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Abstract 

Diagnostic and prognostic value of current and novel biomarkers in 
idiopathic pulmonary fibrosis 

 

Background 

Idiopathic pulmonary fibrosis (IPF) is a devastating form of chronic lung injury of 

unknown aetiology characterised by progressive lung scarring. A diagnosis of definite 

IPF requires High Resolution Computed Tomography (HRCT) appearances indicative 

of usual interstitial pneumonia (UIP), or in patients with ‘possible UIP’ CT 

appearances, histological confirmation of UIP. However the proportion of such patients 

that undergo SLB varies, perhaps due to a perception of risk of biopsy and additive 

diagnostic value of biopsy in individual patients.	We hypothesised that an underlying 

UIP pathological pattern may result in increased risk of death and aimed to explore this 

by comparing the risk of SLB in suspected idiopathic interstitial pneumonia, stratified 

according to HRCT appearance. Additionally we sought to determine the positive-

predictive value of biopsy to diagnose IPF in patients with ‘possible UIP HRCT’ in our 

population. In patients with possible UIP who are not biopsied, the clinical value of 

bronchoalveolar lavage (BAL) is uncertain. We aimed to prospectively study the 

diagnostic and prognostic value of BAL differential cell count (DCC) in suspected IPF 

and determine the feasibility of repeat BAL and the relationship between DCC and 

disease progression in two successive BALs.  We hypothesised that BAL DCC between 

definite and possible IPF was different and that baseline DCC and change in BAL DCC 

predicted disease progression. Alveolar macrophages (AMs) are an integral part of the 

lung’s reparative mechanism following injury, however in IPF they contribute to 

pathogenesis by releasing pro-fibrotic mediators promoting fibroblast proliferation and 

collagen deposition. Expansion of novel subpopulations of pulmonary monocyte-like 

cells (PMLCs) has been reported in inflammatory lung disease. We hypothesised that a 

distinct AM polarisation phenotype would be associated with disease progression. We 

aimed to perform detailed phenotyping of AM and PMLCs in BAL in IPF patients. 

Several prognostic scoring systems and biomarkers have been described to predict 
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disease progression in IPF but most were derived from clinical trial patients or tertiary 

referral centres and none have been validated in separate cohorts. We aimed to identify 

a predictive tool for disease progression utilising physiological, HRCT and serum 

biomarkers in a unique population of incident treatment naïve IPF patients. 

   

Methods 

Between 01/01/07 and 31/12/13, 611 consecutive incident patients with suspected 

idiopathic interstitial pneumonia (IIP) presented to the Edinburgh lung fibrosis clinic. 

Of these patients 222 underwent video-assisted thoracoscopic lung biopsy and 

histological pattern was determined according to ATS/ERS criteria. Post-operative 

mortality and complication rates were examined. Fewer than 2% received IPF-directed 

therapy and less than 1% of the cohort were lost to follow-up. Disease progression was 

defined as death or ≥10% decline in VC within 12 months of BAL. Cells were obtained 

by BAL and a panel of monoclonal antibodies; CD14, CD16, CD206, CD71, CD163, 

CD3, CD4, CD8 and HLA-DR were used to quantify and selectively characterise AMs, 

resident PMLCs, inducible PMLCs, neutrophils and CD4+/CD8+ T-cells using flow 

cytometry. Classical, intermediate and non-classical monocyte subsets were also 

quantified in peripheral blood. Potential biomarkers (n=16) were pre-selected from 

either previously published studies of IPF biomarkers or our hypothesis-driven 

profiling.  Linear logistic regression was used on each predictor separately to assess its 

importance in terms of p-value of the associated weight, and the top two variables were 

used to learn a decision tree. 

	

Results 

Based on the 2011 ATS/ERS criteria, 87 patients were categorised as ‘definite UIP’, of 

whom 3 underwent SLB for clinical indications. IPF was confirmed in all 3 patients 

based on 2013 ATS/ERS/JRS/ALAT diagnostic criteria. 222 patients were diagnosed 

with ‘possible UIP’; 55 underwent SLB, IPF was subsequently diagnosed in 37 patients, 

4 were diagnosed with ‘probable IPF’ and 14 were considered ‘not IPF’. In this group, 

30 patients were aged 65 years or over and 25/30 (83%) had UIP on biopsy. 306 patients 

had HRCTs deemed ‘inconsistent with UIP’, SLB was performed in 168 patients. Post-
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operative 30-day mortality was 2.2% overall, and 7.3% in the ‘possible UIP’ HRCT 

group. Patients with ‘definite IPF’ based on HRCT and SLB appearances had 

significantly better outcomes than patients with ‘definite UIP’ on HRCT alone 

(P=0.008, HR 0.44 (95% CI 0.240 to 0.812)).  

 

BAL DCC was not different between definite and possible UIP groups, but there were 

significant differences with the inconsistent with UIP group.  In the 12 months 

following BAL, 33.3% (n=7/21) of patients in the definite UIP group and 29.5% 

(n=18/61) in the possible UIP group had progressed.  There were no significant 

differences in BAL DCC between progressor and non-progressor groups.  Mortality in 

patients with suspected IPF and a BAL DCC consistent with IPF was no different to 

those with a DCC inconsistent with IPF (P=0.425, HR 1.590 (95% CI 0.502 to 4.967)).  

There was no difference in disease progression in either group (P=0.885, HR 1.081 

(95% CI 0.376 to 3.106)). There was no statistically significant difference in BAL DCC 

at 0 and 12 months in either group.  There was no significant change in DCC between 

0 and 12 month BALs between progressors and non-progressors.  Repeat BAL was well 

tolerated in almost all patients.  There was 1 death within 1 month of a first BAL and 1 

death within 1 month of a second BAL; both were considered ‘probably procedure-

related’.  

 

AM CD163 and CD71 (transferrin receptor) expression were significantly different 

between groups (P<0.0001), with significant increases in the IPF group vs non fibrotic 

ILD (P<0.0001) and controls (P<0.0001 and P<0.001 respectively). CD71 expression 

was also significantly increased in the IPF progressor vs non-progressor group 

(P<0.0001) and patients with high CD71 expression had significantly poorer survival 

than the CD71low group (P=0.040, median survival 40.5 and 75.6 months respectively). 

CD206 (mannose receptor) expression was also significantly higher in the IPF 

progressor vs non-progressor group (P=0.034). There were no differences in baseline 

BAL neutrophil, eosinophil or lymphocyte percentages between IPF progressor or non-

progressor groups. The percentage of rPMLCs was significantly increased in BAL fluid 

cells of IPF patients compared to those with non-fibrotic ILD (P<0.0001) and healthy 

controls (P<0.05). Baseline rPMLC percentage was significantly higher in IPF 
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progressors vs IPF non-progressors (P=0.011). Baseline BAL iPMLC:rPMLC ratio was 

also significantly different between IPF progressor and non-progressor groups 

(P=0.011). Disease progression was confidently predicted by a combination of clinical 

and serological variables. In our cohort we identified a predictive tool based on two key 

parameters, one a measure of lung function and one a single serum biomarker. Both 

parameters were entered into a decision tree, and when applied to our cohort yielded a 

sensitivity of 86.4%, specificity of 92.3%, positive predictive value of 90.5% and 

negative predictive value of 88.9%. We also applied previously reported predictive 

tools such as the GAP Index, du Bois score and CPI Index to the Edinburgh IPF cohort. 

 

Conclusions 

SLB can be of value in the diagnosis of ILD, however perhaps due to the perceived 

risks associated with the procedure, only a small percentage of patients undergo SLB 

despite recommendations that patients have histological confirmation of the diagnosis. 

Advanced age is a strong predictor for IPF, and in our cohort 83% of patients aged over 

65 years with ‘possible UIP’ HRCT appearances, had UIP on biopsy. BAL and repeat 

BAL in IPF is feasible and safe (<1.5% mortality).  Of those that underwent repeat 

BAL, disease progression was not associated with a change in DCC.  However, 22% of 

lavaged patients died or were deemed too frail to undergo a second procedure at 12 

months. These data emphasise the importance of BAL in identifying a novel human 

AM polarisation phenotype in IPF. Our data suggests there is a distinct relationship 

between AM subtypes, cell-surface expression markers, PMLC subpopulations and 

disease progression in IPF. This may be utilised to investigate new targets for future 

therapeutic strategies.  Disease progression in IPF can be predicted by a combination of 

clinical variables and serum biomarker profiling. We have identified a unique 

prediction model, when applied to our locally referred, incident, treatment naïve cohort 

can confidently predict disease progression in IPF. IPF is a heterogeneous disease and 

there is a definite clinical need to identify ‘personalised’ prognostic biomarkers which 

may in turn lead to novel targets and the advent of personalised medicines.  
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Lay Summary 

	
Idiopathic pulmonary fibrosis (IPF) is a devastating form of lung scarring with no 

known cause, and an average survival time worse than many cancers at 3-5 years. There 

are around 5000 new patients diagnosed each year in the UK, with Scotland harbouring 

the highest incidence. IPF can often be diagnosed by CT scanning, however HRCT 

appearances are not definitive in around 50% of patients. It is recommended that these 

patients go on to have a biopsy of their lung to try and prove the diagnosis, however 

surgical lung biopsy can be a risky procedure in this group of patients, many of whom 

are elderly, frail and have many other health problems. We found that surgical lung 

biopsy can be of value in the diagnosis of IPF, however patients with ‘possible IPF’ 

have an increased risk of death following the procedure, and the majority of patients 

over the age of 65 years had IPF on biopsy anyway, therefore we suggest careful 

consideration must be given prior to subjecting these patients to a potentially dangerous 

and unnecessary procedure. Two drugs, pirfenidone and nintedanib, have been 

approved for treatment of IPF in recent years, however these drugs do not provide a 

cure, have many intolerable side-effects, and have strict criteria for use. Their 

recommendation is based on the results of clinical trials, of which eligibility criteria 

would have excluded a large proportion of patients we see with IPF in real-life clinical 

practice. Another problem faced by doctors and patients alike is that IPF can have a 

highly variable clinical course and it is very difficult to predict which patients will 

deteriorate rapidly when patients first develop symptoms. We aimed to identify patients 

at risk of rapid progression by using a number of different clinical variables, but also 

looking at the characteristics of the cells themselves. Cells were obtained from patient 

blood by taking a blood sample, and from the airways by inserting a camera into 

patients’ lungs via the nose, and performing a lavage (lung wash). We found that the 

cells from patients with IPF and rapid progression had different surface expression 

markers than those of patients who did not progress. We also identified a protein that 

could be detected in a blood sample, that when combined with lung function data at the 

onset of symptoms, was highly predictive of disease progression in IPF.  
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Chapter 1     

     General Introduction 

	

1.1   Introduction 

The interstitial lung diseases (ILDs) are a heterogeneous group of lung disorders 

characterised by varying degrees of parenchymal inflammation and fibrosis. The last 

decade has seen marked changes in the field of ILD with an increasing incidence and a 

more complex, continually expanding disease classification. In their most severe forms, 

these diseases lead to progressive loss of lung function, respiratory failure and death. 

Despite significant advances, progress has been limited by a poor understanding of the 

pathological mechanisms of disease, and also significant patient heterogeneity, 

including great variability in disease progression. Distinguishing the various forms of 

pulmonary fibrosis is paramount in determining correct management and for predicting 

prognosis. The current international consensus statement recommends that around two 

thirds of idiopathic pulmonary fibrosis (IPF) cases can be diagnosed on the basis of 

typical clinical and radiological findings of usual interstitial pneumonia (UIP), however 

it is advocated that the remainder of patients should undergo surgical lung biopsy (SLB) 

to obtain a confident diagnosis1. In the UK, only 7.5–12% of suspected IPF patients 

undergo surgical lung biopsy 2, a reflection perhaps of clinicians’ reluctance to refer 

patients for a procedure associated with significant morbidity and mortality. When we 

consider the multi-faceted nature of obtaining a diagnosis in ILD, it is clear that no 

single diagnostic test can provide a confident answer. The gold standard is that a 

diagnosis must be reached by a multidisciplinary team (MDT) with expertise in ILD, 

and must consider all clinical, radiological and histological parameters. IPF has the 

poorest prognosis of all of the ILDs, and with the recent addition of two newly approved 

drugs, pirfenidone and nintedanib, a timely and accurate definitive diagnosis is 

fundamental in facilitating early treatment, but also considering the longer term 

management for example early referral for lung transplantation, or palliative care 

involvement as appropriate. 
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This introduction begins with an overview of the background of IPF and a description 

of the pulmonary structure and function, including a brief summary of the pulmonary 

biology of the lung’s response to infection and injury. This is followed by an overview 

of the pathogenesis, diagnosis and management of IPF, and a report of existing methods 

used to predict disease progression including current and novel biomarkers, concluding 

with a discussion of the hypothesis and aims of this thesis. 

	

1.2   Background of Idiopathic Pulmonary Fibrosis 
	

Idiopathic pulmonary fibrosis (IPF) is the commonest ILD and is a chronic and 

progressive form of lung scarring with a median survival time of 3-5 years and no 

curative therapy. IPF occurs worldwide however Scotland harbours the highest 

incidence in the UK3. There are approximately 5000 new cases per year in the UK, with 

a disease prevalence of 5-15 cases per 100,000 population4.  The disease is becoming 

more common with a recently reported increase in the annual incidence of 11% between 

1991 and 2003, a rise that is only partly explained by an ageing population5.  The median 

age at presentation is 70 years and IPF is more prevalent in males and in smokers4.  

Patients typically present with progressive dyspnoea and a dry cough. Clinical 

examination findings include bibasal inspiratory “velcro-type” crackles and finger 

clubbing, which occurs in 25-50%6.  It is well recognised that symptoms often precede 

diagnosis by a period of 1-2 years7. Pulmonary function tests (PFTs) may be normal at 

presentation, however typically show a restrictive pattern with a reduced forced vital 

capacity (FVC) and an impaired gas exchange indicated by a reduced diffusion lung 

capacity for carbon monoxide (TLco).  IPF is a highly heterogeneous disease and so the 

natural history and clinical course in each individual patient is difficult to predict6. Many 

patients have a slow and steady deterioration over a period of years, whereas 10-15% 

of patients progress rapidly, often leading to death from respiratory failure in a few 

months. Some patients experience periods of relative stability interspersed with 

episodes of acute deterioration4.  Most patients with IPF die from progression of lung 

fibrosis causing respiratory failure and death. However there are a number of notable 

comorbidities that attribute significant mortality in IPF; ischaemic heart disease, heart 

failure, bronchogenic carcinoma, infection and pulmonary embolism7.   There are now 

two drugs, pirfenidone and nintedanib, approved by the National Institute for Health 
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and Care Excellence (NICE) for IPF; however at an annual cost of around £26,000 per 

patient and the potential for severe side-effects, accurate disease identification is 

essential2.    

 

  1.3   Pulmonary structure and function 

  1.3.1   The upper respiratory tract 

The upper respiratory tract contains the nose, nostrils, nasal cavity, mouth, pharynx and 

the portion of the larynx above the vocal cords. The upper airway is a collapsible, 

compliant tube and can withstand the suction pressures produced by the rhythmic 

contraction of the diaphragm that draws air into the lungs during respiration. Nasal hairs 

line the opening of the nostrils to catch large particles of dust, thus preventing them 

from being inhaled. The upper airways are lined with a mucous secreting mucous 

membrane which traps smaller particles like pollen and smoke. This membrane is lined 

with small, hair-like structures called cilia, which move the particles trapped in the 

mucous out of the nose. After air is sucked into the upper respiratory tract, it is 

moistened, warmed and cleansed by the nasal epithelium covering the turbinate bones 

in the nasal cavity. The pharynx is a muscular structure that contains the tonsils and 

adenoids, which are lymphatic tissues that fight infection by releasing T and B 

lymphocyte cells. The larynx forms the entrance to the lower respiratory tract and 

contains the epiglottis, a leaf-shaped flap that folds backwards on swallowing, therefore 

preventing food or fluid from entering the lower airways8. 

	

  1.3.2   The lower respiratory tract      

The major structures of the lower respiratory tract are the portion of the larynx below 

the vocal cords, the trachea, and within the lungs, the bronchi, bronchioles, and alveoli. 

The trachea is a rigid tube, held open by C-shaped hyaline cartilage rings embedded in 

the walls. The trachea is approximately 4.5 inches long, and then divides into the right 

and left main bronchi. These bronchi also contain cartilage rings, and on travelling 

down deeper into the lungs, branch into secondary and tertiary bronchi, which then 

continue to divide into the bronchioles. Bronchioles do not contain any cartilage and so 
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may undergo constriction and obstruction during different disease states. From the 

bronchi, the dividing tubes become progressively narrower with an estimated 20 to 23 

divisions before ending at an alveolus. Alveoli are air sacs located at the end of the 

bronchioles, and cluster together to form alveolar sacs. The surface of each alveolus 

contains a network of capillaries and it is here that gaseous exchange occurs. Oxygen 

is transported from the lungs to the heart, where it is pumped out into all of the body’s 

tissues, and carbon dioxide is transported from the blood to the lungs, where it is 

expelled from the body during expiration8.  

 

The lungs are suspended in the pleural cavity of the thorax, and are covered by two thin 

membranes; the visceral pleura, the inner lining covering the surface of the lung, and 

the parietal pleura, the outer layer covering the inner surface of the chest wall. This 

membrane secretes pleural fluid which lubricates the two surfaces preventing friction 

and allowing the lung to move freely during respiration. In addition, a negative pressure 

is created between the two layers, allowing the two surfaces to stick together tightly.  

 

The lung consists of epithelial cells which form the lining of the trachea and bronchi, 

and mesenchymal cells which line the lungs themselves. Most of the respiratory tract is 

covered in ciliated pseudostratified columnar epithelium. The cilia beat in one direction, 

moving mucous towards the pharynx where it is swallowed. Cells of the bronchioles 

are more cuboidal, however are still ciliated. The walls of the bronchioles are composed 

of helical bands of smooth muscle cells and contain no cartilage. Glands and mucous 

producing goblet cells are abundant in the upper airways, but become sparser on moving 

down the lower respiratory tract at the level of the bronchioles. The epithelium is 

cuboidal between the alveoli in the earlier branches of respiratory bronchioles, but 

becomes progressively flatter until it is entirely squamous alveolar epithelium within 

the alveolar ducts. There are around 300 million alveoli in the human lung providing a 

huge surface area (approximately 70m2) for gas exchange. There are three main cell 

types found in the alveoli. Type I alveolar cells, or squamous pulmonary epithelial cells, 

form the continuous lining of the alveolus and are the cells across which gases diffuse 

between the lungs and the blood. Type II alveolar cells are found scattered amongst the 

others, and secrete pulmonary surfactant, a phospholipid, which keeps the alveolar cells 

moist and lowers the surface tension of the air-surface interface, helping to prevent 

alveolar collapse. The third major cell type is the alveolar macrophage (AM), which lie 
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on top of the alveolar lining provided by type I cells. AMs move freely over the surface 

of the alveoli and phagocytose any material that enters the alveoli. AMs are cleared via 

the airways and lymphatics. The layer separating blood and air is the alveolocapillary 

barrier, across which gases diffuse during the gas exchange process. The membrane 

consists of three layers, alveolar epithelial cells, capillary endothelial cells and fused 

basement membranes of alveolar epithelial cells and capillary endothelial cells in most 

areas, however in a few areas the basement membranes are separated and the 

interstitium containing fibroblasts, collagen and elastic fibres can be seen. The 

membrane is very thin at around 0.5 microns in thickness, which allows rapid diffusion 

of respiratory gases8,9.      

 

 

1.4   Lung responses to infection and injury and 
        the pathogenesis of fibrosis 
 

Tissue repair and regeneration are critical biological processes that are fundamental to 

survival10. Due to its position within the body at the interface between the host and 

environment, the lung is not only involved in gas exchange, but has a pivotal role in 

mediating host defence11. This border consists not only of the airway’s mucociliary 

clearance, but also of the extensive alveolar-capillary membrane (ACM) which is 

composed of both immune and non-immune cells. This barrier is continuously exposed 

to a number of both inhaled and haematogenous stimuli, and when lung tissues are 

injured during infection or after toxic or mechanical injury, a complex inflammatory 

response is triggered by the resultant cell death or invading organism. The inflammatory 

response consists of recruitment, proliferation and activation of a number of 

haematopoietic and non-haematopoietic cells including neutrophils, macrophages, 

lymphoid cells, natural killer cells, B cells, T cells, fibroblasts, epithelial cells, 

endothelial cells and stem cells, which in normal tissue repair, results in rapid 

restoration of normal lung structure and function10.  

 

The early phases of wound healing after injury to the ACM consist of increased vascular 

permeability with extravasation of plasma and clotting factors into lung tissues which 

leads to activation of the intrinsic and extrinsic coagulation pathways. This results in 
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the development of a provisional wound matrix consisting of fibrin, fibronectin and 

platelets12. Platelet activation and degranulation cause an influx of a number of lipid 

mediators and cytokines into the matrix11. Following stimulation by these growth 

factors or chemotaxins, leukocyte, endothelial cell, fibroblast/myofibroblast, and 

epithelial cell activation occur11.  

 

Leukocyte recruitment occurs following endothelial cell activation, leukocyte 

activation, expression of adhesion molecules, leukocyte-endothelial cell adhesion and 

leukocyte extravasation via chemotactic gradients. Neutrophils are typically the first 

leukocyte to arrive at the site of tissue injury, however are often considered short-lived 

mediators of acute inflammation13.  Their primary function is to phagocytose debris and 

microorganisms, however they are also capable of releasing a number of lipid and 

protein mediators, including neutrophil elastase (NE), which may contribute to the 

fibrotic process. Neutrophil elastase promotes fibroblast proliferation and 

myofibroblast differentiation13.  Neutrophils are also able to release neutrophil 

extracellular traps (NETs) which consist of chromatin and granular proteins. Release of 

NETs in the lung promotes lung fibroblast proliferation and differentiation, 

extracellular matrix (ECM) generation and release of the pro-fibrotic cytokine IL-17, 

all of which may contribute to local tissue damage and inflammation13. 

 

After lung injury large numbers of inflammatory monocytes are recruited from the bone 

marrow via chemokine gradients and cell adhesion, these recruited cells often exceed 

the population of lung resident macrophages10. Macrophages are present in almost all 

tissues of the body and are fundamental for maintenance of homeostasis. Pulmonary 

macrophages are integral to the lung’s host defence, and may be resident, residing in 

the lung tissue itself, or recruited from circulating monocytes in the blood. The 

distinction between resident and recruited macrophage populations may be important 

in the development of fibrosis as the cytokine profiles and functions can vary 

significantly14. There are two types of pulmonary macrophage in humans; alveolar 

macrophages (AM), which sit in the airway space, and interstitial macrophages (IM), 

which are located in lung parenchymal tissue. AMs express high levels of the integrin 

CD11c and low levels of CD11b, and are interposed between the pulmonary mucosa 

and the external environment. They have key roles in maintaining immune tolerance 

and recycling surfactant molecules produced by airway epithelial cells. AMs are long-
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lived and repopulate by in situ proliferation rather than by replenishment from bone 

marrow14.  IMs are derived from blood monocytes and express high levels of CD11b 

and have low surface expression of CD11c. They also contribute to homeostasis and 

secrete high levels of the anti-inflammatory cytokine IL-1014.  

 

As described, the innate immune system is pivotal in the initiation and termination of 

the inflammatory response following exposure to endogenous and exogenous stimuli15. 

Alveolar macrophages play a crucial role in the wound healing response and are a 

source of many key growth factors and chemokines15.  

 

In addition to the IM/AM macrophage subtypes, macrophage populations have also 

been classified according to their polarisation and activation phenotype. M1, or 

classically activated macrophages mature under the influence of transcription factor 

interferon regulatory factor (IRF)-5 and are induced by Type 1 helper T-cells or Type 

1 cytokines (for example interferon γ), fungal cell wall components, degraded matrix 

(such as hyaluronic acid), LPS and TNFα11.  It is well documented that M1 

macrophages contribute to host defence against intracellular pathogens by producing 

reactive nitric oxide (NO) via inducible nitric oxide synthase (iNOS) and through the 

release of proinflammatory cytokines such as IL-1β, IL-12β, IL-23, TNFα and CXCL-

1014. The large amounts of NO produced contribute to the killing of intracellular 

pathogens. M1 macrophages express low levels of the haemoglobin scavenger receptor 

CD163 and have key roles in the processes of phagocytosis, antigen presentation and 

T-cell activation. They are also involved in matrix degradation by direct production of 

matrix metalloproteinases MMP9, MMP2, MMP12 and MMP7, and indirect production 

of MMP13 and MMP3 by inducing myofibroblasts. MMPs are essential in remodelling 

extracellular matrix and promoting the resolution of fibrosis11.  

 

M2 macrophages are typically termed alternatively activated AMs and contribute to 

aberrant wound healing in the fibrotic process by producing profibrotic cytokines and 

growth factors such as TGFβ, PDGF, FGF 2, insulin-like growth factor-binding protein 

5, CCL18 and galectin-3, and by recruiting fibrocytes (M2a). Regulatory macrophages 

(M2c) can promote resolution of fibrosis through a number of mechanisms including 

the production of suppressive cytokines such as IL10. M2 macrophages are induced by 

Type 2 helper T-cells and a number of Type 2 cytokines and mediators including IL-4, 
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IL-13, IL-10 and TGFβ, as well as apoptotic cells and corticosteroids11. M2 

macrophages secrete the regulatory cytokines PDGF, IL-10 and TGFβ, the soluble IL-

1 receptor antagonist, and increased levels of CCL18 and CCL2215. M2 AMs express 

anti-inflammatory cytokines and tissue inhibitors of MMPs (TIMPs) that impair 

remodelling of ECM. M2 AMs express the mannose receptor CD206, type 1 scavenger 

receptor, and CD163. They inhibit the M1-driven inflammatory process by expression 

of high levels of arginase-1, which competes with iNOS for L-arginine. Arginase-1 

metabolism of L-arginine can lead to the formation of L-proline, which in turn can be 

used by myofibroblasts to produce collagen11. In addition, arginase produced by these 

cells promotes the production of hydroxyproline, enabling fibroblasts to increase 

collagen synthesis.  

 

Numerous studies have reported that macrophage activation is dynamic and that they 

have the ability to adapt to the local environment and are capable of switching from one 

functional phenotype to another14.  It has also been reported that pulmonary 

macrophages may co-express markers of M1/M2 activation, which together suggest 

AMs are highly pliable and that activation states may represent a transient spectrum 

rather than terminally differentiated polarisation subtypes, and it may be related to 

specific stimuli or disease microenvironment. The plasticity of these M1/M2 

phenotypes may explain some of the biological heterogeneity seen in ILD13. 

 

AMs also produce soluble mediators that stimulate local and recruited tissue fibroblasts 

to differentiate into myofibroblasts that facilitate wound contraction and closure, as well 

as the synthesis of ECM components10. In normal wound healing, the accumulation and 

activation of fibroblasts transforms cellular granulation tissue into a more permanent 

scar tissue that is composed of collagen. Fibroblasts quickly move into the provisional 

matrix and are crucial to fibrogenesis. They proliferate rapidly in response to injury and 

are a principle source of ECM proteins including collagens and fibronectin. A number 

of proangiogenic growth factors including TGFβ1, FGF2, angiopoietin, PDGF and 

VEGF are also released at the site of injury as providing an adequate blood supply to 

the newly formed granulation tissue is an important part of wound healing. These 

factors contribute to revascularisation by promoting the formation of new capillaries 

and stimulating proliferation of endothelial cells. Fibroblasts typically differentiate into 

myofibroblasts during both normal wound healing and pathological fibrosis in response 
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to a number of mediators released following epithelial injury, activation of coagulation 

proteases and innate immune system activation12. Myofibroblasts are the main ECM-

producing cells in the body and are identified by their acquisition of contractile features 

of smooth muscle cells, such as the expression of α-smooth muscle actin12.  In addition 

to the production of the ECM, myofibroblasts are also able to remodel the ECM by 

secreting MMPS and TIMPs. In normal physiological conditions, myofibroblasts are 

then lost via apoptosis when lung tissue structure and function have been restored.  

 

At this point in the pathway, macrophages and monocytes display a mostly anti-

inflammatory phenotype. These macrophages respond to IL-10 and other inhibitory 

mediators, secrete a variety of anti-inflammatory mediators (such as IL-10 and TGFβ1) 

and express cell-surface receptors (such as programmed cell death ligands 1 and 2) that 

play important roles in dampening down the immune system and reducing 

inflammation. Disturbances at any stage of this process can lead to aberrant repair, by 

either uncontrolled release of inflammatory mediators and growth factors, or inadequate 

production of inhibitory macrophages, both contributing to the development of chronic 

wounds and failure of apoptosis, which then leads to pathological fibrosis10.  

 

 

  1.5   Diagnosing IPF 

In 2011, the American Thoracic Society (ATS), European Respiratory Society (ERS), 

Japanese Respiratory Society (JRS) and the Latin-American Thoracic Society (ALAT) 

published an international evidence-based guideline on the diagnosis and management 

of IPF. This guideline was revised in 2013. The consensus statement recommended that 

for a diagnosis of IPF, known causes of ILD such as domestic or occupational 

environmental exposures, connective tissue disease and drug toxicity must first be 

excluded. IPF could be diagnosed definitively in patients with an Usual Interstitial 

Pneumonia (UIP) pattern on high resolution CT scanning (HRCT), comprising reticular 

abnormalities, subpleural and basal disease predominance, honeycombing with or 

without traction bronchiectasis and an absence of features listed as ‘inconsistent with 

UIP’ pattern. In patients without honeycombing, a diagnosis of ‘possible IPF’ is made. 

The guideline is clear that if honeycombing is absent on HRCT then the diagnosis is 

regarded as ‘possible IPF’ and further investigation by means of surgical lung biopsy 
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(SLB) is required16.  The histopathologic criteria for IPF are also described as UIP 

pattern, and include temporally heterogeneous areas of fibrosis and subepithelial 

fibroblastic foci. The diagnosis of IPF requires an integrated multidisciplinary approach 

involving ILD specialist respiratory physicians, radiologists and pathologists. The 

HRCT and histological features of a UIP pattern are presented in Tables 1 and 2. 

Recommendations for a diagnosis of IPF based on HRCT and SLB findings are 

described in Table 3. 

 

Table 1. HRCT criteria for UIP Pattern. 

UIP Pattern (All four features)	

• Subpleural, basal predominance	
• Reticular abnormality	
• Honeycombing with or without traction bronchiectasis	
• Absence of features listed as inconsistent with UIP	

Possible UIP Pattern (All three features)	

• Subpleural, basal predominance	
• Reticular abnormality	
• Absence of features listed as inconsistent with UIP	

Inconsistent with UIP Pattern (Any of the seven features)	

• Upper or mid-lung predominance	
• Peribronchovascular predominance	
• Extensive ground glass abnormality (greater than reticular abnormality)	
• Profuse micronodules (bilateral, predominantly upper lobes)	
• Discrete cysts (multiple, bilateral, away from areas of honeycombing)	
• Diffuse mosaic attenuation/air-trapping (bilateral in three or more lobes)	
• Consolidation in bronchopulmonary segment(s)/ lobe(s)	

Adapted from reference 1 

 

Table 2. Histopathological criteria for UIP Pattern. 

UIP Pattern (All four features)	

• Marked fibrosis/ architectural distortion, with or without honeycombing in 
a predominantly subleural/ paraseptal distribution	

• Patchy involvement of lung	
• Fibroblastic foci	
• Absence of features against a diagnosis of UIP suggesting an alternative 

diagnosis	
Probable UIP Pattern	

• Marked fibrosis/ architectural distortion, with or without honeycombing	
• Absence of either patchy involvement or fibroblastic foci, but not both	
• Absence of features against a diagnosis of UIP suggesting an alternative 

diagnosis OR honeycomb changes only 
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Possible UIP Pattern (All three criteria)	

• Patchy or diffuse involvement of lung parenchyma by fibrosis, with or 
without interstitial inflammation	

• Absence of other criteria for UIP	
• Absence of features against a diagnosis of UIP suggesting an alternative 

diagnosis	
Not UIP Pattern (Any of the six)	

• Hyaline membranes	
• Organising pneumonia	
• Granulomas	
• Marked interstitial inflammatory cell infiltrate away from honeycombing	
• Predominant airway- centred changes	
• Other features suggestive of an alternative diagnosis	

Adapted from reference 1 

 

Table 3. Diagnostic recommendations for diagnosing IPF.      

HRCT Pattern	 Surgical Lung biopsy Pattern	 Diagnosis	

UIP	 UIP or probable UIP or possible 
UIP or non-classifiable fibrosis	

IPF	

Not UIP	 Not IPF	
Possible UIP	 UIP or probable UIP	 IPF	

Possible UIP or non-classifiable 
fibrosis	

Probable IPF	

Not UIP	 Not IPF	
Inconsistent with UIP	 UIP	 Possible IPF	

Probable UIP or possible UIP or 
non-classifiable fibrosis or not 
UIP	

Not IPF	

Adapted from reference 1 

 

The diagnostic algorithm does not allow for circumstances in which surgical lung 

biopsy is not performed. In our practice at the Edinburgh Lung Fibrosis Clinic, we 

categorise non-biopsied patients in whom clinical and HRCT appearances are 

‘consistent with UIP’ as having a ‘working diagnosis IPF’. These patients make up 

around 50% of our IPF population, but their natural history is not defined, their 

treatment options are not specifically addressed in any guideline and they are mostly 

ineligible for large clinical trials which usually require a diagnosis of ‘definite IPF’. In 

the UK, SLB rates have been low, a reflection perhaps of the perceived risks of the 

procedure. Across all of the ILDs the 30-day mortality and morbidity is 2-4% and 10-

18% respectively3.  However the actual risk in the suspected IPF cohort, who are mostly 

aged over 65 years is not known. A recent single-centre retrospective study by Fell et 
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al showed that in biopsied patients aged over 70 years with ‘fibrotic’ appearances on 

HRCT, 95% had UIP confirmed at biopsy, implying that advanced age is a strong 

predictor for IPF17. This important observation, if replicated in an independent cohort, 

would impact on international guidelines. It is currently unclear whether these patients 

with ‘possible IPF’ should be treated with approved IPF therapies.  

 

1.6   The management of IPF and recent clinical 
        trials 

Over the last ten years, there have been significant advances in our understanding of the 

pathogenesis of IPF. The most recent clinical trials have moved away from investigating 

anti-inflammatory compounds and focused more on targets involved in the wound 

healing cascade and fibrogenesis18. Despite this, results from trials have been largely 

disappointing, perhaps due to the large numbers of mediators, growth factors and 

signalling pathways involved in the pathogenesis of IPF19.  

 

The current ATS/ERS/JRS/ALAT guideline on the management of IPF does not 

recommend any treatments as a “strong yes”, however a small number received a 

“conditional recommendation for use” and several “strong recommendation against 

use”. This guideline is evidence-based and utilises the GRADE (Grades of 

Recommendations, Assessment, Development, and Evaluation) methodology to assess 

the quality of data20. 

 

N-acetylcysteine    

N-acetylcysteine (NAC) is a precursor of the endogenous antioxidant glutathione 

(GSH) and has been investigated for use in IPF based on the assumption that an oxidant-

antioxidant imbalance plays a role in the pathogenesis19,20. The IPFnet-sponsored 

PANTHER (Prednisolone, Azathioprine, and N-acetylcysteine: A Study That Evaluates 

Response in IPF) trial was a multicentre, randomised, double-blind, placebo-controlled 

trial designed to compare three therapeutic interventions. Patient eligibility criteria 

included; aged 35 to 85 years, FVC ≥ 50% of predicted, DLCO ≥ 30% of predicted, 

ability to understand and provide informed consent, diagnosis of IPF according to a 
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modified version of the ATS/ERS/JRS/ALAT criteria ≤ 48 months from enrollment. 

Patients were assigned in a 1:1:1 ratio to triple therapy, NAC (600mg three times daily), 

prednisolone (0.5mg/kg tapered to 0.15mg/kg over 25 weeks) and azathioprine (1-

2mg/kg daily), NAC monotherapy (600mg three times daily) or placebo. A total of 77 

patients were enrolled in the triple-therapy arm, 81 in the NAC monotherapy arm and 

78 patients in the placebo arm. The primary outcome was the change in FVC over a 60-

week period, with secondary outcomes including mortality, frequency of acute 

exacerbations, time to disease progression, and measures of clinical and physiological 

parameters21. A preplanned interim analysis at approximately 50% of data collection 

revealed that the triple therapy group, as compared with placebo, had a significantly 

increased number of deaths (8% vs 1%, P=0.01), hospitalisations (30% vs 9%, P<0.001) 

and serious adverse events (31% vs 10%, P=0.001). Consequently, the three-drug 

regimen arm was terminated and PANTHER was continued as a double-blind, two-

group study (NAC monotherapy vs placebo)21.  

 

As a result of the increased risk of death and hospitalisation observed in the group of 

IPF patients in the combination triple therapy arm, the PANTHER trials concluded that 

there was compelling evidence against the use of prednisolone, azathioprine and NAC 

in triple combination therapy for patients with mild to moderate IPF. Following the 

remainder of the trial as a double blind, two group study (NAC versus placebo), it was 

concluded that NAC offered no significant benefit in the preservation of FVC in patients 

with IPF and mild to moderate lung function impairment.  

 

Pirfenidone 

Pirfenidone is an orally administered agent thought to exert anti-fibrotic, anti-

inflammatory and antioxidant properties through downregulation or profibrotic growth 

factors, although its mechanism of action is not fully understood19.  The CAPACITY 

(Clinical Studies Assessing Pirfenidone in Idiopathic Pulmonary Fibrosis: Research of 

Efficacy and Safety Outcomes) programme consisted of two multinational, randomised, 

double-blind, placebo-controlled trials (004 and 006). Eligible patients were aged 40–

80 years with a diagnosis of IPF in the previous 48 months, predicted FVC was ≥50%, 

predicted carbon monoxide diffusing capacity (DLco) was ≥35%, either predicted FVC 

or predicted DLco of 90% or less, and 6-min walk test (6MWT) distance of ≥150 m. 

Patients younger than 50 years and those not meeting HRCT criteria for definite IPF 
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were required to have a lung biopsy sample showing usual interstitial pneumonia22. In 

study 004, 435 patients were assigned in a 2:1:2 dosing ratio to pirfenidone 2403mg 

daily, pirfenidone 1197mg daily, or placebo, study 006 enrolled 344 patients to a 1:1 

ratio of pirfenidone 2403mg daily or placebo. The primary endpoint of both trials was 

change in percentage predicted FVC from baseline to week 72. Secondary endpoints 

included progression-free survival, worsening idiopathic pulmonary fibrosis, 

dyspnoea, 6MWT distance, percentage predicted DLco, and fibrosis on HRCT (study 

006 only). The primary endpoint of change in percentage predicted FVC was met in 

study 004 (mean FVC change at week 72 was -8.0% in the pirfenidone 2403mg daily 

group and -12.4% in the placebo group, P=0.001), however this result was not replicated  

in study 006. Despite the differing results between the two trials, pooled analysis for 

pirfenidone 2403mg daily compared with placebo favoured pirfenidone (-8.5% vs 

11.0%, P=0.005)22,23. 

 

The ASCEND (Assessment of Pirfenidone to Confirm Efficacy and Safety in Idiopathic 

Pulmonary Fibrosis) trial was conducted after the US Food and Drug Administration 

(FDA) denied approval and requested an additional phase 3, randomised, double-blind, 

placebo-controlled study to provide supportive evidence of efficacy of pirfenidone19. 

Eligibility criteria included patient aged between 40 and 80 years, a centrally confirmed 

diagnosis of idiopathic pulmonary fibrosis based on ATS/ERS/JRS/ALAT criteria, 

FVC between 50-90% of predicted, DLCO between 30-90% of predicted, a ratio of the 

forced expiratory volume in 1 second (FEV1) to the FVC of ≥ 0.80, and a 6-minute walk 

distance of ≥150 m. Patients were randomised to either pirfenidone 801mg three times 

per day (n=278) or placebo (n=277). The primary end point was the change from 

baseline to week 52 in the percentage predicted FVC. The two key secondary endpoints 

were the change from baseline to week 52 in the 6-minute walk distance and 

progression-free survival. The study met its primary outcome of change in percentage 

predicted FVC from baseline to week 52 (-164ml in the pirfenidone group vs -280ml in 

the placebo group; absolute difference 116ml, relative difference 41.5%; 

P<0.0001)19,24. In addition, the proportion of patients with an absolute decline in 

percentage predicted FVC of >10% or death was significantly reduced in the 

pirfenidone group (16.5% vs 31.8%, P<0.001) and the proportion of patients with no 

decline was increased (22.7% vs 9.7%, P<0.001)23,24. Pirfenidone was approved by the 

European Medicines Agency for treatment of IPF in 2011, and by the US FDA in 
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October 201419. The current ATS/ERS/JRS/ALAT clinical practice guideline for 

treatment of IPF advises a conditional recommendation for the use of Pirfenidone in 

patients with IPF.  

 

Nintedanib 

Nintedanib is a potent inhibitor of several tyrosine kinases including vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and 

fibroblast growth factor (FGF), which are all thought to mediate a number of processes 

in the pathogenesis of IPF. The INPULSIS 1 and INPULSIS 2 trials were two identical, 

multinational, randomised, double blind, placebo-controlled trials to investigate the 

efficacy of nintedanib over 52 weeks. Eligibility criteria included aged ≥40 years, a 

diagnosis of IPF within the previous five years, FVC >50% predicted, DLCO 30%-79% 

predicted and an HRCT within the previous year. Patients with ‘possible UIP’ HRCT 

appearances were included in the studies, even in the absence of a confirmatory surgical 

lung biopsy. Patients were randomised in a 3:2 ratio to receive either nintedanib 150mg 

twice daily (n=638) or placebo (n=423). The primary endpoint was the annual rate of 

FVC decline and secondary outcomes included time to first exacerbation, quality of life, 

all-cause mortality and adverse effects23.  Both trials met their primary endpoint with 

the nintedanib group reporting a lower rate of FVC decline compared with placebo (-

114.7ml vs -239.9 ml, P<0.001 in INPULSIS 1 and -113.6ml vs -207.3ml, P<0.001 in 

INPULSIS 2)23,25. Nintedanib has recently been approved for the treatment of IPF in 

both Europe and the USA and received a conditional recommendation for use in IPF in 

the ATS/ERS/JRS/ALAT official clinical practice guideline for the treatment of IPF.  

 

The natural history of IPF patients is mostly depicted from patients enrolled in large, 

multicentre clinical trials. Typically these studies only included a highly selected group 

of patients, with the majority of patients excluded due to age, disease severity or 

comorbid conditions. Patients in trials had relatively preserved lung function with a 

mean FVC of 60% and an absence of comorbid conditions, which contribute to its poor 

prognosis, such as pulmonary hypertension and coronary artery disease18,23. Follow-up 

was also relatively short at 2 years or less26.  With the exception of the INPULSIS trials, 

most studies also only included patients with IPF defined by ‘definite UIP’ HRCT 

appearances, or a ‘possible UIP’ HRCT and a confirmatory UIP surgical lung biopsy. 

In real-life clinical practice, only a minority of patients would be eligible for these trials. 
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We aimed to describe the natural history of patients with IPF phenotyped according to 

PANTHER, CAPACITY, ASCEND and INPULSIS eligibility criteria. We 

hypothesised that the outcome of eligible versus ineligible patients would be different. 

We also aimed to determine the longterm IPF outcomes in a well-categorised, all-

inclusive, real-life IPF patient cohort. 

	

1.7   Predicting disease progression in IPF 

Patients with fibrotic lung disease are typically risk stratified using a combination of 

clinical variables including history and examination findings, pulmonary function 

testing, exercise capacity, radiological appearances and histological features, however 

these variables are poorly reflective of disease pathogenesis and are only useful when 

put into scoring systems for grouping patients into large cohorts and not clinical useful 

in estimating individual patient risk. IPF is a heterogeneous disease and there is a need 

to identify ‘personalised’ prognostic biomarkers which may in turn lead to novel targets 

and the advent of personalised medicines.  

 

Older age is a clinical feature of IPF and older age has been shown bear a poorer 

prognosis in a number of studies6,7. However Nadrous et al reported younger patients 

with IPF (aged <50 years) had similar mortality rates and the same poor prognosis as 

older patients27. IPF is also more common in men7. Data describing patient sex as a 

prognostic factor in IPF have been variable, however most suggest that male sex holds 

a poorer prognosis. Female sex has been shown to confer a significant survival benefit 

after adjusting for age, smoking history, TLCO and maximum desaturation area6,28. 

Reports on smoking status are largely consistent with smoking shown to increase 

mortality in IPF patients. A small number of studies report decreased mortality in 

smokers, however this is thought to relate to the ‘healthy smoker’ theory, a subgroup 

that may be over-represented in an IPF population which presents in older patients7. 

Survival in IPF has been described as being significantly associated with patient Body 

Mass Index (BMI). Increased BMI has been found to be protective with a Hazard Ratio 

of 0.93 per 1-unit increase in BMI7,29. Baseline and change in 6 minute walk distance 

(6MWD) have also been reported as being predictive of mortality6. A baseline 6MWD 

of <250m and a 24-week decline of >50m are both independent predictors of mortality4. 
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There are also a number of comorbidities in IPF that are reported to significantly reduce 

survival, these include pulmonary arterial hypertension, significant emphysema, 

significant coronary artery disease and bronchogenic carcinoma7. Studies describing 

the association of baseline pulmonary function tests and survival have yielded variable 

results. However the clinical variables that are most commonly associated with 

prognosis are FVC, TLC and TLCO. Change in PFT values over time has been shown 

to be more predictive of prognosis and have improved clinical prediction models. A 

significant (>10%) or marginal (>5-10%) decline in FVC over 6 or 12 months is highly 

predictive of mortality6. A reduced TLCO is also associated with a poorer prognosis. 

Numerous studies have concluded that changes in FVC and TLCO over 6-12 months 

were more predictive of prognosis over time than most baseline characteristics 

including histopathologic diagnosis7,30,31. As mentioned previously, HRCT scanning is 

pivotal in diagnosing IPF in most patients, and a number of studies have investigated 

whether HRCT appearances at baseline can accurately predict clinical outcomes. A 

number of parenchymal abnormalities can be assessed including extent of disease, 

ground glass, consolidation, reticulation, honeycombing and traction bronchiectasis. 

Reticulation and honeycombing are often combined to give an extent of fibrosis score. 

A UIP pattern on HRCT is associated with the poorest survival7,32. The extent of fibrosis 

and honeycombing on HRCT have also been shown to predict mortality and correlate 

with %predicted FVC and TLCO6,33–35. The presence of traction bronchiectasis on 

HRCT has also been described as an independent predictor of mortality4,33. 

 

Several prognostic scoring systems, based on different combinations of clinical, 

physiological, radiological and serological parameters, have been described to stage and 

predict survival in IPF4. However at present there is no single risk model that has been 

validated, widely accepted and adopted in clinical practice. King et al proposed the 

Clinical-Radiological-Physiological (CRP) scoring system used to predict survival in 

238 patients with IPF. A number of clinical variables were included in the model; age, 

smoking status, finger clubbing, degree of fibrosis and pulmonary hypertension, chest 

radiography, total lung capacity and partial pressure of arterial oxygen at maximal 

exercise36. The model was deemed too complicated for use in clinical practice as many 

of the variables were not routinely measured. Wells et al described the Composite 

Physiologic Index (CPI). They reported that a combination of FVC, FEV1 and TLCO 

values correlated with the extent of fibrosis on HRCT37. Ley and colleagues proposed 
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the GAP Index as a prognostic staging system in IPF developed using data from three 

large distinct patient cohorts (N=558). Four baseline clinical variables (gender, age, 

FVC and TLCO) are included in the model. Patients are given a GAP Index score and 

categorised into three severity groups with 1-year mortality risks of 6%, 16% and 39% 

respectively. The same group also reported a longitudinal GAP model that included the 

relative change in %predicted FVC over a 24 week period, and the number of 

respiratory hospitalisations. This improved the risk stratification significantly38,39. Du 

Bois et al devised a scoring system capable of independently predicting mortality using 

data from two clinical trials (N=1099). Age, respiratory hospitalisations, %predicted 

FVC and change in %predicted FVC over a 24 week period well all incorporated into 

the model. The 1-year mortality predicted by the model was consistent with the 

observed data. The same group then added 6MWD and 24 week change in 6MWD 

which improved the ability of the model to predict 1-year survival40,41. Mura and 

colleagues described a risk model predicting survival and disease progression in a 

prospective cohort of 70 IPF patients. The Risk Stratification Score (ROSE) comprised 

a number of clinical variables including a Medical Research Council dyspnoea score 

(MRCDs) of >3, a 6MWD of <72% predicted and a Composite Physiologic Index (CPI) 

of >41 at diagnosis, and significantly predicted 3-year mortality with 100% specificity. 

The results of this study were also confirmed in an independent retrospective cohort of 

68 patients42. Kinder et al added serum levels of SP-A and SP-D to clinical variables 

and improved their prediction model of 1-year mortality in IPF43.  Song et al reported a 

predictive model of survival in IPF combining clinical and serological variables. They 

included serum MMP7, SP-A and KL-6 levels, %predicted FVC and TLCO, age and 

change in FVC at 6 months in the model and found that adding biomarker data improved 

predictive accuracy compared to clinical variables alone44. Finally, Richards and 

colleagues described a model using physiological and biomarker variables to predict 

survival in 140 IPF patients. They analysed serum concentrations of 95 cytokines, 

chemokines, matrix metalloproteinases (MMPs) and markers of apoptosis and epithelial 

injury and added this to clinical variables including gender, %predicted FVC and 

%predicted TLCO. They identified five markers (MMP7, intracellular adhesion 

molecule 1, IL8, vascular cell adhesion molecule 1 and S100A12) that were predictive 

of patient outcome regardless of age, sex and baseline PFTs. This was then validated in 

a second cohort of 101 patients45. As previously described, several prognostic scoring 
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systems, based on clinical, physiological, radiological and serological parameters, have 

been reported to predict survival in IPF2. These studies are summarised in Table 4. 

 

Table 4. Proposed predictive scoring systems in IPF. 

Scoring 
system	

Patients	 Variables	 Outcome	 Reference	

Clinical- 
Radiological-
Physiological 
(CRP) 
scoring 
system	

238 IPF	 Age, smoking 
status, finger 
clubbing, profusion 
of fibrosis and 
pulmonary 
hypertension, chest 
radiography, total 
lung capacity, 
partial pressure of 
arterial oxygen at 
maximal exercise	

Model  
deemed too 
complicated 
for use in 
clinical 
practice as 
many of the 
variables were 
not routinely 
measured	

King et 
al6,36	

Composite 
Physiologic 
Index	

212 IPF	 FVC, FEV1, TLCO	 A combination 
of FVC, FEV1 
and TLCO 
values 
correlated with 
the extent of 
fibrosis on 
HRCT	

Wells et 
al6,37	

GAP Index	 558 IPF	 Gender, age, FVC, 
TLCO	

GAP Index 
score used to 
categorise 
patients into 
three severity 
groups with 1-
year mortality 
risks of 6%, 
16% and 39% 
respectively	

Ley et 
al6,38,39	

Du Bois 
score	

1099 IPF 
from 2 
clinical trials	

Age, respiratory 
hospitalisations, 
%predicted FVC, 
change in 
%predicted FVC 
over a 24 week 
period	

The 1-year 
mortality 
predicted by 
the model was 
consistent with 
the observed 
trial data	

Du Bois et 
al6,40,41	

The Risk 
Stratification 
Score 
(ROSE)	

70 IPF	 Medical Research 
Council dyspnoea 
score (MRCDs) of 
>3, a 6MWD of 
<72% predicted,a 
Composite 

Significantly 
predicted 3-
year mortality 
with 100% 
specificity	

Mura et 
al42	
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Physiologic Index 
(CPI) of >41 at 
diagnosis	

Prediction 
model of 
survival in 
IPF	

82 IPF	 Age, smoking 
status, FVC, TLCO, 
alveolar-arterial 
oxygen gradient, 
BAL fluid 
neutrophil%, serum 
SP-A, serum SP-D	

Adding serum 
SP-A and SP-
D levels 
improved 
prediction 
model of 1-
year mortality	

Kinder et 
al43,46	

Prediction 
model of 
survival in 
IPF	

118 IPF	 Serum MMP7, SP-
A and KL-6 levels, 
%predicted FVC 
and TLCO, age and 
change in FVC at 6 
months	

Adding 
biomarker data 
improved 
predictive 
accuracy 
compared to 
clinical 
variables alone	

Song et 
al44,46	

Prediction 
model of 
survival in 
IPF 	

140 IPF 	 Serum 
concentrations of 95 
cytokines, 
chemokines, matrix 
metalloproteinases 
(MMPs) and 
markers of apoptosis 
and epithelial injury 
added to clinical 
variables including 
gender, %predicted 
FVC and 
%predicted TLCO	

Five markers 
(MMP7, 
intracellular 
adhesion 
molecule 1, 
IL8, vascular 
cell adhesion 
molecule 1 and 
S100A12)  
were 
predictive of 
patient 
outcome 
regardless of 
age, sex and 
baseline PFTs	

Richards et 
al45	

 

 

 An important caveat of all of the above scoring systems is that they were all derived 

from either patients recruited to clinical trials or patients referred to tertiary referral 

centres, which undoubtedly leads to bias. There are very few studies of large numbers 

of IPF patients directly referred from the community and followed longitudinally. At 

present there is no single risk model that has been validated, widely accepted and 

adopted in clinical practice. 

 

In summary, the clinical variables available to predict the risk of mortality and disease 

progression in IPF are currently inadequate. Additional non-invasive and reproducible 



40	
	

markers are required to improve existing risk model templates. In recent years large 

numbers of BAL and peripheral blood proteins and cytokines have been studied as 

potential biomarkers of disease progression in IPF. Biomarkers may have many 

different applications including predisposition to disease, diagnostic, prognostic, 

prediction of response to treatment and acting as a surrogate endpoint in clinical trials, 

however their main function is to meet an unmet clinical need. Good biomarkers should 

have high sensitivity/specificity, be cost effective, non-invasive, easily reproducible 

and widely available46.   

 

 1.8   Investigating current and novel biomarkers  
         in IPF 

In order for a molecular biomarker to seem plausible, it would ideally reflect the 

pathobiological mechanism driving disease progression in IPF. Our understanding of 

the pathogenesis of IPF is mostly extrapolated from histological appearances in 

subgroups of biopsied patients. It is logical to propose that macrophages play a central 

role in IPF. Macrophages are integral to lung tissue repair and homeostasis, however in 

UIP it has been proposed that the process of normal tissue homeostasis and healing is 

aberrant. Many contributing mechanisms have been reported including angiogenesis, 

coagulation, fibrogenesis, tissue repair, inflammation, epithelial damage, matrix 

remodelling and oxidative stress47. The most notable paradigm is one in which the 

alveolar epithelium is repeatedly injured creating localised ‘wounds’ over a prolonged 

period of time, which leads to focal epithelial hyperplasia and activation. The 

dysfunctional epithelial cells then activate profibrotic signalling pathways involving 

growth factors and chemokines such as TGF-β148. This leads to the accumulation of 

fibroblasts in ‘fibroblastic foci’, areas of intense collagen generation, and differentiation 

of myofibroblasts, resulting in increased extracellular matrix (ECM) deposition48. 

	

Despite evidence that inflammation may not play a predominant role in IPF, there is 

evidence that markers of inflammation and immunity may provide useful information. 

Brittan et al reported the presence of novel subpopulations of pulmonary monocyte-like 

cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+ 

cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells)49 . Their data 
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showed that PMLC represented a significant proportion of cells present in BAL fluid 

following inhalation of lipopolysaccharide (LPS), implying PMLC may play a 

significant role in the inflammatory response. Resident PMLC were found to have a 

significantly increased expression of the mature macrophage markers CD206 (mannose 

receptor), CD71 (transferrin receptor) and 25 F9, and a significantly increased 

expression of the proliferation antigen Ki67, compared to iPMLC50.  There is also 

evidence to suggest autoimmunity and abnormalities in B and T cells may play a role 

in the progression of IPF46. C-X-C motif chemokines (CXCL)-13, a chemokine 

involved in B-cell trafficking, has been shown to be elevated in both lung tissue and 

peripheral blood of IPF patients compared to healthy controls and COPD patients, and 

was found to be predictive of early mortality46,51. Gilani et al described that CD28, a 

marker of effector memory T cells on circulating CD4 T cells, is downregulated in IPF, 

furthermore this was associated with a decline in lung function and survival in a cohort 

of 89 IPF patients46,52. Heat shock protein (HSP) 70 has been shown to induce CD4 T 

cells from IPF patients46. This leads to proliferation and production of profibrotic 

cytokines (IL4) and anti-HSP70 antibody production, which in turn leads to monocyte 

activation and IL8 production46. In a small, single-centre study, IgG autoantibodies to 

HSP70 was associated with disease progression and reduced 1-year survival in IPF 

patients53,54. Regulatory T cells (Tregs) are an important component of the adaptive 

immune response. It has also been reported that there is a significant impairment of 

Treg suppressor function in IPF, which is evident in BALF and the peripheral blood. 

This correlates well with clinical markers of disease progression. It has been proposed 

that the reduced numbers and Treg dysfunction found in IPF patients may contribute to 

inefficient control of the pre-existing overactive Th2 response, or contribute to a Th2 

skew5,55. Schematic representation of previously described potential biomarkers in IPF 

and proposed relationship to the possible pathogenesis is shown in Figure 148.   
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Figure 1. Schematic representation of previously described potential biomarkers in 

IPF and proposed relationship to the possible pathogenesis. 
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As mentioned, IPF has been classified as a Th2-skewed disorder, with the presence of 

an ‘M2’ polarised lung macrophage phenotype. Mediators associated with M2 

macrophage polarisation are associated with disease progression and severity56. 

However, a comprehensive classification of the M2 phenotype is questionable, and 

there is some recognition that a distinct M2 ‘pro-repair’ phenotype may exist and that 

macrophage phenotypes are dynamic and liable to change as disease evolves57. Perhaps 

one of the most promising potential biomarkers in IPF is CC-chemokine (CCL)-18, as 

reported by Prasse and colleagues. CCL18 is produced by alveolar macrophages and 

regulated by Th2 cytokines. It plays an important role in inflammatory cell migration 

and is involved in stimulating collagen production and the differentiation of fibroblasts. 

Prasse at al prospectively measured serum CCL18 levels in 72 IPF patients, and found 

it was a strong and independent predictor of mortality7,58. Serial CCL18 measurements 

correlated well with pulmonary function and baseline serum levels were highly 
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predictive of subsequent disease progression. Serum levels of >150ng/ml were 

independently associated with death (HR 7.98, 95%CI 2.49-25.51, P=0.005)48,58. 

Surfactant proteins (SP) A and D have also been extensively studied as potential 

biomarkers in IPF. SP-A and SP-D are secreted by alveolar type II pneumocytes and 

are present in peripheral blood following the breakdown of the epithelium. Significantly 

elevated serum levels of both SP-A and SP-D have been reported in IPF patients versus 

healthy controls, and increased serum levels in IPF have been described as being 

independent predictors of mortality7,43,59. Serum Krebs Von Den Lungen (KL-6) is a 

mucin-like glycoprotein expressed by alveolar type II cells and bronchiolar cells in 

response to epithelial damage48. KL-6 levels are reported to be significantly elevated in 

IPF and have also been linked to survival, however specificity for IPF is poor48. Matrix 

metalloproteinases (MMPs) are a family of zinc-dependant enzymes involved in the 

breakdown of the extracellular matrix, they share a wealth of potential pro-

inflammatory and pro-fibrotic properties. Rosas et al demonstrated serum MMP1 and 

MMP7 levels were significantly increased in a cohort of 74 IPF patients compared to 

hypersensitivity pneumonitis, sarcoidosis and COPD48,60. MMP7 appears to be 

associated mechanistically with lung fibrosis as MMP7 knockout mice are relatively 

protected from fibrosis61. MMP7 expression is upregulated in BALF and lung tissue in 

many of the ILDs, which may hinder it’s use as a diagnostic biomarker in IPF46. 

However serum MMP7 levels are strongly associated with mortality in IPF, 

independent of disease severity46, and levels negatively correlate with FVC and 

DLCO60. Galectin-3 is a member of the lectin family of carbohydrate-binding proteins 

and it is implicated in a number of cellular processes including macrophage activation, 

chemoattraction, cell growth, differentiation and apoptosis. Galectin-3 binds to itself 

and to TGFβ receptors, forming lattices that hold the receptors at the cell surface thus 

altering TGFβ signal transduction. Galectin-3 inhibition has been shown to modify 

macrophage phenotype, inhibiting the polarisation to M2 cells and reduce tissue 

scarring in animal models of lung, kidney and cardiac fibrosis62–64. Organ fibrosis 

occurs due to the activation of macrophages and the recruitment and activation of 

myofibroblasts, galectin-3 drives both of these pathways. TGFβ has been shown to play 

a key role in pulmonary fibrosis by inducing EMT, ECM production and apoptosis of 

AECs. It has also been shown that pulmonary fibrosis can be reduced by inhibiting 

TGFβ activity143.  TD139 is a specific inhibitor of the galactoside binding pocket of 

galectin-3. It was developed by a team of scientists from Lund University, Sweden, and 
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Edinburgh University, UK, and is formulated for inhalation, which enables direct 

targeting the fibrotic tissue in the lungs, while minimizing systemic exposure. Dr Alison 

MacKinnon (a senior scientist and principal investigator in my laboratory group) 

demonstrated previously  that TD139 blocked TGF-β-induced β-catenin activation in 

vitro and in vivo and attenuated the late-stage progression of lung fibrosis after 

bleomycin. In addition, they found that patients with stable IPF had elevated levels of 

galectin-3 in BAL fluid and in serum when compared with patients with NSIP and 

controls. They also found that galectin-3 levels rose sharply during an acute 

exacerbation of IPF, and therefore suggested that galectin-3 may be a marker of active 

fibrosis in IPF62,143. Following on from these findings, a phase IIa, randomised, double-

blind, multicenter, placebo-controlled trial was designed to assess the safety, 

tolerability, PK and PD characteristics of TD139 in 24 IPF patients. The study was 

designed and funded by Galecto. When I joined the lab group, I was recruited as a Co-

Investigator on this trial. My main aim was to perform flow cytometry and Luminex 

Magnestic Screening Assays on BAL and plasma samples to assess whether there were 

any notable differences in a number of proteins of interest linked to IPF-pathogenesis, 

after patients were treated with an inhaled galectin-3 inhibitor for a two week period. 

Inhibition of galectin-3 may have the potential to reduce pulmonary fibrosis in man, 

and a further phase IIb study is currently in development. 

 

There are also a number of neutrophil-related proteins described as being elevated in 

IPF in the literature. IL8, a member of the CXC chemokine family, and S100A12, a 

calcium-binding protein, are both pro-inflammatory markers involved in neutrophil 

recruitment and activation, with IL8 also playing a role in angiogenesis47. Both IL8 and 

S100A12 are reported as being significantly upregulated in IPF patients versus healthy 

controls, and also correlate negatively with FVC and TLCO values47. IL8 has been 

shown to be increased in both BALf and plasma of IPF patients and is associated with 

significantly worse outcomes61. Vascular endothelial growth factor (VEGF) is a 

glycoprotein expressed in AEC, it promotes vascular permeability and regulates 

angiogenesis48. BAL VEGF levels are reported as significantly reduced in IPF patients 

versus controls, however serum levels are significantly increased in IPF. Elevated 

serum VEGF levels have been described as being associated with poorer gas exchange, 

and for levels higher than the cohort median, shorter survival time48. Periostin is an 

extracellular matrix (ECM) protein that promotes ECM deposition, mesenchymal cell 
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proliferation and parenchymal fibrosis. It is secreted by bronchial cells in response to 

IL13. Serum periostin levels are increased in IPF and appear to correlate with disease 

progression48. Periostin may have a role in the pathological mechanism in IPF as it has 

been shown to be upregulated after bleomycin-induced lung injury in mice, and 

periostin-null mice appear protected from developing fibrosis48. Osteopontin is a 

phosphorylated glycoprotein involved in the tissue repair of many organs, it may also 

play a role in many TGF-β-mediated processes53. It induces upregulation of MMP7 in 

AECs and is reported to be elevated in BALf and serum of IPF patients versus controls, 

however it is also elevated in many of the other ILDs48. YKL-40 is a chitinase-like 

protein elevated in many inflammatory disorders, and is involved in the regulation of 

cell proliferation and survival. It is mediated through Th2-lymphocyte/IL13 signalling 

pathways, however it’s role in IPF remains unclear48. It is thought to perhaps play a role 

in the release of fibrotic and inflammatory mediators from alveolar macrophages48. 

Korthagen et al predicted two distinct survival patterns in a cohort of 79 IPF patients 

using a serum cut off value of 79ng/ml (HR 10.9, 95%CI 1.9-63.8, P<0.01)61,65. 

Significantly increased levels have been reported in BALf, serum and lung tissue of IPF 

patients versus controls, and elevated levels appear to be associated with reduced 

survival48,65. Fibrocytes are bone marrow-derived mesenchymal cells that co-express 

CD34 or CD45 and extracellular matrix protein type 1 collagen. Some reports indicate 

they may be capable of producing ECM and differentiating into fibroblasts and 

myofibroblasts53. Elevated levels of circulating fibrocytes have been reported in IPF, 

and also increased further during episodes of acute exacerbation7,66. Levels do not 

appear to correlate with disease severity but do appear to be an independent predictor 

of early mortality, with >5% circulating fibrocytes being associated with poorer 

survival7,53. These ‘known’ candidate biomarkers are summarised in Tables 5 and 6. 

Whilst several studies have identified circulating mediators that may predict disease 

progression, they have not been validated in ‘real-life’ patient cohorts, outside of 

clinical trials. To date there are no proven biomarkers that predict progression or 

response to treatment.  
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Table 5. Summary of ‘known’ candidate biomarkers in serum. 

Mediator	 N=(Mean +/- SD) baseline serum  
concentration unless otherwise 

stated.	

REFERENCE	

CCL18 
	

N= 72 IPF (162+/-77 ng/ml) 
(Range 72-400)	

Prasse A et al	

MMP7	 N=74 IPF, 53 controls   
<1.99ng/ml 
No SD available	

Rosas et al	

	 N=24 IPF 
>4.3ng/ml (survival) 
>4.4ng/ml (progression-free survival) 
No SD available	

Richards  et al	

	 N=118 IPF  (13.7+/-7.6 ng/ml)	 Song et al	
Periostin	 N=37 IPF  (107.1 +/-11.9 ng/ml)	 Okamoto et al	

	 N=54 IPF 
 No mean value but 1 SD = 
116.97ug/ml, and range is 0.14-
403.43ug/ml	

Naik et al 
	

Osteopontin	 N=17 IPF, 9 sarcoid, 20 controls 
ROC curve cut off=300-380ng/ml	

Kadota J et al	

KL-6	 N=152 IIP, 67 collagen disease related 
ILD 
Mean in IIPs = 943Um/L(range 182-
9000) 
Mean in CTD-ILD= 912Um/L (range 
105-6770)	

Satoh H et al	

CXCL13	 N=95 IPF, 128 COPD  
in plasma (94+/-8 pg/ml)	

Vuga et al 	

SP-A	 N=136 IPF   
(100ng/ml in Denver cohort, 70mg/ml 
in Iowa cohort)	

Greene et al	

	 N= 82 IPF  (106ng/ml +/1 49ng/ml) 
(range 27-270)	

Kinder et al	

	 N=118 IPF  (105.8+/- 72.4ng/ml)	 Song et al	
SP-D	 N=142 (400ng/ml in Denver group 

and 380ng/ml in Iowa group)	
Greene et al	

VEGF	 N=41 IPF, 43 controls 
Mean in IPF = 207.4pg/ml (range 
10.9-589.5)	

Ando et al	

YKL-40 
	

N=85 IPF, 83 controls 
Mean in IPF = 109.4ng/ml (IQR 76.6-
237.7)	

Korthagen et al	
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Table 6. Summary of ‘known’ candidate biomarkers in BAL fluid. 

Protein	 Number of 
pts	

Result/significance	 Reference	

RAGE, SP-C, 
TIMP-1, 
fibronectin, 
eotaxin, IL-17A, 
IL-23, PARC, 
RANTES, TSLP, 
PIGF, FGFb, tissue 
factor	

11 IPF 
11 HP 
10 controls 
	

ANOVA stats not 
significant	

Willems S et al	

HGF	 Increased (P=0.053)	
IL-8	 Increased (P=0.018)	
IL-12p40	 Decreased (P=0.072)	
MCP-1	 Increased (P=0.0011)	
MDC	 Increased (P=0.0044)	
MPO	 Increased (P=0.015)	
MMP-8	 Increased (P=0.038)	
MMP-9	 Increased (P=0.010)	
Active PAI-1	 Increased (P=0.0022)	
Protein C	 Increased (P=0.045)	
VEGF	 Decreased (P=0.0014)	
CCL18, CCL2, 
IL8, Calgranulin B 
(S100A9)	

	 Increased	 Bargagli E et al	

MIF	 	 Increased	
MRP14	 54 IPF,  

19 controls	
Increased(P=<0.001)	 Korthagen NM 

et al	
CCL22	 19 IPF,  

 6 controls	
Increased(P=<0.001)	 Yogo Y et al	

CCL17	 Increased(P=<0.05)	

IL-13	 16 IPF, 
8 controls	

Increased(P=<0.05)	 Park SW et al	

IL-4	 Increased (P=<0.05)	
M-CSF	 24 IPF, 

26 controls	
Increased (P=0.01)	 Baran CP et al	

CCL 2	 Increased (P=0.001)	
IGF-1	 11 IPF,  

6 controls	
Increased (significant)	 Pala L et al	

IGFBP-3	 Increased (significant)	
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         1.9   Hypothesis and aims 
 

I hypothesise that a diagnosis of IPF and disease progression can be confidently 

predicted by a combination of HRCT scoring and serum/BAL biomarker profiling. In 

addition to an unbiased approach, I hypothesise that there is a relationship between 

cytokine and mediators specifically associated with alveolar macrophage polarisation 

and disease progression in IPF. Lastly I hypothesise that Galectin-3 inhibition in 

patients with IPF will modify alveolar macrophage phenotype and reduce expression of 

M2-associated cytokines and mediators.		

 

Aim 1. Interrogate the Scottish Interstitial Lung Disease (ScILD) database and integrate 

this with the Edinburgh ILD database to determine the safety and utility of surgical lung 

biopsy in patients with suspected IPF. 

 

Aim 2. Investigate the diagnostic and prognostic value of BAL differential cell count 

in the diagnosis of IPF. 

 

Aim 3.  Study potential prognostic biomarkers in the Edinburgh IPF cohort by first 

measuring a defined panel of protein biomarkers previously described in the literature 

as being associated with IPF disease progression in serum and BAL, then performing 

semi-biased and unbiased proteomic arrays to identify additional key protein 

candidates. I will then perform BAL proteomics on paired BAL samples performed at 

0 and 12 months, a unique resource, to identify the protein signature of IPF progressors 

vs non-progressors.  

 

Aim 4. Determine the relationship between alveolar macrophage subtypes (including 

PMLCs) and prognosis in IPF. 

 

Aim 5.  Perform detailed phenotyping of alveolar macrophages and measure BAL and 

serum macrophage-related proteins from patients with IPF who have received TD139 

(an inhaled Galectin-3 inhibitor) or placebo as part of a Phase 2a clinical trial.  
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Chapter 2       

     Materials and Methods 

 
2.1      Patient Selection and the Edinburgh Lung  
           Fibrosis Clinical Database and Biobank 
 

The Edinburgh Lung Fibrosis research database was established in 2002, and was 

designed to capture the natural history of ILD in patient’s referred to the specialist adult 

ILD clinic. The dataset from 01/01/02-31/12/14 is summarised in Table 7. All subjects 

were fully consented and ethical approval was obtained for all protocols and procedures 

(LREC 06/S0703/53). Study cohorts consisted of locally referred, consecutively 

presenting patients with ILD presenting since 01/01/02. For all patients, diagnosis, 

investigation, management and follow-up was as per the Edinburgh local policy. This 

included a detailed clinical history, examination, autoantibody screen, HRCT and 

pulmonary function testing. Follow-up included 6 monthly PFTs and clinic review, with 

less than 1% of the study population being lost to follow-up. Disease progression was 

defined as death or ≥10% decline in FVC within 12 months of BAL. All HRCT scans 

were reviewed by an expert thoracic radiologist and discussed in a multidisciplinary 

meeting with at least two respiratory physicians with ILD subspecialty expertise. 

Patient HRCT scans were categorised into ‘definite’, ‘probable’ or ‘inconsistent with’ 

UIP patterns based on 2011 ATS/ERS criteria. In patients with ‘probable UIP’ HRCT 

appearances, surgical lung biopsy was performed after consideration of disease 

severity, comorbidities and the patient’s wishes. Lung histology was reviewed in a 

multidisciplinary meeting by an experienced pulmonary pathologist, a member of the 

UK ILD pathology reference panel. In the Edinburgh cohort, 15% of all ILD patients 

were biopsied and in those with suspected IPF in whom the HRCT was deemed 

‘probable UIP’, 1 in 5 patients underwent SLB. All diagnoses of definite and probable 

IPF were made by multidisciplinary integration of clinical, HRCT and where available 

histological findings, and were made based on the ATS/ERS consensus guideline.  

 

In addition to this dataset, since 2007 a unique biobank has been collected comprising 

of baseline and serial samples from 575 patients including BAL from 155 patients , 47 
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of whom have had ‘serial’ lavage at 0 and 12 months, and DNA from 520 patients. 

Baseline BAL samples were obtained from 94 IPF patients (32 progressors, 62 non-

progressors) and repeat BAL was performed at 12 months in 60 patients (16 

progressors, 44 non-progressors). Baseline serum samples were obtained in 216 IPF 

patients (102 progressors, 114 non-progressors) and 118 patients went on to have 

successive serum samples 12 months later (38 progressors, 80 non-progressors). Most 

of the patients had matched BAL and serum samples, and less than 2% had received 

IPF-directed therapy. The Edinburgh Lung Fibrosis study cohort is summarised in 

Tables 7 and 8.  

 

Table 7. The Edinburgh Lung Fibrosis study cohort. 

		

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2002-2014	Edinburgh	Cohort	
~1400	‘local’	referrals	with	ILD	

Idiopathic	Interstitial	Pneumonias	(IIPs)	 ILDs	of	known	cause	 Other	ILDs	

Definite	IPF	N=198	
Probable	IPF	N=359	

	

Asbestosis	N=121	
Coal/	silicosis	N=25	

	

Sarcoidosis	N=182	

Other	IIPs	(biopsied)	
NSIP	N=27	
RBILD	N=10	
COP	N=12	
AIP	N=1	
DIP	N=1	

	 Other	IIPs	(not	biopsied)	N=109	

CTD-ILD	
RA	N=82	
SSc	N=40	

DM/PM	N=17	
SLE	N=21	

Sjogrens	N=10	
MCTD	N=13	
Other	N=9	

	 Drug-induced	ILD	N=32	

HP	birds	N=52	
Others	N=39	

	

Misc/	rare/	
unclassifiable	ILD	N=72	
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Table 8. Summary of the available samples in the Edinburgh IPF biobank 
according to patient phenotype.	

	  

Progressors	

 

Non-Progressors	

Controls (aged 

matched healthy 

volunteers)	

	 Definite IPF 

Age (SD)	

Probable IPF 

Age (SD)	

Definite IPF 

Age (SD)	

Probable IPF 

Age (SD)	

Controls 

Age (SD)	

Baseline 

serum 

samples	

N=38 

73.9 years 

(9.5)	

N=64 

74.0 years 

(7.8)	

N=46 

71.2 years 

(8.7)	

N=68 

73.6 years 

(8.1)	

N=64 

67.1 years 

(9.3)	

0 and 12 

month serum 

samples	

N=25 

73.8 years 

(9.1)	

N=13 

75.3 years 

(5.3)	

N=33 

71.0 years 

(8.1)	

N=47 

73.5 years 

(7.1)	

0	

Baseline 

BAL 

samples	

N=15 

66.9 years 

(9.0)	

N=17 

76.1 years 

(5.8)	

N=27 

71.3 years 

(6.8)	

N=35 

72.1 years 

(5.9)	

N=9 

62.6 years 

(7.8)	

0 and 12 

month BAL 

samples	

N=8 

69.6 years 

(10.3)	

N=8 

74.8 years 

(4.2)	

N=20 

71.3 years 

(7.5)	

N=24 

70.8 years 

(6.4)	

0	

 

 

 

2.2    Patient selection and study design for phase 2a  
         clinical trial of TD139 
 
I was Co-Investigator on a phase 2a clinical trial of TD139, an inhaled small molecule 

inhibitor for galectin-3. The study was designed, performed and funded by Galecto 

Biotech, a small company founded in 2011 in Lund, Sweden. Galectins have been 

shown to be involved in several pathological conditions and galectin-3 is a -galactoside 

binding lectin highly expressed in fibrotic lung and macrophages from IPF patients. 

Galectin-3 has many biological roles including cross-linking of cell surface and 

extracellular glycoproteins, modulating cell adhesion and signalling of cell surface 

receptors including TGF- and VEGF. This study was a randomised, double-blind, 

multicentre, placebo-controlled, phase 2a trial to assess the safety, tolerability, 
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pharmacokinetics (PK) and pharmacodynamics (PD) of TD139 in 24 IPF patients. 

Three dose cohorts of 8 subjects were recruited using a 5:3 ratio (active: placebo). 

Suitable patients were recruited from the Edinburgh Lung Fibrosis clinic. TD139 was 

inhaled using the Plastiape inhaler device at doses of 0.3mg, 3mg and 10mg once daily 

for 14 days. IPF patients underwent BAL prior to dosing and at 14 days. TD139 drug 

concentration was measured in the BAL cell pellets and plasma by laboratory staff at 

Simbec Research, BAL fluid samples for analysis of macrophage morphology, ex-vivo 

macrophage function, macrophage phenotypic and mRNA expression pattern and BAL 

analysis of protein biomarkers was performed by myself and Dr Alison MacKinnon, 

PhD. Samples from Royal Brompton Hospital, Newcastle University Hospital and 

Royal Devon and Exeter Hospital were also processed and analysed by myself.  

 

Galectin-3 expression on BAL macrophages was measured by flow cytometry by 

myself. Real time PCR was used to assess changes in a panel of pre-selected cytokines 

and mediators. 

 

Patient suitability for the trial was assessed in the 28 days prior to dosing by means of 

comprehensive screening which included informed consent, medical history, 

measurement of vital signs, physical examination, a 12-lead ECG, detailed lung 

function testing, urine screen and blood testing for a full blood count, kidney and liver 

function, and blood born virus screen. Suitable patients were then recruited into the trial 

and randomised to TD139 or placebo. Patients attended for BAL on day -1 and then 

received 14 days of treatment. Patients attended the clinical research facility on days -

1, 1, 2, 3, 7, 14 and 15 for assessments including vital signs, lung function testing, 12-

lead ECG, physical examination, blood testing for routine bloods and also PK/PD 

measurements, exhaled breath condensate for PD measurements and adverse event 

reporting. Patients were also reviewed at day 26 to 30 for a post-study assessment.  

 

Trial inclusion criteria were a male or female subject of non child-bearing potential with 

IPF confirmed at MDT, aged between 45 and 85 years of age, FVC >45% predicted and 

an FEV1/FVC ratio >0.7, TLCO >25%, oxygen saturations >90% on air, negative 

urinary drugs of abuse screen, negative HIV, hepatitis B and C screen, normal ECG, 

normal routine bloods and able to undergo BAL. Exclusion criteria included 

unacceptable risk for bronchoscopy, history of malignancy within 5 years, asthma, 
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active cigarette smoking, significant comorbidity limiting life expectancy to less than 

12 months, HRCT appearances of emphysema greater than fibrosis, evidence of poorly 

controlled diabetes or renal, hepatic, central nervous system or metabolic dysfunction 

or use of systemic immunosuppressants within 30 days of dosing, and participation in 

a previous clinical study of an unlicensed drug within 4 months. 

 
 
2.3      Protocols 

      2.3.1     Processing of BALF and serum 

BALF was filtered through a 40µm cell strainer and total cell count obtained using an 

automated NucleoCounter. BALF was then centrifuged at 1200rpm for 10 mins at 4°C 

and the supernatant was removed and stored at -80°C. Cells were resuspended in IMDM 

at a concentration of 1 million cells per ml for flow cytometry. One million cells were 

removed for cytospin processing, briefly 10x100µl aliquots were cytocentrifued onto 

superfrost glass slides at 300g for 3 mins. Slides were then placed in methanol for 2 

minutes and allowed to dry. One slide was then placed in DiffQuick Red for 2 minutes, 

then DiffQuick Blue for 90 seconds for staining.  

 

Serum samples were centrifuged at 2500rpm for 10 minutes at 4°C and then serum was 

collected and stored at -80°C. 

 

      2.3.2      Flow cytometry and Fluorescence   
                    Activated cell sorting (FACS) 
 

Whole blood (50µl) or BALF (100,000 cells) were incubated with antibodies against 

specific cell surface antigens (Table 9) for 30 minutes on ice. Unstained cells, single 

antibody stains and fluorescence minus one (FMO) controls were used. Erythrocytes 

were lysed by incubation at room temperature for 20 minutes in 650µl of FACSlyse. 

Samples were washed in 2ml PBS, centrifuged at 300g for 5 minutes and then 

reuspended in 450µl FACSlyse, for analysis using a LSR Fortessa cell analyser with 
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FACSDiva software. A SORT tube was prepared by adding 50ul PBS, 8ul CD14-

AF647, 8ul CD16-PE and 8ul HLA-DR-V450. BAL fluid cells were centrifuged at 

300g for 5 mins and resuspended in 800ul 1% serum and IMDM, then added to sort 

tube. Cells were incubated on ice for 20 mins, then 2mls sterile PBS added and 

centrifuged at 300g for 5 mins to wash. Cells were resuspended in 800ul 1% IMDM 

and taken to sorter with unstained sample. A BD FACSAriaII cell sorter was used with 

FACSDiva software. Cells were collected in 10% IMDM after sort, then pelleted and 

stored at -80°C. RNA extraction and cDNA conversion was then performed with future 

plans to perform qPCR on all AM, iPMLC and rPMLC pellets. FlowJo was used for 

data analysis. The gating strategies used to identify cell subpopulations within BAL 

fluid and blood are outlined in Figures 2 and 3. 

 

Table 9. Primary antibodies used for flow cytometry and FACS. 

Antibody	 Clone	 Fluorochrome	 Manufacturer and 

catalogue number	

Laser 

filter 	

AM, PMLC and neutrophil panel	

Anti-hCD14	 HCD14	 PerCP/Cy5.5	 BioLegend 325622	 Blue	

Anti-hCD16	 3G8	 APC/Cy7	 BioLegend 302018	 Red	

Anti-hHLA-DR	 G46-6	 V450	 BD Horizon 561359	 Violet	

Anti-hCD206	 15-2	 PE	 BioLegend 321106	 Y/G	

Anti-hCD71	 CY1G4	 FITC	 BioLegend 334104	 Blue	

Anti-hCD163	 GHI/61	 APC	 BioLegend 333610	 Red	

T cell panel	

Anti-hCD3	 UCHT1	 FITC	 BioLegend 300405	 Blue	

Anti-hCD4	 OKT4	 APC/Cy7	 BioLegend 317418	 Red	

Anti-hCD8	 	 AF647	 BioLegend	 	

FACS Panel	

Anti-hCD14	 M5E2	 AF647	 BioLegend 301818	 Red	

Anti-hCD16	 3G8	 PE	 BioLegend 302008	 Blue	

Anti-hHLA-DR	 G46-6	 V450	 BD Horizon 561359	 Violet	
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Figure 2. Flow cytometry gating strategies for alveolar macrophage polarisation 
phenotype. 

 
 

 A  B    C  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Flow cytometry gating strategies. Cells were identified in BAL fluid based 

upon their position on flow cytometry dot plots of size versus granularity (A). 

Alveolar macrophages (AM) were selected as HLA-DR+ (B), and were divided into 

CD206lowCD163low, CD206highCD163low and CD206highCD163high subpopulations 

based on cell surface CD163 and CD206 expression (C). PMLC: Pulmonary 

monocyte-like cells, N: Neutrophils, L: Lymphocytes. 
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Figure 3. Flow cytometry gating strategies for BAL fluid cells. 

A B C                                                                  
 

	

D                                   E 

 
			F                                G                                     H	

Figure 3. Flow cytometry gating strategies. Cells were identified in BAL fluid based upon their 

position on flow cytometry dot plots of size versus granularity (A). PMLCs were selected as 

HLA-DR+ (B), and were divided into rPMLC and iPMLC subpopulations based on their CD14 

and CD16 expression (CD14++CD16+ and CD14++CD16- respectively) (C). Lymphocytes (L) 

were further selected for CD3 expression (D) and then subdivided into CD8+ and CD4+ T-cells 

(E). Cells were identified in whole blood based upon their position on flow cytometry dot plots 

of size versus granularity (F). Blood monocyte subsets (M) were identified as HLA-DR+ (G), 

and were then subdivided into classical (c), intermediate (i) and non-classical (nc) monocyte 

subpopulations based on their CD14 and CD16 expression (H). AM: Alveolar macrophages, N: 

Neutrophils.  



57	
	

      2.3.3      ELISAs 

Analysis of cytokines and mediators in BALF and serum were performed using DuoSet 

ELISA kits from R&D Systems, according to the manufacturer’s instructions. All 

samples were ran in duplicate. Briefly, Capture Antibody was diluted to the working 

concentration in PBS and each well of a 96-well microplate was coated with 100L. The 

plate was sealed and incubated overnight at room temperature. Each well was then 

aspirated and washed with Wash Buffer (0.05% Tween 20 in PBS) a total of 3 times. 

The plates were then blocked by adding 300L of Reagent Diluent (1% BSA in PBS) 

and incubated at room temperature for 1 hour. The wash step was then repeated. Patient 

samples and standards were prepared to the working concentration in Reagent Diluent 

and 100L was added to each well, the plate was covered with an adhesive strip and 

incubated for 2 hours at room temperature. The wash step was then repeated. Detection 

Antibody was diluted to a working concentration in Reagent Diluent, and 100L was 

added to each well, the plate was covered with a new adhesive strip and incubated at 

room temperature for 2 hours. The wash step was repeated. One hundred microlitres of 

the working dilution of Streptavidin-HRP was added to each well, the plate was covered 

and incubated for 20 minutes at room temperature. The wash step was repeated. 

Substrate Solution (1:1 mixture of Colour Reagent A (H2O2) and Colour Reagent B 

(Tetramethylbenzidine)) was prepared and 100L was added to each well, then plates 

were incubated for 20 minutes at room temperature. Fifty microlitres of Stop Solution 

(2 N H2SO4) was added to each well, and mixed gently.  

  

 ELISA plates were analysed using a Synergy-HT microplate reader using Gen5 data 

analysis software. The optical density of each well was determined by setting the 

microplate reader to 450nm with wavelength correction set at 570nm to correct for 

optical imperfections in the plate.  

 

      2.3.4      Proteomic Arrays 

Initially, unbiased semi-quantitative commercially bought proteomic array kits were 

used to detect proteins of interest in BALF (R&D, Human Angiogenesis Array cat# 

ARY007, Human Chemokine Array cat# ARY017, Human Protease/Protease Inhibitor 
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Array cat# ARY025 and Human Soluble Receptor, Non-haematopoietic Panel Array 

cat# ARY012). Protocols were followed as per manufacturer’s instruction, however 

briefly capture antibodies were spotted in duplicate on nitrocellulose membranes, BAL 

samples were pooled, diluted and mixed with a cocktail of biotinylated detection 

antibodies and sample/antibody mixtures were then incubated with the array. Any 

analyte/detection antibody complexes present were bound by their cognate immobilised 

capture antibody on the membrane, Streptavidin-Horseradish Peroxidase and 

chemiluminescent detection reagents were then added, and a signal was produced in 

proportion to the amount of analyte bound. IPF Progressor and Non-Progressor groups 

were compared by pooling fluid containing 50µg of protein (protein determined via 

Pierce BCA assay, ThermoFisher cat# 23225) each from four IPF patients from each 

group. Pixel density was measured using ImageJ. Proteins from this array were selected 

on the basis of showing a 2-fold difference between IPF progressors versus IPF non-

progressors AND compatibility with the Luminex Magnetic Screening Assay kits 

(R&D) which was subsequently used to quantify the mediators. The proteins selected 

for the Luminex assay are reported in Table 10.  

 

Table 10. Analytes included in Luminex Magnetic Screening Assay.  

Analyte	 Analyte	 Analyte	 Analyte	

Amphiregulin	 Chi3-L1	 IL-10	 Osteopontin	

CCL2/MCP-1	
CXCL1/GRO 

alpha	

IL-12 p70	
Pentraxin 3	

CCL5/RANTES	 CXCL8/IL-8	 IL17E/IL-25	 Periostin/OSF-2	

CCL18/PARC	 CXCL10/IP-10	 IL-33	 SP-D	

CCL26/Eotaxin-3	 EGF	 MMP-1	 	

VEGF	 Galectin-3	 MIF	 	

	

	

Protocols were followed as per manufacturer’s instructions, however briefly analyte-

specific antibodies were pre-coated onto magnetic microparticles, microparticles, 

standards and samples were pipetted into wells and immobilised antibodies were bound 

to the analyte of interest, plates were washed, then a biotinylated antibody cocktail 

specific to analytes of interest were added, plates were again washed, then Steptavidin-
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PE was added to bind to the biotinylated antibody. Plated were again washed, then read 

using the Bio-Plex 200 HTF analyser (one LED identifies analyte and one determines 

magnitude of PE-derived signal, which is directly proportional to amount of analyte 

bound). Patients were categorised into Definite IPF Progressor, Probable IPF 

Progressor, Definite IPF Non-Progressor, Probable IPF Non-Progressor and Healthy 

Control groups. Luminex Magnetic Screening Assay was performed on BALF and 

serum, first in a Test Cohort of 4 patients per group, then in a Validation Cohort of 8 

patients per IPF group and 5 controls.  BALF was normalised to 10µg of protein per 

sample (protein determined via Pierce BCA assay, ThermoFisher cat# 23225) and 

serum was utilised at either 1:2 or 1:50 dilution depending on manufacturer’s 

instruction. Definite and probable IPF groups were combined to allow an N=24 IPF 

progressors and N=24 IPF Non-Progressors for statistical analysis.  

 

      2.3.5      RNA extractions 

RNA extraction was performed using Qiagen RNeasy Mini Kit (cat nos 74104 and 

74106) and the Quick Start Protocol, according to the manufacturer’s instructions. 

Briefly, RLT buffer mix was prepared by adding 50µl of mercaptoethanol to 5ml RLT 

buffer, 350µl of the mix was added to a cell pellet containing 1 million cells, and 

resuspended. Three hundred and fifty microlitres of 70% ethanol was added to the 

lysate, then 700µl of the sample was transferred to an RNeasy Mini spin column, and 

was centrifuged at 10,000 rpm for 1 minute. The flow-through was discarded and the 

column was washed by adding 700µl of RW1 buffer to the column and centrifuging for 

1 minute at 10,000rpm. Flow-through was discarded and 500µl of RPE buffer (with 

70% ethanol added) was added to each column and centrifuged at 10,000rpm for 1 

minute. The RPE wash was repeated with a further 500µl of RPE buffer. Samples were 

centrifuged at 10,000rpm for another minute, flow through was discarded and the 

RNeasy spin column was placed in a new 2ml collection tube. Samples were then 

centrifuged at 10,000rpm for 2 minutes. The column was placed in a new 1.5ml tube 

and 30µl of RNAse-free water was pipetted onto the membrane. Samples were 

centrifuged for 1 minute at 10,000rpm and the column discarded. A NanoDropTM 1000 

spectrophotometer (Thermo Scientific) was used to directly quantify 1µl of RNA 
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sample. The purity of all RNA samples were confirmed by having the optimal ratio of 

absorbance at 260 nm/280 nm (1.9-2.3) and 260 nm: 230 nm (>2.2).  

 

    2.3.6       Reverse transcription and quantitative PCR 

Reverse transcription was performed using Qiagen QuantiTect Reverse Transcription 

Kit (cat nos 205310, 205311, 205313 and 205314). All protocols were followed 

according to manufacturer’s instructions. Briefly, 12 µl of RNA (1-2µg) and 2µl of 

DNA wipe-out buffer were added to each PCR tube and incubated for 5 minutes at 42C. 

The Reverse-transcription master mix was prepared and 6 µl of the mix was added to 

each PCR tube (1 µl of Quantiscript Reverse Transcriptase (RT), 1 µl of RT primer mix 

and 4 µl of Quantiscript RT buffer), making a total volume of 20 µl per tube. Samples 

were incubated at 42C for 30 minutes and then 95C for 3 minutes, the latter being to 

inactivate the reaction.  

 

The expression of genes of interest was quantified by qPCR using an ABI PRISM® 

7000 Sequence Detection System (Applied Biosystems) and the QuantiTect SYBR 

Green PCR Kit (Qiagen). Complementary DNA was diluted to a 1:10 dilution by adding 

180µl of RNAse-free water to each 20µl cDNA sample to make the template. Eight 

genes of interest were selected and primer mixes with forward and reverse primers were 

prepared for actin (house-keeping), galectin-3, CCL18, CD163, CD206, TGF, IL-10 

and CD80. Each reaction mixture contained 5µl QuantiTect SYBR Green PCR master 

mix, 4µl of cDNA template and 1µl of primer to a final volume of 10µl. Each reaction 

was performed in duplicate in a 384-well plate (Applied Biosystems) under the 

following thermocycling conditions: 15 min at 95 °C for initial activation and then 40 

cycles of 15 s at 94 °C, 30 s at 56 °C and 30 s at 72 °C. The controls, including no 

reverse transcriptase and no template control, produced no amplification.  
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2.4     Statistical analysis 

GraphPad prism (version 6, GraphPad Software Inc., CA, USA) was used for data 

analysis. Normally distributed data were analysed by unpaired or paired t-test and 

expressed as mean (SD). Data that were not normally distributed were reported as 

median (interquartile range) and analysed by Mann Whitney U test or Wilcoxon signed 

rank test. Kruskal-Wallis test with Dunn’s Multiple Comparison Test was used to 

calculate differences between multiple groups. Predictors of mortality and disease 

progression by diagnostic category were estimated using Cox models on SPSS. P values 

of <0.05 were considered significant. 
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Chapter 3    
     Clinical trial eligibility and surgical lung 
      biopsy in the Edinburgh IPF cohort 
 
3.1      Introduction 

    3.1.1      General introduction 

The interstitial lung diseases are a protean group of lung disorders with substantial 

overlap in terms of diagnosis, prognosis and management. Idiopathic pulmonary 

fibrosis is the commonest fibrotic ILD and is characterised by chronic and progressive 

lung scarring with a median survival time of 3- 5 years and no curative therapy. In 2011, 

the American Thoracic Society (ATS), European Respiratory Society (ERS), Japanese 

Respiratory Society (JRS) and the Latin-American Thoracic Society (ALAT) published 

an international evidence-based guideline on the diagnosis and management of IPF. 

This guideline was revised in 2013. The consensus statement recommended that for a 

diagnosis of IPF, known causes of ILD such as domestic or occupational environmental 

exposures, connective tissue disease and drug toxicity must first be excluded. IPF could 

be diagnosed definitively in patients with an Usual Interstitial Pneumonia (UIP) pattern 

on HRCT scanning, comprising reticular abnormalities, subpleural and basal disease 

predominance, honeycombing with or without traction bronchiectasis and an absence 

of features listed as ‘inconsistent with UIP’ pattern. In patients without honeycombing, 

a diagnosis of ‘possible IPF’ is made. The guideline is clear that if honeycombing is 

absent on HRCT then the diagnosis is regarded as ‘possible IPF’ and further 

investigation by means of surgical lung biopsy is required1.  The histopathologic criteria 

for IPF are also described as UIP pattern, and include temporally heterogeneous areas 

of fibrosis and subepithelial fibroblastic foci. The diagnosis of IPF requires an 

integrated multidisciplinary approach involving ILD specialist respiratory physicians, 

radiologists and pathologists. However, even with the benefits of an experienced ILD 

MDT and surgical lung biopsy, around 10% of ILD patients are deemed to have 

unclassifiable disease, with significant overlap between conditions67. Diagnostic 
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uncertainty can have major implications in terms of uncertainties in management. In 

recent years landmark phase 3 clinical trials in IPF have changed clinical practice. The 

generalisability of clinical trial data to real world patients is of importance to patients 

and clinicians. These well-executed studies have used similar end-points but their 

selection criteria have differed. These differences have arisen because in general 

efficacy-driven clinical trials strive to avoid heterogeneity amongst trial subjects and to 

enrich subjects that will meet the primary end-point, decline in FVC in the case if IPF 

trials.  

 

The diagnostic criteria for IPF have been established since the ATS/ERS/JRS/ALAT 

consensus document of 20111. However in real-world practice, diagnostic criteria used 

for IPF have evolved organically based on new knowledge of disease phenotype and 

disease progression. For example in elderly patients, clinicians increasingly make a 

multidisciplinary team diagnosis of IPF based on an HRCT pattern that is deemed 

‘possible UIP’ by 2011 consensus criteria, without lung biopsy1,16,68,69. Diagnostic 

criteria for IPF in clinical trials is also evolving as exemplified by eligibility criteria for 

the INPULSIS trials which allowed subjects that were not biopsied but had ‘possible 

UIP plus bronchiolar dilatation’ on HRCT scanning25,70, a pattern which was not based 

on the 2011 consensus document. Diagnostic classification is particularly important 

because the treatment of IPF is different from that of the more immunologically driven 

ILDs such as non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity 

pneumonitis which may respond or even resolve with anti-inflammatory and 

immunosuppressive therapy70,71.  In contrast corticosteroids and azathioprine have been 

shown to be harmful in IPF21. Furthermore the emergence of two FDA approved drug 

treatments for IPF make establishing a precise diagnosis increasingly relevant in 

everyday clinical practice.  

 

    3.1.2      Hypothesis and aims 

Accurate phenotyping of patients in routine clinical practice also enhances the value of 

epidemiological studies. Whilst there are numerous reports of the natural history of 

ILDs in the literature, the vast majority have inherent bias because they are derived 

from specialist tertiary referral centres and are not consecutively present incident cases 
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or, in the case of IPF in particular, they are derived from subgroups of patients enrolled 

into the placebo arm of clinical trials. One way of assessing generalisability of clinical 

trial subjects to real-world patients is to compare the natural history of disease in 

patients deemed eligible or non-eligible. We aimed to describe the natural history of 

patients with IPF phenotyped according to PANTHER, CAPACITY, ASCEND and 

INPULSIS eligibility criteria. We hypothesised that survival and lung function decline 

would differ between eligible and non-eligible patients both within and between studies.  

 

There is also a definite need to better define the risks and potential value of SLB in 

suspected IPF, and to understand the true natural history of well defined groups of ILD 

patients in an unbiased setting. Surgical lung biopsy enhances diagnostic certainty, 

however biopsy rates and thresholds in ILD vary72, a reflection of the perceived risks 

of the procedure and the perceived actual diagnostic value in an individual, enhanced 

by the more recent observation that patients with advanced age predicts a UIP biopsy 

in patients17. Across all of the ILDs the 30-day mortality and morbidity are 2-4% and 

10-18% respectively73,74 The recent single-centre retrospective study by Fell et al 

showed that in biopsied patients aged over 70 years with ‘fibrotic’ appearances on 

HRCT, 95% had UIP confirmed at biopsy, implying that advanced age is a strong 

predictor for IPF17.  However the positive predictive value for UIP depends on the 

underlying prevalence of IPF in the population and the diagnostic value and mortality 

of SLB specifically in ‘possible UIP’ based on strict ATS/ERS criteria have not been 

described.  

 

We aimed to determine the mortality, complication-rate following elective SLB and the 

clinical utility of SLB in suspected idiopathic interstitial pneumonia, stratified 

according to HRCT category, in our population of consecutively presenting incident 

cases of ILD. We hypothesised that an underlying UIP pathological pattern may result 

in increased risk of death. Additionally we sought to determine the positive-predictive 

value of biopsy to diagnosis of IPF in patients with ‘possible UIP’ HRCT pattern in our 

population.   
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    3.1.3      Methodology 

 
Patient selection 

The Edinburgh Lung Fibrosis research database was established in 2002, and was 

designed to capture the natural history of ILD patients referred to the specialist adult 

ILD clinic. All subjects were fully consented and ethical approval was obtained for all 

relevant protocols and procedures (LREC 06/S0703/53). The dataset from 01/01/02 – 

31/12/13 is summarised in Figure 4. Study cohorts consisted of locally referred, 

consecutively presenting, incident patients with ILD presenting since 01/01/02. For all 

patients, diagnosis, investigation, management and follow-up was as per the Edinburgh 

local policy. This included a detailed clinical history, examination, autoantibody screen 

(PR3 and MPO ANCA, immunoglobulins IgA, IgG and IgM, aspergillus precipitans, 

avian precipitans, farmers lung precipitans and CTD screen including ANA, DNA, C3, 

C4, CCP and ENA screen (antibodies to Ro, La, Sm, RNP, Scl70, Jo1)), HRCT and 

pulmonary function testing. Follow-up included lung function testing at a minimum of 

3 monthly and maximum of 6 monthly for at least 3 years. Disease progression was 

defined as death or 10% decline in VC over any 12 month period. Patients deemed to 

be stable at 3 years had at least 12 monthly lung function testing. Three subjects (less 

than 1% of the cohort) were lost to follow-up. The mean duration of follow-up was 3.4 

years (range 8 days to 12.8 years). Less than 2% of the IPF cohort received IPF-directed 

therapy including prednisolone >30mg/day, azathioprine or N-acetylcysteine. No 

patients received pirfenidone or nintedanib and only one subject was recruited to a 

phase 3 clinical trial in the period relevant to this study. All HRCT scans were reviewed 

by an expert thoracic radiologist with 20 years experience and discussed in a 

multidisciplinary meeting with at least two respiratory physicians with ILD 

subspecialty expertise of at least 10 years experience. Prior to 2011, we categorised 

HRCT patterns as Category 1 >95% confidence of UIP, Category 2 70% confidence of 

UIP or Category 3 <70% confidence of UIP based on local criteria that were identical 

to the 2011 ATS/ERS ‘definite’, ‘possible’ and ‘inconsistent with’ UIP criteria except 

for the following1; 1. We defined ‘basal dominance’ as >50% of the ILD is below the 

inferior pulmonary veins. ATS/ERS/JRS/ALAT criteria has no definition of ‘basal 

dominance’. 2. We defined ‘honeycombing’ if cysts are 2mm and there is at least one 
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site where there is a ‘stack’ of more than one row of cyts. ATS/ERS criteria do not 

specifically define ‘honeycombing’. 3. For HRCTs that exhibited diffuse mosaic 

attenuation, we categorised the scan as ‘inconsistent with UIP’ if the mosaicism was 

the ‘dominant’ pattern of disease. ATS/ERS/JRS/ALAT criteria defined diffuse 

mosaicism involving both lungs and in three or more lobes as ‘inconsistent with UIP’1.  

A retrospective analysis of 100 randomly selected HRCT scans pre- and post 2011 

showed that reclassification according to Edinburgh and ATS/ERS criteria occurred in 

2% of patients (data not shown). In patients with possible UIP HRCT appearances, 

surgical lung biopsy was performed after consideration of disease severity, 

comorbidities and the patient’s wishes. Lung histology was reviewed in a 

multidisciplinary meeting by an experienced pulmonary pathologist with 20 years lung 

pathology experience and a member of the UK ILD pathology reference panel. All 

diagnoses of definite and possible IPF were made by multidisciplinary integration of 

clinical, HRCT and where available histological findings, and were made based on the 

ATS/ERS/JRS/ALAT consensus guideline1. 
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Figure 4. The Edinburgh Lung Fibrosis Research Cohort from 2002 -2013. 
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Allocation of patients according to trial eligibility criteria 

Published eligibility criteria for PANTHER, CAPACITY, ASCEND and INPULSIS 

trials were applied to the Edinburgh cohort and patients were excluded hierarchically 

based on diagnostic certainty (definite vs possible IPF), then on lung function criteria 

and then on age criteria21,22,24,25. Other eligibility/ non-eligibility criteria that were 

defined in the protocols of these trials, such as co-morbidities, history of cancer or 

walking distance were not applied to our Edinburgh cohort, Figure 5. 

 

Figure5.  Clinical trials exclusion criteria applied to Edinburgh cohort. 
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Data sources and measurement 

Using a standard protocol I reviewed electronic case-notes, and HRCT images and 

reports on PACS to identify a) indication for biopsy (e.g. suspected ILD) and b) baseline 

characteristics likely predictive of final diagnosis (e.g. presence of known cause of 

fibrotic lung disease, lung function, and HRCT appearance categorised into ‘definite 

UIP’, ‘possible UIP’ and ‘inconsistent with UIP’ based on ATS/ERS criteria and the 

virtually identical Edinburgh pre-defined criteria. Cause of death and hospitalisation 

and rates of complication post SLB (including pain, persistent leak, pneumonia etc) 

were obtained from electronic case note review (including PACS). Results obtained 

from coding were validated by review of electronic and paper case notes. I assessed risk 

factors for mortality using multiple logistic regression, adjusting for age, gender, 

smoking status, type of operation (thoracoscopic versus open), baseline lung function 

(percentage of predicted FVC and TCO) and co-morbidity. Post-operative 

complications were assessed using the Clavien-Dingo Classification of Surgical 

Complications grading system, this is described in Table 1175. 

 

Table 11. Clavien-Dingo Classification of Surgical Complications. 

Grade	 Definition	

Grade  I	 Any deviation from the normal postoperative course without the need for 
pharmacological treatment or surgical, endoscopic and radiological 
interventions.	

Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, 
analgetics, diuretics and electrolytes and physiotherapy. This grade also 
includes wound infections opened at the bedside.	

Grade  II	 Requiring pharmacological treatment with drugs other than such allowed for 
grade I complications. Blood transfusions and total parenteral nutrition are 
also included.	

Grade  III	Requiring surgical, endoscopic or radiological intervention	

Grade IV	 Life-threatening complication (including CNS complications)‡ requiring 
IC/ICU-management. Also including single and multi organ dysfunction	

Grade V	 Death of a patient	
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Statistical analysis 

Normally distributed data were expressed as mean (standard deviation) and data that 

were not normally distributed were reported as median (interquartile range). Kaplan-

Meier survival curves were calculated using IBM SPSS Statistics (IBM Corp. Released 

2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp), 

differences in survival curves were evaluated using the log-rank test. IBM SPSS 

Statistics (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. 

Armonk, NY: IBM Corp) was also used to perform survival curves and cox proportional 

hazards modelling to identify predictors of mortality and disease progression and to 

adjust for the following factors contributing to mortality: age, sex, smoking status, 

height, baseline percentage predicted FVC, baseline percentage predicted TCO, and 

eligibility group. The estimated trial and group-specific FVC decline rates reported are 

derived from an unconditional linear growth model; the estimates thus represent the 

average FVC decline rate for patients in each group. GraphPad prism (version 6, 

GraphPad Spftware Inc., CA, USA) was also used for data analysis. Normally 

distributed data were analysed by unpaired or paired t-test and expressed as mean (SD). 

Data that were not normally distributed were reported as median (interquartile range) 

and analysed by Mann Whitney U test or Wilcoxon signed rank test. Kruskal-Wallis 

test with Dunn’s Multiple Comparison Test was used to calculate differences between 

multiple groups. P values of <0.05 were considered significant. Patients with missing 

values were excuded from statistical analysis. Missing patient data in demographics is 

highlighted in each table in the results section appropriately. 
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3.2      Results  

    3.2.1     The natural history of IPF in the Edinburgh  
                 IPF patient cohort 
 
 
Patient data and demographics 

There were 377 patients with a diagnosis of definite or probable IPF recorded on the 

Edinburgh Lung Fibrosis Clinical database between 01/01/02 and 31/12/14. The mean 

age (SD) for all IPF patients was 74.0 (8.6) years and 229 (60.7%) were male. 157 

patients had definite IPF while 220 had probable IPF. Age, smoking status and baseline 

FEV1 and FVC were similar for both, but those with definite IPF had lower TCO percent 

predicted and less emphysema at baseline than those with probable IPF. This is 

described in table 12 below. 

Table 12. Patient demographic and baseline lung function data. 

	 All patients	 Definite IPF	 Probable IPF	 P-value 
N	 377	 157	 220	  
Age in years (SD)	 74.0 (8.6)	 73.0 (9.4)	 74.0 (8.2)	 0.159 

Male sex (%)	 229 (60.7)	 95 (60.5) 	 125 (56.8)	 0.473 

Never smoked (%)	 93 (24.7)	 36 (22.9)	 55 (25.0)	 0.639 

Smoked <20 pack years (%)	 71 (18.8)	 23 (14.6)	 48 (21.8)	 0.078 
Smoked 20-40 pack years (%)	  118 (31.3)	 54 (34.4)	 64 (29.1)	 0.275 
Smoked > 40 pack years (%)	 48 (12.7)	 19 (12.1)	 29 (13.2)	 0.753 
Current Smoker (%)	 47 (12.5)	 25 (15.9)	 22 (10.0)	 0.088 
Height in metres (SD)	 1.66 (0.10)	 1.67 (0.10)	 1.65 (0.10)	 0.897 
FEV1 in Litres (SD)	 2.17 (0.63)	 2.16 (0.65)	 2.18 (0.62)	 0.536 
FEV1 percent predicted (SD)	 92 (21)	 89 (22)	 95 (20)	 0.087 
VC in Litres (SD)	 2.73 (0.82)	 2.68 (0.84)	 2.77 (0.81)	 0.667 
VC percent predicted (SD)	 90 (21)	 85 (22)	 94 (20)	 0.075 
TCO mm/min/mmHg (SD)	 4.05 (1.42)	 3.95 (1.29)	 4.12 (1.51)	 0.105 
TCO percent predicted (SD)	 53.0 (16.0)	 50.3 (15.2)	 55.3 (16.4)	 0.003 
Emphysema 0% (%) 188 (49.8) 113 (72) 75 (34.1) <0.0001 
Emphysema 1-5% (%)	 110 (29.2) 40 (25.5) 70 (31.8) 0.185 
Emphysema 5 to 19.9% (%)	 53 (14)	 13 (8)	 40 (18)	 0.006 
Emphysema ≥20% (%)	 26 (7)	 15 (10)	 11 (5)	 0.062 
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No patients were lost to follow-up. Two hundred and twenty five patients died during 

follow-up and the remainder were censored at November 21st 2014. Median (inter-

quartile range (IQR)) follow-up for survivors was 44 (30-61) months. Patients were 

followed-up for a median of 5 visits (IQR 3 to 8) over a median of 2.5 years (IQR 1 to 

4). One or more visits were missed for 69 patients, the majority of whom (56) missed 3 

or fewer visits.  

 

Of the patients with HRCT appearances indicative of ‘probable UIP’, in whom surgical 

lung biopsy under the current guidelines would be advocated, 14.1% (36/255) 

underwent the procedure. Those who had a biopsy were on average younger (66.2 vs 

75.5 years) and had higher absolute FVC and TCO values (3.28 vs 2.68 and 4.30 vs 

3.38 respectively) but similar percent predicted FVC and TCO values (87.0 vs 89.1 and 

48.0 vs 47.3) to patients who did not have a biopsy. 

 

Mortality 

Overall, 225 patients (59.7%) died during the follow-up period. One hundred patients 

(63.7%) with definite IPF and 125 patients (56.8%) with probable IPF died during 

follow-up (Table 13). Median survival was worse for patients with definite IPF than 

with probable IPF (3.4 and 4.5 years respectively, Table 13). The unadjusted hazard 

ratio for death for patients with definite compared to probable IPF was 1.42 (95% CI 

1.08 to 1.87, P=0.013) however the association was attenuated after adjusting for 

gender, age, FVC, TCO and smoking status at baseline, with a hazard ratio of 0.79 (95% 

CI 0.59 to 1.05, P=0.106). Compared to patients with probable IPF, the difference in 

mortality was greater for patients with definite IPF confirmed on HRCT than on biopsy 

(HR 1.72; 95% CI 1.26 to 2.36, P=0.001, and HR 0.941; 95% CI 0.61 to 1.45 

respectively). Mortality was also greater in patients with definite UIP on HRCT, than 

patients with definite IPF with a probable UIP HRCT and UIP biopsy, 3.0 years versus 

5.80 years, HR 1.72 (95% CI 1.13 to 2.61). This data is shown in Figure 6 below. 
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Table 13. Mortality by diagnostic category and CT phenotype. 

	 Definite IPF	 Probable IPF	 P-value	
N	 157	 220	 	

Deaths	 100	 125	 0.179 

Median survival  in 
years (IQR)	

3.4 (1.32, 4.25)	 4.5 (1.40, 5.19)	 0.013 

Hazard ratio  
Unadjusted (95% CI)	

1.42 (1.08 to 
1.87)	

1	 0.013	

Hazard ratio 
Adjusted (95% CI)	

0.79 (0.59 to 
1.05)	

1	 0.106	

 

Figure 6. Mortality in definite vs probable IPF. 

 



74	
	

Baseline VC was the most important predictor of mortality, and very similar hazard 

ratios according to baseline VC were found for patients with definite IPF (HR 0.90 per 

100ml; 95% CI 0.86 to 0.95, P<0·001) and probable IPF (HR 0.91 per 100ml; 95% CI 

0.85 to 0.97, P= 0·004) across the follow-up period. 

 

Decline in VC 

The average overall absolute decline in VC in all IPF patients (definite and probable) 

was calculated using linear mixed models by Dr David McAllister, PhD, and was found 

to be 115 (standard deviation 109) ml/year. Patients who died during the follow-up 

period had a faster decline in FVC than those who did not (90 ml/year faster decline; 

95% CI 50.0 to 140.0, P<0.001). Patients with definite IPF had an estimated decline in 

FVC of 157 ml/year and patients with probable IPF had an 85 ml/year decline 

(difference 71 ml/year, 95% CI 26.0 to 117.0 ml/year, P=0.001). These findings were 

similar after adjusting for age, sex and smoking status at baseline. Rates of FVC decline 

were also similar regardless of whether or not definite IPF was confirmed on biopsy 

(difference 73 ml/year, 95% CI 8.0 to 138.0 and difference 63 ml/year, 95% CI 9.0 to 

117.0 respectively, P=0.267). Similar differences in decline in lung function were 

evident for VC percent predicted. 

 

TLCO  

TLCO was not obtained at baseline in 45 (11.9%) patients, because of poor test 

compliance or advanced disease, all of whom subsequently died. The median survival 

in patients with and without baseline TLCO measures was 4.58 years (IQR 1.44, 5.27) 

and 2.64 years (IQR 0.90, 2.85) respectively (P<0.0001). Mortality between the two 

groups remained significantly different when the curves were adjusted for age, sex, 

smoking status and baseline percentage predicted FVC (P<0.0001). When the cohort 

was split into definite and probable IPF groups, mortality remained significantly 

different in those able to perform a baseline TCO measurement compared to those who 

could not. In the definite IPF group, median survival was 3.91 years (IQR 1.33, 4.67) 

versus 2.04 years (IQR 1.06, 2.85) (P=0.034 adjusted) and in the possible IPF group, 
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median survival was 4.80 years (IQR 1.54, 5.48) in those with a baseline TCO value 

and 2.85 years (IQR 0.89, 2.84) in those who were unable to perform the test (P=0.002 

adjusted). Among the 88.1% of patients in whom it was measured, lower TCO at 

baseline was associated with higher mortality in patients with definite IPF (HR 2.38 per 

mmol/min/kPa; 95%CI 1.67 to 3.33, P<0·001) and probable IPF (HR 1.61 per 

mmol/min/kPa; 95%CI 1.22 to 2.13, P=0·004) adjusting for age, sex and smoking 

status. Change in TLCO over the initial 6 months of follow-up was measured in 284 

(75%) patients, among whom a 15% decline in TLCO relative to baseline was 

associated with increased mortality (HR 1.85; 95%CI 1.05 to 3.25, P=0·03). Decline in 

TCO over time was calculated by Dr David McAllister, PhD, and was found to be 0.37 

mmol/min/kPa/year in the definite IPF group and 0.26 mmol/min/kPa/year on those 

with possible IPF (difference 0.11 mmol/min/kPa/year; 95%CI 0.02 to 0.20, P=0·01).  

 

    3.2.2     Recent clinical trial eligibility criteria applied  
                 to the Edinburgh IPF cohort 
 
Patient data and demographics 

Between 01/01/02 and 31/12/14, around 1396 locally referred, consecutive patients 

with suspected ILD presented to the Edinburgh Lung Fibrosis clinic. Seven hundred 

and twelve patients had suspected IIP, with 377 patients having a working diagnosis of 

IPF. Of the 712 patients, 139 underwent surgical lung biopsy to confirm the diagnosis. 

Of the biopsied patients, 43 were confirmed as UIP, and 96 had another IIP or 

unclassifiable fibrosis. Of the 450 patients that were not biopsied, 114 had ‘definite 

UIP’ HRCT appearances, 220 had ‘possible UIP’ HRCT appearances and 116 had 

HRCT appearances deemed ‘inconsistent with UIP’. Based on the 

ATS/ERS/JRS/ALAT IPF diagnostic criteria, 157 patients were categorised as ‘definite 

IPF’ and 220 patients were given a working diagnosis of IPF or ‘possible IPF’. The 

baseline demographics of patients included in the Edinburgh IPF study cohort are 

displayed in Table 14. For the survival analyses, the date of presentation was defined 

as the patient’s first HRCT scan confirming ILD. The census date was 21/11/14. Only 
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one patient underwent a lung transplant thus a time-to transplant or death analysis was 

not performed. 

Table 14. Patient demographics of the Edinburgh IPF study cohort. 

	 ALL IPF 

 

 

N=377	

DEFINITE IPF 

 

 

N=157	

WORKING 

DIAGNOSIS 

IPF 

N=220	

P-value 

DEFINITE IPF?	 30.8% met 

‘definite UIP’ 

criteria on HRCT 

 

41.6% were 

diagnosed with 

IPF based on 

ATS/ERS/JRS/A

LAT criteria	

	 	 	

Surgical lung biopy 

(%)	

43 (11.4)	 43 (27.4)	 0	 N/A 

Age (SD)	 74.0 (8.6)	 73.0 (9.4)	 74.0 (8.2)	 0.159 

Male (%)	 229 (60.7)	 95 (60.5)	 125 (56.8)	 0.473 

Never smoked (%)	 93 (24.7)	 36 (22.9)	 55 (25.0)	 0.639 

FVC  % predicted  90.5 (76.5,106.6)	 89.4 (70.4,100.9)	 92.3 (79.4,109.9)	 0.075 

TCO % predicted  50.8 (31.7,61.2)	 47.7 (38.4,57.4)	 51.9 (41.0,66.8)	 0.003 

Data presented as median (interquartile range) unless otherwise stated 

 

Baseline and Longitudinal lung function 

Clinical evaluation and baseline pulmonary function testing were performed within 3 

months of presentation in most patients (305 of 377, 80.9%). Patients unable to perform 

baseline VC or TLCO were deemed non-eligible for recruitment, consistent with the 

study protocol for all 4 of these trials. Eight patients did not have any baseline 

spirometry; 4 were deemed too frail, 2 were unable to perform the test due to dementia, 

1 patient died prior to PFT testing and 1 patient declined testing. Forty five patients did 

not have a TCO performed at baseline as they were too frail to perform the test. Baseline 

PFT data were consistent with IPF in the majority of cases. There were 254 of 369 
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(68.8%) patients with a normal baseline FVC (defined as >80% predicted) and 21 of 

332 (5.7%) with a TCO ≥80% predicted.  Only 20 out of the 369 patients (5.4%) had a 

normal FVC and TCO at presentation. Of the 254 patients with normal baseline FVC, 

follow-up at 12 months revealed 48 patients were deemed too frail to undergo further 

PFTS, and 45/206 (21.8%) patients had suffered an FVC decline of ≥10%, with 25/206 

(12.1%) below the 80% threshold of normality. There were also 8 deaths (3.1%) in this 

group. There were 104/369 (28.2%) with an FVC of 50-79% of predicted at baseline. 

At 12 month follow-up, 25 patients were too frail for further PFTs and 19/79 (24.1%) 

had a ≥10% decline in FVC. There were 14 deaths (13.5%) in this group. There were 

11/369 (3.0%) patients with a baseline FVC of <50% predicted. Follow-up at 12 months 

revealed 6 patients were too frail for further PFTs and 2/5 (40.0%) had a ≥10% decline 

in FVC. There were 3 (27.3%) deaths in this group.  

 

Of the 21 patients with normal TCO at baseline, at 12 month follow-up, 2 patients were 

deemed too frail for further PFTs, and 9/19 (47.4%) patients had suffered a TCO decline 

of ≥10%, with 9/19 (47.4%) below the 80% threshold of normality. There were no 

deaths in this group. There were 150/332 (45.2%) patients with a baseline TCO of 50-

79% of predicted and 52/102 (51.0%) had a ≥10% drop in % predicted TCO at 12 

months. Thirty one patients were deemed too frail for further PFTs. There were 3 (2.0%) 

deaths in this group. There were 161/332 (48.5%) patients with a TCO of <50% 

predicted at baseline, of those, 52 were too frail to undergo repeat PFTs at 12 months 

and 40/109 (36.7%) had suffered a ≥10% decline in %predicted TCO. There were 12 

(7.5%) deaths in this group.   

 

The annualised VC rate of decline was also estimated for patients in ‘definite IPF 

eligible’, ‘definite IPF ineligible’ and ‘possible IPF non-eligible’ groups based on 

eligibility criteria for each of the 4 trials. This data is shown in Figure 7 below. 
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Figure 7. Annual rate of VC decline in Edinburgh cohort grouped by PANTHER, 

CAPACITY, ASCEND and INPULSIS eligibility criteria. 

STUDY	 Definite IPF 
eligible	

Definite IPF 
ineligible	

Working 
diagnosis IPF	

P-value  

definite IPF 
eligible vs 
definite IPF not 
eligible 

PANTHER	 -149.1 ml/yr 
(95%CI -
179.9, -118.3)	

-158.0 ml/yr 
(95% CI -
244.4, -71.8)	

-101.6 ml/yr 
(95% CI -128.9, 
-74.3)	

<0.001 

CAPACITY	 -161.0 ml/yr 
(95% CI -
195.7, -126.2)	

-124.4 ml/yr 
(95% CI -
184.6, -64.2)	

-101.6 ml/yr 
(95% CI -128.9, 
-74.3) 

<0.001 

ASCEND	 -168.1 ml/yr 
(95% CI -
239.8, -96.4)	

-137.4 ml/yr 
(95% CI -
170.2, -104.6 

-101.6 ml/yr 
(95% CI -128.9, 
-74.3)	

<0.001 

	 IPF eligible	 IPF ineligible	 Working 
diagnosis IPF 
non-eligible	

P-value (95% 
CI) definite IPF 
eligible vs 
definite IPF not 
eligible	

INPULSIS	 -126.6 ml/yr 
95% CI -
151.2, -102.4)	

-103.3 ml/yr 
(95% CI -
176.6, -29.9)	

-102.5 ml/yr 
(95% CI -135.2, 
-69.7)	

0.006 

 

PANTHER  

When eligibility criteria for the PANTHER trial were applied to the Edinburgh IPF 

cohort21, 377 IPF patients were screened and of those, 110 (29.2%) definite IPF patients 

would have been eligible for the trial. Two hundred and twenty patients were excluded 

as they did not meet HRCT and/or lung biopsy criteria, 10 patients were excluded as 

baseline FVC was <50% predicted, 28 were excluded as baseline TLCO was <30% 

predicted and 3 were excluded as baseline FEV1:FVC ratio was <0.65. Six patients were 

excluded as they were aged <35 or >85 years. Demographic data for patients with 
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definite IPF and eligible for PANTHER, definite IPF and non-eligible for PANTHER 

and working diagnosis of IPF, therefore excluded from PANTHER are shown in Table 

15 below. 

Table 15. Edinburgh IPF cohort patient demographic data based on eligibility for 

PANTHER trial . 

	 ELIGIBLE	 NON-
ELIGIBLE	

Working 
diagnosis IPF	

P-value 
eligible vs 
non-eligible 

Number	 N=110	 N=47	 N=220	  

AGE (years)	 71 (8.8)	 77 (9.8)	 74 (8.0)	 0.0004 

FVC  % pred	 92·7 (21·5)	 81·1 (27·1)	 93·8 (23·5)	 0.017 

TLCO % pred	 51·7 (12·1)	 32·7 (16·2)	 53·4 (17·2)	 <0.0001 

Data presented as mean (standard deviation) 

 

There were significant differences in patient age and lung function (% predicted FVC 

and % predicted TLCO) between the three groups. Survival curve analysis showed there 

were significant differences in mortality amongst the three groups with the median 

survival in the ‘Definite IPF Eligible’ group reported as 5.41 years (IQR 1.57, 5.45), 

compared to 1.91 years (IQR 0.87, 2.74) in the ‘Definite IPF Non-eligible’ group and 

4.49 years (IQR 1.40, 5.19) in the ‘Working diagnosis of IPF’ group (P<0.0001). The 

unadjusted hazard ratio for patients ineligible versus eligible for PANTHER was 4.49 

(95% CI 2.59-7.80, P<0.001).  Cox proportional hazards modelling revealed sex, 

eligibility group and baseline % predicted TCO were all significant predictors of 

mortality (P=0.001, P=0.037 and P<0.0001 respectively). Using cox proportional 

hazards modelling, the curves were adjusted for age, sex and smoking status which 

revealed a hazard ratio for patients with ‘definite IPF’ and ineligible versus ‘definite 

IPF’ and eligible of 2.62 (95% CI 1.68 – 4.09, P<0.0001). The hazard ratio for patients 

with ‘possible IPF’ and therefore ineligible, versus ‘definite IPF’ and eligible was 0.94 

(95% CI 0.68 – 1.28, P=0.667). The curves were then adjusted for age, sex, smoking 

status, height, baseline %predicted FVC and %predicted TLCO, which significantly 
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improved the model and reported a hazard ratio for patients with ‘definite IPF’ 

ineligible versus eligible for the PANTHER trial of 1.65 (95% CI 1.04 – 2.64, P=0.035) 

and ‘possible IPF ineligible’ versus ‘definite IPF eligible’ of 0.95 (95%CI 0.69 – 1.31, 

P=0.767). The annual VC rate of decline was also estimated for each of the three groups 

and was reported as -149.1ml (95%CI -179.9, -118.3, P<0.001) in the ‘definite IPF 

eligible’ group, -158.0ml (95% CI -244.4, -71.8, P<0.001) in the ‘definite IPF 

ineligible’ group and -101.6ml (95% CI -128.9, -74.3, P<0.001) in the ‘possible IPF 

non-eligible’ group. Unadjusted and adjusted survival curves are shown in Figure 8 

below.  

Figure 8. Survival curves and hazard ratios of patients eligible and non-eligible for 

PANTHER trial.  

 (a) Unadjusted KM curve for patients           (b)  Adjusted for age, sex, smoking status        

       ineligible versus eligible                                height, baseline %predicted FVC and  

                                                                          %predicted TLCO 
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Definite IPF Non-eligible  vs  Definite IPF Eligible for PANTHER 

 

Unadjusted	 HR  4.49	 [95% CI  2.59 – 7.80]	 P<0.0001	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  2.62	 [95% CI  1.68 – 4.09]	 P<0.0001	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  1.65	 [95% CI  1.04 – 2.64]	 P=0.035	

 

Possible IPF Non-eligible vs  Definite IPF Eligible for PANTHER 

 

Unadjusted	 HR 0.93	 [95% CI  0·68 – 1·26]	 P=0.636	

Adjusted for age, sex, smoking status  

and eligibility group	

HR 0.94  	 [95% CI  0.68 – 1.28]	 P=0.677	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR 0.95 	 [95% CI  0.69 – 1.31]	 P=0.767	
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CAPACITY 004 and 006 

When eligibility criteria for the CAPACITY trials were applied to the Edinburgh IPF 

cohort22, 377 IPF patients were screened and of those, 88 (23.3%) definite IPF patients 

would have been eligible for this trial. Two hundred and twenty patients were excluded 

as they did not meet HRCT and/or lung biopsy criteria, 10 patients were excluded as 

baseline FVC was <50% predicted, 1 patients was excluded as baseline FVC and TLCO 

were >90% predicted, 38 were excluded as baseline TLCO was <35% predicted and 20 

patients were excluded as they were aged <40 or >80 years. Demographic data for 

patients with definite IPF and eligible for CAPACITY, definite IPF and non-eligible 

for CAPACITY and working diagnosis of IPF, therefore excluded from CAPACITY 

are shown in Table 16 below. 

Table 16. Edinburgh IPF cohort patient demographic data based on eligibility for 

CAPACITY trials. 

	 ELIGIBLE	 NON-

ELIGIBLE	

Working 

diagnosis IPF	

P-value eligible 

vs non-eligible 

Number	 N=88	 N=69	 N=220	  

AGE	 69 (7.6)	 78 (9.5)	 74 (8.0)	 <0.0001 

FVC  % pred	 90.9 (21.2)	 87.3 (27.0)	 93.8 (23.5)	 0.361 

TLCO % pred	 54.0 (11.1)	 37.6 (16.2)	 53.4 (17.2)	 <0.0001 

Data presented as mean (standard deviation) 

 

There were significant differences in age and % predicted TLCO between the three 

groups. Unadjusted survival curve analysis showed there were significant differences 

in mortality amongst the three groups with the median survival in the ‘Definite IPF 

Eligible’ group reported as 4.59 years (IQR 1.61, 5.60), compared to 2.76 years (IQR 

1.18, 3.16) in the ‘Definite IPF Non-eligible’ group and 4.49 years (IQR 1.40, 5.19) in 

the ‘Working diagnosis of IPF’ group (P=0.002). The unadjusted hazard ratio for 

patients ineligible versus eligible for CAPACITY was 2.03 (95% CI 1.32-3.12, 

P=0.002). Cox proportional hazards modelling revealed sex, age, and baseline % 

predicted TCO were all significant predictors of mortality (P=0.002, P=0.048 and 

P<0.0001 respectively). Using cox proportional hazards modelling, the curves were 

adjusted for age, sex and smoking status which revealed a hazard ratio for patients in 
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the ‘definite IPF ineligible’ versus ‘definite IPF eligible’ group of 1.63 (95% CI 1.05 – 

2.54, P=0.030) and ‘possible IPF ineligible’ versus ‘definite IPF eligible’ of 0.89 (95% 

CI 0.63 – 1.23, P=0.497). The curves were then adjusted for age, sex, smoking status, 

height, baseline %predicted FVC and %predicted TLCO, providing a final hazard ratio 

for patients in the ‘definite IPF ineligible’ versus ‘definite IPF eligible’ for CAPACITY 

of 0.92 (95% CI 0.58 – 1.47, P=0.730) and of 0.81 (95% CI 0.57 – 1.14, P=0.223) in 

the ‘possible IPF ineligible’ versus ‘definite IPF eligible’ group. The estimated annual 

VC rate of decline was reported as -161.0 ml (95% CI -195.7, -126.2, P<0.001) in the 

‘definite IPF eligible’ group, -124.4ml (95% CI -184.6, -64.2, P<0.001) in the ‘definite 

IPF ineligible group, and -101.6ml (95% CI -128.9, -74.3, P<0.001) in the ‘possible IPF 

non-eligible’ group. Unadjusted and adjusted survival curves are shown in Figure 9 

below. 

 

Figure 9. Survival curves and hazard ratios of patients eligible and non-eligible for 

CAPACITY trials.  

 (a) Unadjusted KM curve for patients           (b)  Adjusted for age, sex, smoking  
ineligible versus eligible                                     status, height, baseline %predicted  
                                                                            FVC and %predicted TLCO 
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Definite IPF Non-eligible vs  Definite IPF Eligible for CAPACITY 004 and 006 

 

Unadjusted	 HR  2.03	 [95% CI  1.32-3.12]	 P=0.002	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  1.63	 [95% CI  1.05 – 2.54]	 P=0.030	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  0.82	 [95% CI  0.51 – 1.32]	 P=0.415	

 

 

Possible IPF Non-eligible vs  Definite IPF Eligible for CAPACITY 004 and 006 

 

Unadjusted	 HR  0.92	 [95% CI 0.66 – 1.27]	P=0.593	

Adjusted for age, sex, smoking status  

and eligibility group	

HR 0.89	 [95% CI 0.63 – 1.23]	P=0.497	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR 0.81 	 [95% CI 0.57 – 1.14]	P=0.223	
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ASCEND 

When eligibility criteria for the ASCEND trial were applied to the Edinburgh IPF 

cohort24, 377 IPF patients were screened and of those, 29 (7.7%) definite IPF patients 

would have been eligible for the trial. Two hundred and twenty patients were excluded 

as they did not meet HRCT and/or lung biopsy criteria, 10 patients were excluded as 

baseline FVC was <50% predicted, 74 were excluded as FVC was >90% of predicted, 

18 were excluded as TLCO was <30% or >90% predicted and 24 were excluded as their 

FEV1:FVC ratio was <0.80. Two patients were excluded as they were aged <40 or >80 

years old. Demographic data for patients with definite IPF and eligible for ASCEND, 

definite IPF and non-eligible for ASCEND and working diagnosis of IPF, therefore 

excluded from ASCEND are shown in Table 17 below. 

 

Table 17. Edinburgh IPF cohort patient demographic data based on eligibility for 

ASCEND. 

	 ELIGIBLE	 NON-

ELIGIBLE	

Working 

diagnosis IPF	

P-value eligible 

vs non-eligible 

Number	 N=29	 N=128	 N=220	  

AGE	 69 (8.8)	 74 (9.3)	 74 (8.0)	 0.011 

FVC % pred	 73.0 (10.0)	 93.0 (24.5)	 93.8 (23.5)	 <0.0001 

TLCO % pred	 49.0 (11.7) 	 47.6 (16.3)	 53.4 (17.2)	 0.664 

Data presented as mean (standard deviation) 

 

There were significant differnces in age and % predicted FVC between the three groups. 

When ASCEND trial eligibility criteria were applied to the Edinburgh IPF study cohort, 

survival curve analysis did not demonstrate any significant differences in mortality 

amongst the three groups, however only 29 patients would have been eligible for by 

ASCEND criteria. Median survival in the ‘Definite IPF Eligible’ group was reported as 

2.60 years (IQR 1.04, 4.04), compared to 3.63 years (IQR 1.35, 4.32) in the ‘Definite 

IPF Non-eligible’ group and 4.49 years (IQR 1.40, 5.19) in the ‘Working diagnosis of 

IPF’ group (P=0.078). The unadjusted hazard ratio for patients ineligible versus eligible 

for ASCEND was 0.69 (95% CI 0.38-1.13, P=0.078). Cox proportional hazards 

modelling revealed sex, age and baseline % predicted TCO were all significant 

predictors of mortality in the model (P=0.001, P=0.012 and P<0.0001 respectively). 
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Using cox proportional hazards modelling, the curves were adjusted for age, sex and 

smoking status which revealed a hazard ratio for patients in the ‘definite IPF ineligible’ 

group versus ‘definite IPF eligible’ of 0.61 (95% CI  0.37 – 0.99, P=0.048) and of 0.48 

(95% CI 0.30 – 0.78, P=0.003) in the ‘possible IPF ineligible’ versus ‘definite IPF 

eligible’ group. The curves were then adjusted for age, sex, smoking status, height, 

baseline %predicted FVC and %predicted TLCO, revealing a final hazard ratio for 

patients with ‘definite IPF ineligible’ versus ‘definite IPF eligible’ for ASCEND of 0.62 

(95% CI 0.37 – 1.05, P=0.074) and of 0.63 (95% CI 0.38 – 1.03, P=0.065) in the 

‘possible IPF ineligible’ versus ‘definite IPF eligible’ group. The estimated annual VC 

rate of decline was reported as -168.1ml (95% CI -239.8, -96.4, P<0.001) in the ‘definite 

IPF eligible’ group, -137.4ml (95% CI -170.2, -104.6, P<0.001) in the ‘definite IPF 

non-eligible’ group, and -101.6 ml (95% CI -128.9, -74.3, P<0.001) in the ‘possible IPF 

non-eligible’ group. Unadjusted and adjusted survival curves are shown in Figure 10 

below. 

 

Figure 10. Survival curves and hazard ratios of patients eligible and non-eligible for 

ASCEND trial. 

 (a) Unadjusted KM curve for patients      (b)  Adjusted for age, sex, smoking status        

       ineligible versus eligible                     height, baseline %predicted FVC and  

                                                                    %predicted TLCO 
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Definite IPF Non-eligible vs Definite IPF Eligible for ASCEND  

 

Unadjusted	 HR  0.69	 [95% CI  0.38 – 1.13]	 P=0.078	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  0.61	 [95% CI  0.37 – 0.99]	 P=0.048	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  0.63	 [95% CI  0.37 – 1.06]	 P=0.083	

 

Possible IPF Non-eligible vs Definite IPF Eligible for ASCEND 

 

Unadjusted	 HR  0.59	 [95% CI 0.29 – 0.90]	 P=0.022	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  0.48	 [95% CI 0.30 – 0.78]	 P=0.003	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  0.63	 [95% CI 0.38 – 1.03]	 P=0.065	
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INPULSIS 

Eligibility criteria for the INPULSIS trials were applied to the Edinburgh IPF cohort25, 

377 IPF patients were screened and of those, 238 (63.1%) IPF patients would have been 

eligible for the trial. Forty six patients were excluded as they did not meet the unique 

HRCT criteria for INPULSIS that required traction bronchiectasis as well as the other 

features of ‘possible UIP’ as per the ATS/ERS consensus criteria. Seventeen patients 

were excluded as baseline FVC was <50% predicted and 76 were excluded as baseline 

TLCO was <30% or >79% predicted. There were no patients under the age of 40. 

Demographic data for patients with IPF and eligible for INPULSIS, IPF and non-

eligible for INPULSIS, and working diagnosis of IPF, therefore excluded from 

INPULSIS are shown in Table 18 below. 

 

Table 18. Edinburgh IPF cohort patient demographic data based on eligibility for 

INPULSIS 1 and 2. 

	 ELIGIBLE	 NON-

ELIGIBLE	

Working diagnosis 

IPF but no traction 

bronchiectasis	

P-value 

eligible vs 

non-eligible 

Number	 N=238	 N=93	 N=46	  

AGE	 73 (8.8)	 75 (8.9)	 74 (7.2)	 0.036 

FVC % pred	 92.8 (20.9)	 85.8 (29.3)	 98.9 (22.4)	 0.089 

TLCO % pred	 51.4 (11.4)	 44.9 (24.7)	 57.6 (17.7)	 0.087 

 

 

There was a significant difference in age between the three groups, but no differences 

in lung function. When INPULSIS trial eligibility criteria were applied to the Edinburgh 

IPF study cohort, survival curve analysis revealed significant differences in mortality 

amongst the three groups. Median survival in the ‘IPF Eligible’ group was reported as 

4.37 years (IQR 1.56, 5.26), compared to 2.76 years (IQR 1.26, 4.14) in the ‘IPF Non-

eligible’ group and 5.37 years (IQR 2.76, 6.43) in the ‘Working diagnosis of IPF, non-

eligible’ group (P=0.007). The unadjusted hazard ratio for patients ineligible versus 

eligible for INPULSIS was 1.29 (95% CI 1.13 – 2.05, P=0.007). This difference in 

eligible versus non-eligible was smaller than the equivalent comparisons for 

PANTHER, CAPACITY and ASCEND. Cox proportional hazards modelling revealed 
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sex and baseline % predicted TCO were significant predictors of mortality in the model 

(P=0.001 and P<0.0001 respectively). Using cox proportional hazards modelling, the 

curves were adjusted for age, sex and smoking status which revealed a hazard ratio for 

patients in the ‘IPF ineligible’ group versus ‘IPF eligible’ of 1.58 (95% CI  1.15 – 2.17, 

P=0.005) and of 0.78 (95% CI 0.52 – 1.17, P=0.230) in the ‘working diagnosis IPF 

ineligible’ group versus ‘IPF eligible’. The curves were then adjusted for age, sex, 

smoking status, height, baseline %predicted FVC and %predicted TLCO, 

demonstrating a final hazard ratio for patients with IPF deemed ineligible versus IPF 

eligible for INPULSIS of 1.44 (95% CI 1.02 – 2.04, P=0.041) and patients with 

‘working diagnosis of IPF non-eligible’ versus ‘IPF eligible’ of 0.86 (95% CI 0.57 – 

1.31, P=0.487). The estimated annual VC rate of decline was calculated as -126.8 ml 

(95% CI -151.2, -102.4, P<0.001) in the ‘IPF eligible’ group, -103.3 ml (95% CI -176.6, 

-29.9, P<0.006) in the ‘IPF non-eligible’ group, and -102.5ml (95% CI -135.2, -69.7, 

P<0.001) in the ‘working diagnosis IPF Non-eligible’ group. Unadjusted and adjusted 

survival curves are shown in Figure 11 below. 

 

Figure 11. Survival curves and hazard ratios of patients eligible and non-eligible for 

INPULSIS trials. 

 (a) Unadjusted KM curve for patients      (b)  Adjusted for age, sex, smoking status        

       ineligible versus eligible                         height, baseline %predicted FVC and  

                                                                       %predicted TLCO 
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IPF Non-eligible vs  IPF Eligible for INPULSIS 1 and 2 

 

Unadjusted	 HR  1.29	 [95% CI  1.13 – 2.05]	 P=0.007	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  1.58	 [95% CI  1.15 – 2.17]	 P=0.005	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  1.47	 [95% CI  1.04 – 2.08]	 P=0.030	

 

 

Working diagnosis IPF Non-eligible vs IPF Eligible for INPULSIS 1 and 2 

 

Unadjusted	 HR  0.80 	 [95% CI 0.55 – 1.17]	 P=0.263	

Adjusted for age, sex, smoking status  

and eligibility group	

HR  0.78	 [95% CI 0.52 – 1.17]	 P=0.230	

Adjusted for age, sex, smoking status, 

height, baseline %predicted FVC, 

%predicted TLCO and eligibility 

group	

HR  0.86	 [95% CI 0.57 – 1.31]	 P=0.487	
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    3.2.3     Surgical lung biopsy in ILD 
 
Between 01/01/07 and 31/12/13, 555 consecutive, locally-referred, incident patients 

with suspected IIP presented to the Edinburgh Lung Fibrosis clinic. Of these patients 

166 underwent video-assisted thoracoscopic lung biopsy. Based on the 2011 ATS/ERS 

HRCT criteria, 87 patients were categorised as ‘definite UIP’ of whom 3 underwent 

SLB for clinical indications. Two hundred and nine patients were diagnosed with 

‘probable UIP’ and 42 underwent SLB. Two hundred and fifty nine patients had HRCTs 

deemed ‘inconsistent with UIP’, SLB was performed in 121 patients. A further 60 

patients were referred from outwith Lothian (tertiary referrals) with suspected IIP for 

SLB. Thirteen patients had ‘probable UIP’ appearances on HRCT and 47 patients had 

‘inconsistent with UIP’ HRCTs. Significant differences in age, lung function and 

smoking status were noted between patients who underwent SLB and those who did not 

undergo SLB in the ‘probable UIP’ HRCT appearances group. Patient demographics 

are shown in Table 19 below.  
 

Table 19. Patient demographics of referrals to Edinburgh Lung Fibrosis Clinic. 
 Definite 

UIP HRCT 
pattern and 

no SLB 
 
 

N=84 

Definite 
UIP 

HRCT 
pattern 

and SLB 
 

N=3 

P-
value 

Probable 
UIP HRCT 
pattern and 

no SLB 
 
 

N=167 

Probable 
UIP HRCT 
pattern and 

SLB 
 
 

N=55 

P-value Inconsistent 
with UIP 
HRCT 

pattern and 
no SLB 

 
N=138 

Inconsistent 
with UIP 
HRCT 
pattern 

and SLB 
 

N= 168 

P-
value 

Age in 
years (SD) 

76.0 
(+/- 8.4) 

67.3 
(+/- 4.62) 

0.073 75.0 
(+/- 7.8) 

65.1 
(+/-8.0) 

<0.0001 68.0 
(+/-12.1) 

60.3 
   (+/-12.9) 

0.032 

Male 
 (%) 

58 (69.0%) 3 
(100.0%) 

0.268 102 
(61.1%) 

36 (65.5%) 0.560 71 (51.4%) 67 (39.9%) 0.045 

Never 
smoked 
(%) 

19 (22.6%) 1 (33.3%) 0.667 44 (26.3%) 13 (23.6%) 0.692 42 (30.4%) 68 
(43.5%)* 

0.019 

Ex-smoker 
(%) 

60 (71.4%) 2 (66.7%) 0.861 112 
(67.1%) 

29 (52.7%) 0.055 67 (48.6%) 53 
(34.0%)* 

0.009 

Current 
smoker 
(%) 

5 (6.0%) 0 0.718 11 (6.6%) 13 (23.6%) 0.0004 29 (21.0%) 35 
(22.4%)* 

0.768 

VC in 
Litres 
(IQR) 

2.70 
(2.08,3.16) 

3.76 
(3.44,3.78) 

0.040 2.66 
(1.92,3.21) 

2.80 
(2.27,3.64) 

 

0.0008 2.60 
(2.08,3.41) 

2.59 
(2.10,3.50) 

0.643 

VC  % 
predicted 
in Litres 
(IQR) 

89.4 
(72.7,100.7) 

84.0 
(77.0,89.0) 

0.593 88.8 
(76.4,104.3) 

90.0 
(77.0,100.0) 

0.691 90.0 
(75.6,103.6) 

91.0 
(71.0,107.0) 
 

0.541 

TLCO 
(mm/min/ 
mmHg) 
(IQR) 

3.17 
(2.24,4.34) 

4.38 
(4.14,5.10) 

0.057 3.59 
(2.90,4.57) 

4.22 
(3.48,5.40) 

0.0002 4.32 
(3.19,5.71) 

4.50 
(3.40,5.83) 

0.325 

TLCO 
%predicted 
(IQR) 

43.7 
(31.2,55.0) 

44.0 
(41.5,54.5) 

0.548 50.9 
(40.0,61.7) 

52.0 
(43.0,62.0) 

0.894 58.0 
(46.0,72.1) 

56.0  
(44.0,69.0) 

0.892 

*No smoking status recorded for 12 patients 
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Two hundred and twenty two patients in our cohort had HRCT appearances consistent 

with ‘probable UIP’. Fifty five of those patients went on to have SLB. In this group, 30 

patients were aged over 65 years, and 25/30 (83%) had UIP on biopsy. Six patients were 

aged over 75 years, and IPF was confirmed with a UIP biopsy in 6/6 (100%). There 

were no significant differences in the numbers of SLBs performed each year of the 

study period; there were 19 SLBs in 2007, 33 in 2008, 29 in 2009, 26 in 2010, 47 in 

2011, 35 in 2012 and 37 in 2013. The full histopathology results are described in Table 

20 below. In the ‘probable UIP’ HRCT group, the positive predictive value of a UIP 

biopsy in diagnosing IPF was 100% and the negative predictive value was 88%. The 

sensitivity and specificity of a UIP biopsy in diagnosing IPF were 95% and 100% 

respectively. In the patient group with HRCT appearances ‘inconsistent with UIP’, the 

positive predictive value of a UIP biopsy for an IPF diagnosis was 62% and the negative 

predictive value 100%, sensitivity and specificity were 100% and 95% respectively.  
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Table 20. SLB histopathology. 

Definite	UIP	HRCT	
pattern	and	SLB	

		

N=3	

Probable	UIP	HRCT	pattern	
and	SLB	

		

	N=55	

Inconsistent	with	UIP	HRCT	pattern	
and	SLB	

		

	N=	168	

Definite	UIP	–	1***	

Possible	UIP	–	1***	

Probable	UIP	–	1***	

	

		

Definite	UIP	–	32***	

Probable	UIP	–	4***	

Possible	UIP	–	2**	

Non-classifiable	fibrosis	–	3**	

	

Hypersensitivity		pneumonitis	
–	5	

Fibrotic	NSIP	–	2	

COP	–	2	

Cellular	NSIP	–	1	

Sarcoidosis	–	1	

Bronchitis	–	1	

No	abnormality	–	1	

Occupational	lung	disease	–	1	

		

Hypersensitivity	pneumonitis	–	30	

Non-classifiable	fibrosis	–	25	

Fibrotic	NSIP	–	19	

Definite	UIP	–	15*	

Sarcoidosis	–	16	

RB-ILD	–	14	

COP	–11	

Bronchiolitis	–	9	

Mixed	cellular/	fibrotic	NSIP	–	6	

Langerhans	histiocytosis	–	5	

Wegeners	granulomatosis	–	5	

Lipoid	pneumonitis	–	3	

Tuberculosis	–	2	

Silicosis	–	2	

Emphysema	–	2		

Diffuse	nodular	lymphoid	
hyperplasia	–	1	

	Aspiration	pneumonitis	–	1	

Non-specific	inflammation	–	1	

CTD-ILD	–	1	

Key:***IPF, **Probable IPF, *Possible IPF based on ATS/ERS recommendations. 

NSIP: Non-specific interstitial pneumonia; COP: Cryptogenic organising pneumonia; 

RB-ILD: Respiratory bronchiolitis-associated interstitial lung disease; CTD-ILD: 

Connective tissue disease-associated interstitial lung disease. 

	

	

	

 



94	
	

Post-operative mortality and morbidity 

Post-operative complications were assessed using the Clavien-Dingo Classification of 

Surgical Complications grading system, and occurred in 39% (89/226) of procedures. 

In the ‘definite UIP’ HRCT group, 67% of patients (2/3) suffered severe complications. 

There were no mild-moderate postoperative complications in this group. The most 

common complications were persistent air-leak requiring prolonged intercostal chest 

drain insertion (67%) and postoperative pneumonia (33%). Sixty seven percent (2/3) of 

patients required admission and treatment in a critical care area in the post-operative 

period. The median (IQR) length of hospital stay was 9 (6-9.5) days. One patient (33%) 

was readmitted to hospital within one month of discharge, this was due to post-operative 

pneumonia and a persistent air-leak post VATS, the patient died during admission.  

 

In the ‘possible UIP’ HRCT cohort, 20% (11/55 patients) suffered mild-moderate 

postoperative complications and 11% (6/55) suffered severe postoperative 

complications. In this group, the most common postoperative complications were 

persistent air-leak (9%), of which 40% required prolonged intercostal chest drain 

insertion, pneumonia (7%), and respiratory failure secondary to acute exacerbation of 

IPF (7%). Other complications included persistent chest pain (4%), pulmonary 

embolism (2%) and empyema (2%). 9% (5/55) of patients required treatment in a 

critical care area during admission, and 9% (5/55) were readmitted to hospital within 

one month, with 100% of readmissions due to a postoperative complication. The 

median (IQR) length of hospital stay was 3 (3-4) days. SLB was performed as an 

elective procedure in 98% of patients (54/55), however one patient underwent a non-

elective procedure due to ongoing deterioration during admission.  

 

In the group with HRCT appearances ‘inconsistent with UIP’ mild-moderate 

postoperative complications were observed in 36% (61/168) of patients, and severe in 

5% (9/168 patients). In this cohort the most common complication was persistent air-

leak (13%), of which 23% required prolonged intercostal chest drain insertion, 

prolonged chest pain post-procedure (11%), postoperative pneumonia (7%), wound 

infection (4%) and exacerbation of ILD (3%). Other complications included urinary 

retention (2%), lung abscess (0.6%) and small bowel ileus (0.6%). Five patients (3%) 

were converted to mini-thoracotomy during the procedure and this was associated with 
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a significantly increased complication rate. The majority of procedures were performed 

electively (96%), however 7/168 patients had a non-elective SLB due to deterioration 

as an inpatient. Five percent (9/168) of patients required critical care input and spent 

time in a critical care area during admission. The median (IQR) length of hospital stay 

was 3 (3-4) days. Eleven percent (18/168) of patients were readmitted to hospital within 

one month, with 100% of readmissions due to a postoperative complication.  

 

There were 210 deaths (34.1% of the cohort) at the census date, which allowed for 12 

months of follow-up following study completion. Forty six deaths (20.4%) were 

reported in the surgical lung biopsy cohort; 100% (3/3) in the ‘definite UIP’ HRCT 

group, 38% (21/55) in the ‘probable UIP’ HRCT group and 13% (22/168) in the group 

with HRCT appearances ‘inconsistent with UIP’. The most common cause of death was 

idiopathic fibrosis, followed by pneumonia and lung cancer.  

 

With regard to early deaths, in the ‘definite UIP’ HRCT group, in-hospital mortality 

was 33% (1 death), 30-day mortality was 33% (1 death) and 90-day mortality was 33% 

(1 death). In the ‘probable UIP’ HRCT cohort, in-hospital was 3% (2 deaths), 30-day 

mortality was 7% (4 deaths) and 90-day mortality was 7% (4 deaths). In the group with 

HRCT appearances ‘inconsistent with UIP’ in-hospital was 0.6% (1 death), 30-day 

mortality was 0.6% (1 death) and 90-day mortality was 1% (2 deaths). For the SLB 

cohort as a whole, the in-hospital mortality was 1.8% (4/226), 30-day mortality was 

2.7% (6/226) and 90-day mortality was 3.5% (8/226). Postoperative complication rates 

and mortality data are described in Tables 21 and 22 below. 
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Table 21. SLB postoperative mortality and morbidity rates. 

	 Definite 
UIP 
HRCT 
pattern 
and no 
SLB 
 
N=84	

Definite 
UIP 
HRCT 
pattern 
and SLB 
 
 
N=3	

Probable 
UIP 
HRCT 
pattern 
and no 
SLB 
 
N=167	

Probable 
UIP 
HRCT 
pattern 
and SLB 
 
 
N=55	

Inconsistent 
with UIP 
HRCT 
pattern and 
no SLB 
 
 
N=138	

Inconsistent 
with UIP 
HRCT 
pattern and 
SLB 
 
 
N= 168	

Mild-moderate 
postoperative 
complication 
(Clavien-Dingo 
Grade I-II)	

N/A	 0	 N/A	 11 (20%)	 N/A	 61 (36%)	

Severe 
postoperative 
complication 
(Clavien-Dingo 
Grade III-V)	

N/A	 2 (67%)	 N/A	 6 (11%)	 N/A	 9  (5%)	

30-day 
mortality post-
SLB	

N/A	 1 (33%)	 N/A	 4 (7%)	 N/A	 1 (0.6%)	

Deceased on 
census date 
19/12/14	

49 (58%)	 3 (100%)	 88 (53%) 21 (38%)	 27 (20%)	 22 (13%)	

 

Table 22. Cause of death of biopsy patients. 

Total deaths	 46 (100.0%)	
Idiopathic pulmonary fibrosis	 15 (32.6%)	
Pneumonia	 11 (23.9%)	
Lung cancer	 4 (8.7%)	
Cancer (excluding lung cancer)	 2 (4.3%)	
Pulmonary embolism	 2 (4.3%)	
Hypersensitivity pneumonitis	 2 (4.3%)	
Empyema	 1 (2.2%)	
Chronic obstructive pulmonary disease	 1 (2.2%)	
Fibrotic non-specific interstitial pneumonia	 1 (2.2%)	
No data	 7 (15.2%)	

 

The mean survival time following SLB was 76.2 months (95% CI 71.3 – 81.1). All-

cause mortality following SLB amongst the three groups was significantly different 

(P<0.0001). Mean survival was 21.5 months in the ‘definite UIP’ HRCT group (95%CI 
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0.0 – 58.7), 60.3 months in the ‘probable UIP’ HRCT group (95% CI 51.3 – 69.3) and 

82.8 months (95% CI 77.8 – 87.8) in the ‘inconsistent with UIP’ HRCT group. Risk 

factors for all-cause mortality following SLB were identified as male sex (HR 2.28 

(95% CI 1.04 – 4.99), P=0.039), increased comorbidity as evidenced by the Updated 

Charlson Index76. An Updated Charlson Index of ≥4 was significantly associated with 

increased mortality following SLB (HR 5.29, (95% CI 1.21 – 23.12), P=0.027). HRCT 

group was also significantly associated with mortality post-SLB (P=0.015) with 

patients in ‘probable UIP’ and ‘inconsistent with UIP’ HRCT groups having reduced 

mortality compared to those in the ‘definite UIP’ HRCT group (HR 0.27 (95% CI 0.06 

– 1.20), P=0.085, and HR 0.12 (95% CI 0.02 – 0.58), P=0.008 respectively). Reduced 

baseline TCO was also an important risk factor (HR 0.02, 95% CI 0.02 – 0.22), 

P=0.001). 

 

When SLB results and HRCT appearances were combined, patients were grouped into 

three groups; definite IPF based on an UIP HRCT alone, definite IPF based on a 

possible UIP HRCT combined with a UIP biopsy, and possible IPF or not IPF based on 

an inconsistent with UIP HRCT and a definite or probable UIP biopsy. Mortality was 

significantly different between the three groups with a mean survival of 40.7 months in 

the definite UIP HRCT group (95% CI 33.2 – 48.2), 62.1 months in the possible UIP 

HRCT and UIP biopsy group (95% CI 50.7 – 73.5) and 109.7 months in the possible 

IPF or not IPF group based on an inconsistent with UIP HRCT and a definite or probable 

UIP SLB (95% CI 59.6 – 159.8), P=0.014 (Figure 12).  
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Figure 12. Kaplan-Meier Survival Curve adjusted for age, sex, smoking status, 
Updated Charlson Index, HRCT group and baseline lung function. 

 
	

 

No significant risk factors for death within 30 days or 90 days of biopsy were identified, 

however HRCT group was a significant risk factors for death within 12 months 

(P=0.006). Subgroup analysis of the ‘probable UIP HRCT’ cohort revealed significant 

risk factors for death following SLB were age (HR 0.867 (95% CI 0.775 – 0.969), 

P=0.012) and an overall percentage of fibrosis on HRCT of >50% (HR 14.857 (95% CI 

2.416 – 91.359), P=0.004). Additional important risk factors were male sex (HR 6.330 

(95% CI 0.966 – 41.485), P= 0.054) and an Updated Charlson Index of ≥4 (HR 32.194, 

(95% CI 0.692 – 1496), P=0.076). No significant risk factors specifically for 30 day, 90 

day and 1 year mortality were identified in this group.  

 

Unadjusted mortality rates between patients with ‘definite UIP’ on HRCT alone, 

definite IPF with a ‘probable UIP’ HRCT and UIP biopsy, and ‘probable UIP’ HRCT 

appearances were significantly different (P=0.008, HR 0.44 (95% CI 0.240 – 0.812)). 

Patients with ‘definite UIP’ HRCT appearances had the poorest prognosis with a 

median survival of 35.1 months (95% CI 24.8 - 45.5), patients with ‘probable UIP’ 

HRCT appearances and who did not undergo further investigation by means of SLB 



99	
	

had a median survival of 51.0 months (95% CI 43.9 – 58.1). Patients with ‘probable 

UIP’ HRCT appearances, but went on to have ‘definite IPF’ confirmed by means of a 

UIP biopsy had the best prognosis, with a median survival of 72.4 months (95% CI 59.4 

– 85.5). Approximately 20% of patients died within the first 12 months of diagnosis, 

regardless of how the diagnosis was made. When these curves were adjusted for age, 

sex, smoking status and baseline % predicted FVC and TLCO, there were no significant 

differences in survival between the three groups. Unadjusted and adjusted Kaplan-

Meier survival curves for patients with suspected IPF are demonstrated in Figures 13 

and 14.   

 

Figure 13. Unadjusted Kaplan-Meier Survival Curve: Definite versus Probable UIP. 
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Figure 14. Kaplan-Meier Survival Curve adjusted for age, sex, smoking status and 
baseline lung function: Definite versus Probable UIP. 

	

 

3.3      Discussion 
 
The ILDs are a heterogeneous group of lung disorders characterised by varying degrees 

of parenchymal inflammation and fibrosis. Because of their heterogeneous nature, 

diagnostic accuracy and phenotyping are important components of both ILD and 

clinical practice and of epidemiological study.  

 

We found that mortality could be predicted by serial change in VC and a related IPF 

Index, in patients with definite IPF and probable IPF to a similar degree. For both 

definite and probable IPF we found that a 5 to 10% decline in VC relative to baseline 

was associated with a 3-fold higher risk of mortality, similar to the hazard ratio reported 

by Du Bois et al77. In our cohort, the (relative) risk of mortality for change in VC 

appeared to be similar across the full spectrum of values for both definite and probable 

IPF, suggesting that clinicians may use change in VC as a prognostic indicator for 

patients with both definite and probable IPF, although a larger study would be required 

to validate this. For definite IPF, we found a similar median survival (3.4 years) but 

slightly higher one year mortality (14.6%) as previous studies, in which estimates 



101	
	

ranged from 2 to 4 years32,78,79 and 2.7 to 9.0% respectively22,80,81. We also obtained 

similar estimates for decline in VC to previous groups, in which decline in VC was 

reported as an absolute change in FVC of 190 ml/year80,82, an absolute change in percent 

predicted FVC of 3.5 to 8.0%22,83, and change as a percentage of baseline FVC of -

7.4%84. We found that two recently reported scoring systems for prognostication in IPF, 

the IPF Index and GAP Index, predicted (relative) mortality similarly in patients with 

definite and probable IPF. Furthermore, among patients in whom surgical lung biopsy 

would be advocated according to international guidelines, after adjusting for these IPF 

scores there was no difference in mortality among patients who did and did not have a 

biopsy. Consequently, patients with HRCT scans consistent with UIP have a similar 

prognosis according to the IPF score and GAP Index, whether or not their diagnosis 

was confirmed on biopsy.    

 

The PANTHER, CAPACITY, ASCEND and INPULSIS trials have demonstrated that 

large randomised, placebo-controlled multicentre trials are feasible, and these studies 

have all changed clinical practice. Nintedanib and pirfenidone have been licensed for 

use and clinicians no longer use corticosteroids and azathioprine in the treatment of IPF. 

The nature of most interventional clinical trials dictates that the subjects are drawn from 

a relatively select population of patients. This is turn means that clinicians have to 

choose how to interpret the findings and apply them to ‘real world’ patients. Trials in 

IPF are no exception and perhaps this dilemma is exacerbated further because IPF is a 

heterogeneous disease that is subject to diagnostic variation despite attempts to refine 

the diagnosis by criteria-led consensus. The generalisabilty of IPF clinical trial data to 

real world patients is important to clinicians and patients. By comparing the baseline 

characteristics and the natural history of IPF patients who were deemed eligible or not 

eligible for recent landmark trials that have changed clinical practice, we found that the 

INPULSIS trials are more generalisable to real world IPF patients than PANTHER, 

CAPACITY and ASCEND. It is well recognised that very few real-life IPF patients 

meet inclusion criteria for clinical trials, and this was reflected in our study. In the 

Edinburgh IPF cohort 29.2% (110/377) patients would have been eligible for the 

PANTHER trial, 23.3% (88/377) eligible for CAPACITY, 7.7% (29/377) patients 

eligible for ASCEND and 63.1% (238/377) eligible for INPULSIS. There was a 

significant difference in survival between patients eligible versus non-eligible for 

PANTHER, CAPACITY and INPULSIS trials, with patients in the eligible group 
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displaying longer survival times in all three trials. Interestingly however, there was no 

significant difference in survival between patients categorised as ‘definite IPF eligible’ 

versus ‘possible IPF non-eligible’ in any of the trials, when adjusted for age, sex, 

smoking status, height, baseline %predicted FVC and %predicted TLCO.   

 

There are very few observational studies detailing the natural history and characteristics 

of patients with IPF outside of clinical trials. The Edinburgh Lung Fibrosis cohort 

provided a unique opportunity because the patients were accurately phenotyped 

according to diagnostic criteria that were very similar or identical to ATS/ERS criteria, 

very few patients were lost to follow up and the majority of patients did not receive IPF-

directed therapies. Most past IPF studies have recruited patients that are younger and 

have more preserved lung function than real world patients80,81,85–88, and our data show 

the PANTHER and CAPACITY eligibility criteria promote this ‘younger/milder’ 

phenotype. Applying ASCEND eligibility criteria to our real world cohort yielded a 

young population with much lower VC than non-eligible patients. Only INPULSIS 

criteria generated eligible patients that were of a similar age and lung function as non-

eligible. 

 

Young age and preserved lung function are two of the reasons that the mortality in IPF 

trials has historically been low89–91. The 1 year mortality in the placebo arm of 

PANTHER study was around 2% even though subjects were rigorously ascertained to 

have definite IPF with almost 50% of subjects undergoing lung biopsy21.  At the time 

this finding was surprising, but our data shows that applying the same lung function and 

age eligibility criteria as PANTHER to real world patients with definite IPF selects out 

a group of patients with relatively benign disease, such that 8% of eligible patients died 

with 12 months of presentation, but 30% of non-eligible patients died in the same 

period.  The median survival in eligible patients was also correspondingly higher than 

in non-eligible patients (5·4 v 1·9 years) and there was less rapid decline in VC in the 

study-eligible patients.  

 

This phenomenon of selecting out relatively benign disease was observed when we 

applied CAPACITY lung function and age criteria to our cohort of patients. A post-hoc 

analysis of subjects recruited to the CAPACITY 004 and 006 trial allowed investigators 
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to identify lung function characteristics that predicted faster decline in FVC and death, 

and these were applied to the subsequent ASCEND trial in an attempt to enrich the 

recruited pool of subjects with ‘progressive disease’. Although the ASCEND study met 

its primary end-point and showed pirfenidone attenuated FVC decline over one year, 

the enrichment strategy was not particularly successful: the baseline characteristics of 

the subjects, the 1 yr mortality (5·6%) and the FVC decline were similar to the earlier 

CAPACITY studies24,92.  This gives credence to subsequent pooled analyses of 

CAPACITY 004, 006 and ASCEND. However when applied to our real world cohort, 

the ASCEND eligibility criteria dramatically reduced the number of patients that would 

have been eligible to 8% of all IPF patients and 18% of patients with definite IPF. In 

stark contrast to the trial patients, almost 40% of real world eligible for ASCEND were 

dead by 12 months, suggesting a very different population of patients in the real world 

compared to ASCEND trial subjects. 

 

The INPULSIS trial was unusual in that the investigators adopted HRCT criteria, 

specifically traction-bronchiectasis for defining patients with ‘UIP-like’ disease in the 

absence of lung biopsy, that were not defined or described in the consensus ATS/ERS 

guidelines. This immediately yielded a large number of our real-world cohort patients 

eligible for INPULSIS. These eligible patients had better survival than non-eligible 

patients with IPF, but the difference though statistically significant, was not as large as 

it was for PANTHER and CAPACITY. The same was true for the differences in VC 

decline. This suggests that INPULSIS eligible and non-eligible patients are more 

similar than corresponding eligible and non-eligible patients from other reported trials. 

Of interest, we also describe for the first time the survival and VC decline in a novel 

group of patients with ‘possible UIP HRCT’ (by ATS/ERS criteria) without traction 

bronchiectasis and without biopsy. Only 46 patients fulfilled these criteria, and they had 

a median survival of just under 6 years and an annualised rate of VC decline of 

102ml/yr. There is as yet no data to show that antifibrotic drugs impact on this group of 

patients, but our analysis of these small numbers suggest there is disease progression 

and associated mortality in this group. 

 

International consensus guidelines state that lung biopsy should be performed to 

distinguish IPF from other fibrotic interstitial lung diseases such as fibrotic NSIP or 

idiopathic HP, if patients do not meet ‘definite UIP’ HRCT criteria. The justification 
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for performing SLB is to identify patients with alternative diagnoses that may be 

amenable to treatment, or to provide patients and clinicians with prognostic 

information. However the evidence for treatment efficacy in patients with non-IPF 

fibrotic interstitial lung disease is very scarce, and is based on case series rather than 

controlled clinical trials93,94. Furthermore, recent data shows that using such evidence 

to inform treatment decisions may be harmful21.  With regard to prognosis, our findings 

suggest that among patients with clinical features consistent with IPF and probable UIP 

on HRCT, lung biopsy appears to offer little additional prognostic information over 

simple clinical measures. 

 

We report the proportion of patients with confirmed UIP on SLB, and complication 

rates and mortality following SLB by indication, age, sex and other baseline 

characteristics. Although patients undergoing SLB differ from those who do not have a 

biopsy, these patients are younger and more likely to have atypical findings on HRCT. 

Consequently, rates of alternative diagnoses are likely to overestimate the true negative 

predictive value of the test, which is conservative with respect to our hypothesis that 

SLB is of limited clinical utility in older patients with suspected IPF. Advanced age is 

a strong predictor for IPF, and in our cohort 83% of patients aged over 65 years and 

100% of patients over 75 years with ‘possible UIP’ HRCT appearances had UIP on 

biopsy, therefore confirming the diagnosis of IPF. We suggest that advanced age and 

fibrotic appearances on HRCT negate the need for biopsy in this cohort. Fell et al found 

that in patients without honeycomb change on HRCT (ie ‘probable UIP’ appearances), 

older age and modest amounts of fibrosis were highly predictive of a diagnosis of IPF17. 

However it is important to note that the ATS/ERS consensus statement which details 

the IPF HRCT classification criteria was published after the Fell paper, and that the 

description of HRCT scans used by Fell and colleagues had a different scoring system. 

Our study is the only one to use the current ATS/ERS classification of ‘possible’ or 

‘probable’ UIP, and therefore all patients in the ‘probable UIP’ category had an absence 

of honeycombing on HRCT. 

 

In our cohort, a diagnosis of IPF was confirmed in 100.0% (3/3) of patients with 

‘definite UIP’ and 67.3% (37/55) of patients with ‘probable UIP’ HRCT appearances 

following SLB. Based on histolological findings, a further 7.3% (4/55) were diagnosed 

with probable IPF according to ATS/ERS guidelines. Histology revealed an alternative 
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diagnosis in 24.1% (14/58) of patients with a ‘definite’ or ‘probable‘ UIP HRCT, 

consequently leading to a change in management. These findings support the 

recommendation that SLB can be of value in the diagnosis of ILD, however it should 

be considered with caution in the subgroup of patients with suspected IPF, and 

‘probable UIP’ HRCT appearances. Complications were relatively common following 

SLB, with 31.9% (72/226) suffering a mild-moderate complication and 7.5% (17/226) 

developing a serious complication in the postoperative period. Readmission rates for 

treatment of a postoperative complication were also reasonably high, the commonest 

cause of death in the postoperative period was pneumonia.  

 

Despite international recommendations that patients have histological confirmation of 

the diagnosis, mortality between patients diagnosed by HRCT or by biopsy was similar, 

but the 30-day mortality for SLB was 7.3%. This figure was higher than typically 

reported in the literature, however these findings are similar to results of a large study 

reviewing in-hospital mortality following SLB for ILD in the USA over an 11-year 

study period, published recently by Hutchinson and colleagues. This study concluded 

that increasing age and comorbidity were the main risk factors for mortality following 

SLB, however male sex, open surgery and a diagnosis of suspected IPF or CTD-ILD 

were also associated with an increased risk73. With regards to our SLB cohort as a 

whole, in-hospital mortality was 1.8% (4/226), 30-day mortality was 2.7% (6/226) and 

90-day mortality was 3.5% (8/226). These figures are slightly higher than the 30 and 

90-day mortality rates following lobectomy for non-small cell lung cancer (both 2.3%), 

a potentially curative rather than diagnostic procedure. Risk factors for all-cause 

mortality following SLB were identified as increased comorbidity as evidenced by an 

Updated Charlson Index of ≥4, ‘definite UIP’ HRCT appearances and reduced baseline 

TCO. No significant risk factors for death within 30 or 90 days of biopsy were 

identified, however a ‘definite UIP’ HRCT scan was a significant risk factor for death 

within 12 months. The observation that around a fifth of patients were deceased at 12 

months, regardless of how the diagnosis was made, is important. These patients are 

‘rapid progressors’ and cannot be identified by HRCT or biopsy characteristics. There 

are several prognostic scoring systems based on clinical, physiological, radiological and 

serological parameters described in the literature to predict survival in IPF. However an 

important caveat of all of them is that they were all derived from either patients recruited 

to clinical trials or patients referred to tertiary referral centres, which undoubtedly leads 
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to bias. There are very few studies of large numbers of IPF patients directly referred 

from the community and followed longitudinally. At present there is no single risk 

model that has been validated, widely accepted and adopted in clinical practice.   

   

Limitations of the study 

Our study has some limitations. Whilst our cohort of IPF subjects was prospectively 

recruited as consecutive incident cases, the analyses were entirely retrospective. 

Diagnosis of IPF was made by expert consensus, but over the period of the study 

diagnostic criteria and level of experience was changed. We have attempted to be 

consistent with our diagnostic pathway, but we did not perform independent validation 

of diagnoses. That said, the natural history of IPF we describe is consistent with other 

cohorts. Another limitation is that lung biopsies were reviewed by a single pathologist, 

albeit one with a specialist interest in interstitial lung disease and using internationally 

accepted criteria for the diagnosis of UIP. Our cohort represented consecutively 

presenting patients referred to a respiratory clinic and not patients with acute, rapidly 

progressive ILD that may have presented as inpatients, and could not perform baseline 

lung function tests pre-treatment. Our laboratory routinely records VC rather than FVC. 

In patients with restrictive lung disease, it is reasonable to assume that these two 

measures will be similar95. There is no standard method to assess ‘generalisabilty’ of 

clinical trial data with real world patients. We have used one way to determine 

generalisabilty, that is a description of the natural history of disease in patients that 

would or would not be eligible for clinical trials and we are assuming that smaller 

differences in the natural history imply more generalisability. However there may be 

other methods of assessing generalisability that we have not considered.  Importantly, 

our study is not designed to address efficacy of treatment in real-world IPF patients and 

should not be interpreted as such. Patients that are not eligible for a clinical trial but 

have the same disease entity as trial patients should respond in the same way as trial 

patients if the study is robust, large and well conducted, as was the case in all studies 

described in this paper. However with heterogeneous disease that may or may not 

include different disease entities, clinicians and policy makers need to decide how to 

extrapolate trial data to the real world.  
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3.4      Conclusions 
 
Patients diagnosed with definite IPF have a slightly poorer prognosis and a faster 

decline in lung function than those with probable IPF, however the differences are not 

significant. Change in VC over the first six months from presentation predicts mortality 

similarly in definite and probable IPF and clinicians may use these clinical measures 

and a related prognostic IPF index to make prognostic statements in both groups. This 

may diminish the value of confirming a diagnosis of definite IPF by means of surgical 

lung biopsy. SLB can be of value in the diagnosis of ILD, however it should be 

considered with caution in the subgroup of patients with suspected IPF, and ‘possible 

UIP’ HRCT appearances. Despite international consensus guidelines that patients have 

histological confirmation of the diagnosis, the mortality between patients diagnosed by 

CT scan or by biopsy were similar, but the 30-day mortality for SLB was 7.5%. 

Advanced age is a strong predictor for IPF and the majority of patients in our cohort 

aged over 65 years with ‘possible UIP’ HRCT appearances had UIP on biopsy, therefore 

confirming the diagnosis of IPF and negating the need for biopsy in this age-group. The 

observation that around 20% of patients were deceased at 12 months, regardless of how 

the diagnosis was made, is important. These patients are ‘rapid progressors’ and cannot 

be identified by HRCT or biopsy characteristics. There is a need to identify this 

phenotype of rapidly progressive disease, perhaps through biomarker profiling.  

 

My data indicates that treatment for IPF with either Pirfenidone or Nintedanib, may be 

beneficial in patients who are both more severe and less severe than those in randomised 

clinical trials, and also that the natural history of patients with ‘definite IPF’ and 

‘possible IPF’ is very similar, and so such treatments could also be effective in the latter 

group.   

 

It has been well documented that the mortality in IPF is high (around 20% per year), 

mortality in the placebo arms of the most recent clinical trials was much lower, ranging 

from 2.3% to 7.8%91, suggesting the patients included in the trials are poorly reflective 

of a real life IPF patient population. The duration of follow-up was greater in the 

Edinburgh study cohort than any of the RCTs with a mean of 3.4 years (rnge 8 days to 

12.8 years). Mortality was also greater in the Edinburgh IPF population than that of 
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which was reported in the trials (59.7% at censor date in Edinburgh cohort vs 5.8% in 

PANTHER, 6.2% in CAPACITY, 1.6% in ASCEND and 6.4% in INPULSIS). A higher 

rate of comorbidity was also documented in the Edinburgh cohort, highlighting the need 

for future clinical trials that include patients with common comorbidities such as 

diabetes, peripheral vascular disease, ischaemic heart disease, emphysema, reflux and 

pulmonary hypertension, as this would clearly represent a truer IPF patient population. 

  

Patients recruited to clinical trials in IPF fall between defined age limits, present fewer 

comorbidities, and have well characterised disease severity. Consequently, they do not 

always reflect the real-life IPF patient population observed in clinical practice. The 

majority of our Edinburgh IPF cohort would have been excluded from recent trials and 

the outcome of excluded patients may be different to eligible patients. An interesting 

finding was that patients who did not meet ATS/ERS diagnostic criteria for ‘definite 

IPF’ and so were termed ‘possible IPF’ or ‘Working diagnosis IPF’ and deemed 

ineligible for clinical trials, had very similar survival curves to those in the ‘definite IPF 

eligible’ group. This may have implications on the suitability of those patients for 

treatment with anti-fibrotic drugs. Overall these findings may limit generalisability of 

clinical trials to our everyday clinical practice. 
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Chapter 4    
     A distinct alveolar macrophage polarisation 
     phenotype and pattern of cell surface marker  
     expression is associated with disease  
     progression in IPF 
 
4.1      Introduction 

    4.1.1      General introduction 
 
The interstitial lung diseases (ILDs) are a heterogeneous group of lung disorders 

characterised by varying degrees of parenchymal inflammation and fibrosis.  Idiopathic 

pulmonary fibrosis (IPF) is the commonest ILD and has a chronic, progressive nature.  

There is no proven cure and it carries the worst prognosis with a median survival of 3 

years. IPF occurs worldwide however Scotland harbours the highest incidence in the 

UK. There are approximately 5000 new cases per year in the UK, with a disease 

prevalence of 5-15 cases per 100,000 population. In 2011, the American Thoracic 

Society (ATS), European Respiratory Society (ERS), Japanese Respiratory Society 

(JRS) and the Latin-American Thoracic Society (ALAT) published an international 

evidence-based guideline on the diagnosis and management of IPF. This guideline was 

revised in 2013. The consensus statement recommended that IPF could be diagnosed 

definitively in patients with an Usual Interstitial Pneumonia (UIP) pattern on high 

resolution CT scanning (HRCT), however in patients without honeycombing, a 

diagnosis of ‘possible IPF’ is made and further investigation by means of surgical lung 

biopsy (SLB) is required. The diagnostic algorithm does not allow for circumstances in 

which biopsy is not performed. Prior to the 2011 guideline, differential cell count 

(DCC) in bronchoalveolar lavage (BAL) was considered integral to the diagnosis of 

IPF, however in 2011 BAL was completely removed from the diagnostic algorithm. 

This shift remains controversial as BAL is a well-tolerated and safe procedure, with far 

fewer risks than SLB. Studies investigating the additional utility of BAL in the 
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diagnosis of IPF, largely conclude that BAL DCCs are of additional diagnostic benefit, 

even in patients with ‘definite UIP’ HRCT appearances. A study by Ohshimo et al 

demonstrated a BAL lymphocyte count of >30% was favourably discriminative for a 

diagnosis of IPF. In their study of 74 IPF patients, all of whom met ATS/ERS IPF 

criteria, 8% had a BAL lymphocyte count of >30, which changed diagnostic perception 

in all 6 of the 74 patients96.  

 

IPF is a highly heterogeneous disease and so the natural history and clinical course in 

each individual patient is difficult to predict. Many patients have a slow and steady 

deterioration over a period of years, whereas 10-15% of patients progress rapidly, often 

leading to death from respiratory failure in a few months. Our understanding of the 

pathogenesis of IPF is mostly extrapolated from histological appearances in subgroups 

of biopsied patients. It is thought that low-grade inflammation, oxidative cell injury and 

an abnormal healing process play a role in the development of usual interstitial 

pneumonia (UIP), the histological pattern that defines IPF.  It is logical to propose that 

macrophages play a central role in IPF. Macrophages are integral to lung tissue repair 

and homeostasis, however in UIP it has been proposed that the process of normal tissue 

homeostasis and healing is aberrant. Many contributing mechanisms have been reported 

including angiogenesis, coagulation, fibrogenesis, tissue repair, inflammation, 

epithelial damage, matrix remodelling and oxidative stress. The most notable paradigm 

is one in which the alveolar epithelium is repeatedly injured creating localised ‘wounds’ 

over a prolonged period of time, which leads to focal epithelial hyperplasia and 

activation. The dysfunctional epithelial cells then activate profibrotic signalling 

pathways involving growth factors and chemokines, which lead to the accumulation of 

fibroblasts in ‘fibroblastic foci’, areas of intense collagen generation and differentiation 

of myofibroblasts, resulting in increased extracellular matrix (ECM) deposition.  

 

Despite evidence that inflammation may not play a predominant role in IPF, there is 

evidence that markers of inflammation and immunity may provide useful information. 

Brittan et al reported the presence of novel subpopulations of pulmonary monocyte-like 

cells (PMLCs) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+ 

cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). Their data 

showed that PMLCs represented a significant proportion of cells present in BAL 

following inhalation of lipopolysaccharide (LPS), implying PMLC may play a 
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significant role in the inflammatory response. Resident PMLC were found to have a 

significantly increased expression of the mature macrophage markers CD206 (mannose 

receptor), CD71 (transferrin receptor) and 25 F9, and a significantly increased 

expression of the proliferation antigen Ki67, compared to inducible PMLC49,50.  

 

IPF has been classified as a Th2-skewed disorder, with the presence of an ‘M2’ or 

‘alternatively activated’ polarised lung macrophage phenotype. Mediators associated 

with M2 macrophage polarisation are associated with disease progression and severity. 

However, a comprehensive classification of the M2 phenotype is questionable, and 

there is some recognition that a distinct M2 ‘pro-repair’ phenotype may exist and that 

macrophage phenotypes are dynamic and liable to change as disease evolves. This may, 

at least in part, explain some of the heterogeneity seen in IPF. 

 

    4.1.2      Hypothesis and aims  

Reliable methods of predicting disease progression and survival are of great clinical 

value in IPF. We hypothesised that a distinct AM polarisation phenotype would be 

associated with disease progression in IPF. We aimed to quantify and perform detailed 

phenotyping of AMs and PMLCs in bronchoalveolar lavage (BAL) to determine the 

relationship between AM subtypes, PMLC populations and disease progression. We 

also aimed to determine the proportion of patients diagnosed with IPF on clinical and 

radiological grounds, in whom BAL differential count was inconsistent with IPF based 

on international pre-defined criteria.  We aimed to explore the predictive value of BAL 

neutrophilia and BAL lymphocytosis on patient survival, the safety and feasibility of 

repeat BAL in IPF patients, and whether change in DCC between two successive BALs 

performed one year apart was an indicator of disease progression. We hypothesised that 

BAL DCC between definite and possible IPF was different and that baseline DCC 

predicted disease progression. Furthermore, we hypothesised that change in BAL DCC 

would be associated with disease progression.  
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    4.1.3      Experimental methodology       

Patient selection and the Edinburgh Lung Fibrosis Biobank 

Between 01/01/2009 and 31/12/2013, 325 consecutive patients with suspected 

idiopathic interstitial pneumonia (IIP) presented to the Edinburgh ILD clinic.  Of these 

325 patients, 198 were diagnosed with definite or probable IPF based on pre-defined 

criteria (Figure 15).  One hundred and twenty seven patients were diagnosed with 

another form of IIP.  Of the 325 patients, 128 underwent a BAL at presentation.  197 

patients did not have a BAL for the following reasons: patient not approached for 

consent within 3 months of presentation (n=48); consent declined by patient (n=11); 

patient deemed too frail or hypoxic (Sp02<92% on 2L oxygen) for BAL (n=65), BAL 

not indicated as clinical-radiological picture consistent with diagnosis or ILD mild 

(n=73).   The 128 patients that did undergo BAL were grouped into ‘definite IPF’ 

(n=22), ‘probable IPF’ (n=62) and ‘inconsistent with IPF’ (n=44).  Of the 84 patients 

with definite or probable IPF, 39 patients had a repeat BAL twelve months later.  45 

patients did not have a repeat BAL for the following reasons: deceased within 12 

months of first BAL (n=13), 12 months not yet elapsed from first BAL (n=10), patient 

declined second BAL (n=8), patient not approached for second BAL (n=8), patient 

deemed too frail or hypoxic for second BAL (n=6).  Less than 1% of our study cohort 

has been lost to follow-up. All patient mortality data was collected via electronic patient 

records.  Patient demographic data and BAL cell count data were collected via the 

Edinburgh ILD database.  This is a unique ethically approved prospective database 

designed to capture the natural history of ILD (LREC 06/S0703/53).  Ethical approval 

was obtained for all protocols and procedures. A flow diagram of patient selection is 

shown in Figure 16. 
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Figure 15. The Edinburgh Lung Fibrosis Group HRCT algorithm for IPF. 
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Figure 16.  Flow diagram of patient selection. 
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Diagnosis, investigation and management 

Investigation, management and follow-up of all consecutive patients presenting at the 

Edinburgh Lung Fibrosis clinic was as per our local protocol.  This included a detailed 

clinical history, physical examination, autoantibody screen (PR3 and MPO ANCA, 

immunoglobulins IgA, IgG and IgM, aspergillus precipitans, avian precipitans, farmers 

lung precipitans and CTD screen including ANA, DNA, C3, C4, CCP and ENA screen 

(antibodies to Ro, La, Sm, RNP, Scl70, Jo1)), HRCT and pulmonary function testing 

(PFTs).  All HRCT scans were reviewed by a single expert thoracic radiologist (JTM) 

and discussed in a multidisciplinary meeting with at least two chest physicians with 

sub-specialty ILD expertise (NH, GAS).  Surgical lung biopsies were performed as a 

video-assisted thoracoscopic procedure.  Lung histology was reviewed in a 

multidisciplinary meeting by an experienced pulmonary pathologist (WAW), a member 

of the UK ILD pathology reference panel.   

Lung Function Testing 

Detailed lung function tests were performed within one month of the BAL procedure 

and then at 6 monthly intervals. Total lung capacity (TLC), FEV1, FVC, lung volume-

pressure relationship, and one-breath carbon monoxide diffusion capacity (TLCO) were 

measured.  Patients were considered to have disease progression if they had a ≥10% 

decline in FVC or death due to a lung cause within 12 months of first BAL.   

BAL 

BAL was performed by standardised method according to consensus recommendations. 

Briefly, a flexible bronchoscope was wedged into a segmental branch of the right 

middle lobe (RML) and up to 240 ml of sterile saline in 40 ml aliquots instilled, with 

gentle aspiration after each aliquot.  Patients were lightly sedated during the procedure.  

A total of at least 50ml of BAL fluid was retrieved per patient and this was immediately 

processed in the laboratory. Samples were filtered through a 40um cell strainer and then 

50ul of fluid removed and counted on a cell Nucleocounter.  Samples were then 

centrifuged at 1200rpm for 10 minutes at 4 degrees celsius and then 10 standard 

cytospins performed. One was stained with DiffQuick and the other 9 fixed in 90% 
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superdry acetone and 10% methanol mix for 10 minutes.   A differential cell count was 

performed on fixed and stained cytopsins by an independent observer blinded to the 

clinical diagnosis. 

Flow cytometry and Fluorescence Activated Cell Sorting (FACS) 

Whole blood (50µl) or BAL fluid (100,000 cells) were incubated with antibodies 

against specific cell surface antigens (Table 23) for 30 minutes on ice. Unstained cells, 

single antibody stains and fluorescence minus one (FMO) controls were used. 

Erythrocytes were lysed by incubation at room temperature for 20 minutes in 650µl of 

FACSlyse. Samples were washed in 2ml PBS, centrifuged at 300g for 5 minutes and 

then resuspended in 450µl FACSlyse, for analysis using a LSR Fortessa cell analyser 

with FACSDiva software. A SORT tube was prepared by adding 50µl PBS, 8µl CD14-

AF647, 8µl CD16-PE and 8µl HLA-DR-V450. BAL fluid cells were centrifuged at 

300g for 5 minutes and resuspended in 800µl 1% serum and IMDM, then added to the 

sort tube. Cells were incubated on ice for 20 minutes, then 2ml sterile PBS added and 

centrifuged at 300g for 5 minutes to wash. Cells were resuspended in 800µl 1% serum 

and IMDM and taken to the sorter with an unstained sample. A BD FACSAria II cell 

sorter was used with FACSDiva software. Cells were collected in 10% IMDM after 

sorting, then pelleted and stored at -80°C. FlowJo was used for data analysis. The gating 

strategies used to identify cell subpopulations within BAL fluid and blood are outlined 

in Figures 17 and 18. Sorted AM, rPMLC and iPMLC cell pellets were the sent to 

Professor Mark Lindsay at the University of Bath for RNA gene sequencing.  
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Table 23. Primary antibodies used for flow cytometry and FACS. 

Antibody	 Clone	 Fluorochrome	 Manufacturer and 
catalogue number	

Laser 
filter 	

AM, PMLC and neutrophil panel	
Anti-hCD14	 HCD14	 PerCP/Cy5.5	 BioLegend 325622	 Blue	
Anti-hCD16	 3G8	 APC/Cy7	 BioLegend 302018	 Red	
Anti-hHLA-DR	 G46-6	 V450	 BD Horizon 561359	 Violet	
Anti-hCD206	 15-2	 PE	 BioLegend 321106	 Y/G	
Anti-hCD71	 CY1G4	 FITC	 BioLegend 334104	 Blue	
Anti-hCD163	 GHI/61	 APC	 BioLegend 333610	 Red	
T cell panel	 	 	 	 	
Anti-hCD3	 UCHT1	 FITC	 BioLegend 300405	 Blue	
Anti-hCD4	 OKT4	 APC/Cy7	 BioLegend 317418	 Red	
Anti-hCD8	 	 AF647	 BioLegend	 	
FACS Panel	 	 	 	 	
Anti-hCD14	 M5E2	 AF647	 BioLegend 301818	 Red	
Anti-hCD16	 3G8	 PE	 BioLegend 302008	 Blue	
Anti-hHLA-DR	 G46-6	 V450	 BD Horizon 561359	 Violet	

 

 

A     B        C  

Figure 17. Flow cytometry gating strategies. Cells were identified in BAL fluid based 

upon their position on flow cytometry dot plots of size versus granularity (A). Alveolar 

macrophages (AM) were selected as HLA-DR+ (B), and were divided into 

CD206lowCD163low, CD206highCD163low and CD206highCD163high subpopulations 

based on cell surface CD163 and CD206 expression (C). PMLC: Pulmonary monocyte-

like cells, N: Neutrophils, L: Lymphocytes. 
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Figure 18. Flow cytometry gating strategies. Cells were identified in BAL fluid based 

upon their position on flow cytometry dot plots of size versus granularity (A). PMLCs 

were selected as HLA-DR+ (B), and were divided into rPMLC and iPMLC 

subpopulations based on their CD14 and CD16 expression (CD14++CD16+ and 

CD14++CD16- respectively) (C). Lymphocytes (L) were further selected for CD3 

expression (D) and then subdivided into CD8+ and CD4+ T-cells (E). Cells were 

identified in whole blood based upon their position on flow cytometry dot plots of size 

versus granularity (F). Blood monocyte subsets (M) were identified as HLA-DR+ (G), 

and were then subdivided into classical (c), intermediate (i) and non-classical (nc) 

monocyte subpopulations based on their CD14 and CD16 expression (H). AM: 

Alveolar macrophages, N: Neutrophils. 
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Case definition 

All diagnoses were made by multidisciplinary integration of clinical, HRCT and where 

available histological findings.  Suspected idiopathic interstitial pneumonia was defined 

by the exclusion of known causes of fibrotic lung disease based on history and clinical 

assessment and HRCT appearances consistent with interstitial pneumonia. HRCT scans 

were classified as ’UIP pattern’, ‘probable UIP pattern’ and ‘inconsistent with UIP’ by 

consensus on pre-specified radiographic criteria (Figure 15).   

 

HRCT appearances were considered indicative of ‘definite’ UIP if they fulfilled all of 

the following criteria: 

a) Subpleural reticular abnormalities consisting of interlobular septal thickening and/or 

intralobular lines with basal involvement 

b) Basal subpleural honeycombing with or without traction bronchiectasis or 

bronchiolectasis 

c) Ground-glass change to involve less lung volume than that affected by a and b 

combined 

d) Basal dominance of a and b (>50% of these changes to be below level of inferior 

pulmonary veins) 

 

HRCT appearances were considered indicative of ‘probable UIP’ if they did not fulfil 

all the criteria for ‘definite UIP’, but did fulfil all of the following: 

a. Subpleural basal reticular abnormalities consisting of interlobular septal thickening 

and/or intralobular lines 

b. Ground-glass change to involve less lung volume than that affected by ‘a’. 

 

HRCT appearances that did not fulfill all the criteria for either definite or probable UIP, 

or that exhibited any of the following were categorised as ‘inconsistent with UIP’: 

extensive ground glass change (more extensive than reticular abnormalities); 

consolidation; predominantly peribronchovascular abnormalities; diffuse 

micronodularity; mosaic attenuation pattern dominant within lung parenchyma; 

multiple thin walled cysts.  These criteria are similar to the 2011 ATS/ERS criteria for 

‘UIP pattern’ and ‘possible UIP pattern’.  Patients who underwent biopsy were 

categorised after integration of histological criteria. 
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Statistical analysis  

GraphPad prism (version 6, GraphPad Software Inc., CA, USA) was used for data 

analysis. Normally distributed data were analysed by unpaired or paired t-test and 

expressed as mean (SD). Data that were not normally distributed were reported as 

median (interquartile range) and analysed by Mann Whitney U test or Wilcoxon signed 

rank test. Kruskal-Wallis test with Dunn’s Multiple Comparison Test was used to 

calculate differences between multiple groups. Predictors of mortality and disease 

progression by diagnostic category were estimated with SPSS using Cox models. 

Statistical analysis of RNA gene sequencing was performed by Alex Przybylski (PhD 

student) and was performed using edgeR package software. P values of <0.05 were 

considered significant. 

 

Organisation and analysis of cell differential data after initial BAL procedure 

 Differential cell counts from the first BAL were collated for patients with ‘definite 

IPF’, ‘probable IPF’ and ‘inconsistent with IPF’ HRCT patterns.  As cell counts did not 

follow pattern of normal distribution, Interquartile Ranges (IQR) and median values 

were calculated for each cell type in each category. A one-way ANOVA test and 

unpaired t-test with assumptions verified were performed to compare differences in 

means between cell counts between groups.   

 

Determining inconsistency in diagnosis between BAL and HRCT pattern 

The differential cell counts from the first BAL procedure of patients in ‘definite’ and 

‘probable’ IPF groups (n=83) were analysed.  A granulocyte count of less than 3% or a 

lymphocyte count of greater than 20% was deemed inconsistent with a diagnosis of IPF 

in accordance with international guidelines.  

 

Determining the predictive value of BAL neutrophilia on patient survival 

Absolute total neutrophil count and BAL neutrophil percentage was calculated in all 

patients in the ‘definite’ and ‘working diagnosis’ IPF groups (n=84) from the first BAL 

procedure.  Patients were categorised into those with a neutrophil count of ≥3% and 
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<3%. Length of time in days was calculated for each subject from the date of the first 

BAL procedure to 31/07/14 or date of decease.  Subjects were censored if they were 

still alive on this date. The maximum length of time between these dates was 2002 days. 

Kaplan Meier Analysis was used to determine the survival patterns. Survival 

distributions between the two categories was analysed using the Log-rank (Mantel-Cox) 

test. 

 

Determining the association between changes in BAL differential cell count from first 

BAL to repeat BAL at 12 months with disease progression 

Lung function testing was used as an objective measure of disease progression in all 

patients.  Disease progression was defined as a decrease in vital capacity (VC) of ≥10% 

in the 12 month period following BAL.  Based on lung function results, patients were 

categorised into ‘progressors’ and ‘non-progressors’.   Patients were also considered a 

‘progressor’ if death due to a lung cause occurred within 12 months of BAL.  In order 

to detect any significant change in the differential cell count between successive 

procedures, the Wilcoxon signed rank test was performed for each cell type in both 

progressor and non-progressor groups.  

 

Determining the safety of BAL 

Deaths within 1 and 3 months of BAL were considered clinically important indicators 

for BAL safety. The number of deaths in each case was counted from the total number 

of patients undergoing the first BAL (n=128). 

 

4.2      Results  

    4.2.1      Cellular components of bronchoalveolar   
                  lavage  
 
Between 01/01/09 and 31/12/13, 325 consecutive incident patients with IIP presented 

to the Edinburgh Lung Fibrosis clinic. Based on 2011 ATS/ERS criteria, 70 were 
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categorised as ‘definite UIP’, 128 as ‘probable UIP’ and 127 as ‘inconsistent with UIP’. 

Of the 325 patients, 128 underwent BAL at presentation. BAL granulocytes ≥3% and 

lymphocytes <20% were considered consistent with IPF. BAL DCC was consistent 

with IPF in 90.9% (n=20/22) of patients with ‘definite IPF’ and 85.5% (n=53/62) of 

patients with ‘probable IPF’. Of the 11 patients with BAL DCC inconsistent with IPF, 

two underwent SLB and histology was consistent with IPF in both. There were no 

significant differences between gender, smoking status or surgical biopsy rates between 

the three groups, however patients with HRCT appearances inconsistent with UIP were 

significantly younger and had better lung function than those with ‘definite’ or 

‘probable’ UIP HRCT appearances.  Patient demographic and cellular data are 

presented in Tables 24 and 25 below. 

 
Table 24. Demographic Data for Patients defined by HRCT category (n=128). 

Values presented as mean (+/- standard deviation). 
	 Definite UIP 

HRCT 
appearance      

N=22	

Probable UIP 
HRCT 
appearance   

N=62	

Inconsistent with 
UIP (other) HRCT    
appearance  

N=44	

P-value 

Age in years (SD)	 71.1 (+/- 8.1)*	 71.0 (+/- 7.4)+	 62.1 (+/- 9.9)*+	 <0.0001*+ 

Male (%)	  16 (72.7%)	  44 (71.0%)	  31 (70.5%)	 0.880 

Never smoked (%)	 5 (22.7%)	  17 (27.4%)	  19 (43.2%)	 0.105 

Ex smokers (%)	 13 (59.1%)	 36 (58.1%)	 16 (36.4%)	 0.084 

Current smokers (%)	  4 (18.2%)	  9 (14.5%)	 9 (20.5%)	 0.682 

VC in Litres (SD)	 2.79 (+/- 0.76)	 2.78 (+/- 0.79)	 3.18 (+/- 1.03)	 0.055 

VC % predicted (SD)	 89.5 (+/- 28.6)	 85.7 (+/- 19.8)	 87.9 (+/- 20.7)	 0.749 

TLCO 
(mm/min/mmHg)(SD)	

3.58 (+/- 1.1)*	 4.21 (+/- 1.3)+	 5.22 (+/- 2.1)*+	 0.0002 
*0.0004 
+0.005 

TLCO % predicted 
(SD)	

46.44 (+/- 
13.4)*	

52.8 (+/- 13.5)	 59.6 (+/- 19.4)*	 0.005 
*0.005 

Surgical lung biopsy 
performed (%)	

3 (13.3%)	 15 (24.2%)	 13 (29.5%)	 0.287 
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Table 25. Cellular data from first BAL procedure of all patients (n=128).  

	 Definite UIP 
 
N=22	

Probable UIP 
 
N=62	

Inconsistent with 
IPF (Other) 
N=44 

P-value	

Total cell count	 18.2x106 

(12.5x106, 
31.3x106)	

23.4x106 

(14.6x106, 
34x106)	

20.1x106 

(10.8x106, 
28.5x106)	

0.551	

% Neutrophils in BAL 
(IQR)	

13 (5,35)*	 9 (5,17)+	 5 (2,11)*+	 0.005*, 
0.009+	

% Eosinophils in BAL 
(IQR)	

4 (2,11)*	 3 (1,5)+	 1 (1,3)*+	 0.008*, 
0.016+	

% Lymphocytes in BAL 
(IQR)	

3 (2,5)	 2 (2,8)	 5 (2,14)	 0.090	

% Macrophages in BAL 
(IQR)	

71 (59,82)	 79 (64,88)	 84 (76,89)	 0.103	

Number of patients with 
<3% granulocytes (%)	

1 (4.5%)	 6 (9.8%)	 8 (18.2%)	 0.129	

Number of patients with 
>20% lymphocytes (%)	

1 (4.5%)	 4 (6.5%)	 5 (11.4%) 	 0.362	

Data presented as median and interquartile range, *statistically significant difference 
between groups, +statistically significant difference between groups 

 

Comparing differential cell counts between patient cohorts 

The one-way ANOVA test indicated statistically significant differences between the 

baseline differential cell counts of patients in the three HRCT determined categories 

(n=128).   A statistically significant difference was noted in baseline neutrophil 

percentage (P=0.005) and baseline eosinophil percentage (P=0.009). Post test analysis 

with Dunns multiple comparison test revealed statistically significant differences in 

baseline neutrophil and eosinophil percentages between ‘definite IPF’ and ‘inconsistent 

with IPF’ groups (P=0.005 and P=0.008 respectively), and also between ‘probable IPF’ 

and ‘inconsistent with IPF’ groups (P=0.009 and P=0.016 respectively). No statistically 

significant differences were noted in baseline lymphocyte and macrophage percentages 

between the groups.  When the same comparison was made between ‘definite’ and 

‘probable’ IPF groups, there were no significant differences in any of the baseline cell 

percentages (Table 25).  The lack of any significant difference between differential cell 

counts of patients in the ‘definite’ and ‘probable’ IPF categories allowed us to consider 

them as one group in the remaining analyses. This data is shown in Figure 19. 
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Figure 19. Baseline BAL DCC in ‘definite’, ‘probable’ and ‘inconsistent with’ UIP 

groups. 

                   

        

      

 



125	
	

In the 12 months following BAL, 36.4% (n=8/22) of patients in the ‘definite UIP’ group 

and 30.6% (n=19/62) in the ‘probable UIP’ group had progressed. There were no 

significant differences in BAL differential cell percentage or absolute cell count in any 

cell type between progressor and non-progressor groups, BAL cell percentage data are 

demonstrated in Figure 20. Mortality in patients with suspected IPF and a BAL DCC 

consistent with IPF was no different to those with a DCC inconsistent with IPF 

(P=0.425, HR 1.590 (95% CI 0.502 to 4.967)). There was no difference in disease 

progression in either group (P=0.885, HR 1.081 (95% CI 0.367 to 3.106)). Kaplan-

Meier curves are shown in Figure 21.  

 

Figure 20. Baseline BAL DCC between IPF progressor and non-progressor groups.       
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Determining Inconsistency in Diagnosis between BAL and HRCT 

BAL differential cell counts were considered consistent with IPF if granulocytes were 

≥3% and lymphocytes were <20%.  BAL differential cell count was inconsistent with 

a diagnosis of IPF (granulocytes <3% or lymphocytes >20%) in 9.1% of patients in the 

‘definite IPF’ group (n=2/22), as categorised by HRCT appearances.  Staphylococcus 

aureus and Haemophilus influenzae were cultured from BAL fluid.  Both of these 

patients were deemed too unfit for a second 12-month BAL, and surgical lung biopsy 

was not indicated.  14.5% of patients in the ‘probable IPF’ group had baseline 

differential cell counts that were inconsistent with a diagnosis of IPF (n=9/62).  

Mycoplasma pneumoniae was cultured in BAL fluid from one patient in this group.  Of 

these 9 patients, 5 went on a repeat BAL 12 months later, and differential cell counts 

on repeat BAL were consistent with IPF in 4 patients.  One patient had BAL differential 

cell count that remained inconsistent with IPF on repeat BAL.  Two of the patients in 

this group underwent surgical lung biopsy, histology was consistent with UIP in both 

cases and so confirmed the diagnosis of IPF.    

	

Determining the predictive value of baseline BAL neutrophilia and lymphocytosis on 

patient survival 

Both ‘definite IPF’ and ‘probable IPF’ groups were combined, and a comparison of 

mortality and disease progression in IPF patients with both consistent (BAL 
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granulocytes >3% and BAL lymphocytes <20%) and inconsistent (BAL granulocytes 

<3% and BAL lymphocytes >20%) BAL DCCs was performed using the Log-rank 

(Mantel-Cox) test. There was no significant difference in survival or disease 

progression between the groups. Median survival was 4.5 years in the group with BAL 

DCC consistent with IPF, versus an undefined median survival in the group with BAL 

DCC inconsistent with IPF (P=0.425, HR 1.590 (95% CI 0.509 to 4.966). The median 

time to disease progression in the group with BAL DCC consistent with IPF was 4.9 

years, versus an undefined time to progression in the group with BAL DCC inconsistent 

with IPF (P=0.885, HR 1.081 (95% CI 0.376 to 3.106). Figure 21. 

 

Figure 21. Mortality and disease progression in IPF patients with consistent and 

inconsistent BAL DCC. 
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There was no significant difference in survival between patients with a baseline BAL 

neutrophil percentage of >3% vs <3% (median survival 52.1 vs 53.3 months 

respectively, P=0.400, HR 1.403 (95%CI 0.638 – 3.086)). Similarly, no difference in 

mortality was found between patients with a baseline BAL lymphocyte percentage of 

<20% vs >20% (median survival 53.3 months and undefined respectively, P=0.349, HR 

1.935, (95%CI 0.580 – 4.720)). Two and five year mortality was also reviewed in IPF 

patients with baseline BAL neutrophils of >3% vs <3% and with baseline BAL 

lymphocytes of <20% and >20%, however there were no significant differences in 

either 2 or 5 year survival between the groups. This data is shown in Figures 22 – 27 

below.  

Figure 22. Kaplan Meier survival curve of patients with baseline BAL neutrophil 
percentage of >3% vs <3%. 

	

	

Figure 23. Kaplan Meier survival curve of patients with baseline BAL lymphocyte 
percentage of <20% vs >20%. 
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Figure 24. Kaplan Meier 2 year survival curve of patients with baseline BAL 
neutrophil percentage of >3% vs <3%. 

	

	

Figure 25. Kaplan Meier 5 year survival curve of patients with baseline BAL 
neutrophil percentage of >3% vs <3%. 
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Figure 26. Kaplan Meier 2 year survival curve of patients with baseline BAL 
lymphocyte percentage of <20% vs >20%. 

	

	

Figure 27. Kaplan Meier 5 year survival curve of patients with baseline BAL 
lymphocyte percentage of <20% vs >20%. 

	

	

Determining the association between changes in BAL differential cell count from first 

BAL to repeat BAL at 12 months with disease progression 

There are no studies that specifically describe the value of repeated BAL in IPF. We 

aimed to determine the feasibility of repeat BAL in IPF and the relationship between 

DCC and disease progression in two successive BALs. Of the 84 patients with ‘definite’ 

or ‘probable’ IPF, 39 had repeat BAL twelve months later. The reasons for patients not 

undergoing repeat BAL were death within 12 months of first BAL (n=13), patient not 

approached within 3 months of repeat BAL due date (n=12), patient declined (n=6) and 
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patient deemed too frail (n=5). Nine patients were awaiting repeat BAL. Patients were 

categorised into ‘progressors’ (n=8) and ‘non-progressors’ (n=31). Patient demographic 

and cellular data are shown in Tables 26 and 27.  There was a significant decrease in 

absolute VC, percentage predicted VC, absolute TLCO and percentage predicted TLCO 

in the progressors between 0 and 12 month BALs. There was a significant increase in 

absolute VC and percentage predicted VC between BALs in the non-progressor group. 

There was a significant change in absolute VC, percentage predicted VC and absolute 

TLCO between 0 and 12 month BALs between the progressor and non-progressor 

groups. The Wilcoxon signed rank test was used to compare both cell percentage and 

absolute cell count for each of the cell types at 0 and 12 months in both progressor and 

non-progressor groups.  There were no statistically significant differences in total cell 

count between 0 and 12 month BALs in either group (progressors 0 vs 12 months, 

P=1.000, non-progressors 0 vs 12 months, P= 0.592). There was no statistically 

significant difference in any of the cell types between 0 and 12 month BALs in either 

group (neutrophil %: progressors 0 vs 12 months, P=0.400; non-progressors 0 vs 12 

months, P=0.241, lymphocyte %: progressors 0 vs 12 months, P=0.944, non-

progressors 0 vs 12 months, P=0.318, eosinophil %: progressors 0 vs 12 months, 

P=0.374, non-progressors 0 vs 12 months, P=0.205, macrophage %: progressors 0 vs 

12 months, P=0.933, non-progressors 0 vs 12 months, P=0.090). The change in the 

differential cell count between 0 and 12 month BALs did not appear to predict disease 

progression. Change in total cell count and DCC percentages between 0 and 12 month 

BAL is demonstrated in Figure 28.  

 

The Mann Whitney test was used to compare the change in differential cell count for 

each of the four cell types measured between 0 and 12 month BALs and between 

progressor and non-progressor groups.  There was no significant change in absolute 

total cell count between 0 and 12 month BALs between progressor and non-progressor 

groups, (P=0.682) and no significant change in absolute cell counts in each of the cell 

types. There was no significant difference in the change of DCC percentages between 

0 and 12 month BALs between progressors and non-progressors (change in neutrophil 

% progressors vs non-progressors, P=1.000, change in lymphocyte % progressors vs 

non-progressors, P=0.794, change in eosinophil % progressors vs non-progressors, 

P=0.215, change in macrophage % progressors vs non-progressors, P=0.434). Change 
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in DCC cell percentages is shown in Figure 29. Repeat BAL was well tolerated in 

almost all patients.  

 

Table 26. Patient demographic data. 

	 Progressors   N=8 
(definite IPF n=2, possible IPF n=6)	

Non-Progressors   N=31 
(definite IPF n=9, possible IPF  

n=22)	

	

BAL	 Baseline 
0 months	

12 months	 Change	 Baseline 
0 months	

12 months	 Change	 P-value 
(Change)	

VC in Litres 
(IQR)	

3.23	
(2.67,3.86)	

2.85	
(2.29,3.16)	

-0.42		
(-0.61,	
-0.29)	

3.06	
(2.54,3.32)	

3.16	
(2.45,3.52)	

-0.02		
(-0.10,	
0.16)	

<0.0001	

P<0.0001	 P=0.015	
VC 
%predicted 
(%) (IQR)	

91.5	
(73.5,96.5)	

79.0	
(68.5,81.8)	

-10.0		
(-15.0,	
-9.0)	

86.1	
(81.0,101.1)	

89.6	
(80.0,104.2)	

0		
(-3.0,4.7)	

<0.0001	

P<0.0001	 P=0.006	
TLCO 
(mm/min/mm
Hg)	

4.65	
(3.23,5.47)	

3.92	
(2.98,4.80)	

-0.76		
(-0.96,	
-0.25)	

3.92	
(3.02,5.25)	

3.83	
(2.89,5.09)	

-0.20	
	(-0.56,	
-0.02)	

0.018	

P=0.0004	 P=0.138	
TLCO % 
predicted (%) 
(IQR)	

54.5	
(39.3,64.3)	

46.0	
(35.3,56.0)	

-8.3		
(-10.9,	
-2.5)	

52.9	
(45.0,60.0)	

51.5	
(40.8,58.3)	

-2.1		
(-7.6,0.1)	

0.061	

P=0.0004	 P=0.236	
 

Table 27. Patient cellular data. 

	 Progressors   N=8 
(definite IPF n=2, possible IPF n=6)	

Non-Progressors   N=31 
(definite IPF n=9, possible IPF 

n=22)	

	

BAL	 Baseline 
0 months	

12 
months	

Change	 Baseline 
0 months	

12 
months	

Change	 P-value	

Total cell 
count	

25x106 

(20.5x106, 
34x106)	

29.5x106 

(19.3x106, 
37.3x106)	

*+7x105 

(-10.4x106, 
+17.5x106)	

18x106 

(9.5x106, 
33.2x106)	

25.3x106 

(13.8x106, 
31x106)	

*+2.7x106 

(-10.4x106, 
+10.9x106)	

*P=0.982	

P=0.844	 P=0.813	
Neutophil % 
(IQR)	

11 (6,21)	 7 (5,20)	 -4* 
(-15,4)	

9 (5,21)	 8 (4,13)	 -4* 
(-11,4)	

*P=1.000	
P=0.400	 P=0.241	

Lymphocyte 
% (IQR)	

2 (1,7)	 4 (1,10)	 -1* (-3,5)	 4 (2,10)	 4 (1,7)	 -1* (-3,2)	 *P=0.794	
P=0.944	 P=0.318	

Eosinophil 
% (IQR)	

1 (1,3)	 3 (1,8)	 1* (-1,1)	 3 (1,6)	 2 (1,5)	 -1* (-4,2)	 *P=0.215	
P=0.374	 P=0.205	

Macrophage 
% (IQR)	

79 (65,89)	 74 (63,90)	 1* (-8,10)	 76 
(62,86)	

81 (68,89)	 7* (-9,20)	 *P=0.434	

P=0.933	 P=0.090	
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Figure 28. BAL DCC at 0 and 12 months in IPF progressor and non-progressor 
groups. 
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Figure 29. Change in DCC between 0 and 12 month BALs between progressors and 
non-progressors. 
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Determining the safety of the BAL procedure  

In our study, 128 patients underwent BAL at presentation; 84 patients suspected to have 

IPF and 44 patients unlikely to have IPF based on clinical and radiological appearances.  

Thirty nine patients underwent a repeat BAL procedure 12 months following initial 

BAL.  No immediate serious complications were observed in our study and the 

procedure was well tolerated in most patients.  There was 1 death within 1 month of a 

first BAL procedure, 1 death within 1 month of a second BAL procedure and 1 death 

within 3 months of a first BAL procedure.  The first two deaths were considered to be 

‘probably procedure-related’.  The first death occurred in 78 year old man with probable 

IPF three days after a first BAL procedure.  The cause of death was pneumonia.  The 

lavage fluid from the procedure was negative on culture.  The second death occurred in 

an 80 year old man with probable IPF, 13 days following his second BAL procedure.  

The lavage fluid was negative on culture, however the cause of death was considered 

to be pulmonary oedema and fast atrial fibrillation secondary to pneumonia.      

 

 

    4.2.2      Alveolar macrophage phenotype in disease  
                  progression 
 
Cells were obtained by BAL from 42 patients with IPF; 14 progressors, 28 non-

progressors. A panel of monoclonal antibodies; CD14, CD16, CD206, CD71, CD163 

and HLA-DR were used to quantify and selectively characterise AMs using flow 

cytometry. Twenty one patients underwent repeat BAL 12 months later; 5 progressors, 

16 non-progressors. AMs are typically described as classical M1 (CD206lowCD163low) 

activated AMs or alternatively activated M2a (CD206highCD163low) and M2c 

(CD206highCD163high) AMs. All IPF patients had significantly increased 

CD206highCD163low AM polarisation versus CD206highCD163high (P<0.001) and vs 

CD206lowCD163low (P<0001) at 0 month BALs. All IPF patients had significantly 

increased CD206highCD163low/high AM subpopulations compared to CD206lowCD163low 

AM subsets at 0 and 12 month BALs (P=0.01 and P<0.001 respectively). However, 

there were no significant differences between progressor and non-progressor groups. 
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CD71 (transferrin receptor) expression was significantly increased in IPF progressors 

versus non-progressors at baseline BAL (P<0.0001). ROC curve analysis of baseline 

CD71 expression revealed a baseline CD71 expression >91.91% yielded 80% 

sensitivity and 92.3% specificity for IPF progression, area under curve 0.846. CD71, 

CD206 and CD163 expression was reported as being high or low by obtaining the mean 

of all values, values above the mean were termed ‘high’ and values below the mean 

were termed ‘low’. KM survival curves for CD71+ high (>87.5%) vs low (≤87.5%) 

revealed median survivals of 40.5 months and 75.6 months respectively (P=0.015, HR 

0.196 (95% CI 0.052 – 0.730)) when adjusted for	sex, age, smoking status, %predicted 

FVC and % predicted TCO. There was also increased expression of CD206 (mannose 

receptor) in IPF progressors at both baseline (P=0.034) and at 12 month BAL (P=0.027) 

compared to the non-progressor group.  CD163 expression was significantly reduced in 

the progressor group vs the non-progressor group at baseline BAL (P=0.019), however 

there was no significant difference between groups at 12 months. Graphical 

representation of this data is shown in Figures 30-35. Characteristic predictors of 

‘stable’ disease at presentation were, low CD71+ (p=0.001), low CD206+ (p=0.034) 

and high CD163+ (p=0.019) AMs, and a higher M2 (and specifically M2a) population 

relative to M1 macrophages at presentation (P < 0.0001), and at 12 months, CD206 low 

(P=0.027) AMs. KM survival curves for CD71highCD206highCD163low vs intermediate 

phenotype (CD71high/lowCD206high/lowCD163low/high) vs CD71lowCD206lowCD163high	

revealed median survivals of 23.3 months, 75.6 months and undefined survival 

respectively (P=0.041, HR 0.005  (95%CI 0.003-0.889)) when adjusted for	sex, age, 

smoking status, %predicted FVC and % predicted TCO. These data are shown in Figure 

36.	
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Figure 30. AM polarisation at 0 and 12 month BALs in IPF progressors and non-
progressors. 

      

      

       



141	
	

Figure 31. AM CD71 expression at 0 and 12 month BALs in IPF progressors and 
non-progressors. 

											  

        

 

Figure 32. ROC curve of baseline %CD71+ AMs. 
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Figure 33. KM survival curves CD71+ high vs low. 

 

 

Figure 34. AM CD206 expression at 0 and 12 month BALs in IPF progressors and 
non-progressors. 
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Figure 35. AM CD163 expression at 0 and 12 month BALs in IPF progressors and 
non-progressors. 

       

 

Figure 36. KM survival curve AM polarisation phenotype. 
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       4.2.3      Pulmonary monocyte-like cells 
 
Expansion of novel subpopulations of PMLCs, resident PMLC (rPMLC, HLA-

DR+CD14++CD16+ cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- 

cells), have been reported in inflammatory lung diseases49.  BAL fluid cells were 

obtained from a Test Cohort of IPF patients, 7 progressors and 19 non-progressors. BAL 

was performed at presentation and 12 months later. A panel of monoclonal antibodies, 

as described previously, were used to quantify and selectively characterise alveolar 

macrophages (AMs), rPMLCs and iPMLCs by cell sorting. In the Test Cohort, disease 

progression in IPF was associated with a significantly increased baseline BAL 

%rPMLC subpopulation (P=0.010) and a significantly decreased baseline BAL 

%iPMLC subpopulation (P=0.011). The baseline BAL iPMLC:rPMLC ratio was also 

significantly decreased in the IPF progressor group (P=0.01). There was a trend to 

suggest IPF progressors had increased %PMLC of all cells, however this did not reach 

significance. There were no significant changes in %rPMLC or %iPMLC between 0 

and 12 month BALs in the progressor or non-progressor groups. This data is 

demonstrated in Figure 37.  

 

Figure 37. %iPMLC and %rPMLC in Test Cohort by cell sorting, 0 and 12 month 

BALs. 
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BAL fluid cells were then obtained from a Validation Cohort of ILD patients; 42 

patients with IPF (14 progressors, 28 non-progressors), 30 patients with non-fibrotic 

ILD (18 IIP, 5 sarcoidosis, 3 CTD-ILD, 2 NSIP, 2 Bird Fancier’s Lung), and 6 healthy 

controls. Patient demographic data are described in Table 28. Baseline lung function 

was significantly worse in the IPF progressors versus the IPF non-progressors, non-

fibrotic ILD and healthy control groups. A panel of monoclonal antibodies; CD14, 

CD16, CD3, CD4, CD8 and HLA-DR were used to quantify and selectively characterise 

AMs, rPMLCs, iPMLCs, neutrophils and CD4/CD8+ T-cells using flow cytometry as 

previously described. Classical, intermediate and non-classical monocyte subsets were 

also quantified in peripheral blood. The percentage of rPMLCs was significantly higher 

in BAL fluid cells of IPF patients compared to those with non-fibrotic ILD (P<0.0001) 

and healthy controls (P<0.05). Baseline rPMLC percentage was significantly higher in 

IPF progressors compared to the IPF non-progressor group (P=0.011). There were no 
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significant differences in BAL lymphocyte populations between groups. This data is 

shown in Figure 38. There were no significant differences in blood classical, 

intermediate and non-classical monocyte population percentages in patients with IPF 

compared to patients with non-fibrotic ILD or healthy controls. This data is shown in 

Figure 39.  

 

Table 28. Patient demographic data. 

  	 IPF 
Progressor  
  
 
N=14 	

IPF 
Non 
progressor  
  
N=28 	

Non-fibrotic 
ILD 
N=30 
(18 IIP, 5 
sarcoidosis, 3 
CTD-ILD, 2 
NSIP, 2 Bird 
Fancier’s 
Lung) 	

Healthy 
Control 
  
  
N=6 	

P-value 

Age in years 
(SD) 	

70.6 (8.2) 	 73.5 (6.6)*+ 	 66.1 (9.3)*	 59.8 (9.9)+ 	 0.0005 
*0.006 
+0.002 

Male (%) 	 13 (92.9) 	 18 (64.3) 	 20 (66.7) 	 2 (33.3) 	  
Never smoked 
(%) 	

6 (42.9) 	 11 (39.3) 	 12 (40.0) 	 2 (33.3) 	  

Ex-smoker 
(%) 	

8 (57.1) 	 15 (53.6) 	 13 (43.4) 	 2 (33.3) 	  

Current 
smoker (%) 	

0 	 2 (7.1) 	 5 (16.7) 	 2 (33.3) 	  

VC in Litres 
(IQR) 	

2.78 
(2.40,3.33) 	

2.89 
(2.35,3.42) 	

2.96 
(2.38,3.66) 	

2.47 
(2.37,3.48) 	

0.268 

VC  
%predicted in 
Litres (IQR) 	

76.0*+^ 
(66.8,97.0) 	

95.0*° 
(84.3,108.8) 	

86.0+° 
(75.7,100.8 ) 	

95.0^ 
(87.0,101.5) 	

<0.0001 
*°<0.0001 
+0.005 
^0.002 

TLCO 
(mm/min/ 
mmHg) (IQR) 	

3.91* 
(3.06,4.79) 	

4.10+  
(3.30,5.12) 	

4.75*+ 
 (3.81,6.25) 	

Not 
performed 	

<0.0001 
*+<0.0001 

TLCO 
%predicted 
(IQR) 	

49.0*+ 
(38.5,55.7) 	

55.0*^  
(48.0,62.7) 	

60.0+ ^ 
(52.0,69.8) 	

Not 
performed 	

<0.0001 
*+<0.0001 
^0.0002 
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Figure 38. BAL rPMLC, iPMLC and lymphocyte subset percentages in IPF vs non-
fibrotic ILD and healthy controls. 
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Figure 39. Whole blood classical, intermediate and non-classical monocyte 

population percentages in IPF vs non-fibrotic ILD and healthy control.                  
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 Real-time PCR profiling of AMs, rPMLCs and iPMLCs 

 

After demonstrating that AMs, rPMLCs and iPMLCs are different in terms of cell size 

and cell surface expression markers, in order to evaluate whether these cells were 

different functionally, sorted AM, rPMLC and iPMLC cell pellets were sent to 

Professor Mark Lindsay at the University of Bath for RNA gene sequencing. Analysis 

of the RNA gene sequencing was performed by Alex Przybylski (PhD student) using 

edgeR package software. Briefly, Alex used the Human Gene Set annotation file from 

Ensembl to map the genes. A multidimensionality scaling plot was used to visualise the 

data and identify outliers. Two outliers were identified and were removed from 

subsequent analysis. The gene set was filtered to remove genes with 0 or near -0 counts 

using a Counts-Per-Million threshold. The following data is preliminary as further work 

is ongoing to fine-tune the analysis to ensure too many genes have not been removed, 

therefore losing potentially interesting results, but also to ensure too many genes have 

not been included, therefore increasing the likelihood of false positives and performing 

unnecessary comparisons. From an original set of 58,395 genes, 21,881 genes were 

included in the analysis. Generalised Linear Models were used to test the differences 

between AM, rPMLC and iPMLC groups. For each gene (21,881), Alex calculated the 

log2fold change (logFC) where positive values indicate upregulation of a gene in x 

versus y. Data showing the top twenty differentially expressed genes between AMs vs 

rPMLC, AMs vs iPMLC and iPMLCs vs rPMLCs is shown in Tables 29, 30 and 31 

below. Heatmaps of the top twenty differentially expressed genes between AMs vs 

rPMLCs, AMs vs iPMLCs and iPMLCs vs rPMLCs, and histograms of the top two 

differentially expressed genes between each of the groups are shown in Figures 40, 41 

and 42 below.  

Table 29. Top twenty differentially expressed genes between AMs and rPMLCs by 

RNA gene sequencing. 

Gene	 Gene biotype	 logFC	 P-Value	
ANGPT2	 Protein coding	 5.15	 1.4793E-07	
SPAG5	 Protein coding	 1.78	 9.90444E-07	
AC013457.1	 Antisense	 3.54	 1.63553E-06	
OPRK1	 Protein coding	 4.90	 2.30513E-06	
CENPU	 Protein coding	 1.56	 2.80612E-06	
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XK	 Protein coding	 3.35	 3.10922E-06	
CDCP1	 Protein coding	 1.06	 3.41095E-06	
ESPL1	 Protein coding	 1.92	 4.14562E-06	
IER5L	 Protein coding	 -1.56	 4.74144E-06	
SNAI2	 Protein coding	 6.07	 4.98143E-06	
TBC1D4	 Protein coding	 1.80	 6.88406E-06	
OR6K3	 Protein coding	 4.46	 7.04207E-06	
HMMR	 Protein coding	 2.39	 8.86836E-06	
MYBL2	 Protein coding	 3.62	 8.92384E-06	
KIFC1	 Protein coding	 2.64	 1.03686E-05	
AXL	 Protein coding	 1.63	 1.16976E-05	
CHRM3	 Protein coding	 4.57	 1.21527E-05	
PBK	 Protein coding	 4.21	 1.25077E-05	
ASF1B	 Protein coding	 2.99	 1.27664E-05	
THBS1	 Protein coding	 2.12	 1.41019E-05	

 

Table 30. Top twenty differentially expressed genes between AMs and iPMLCs by 

RNA gene sequencing. 

Gene	 Gene biotype	 logFC	 P-Value	
PDGFA	 Protein coding	 -3.18	 1.303E-06	
GPSM1	 Protein coding	 -3.10	 1.737E-06	
CYSLTR1	 Protein coding	 1.45	 3.01E-06	
XK	 Protein coding	 3.73	 3.769E-06	
FAM118A	 Protein coding	 -2.17	 3.782E-06	
ABCB10	 Protein coding	 0.98	 5.201E-06	
AC044849.1	 Antisense	 -1.96	 6.056E-06	
TBC1D4	 Protein coding	 1.98	 6.089E-06	
ELFN1	 Protein coding	 -3.18	 6.171E-06	
CYP4V2	 Protein coding	 1.55	 6.566E-06	
DTWD2	 Protein coding	 1.39	 8.819E-06	
ESR1	 Protein coding	 1.38	 8.825E-06	
ACKR3	 Protein coding	 1.86	 1.069E-05	
AK3	 Protein coding	 1.19	 1.165E-05	
SMIM14	 Protein coding	 1.06	 1.249E-05	
AC013457.1	 Antisense	 3.25	 1.354E-05	
PLBD1	 Protein coding	 1.37	 1.433E-05	
CDCP1	 Protein coding	 1.01	 1.459E-05	
THBS1	 Protein coding	 2.31	 1.601E-05	
HMMR	 Protein coding	 2.42	 1.652E-05	
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Table 31. Top twenty differentially expressed genes between iPMLCs and rPMLCs 

by RNA gene sequencing. 

Gene 	 Gene biotype	 logFC	 P-Value	
MMP19	 Protein coding	 1.23	 0.0002	
ALDH1A2	 Protein coding	 1.26	 0.00022	
IL36RN	 Protein coding	 3.85	 0.00043	
CSPG4	 Protein coding	 1.05	 0.00045	
LINC01050	 LincRNA	 3.88	 0.00051	
IL1RN	 Protein coding	 1.38	 0.00067	
GEM	 Protein coding	 2.95	 0.00085	
PDE2A	 Protein coding	 1.42	 0.00096	
AC009951.1	 TEC	 0.75	 0.00103	
AL390719.1	 Transcribed unprocessed pseudogene	 2.82	 0.00151	
PIGV	 Protein coding	 -0.59	 0.00155	
TNFRSF18	 Protein coding	 2.59	 0.00167	
AP001330.5	 LincRNA	 1.93	 0.00198	
HRH4	 Protein coding	 -1.82	 0.00211	
CEMIP	 Protein coding	 2.19	 0.00218	
NUDT7	 Protein coding	 -1.48	 0.00221	
AC084871.1	 Transcribed processed pseudogene	 1.00	 0.00232	
ELOVL3	 Protein coding	 -1.56	 0.00234	
MAP2K6	 Protein coding	 -0.97	 0.00234	
PDCD1	 Protein coding	 2.95	 0.00256	
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Figure 40. Heatmap of top 20 differentially expressed genes and histogram of top 2 

differentially expressed genes between AMs and rPMLCs. 
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Figure 41. Heatmap of top 20 differentially expressed genes and histogram of top 2 

differentially expressed genes between AMs and iPMLCs. 
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Figure 42. Heatmap of top 20 differentially expressed genes and histogram of top 2 

differentially expressed genes between iPMLCs and rPMLCs. 
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RNA gene sequencing revealed a number of significantly differentially expressed genes 

between AM vs rPMLC, AM vs iPMLC and iPMLC vs rPMLC groups. In the AM 

versus rPMLC group, ANGPT2, SPAG5, AC013457.1, OPRK1, CENPU, XK, CDCP1, 

ESPL1, IER5L, SNAI2, TBC1D4, OR6K3, HMMR, MYBL2, KIFC1, AXL, CHRM3, 

PBK, ASF1B and THBS1 were all significantly differentially expressed (all P<0.0001). 

In the AM versus iPMLC group, PDGFA, GPSM1, CYSLTR1, XK, FAM118A, 

ABCB10, AC044849.1, TBC1D4, ELFN1, CYP4V2, DTWD2, ESR1, ACKR3, AK3, 

SMIM14, AC013457.1, PLBD1, CDCP1, THBS1 and HMMR were all significantly 

differentially expressed (all P<0.0001). In the iPMLC versus rPMLC group, MMP19, 

ALDH1A2, IL36RN, CSPG4, LINC01050, IL1RN, GEM, PDE2A, AC009951.1, 

AL390719.1, PIGV, TNFRSF18, AP001330.5, HRH4, CEMIP, NUDT7, AC084871.1, 

ELOVL3, MAP2K6 and PDCD1 were all significantly differentially expressed (all 

P<0.002).  A literature search on each of the genes revealed that most of the top sixty 

differentially expressed genes could be clustered together by their involvement in one 

of three main pathways; apoptosis, G-protein coupled receptor signalling pathways and 

angiogenesis. All three of these pathways play a role in the pathogenesis of IPF and 

may represent future targets for further research to develop targeted therapy.  
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4.3      Discussion 

Idiopathic pulmonary fibrosis is a lethal, chronic, progressive interstitial lung disease 

of unknown aetiology. Because of it’s poor prognosis, and no curative therapy, reliable 

methods of both differentiating IPF from the other ILDs and also predicting disease 

progression are of great benefit. Several studies have reported considerable 

interobserver variation96,97 and interlobar variability96,98 in the histological 

interpretation of the ILDs, and so it has been suggested that histopathologic examination 

alone from SLB sampling is less reliable as a pivotal investigation in diagnosing ILD. 

Numerous studies have also demonstrated interobserver variation in the interpretation 

of HRCT findings alone96,99,100 and also when HRCT appearances and histopathology 

are examined in combination32,96. The sensitivity and specificity of HRCT for the 

diagnosis of IPF have been reported as approximately 43 to 78% and 90 to 97% 

respectively96. Furthermore Flaherty et al demonstrated that an HRCT pattern consistent 

with IPF is only present in around half of patients with histologically confirmed UIP 

and is associated with mid to late-stage disease and a particularly poor prognosis32,96. 

Both UIP HRCT and histopathologic appearances can also be seen in association with 

drug exposure, environmental factors and connective tissue disease96,101.  

 

Prior to the 2011 ATS/ERS/JRS/ALAT guideline, differential cell count in BAL was 

considered a key step in the IPF diagnostic pathway. However in 2011, BAL was 

completely removed from the diagnostic algorithm. Bronchoalveolar lavage has been 

pivotal in elucidating the key immune effector cells driving the inflammatory process 

in IPF102,103.  A number of BAL cellular components are reported as being elevated in 

patients with IPF, including polymorphonuclear leukocytes, neutrophil products, 

eosinophils, eosinophil products, activated alveolar macrophages, alveolar macrophage 

products, cytokines, chemokines, immune complexes and fibroblastic growth 

factors102,103. BAL fluid analysis in IPF typically shows an increase in total cell count, 

polymorphonucleated neutrophils (>5%) and eosinophils (>2%)16,102,104–107. It has been 

shown however that there is no correlation between the percentages of BAL cell types 

and various clinical parameters, serum tests or lung function studies102.  It has been 

reported that 70-90% of patients with IIP have a BAL neutrophilia (>5%). The presence 

of a BAL neutrophilia increases the likelihood of an underlying fibrotic process such as 

IPF, RA-ILD, asbestosis or fibrotic sarcoidosis, and is directly linked to the extent of 
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reticular change on HRCT102. Whilst raised BAL neutrophils (>5%) may be 

characteristic of IPF, it is not diagnostic. In IPF, 40-60% of patients will also have an 

associated increase in BAL eosinophils (>2%)102.  Numerous studies have reported that 

BAL is a safe, well-tolerated diagnostic procedure in ILD, and carries far fewer risks 

than SLB.  

 

Our study demonstrates a composite assessment of the roles of BAL in the clinical 

pathway of patients presenting with suspected IPF from diagnosis to prognostic 

stratification and additionally explores the safety and tolerability of the procedure. In 

our study of 325 suspected IIP patients, 128 underwent BAL at presentation. Based on 

ATS/ERS HRCT criteria, 22 were categorised as ‘definite UIP’, 62 as ‘probable UIP’ 

and 44 as ‘inconsistent with UIP’. BAL granulocytes ≥3% and lymphocytes <20% were 

considered consistent with IPF, as suggested by consensus guidelines. Our data suggests 

that BAL differential cell count is consistent with IPF in the majority of patients with 

IPF (86.9%, n=73/84) in which HRCT appearances are considered either ‘definite’ 

(90.0%, n=20/22) or ‘probable’ (85.5%, n=53/62) UIP pattern. In our cohort, BAL DCC 

in patients with HRCT defined ‘definite’ and ‘probable’ UIP were similar, however 

differed significantly from other types of ILD with patterns ‘inconsistent with’ and IPF 

diagnosis. Both at baseline and at 12 month BAL, there were no significant differences 

in BAL DCC percentages or absolute cell count in any cell type between progressor and 

non-progressor groups.  

 

Numerous study groups report that BAL is a useful technique for the differential 

diagnosis of various ILDs and with well documented typical BAL features of 

sarcoidosis, hypersensitivity pneumonitis, occupational lung disease and RB-ILD, it 

should be considered an important adjuvant in the diagnostic work-up. A study by 

Domagala-Kulawik and colleagues revealed a significant relation between the total cell 

count and ILD diagnosis108. They also found significant differences between ILD 

groups in total AM, lymphocyte, neutrophil and eosinophil counts.  The additional value 

of BAL in the diagnostic pathway in IPF specifically has also been explored in several 

studies. Oshimo et al evaluated the clinical utility of BAL for the diagnosis of IPF and 

found that 8% (n=6/74) of their cohort were diagnosed with IPF based on consistent 

HRCT, pulmonary function and clinical findings, but demonstrated a lymphocytosis of 

>30% in BAL cell differentials. Further examinations by means of surgical lung biopsy 
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in 2 patients and subsequent outcomes in 4 patients clarified the final diagnosis of 

idiopathic NSIP in 3 patients and of EAA in 3 patients, therefore BAL lymphocytosis 

changed the diagnostic perception in all 6 patients. They concluded that BAL 

differential cell count continues to have a role in the diagnostic evaluation of IPF since 

1 in 12 of their patients with ‘definite UIP’ HRCT appearances had cell counts 

inconsistent with the diagnosis96. In our cohort, 9.1% (n=2/22) of patients with ‘definite 

UIP’ HRCT appearances had a BAL DCC that was inconsistent with IPF (granulocytes 

<3% or lymphocytes >20%). Neither of these patients were fit enough to undergo repeat 

BAL at 12 months. In the ‘probable UIP’ HRCT group, 14.5% (n=9/62) had 

inconsistent with IPF BAL DCCs. Two patients went on to have SLB and UIP was 

confirmed histologically in both. Five patients had a repeat BAL 12 months later, and 

of the 5, 4 patients had DCCs that were consistent with IPF on repeat. Our data shows 

that mortality in patients with suspected IPF and a BAL differential cell count consistent 

with IPF was no different to those with a BAL DCC inconsistent with IPF (P=0.425, 

HR 1.590 (95% CI 0.502 – 4.967)). Furthermore, there was also no significant 

difference in disease progression in either group (P=0.885, HR 1.08 (95% CI 0.367 – 

3.106)). 

 

The value of BAL differential cell count in predicting survival in IPF has been a topic 

of rich debate. A large scale multivariate analysis by Kinder et al demonstrated that 

BAL neutrophilia >3% significantly predicted mortality independently of confounding 

variables including age, sex, smoking status and lung function. Their study however is 

not without its limitations, including an extended follow up period of over 14 years, 

during which time there may have been several changes in the diagnosis and 

management of IPF, and also most importantly, a lack of HRCT diagnosis in their 

patients104. In contrast, Veeraghavan et al reported no significant predictive effect of 

BAL neutrophilia on survival when its value was studied retrospectively in a cohort of 

histologically proven IPF patients. These patients were diagnosed by the ‘gold standard’ 

by means of surgical lung biopsy, however the study was limited by a small cohort of 

only 35 patients105. Whilst previous studies have demonstrated that BAL 

granulocystosis or neutrophilia may be an important diagnostic and prognostic indicator 

in IPF96,104,106, our data does not suggest any significant predictive effects. Kaplan 

Meier curves showing 2 and 5 year mortality in patients with BAL neutrophils of >3% 

vs <3% showed no significant difference in either 2 or 5 year survival between groups.   
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Previous studies have also reported that the absence of a lymphocytosis in BAL is 

important for the diagnosis of IPF96,101, however no exact cut-off level has been 

evaluated. The 2002 ATS/ERS Consensus Classification suggested that lymphocyte 

counts greater than 15%, which is the upper limit of normal, might be suggestive of an 

alternative diagnosis such as NSIP, COP, EAA or sarcoidosis68,96. Our study 

demonstrated that a cut-off level of 20% for lymphocytes in BAL could discriminate 

between IPF and non-IPF favourably, however the value of a lymphocytosis as a 

predictor of survival was much less convincing with Kaplan Meier curves showing no 

significant difference in either 2 or 5 year survival between patients with BAL 

lymphocytes of <20% and those with BAL lymphocytes >20%.   

 

It is widely accepted that alveolar macrophages are an integral part of the lung’s 

reparative mechanism following injury, and in IPF they contribute to the pathogenesis 

by releasing pro-fibrotic mediators promoting fibroblast proliferation and collagen 

deposition. It is well documented that macrophage polarisation phenotype is broadly 

heterogeneic depending on their microenvironment. However little exists in the 

literature regarding the alveolar macrophage polarisation phenotype in IPF specifically. 

The M1 macrophage phenotype is characterised by the production of high levels of pro-

inflammatory cytokines, and strong microbicidal properties with an ability to facilitate 

resistance to pathogens. Polarisation into M1 (pro-inflammatory or classically 

activated) macrophages occurs in response to bacterial LPS and products secreted by 

activated T helper 1 lymphocytes and natural killer (NK) cells, including  IFN-γ,  TNF-

α and granulocyte-macrophage colony stimulating factor. M1 macrophages release pro-

inflammatory cytokines such as TNF-α, IL-12, IL-6, IL-18, IL-23 and NO, which help 

drive antigen specific Th1 and Th17 cell inflammatory responses109.  Phenotypically 

M1 macrophages express high levels of major histocompatibility complex class II, 

CD68 marker and co-stimulatory molecules CD80 and CD86.  

 

M2 (anti-inflammatory or alternatively activated) macrophages are induced by fungal 

cells, immune complexes, helminth infections, glucocorticosteroids, complement 

components, apoptotic cells, and a number of T helper 2 lymphocyte-related cytokines 

including IL-4, IL-13, IL-10, macrophage colony stimulating factor and TGF-β. They 
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release inflammatory mediators. M2 macrophages have immunomodulatory functions 

and are involved in phagocytosis, parasite control, angiogenesis, wound healing and 

tumour promotion109. M2 macrophage activation has been reported in a number of 

disease pathologies including asthma, host response to parasitic infections, wound 

repair, fibrosis, granulomatous disease, atheromatous plaque deposition and in response 

to tumour-associated macrophages62. Phenotypically M2 macrophages can be further 

divided into subsets (M2a, M2b and M2c) depending on their gene expression 

profiles110,111. The M2a subtype is elicited in response to IL-4, IL-13 and fungal or 

helminth infections, M2b by IL-1 receptor ligands, immune complexes and LPS, and 

M2c by IL-10, TGF-β and glucocorticosteroids.  

 

The two populations can be differentiated from each other with specific antibodies 

against their surface markers. CD163 is a transmembrane protein expressed on 

monocyte/ macrophage cell lines. It is been reported that increased CD163 expression 

occurs during resolution of inflammation and the wound healing process109,112. CD206 

(mannose receptor) is a C-type lectin expressed predominantly by most tissue 

macrophages, dendritic cells and specific lymphatic or endothelial cells. Both 

molecules are reported as markers of M2 macrophages. M1 detection is more 

contentious as no single, widely accepted marker has ever been described. It is well 

recognised that the idea of AMs being polarised into two distinct populations, M1 and 

M2, is an oversimplification. Macrophage differentiation is highly dynamic. Unlike the 

irreversible changes in the phenotype of lymphocytes following exposure to polarising 

cytokines, macrophages can rapidly switch from one phenotype to another, in a 

transient and plastic process. There is a growing body of evidence to suggest that 

spatiotemporal activation of nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-B) is one of the most prominent regulators of the plasticity of macrophages 

seen in many disease courses. It has been shown that in the early phase of tumorigenesis, 

NF-B activation in M1 macrophages causes cancer-related inflammation, however 

during the late stages of tumorigenesis, macrophages are re-programmed to M2-like 

tumour-associated macrophages, with low NF-B activation and high 

immunosuppressive capacity57.  A similar switch has been reported in the course of 

sepsis in which NF-B activation drives the initial inflammatory response, whilst during 

the later stages macrophages are polarised to an anti-inflammatory, tumour-growth 

promoting M2 phenotype, with reduced NF-B activation57. These findings are 
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supported by a study by Pawel Wojtan et al describing macrophage polarisation in ILD. 

Their group used CD40 as a marker of M1 macrophages and CD163 as a marker of M2 

macrophages, but found the summation of the percentages of cells stained with anti-

CD40 and anti-CD163 was greater than 100%, suggesting the presence of both markers 

of M1 and M2 on the cells. There was also a very low proportion of unstained cells, 

indicating a number of cells did not express M1 or M2 markers, and may have been in 

an intermediate stage of polarisation between pro- and anti-inflammatory states109. This 

finding was supported by a study by SJ Allden et al, who noted AMs from ILD lacked 

a distinct pattern of polarisation with cells widely expressing both M1 and M2 

markers113. It has also been demonstrated by MJ Davis et al that macrophages are 

capable of complete repolarisation from M2 to M1 in vitro, and can reverse their 

polarisation depending on the chemokine environment57,114.   

 

CD71 (transferrin receptor 1) is a membrane glycoprotein that plays an important role 

in cellular uptake of iron. All proliferating cells in the hematopoietic system express 

CD71 and whilst CD71 is a well known marker for cell proliferation and activation115, 

it’s role in IPF is uncertain. A small number of studies have reported that CD71 

expression may distinguish subsets of human alveolar macrophages, with SJ Allden and 

colleagues reporting CD71 expression highlighted distinct populations of cells in 

human BAL. CD71 expression was high on AMs, and CD11c+CD71+ cells expressed 

significantly more HLA-DR, CD86, CD206 and CD163 compared to CD11c+CD71- 

cells. Furthermore, the two populations were functionally distinct with a significantly 

higher population of CD11c+CD71+ AMs having phagocytosed bacteria and increased 

proportion of CD11c+CD71- cells producing NO113.   

 

My study demonstrated the presence of a distinct AM polarisation phenotype in the IPF 

patient population with a significantly increased M2 (specifically M2a) subset. In 

addition, I was able to demonstrate that AM phenotypes can be predictive of disease 

progression in IPF with characteristic predictors of stable disease at presentation 

including low CD71, low CD206 and high CD163 expression on AMs. A higher M2 

(specifically M2a) population relative to M1 macrophages at presentation was also 

suggestive of a more indolent course. In my study, IPF patients with rapid disease 

progression had significantly increased AM expression of CD71 and CD206, and 

significantly reduced expression of CD163. The finding that survival was significantly 
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worse in patients with high CD71 expression, led to the description of an AM phenotype 

that was predictive of disease progression in IPF, and a finding that survival was 

significantly different between CD71highCD206highCD163low, 

CD71high/lowCD206high/lowCD163high/low and CD71lowCD206lowCD163high groups.  	

	
It has been reported previously that expansion of novel subpopulations of pulmonary 

monocyte-like cells, rPMLC (HLA-DR+CD14++CD16+ cells) and iPMLC (HLA-

DR+CD14++CD16- cells) occurs in inflammatory lung disease, however their presence 

and significance in fibrotic lung disease is unknown. It is widely accepted that 

monocytes and macrophages contribute significantly to the disease process in IPF, and 

this is supported by a number of studies investigating the molecular events leading to 

pulmonary fibrosis116. AMs are the predominant cell type in the healthy lung, and under 

normal conditions, are maintained by both local proliferation of resident pulmonary 

macrophages and extravasation of circulating monocytes, which are derived from bone 

marrow116. It has been suggested that in inflammatory lung disease, increased numbers 

of monocytes are recruited to the bronchoalveolar space from the pulmonary 

circulation116. It has also been reported that in smokers, and patients with sarcoidosis, 

IPF, extrinsic allergic alveolitis (EAA), bronchogenic cancer, asthma and HIV, AMs 

exhibit increased expression of monocyte-lineage surface antigens116.  

 

CD14 is a receptor for LPS that has high level expression in normal blood monocytes, 

and low level expression in the CD14+/CD16+ monocyte subset, and in mature AMs116.  

CD16 is a low-affinity receptor for IgG. It has low level expression on blood monocytes, 

but is highly expressed on end-stage differentiated macrophages116. HLA-DR is a major 

histocompatibility complex class II molecule and is expressed on both blood monocytes 

and AMs, with considerably higher staining intensity in AMs116. CD11b is an integrin 

expressed on the surface of many leukocytes including monocytes, neutrophils, natural 

killer cells, granulocytes and macrophages. It is involved in the regulation of leukocyte 

adhesion and migration to mediate the inflammatory response, and also functions in 

phagocytosis and extravasation. Krombach et al demonstrated an increased monocyte 

population in the lungs of patients with chronic inflammatory lung disease. They found 

a predominance of cells with a monocyte-like phenotype of the total AM population 

with cells displaying increased expression of CD14 and CD11b, and reduced expression 

of CD16. They found that in BAL fluid of patients with chronic inflammatory lung 



166	
	

disease, increased numbers of monocyte-like cells were present, exhibiting optical 

properties of blood monocytes and an immunophenotype in between that of blood 

monocytes and AMs116.  

 

A small number of studies have investigated monocyte phenotype, function and their 

lineage in the human lung. Brittan et al characterised human monocyte subsets, 

neutrophils and T-regs in both peripheral blood and BAL fluid cells in healthy 

volunteers exposed to either inhaled bacterial LPS or normal saline. They reported the 

presence of a human PMLC population with distinct resident and inducible PMLC 

subsets post LPS-inhalation. The iPMLC subpopulation were HLA-

DR+CD14++CD16- cells, and increased significantly following LPS compared with 

saline, significant increases in pulmonary neutrophils and significant decreases in 

pulmonary T-regs were also noted49.  A previous study had reported a population of 

monocytes with reduced phagocytic capacity and increased expression of HLA-DR, 

CD80 and CD86, markers of dendritic cell maturation, in sputum from healthy 

volunteers following LPS inhalation49,117. A second study had reported the presence of 

a ‘small sputum macrophage’ in patients with COPD. Frankenberger et al found that a 

large proportion of CD14+ macrophages in COPD patients had lower forward scatter 

on flow cytometry, and termed them ‘small macrophages’. These cells were found to 

have high CD14 and HLA-DR expression, and higher levels of TNF compared to large 

macrophages. TNF was also inducible by LPS preferentially in the small macrophages, 

suggesting the cells were highly active inflammatory cells. The group concluded these 

cells were of the monocyte/macrophage lineage49,118.  

 

Brittan and colleagues proposed that during self-limiting lung inflammation, inducible 

CD14++CD16- monocytes rapidly infiltrate the lung alongside neutrophils, from blood. 

PMLCs were not believed to be dendritic cells as they expressed CD11b and high levels 

of CD1449,50. In their study, the numbers of resident PMLCs in the lung remained 

unchanged following LPS inhalation, suggesting there was no phenotypic switch from 

rPMLC to iPMLCs. They proposed that rPMLCs were endogenous to the lung and were 

involved in the maintenance of macrophage homeostasis by undergoing local 

proliferation and macrophage differentiation. Phenotypically, rPMLCs had 

significantly higher expression of the proliferation marker Ki67, the transferring 

receptor CD71, and the macrophage mannose receptor CD206. The scavenger receptor 
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CD163 and the mature macrophage marker 25 F9 were also expressed by a higher 

proportion of rPMLCs compared to iPMLCs, however this did not reach significance. 

Functional differences were also reported in that AMs had a significantly increased 

ability to undergo phagocytosis when compared to PMLCs in BAL fluid and 

dexamethasone was found to significantly suppress IL-8 and IL-6 secretion by AMs, 

but not by iPMLCs after 24 hours of treatment. No significant differences in IL-6, IL-8 

or TNFα production by iPMLCs compared to AMs were noted50. 

 

My study aimed to quantify and characterise the PMLC population in the lungs of IPF 

patients. I found that the percentage of BAL rPMLCs was significantly higher in 

patients with IPF versus both non-fibrotic ILD and controls. Furthermore, the BAL 

rPMLC percentage was significantly increased in IPF progressor versus non-progressor 

groups. Disease progression in IPF was associated with an increased percentage of BAL 

rPMLCs and a reduced percentage of iPMLCs, and a significantly reduced 

iPMLC:rPMLC ratio at presentation. My study also identified a number of key 

differentially expressed genes by RNA gene sequencing between AM vs rPMLC, AM 

vs iPMLC and iPMLC vs rPMLC groups, suggesting that these cell types are different 

functionally as well as phenotypically.  

 

IPF is thought to occur following injury to type I alveolar cells, which leads to AEC 

apoptosis and disruption of the AEC cell layer. Remaining AECs are aberrantly 

activated and secrete profibrotic cytokines (for example TGF) that promote recruitment 

and activation of inflammatory cells and fibroblasts. Chemokines and growth factors 

present in the provisional matrix result in an influx of fibroblasts and epithelial to 

mesenchymal transition (EMT) of local AECs. These fibroblasts are then activated by 

TGF into highly contractile myofibroblasts , which are the primary cell for collagen 

deposition, matrix production and tissue remodelling. Apoptosis is a highly organised 

physiological event that is fundamental in a variety of normal developmental and 

homeostatic processes119. Epithelial cell apoptosis is a persistent finding in lung tissue 

from patients with IPF and in the murine bleomycin-induced fibrosis models119. There 

is evidence to suggest lung myofibroblasts have a resistance to apoptosis in IPF119. 

These mechanisms may be pivotal to the underlying pathogenesis in IPF. A number of 

genes involved in apoptosis were differentially expressed between AMs and rPMLCs, 

AMs and iPMLCs and iPMLCs and rPMLCs in our RNA gene sequencing study. In the 
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AM versus rPMLC group, SPAG5, CENPU, ESPL1, SNAI2, MYBL2 and AXL were 

all significantly differentially expressed. In the AM versus iPMLC group, ACKR3 was 

significantly differentially expressed, and in the iPMLC versus rPMLC group, MMP19, 

PDE2A, TNFRSF18, CEMIP, MAP2K6 and PDCD1 were all significantly 

differentially expressed. This may be a significant finding as it suggests that these cells 

are different both phenotypically and functionally, and in view of the fact that a number 

of genes are differentially expressed in a small number of pathways already documented 

as relevant in IPF pathogenesis (namely apoptosis, G-protein coupled receptor 

signalling and angiogenesis), may be important clinically, as they may represent future 

targets for further biochemical and molecular research to understand the pathogenesis 

in IPF, but also for future therapeutic strategies.  

 

Nintedanib, one of the two licensed drug treatments for IPF inhibits multiple receptor 

tyrosine kinases, and has been shown to slow progression of lung function decline in 

IPF120. As receptor tyrosine kinases predominantly signal through the Ras/mitogen-

activated protein kinase signalling cascade, this pathway may be responsible for many 

of the pro-fibrotic responses observed in IPF120. Recent evidence suggests that the 

cyclic adenosine monophosphate (cAMP) pathway can inhibit mitogen-activated 

protein kinase signalling and also reduce fibroblast function via the binding of agonist 

to G protein-coupled receptors, which leads to adenylyl cyclase activation and increased 

levels of cAMP, which then leads to inhibition of lung fibroblast migration, 

proliferation and differentiation. It has been demonstrated that PGE2 acting at PGE2 

receptors 2 and 4, and iloprost acting at the prostacyclin receptor reduced proliferation 

and differentiation of lung fibroblasts via cAMP accumulation and protein kinase A 

(PKA) activation120. In addition, it has been shown that inhibition of phosphodiesterases 

which catalyse cAMP degradation lead to reduced pulmonary fibrosis in the bleomycin 

mouse model120. A number of genes involved in G protein-coupled receptor signalling 

pathways were differentially expressed in our study. The majority of diffentially 

expressed genes were between the AM vs iPMLC group (GPSM1, CYSLTR1, ELFN1 

and ACKR3) and the AM vs rPMLC group (OPRK1, OR6K3 and CHRM3). However 

HRH4 was also differentially expressed between iPMLC and rPMLC groups, 

suggesting PMLCs may play an important role in these pathways.  
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IPF not only destroys the lung parenchyma, but also the pulmonary vasculature with 

aberrant microvascular and macrovascular remodelling121. Aberrant vascular 

remodelling in IPF was reported in a study by Turner-Warwick demonstrating 

anastomoses between the systemic and pulmonary microvasculature and extensive 

neovascularisation within areas of fibrosis121,122. Further studies have demonstrated that 

vascular heterogeneity exists in the IPF lung, with areas of increased vascularisation 

often at the interface with normal parenchyma, and areas of reduced vascularity often 

in the most severely affected fibrotic areas121,123. A number of genes involved in 

angiogenesis were differentially expressed in our study (PDGF-A, THBS1, ANGPT2 

and MMP19). Homeostatic control of angiogenesis depends on a careful balance 

between stimulatory and inhibitory factors. Keane et al reported that an imbalance in 

the expression of angiogenic chemokines (CXCL5, CXCL8) versus angiostatic factors 

(CXCL10) was present in IPF, resulting in angiogenesis121,124. Other reported factor 

include VEGF, PEDF, ang-1, ang-2 and nuclear factor B121. A better understanding of 

vascular remodelling in the IPF lung is required before targeted therapies can be 

considered.  

 

Limitations of the study 

Our study has a number of limitations. It is a single centre study of a small number of 

IPF patients which was not repeated in a validation cohort. Our control patients were 

often not healthy volunteers, but rather patients undergoing bronchoscopy for another 

indication, for example a single episode of haemoptysis. Many of the control patients 

were also smokers. The data has not been adjusted for confounding factors such as 

smoking status, age, sex and baseline lung function and so there will undoubtedly be an 

element of bias. Another important caveat of our study is that almost a quarter (22%) 

of lavaged patients died or were deemed too frail to undergo a repeat procedure at 12 

months, and so the truly progressive subpopulation may have been missed. Due to time 

limitations on the day of the BAL procedure, a number of samples were frozen after 

cell sorting, with cDNA and RNA extractions performed at a later date. Whilst attempts 

were made to limit the number of freeze-thaw cycles to one or two, some samples may 

have been frozen/thawed more than this, which would undoubtedly lead to cell damage 

and loss of material. Another limitation is that I did not use a live/dead cell marker when 

staining my samples. Dead cells have greater autofluorescence and increased non-
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specific antibody binding, which can lead to false positives. Identification of weakly 

positive samples and rare populations is also more difficult. I used forward and side 

scatter gating strategies to remove dead cells and debris at the beginning of my analysis, 

however this will not have excluded all of them.  

 

BAL itself may cause a degree of pulmonary inflammation. Our BAL always sampled 

only one segment of the right middle lobe, and so we did not sample the area most 

severely affected by disease on HRCT. BAL only retrieves cells freely mobilised from 

the alveolar space, and so we may have have retrieved reduced numbers of the cells of 

interest in doing this. However total cell counts in our study were consistently between 

10 and 20 million cells per patient, and percentages of AMs, neutrophils, eosinophils 

and lymphocytes were consistent with other studies. Our classification of resident and 

inducible PMLC subpopulations mirrored the terms described previously by Brittan and 

colleagues and were based on the variable expression of the monocyte markers CD14 

and CD16, and the shift in the ratio of these cells in LPS-mediated acute lung 

inflammation. Their study had its own limitations, and whilst their data was broadly 

supportive that rPMLCs are endogenous to the lung and iPMLCs are sequestered from 

circulation, this has not yet been proven. There also remains very little information 

regarding the function of these cells. Due to time constraints on the day of the BAL 

procedure, these cells were only obtained from 5 patients, and flow sorting of these cells 

in my study yielded a small and finite number of cells. The samples from the 5 patients 

were pooled together to provide enough cells for RNA sequencing. Although pooling 

leads to a decrease in biological variation, it also leads to the loss of individual-specific 

information which is essential in biomarker studies. Both small sample size and pooling 

of samples can lead to an increase in false positive and false negative results.  

 

4.4      Conclusions 

Prior to the 2011 ATS/ERS/JRS/ALAT guideline, BAL DCC was considered a key step 

in the IPF diagnostic algorithm, however in the current guideline it is no longer 

advocated. BAL and repeat BAL in IPF is feasible and safe (<1.5%) mortality. Our 

study suggests BAL has only limited clinical value in the diagnosis of patients with 

suspected IPF and HRCT scans consistent with definite or possible UIP. Baseline BAL 
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DCC could not predict disease progression as there were no significant differences in 

BAL DCC between definite and possible IPF, or progressor and non-progressor groups. 

Of those that underwent repeat BAL, disease progression was not associated with a 

change in DCC. It is also worth noting that in our population, BAL DCC was 

inconsistent with IPF in 1 in 10 patients with ‘definite UIP’ and 1 in 6 patients with 

‘possible UIP’ HRCT patterns. Whilst the implications of this are uncertain, it may 

highlight a need to question a diagnosis of IPF in selected patients, and perhaps consider 

alternative management plans, for example a trial of steroids in patients with a BAL 

lymphocytosis and disease progression.  

 

Our data emphasise the presence of a novel human alveolar macrophage polarisation 

phenotype in IPF. Our study is clinically relevant as it suggests there is a distinct 

relationship between AM subtypes, cell-surface expression markers and disease 

progression in IPF. This may be utilised to investigate new targets for future therapeutic 

strategies. Our data mirrors previous work by Brittan et al, suggesting that pulmonary 

monocyte-like cells may play an important role in the pathogenesis of IPF. We found 

that disease progression is associated with significantly increased numbers of rPMLC 

in BAL and that the ratio of iPMLC:rPMLC at baseline BAL may predict disease 

progression. Furthermore RNA gene sequencing revealed that these cells differed 

functionally as well as phenotypically, therefore strengthening our hypothesis that they 

may be important in disease pathogenesis. This study emphasises the importance of this 

distinct subpopulation of PMLCs in predicting disease progression in IPF, and may also 

represent a novel target for future therapeutic strategies as modulation of these myeloid 

phenotypes may be of therapeutic value.  
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Chapter 5     
     Disease progression in IPF can be predicted 
     by a combination of physiological parameters,  
     HRCT scoring and biomarker profiling  
 
5.1      Introduction 
 
     5.1.1      General introduction 
 
The natural history of IPF is very variable and the course of disease in individual 

patients can be difficult to predict. Some patients progress slowly over a period of many 

years, others show periods of relative stability interspersed with acute deteriorations in 

respiratory function, whilst around one fifth of patients with IPF experience rapid 

decline leading to death within 12 months of presentation.  

 

The pathogenesis of IPF is complex and poorly understood, but it is thought to be due 

to aberrant wound healing in response to repetitive alveolar injury. This leads to 

abnormal fibroblast proliferation, differentiation and activation, which then drives 

expansion of the extracellular matrix with extensive remodelling and loss of normal 

lung architecture2.  Although the initial trigger for the development of IPF remains 

unknown, it is generally accepted that the disease occurs following repeated injury by 

environmental exposures in genetically susceptible individuals5. 

 

It is estimated that around 20% of IIPs have a genetic component, and familial cases 

with the most commonly affected genes reported being those involved in surfactant 

processing and telomere biology, were first described in the 1950s2.  Genetics also play 

a role in sporadic IPF with polymorphisms in the promoter for the gene encoding the 

salivary mucin 5b (MUC5B) and for the Toll-interacting protein (TOLLIP) reported as 

being associated with an increased risk of developing IPF, although both ensue a 

relatively mild disease phenotype2.  
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Challenges posed by the management of the ILDs include the difficulty of early 

diagnosis of IPF, difficulties differentiating IPF from the other IIPs and the 

impossibility of predicting patient outcome. Even with the benefit of a surgical lung 

biopsy and an MDT experienced in ILD, around 10% of patients are still deemed to 

have unclassifiable disease, with overlap features between entities46.  Futhermore, as 

discussed previously, a lung biopsy is not always feasible in an elderly population with 

frequent comorbidities. Small uncertainties with regards to diagnosis can lead to major 

uncertainties in management. With the recent discovery and approval of two new 

antifibrotic drugs (pirfenidone and nintedanib) for the treatment of IPF, accurate 

phenotyping of ILD patients is paramount.  

 

The demand to distinguish IPF from the other IIPs and the need to predict individual 

patient outcome has prompted a wealth of research into novel diagnostic and prognostic 

biomarkers over the last 5 years. Useful biomarkers must be readily detectable in 

biological fluid obtained by non-invasive and reproducible methods, and must 

demonstrate sufficient sensitivity and specificity by appropriate statistical analysis56. 

The development of new technologies such as genomics and proteomics which can 

reveal genetic mutations, polymorphisms, proteins, peptides and other molecules with 

potential roles as biological indicators in the diagnosis and prognosis of IPF has driven 

a growing field of research56.  It is envisaged that biomarkers will assist in clinical 

decision making and will aid clinicians in stratifying patients into different endotypes, 

however they also have the potential to aid cohort enrichment in clinical trials2.  Whilst 

several studies have identified circulating mediators that may predict disease 

progression in IPF, they have not been validated in ‘real-life’ patient cohorts, outside 

of clinical trials. To date there are no proven biomarkers that predict disease progression 

or response to treatment and no single biomarker has yet provided sufficient evidence 

to be implemented in routine clinical practice.  
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     5.1.2      Hypothesis and aims 
 

Idiopathic pulmonary fibrosis (IPF) is a devastating form of chronic lung injury of 

unknown aetiology characterized by progressive lung scarring. It is a very 

heterogeneous disease and around 10-15% of patients die or lose ≥10% FVC within 12 

months (‘progressors’). Patients are typically risk stratified using a combination of 

clinical variables including history and examination findings, pulmonary function 

testing, exercise capacity, radiological appearances and histological features, however 

these variables are poorly reflective of disease pathogenesis and cannot accurately 

predict clinical outcome. More recently, several prognostic scoring systems and 

biomarkers have been described to predict disease progression but most were derived 

from clinical trial patients or tertiary referral centres and none have been validated in 

separate cohorts. We hypothesised that disease progression in IPF can be confidently 

predicted by a combination of HRCT scoring and serum biomarker profiling. We aimed 

to identify a unique protein signature of IPF progressor versus non-progressor patients, 

and develop a regression model incorporating physiological, HRCT and biomarker data 

to predict disease progression in a unique population of incident treatment naïve IPF 

patients.  

 

 
     5.1.3      Experimental methodology 

 
Patient selection and the Edinburgh Lung Fibrosis Biobank 

The Edinburgh Lung Fibrosis research database was established in 2002, and was 

designed to capture the nature the natural history of ILD in patient’s referred to the 

specialist adult ILD clinic. The dataset from 01/01/02-31/12/14 is summarised in Table 

7. All subjects were fully consented and ethical approval was obtained for all protocols 

and procedures (LREC 06/S0703/53). Study cohorts consisted of locally referred, 

consecutively presenting patients with ILD presenting since 01/01/02. For all patients, 

diagnosis, investigation, management and follow-up was as per the Edinburgh local 

policy. This included a detailed clinical history, examination, autoantibody screen, 
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HRCT and pulmonary function testing. Follow-up included 6 monthly PFTs and clinic 

review, with less than 1% of the study population being lost to follow-up. Disease 

progression was defined as death or ≥10% decline in FVC within 12 months of baseline 

BAL or serum. All HRCT scans were reviewed by an expert thoracic radiologist and 

discussed in a multidisciplinary meeting with at least two respiratory physicians with 

ILD subspecialty expertise. Patient HRCT scans were categorised into ‘definite’, 

‘probable’ or ‘inconsistent with’ UIP patterns based on 2011 ATS/ERS criteria, and 

were then scored on percentage of total lung fibrosis, percentage of periphery involved 

and degree of bronchiolar dilatation (0,1,2,3).  

 

In addition to this dataset, since 2007 a unique biobank has been collected comprising 

of baseline and serial samples from 575 patients. Baseline BAL samples were obtained 

from 94 IPF patients (32 progressors, 62 non-progressors) and repeat BAL was 

performed at 12 months in 60 patients (16 progressors, 44 non-progressors). Baseline 

serum samples were obtained in 216 IPF patients (102 progressors, 114 non-

progressors) and 118 patients went on to have successive serum samples 12 months 

later (38 progressors, 80 non-progressors). Most of the patients had matched BAL and 

serum samples, and less than 2% had received IPF-directed therapy. The Edinburgh 

Lung Fibrosis study biobank is summarised in Table 32.  

	

Table 32. Summary of the available samples in the Edinburgh IPF biobank according 
to patient phenotype. 

	  

Progressors	

 

Non-Progressors	

Controls 

(aged 

matched 

healthy 

volunteers)	

	 Definite 

IPF Age 

(SD)	

Probable 

IPF 

Age (SD)	

Definite 

IPF Age 

(SD)	

Probable 

IPF 

Age (SD)	

Controls 

Age (SD)	

Baseline 

serum 

samples	

N=38 

73.9 years 

(9.5)	

N=64 

74.0 years 

(7.8)	

N=46 

71.2 years 

(8.7)	

N=68 

73.6 years 

(8.1)	

N=64 

67.1 years 

(9.3)	
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0 and 12 

month 

serum 

samples	

N=25 

73.8 years 

(9.1)	

N=13 

75.3 years 

(5.3)	

N=33 

71.0 years 

(8.1)	

N=47 

73.5 years 

(7.1)	

0	

Baseline 

BAL 

samples	

N=15 

66.9 years 

(9.0)	

N=17 

76.1 years 

(5.8)	

N=27 

71.3 years 

(6.8)	

N=35 

72.1 years 

(5.9)	

N=9 

62.6 years 

(7.8)	

0 and 12 

month 

BAL 

samples	

N=8 

69.6 years 

(10.3)	

N=8 

74.8 years 

(4.2)	

N=20 

71.3 years 

(7.5)	

N=24 

70.8 years 

(6.4)	

0	

 

Processing of BALF and serum 

BALF was filtered through a 40µm cell strainer and total cell count obtained using an 

automated NucleoCounter. BALF was then centrifuged at 1200rpm for 10 mins at 4°C 

and the supernatant was removed and stored at -80°C. Cells were resuspended in IMDM 

at a concentration of 1 million cells per ml for flow cytometry. One million cells were 

removed for cytospin processing, briefly 10x100µl aliquots were cytocentrifued onto 

superfrost glass slides at 300g for 3 mins. Slides were then placed in methanol for 2 

minutes and allowed to dry. One slide was then placed in DiffQuick Red for 2 minutes, 

then DiffQuick Blue for 90 seconds for staining.  

 

Serum samples were centrifuged at 2500rpm for 10 minutes at 4°C and then serum was 

collected and stored at -80°C. 

 

ELISAs 

Analysis of cytokines and mediators in BALF and serum were performed using DuoSet 

ELISA kits from R&D Systems, according to the manufacturer’s instructions. ELISA 

plates were analysed using a Synergy-HT microplate reader using Gen5 data analysis 

software. 
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Proteomic Arrays 

Initially, unbiased semi-quantitative commercially bought proteomic array kits were 

used to detect proteins of interest in BALF of IPF progressors and non-progressors 

(R&D, Human Angiogenesis Array cat# ARY007, Human Chemokine Array cat# 

ARY017, Human Protease/Protease Inhibitor Array cat# ARY025 and Human Soluble 

Receptor, Non-haematopoietic Panel Array cat# ARY012). Protocols were followed as 

per manufacturer’s instruction, however briefly capture antibodies were spotted in 

duplicate on nitrocellulose membranes, BAL samples were pooled, diluted and mixed 

with a cocktail of biotinylated detection antibodies and sample/antibody mixtures were 

then incubated with the array. Any analyte/detection antibody complexes present were 

bound by their cognate immobilised capture antibody on the membrane, Streptavidin-

Horseradish Peroxidase and chemiluminescent detection reagents were then added, and 

a signal was produced in proportion to the amount of analyte bound. IPF Progressor and 

Non-Progressor groups were compared by pooling fluid containing 50µg of protein 

(protein determined via Pierce BCA assay, ThermoFisher cat# 23225) each from four 

IPF patients from each group. Image J was used to measure pixel density between 

proteins and controls, giving a semi-quantitative numerical value for comparison 

between groups. These values were plotted on a graph and a linear regression line was 

fitted with 90% confidence bands added, proteins of interest were identified as outliers. 

These initial experiments were performed in collaboration with Ross Mills, PhD 

student, Centre For Inflammation, Queens Medical Research Institute Edinburgh. 

Examples of the film, dot-blot analysis technique and numerical values obtained are 

shown in Figure 43. 
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Figure 43. Example of semi-quantitative dot-blot proteomic array. 
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For the angiogenesis kit, baseline BAL proteins of interest included EGF, IGFBP-1, 

IGFBP- 2, IL-8/CXCL8, MMP8, MMP9, Pentraxin 3, Platelet Factor 4, CXCL16, 

Serpin F1 and uPA. Outliers in the chemokine kit were IL-16, CXCL4, CXCL7, 
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CXCL8, CXCL17, Chemerin, CCL17 and CCL18.  Outliers in the Protease kit were 

MMP1, MMP7, MMP8, MMP10, Cathespin E, Cathespin S, Kallikrein 6, Kallikrein 7, 

Kallikrein 13 and Proteinase 3, and in the Protease Inhibitor kit; Trappin-2, Serpin A5, 

Serpin A8, Serpin B5, Serpin B6, Serpin B8, Fetuin B and TFPI-2. Outliers in the 

soluble receptor and non-haematopoietic kits were CXCL8, Galectin-3BP, Galectin-3, 

ACE, BCAM, CD58, CD99, Integrin B2, Lipocalin-2, Osteopontin and 

Thrombospondin, and ESAM, bIG-H3, CRELD2, ECM-1, EpCAM, MUCHDL, 

Nectin-2, SREC-II and VCAM-1 respectively. Proteins of interest, as represented as 

outliers, are shown in Figure 44. 

 

Figure 44. Proteins of interest identified as outliers on semi-quantitative proteomic 
kit screening. 
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Based on the results of dot-blot proteomic screening arrays and a literature review of 

current biomarkers undergoing investigation, a new panel of potential biomarkers (n=22 

analytes) were identified for analysis with semi-biased Luminex Magnetic Screening 

Assay kits (R&D), in the hope of identifying additional key protein candidates. The 

proteins selected for the assay are reported in Table 33.  

 

Table 33. Analytes included in Luminex Magnetic Screening Assay.  

Analyte	 Analyte	 Analyte Analyte 

Amphiregulin	 IL-10	 CXCL1/GRO alpha Pentraxin 3 

CCL2/MCP-1	 MMP-7	 CXCL8/IL-8 Periostin/OSF-2 

CCL5/RANTES	 MMP-8	 CXCL10/IP-10 SP-D 

CCL18/PARC	 IL-33	 EGF VEGF 

CCL26/Eotaxin-3	 MMP-1	 Galectin-3  

Chi3-L1	 MIF	 Osteopontin  
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Protocols were followed as per manufacturer’s instructions, however briefly analyte-

specific antibodies were pre-coated onto magnetic microparticles, microparticles, 

standards and samples were pipetted into wells and immobilised antibodies were bound 

to the analyte of interest, plates were washed, then a biotinylated antibody cocktail 

specific to analytes of interest were added, plates were again washed, then Steptavidin-

PE was added to bind to the biotinylated antibody. Plated were again washed, then read 

using the Bio-Plex 200 HTF analyser (one LED identifies analyte and one determines 

magnitude of PE-derived signal, which is directly proportional to amount of analyte 

bound).  

 

Patients were categorised into definite IPF progressor, probable IPF progressor, definite 

IPF non-progressor, probable IPF non-progressor and healthy control groups. Luminex 

Magnetic Screening Assay was performed on BALF and serum samples, first in a Test 

Cohort of 4 patients per group, then in a Validation Cohort of 8 patients per IPF group 

and 5 controls.  As no significant differences were found in the protein signature 

between definite and probable IPF groups (data not shown), definite and probable IPF 

groups were combined allowing a  test cohort of 8 progressors and 8 non-progressors 

and a validation cohort of 16 progressors and 16 non-progressors for statistical analysis. 

BALF was normalised to 10µg of protein per sample (protein determined via Pierce 

BCA assay, ThermoFisher cat# 23225). Serum was utilised at either 1:2 or 1:50 dilution 

depending on manufacturer’s instruction.  

 

 

Statistical analysis 

GraphPad prism (version 6, GraphPad Software Inc., CA, USA) was used for data 

analysis. Normally distributed data were analysed by unpaired or paired t-test and 

expressed as mean (SD). Data that were not normally distributed were reported as 

median (interquartile range) and analysed by Mann Whitney U test or Wilcoxon signed 

rank test. Kruskal-Wallis test with Dunn’s Multiple Comparison Test was used to 

calculate differences between multiple groups. Linear logistic regression was used on 

each predictor separately to assess its importance in terms of p-value of the associated 

weight. The top two variables were then used to learn a decision tree. P values of <0.05 

were considered significant. 
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5.2      Results  
 
     5.2.1      Clinical parameters predictive of disease 
                   Progression 
 
A number of studies have reported the merits of utilising different combinations of 

clinical, physiological, radiological and serological parameters in devising prognostic 

scoring systems to predict survival in IPF. However there remains no single risk model 

that has been validated and accepted in routine clinical practice. The Composite 

Physiologic Index (CPI) was described by Wells et al37. They reported that a 

combination of FVC, FEV1 and DLCO values correlated with the extent of fibrosis on 

HRCT. The CPI was thought not only to closely reflect the morphologic extent of 

pulmonary fibrosis but also to provide a more accurate prognostic determinant in IPF 

than an individual PFT value alone. The formula used to calculate the CPI is as follows 

• extent of disease on CT = 91.0 − (0.65 × percent predicted diffusing capacity 

for carbon monoxide [DLCO]) − (0.53 × percent predicted FVC) + (0.34 × 

percent predicted FEV1). 

When the CPI formula was applied to the Edinburgh IPF patient cohort, significant 

differences in survival were demonstrated between the four quartiles (P<0.0001). This 

is demonstrated in Figure 45 below. 

Figure 45. Kaplan Meier survival curves grouped by quartiles of Composite 

Physiological Index . 
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The GAP Index was developed using data from three large distinct patient cohorts 

(N=558) and was proposed as a prognostic staging system in IPF by Ley and 

colleagues38. The model included four baseline clinical variables (gender, age, FVC and 

DLCO) and categorised patients into three severity groups with 1-year mortality risks 

of 6%, 16% and 39% respectively. A description of the GAP Index scoring system and 

predicted 1-, 2- and 3-year mortality for scores of 0-3, 4-5 and 6-8 are shown in Figure 

46 below.  

Figure 46. GAP Index scoring system and predicted 1-, 2- and 3-year mortality for 

scores of 0-3, 4-5 and 6-8. 

Risk factor 	 Score 	
Gender	 	

Female 	 0	
Male 	 +1 	

Age 	 	
≤60 years	 0 	

61-65 years	 +1 	
>65 years	 +2	

Predicted FVC 	 	
>75%	 0	

50-75%	 +1	
<50%	 +2	

Predicted DLCO	 	
>55% 	 0	

36-55%	 +1	
≤35%	 +2	

Unable to perform 	 +3	
GAP Index	 1 year 

mortality	

2 year mortality	 3 year 

mortality	

0-3	 5.6%	 10.9%	 16.3%	

4-5	 16.2%	 29.9%	 42.1%	
6-8	 39.2%	 62.1%	 76.8%	

 

A GAP index was also calculated for each patient in the Edinburgh IPF cohort.  Among 

our patients with definite IPF (n=164), scores of 0-3 (n=77), 4-5 (n=69) and 6-8 (n=18) 

predicted one year mortality of 5.6%, 16.2% and 39.2% respectively.  Actual one year 

mortality in each of these groups was 2.7%, 6.7% and 18.7% respectively. Two and 

three year mortality was also calculated as shown in Figure 47 below. Median survival 

was calculated in each group and was 5.7 years for the GAP index 0-3 group, 2.8 years 
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in the GAP index 4-5 group and 2.6 years in the GAP index 6-8 group (p <0.0001). The 

percentage of patients deceased at census date in each group was 69.6%, 87.9% and 

100.0% respectively (p <0.0001).  Although the GAP index is not validated in patients 

with ‘probable IPF’, we report similar results in this population as demonstrated in 

Figure 48 below. When definite and probable IPF patient groups were combined into 

an ‘all IPF’ cohort, survival remained significantly different between the 3 groups, and 

the predicted 1-, 2- and 3-year mortality was found to be very similar to the observed 

mortality. This data is shown in Figure 49 below.  

Figure 47. Kaplan-Meier survival curves and observed and predicted 1-, 2- and 3-

year mortality based on GAP Index applied to the Edinburgh ‘Definite IPF’ cohort. 

  

GAP 
Index 	

Observed 
1 year 

mortality 	

Predicted 
1 year 

mortality	

Observed 
2 year 

mortality 	

Predicted 
2 year 

mortality	

Observed 
3 year 

mortality 	

Predicted 
3 year 

mortality	
0 – 3 	 2.7% 	 5.6%	 21.7% 	 10.9%	 22.2% 	 16.3%	

4 – 5 	 6.7% 	 16.2%	 39.1% 	 29.9%	 38.9% 	 42.1%	

6 – 8	 18.7% 	 39.2%	 44.9% 	 62.1%	 55.6% 	 76.8%	
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Figure 48. Kaplan-Meier survival curves and observed and predicted 1-, 2- and 3-

year mortality based on GAP Index applied to the Edinburgh ‘Probable IPF’ cohort. 

 

GAP 
Index 	

Observed 
1 year 

mortality 	

Predicted 
1 year 

mortality	

Observed 
2 year 

mortality 	

Predicted 
2 year 

mortality	

Observed 
3 year 

mortality 	

Predicted 
3 year 

mortality	
0 – 3 	 2.8% 	 5.6%	 14.6% 	 10.9%	 50.0% 	 16.3%	
4 – 5 	 7.3% 	 16.2%	 28.1% 	 29.9%	 80.0% 	 42.1%	
6 – 8	 14.7% 	 39.2%	 40.4% 	 62.1%	 80.0% 	 76.8%	

 

Figure 49. Kaplan-Meier survival curves and observed and predicted 1-, 2- and 3-

year mortality based on GAP Index applied to the Edinburgh ‘All IPF’ cohort. 

 

GAP 
Inde

x 	

Observed 
1 year 

mortality 	

Predicted 
1 year 

mortality	

Observed 
2 year 

mortality 	

Predicted 
2 year 

mortality	

Observed 
3 year 

mortality 	

Predicted 
3 year 

mortality	
0 – 3 	 2.7% 	 5.6%	 4.3% 	 10.9%	 16.3% 	 16.3%	
4 – 5 	 17.7% 	 16.2%	 32.9% 	 29.9%	 42.4% 	 42.1%	
6 – 8	 32.1% 	 39.2%	 53.6% 	 62.1%	 64.3% 	 76.8%	
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Du Bois et al devised a scoring system capable of independently predicting mortality 

using data from two clinical trials (N=1099)41. The IPF score determined 1-year 

mortality in IPF patients using a number of PFT and clinical indicators. Parameters 

included in the model were age, respiratory hospitalisations, %predicted FVC and 

change in %predicted FVC over a 24 week period. In order to improve the ability of the 

model to predict 1-year survival, 6MWD and 24 week change in 6MWD were later 

added. The scoring system and predicted 1-year mortality data is shown in Table 34 

below.  

 

Table 34. Du Bois IPF score. 

Risk Factor 	 Score 	 Total Risk Score	 Expected 1-Year 
Risk of Death	

Age 	 	 	
    <60 years	 0 	 0–4 	 <2% 	
    60-69 years	 +4 	 8–14 	 2–5% 	
    ≥70 years	 +8 	 16–21 	 5–10% 	
Respiratory hospitalization in past 6 months 	 22–29 	 10–20% 	
    No	 0 	 30–33 	 20–30% 	
    Yes	 +14 	 34–37 	 30–40% 	
Predicted Baseline FVC	 38–40 	 40–50% 	
    ≥80% 	 0	 41–43 	 50–60% 	
    66-79%	 +8	 44–45 	 60–70% 	
    51-65% 	 +13	 47–49 	 70–80% 	
    ≤50% 	 +18	 >50 	 >80% 	
24-Week Change in Predicted FVC	
     ≥ -4.9%	 0	
    -5% to -9.9%	 +10	
     ≤ -10% 	 +21	

 

Among our patients with IPF, scores of 0-21 (n=236), 22-40 (n=85) and 41-61 (n=11) 

predicted median survival of 5.8 years, 3.6 years (HR 2.02; 95%CI 1.26 to 3.23) and 

0.6 years (HR 14.2; 95%CI 7.47 to 26.8) respectively (P< 0.001). Mortality was similar 

for patients with probable UIP who did and did not have a surgical lung biopsy after 

adjusting for the IPF Score (HR 1.06; 95%CI 0.56 to 1.99, likelihood ratio statistic 0.03, 

P = 0.86).  In our ‘definite IPF’ patient cohort, IPF scores of 0-21, 22-40 and 41-61 

predicted 1 year mortality as 0-10%, 10-50% and 50->80% respectively. Observed 1 

year mortality in each of the 3 groups was 5.8%, 18.8% and 66.7% (P<0.0001). Similar 

data was demonstrated in the ‘probable IPF’ group. When both groups were combined 

into an ‘all IPF’ cohort, the model was still accurate in predicting 1 year survival, 
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however the variation for expected mortality in each of the 3 groups is large. This data 

is shown in Figures 50 – 52 below.  

 

Figure 50. Kaplan-Meier survival curves and observed and expected 1-year mortality 

based on du Bois IPF score applied to the Edinburgh ‘Definite IPF’ cohort. 

 

du Bois Score 	 Observed 1 year mortality 	 Expected 1 year mortality 	
0 - 21 	 5.8% 	 0 - 10% 	

22 - 40 	 18.8% 	 10 - 50% 	
41 - 61	 66.7% 	 50 - >80% 	

 

Figure 51. Kaplan-Meier survival curves and observed and expected 1-year mortality 

based on du Bois IPF score applied to the Edinburgh ‘Probable IPF’ cohort. 

 

du Bois Score 	 Observed 1 year mortality 	 Expected 1 year mortality 	
0 - 21 	 1.5% 	 0 - 10% 	

22 - 40 	 18.9% 	 10 - 50% 	
41 - 61	 20.0% 	 50 - >80% 	
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Figure 52. Kaplan-Meier survival curves and observed and expected 1-year mortality 

based on du Bois IPF score applied to the Edinburgh ‘All IPF’ cohort. 

	

du Bois Score 	 Observed 1 year mortality 	 Expected 1 year mortality 	
0 - 21 	 3.4% 	 0 - 10% 	

22 - 40 	 18.8% 	 10 - 50% 	
41 - 61	 63.6% 	 50 - >80% 	

	

 
     5.2.2      BAL biomarker profiling 
 
Luminex Magnetic Screening Assay identified a number of protein candidates that 

warranted further investigation into their utility as a potential biomarker for disease 

progression in IPF. In BALF, CHI3-L1 and MCP-1 levels were significantly elevated 

in patients with IPF vs controls, there was also a trend for increased PARC (CCL18) 

levels in IPF vs controls, and in IPF progressors vs non-progressors, however this did 

not reach significance. VEGF levels were significantly decreased in IPF vs controls, 

and reduced in IPF progressors vs on-progressors, although this did not reach 

significance. Galectin-3 levels were significantly increased in IPF progressors vs non-

progressors. These data are shown in Figure 53 below. There were no differences 

between IPF and control patients, or IPF progressors vs non-progressor groups in 

MMP1, MIF, SP-D, IP10, Gro-alpha, IL8 or RANTES BAL fluid levels. Amphiregulin, 

periostin, EGF, pentraxin-3, osteopontin, IL33, Eotaxin-3, IL10, IL17e and IL-12 p70 

levels were all below the level of detection of BALF (data not shown).  
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Figure 53. BAL fluid protein levels in training and validation cohorts. 
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     5.2.3      Serum biomarker profiling 
 
In serum, MMP1, periostin, osteopontin, SP-D, IP10, MCP-1, IL8 and PARC (CCL18) 

levels were all significantly increased in IPF patients vs controls. Periostin, SP-D and 

gro-alpha levels were also significantly increased in IPF progressors vs non-

progressors. CHI3-L1 levels were increased in IPF vs controls and in IPF progressors 

vs non-progressors, MCP1 levels were increased in IPF vs controls, and osteopontin 

and IL8 levels were increased in IPF progressors vs non-progressors, however none of 

these differences reached significance. These data are shown in Figure 54 below. There 

were no differences in IPF and control patients, or IPF progressors vs non-progressors 

in serum MIF, VEGF, EGF, pentraxin-3, RANTES or galectin-3 levels. Amphiregulin, 

IL33, eotaxin-3, IL10, IL17e and IL-12 p70 levels were all below the level of detection 

in serum (data not shown). 
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Figure 54. Serum protein levels in training and validation cohorts. 

 

	 	
	

		 	
	

	

	
	

	



195	
	

	 	
	

	

	 	
	

	

	 	
	

	



196	
	

	 	
	

	

	
	

	

	 	
	

	



197	
	

	 	
	

 

	
	

	

	

	
	

	

	



198	
	

	
	

	

	
	

	

	
	

	

	



199	
	

	
	

	

	
	

	

	

	
	

	

	



200	
	

	
	

	
	

 

In order to investigate whether any of the analytes tested may have potential for use as 

a predictive biomarker for disease progression in IPF, ROC curve analysis was 

performed to assess the sensitivity and specificity above or below a cut off threshold 

for each protein. The results of this are demonstrated in Table 35.  
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Table 35. ROC curve analysis for Luminex serum proteins of interest. 

Protein	 Cut-off 
value 1 
(pg/ml)	

Sensitivity 
1 (%)	

Specificity 
1 (%)	

Cut-off 
value 2 
(pg/ml)	

Sensitivity 
2 (%)	

Specificity 
2 (%)	

MMP1	 >3738	 61%	 58%	 >7686	 9%	 83%	
MIF	 >13975	 63%	 50%	 >54363	 33%	 83%	
VEGF	 >102.7	 67%	 54%	 >186.6	 25%	 83%	
Periostin	 >97532	 67%	 54%	 >133365	 33%	 83%	
CHI3-L1	 >48689	 61%	 38%	 >88259	 41%	 82%	
EGF	 >306.2	 63%	 60%	 >506.5	 33%	 83%	
Pentraxin3	 >535.2	 63%	 30%	 >3518	 25%	 83%	
Osteopontin	 >24370	 63%	 58%	 >47311	 33%	 83%	
SP-D	 >51530	 71%	 88%	 >51016	 75%	 83%	
IP10	 >31.49	 63%	 58%	 >45.49	 33%	 83%	
MCP1	 >480.8	 63%	 55%	 >669.7	 42%	 83%	
Gro-alpha	 >120.2	 73%	 67%	 >140.3	 53%	 84%	
IL8	 >29.46	 63%	 63%	 >83.66	 42%	 83%	
PARC	 <82822	 63%	 38%	 <50352	 17%	 83%	
RANTES	 >36570	 61%	 63%	 >43844	 44%	 83%	
Galectin3	 <17837	 63%	 29%	 <10855	 33%	 83%	

 

 
Following on from this analysis, a number of proteins were identified for investigation 

into their use in combination in an attempt to improve sensitivity and specificity. 

Contingency tables (Vassarstats.net) were used to identify the sensitivity, specificity 

and positive and negative predictive values when different combinations of proteins at 

different cut-off thresholds were used. For example, if we look at a combination of SP-

D, gro-alpha and RANTES for predicting disease progression in IPF, a serum SP-D 

level of >51016pg/ml and a gro-alpha level of >140.3pg/ml and a RANTES level of 

>52418pg/ml yields a sensitivity of 96% and a specificity of 80%. The positive 

predictive value of this combination was 81% and the negative predictive value was 

95%. If we use another combination of SP-D >51016pg/ml, gro-alpha >129.1pg/ml and 

IL8 >201.3pg/ml, sensitivity was 91%, specificity was 80%, and the positive and 

negative predictive values were 81% and 91% respectively. An example of how these 

values were calculated is demonstrated in Figure 55 below. 
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Figure 55. Example of different combinations of biomarkers to yield sensitivity, 
specificity, positive and negative predictive values for disease progression in IPF. 

IPF 
Progressors	

IPF 
Progressors	

IPF Non-
Progressors	

IPF Non-
Progressors	

IPF Non-
Progressors	

IPF Non-
Progressors	

SP-D	 Gro-alpha	 RANTES	 SP-D	 Gro-alpha	 RANTES	
26615.3	 130.84	 116365	 10751.74	 113.08	 41100	
30187.74	 83.84	 53291	 14078.21	 0	 44574.19	
30737.36	 208.26	 48141	 15686.32	 0	 122940	
30960.8	 92.81	 31658.48	 20765.88	 0	 46773	
45729.78	 398.28	 24860.5	 23184.58	 0	 36795.5	
46630.7	 0	 56786.85	 24872.22	 0	 25817.5	
51706.32	 0	 23304.5	 26447.66	 92.02	 33118.5	
55223.99	 141.71	 	 26573.37	 0	 33768.31	
57896.23	 127.32	 79912.83	 29406.66	 0	 36428	
58370	 293.58	 125416.5	 33792.43	 0	 31525.16	
62973.38	 242.23	 27677	 33883.46	 113.08	 35437	
63079.95	 0	 72862	 35816.95	 0	 51545.14	
65957.9	 159.89	 72415.5	 39301.08	 104.25	 33403.24	
66073.07	 0	 34066.45	 41392.61	 0	 23202.63	
66903.97	 0	 15896.55	 42008.06	 0	 42693.5	
68746.8	 0	 37609.03	 43425.04	 84.42	 42868.2	
75801.24	 0	 86496.5	 43743.83	 0	 14385.27	
81965.02	 100.57	 33888.5	 47116.77	 0	 20097.88	
86755.69	 133.24	 39398.35	 48673.47	 0	 18979.15	
94606.71	 138.94	 36722.29	 50678.96	 0	 31872.07	
99958.12	 0	 39291.5	 51353.77	 275.89	 43112.85	
103429.9	 0	 37547	 56211.25	 243.93	 36711	
104773.3	 138.94	 29707	 63862.12	 92.81	 37928.99	
	 	 	 	 	 	
	 	 	 83649.43	 133.24	 29829.72	
	 	 	 124247.9	 0	 46710.45	

 
 

	 Disease Absent	 Disease Present	
Test positive	 5	 22	
Test negative	 20	 1	

Above data were entered into Calculator 1 on Vassarstats for analysis 

 

 

 



203	
	

Proteomic analysis highlighted several proteins that differed between IPF and controls, 

and progressor and non-progressor groups. The most notable were EGF, IL-8, 

Pentraxin-3, CXCL17, CHI3-L1, MCP1, CCl18, VEGF and Galectin-3 in BALf, and 

MMP1, Periostin, Osteopontin, SP-D, IP10, MCP1, IL8, CCL18 and Gro-alpha in 

serum. Many of these biomarkers have been described previously, however they have 

not been validated in a ‘real-life’ patient cohort, such as those in our study. Based on 

this preliminary data, further work to devise a prediction model including clinical and 

serological data was undertaken. 

 

 

        5.2.4      Paired biomarker profiling 
 
BAL 

BAL was performed at presentation (baseline) and at 12 months. Luminex Magnetic 

Screening Assay kits (R&D) were used to detect proteins of interest in BAL fluid in 

paired samples from 61 patients (21 IPF progressors, 40 IPF non-progressors). BALF 

was normalised to 10µg of protein per sample (protein determined via Pierce BCA 

assay, ThermoFisher cat# 23225). A similar panel of potential biomarkers (n=32) were 

used as described in previous work with the addition of ten analytes following recently 

reported proteins of interest in the literature, these included amphiregulin, MCP-1 

(CCL2), RANTES (CCL5), PARC (CCL18), eotaxin-3 (CCL26), Chi3-L1, GRO alpha 

(CXCL1), IL-8 (CXCL8), IP-10 (CXCL10), EGF, IL-10, MMP7, MMP8, IL-33, 

MMP1, MIF, osteopontin, pentraxin 3, periostin, SP-D, TNFα , TIMP-1, IL1-ra, IL-13, 

PDGF-AA, PDGF-BB, HGF, VEGF, galectin 3, galectin 1, serpin e1 and IFNγ. 

Significant characteristics of disease progression at 12 month BAL were increased BAL 

amphiregulin and PDGF-AA levels, a significant increase in MMP8 between 0 and 12 

month BALs in IPF progressors, and a significant decrease in amphiregulin levels 

between 0 and 12 month BALs in IPF non-progressors. This data is shown in Figure 56 

below. Other important findings were a reduction in EGF, SP-D, IL-13 and TIMP1 

levels between 0 and 12 month BALs in IPF non-progressors, at baseline 0 month BAL 

Galectin-1 levels were increased and IL-13 levels were decreased in the IPF progressor 

group, and at 12 month BAL IFNγ levels were increased in IPF progressors, however 
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none of these findings reached significance. These data are shown in Figure 57. There 

were no significant differences in MMP1, MIF, periostin, CHI3-L1, osteopontin, 

TNFα, IL1-ra or HGF levels between progressor and non-progressor groups at 0 and 

12 months, or between 0 and 12 month BALs within groups (data not shown).  

 

Figure 56. Significant findings in BAL biomarker profiling at 0 and 12 month BALs. 
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Figure 57. Additional findings in BAL biomarker profiling at 0 and 12 month 

BALs. 
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Serum 
Serum samples were obtained from patients at presentation (baseline) and at 12 months. 

Luminex Magnetic Screening Assay kits (R&D) were used to detect proteins of interest 

in serum in paired samples from 59 patients (21 IPF progressors, 38 IPF non-

progressors). Serum was prepared at either a 1:2 or 1:50 dilution as per manufacturer 

instructions. A similar panel of potential biomarkers (n=26) were used as described in 

previous work, these included MCP-1 (CCL2), RANTES (CCL5), PARC (CCL18), 

Chi3-L1, IL-8 (CXCL8), IP-10 (CXCL10), EGF, MMP8, MMP1, MIF, osteopontin, 

pentraxin 3, periostin, SP-D, TNF , TIMP-1, IL-1 ra, IL-13, PDGF-AA, PDGF-BB, 

HGF, VEGF, galectin 3, galectin 1, serpin e1 and IFN . Six analytes were dropped from 

the panel (amphiregulin, eotaxin3, gro alpha, IL-10, MMP7 and IL33), as previous work 

had shown these analytes were rarely detected in serum using Luminex Magnestic 

Screening Assays. Significant characteristics of disease progression on serum obtained 

at 12 months were increased serum SP-D and galectin-1 levels in progressors versus 

non-progressors, a significant increase in periostin, CHI3-L1, SP-D, TNF, galectin-1, 

MMP8 and IL-8 levels between serum obtained at 0 and 12 month in IPF progressors, 

and a significant decrease in EGF, TNF, pentraxin-3, IFN and CCL18 levels between 0 

and 12 month sera in IPF non-progressors. This data is shown in Figure 58 below. There 

were no significant differences in MMP1, MIF, osteopontin, IL-1 ra, TIMP1, IL-13, 

PDGF-AA, VEGF, IP-10, MCP1, RANTES, galectin-3, PDGF-BB, serpin e1 or HGF 
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levels between progressor and non-progressor groups at 0 and 12 months, or between 0 

and 12 month sera within groups (data not shown).  

 

Figure 58. Significant findings in serum biomarker profiling at 0 and 12 months. 
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     5.2.5      Linear regression modelling and decision  
                   tree learning 
 
Serum was obtained at presentation (baseline) and at 12 months. Luminex Magnetic 

Screening Assay kits (R&D) were used to detect serum biomarkers in a training cohort 

(n=48; progessors n=22, non-progressors n=26) and then a validation cohort (n=160; 

progressors n=77, non-progressors n=83) of IPF patients. Serum was utilised at either 

1:2 or 1:50 dilution depending on manufacturer’s instruction. Potential biomarkers 

(n=32) were pre-selected from either previously published studies of IPF biomarkers or 

our hypothesis-driven profiling from previous work.  Biomarkers included in the model 

were amphiregulin, MCP-1 (CCL2), RANTES (CCL5), PARC (CCL18), eotaxin-3 

(CCL26), Chi3-L1, GRO alpha (CXCL1), IL-8 (CXCL8), IP-10 (CXCL10), EGF, IL-

10, MMP7, MMP8, IL-33, MMP1, MIF, osteopontin, pentraxin 3, periostin, SP-D, TNF 

, TIMP-1, IL1-ra, IL-13, PDGF-AA, PDGF-BB, HGF, VEGF, galectin 3, galectin 1, 

serpin e1 and IFN . Serological data was combined with clinical parameters including 

patient age, sex, smoking status, lung function data including baseline percentage 

predicted FEV1, FVC and TCO, and HRCT data including CT category, % fibrosis on 

HRCT, % periphery involved and degree of bronchiolar dilatation. We also applied 

previously reported predictive tools such as the GAP Index, du Bois score and CPI 

Index to the Edinburgh IPF cohort to include in the model. Patient demographic data, 

HRCT scoring, clinical scoring models and serum biomarker data for serum training 

and validation cohorts are demonstrated in Table 36 below.   
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Table 36. Patient demographic data, HRCT scoring, clinical scoring models and 

serum biomarker data. 

	 Test cohort Validation cohort 

 	 IPF 

Progressor 

 N=22	

IPF Non- 

Progressor 

N=26	

P-

value 

IPF 

Progressor 

 N=77	

IPF Non- 

Progressor 

N=83	

P-

value 

Age in years 

(SD)	

70.0 (9.2)	 71.1 (7.7)	 0.634 74.3 (7.7)	 73.9 (9.3)	 0.762 

Male (%)	 19 (86.4)	 16 (61.5)	 0.056 58 (75.3)	 51 (61.4)	 0.060 

Never smoked 

(%)	

5 (22.7)	 7 (26.9)	 0.740 19 (24.7)	 18 (21.7)	 0.654 

Ex-smoker (%)	 14 (63.6)	 16 (61.5)	 0.882 54 (70.1)	 56 (67.5)	 0.724 

Current smoker 

(%)	

3 (13.6)	 3 (11.5)	 0.828 4 (5.2)	 9 (10.8)	 0.196 

VC in Litres 

(IQR)	

 2.99 

 (2.31, 3.29)	

3.01 

(2.20, 3.20)	

0.706 2.62  

(2.04, 3.28)	

2.73  

(2.02, 3.19)	

0.813 

VC  %predicted 

in Litres (IQR)	

 73.0 

(67.0, 92.6)	

95.0 

(81.5, 103.3)	

0.022 89.0  

(71.6, 103.2)	

90.6 

(78.3, 103.4)	

0.163 

TLCO 

(mm/min/ 

mmHg) (IQR)	

4.30 

(3.33, 5.10)	

3.69 

(3.18, 4.60)	

0.478 3.28 

 (2.38, 4.15)	

3.69 

(2.74, 4.56)	

0.033 

TLCO 

%predicted 

(IQR)	

49.4 

(42.0, 56.1)	

52.1 

(52.6, 59.1)	

0.339  41.6 

(35.0, 51.9)	

51.4 

(39.3, 59.7)	

0.017 

Definite UIP 

HRCT (%)	

7 (31.8)	  6 (23.1)	 0.504 21 (27.3)	 21 (25.3)	 0.775 

Probable UIP 

HRCT (%)	

 15 (68.2)	  20 (76.9)	 0.503 56 (72.7)	 62 (74.7)	 0.774 

% total fibrosis 

HRCT (IQR)	

40.0 

(35.0, 60.0)	

30.0 

(25.0, 40.0) 	

0.001 35.0 

 (25.0, 55.0)	

25.0 

(20.0, 40.0)	

0.008 

% periphery 

involved (IQR)	

 90.0 

(90.0, 95.0)	

80.0 

(32.5, 90.0) 	

0.049 75.0 

(40.0, 90.0) 	

70.0 

(36.3, 85.0)	

0.187 

Bronchiolar 

dilatation 

[0-3]  (SD)	

1.36 (1.05)	 0.62 (0.70)	 0.013 0.90 (0.75)	 0.74 (0.58)	 0.155 

GAP Score (SD)	 4.05 (1.33)	 2.85 (0.97)	 0.002 4.10 (1.43)	 3.36 (1.25)	 0.002 
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Du Bois Score	 30.14 

(13.50)	

10.57 (9.03)	 <0.00

01 

28.74 

(14.54)	

13.57 (9.02)	 <0.000

1 

CPI Index	 49.55 

(15.05)	

41.26 (7.95)	 0.032 48.54 

(15.97)	

42.40 

(14.81)	

0.013 

Serum SP-D 

pg/ml (SD)	

 65652.09 

(23489.68)	

40833.12 

(23557.32)	

0.004 105752.99 

(74678.11)	

56183.18 

(33571.91)	

0.0008 

Serum Periostin 

pg/ml (SD) 

127017.14  

(48885.01)	

98870.48 

(30468.10)	

0.019 115376.66 

(32705.52)	

111265.36 

(34397.71)	

0.440 

Serum MMP7 

pg/ml (SD) 

1637.85  

(796.38)	

1303.76 

(1077.63)	

0.048 4708.41 

(3886.95)	

2672.48 

(1759.96)	

0.024 

 

 
Vital capacity and TLCO were significantly reduced in the progressors versus the non-

progressor group. Patients in the progressor group had significantly increased total 

fibrosis percentage, peripheral involvement percentage and degree of bronchiolar 

dilatation on HRCT than the non-progressors. GAP score, du Bois score and CPI index 

scores were also significantly higher in the progressor group versus the non-

progressors. In the serum test cohort (n=48), six proteins were noted to be significantly 

increased in the IPF progressor group compared to the IPF non-progressor group; 

periostin, EGF, SP-D, MMP7, IFNγ  and galectin1. This data is shown in Figure 59. 

There were no significant differences between progressor and non-progressor groups in 

MMP1, MIF, CHI3-L1, osteopontin, TNFα, TIMP1, MMP8, IL1-ra, IL-13, PDGF-AA, 

HGF, pentraxin 3, VEGF, IP10, MCP1, gro-alpha, IL8, PARC, RANTES, galectin 3, 

PDGF-BB or serpin e1 levels (data not shown). In the serum validation cohort (n=160), 

amphiregulin, osteopontin, SP-D, galectin 1, MMP7, HGF and CHI3-L1 were all 

significantly elevated in the IPF progressors vs non-progressors. TNFα, IFNγ, IL-13 

and PDGF-AA were all significantly increased in the IPF non-progressor group. These 

data are shown in Figure 60. There were no significant differences between IPF 

progressor and non-progressor groups in MMP1, MIF, periostin, EGF, TIMP1, MMP8, 

IL1-ra, PDGF-BB or serpin e1 levels (data not shown).  
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Figure 59. Serum protein levels in test cohort (n=48). 
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Figure 60. Serum protein levels in validation cohort (n=160). 
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Linear logistic regression was performed in collaboration with Dr Sohan Seth, PhD 

(Institute for Adaptive and Neural Computation, School of Informatics, University of 

Edinburgh) and was used on each predictor separately to assess its importance in terms 

of P-value of the associated weight, the top two variables were then used to learn a 

decision tree. Disease progression was confidently predicted by a combination of 

clinical and serological variables. The current data showed that the most informative 

variables in predicting disease progression in IPF were % fibrosis (coefficient 0.88, P-

value 0.01), % periphery involved (coefficient 0.82, P-value 0.03), % predicted FVC 

(coefficient 1.02, P-value 0.01), periostin pg/ml (coefficient 0.82, P-value 0.03) and SP-

D pg/ml (coefficient 1.24, P-value 0.00). A linear regression model using the best two 

variables, % predicted FVC and serum SP-D, yielded a sensitivity of 86.4%, specificity 

of 92.3%, positive predictive value of 90.5% and negative predictive value of 88.9% 

for disease progression in IPF. Analysis of the two parameters relative to disease and 

the subsequent decision tree are demonstrated in Figures 61 and 62 below. Linear 

logistic regression modelling work to apply the predictive model to the validation 
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cohort is currently ongoing. Unfortunately due to time limitations, I was unable to 

include the results of this in this thesis.  

 

Figure 61.  Analysis of the two parameters relative to disease. 

 

 

Figure 62. Decision tree predictive of disease progression in IPF. 
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5.2.6      A phase IIa clinical trial of TD139, a Galectin-3 
              inhibitor 
 

Patients from cohorts 1, 2 and 3 of the trial that had received TD139 at a dose of 0.3mg, 

3mg or 10mg were pooled together to form a ‘TD139 group’, and were compared with 

patients who had received placebo in cohorts 1, 2 and 3, termed the ‘control group’. 

Flow cytometry of BAL samples from the pooled TD139 group revealed there was a 

significant decrease in the galectin 3 geometric mean of alveolar macrophages between 

day 1 and day 14 BALs after two weeks of treatment with TD139 (P=0.0001). There 

was no significant change in the galectin 3 geometric mean of alveolar macrophages 

between day 1 and day 14 BALs in the control group. This data is shown in Figure 63 

below. There were no significant changes between day 1 and day 14 BALs in the pooled 

TD139 group in % of B-cells, % of PMLCs, % of iPMLCs, % of rPMLCs, % of 

neutrophils, % of CD3+ cells, % of CD4+ cells, % of CD8+ cells, % of HLA-DR+ cells, 

% of M1 AM phenotype cells, % of M2a AM phenotype cells, % of M2c AM phenotype 

cells, % of CD71+ cells, % of CCL18+ cells or % of fibrocytes when measured by flow 

cytometry.  

 

Figure 63. Galectin 3 geometric mean of alveolar macrophages between day 1 and 

day 14 BALs in pooled TD139 and control groups. 

 

 

 
Luminex Magnetic Screening Assays (described previously) were used to assess 

whether there were any significant changes in a number of proteins expressed in BAL 
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fluid and in plasma of patients in control and TD139 groups between day 1 and day 14 

BALs. The proteins of interest were selected based on previously reported studies of 

IPF biomarkers or hypothesis-driven profiling from my previous work, also described 

in this thesis.  

 

In BALF there was a significant difference in the percentage change of galectin 3 levels 

between control and 10mg TD139 dose groups (P=0.007). ANOVA statistics revealed 

there was a significant difference in percentage change of galectin 3 levels in BALF 

between control, 0.3mg, 3mg and 10mg TD139 dose groups (P=0.001). There was also 

a significant difference in percentage change in MMP1 levels between control and the 

10mg TD139 dose groups (P=0.029). ANOVA also revealed significant differences 

between control, 0.3mg, 3mg and 10mg TD139 dose groups in the percentage change 

of galectin 1, gro-alpha and IL-8 levels in BALF (P=0.017, P=0.020 and P=0.034 

respectively). There were no differences in perentage change of MMP7, IP10, MCP1, 

MIF, CHI3-L1, SP-D, PAI, CCL18, TNFα, MMP8 or IL-1 ra levels in BALF between 

the groups. This data is shown in Figure 64 below.  

 

Figure 64. Percentage change in BAL fluid proteins of interest between day 1 and 

day 14 BALs in TD139 and control groups, measured by Luminex Magnestic 

Screening Assay. 
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In plasma, ANOVA statistics demonstrated a significant difference in percentage 

change of PDGF-BB and PAI levels between control and TD139 groups, between day 

1 and day 14 BALs (P=0.034 and P=0.028 respectively). Significant difference in 

percentage change of eotaxin (P=0.046), CHI3-L1 (P=0.012), MMP8 (P=0.029), HGF 

(P=0.019), galectin 3 (P=0.049), PDGF-BB (P=0.019) and PAI (P=0.029) plasma levels 

were noted between control and Td139 dose groups. There were no significant 

differences in percentage change of pentraxin 3, MCP1, IP10, IL8, TNFα, galectin 1, 

periostin, SP-D, TIMP1, MMP1, MIF, IL-1 ra, osteopontin, PDGF-AA, CCL18, rantes 

or MMP7 plasma levels between the groups, as determined by ANOVA. This data is 

demonstrated in Figure 65 below. 

 

Figure 65. Percentage change in plasma proteins of interest between day 1 and day 

14 BALs in TD139 and control groups, measured by Luminex Magnestic Screening 

Assay. 
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When qPCR was used to quantify gene expression of galectin 3, CCL18, CD163, 

CD206, IL10, CD80 and TGFβ, the percentage change of galectin 3 expression was 

significantly different between the control and 10mg TD139 dose group (P=0.0001). 

ANOVA statistics showed significant differences between control, 0.3mg, 3mg and 

10mg TD139 dose groups (P=0.004). There was also a significant increase in 

percentage change of CD163 expression between the control and 0.3mg TD139 dose 

group (P=0.019), however ANOVA did not reveal and significant change between the 

groups as a whole (P=0.098). There were no significant differences in percentage 

change of expression of CCL18, CD206, IL10, CD80 or TGFβ between groups. When 

the 0.3mg, 3mg and 10mg TD139 dose groups were pooled into a ‘TD139 group’ versus 

‘controls’, there were no significant percentage changes in expression of galectin 3, 

CCL18, CD163, CD206, IL10, CD80 or TGFβ when measured by qPCR. These data 

are shown in Figure 66 below.  
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Figure 66. Percentage change in galectin 3, CCL18, CD163, CD206, IL10, CD80 and 

TGF- expression between day 1 and day 14 BALs in TD139 and control groups, 

measured by qPCR. 
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5.3      Discussion 
 
Whilst obtaining a timely and confident diagnosis of IPF remains paramount in 

managing patients with suspected ILD, there remains a large unmet clinical need for 

accurate and validated prediction models to identify the subset of patients (around 15%) 

that will progress rapidly with worsening respiratory function and death within a year 

of presentation. The pathogenesis of IPF is a complex and multi-faceted process, and it 

remains poorly understood. It is clear that no single protein biomarker will have the 

ability to confidently predict disease progression with high sensitivity, specificity, PPV 

and NPV values in IPF, however perhaps in combination with clinical, physiological 

and radiological parameters, risk stratification for progression could be improved.  

 

It was previously thought that IPF was a result of generalised inflammation followed 

by widespread parenchymal fibrosis, however this theory came into question after a 

number of clinical trials investigating the effect of anti-inflammatory drugs and immune 

modulators on the natural course of the disease revealed a minimal effect only. The 

current theory is that IPF results after an unknown endogenous or environmental 

stimulus (for example smoke, environmental pollutants, dust, viral infections, gastro-

oesophageal reflux disease, chronic aspiration) disrupts the homeostasis of alveolar 

epithelial cells, which leads to diffuse epithelial cell activation and aberrant epithelial 

cell repair125. Following injury, aberrant activation of alveolar epithelial cells drives the 

migration, proliferation and activation of mesenchymal cells, which leads to the 

formation of fibroblastic/ myofibroblastic foci and exaggerated accumulation of 
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extracellular matrix126. It has been reported that activated alveolar epithelial cells 

secrete a number of potent fibrogenic cytokines and growth factors including TNF-α, 

TGF-β, PDGF, IGF-1 and ET-1126–128. These cytokines and growth factors are involved 

in the migration and proliferation of two of the key effector cells in fibrogenesis; 

fibroblasts, which transform into myofibroblasts, and myofibroblasts, which release a 

number of extracellular matrix proteins126,129.  This in turn leads to tissue remodelling 

and irreversible destruction of the normal architecture of the lung parenchyma. 

 

It has been well documented that myofibroblasts must undergo apoptosis for normal 

wound healing to occur. Harari et al reported that production of TGF-β promotes an 

anti-apoptotic phenotype in fibroblasts contributing to the pathogenesis of IPF126. 

Failure of apoptosis results in the accumulation of myofibroblasts, which then leads to 

increased extracellular matrix production, persistent tissue contraction and formation of 

scar tissue126.  It has been shown that myofibroblasts in areas of fibroblastic foci in IPF 

undergo less apoptotic activity than the myofibroblasts in fibromyxoid lesions of 

bronchiolitis obliterans, therefore supporting this theory130.  

 

There have been a number of attempts to risk stratify patients with IPF using a 

combination of clinical variables including history and examination findings, 

pulmonary function testing, exercise capacity, radiological appearances and 

histological features, however these variables are poorly reflective of disease 

pathogenesis and can only be of use when patients are grouped into large cohorts and 

put into scoring systems, not for estimating individual patient risk in a clinical setting. 

It is well documented that IPF is a heterogeneous disease, and there is a definite need 

to identify ‘personalised’ prognostic biomarkers which may in turn lead to novel targets 

and the advent of personalised medicines. I applied a number of prognostic scoring 

systems to the Edinburgh IPF cohort with variable results. I have already shown that 

phenotypically, there was no apparent difference between patients with ‘definite’ and 

‘possible’ UIP and so both cohorts were grouped together for the application of risk 

stratification scoring models. The du Bois score was found to be accurate in predicting 

1 year mortality in both ‘definite’, ‘possible’ and ‘all’ IPF groups, however the margins 

for predicted mortality were very broad. The score has also never been formally 

validated.  
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Ley et al developed the GAP model in 2012. It’s simple nature has allowed the GAP 

index to be widely studied and it is the only scoring system of it’s kind to have been 

validated around the world from centres in USA, Italy and South Korea38,131,132. The 

GAP score is perhaps the most well known scoring system in IPF and is the simplest to 

calculate. The four variables included in the model (gender, age, percentage predicted 

FVC, percentage predicted DLCO) are commonly measured at the initial visit and are 

easily followed up. In a study of 268 South Korean patients with IPF, Kim at al showed 

the GAP model predicted 1-year mortality well and that the differences between the 

predicted and observed mortality were not significant. However they found that 2- and 

3-year mortality were not predicted accurately, and there were significant differences 

between the predicted and observed risk. They also found that by multivariate analysis, 

mortality correlated independently with sex, age, lower FVC and lower DLCO, the 

same variables included in the GAP model132.  Lee and colleagues reported the relation 

between the GAP score (0-7) and the GAP stage (I-III) in 1228 IPF patients. They found 

that all GAP variables showed significant association with prognosis except gender. 

They found that advanced GAP stage was associated with poor prognosis, and that 

higher GAP scores were significantly associated with male gender, aging and poor lung 

function, in parallel with the original GAP model definition131. The GAP score is not 

validated in ‘possible UIP’, however when the GAP score was applied to the Edinburgh 

‘definite’ and ‘possible’ UIP cohorts separately, predictions for 1-, 2- and 3- year 

mortality were only moderately accurate. When the cohorts were combined as an ‘all 

IPF’ cohort, the accuracy of the predicted mortality to the observed mortality was much 

improved. The differences in survival between patients with a low, medium and high 

GAP score were significantly different in all 3 cohorts. 

 

Numerous studies have attempted to identify diagnostic and predictive biomarkers in 

IPF, however because of it’s variable and unpredictable course, and the lack of easily 

reproducible relevant patient outcomes, clinical research in IPF remains challenging. 

Multiple single centre studies report upregulation of various proteins in IPF, however 

until recently, these studies were limited in size and lacked validation. There has been 

increasing evidence of late, that when taken together changes in blood proteins (for 

example KL-6, SP-A, MMP-7, CCL-18) or cells (fibrocytes and T-cell subpopulations) 

can be of value in diagnosis and prognostication.  
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Biomarkers can be divided into diagnostic, prognostic, disease activity and treatment 

efficacy biomarkers, depending on the information that they provide. There have been 

multiple reports in recent years of peripheral blood molecular biomarkers able to 

differentiate patients with IPF from controls. These included KL-6, surfactant proteins 

SP-A and SP-D, matrix metalloproteases MMP-1 and MMP-7, YKL-40 (CHI3-L1)61.  

Unfortunately many of these studies did not include smoking controls, or other ILDs, 

and when replication cohorts were performed, these patients also had increased levels 

of the marker61.  A study by Rosas and colleagues used targeted proteomics to develop 

a protein signature that included MMP-1, MMP-7, MMP-8, IGFBP-1 and TNFRSA1F 

and distinguished patients with IPF from controls with a sensitivity of 98.6% and a 

specificity of 98.1%60. They compared MMP-1 and MMP-7 protein levels in plasma of 

both IPF vs controls and in IPF vs COPD, sarcoidosis and hypersensitivity pneumonitis. 

They found that MMP-1 and MMP-7 levels were significantly higher in IPF patients 

and could detect IPF from HP with a sensitivity of 96.3% and a specificity of 87.2%60. 

They went on to perform a validation cohort which confirmed MMP-7 levels were 

significantly increased in patients with IPF vs controls, but were also significantly 

increased in patients with subclinical ILD vs controls, therefore suggesting it could be 

used as a potential biomarker for early detection. MMP-1 and MMP-7 levels were 

significantly elevated in both plasma and BAL fluid of patients with IPF versus control 

individuals60,61.  
 

Recent trials have supported peripheral blood biomarkers as important adjuvants in 

predicting disease progression in IPF at presentation. Multiple study groups have 

reported a number of different protein biomarkers with variable results. KL-6 (also 

known as MUC-1) is a mucinous high-molecular weight glycoprotein, expressed on 

type 2 pneumonocytes. It has been reported to be elevated in both serum and 

bronchoalveolar lavage fluid of patients with interstitial pneumonia, and high blood 

concentrations of KL-6 have repeatedly been shown to be predictive of decreased 

survival in IPF. The majority of these studies were of small cohort size, and were not 

replicated in validation cohorts, however the studies were undoubtedly consistent and 

therefore KL-6 is considered a potential marker in disease stratification61. Additional 

studies of note include the work by Prasse et al, who showed that serum CCL18 levels 

were able to predict lung function and survival outcomes in a prospectively collected 
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cohort of 72 patients with IPF58,61. Kinder et al reported serum SP-A was a predictor of 

early mortality in a study of 81 IPF patients43,61 and Korthagen and colleagues showed 

that high serum levels of YKL-40 (an inflammatory glycoprotein otherwise known as 

CHI3-L1) could differentiate between two distinct groups with significantly different 

survival (HR for serum YKL-40 (cut-off 79ng/ml) as 10.9 (95% CI 1.9–63.8, P < 0.01) 

in a cohort of 79 IPF patients61,65.  

  

In my study, BAL fluid levels of CHI3-L1, CCL-18 and MCP were significantly higher 

in IPF patients versus controls, which is consistent with current literature. Galectin-3 

levels were significantly increased in IPF progressors versus non-progressors, and 

CCL-18 levels were higher in progressors, however this did not reach significance. 

VEGF is a signal protein involved in angiogenesis, I found levels were significantly 

reduced in patients with IPF versus controls, and were lower in IPF progressor versus 

non-progressor patients, however this did not reach significance. This result is 

consistent with a study by Murray et al examining the association of VEGF with the 

IPF disease state and preclinical pathogenesis. They reported that tissue and circulating 

levels of VEGF were significantly reduced in IPF patients, particularly in those with a 

rapidly progressive phenotype, when compared with healthy controls. In addition, they 

showed that lung-specific overexpression of VEGF significantly protected mice 

following intratracheal bleomycin, with a decrease in fibrosis and bleomycin-induced 

cell death in VEGF transgenic mice, suggesting beneficial roles for VEGF during lung 

fibrosis by modulation of epithelial homeostasis via the endothelium133.  

 

My study was also consistent with a number of studies describing serum proteins of 

interest in IPF in the current literature. In my study, serum concentrations of MMP-1, 

periostin, osteopontin, SP-D, IP-10, MCP-1, IL-8 and CCL-18 were all significantly 

increased in patients with IPF versus controls. This is in keeping with current 

literature46.  Periostin, SP-D, GRO-alpha (otherwise known as CXCL-1), EGF, IFNγ, 

galectin-1, amphiregulin, osteopontin and HGF levels were all significantly higher in 

IPF progressors versus non-progressors. CHI3-L1 levels were higher in both IPF 

patients vs controls and in IPF progressors vs non-progressors. IL-8 levels were also 

increased in IPF progressors vs non-progressors, however this did not reach 

significance.  This data is in keeping with recent studies reporting GRO-alpha, periostin 

and SP-D expression in IPF. Antoniou et al showed both serum and BAL levels of 
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GRO-alpha were significantly increased in patients with IPF versus healthy subjects134. 

Okamoto et al identified periostin in the lungs of Japanese patients with IPF and showed 

that serum periostin levels were higher in IPF patients than in controls135,136. It was then 

reported by Uchida et al that bleomycin injury caused increased periostin expression, 

and that periostin-deficient mice were protected from bleomycin-induced lung 

fibrosis135,137.  More recently Naik and colleagues confirmed an excess of periostin in 

the lungs of IPF patients, and showed that periostin was produced by IPF fibroblasts. 

They also found that blood periostin levels were predictive of clinical progression at 48 

weeks (HR 1.47, 95% CI 1.03-2.10, P<0.05)135. A systematic review and meta-analysis 

by Wang et al investigating the impact of SP-D levels on prognosis in IPF found that 

serum SP-D levels were significantly increased in patients with IPF compared to both 

patients with pulmonary infections and healthy controls. Furthermore there was a 

significant association between higher SP-D levels and increased risk of death, without 

heterogeneity (HR: 2.11, 95% CI 1.60 - 2.78, P<0.001)138.  

 

In my prediction model for disease progression in IPF, I aimed to identify a unique 

protein signature that could be used in combination with clinical parameters to predict 

patients likely to progress rapidly. In light of the vast heterogeneity in IPF, it is clear 

that no single biomarker would be adequately sensitive and specific for this when used 

alone. I set targets of sensitivity greater than 60% and specificity greater than 80% for 

my model as these values would be deemed sufficient for use in clinical practice. In my 

study I described a prediction model combining clinical, physiological and biological 

variables, and found that accuracy in predicting disease progression was highest when 

these parameters were used in combination. Initially I combined a number of serum 

protein biomarkers and found that by selecting out the top three proteins that were 

predictive of disease progression in the model, and by setting cut off values for each, 

combining serum SP-D, GRO-alpha and RANTES (CCL-5) concentrations could 

predict rapid progression at a sensitivity of 96%, specificity of 80%, PPV 81% and NPV 

95%. Another combination of SP-D, GRO-alpha and IL-8 levels predicted disease 

progression at a sensitivity of 91%, specificity 80%, PPV 81% and NPV 91%. 

Additional clinical and radiological variables identified by the model as being 

significantly associated with disease progression were the volume of fibrosis on HRCT 

(%), percentage of lung periphery involved on HRCT and percentage of predicted FVC 

at baseline. The model identified the best two variables as percentage of predicted FVC 
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and serum SP-D level, and when these two variables alone were entered into the model, 

disease progression in IPF could be predicted at a sensitivity of 86.4%, specificity of 

92.3%, PPV 90.5% and NPV 88.9%. Richards et al applied targeted proteomics to 

screen plasma for 95 different proteins of interest in a derivation cohort of 140 IPF 

patients, and then a validation cohort of 101 IPF patients with replicable results. They 

found that high plasma concentrations of MMP-7, ICAM-1 and IL-8 were predictive of 

poor overall survival in both cohorts45,61. This group then went on to describe a personal 

clinical and molecular mortality prediction index (PCMI) model incorporating sex, 

percent predicted FVC, percent predicted DLCO and plasma MMP-7 level that was 

highly predictive of early mortality with a C-index of 8461. This data is supportive of 

my own findings that the use of molecular markers can improve upon clinical prediction 

models in IPF.       

 

In order for a molecular biomarker to seem plausible, it would ideally reflect the 

pathobiological mechanism driving disease progression in IPF, and have been studied 

first in animal models. Studies would ideally show a significantly different protein 

signature in IPF patients versus healthy controls and in IPF progressor patients versus 

non-progressor patients. This would ideally be followed by significant increases or 

decreases in the concentrations of proteins of interest in patients over a 12 month period. 

In my study, BAL fluid obtained at presentation (0 months) and then at 12 months 

revealed significantly increased amphiregulin and PDGF-AA concentrations at 12 

months in the IPF progressor group. Between 0 and 12 month BALs there was a 

significant increase in MMP-8 in the progressor group and a significant decrease in 

amphiregulin in the non-progressor group. To my knowledge, there are no other studies 

that have investigated changes in the IPF proteome in BAL fluid with BAL at 

presentation (0 months) and then a repeat BAL at 12 months. In addition, in serum 

profiling, SP-D and galectin-1 were significantly higher at baseline in progressor versus 

non-progressor patients, and there was a significant increase in serum SP-D and 

galectin-1 levels between serum samples obtained at 0 (presentation) and at 12 months. 

 

Little is known about the exact role of amphiregulin in the pathogenesis of pulmonary 

fibrosis however dysregulated amphiregulin expression and EGFR activation have been 

described in animal models of pulmonary fibrosis. Zhou et al showed that TGF-β1 

significantly induced the expression of amphiregulin in lung fibroblasts in vitro and in 
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murine lungs in vivo139. Amphiregulin has been shown before in mouse models that it 

is an essential factor for the development of inflammation-induced fibrotic diseases. It 

has also been shown that amphiregulin is strongly elevated specifically in IPF patients, 

but not in patients of other lung diseases. A number of studies have reported the 

association between PDGF and TGF-β in the development of organ fibrosis140. 

Myofibroblasts (or activated mesenchymal cells) cause excessive deposition of 

extracellular matrix which in turn leads to fibrosis. PDGF is involved in the expansion 

of myofibroblasts by driving their proliferation, migration and survival. Trojanowska 

reported PDGF levels are elevated in the fibrotic lesions of various organs. PDGF-A is 

produced by myofibroblasts and PDGF-B by alveolar macrophages in pulmonary 

fibrosis140. MMP-8 is expressed by polymorphonuclear cells, activated monocytes, 

macrophages, lymphocytes, lung epithelial cells, fibroblasts, fibrocytes, dendritic cells 

and NK cells141. MMP-8 is regulated by TGFβ and TNFα in fibroblasts and IL-1 and 

CD40 ligand in mononuclear phagocytes141. Plasma MMP-8 levels have been reported 

as being increased in patients with IPF, however plasma and BALF levels do not appear 

to correlate with decline in lung function or mortality141.  García-Prieto et al showed 

that MMP-8 knock out mice were protected from bleomycin-mediated pulmonary 

fibrosis141,142, but had increased accumulation of macrophages in the lung during the 

acute inflammatory phase. MMP-8 may be involved in the pathogenesis of pulmonary 

fibrosis by upregulating fibrocyte migration into the lung, leading to increased 

fibroproliferative response to injury141.  

 

Galectin-3 is a member of the galectin family of galactoside binding lectins. It exists 

both intra- and extracellularly and binds to glycosylated proteins. Previous studies have 

demonstrated that galectin-3 plays a central role in the development and progression of 

liver, kidney and lung fibrosis143. Organ fibrosis occurs due to the activation of 

macrophages and the recruitment and activation of myofibroblasts, galectin-3 drives 

both of these pathways. TGFβ has been shown to play a key role in pulmonary fibrosis 

by inducing EMT, ECM production and apoptosis of AECs. It has also been shown that 

pulmonary fibrosis can be reduced by inhibiting TGFβ activity143.  TD139 is a specific 

inhibitor of the galactoside binding pocket of galectin-3. It was developed by a team of 

scientists from Lund University, Sweden, and Edinburgh University, UK, and is 

formulated for inhalation, which enables direct targeting the fibrotic tissue in the lungs, 
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while minimizing systemic exposure. MacKinnon and colleagues previously showed 

that TD139 blocked TGF-β-induced β-catenin activation in vitro and in vivo and 

attenuated the late-stage progression of lung fibrosis after bleomycin. In addition, they 

found that patients with stable IPF had elevated levels of galectin-3 in BAL fluid and 

in serum when compared with patients with NSIP and controls. They also found that 

galectin-3 levels rose sharply during an acute exacerbation of IPF, and therefore 

suggested that galectin-3 may be a marker of active fibrosis in IPF62,143. The Galecto 

trial was a randomised, double-blind, multicenter, placebo-controlled, phase IIa study, 

designed to assess the safety, tolerability, PK and PD characteristics of TD139 in 24 

IPF patients. I was able to perform flow cytometry and Luminex Magnestic Screening 

Assays on BAL and plasma samples to assess whether there were any notable 

differences in a number of proteins of interest linked to IPF-pathogenesis, after patients 

were treated with an inhaled galectin-3 inhibitor for a two week period. The results of 

the PK/PD studies are outwith the remit of this thesis and have been presented 

previously. In my study, I found TD139 was both safe and well tolerated in IPF patients. 

In addition, suppression of galectin-3 was replicated by FACS analysis in AMs, and by 

measuring galectin-3 levels in BAL fluid by Luminex Magnetic Screening Assay. A 

number of proteins of interest were significantly different between control and 0.3mg, 

3mg and 10mg TD139 dose groups in both BAL fluid (galectin-3, MMP1, galectin-1, 

gro-alpha) and in plasma (eotaxin, CHI3-L1, MMP8, HGF, galectin-3, PDGF-BB, 

PAI). There were also significant differences in markers of macrophage activation 

(CD163) between the groups. This is supportive of previous studies demonstrating 

galectin-3 plays an important role in IPF pathogenesis and has downstream actions on 

a number of mediators and cytokines involved in the development of IPF. Inhibition of 

galectin-3 may have the potential to reduce pulmonary fibrosis in man and following 

the results of this trial, a phase IIb trial is currently in development.  

 

Limitations of the study 

Our study has a number of limitations. Whilst our cohort of IPF patients was 

prospectively recruited as consecutive incident cases, the analyses were performed 

retrospectively. Many of the BAL and serum samples used for biomarker profiling were 

over 5 years old, and had been frozen at 80C in storage since sample processing. It is 
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uncertain how much degradation of protein and material occurs over time when samples 

are stored for such prolonged periods. Again a number of these samples will also have 

undergone a number of freeze/thaw cycles, which will also undoubtedly lead to loss of 

material and degradation of the sample. I attempted to limit the number of freeze/thaw 

cycles of samples to once or twice, but the samples were shared with a number of other 

PhD students in the laboratory, and so a few of the samples may have been 

frozen/thawed more than this. Another limitation was the Luminex Magnetic Screening 

Assays themselves. In serum, the manufacturer (R&D) recommended diluting serum 

samples to a 1:2 or 1:50 dilution. The majority of the analytes fell between the top and 

bottom values of the standard curve when utilised at the correct dilution. Samples 

outwith 10% of either the top or bottom reading were deemed outliers and were 

excluded from analysis. In BAL, it was more difficult to adjust for the total protein in 

each BAL sample. Test plates were performed with the BAL fluid volume containing 5 

and 10g of protein per well, and most analytes fell between the top and bottom values 

of the standard curve using 10g of protein, and so this was chosen going forward, 

however a number of samples and anaytes fell off the standard curve and so had to be 

excluded from analysis. If I had not been limited by time, I would have gone on to 

perform ELISAs on each of the low or high level expression analytes to obtain more 

individualised and accurate results. Another important limitation of the study is that 

almost a quarter (22%) of lavaged patients died or were deemed to frail to undergo a 

repeat procedure at 12 months, and so the truly progressive subpopulation may have 

been missed. This was slightly less of a problem in serum sampling as most patients 

managed to attend to have serum samples taken, despite clear evidence of progression 

with a >10% decline in VC on lung function testing. Our laboratory routinely records 

VC rather than FVC. In patients with restrictive lung disease, it is reasonable to assume 

that these two measures will be similar. Lastly, the prediction model for IPF progression 

has not yet been tested in a validation cohort of patient. Work to undertake this is 

currently ongoing, but unfortunately due to time limitations, the results could not be 

included in this thesis.  
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5.4      Conclusions 
 
Although the aetiology of IPF remains unknown and the pathogenesis poorly 

understood, recent advances defining clinical and pathological features of IPF have led 

to a better understanding of the molecular pathways that are abnormally activated in the 

disease. There is no animal model that reliably replicates the pathobiological changes 

seen in IPF. The most commonly used model in the study of the molecular pathways of 

pulmonary fibrosis is the bleomycin model of lung injury, however pathological 

changes seen in this model do not mirror those seen in IPF. In the bleomycin model, the 

fibrosis develops over a number of months, and is patchy and usually bronchocentric, 

whereas in IPF fibrosis occurs over a number of years, and has subpleual dominance 

and areas of fibroblastic foci144. The bleomycin lung fibrosis model has been used to 

identify mediators that have potential to cause lung fibrosis and to describe specific 

molecular mechanisms in the pathogenesis of fibrosis. However any findings in mice 

must be confirmed in translational studies in humans with fibrotic lung disease prior to 

any consideration in clinical practice144.  

 

Clinicians face multiple challenges in the management of IPF. Obtaining an accurate 

and timely diagnosis remains fundamental, however there are a distinct lack of clinical 

and molecular indicators of disease progression that can be readily measured in clinical 

practice. With the recent approval of two new drug treatments for IPF, there is also an 

absence of simple short-term measures of therapeutic response, both in terms of 

response to these new drugs, and in the context of clinical trials. The median survival 

remains very poor at 3-5 years, however the disease is hugely heterogeneic with disease 

courses ranging from slowly evolving disease over a decade, to rapid deterioration and 

death within 12 months145.   

 
The clinical variables available to predict the risk of mortality and disease progression 

in IPF are currently inadequate. Additional non-invasive and reproducible markers are 

required to improve existing risk model templates. In recent years large numbers of 

BAL and peripheral blood proteins and cytokines have been studied as potential 

biomarkers of disease progression in IPF. Biomarkers may have many different 

applications including predisposition to disease, diagnostic, prognostic, prediction of 
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response to treatment and acting as a surrogate endpoint in clinical trials, however their 

main function is to meet an unmet clinical need. Good biomarkers should have high 

sensitivity/specificity, be cost effective, non-invasive, easily reproducible and widely 

available20. There has been a wealth of evidence from centres around the world detailing 

numerous potential biomarkers and proteins of interest predictive of disease progression 

in IPF in recent years, however many of these studies reported small sample size, lacked 

the appropriate adjustments for confounding factors such as age, smoking status, sex 

and significant co-morbidity, and lacked the appropriate replication and validation 

required for consideration in clinical practice.  

 
Meta-analysis of the most commonly described potential biomarkers has shown that 

there is a clear distinction between the peripheral blood protein signature in patients 

with IPF compared to healthy control individuals. The distinction however is less clear 

cut when patients with IPF are compared to patients with other chronic lung diseases 

such as COPD, sarcoidosis and the other IIPs. A possible strategy for overcoming this 

disparity could be to utilise datasets such as the Lung Genomics Resource Consortium 

(LGRC), which contains patient demographic data and analysis of multiple chronic lung 

diseases and well as smoking and non-smoking controls, which could allow 

investigators to detect potential novel biomarkers that are disease specific20,144.   

 
In summary, the recently described outcome prediction models based on peripheral 

blood appear to hold significant promise in risk stratification in IPF. It has been 

demonstrated by multiple studies that the most accurate of models incorporate a 

combination of clinical, physiological and biological parameters, rather that utilising 

one single biomarker alone. A small number or recent studies, including my own, report 

prediction models and unique protein signatures in well- phenotyped cohorts of IPF 

patients, and show replicable results in both test and validation cohorts. This shows that 

integration of both clinical and molecular variables in predicting risk of progression in 

IPF is feasible, and could be performed in routine clinical practice. These findings may 

provide a basis for future investigation on predicting outcomes and personalised 

treatment in this heterogeneous disease. 
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Chapter 6      

     General Discussion and Conclusions 
 
The term interstitial lung disease is used to describe a group of over 200 different 

diseases affecting the lung, all of which display marked variability in clinical course, 

treatment and prognosis. Clinicians strive to differentiate patients with an identifiable 

cause such as connective tissue disease, environmental triggers, drugs, allergens and 

occupational exposures, from those without, termed the idiopathic interstitial 

pneumonias. A limited number of disease patterns occur in the lung in response to 

injury, and so the ILDs are largely characterised by varying degrees of parenchymal 

inflammation and fibrosis, not only between the different disease groups, but also 

among patients with the same disease. The last decade has witnessed significant 

changes in the field of ILD with an increasing incidence and a more complex disease 

classification. Despite significant advances, progress has been limited by a poor 

understanding of the pathological mechanisms of disease. It is largely accepted that 

aberrant wound healing occurs in response to repetitive alveolar injury, which results 

in abnormal fibroblast proliferation, differentiation and activation, leading to expansion 

of extracellular matrix with excess collagen deposition and loss of normal lung 

architecture. In their most severe forms these diseases lead to progressive loss of lung 

function, respiratory failure and death, however there is significant patient 

heterogeneity and great variability in disease progression rates. Distinguishing the 

various forms of pulmonary fibrosis is fundamental in determining correct management 

and in predicting prognosis.  

 

IPF is the commonest IIP with an incidence of approximately 5000 cases per year in the 

UK, and affecting mainly older male smokers. It is a chronic and progressive form of 

lung scarring with a median survival time worse than many cancers at 3-5 years, and no 

curative therapy. The current international consensus guideline recommends that 

around two thirds of IPF patients can be diagnosed on the basis of clinical and 

radiological (HRCT) appearances that are typical for UIP, however the remainder 

should undergo SLB to obtain a confident diagnosis. The gold standard is that all 
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patients must undergo MDT discussion and a diagnosis can only be reached after 

consideration of all clinical, radiological and histological parameters.  

 

Obtaining a confident and timely diagnosis of IPF is important for many reasons. Unlike 

the CTD-ILDs, for example systemic sclerosis, IPF does not respond to 

immunosuppressive therapies such as cyclophosphamide and rituximab, in contrast 

there is evidence that immunomodulation may worsen outcomes2,21. There is also 

evidence that steroids, a treatment used for many of the mimics of IPF, is harmful when 

used in IPF patients. With the recent NICE approval of two drugs, pirfenidone and 

nintedanib, for IPF, diagnostic accuracy and phenotyping are important components 

both for facilitating early treatment in clinical practice, and in epidemiological study of 

the natural history of the disease. We found that change in VC from presentation to 6 

months was predictive of mortality in both ‘definite’ and ‘possible’ IPF cohorts alike, 

and suggest clinicians may use clinical measures alongside a related prognostic IPF 

index (for example GAP Index) to make prognostic statements in both groups. 

Furthermore, among patients in whom SLB would be advised according to international 

guidelines, after adjusting for these IPF scores there was no difference in mortality 

among patients who did and did not have a biopsy, therefore potentially negating the 

need for an invasive procedure in this elderly population.  

 

Despite international guidelines that patients have histological confirmation of a 

diagnosis of IPF, mortality between patients diagnosed by HRCT or by biopsy was 

similar, but 30-day mortality for the SLB group was 7.5%. Advanced age is a strong 

predictor of IPF and the majority of patients in our cohort aged over 65 years with 

‘possible UIP’ HRCT appearances had UIP on biopsy. Notably there was no difference 

in mortality between patients diagnosed on HRCT or by SLB. The observation that 

around 20% of patients were deceased at 1 year, regardless of how the diagnosis was 

made is important. These patients are ‘rapid progressors’ and cannot be identified by 

HRCT or biopsy characteristics. Several prognostic scoring systems based on clinical, 

physiological, radiological and serological parameters have been reported in the 

literature to predict survival in IPF, however there is no single risk model that has been 

validated, accepted and adopted in clinical practice.  

 



245	
	

There is a limited number of observational studies describing the natural history and 

characteristics of patients with IPF outside of clinical trials. Most IPF studies have 

recruited younger patients with more preserved lung function than real world patients. 

Our data show the PANTHER and CAPACITY eligibility criteria promote this 

younger/milder phenotype. When ASCEND eligibility criteria were applied to our real 

world cohort, eligible patients were much younger, but with a much lower VC than non-

eligible patients. Only INPULSIS criteria generated eligible patients that were of a 

similar age and lung function as non-eligible patients. The generalisabilty of IPF clinical 

trial data to real world patients is important to clinicians and patients. It has been well 

documented that mortality in IPF is high (around 20% per year), however this has not 

been reflected in placebo arms or past clinical trials with mortality ranging from 2.3% 

to 7.8%. This may be explained by our observation that patients recruited to clinical 

trials in IPF tend to be younger, present fewer comorbidities, have better lung function 

and well characterised disease severity, when compared to real world IPF patients. The 

majority of our Edinburgh IPF cohort would have been excluded from recent clinical 

trials and we have shown that the outcome of non-eligible patients was different to 

eligible patients, therefore limiting the generalisability of clinical trials to our everyday 

clinical practice. By comparing the baseline characteristics and natural history of IPF 

patients deemed eligible or not eligible for recent trials, we found that the INPULSIS 

trial is more generalisable to real world IPF patients than PANTHER, CAPACITY and 

ASCEND.  

 

Reliable methods of predicting disease progression and survival are of great clinical 

value in IPF. Prior to the 2011 guideline, differential cell count in BAL was an 

important part of the diagnostic algorithm, however was removed from the guideline in 

2011. BAL has been crucial in identifying the key immune effector cells driving the 

inflammatory process in IPF, and BAL DCCs may be of additional diagnostic benefit, 

even in patients with ‘definite UIP’ HRCT appearances. It is thought that low-grade 

inflammation, oxidative cell injury and an abnormal healing process drive the 

development of UIP, and since macrophages are integral to lung tissue repair and 

homeostasis, play a central role in IPF. Previous studies have demonstrated BAL 

neutrophilia may be an important diagnostic and prognostic indicator in IPF, however 

our data does not suggest any significant predictive effects.  
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It is now accepted that macrophage polarisation phenotype is dynamic and broadly 

heterogenic depending on the local microenvironment. However there are few reports 

in the literature detailing the alveolar macrophage polarisation phenotype in IPF 

specifically. My study demonstrated a distinct AM polarisation phenotype in the IPF 

patient population with a significantly increased M2 (specifically M2a) subset. 

Furthermore, I showed that AM phenotypes can be predictive of disease progression in 

IPF with characteristic predictors of stable disease at presentation including low CD71, 

low CD206 and high CD163 AM expression. IPF patients with rapid disease 

progression had significantly increased AM expression of CD71 and CD206, and 

significantly decreased CD163 expression, survival was also significantly worse in 

patients with high AM CD71 expression. The AM phenotype predictive of disease 

progression in IPF was CD71highCD206highCD163low, mortality was significantly higher 

in this group when compared to those with a CD71lowCD206lowCD163high phenotype.        

 

It is well documented that monocytes and macrophages contribute significantly to the 

disease process in IPF. It has also been reported that expansion of novel subpopulations 

of pulmonary monocyte-like cells occurs in inflammatory lung disease, however their 

role in fibrotic lung disease is largely unknown. My study aimed to quantify and 

characterise the PMLC population in BALF cells from IPF patients. I found the 

percentage of BAL resident PMLCs was significantly higher in patients with IPF versus 

both non-fibrotic ILD and controls. In addition, the percentage of BAL resident PMLCs 

was significantly increased in IPF progressor versus non-progressor groups. Disease 

progression in IPF was associated with an increased percentage of BAL resident 

PMLCs and a decreased percentage of BAL inducible PMLCs, and a significantly 

reduced iPMLC:rPMLC ratio at presentation. Our study is clinically relevant as it 

suggests there is a distinct relationship between AM subtypes, cell-surface expression 

markers and disease progression in IPF. Future research may build upon  this to 

investigate new targets for further therapeutic strategies. PMLCs may also represent a 

novel target for future approaches as modulation of these myeloid phenotypes may be 

of therapeutic value.  

 

The drive to distinguish IPF from the other IIPs and the need to predict individual 

patient outcome has prompted a wealth of research into novel diagnostic and prognostic 

biomarkers over the last 5 years. The clinical variables available to predict the risk of 
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mortality and disease progression in IPF are currently inadequate. Additional non-

invasive and reproducible markers are required to improve existing risk model 

templates. In recent years large numbers of BAL and peripheral blood proteins have 

been studied as potential biomarkers of disease progression in IPF. It is clear that no 

single protein biomarker will have the ability to confidently predict disease progression 

with high sensitivity, specificity, PPV and NPV values in IPF, however in combination 

with clinical, physiological and radiological parameters, risk stratification can be 

improved.  

 

My study was consistent with the current literature describing serum proteins of interest 

as potential biomarkers in IPF. I found serum concentrations of MMP-1, periostin, 

osteopontin, SP-D, IP-10, MCP-1, CHI3-L1, IL-8 and CCL-18 were all significantly 

increased in patients with IPF versus controls. Furthermore, periostin, SP-D, GRO-

alpha, EGF, IFNγ, galectin-1, CHI3-L1, amphiregulin, osteopontin and HGF levels 

were all significantly higher in IPF progressors versus non-progressors. This data is all 

in keeping with recent reports in the literature. I then developed a prediction model 

combining clinical, physiological and biological variables, and found accuracy in 

predicting disease progression was highest when these parameters were used in 

combination. The top four proteins that were predictive of disease progression in the 

model were serum SP-D, GRO-alpha, RANTES and IL-8. Additional clinical and 

radiological variables identified by the model as being significantly associated with 

disease progression were volume of fibrosis on HRCT (%), percentage of lung 

periphery involved on HRCT and percentage of predicted FVC at baseline. The best 

two variables were serum SP-D level and percentage of predicted FVC, and when 

applied in combination in the model, predicted disease progression at a sensitivity of 

86.4%, specificity of 92.3%, PPV 90.5% and NPV 88.9%. My study complements a 

small number of recent studies that report prediction models and unique protein 

signatures in well-phenotyped cohorts of IPF patients, and show replicable results in 

both test and validation cohorts. This shows that integration of both clinical and 

molecular variables in predicting risk of progression in IPF is feasible, and could be 

performed in routine clinical practice. These findings may provide a basis for future 

investigation on predicting outcomes and personalised treatment in this heterogeneous 

disease.  
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