease of updating.

Quite simple techniques for detecting correlations have been shown to produce

useful results in data mining, such as the a priori algorithm (see Hand et al. 2001,

pp. 157–160 or Han and Kamber 2000, pp. 230–239), which learns association rules

from data by finding sets of entity mentions that occur together often. Where the set

has only two members one effectively has a binary relation. I experimented with the a

priori algorithm for Tether as it copes well with large volumes of data. One problem

is that many of the correlations are not informative (“RCAHMS” with “information”,

“Ordnance Survey” with “6-inch [map]” and suchlike), and another is that there is no
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obvious way of preserving the NE category labels that are needed for disambiguating

place names from personal names and so forth. Also, an extra step would be needed to

allocate a label to the relationship type.

For this work it was not practical to test and compare all the different approaches

to relation extraction that are theoretically possible. A certain amount of preparatory

exploration was done, as has been explained, before settling on the “maxent” tagger

[Zhang and Yao, 2003], a general purpose maximum entropy learner, used with an

annotated corpus of training material. This was chosen because it was found to be very

fast, and because it was known to have been used successfully in other RE work, such

as that of Haddow and Matthews [2007].

3.3 Semantic Web

What seems to be the first published mention of “the need for Semantics in the Web”

occurred in a plenary address by Tim Berners-Lee at the first WWW conference at

CERN in Geneva, in May 1994. (This was also the gathering at which the formation

of the W3C was announced.) The presentation does not appear in the conference

proceedings [Enslow and Cailliau, 1994], but there is a note of it at http://www.w3.

org/Talks/WWW94Tim/Overview.html.9 The gist of the proposal was:

“Adding semantics to the web involves two things: allowing docu-
ments which have information in machine-readable forms, and allowing
links to be created with relationship values.”

That succinct vision has not changed, but the mechanics of how to make it hap-

pen took some time. RDF became a W3C Recommendation in February 1999 (see

Klyne and Carroll [2004] for the current standard), though for some time it was un-

clear whether or not it would become the framework on which the Semantic Web rests.

Both Decker et al. [2000] and Berners-Lee et al. [2001] go into some detail on the

relevant merits of XML or RDF as the preferred language for the Semantic Web. It

is now clear that RDF has won, though it is often serialised in XML, as well as other

formats such as N3,10 NTriples11 and Turtle,12 which are a good deal easier for human

reading. The OWL Web Ontology Language13 can be used within the RDF framework
9That web page states it was given in September 1994, but possibly Sir Tim is misremembering the

dates of WWW1 (25th–27th May 1994, Geneva). The conferences were twice-yearly until 1996.
10http://www.w3.org/DesignIssues/Notation3
11http://www.w3.org/2001/sw/RDFCore/ntriples/
12http://www.dajobe.org/2004/01/turtle/
13http://www.w3.org/TR/owl-ref/

http://www.w3.org/Talks/WWW94Tim/Overview.html
http://www.w3.org/Talks/WWW94Tim/Overview.html
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/TR/owl-ref/
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and has more expressive power. RDFS, the RDF Schema language,14 is less powerful

than OWL but allows schema relations like class hierarchies and domains and ranges

for predicates to be expressed in RDF. Since RDFS does not include negation it cannot

be used for inference in the way that OWL can. A comparison of the relative merits of

XML, RDF/RDFS, the earlier DAML+OIL, and OWL is given in Arroyo et al. [2004].

(For a general introduction to Semantic Web languages and applications using them

see either Antoniou and van Harmelan [2008] or Passin [2004].)

The original vision, quoted above, talks only of machine-readable content and of

links to “relationship values” (an interesting point to which I will return in a moment).

Very soon this was expanded into a call for structured vocabularies and inference rules.

The classic early description was in a Scientific American article [Berners-Lee et al.,

2001]. This paints a picture of autonomous software agents making logical inferences

using supplied rules, which allow them to provide “proofs” of the conclusions they

present to their human masters. The practical goals are scenarios such as one’s tele-

phone being able to turn down the volume of all local devices so it can be more easily

heard, or a software agent looking up travel options and costs, and making bookings

on one’s behalf. Following this lead, Meersman [2002] sees the Semantic Web as the

solution to the “chaos” of the Internet, and proposes an agenda of work on ontology

building and unifying, and also looking at issues of licensing and intellectual property.

A more recent article, Feigenbaum et al. [2007], updates the 2001 paper by de-

scribing case studies of systems such as health care and drug indexing that now use

Semantic Web technology. That article, also in Scientific American, is determinedly

optimistic, in some contrast to the tone of Shadbolt et al. [2006], which notes that

takeup of the Semantic Web vision has been disappointingly slow. This is certainly

true if one compares it with the explosive growth of the original Web which, starting in

late 1989 in an essentially academic environment, became within about five years a ne-

cessity for almost every commercial company in the developed world. Shadbolt et al.

describe RDF, certainly as presented in XML, as “clumsy syntactically”, and speculate

that this hinders its adoption; and it is hard to disagree with them. They also note the

emergence of “folksonomies”15 but argue that what is really needed is an authoritative

collection of standardised and maintained ontologies. By “ontology” they appear to

14http://www.w3.org/TR/rdf-schema/
15Folksonomies are loose graph structures built “bottom up” by individual, usually unskilled, contrib-

utors who attach tags (short descriptive text strings) to instances of web resources such as photographs,
favourite links and so on. If “critical mass” is reached, with a sufficient volume of tags, the theory is
that reliable cataloguing results, essentially through preferring tags with higher frequency counts.

http://www.w3.org/TR/rdf-schema/
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mean a hierarchical arrangement of terms (called a “thesaurus” in this thesis), not in-

volving rules and inference; though they also call for the separate development of rules

and note the creation of the RIF (Rule Interchange Format) Working Group.16

Berners-Lee is sometimes quoted as saying he wishes he had christened this new

evolution the Data Web, because that describes it better: the idea is to make it as easy

to link data as HTML makes it to link documents. He has also used the term “Giant

Global Graph” or “GGG”,17 which is an accurate description as the aim is a distributed

graph database, so perhaps we will soon be talking of “the Graph” as we now do about

“the Web”. I noted above that his earliest statement of the goal talked of linking on

relationship values. It is important to note that in RDF only certain types of “value”

are allowed to form links, as explained below.

Assuming, as is de facto the case, that Semantic Web data is held as RDF, then

it is in the form of a directed graph, with nodes connected by arcs. The arcs or edge

labels are known interchangeably as “properties”, “predicates” or “attributes”. Thus

the data can be stored as a set of subjectNode–propertyArc–objectNode triples,

often called SPO triples, and represented graphically as:

subject object
predicate

The beauty of the original vision is that subgraphs will become automatically con-

nected to one another if they (a) are exposed on the Web, and (b) share at least one

common node. Figure 3.1 illustrates this principle—the node labelled “X” is identical

in each subgraph so the two are automatically connected by it and, through it, nodes

“Y” and “Z” are seen to be related.

RDF makes a distinction between “resources”, which are full members of the Se-

mantic Web with URIs that uniquely identify them, and literal values that are just

quoted strings or typed integers or whatever. Graphically a literal is usually repre-

sented as a rectangular node instead of an ellipse:

"Dirleton Castle":Siteid#site1
:name

This example is from the RCAHMS data, expressing the statement that the name

of site1 (a resource with a URI) is “Dirleton Castle”.

Only resources can be the subject of triples in RDF. This means that the graph stops

when it reaches a literal, so the linking on “values” only happens if the value is turned
16http://www.w3.org/2005/rules
17Blog posting in November 2007 by Berners-Lee, http://dig.csail.mit.edu/breadcrumbs/

node/215.

http://www.w3.org/2005/rules
http://dig.csail.mit.edu/breadcrumbs/node/215
http://dig.csail.mit.edu/breadcrumbs/node/215
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Figure 3.1: Merger of two RDF graphs that share a common node. Node X is in both

graphs, so they are automatically joined and Y and Z are linked.

into a resource with a URI. There are various ways round this, including the use of

“bnodes”, which are anonymous resources intended only for this purpose. They are

able to be the subject of statements without having their own URI, and their physical

identification is a matter for the particular software implementation used locally. For

various reasons the Tether design eschews bnodes—this knotty issue is discussed in

some detail in Sect.5.2. Suffice it to say here that the cleanness of the original Semantic

Web idea is somewhat compromised by the fact that one cannot, in fact, make links on

what most people would consider “values”, i.e. strings. The simplicity of information

retrieval by typing a string into a search engine cannot be directly reproduced in the

Semantic Web, where literal strings are never the subject of statements. There seems

a danger, indeed, that Semantic Web tools may be reduced to using regular expression

string matching within URI names in order to cross the divide between a human’s idea

of semantic meaning and a machine’s.

It is interesting to note that the RDF specification permits a property arc to be a

subject node as well. It is just another “resource”, which can be the subject of an as-
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sertion. This is necessary, for example, in order to specify the domain and range of

the attribute as RDF statements, e.g. picasso–paints–”Guernica”, where paints is

a predicate or edge, is complemented by two schema relations defining the predicate:

paints–domain–painter and paints–range–painting (where paints is a node).

Clearly these two statements can themselves be expressed as RDF triples. It has been

pointed out by Hayes and Gutierrez [2004]—whence these examples are taken—that

RDF structures may therefore not be true graphs, because the definition of a graph

requires the sets of edges and nodes to be disjoint. This means that standard graph al-

gorithms may not be applicable in the general case. Hayes and Gutierrez show how an

RDF graph can be transformed into a bipartite graph which can be always be processed

with the standard algorithms.

3.4 Graph Query Languages

There is no shortage of query languages for RDF. To name some of the ones that have

been developed over the past few years: RQL,18 RDQL,19 RDFQL,20 SquishQL,21

SeRQL,22 N3QL,23 iTQL,24 Triple,25 Versa,26 RxPath27. . . and probably others. How-

ever, SPARQL28 has now been established as the standard. It became a W3C recom-

mendation in January 2008 after a rather uneven passage over nearly four years, during

which it briefly went downwards in the W3C status pyramid before finally reaching the

top. See McCarthy [2005] for a useful introduction to SPARQL basics. Like most of

the earlier contenders, SPARQL is based on the SQL paradigm, making its syntax

easy for database practitioners to adapt to. Also like the other languages, it so far

makes little use of graph querying techniques that one might naturally assume would

be available but is restricted to simple subgraph matching, or “path matching”, to use

the terminology of its other ancestor, XQuery, and similar XML query languages based

on XPath.
18[Karvounarakis et al., 2002]
19http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
20http://www.intellidimension.com/
21[Miller et al., 2002]
22http://www.openrdf.org/doc/sesame/users/ch06.html
23http://www.w3.org/DesignIssues/N3QL.html
24http://kowari.org/oldsite/1246.htm
25[Decker et al., 2005]
26http://copia.ogbuji.net/files/Versa.html
27[Souzis, 2004]
28http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.intellidimension.com/
http://www.openrdf.org/doc/sesame/users/ch06.html
http://www.w3.org/DesignIssues/N3QL.html
http://kowari.org/oldsite/1246.htm
http://copia.ogbuji.net/files/Versa.html
http://www.w3.org/TR/rdf-sparql-query/
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The perceived gaps in SPARQL and other RDF query languages are explored in

detail by Angles et al. [2004], Angles and Gutierrez [2005] and by Stuckenschmidt

[2005]. Their contention is that a graph query language should let the user find paths

between pairs of nodes, find all nodes within a certain distance of the current one (k-

neighbourhood queries), and do aggregation queries such as finding the degree of a

node (i.e. the number of arcs leading from it), or the diameter of a subgraph. They

refer to earlier graph database languages such as GraphLog [Consens and Mendelzon,

1990], and to various known graph searching algorithms. See Shasha et al. [2002]

for a survey of the latter. Anyanwu and Sheth [2003] cover similar ground on the

difficulties of discovering how RDF resources are related (i.e. the paths between them

and the labels of these paths), and propose extending the current languages with their

ρ-query operator29 to provide this functionality. It is not clear as yet whether SPARQL

will be extended to provide graph functions, and there is room for further work to

determine how necessary they are. It was beyond the scope of this thesis to answer

that question but graphs like the one created here may be useful as test-beds for such

research.

The current version of SPARQL is a query-only language. The SQL relational

database query language includes both DML and DDL commands. DML is Data

Manipulation Language, including “insert”, “update” and “delete”, for changing the

content held in the database. DDL stands for Data Definition Language, where the

most important command is “alter”, used for making changes to the schema such as

adding tables to the database, adding extra columns to existing tables and so on. There

are no equivalents in SPARQL as yet for altering either individual content nodes or

the schema of the graph. They will undoubtedly be needed in the future so either

SPARQL will be extended or new ancillary languages will appear, to allow Semantic

Web content to be maintained.

3.5 Automatic Ontology Building

For the work proposed here, extracting triple relations from text as described in Sect.3.2,

is just a means towards the end of organising them, along with data from other sources,

into a graph database that can be queried. This process is sometimes called “automatic

ontology building”.

The word “ontology” is used in the literature for quite a range of constructions.

29The authors use the term “ρ path” to signify an instance of a path between two nodes.
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As part of Knowledge Management and formal logic, and in the usage closest to the

philosophical roots of the term, an ontology is a tightly controlled set of relationships

between entity types and a collection of rules governing their behaviour. Such ontolo-

gies are designed for organising high level knowledge and their practical application is

often as business management tools [Macintosh et al., 1998, Preece et al., 2001], where

they will support modelling and reasoning tasks in the related Knowledge Engineering

field. This kind of ontology is generally built by hand by an experienced analyst. For a

clear overview of the typical procedure see Uschold and King [1995], Uschold [1996].

In the last few years, “ontology” has come to include much less formal and well-

organised structures, where the ruleset is very much an optional extra and the relation-

ships may be derived, “bottom up”, from links between individual instances. Thus the

structure contains a collection of instance or “content” data, rather than simply being a

framework of relationships between classes or types. These structures are sometimes

called Knowledge Bases or “populated ontologies”.

The two contrasting attitudes just described are characterised, in Brewster et al.

[2004], as “Newtonian” or “Platonic” (for the formal abstract structures codifying

knowledge) as opposed to “Leibnizian” or “Aristotelian” for the messy, task-dependent

versions which typically don’t attempt to make universal rules about classifications,

and consequently may have to tolerate inconsistencies. One of the contributors, Steve

Fuller, cites a test question: “What goes with a cow: a chicken or a bed of grass?”. He

argues that those with a Newtonian attitude choose the chicken (because they think in

terms of hierarchies of types, and cow and chicken are examples of mammals), whereas

Liebnizians will pick the grass because they look for composite pictures where con-

stituent parts are described by their attributes or situation. A Liebnizian structure will

tend not to have a well-ordered class hierarchy and will be less easy for reasoners to

deal with. The Tether design aspires to take the best of both of these approaches, by

fitting instances into a pre-determined class structure (see Sect. 5.3) but using a small

set of fairly loosely defined predicates that permit connections between nodes widely

separated in the class hierarchy. (The most obvious example is seeAlso, that can con-

nect almost any two nodes, but is unlikely to be useful for inference.) Consistency

checking and reasoning are orthogonal to the project’s aims.30 Another contributor to

the same article notes that fewer than 10% of practical applications actually make use

of the logical inference available in “Newtonian” ontologies anyway. It is difficult to
30There is no guarantee that the source data is self-consistent anyway, as it often expresses statements

true only in a particular time-frame that may not be explicitly stated (and would be beyond the scope of
my system to capture if it were). Users of the data are expected to exercise their own judgment.
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assemble evidence one way or the other, but I would imagine that is still the case today.

Chandrasekaran et al. [1999], who are very much at the “Newtonian” end of the

spectrum themselves, describe various ontology management tools and languages such

as KIF (Knowledge Interchange Format), Ontolingua and CommonKADS. The au-

thors also look at practical systems like CYC [Lenat, 1995] and WordNet [Miller et al.,

1990]. The latter is much more thesaurus than ontology, covering senses of English

words. CYC is an attempt to encode “common sense knowledge”, containing (at the

time of the article cited) around a million “assertions” and having taken about a person-

century of effort to build. As one might expect with a real-world system of this size,

it doesn’t aspire to formal logic proofs but aims (ultimately!) towards allowing de-

duction by weighing competing assertions in an argument. In smaller structures where

formal reasoning is a practical option, Description Logic is the prevailing framework

[see Baader et al., 2003].

There is an interesting overlap between machine learning and formal rule-based

logic in Inductive Logic Programming (ILP) (Mitchell 1997, Chap. 10; Nienhuys-

Cheng and de Wolf 1997). The goal of ILP is to learn rules from a large number

of examples, where the rules may be simple atomic ones expressing propositions or

first order rules embodying predicate statements. As part of the extraction of relations

from text one could attempt to infer class or schema relations based on a collection

of instances, using ILP techniques. This is beyond the scope of the present work but

might be worth further exploration in the future.

Automatic ontology building has been a hot research topic in recent years. The

Artequakt system [Alani et al., 2003] is a particularly relevant example. It operates in

the heritage domain, containing information about artists and fine-art artefacts. Start-

ing with a hand-built ontology including a set of “biography template” rules, the au-

thors extract subject–object–relation triples from relevant web pages, and popu-

late the ontology with these. They use what they call “narrative generation” to produce

output in response to a fixed range of simple queries; for example, a query for “Rem-

brandt” will produce a generated biography. This is not quite full-scale NLG (natural

language generation), as the text snippets are from the original input web pages and

are stored and indexed in the ontology. Another system, M-PIRO [Androutsopoulos

et al., 2001, Isard et al., 2003], carries text generation a step further, constructing nat-

ural language output directly from data in a hand-built knowledge base. This could be

adapted as a potentially exciting use of statements stored in a graph, which it would be

very interesting to explore further.



Chapter 3. Related Work 31

There are many other descriptions of ontology building work. In some cases the

process is not fully automatic, but is seeded with a hand-constructed core ontology as

just described. Vargas-Vera and Celjuska [2004] provide such an example, working

in a news stories domain with a small ontology containing about 40 classes, and a set

of templates with slots for attributes of certain events (such as visiting a person or a

place). The Ontolearn system [Navigli et al., 2003] uses WordNet as the basis to build

on, or allows the user to substitute a specialist domain ontology. The method involves

deducing the sense of a term within the domain to place it in its “semantic context” in

the ontology, the latter being gradually updated and pruned to reflect the topic domain

being worked with. It is described in more detail in Sect. 3.5.1 below.

Two fully automatic methods, [Blaschke and Valencia, 2002] and [LOGS, 2004],

provide an interesting contrast. The first uses a clustering algorithm to build a gene-

product ontology from the leaves upwards. At each stage the two most similar nodes

are found and merged, to move up a level in the tree. The final result is a set of binary

trees. The LOGS (Lightweight universal Ontology Generation and exploitation archi-

tectureS) system works exactly the other way round, identifying the root node first and

working downwards from there. Supervised learning is used, over a set of documents

(in a particular format) marked with a hierarchy of concepts. Concept identification is

by a relevancy signature algorithm based on that of Riloff and Lorenzen [1999] (men-

tioned in Section 3.2 above), adapted to use statistical association rather than particular

syntax elements.

Another automatic system is described in Mena et al. [2000], though the domain

(software packages) is restricted and only a very small set of input data is used. The

purpose is not so much to demonstrate practical ontology construction as to highlight

the use of software agents to convert the (highly structured) web pages into ontology

graphs.

Finally, it is interesting to compare recent work with a much earlier paper: Doyle

[1962]. This work is in the IR (Information Retrieval) field, and Doyle explains how

statistical associations between pairs of terms in large text corpora can be used to build

graphs which he calls “association maps” or “semantic road maps”. He notes that

classification is always context-specific, and that an advantage of graph representation

is that multiple classifications can be shown in parallel: the same two nodes may be

close under one categorisation but distant (either with many intervening nodes or with

a “weak” link) under another. Doyle envisaged a query interface where a graph of

relationships between search terms would be presented to the user, who could pick
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terms for query expansion. Unfortunately, he was a long way ahead of his time, as the

typical computer interface at the time was a character Teletype machine with a roll of

paper.

3.5.1 Experimental Applications

There are many practical experimental applications based around ontology building

and this section give a little more detail on one or two that seem most relevant.

Many of the published descriptions concentrate on how the ontologies were con-

structed, but some go further and discuss evaluations of usage, a particularly interesting

example being the Ontolearn system mentioned above. Its purpose is to tailor a gen-

eral purpose seed ontology (such as WordNet) by expanding and pruning it, so that

the result reflects domain-specific knowledge. A detailed description of the architec-

ture is provided by Navigli and Velardi [2004]. In an earlier paper [Navigli and Velardi,

2003] the authors explain how they deal with queries over the graph structure they have

built. They take a graph-centric view (talking in terms of subgraphs and paths between

nodes), in contrast to Semantic Web work which tends to be database-centric (using

terminology tied to class membership and relations between instances). The procedure

is to take each query term and expand each sense of it into a “semantic network” (a

subgraph of all relations linking to the term, up to a certain distance from this root),

then these subgraphs are intersected by finding common nodes that can be reached

from each subgraph root by directed paths. Terms on the intersection paths may be

expanded to semantic networks themselves. It is important to note that this type of

graph function is not possible in the standard RDF query languages like SPARQL, as

discussed in Sect.3.4. Experimental results were generally very good, except when the

intersection path passed through terms representing high level concepts, which caused

the results to branch away from specifics too much. There was also a problem with

named entities: Ontolearn does not include NER, and the application attempted to ex-

pand NE terms (which it did not identify as “special”) to semantic networks, with poor

results. The authors recognise that such expansion should be limited to concept terms,

the best candidates being terms in the same semantic domain and same level of gen-

erality as query terms. Expanding with gloss words (derived from WordNet concept

definitions) worked well.

There are quite a number of other ontology application projects. Although mainly

concerned with building an ontology of geographical entities, Alani [2001] is of inter-
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est because the source data is the same as mine, from RCAHMS. Volz et al. [2003]

describe the KAON ontology project which is implemented on the Sesame triple en-

gine. The OBIIE system (Ontology-based Interactive Information Extraction) is a

query application allowing sophisticated queries like “keyword1 plus keyword2 in a

verb group”, over scientific abstracts from EMBASE and MEDLINE [Milward et al.,

2004]. The DOPE project (Drug Ontology Project for Elsevier) also works with EM-

BASE source data [Stuckenschmidt et al., 2004]. The Gene Ontology project deals

with gene and protein terms, and the term hierarchies are described in detail in Ash-

burner et al. [2000].

Milward and Thomas [2000] describe an interesting query application that treats

seriously the difference between index time and search time functionality. The source

data is heavily pre-processed at index time, occupying up to 60 times its original space,

but the search time is estimated to be one tenth what would be needed if the processing

(on a subset of the data) were done at run time. (Compare the remarks about denor-

malisation in Jena 2 in Sect. 3.6.1—disk is cheap, and unless one aims to process the

entire database in memory, pre-clustering and so forth seems sensible, for a query-only

application.) However, in this particular application the volume of the pre-processed

data means that loading even sections of it for run time searching is slow, so fast IR

tools are used as a filter first. The method is a hybrid between traditional IR and IE,

and offers the user a choice of results formats: either a list of document links (as in an

IR system) or a tabulated set of fields (the IE style).

A similar approach trading very extensive pre-processing against fast retrieval is

used by Jijkoun et al. [2003], although the user interface is different as theirs is a

Question Answering (QA) system. In QA the aim is to extract from a data source

brief answers to factoid questions. Jijkoun et al. extract a table of “facts” from the

document collection, using finite state methods, and analyse each query to see if any

of the extracted facts can be matched as an answer to it. The building of a collection

of facts is analogous to ontology construction. There is a huge body of work on Ques-

tion Answering—which overlaps with ontology querying in that both are concerned

with information retrieval to answer queries—but I won’t attempt a bibliography of

QA here. For helpful overview material on this field, see Hirschman and Gaizauskas

[2001], Burger et al. [2001], Voorhees [2003]. Similarly, the IR and IE fields will not

be covered here, save to mention some useful general texts that were used for refer-

ence: Baeza-Yates and Ribeiro-Neto [1999], Witten et al. [1999], Sparck Jones and

Willet [1997], Strzalkowski [1999], Cowie and Wilks [2000].
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The CultureSampo [Hyvönen et al., 2007a] and FinnOnto [Hyvönen et al., 2007b,

2008] projects hardly deserve to be described as “experimental”, as they have moved

outside the Helsinki University of Technology to embrace real data from an impressive

range of cultural and other archives in Finland. For FinnOnto, the team from SeCo (Se-

mantic Computing Research Group, see http://www.seco.tkk.fi/) co-ordinated

the construction of an “upper ontology” or concept hierarchy in order to provide a

framework for Finnish data on the Semantic Web, in a diverse range of subject areas:

culture, health, government, education, and commerce. The related CultureSampo

project is cross-domain with heterogeneous content. It uses event-based modelling,

which makes it easy to represent facts as relations between events and their agents or

patients. (Figure 3.3 shows an example of RDF modelling using reified events.) This

also means the metadata is more interoperable and more likely to form a working part

of the wider Semantic Web. Search results are presented using faceted search (see, for

example, Tudhope and Binding [2004], Hearst [2006]) plus what they dub “relational

search” (e.g. “How is Picasso related to Paris?”). The presentation interface also uses

mashups with Google maps and time-lines. Despite its breadth of scale, FinnOnto lies

towards the “Newtonian” end of the spectrum (see discussion on page 29), and may

establish itself as a counter-example to the implied scepticism about reasoning being

feasible over big “real-world” datasets—it is too early to tell.

The MultimediaN (“Multimedia Netherlands”) E-Culture project [Schreiber et al.,

2006] is another recent and impressive project that uses Semantic Web technologies

over virtual cultural heritage collections. Like CultureSampo, it includes a search

function for discovering semantic relations between URIs, to answer questions like

“How are Van Gogh and Gaugin related?”. Integrating standard vocabularies (such

as the Getty ones—see Sect. 4.2.1) is a central goal of the MultimediaN project, and

Tordai et al. [2007] describe how this is done, based around the RDF SKOS schema

and using the Mapping Vocabulary31 to build alignments between separate but related

thesauri.

3.6 Managing Triples

Small RDF graphs are often implemented as flat files (serialised in XML or some

other representation) and loaded into memory for processing, but this is not currently

31The SKOS Mapping Vocabulary is now deprecated but the important relations from it have been
taken into the core SKOS standard, see http://www.w3.org/2004/02/skos/vocabs.

http://www.seco.tkk.fi/
http://www.w3.org/2004/02/skos/vocabs
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practical for a large archive (of more than a million or so triples). The graph must be

held in persistent storage in a specially designed store that permits small sets of triples

to be extracted by queries without attempting to build the entire graph in memory.

There are now quite a number of rival triple stores and a good deal of work has been

done on how best to structure them. As well as reviewing the relevant literature, this

section explains the criteria by which the Jena32 and AllegroGraph33 systems were

chosen for Tether. Although RDF has become the standard it is not the only possible

implementation method, and a rival known as the Associative Model is also examined,

in Sect. 3.6.3.

3.6.1 Persistent Triple Stores

An effective triple store can be produced with a structure as simple as a single three-

column held in a relational database: each SPO triple appears as a row in the table.

(Since a table, or relation, is a set—with no duplicate entries34—this is a very con-

venient implementation for a set of triples making up a directed graph in RDF.) In

practice most triple stores add a “graph ID” as a fourth member of each relation (i.e.

a fourth column in the table definition), to tie each statement to its parent graph. Thus

the SPO triple becomes a quad: SPOG, where “G” is the graph identifier. This fa-

cilitates segmenting and joining of multiple graph databases. The SPARQL language

has provision for specifying whether the default graph or a specific named graph is

to be queried, using a mechanism analogous to the namespace principle in XML. See

Carroll et al. [2005] for a description of named graphs in RDF. The syntax allows one

to assign a URI to identify an entire graph, which can then be used as the subject node

in RDF statements—this allows metadata pertaining to the dataset as a whole (such as

provenance information) to be stored alongside the actual content data.

Another pragmatic variant on the single table model is the use of ancillary tables

holding indexes to the resource URIs and literal strings so that these often cumbersome

values do not have to be repeated in the main table. Instead they are coded and pointers

are used to track them.

There are a number of RDF data storage systems now available: Kowari,35 Sesame,36

32http://jena.sourceforge.net/
33http://agraph.franz.com/allegrograph/
34Not every RDB implementation enforces the rule that a relation should not contain duplicates but it

is easy to ensure it using SQL functions.
35http://www.kowari.org/
36http://www.openrdf.org/

http://jena.sourceforge.net/
http://agraph.franz.com/allegrograph/
http://www.kowari.org/
http://www.openrdf.org/
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3store,37 RDFStore,38 Jena (which includes Joseki,39 as part of its framework), Mul-

gara40 (which came out of the earlier Kowari project), Dave Beckett’s Redland RDF

Libraries41 and AllegroGraph are amongst the most popular. Several of these use a

relational database as a back-end store, particularly for RDF datasets that are too large

to hold and process in memory. The 3store system uses MySQL for preference and

structures the RDF data in a single table with a few auxilliaries, as outlined above,

see [Harris, 2005]. HP’s Jena system employs a similar four-column table layout [HP,

2004], though in Version 2 the structure was revised to include less normalisation with

pointers, as the de-referencing step was found actually to spoil performance. Ora-

cle Corporation have implemented a commercial RDF store as part of their Version

10g database [Alexander et al., 2005, Oracle, 2005]. All of these implementations are

relatively new as yet, and there are few examples of really large RDF databases in

day-to-day use (at least in what one might call “business critical” positions).

The system initially chosen for Tether was HP’s Jena, which was the best available

at the time, in terms of design, transparency of implementation (one can access the

store directly through SQL in the RDB back-end), robustness, good documentation

and usable API (written in Java). As a company, HP has been one of the leaders in

Semantic Web research, and Jena remains one of the most solid platforms available. Its

only failing is that it is slow (at least in comparison with AllegroGraph): both loading

and retrieval performance are disappointing when the graph contains many millions of

triples (see Table 5.3 for the bulk loading statistics). As mentioned earlier, the Tether

graph contains over 20 million triples.

Later on in the development work AllegroGraph, from Franz Inc., was used along-

side Jena (which by that time had changed so significantly that a re-install was needed

anyway), so that comparisons could be made between two of the best available sys-

tems. AllegroGraph was developed recently and takes advantage of earlier work in the

field. It was built using Lisp but also has a Java interface. (Although AllegroGraph

is a commercial product, there are free Lisp and Java editions that are fully functional

but limited to 50 million triples. Franz Inc. very kindly made the commercial version

available for this work, though in fact Tether fits in the free version.)

The AllegroGraph design does not hold literal and resource strings directly but uses

37http://www.aktors.org/technologies/3store/, and see [Harris and Gibbins, 2003]
38http://rdfstore.sourceforge.net/
39http://www.joseki.org/
40http://www.mulgara.org/
41http://librdf.org/. The Redland suite includes utility libraries for numerous RDF manipula-

tion tasks, as well as triple storage and querying.

http://www.aktors.org/technologies/3store/
http://rdfstore.sourceforge.net/
http://www.joseki.org/
http://www.mulgara.org/
http://librdf.org/
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hashed codes—called UPIs or Unique Part Identifiers (not, of course, to be confused

with URIs!)—as pointers. More controversially they also add a unique Id to each triple

(for internal query efficiency), and suggest it could be used to allow one triple to refer

to another without RDF reification.42 This is in fact precisely the Associative Model

of Data described in Sect. 3.6.3 below. AllegroGraph also has the usual graph Id, so

each “triple” is actually a quint: SPOGI, where an “I” statement identifier is added to

the usual SPOG set.

As an aside, it’s interesting to consider whether such a cavalier attitude to the RDF

standard on the part of a commercial developer is a disaster, or a welcome sign that

triple-stores are coming out of the ivory towers. Franz have clearly got to grips with

how a real database should work—which may be why their system appears to be at

least an order of magnitude more efficient than most others, in handling multi-million

row triple stores. Semantic Web tools will surely need to be robust and fault tolerant to

succeed—just as HTML was—and that means taking variants like this in their stride.

The loading and indexing performance of AllegroGraph is remarkably good, as

shown in Table 5.3 (on page 103). One drawback is that the storage engine is a propri-

etary one instead of a standard RDB, so one cannot easily get inside it as one can with

Jena (which I run over MySQL).

3.6.2 Retrieval from RDB Triple Stores

If an RDF graph is represented in a relational database then a query that needs to

move around the graph, from node to node along paths, will require multiple self-joins

of the main triples table. A relational join is made by matching an attribute of one

table or relation with an attribute of another; the matching function is typically, but not

necessarily, equality. It is a self-join in the case where the join is made between a table

and a copy of itself, which is necessary when one wants to link data in one part of the

table to data elsewhere in the same table.

Each step from node to node in an RDF graph involves connecting the right hand

side of one tuple to the left hand side of another in the same table; hence it needs a

self-join. See Fig. 3.2 for an example based around a simple three-column table. To

traverse from graph node :site51726 to, say, the :RobertAdam node using the table

of triples, one joins the :WilliamAdam entry in the right-hand column to its matching

values in the left-hand column, producing information to the effect that “:site51726

42The documentation warns that this breaches the RDF specification, but remarks that users insisted
because it is “far, far more efficient”.
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:MavisbankHouse:WilliamAdam

:fatherOf

:RobertAdam
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:site :designedBy
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:site51726
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:site52400
:WilliamAdam
:WilliamAdam
:RobertAdam
:architect

:hasName
rdf:type
rdf:type
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:fatherOf
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:site51726 :designedBy
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rdf:type
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:architect
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:WilliamAdam
:MavisbankHouse

Figure 3.2: Traversing RDF by self-joins on 3-column RDB table. Match values in the

third column of the table to ones in the first column to move from node to node, e.g.

:site51726 was designed by :WilliamAdam, who was an :architect.

was designed by :WilliamAdam, who was an :architect and the father of :RobertAdam”.

Repeatedly joining a large table to itself is a notoriously slow operation. The RDF

stores using RDB back-ends have to translate queries written in SPARQL (or other

RDF query language) into standard SQL43 because that is all the RDB understands.

Oracle Corporation is in fact proposing an extension to SQL, “RDF-MATCH”, to han-

dle RDF queries [Chong et al., 2005], but this is a long way from becoming part of the

SQL standard.

There seems no way of avoiding the multiple SQL joins if the data has to be read

from permanent RDB storage. For datasets that can be guaranteed to fit in memory

faster algorithms are possible (once the database has been read into memory of course).

See, for example, Lee [2005], which describes a graph database for bioinformatics

work, implemented as a Python dictionary and claimed to be much faster than SQL.

43Note that this, in effect, limits the power of the RDF query language to its overlap with SQL’s
capability. It also leaves open the possibility of using SQL directly, and thus gaining functionality that
is in SQL but not yet in the RDF query languages.
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Figure 3.3: Comparing the Associative Model of Data (AMD) with RDF. The AMD figure

on the left shows how statements can be made about other statements. In RDF, on the

right, we have to insert reified events.

3.6.3 The Associative Model of Data

There is one commercial database system using a triple store not based on RDF, which

has been in operation for several years. This is the “Sentences” database from Lazy

Software, based on the Associative Model of Data [Williams, 2002, Answerbrisk,

2003a]. Like the RDF stores, it handles multiple graphs easily [Answerbrisk, 2003b].

The Associative Model of Data (AMD) differs from RDF in that graph edges are

allowed to connect to other edges. This means that an entire triple can be the subject

(or indeed the object) of another triple—hence the basic unit is now a 4-tuple—which

one might expect to lead to signficant data compression and fewer table joins. It is not

immediately obvious whether this is so or not; see Fig. 3.3 for an informal example.44

The diagram on the left shows a representation in the Associative Model of the two

statements: Fred purchased Vanity Fair from Amazon and Barney purchased Vanity

Fair from Blackwells. The diagram on the right shows the same statements in RDF.

The AMD version requires seven distinct nodes/edges (plus two hidden identifiers)

and four 4-tuples; the RDF version needs 10 nodes/edges and six 3-tuples. In each

case the whole subgraph can be extracted with a single relational join.

The use of 4-tuples seems an elegant solution to the difficulty of allowing one

statement to be the subject or object of another. A chain of links can be built up very

44Of course the example is only illustrative; it would be interesting to consider the general case
properly, to see whether the two models are in fact equivalent. One issue highlighted is the importance
of careful design of schema relationships, as there are very many possible ways of expressing even a
small set of links.
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naturally, as in “Fred puchased Vanity Fair from Amazon on Tuesday at £6.95”. As

noted earlier (page 37), Franz Inc. have adopted the same approach in AllegroGraph,

with their use of SPOGI quints. RDF uses a mechanism called “reification”, where (as

illustrated with the sale nodes in Fig. 3.3) a new, separate, entity must be introduced

which can be the subject of a set of “agent, patient, theme” or similar relations. As

Antoniou and van Harmelan [2008] comment, this “rather cumbersome approach” is

necessary because everything in RDF must be a 3-tuple. On the other hand, the RDF

design may be better for reasoning over knowledge that is extracted from text, as it

follows Davidsonian principles. Davidson [2001] proposed that “action sentences”,

like “Fred purchased Vanity Fair”, can be expressed in terms of first order logic (FOL)

by identifying and reifying the “event” they describe and turning each modifier of

the action into a two-place predicate (or binary relation). So the sentence in question

becomes something like “There is a purchasing event, the purchaser is Fred, and the

thing purchased is Vanity Fair” or, in FOL notation,

∃e(purchase(e)∧agent(e,Fred)∧ patient(e,VanityFair))

—which is exactly what the right hand side of Fig. 3.3 shows. The issue of reifying

events, and its ramifications for RDF schema design, is returned to in Chap. 8.

Attaching a fourth identifier field to each triple (or each “association” to use AMD

terminology) means, in effect, that every statement is automatically reified, but Williams

[2002] insists that this is fundamentally different from RDF reification, which he ar-

gues is “a redundant and unnecessary overhead that also raises significant integrity

issues” [see Williams, 2002, page 182]. In the AMD, a statement can always be ei-

ther the subject or the object of another statement without needing to be separately

represented as in RDF. There was not time for a practical comparison of AMD with

RDF for the Tether implementation, and simple pragmatism led me to choose the W3C

Recommendation, which is RDF.

The design of the Associative Model means that it does not meet the criteria for

being a proper graph, so graph query algorithms may not in general traverse it. As

noted earlier (Sect. 3.3), RDF is not a true graph either, as nodes and edges are not

disjoint sets.

3.7 Discussion and Summary

This chapter has given an overview of a number of separate fields, that are related

through their connections to the graph building techniques needed for Tether. Handling
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free text involves the NLP stages of named entity recognition and relation extraction,

followed by RDF tools and methods as the data is transformed into a graph. Practical

ways of handling and storing large RDF datasets have also been examined.

I have paid a good deal of attention to ontology building applications, as there are

many similarities between Tether and some of the projects that have started emerging

in the last few years.

This chapter has tried to give a flavour of the research background into which my

work fits. The second important scene-setting element is to explain the nature of the

source data to be worked upon, and the following chapter does this.



Chapter 4

The Data

This chapter describes the source material used in the Tether graph database. Although

the techniques employed are intended to be as generic as possible, there are features

specific to data from the cultural heritage domain. Section 4.1 considers the composi-

tion of the dataset and its peculiar characteristics.

The cultural domain has no shortage of specialist thesauri available, and Tether

incorporates material from some of the standard sources. Section 4.2 describes this

information and outlines how it can be used alongside the core data.

A randomly chosen set of documents derived from the RCAHMS dataset was anno-

tated to produce a gold standard set for evaluating the Named Entity Recognition and

Relation Extraction tasks. The annotation rules covering the choice of entity classes

and relation predicates are explained in Sect. 4.3.

Section 4.4, deals briefly with wider questions, arguing that the special nature of

cultural heritage data has given it a place of its own within the NLP discipline.

4.1 RCAHMS Data Collection

One of the themes of my research is to explore the properties of graph based data in

the context of assisting non-expert users to query public collections. The data used

is a snapshot of the entire National Monuments Record of Scotland (NMRS), kindly

made available by RCAHMS (The Royal Commission on the Ancient and Historical

Monuments of Scotland). It contains over 270,000 records and texts about archaeolog-

ical sites and historic buildings, with around a million associated archive item records

(photographs, maps, plans etc.). The collection has been assembled over ten decades

(2008 is RCAHMS’ centenary year) by field survey and research and the characteris-
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tics described below will be familiar to cultural data curators everywhere.

Like most cultural heritage organisations, RCAHMS is keen to extend access to

its collections to a much wider public than in the past. It has done market research to

assess the needs of its audience [Turnbull, 2003] and evaluate its existing web-based

provision [Bailey, 2004]. (Of course, there is also non-web access, but it is not our

concern here.) These surveys show that the aim should be to reach the general public

and users at almost all levels of education, from school curriculum through higher

education to “lifelong learning”. Since most of the material has been developed, over

many decades, for specialists and professionals, this is a very tall order.

4.1.1 The Nature of Cultural Heritage Data

Figure 4.1 shows an example of a typical NMRS record, much as it is currently pre-

sented to the public on the RCAHMS website, through their Canmore1 search inter-

face. The fixed fields shown first (type of site and locational information) are a very

small subset of those actually present in the database, but these are the ones that can

be relied on to have values for most records. In common with most historical archives

that have been assembled over many decades, with varying recording policies, the RC-

AHMS database is sparsely populated in general, with very few mandatory fields. The

second set of fields summarise collection items (photographs and plans in this case)

with, once again, only a partial view of the database information being available to the

user. The number of collection items varies enormously, depending on the importance

of the site and how often it has been visited by survey teams. There may be no physical

archive at all, or there may be many hundreds of items. As this example illustrates, it

is the free text associated with each site that provides the web user with most infor-

mation. Indeed, in the case of the RCAHMS data, the bulk of the fixed fields were

extracted, manually, from the text documents—a process that is still continuing with a

current project to create structured “events” data.

The free text field varies greatly from site to site, sometimes being a matter of a cou-

ple of lines of basic identifying information, and sometimes running to several pages.

Where the text is long it usually consists of paragraphs added chronologically, as new

survey observations are added to a record without removing earlier ones. This means

that statements in early paragraphs may be contradicted in later ones. One lengthy

record detailing the arrangement of stones ends rather depressingly with “. . . Nothing

1Originally an acronym for Computer Application for National MOnument Record Enquiries.
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Type of site:

NMRS Number:

Map reference:

Parish:

Council:

Former District:

Former Region:

Chambered Cairn

Orkney Islands Area

Orkney

Orkney Islands

Rousay and Eglisay

HY 4048 2795

HY42NW 1

Archive Number Caption
A 4277 PO
O 2433 PO
O 3511

ORD 41/1 P

ORD 41/2

ORD 41/3 CN

M. Sharp BW 306
T. Kent 3953 collection
D. Richardson phot. by J. S. Richardson
Plan and sections of chambered cairn (ORK 32)
Plan and sections of broch. Inventory fig 296.

DC 26751

Plans & sections Photo only D. Wilson 1934
Original portfolio in Tankerness House Museum

PTS RCAHMS

ORD 41/3 P Plans & sections Photo only D. Wilson 1934
Original portfolio In Tankerness House Museum

Rousay, Knowe of Yarso

Archaeology Notes

HY42NW 1 4048 2795.

(HY 4046 2795) Brough (NR) (Site of)

"Knowe of Yarso", an Orkney−Cromarty stalled cairn situated on the very edge of a 50yd wide shelf which drops in a
cliff to the terrace below. Before excavtions, in 1934, it was a low grass−grown mound from which some slabs
protruded.
The cairn is more or less rectangular in plan, with rounded corners, the major axis lying NW by W and SE by E and
measures 50’ by 25’ 6" with a maximum height of 6’. There is an outer and inner wall face encircling the cairn, the
inner 2’ 4" behind the outer. The roughly paved passage, 13’ 2" long, enters the chamber from the SE. The chamber,
24’ 1" long and 5’ 5" to 6’ wide, is divided into three compartments by upright transverse slabs. The cairn contained
the bones of at least twenty−nine individuals as well as those of at least thirty−six reindeer, sheep and a dog. Finds
included fragments of food−vessel and beaker pottery, four arrowheads and more than sixty other flint implements
and five bone tools, which were donatgd to the National Museum of Antiquities of Scotland (NMAS) in 1934 by
Walter A Grant.
A S Henshall 1963; J G Callander and W G Grant 1935; RCAHMS 1946.

’Knowe of Yarso’ as described and planned by Henshall and now restored and preserved by DOE.
Surveyed at 1/2500.
Visited by OS(ISS) 9 October 1972.

References

Callander and Grant, J G and W G (1935)
’A long stalled cairn, the Knowe of Yarso, in Rousay, Orkney’,
Proc Soc Antiq Scot, 69, 1934−5, 11, 325−351,
Green, H S (1980)
The flint arrowheads of the British Isles: a detailed study of material from England and Wales with comparanda
from Scotland and Ireland,
Brit Archaeol Rep, BAR British, 75, 2v, Oxford, 288,

Henshall, A S (1963 a)
The chambered tombs of Scotland,
1, Edinburgh, 215, ORK.32,

... etc.

Figure 4.1: Knowe of Yarso: An example of a record from the NMRS. c©RCAHMS.
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is now visible at this site . . . ”.

In general, the text is written in the form of telegraphic notes. Only an estimated

30% of the “sentences” in it are in fact grammatical English sentences. The language

and vocabulary across different documents reflect the fact that the composition dates

span a century.

Typographical errors are common in the data, partly because of lack of data entry

controls in the past, and partly because the bulk of the data was captured by Optical

Character Recognition almost 20 years ago. The example in Fig. 4.1 contains a few,

such as “excavtions” in the first paragraph of the text (possibly a typing mistake in the

orginal source document) and “donatgd” in the second (perhaps an OCR error); though

they are by no means restricted to the long text fields. There is also an example of the

way data fields in this domain are so often not quite identical: the captions for items

“ORD 41/3 CN” and “ORD 41/3 P” differ in one character only (lower or upper case

“i” for “in”). This rather unexpected characteristic (predating graphical “cut and paste”

interfaces?) has been noted in other cultural datasets [Sporleder et al., 2006]. These

two collection records illustrate another issue for all archive collections: the need to

distinguish between multiple copies of the same item in different forms.

The database has been moved from platform to platform as technology developed.

Twenty years ago an electronic archive of this size had to be held on a big central

mainframe, and the RCAHMS database has moved from an IBM EBCDIC machine

to an ASCII one and thence to using the UTF-8 character set. These changes and

the untraceable bugs that are bound to occur over such a period mean that occasional

spurious non-printable characters crop up at random throughout the data.

4.1.2 Web Access to Cultural Data

Although often richest in information, free text database fields are typically not acces-

sible to web queries, or only inadequately by simple string matching. Only a small

subset of the total database fields can be presented to the web user, because it is dif-

ficult to structure a standard report layout when many data items are missing for any

given site. The number of fields that can be accessed by the user’s query is even more

restricted. The accepted practice in interface design is to limit firmly the number of

separate fields a user can fill, and to restrict the fields offered as far as possible to

heavily populated ones. This is because inexpert users tend to see a query form with

multiple boxes as something to be filled in as fully as possible—in the spirit of provid-
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ing as much information as possible on their requirements. The result will disappoint

them (it will probably be a nil result), because most such interfaces perform a boolean

“AND” on all fields filled, thus producing an extremely restricted query. If the fields

are independently sparsely populated (i.e. 10% of this field is populated and a different

10% of that field) it may be the case that no records contain values for all fields the

user wishes to query. Designing a usable interface in these circumstances is very hard

and the usual solution is, as stated, to provide only a few heavily populated fields. The

attributes that are most sparsely populated are simply lost to the general user—it is not

worth building a mechanism to query them.

Another difficulty faced by the inexpert user is the amount of specialist vocabulary

used. Even if the text field can be searched, to do so effectively the user must already

be familiar with terms like “stalled cairn” and “beaker pottery” (see the Archaeology

Notes in Fig. 4.1). In recent years RCAHMS has done a lot of work on its use of

thesauri to assist the lay user, but the problem remains a widespread one for the cultural

domain in general.

4.1.3 Relational Database Schema

The Tether RDF graph is intended for processing read-only queries. Since the RC-

AHMS database fulfils other functions beyond this, there are substantial parts of it

that are not relevant here and are simply not translated. Of the 257 tables in the RDB

schema, some are back-waters not currently maintained, some are part of the data

administration framework, and some are frankly the sort of detritus that tends to ac-

cumulate in a 20 year old database. Only 27 tables were selected as the basis for

the Tether design, and the Entity Relationship Diagram (ERD) in Fig. 4.2 shows the

relationships between them. The tables are shown with their actual names and with ex-

planatory labels to indicate what they contain. The figure uses the normal conventions

for depicting entity relations, as shown below:

Parent_Entity Child_Entity

This represents a one-to-many relationship: each instance of the “parent” (or “mas-

ter”) entity is related to zero or more instances of the “child” (or “detail”) entity. Going

the other way, each child instance must be related to exactly one parent. (Database ta-

bles do not necessarily correspond to the entities present in the logical design but in

this case, as is quite common, they do.)



Chapter 4. The Data 47

RCMAIN

RCSHORTREF

RCBIBLIOGRCCOLLECT

RCARCREF
RCLINREP

RCLINEAR

RCARCBIB

REF

ARCCOLL

RCCOLLECTIONS RCCOLLECTION_ESSAY

RCARC_PERSON

RCORGANISATION RCPARTY

RCTEXTREP

RCASP

(site)

(text)

(text)

(archive item)

(named collection)

(added)

(two tables merged)

(linear site)

(person) (text)

RCCATEGORY

LKUP_C_PREFIX

RCCOLKUP

RCCOUNCIL

RCDISTLKUP

RCREGLKUP

RCCLASSIFICATION

RC_THESAURUS_TERM_RELATIONS

RC_THESAURUS_PREFERENCES

RC_THESAURUS_USES

RC_THESAURUS_LIST

Thesaurus Schema

RC_THESAURUS_TERMS

Figure 4.2: RCAHMS relational database schema expressed as an Entity Relationship

Model
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Thirteen of the tables contain the NMRS content data. One extra table (ARC-

COLL) was introduced by me as a more convenient link between RCCOLLECT and

RCCOLLECTIONS. Two tables (RCLINREP and RCSHORTREF) were merged to

create a new table REF, for bibliographic references pertaining to linear or other sites.

These changes were made without altering the content in any way, and merely to

streamline the data and facilitate subsequent conversion to RDF. Three tables (RCASP,

RCCOLLECTION ESSAY and RCTEXTREP) contain text fields only, with no short

fields suitable for conversion to RDF. These are available for processing through the

relation extraction pipeline (see Chap. 8), along with text fields present in other tables

(RCCOLLECTIONS.description and RCLINEAR.report), but are not included in the

RDB to RDF conversion exercise (described in Chap. 5). There are 6 tables (shown in

a lighter shade on the diagram) that contain just lists of code values, for locations and

archive classifications. Finally, the thesaurus structure—described below—is held in

5 database tables, in a separate Oracle schema, connected to the main one through the

RCCLASSIFICATION table.

4.2 Domain Thesauri

A thesaurus is a collection of authoritative terms related to a particular domain of

knowledge. It is distinguished from a gazetteer by being arranged in a hierarchical

structure, so that the user can “drill down” from more general to more specific terms

within a given category.

4.2.1 Overview

There are many, many specialised thesauri and standard-setting frameworks for the

cultural heritage domain with which I am dealing. To name just a few:

• TMT: Thesaurus of Monument Types, maintained by English Heritage.2

• Archaeological Objects: maintained by MDA (formerly the Museums Docu-

mentation Association, now the Collections Trust3) and available at the same

location as TMT.
2http://thesaurus.english-heritage.org.uk/
3http://www.mda.org.uk/

http://thesaurus.english-heritage.org.uk/
http://www.mda.org.uk/
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• MIDAS: “A Manual and Data Standard for Monument Inventories”, developed

by RCHME (The Royal Commission on the Historical Monuments of England,

now part of English Heritage) under the auspices of FISH [Lee, 1998].

• MIDAS Heritage: A revised version of MIDAS, published in late 2007 [Lee,

2007].

• FISH: Forum on Information Standards in Heritage, for the UK and Ireland.4

• SPECTRUM: UK Documentation Standard for museums, maintained by MDA.5

• AAT: Art and Architecture Thesaurus, one of the Getty vocabularies.6

• ULAN: Union List of Artist Names, from the Getty.

• TGN: Thesaurus of Geographic Names, the third of the Getty set.

• TGM: Thesaurus for Graphic Materials, for image indexing, from the Library of

Congress.7

• LCSH: Library of Congress Subject Headings, much used in the library world.8

Crofts et al. [2003] provide an overview of an attempt by CIDOC (Comité Interna-

tional pour la Documentation) to harmonise efforts, under the Conceptual Reference

Model [Crofts et al., 2008].

4.2.2 RCAHMS Thesauri

When I started my research, RCAHMS did not use a single definitive thesaurus in the

NMRS collection but used terminology drawn mainly from the Thesaurus of Monu-

ment Types mentioned above, in an only partially standardised manner. My original

intention was to create a graph database based on TMT and using terms taken from the

RCAHMS database. Figure 4.3 shows an example of the graph generated. The subset

shown is the context of the two terms “cairn” and “chambered cairn” taken from TMT.

(The presence of two identical links between “chambered cairn” and “burial cairn”

reflects redundancy present in the source data which could easily be eliminated.)

4http://www.fish-forum.info/
5http://www.mda.org.uk/spectrum.htm
6http://www.getty.edu/research/conducting_research/vocabularies/
7http://www.loc.gov/rr/print/tgm1/ and http://www.loc.gov/rr/print/tgm2/
8http://www.loc.gov/cds/lcsh.html

http://www.fish-forum.info/
http://www.mda.org.uk/spectrum.htm
http://www.getty.edu/research/conducting_research/vocabularies/
http://www.loc.gov/rr/print/tgm1/
http://www.loc.gov/rr/print/tgm2/
http://www.loc.gov/cds/lcsh.html
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Figure 4.3: This graph was generated from the Thesaurus of Monument Types, for

terms “cairn” and “chambered cairn”.
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In 2008 RCAHMS implemented two formal thesauri for Scotland, the Monument

Thesaurus and the Object Thesaurus. These are based on the MIDAS Heritage stan-

dard and closely related to the Thesaurus of Monument Types and the Archaeological

Objects Thesaurus used in England. (There is also a Welsh version of the Monument

Thesaurus, used by RCAHMW, The Royal Commission on the Ancient and Historical

Monuments of Wales.) The thesauri are not unified because some terms are used in

one country only (such as “broch” in Scotland) and, more importantly, because the

same term may carry different meanings; for example “Bronze Age” refers to different

periods in England and Scotland. Nevertheless, there is considerable overlap between

the UK thesauri and, from the point of view of a notional end-user, their existence

promises to bring distributed querying of the UK archives that much closer.

The advent of this much more structured thesaurus necessitated a change of plan—

such a valuable new resource couldn’t be ignored—and Chap. 6 deals with the conver-

sion of the new RCAHMS thesauri to RDF graphs in their own right.

4.2.3 Thesaurus Relations

As Tudhope and Binding [2004] explain, a standard thesaurus comprises three core

relation types: Hierarchical, Associative and Equivalence. The Hierarchical relations

are “broader term” and “narrower term”, the Associative is “related term”, and Equiv-

alence is covered by “preferred term” and “non-preferred term” or “use” and “use for”.

There are also usually Scope Notes to give an explanatory gloss on each term.

Section 4.3 describes the set of relation types used in my annotated RCAHMS

corpus. The set includes two relations closely related to the second two thesaurus ones,

labelled respectively seeAlso and sameAs. Another relation (instanceOf) has some

resemblance to the “broader term” relation except that instanceOf relates instances to

their parent classes, not subclasses to super-classes. Thus, the extraction of relations

has some similarity to an ontology building exercise. It might be possible to use the

standard thesauri to validate relations extracted from text, rejecting ones which would

make the graph inconsistent, but this has not been tested.

4.3 Annotation

A collection of 1,546 documents from the RCAHMS dataset, containing 9,766 sen-

tences, was annotated with named entities (NEs) and relations. This section describes
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the entity and relations annotation used as the gold standard.

The document files are a randomly chosen subset of the text notes fields from the

RCAHMS database; one text field per file. They vary in length from a couple of lines

to about a page. The text is in the form of notes: only a minority of the snippets form

grammatical English sentences.

4.3.1 Named Entity layer

The entity classes are: ORG, PERSNAME, ROLE, SITETYPE, ARTEFACT, PLACE,

SITENAME, ADDRESS, PERIOD, DATE, EVENT. The SITETYPE, EVENT and

ARTEFACT classes are further divided into subclasses, as described in Sect. 4.3.1.1

below. Co-reference is treated as a relation between entities, as explained in Sect.4.3.2.

Entities may be nested, with a maximum of three levels—as in [[[Edinburgh]PLACE

University]ORG Library]ORG, for example. Nested entities are of particular importance

because there is almost always a text relation available between the outer and inner

entities.

4.3.1.1 Instances and Classes

Each text string marked as a named entity is normalised and will end up as an RDF

resource with a URI. For all but four of the entity classes this is all that is required,

because the members meet the usual definition of named entities, being distinct indi-

vidual instances, such as “Mr. J.D. Jamieson” (a PERSNAME) or “15 May 1968” (a

DATE). Four categories—SITETYPE, ARTEFACT, EVENT and ROLE—are differ-

ent, having members that are not unique instances in this way. Their characteristics are

discussed in Sect. 7.2. Although unorthodox in NER terms they are important to the

Tether design and can be treated in the same way as the other classes during the NER

procedure.

The members of SITETYPE are represented by strings like “chambered cairn”,

which may be generic or specific: compare “the Dwarfie Stane is a chambered cairn”

(generic) with “the chambered cairn is in Hoy And Graemsay” (specific). For the spe-

cific case, a unique instance identifier is needed, to distinguish this particular cham-

bered cairn from others. In the generic case, “chambered cairn” is the name of a

set—of entities that are chambered cairns. Therefore an extra class such as CHAM-

BERED+CAIRN is needed, which is a subclass of SITETYPE, and of which the specific

instance (say chambered+cairn123) is a member. Figure 4.4 illustrates the point. To
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sitename:dwarfie+stane

SITENAME

"Dwarfie Stane"

labelled

instanceOf

PLACE

"Hoy and Graemsay"

instanceOf

labelled

place:hoy+and+graemsay

"The Dwarfie Stane is a chambered cairn... ...the chambered cairn is in Hoy and Graemsay."

hasLocation

"chambered cairn"

CHAMBERED+CAIRN

SITETYPE

subclassOf

sitetype:chambered+cairn123

labelled

instanceOf
hasClassn

Figure 4.4: Example of relations from text, showing introduction of CHAMBERED+CAIRN

class as subclass of SITETYPE.

think of it in terms of relational algebra and data management, the strings associated

with SITETYPEs sometimes represent variables and sometimes values. In contrast,

PERSNAME strings (for example) are always values, of type PERSNAME. The im-

plication is that entities classified as SITETYPE should have a subclass identified.

These are based upon the Monument Thesaurus and the list includes several hundred

subclass labels.

ARTEFACT entities behave in the same way as SITETYPEs and are also sub-

categorised, as described in Sect. 4.3.1.6 below. In this case the Object Thesaurus is

the source for the subclass labels.

Much the same applies to EVENT entities, but the set of subclasses is much smaller:

{SURVEY, EXCAVATION, FIND, VISIT, DESCRIPTION, CREATION, ALTERATION}.

Each text string marked as an EVENT gets an identifier (say visit456) and is a member

of one of the EVENT subclasses, say VISIT. See Sect. 4.3.1.12 for further details.

The ROLE class is not subdivided in the annotation scheme but has the same char-

acteristic in that instances of it, such as “architect”, can identify either a specific indi-

vidual or a class of persons. Each time a new member of this category is identified in

the text, a new class automatically appears in the RDF schema.

4.3.1.2 ORG

The ORG class covers organisation names such as “RCAHMS”, “Ordnance Survey”,

“OS” etc. It is also used for named archive collections (usually identified in the text
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by the word “Collection” following the entity string) or architectural practices, such as

“Walker & Duncan”. In cases like this the component entities will also be tagged (as

nested entities), typically as PERSNAME.

4.3.1.3 PERSNAME

The PERSNAME class covers personal names and initials representing individuals,

such as “Vere Gordon Childe”, “Henshall”, “RJB” etc.

4.3.1.4 ROLE

This class is for the rôles of agents (usually PERSNAMEs), where these are specifically

mentioned, for example “architect”, “donor”, “Chief Executive”. In the archaeological

data it occurs only rarely.

4.3.1.5 SITETYPE

The SITETYPE class includes site classification terms like “chambered cairn”, “long

barrow”, “cist” and so forth. These are marked as SITETYPE entities and assigned to a

subclass selected from the Monument Thesaurus, as explained in Sect. 4.3.1.1. Where

the closest matching term is not obvious it is a matter of the annotator’s judgment to

pick the best thesaurus entry to serve as the subclass name.

4.3.1.6 ARTEFACT

This label covers terms denoting physical objects that have a significant relationship

with the parent site described by the document, yet are distinct from it rather than an

integral part. This includes archaeological finds such as “bronze axe”, “sword”, “pot-

tery shards” and so on. Despite the name, it is not restricted to man-made objects, but

includes items such as “human remains”, “dog bones”, “seeds”, etc. As a general rule

ARTEFACTs are portable items that could in principle be separated from the parent

site without losing their identity. Each ARTEFACT entity is given a class label from

the Object Thesaurus, in the same way that SITETYPEs are subclassified.

There are cases where the choice between SITETYPE and ARTEFACT is some-

what arbitrary—where there is a description of inhumations (human burials) for exam-

ple. If the parent site is a burial site, and the entity term refers to, say, a burial chamber

which is part of the site, SITETYPE is used. Where the term refers to the remains



Chapter 4. The Data 55

contained in a burial then ARTEFACT is used. There are cases where the annotator

has had to make a best guess.

4.3.1.7 PLACE

There are three locational entity classes: PLACE, SITENAME and ADDRESS. PLACE

is used for all administrative place names, such as regions, districts, parishes, counties

and countries. It includes the kind of names that might appear on an Ordnance Survey

map, such as “Dumfries and Galloway”, “River North Esk”, “Arthur’s Seat”.

4.3.1.8 SITENAME

The SITENAME class is used for terms that name a specific site, such as “Skara Brae”,

“Maes Howe”, “Stones of Stenness”.

4.3.1.9 ADDRESS

This class is intended to pick up terms that describe the location of a site, rather than

simply naming it. Part of the aim was to avoid cluttering the PLACE and SITENAME

classes with very local terms that are unlikely to be useful for querying the final graph.

For example, architecture texts often include entity terms such as street names, or

even postal addresses. In archaeological texts grid references are common, such as

“HU 3754 3380” and site references like “HU33SE 43”,9 and both will be marked as

ADDRESS. Names that are too local for the “map rule” applied to the PLACE class—

such as street names or house names—are classified as ADDRESS.

Inevitably, there are cases where the distinction between PLACE, ADDRESS and

SITENAME is somewhat arbitrary. For example, “Hill of Caldback” is a SITENAME

because it happens to be an archaeological site, but somewhere with no particular his-

torical significance, like “Blackford Hill”, would be a PLACE. A location like “Braes

of Doune” would be a PLACE, but “Liberton Brae” would be an ADDRESS in most

contexts (as it is the name of a road in the city of Edinburgh).

4.3.1.10 PERIOD

The PERIOD class covers terms such as “late Neolithic”, “16th Century”, “modern”

and so on. Terms identifying calendar dates come under DATE.

9“HU33SE” is the number of a particular OS map sheet, and “43” is the number allocated by the
NMRS for a particular site on that sheet.
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Surprisingly, given the domain, PERIOD terms are rare in the documents and this

class is a small one. The reason has to do with the unwillingness of professionals to

commit authoritatively to a particular period when this may be a matter of dispute,

combined with a reluctance to patronise expert readers—for whom most of the texts

were orginally written—by explicitly mentioning the period when it might be consid-

ered obvious. This is an example of where NLP techniques may be particularly helpful

to non-expert users, in gleaning every possible reference to a fundamentally important

piece of information that is largely absent from the searchable database fields. Speak-

ing as such a non-expert user myself, I experienced a Gestalt shift when I realised

that text snippets including “House 1; interior, detail of niche above bed . . . Interior of

house 7. Hearth and dresser.” were referring to a Neolithic site rather than a relatively

modern residential building.

4.3.1.11 DATE

This class covers date values, such as “1st Jan 1980”, “October 2002”, “1454”, etc.

Non-specific time references like “Sunday morning” or “the following week” are not

labelled, as they are not plausible query terms. For the same reason, time expressions

such as “11am” or “noon” are not included.

As with the locational classes above, but of less significance because these sets are

much smaller, there is overlap between DATE and PERIOD. The former is primarily

for calendar dates, but may include expressions like “1870–1880”; whilst PERIOD

would include terms like “late 19th Century”. It is a moot point which class fits “the

1870s” better, and the decision would be made by the annotator in context. However,

specific individual calendar dates are comparatively easy to recognise and these classes

could be further manipulated in a post-processing step if it proved useful at the graph

querying stage.

4.3.1.12 EVENT classes

This family of classes covers terms describing events in the history of a site, such as

visits, surveys and excavations. The subclasses of EVENT are: SURVEY, EXCAVA-

TION, FIND, VISIT, DESCRIPTION, CREATION and ALTERATION. The first five event

types listed are the ones most frequently encountered in this corpus.

The EVENT classes all pertain to n-ary relations that have to be translated into

simple two-place predicates. Each event typically has an object or “patient” (generally
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the site itself), an agent (the instigator of the event), a date, and possibly other attributes

or semantic roles (such as what was found, in a FIND event). These linked NEs are

picked up through the relation annotation, as described in Sect. 4.3.2 below.

In many cases the events are implied by the text, not explicitly mentioned. For

example, phrases like “Visited by OS, 1990” are common; clearly a visit took place,

but there is no noun phrase to label. In such cases the verb phrase (“Visited”, in this

case) is marked as a VISIT event entity. It is unusual, to say the least, to mark verb

phrases as named entities, but an entity string is required as the subject of the event

relations. (See also Sect. 7.2.)

In more detail, the different subclasses cover events as follows:

1. SURVEY: This is the appropriate category when the text contains references to

“plan”, “survey”, “measured survey”, “GDM survey”, “photographic record” or

suchlike. It implies a detailed examination of the site resulting in the production

of archive material.

2. EXCAVATION: Self-explanatory—there will be a reference to an excavation or

dig, i.e. an event in which the site was deliberately physically disturbed by an

archaeologist.

3. FIND: When an ARTEFACT entity occurs, there is typically an associated FIND

event, which will generally be expressed as a verb phrase such as “was discov-

ered”, “found” etc.

4. VISIT: This is a fairly unspecific event, when an organisation or person went to

the site but there is no reference to a survey or excavation.

5. DESCRIPTION: This is the most general category, used when it’s not clear that

the site was visited at all, but some agent is mentioned as having produced a

tangible description or depiction. It is also used for bibliographic references, as

follows. Where there is a suitable noun or verb phrase (as in “...described by

E Beveridge”) this is marked as the DESCRIPTION entity (“described” in this

case). Where there is only a free-standing bibliographic reference (such as “E

Beveridge 1911”) the whole string is marked as a DESCRIPTION, with nested

entities inside it (typically PERSNAME or ORG, and DATE).

6. CREATION: This category, and the next one, are uncommon in the RCAHMS

archaeological data that comprises most of the corpus, but was included to pro-

vide coverage for architectural data. A CREATION event refers to the original
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construction of a monument. In the case of a building, several agents may be

mentioned (architect, builder, patron, etc.) as well as a date. If there are multi-

ple rôles or dates, separate EVENTs are used. (See Sect. 4.3.2.7 and Fig. 4.6 for

details.) As with DESCRIPTION, where there is no obvious noun or verb phrase

(such as “built by”) available, a suitable string is identified for labelling, usu-

ally the compound of the entities participating in the event (e.g. the entire string

“Architect: William Adam 1723”).

7. ALTERATION: This covers events that change the physical character of a site sig-

nificantly, such as serious damage, extension, transfer of location, etc. Occasion-

ally a monument that no longer exists is recorded, and there may be information

on when it was destroyed. This is also classed as an alteration; the cases are too

rare to warrant a separate DESTRUCTION class.

4.3.2 Relations Layer

The relation annotation covers the NE layer just described. With one exception, the re-

lations are subject–predicate–object triples (or, equivalently, two-place relations

of the form predicate(subject, object)) where the subjects and objects are NEs. The

predicates are: instanceOf, sameAs, seeAlso, partOf, hasLocation, hasPeriod, even-

tRel. All except the last mentioned are triples as just described, but the eventRel rela-

tion has higher arity and is of the form: eventRel(eventType, eventPatient, eventDate,

eventAgent, eventAgentRole, eventPlace). The eventRel relations are subsequently

transformed into binary relations, but the arrangement was intended to make the anno-

tation process simpler.

The characteristics of the relations are as described below. Where possible relation

names from published ontologies are used (such as rdf:type, owl:sameAs), but the re-

naming is done in a later processing step and is not detailed here. The most common

domain and range of each relation is given but there are cases where they do not apply.

In linguistic terms the domain of a binary relation is typically the subject or agent in a

textual expression, and the range is the object or patient.

4.3.2.1 instanceOf

Domain: SITENAME

Range: subclasses of SITETYPE

Example: “Hill of Caldback is a chambered cairn”
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This relation indicates membership of a class. Those instanceOf relations which merely

show the type or class of every single entity string, such as “RCAHMS”–instanceOf–

ORG, do not have to be explicitly marked by the annotator but are added automatically

(from the NE class labels) in a post-processing step when the extracted relations are

converted to an RDF graph. (They become rdf:type relations.) In the annotation, the

instanceOf relation is mainly used as a convenient shorthand for a particular kind of

typing relation that becomes hasClassn (“has classification”) in the RDF graph. This

indicates membership of a class but is labelled differently to distinguish it from the

less interesting rdf:type relations, because hasClassn is used to indicate multiple in-

heritance, or membership of a different class from what the NE label indicates. It is

most likely to occur with membership of the SITETYPE subclasses, where the SITE-

TYPE entity is used in a generic sense as was discussed in Sect. 4.3.1.1 and illustrated

in Fig. 4.4 where Dwarfie Stane (a SITENAME instance) is classified as a particular

kind of SITETYPE, a CHAMBERED+CAIRN.

4.3.2.2 sameAs

Domain: any NE instance

Range: NE instance of the same class

Example: “...described by A. S. Henshall, 1985. Henshall also says...”

This is used for coreference. Any number of entities may be marked as belonging to

the same coreference set. They are typically entities likely to feature as nodes in the

final graph, i.e. as the source or target of a binary relation.

Note that the relation applies to instances not classes. For the SITETYPE class, NE

strings such as “chambered cairn” in “Hill of Caldback is a chambered cairn” will have

a unique label assigned, such as chambered+cairn123, as has already been discussed

(in Sect.4.3.1.1). If the same entity is referred to elsewhere in the text as a “chambered

round cairn” (perhaps chambered+round+cairn456) the two nodes will be linked by a

sameAs relation. This does not imply that in general a chambered cairn is identical

to a chambered round cairn, because those are class terms and the two classes are not

equivalent.

4.3.2.3 seeAlso

Domain: any NE instance (often SITENAME or ADDRESS)

Range: often an NE instance of the same class
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Example: “See also HU33SE 43 excavated by Parry”

This is intended for occasions when two entities are described as being closely related,

or are contrasted with each other. It is also used when it seems sensible to link two

entities, but the relationship between them is not in the specified set, such as a family

tie (parent, child, sibling, etc.) between two PERSNAME entities, or some noteworthy

association between, say, a SITENAME and a PERSNAME (such as “Sir Walter Scott

lived here”). The relation is bi-directional, so the order of subject and object is not

significant. However, for examples like the one given above, the convention followed

is that the current site (the subject of the text) is the subject and the entity pointed at

(in this case “HU33SE 43”) is the object.

The example shown illustrates a potential problem with the entity typing. The

string “HU33SE 43” is clearly an ADDRESS by the rules defined above, yet in the

context of this relation it should perhaps take the role of a SITENAME, in a peer-to-

peer relation with the SITENAME that the document is about. Inter-annotator agree-

ment (IAA) figures give an indication of how uncertain entity typing is for a particular

corpus but in cases like this one all annotators would presumably agree that “HU33SE

43” is an ADDRESS (given the rules provided), i.e. there would be a high level of

agreement despite the class arguably being wrong in this context. The solution applied

is to allow sameAs to relate NEs of different classes when necessary.

4.3.2.4 partOf

Domain: SITETYPE

Range: SITETYPE or SITENAME

Example: “A farmstead comprising one unroofed building, two

roofed buildings and one enclosure, and a head-dyke”

This is for part-whole relationships, such as when a complex site is described in terms

of its components. In the example given, the “farmstead” SITETYPE is the whole, and

“unroofed building” “roofed buildings”, “enclosure” and “head-dyke” are the parts.

Each of them is a SITETYPE NE.

4.3.2.5 hasLocation

Domain: SITENAME, SITETYPE, ORG, PERSNAME, ARTEFACT

Range: usually PLACE or ADDRESS; may be ORG (see below)

Example: “...on the north side of the road leading to Bannaminn”
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This relation covers cases where an entity is located at or in the vicinity of a PLACE

or ADDRESS. In the case of rather vague descriptions like the one in the example,

the consideration is whether knowing the location mentioned would help someone to

find the entity. (In this case it would.) Negative examples (if they occur), such as

“a long way from Edinburgh”, are therefore ignored. For ORGs and PERSNAMEs

the relationship is typically with their addresses; for ARTEFACTs it is often with the

museum holding them. If a PERSNAME is mentioned as belonging to an ORG, this is

marked as hasLocation.

4.3.2.6 hasPeriod

Domain: SITENAME, ARTEFACT

Range: PERIOD

Example: “a late Viking potsherd”

This is a straightforward link to PERIOD NEs from the NE they apply to.

4.3.2.7 eventRel

Event relations connect a set of entities taking part in one of the events defined as

subclasses of EVENT in Sect. 4.3.1.12. They are converted to RDF binary relations in

a later processing step. The tuple making up the relation is of the form: (eventType,

eventPatient, eventDate, eventAgent, eventAgentRole, eventPlace).

Figure 4.5 shows the tuple for the example text “Dwarfie Stane: visited by OS, May

1968”, and how it can subsequently be translated into a graph of two-place relations.

In more detail, the relation arguments are:

1. eventType: one of the set {SURVEY, EXCAVATION, FIND, VISIT, DESCRIPTION,

CREATION, ALTERATION}; required, and occurs once.

2. eventPatient: the object undergoing the event, filling the direct object position

for active verbs; null if no object mentioned, and can occur only once.

3. eventDate: the DATE when the event took place; null if no date mentioned, and

can occur only once.

4. eventAgent: the PERSNAME or ORG that was the instigator of the event; null

if no agent mentioned, and can occur only once.
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org:os

SITENAME ORG

DATE
EVENT

"Dwarfie Stane"

subclassOf
eventDate

"OS"

eventAgent

eventPatient

"May 1968"

date:may+1968

sitename:dwarfie+stane

event relation tuple: (VISIT, sitename:dwarfie+stane, date:may+1968, org:os, , )

"Dwarfie Stane: visited by OS, May 1968."

SITENAME VISIT ORG DATE

EVENT

subclassOf

sitename:dwarfie+stane org:os date:may+1968sitename:dwarfie+stane

instanceOfinstanceOf instanceOf instanceOf

instanceOf instanceOf

instanceOf

instanceOf

labelled
labelled

labelled

VISIT

visited22

visited22

Figure 4.5: Example event relation tuple, and its translation to RDF graph format

5. eventAgentRole: the ROLE of the eventAgent, where this is explicitly mentioned

(e.g. “architect”). In some events, such as CREATION, there may be multiple

PERSNAME agents playing different rôles (architect, designer, etc.). In these

cases, each eventAgent–eventAgentRole pair is put in a separate eventRel in the

annotation. See Fig. 4.6 for an illustration.

6. eventPlace: where the event took place, if this is obviously part of the relation; it

is useful where some location other than the current SITENAME is mentioned;

optional and non-repeating.

4.3.3 Inter Annotator Agreement

Inter Annotator Agreement (IAA) is a measure of how closely separate annotators

agree when they independently mark up the same data. It indicates how well-defined

the tasks are, and hence how well a machine learner can be expected to perform. IAA

was measured here by having a second annotator mark up a randomly chosen set of

100 documents from the full corpus of 1,546. The results from the second annotator

were then evaluated against the first set—considered the gold standard—and marked

for precision, recall and balanced F-score (see footnote on page 18 for a definition of
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DATE

PERSNAME

"John Baxter"

date:1723

"1723"

"Architect: William Adam 1723. John Baxter builder"

date:1723

persname:william+adam persname:john+baxter

event10 event11

"builder"
eventAgent

architect5 builder27

architect5 builder27

"William Adam"

"Architect"
ROLE persname:john+baxterpersname:william+adam

EVENT

CREATION

eventDate

eventAgentRole

eventAgentRole

eventDate

eventAgentevent10

event11

Figure 4.6: A CREATION event, split into two events, to cater for multiple agents and

rôles. (Only the key edge labels are shown.)

F-score) using the freely available CoNLL scorer.10

4.3.3.1 Named Entities

In order to measure named entity IAA the second annotator started with the documents

in exactly the form they had been presented to the first annotator. To ensure all levels

of nested entity were captured (and to correspond with the results shown in Chap. 7),

the evaluation was done over multi-word tokens—these are explained in Sect. 7.3. The

results are shown in Table 4.1—the overall agreement was 76.86%. The last column

of the table is a count of the number of entities found in each class. The other figures

are all percentages.

Probably because the annotators had more linguistic knowledge than the person

who prepared the instructions for the task (me), there was some confusion about the

inclusion of determiners as part of entity strings. It appears to be standard practice,

where the text contains a definite description such as “the henge” referring to a par-

ticular henge, to include the article as part of the entity string. Where the reference

10CoNLL is the Conference on Natural Language Learning. A perl script is provided by the organisers
for scoring machine learning tasks in a standardised way.
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NE Class Precision Recall F-score Found

ADDRESS 63.17 88.01 73.55 372

ARTEFACT 40.83 47.57 43.95 120

DATE 99.69 99.37 99.53 318

EVENT 71.77 56.82 63.42 209

ORG 99.53 95.48 97.46 212

PERIOD 83.72 87.80 85.71 43

PERSNAME 95.71 95.71 95.71 233

PLACE 86.42 82.84 84.59 162

ROLE 0.00 0.00 0.00 0

SITENAME 71.05 25.84 37.89 76

SITETYPE 66.17 76.49 70.96 600

UNASSIGNED 0.00 0.00 0.00 21

Average 76.58 77.14 76.86 2,366

Table 4.1: Named entity IAA results on “WithDT” data, i.e. without processing to remove

determiners that prefix NE strings, as in “the henge”.

is indefinite or generic any determiner present (e.g. in “a henge”) is not included. For

this annotation determiner prefixes for definite references (such as “the”, “this”, “each”

etc.) were not wanted in the entity string, as the destination of each NE was a resource

node in the RDF graph, and stray particles attached to the front would be in the way.

The distinction between specific and generic—or between instances and classes, to

think of it in RDF terms—is handled by typing relations as described in Sect. 4.3.1.1

rather than by syntax within the NE string. However, the instructions were unclear on

this point and as a result the handling of determiners at the front of NEs is inconsistent

in the annotation. To deal with this a second IAA comparison was made, after strip-

ping determiner prefixes throughout both sets. The results are shown in Table 4.2 and

indicate an improved agreement, to an overall figure of 78.09%.

This issue affects all of the machine learning results and the sections dealing with

them (see Chap.7 and 8) make clear whether the scores are over the “WithDT” set that

includes NEs where the annotator has included a determiner prefix, or the “NoDT”

set where they have all been stripped. The “NoDT” set was preferred, as being less

ambiguous, and is the “default” that should be assumed wherever the context does not
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NE Class Precision Recall F-score Found

ADDRESS 63.44 88.39 73.87 372

ARTEFACT 43.33 50.49 46.64 120

DATE 99.69 99.37 99.53 318

EVENT 71.77 56.82 63.42 209

ORG 99.53 95.48 97.46 212

PERIOD 86.05 90.24 88.10 43

PERSNAME 96.14 96.14 96.14 233

PLACE 87.04 83.43 85.20 162

ROLE 0.00 0.00 0.00 0

SITENAME 72.37 26.32 38.60 76

SITETYPE 69.67 80.54 74.71 600

UNASSIGNED 0.00 0.00 0.00 21

Average 77.81 78.37 78.09 2,366

Table 4.2: Named entity IAA results after removal of prefixing determiners, ie on the

“NoDT” data.

make it explicit.

Changes to the source data are not made lightly, as inevitably there were undesir-

able as well as desirable results. The determiners were stripped out by looking for a

POS (part of speech) tag of “DT” at the start of NE strings—but of course the POS

tags had been allocated automatically by a previous step in the processing pipeline and

were not always correct. In some cases an initial “A” (wrongly tagged as DT) was

removed from the beginning of personal names (such as “A Mack”). In other cases

strings of length zero started appearing, where referring pronouns—tagged by the an-

notators as belonging to their referent’s entity class, as in “...this stood...”, where “this”

is a SITENAME—were POS tagged in error as DT and hence removed. (This was

easily fixed by leaving single word NEs unchanged.) Overall, however, the errors in-

troduced seemed clearly outweighed by the ambiguity removed, as evidenced in the

improved IAA figures.

For the SITETYPE class, the removal of ambiguity over inclusion of determin-

ers makes a big difference—almost 4%—as references like “the henge” are common.

Similarly, there is a marked improvement in agreement for PERIOD, where strings
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are often prefixed with a definite article (“the Neolithic”, “the 18th Century” and so

forth) which the annotators sometimes included and sometimes did not. In other cases

(DATE, EVENT, ORG) the change made no difference at all because any ambigui-

ties here—and clearly the EVENT class is hard to define, having an agreement score

of only 63%—resulted from other factors. Some of the classes (DATE, ORG, PER-

SNAME) produced almost perfect agreement between the annotators and should be

correspondingly easy for the machine learners to model. These are the classic NE

classes for which results in the literature are generally very good. (The scores for these

classes given in Table 7.3, on page 124, are all high.)

Other classes, that are specific to this domain and are of especial importance for

retrieval, are sadly less easy to define. The SITENAME class is particularly disap-

pointing and would bear further study—it might be that the definition in the annotation

guidelines could be pinned down further. The very low Recall score (26%) suggests

that the second annotator may have had a more cautious approach to identifying mem-

bers of this class and, as is discussed in Chap. 7, the IAA figures for this class may

be unreliable. The ARTEFACT class also seems to be ill-defined, and the results in

Table 7.3 bear this out.

4.3.3.2 Relations

To measure IAA for the relation extraction task the second annotator was presented

with the same 100 documents, this time with the named entity layer from the first

annotator already in place, but with no relations between them. This enables a valid

comparison of relations alone, without the complication of disagreement about the

named entities. (The second annotator did not see the labelled layer until after having

completed the NE annotation task on unlabelled texts.)

The determiner issue does not affect results here as the relations are marked be-

tween already defined entities. The IAA figures given in Table 4.3 (and the subse-

quent tables) were generated over the preferred “NoDT” set (determiners at start of

NE strings removed). The overall F-score was 82.51%—much higher than expected.

Before measuring IAA, I had been concerned that the relation extraction problem

was not very well defined: in any piece of text there are a myriad possible relations at

different levels of detail and the chances of two humans picking the same set seemed

small. At the same time it would surely be foolish to suggest that one of them was

“wrong” when they disagreed. Intuitively this still seems a significant issue for the

relation extraction task, and one would think the standard evaluation techniques inade-
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Relation Name Precision Recall F-score Found

eventAgent 99.40 99.20 99.30 2,007

eventAgentRole 0.00 0.00 0.00 0

eventDate 95.31 96.25 95.78 512

eventPatient 77.86 78.46 78.16 131

eventPlace 80.77 72.41 76.36 26

hasLocation 83.37 87.19 85.24 890

hasPeriod 39.02 80.00 52.46 41

instanceOf 16.13 71.43 26.32 31

partOf 39.09 52.74 44.90 197

sameAs 89.61 63.91 74.61 3,446

seeAlso 37.50 13.64 20.00 8

Average 89.68 76.40 82.51 7,289

Table 4.3: IAA results for relations that can span whole documents (i.e. not just intra-

sentential). These are the reference figures used for the RE work.

quate. However, it’s difficult to argue with the actual IAA figures, which suggest there

is less uncertainty in the task than I had supposed.11

To take an example where disagreement was expected: the RCAHMS data abounds

with locational information and it seemed unlikely that anyone would have the pa-

tience, or consider it worthwhile,12 to mark every single one of them, as they can be

of the form: “site A is at B, near C, grid reference D, less specific grid reference E...”.

However, either the annotators are exceedingly patient people (very likely true) or this

kind of problem is less extensive than random examination of the text suggests—or

both. In any case, both precision and recall for the hasLocation relation—one of the

commonest relation, with 890 instances found in this sample—are gratifyingly high.

A few categories in Table 4.3 (instanceOf and seeAlso especially) bring the average

agreement down from the extremely high values elsewhere. This suggests the possibil-

ity of taking these categories out to deal with separately in the relation extraction task.

However, the frequency counts are very low for this sample of data and one should not

read too much into the F-scores. For the instanceOf and hasPeriod relations we appear

11I double-checked my IAA measurements; but in any case, a mistake in the process would be un-
likely to improve the match between the two datasets, rather the reverse.

12For me, “worthwhile” means “likely to improve retrieval, ultimately”.
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to have a similar issue to that noted in Sect. 4.3.3.1 above for the SITENAME entity:

one of the annotators is much more cautious than the other for these labels. In this case

it is the first annotator who has apparently marked far fewer relations, as shown by the

very low Precision score of 16.13% for instanceOf—the second annotator has found a

lot of instanceOf relations that the first did not. This bodes ill for successful training to

find instanceOf, as it suggests the gold standard is unreliable on this relation. On exam-

ination, it turned out that the first annotator used this relation very sparingly, marking

only 165 instances of it in the entire annotated corpus. (See Chap. 8 for discussion of

the eventual results for relation extraction.)

This raises an interesting point about whether the second annotator’s relations

should be added to the gold standard set or not. Since there are relatively few—only

100 documents were used—it probably makes little difference here, but there is a prin-

ciple behind the question. For relation annotation especially, where it seems unlikely

that one or the other set is “wrong”, it is tempting to combine the efforts of different

annotators. Where they find relationships between different pairs of entities it may

mean they had different contexts in mind—it’s arguable that the existence of a link be-

tween two entities presupposes a particular context or scenario: in some cases they will

be strongly related and in others very weakly. As the ultimate aim here is to improve

retrieval in general, without knowing in advance what the user’s question is, it surely

makes sense to include as many different viewpoints as possible. In an RDF graph

different chains stretching out from the same node can co-exist, and different queries

will follow different paths—to quote Berners-Lee [1997], “Anyone can say anything

about anything”. Where the annotators agree on a pairing of two entities but label it

differently, it would be useful to inform the learner that the label is in doubt though the

pairing is strong. Furthermore, increasing the range of examples will tend to reduce

any overfitting problems. For all these reasons it seems intuitively sensible to add the

second annotator’s relations into the mix. Assessing the result is problematic though,

as one effectively produces two different gold standards to evaluate against and it’s

difficult to tell which one is actually better. In the event, for practical reasons, only the

first annotator’s relations were used for training models.

For comparison purposes in the relation extraction experiments (see Sect. 8.2.1)

the IAA was measured for just those relations that hold between entities in the same

sentence. Table 4.4 shows the very high agreement between the annotators on these

relations, which represent less than 60% of the total. Agreement is very high overall,

especially in the event and hasLocation categories, and the key point to notice is that
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Relation Name Precision Recall F-score Found

eventAgent 99.75 99.55 99.65 2,000

eventAgentRole 0.00 0.00 0.00 0

eventDate 97.99 99.19 98.58 497

eventPatient 93.52 93.52 93.52 108

eventPlace 91.30 84.00 87.50 23

hasLocation 94.33 95.69 95.01 706

hasPeriod 75.00 83.33 78.95 20

instanceOf 55.56 83.33 66.67 9

partOf 82.50 84.62 83.54 80

sameAs 89.01 54.00 67.22 91

seeAlso 0.00 0.00 0.00 1

Average 97.23 95.76 96.49 3,535

Table 4.4: IAA results where the relations are restricted to connecting NEs within the

same sentence, i.e. intra-sentential relations.

Precision Recall F-score Found

relation present 90.33 76.95 83.11 7,289

Table 4.5: IAA result for unlabelled relations, where the NE pairs are classified only as

related or unrelated.

well over half of these intra-sentential relations are all of one type: eventAgent. This

is probably because of the way the RCAHMS texts very frequently include notes of

surveys, visits or similar events in a standardised form such as “Recorded by OS (RL)”,

where “OS” is “Ordnance Survey” (an organisation, subclass of agent) and “RL” is the

initials of an individual (a personal name, also a subclass of agent).

Finally, IAA was calculated on “unlabelled” relations, without distinguishing the

different relation types. This figure, shown in Table 4.5, is used (in Sect. 8.2.3) to see

whether there is issue over it being clear that two entities are related but less clear how

the relationship should be categorised. Over the same 7,289 relations as in Table 4.3

the agreement between the annotators was only marginally improved by disregarding

the labels, indicating that classification is not a difficult decision.
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4.4 An Emerging Field

Cultural heritage material presents an interesting set of characteristics—interesting that

is to the NLP researcher. There are patterns to model and exploit and there are also

many challenging irregularities such as mis-spelt words, specialist terminology, lack

of syntax and variation in document size. At the same time the practical problem now

faced by publicly funded archives—in meeting high expectations from their funding

masters and the tax-paying public—has become urgent. For all these reasons, enhanc-

ing access to cultural heritage material is emerging as a field in its own right within the

broad NLP research area [van den Bosch et al., 2007, Larson et al., 2008].

One of the claims of this thesis is that the Semantic Web provides tools uniquely

well-designed for marrying NLP techniques with traditional data management. Almost

since the first efforts at computerisation, cultural data has been held—and still today

is almost invariably held—in relational databases (RDBs). The RCAHMS data is no

exception, being managed within an Oracle database. Yet data of the type described

above fits rather poorly in RDBs, which are at their best when handling datasets con-

taining short, fully-populated fields. (Indeed, Ted Codd’s original relational model

[Codd, 1970] did not allow for null values, and there has been a long-running argument

about whether allowing them within the classic “12 rules”13 was a mistake [Codd and

Date, 1993].)

The reason for the dominance of RDBs is simply that there has been nothing more

suitable available. Untidy text-rich data has been squashed willy-nilly into RDBs as

it has to be held somewhere. The RCAHMS data, as it happens, was originally rather

daringly placed in what was then (in the late 1980s) a state of the art Information Re-

trieval system named STAIRS (Storage and Information Retrieval System, see [Poor,

1982]), that came out of IBM’s research labs. It was soon transferred to Oracle be-

cause the STAIRS system was only for retrieval. For constantly evolving data in a

living archive, update mechanisms are essential, and updating STAIRS data was not at

all easy. This indeed is a major weakness of Semantic Web tools to date: altering the

graph is not yet catered for. The standard language to use to interact with RDF graph

data is SPARQL, which does not yet include the Data Manipulation commands of SQL

for changing the content of tables, let alone the Data Definition tools that change the

schema. On the face of it, this makes it unattractive to cultural heritage users for whom

retrieval and update are equally vital. Of course, the technique of updating in one tool

13The “12 rules” list has 13 entries, the first being numbered zero.
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(an RDB perhaps) and exporting regular snapshots elsewhere for retrieval (to RDF say)

is much more manageable with faster modern computers than it was 20 years ago. In

any case, if the Semantic Web fulfils even a portion of the hopes entertained for it this

gap will certainly be filled in the future. There are several proposals for adding update

commands to SPARQL (see, for example, Seaborne and Manjunath [2008]) though

none has yet achieved W3C Recommendation status.

4.5 Discussion and Summary

It seems safe to assert that techniques and data are inextricably intertwined. At a

simple level this can be illustrated by the same NLP tool (a named entity recogniser,

say) having much greater success with data from one domain than from another, but

the point is not just about tuning the model. Meaning depends on context.14

Truly generic computerised tools—that are independent of context—are well be-

yond our reach at present, so this chapter has followed the first rule of information

management: “Know thy data”. I have explained the particular characteristics of the

RCAHMS data in some detail, because they will affect how the practical techniques

covered from here onwards will perform. We have also seen the domain vocabularies

that are available, as these go some way to providing context for individual data items.

The annotation of the gold standard data, and the assessment of Inter Annotator

Agreement over it, have been covered in depth. The annotation phase is not just about

building a dataset for formal evaluation work, but forms the basic foundation for many

of the later stages because it determines the entities and relations to be found and hence

the RDF schema design for the text-derived graph. In turn this schema is deliberately

close to the one derived from relational data.

In this chapter and the previous one I have presented the general research frame-

work and the local data environment in which the Tether system is placed. This com-

pletes the background context and we are now ready to move on to the practical exper-

imental phases, starting with the conversion of structured relational data.

14“I love Java” is, for practical purposes, meaningless out of context. At first glance a phrase like “I
cannot see what flowers are at my feet” is meaningful enough, but the amount of information conveyed
depends on whether the recipient notices the metre or, further, slots the data into the context of Keats,
his poetry and (another step) his death. (The line is from Ode to a Nightingale by John Keats, who
had already contracted tubercolosis.) We could go further, with the separate associations of “flowers at
my feet”. Coping with context and recognising the layers of meaning and associations that surround
even the simplest statements is very difficult indeed, but is perhaps the Holy Grail of the Semantic Web
enterprise.
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Relational Database to RDF

Conversion

It is sometimes suggested1 that, for the Semantic Web to become mainstream, the

priority is simply to generate more RDF data. This explains the interest there is in

automatic tools that will take a relational database and turn it into a graph of RDF

triples, either virtual or instantiated. There are many such systems available or in de-

velopment, and examples are described in Sect. 5.1, which also explains how a simple

automatic conversion process works.

Section 5.2 argues that the basic process is wasteful, cluttering the RDF graph

with unnecessary triples, and limiting the future usefulness of the generated RDF. The

pitfalls are examined one by one and a checklist of recommendations is given. The

arguments here apply to any RDB to RDF conversion.

The next section (5.3) describes the design of Tether. This consists of a small up-

per schema, intended to be generic for any cultural heritage dataset, with a customised

lower schema that covers the particular requirements of the RCAHMS data. I argue

that it is worth the effort of incorporating a careful manual RDF design step in order to

make subsequent retrieval easier. Just as the relational database (RDB) was painstak-

ingly designed, so should its RDF counterpart be. The implications for query access

are discussed in Sect. 5.5 and the statistics for loading the RDF data into the Jena and

AllegroGraph triple stores are reported in Sect. 5.6.

The combination of methods from Sect. 5.2 and 5.3 result in a graph of 21 million

triples which, as is explained below, is only one-tenth the predicted maximum size

1There has been much informal discussion on the PlanetRDF blog (http://planetrdf.com/) on
how to make progress towards “critical mass” when Semantic Web use will expand explosively. See
also the aims of the Billion Triples Challenge, at http://challenge.semanticweb.org/.

72

http://planetrdf.com/
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siteNo name
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residential

Jamie’s Neuk

Dirleton Castle Dirleton defence1

@prefix   rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .

@prefix       :  <http://www.ltg.ed.ac.uk/tether/> .

:Site

rdf:type

"Dirleton Castle"
:name

"1"

:SiteNo

"Dirleton"

:parish"defence"

:classification

rdfs:Class rdf:type

Figure 5.1: Translation of a relational table tuple to RDF, following the “Table to Class;

Column as Predicate” procedure and using bnodes.

for the RCAHMS dataset. Since every redundant triple eliminated leads potentially to

better performance, this is a very significant saving.

5.1 RDB to RDF Conversion—The Basic Process

There is considerable interest in RDB2RDF conversion at present, and the W3C has re-

cently created an Incubator Group to work on it.2 The basic process is straightforward

and is illustrated in Fig. 5.1, which shows a much simplified version of the RCAHMS

database SITE table. Each database tuple (or table row) becomes a cluster of triples

grouped around a bnode (RDF blank node) whose type (implemented as an rdf:type

property) is a class (rdfs:Class) corresponding to the table name. There is one triple

for each cell in the table, the predicate being derived from the column name and the

object being the cell value. Hence this conversion is sometimes called “Table to Class;

Column as Predicate” transformation.

The use of bnodes is an immediately contentious issue, to which I will return in

Sect. 5.2.6. The method illustrated in Fig. 5.1 is often known as “duck typing”: the

bnode has the properties of a Site (viz. siteNo, name, parish and classification) so

let’s call it a Site. In fact, for reasons explained below, I advocate using direct typ-

2http://www.w3.org/2005/Incubator/rdb2rdf/

http://www.w3.org/2005/Incubator/rdb2rdf/
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ing instead, by moving the database primary key attribute (siteNo in Fig. 5.1) into the

position of the bnode, with a URI such as :Siteid#site1,3 and putting it in a new class

named Siteid. Thus it is not the database table which corresponds to an RDF class, but

the table’s primary key.

Note that, already, we may have compromised a fully automatic procedure. The

primary key has to be identified, which requires knowledge of the relational schema.

The key may be specified as part of the table definition, and hence accessible to soft-

ware, but this is not mandatory. (It is not so specified for most tables in the RCAHMS

dataset for example, as they were created many years ago, when SQL was less com-

prehensive.) If no suitable primary key exists, as is perfectly possible (in the limit, the

entire tuple may constitute the unique key), then one may be generated to use in the

RDF graph. Recognising that this is necessary also requires schema knowledge.

Using the primary key from the RDB perhaps needs further justification: it is RDB

metadata, not “real content”, and arguably has no place in the RDF graph. Why not

take the site name (“Dirleton Castle”) instead? In the real world, the other attributes

are properties of the site not of the siteid. However, the site name may not be unique

(there are six different “Lochan Dubh” sites in the RCAHMS database, for instance),

and attributes like parish and site classification need to be tied to a separate, unique,

node to prevent their erroneous merger.

Using identified nodes instead of bnodes, the basic process is that each RDF triple

consisting of subject node, predicate (or property) arc and object node:

subject object
predicate

is derived from the database as a triple where the “attribute” is a URI derived directly

from the database field or column name (sometimes called “Column as Predicate”

mapping), and the “value” is the content of the field (or table cell):

row_key value
attribute

The term “row key” is used here to avoid confusion with “rowid”, which is used in

most relational databases for the hidden identifier used by the data dictionary, and not

for the primary key chosen by the database designer. In the basic translation procedure

the value is represented as a literal.

3I am following the usual convention of abbreviating URIs through prefixes, so :Siteid#site1 repre-
sents “〈http://www.ltg.ed.ac.uk/tether/Siteid#site1〉”, using the prefix shown in Fig. 5.1. The abbrevia-
tion :Siteid#site1 is known as a CURIE or “Compact URI” (see http://www.w3.org/TR/curie/).

http://www.w3.org/TR/curie/
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Taking the triple from Fig. 5.1 that is based on the second cell value from the rela-

tional table, we have:

"Dirleton Castle":Siteid#site1
:name

It is worth stressing the qualitative difference between :name and “Dirleton Castle”.

However the predicate URI is derived, whether by the “Column as Predicate” method

or as described in Sect. 5.2 below, it is metadata and its precise form is ultimately at

the whim of a schema designer. The object node however, whether a literal as here or

a URI as suggested below, contains genuine content data that must be preserved.

The procedure outlined corresponds to the approach described by Berners-Lee

[2006], where database attributes are translated to RDF property arcs with full prove-

nance information about their database source. The property URI encodes exten-

sive metadata about where the value in the object node originated. For example,

“http://www.acme.com/mycat/schema1/empdb/emps/shoe” would be a property cor-

responding to the shoe size column of the employee table in a database called “em-

pdb”, held within a particular catalogue of schemas. Pursuing the same example from

Berners-Lee, the source node with this property will identify a specific database cell,

as in “http://www.acme.com/mycat/schema1/empdb/emps/rowid=123;col=shoe”.

There is a growing number of automatic conversion tools that work on these prin-

ciples, such as D2RQ [Bizer and Cyganiak, 2007], Dartgrid [Wu et al., 2006], Dan

Connolly’s “dbview” program,4 R2O [Barrasa et al., 2004] Triplify,5 and DB2OWL

[Cullot et al., 2007] with more or less scope for customisation by the user in each case.

The earliest tools attempted to perform the RDB2RDF transformation with minimal

user intervention, but there is a growing awareness of the need to tailor the process.

The mapping to RDF does not necessarily have to be instantiated from the source

RDB. Instead a virtual graph may be constructed, saving space and ensuring data cur-

rency, at the expense of increased processing cost at query time. Whether the RDF

graph is physically instantiated or not, the RDB2RDF principles are the same. Squir-

relRDF6 and R2D27 (a sister project of D2RQ) are examples of tools that construct

a graph “view” of a relational database, in effect allowing SPARQL queries to be run

instead of SQL ones. The D2RQ and Virtuoso8 [Virtuoso, 2006] tools give the user the
4http://dig.csail.mit.edu/2006/dbview/dbview.py
5http://triplify.org/About
6http://jena.sourceforge.net/SquirrelRDF/
7http://aksw.informatik.uni-leipzig.de/Projects/R2D2
8Virtuoso, from OpenLink Software, is a comprehensive server platform for integrating SQL, RDF

and other data formats. It includes conversion utilities.

http://dig.csail.mit.edu/2006/dbview/dbview.py
http://triplify.org/About
http://jena.sourceforge.net/SquirrelRDF/
http://aksw.informatik.uni-leipzig.de/Projects/R2D2
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choice of an instantiated graph or a virtual one.

One of the key issues is how to generate suitable URIs for the RDF “resources”.

The subject and property of an RDF triple must both be resources with URIs, whilst

the object may be either a URI or a literal string. If the object is a literal, as in the

basic translation process described above, it automatically becomes a “leaf” node at

the edge of the RDF graph, as it cannot be a subject node without a URI. (See [Manola

and Miller, 2004] for full treatment of RDF syntax.) Generation of URIs is a vexed

question that I will return to in Sect. 5.2.2 below.

In the examples looked at so far, the tacit assumption is that the RDB remains the

“master” copy of the data and the RDF is a derived copy, created (either physically

or as a virtual view) to permit Semantic Web query applications to reach the data.

This is a reasonable assumption whilst tools for updating and maintaining RDF are in

their infancy, but presumably this is temporary. In the long-term we should surely be

planning for RDF datasets that don’t need to carry their life history in this way, any

more than an RDB designer expects to record in every field information about the flat

files, spreadsheets, hierarchical or network databases, or manuscript notebooks, that

held each piece of data before it was moved to a relational database. Ultimately, each

RDF predicate will represent a specific binary relation that can exist between resources

anywhere, irrespective of the vagaries of a particular relational schema (which may,

after all, change). The view one takes on this question makes a big difference in the

URI generation problem, as discussed below.

5.2 Shortcomings of the Basic Process

Having outlined the basic mechanism for RDB2RDF conversion, I will now explain

each of the points at which the Tether conversion process differs from that given above.

The way entity relationships are designed, the way tables are joined, the way data is

put into Normal Forms—these and other design aspects are all tailored for relational

databases and do not necessarily translate into efficient RDF graphs. My contention is

that, just as good entity-relationship design is a sine qua non for constructing a flexible

and long-lasting RDB application, so an RDF graph cannot be expected to function

well unless care and thought go into its schema design.
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5.2.1 Relational Joins

In a relational database, one of the designer’s aims is to avoid redundancy by elimi-

nating dependencies between attributes, or “normalising” the relations. In a nutshell,

a normalised relation (or table) is one where each attribute depends on the primary

key alone, not on any other attribute or group of attributes. (See, for example, [Ra-

makrishnan and Gehrke, 2000] or [Date, 2003] for full treatment of this topic.) In

practice, deliberate de-normalisation is not uncommon in real databases, generally for

performance reasons. Full normalisation typically forces one to create a large num-

ber of separate tables, which have to be joined at query time; it is often preferable to

reduce the number of joins by accepting a certain amount of duplication. Similarly,

it may sometimes be worth holding a calculated field as a fixed attribute, instead of

working it out on demand each time. Consider, for example, the following snippet

of RCAHMS locational data, expressed as row key–attribute–value triples in N3

format9 (omitting URI prefixes for simplicity):

site8864 ngre “2902” .

site8864 ngrn “7390” .

site8864 mapno “ND27SE” .

site8864 region “HIGHLAND” .

site8864 district “CAITHNESS” .

site8864 parish “CANISBAY” .

The mapno value, “ND27SE”, is not independent of the ngre and ngrn fields

(“2902” and “7390”), and could be calculated from them given just the prefix letters,

“ND”.10 Because it is so frequently used it is held as a separate field in the RCAHMS

tables instead of being calculated when needed. Despite such examples, one can cer-

tainly consider normalisation to be the usual aim of good design.

Designing for RDF has slightly different considerations. Generally one wants to

“pre-join” relations—which is akin to de-normalising—wherever possible. For RDF

9N3 is one of the ways of presenting RDF readably (refer to page 23 for a list of others). The
subject, predicate and object of each triple are separated by whitespace and terminated with a dot.
Various shorthand conventions exist but, apart from prefixes (explained earlier in this chapter), I have
avoided them throughout this document, for simplicity.

10The first digits, “2” and “7”, of the easting and northing give the 10km square (within the 100km
“ND” square) and the second digits, “9” and “3” indicate the right hand lower quadrant, or SE, or this
square. The 100km square letters are defined as part of the Ordnance Survey National Grid in the UK.
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Figure 5.2: A many-to-many join in a relational database. Each site may have many

archive items, and an archive item (such as a map) may cover several sites.

graphs held in the natural 3-column table for subject, property and object,11 every

traversal from one node to another involves a self-join of the table. The object node

of one statement becomes the subject node of the next in the chain, which involves

an equality join between values in the object column and values in the subject column

of the same table. With a large table (over 20 million rows here), one seeks to avoid

making more such self-joins than is absolutely necessary. Therefore if intermediate

nodes can be eliminated in a principled way, it must always be sensible to do this.

5.2.1.1 Many-to-Many Joins

Where two RDB tables are in a many-to-many relationship, a new relation or table

must be introduced between them to resolve the links in each direction into a pair

of one-to-many joins. Direct many-to-many links are not possible with RDB tables.

Figure 5.2 shows an example, based on a simplified version of the RCAHMS site and

archive entities. The SITE table is a list of historical sites; the ARCHIVE table lists

collection items such as photographs, historic maps and so on. Each site will typically

have many archive items associated with it (hence a one-to-many relationship between

SITE and ARCHIVE) and, conversely, a particular archive item such as a map may

11Actually the more common implemention is as a 4-column table, where each statement is annotated
with its parent graph ID, see Sect. 3.6.
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Figure 5.3: Many-to-many RDB join translated to RDF graph. Each of the siteArch

nodes, from the intermediary table, is redundant. Compare Fig. 5.4.

reference many separate sites (so the relationship becomes many-to-many). The SITE-

ARCH table in Fig. 5.2 resolves the relationships by indicating which sites are linked

to which archive items and vice versa.

The first thing to note about SITE-ARCH is that it uses a concatenated primary

key: the combination of the two foreign keys, siteNo and archNo. (There are only two

columns, the foreign keys for SITE and ARCHIVE, so the only candidate for a unique

primary key is their combination.) This is perfectly good RDB design, but for RDF we

save a lot of trouble (see Sect.5.2.7) by taking the time to generate a surrogate primary

key for the table. Let us call it siteArchNo. The graph that the standard procedure then

generates is shown in Fig. 5.3. (Strict URI prefixing has been omitted.)

It can be seen that the five siteArchn nodes in Fig. 5.3 are redundant. The resources

they represent have no properties of their own, and the node is merely an intermediary

between a site and an arch node—impossible to do without in the RDB but not needed

in the RDF, because there is no reason to avoid many-to-many links in RDF. Figure 5.4

shows the same graph with the redundant nodes pruned out. A new siteArch predicate

has been introduced which, strictly speaking, is bi-directional. A bi-directional link

can easily be allowed for in SPARQL queries if desired, as explained below.

For an introduction to SPARQL, see McCarthy [2005] or the tutorial provided by
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siteArch nodes have been removed, saving one triple per row in the intermediary table.

Compare Fig. 5.3.

HP for Jena.12 (The full specification is in Prud’hommeaux and Seaborne [2008].)

The language is loosely based on SQL, with a SELECT clause that specifies what is to

be returned and a WHERE clause listing the constraints to be met. The WHERE clause

is in the form of a collection of patterns that have to be matched in the graph. If

a subset of the patterns is marked as OPTIONAL then triples that match the required

(non-optional) patterns will be returned either with or without the extra data from the

optional patterns depending on whether the optional data is present in each instance

(in SQL this is known as “outer joining”). Elements of triples starting with “?” are

variables and the rest are labels that must match graph contents, so, for example, the

pattern “?site name ?sitename” matches any triple that has “name” as its predicate.

The SPARQL query below shows how bi-directional links such as the siteArch ones

in Fig.5.4 could be handled: the UNION clause ensures that all siteArch links are found,

whichever way round they point. The variables “?site” and “?arch” are intermediate

ones, not required in the final results, but used to link matching sets of patterns. In

natural language, the query means “Show all the sitenames, with archive category and

description if the site has archive material. Include siteArch triples pointing from sites

12http://jena.sourceforge.net/ARQ/Tutorial/index.html

http://jena.sourceforge.net/ARQ/Tutorial/index.html
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to archive and ones pointing the other way.”

SELECT ?sitename ?archcat ?archdesc

WHERE {

?site name ?sitename .

OPTIONAL {

{{?site siteArch ?arch} UNION {?arch siteArch ?site}}

?arch category ?archcat .

?arch description ?archdesc .

}

}

This query returns the following results from the data illustrated in Fig. 5.4:

SITENAME ARCHCAT ARCHDESC

"Dirleton Castle" photo "North face"

"Dirleton Castle" drawing "Site plan"

"Dirleton Castle" map "Parish map"

"Dirleton Cottage" map "Parish map"

"Drem Airfield"

"Jamie’s Neuk" map "Parish map"

However, there seems no reason in a practical implementation for not simply pick-

ing the direction of predicates like siteArch. The choice is completely arbitrary and in

Tether these key-to-key links between database entities always point in the direction

their names suggest, e.g. in a siteArch triple the subject is always a site and the object

is always an arch. (Strictly, they are a siteid and an archid, as explained in Sect. 5.1.)

The actual direction of the links is indicated in Fig. 5.4 by black-headed arrows (at the

arch or object end) as opposed to light-coloured arrows at the site end.

The pruning step that removes redundant nodes at many-to-many links saves one

triple for every row in the intermediary table: for the SITE-ARCH table alone in the

RCAHMS dataset that means 1.2 million triples. In another similar many-to-many link

almost 400,000 are saved, making 1.6 million in all.13

13Connections between pairs of tables are the most common in RDB design but it is possible to have
more than two tables connected by a single relationship, and then there are no savings to be made. For
instance, for a three-way join we need three triples (assuming we can specify the direction) and it makes
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:Siteid#site123

:Desc/Refdesc#Pagenos

:Refid#ref456

:Desc/Refdesc#55−60

:Refid#ref234
:Bibid#bib567

:Bibid#bib789

:hasDesc

rdf:type

:refSite

:refBib

:refSite

:refBib

:Siteid#site123

:Desc/Refdesc#Pagenos

:Refid#ref456

:Desc/Refdesc#55−60

:Bibid#bib567

:Bibid#bib789

:hasDesc

rdf:type

:refSite

:refBib

:siteBib

Redundant node prunedRefid node with no properties

Figure 5.5: Tether schema permits redundant instance nodes. On the left is the Tether

design, including the redundant ref234 node. The right hand side shows this node

removed, which would necessitate a new siteBib predicate.

Clearly, if the intermediary RDB table is not merely introduced to resolve the

many-to-many link between two tables, but has attributes of its own in addition to

the foreign keys of each of its parents, then the pruning step does not apply. We then

have a normal pair of one-to-many links. For example, the database has a “reference”

entity that resolves the many-to-many join between sites and bibliographic items. (A

site can be described in many books, and one book may deal with many sites.) The

reference entity can have extra attributes of its own, such as page numbers, so it cannot

be pruned out.

If the extra attributes are not mandatory fields, it is possible to prune out triples at

the instance relation level (where a reference has no page number, say). However, it

was judged preferable to keep the redundant triples in these cases rather than introduce

greater schema complexity by enlarging the set of predicates as would be necessary.

Figure 5.5 illustrates the point. It shows a site (:Siteid#site123) that has two biblio-

graphic references (to :Bibid#bib567 and :Bibid#bib789), only one of which specifies

page numbers. On the left hand side of the diagram is the arrangement Tether actually

uses; on the right hand side a graph with the redundant node (:Refid#ref234) removed.

If all such redundant nodes were removed we would save quite a few triples, but at the

expense of having to expand the schema by introducing a new key-to-key link (siteBib

in this case) and needing to allow for the variations when constructing queries.

no significant difference whether they are arranged as a triangle with a node at each corner, or as a
star radiating from a fourth central node. For any more than three participants in a join (which is very
uncommon) the star, which is what the basic RDB2RDF procedure generates, is the best arrangement.
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:Collid

:Bibid

:Refid

:Siteid

:Orgid

:Linid

:Roleid

:Personid

:Archid

:bibArch

:refBib

:refLin:refSite

:siteLin

:roleAgent

:roleAgent

:siteArch

:roleArch

:archColl

@prefix  :  <http://www.ltg.ed.ac.uk/tether/>  .

Figure 5.6: The “key-to-key” links that form the backbone of the Tether schema, corre-

sponding to one-to-many and many-to-many joins between relational database tables.

5.2.1.2 One-to-Many Joins

Like the many-to-many ones just examined, one-to-many database joins are translated

using special “key-to-key” links in Tether, with names that indicate the direction, as

siteArch does. They are shown in Fig. 5.6. The convention adopted is that the graph

edge always points from foreign key to primary key or, equivalently, from the “many”

end to the “one” end. Thus Tether has refSite links pointing to a site from the multiple

bibliographic references attached to it, roleAgent links tying together all the roles an

agent may adopt, and so on. There are nine of these key-to-key predicates in the

schema design.

We should note that, if foreign key fields (i.e. keys present in a table as pointers to

other tables) are treated like all other table fields, they will always produce redundant

arcs that can be dropped. We have seen this for many-to-many joins but the same is true

for one-to-many joins. There is no need to generate a triple pointing across to a foreign

key from the primary key value at the “one” end of the relationship as, when the child

table (at the “many” end of the relationship) is processed, a triple will automatically be

generated pointing at each of its parent records. Alternatively one could always create

the triple from parent to child if preferred; the point is that one does not need two of

them, pointing both ways between the same two nodes. In Tether the key-to-key links
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are generated only from the child end, and the field is simply skipped on the parent

table. Implementing this rule will generally require schema knowledge as foreign keys

cannot necessarily be automatically identified. For the RCAHMS database eliminating

redundant one-to-many links saves 1.2 million triples, in addition to the 1.6 million

noted for the many-to-many joins.

5.2.2 URI naming

One of the first things to be decided when implementing the translation procedure is

how to map RDB data items into RDF resources uniquely identified by URIs. There

is plenty of guidance on the characteristics of “Cool URIs” (see [Berners-Lee, 1998],

[Sauermann et al., 2007], [Sauermann and Cyganiak, 2007]), i.e. ones which are per-

sistent, actually point to something, and are reasonably easy to read. URIs are not

merely arbitrary labels but encode information about the web domain owner and often

about website structure.14 So far, implementors have a free hand with the information

they put in their RDF URIs, which may or may not point to real web addresses.

The manner of dealing with “hash URIs”, or HTML fragment identifiers (i.e. URIs

having an embedded “#” character near the end), is a complex subject, dealt with in

depth in [Miles et al., 2008]. In brief, Tether is designed so that the schema (all of

the rdfs:Class and rdfs:SubClassOf hierarchy except for the narrowly defined classes

at the lowest part of the tree) can be served via standard HTML pages or as RDF

through content negotiation and 303 redirection, following the W3C guidance given

in [Sauermann and Cyganiak, 2007]. The instance triples that come from the RDB

are below this level and are not expected to be served via HTML. In practice this

means that in most cases the position of the “#” character in a Tether URI marks the

boundary between schema label and the value or data content represented. Most of the

exceptions, for classes at the bottom of the hierarchy that are not intended to resolve to

HTML addresses, are shown in the full schema layout at Appendix A.15

A fundamental point to make about URIs in RDF is that they must be distinct when

they refer to distinct resources but there should not be a plethora of distinct URIs for

the same resource. This point is often side-stepped in RDF design, most particularly in

RDB2RDF work, where every individual database table cell is typically given a unique

14This way of identifying data is at the heart of the Semantic Web, and is in complete constrast to the
way keys are assigned in RDBs, where it is considered good practice to use deliberately non-meaningful
surrogate values, for efficiency and maintainability.

15There are further classes, not listed in Appendix A, that are generated when category labels have to
be translated. Refer to Sect. 5.2.10.
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URI, certainly if the source database column is not the same and sometimes even when

it is. Yet much of the benefit of using RDF is completely thrown away if we lose the

chance to link subgraphs together on shared nodes.

It is very easy to generate unique URIs, but much less easy to decide whether two

URIs actually indicate the same thing. Designers often say vaguely that there will be

no problem about adding rdfs:seeAlso or owl:sameAs links later. In fact of course, if

these connections are not made at the time the graph is generated, when the structure is

being worked out and the context of the data is known, it will be much more difficult to

add them later. Is my “http://www.ltg.ed.ac.uk/tether/Loc/Place#edinburgh” referring

to the same thing as your “http://www.geonames.org/2650225/edinburgh.html”? Well,

possibly, but it’s easier to tell when I have the database context at my finger tips than

later.

One purpose of the Tether system is to improve data access, partly through simpli-

fying the data for a non-specialist audience and partly by inter-connecting information

about related objects. For both these goals the schema needs to be as simple as it can

be whilst keeping sufficient expressive power. Therefore the URIs used are not pri-

marily intended to tie each data item to its position in the RDB, but instead to give it a

canonical representation so that two data items that refer to the same thing will get the

same URI. If they originate in different database fields this information is not coded in

the node’s own URI, but in its class membership.

To take an example: the RCAHMS site table has five different columns for admin-

istrative area names: parish, region, district, county and council. These are used for

historical reasons and in fact this list is a chronological ordering (except that districts

were part of regions). Parishes are no longer used officially (and therefore have the ma-

jor advantage of unchanging boundaries) but are referred to in most historical archive

documents, whereas Scottish council areas were only introduced in 1996. The actual

names very often stay the same. A data value of “Edinburgh” in any of these fields

will translate to a URI of “http://www.ltg.ed.ac.uk/tether/Loc/Place#edinburgh”. The

class hierarchy is encoded in the URIs, to promote RESTful (Representational State

Transfer—see [Fielding, 2000, Richardson and Ruby, 2007]) web service access. This

URI is then typed as “http://www.ltg.ed.ac.uk/tether/Loc/Place#Parish”, or whichever

is the appropriate class. This results in multiple class membership, if the same value

also occurs in the council field.

The “upper” type structure derived from the relational database is quite small, with

just 60 separate classes in a hierarchy no more than three levels deep. There are many
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more lower level classes that one would not normally consider part of the schema

design—see Sect. 5.2.10. My RDB2RDF process is in fact reversible, though that was

not a consideration in the design.

5.2.3 Avoiding Duplication

In the standard RDB2RDF mechanisms the URIs contain metadata from the RDB, as in

the example from [Berners-Lee, 2006] cited earlier (page 75). The example concerned

employee shoe size data from an “emps” table, and the database, schema, table and

column names were all embedded in the source node and property arc of each triple.

Unless the object node is a literal much of the metadata will be repeated at the object

end of the triple as well. The data bloat is staggering, and the duplication is poor

practice from a maintenance point of view. We have a lot of work to do if a zealous

DBA insists that the emps table should really be named emp, say.

My argument is that the graph should be as compact as possible, and node and prop-

erty URIs should not share each other’s functions. Data items belong in instance nodes,

named with a view to distinguishing ones that are different and allowing serendipitous

links to be discovered between ones referring to the same thing. Each needs a type

property to establish it as one of a class (or of several classes), and this is where iden-

tifying metadata from the RDB belongs: specifying what kind of thing the object node

refers to. The predicate does not need to repeat this information, as it will if we use

“Column as Predicate” transformation.

5.2.4 Nouns or Verbs? Properties or Classes?

It is sometimes helpful to think of the RDF triple as subject–verb–object, so that

the graph arcs become a set of verbs and the nodes are nouns. Thinking in terms of

“things” connected by action words makes it more natural to argue, as just done above,

that the right place for RDB metadata describing the type of thing in a node is a class

definition. What the property arc should represent is a verb phrase expressing which

of the allowed relationships in our graph is present. The design of the predicate set is

covered in Sect. 5.3, but it is worth noting here that the Tether design transposes all of

the RDB column names, that have been shown as predicates in the figures so far, into

classes or “nouns”.16

16This brings to mind Ted Codd’s remark that one of the difficulties with alternatives to his relational
model is that “one person’s entity is another person’s relationship” [see Codd, 1990, Chap. 30].
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Figure 5.7: Using resources instead of literals in RDF. If “Dirleton Castle” is a literal as

on the left hand side, the hasLocation triple cannot be integrated. The right hand side

shows the “Dirleton Castle” node as a resource with type and label properties.

5.2.5 Using Resources Instead of Literals

At first glance, the obvious thing to do with a database value is to put it in a literal, typed

as a string, integer, date or whatever is appropriate. However, this sterilises the graph

at that point: no further offshoots are possible, as a literal cannot be the source node of

a triple. Figure 5.7, left hand side, illustrates the problems this may cause. Our site is

named “Dirleton Castle”, but we subsequently find—perhaps in another RDF graph—

that Dirleton Castle is in East Lothian. The natural course is to make :dirletonCastle a

resource in our data schema that can have properties such as :hasLocation.

Once :dirletonCastle has become a resource it needs to have its type17 declared and

we need an rdfs:label to preserve the original database content. The right hand side

of Fig. 5.7 shows the result. The same argument can be applied to all of the literals

shown in Fig. 5.7, each of which represents something of significance that may well

have properties of its own.

So should every database value become a resource? My answer is “yes”. It

would be possible to go through the database fields deciding which were likely to

point to to real-world objects or important concepts that should be allowed resource

status, and which were purely local references such as code values, or cumbersome

strings that it would seem foolish to generate URIs for. But this is schema knowl-

17Some RDB fields translate to classes not instances so a subclass declaration is needed instead of a
type. Section 5.2.10 explains.
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edge with a vengeance! It is very unlikely that a valid distinction could be made

even if all the values for a given field were treated the same way but, logically, each

data item should be considered on its own merits as a single field might sometimes

contain references to resources and sometimes not. Such differentiation would be im-

possible in practice, so the sensible alternative seems to be to treat all data values

alike, and generate URIs for them. This makes for some ugly URIs. For exam-

ple, a photo description field with a value like “#5: 6′′x4′′ neg, B&W”, translates

to “:Desc/Arcdesc#%235:%206%22x4%22%20neg%2C%20B%26W” when the non-

permitted characters are encoded. It’s difficult to see this being useful for the serendip-

itous linking mentioned earlier, but it seems unavoidable.

Having complained of data bloat earlier, I have now introduced the potential for

three triples for each data item instead of one (the original inward pointing one, and

outward pointing rdf:type and rdfs:label arcs. The label arcs all point to literals, and this

is almost the only way in which literals are used in Tether. The alternative solution to

that proposed is to use bnodes—so :dirletonCastle would be replaced with a bnode—

which introduces exactly the same additional triples. In fact, eschewing bnodes means

that instead of immediately being multiplied by three, the number of triples increases

by a much smaller percentage, as is explained below.

5.2.6 Avoiding Bnodes

The Tether implementation uses no bnodes at all but I have not so far given any strong

argument against them. The main reason I suggest avoiding bnodes is that, because

they are blank, subgraphs cannot be straightforwardly linked on them, so each one is

separate even when they really need to be merged. In theory the RDB2RDF process

could arrange to merge bnodes when it was certain that the data item was the same,

but one can avoid a lot of error-prone work by simply generating URIs instead, so that

nodes are automatically merged when appropriate.

The only time that bnodes seem a useful option is when two nodes are definitely

distinct and must not be merged, yet there is no obvious identifier to give to each. This

arises with the generic entities discussed in Sect. 4.3.1.1: EVENT, ROLE, SITETYPE

and ARTEFACT. As was suggested in that section, an arbitrary identifying number

can be appended—as in the examples of chambered+cairn123 and event22 shown in

Figs. 4.4 and 4.5—but this is slightly clumsy and bnodes would be a reasonable alter-

native. This point is looked at again in Sect.8.3.5, in connection with the translation of
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text relations to RDF.

Because bnodes are not used in Tether, the introduction of type and label arcs for

each data item does not triple the size of the graph. The type links are only needed once

for each distinct occurrence of a particular data value, and the label links for each dis-

tinct surface form. The conversion program codes this very simply using SQL “select

distinct...” expressions, though it could be done less efficiently by relying on the

triple store to remove duplicate triples.

In most cases the number of type and label triples will be the same, but there are

small differences in my implementation, because the generated URIs are all normalised

to lower case strings and occasionally two values will produce the same URI whilst dif-

fering very slightly in their literal labels.18 Ultimately one could develop this further,

to have a single canonical form for a data item, surrounded by a set of preferred and

alternative labels including abbreviations and so forth.

The number of type and label arcs pointing outwards from each data item is very

much smaller than the number of inward pointing “data content” arcs, so the size of

the triple store is not increased three-fold, but in fact by around one third as it happens,

from 16.2 million to 21.2 million, or by about 30% instead of 300%. Table 5.1 gives

the actual numbers for the RCAHMS data. This is an interesting side-light on the

amount of repetition present in this kind of data, which bodes well for the application

of NLP and machine learning techniques that exploit patterns.

The table also gives, for comparison, the value of the product of the number of

rows and number of columns (i.e. the number of data cells) present in the subset of

RCAHMS tables used, which is the maximum number of triples that could be gener-

ated, not counting schema triples. This is around ten times the actual value of 21.2 mil-

lion (including schema), and clearly shows the usefulness of the various graph pruning

techniques discussed here.

The other trouble with bnodes is that their uniqueness is not part of the RDF stan-

dard but has to be implemented locally by the triple store. This may introduce quite

unnecessary complications when it comes to migrating and merging RDF stores. There

seems no imperative reason for using bnodes, whereas if a data item merits inclusion

as a resource it seems intuitively clear that it is worthy of a name.

18It is unnecessary to preserve case in the generated URI, which is merely a name for a data ob-
ject, and the risk of incorrectly merging two data values because of capitalisation differences is wholly
insignificant when measured against the bold step of allowing matching surface forms with similar se-
mantics to merge in general.
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Source No. of Triples

Schema, or upper ontology 239

RDB “data content” (incl. key-to-key links) 16,239,371

Distinct rdf:type or rdfs:subClassOf relations (excl. schema) 2,695,725

Distinct rdfs:label relations (excl. schema) 2,701,956

Total 21,637,291

After removing duplicates—total loaded 21,152,388

Rows x Columns for relevant RDB tables 234,242,572

Table 5.1: Schema statistics and triple counts for triples derived from RDB data, show-

ing a comparison with the theoretical maximum number of triples that would be gener-

ated if no pruning were done (the “rows x cols” figure).

5.2.7 Primary Keys

As has been said, Tether operates a non-intervention policy, to permit data values to

merge automatically: “Edinburgh” generates one node that may have multiple inher-

itance from Parish and Council. However, one class of data values that must never

merge is the set of primary keys. If a data item is the primary key of its source RDB

table, then it becomes the focus of a family of triples for that data instance, as dis-

cussed in Sect. 5.1. Its uniqueness must be preserved. In many cases the primary key

is an auto-incremented number, and it would certainly be disastrous to give site 123

the same URI as archive item 123, as there is no connection between them. To en-

sure uniqueness, the primary keys in Tether are always prefixed with a short label for

their parent class. Thus we have site123, arc123, bib123 and so on, for all the top

level classes in the hierarchy. This step requires manual intervention in the conversion

process, with knowledge of the RDB schema.

As a general principle, surrogate values of any kind, whether generated keys or

codes pointing to lookup tables, should not be allowed to merge. Such values are

arbitrary strings that are only valid in context, as opposed to grounded labels for real

entities (like “Edinburgh”, or “aerial view of the Forth Bridge”). The same applies

to numerical values. There are very few of these in the RCAHMS dataset, which is

overwhelmingly text-based, but the grid reference “easting” and “northing” fields are

an example, where it is important not to allow the classes to overlap. In general, a

database is likely to contain many examples of such fields, and schema knowledge is
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needed to separate those that can and cannot be merged.

In the example shown in Fig.5.4, a surrogate primary key (siteArcNo) was added to

the source database table to replace the concatenated one. This is a slightly awkward

extra step but was deemed worthwhile, to avoid the need to carry a clumsy concate-

nated string as an RDF node identifier. If bnodes were used instead of labelled key

nodes then the concatenation would be unnecessary (each part of the key would have

its own triple), but the SPARQL joins would be less efficient, needing an extra triple

for each element of the key.

Surrogate primary keys were also added where the actual key was too cumbersome:

in one case an 80-character text field was used as a key, which was duly replaced. This

is just another small decision in the RDF design process.

5.2.8 Null Fields

There has long been debate in the relational database discipline about whether null

values should actually be permitted in RDBs. (Ted Codd admitted nulls to his “12

rules” in 1979 but his collaborator Chris Date has always believed it was a mistake

[Codd and Date, 1993].) In practical implementations they are certainly here to stay,

and the RCAHMS database is littered with them.

Where a field value is null no triple is generated in the Tether translation procedure.

This may seem an obvious move, but it does require schema knowledge. Though it is

generally thought poor practice, a relational designer may choose to use the absence of

a data value to carry meaning: the Closed World Assumption in effect. If the date of

death field is null, the person is still alive, say. (This shows the drawback: we may just

not know when or if the person died.19) In some RDB systems there is a distinction

between null values and empty fields (they are treated differently in Oracle and in

MySQL for example) so, here again, schema knowledge is needed for handling them.

5.2.9 De-normalising and Coded Values

The use of coded lookup tables is common in relational databases. The location fields

mentioned earlier (region, district, county and council) are held as short code fields on

the site table. There is no point in preserving these codes in RDF as they serve merely

19The Semantic Web operates on the Open World Assumption, unlike RDBs. See http://wiki.
esi.ac.uk/The_Closed_World_of_Databases_Meets_the_Open_World_of_the_Semantic_Web
for discussion of this issue.

http://wiki.esi.ac.uk/The_Closed_World_of_Databases_Meets_the_Open_World_of_the_Semantic_Web
http://wiki.esi.ac.uk/The_Closed_World_of_Databases_Meets_the_Open_World_of_the_Semantic_Web
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as intermediaries, with no properties of their own. When these fields are processed, the

code is expanded so that the triple points straight to the actual data item referenced.

There may occasionally be exceptions to this rule, when code values have intrinsic

meaning, possibly acquired simply through long use. For example, in the RCAHMS

dataset collection items are assigned “prefix” codes that are known at least to spe-

cialists (such as “EE” for the Empire Exhibition collection), so are probably worth

preserving. A reasonable compromise is to use the short code in the URI string but

expand it in the label literal. Any such design steps as this clearly require human

intervention in the conversion process.

In general, where the RDB designer seeks to normalise tables (roughly speaking,

this means splitting big tables into smaller ones until dependencies between column

values are eliminated), the RDF designer wants to denormalise, shortening long paths

whenever possible by cutting out intermediate nodes and classes that are not needed.

5.2.10 Instances or Classes?

In the discussion of named entity annotation in Chap.4, I noted that the entity mentions

to be extracted from text sometimes refer to unique individual entities (like “Skara

Brae” or “23 June 1958”) and sometimes to generic terms that describe a whole class

of individuals (like “Viking burial”). Section 4.3.1.1 dealt with this issue. Exactly the

same considerations apply to RDB data, where the values are sometimes instances of

a particular type and sometimes are the names of classes. For example, if the archive

category field in the RDB says that a particular archive item is a map, the resulting RDF

map node denotes the class of all maps in the graph. Instead of an rdf:type relation

it requires an rdfs:subClassOf link, indicating that it is, say, a subclass of Archtype

(archive type).

It turns out that, of the RCAHMS fields chosen for Tether, only five are classifi-

cation terms with values that need to become RDF classes instead of instances. They

are: site type, archive item category, object type, object subtype and agent rôle. This is

another clear instance of manual intervention in the RDB2RDF process, as these RDB

columns can only be identified using schema knowledge.

5.2.11 Character Set Issues and Other Practicalities

The RCAHMS dataset probably contains more than its share of awkward characters,

as explained in Chap. 4, but any RDB is likely to be full of characters that need to
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be encoded to appear in URIs. Dealing with embedded paragraph breaks is particu-

larly tedious, especially when accessing an Oracle database using SQL via JDBC from

a Java program, which involves nesting the different escape mechanisms for special

characters within one another.

A decision was taken to perform some minimal data cleaning as part of the exercise:

removing trailing spaces from text fields and suchlike. Some cleaning of this nature

was unavoidable as a tiny number of the millions of fields turned out to contain oddities

like several hundred linefeed characters after the (apparently) genuine value. Because

of the way the SQL interface tools work these rogue fields were undetectable through

the normal application interface, though they were certainly able to break the lower-

level export tools. A very careful count of the expected number of triples was made,

and verified against the results produced.

These points are mentioned because, particularly with data that has accumulated

over many years and been moved many times, such apparently trivial character coding

issues can take a disproportionate amount of time to deal with.

Another decision to be made when dealing with numerous “notes” fields, is how

long to allow URIs or literals to be. Translating a 100-character field is quite reason-

able, but there is probably little point in expressing a 1000-character field as a URI. In

Tether, the longer fields were omitted from the RDB2RDF translation, as they can be

processed separately, as text documents, in a relation extraction step. That step will

generate a separate graph (see [Carroll et al., 2005] for use of named RDF graphs)

to be integrated with the one generated from short RDB fields. However, the field

lengths are very variable between records: for example, the archive description col-

umn is mainly used for quite short strings that are suitable for direct encoding, but in

a significant minority of cases it contains quite lengthy essays, that are better treated

as text documents. In the event, an arbitrary cut-off limit of 500 characters was used.

Given more time to deal with numerous separate fields as text relations a lower limit

might be preferable.

5.2.12 Summary—12 Suggestions for RDB2RDF Conversion

The following list summarises the issues covered in this section, as a list of 12 points

to take into account when embarking on a RDB to RDF conversion.

1. The handling of many-to-many and one-to-many relational joins. The basic

procedure introduces redundant “key to key” triples which, when the linking
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keys have no intrinsic properties of their own, can be pruned. For the RCAHMS

data this saves 2.8 million triples.

2. The generation of suitable URIs. A fundamental point about URIs in RDF is

that they must be distinct when and only when they refer to distinct resources.

Much of the benefit of using RDF is completely thrown away if we lose the

chance to link graphs on shared nodes, as will happen if URIs encode the database

location of values.

3. The use of RESTful URIs. Encoding the class hierarchy as part of the URI

structure promotes web service access using REST.

4. Avoiding duplication of schema metadata. The basic procedure will repeat

provenance information in the subject node, predicate arc and object node (un-

less the object is a literal) of a given triple.

5. Transposing arcs and nodes. It is sometimes helpful to think of the RDF triple

as subject–verb–object, so the graph arcs are verb phrases and the nodes are

nouns. In contrast to the “Column as Predicate” method, my design turns RDB

columns (like “parish”) into classes or “nouns”, as they are in fact “things” with

a hierarchical class structure (a parish is a place, for example).

6. Preventing the sterilisation of the graph through over-use of literals. Re-

source URIs should be generated for database values, as otherwise there can be

no further RDF connections from them.

7. Avoiding bnodes. The use of bnodes and so-called “duck typing” (defining a

resource by its properties rather than giving it a URI) should be avoided as it

inhibits linking of subgraphs. Instead my suggested design uses URIs generated

from the relevant RDB primary key.

8. Distinguishing metadata from true content. Surrogate keys (typically run-

ning numbers) are frequently used as primary keys in RDB tables. In RDF one

can take advantage of “serendipitous linking” of identical data values (such as

“Auchtermuchty” occurring in a Site.Parish field and a FoundObject.Location
field), but care must be taken to avoid such merging with surrogate values (such

as site123 and find123).



Chapter 5. Relational Database to RDF Conversion 95

9. Dealing with concatenated keys in the RDB. Where these exist, it is more

efficient to generate new surrogate keys for the RDF graph.

10. The handling of null fields. In general these can be entirely excised from the

RDF graph, but schema knowledge is required, as it is possible in RDBs to assign

meaning to the absence of a value. Relational databases typically operate with

the Closed World Assumption (what is not stated as true is false), whereas in the

Semantic Web world the Open World Assumption pertains (what is not stated is

unknown).

11. Denormalisation and handling of coded values. Good RDB design often uses

coded values with corresponding lookup tables. In an RDF graph such codes

translate to redundant nodes, which can be eliminated by linking directly to the

value node.

12. Recognition of class terms. The RDB data values need to be examined to check

whether they are standard instance values, for individual entities, or labels rep-

resenting classes of entities (like “architect”, “castle”, “photograph” etc.). In the

latter case the object node is an RDF class and needs an rdfs:subClassOf property

to locate it in the schema.

Figure 5.8 illustrates some of the points made above, using the same small sample

of data as used in Fig. 5.1 to allow a side-by-side comparison of my conversion proce-

dure with the basic one. For this tiny sample the number of triples has increased, but

over the whole dataset many millions of unnecessary triples are saved through using

shareable nodes.

5.3 A Schema for Cultural Data

The considerations of Sect. 5.2 apply to all RDB datasets. Now we move on to ones

that apply only to cultural heritage data, but which are generic to that domain.

In heritage data management the key data attributes are often stated as “Who?

What? Where? When?” or, similarly, “People, Places, Events and Things”. With

this principle in mind, the predicate set used—which is intended to be generic for this

domain—was severely limited.

Figure 5.9 shows the nine core schema classes, both as an RDF graph (with the

Tether class names) and using Entity Relationship Model (ERM) conventions, consid-
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Figure 5.8: The top figure shows part of the Tether design, illustrating a number of the

points made about RDF design. Contrast with the basic process shown below (a copy

of Fig. 5.1). The bnode has been replaced by a URI based on the surrogate RDB key,

the literals are now resources with RESTful URIs and labels, and the database columns

have become RDF classes in a class hierarchy.
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:Collid

:Bibid

:Refid

:Siteid
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:Personid
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BIB
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PERSON ORG

AGENT siteLin

refLinrefSite

refBib

bibArchroleArch

archColl

siteArch
roleAgent

Figure 5.9: The core Tether schema classes shown (on the left) as an RDF graph and

(on the right) in Entity Relationship Model form.

ering the RDF classes as logical entities. (See Sect. 4.1.3 for an explanation of the

symbology of the ERM figure.) These RDF classes are at the top of a hierarchy that

is no more than three levels deep, and has only 60 schema classes. (The RDB values

that become RDF classes, as explained in Sect. 5.2.10, are not counted in this total.)

The relationships between the top schema classes correspond to the nine key-to-key

predicates that form the backbone framework in Tether. Table 5.2 shows how many

triples use each of these.

Just eight more predicates were added, to cover the all the relationships needed to

express the database contents:

• :hasAgent

• :hasAgentRole

• :hasClassn (“has classification”)

• :hasDesc (“has description”, for short descriptive fields)

• :hasLocation

• :hasPeriod

• :hasId (for identifying codes that are considered worth preserving)

• :hasFlag (for tags or indicators attached to records).
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Link Predicate No. of Triples Link Description

archColl 396,609 Archive items to parent collections

bibArch 3,445 Bibliographic items to archive items

refBib 201,483 References to bibliographic items

refLin 1,841 Bibliographic references to linear sites

(walls, roads etc.) they describe

refSite 201,259 Bibliographic references to (non-linear)

sites they describe

roleAgent(orgid) 198,930 Rôles (sponsor etc.) to organisations that

perform them

roleAgent(personid) 210,699 Rôles (architect etc.) to people that perform

them

roleArch 374,349 Rôles (draughtsman etc.) to achive items

(e.g. plan)

siteArch 1,161,575 Sites to accompanying archive items

siteLin 3,567 Ties together sites that are components of

linear features (e.g. watchtowers)

Total 2,753,757

Table 5.2: Counts of the key-to-key triples that form the backbone of the Tether RDF

graph. The names encode the domain and range of the predicates, e.g. a siteArch

predicate links a site node to an arch node.

Another four predicates are needed to cater for text relations, which include events:

• :hasEvent (links sites to events in their history)

• :hasPatient (points to the entity undergoing an event, like a an object found)

• :hasObject (links sites, for example, to physical objects)

• :partOf 20

In addition, some standard predicates from published vocabularies for RDF, RDFS and

OWL were used.
20No suitable predicate was found in the standard published vocabularies. The closest were

FRBR:partOf (from the Functional Requirements for Bibliographic Records vocabulary) and
dc:isPartOf (from Dublin Core), but both of these are intended for bibliographic items, not the more
general relationship needed here.
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This tiny predicate set is probably the single most significant contrast with the

basic translation process outlined in Sect. 5.1, where the predicate set directly reflects

the RDB attributes and therefore will usually be enormous.

The benefits of a very small predicate set are explained in Sect. 5.5, but part of the

motivation was to facilitate integration with the graph of binary relations to be gener-

ated from free text documents. The schema for that graph coincides almost entirely

with that for the RDB data, especially as regards the predicate set. The procedure re-

lies on finding relations between named entities in the text, which are recognised and

categorised in a previous step (see Chap. 7 and 8). For these NLP techniques to be at

all successful, the number of categories must be small.

The RDF schema design for Tether is given at Appendix A, in N3 format.

5.4 Comparison of RDB and RDF Schemas

Figure 5.10 shows the original RDB schema from Fig. 4.2 (omitting the thesaurus)

along with the core RDF schema from Fig. 5.9. At first glance the RDB schema

looks much more complicated but, looking more closely, one can see that they are

essentially the same. (There are minor naming differences: the RCCOLLECT table

of archive items becomes the ARCH entity in Tether, to distinguish it more obviously

from COLL (or RCCOLLECTIONS) which is for named collections of archive items.)

The differences are:

1. Where the RDB schema features tables that merely resolve a many-to-many join,

the RDF schema removes the intermediary table because, I am claiming, they are

not needed in RDF.

2. In the RDB schema it is efficient to use lookup tables for coded values, but I

suggest that these should always be removed from the RDF design, by replac-

ing codes with values whenever they occur. In a relational database this would

involve repeatedly holding the same value, but in an RDF graph the value node

appears just once, with as many arcs attached as required.

3. The tables containing only text are omitted from the RDF schema. Their contents

are tranformed into another RDF graph (with a schema as close to this one as

possible), as described in Chap. 8.

The RDF schema contains an apparent anomaly concerning bibliographic references—

the REF entity. An independent :Refid node is needed between sites and linear features
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Figure 5.10: The RDB schema (at the top) compared with the RDF schema (below) for

Tether. In essentials they are very similar.
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and the bibliographic items (e.g. books) they refer to, because the REF tables do not

meet the criterion for pruning: they have a local attribute—a field for page numbers.

(So there may be multiple separate references to different parts of the same biblio-

graphic item.) There is no such intervening entity between archive items and the bibli-

ography, simply because the database design happens not to include any local attributes

on the reference table (RCARCBIB).

One would of course expect the RDF schema to reflect its parent RDB design

closely. My argument however, is that it is not worth attempting to automate the pro-

cess fully. Each deviation from the RDB design requires schema knowledge that may

simply be unavailable to an automated process (see, for instance, the discussion in

Sect.5.1 about identifying primary keys—to take the most fundamental example). The

schema design has to be done just once and if mistakes are made they may be very

costly later. (A rule of thumb used by software project managers is that a change cost-

ing £1 at the design stage will cost £1000 at the final testing stage, and considerably

more than that after implemention.)

From all points of view schema design does not seem a good candidate for automa-

tion. Having said that, certain elements of the process—the routine work of extracting

RDB data in the right format and so forth—are obviously not going to be done man-

ually (a suite of Java programs was used for building Tether); and visual interfaces

can be very helpful in the design process. There may be an emerging trend, in the

RDB2RDF tools, towards “assisted” rather than “automated” transformation, though

it is too early to be sure if this is the case. If my contention is valid, the claims some-

times made that the Semantic Web will be able, without skilled intervention, to access

the world’s vast repositories of RDB data, are over-optimistic to say the least.

5.5 Implications for Graph Querying

One of the problems faced by non-specialist users of the RCAHMS dataset is that,

without a good knowledge of domain terminology, it can be difficult to frame mean-

ingful queries. One of the reasons for using a very tightly limited predicate set is to

eliminate a lot of the complication, by reducing the number of categories or “facets” to

search within, so that it becomes possible to summarise over each category and offer

the user intermediate results with meaningful context. The proposed search mechanism

is best explained through an example.

Suppose the user is interested in forts. This is too broad a term to produce very
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Figure 5.11: A small predicate set makes query summaries possible. The two graphs

are the same (that on the left has nodes repeated, for readability), and the text summary

can be generated from them.

manageable results, as there are over 1700 “forts” in the RCAHMS database, dating

from many periods and scattered all over the country. Rather than presenting a very

long list in no particular order (in fact the existing Canmore web interface at http:

//www.rcahms.gov.uk/ will only allow you to browse through the first 200), what

may help this user is to see a structured summary of information about forts, from

which a further search can be made. Figure 5.11 shows a simple example, where four

forts are given with their locations, periods and the agents who are authorities on them.

The right hand side of the figure shows the RDF subgraph, whilst the left hand side is

a possibly more readable version of the same thing.

To generate the summary, the first step is to find all the site nodes linked to a “fort”

classification term. For this set of nodes, an analysis by each of its other predicates is

made, to calculate frequency counts for the top three or four values represented in each

subset. This summary can then be presented to the user as illustrated, so that the query

can be refined by picking from the terms offered: say “Roman forts in Tayside”—

which returns a single hit, site1, in this toy example. This kind of faceted search is

almost certainly impractical if the predicate set has hundreds of members, as it will do

in a standard RDB2RDF conversion.

Another advantage of having a very simple schema is that it can be interpreted by

software agents without enormous programming effort being required. A generic cul-

tural heritage RDF schema, such as is proposed here, would enable standardised web

services to explore distributed datasets and assemble results from them in a way that

http://www.rcahms.gov.uk/
http://www.rcahms.gov.uk/
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Task Time Taken

Exporting 21.6 million triples from Oracle RDB 40 mins

Loading 21.2 million triples into AllegroGraph 33 mins

Indexing in AllegroGraph 20 mins

Total 53 mins

Loading and indexing 21.2 million triples in Jena 15 hours

Table 5.3: Statistics for bulk loading of RDB data into triple stores

is quite impossible at present. Many portal sites already exist in the cultural domain,

as there is great interest in such cross-archive access, but all are specifically designed

for particular databases and have generally taken years to develop. The whole pro-

cedure outlined here is adaptable to related datasets in the same domain, and could

potentially be made into a pipeline for generating a distributed but connected web of

cultural heritage data.

5.6 Bulk Loading Statistics

Numbering 21.2 million, the RDB triples form the largest proportion of the Tether

graph and loading them into the two triple stores, Jena and AllegroGraph, was a sig-

nificant task. This was not intended as a formal benchmarking exercise but nevertheless

the loading statistics may be of interest and are given in Table 5.3. The time taken to

export the data from Oracle in the necessary format is included. The AllegroGraph

loading and indexing was impressively fast, though there were some false starts before

it ran smoothly.21

It should be noted that this loading was done some time ago (in early 2008) and

I believe the Jena Bulk Loader has been updated since then. At the time of this load

it had two features that are probably largely responsible for the slow performance:

deduplicating triples during loading and indexing during the load (which is known

to be inefficient in RDBs). The software and documentation changes have not been

followed closely, but I believe that deduplication is now an option and it is also possible

to switch off indexing during loading, and then build the indexes separately afterwards.

21I would like to acknowledge the prompt advice, enthusiasm and friendliness of the Franz Inc. sup-
port team. To sum up our conclusions from the issues that arose: if you are using AllegroGraph with a
20 million triple dataset, do it on a 64-bit platform and not on a 32-bit laptop.
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5.7 Discussion and Summary

A cornerstone of Semantic Web, or DataWeb, development will be to present RDB

data as RDF so that it can be queried using tools like SPARQL and made interoperable

with remote datasets anywhere on the web. The conversion procedure, whether the

graph is instantiated as in Tether or merely constructed at query time, is much less

straightforward than it at first appears. There are a number of significant differences

between good RDB design and what is appropriate in RDF. This chapter has examined

the pitfalls one by one and I have suggested a checklist of 12 points to take into account

in any RDB2RDF conversion.

Moving on to issues that related to cultural heritage data, I have put forward a

schema design that is intended to be generic for that domain, and shown how the

RCAHMS data is mapped into it. The relationships between the core classes turn out

to be very similar in RDF to the RDB entity relationship model; the design differences

are at a lower level. The Tether design is very unlike what would be generated by

any automated process, and the biggest difference is probably in the size of the RDF

predicate set. In Tether this is deliberately kept very compact, and I argue that this

will make it much easier to do a form of faceted search within sets determined by the

predicates. It also makes it much simpler to integrate the RDB-derived graph with the

graph produced from free text and enable queries to use them interchangeably.

The RDB2RDF conversion step is a key part of the Tether system and the issues

that arose from it are relevant to any consideration of likely adoption rates for Semantic

Web technology. We now move on to grounding the local data by connecting it to

existing thesauri for the domain, turned into RDF vocabulary graphs.



Chapter 6

Incorporating Domain Thesauri

The purpose of incorporating thesauri from the cultural domain is to ground key clas-

sification terms used in the content data. One of the great advantages of the Semantic

Web is that it promises to make sharing standardised thesauri and vocabularies very

straightforward. A vocabulary that can be expressed as an RDF graph and published

on the internet can immediately become connected to any other RDF graphs that con-

tain resource nodes from it. There is currently an upsurge of interest in creating such

vocabularies,1 in order to “ground” RDF content data from all sorts of domains (ge-

ographical names, business terminology, bibliographic descriptions etc.) and improve

interoperability between datasets.

This chapter deals with the integration of the two key thesauri that are relevant to

the RCAHMS content: the Monument Thesaurus and the Object Thesaurus. These de-

fine technical terminology used to categorise archaeological and architectural sites (or

“monuments”) and objects related to them, such as excavation finds and architectural

elements. It would be useful to integrate other vocabularies in the future, say for geo-

graphical names, but the site and object classifications contain the domain terminology

that most needs explanation for non-expert users, and all the principles involved in the

process are covered in this exercise.

Section 6.1 gives some background on the two thesauri used, and Sect. 6.2 looks

at generic characteristics of thesauri and their underlying structure. The design chosen

for integrating them into Tether is discussed in Sect. 6.3, and Sect. 6.4 explains how

the thesauri are used in grounding the RCAHMS data. Finally, Sect. 6.5 looks at the

options considered for generating suitable URIs.

1See, for example, the “Linking Open Data on the Semantic Web” initiative at http://esw.
w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies or the
VoCamp wiki at http://vocamp.org/wiki/.
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Figure 6.1: A section of the RCAHMS Monument Thesaurus, taken from the browsing

interface on the RCAHMS website.

6.1 RCAHMS Thesauri

The Monument and Object thesauri2 are held in a relational database (RDB) in the

standard, but rather awkward, way of expressing a hierarchy in relational tables. This

involves a technique known as “tree walking” over a set of pair relations between an

item and the item above it. A tree is a particular example of a graph structure, so RDF

allows a much more natural representation of a hierarchical thesaurus. Figure 6.1

shows part of the Monument Thesaurus hierarchy as it is presented in RCAHMS’

browsing interface.

The RCAHMS thesauri are based on MIDAS Heritage [Lee, 2007], the UK historic

environment data standard, maintained by English Heritage. In turn, a mapping3 is

available from MIDAS to the CIDOC-CRM [Crofts et al., 2003]. For Tether, each the-

saurus was converted to a named graph within the triple store. The RCAHMS content

data is linked to the thesauri at specific nodes, for example instances of :Classn/Sitetype

link to the Thesaurus of Monument Types (see Fig. 6.2).

2There is also a Maritime Thesaurus, not converted for Tether.
3See http://cidoc.ics.forth.gr/docs/MIDAS_mapping_notes.doc and http://cidoc.

ics.forth.gr/docs/midas_map.xls.

http://cidoc.ics.forth.gr/docs/MIDAS_mapping_notes.doc
http://cidoc.ics.forth.gr/docs/midas_map.xls
http://cidoc.ics.forth.gr/docs/midas_map.xls
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@prefix       :    <http://www.ltg.ed.ac.uk/tether/> .

@prefix   rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@prefix rdfs:  <http://www.w3.org/2000/01/rdf−schema#> .

@prefix skos:  <http://www.w3.org/2008/05/skos#> .

rdfs:Class

:Siteid

rdf:type

rdf:type

:Siteid#site1

:Loc/Sitename "Dirleton Castle"

rdf:type rdfs:label

:Classn/Sitetype#defence

:Classn/Sitetype

rdfs:label

:hasClassn

:Loc/Sitename#dirleton+castle
:hasLocation

"defence"

:hasLocation

:Loc

rdfs:subClassOf

:Loc/Place#dirleton

"Dirleton":Loc/Place#Parish

rdfs:label
rdf:type

:monThes
skos:Concept

Monument Thesaurus

rdf:type

skos:inScheme

rdfs:subClassOf

Figure 6.2: Sitetype nodes in Tether (like the sitetype:defence node shown) are di-

rectly embedded in the Monument Thesaurus. See Fig. 6.3 for the thesaurus structure

pointed to here.

Being small and carefully structured, the thesauri were straightforward to convert to

RDF compared with the much less disciplined RDB content. The procedure is readily

automated using the principles described in Chap. 5, especially the point about de-

referencing codes to their values (in this case to the thesaurus terms). The Monument

Thesaurus produces a graph of around 17,000 triples, and the Object Thesaurus is

under 4,000.

6.2 Thesaurus or Ontology?

A thesaurus usually contains three core relation types: Hierarchical (“broader term”,

“narrower term”), Associative (“related term”) and Equivalence (“preferred term”,

“non-preferred term”)—see, for example, [Tudhope and Binding, 2004]. There are

also typically Scope Notes providing a short text glossary of each term.

The obvious vocabulary to use when converting thesauri to the Semantic Web is

SKOS,4 the Simple Knowledge Organisation System, which was designed for that

purpose—see [van Assem et al., 2006] for a clear exposition of the framework and

4http://www.w3.org/2004/02/skos/

http://www.w3.org/2004/02/skos/
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some of the issues involved in using it. At the time of writing the SKOS schema is

still evolving. It follows the usual thesaurus layout very closely, having predicates

including: broader, narrower, related, scopeNote, prefLabel, altLabel, inScheme and

hasTopConcept.

Hyvönen et al. [2007b] argue that SKOS mirrors thesaurus relations too closely,

including the anomalies sometimes present. For example, the “broader term” (BT)

thesaurus relation may not be transitive, and may confuse instances and classes. Their

example, from what must be a rather casually constructed thesaurus, is

BT
Halley’s Comet Comet

BT
solar system

They prefer a strict ontology structure, susceptible to logic processing, and using type,

subClassOf and partOf relations as appropriate.

The FinnOnto approach is attractively clean and logical, but nevertheless the SKOS

framework was chosen for Tether. The latest version of SKOS allows the user, in effect,

to choose whether to make the broader relation transitive or not. Also, the fact is that

the structure to convert is a thesaurus, not a strict ontology, and reflecting that seems an

advantage. Finally, since the objective is to facilitate links with other cultural datasets,

it makes sense to use the vocabulary favoured in that domain. Some departures were

made from the standard SKOS schema however, as explained in the next section.

6.3 Schema Design

The core class in SKOS is the Concept (defined a little unhelpfully in the June 2008 ver-

sion of the schema as “a unit of thought”) rather than the term, which is taken to be a la-

bel for a Concept. This has implications for logic processing and also, which concerns

Tether more nearly, means that only the Hierarchical and Associative thesaurus rela-

tionships can be expressed: skos:broader (with inverse narrower) and skos:related link

skos:Concepts to one another much as one would expect, but the Equivalence relation

(“preferred term”, “non-preferred term”) can only be expressed through skos:prefLabel

and skos:altLabel, which link Concepts to literals. This makes sense if one wishes to

distinguish a concept (in the ordinary English sense) from the name of a concept (its

label), but it means that there is no way of including a non-preferred term as a resource,

which limits its potential in the RDF graph. The Tether design therefore, whilst using

prefLabel and altLabel in the established manner, also includes a local Equivalence

relation between Concepts. In acknowledgement of the slight irregularity it is called
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prefTerm rather than prefConcept—though of course this string is merely a label with

no intrinsic significance.

The SKOS documentation acknowledges the need for relations between labels

(such as alternative terms and the preferred one), and recommends using a specially

introduced LabelRelation class and associated properties to model these relations, in

what seems a rather convoluted arrangement. This way of looking at the problem

stems directly from the SKOS notion of what a Concept is, and seems slightly at cross-

purposes if one has thesaurus terms in mind. The pragmatic solution just described was

adopted—allowing the non-preferred terms to be concepts in their own right (instead

of mere literal labels) and linking them to the preferred concept node with prefTerm.

(This is illustrated in Fig. 6.3.)

The RCAHMS thesauri happen to include an upward pointing link from each term

in the tree directly to its “top term”, i.e. to one of the small first tier of thesaurus

elements immediately below the root of the tree. The skos:hasTopConcept relation

points downwards, from the root or ConceptScheme node, towards these same el-

ements. Rather than lose these occasionally useful links from the RCAHMS the-

sauri, another local predicate was created, named topTerm, which is complementary

to skos:hasTopConcept.

Apart from these two non-standard elements, the rest of the schema is simply a sub-

set of SKOS. The two classes needed are skos:ConceptScheme and skos:Concept, and

the seven predicates used are skos:broader, skos:related, skos:prefLabel, skos:altLabel,

skos:scopeNote, skos:inScheme and skos:hasTopConcept. The top terms of the two

thesauri (such as “Civil”, “Domestic”) are slightly anomalous, being closer to what

SKOS calls “node labels” and models with a skos:Collection class. However, this in-

troduces a number of complications, such as removing them from the hierarchy, that

seemed simply unnecessary for Tether.

Figure 6.3 shows the thesaurus schema structure based around a particular instance,

the term “chambered cairn” from the Monument Thesaurus. This illustrates all the

relations used, as the term has associated non-preferred variants and related terms,

as well as the usual broader and top terms and one narrower term (“chambered long

cairn”). The connection to the rest of the Tether schema, explained in Sect. 6.4, is also

shown. The Monument Thesaurus is implemented as a graph named monThes and

there is another one with parallel structure (objThes) for the Object Thesaurus. Both

monThes and objThes are typed as SKOS ConceptSchemes.
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:Siteid#site123

:Classn/Sitetype#
"CHAMBERED CAIRN"

"Derived from RCAHMS Monument Thesaurus"

monThes:

skos:ConceptScheme

skos:Concept

"CHAMBERED CAIRN"

comprising a stone−built chamber
within a mound of stones."

"A Neolithic burial monument

:Classn/Sitetype#stalled+cairn

:Classn/Sitetype#passage+grave

:Classn/Sitetype#heel+cairn

"Passage Grave"

"Heel Cairn"

"Stalled Cairn"

:Classn/Sitetype#tomb

:Classn/Sitetype#ring+cairn

:Classn/Sitetype#chambered+tomb

:Classn/Sitetype#burial+cairn

:Classn/Sitetype#chambered+cairn
:Classn/Sitetype/industrial

:Classn/Sitetype/civil

:Classn/Sitetype/religious+ritual+and+funerary

:Classn/Sitetype#square+cairn

<http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@prefix       :    <http://www.ltg.ed.ac.uk/tether/> .

@prefix   rdf:

@prefix rdfs:  <http://www.w3.org/2000/01/rdf−schema#> .

@prefix skos:  <http://www.w3.org/2008/05/skos#> .

@prefix monThes:  <http://www.ltg.ed.ac.uk/tether/monThes#> .

main Tether Schema

rdf:type

rdf:type

skos:prefLabel

:rdfs:label

:hasClassn

rdfs:comment

(18 top concepts)

monThes:topTerm

skos:broader

skos:hasTopConcept

skos:altLabel

skos:related

monThes:prefTerm

skos:inScheme

:Classn/Sitetype#chambered+long+cairn

skos:scopeNote

skos:broader

rdfs:subClassOf

:Classn/Sitetype/monument+%28by+form%29

Figure 6.3: Example illustrating RDF thesaurus schema. This subgraph shows how the

connection to the rest of the Tether graph works. See Fig. 6.2 for the connection to the

main Tether schema.
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6.4 Grounding the Content Data

Clearly the converted thesaurus is only useful insofar as it can be connected to the

graph derived from the RDB content data. Taking the Monument Thesaurus as an

example, the connection points are the :Classn/Sitetype nodes, that are the objects

of :hasClassn (“has classification”) predicates, indicating the site type (“chambered

cairn”, “souterrain” etc. in nodes with URIs like :Classn/Sitetype#chambered+cairn).

There is a parallel set of :Classn/Objtype nodes for kinds of object (“bronze axe”,

“Roman coin” etc.). These nodes contain terminology taken from the thesauri. How

should they be grounded against the SKOS Concepts in monThes and objThes?

Several options were considered:

1. Each Sitetype could be tied to its corresponding Concept by a skos:exactMatch

predicate, which is designed for linking matching Concepts without asserting

that they are the same node. For example, one might have a triple such as

:Classn/Sitetype#chambered+cairn
skos:exactMatch

monThes:chambered+cairn

(For practical loading purposes, one would need to decide whether the link points

this way (RDB node to thesaurus) or the other.)

2. The nodes could be logically merged, using an owl:sameAs predicate. This

produces triples similar to the skos:exactMatch ones. The difference is that

owl:sameAs means that the two nodes are identical in every respect.

3. A thesaurus node could be generated within the RDB graph, replacing the ex-

isting Sitetype instances. This involves re-engineering the RDB2RDF process.

Wherever there is a node such as :Classn/Sitetype#chambered+cairn in the graph

derived from the RDB it would be replaced with a monThes:chambered+cairn

node. This assumes that every :Classn/Sitetype term can be matched in the Mon-

ument Thesaurus, and an alternative procedure would be needed if that were not

the case.

4. The thesaurus could be built around the existing Sitetype nodes where these are

already present. Where there is no existing matching node (i.e. the thesaurus

calls for a term that is not already in the RDB graph), the thesaurus node would

still use the same form, such as :Classn/Sitetype#new+site+type where “New

site type” is a putative term from the thesaurus that doesn’t actually occur in the
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data content. If a site of this type were later added to the RDB graph it would

automatically be grounded. Conversely, if the RDB graph contains site type

terms that are not in the thesaurus, the node exists normally in the RDB graph

but simply fails to find grounding in the thesaurus.

The last-mentioned option was chosen, in line with the principle listed in Chap. 5,

that coinciding concepts should receive identical URIs whenever possible. The exact-

Match and sameAs variants would work perfectly well in the presence of a reasoner,

but for practical purposes this is infeasible. They require an extra link in the SPARQL

query and an extra piece of schema knowledge—both of which are to be avoided if

possible.

The result of this integration step is that, if a simple triple such as

:Classn/Sitetype#chambered+cairn:Siteid#site123
:hasClassn

is generated in the main Tether graph, it automatically inherits all of the grounding

structure shown in Fig. 6.3. No extra connections need be made; the whole panoply of

thesaurus information is instantly at the disposal of queries touching that simple triple.

6.5 URI Naming

One of the principles of Chap. 5 was to use RESTful URIs. In the context of a the-

saurus this might imply placing the whole broader term hierarchy in the URI, as in,

say, :Classn/Sitetype/transport/railway+transport+site/railway+cutting. (Just for the mo-

ment I leave aside the knotty question of “hash URIs”, described in Sect. 5.2.2) How-

ever, multiple inheritance is common in thesauri, and the Monument Thesaurus is no

exception. For example, “farmhouse” appears in the “Agriculture and Subsistence” hi-

erarchy, as a narrower term for “farm building”, and in two distinct “Domestic” chains,

under “agricultural dwelling” and “house” respectively. Rather than give each sense

a separate URI—which would destroy a lot of “serendipitous linking” potential, the

sitetype nodes are cut short, so that “farmhouse” appears just once in the graph, as

:Classn/Sitetype#farmhouse, with three broader arcs from its node. This solution also

has the advantage of mirroring precisely the original thesaurus structure, as held in

relational tables.
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6.6 Discussion and Summary

The interest in generating and promoting new vocabularies is one of the defining char-

acteristics of the Semantic Web. Site and object classification are the two key sets of

terminology needed to ground the RCAHMS data, and a Monument Thesaurus and

Object Thesaurus are available. They are not published anywhere in RDF form as yet

but, as explained in this chapter, translation of the highly structured data typical of the-

sauri is straightforward. Nevertheless there are design decisions to take, and these were

examined. Once the thesauri have been converted to RDF they can be made available

to any other RDF graph that can share nodes with them. An example was shown of the

rich set of background information that is automatically available to a simple Tether

triple as long as it can hook one of its nodes to the thesaurus graph.

Two of the three parts of the Tether system, as outlined in Chap. 2, are now in

place. The next phase is the NLP (natural language processing) work on the free text

documents, dealt with in the following two chapters.



Chapter 7

Named Entity Recognition

Having dealt with the structured data from the relational database and from available

thesauri, we now move on to handling free text. The goal is to transform such text

into a graph structure, and the approach taken is to extract binary relations between

pairs of terms. Once found, these relations can readily be converted to RDF triples.

To simplify the task, and because the graph nodes should represent significant content-

carrying terms, the relation pair terms will all be named entities (NEs), which must

therefore be identified and categorised as a preliminary. This chapter describes work

on this first step of named entity recognition (NER).

Text data from the RCAHMS corpus was manually annotated with entities and re-

lations, as described in Chap. 4. (Section 4.3.1 covers NE annotation.) The handling

of nested NEs, where one entity string contains others within it, is important and in

Sect. 7.1 I consider various previous approaches to nested entity discovery, before de-

tailing the method actually used. Section 7.2 deals with the unusual nature of some of

the NE categories. The experimental setup and results are described in Sect. 7.3 and

7.4. Section 7.5 covers the extension of the system from the relatively small annotated

corpus (1,546 documents) to the whole RCAHMS dataset (216,000 documents).

7.1 Nested Entities

NER is generally treated as a classification task, where a sequence of tokens is tagged

with labels by the classifier. Where entities overlap or are nested within one another,

classification becomes difficult, because an individual token may require more than one

label. In the RCAHMS corpus, up to three levels of nesting can occur. For example,

in the string

114
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[[[Edinburgh]PLACE University]ORG Library]ORG

the token “Edinburgh” is a PLACE entity mention on its own, and part of two distinct

ORG entity mentions.

Commonly, in NER tasks, only a single level of nesting is dealt with—generally

the longest string, or outermost entity. However, my NER work is a preliminary to

Relation Extraction, and the subject and object of each relation will be a named entity.

If nested entities are omitted then relations using them will also be lost.

For example, in the kind of text we are dealing with, the nesting of a PLACE

entity within a longer entity string is quite common (as in [[Aberdeen]PLACE School of

Architecture]ORG, [Stones of [Stenness]PLACE]SITENAME, and so forth). Although the

resulting hasLocation relations will probably be important in query applications, they

are likely to be missed unless we can deal with nested NEs. Similarly, bibliographic

references (which are classed as EVENTs with subclass DESCRIPTION) typically

contain PERSNAME and DATE entities which may participate in separate relations.

A user who is interested in historical sites mentioned in a given bibliographic work

(such as a paper by a particular archaeologist), is very likely also to be interested in

sites associated with the author of that work, which will probably date from the same

period, or be similar in some other way. Thus the discovery of all entities, regardless

of level, is important.

One way of dealing with nested entities [Zhou et al., 2004] is to detect one level (the

innermost in this case) and then derive rules with which to find other NEs containing

these as substrings. The dataset used was the GENIA corpus [Collier et al., 1999]. The

authors report an improvement of around 3% in the F-score under certain conditions.

A different approach [McDonald et al., 2005] uses structured multilabel classifi-

cation to deal with overlapping and discontinuous entities in a corpus of MEDLINE

abstracts. (That corpus did not contain nested entities but the techniques for overlap-

ping NEs are similar.) In multilabel classification, each example is associated with a

set of labels instead of just one. Here, the labels are structured in the sense that they do

not come from a pre-defined set but are built for the instance in hand. Theoretically,

the number of different labels is exponential on the length of the instance, but the set

for consideration can be limited using the structure of the labels. The method was suc-

cessful when compared with standard sequential tagging, such as is used by the CandC

classifier [Curran and Clark, 2003a] employed in this work.

In another study [Gu, 2006], the problem is cast as a binary classification task, us-

ing a one-vs-rest scheme, to get round the difficulty of individual tokens requiring more
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than one label if they are part of a nested entity. In this work just two entity classes

(proteins and DNA in the GENIA corpus) were used, in separate experimental runs,

with two levels of nesting: outermost and any one inner. The study found that their

“outmost labeling” method recognised outermost entities better, and “inner labeling”

was better for inner NEs (as one might expect).

The idea of using “joined label tagging” [Alex et al., 2007], in which the number

of entity classes is expanded to include concatenations of overlapping class labels,

is discussed in Sect. 7.3 below. It is contrasted with the method proposed here, which

concatenates tokens instead, so that each nested entity string has its own separate label.

Alex et al. also use cascading and layering methods in a pipeline combining taggers,

to achieve good results for nested entity discovery.

7.2 Using Non-standard Entities

As was noted in Sect. 4.3.1.1, four of the NE categories (SITETYPE, ARTEFACT,

EVENT and ROLE) do not correspond to the standard notion of a named entity be-

cause their members are classes not individual instances. The first two cover types of

sites and of objects associated with sites, and their members are taken from the Monu-

ment and Object Thesauri described in Chap.6. These are probably the most important

of all the NE categories from the point of view of ultimately assisting non-expert users

with information retrieval, as they provide the mechanism for explaining the techni-

cal terminology of the domain. The fact that terms like “galleried dun”, “kelp pit”,

“patera” and “palstave” identify sets of individuals means that they have to be han-

dled differently when translated to RDF (see Sect. 8.3.5), but in the NER step they are

treated in exactly the same way as other NE categories like DATE and ORG that refer

to individuals in the normal way.

The same applies to the EVENT and ROLE categories. However, EVENT is un-

orthodox in another way as well, in that its members are often verbs and verb phrases

instead of nominals. The EVENT subclasses are SURVEY, EXCAVATION, FIND, VISIT,

DESCRIPTION, CREATION and ALTERATION. Sometimes there is a suitable noun to

mark as an NE, as in “The excavation was made by Mr V E Owers”, where “excava-

tion” is the event and Mr V E Owers is the agent of it. Very often though, the event

mention is verbal, as in “An earth-house was discovered. . . ” where the find event men-

tion is in the verb phrase “was discovered” (with “earth-house” being the patient of the

event). The classifer uses POS (part of speech) tags as features and will normally be
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expecting NEs to be nominals, yet results for recognition of EVENTS are good, with

F-scores almost identical to the overall average (see tables of results in Sect. 7.4). This

may be because the vocabulary for describing events in the RCAHMS text is quite

limited and also quite distinctive.

These anomalous EVENT entities are needed for the relation extraction step. For

translation to RDF we need to reify events to allow binary relations with the event as the

subject. See the discussion in Sect.3.6.3 on reification and the Davidsonian approach to

formalising action sentences—what is being suggested here follows exactly the same

principles.1 If the event is to be the subject of RDF triples the most convenient solution

is to make it a resource with a URI, and that means finding a string from the text from

which to generate the URI in the same way that all other URIs are produced.

Events and the relations that surround them (agent, patient, date and so forth) are

of fundamental importance in the Tether graph design. The way they are modelled as

NE categories may be atypical, but the results show that it works satisfactorily.

7.3 Experimental Setup

The 1,546 text documents comprising the corpus were tokenised, split into sentences

and POS tagged using the TTT2 toolset [Grover and Tobin, 2006] before being format-

ted for annotation using the MMAX22 annotation tool. The data was then reformatted

for the CandC maximum entropy classifier [Curran and Clark, 2003a], using the BIO

notation. The beginning of an entity string is given a “B-” prefix before its label, to-

kens within the entity string have an “I-” prefix, and tokens that are not entities are

labelled “O”. Thus, a phrase like “...in the National Monuments Record” becomes

“in O the O National B-ORG Monuments I-ORG Record I-ORG”. Evaluation was

done using ten-fold cross-validation.

As explained in connection with Inter Annotator Agreement (IAA) measurement in

Sect. 4.3.3.1, there were some minor inconsistencies in the NE annotation concerning

the inclusion or not of determiners. Indefinite articles preceding entity strings were not

included but, for definite references like “the henge”, “this cairn”, etc., the determiner

was often made part of the NE. All but the final one of the experiments described here

used the “WithDT” set, i.e. the unedited annotation. When the issue was noticed a
1There is now W3C guidance on this issue—“Defining N-ary Relations on the Semantic Web”, at

http://www.w3.org/TR/swbp-n-aryRelations/—which makes very similar recommendations to
what is implemented here.

2http://www.eml-research.de/english/research/nlp/download/mmax.php

http://www.w3.org/TR/swbp-n-aryRelations/
http://www.eml-research.de/english/research/nlp/download/mmax.php
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Entity Type Raw Count ≥ 7 tokens Kept

SITETYPE 5,675 7 5,668

ADDRESS 3,558 100 3,458

EVENT 3,843 667 3,176

DATE 3,520 1 3,519

ORG 2,737 7 2,730

SITENAME 2,737 25 2,712

PLACE 2,509 6 2,503

PERSNAME 2,318 0 2,318

ARTEFACT 879 0 879

PERIOD 406 6 400

ROLE 90 0 90

Total: 28,272 819 27,453

Table 7.1: Distribution of NE types in the annotated corpus

further experiment was done using a revised “NoDT” set, where the annotated data

was edited to remove all determiners from NE strings, for greater consistency. The

determiner, being the previous word, became a feature for the model instead. As will

be explained, there was a marginal improvement in the classifier’s performance on the

“NoDT” set, which is described below as “run 12a”.

The distribution of NE types is summarised in Table 7.1. In total, the annotated cor-

pus contains 28,272 entity strings, if all levels of nesting are included, and all lengths

of entity string. For reasons explained below, NE strings consisting of seven or more

tokens were excluded, bringing the total down to 27,453. The proportion of NEs hav-

ing other entities nested within them is 9.4%, whilst 18.7% are nested within longer

NEs. Each containing entity typically has either one, two or three shorter NEs within,

with two being the commonest. The corpus contains no entities with more than three

levels of nesting, i.e. at most we have outer, inner and innermost levels. No disjoint

entities (where the tokens comprising the NE string are non-adjacent) were included.

As discussed above, the problem with nested entities is that individual tokens re-

quire multiple labels if they participate in more than one entity string. One possibility

is to concatenate labels; for the “Edinburgh University Library” example cited above,

the first token might be labelled B-PLACE B-ORG B-ORG, the second O I-ORG I-
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ORG and the third O O I-ORG. This makes the task more difficult because the number

of categories to choose from is larger, while the number of training instances remains

the same, but it enables all levels of entity to be recognised. This joined label tagging

technique has been successfully used in the biomedical domain [Alex et al., 2007]

and that work may be extended to cover the RCAHMS dataset, which would enable a

comparison between joined label tagging and the technique used here.

The alternative tried here is to concatenate the tokens instead, so that each entity

string becomes a single token and can be given its own correct label. To achieve

this, a maximum entity string length must be determined in advance, and then every

token in the corpus is concatenated with those following, up to the chosen length. For

example, if the maximum entity length to search for were three, then the phrase “when

Edinburgh University Library was built” would be tokenised and labelled as follows:
when O

when Edinburgh O

when Edinburgh University O

Edinburgh PLACE

Edinburgh University ORG

Edinburgh University Library ORG

University O

University Library O

University Library was O

Library O

Library was O

Library was built O
. . . and so on.

An analysis of the distribution of entity string lengths showed that 97.10% were

of length six tokens or fewer, though the longest was 24 tokens. (That string is

“1st edition

of the OS 6 - inch map ( Inverness-shire , Hebrides , Harris , North Uist etc 1880

, sheet xxvi )”, which is a reference and so is classified as part of a DESCRIPTION

event as explained above. Most of the very long entities were similar descriptions of

Ordnance Survey maps.) The maximum length figure was therefore set to six for this

experiment, which excluded 819 NEs. This is consistent with the overall goal of the

project, because long strings are very unlikely as user query terms.

On the face of it, the advantage of this method is that the number of categories is
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unchanged, while the amount of training data is increased—though the big increase is

in the number of negative examples. The obvious drawback is the increased time taken

for training the classifier, and also that (depending on how the tokens are arranged) the

sentence length is increased six-fold.

The training data was presented to the classifier in the format shown above, with

features added. For each individual token a set of six “multi-tokens” was generated,

with one token in the first, two in the second, and so on. The test data was in exactly the

same form, without the tag labels. The classifier output a single tag per token received:

from the set of 11 class labels plus “O”.

The final token of the concatenated string was made salient to the classifier by using

the POS tag of the last token in the string as a feature. The final token was picked each

time for consistency and because it is most likely to be the head word of any entity

string. The following unigram features were also experimented with, but produced

only a marginal improvement in overall performance (see Table 7.2, run 10):

• position within set of 6 multi-word tokens: p1 to p6

• contains “ ”: yUnd or nUnd

• capital following “ ”: ic0 (none), ic1 (some) or ic2 (all)

• last token type: letters converted to “A” or “a”, digits to “0”, punctuation un-

changed (so “Shetland” becomes “Aaaaaaaa”).

The CandC classifier is, naturally enough, optimised for standard sentences. It has

a number of built-in features based on the bigram and trigram context in which each

token appears, and it also makes use of gazetteers of personal names and place-names.

The multi-word tokenisation may well confuse the classifier and, to explore the multi-

word method thoroughly, a classifier would have to be configured with it in mind.

Therefore some experiments were run with “previous word” and “previous POS tag”

bigram and trigram features, where “previous” refers to the preceeding single token

from the orginal corpus text, and not the immediately preceeding multi-word token.

Similarly, forward bigrams and trigrams were also tried. These features were chosen

as they are known to be particularly useful to a standard NE classifier, but there is

scope for further exploration.

The experiments were run almost exclusively with the CandC experimental NE

tagger, which is tuned for NER over English text. Since it was realised that the multi-

token method would be penalised by not in fact being very like normal English text, a
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Run Description Precision Recall F-score CorrectNEs

Single-token: average 24,448 NEs (varies because of random selection)

1 Single tok, all lengths, rand1 70.47 69.73 70.10 16,923

2 Single tok, all lengths, rand2 71.05 69.75 70.39 16,918

3 Single tok, outermost NEs 74.77 72.42 73.58 16,671

4 Single tok, maxlen 6, random-1 74.64 72.67 73.64 17,931

5 Single tok, maxlen 6, random-2 74.57 72.65 73.60 17,920

6 Single tok, outermost, maxln 6 77.06 75.09 76.06 18,359

7 As run 6 + domain gazetteers 76.98 75.18 76.07 18,379

Multi-token: 27,453 NEs available

8 Multi-tok, basic 80.75 65.24 72.17 17,899

9 Multi-tok, domain gazetteers 80.52 65.67 72.34 18,015

10 Multi-tok, unigram features 82.14 66.79 73.67 18,322

11 Multi-tok, POS+word trigrams 81.84 66.26 73.23 18,178

12 Multi-tok, wi−1 alone 87.70 66.79 75.83 18,322

13 As 12 with weights adjusted 84.79 70.81 77.17 19,426

14 As 12 with weights adjusted 82.96 72.39 77.32 19,860

15 As 12 with weights adjusted 78.43 75.91 77.15 20,825

Table 7.2: Summary of NER results for single- and multi-token runs

simple experiment was done with another, general purpose tagger, Zhang Le’s Maxi-

mum Entropy Toolkit, “maxent” [Zhang and Yao, 2003]. The aim was not to tune this

tagger properly for NER, but merely to compare the single and multi-token methods

on a level playing field, where neither had any advantage.

7.4 Results

The results indicate that the multi-word tokenisation technique can improve the tag-

ger’s performance, when combined with the extra word and POS features mentioned

above.

Table 7.2 summarises the overall NER results, comparing a number of runs of the

standard single-token method with multi-word tokenisation, and showing Precision,

Recall and F-score (harmonic mean) figures, calculated using the CONLL scorer. All
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of these runs are over the “WithDT” annotation (where definite references usually

include preceding determiners).

For the single token runs, only one level of entities is available each time. The

table shows what the total number of available entities was for each experiment, and

the scores are percentages against this total. The scores for the multi-token runs are

percentages of the full set of 27,453 NEs, as this method is capable of training on, and

outputting, all the NEs at once.

The first run included all NEs, selecting a single one at random wherever there

was a nested set. Run 2 is exactly the same, with a different random selection. It

was unclear whether this would be a fairer baseline than using only the outermost

entities, as is commonly done, so run 3 was included. The big difference in perfor-

mance was unexpected: consistently using outer entities produced a 3% improvement

in the overall F-score, whereas one might expect such entities to be much harder to

recognise, as they are sparser in the corpus. Runs 4 and 5 (which are the same except

for using a different random selection in each family of nested entities) excluded the

longer entities—those consisting of strings of more than six tokens—in order to match

the multi-word method, which also excludes them. The results are not very different

from the previous run, which supports a conclusion that the classifier is sensitive to the

length of the entity strings, but that it is a mixture of lengths (as in runs 1 and 2) that

causes problems, rather than their absolute length. To test this, run 6 used only outer-

most NEs (as in run 3) and excluded the long ones. This produced another noticeable

performance gain, to an F-score of 76.06%. This suggests the possibility of improving

the tagger’s model by training it separately on entities of each different string length.

The final run of the single-token set used extra gazetteers, in addition to those built-

in to the classifier for personal names and place names. The main ingredient was the

Thesaurus of Monument Types (TMT) and terms from the Thesaurus of Object Types

were also added. These were intended to help the SITETYPE and ARTEFACT classes

respectively. This produced only a marginal improvement, which is not altogether

surprising, as work in the NER field has shown that gazetteers tend not to enhance

performance significantly if the training data is sufficiently representative [Mikheev

et al., 1999]. The main reason for including them here was in order to test whether

having multi-word terms helped. With a multi-word tokenisation it was clear that

longer strings could be included in the gazetteer list, by concatenating them exactly as

the corpus tokens were concatenated. This is a simpler approach than those needed to

handle multi-word gazetteer entries in a standard single token setup.
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Runs 8 to 15 used the multi-word tokenisation. The first, the simplest for this

approach, used no additional features and no gazetteers apart from the classifier’s own.

Its overall F-score was worse than the single-word method (though on a larger number

of NEs), but it seems likely there was a mixture of positive and negative effects (see

below). Adding the domain gazetteers (run 9) had no impact, answering the question

raised about multi-word gazetteer terms. This is not especially unexpected: gazetteers

tend only to include terms the classifier sees plenty of examples of anyway, and has

little trouble with. It may be possible to improve the contribution of gazetteers by

training a separate model for them, as shown by Smith and Osborne [2006].

The unigram features discussed in Sect. 7.3 were tested in run 10, and produced a

small improvement. It might be worth further experimentation to find better features

characterising the multi-word token in a useful way.

A series of runs was made, of which run 11 and run 12 are shown as being the most

noteworthy, using various combinations of previous and next POS tags and words:

posi−2,wi−2, posi−1,wi−1, posi+1,wi+1, posi+2,wi+2. This was an attempt to repro-

duce some of the normal features built-in to an NE classifier. Surprisingly, wi−1 (pre-

vious word) was not only by far the most useful (run 12), but was much better on its

own than when combined with the others (run 11 used a combination of all the POS

and word features just listed).

It is noticeable that precision is improved at the expense of recall in the multi-word

experiments. For this domain, that is arguably a benefit, as a non-expert user is likely to

prefer a fairly short list of reliable information to an exhaustive list containing errors.

However, in order to try to balance precision and recall better, a series of trials was

carried out with varying weights for each class applied to the maximum entropy model

that CandC uses. This adds constraints that the model must fit, and biases it towards or

against selecting a particular NE class tag. Runs 13, 14 and 15 are examples of slightly

different weightings that each improved recall without losing too much precision, and

improved the overall F-score. In run 13 the weighting favours SITETYPE and EVENT

classes, which are large and important classes having poor recall (see Table 7.3). In

Run 14 the weighting is uniform across all the NE classes but biased against the “O”

class, to improve recall across the whole set by having a less cautious model. Run 15 is

similar to 14 but with even more smoothing, and almost balances precision and recall.

The same trials were made for the single word models where, as expected (since these

are already well balanced), no real improvement in overall score was possible.

In some respects the multi-word tokenisation must surely have a negative impact.
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Run 7 (best single) Run 12 (best multi) Run 15 (12 smoothed)

NE class P R F P R F P R F

ADDRESS 79.99 82.03 81.00 82.32 83.42 82.87 70.97 85.50 77.56

ARTEFACT 53.41 32.49 40.40 71.14 16.29 26.51 56.62 29.73 38.98

DATE 86.38 92.04 89.12 95.09 82.01 88.06 88.22 90.68 89.43

EVENT 85.24 73.43 78.89 94.81 64.47 76.75 87.74 76.26 81.60

ORG 91.23 90.98 91.11 99.27 89.22 93.97 98.30 91.24 94.64

PERIOD 64.59 56.61 60.34 83.26 44.75 58.21 72.29 63.25 67.47

PERSNAME 83.49 84.69 84.08 96.86 77.13 85.87 91.26 85.15 88.10

PLACE 83.34 78.15 80.66 94.88 66.69 78.33 91.17 69.77 79.05

ROLE 93.10 60.67 73.47 98.00 54.44 70.00 96.15 55.56 70.42

SITENAME 62.53 71.04 66.51 65.98 62.60 64.24 53.80 69.46 60.63

SITETYPE 67.32 64.88 66.08 82.17 45.07 58.21 71.52 63.70 67.38

Average 76.98 75.18 76.07 87.70 66.79 75.83 78.43 75.91 77.15

Table 7.3: Detailed NER results for best runs

As already mentioned, the tagger has built-in bigram and trigram features that will be

skewed in these experiments. Also, the tagger makes use of prior knowledge of word

frequencies derived from large English text corpora (one billion words), and at least

5/6ths of the tokens will appear as unknown words. Therefore the fact that a slight

improvement in overall performance is possible suggests that there must be a definite

positive effect balancing the negative.

As is usual, the results for precision, recall and F-score are given as percentages.

This is slightly misleading, as the total number of entity strings is higher in the multi-

word experiments than in the single baseline where only one of each nested entity set

is available. For runs 1 to 7 the average number of NEs that could be found is 24,448.

(The total varies for each of the random runs, from 23,020 to 24,675, because a long

entity string may contain several shorter ones.) For runs 8 to 14 it is the total NE

population: 27,453. Thus the multi-token method can output an average of over 12%

more NEs than the single-token method. The actual number of correctly predicted NEs

for each run is included in the last column of Table 7.2. If one were to compare the

results on the total NE population (i.e. deeming the single-token model to have missed

all the NEs unavailable to it), then the best single-token run (number 7) would have
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GOLD STANDARD CLASSIFIER ERROR COMMENT

J I McKinley PERSNAME I McKinley PERSNAME partial string tagged

Dental School SITENAME Dental School ADDRESS wrong class, but ok

for querying

National Library of Scot-

land SITENAME

National Library of Scotland ORG as above

St Abb’s Head PLACE St Abb’s Head SITENAME as above

London Mint O London Mint ADDRESS classifier’s choice

seems better

three of which SITETYPE tagged as O coreference not dealt

with

dyke SITETYPE this dyke SITETYPE determiner wrongly

included

the enclosure SITETYPE enclosure SITETYPE determiner wrongly

omitted

East Cults Parish Church

SITENAME

Cults Parish Church SITENAME

Parish Church SITETYPE

2 errors, but not nec-

essarily harmful

Table 7.4: Examples of NER errors

recall of only 66.95%.

Table 7.3 gives the detailed results for precision, recall and F-score within each NE

class, for runs 7, 12 and 15. Numbers 7 and 12 are the best from each method with

standard constraints on the maximum entropy model, and 15 is the same as 12 but with

smoothing applied to balance precision and recall as closely as possible.

As noted, precision is much improved by the multi-word technique, whilst recall

suffers. The ARTEFACT class performs poorly in all variants, but particularly with

the multi-word tokens. It is one of the sparser classes and the members do not seem

to be sufficiently distinctive to be easy to model. The scores for ROLE are probably

not very reliable, as this class is tiny (see Table 7.1). With smoothing, the multi-word

model produces a slightly better F-score than the single-token method (77.15–77.32%

compared to 76.07%), whilst outputting considerably more NEs: 20,825 as against

18,379—or 13.3% more.

Analysis of the errors made by the multi-token classifier is interesting. In calculat-
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Run Precision Recall F-score Correct NEs

7 83.54 81.82 82.67 18,906

12 93.07 71.32 80.76 18,986

15 85.14 82.46 83.78 21,952

Table 7.5: “Unlabelled” results—categorising tokens simply as NEs or not—using the

same model configuration as the Table 7.3 runs

ing the error percentages, all deviations from the gold standard are counted as errors;

but in practice some are more significant than others. Table 7.4 lists some examples

of common classification errors that, from the point of view of building a graph of

relationships between entities, would not be very harmful. Unfortunately, it is difficult

to calculate what percentage of the errors are like these, as opposed to more damaging

failures. Including or excluding extraneous tokens (such as a preceeding determiner)

is a pity, but much less serious than missing an entity altogether. The coreference

example (“three of which”) highlights a gap in the system (discussed in Sect. 8.3.1)—

without a resolving mechanism the presence of anaphoric NEs in the training data

damages performance. The last example in the table is harmful if the query needs to

distinguish East Cults Parish Church from, say, another at West Cults, but the less spe-

cific term will often be adequate for queries. Recognising the embedded SITETYPE

is certainly useful even if the annotation did not include it.

It is more important to detect the presence of an entity, or “content carrying term”

than to classify it correctly: Table 7.5 compares “unlabelled” results corresponding to

Table 7.3’s, where the scoring is just on presence or absence of an NE as detected by

those models (without retraining). It might be interesting, given more time, to retrain

the models for different NE class sets, perhaps merging the locational classes (PLACE,

ADDRESS, SITENAME) together, and the time-based ones (PERIOD, DATE), that

were noted in Chap. 4 as likely to be hard to distinguish.

The issue of definite or indefinite descriptions was noted during the error analysis,

and the annotated corpus consequently edited as has been explained, to produce a

“NoDT” copy where preceding determiners were stripped from NE strings, so “this

dyke” and “the enclosure” (examples taken from Table 7.4) become simply “dyke” and

“enclosure”. This change was expected to remove some ambiguity so a run, labelled

“12a”, was made using exactly the same configuration as for run 12, for comparison.

There is a slight improvement both in precision and recall, as is shown in Table 7.6.
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Precision Recall F-score

ADDRESS 82.40 81.61 82.00

ARTEFACT 75.83 18.06 29.17

DATE 95.12 82.08 88.12

EVENT 94.98 63.66 76.22

ORG 99.39 89.66 94.27

PERIOD 84.02 45.54 59.07

PERSNAME 96.71 74.82 84.37

PLACE 95.00 66.80 78.44

ROLE 98.00 54.44 70.00

SITENAME 64.55 61.20 62.83

SITETYPE 85.24 52.39 64.89

Average 88.02 67.75 76.57

Table 7.6: Results for run 12a, which used the same configuration as run 12 but over

the “NoDT” corpus. This setup was used for the final NER model.

The total number of correct NEs found was 18,618 (compared with 18,322 in run 12).

The “NoDT” corpus was therefore used in subsequent work, for relation extraction and

beyond.

Finally, as was mentioned at the end of Sect. 7.3, a simple experiment was per-

formed using Zhang Le’s maxent tagger [Zhang and Yao, 2003], which is a general

purpose maximum entropy classifier with no NE tuning. It treats the data simply as

a collection of instances with attached features, rather than as sentences made up of

sequences of tokens. For this kind of classifier, the multi-word tokens are at no disad-

vantage, since there is no background knowledge of English word frequencies and so

forth. A comparison was made using the baseline set of multi-word tokens (all 27,453

NEs that are 6 tokens long or shorter) against the corresponding single-word set (as

used for run 6 in Table 7.2, having 24,500 NEs), with the same minimal set of features

in each case. The results are shown in Table 7.7. The scores are very low, as is to be

expected for a completely untuned system, but those for the multi-word tokens are a

good deal higher, and the bias towards precision is strongly confirmed.
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Precision Recall F-score

single-word tokens 41.06 48.56 44.49

multi-word tokens 78.59 46.90 58.75

Table 7.7: Comparison of classifying single- and multi-word tokens using the “maxent”

tagger, without tuning specially for the NER task.

7.5 NER Across the Entire Dataset

There are over 270,000 site records in the RCAHMS database and most of them (just

under 216,000) have an associated free text document. There are also some dozen

or so fields for each site that may contain shorter notes (typically a few lines of text)

on particular features. It was not possible to process the entirety of suitable text but

enough was used to prove the process. The text documents associated with the first

20,000 or so site records in the database were taken and put through the “txt2rdf”

pipeline described in Sect. 8.4. The processing steps are explained there.

For the NER stage of the pipeline a pre-trained model was required, to run against

raw text and classify each token sequentially. The tokens are labelled either as not

being entities or as instances of one of the categories in the model. The configuration

chosen was that used for Run 12a—see Table 7.6—which, although less successful

than the smoothed model in terms of total number of NEs found, had the best precision

of all the experimental configurations, at 88.02%. As explained, precision is believed

to be more important than recall for this application. The model was trained using

the entire annotated corpus. It was run over the raw text in batches of up to 10,000

documents, and found over 256,000 NEs in a batch of 10,000, or an average of around

26 NEs per document.

7.6 Discussion and Summary

The nested entity recognition method described in this chapter appears to be promising,

though further exploration would be needed to test the limits of performance that could

be achieved. The drawback is the longer time needed to train the classifier, but the

advantage of the multi-token system is that the classifier can output all the NEs in the

corpus, instead of only one of each family of nested entities. The depth of nesting is

immaterial. In the experiments described, 13.3% more NEs were correctly found by



Chapter 7. Named Entity Recognition 129

the multi-word model as compared with the baseline single token method.

Although training takes considerably more time because of the greater document

length, tagging time with the final trained model did not present problems. It proba-

bly takes longer (no formal comparisons with a differently trained model over a large

dataset were made) but for Tether this is a process that only has to be done once and

the cost was not significant. To run NER tagging on a batch of 10,000 documents took

5 min. 25 sec. on a 1.86 GHz laptop.

The maximum length of entity string to search for must be determined in advance—

in this case a maximum length of six was chosen, which excludes only 2.9% of entities

in this corpus. Arguably, excluding long entities is a sensible tactic anyway for this

project, which aims to build a queryable graph from text relations, so entity strings can

be considered as candidate query terms. There is likely to be a performance gain from

dropping the longer entity strings, and they are improbable as end-user query terms.

The method increases precision at the expense of recall. For a system ultimately

intended to deal with queries over cultural data by non-specialists being able to achieve

high precision is good news. This type of user is generally not greatly concerned with

recall—he or she probably does not need to see every example of a long barrow in

Scotland (indeed, many query interfaces simply curtail long hit lists at an arbitrary

limit)—but precision is crucial. It would be a bad mistake to tell such a user that a

long barrow exists where it does not. Naturally, specialists in the fields of archaeology

or architectural history (the topics this data covers) may be interested in good recall as

well, but this programme of work is specifically directed towards assisting non-experts,

for whom trustworthy information is much more important than complete coverage.

At the conclusion of the NER step we have a trained model that can identify entity

mentions in any free text documents from this domain. The final step before data from

the text can be integrated with the rest of the RDF graph is to find relations between

pairs of NEs.
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Relation Extraction

One of the main goals of this work is to represent aspects of the meaning of plain text

documents as a graph of RDF triples. The chosen approach is to find and categorise

relations between named entities (NEs) in the text. Finding the NEs was described in

the last chapter and we now move on to finding the relations between them.

This chapter describes the apparatus used (Sect. 8.1) to perform relation extrac-

tion (RE) and presents the results in terms of standard precision and recall measures.

The issues raised in the machine learning experiments are discussed in some detail in

Sect. 8.2. The process of mapping the extracted relations into the Tether graph is cov-

ered in Sect. 8.3. Section 8.4 deals with the complete pipeline that takes raw text in

and produces a set of RDF triples as output.

8.1 Experimental Setup

Extracting and identifying relations in text has become an established NLP task over

recent years, with a growing literature (see Chap. 3). As is common with NLP work,

the early methods tended to be predominantly rule-based, and these have largely been

supplanted either by hybrid or by purely statistical approaches. The method here is a

simple probabilistic one, over the annotated corpus described in Chap. 4. Zhang Le’s

“maxent” tagger [Zhang and Yao, 2003] was used, which is a general-purpose maxi-

mum entropy modelling tool. No attempt was made to evaluate rival machine learning

tools; maxent was chosen because it has been shown to perform well on similar RE

tasks (see Nielsen [2006] or Haddow and Matthews [2007] on the detection of protein-

protein interactions in biomedical texts).

The RE step was framed as a tagging task by taking named entities (NEs) and

130
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Relation Label Count Example

eventAgent 3,783 described–eventAgent–henshall

eventAgentRole 30 described–eventAgentRole–field+surveyor

eventDate 3,191 visited–eventDate–28+april+1969

eventPatient 1,611 excavation–eventPatient–burnt+mound

eventPlace 392 found–eventPlace–hu+4124+3490

hasLocation 5,101 hill+of+caldback–hasLocation–unst

hasPeriod 264 civil+settlement–hasPeriod–roman

instanceOf 165 corsindae–instanceOf–hall+house

partOf 872 field+walls–partOf–township

sameAs 10,691 calder–sameAs–c+s+t+calder

seeAlso 310 nf+976+913–seeAlso–nf87sw+1

Total 26,410

Table 8.1: Distribution of relation types in the annotated corpus, with examples of usage.

presenting all possible pairings of them to the learner. Where the gold annotation set

showed a relationship between a pair it was labelled with the appropriate relation name,

otherwise the pair was marked as “no relation”. The phrase “possible pairings” can be

interpreted in various ways: relations between NEs within the same sentence, within

the same paragraph, or across a whole document or even across a corpus of related

documents. Whilst it was impractical to explore the possibilities exhaustively, experi-

ments were done on pairings within the same sentence or across whole documents, ie

intra- vs inter-sentential relations.

Multi-word NE strings were presented as single tokens, joined with “ ” charac-

ters where necessary. As explained in Chap. 7, nesting of entities is common in the

RCAHMS data (19% of NEs are nested within longer ones), and it was considered

important to pay particular attention to finding nested entities so that relations between

inner and outer NEs are available to be found.

The relations to be found, and their distribution within the annotated corpus, are

shown in Table 8.1. The relation types are as described in Sect. 4.3.2 and the examples

in Table 8.1 show how they are used. Most are self-explanatory but the event relations

are worth examination. The eventAgent relation connects events like DESCRIPTION,

VISIT, EXCAVATION or FIND to the agent who performed the event, eventAgentRole
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indicates what rôle an agent had in an event, eventDate states when the event took

place, and so on. Every event has one or more of these relations attached to it. In

all the examples in the table, the subject and object components come directly from

the NE mentions in the text, so the event nodes are very often verbs, as explained in

Sect. 7.2. (The table shows the raw relations as they are extracted from the text and

before post-processing to add unique identifiers where needed—see Sect. 8.3.5.)

For the purpose of evaluating the RE step in its own right, the NE pairs were taken

from the annotated NE layer, i.e. the “gold NEs” were used. However, relation extrac-

tion is only a means to an end here, so the overall performance of the NER and RE

steps in combination was also examined, by testing the RE process over extracted NEs

instead of gold ones.

In all cases except the experiments combining NER and RE steps, ten-fold cross

validation was used, to maximise the utility of the annotated data and minimise the

effects of variations across it. Tests using held-out data were done to see whether the

model became overfitted to the training set.

8.2 Results

A goal of achieving F-score levels at 70–80% of Inter Annotator Agreement (IAA)

has been suggested as reasonable for the RE task (see, for example, [Haddow and

Matthews, 2007]). IAA was surprisingly high for this data (see Sect. 4.3.3.2) but this

goal was reached comfortably.

The experiments performed fall into different categories. Firstly, the corpus was

examined to determine whether it made more sense to restrict the search to relations

within sentences, as is often done in this field, or to look more widely within the

text. Having established that searching for relations by document (i.e. inter-sentential,

intra-document relations) is preferable here, a simple baseline was established and

then a number of experiments were done to work out which textual features should be

presented to the learner. To see whether shortfalls in performance were caused by dif-

ficulties in categorising relations rather than in finding related entity pairs, experiments

were done using unlabelled pairings. Finally, relations were sought between extracted

NEs rather than gold ones, in order to test the combined NER and RE pipeline.
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8.2.1 Using Inter- or Intra-Sentential Relations

Relation extraction work often concentrates on finding relations between entities in the

same sentence. One reason, as is pointed out by Grover et al. [2007], is that so many

inter-sentential relations use coreference. This was a significant issue in the RCAHMS

corpus and one which there was insufficient time to deal with satisfactorily (see discus-

sion in Sect. 8.3.1 below). Another reason for focusing on modelling relations within

sentences is that the features, especially verb phrase features, are much easier to man-

age on a sentence level. Thirdly, the processing time and space requirements are much

reduced, because the set of pairs generated is so much smaller. For a set of n entities,

the number of possible pairings is O(n2). It is n(n−1) if one seeks directed relations

where A → B is distinct from B → A, or half that figure if the direction is immaterial.

Nevertheless, when the ultimate goal is to assist retrieval of relevant information

from the text, the most important consideration has to be “Where do the relations

exist?”, rather than “Where am I most likely to be able to find them?”. In the annotated

corpus only 56.95% of the relations are intra-sentential (15,041 out of 26,410). By

looking for them only one would immediately rule out more than 40% of the significant

“facts” in the text. Clearly this was not a sensible starting point.

The RCAHMS text may have peculiar characteristics in this respect. The docu-

ments are very variable in length but most are short (less than half a page), and they

are written in an elliptic, almost telegraphic, style. There is a great deal of coreference

(see the sameAs count in Table 8.1) and the “sentences” are often short, and not in fact

grammatical sentences. Figure 8.1 shows an example, with the annotated NEs marked

and two of the relations highlighted. (The display is from the MMAX21 annotation

tool.) It is difficult to say with certainty, but this in fact does not seem atypical of the

cultural archive domain, where database records have often been collected from field

notes and earlier card-index systems.

Having decided not to focus on intra-sentential relations alone, I considered using

intra-paragraph ones, but this only brings the coverage up to 72.31%—one would still

miss far too many for the savings due to pair-set size to be worthwhile. Moreover, most

of the advantages in terms of extraction of meaningful features are lost as soon as one

moves outside the sentence. Thus it was clear that relations across whole documents

needed to be attempted.

Given more time, it would have been desirable to try a combination of inter- and

1http://www.eml-research.de/english/research/nlp/download/mmax.php

http://www.eml-research.de/english/research/nlp/download/mmax.php
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Figure 8.1: Example of an annotated text document showing NEs and with a pair of

event relations highlighted. From a display in the MMAX2 annotation tool.

intra-sentential extraction, training separate models for each. To get some feel for what

sort of results might have been achievable, a test was done using the same set of fea-

tures as used for the best inter-sentential results (as shown in Table 8.7) over the subset

of gold relations that are intra-sentential. Table 8.2 shows the results, with an impres-

sive F-score of 86.26%—but over only 57% of the corpus relations, as discussed.

This result may be compared with the IAA figure for intra-sentential relations

(see page 69), which showed 96.49% F-score, with several classes (especially the

event and location ones) having near-perfect agreement between the annotators (see

Sect. 4.3.3.2). As is to be expected, finding relations between entities in the same sen-

tence is a much easier task than finding them across whole documents. For this dataset

that is the case even using a set of features that does not exploit special characteristics

of sentences (like number and position of verbs, of noun phrases, and so on).

It is worth noting that the eventAgent and eventDate relations, when they are within

a sentence, are detected with almost perfect accuracy. As was explained in the IAA

discussion (Sect. 4.3.3.2), this is probably because of the specific way that events like

surveys and visits are recorded in the texts. Whatever the reason, this is a significant

result for practical purposes for RCAHMS, as extracting events of this kind from text

has been identified as a necessary task and one which, following some trials, they have

estimated at around 100 man-year’s effort to do manually.

Finally, one should perhaps at least mention the option of inter-document relations,

across the whole corpus. Finding these using the methods employed here (involving

feature extraction for all possible NE pairings) can be ruled out immediately on scal-
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Relation Precision Recall F-score Found

eventAgent 98.13 98.65 98.38 3,737

eventAgentRole 100.00 48.00 64.86 12

eventDate 98.16 99.15 98.65 3,198

eventPatient 88.13 90.01 89.06 1,584

eventPlace 85.49 77.21 81.14 317

hasLocation 81.19 77.46 79.28 3,264

hasPeriod 88.94 79.13 83.75 226

instanceOf 49.41 28.77 36.36 85

partOf 76.92 60.19 67.54 572

sameAs 65.41 48.57 55.75 1,090

seeAlso 55.88 11.80 19.49 34

Average 88.92 83.76 86.26 14,169

Table 8.2: Results for RE over the 57% of relations where the two related NEs are both

in the same sentence, i.e. intra-sentential RE

ability grounds. From the retrieval point of view we would certainly be interested in

links between entities in different documents though. Clearly, other ways of finding

those relationships are needed, and it is worth noting in passing that translating the RE

results to RDF, as is proposed here, is a step in the right direction of identifying unique

entities wherever they occur across a large dataset, and placing them in a structure that

allows them to participate in many different relations.

8.2.2 Relations by Document

Having looked at the inter- or intra-sentential issue, all further model training was done

by pairing NEs from across whole, single documents and presenting them to the learner

as either having a labelled relation or being unrelated.

As a baseline to work against, an experiment was done with a model trained using

only the two paired entities and their NE types (see Table 7.1 for the distribution of NE

classes). Most of the relations have quite specific domains and ranges, so the NE types

were expected to be the fundamentally important feature. The results are shown in

Table 8.3, where the overall F-score is 45.20%. The two easiest categories eventAgent

and eventDate can evidently be found adequately well by simply pairing EVENT NEs
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Relation Precision Recall F-score Found

eventAgent 67.46 94.98 78.89 5,326

eventAgentRole 71.43 16.67 27.03 7

eventDate 73.55 96.80 83.59 4,200

eventPatient 60.70 38.73 47.29 1,028

eventPlace 45.08 22.19 29.74 193

hasLocation 44.90 22.80 30.24 2,590

hasPeriod 23.13 25.76 24.37 294

instanceOf 20.00 1.21 2.29 10

partOf 56.69 36.93 44.72 568

sameAs 31.75 7.42 12.03 2,498

seeAlso 33.33 0.32 0.64 3

Average 58.31 36.91 45.20 16,717

Table 8.3: Baseline RE results, using a minimal set of features.

with DATE ones or with AGENT ones—they are that regular. The harder categories,

instanceOf and seeAlso in particular, fare abysmally. Whenever in doubt the model

apparently opts for eventAgent or eventDate—compare the figures for relations found

in each category with the true figures given in Table 8.1.

To assist the tagger, features were extracted that might help characterise situations

in which a relation does or does not exist between a pair of entities. Including the base-

line features themselves (the first four shown), 17 such textual attributes were found

to be helpful, to different degrees—they are listed in Table 8.4. With the exception of

“verb” (no. 17) the features take very little from the syntax of the sentences; with NEs

distributed throughout a document detailed sentential features are not available. Were

time available, more could be done on this step by experimenting with extracting fur-

ther features, following examples used in other work. Nielsen [2006] uses deliberately

simple features, not depending on syntactic structure, for extracting protein-protein

interactions but relies in part on having an “interaction word” available in the annota-

tion. By contrast, Choi et al. [2006] use much deeper features for their work on opinion

recognition, including phrase types, grammatical roles derived from parsing, and de-

pendency paths between candidate “opinions” and the “sources” of them. One of the

constraints for my experiments was the need to ensure scalability to feature extraction
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Form Description

1 ne1=... first NE string (concatenated using “ ” as needed)

2 ne2=... second NE string

3 cls1=... first NE type

4 cls2=... second NE type

5 wdsep=±n distance between NEs (+ve or -ve, depending on order)

6 insent=y or n both NEs in same sentence?

7 inpara=y or n both NEs in same paragraph?

8 lastNEwdsame=y or n normalised form of last token in each NE string matches?

9 prevpos1=... POS tag of token preceeding first NE

10 prevpos2=... POS tag of token preceeding second NE

11 1begsent=y or n first NE is at beginning of a sentence

12 2begsent=y or n second NE is at beginning of a sentence

13 1endsent=y or n first NE is at end of a sentence

14 2endsent=y or n second NE is at end of a sentence

15 nest=n, 1in2 or 2in1 one NE is nested within the other

16 neBetw=n number of NEs between this pair

17 verb=... if insent=y, (first) verb between NEs; else “none”

Table 8.4: Textual features used for building RE model (excluding subclass features).

over many thousands of documents, so only shallow features were considered.

A series of trials used all the features from Table 8.4 in various combinations: all

were found to be helpful to the learner, in combination with others if not necessarily

on their own. Table 8.5 gives an overview of their effects by showing the percentage

improvement over baseline in precision, recall and F-score for each feature when used

on its own as an addition to the basic set of features, 1–4. The table includes brief

comments indicating whether particular relation types benefitted more than others.

The most interesting of these runs was the one using the “nest” feature (no. 15 in

Table 8.4), which had a minimal effect on overall F-score but increased precision for

the two big classes—eventAgent and eventDate—by over 30% each, bringing their

precision scores up to 97.68% and 96.97% respectively. (With recall for these classes

remaining excellent, at 94.50% and 93.32%, this single feature added to the baseline

of NE class—readily available from the nested NER method explained in Sect. 7.3—
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Feature P R F Comment

5 (wdsep) +20.20 +16.24 +18.19 helps every category except seeAlso

6 (insent) +11.88 +11.64 +12.20 helps most, except sameAs, seeAlso

7 (inpara) +3.91 +5.22 +5.04 like insent, but less good

8 (lastNEwdsame) +6.00 +12.24 +10.52 helps sameAs a lot, nothing else

9,10 (prevpos1,2) −0.17 +0.70 +0.48 minimal effects throughout

11–14 (sent posn) +0.73 −2.03 −1.35 bad for eventPatient

15 (nest) +15.51 −3.15 +1.13 very mixed results, see discussion

16 (neBetw) +19.56 +12.54 +15.29 similar effect to wdsep

17 (verb) +1.11 +2.40 +2.12 helps the hard classes, see discussion

Table 8.5: Summary of effect of individual features on RE performance, showing per-

centage change in precision, recall and F-score against baseline scores (see Table8.3).

could make a high performance tool for the RCAHMS event extraction requirement

mentioned on page 134.) The False Positives shed from these two categories were

either dropped altogether (only 12,077 relations were found out of the 26,410 present,

as against 16,717 found by the baseline run) or scattered amongst the other categories,

generally reducing their scores by around 10% each.

The other noteworthy test was the one using the verb between NEs when both are

in the same sentence. Although the overall effect was negligible, there was a marked

impact on the two very small, difficult classes: eventAgentRole and instanceOf. The

F-score for eventAgentRole increased from 27.03% to a usable 59.57%, and that for

instanceOf from a wholly pathetic 2.29% to 23.08%. It is not surprising that these

more complex relations benefit from some syntactic clues. However, since between

them they represent just 0.7% of the corpus relations (195 out of 26,410) it does not

seem worth expending a great deal of effort for them in this domain. The simple set of

features used produced adequate results for all the important categories.

Table 8.6 summarises precision, recall and F-scores for some combinations of fea-

tures that were tried: picking the best individual features and combining them, or ex-

cluding the sentence position ones (11–14) that seemed unhelpful on their own. An

extra pair of features was also experimented with—based on the NE subclass label for

the three classes that are divided, namely EVENT, SITETYPE and ARTEFACT—and

the results are included in this table.
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Features Used Precision Recall F-score

1–8 81.10 65.76 72.67

1–8, 15–17 81.39 67.10 73.56

1–10, 15–17 81.29 68.11 74.12

1–17 81.84 68.44 74.54

1–17 (avoiding overfitting) 83.41 69.27 75.68
promote subclass 83.29 68.72 75.31

add subclass 82.57 70.51 76.07

Table 8.6: Summary of experimental RE runs, using different sets of features in combi-

nation. Includes runs using subclass features.

Because there was not time to train separate NER models to do classification over

subtypes, the subclass labels were only available in the annotated set, and could not

be provided as features for raw text processed through the NER step. Therefore the

purpose of including them in the RE tagging experiments was to find out how useful

they would be if, in future work, they could be provided.

Two experiments were done with subclass data:

1. adding subclass features to the set listed in Table 8.4, so that NEs of the three

classes having them would have a label, and all other NEs a dummy value;

2. promoting subclass labels to replace the parent class label for EVENT, SITE-

TYPE and ARTEFACT NEs, and leaving all other class labels unchanged.

Perhaps fortunately—as they cannot be obtained without significant extra work

on the NER step—the subclass features did not improve overall performance very

much. Promoting subclasses to replace their parent EVENT, SITETYPE or ARTE-

FACT classes made both precision and recall marginally worse, possibly because the

larger number of different labels led to data sparsity problems. Adding subclasses for

the three classes that have them, as an extra pair of features, produces a small improve-

ment over most categories.

Assuming subclass data is not available, the best results were obtained by using

the entire set from Table 8.4. From the point of view of efficiency one might wish to

reduce the size of the feature set if possible, to save time in extracting features over

a large dataset—though having a more fully-featured model may not increase tagging
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Relation Precision Recall F-score Found

eventAgent 98.42 98.70 98.56 3,794

eventAgentRole 69.23 30.00 41.86 13

eventDate 98.75 98.68 98.71 3,189

eventPatient 87.77 84.61 86.16 1,553

eventPlace 83.58 72.70 77.76 341

hasLocation 83.26 83.00 83.13 5,085

hasPeriod 83.69 73.86 78.47 233

instanceOf 52.00 31.52 39.25 100

partOf 78.87 51.38 62.22 568

sameAs 68.69 44.55 54.05 6,934

seeAlso 50.00 19.68 28.24 122

Average 83.41 69.27 75.68 21,932

Table 8.7: Best RE results (assuming subclass data not available), using all 17 features.

This is the configuration used for training the final RE model.

time significantly, which is possibly more important. To give this experimental system

the best chance, all features were retained here. Indeed, the model seems hungry for

new features: each one added produced at least some improvement, suggesting that,

given more time, more work could be done to find further clues for the learner that

would increase its prediction accuracy.

The model was checked for overfitting by holding out 10% of the data and testing

convergence by comparing accuracy on the training data against the heldout data on

each iteration. (The number of iterations is a configurable parameter of the classifier.)

No drop in heldout accuracy was seen until after around 100 iterations (where it peaked

at just over 97.7% accuracy), whilst training accuracy was still creeping up at 200 iter-

ations (reaching 98.793% at that point). Rather than seeking a better Gaussian prior for

a high number of training cycles, the number of iterations was simply reduced to 100

to avoid overfitting, saving time and improving the scores (see Table 8.6). The subclass

experiments were done with 100 iterations. The final best F-score was 75.68%2 and

the detailed results for this run are shown in Table 8.7.
2Almost at the end of testing, a small error was detected in the extraction of one of the features,

correcting which improved the best F-score by 0.10, from 75.58%. As there was no reason to suppose a
non-linear effect, it did not seem worth re-running all the earlier experiments, but strictly speaking the
previous scores should probably be increased by about this amount for comparison with the final score.
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Precision Recall F-score

Unlabelled RE run 84.19 69.91 76.39

IAA figures 90.33 76.95 83.11

Table 8.8: RE result for “unlabelled” relations, where each pair of NEs is simply marked

as related or not. The unlabelled IAA scores are also shown, for comparison.

The F-score of 75.68% compares quite well with the IAA figure of 82.51% (see

Table 4.3) which indicates human performance for this task. It is also worth noting

that the precision is good, at 83.41%. As is argued elsewhere in this thesis, where

there is generally far, far more data available than the non-specialist user can begin to

examine, high precision is much more valuable than high recall. The non-expert needs

to be able to trust the results of a query, but is only likely to want to look at the first

page or so of hits.

8.2.3 “Unlabelled” Scores

To ascertain whether finding relations between pairs of NEs is easier than categoris-

ing them, an “unlabelled” test was done. For this, the training data simply indicated

whether or not a relation existed between each pair. The overall score achieved was

76.39, only slightly better than for the labelling task, indicating that categorisation is

not difficult for the model. This was to be expected from the IAA figures which also

show only a small difference between agreement on categorised relations (82.51) and

uncategorised (83.11). The results are shown in Table 8.8, with the corresponding IAA

figures included for comparison.

8.2.4 Evaluation of NER and RE Combination

For formal evaluation of the RE process the gold NEs were used. To test the effective-

ness of the whole pipeline, in particular the NER step combined with RE, some tests

were done using the best-performing RE configuration (i.e. the 17 features listed in

Table 8.4, producing the scores shown in Table 8.7) over NEs found by the NER step

in unmarked data.

The procedure adopted was as follows:

1. Train the best NER configuration over 90% of the annotated corpus.
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2. Use it to NE tag the 10% it hasn’t seen.

3. Generate NE pairs from this tagged 10%.

4. Train the best RE configuration over the same 90% as used in step 1.

5. Do RE tagging over the “found” NE pairs.

6. Evaluate against the gold standard for the 10% test set.

The evaluation step is slightly tricky because the gold 10% set is not directly com-

parable with the output produced by the NER–RE combination. The set of “found”

NEs contains false positives (FPs, i.e. NEs not in the gold set) which cannot be in-

volved in any relation in the gold set. It fails to contain NEs it should (false negatives

or FNs), so all the relation pairs containing these cannot even be shown to the RE

tagger.

Evaluation just using the portion that matches the gold set is clearly unfair, and I

will return in a moment to the method actually used. But, mainly as a “sanity check”

to see if the process was working properly, this unfair evaluation was done first, in the

expectation that the scores would be much the same as for the best RE run. The test

is equivalent to evaluating RE alone, over a very small set of data. To my surprise,

the scores were ridiculously high: well over 90% for precision and recall. The reason

was eventually traced to variations in the corpus dataset, as is explained in Sect.8.2.4.1

below. (The issue is orthogonal to the NE–RE evaluation task, but is of some interest.)

It turns out that the test set used (the last tenth of the file) was a very “easy” one, almost

twice as easy to tag as, say, the 5th tenth of the corpus.

Performance scores were measured over both the easy final portion and the hard

5th portion. Every gold relation correctly found by the pipeline was counted as a

TP (true positive), and every gold relation not found was a FN (including those NE

pairings that the RE tagger never saw). Every relation found by the RE tagger that was

not in the gold relation set was counted as FP. It is not immediately obvious whether

“found” TNs should be included (spurious NE pairs that the tagger correctly marked

as unrelated) as gold ones are (the training set includes examples of unrelated pairs).

For the standard precision and recall measures the question is immaterial, as they do

not take TNs into account, being defined as:

P =
T P

T P+FP
R =

T P
T P+FN



Chapter 8. Relation Extraction 143

“Hardest” data “Easiest” data

P R F P R F

eventAgent 94.91 68.33 79.46 100.00 96.03 97.98

eventAgentRole 0.00 0.00 0.00 0.00 0.00 0.00

eventDate 80.69 57.19 66.94 94.81 86.27 90.34

eventPatient 83.33 4.00 7.63 98.04 81.97 89.29

eventPlace 36.36 8.33 13.56 100.00 26.32 41.67

hasLocation 67.90 59.31 63.31 66.17 51.69 58.04

hasPeriod 83.33 11.90 20.83 0.00 0.00 0.00

instanceOf 0.00 0.00 0.00 0.00 0.00 0.00

partOf 15.79 6.82 9.52 92.71 71.20 80.54

sameAs 47.63 16.92 24.96 80.07 50.11 61.64

seeAlso 18.18 13.64 15.58 41.18 18.42 25.45

Average 63.55 31.32 41.96 83.15 65.15 73.06

Table 8.9: Results for NER and RE steps in combination, over two portions of the

corpus, showing the upper and lower performance bounds. The RE step was run over

the “found” NEs instead of the gold set. Only relations that fully match the gold set are

marked as TPs. Gold NE pairings that were not available (because one or both of the

NEs was not found) are counted as FNs.

Table 8.9 shows the detailed results for the hardest and easiest datasets alongside

each other. The scores for each relation type are given in full as this is an indication

of the likely upper and lower bounds of performance over raw data. The scores for

the three smallest classes (eventAgentRole, hasPeriod and instanceOf) are unreliable

(I hope!) as there were only tiny numbers of them in these small datasets.

As a rough indication of performance one can simply average the best (73.06%)

and worst (41.96%) F-scores, to reach a figure of 57.51%. This ties in with what one

might expect, as being very close to the product of the independent scores of the NER

(F-score 76.57%) and RE (F-score 75.68%) models: 76.57% of 75.68 is 57.95.

8.2.4.1 Data Variability

Let us return now to focus on the variations across the corpus, found during this evalua-

tion process. For convenience the 90–10 data split first used, for the six step procedure
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Figure 8.2: Distribution of NER tagging errors made by the classifier across different

sections of the corpus, indicating the variability of the data.

outlined on page 141, was that left over from the last of the ten-fold cross validation

runs. The first 90% of the corpus formed the training set and the last 10% the unseen

test set. (The cross validation routine works its way through the corpus, taking each

successive 10% as test data. The final segment is actually very slightly less than 10%.)

It turned out that this final set of sentences from the corpus was much easier to tag

for relations. When an NER run was tried for comparison, the scores were once again

much higher than they should have been: 85.47% overall F-score compared with the

best NER score from cross validation of 76.38% (see Chap. 7).

An examination of NER error distribution across the whole corpus showed—see

Fig. 8.2—that the final tenth of the file is indeed one of the easiest for the models to

get right. (The analysis was done for NER errors because the tagging is sequential

with respect to the corpus; a similar analysis for the generated pair-sets used by RE

would have been more complicated than was worthwhile.) The obvious thing to try

was an NER run over section five (which seems to be the hardest) and, sure enough,

this produced a score of only 67.96%.
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The variation is enormous and hard to explain. The 1,546 corpus documents were

selected from across the entire collection of 216,000, and the division into tenths is by

sentence count across the concatenated 1,546. They remain in the order of the original

database records, which is generally chronological (the record number is simply incre-

mented when a new record is entered), and is also the order in which (I believe) the

annotators worked through them. The IAA set was a sample from across the whole of

the 1,546 documents, with no bias towards any part over another. (Conceivably the an-

notators both suddenly became more consistent as they reached last 40% of the work,

but this seems extremely unlikely.) The only explanation that comes to mind derives

from knowledge of the database evolution: most of the records were bulk-loaded from

card-indexes by an OCR process in the 1980s and the earlier portion of the database is

more likely to contain typographical errors than the later part, which is mainly hand-

entered—but this is just speculation.

For the present work it was not worth pursuing curiosity further, but for future

work on the RCAHMS dataset variation of text quality probably needs to be taken into

account in a systematic way. It would be interesting to try to determine what precisely

it is that makes modelling harder, and whether it can be corrected.

From the point of view of training the final NER and RE models here, the corpus

drawn from right across the database is the best one can hope for in terms of being rep-

resentative. If there is any truth in my speculation about the cause, then the models will

tend to find it easier to tag later texts than earlier ones, though of course performance

cannot easily be checked outside the annotated document set.

8.3 Mapping Text Relations to RDF

8.3.1 Coreference

So far very little has been said about the sameAs relation, yet it is by far the largest

category—somewhat surprisingly, it turned out that 40% of all the relations in the

corpus are sameAs. The examples are a mixture of normal coreference, where one NE

expression is just a different surface form of another representing the identical entity,

e.g. “A. S. Henshall” and “Miss Henshall”, and pronoun anaphora, where pronouns like

“it” and “they” may refer back repeatedly to an entity mentioned once at the beginning

of a document. To deal properly with coreference would be a major task in its own

right, and it is recognised as a gap in this work. There was simply insufficient time to
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implement a coreference and anaphora resolution step.

The absence of a system to deal with coreference means firstly that recall is poor

for the sameAs class—in the best run it is around 45%—and secondly that the re-

lations that are detected are not useful. Running anaphora resolution over the text

to replace pronouns with their referent strings would make a big difference on both

these counts: the relations would be much easier to find if the form of the NE string

could be used (the simple “lastNEwdsame” feature works very well where pronouns

are not involved), but more to the point one could translate the results readily into an

RDF graph. Relations saying that “it” is the same as “the hill” are completely useless,

however closely they match the gold standard. Equally uninformative are relations that

assert that “Hill of Caldback” is the same as “HILL OF CALDBACK”—no modern re-

trieval system is so dim it needs to be told that. (In any event, typographical differences

like these are removed by the basic normalisation step when URIs are forged. These

two entities both map to the same :Loc/Sitename#hill+of+caldback node in Tether, with

two rdfs:label relations.)

Examination of the relations in the gold standard data showed that the majority of

the sameAs type were in one of these two groups: involving pronouns or just typecase

differences. Others were informative, but only valid in a particular context, such as

“chambered round cairn” being the same as “chambered cairn”. This raises yet another

set of difficult problems about generic and specific references, looked at in Sect. 8.3.5.

With some reluctance therefore, this category was dispensed with for the RDF

translation step. The models were not retrained but the relations of this class were not

passed forward to the final graph. I have argued consistently for preferring high preci-

sion to high recall, and for pruning redundant triples from the RDF graphs—I would

much rather have a small, fast set of reliable facts than a large, slow, untrustworthy set.

My contention is that there is so much redundancy in information provision—and the

cultural heritage domain may, if anything, be worse than average in this respect—that

the chance of missing that one vital fact through poor recall is slim.

In the same ruthless spirit, all individual relations involving pronouns were dropped,

whichever class they belonged to. This is certainly something that should be addressed

in future work, as many of the relations (such as “he” being the agent of an event, or

“it” dating from a certain period) would be very useful if the pronouns were resolved.
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8.3.2 Term Grounding

Term grounding is related to coreference. Ideally each distinct entity string should

be given a single canonical form, which can then be “grounded” by matching against

standard vocabularies or ontologies. There is much interest at present in developing

these for the Semantic Web, and one can envisage them being extremely useful for,

say, place names, organisation names, and perhaps even personal names. In Tether the

automatic embedding of site classification terms within established thesauri has been

demonstrated. This could be extended by further attention to term normalisation, so

that all common variants of classification terms could be correctly grounded. Similarly,

DATE and PERIOD entities are prime candidates for processing with a normalisation

module. (See some of the examples from the RCAHMS data shown in Table 9.5.)

The issue of disambiguation is important and not something that can be easily

solved. The nodes in the Tether graph have rdf:type relations which will at least disam-

biguate across categories (distinguishing “Dunbar” the man from “Dunbar” the place),

but the accuracy depends on the NER categorisation model. Using a graph structure

may make it easier to use local context, i.e. the other attributes of the node, for disam-

biguation. (See Sect. 9.2.2 on use of the SPARQL “describe” function for questions of

this kind.) This is a big topic that could usefully be addressed in future work.

8.3.3 Making Use of the Gold Relations

The completion of the formal RE work involved determining the best configuration

and then training a model over the entire annotated corpus, with no test or heldout

data reserved, so that raw text documents could be processed with it. The corpus itself

though is a ready-made set of relations that should not be wasted, so it was translated

to RDF also.

Apart from the presence of subclass information for EVENTs, SITETYPEs and

ARTEFACTs, dealt with below (Sect. 8.3.6), the annotated corpus relations can be

translated to RDF in exactly the same way as relations extracted from raw text by

the trained model. The six attributes to keep are: the two NE strings, their classes,

the relation type that holds between them and, importantly, an identifier for the parent

document. The document id string is the mechanism for tying the extracted “fact” back

to the parent graph. For convenience, all the RCAHMS documents are identified by a

number corresponding to the primary key of the site record to which they pertain.

For a typical relation these six pieces of data are translated into a subgraph of up
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:Loc/Sitename#bea+mill

:Time/Period#19th+century

:Loc/Sitename#

"Bea Mill"

"19th century"

:Time/Period#

:hasLocation

:hasPeriod

rdfs:label

rdf:type

rdf:type

rdfs:label

:Siteid#site3402

Figure 8.3: Translation of an extracted text relation to RDF graph form

to six triples. The two principal relations are those between the document (or site) id

and the first NE of the pair, and between the two NEs. The other four relations are type

(rdf:type) and label (rdfs:label) relations for the two NE resource nodes. For example,

the following line of output from the RE classifier represents the statement “Bea Mill

dates from the 19th century”:

hasperiod ne1=Bea_Mill ne2=19th_century cls1=sitename cls2=period docid=3402

It is translated to this set of six triples (shown in N3 format):

@prefix : <http://www.ltg.ed.ac.uk/tether/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:Siteid#site3402 :hasLocation :Loc/Sitename#bea+mill .

:Loc/Sitename#bea+mill rdf:type :Loc/Sitename# .

:Loc/Sitename#bea+mill rdfs:label "Bea Mill" .

:Loc/Sitename#bea+mill :hasPeriod :Time/Period#19th+century .

:Time/Period#19th+century rdf:type :Time/Period# .

:Time/Period#19th+century rdfs:label "19th century" .

These triples correspond to the graph in Fig. 8.3. Note that the type and label rela-

tions are only needed once for each unique resource node. Common nodes like “19th

century” are typed and labelled just once in the graph.
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8.3.4 RDF Schema for Text Relations

A set of conversion rules was designed to deal with the different relation types and

generate suitable URI strings for NEs of each class. The schema classes and relations

are as described in Appendix A.2, and the example above illustrates how they are used.

Note that two “proper” relations (as well as types and labels) are inferred from each

extracted text relation. The first is the obvious one between them, that comes directly

from the relation category assigned by the classifier. The second relation is what gives

the pair its foothold in the wider graph by linking it to the relevant site node. I would

argue that this link is essential: the statement encoded by the extracted relation is only

known to apply in this context. Given that a “grounding” link to the parent site is to be

included, one must then decide which predicate to use.

The rule adopted here, for automatic translation, is to determine the predicate for

the grounding link from the broadest class of the target node. Thus a link from a

site to a :Loc/Sitename# instance will use hasLocation, a link to :Classn/Sitetype# will

use hasClassn and so forth. These may result in misleading information being gen-

erated, as the Sitename may not be the name of the identified site but of another that

is merely mentioned in the text. (The translation method will generate a sitennn–

hasLocation–SitenameABC triple, which is only appropriate if SitenameABC does

refer to the parent site, sitennn.) In the case of :Classn/Objtype# nodes it was clear that

hasClassn would be inappropriate, because a site is very unlikely to be classified as

an object, so the hasObject predicate was introduced to deal with this case. (Thus we

get a triple of the form sitennn–hasObject–ObjtypeXYZ which is valid, instead of

sitennn–hasClassn–ObjtypeXYZ which is almost certainly not.)

The risk of choosing a misleading predicate is acknowledged, but seems justified

as the alternatives are much more damaging. Not linking to the site at all could be

more misleading, as explained, and anyway the extracted relation would be lost in

the sea of facts if given no lifeline to its parent. Choosing some arbitrary predicate

(such as seeAlso, or one devised for the purpose) was considered but rejected, firstly

because the obvious predicate will usually be the correct one (most texts do describe

their own site, not another one), and secondly because if a query wishes to ignore

predicate labels it can. The fact of adjacency in the graph is important, whatever the

edge label. This general principle—that mere locality encodes information—is central

to the attractiveness of graphs as data structures.

The notion of linking every NE in the text to its parent site, whether in a detected
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relation or not, was also considered. On balance it was decided that this was a step

too far, but it might be interesting to experiment further on these lines. Classified

entity strings are important nuggets of information that one is reluctant to discard, but

if no relation is found then we cannot build a sensible subgraph. The risk is that an

unstructured halo of labels is produced around a site (such as a bundle of hasLocation

triples pointing to every place name mentioned in the text), which may just cloud the

real facts. Also, there are “noise” entities that would need to be removed; just about

every text would have “RCAHMS” identified as an ORG in it.

8.3.5 Generic vs Specific References

Four of the RDF schema classes (SITETYPE, OBJTYPE, EVENT and ROLE) com-

monly have members that are generic labels rather than specific unique entities. (They

correspond exactly to the four “non-standard” NE classes discussed in Sect.7.2.) If the

members of these classes are individuals they are tied to a particular context. Events

such as “visit” or “survey” need to be tied to a particular site because their other at-

tributes, like the date or agent, only apply to a specific event. These four classes differ

from the others (PLACE, PERSNAME, ORG and so on), which are used for individ-

uals that can be represented directly as unique RDF nodes (such as “Orkney”, “Basil

Spence” and so forth).

To deal with relations where either the subject or object node is an instance of class

SITETYPE, OBJTYPE, EVENT or ROLE the conversion to RDF is slightly different

from the standard procedure given in Sect. 8.3.3. Where the sense of the statement is

generic, as in “Hoga Ness is a broch”, we are dealing with a class term (BROCH, a

subclass of SITETYPE). The RE classifier output for this statement would be:

instanceOf ne1=Hoga Ness ne2=broch cls1=sitename cls2=sitetype ...

The relevant RDF triples derived from this relation are:

:Sitename#hoga+ness :hasClassn :Classn/Sitetype#broch .

:Classn/Sitetype#broch rdfs:subClassOf :Classn/Sitetype# .

When not used generically like this, nodes belonging to the SITETYPE, OBJ-

TYPE, EVENT and ROLE categories have to be given unique URIs (done by ap-

pending the document id number and a word id that is unique within the document).3

The unique node is then related to the generic form, which gives its type. To illustrate

3RDF blank nodes would be an alternative, as was noted in Sect. 5.2.6.
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with an example, the following line of RE output expresses the statement “Site 101

was visited on 27 April 1969”:

eventdate ne1=Visited ne2=27_April_1969 cls1=event cls2=date docid=101

It is translated to this set of seven triples (using same prefixes as before):

:Siteid#site101 :hasEvent :Event#visited101w117 .

:Event#visited101w117 rdf:type :Event#visited .

:Event#visited rdfs:subClassOf :Event# .

:Event#visited rdfs:label "Visited" .

:Event#visited101w117 :hasPeriod :Time/Date#27+april+1969 .

:Time/Date#27+april+1969 rdf:type :Time/Date# .

:Time/Date#27+april+1969 rdfs:label "27 April 1969" .

The subgraph these triples define is represented in Fig. 8.4. This figure shows

why two nodes are needed: the uniquely identified one (:Event#visited101w117) takes

part in specific relationships that apply only in the given context, and the generic one

(:Event#visited) provides grounding within the schema. Ideally the generic node would

be replaced by the event subclass that we actually want (:Event/Visit#) but this is not

easy and was not attempted.4 The part of the URI that comes from the entity mention

(visited in this case) can take many different forms and we can only say for certain

that it is of the :Event# class, not which subclass it is. (The NER step does not deliver

subcategory labels.) However, Sect. 8.3.6 explains how, simply by making use of all

examples from the annotated corpus, the full class structure (shown by dotted lines in

the figure) can very often be obtained with no extra effort.

8.3.6 Subclass Data

It was noted above that using subclass labels where present does not help the RE learner

very much (so training a separate NER model to extract them is probably not worth-

while). However, they do not go to waste. When the annotated corpus was translated

to RDF the subclass labels were included—in a variant of the procedure used for rela-

tions from raw text, which do not have them. Where they are available, they are used

to make the class relations more specific.

Taking the example in Fig. 8.4 again, the class of the first NE in the relation “Vis-

ited” is EVENT. Since this relation is from the gold set, we also have the subclass

label: it is VISIT. Thus instead of the relation:
4There is a possible argument that examples of “variant” event nodes like this may prove useful if

the graph is used for Natural Language Generation, which is an option being explored for future work.
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"Visited"

:Event#

:Event/Visit#

:Event#visited101w117

:Event#visited

:Time/Date#27+april+1969

rdf:type

:hasEvent

:hasPeriod

:Time/Date#

"27 April 1969"

rdf:type

rdfs:label

rdfs:label

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

:Siteid#site101

Figure 8.4: Dealing with generic classes in translation of text relations, by adding a

uniquely identified instance node with a generic parent. (The dotted lines indicate rela-

tions available through inclusion of subclass data, as explained in Sect. 8.3.6.)

:Event#visited rdfs:subClassOf :Event# .

used above, we can substitute a more specific one:

:Event#visited rdfs:subClassOf :Event/Visit# .

The marked NE string is the verb (or sometimes the verb phrase) identifying the event

in question, which could be anything the original author fancied but in fact is most

commonly either “visited” or “Visited” for visit events. Lemmatisation was not in-

cluded in the processing pipeline but would be a useful addition for the EVENT NEs in

particular, ensuring that different morphological variants of “visited” would all trans-

late to “visit”. Having said this, the vocabulary is fairly limited and it is highly probable

that the annotated corpus provides good coverage of all cases to be encountered in the

full set of 216,000 documents (such as “visited”, “went to” etc.). Because subclass

relations in RDF are only needed once for each unique node value, this means that

including the subclasses from the annotated data automatically makes them available

to all extracted relations using the same nodes.

The dotted line triple in Fig. 8.4 shows how an extracted text relation could take

advantage of the inclusion of subclass relations from the annotated corpus. If the

text used the string “visited” and this were correctly identified as an EVENT, then

it would be given a unique URI and a generic one as explained earlier. The generic
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URI would be :Event#visited (the part after the “#” is the “value” that comes directly

from the source text). Because this is already present in the graph—from one of the

subclass relations of the annotated corpus—the new node is automatically identified as

a member of the more specific class VISIT.

Exactly the same arguments apply to the other subclassed categories. The SITE-

TYPE NE class, for example, corresponds to the RDF class :Classn/Sitetype# which

is embedded in the thesaurus graph for Monument Types, described in Chap. 6. If a

thesaurus term is extracted from the text as an NE in a relation, it will automatically be

linked to its position in the thesaurus hierarchy and to its related terms, non-preferred

terms and so forth.

8.4 The Full Pipeline: Text to RDF

The tangible result of this part of the project was a utility (named “txt2rdf”) which

takes as input a plain text document and produces a file of RDF triples as output.

If the text is not from the cultural heritage domain the performance is unimpressive.

Chapter 10 describes some informal tests using cultural data from different sources to

the RCAHMS data the models were trained on. The RE model was trained using the

configuration that gave the best scores, listed in Table 8.7.

The steps of the full pipeline are shown in Fig. 8.5. The sequence of tasks is to

prepare the raw text, extract named entities from it using the best configuration of the

multi-word tokenisation model (the one with highest precision), then pair those entities

and find relations between them, and finally translate the result to NTriples for loading

into a triple store. Duplicate triples may be generated from different documents and

these are removed either before or during loading.

Although the immediate targets for processing are the text “report” fields attached

to RCAHMS records, the process can of course be applied to any text passages. Text

from free “notes” fields across the database could be included, and documents from

other sources could be added if available.

8.4.1 Bulk Processing—txt2rdf for Large Data Volumes

A version of the utility was written to handle documents in bulk, processing thousands

of documents at a time. The sequence of tasks was the same, except that the pre-

processing steps were done on individual documents, in a loop, and then the outputs
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Figure 8.5: The text to RDF pipeline
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Task Time (h:mm:ss) Output Size No. of Lines

0 Check and export suitable

docs from Oracle RDB

0:00:19 80 Mb

1 Pre-process docs, extract

features, merge 10,000

files into a single file

4:50:57 539 Mb 10,961,740

2 Find NEs 0:05:25 12 Mb 256,081

3 Tidy up after NER 0:01:00

4 Prepare NE pairings for

RE and add features

1:03:59 500 Mb 11,001,504

5 Find relations 0:05:02 139 Mb 325,953

6 Tidying and reformatting 0:16:23

7 Drop unwanted rels, con-

vert to RDF triples;

0:00:29 150 Mb 1,039,232

deduplicate 51 Mb 328,011

Table 8.10: Statistics for bulk processing of one batch of 10,000 text documents to RDF.

The “Output Size” excludes space for temporary files. (Step 4 requires 5 Gb.)

were concatenated for the NER step onwards. The process would lend itself to seg-

mentation and parallel processing, as the only dependencies are within documents; as

long as individual documents are not split they can be bundled in any way convenient.

Inevitably when processing large volumes of slightly untidy data, there are glitches

and interruptions caused by unexpected characters, buffer overloads in component soft-

ware, running out of disk space or memory, and so forth. Some processing of the doc-

uments was done as they were extracted from the database and before passing them

into the pipeline, in order to weed out documents that were too short to bother with

(less than a single line of text), sentences that were so long that they would cause

problems later for the NER step, unprintable characters and other character strings that

were found to make trouble further down the line. (For example, idiosyncratic use of

ellipsis, such as “. . .” instead of the more usual “...”, confused the tokeniser.)

The txt2rdf pipeline was broken down into seven separate phases, so that outputs

could be checked before proceeding to the next stage. (The Oracle export preceeding

the first step is labelled as step zero in Table 8.10.) By far the most time consuming

was the first, pre-processing, step where documents had to be dealt with one by one in a
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loop. After this stage the documents were concatenated (with document ids appended

to each token), though it was found by trial and error that very large files caused prob-

lems, particularly for the NER model. An arbitrary limit of 10,000 documents per run

was used, which was within the capacity of all the software tools used.

Table 8.10 summarises the loading process for a typical batch of 10,000 documents,

in terms of time taken, file sizes, and (in the last column) number of lines of output. A

good deal of extra space is needed for temporary files. Assuming these are removed

as soon as possible the most space required is 5 Gb, during Step 4 when features for

all NE pairings are produced. The important figures from the last column are the

number of NEs (step 2) and relations found (step 5), and the final number of triples

produced (step 7). We have averages of around 26 NEs and 33 relations found in

each document, resulting in about 104 triples per document. After removing unwanted

relations,5 adding schema relations and removing duplicates, the final average is just

under 33 triples per document. The times are only intended to be indicative, as the

machine loading varied. All the steps for this batch of documents were carried out

on a machine with four 3.8GHz Intel Xeon processors and 3.6GB real memory. The

intermediate processing, reformatting and feature extraction steps were much more

time-consuming than the tagging by the NER and RE models.

Extrapolating from the figures in Table 8.10, one would expect that if all the

216,000 available documents were processed (not including other text fields or doc-

uments from different sources) the total number of triples generated would be about

7.1 million.6

8.5 Discussion and Summary

The RE phase has covered quite a lot of ground. Because of the nature of the data,

relations across whole documents were sought rather than intra-sentential ones. This

limits the range of features that can be given to the classifier, but there is probably

still room to find more than the 17 that were used. The overall F-score of the best

model (75.68%) is respectable, and the precision is very good, at 83.41%. A complete

pipeline was built, that prepares raw text, extracts NEs and then finds relations between

them. The overall score for the NE–RE combination is in the range of F-scores 42% to

73%, or around 58% average. The range is given because variability across the corpus

5sameAs and relations involving pronouns were dropped. See discussion in Sect. 8.3.1.
6328011/10000 x 216000 = 7085038
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meant it was not straightforward to obtain a single valid score.

A shortcoming of the processing pipeline as it stands is the lack of attention to

coreference resolution and normalisation of NE strings, and addressing this is a target

for the future. The use of subclass data from the annotated corpus shows the value of

grounding, which in turn depends on normalisation of terms. The subclass data was

not exploited in the NER step but was added to the RDF graph so that it can form part

of the upper ontology the extracted relations can connect to.

The handling of non-standard entities from schema classes EVENT, ROLE, SITE-

TYPE and OBJTYPE needs some care. In these cases the NE instance is sometimes

specific (“the henge is at Stenness”), sometimes generic (“a henge is circular or sub-

circular”) and in some cases it may be hard to tell out of context (“the henge is an

important monument in Scotland”). The solution fixed upon here is to give every in-

stance of one of these classes a pair of URI nodes: one that has a unique id attached

that can have specific attributes (location, period, etc.) attached, and one that is generic

and will be merged with other examples of the same kind of entity, giving it access to

generic relations like thesaurus scope notes.

The completion of the RE phase marks the end of the graph building work and we

can now move on to exploring the graph that has been constructed.
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Graph Queries

This chapter describes experimental work on the generated graph. There are two

themes in the experiments: firstly to assess RDF as a viable competitor to standard

relational database (RDB) systems in terms of basic query performance, and secondly

to examine whether extending the database with relations derived from text actually

enhances query power.

Comparable performance, in terms of power and speed, has to be available from

RDF queries, or users are very unlikely to switch from the RDB query systems they

have been using for many years. Section 9.1 deals with tests of this aspect. Section 9.2

covers the second theme, examining query experiments over the extended graph, to

see whether the extension with text relations makes new information available to the

user. One promising approach to retrieval is what is known as “faceted querying”, and

Sect. 9.3 looks briefly at this. There is enormous scope for experimental work over a

resource like the Tether graph and there was only opportunity to scratch the surface.

9.1 RDF Compared with RDB

The Relational Database (RDB) data is held in a collection of some 27 tables (or re-

lations) that were considered relevant from the entire RCAHMS set. They reside in

an Oracle1 database, though of course any RDB system would do, and MySQL2 was

also used. The Entity Relationship Diagram (ERD) in Fig. 4.2 summarises the RDB

schema. Relational data is queried using SQL3 (Structured Query Language), which

1http://www.oracle.com/
2http://www.mysql.com/
3See http://en.wikipedia.org/wiki/SQL for a description of SQL. The standard defining the

language is ISO/IEC 9075, available from http://www.iso.org/iso/.
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also includes tools for updating and managing RDB data.

The RDF data for this set of experiments is the Tether graph of 21 million triples,

created from the RDB data as described in Chap.5. Over the past few years many RDF

query languages have been developed but SPARQL4 is now the established standard

with W3C Recommendation status, so it was used for these trials.

Small RDF graphs are often held as XML documents and queried using SPARQL

commands against the disk files, but for large graphs specialised triple stores are

needed instead. Two such stores were used: Jena (from Hewlett Packard) and Alle-

groGraph (from Franz Inc.). See Sect. 3.6 for details of their features and why they

were chosen. The entire RDF dataset was loaded into each of these stores so that com-

parisons could be made. This is not intended to be a formal benchmarking of their

relative performance, but it seemed worth trying more than one single example of so

new a field, and these are recognised as two of the best currently available systems.

Just as is the case with SQL, many developers and commercial software houses are

busily adding extensions to SPARQL that may or may not become part of the standard

in due course. The aim here was to use only core features available generally and, in

particular of course, available in both Jena and AllegroGraph.

Where there is an almost infinite range of possible questions that can be asked of a

dataset it is difficult to be systematic and exhaustive in testing. However, the kinds of

query that can be asked of the RCAHMS data are known, and all that is attempted here

is an exploration of these routine data requests through a small set of typical examples.

9.1.1 Sitetype by Location

A common request, from both specialists and the non-experts particularly aimed at

here, is for information on historical sites of a given type, in a certain part of the

country. A tourist, for example, might want to find out about castles in the area of

Scotland they plan to visit. Any number of queries of this form could be framed, and

the only consideration here was to choose something representative, but not returning

an unmanageably large set of hits. The example taken in this case was: “Show me a
list of churches in Shetland.”

The SQL used to answer this request was as follows:

4http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/
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SITEID SITENAME

180948 AITH, AITH CHURCH

232127 BIGTON, ST NINIAN’S CHURCH AND GATEPIERS

499 BRECKON, CROSSKIRK

163091 BRESSAY KIRK, BURIAL-GROUND AND KIRKYARD WALL

1287 BRESSAY, ST MARY’S CHURCH

181685 BRETTABISTER, ST OLA’S KIRK INCLUDING MEMORIAL ENCLOSURE

188373 BREW, DUNROSSNESS PARISH CHURCH

824 BURN OF SCATSTA, PARISH CHURCH

190567 CLODDIKNOWE

674 EAST BURRA, CHURCH

989 EASTER QUARFF, QUARFF PARISH CHURCH

217109 FAIR ISLE, METHODIST CHURCH

. . . . . .

Table 9.1: Sample results for “Churches in Shetland” query

select m.numlink siteid, m.nmrsname sitename

from rcmain m inner join rccouncil c on m.council = c.council

inner join rcclassification cl on m.numlink = cl.numlink

inner join rc_thesaurus_terms t on cl.the_te_uid = t.the_te_uid

where c.couname = ’SHETLAND ISLANDS’

and t.term = ’CHURCH’

order by m.nmrsname;

This produces a set of 80 results, the first dozen of which are shown in Table 9.1.

The form of the query could have been varied in detail (especially the layout of the join

conditions) but the essential result set would be unchanged. The query was run several

times in SQL to eliminate parsing and dictionary caching delays, and the response time

was sub-second.5 The Oracle database was designed with this kind of query in mind

and is indexed accordingly.

The equivalent SPARQL query is given below. The full schema is reproduced at

Appendix A and the prefixes defined there are used in the following queries for brevity.

5The query tests were run on several different machines that had varying processing loads. Response
times were measured to the millisecond but the point here is not to measure precise performance in these
terms. However, where the response times differ by several orders of magnitude that fact is reported.
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(Any item with a “:” character is using a prefix.)

select distinct ?siteid ?sitename

where {

?siteid :hasLocation place:shetland .

?siteid :hasClassn sitetype:church .

?siteid :hasLocation ?name .

?name rdf:type sitename: .

?name rdfs:label ?sitename .

}

order by ?sitename

Happily, this query produces the same result set as the SQL, when run against

either Jena or AllegroGraph. The results are not reproduced as they are almost iden-

tical to those in Table 9.1 (the only difference being that the site id numbers appear

as “siteid:site180948” and so on in the RDF output). Arguably it’s a simpler query

to understand, though this probably depends on how familiar one happens to be with

SQL and SPARQL. In any case, since queries like these are typically generated auto-

matically from what a user types in a simpler interface, the precise form is not of great

importance.

In terms of response time however, there is no comparison: in Jena this query took

(as an average of three runs) 428 seconds—over 7 minutes! In AllegroGraph, on a 64-

bit platform, the performance was a great deal better, but the average was still around

48 seconds. The performance of AllegroGraph on a 32-bit machine was considerably

slower than Jena’s, and Franz Inc. do not recommend running multi-million triple data

stores on 32-bit architecture.

There is another point to note in connection with the SPARQL query. In fact what

has just been said is slightly inaccurate because three of the 80 sites appeared twice

in the output list, under different names—because they have alternative names and the

query did not explicitly remove them. The set of 80 unique site ids is unchanged, but

one may very well not notice the duplicates when sorting by site name as above. This

is a function of the schema design, which needs to be known in some detail if one

actually wishes to remove the alternative names, as the following SPARQL query does

by adding an “optional” clause to what was used before. The previously simple syntax

becomes rather convoluted as, in the current version of SPARQL, one can only do this



Chapter 9. Graph Queries 162

by using the “negation as failure” method, where one indicates the pattern one does

not want to see and then specifies that the relevant variable must be unbound:

select distinct ?siteid ?sitename

where {

?siteid :hasLocation place:shetland .

?siteid :hasClassn sitetype:church .

?siteid :hasLocation ?name .

?name rdf:type sitename: .

?name rdfs:label ?sitename .

optional {

?name rdf:type ?altname .

filter (?altname = sitename:Altname) .

}

filter (!bound(?altname))

}

order by ?sitename

This kind of schema-related pitfall occurs in SQL as well as in SPARQL—in ei-

ther case, simple queries usually are simple, but for detailed accuracy it seems one

cannot dispense with schema knowledge. Since one of the great hopes for RDF is that

it may encourage more open querying across unknown datasets, this is a little dispir-

iting. Perhaps we need to redefine what we mean by acceptable “accuracy” in order

to accommodate the Semantic Web’s way of connecting data. In this case it seems

arguable that a list of 83 valid names is acceptable, even if it does not imply 83 distinct

places. The “Google generation” already has a different set of expectations about in-

formation retrieval from what is embodied in a formal approach to measuring precision

and recall.

9.1.2 Including Archive Material

Having established a group of sites of interest, the next very common request is for

archive material related to them: photographs, maps, survey reports and so forth. In

the context of the Shetland query one might frame this as: “Show me a summary of
the archive material for churches in Shetland.”

The SQL becomes more complex and the join conditions need some consideration,

depending on whether one now wants to restrict the list of churches to include only
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those that have some associated archive items: this is what an inner or “natural” join

produces. If, as is more usual, one wants to retain the whole list and indicate what

items if any relate to each church, then outer joins are needed.6 The following is a

suitable query, using left outer joins:

select m.numlink siteid, initcap(m.nmrsname) sitename,

a.prefix||a.archnum||a.suffix arcident, a.desc1 description

from rcmain m left join rcarcref j on m.numlink = j.numlink

left join rccollect a on j.arcnumlink = a.arcnumlink

inner join rccouncil c on m.council = c.council

inner join rcclassification cl on m.numlink = cl.numlink

inner join rc_thesaurus_terms t on cl.the_te_uid = t.the_te_uid

where c.couname = ’SHETLAND ISLANDS’

and t.term = ’CHURCH’

order by m.nmrsname;

The first few lines of the result set are shown (truncated horizontally) in Table 9.2.

There are 262 results including 230 items of archive; so 32 sites of the original 80 have

no associated archive material (they have “null” entries in the result set).

The equivalent outer join query in SPARQL is, in simple form without the label

fields:

select distinct ?siteid ?arcid

where {

?siteid :hasLocation place:shetland .

?siteid :hasClassn sitetype:church .

optional {

?siteid :siteArc ?arcid

}

}

For an inner join—which, as with the SQL, would return 230 hits instead of the 262

this produces—one simply makes the “optional” pattern required, so that only sites that

actually have archive are returned. For brevity, the SPARQL query does not include the

6An outer join goes either from the left table to the right of a pair or vice versa and, in effect, adds
a notional null-valued row to the target table to enable a match where there is none, so that the subject
table can have all its rows included.
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SITEID SITENAME ARCIDENT DESCRIPTION

180948 Aith, Aith Church SC861055 Oblique aerial view. . .

180948 Aith, Aith Church E35843CN Oblique aerial view. . .

232127 Bigton, St Ninian’S Chu. . . null null

499 Breckon, Crosskirk SH280 Photographed

163091 Bressay Kirk, Burial-Gr. . . null null

1287 Bressay, St Mary’S Church MS1735 Report: An archaeolog. . .

1287 Bressay, St Mary’S Church SHD81/2 Chapel at Culbinsbrou. . .

1287 Bressay, St Mary’S Church SHD81/1 Photocopy, Stuart’s. . .

1287 Bressay, St Mary’S Church SHD57/1 Plan after Dryden.

181685 Brettabister, St Ola’S. . . A26545 View from E.

181685 Brettabister, St Ola’S. . . A26546 View from NW.

188373 Brew, Dunrossness Paris. . . SH2102 View from SE.

. . . . . . . . . . . .

Table 9.2: Sample results for “Shetland churches’ archive” query

sitenames and archive description fields. These could easily be added, but the duplica-

tion issue with sitenames and alternative names still applies. Omitting them also makes

a stunning improvement to the response time in AllegroGraph. For the query above,

AllegroGraph produces comparable—and certainly usable—performance to the SQL,

at around 0.9 seconds (or 900 milliseconds) on the 64-bit machine. The SQL over

Oracle is around the 300 millisecond mark. The Jena query takes between five and six

minutes over the 21 million triples.

9.1.3 Restricting the Kind of Archive Material

To take the running example one stage further, a user may decide to cut down the quite

large set of archive material to what is of most interest to him or her—perhaps to what

has been digitised and so is available over the Internet. Thus our final request may

be expressed as: “How much of the Shetland churches archive material has been
scanned?”

In the RCAHMS collection, digitised copies of archive items are identified by a

prefix of “SC” on the archive identifier field. To frame the required query in SQL one

could use the most recent query with one extra clause added:
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...

and a.prefix = ’SC’

For SPARQL one needs to add the following extra patterns:

?arcid :hasDesc arcdesc:sc .

arcdesc:sc rdf:type arcdesc:Prefix .

These specify the value we want and also check that the value is in fact in a node

of the correct type. The resource arcdesc:sc is a value node, whilst arcdesc:Prefix

is the name of a class, of which the sc node is an instance. (The class name Prefix

has an initial capital as is conventional; arcdesc does not because it is an RDF prefix

representing “http://www.ltg.ed.ac.uk/tether/Desc/Arcdesc#”.)

A query of this degree of specificity requires detailed schema knowledge. It also

relies on the RDF schema having been designed to accommodate it. The archive prefix

field was recognised as being of sufficient importance to warrant a class (a subclass of

the Arcdesc class) of its own, but in general the myriad small fields from the database

tended to be aggregated in the deliberately simpler RDF schema. All the data can

be returned easily enough from aggregated fields, but for precise querying one needs

values in classes of their own. This is an area where the RDF designer needs to decide

how precisely it is necessary to answer certain questions and how much additional

schema structure is worthwhile. At the risk of over-simplifying, one could say that

RDB design leans towards too much granularity because one is always splitting data

items into smaller and smaller components, whereas the risks for the RDF designer lie

in the opposite direction.

AllegroGraph performance averaged slightly over 60 seconds for this query, de-

pending on how many patterns were included in the SPARQL query (the more the

slower). Several variants were used, including or excluding labelling fields and archive

descriptions. The issue of multiple values arises here as with the alternative sitenames,

but aggravated by the fact that several of the less important archival description fields

are combined as undiscriminated Arcdesc nodes. This means that a single archive

item with several such descriptive fields may—unless one looks carefully for duplicate

numbers—appear as multiple items. If one restricts the SPARQL query to looking for

unique ids only, the result, matching the SQL of course, is that there are 36 digitised

archive items, pertaining to 12 distinct sites.
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9.1.4 Commentary

From these and other experimental queries in the same vein, it is clear that response

time is the big challenge to adoption of RDF as a substitute for RDB management.

The query mechanisms for each are deterministic and identical queries will produce

identical results wherever the RDF and RDB schemas are in harmony, but RDB sys-

tems have been optimised over many years and at present RDF indexing cannot really

compete. The Jena design is transparent; my implementation of it rests on MySQL

and one can examine the MySQL tables and indexes to see exactly how data is stored

and hence how SPARQL queries, translated as they must be to SQL (which is all that

MySQL understands), will be processed. The basic principle is that each additional

pattern in a SPARQL query will necessitate another “self-join” of the main triples ta-

ble to itself. By default all 21 million triples for the RDB graph belong in one table, so

it is not surprising that queries are slow.

One could perhaps improve performance by segmenting the graph and co-ordinating

parallel elements of the query pattern search across multiple physical tables—there

are probably many reasonable strategies to explore. At a simpler level, it presumably

makes sense (at least with Jena) to put the most restrictive patterns first in the SPARQL

query; but such query optimisation depends on knowing the query execution plan of

the triple store, and this was not explored. Query performance for SPARQL is the

subject of much current research but it is well outside the scope of the present work.

Some very commonly required queries are not (yet) possible with SPARQL: one

cannot get counts, averages, summations and suchlike. Several variants of the core

RDF query language already exist: HP have a number of SPARQL extensions for Jena

to provide some grouping functions; AllegroGraph has a number of full text indexing

additions, though they are not implemented as SPARQL extensions; Virtuoso7 has a

raft of extensions in its version of SPARQL; and new versions appear all the time. In

due course the best of these proposals will no doubt be absorbed into the W3C rec-

ommended SPARQL. There seems to be a tendency to imitate SQL in designing ex-

tensions rather than to think in graph terms—perhaps because many of those working

with really big RDF graphs come from RDB backgrounds. The lack of graph search-

ing functions in SPARQL—degree of node, shortest path between nodes, k-nearest

neighbour queries—was discussed in Sect. 3.4.

One reason why the RDF versions of standard RDB queries are slow is that the RDF

7from Openlink Software, http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/
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schema was not designed around them, as the RDB one was. The example involving

the archive prefix value “SC” is a case in point. The RDF schema deliberately does not

include the entire RDB provenance of each data item in its URI, but moves such clutter

into the schema. (The advantage is in serendipitous merging of URIs that actually

refer to the same thing.) This means that, if the RDB field name is significant as here

(the “SC” string only carries special meaning as an archive prefix), then it has to be

checked through an extra RDF pattern against the node’s type. Queries against minor

RDB fields that did not rate separate classes are effectively lost.

The RDF graph does not compete with the relational database on equal terms be-

cause it was not designed to be a substitute for it. The hope is that RDF will enable

greater functionality, as explored in the experiments below, and the question here is

whether the performance in mimicking RDB functionality is good enough. I would

argue that the answer will be “Yes” once response times reach the sub-second level for

multi-million triple sets because, in other respects, the ability to answer standard RDB

queries is as good as the RDF schema designer cares to make it.

9.2 Extending the Graph with Relations from Text

We now come to the more interesting question of whether extending the graph with

relations derived from free text really does make new and useful information available

to the general user.

The text relations were loaded into a separate graph that can be combined with

the one from RDB data and the thesauri graphs or can be queried independently. It

did not prove possible to convert all the available text documents through the txt2rdf

pipeline (see Sect.8.4) and load them. The free text notes for around 20,000 RCAHMS

site records were converted, in batches of 10,000, producing about 0.5 million distinct

triples. (See Sect. 8.4.1 for the conversion procedure.) Approximately 17,800 of the

site records numbered below 20,000 were found to have text documents that were

suitable for conversion (ie more than a few words in length), so this was the number

of documents processed—less than 10% of the total, but enough for test querying

purposes. If all the 216,000 available documents were processed the graph size would

be around 7.3 million, bringing the total size of the Tether dataset up to about 28.4

million triples. Table 9.3 lists the actual numbers of triples loaded from all sources and

the anticipated number if all the site record documents were processed.

When combined with the schema and relations from the annotated corpus the size
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Source No. of Triples

Relational database fields 21,152,388

Relations extracted from 17,800 documents 627,796

Monument Type Thesaurus 16,879

Object Type Thesaurus 3,746

SKOS framework required 347

Total triples in Tether 21,801,156

Projected total relations for 216,000 documents 7,277,602

Projected overall Tether total 28,374,231

Table 9.3: Counts of triples loaded into Tether graph

of the text relations graph used here was over 627,000 triples. The total material avail-

able from the database would include the 216,000 documents just mentioned plus short

text pieces (typically a few lines long) derived from various free text fields for 270,000

site records and about one million archive item records. There are also about 2,000

prepared “essay” pieces on specially chosen sites, not to mention miscellaneous site-

related text documents from RCAHMS publications. If the conversion of text to RDF

is a useful procedure there is no shortage of grist for the mill. One would expect this

to be the case in almost every domain of knowledge.

9.2.1 Information not Available from the RDB

One can argue that, to show that adding text relations is useful, one only needs to show

that it enables queries to be answered that would be impossible to satisfy otherwise.

The following query on the text relations will answer the question “In which or-
ganisations are people based?”. The query specifies that only the text relations graph

(named “NErel”) is to be used, because we know the information is not available else-

where. (The syntax for referring to named graphs seems not to be wholly standardised.

The query shown below works against both Jena and AllegroGraph but other variants,

using a prefix for the graph name or omitting the “?g” variable, did not work inter-

changeably. See the footnote on page171 for more on this.)

select ?person ?organisation

from named <http://www.ltg.ed.ac.uk/tether/NErel>

where {
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GRAPH ?g {

?pers :hasLocation ?org .

?pers rdf:type persname: .

?pers rdfs:label ?person .

?org rdf:type org: .

?org rdfs:label ?organisation .

}

}

A small sample of the 1,258 results is shown in Table 9.4.8 They illustrate some of

the issues with data derived in this way. The very extensive use of initials to refer to in-

dividuals (and organisations) means that many of these results will not be meaningful

to non-insiders; but these could easily be filtered out, or translated if full term normal-

isation were in place. The use of labels, derived directly from the document text, for

display means that typographical errors like “RCAhMS” are transmitted. (The basic

normalisation done on named entities means that this node will map correctly to the

same RDF resource as “RCAHMS”.) Of course, there will be errors in the results—it

seems unlikely that Constantius II is a member of the staff of the National Museum of

Antiquities of Scotland, for example.

This information is potentially very useful and cannot be found from the database

as it stands, because it is not encoded in the fixed fields. Of course, with a different

RDB design, it could easily have been so encoded. If one chose to alter the RDB

schema to record such information for the future there would then be the need to pop-

ulate empty fields on existing records. The extraction of text relations could be used

either as an end in itself, to create a new RDF graph as here, or as a method of putting

data into new fields in the RDB structure.

Like other archival institutions, RCAHMS is increasingly using “event based”

recording, and is altering its database structure to accommodate this. At present it

is impossible to frame a query over the RDB for events such as field visits or sur-

veys of sites, because the fields one would wish to query do not exist. Automatic

relation extraction is one of the tools RCAHMS is hoping to use to populate the new

database structures, from ancilliary information about existing records. This research

8I am naturally cautious about personal data but this information is already publicly available,
through the RCAHMS database on the Web, if nowhere else. Of course, because of the way it was
derived, it may be wrong, in which case I apologise to the individuals concerned. In several cases it is,
I know, correct but out of date.
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person organisation

”J Christie” ”Aberdeen University”

”Anna Ritchie” ”Department of the Environment”

”M Greig” ”Grampian Regional Council”

”C Lowe” ”Headland Archaeology”

”SW” ”Historic Scotland”

”G V Wilson” ”HM Geological Survey of Scotland”

”J Close-Brooks” ”NMAS”

”Constantius II” ”National Museum of Antiquities of Scotland”

”RJCM” ”NMRS”

”AMW” ”OS”

”RJCM” ”RCAHMS”

”MKO” ”RCAhMS”

”Triscott” ”SDD”

”T Henderson” ”Shetland Museum”

”G Douglas” ”SIAS”

”Brown” ”Simpson & Brown”

”Simpson” ”Simpson & Brown”

”W. Duguid” ”W. Duguid & Son”

. . . . . .

Table 9.4: Sample results for “people in organisations” query

programme suggests it is likely to be a promising approach with colossal savings in

time over the alternative of entirely manual extraction.

Altering a relational schema and populating the added fields is a major undertaking

and there is no such thing as a perfect design. Ideas will change on how granular the

data structure should be and what fields are important for information retrieval. One

of the advantages of using RDF is that the schema is much easier to alter—if a new

relationship between resources needs to be expressed, a new predicate can be added to

the graph to relate just the relevant resources. No other data needs to be altered and the

notion of retrospectively populating blank fields does not apply. In the same way new

types of information can be held by simply adding new classes.

To demonstrate the flexibility of retrieval over RDF, let us follow through a more

complicated example than the “people in organisations” query. Pursuing the theme of
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retrieving information about events, we can use the extracted text relations to find out

about visits, surveys, excavations and so forth. Suppose we want to know about objects

found at particular sites—perhaps with a view to pursuing our queries about them over

a museum dataset. The following SPARQL query, over all the available graphs,9 will

find events that are classified as “find” events against sites that are known (probably

from the larger RDB graph) to be in Shetland:

select ?site ?find

where {

?site :hasLocation place:shetland .

?site :hasEvent ?find .

?find rdf:type ?eventf .

?eventf rdfs:subClassOf find: .

}

This basic information request can be built up, adding further details as required.

We would probably wish to know what was found, so we add:

?find :hasPatient ?obj .

?obj rdfs:label ?object .

To discover when the find event occurred, we add:

?find :hasPeriod ?per .

?per rdfs:label ?period .

Finally, we may wish to know who made the discovery:

optional {

?find :hasAgent ?who .

?who rdfs:label ?agent .

}

9There are differences in how AllegroGraph and Jena hold multiple graphs, which lead to differences
in the SPARQL needed. Or possibly each system implements SPARQL slightly differently—the W3C
guidance on handling multiple graphs is evolving and, at the time of writing, is not strikingly clear (see
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#specifyingDataset). The
query shown here is what was used against AllegroGraph where the default graph is treated as including
all graphs available through the connection (made prior to issuing the query), unless only specific named
graphs are asked for. The equivalent for Jena was a lengthier query as it had to include a series of “from
graph-name” clauses to construct a logical default graph (in line with the W3C Recommendation) and
to use the union of patterns over different graphs.

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#specifyingDataset
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This pattern has been made optional so that we do not lose events where the object

found and date are known but there is no agent recorded. (Other features could of

course be made optional in the same way. This corresponds to using RDB outer joins,

as explained earlier.) In each case the text literal is displayed rather than the URI string,

for better readability of the result. For predicates like hasPeriod and hasAgent the

range is known (instances of classes Period and Agent respectively) so type checking is

not needed as it was for the broader Location and Arcdesc classes used in the examples

of Sect. 9.1.

The full query, answering the request “Show me what was found at places in
Shetland, when and by whom”, is now:

select ?site ?object ?date ?agent

where {

?site :hasLocation place:shetland .

?site :hasEvent ?find .

?find rdf:type ?eventf .

?eventf rdfs:subClassOf find: .

?find :hasPatient ?obj .

?obj rdfs:label ?object .

?find :hasPeriod ?period .

?period rdfs:label ?date .

optional {

?find :hasAgent ?who .

?who rdfs:label ?agent .

}

}

Table 9.5 shows a sample of the results of this query. It illustrates the variation

in data formats for dates, personal names and object types. For the URI resources

corresponding to these labels to fulfil their potential (in terms of linking to resources

in other graphs) there is a need for much more normalisation than has so far been

attempted. This illustrates the issues examined in Sect. 8.3.2, on term grounding.

The results show some of the errors that will inevitably be present. It seems fairly

certain that “urns” were found at site 245 but three dates are offered, and three inde-

pendent finding events is possible but unlikely. Similarly for site 1441, where the same

person is supposed to have made the same kind of find at different times. For site 126



Chapter 9. Graph Queries 173

site object date agent

:site506 ”spindle whorls” ”1948” ”NMAS”

:site506 ”bowl” ”1948” ”NMAS”

:site506 ”bead” ”1948” ”NMAS”

:site1385 ”human bones” ”1833”

:site510 ”human remains” ”1858”

:site245 ”urns” ”1878”

:site245 ”urns” ”1903”

:site245 ”urns” ”1837”

:site1441 ”coins” ”1933” ”W C Carson”

:site1441 ”coins” ”1924” ”W C Carson”

:site126 ”comb” ”1960” ”National Museum of...”

:site126 ”comb” ”1960” ”T Cluness”

:site1006 ”human remains” ”1878”

:site745 ”bead” ”1862”

:site745 ”perforated whetstone” ”1862”

:site997 ”rotary quern” ”1933”

:site997 ”urns” ”1933”

:site167 ”GRAVE” ”1866”

:site167 ”Viking Grave” ”1866”

:site167 ”Viking Grave” ”Viking”

:site538 ”hammer-stones” ”1946” ”RCAHMS”

:site225 ”hammer-stone” ”1946” ”RCAHMS”

:site225 ”sinker” ”1946” ”RCAHMS”

:site766 ”pot sherds” ”modern”

:site681 ”Cist” ”A.D. 1877” ”OS”

:site979 ”polished serpentine knife” ”1885” ”J W Cursiter”

:site979 ”SCALLOWAY” ”1885” ”J W Cursiter”

:site415 ”axe” ”1933” ”National Museum of...”

:site415 ”axe” ”1933” ”NMAS”

:site1102 ”polished stone knives” ”28th May 1968” ”Peter Moar”

:site1102 ”polished stone knives” ”28th May 1968” ”Henderson”

:site1102 ”stone adze” ”May 1946” ”Peter Moar”

:site1102 ”stone adze” ”May 1946” ”Lerwick Museum”

:site1102 ”polished stone knives” ”May 1946” ”Moar”

. . . . . . . . . . . .

Table 9.5: Sample results for “finds at Shetland sites” query
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however, the fact that two agents are given for the same find event is valid if T. Cluness

is (or was) based at the National Museum of Antiquities of Scotland. (Though there

is the possibility that the NMAS was the destination of the found object rather than

one of the agents in the finding event.) As we only have binary relations available, this

is how such linked facts will often appear. Multiple agents that are not connected to

each other are also valid, as for the polished stone knives apparently found by Peter

Moar and Henderson at site 1102. The multiple dates (May 1968 and May 1946) are

suspicious however.

Entity classification errors will have knock-on effects for relation extraction, which

may be the cause of “SCALLOWAY” (a place on Shetland) being listed as one of J W

Cursiter’s finds, along with a polished serpentine knife, at site 979—one explanation

is that the place name (NE class PLACE) has been wrongly identified as an object

(NE class ARTEFACT). It may instead be a relation classification error—classifying

the relationship between the find event and the place as hasPatient instead of hasLo-

cation but this seems less probable as the domains and ranges of the various predicates

follow a clear pattern and, as was noted in the discussion of unlabelled RE results in

Sect. 8.2.3, RE errors are more often due to the classifier failing to detect a relation

than to misclassifying correctly found ones. (The error of attributing the finding of a

Viking Grave to the Viking period is an incorrect relationship. The graph should (and

maybe does in another triple) relate this period to the object, not the finding event.)

The sites were left unnamed in Table 9.5 to allow compact tabulation. The site-

names could easily be extracted by the query, though deduplication of the results is

needed, as noted earlier (in Sect. 9.1.1). The query times vary enormously, very pos-

sibly because of my lack of skill in SPARQL query optimisation. Queries of the kind

described in this section typically took in the order of 10 to 30 seconds for the first run

in both AllegroGraph and Jena (and much less when the same query was repeated),

but some—for no immediately obvious reason—were sub-second. These queries cen-

tre around a comparatively small graph of around 0.5 million triples, where Jena and

AllegroGraph both perform well.

On the other hand the following query, which refines the last one by asking for a

particular kind of find and for the sitenames, took a staggering 1 hour 38 minutes in

AllegroGraph.
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select distinct ?site ?sitename ?object ?date ?agent

where {

?site :hasLocation place:shetland .

?site :hasEvent ?find .

?find rdf:type ?eventf .

?eventf rdfs:subClassOf find: .

?find :hasPatient ?obj .

?obj rdfs:label ?object .

optional {

?find :hasPeriod ?period .

?period rdfs:label ?date .

?find :hasAgent ?who .

?who rdfs:label ?agent .

}

filter (regex (?object,"bones|remains|inhumation", "i")) .

?site :hasLocation ?name .

?name rdf:type sitename: .

?name rdfs:label ?sitename .

}

It is as if the site locations across the entire dataset are being collected instead of

only examining the location relations for sites already identified as of interest, but the

query execution plan was not available to check. If this is indeed the case there is

a strong case for cascading queries (e.g. by doing a SPARQL “select” over a graph

produced with the SPARQL “construct” option), but no doubt automatic query opti-

misation strategies are already in hand in the research labs of the big software houses.

There are different ways of writing a given SPARQL query10 but for a successful lan-

guage the aim must be for the “obvious” approaches to produce good results. (The

fact that this is often not the case with SQL is one of its problems, that prevented the

realising of early ambitions for it as a quasi-natural query language.)

To check this diagnosis, a variant was tried that drops the site naming requirement

but keeps the filter on object type. The query time was brought back to about 6 seconds,

confirming that adding the filter was not the problem. The results of this query—

“At which Shetland sites have bones been found?”—are shown in full (but after
10The simple expedient of varying of the order of the patterns seemed to have little effect, though I

put the most restrictive ones first in the hope that it would help.
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site sitename date agent True?

site32 UNST, UNDERHOULL No

site78 YELL, PAPIL 1878 Ordnance... Partly

site510 HILL OF URE 1858 Yes

site942 SOUTH VOXTER 1903 Partly

site976 KIRKHOULL Yes

site1003 WESTER QUARFF 1903 Partly

site1006 THE CLUMPERS 1878 Partly

site1201 DALE 1875 Yes

site1383 YELL, KIRKABISTER 1878 Partly

site1385 YELL, SELLAFIRTH, BAYANNE... 1833 Partly

1835 Partly

site1414 UYEA, WINNA NESS Yes

site1415 UYEA, THE HALL A.D. 1830 TI Yes

1900 TI Partly

Table 9.6: Sites in Shetland at which bones were found

removing duplicates) in Table 9.6. Twelve sites were found, in two cases with more

than one date for the find event. The last column of the table is an evaluation of the

correctness of the information, and is explained in Sect. 9.2.3 below.

9.2.2 Moving Beyond the Schema

In all the examples looked at we have been exploiting the known schema structure,

which was at least partially designed with common requirements like these in mind.

Although I am arguing that the RDF schema is inherently more flexible than its RDB

counterpart, it still has to be thought out with retrieval purposes in mind, and can be

seen as a straitjacket restricting the questions that can be asked.

A graph structure like RDF has greater potential however. It was noted earlier that

many graph searching functions are not currently available in SPARQL, but there is one

particularly useful feature that has not yet been mentioned: the “describe” function.

As one looks at results like those shown in Table 9.5 one may be curious about an

individual data item. The SPARQL “describe” clause simply brings back all triples

that have the queried resource or resources as their subject; in effect “describe ?x”
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means “Give me all the information you have about resource x.” Using this command

allows one to find information without needing any knowledge of the schema into

which x fits. The x in question may be the result of a complex set of search patterns of

course but, at its simplest, this command allows examination of individual resources

very simply and extremely quickly. (To find a named subject node, no joins are needed

at all.) An example of how the “describe” function can be exploited is given in the

section on faceted queries (9.3) below.

9.2.3 Reliability of Information

In the case of results derived from database fields, every result can be assumed to be

correct; but where the information derives from text relations it may contain false state-

ments because of errors in the extraction process or because the text itself is incorrect

or out of date. This is an important point and one that needs to be faced squarely if we

are to move from the safe, closed world of the relational database out into the wilds of

the Semantic Web. Once one starts linking local resources to remote ones of possibly

doubtful provenance, an incorrectly extracted text relation may be the least of one’s

worries. Our whole attitude to reliability of information has already been reshaped by

the Web, and this issue is just a small part of that.

There is no practical way of measuring the recall of the RDF graph extended with

relations from free text. Taking the example from Sect. 9.2.1, of “Sites in Shetland

where bones or human remains were found”, the only way of checking this result is by

an exhaustive search through all the text associated with Shetland sites. The precision

is a different matter however, and can be checked by comparing the results shown in

Table 9.6 against the documents pertaining to the 12 sites found.

The entry in the final column of Table 9.6 is “Yes” if the result shown is correct in

all particulars. The first result is the only truly incorrect one as this site’s document,

although stating that “a burial place was discovered, in which were found three graves”,

goes on to say “No human remains were found...”. This is a bad mistake, stemming

from the lack of a mechanism to handle negative statements. Together with coreference

and term grounding, this is one of the main areas where future work is needed but, like

the grounding issue, it involves a sigificant programme of work.

All the other results are marked as being “partly” true. In each case the sites men-

tioned are ones at which human remains were discovered, but the dates are inaccurate.

Three of the sites give 1878 as the date, when actually this is the date of the Name



Chapter 9. Graph Queries 178

Book in which the discovery is mentioned, and no date is given for the find itself. If

forced to pick a date one would take 1878 from the text, but it is not really accurate.

(Incidentally, this suggests one approach to cleaning the data: by finding dates that re-

cur suspiciously often. The RE component could be integrated with a rule-based step.)

No find date is given for site 942; 1903 is the date of the map of the site. For site 1003

the find date is mentioned, but is 1900, not 1903. Two date relations were found for

site 1385 and in a sense both are correct, because the specification of the excavation

date in the text is “between the years 1833 and 1835”. For the last site, no. 1415, the

first date and agent result is entirely correct but the second date of 1900 is spurious.

One cannot calculate meaningful precision figures from a single query result, but I

must admit to relief after checking the source documents in this case. There seems no

question but that valid information was found that would have been difficult to obtain

otherwise. Of course, it may well be possible to get good results for this particular

example by the much simpler mechanism of a string search for “human remains” and

similar phrases. But the text graph offers structured information, listing specific events

and their attributes, and is potentially extensible to other tasks where structured infor-

mation is required.

For this small set of documents we can make a gesture towards measuring recall by

checking whether there were agents that could have been found where they are blank

in the table. For site 32 it seems probable that the agent was one “J Spence” but the

text is not explicit—Spence is the authority cited for the information. In just the same

way, the agent for site 1003 is probably “D Johnston”. For site 1385 the finder may

have been either or both of “ Miss M B Jamieson” and “J T Irvine”, but one cannot be

sure from the text. In all the other cases there is no-one mentioned in the text that one

could pick as the finding agent. It is perhaps a pity that Spence, Johnston, Jamieson

and Irvine were not found but, as long as the user is not given false information (as in

the case of site 32), then there is always the potential for more facts to be discovered

through further growth of the text graph.

This example query is possibly not ideal for this analysis because the event agent

is often not mentioned for finds. For site visits and site surveys the agent may be more

significant and it may be possible to achieve higher accuracy (in terms of both precision

and recall) because the range of agents is limited—at least in recent decades this work

has been done by a fairly small number of professional agencies. However the aim is to

be generic as far as possible, and the underlying principle is that it is useful, certainly

for the whole cultural domain and presumably for others too, to be able to detect events



Chapter 9. Graph Queries 179

with a fixed set of attributes such as “Who?”, “When?” and “Where?”.

As a practical step towards indicating the trustworthiness of “facts” in the text

graph, it would be useful to find a way of transmitting the certainty measures from the

machine learning steps through to the final triples. Both the NE recognition and the

relation finding steps have associated probability factors on their classification deci-

sions, so in principle this could be done. The use of weighted arcs in directed graphs is

well-established, though clearly work would be needed to determine how to combine

these techniques with RDF.

The end result to aim for would be a method of ranking results so that, although a

SPARQL “select” is a deterministic process that will always find a predictable result

set, in a practical application the most reliable statements would be presented to the

user first. As has been noted already, the typical non-specialist user we are aiming at is

probably not going to go beyond the first page or so of hits, so dubious results towards

the end of the list will not matter greatly. The expert user who wants an exhaustive list

will be used to evaluating the quality of information researched, and may even take the

trouble to send a correction to the archive managers.

The loss in certainty of the information is not a trivial problem. As has been argued

repeatedly, when aiming at an educational end it is better to show no results than wrong

ones. For practical applications a ranking method seems essential to weed out, or at

least relegate to obscurity, the weakest results. However, even as it stands, the extra

query power that the text graph provides seems genuinely valuable. Only a few simple

examples have been shown, and only using text relations for a portion of the whole

database, but they demonstrate access to information that is otherwise inaccessible.

9.3 Faceted Queries

Section 5.5 described a possible way of implementing a version of what is known as

faceted search. (See, for example, Hearst [2006].) The procedure proposed for Tether

is explained at Sect. 5.5 and described in more detail in Byrne [2006]. The idea is that

where a query returns an unmanageably large number of hits its results can presented

in smaller sets, broken into categories based on features or “facets” of the data. So,

for example, the results of a query for historical sites of a particular kind across the

whole of Scotland, could be broken down into overlapping subsets by location, period,

key people involved, and so forth. This has been shown to be a valuable presentation

method for cultural data [Binding et al., 2008].



Chapter 9. Graph Queries 180

On investigation it became clear that designing and building a properly functioning

faceted search system over the Tether graph would be a major project in its own right,

so this was not done. (In any case, the principle of its usefulness has now been es-

tablished by others.) Some simple experiments were done to explore the possibilities

however.

To take an example: an interesting seeming term—“cup and ring mark”—was

plucked from the thesaurus and tried against the database graph. This is a relatively

uncommon site type, and only 636 sites were returned; but that is still too many to

go through, one by one. Using the “describe” function of SPARQL, everything known

about these 636 sites was dumped into a temporary graph for further processing. (Since

the aim was to build a subgraph, the SPARQL “construct” function might seem the

more obvious one to use, but for this purpose “describe”, with output as XML/RDF,

proved simplest.) The query was:

describe ?siteid

where {

?siteid :hasClassn ?class .

?class rdfs:label ?classlab .

filter (regex (?classlab,"cup and ring", "i")) .

}

This does a case-insensitive search on the classification labels for the term required.

(A regular expression match was used because, for some reason, the thesaurus includes

“cup and ring marked stone” and “cup and ring marked rock” as separate terms, and I

wanted both.)

The small graph thus produced consists of all triples having one of the 636 site ids

as their subject. The XML serialised version of it can then be queried at the command

line to examine facets of interest. For example in a one-line command (quite a long

line, to be fair), the following location query was run against it:

select ?loc

where {

?site :hasLocation ?loc .

}

order by ?loc

The output was then pushed through a formatting command to find and count the most

frequently occurring place names. Discarding those with fewer than 25 occurrences,
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Place Name Frequency

dumfries+and+galloway 226

strathclyde 176

kirkcudbrightshire 172

stewartry 147

argyll+and+bute 137

tayside 124

perthshire 122

argyll 121

perth+and+kinross 90

kirkcudbright 85

wigtown 79

central 54

wigtownshire 54

stirling 53

kilmichael+glassary 40

angus 38

port+of+menteith 31

kenmore+%28perth+and+kinross%29 30

kilmartin 28

borgue 26

kirkmabreck 25

Table 9.7: Distribution of “cup and ring mark” sites

we end up with the rough and ready distribution list shown in Table 9.7, suggesting

that this kind of prehistoric “doodling” (as it was described to me by an archaeologist)

was most prevalent in the south west of the country.

With a bit of extra work one could produce similar lists for other facets, in order

to provide the user with a basic summary of information about cup and ring marked

stones, that could be used to inform a more precise query. Of course, complex nor-

malisation steps would be needed to produce a really reliable system: for example,

to establish a relationship between “argyll+and+bute” and “argyll”, or that “dum-

fries+and+galloway” and “kirkcudbrightshire” represent overlapping areas.
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9.4 Discussion and Summary

The query experiments reported in this chapter, and others like them, were undertaken

as an exploration of the graph dataset. However much one theorises in advance there

is no real subsitute for actually trying out real examples to see what is fast and what is

slow, where the schema makes life easy and where it does not. Clearly there is room

for a great deal more such experimentation, which might lead to revised theories about

RDF design.

This chapter has dealt with two questions: how RDF and RDB querying compare,

and whether extracting facts from text enhances the dataset. On the first issue, we

have seen that equivalent results are found from the graph and the relational database

but that queries are much faster using SQL over RDB tables. Widespread adoption of

RDF triple stores for managing large datasets is unlikely until SPARQL queries match

SQL in speed (nor until standard data management tools, for updating information, are

in place) but RDF and SPARQL are likely to develop rapidly in the next few years.

Incorporating statements extracted from free text is only possible because of the

flexibility inherent in a graph structure. This is a potentially exciting way of managing

hybrid data in the future and my query experiments give at least a hint of the power of

the idea. It seems clear that extra information can be made available, that would be dif-

ficult to find otherwise. Text is an excellent medium for storing ideas and information

but we need structure to allow detailed queries to operate over it. There is much more

that could be done, and ideas for future work based around the Tether graph dataset are

listed in Chap. 11.
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Extension to Related Domains

The goal has been to use methods that are as generic as possible but, inevitably, the

entity recognition and relation extraction steps have to be tuned to relevant data to

have any chance of succeeding. It is not expected that they will generalise beyond the

cultural heritage domain, because of the specialised language and terminology. There

are many cultural organisation however, holding material that is comparable with the

RCAHMS data, and one cannot but want to test the system on this material.

A comprehensive investigation was beyond the scope of this programme of work,

though would be worth attempting in the future. Given that a processing pipeline

(taking in raw text and outputting RDF triples, as described at Sect. 8.4) is available

the only barrier to processing large volumes of text from other archives is the need

to marshall suitable collections of documents and find sufficient processing space and

time. The evaluation of such an operation is the larger task, probably requiring a user

study with independent human judges. Only a very limited test was done here, taking

three documents from different sources (fresh RCAHMS text in Sect. 10.1, library text

in 10.2 and museum text in 10.3) and seeing what the txt2rdf pipeline made of them.

10.1 Further RCAHMS Data

The first sample was simply a fresh RCAHMS text, taken from outside the annotated

corpus. All such texts are processed through the pipeline and merged into the Tether

graph, but this section puts a spotlight on one particular document, picked at more or

less at random.1

The raw text presented to the txt2rdf pipeline was as follows, except that the NEs

1Two or three examples from the 216,000 available were looked at, to find one of a suitable length.

183
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found by the recogniser are shown in bold typeface and enclosed in square brackets

(see below for their categories).

“[HP50NW 11.00 centred 5315 0515]
[HP50NW 11.01 [HP 5304 0519]] Field Survey Area; Excavation

[HP 528 053]. Evidence of a quartz knapping [site] was found within
the confines of the stone circle, and in conjunction with several structures
within the inner ring, strongly suggests a domestic site.
Besides the quartz implements and corresponding waste, several other ar-
tifacts of local origin occurred including a split pebble axe of greenstone
with [Shetland] [Early Bronze Age] affinities.
B Beveridge, 1972.

Field survey and excavation, as a response to continual wind and marine
erosion, was carried out at the [Sands of [Breckon]] between [1982] and
1983 ([HP50NW 1.00] & [HP50NW 11.01]). The field survey area was
over 20ha in extent, and 42 sites of archaeological interest were recog-
nised. [HP50NW 11.00] was recorded as a stone settings surrounded by
occupational debris (Site 22). [Excavation] revealed midden deposits of
an early [Iron Age] date and a surface scatter of artefacts of mixed dates.
The [stone [settings]] were tentatively interpreted as the basal stones of
[long cists].
[Historic Scotland] Archive Project (SW) 2002”

The relations found by the pipeline were (assuming the usual prefixes) as follows:

siteid:site20 :hasClassn sitetype:settings20w180 .

siteid:site20 :hasClassn sitetype:stone+settings20w179 .

siteid:site20 :hasEvent event:excavation20w158 .

siteid:site20 :hasLocation address:hp50nw+11.01+hp+5304+0519 .

siteid:site20 :hasLocation sitename:sands+of+breckon .

event:excavation20w158 :hasPeriod date:1982 .

sitetype:settings20w180 :partOf sitetype:stone+settings20w179 .

sitetype:stone+settings20w179 :partOf sitetype:settings20w180 .

address:hp50nw+11.01+hp+5304+0519 rdfs:seeAlso address:hp+5304+0519 .

sitename:sands+of+breckon :hasLocation address:breckon .

sitetype:settings20w180 rdf:type sitetype:settings .

sitetype:stone+settings20w179 rdf:type sitetype:stone+settings .

event:excavation20w158 rdf:type event:excavation .

sitetype:settings rdfs:subClassOf sitetype: .

sitetype:settings rdfs:label "settings" .
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address:hp+5304+0519

"HP 5304 0519"

event:excavation20w158

date:1982

siteid:site20

sitename:sands+of+breckon
sitename:

address:breckon

"Breckon"

"Sands of Breckon"

address:hp50nw+11.01+hp+5304+0519

"HP50NW 11.01 HP 5304 0519"

event:

excavation:

event:excavation

date:
"1982"

"Excavation"
"An arrangement of two
or more standing stones"

sitetype:religious+ritual+and+funerary

sitetype:standing+stone

sitetype:stone+circle

sitetype:stone+row

sitetype:stone+settings20w179

sitetype:settings20w180

"settings"

sitetype:settings

sitetype:

"stone setting"

sitetype:stone+setting

rdf:type

rdf:type

address:

rdf:type
rdf:type

rdf:type

:hasLocation

:hasLocation
rdfs:label

rdfs:label

rdfs:label

rdfs:seeAlso

:hasPeriod

:hasLocation

:hasEvent

rdfs:subClassOf

rdfs:label

:partOf

rdfs:label

:hasClassn

:hasClassn

rdfs:label

skos:scopeNote

skos:broader

skos:related

rdf:type

rdf:type

rdf:type
rdfs:subClassOf

rdfs:subClassOf
rdfs:label

rdfs:subClassOf

rdfs:subClassOf

Figure 10.1: RDF graph extracted from sample RCAHMS text. The dotted lines show

connections automatically made to existing graph nodes.

sitetype:stone+settings rdfs:subClassOf sitetype: .

sitetype:stone+settings rdfs:label "stone settings" .

event:excavation rdfs:subClassOf event: .

event:excavation rdfs:label "Excavation" .

address:breckon rdf:type address: .

address:breckon rdfs:label "Breckon" .

address:hp50nw+11.01+hp+5304+0519 rdf:type address: .

address:hp50nw+11.01+hp+5304+0519 rdfs:label "HP50NW 11.01 HP 5304 0519" .

address:hp+5304+0519 rdf:type address: .

address:hp+5304+0519 rdfs:label "HP 5304 0519" .

sitename:sands+of+breckon rdf:type sitename: .

sitename:sands+of+breckon rdfs:label "Sands of Breckon" .

date:1982 rdf:type date: .

date:1982 rdfs:label "1982" .
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The extracted triples have been rearranged to put the less interesting type and la-

bel relations after the first 13, which are the “real” relations. Figure 10.1 shows the

graphical representation of this set of triples, with some of the existing graph nodes it

will automatically connect with (shown with dotted lines).2 As a summary of the text

content it is sadly lacking, but the set does pick out several important facts from the

text:

• As far as one can tell from the text the site does indeed seem to be classified as

a stone setting. The “setting” classification adds nothing useful, and does not

point to a thesaurus term.

• The excavation and its date (only the start date was found) are important. It’s

also important that the 1982 date relates to the excavation, not the site itself.

• The two pieces of locational information for the site—the sitename and a grid

reference address—are correct and useful.

• The mirrored pair of partOf relations are completely useless (though not espe-

cially damaging), and so is the seeAlso relation. (Though it is true that the

shorter string of these two is better as a search term, so there is some value in

having it in the graph as an address in its own right.)

• The placing of the sitename “Sands of Breckon” at location “Breckon” is very

useful. It could, for example, allow this sitename to be hooked into an ontology

of geographical names.

The relations below are some that the extracted text relations will be automatically

connected with, because they are already present in the collection of graphs. They are

shown with dotted lines in Fig. 10.1

event:excavation rdf:type excavation: .

sitetype:stone+setting skos:scopeNote "An arrangement of two or

more standing stones. " .

sitetype:stone+setting skos:broader sitetype:religious+ritual+and+funerary .

sitetype:stone+row skos:related sitetype:stone+setting .

sitetype:stone+circle skos:related sitetype:stone+setting .

sitetype:standing+stone skos:related sitetype:stone+setting .

2In fact, the “stone settings” term should be singular—a normalisation step needs to be inserted here,
as noted in Chap. 8.
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There are other important facts in the text of course, and it’s disappointing that they

were not found. Several other useful terms were correctly picked up as NEs, but could

not be built into relations:

Shetland PLACE

Early Bronze Age PERIOD

Iron Age PERIOD

long cists SITETYPE

Historic Scotland ORG

It is a pity that no hint of the quartz implements emerges, because they are key

to the sense of the text. (I am assuming they are part of the “occupational debris” of

the second part of the text.) It seems surprising that the personal name “B Beveridge”

was not recognised, nor the other dates, as both of these are in classes with good

NER precision and recall. The PERIOD term “Early Bronze Age” should actually

be “Shetland Early Bronze Age” but for a non-specialist the broader term is probably

more useful so this is not, in this instance, a damaging error. Uncommon variants like

this are unlikely to be recognised accurately.

This example also highlights a commonly occurring feature of RCAHMS texts:

that new information is added to an existing document whilst leaving the previous

material unchanged. It would be interesting to explore the possibility of exploiting this

vestigial structure within the documents, but it was not considered a priority as it is so

specific to this particular dataset.

10.2 Bibliographic Texts—NLS Data

The National Library of Scotland (NLS) kindly provided sample texts from some of

its many datasets. The material used is a collection of short (about half a page each)

descriptions of bibliographic items in the national collection, such as particular books,

maps and so forth. The document used for this test concerns a 19th Century naval chart

of Ardrossan Harbour. As above, the NEs found by the tagger are in bold typeface.

“The title on this chart reads, ’Scotland West Coast. [Ardrossan Har-
bour]’. [Surveyed] by Commander [C.G. Robinson] in [1840], and pub-
lished by the [Hydrographic Office] of the Admiralty in [1841], it is
drawn at a scale of 11.7 inches to every sea mile. A scale has been pro-
vided at the bottom left of the chart, and the soundings have been measured
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in feet.

[Ardrossan Harbour] is shown in some detail, with [Ardrossan] itself
represented by a simple town plan. A railway can be seen running along
the edge of the harbour. [Horse Island] has been included, along with
rocks which, if not recorded, could have proved hazardous to vessels nav-
igating these waters.

The [Hydrographic Office] of the [Admiralty] was established in [1795],
in response to a need for accurate and detailed sea charts. The first Hydro-
grapher to be appointed, [William Dalrymple], was given the protracted
task of sifting through vast quantities of previously unused hydrographi-
cal information housed in the [Admiralty’s Archive]. The intention was
to organise this material, which had amassed over many years, and in-
corporate [it] into sea charts to be utilised by the [Navy]. At the same
time Dalrymple was carrying out this time-consuming work, the [Admi-
ralty] was commissioning new surveys conducted by notable figures such
as W. Bligh, [J. [Murray]], E. Columbine, [[G. Thomas], [[H. Otter]],
G. [Bedford]] and C. [Robinson]. By the mid-nineteenth century, the
[Admiralty] was considered by many to be world leaders in hydrography
and chart publishing. The work of the [Hydrographic Office] continues
today with the production, for both the [Royal Navy] and private individ-
uals, of around 3,300 Admiralty charts and over 200 publications.”

Omitting the type and label ones, the extracted relations were as follows. These are

given as an RDF graph in Fig. 10.2. Apart from showing the resolution of the survey

event (because there is already a relation matching the text string “surveyed”), the type

and label relations are left out of the figure, for greater readability.

siteid:9990nls :hasAgent persname:g.+thomas .

siteid:9990nls :hasAgent persname:h.+otter .

siteid:9990nls :hasAgent persname:j.+murray .

siteid:9990nls :hasAgent persname:murray .

siteid:9990nls :hasEvent event:surveyed9990nlsw17 .

event:surveyed9990nlsw17 :hasAgent persname:c.g.+robinson .

event:surveyed9990nlsw17 :hasPeriod date:1840 .

event:surveyed9990nlsw17 :hasPeriod date:1841 .

event:surveyed9990nlsw17 rdf:type event:surveyed .

persname:g.+thomas :hasLocation address:h.+otter+%2C+g.+bedford .

persname:murray :hasLocation address:g.+thomas+%2C+h.+otter .

persname:g.+thomas rdfs:seeAlso address:g.+thomas+%2C+h.+otter .

persname:h.+otter rdfs:seeAlso address:h.+otter+%2C+g.+bedford .

persname:j.+murray rdfs:seeAlso persname:murray .
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A number of further NEs were found but not included in any relation. In some cases

the same NE string is classified differently on different occasions: the list below shows

them in document order so, for example, “Admiralty” is classified as a SITENAME

the first two times it occurs and as a PLACE the third time.

Ardrossan Harbour SITENAME, PLACE

C.G. Robinson PERSNAME

Hydrographic Office ORG, ORG, ORG

Ardrossan SITENAME

Horse Island SITENAME

Admiralty SITENAME, SITENAME, PLACE

1795 DATE

William Dalrymple PERSNAME

Admiralty ’s Archive SITENAME

it SITETYPE

Navy SITENAME

J. Murray PERSNAME

Bedford ADDRESS

Robinson PERSNAME

Royal Navy ADDRESS

This text is very different in style and vocabulary from the RCAHMS text and the

system does not perform well. It gets badly confused by the list of personal names,

deciding from the layout that they must be an address—“Bedford” added to the con-

fusion. It is not clear why it found some of the names but not all. The “it” is “this

material”, which in turn refers to “hydrographical information”; so it is not a SITE-

TYPE. The “Navy” entity is also misclassified. In this example the “cloud” of named

entities may be a better representation of the document than the handful of relations

found.

On the plus side, the extractor does correctly identify the surveying event, with

the right date (as well as another, incorrect date, that belongs to a separate publication

event) and with the right agent. From the retrieval point of view this is important, but

it is a great pity the system was unable to identify Ardrossan Harbour as the patient of

the event.
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siteid:9990nls

persname:j.+murray

persname:murray

persname:c.g.+robinson
date:1841

date:1840

event:surveyed9990nlsw17

event:surveyed

survey:

event:

persname:g.+thomas

address:h.+otter+%2C+g.+bedford

address:g.+thomas+%2C+h.+otter

persname:h.+otter:hasAgent

:hasAgent

:hasAgent

:hasAgent

:hasEvent

:hasAgent
:hasPeriod

:hasPeriod

rdfs:subClassOf

:hasLocation

:hasLocation

rdfs:seeAlso

rdfs:seeAlso

rdfs:seeAlso

rdfs:subClassOfrdfs:subClassOf

rdf:type

Figure 10.2: RDF graph extracted from sample NLS text, omitting type and label rela-

tions. The dotted lines show connections automatically made to existing graph nodes.

10.3 Museum Finds—NMS Data

A set of database records describing Scottish archaeological holdings was provided

by the National Museums of Scotland (NMS). This data corresponds more closely

to the RCAHMS data, being a database of structured fields with associated textual

descriptions of varying lengths. The terminology is generally much closer to that used

by RCAHMS too. A record describing a clay pot from Perthshire was plucked from

the set available. The entity strings found by the tagger are highlighted as before. (See

Sect. 8.3.6 for discussion of the unusual categorisation of verb phrases as entities. The

string “were found” is correctly highlighted as an EVENT in the text below.)

“POT, [[[KNIFE] AND FIRE-STEEL] [FROM [NEWMILL]]], PERTHSHIRE
Ref: X.19 97.765, unregistered

This pot, of a type known as a [beaker], the flint knife and the flint fire-
steel (also known as a strike-a-light) [were found] in a grave at [Newmill]
in [Perthshire]. The pot and type of [grave] suggest that the person buried
may have been from the [Netherlands].
The exterior of the pot was decorated with rows of chevrons made with a
pointed tool or spatula pressed at an angle into the clay. The [flint knife]
had been set into a haft and used to cut soft material.
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The objects [were found] in a grave set within a penannular ring ditch.
The body, which did not survive, had been placed in a coffin or container
or organic material, set in a bath-shaped grave pit. The style of the grave
resembles Dutch examples.

Date: Between 2500 and 2050 BC
Material: Ceramic;Flint
Dimensions: Height of pot: 13.4 cm

[Clarke], D.V., Cowie, [T.G., & Foxon], Andrew (eds). Symbols of
power at the time of [Stonehenge]. Edinburgh: National Museums of
Antiquities of [Scotland], [1985], pp 82, 174, 268.”

The relations found (omitting type and label ones) were as follows, and are shown

graphically in Fig. 10.3. As before, the “were found” event finds its place in the graph

as a find, because that verb phrase was present in the subclass relations derived from

the annotated corpus. As was noted in Sect. 8.3.6, lemmatisation of the verbal NEs

would achieve the same result in this instance.

siteid:X765nms :hasLocation sitename:from+newmill .

siteid:X765nms :hasLocation sitename:knife .

siteid:X765nms :hasLocation sitename:knife+and+fire-steel .

siteid:X765nms :hasLocation sitename:knife+and+fire-steel+from+newmill .

siteid:X765nms :hasEvent event:were+found+X765nmsw114 .

event:were+foundX765nmsw114 :hasPatient objtype:beaker .

event:were+foundX765nmsw114 rdf:type event:were+found .

sitename:from+newmill :hasLocation address:newmill .

sitename:knife :hasLocation address:newmill .

sitename:knife+and+fire-steel :hasLocation address:newmill .

sitename:knife+and+fire-steel :hasLocation sitename:knife .

sitename:knife+and+fire-steel+from+newmill

:hasLocation address:newmill .

sitename:knife+and+fire-steel+from+newmill

:hasLocation sitename:knife .

sitename:knife+and+fire-steel+from+newmill

:hasLocation sitename:knife+and+fire-steel .

The extra entities (not in relations) are:



Chapter 10. Extension to Related Domains 192

event:

find:

event:were+found

sitename:knife+and+fire+steel+from+newmill

event:were+foundX765nmsw114

objtype:beaker

siteid:X765nms

sitename:from+newmill

address:newmill

sitename:knife

rdfs:subClassOf

sitename:knife+and+fire+steel

:hasLocation

:hasLocation

:hasLocation

:hasLocation

:hasLocation
:hasEvent

:hasPatient

:hasLocation

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Figure 10.3: RDF graph extracted from sample NMS text, omitting type and label rela-

tions. The dotted lines show connections automatically made to existing graph nodes.

Perthshire PLACE

grave SITETYPE

Netherlands ADDRESS

flint knife ARTEFACT

Clarke PERSNAME

T.G. , & Foxon ADDRESS

Foxon ADDRESS

Stonehenge ADDRESS

Scotland PLACE

1985 DATE

What has gone wrong here is that all the artefacts listed at the top of the text have

been wrongly classified as locations—which is rather a pity, as it means that all their

information is useless. Even the otherwise correct statement that the knife has location

Newmill is rendered worthless if “knife” is believed to be a place. The tagger was

probably confused by the words being all in upper case. However, it still seemed sur-

prising that it should think “FROM NEWMILL” is an address, given that the POS tags

were made available to it. On examination of earlier products of the pipeline it turned

out that this stems from an error made very early on: the POS tagger classified the
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“FROM” token as “NNP” (i.e. as a proper noun, not a preposition). In the RCAHMS

documents headings like this are always site names or addresses but this was not used

as a feature as it is so domain-specific. The NE tagger was also confused by the layout

of the personal names at the end of the document, but apart from that its classifications

were reasonably accurate.

Once again it is the event relation that comes up trumps: we have the fact that a

beaker was found. We do not have the eventPlace, nor the other two finds (the flint

knife and the flint fire-steel), but the find event is important. The “Event#were+found”

node will be resolved into a “Find” event because it is present in the subclass data from

the annotated corpus (see Sect. 8.3.6). (All the expected variants on the “found” verb

are present, alongside a small family of “founded” nodes which of course turn out to be

a “Creation” events.) Having been correctly labelled as a Classn/Objtype, the “beaker”

node links straight into its place in the Object Thesaurus that is already in place.

10.4 Discussion and Summary

One should not of course draw too many conclusions from examination of so small a

sample, but nevertheless it is useful to look at the kind of errors that are made. The

system clearly has some way to go to be reliable. Looking at the paucity of facts

extracted I am almost driven to reconsider my prejudice in favour of precision over

recall—but not quite. I would still maintain that no information is preferable to wrong

information for a non-expert.

In the discussion of relation extraction, the absence of a coreference module was

felt to be the biggest shortfall, but looking at the examples from other domains shows

that it is certainly not the only gap to fill. There are clues available that are not being

exploited, and the fact that the tagger sometimes fails on NEs or potential relations that

it succeeds with elsewhere, suggests that a feedback loop would be useful. A system of

cascaded tagging might be a good method, perhaps combined with a bootstrapping ap-

proach to texts from new domain, where initial tagging runs could be used to improve

the model for subsequent runs. Methods involving building pools or ensembles of clas-

sifiers have been used successfully for a range of NLP tasks. For example, Smith et al.

[2005] demonstrate improved performance by using a pool of “expert” CRF models

(Conditional Random Fields, see [Lafferty et al., 2001]) trained on particular parts of

the probability distribution—i.e. particular aspects of the NER tagging problem they

focus on—instead of a “monolithic” model that attempts the whole task alone. Sutton
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and McCallum [2005] show how different tasks in a sequence can be used to inform

each other, not only by later steps using the results of previous ones as is usual, but

by feeding back performance on later tasks to inform the steps before them, in a sec-

ond run. There seems enormous potential for further exploration of these methods

over tasks like those in hand here, specifically the NER and RE combination, which

have strong interactions. For example, relations often have very definite domains and

ranges (hasAgent always points to a PERSNAME or ORG, and so on), so detection of

a relation between two entities will give clues to their categories.

In the RCAHMS and NMS texts there are a lot of positional clues. They were de-

liberately not concentrated on as features for the learners, because they are so domain-

specific, but perhaps there is an argument for more tailoring to each domain. For the

RCAHMS data document zoning might yield good results, as the texts follow a fairly

standard pattern. The layout usually has sitenames in headings at the top, followed by

locational information and then a sequence of paragraphs (each typically ending with

a bibliographic reference) in chronological order of events (such as visits) connected

with the site.

The intended distinction between PLACE and ADDRESS does not seem to be com-

ing through, and it would be worth training the NER models more specifically for this.

The aim was to “dump” long-winded locational information into ADDRESS (whence

it could be pulled back to answer queries) but reserve PLACE for short, specific terms

that are likely to be used as search terms.

Finally, it is encouraging that the event extraction seems to be working at least

reasonably well—no bad errors on events were found in this tiny review. Event-based

recording is becoming a new norm for cultural archives and there is a real need to

convert existing holdings of site-based data.
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Conclusions

We started out in Chap. 1 with a list of questions, and now it is time to assess whether

they have been answered. Along the way, a number of other questions needing answers

were encountered; they too are included here. Overall, my impression is of finishing

with more open questions than I started with, but they are better, more precise ones.

The very first question was “Can structured and unstructured data be usefully com-

bined?”, and the answer is “Yes”. One of the core assertions of this thesis is that a

structure as simple as a directed graph—the Semantic Web in fact—really can bridge

the divide that exists for so many data managers between relational database (RDB)

fields and free text documents. This unhappy marriage of information formats is almost

universal in cultural archives but is certainly not confined to that domain. The effort of

transforming disparate material is considerable and there are far more uncertainties in

it than one might expect, so the slow take-up of the Semantic Web does not seem at all

surprising. More work is needed to make the kind of tools developed in this research

more robust and more adaptable. But—it is possible to make the combination and the

resulting graph does contain more information, in terms of quantity and accessibility,

than the RDB provided. It is also more flexible for adding or reorganising information

in the future.

Can a sufficient number of factual statements be extracted by NLP (natural lan-

guage processing) tools? The answer is surely “Yes” again, but there is certainly room

for more progress to be made. Including the necessary scaffolding of schema relations,

an average of 30 triples were found per document. The overall precision of relation

extraction (RE) measured over the “gold” named entities (NEs) in the corpus of 1,500

annotated documents, was 83%, with recall of 69% (and hence F-score 75%). Pre-

cision was deliberately prioritised over recall because my contention is that, whilst

195
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new facts can always be added later, false information is an insidious poison as far as

the Semantic Web is concerned. Especially for cultural material that is intended for

general edification, authoritativeness has surely to be the goal.

This method of comparison against a gold standard is the usual way of evaluating

such work and in these terms the results are good. However, when one looks at the

results on real documents from the domain of training (see Chap.9) and certainly from

other related domains (Chap. 10) it seems very doubtful that “sufficient” factual state-

ments are found to capture the sense of the original text. With hindsight one can see

that the annotation itself may have been insufficient, so the probabilistic model was

weak. Relation annotation is an awkward task: difficult to plan and difficult for the

annotator to carry out because the interface (and we used the best available) is compli-

cated. More work is needed on developing tools to visualise networks of relationships

within text. However, given the gratifyingly high IAA1 figures (F-score 83% on rela-

tions) it is clear that the problem, if there is one, was in the planning not the execution.

The issue of annotation design is a knotty one, that is examined further below; for this

project it is actually RDF schema design by a different name. Given the promising

results obtained, it seems reasonable to assume that, if the statements to be found in

text can be modelled properly, then it will be possible to extract enough of them using

the methods tried here—hence my “Yes” to the question above.

Given that suitable relations can be extracted, is the precision adequate for infor-

mation retrieval purposes or is the risk of misleading the user with false statements too

great? This has already been touched on. I believe the answer is positive once again,

but the danger of introducing spurious information is very real. In the past a non-

specialist researching some topic of personal interest would have used printed books

and talked to experts. There would be some misinformation of course, but in general

the sources were reliable. It has been shown (see, for example Bilal and Kirby [2002])

that inexpert users, especially children, have the same habit of trusting sources, which

they apply undiscriminatingly and often disastrously to the Web in general. In the

study cited, graduate students in information science were found to be successful al-

most 90% of the time in finding correct information as against only 50% of the time for

school children. It seems very probable that software agents will be at least as bad at

sifting true statements from doubtful ones as children are: so it is of critical importance

not to flood the Semantic Web with false information. On the other hand the goal of

having no false statements is clearly unattainable and possibly even meaningless—for

1Inter Annotator Agreement—see Sect. 4.3.3.
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one thing, many statements are actually opinions. Therefore my answer to this ques-

tion is that the precision can be made good enough for the enterprise to be worthwhile,

but that more work is needed on specific measures to weed out the bad triples. Han-

dling negation is one obvious gap, and it would also be useful to design a mechanism

for weighting different statements based on the confidence level of the classification

decisions. Implementing weights of this kind within standard RDF is quite a challenge

however.

The final research question listed in Chap. 1 was to assess the capability of differ-

ent techniques, each of which was known to perform well independently, when used

together. The measured results show that passing NER (named entity recognition)

results having F-score of 76.57% into an RE module with an F-score of 75.68%, pro-

duced a combined result of around 58%, which is just what would one would expect

by taking the product of the two scores. There is clearly some way to go, with better

modelling, to improve these scores so that this kind of information extraction can be

really effective; but if, by improving the task definition (but not necessarily the perfor-

mance) we can extract 60% of the factual content of a text automatically that will be a

very useful achievement.

Various techniques from well outside the NLP field were needed, to deal with RDB

material and with RDF graphs. It has been shown that an integrated system can be con-

structed without compromising any of the component material. It was also found that,

unsurprisingly, a lot of time has to be spent in converting data between formats for dif-

ferent tools and in acquiring enough familiarity with quite a wide range of techniques

to be able to use them effectively. Its capacity for integrating material from many

sources is one of the strengths of the Semantic Web, and the fact that cross-domain

work was unavoidable seems an advantage, not a drawback.

It was a deliberate choice to use a large and fairly untidy “real” dataset. It is worth

trying tools out on plenty of data, full of unpredictable variety and with all the tiresome

glitches that stem from that. For tests of graph retrieval to be convincing one needs a

large volume of triples, to compare with what is currently available (using SQL over a

relational database) for the same information. It is also useful to see what the issues are

when translating entire archives into RDF format: how long it takes, how fast queries

run, and so forth.

New questions cropped up as the work proceeded, especially around the central

issue—that runs in differing guises through all the component steps—of RDF graph

design. Are there systematic differences between RDB and RDF design? Is it possible
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to induce the RDF design directly from the source data, whether RDB fields or text?

To what extent does the RDF schema design constrain the entity and relation extraction

models? How important is the RDF format itself in facilitating term grounding? Let

us look briefly at each of these issues.

At first glance, converting RDB fields to RDF seemed a straightforward process.

On examination it proved anything but, and became an absorbing detour in the progress

towards the goal of graph building. In Chap.5 I formulated a set of 12 guidelines where

RDF design diverges from RDB and needs different handling.

If the objective is an integrated set of graphs, it is clear that the schema design for

the different components (RDB, text documents and domain thesauri) must be created

with integration in mind. Early experiments, not detailed in this thesis because they

were not pursued, centred around trying to derive the NE classes and graph predicate

set automatically by clustering related terms (nouns for the NE classes, verbs for the

predicate set) into groups that could then be given labels. This would open the door to

unsupervised learning methods and would clearly make the NLP tasks very much less

domain-dependent. For this programme of work it was more pragmatic to design the

class and predicate schema by hand, but there has been successful work in automatic

classification of relation predicates, showing that it may be practical in the future.

Of course, relation extraction work is not in general intended as a feeder system for

building RDF graphs, so there are differences in the ways predicates are chosen. For

RDF the schema design is critical; some issues only emerged in the course of running

query experiments over the final graph, and yet the shape of the graph is fixed by

decisions on data annotation taken right at the outset.

One of the advantages of using RDF that has been stressed throughout is the way

two separate graphs are automatically linked if they share as much as a single com-

mon resource node. The schema was designed very much around this principle, to

enable serendipitous linking of nodes that refer to the same thing, wherever possible.

This approach was shown to pay off handsomely in grounding domain terminology

such as site and object classifications by connecting them to available domain thesauri,

themselves converted to RDF graphs for the purpose.

Is information retrieval, particularly for the non-expert user, improved through the

use of RDF and the amalgamation of fixed field data with structured relations extracted

from text? This question was examined in Chap. 9 and it was shown that additional

information was made accessible. Furthermore, although in particular examples it

might be possible to find comparable results by simple string searching over the text,
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the structure of resources (such as events) with identified attributes (such as date, place,

agent) gives added value that can be used in refining queries or in combining results

for better presentation. It can also be used beyond the retrieval scenario, for populating

data structures in a relational database.

11.1 Future Work

In conclusion, this section lists opportunities for future research related to the themes

of this thesis.

Two gaps were noted in the construction of the graph, each of which entails a sig-

nificant new project that could not realistically be included. One is to handle negation,

which was not attempted. The other missing component is proper term normalisation,

so that personal names, dates and so on can be tied to a canonical form that in turn can

be grounded by linking to other graphs or to authoritative ontologies where available.

Some basic normalisation elements were used in the generation of URIs, but there is

room for a separate project.

The methods employed for text processing can be seen as sitting somewhere in the

middle of the continuum that stretches from simple string matching to deep linguistic

analysis. Shallow, probabilistic methods are preferred because the aim is to be able

to deal with very large volumes of material with minimal preparation and sufficient

speed to allow changing datasets like the RCAHMS one used here to be fed through the

pipeline at regular intervals as necessary to keep it up to date. As noted in Chap.8, there

is room for a lot more development of the relation extraction model, but it has been

shown that relations can be successfully found using a simple set of features. Exploring

less heavily supervised techniques would also be very worthwhile as the model is more

domain-dependent than one would wish, and preparing annotated training data for a

new domain would be a major overhead.

A valuable resource has been created in the course of this work: a graph of around

22 million triples from a single domain. The projected total if all immediately available

documents were converted is over 28 million, though there is no real limit to how much

relevant text could be added from published books and so forth. A whole programme

of work could be designed around this graph dataset. Some of the questions it would

be interesting to explore in the future are:

1. Is it possible to use the RDF graph to find implicit relationships, where nodes that
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are within a certain distance of each other (say, with a path distance of not more

than three edges between them) but where the precise nature of the relationship

(the predicate or property type) may be unknown?

2. Does the lack of graph algorithmic functions in SPARQL limit retrieval in prac-

tice? To provide context for a user it is necessary to summarise information

about related nodes within defined categories. Finding shortest paths and sub-

graph diameters might also be helpful. In the simple trial described in Sect. 9.3

the summarisation was done rather clumsily, outside the query operation. Can

SPARQL be usefully extended to cope with this kind of retrieval, and does it

need to be?

3. Is it possible to create a simple dialogue with the user, taking their initial query

and returning a summary that places their request in context relative to the

dataset, and then guiding them to reframe the query using a generated menu

of options that are specific to it? This is the retrieval application design outlined

in Byrne [2006], which is intended to be generic to the cultural heritage domain.

4. How well does the system translate to related cultural datasets? Some limited

trials are described in Chap. 10, but it would be interesting to extend the Tether

graph family on a much larger scale by processing significant quantities of data

from other archives. This would enable tests of, for example, the linking power

between datasets, where the same resources appear in each.

5. How important is detailed schema knowledge for retrieval? For a locally in-

stalled application queries can be generated with full knowledge of how the

graph is structured, but the much more interesting question is whether the graph

is a useful resource for remote queries. Would it be possible to encode the basic

structure—with its nice compact predicate set—and advertise it to web software

agents so that queries could be framed “on the fly” for ad hoc retrieval? One

could envisage a set of web services, standardised across the cultural domain, to

answer the generic “Who? What? Where? When?” questions that cover most

enquiries.

6. Does “serendipitous linking” of graph nodes work as hoped? One of the promises

of the Semantic Web is that connections can become apparent between data items

from different sources but with the same meaning. The danger is that the policy
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used in Tether, of deliberately using URIs that will coincide, may blur distinc-

tions by merging nodes that are not really the same. The potential gains in terms

of interoperability of data seem worth this risk, but experimentation is needed to

measure whether the risk is real.

Plenty of other extensions are possible. The opportunity for natural language gen-

eration from extracted triples is particularly attractive. This would take us back to the

“simple declarative sentences” alluded to in Chap. 1, with exciting scope for flexible

presentation of retrieved information to different target audiences. Linking to other

cultural datasets also merits investigation, such as museum data on found objects or

bibliographic material from libraries. One can envisage applications built around quite

simple web services that could integrate results in a standardised format from multiple

cultural datasets. There is no reason why the integration should be confined to database

fields and text documents, as spatial data and graphical material can also be curated as

RDF graphs. Exploiting more of the burgeoning number of RDF vocabularies that are

being developed is yet another goal.

Perhaps the final comment to make is that, whilst in the past data manipulation and

information extraction have been so hard to accomplish that end-users were effectively

forced to put up with taking electronic information as it was formatted for capture, we

are now reaching a position where much more flexibility is possible. The material can

be captured in a way that suits the specialists who create it—and very often natural

language text will be their preferred medium, or perhaps recorded speech—but trans-

formed into quite different structures for storage and management, from which it can

be re-presented in all manner of ways to a wide range of audiences with very different

needs. Only if there are mechanisms like those proposed here for assimilating our in-

formation heritage, from centuries of knowledge development, will the Semantic Web

or “Web of Data” fulfill its potential.
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RDF Schemas

This appendix contains the RDF schema layouts for the four graphs that make up

Tether, taked from the relational database fields, the relations extracted from text, and

the two thesauri. Other RDF schema elements (such as SKOS, RDFS etc.) are taken

from published vocabularies.

The format used here is N3, which is the probably most readable way of presenting

triples.

A.1 Graph Derived from RDB

@prefix : <http://www.ltg.ed.ac.uk/tether/> .

@prefix siteid: <http://www.ltg.ed.ac.uk/tether/Siteid#> .

@prefix arcid: <http://www.ltg.ed.ac.uk/tether/Arcid#> .

@prefix bibid: <http://www.ltg.ed.ac.uk/tether/Bibid#> .

@prefix refid: <http://www.ltg.ed.ac.uk/tether/Refid#> .

@prefix linid: <http://www.ltg.ed.ac.uk/tether/Linid#> .

@prefix collid: <http://www.ltg.ed.ac.uk/tether/Collid#> .

@prefix roleid: <http://www.ltg.ed.ac.uk/tether/Roleid#> .

@prefix personid: <http://www.ltg.ed.ac.uk/tether/Personid#> .

@prefix orgid: <http://www.ltg.ed.ac.uk/tether/Orgid#> .

@prefix agent: <http://www.ltg.ed.ac.uk/tether/Agent#> .

@prefix org: <http://www.ltg.ed.ac.uk/tether/Agent/Org#> .

@prefix persname: <http://www.ltg.ed.ac.uk/tether/Agent/Person#> .

@prefix role: <http://www.ltg.ed.ac.uk/tether/agent/Role#> .

202
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@prefix loc: <http://www.ltg.ed.ac.uk/tether/Loc#> .

@prefix place: <http://www.ltg.ed.ac.uk/tether/Loc/Place#> .

@prefix sitename: <http://www.ltg.ed.ac.uk/tether/Loc/Sitename#> .

@prefix grid: <http://www.ltg.ed.ac.uk/tether/Loc/Grid#> .

@prefix time: <http://www.ltg.ed.ac.uk/tether/Time#> .

@prefix date: <http://www.ltg.ed.ac.uk/tether/Time/Date#> .

@prefix period: <http://www.ltg.ed.ac.uk/tether/Time/Period#> .

@prefix classn: <http://www.ltg.ed.ac.uk/tether/Classn#> .

@prefix sitetype: <http://www.ltg.ed.ac.uk/tether/Classn/Sitetype#> .

@prefix arctype: <http://www.ltg.ed.ac.uk/tether/Classn/Arctype#> .

@prefix objtype: <http://www.ltg.ed.ac.uk/tether/Classn/Objtype#> .

@prefix id: <http://www.ltg.ed.ac.uk/tether/Id#> .

@prefix siteident: <http://www.ltg.ed.ac.uk/tether/Id/Siteident#> .

@prefix arcident: <http://www.ltg.ed.ac.uk/tether/Id/Arcident#> .

@prefix bibident: <http://www.ltg.ed.ac.uk/tether/Id/Bibident#> .

@prefix flag: <http://www.ltg.ed.ac.uk/tether/Ind#> .

@prefix desc: <http://www.ltg.ed.ac.uk/tether/Desc#> .

@prefix arcdesc: <http://www.ltg.ed.ac.uk/tether/Desc/Arcdesc#> .

@prefix bibdesc: <http://www.ltg.ed.ac.uk/tether/Desc/Bibdesc#> .

@prefix refdesc: <http://www.ltg.ed.ac.uk/tether/Desc/Refdesc#> .

@prefix agentdesc: <http://www.ltg.ed.ac.uk/tether/Desc/Agentdesc#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

: rdf:type owl:Ontology .

: rdfs:comment "Graph database derived from RCAHMS

relational database of sites and

monuments."ˆˆxsd:string .

siteid: rdf:type rdfs:Class .

siteid: rdfs:comment "Unique identifier for RCAHMS site.

Derived from rcmain.numlink
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value."ˆˆxsd:string .

arcid: rdf:type rdfs:Class .

arcid: rdfs:comment "Unique identifier for RCAHMS archive

item. Derived from

rccollect.arcnumlink value.

"ˆˆxsd:string .

bibid: rdf:type rdfs:Class .

bibid: rdfs:comment "Unique identifier for RCAHMS

bibliographic item. Derived from

rcbibliog.bibno value."ˆˆxsd:string .

linid: rdf:type rdfs:Class .

linid: rdfs:comment "Unique identifier for RCAHMS linear

feature. Derived from

rclinear.linear field, which

contains character codes of form

’LIN xx’, ’RR yy’, etc. The class

members do not have a prefix

attached therefore (as siteids have

’site’ prepended, and arcids have

’arc’)."ˆˆxsd:string .

collid: rdf:type rdfs:Class .

collid: rdfs:comment "Unique identifier for a named RCAHMS

archive collection. Derived from

rccollections.collection_id value.

"ˆˆxsd:string .

refid: rdf:type rdfs:Class .

refid: rdfs:comment "Unique identifier for a short

bibliographic reference, attached

to a site or a linear feature,

pointing to a particular
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bibliographic item. Derived from a

generated surrogate key for

rcshortref (which has a composite

key) or rclinear (same).

"ˆˆxsd:string .

personid: rdf:type rdfs:Class .

personid: rdfs:comment "Unique identifier for a person,

derived from the rcparty.pcode

value in the RCAHMS

database."ˆˆxsd:string .

orgid: rdf:type rdfs:Class .

orgid: rdfs:comment "Unique identifier for an

organisation, derived from the

rcorganisation.ocode value in the

RCAHMS database."ˆˆxsd:string .

roleid: rdf:type rdfs:Class .

roleid: rdfs:comment "Unique identifier for an agent role

in the RCAHMS database. Derived from

rcarc_person.roleID value, this

being a generated surrogate key for

the rcarc_person table, which uses

a concatenated key in fact.

"ˆˆxsd:string .

agent: rdf:type rdfs:Class .

agent: rdfs:comment "An individual or group that does

something."ˆˆxsd:string .

persname: rdfs:subClassOf agent: .

persname: rdf:type rdfs:Class .

persname: rdfs:comment "A named person."ˆˆxsd:string .
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org: rdfs:subClassOf agent: .

org: rdf:type rdfs:Class .

org: rdfs:comment "An organisation."ˆˆxsd:string .

role: rdfs:subClassOf agent: .

role: rdf:type rdfs:Class .

role: rdfs:comment "Used where the agent is specified

as someone in a particular role,

such as an architect, rather than

as an individual person or

organisation."ˆˆxsd:string .

loc: rdf:type rdfs:Class .

loc: rdfs:comment "A location."ˆˆxsd:string .

sitename: rdfs:subClassOf loc: .

sitename: rdf:type rdfs:Class .

sitename: rdfs:comment "The name of a specific site from

the RCAHMS database."ˆˆxsd:string .

place: rdfs:subClassOf loc: .

place: rdf:type rdfs:Class .

place: rdfs:comment "An administrative place name, such

as a region, district, parish,

county, country, city etc. It is

used for the kind of name that might

appear on a map."ˆˆxsd:string .

grid: rdfs:subClassOf loc: .

grid: rdf:type rdfs:Class .

grid: rdfs:comment "OS grid reference, eastings or

northings. May also contain

latitudes and longitudes.

"ˆˆxsd:string .



Appendix A. RDF Schemas 207

time: rdf:type rdfs:Class .

time: rdfs:comment "For temporal descriptions.

"ˆˆxsd:string .

date: rdfs:subClassOf time: .

date: rdf:type rdfs:Class .

date: rdfs:comment "Calendar dates or references to

a specific date or date range.

"ˆˆxsd:string .

period: rdfs:subClassOf time: .

period: rdf:type rdfs:Class .

period: rdfs:comment "References to historical periods,

like \"late Neolithic\",

\"18th Century\", \"modern\".

"ˆˆxsd:string .

classn: rdf:type rdfs:Class .

classn: rdfs:comment "The classification of the site or

object, often using standard

thesaurus terms."ˆˆxsd:string .

sitetype: rdfs:subClassOf classn: .

sitetype: rdf:type rdfs:Class .

sitetype: rdfs:comment "A term describing the type of site,

such as \"chambered cairn\",

\"long barrow\" etc. The terms come

from the Thesaurus of Monument

Types."ˆˆxsd:string .

objtype: rdfs:subClassOf classn: .

objtype: rdf:type rdfs:Class .

objtype: rdfs:comment "A term describing a physical object

such as a bronze axe, pottery

shards, human remains, etc. It is
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used for portable items that could

in principle be separated from the

parent site withoutlosing their

identity. The terms come from the

Object Type Thesaurus."ˆˆxsd:string .

arctype rdfs:subClassOf classn: .

arctype rdf:type rdfs:Class .

arctype rdfs:comment "A term describing the nature of an

item from the RCAHMS collections,

such as \"photograph\",

\"manuscript\", \"rubbing\", etc.

Derived from the rccollect.category

code and its value taken from

rccategory.code field."ˆˆxsd:string .

id: rdf:type rdfs:Class .

id: rdfs:comment "For miscellaneous pieces of

identifying information.

"ˆˆxsd:string .

siteident: rdfs:subClassOf id: .

siteident: rdf:type rdfs:Class .

siteident: rdfs:comment "Identifying information pertaining

to archaeological or historic sites.

"ˆˆxsd:string .

arcident: rdfs:subClassOf id: .

arcident: rdf:type rdfs:Class .

arcident: rdfs:comment "Identifying information pertaining

to archive items."ˆˆxsd:string .

bibident: rdfs:subClassOf id: .

bibident: rdf:type rdfs:Class .

bibident: rdfs:comment "Identifying information pertaining
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to bibliographic items.

"ˆˆxsd:string .

flag: rdf:type rdfs:Class .

flag: rdfs:comment "For miscellaneous indicator fields

from the database. Main use is to

distinguish archaeologyor

architecture items."ˆˆxsd:string .

desc: rdf:type rdfs:Class .

desc: rdfs:comment "Derived from various database

fields containing descriptive

information; often free text

strings, though not usually

very long."ˆˆxsd:string .

arcdesc: rdfs:subClassOf desc: .

arcdesc: rdf:type rdfs:Class .

arcdesc: rdfs:comment "Miscellaneous archive item

descriptions."ˆˆxsd:string .

bibdesc: rdfs:subClassOf desc: .

bibdesc: rdf:type rdfs:Class .

bibdesc: rdfs:comment "From description fields for

bibliographicitems."ˆˆxsd:string .

refdesc: rdfs:subClassOf desc: .

refdesc: rdf:type rdfs:Class .

refdesc: rdfs:comment "Mostly from the rclinrep.pagenos

and rcshortref.pagenos database

fields; not heavily populated.

"ˆˆxsd:string .

agentdesc: rdfs:subClassOf desc: .

agentdesc: rdf:type rdfs:Class .



Appendix A. RDF Schemas 210

agentdesc: rdfs:comment "Miscellaneous agent descriptions,

such as those from the rcparty and

rcorganisation notes fields.

"ˆˆxsd:string .

:hasAgent rdf:type owl:ObjectProperty .

:hasAgent rdfs:domain arcid: .

:hasAgent rdfs:domain bibid: .

:hasAgent rdfs:range agent: .

:hasAgent rdfs:comment "Points to any person or organisation

that is mentioned as being

associated with a site, archive

item or bibliograhic reference

"ˆˆxsd:string .

:hasAgentRole rdf:type owl:ObjectProperty .

:hasAgentRole rdfs:domain roleid: .

:hasAgentRole rdfs:range role: .

:hasAgentRole rdfs:comment "Points to a role taken by an agent,

such as builder or achitect, etc.

"ˆˆxsd:string .

:hasLocation rdf:type owl:ObjectProperty .

:hasLocation rdfs:domain siteid: .

:hasLocation rdfs:domain bibid: .

:hasLocation rdfs:domain linid: .

:hasLocation rdfs:range loc: .

:hasLocation rdfs:comment "Indicates the location of a site,

including administrative areas and

grid references. Also used for

locational information relating to

bibliographic material, such as

where published."ˆˆxsd:string .
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:hasPeriod rdf:type owl:ObjectProperty .

:hasPeriod rdfs:domain siteid: .

:hasPeriod rdfs:domain arcid: .

:hasPeriod rdfs:domain bibid: .

:hasPeriod rdfs:domain personid: .

:hasPeriod rdfs:domain classn: .

:hasPeriod rdfs:range time: .

:hasPeriod rdfs:comment "The period of a site where

specified, or the period associated

with a site classification term.

Also used for any database fields

containing temporal information,

like dates."ˆˆxsd:string .

:hasClassn rdf:type owl:ObjectProperty .

:hasClassn rdfs:domain siteid: .

:hasClassn rdfs:domain linid: .

:hasClassn rdfs:domain arcid: .

:hasClassn rdfs:range classn: .

:hasClassn rdfs:comment "The classification of a site. The

terms are from the thesaurus, based

on Thesaurus of Monument Types.

"ˆˆxsd:string .

:hasId rdf:type owl:ObjectProperty .

:hasId rdfs:domain siteid: .

:hasId rdfs:domain arcid: .

:hasId rdfs:domain bibid: .

:hasId rdfs:domain orgid: .

:hasId rdfs:domain personid: .

:hasId rdfs:range id: .

:hasId rdfs:range org: .

:hasId rdfs:range persname: .

:hasId rdfs:comment "This is used for id fields other

than the primary keys for site,
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archive item, and bibliographic

reference. There are a number of

other identifying fields, like NMRS

site number etc."ˆˆxsd:string .

:hasFlag rdf:type owl:ObjectProperty .

:hasFlag rdfs:domain siteid: .

:hasFlag rdfs:domain arcid: .

:hasFlag rdfs:range flag:.

:hasFlag rdfs:comment "Used for database fields containing

indicator values (the few considered

useful). Where possible codes will

be looked up and their values

substituted."ˆˆxsd:string .

:hasDesc rdf:type owl:ObjectProperty .

:hasDesc rdfs:domain siteid: .

:hasDesc rdfs:domain arcid: .

:hasDesc rdfs:domain bibid: .

:hasDesc rdfs:domain collid: .

:hasDesc rdfs:domain refid: .

:hasDesc rdfs:domain personid: .

:hasDesc rdfs:domain orgid: .

:hasDesc rdfs:range desc: .

:hasDesc rdfs:comment "For database fields containing

descriptive information, like

archive material details,

bibliographic reference details,

etc"ˆˆxsd:string .

:siteArc rdf:type owl:ObjectProperty .

:siteArc rdfs:domain siteid: .

:siteArc rdfs:range arcid: .

:siteArc rdfs:comment "Special, key-to-key property,

linking siteids to arcids. This
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predicate can be in either

direction as sites and archive

items are peer-to-peer (neither

is parent to other), but in tether

the triples are inserted from

siteid to arcid."ˆˆxsd:string .

:bibArc rdf:type owl:ObjectProperty .

:bibArc rdfs:domain bibid: .

:bibArc rdfs:range arcid: .

:bibArc rdfs:comment "Special, key-to-key property,

linking bibids to arcids. This

predicate can be in either

direction as bibliographic and

archive items are peer-to-peer

(neither is parent to other), but

in tether the triples are inserted

from bibid to arcid."ˆˆxsd:string .

:siteLin rdf:type owl:ObjectProperty .

:siteLin rdfs:domain siteid: .

:siteLin rdfs:range linid: .

:siteLin rdfs:comment "Special, key-to-key property,

linking siteids to linids.

"ˆˆxsd:string .

:refBib rdf:type owl:ObjectProperty .

:refBib rdfs:domain refid: .

:refBib rdfs:range bibid: .

:refBib rdfs:comment "Special, key-to-key property,

linking refids to bibids.

"ˆˆxsd:string .

:refSite rdf:type owl:ObjectProperty .

:refSite rdfs:domain refid: .
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:refSite rdfs:range siteid: .

:refSite rdfs:comment "Special, key-to-key property,

linking refids to siteids.

"ˆˆxsd:string .

:refLin rdf:type owl:ObjectProperty .

:refLin rdfs:domain refid: .

:refLin rdfs:range linid: .

:refLin rdfs:comment "Special, key-to-key property,

linking refids to linids.

"ˆˆxsd:string .

:roleAgent rdf:type owl:ObjectProperty .

:roleAgent rdfs:domain roleid: .

:roleAgent rdfs:range personid: .

:roleAgent rdfs:range orgid: .

:roleAgent rdfs:comment "Special, key-to-key property,

linking roleids to either personids

or orgids."ˆˆxsd:string .

:roleArc rdf:type owl:ObjectProperty .

:roleArc rdfs:domain roleid: .

:roleArc rdfs:range arcid: .

:roleArc rdfs:comment "Special, key to key, property

linking roleids to arcids.

"ˆˆxsd:string .

:arcColl rdf:type owl:ObjectProperty .

:arcColl rdfs:domain arcid: .

:arcColl rdfs:range collid: .

:arcColl rdfs:comment "Special, key-to-key property,

linking arcids to collids. This

predicate can be in either

direction; in general collections

contain many archive items, but
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there are a few cases of an archive

item being listed as a member of

multiple collections. In tether the

triples are inserted from arcid to

collid."ˆˆxsd:string .

grid:Site_mdesc rdf:type rdfs:Class .

siteident:Nmrsnum rdf:type rdfs:Class .

sitename:Altname rdf:type rdfs:Class .

place:Council rdf:type rdfs:Class .

place:County rdf:type rdfs:Class .

place:District rdf:type rdfs:Class .

place:Region rdf:type rdfs:Class .

place:Parish rdf:type rdfs:Class .

sitename:Linear_name rdf:type rdfs:Class .

grid:Linear_ngrdesc rdf:type rdfs:Class .

agent:Arc_copyright rdf:type rdfs:Class .

arcdesc:Prefix rdf:type rdfs:Class .

persname:Surname rdf:type rdfs:Class .

persname:Forename rdf:type rdfs:Class .

arcident:Accno rdf:type rdfs:Class .

arcdesc:Collname rdf:type rdfs:Class .

persname:Dob rdf:type rdfs:Class .

persname:Dod rdf:type rdfs:Class .

bibident:Suffix rdf:type rdfs:Class .

persname:Bib_editor rdf:type rdfs:Class .

agent:Bib_publisher rdf:type rdfs:Class .

bibident:Isbn rdf:type rdfs:Class .

place:Bib_wherepub rdf:type rdfs:Class .

bibident:Title rdf:type rdfs:Class .

bibident:Journame rdf:type rdfs:Class .

refdesc:Pagenos rdf:type rdfs:Class .

grid:Site_mdesc rdfs:subClassOf grid: .
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siteident:Nmrsnum rdfs:subClassOf siteident: .

sitename:Altname rdfs:subClassOf sitename: .

place:Council rdfs:subClassOf place: .

place:County rdfs:subClassOf place: .

place:District rdfs:subClassOf place: .

place:Region rdfs:subClassOf place: .

place:Parish rdfs:subClassOf place: .

sitename:Linear_name rdfs:subClassOf sitename: .

grid:Linear_ngrdesc rdfs:subClassOf grid: .

agent:Arc_copyright rdfs:subClassOf agent: .

arcdesc:Prefix rdfs:subClassOf arcdesc: .

persname:Surname rdfs:subClassOf persname: .

persname:Forename rdfs:subClassOf persname: .

arcident:Accno rdfs:subClassOf arcident: .

arcdesc:Collname rdfs:subClassOf arcdesc: .

persname:Dob rdfs:subClassOf persname: .

persname:Dod rdfs:subClassOf persname: .

bibident:Suffix rdfs:subClassOf bibident: .

persname:Bib_editor rdfs:subClassOf persname: .

agent:Bib_publisher rdfs:subClassOf agent: .

bibident:Isbn rdfs:subClassOf bibident: .

place:Bib_wherepub rdfs:subClassOf place: .

bibident:Title rdfs:subClassOf bibident: .

bibident:Journame rdfs:subClassOf bibident: .

refdesc:Pagenos rdfs:subClassOf refdesc: .

flag:archaeology rdf:type flag: .

flag:archaeology rdfs:label "archaeology related" .

flag:architecture rdf:type flag: .

flag:architecture rdfs:label "architecture related" .

flag:both rdf:type flag: .

flag:both rdfs:label "archaeology and

architecture related" .

sitename:antonine+wall rdf:type sitename:Linear_name .
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sitename:antonine+wall rdfs:label "ANTONINE WALL" .

A.2 Graph Derived from Text Relations

As explained in the thesis, the graphs derived from the RDB and from text relations

were designed to be as similar to each other as possible. The text relations structure

adds an Event class with seven subclasses and some associated extra predicates. There

is also a new hasObject predicate. This schema uses only a subset of the classes used

in the main Tether schema above.

@prefix : <http://www.ltg.ed.ac.uk/tether/> .

@prefix siteid: <http://www.ltg.ed.ac.uk/tether/Siteid#> .

@prefix agent: <http://www.ltg.ed.ac.uk/tether/Agent#> .

@prefix org: <http://www.ltg.ed.ac.uk/tether/Agent/Org#> .

@prefix persname: <http://www.ltg.ed.ac.uk/tether/Agent/Person#> .

@prefix role: <http://www.ltg.ed.ac.uk/tether/agent/Role#> .

@prefix loc: <http://www.ltg.ed.ac.uk/tether/Loc#> .

@prefix place: <http://www.ltg.ed.ac.uk/tether/Loc/Place#> .

@prefix sitename: <http://www.ltg.ed.ac.uk/tether/Loc/Sitename#> .

@prefix address: <http://www.ltg.ed.ac.uk/tether/Loc/Address#> .

@prefix grid: <http://www.ltg.ed.ac.uk/tether/Loc/Address/Grid#> .

@prefix time: <http://www.ltg.ed.ac.uk/tether/Time#> .

@prefix date: <http://www.ltg.ed.ac.uk/tether/Time/Date#> .

@prefix period: <http://www.ltg.ed.ac.uk/tether/Time/Period#> .

@prefix classn: <http://www.ltg.ed.ac.uk/tether/Classn#> .

@prefix sitetype: <http://www.ltg.ed.ac.uk/tether/Classn/Sitetype#> .

@prefix objtype: <http://www.ltg.ed.ac.uk/tether/Classn/Objtype#> .

@prefix event: <http://www.ltg.ed.ac.uk/tether/Event#> .

@prefix survey: <http://www.ltg.ed.ac.uk/tether/Event/Survey#> .

@prefix excavation: <http://www.ltg.ed.ac.uk/tether/Event/Excavation#> .

@prefix find: <http://www.ltg.ed.ac.uk/tether/Event/Find#> .

@prefix visit: <http://www.ltg.ed.ac.uk/tether/Event/Visit#> .

@prefix description: <http://www.ltg.ed.ac.uk/tether/Event/Description#> .
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@prefix creation: <http://www.ltg.ed.ac.uk/tether/Event/Creation#> .

@prefix alteration: <http://www.ltg.ed.ac.uk/tether/Event/Alteration#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

: rdf:type owl:Ontology .

: rdfs:comment "Graph database derived from RCAHMS

relational database of sites and

monuments."ˆˆxsd:string .

siteid: rdf:type rdfs:Class .

siteid: rdfs:comment "Unique identifier for RCAHMS site.

Derived from rcmain.numlink value.

"ˆˆxsd:string .

agent: rdf:type rdfs:Class .

agent: rdfs:comment "An individual or group that does

something."ˆˆxsd:string .

org: rdfs:subClassOf agent: .

org: rdf:type rdfs:Class .

org: rdfs:comment "An organisation."ˆˆxsd:string .

persname: rdfs:subClassOf agent: .

persname: rdf:type rdfs:Class .

persname: rdfs:comment "A named person."ˆˆxsd:string .

role: rdfs:subClassOf agent: .

role: rdf:type rdfs:Class .

role: rdfs:comment "The role of an agent, such as

architect or builder."ˆˆxsd:string .
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loc: rdf:type rdfs:Class .

loc: rdfs:comment "A location."ˆˆxsd:string .

place: rdfs:subClassOf loc: .

place: rdf:type rdfs:Class .

place: rdfs:comment "An administrative place name, such

as a region, district, parish,

county, country, city etc. It is

used for the kind of name that might

appear on a map."ˆˆxsd:string .

sitename: rdfs:subClassOf loc: .

sitename: rdf:type rdfs:Class .

sitename: rdfs:comment "The name of a specific site from the

RCAHMS database."ˆˆxsd:string .

address: rdfs:subClassOf loc: .

address: rdf:type rdfs:Class .

address: rdfs:comment "For descriptions of locations; used

to avoid the place and sitename

classes from getting cluttered with

very local terms like street names

or house names."ˆˆxsd:string .

grid: rdfs:subClassOf address: .

grid: rdf:type rdfs:Class .

grid: rdfs:comment "OS grid references."ˆˆxsd:string .

time: rdf:type rdfs:Class .

time: rdfs:comment "For temporal descriptions.

"ˆˆxsd:string .

date: rdfs:subClassOf time: .

date: rdf:type rdfs:Class .

date: rdfs:comment "Calendar dates or references to a
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specific date or date range.

"ˆˆxsd:string .

period: rdfs:subClassOf time: .

period: rdf:type rdfs:Class .

period: rdfs:comment "References to historical periods,

like \"late Neolithic\",

\"18th Century\", \"modern\".

"ˆˆxsd:string .

classn: rdf:type rdfs:Class .

classn: rdfs:comment "The classification of the site or

object, often using standard

thesaurus terms."ˆˆxsd:string .

sitetype: rdfs:subClassOf classn: .

sitetype: rdf:type rdfs:Class .

sitetype: rdfs:comment "A term describing the type of site,

such as \"chambered cairn\",

\"long barrow\" etc. The terms come

from the Thesaurus of Monument

Types."ˆˆxsd:string .

objtype: rdfs:subClassOf classn: .

objtype: rdf:type rdfs:Class .

objtype: rdfs:comment "A term describing a physical object

such as a bronze axe, pottery shards,

human remains, etc. It is used for

portable items that could in

principle be separated from the

parent site without losing their

identity. The terms come from the

Object Type Thesaurus."ˆˆxsd:string .

event: rdf:type rdfs:Class .
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event: rdfs:comment "An event in the history of a site.

"ˆˆxsd:string .

survey: rdfs:subClassOf event: .

survey: rdf:type rdfs:Class .

survey: rdfs:comment "An event involving detailed

examination of a site resulting in

the production of archive material,

such as a plan, measured survey, GDM

survey, photographic record or

similar."ˆˆxsd:string .

excavation: rdfs:subClassOf event: .

excavation: rdf:type rdfs:Class .

excavation: rdfs:comment "An event in which the site was

deliberately physically disturbed

by an archaeologist."ˆˆxsd:string .

find: rdfs:subClassOf event: .

find: rdf:type rdfs:Class .

find: rdfs:comment "When an object or artefact is

mentioned there will typically be an

associated find event."ˆˆxsd:string .

visit: rdfs:subClassOf event: .

visit: rdf:type rdfs:Class .

visit: rdfs:comment "An event when a person or

organisation went to a site but

there is no mention of a survey or

excavation."ˆˆxsd:string .

description: rdfs:subClassOf event: .

description: rdf:type rdfs:Class .

description: rdfs:comment "A general category, used when it’s

not clear that the site was visited
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at all, but some agent is mentioned

as having produced a tangible

description or depiction. It is also

used for bibliographic references.

"ˆˆxsd:string .

creation: rdfs:subClassOf event: .

creation: rdf:type rdfs:Class .

creation: rdfs:comment "An event in which a monument was

originally constructed, mostly used

for buidings."ˆˆxsd:string .

alteration: rdfs:subClassOf event: .

alteration: rdf:type rdfs:Class .

alteration: rdfs:comment "Any event that changes the physical

character of a site significantly,

such as serious damage, extension,

transfer of location etc. It also

covers destruction."ˆˆxsd:string .

:hasPatient rdf:type owl:ObjectProperty .

:hasPatient rdf:type owl:FunctionalProperty .

:hasPatient rdfs:domain event:

:hasPatient rdfs:range sitename: .

:hasPatient rdfs:range objtype: .

:hasPatient rdfs:comment "For events, this property specifies

the site or object that underwent

the event."ˆˆxsd:string .

:hasPeriod rdf:type owl:ObjectProperty .

:hasPeriod rdfs:domain event: .

:hasPeriod rdfs:domain classn: .

:hasPeriod rdfs:domain siteid: .

:hasPeriod rdfs:range time: .
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:hasPeriod rdfs:comment "The period of a site or artefact, or

the date/period when an event took

place."ˆˆxsd:string .

:hasAgent rdf:type owl:ObjectProperty .

:hasAgent rdfs:domain event: .

:hasAgent rdfs:domain siteid: .

:hasAgent rdfs:range agent: .

:hasAgent rdfs:comment "Points to the person or organisation

that instigated an event."ˆˆxsd:string .

:hasAgentRole rdf:type owl:ObjectProperty .

:hasAgentRole rdf:type owl:FunctionalProperty .

:hasAgentRole rdfs:domain event: .

:hasAgentRole rdfs:range role: .

:hasAgentRole rdfs:comment "Used when the instigator of an event

is described by their role (eg

architect); it may or may not be

combined with hasAgent which points

to the particular agent in that role.

"ˆˆxsd:string .

:hasLocation rdf:type owl:ObjectProperty .

:hasLocation rdf:type owl:TransitiveProperty .

:hasLocation rdfs:domain event: .

:hasLocation rdfs:domain loc: .

:hasLocation rdfs:domain classn: .

:hasLocation rdfs:domain agent: .

:hasLocation rdfs:domain siteid: .

:hasLocation rdfs:range loc: .

:hasLocation rdfs:range org: .

:hasLocation rdfs:comment "Used to specify a hierarchy of

locations, where a local address or

place is within a wider geographical

location. Also used for artefacts or
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objects, to point to the museum

holding them. Also used to indicate

that a person belongs to an

organisation. For an event, it

specifies where the event took place.

"ˆˆxsd:string .

:hasClassn rdf:type owl:ObjectProperty .

:hasClassn rdfs:domain siteid: .

:hasClassn rdfs:range classn: .

:hasClassn rdfs:comment "Relates individual sites to their

classification terms."ˆˆxsd:string .

:hasObject rdf:type owl:ObjectProperty .

:hasObject rdfs:domain siteid: .

:hasObject rdfs:range objtype: .

:hasObject rdfs:comment "Relates individual sites to

objects (finds etc) associated

with them."ˆˆxsd:string .

:hasEvent rdf:type owl:ObjectProperty .

:hasEvent rdfs:domain siteid: .

:hasEvent rdfs:range event: .

:hasEvent rdfs:comment "Relates individual sites to the

events that occurred at them.

"ˆˆxsd:string .

:partOf rdf:type owl:ObjectProperty .

:partOf rdf:type owl:TransitiveProperty .

:partOf rdfs:domain sitetype: .

:partOf rdfs:range sitetype: .

:partOf rdfs:range sitename: .

:partOf rdfs:comment "A part-whole relationship, used when

a complex site is described in terms

of its components."ˆˆxsd:string .
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A.3 Monument Thesaurus Graph

Much of the framework for the monThes graph is already defined in the SKOS vocab-

ulary. The sitetype: nodes (including the Top Concepts) are defined within the main

Tether graph—see A.1 above.

@prefix monThes: <http://www.ltg.ed.ac.uk/tether/monThes#> .

@prefix sitetype: <http://www.ltg.ed.ac.uk/tether/Classn/Sitetype#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix skos: <http://www.w3.org/2008/05/skos#> .

monThes: rdf:type skos:ConceptScheme .

monThes: rdfs:comment "Derived from RCAHMS Monument

Thesaurus."ˆˆxsd:string .

monThes: skos:hasTopConcept sitetype:agriculture+and+subsistence .

monThes: skos:hasTopConcept sitetype:civil .

monThes: skos:hasTopConcept sitetype:commemorative .

monThes: skos:hasTopConcept sitetype:commercial .

monThes: skos:hasTopConcept sitetype:communications .

monThes: skos:hasTopConcept sitetype:defence .

monThes: skos:hasTopConcept sitetype:domestic .

monThes: skos:hasTopConcept sitetype:education .

monThes: skos:hasTopConcept sitetype:gardens+parks+and+urban+spaces .

monThes: skos:hasTopConcept sitetype:health+and+welfare .

monThes: skos:hasTopConcept sitetype:industrial .

monThes: skos:hasTopConcept sitetype:maritime .

monThes: skos:hasTopConcept sitetype:monument+%28by+form%29 .
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monThes: skos:hasTopConcept sitetype:recreational .

monThes: skos:hasTopConcept sitetype:religious+ritual+and+funerary .

monThes: skos:hasTopConcept sitetype:transport .

monThes: skos:hasTopConcept sitetype:unassigned .

monThes: skos:hasTopConcept sitetype:water+supply+and+drainage .

monThes:prefTerm rdf:type owl:ObjectProperty .

monThes:prefTerm rdfs:domain sitetype: .

monThes:prefTerm rdfs:range sitetype: .

monThes:prefTerm rdfs:comment "Connects a non-preferred term to its

preferred term. Not part of SKOS.

"ˆˆxsd:string .

monThes:topTerm rdf:type owl:ObjectProperty .

monThes:topTerm rdfs:domain sitetype: .

monThes:topTerm rdfs:range sitetype: .

monThes:topTerm rdfs:comment "Connects a term in the thesaurus to

the TopConcept in its branch of the

hierarchy. Not part of SKOS.

"ˆˆxsd:string .

A.4 Object Thesaurus Graph

The structure of the Object Thesaurus mirrors the Monument one, and the same con-

siderations apply about the SKOS framework. The objtype: nodes are defined in the

main Tether graph, along with sitetype:.

@prefix objThes: <http://www.ltg.ed.ac.uk/tether/objThes#> .

@prefix objtype: <http://www.ltg.ed.ac.uk/tether/Classn/Objtype#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
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@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix skos: <http://www.w3.org/2008/05/skos#> .

objThes: rdf:type skos:ConceptScheme .

objThes: rdfs:comment "Derived from RCAHMS Object

Thesaurus."ˆˆxsd:string .

objThes: skos:hasTopConcept objtype:agriculture+and+\

subsistence+%28object%29 .

objThes: skos:hasTopConcept objtype:animal+equipment .

objThes: skos:hasTopConcept objtype:architecture .

objThes: skos:hasTopConcept objtype:armour+and+weapons .

objThes: skos:hasTopConcept objtype:container .

objThes: skos:hasTopConcept objtype:currency .

objThes: skos:hasTopConcept objtype:dress+and+personal+accessories .

objThes: skos:hasTopConcept objtype:dress+component .

objThes: skos:hasTopConcept objtype:ecofacts .

objThes: skos:hasTopConcept objtype:food+preparation+and+consumption .

objThes: skos:hasTopConcept objtype:furnishings+and+furniture .

objThes: skos:hasTopConcept objtype:heating+and+lighting .

objThes: skos:hasTopConcept objtype:manufacturing+and+processing .

objThes: skos:hasTopConcept objtype:measurement .

objThes: skos:hasTopConcept objtype:music .

objThes: skos:hasTopConcept objtype:punishment+and+restraint .

objThes: skos:hasTopConcept objtype:religion+or+ritual .

objThes: skos:hasTopConcept objtype:signs+or+symbols .

objThes: skos:hasTopConcept objtype:sports+and+games .

objThes: skos:hasTopConcept objtype:tools+and+equipment .

objThes: skos:hasTopConcept objtype:transport+%28object%29 .

objThes: skos:hasTopConcept objtype:unassigned+%28object%29 .

objThes: skos:hasTopConcept objtype:written+communications .

objThes:prefTerm rdf:type owl:ObjectProperty .

objThes:prefTerm rdfs:domain objtype: .

objThes:prefTerm rdfs:range objtype: .
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objThes:prefTerm rdfs:comment "Connects a non-preferred term to its

preferred term. Not part of SKOS.

"ˆˆxsd:string .

objThes:topTerm rdf:type owl:ObjectProperty .

objThes:topTerm rdfs:domain objtype: .

objThes:topTerm rdfs:range objtype: .

objThes:topTerm rdfs:comment "Connects a term in the thesaurus to

the TopConcept in its branch of the

hierarchy. Not part of SKOS.

"ˆˆxsd:string .
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Published Papers

These papers are refereed publications of my own, on aspects of my PhD research.

B.1 Tethering Cultural Data with RDF

Tethering Cultural Data with RDF,In Proceedings of JUC2006 (Jena User Confer-

ence 2006), Bristol, UK, May 2006. URL http://jena.hpl.hp.com/juc2006/

proceedings/byrne/paper.pdf.

B.2 Nested NER in Historical Archive Text

Nested Named Entity Recognition in Historical Archive Text, In Proceedings of ICSC2007,

IEEE International Conference on Semantic Computing, Irvine, California, Sept 2007.

URL http://doi.ieeecomputersociety.org/10.1109/ICSC.2007.107.

B.3 Having Triplets – Holding Cultural Data as RDF

Having Triplets – Holding Cultural Data as RDF, In Proceedings of IACH workshop at

ECDL2008 (European Conference on Digital Libraries), Aarhus, Denmark, Sept 2008.
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