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Abstract

This thesis investigates the classification of the behaviour of multiple persons when

viewed from a video camera.Work upon a constrained case of multiple person inter-

action in the form of team games is investigated. A comparison between attempting

to model individual features using a (hierarchical dynamic model) and modelling the

team as a whole (using a support vector machine) is given. It is shown that for team

games such as handball it is preferable to model the whole team. In such instances

correct classification performance of over 80% are attained. A more general case of

interaction is then considered. Classification of interacting people in a surveillance

situation over several datasets is then investigated. We introduce a new feature set and

compare several methods with the previous best published method (Oliver 2000) and

demonstrate an improvement in performance. Classification rates of over 95% on real

video data sequences are demonstrated. An investigation into how the length of time a

sequence is observed is then performed. This results in an improved classifier (of over

2%) which uses a class dependent window size. The question of detecting pre/post and

actual fighting situations is then addressed. A hierarchical AdaBoost classifier is used

to demonstrate the ability to classify such situations. It is demonstrated that such an

approach can classify 91% of fighting situations correctly.
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Chapter 1

Introduction

Within this thesis an unanswered research question within the field of machine vision

is identified and an approach to address the problem is suggested. Specifically the open

question of how to determine and classify how people are interacting within a video

sequence is addressed. This chapter gives an introduction to the problem.

The multitude of CCTV cameras available generates a huge amount of informa-

tion for anything but an infeasible number of human operators to monitor. Most of the

information coming from such cameras depicts mundane everyday activities and situ-

ations which do not display interesting characteristics from the point of view of human

operators. Within this vast amount of information there are rare situations which are

of interest. An example of such a situation may be an attempt to break into a building

or other such criminal activity. Many situations such as these are inevitably missed as

there are simply not enough operators to interpret all of the information generated from

the cameras. Those few frames where something of interest is happening are lost in the

hundreds of thousands of frames where nothing abnormal is occurring. In such cases

it is not uncommon for incidents to be reported and then a recording of the incident

found based upon the report.

A role of computer vision within this context is to provide an automated interpre-

tation of video footage, thus presenting camera operators situations which are deemed

to be of interest in some way. This process remains an attractive proposition as there

are just not enough operators to manually interpret all the video information arriving.

Even if such a situation existed it is likely that manually interpreting many hours of

mundane footage would introduce mistakes into the process due to the sheer volume

of information. One role of computer vision in surveillance applications is therefore

to provide this automated interpretation of large voluminous data and edit out those

1
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sequences which it deems as being uninteresting. There are many possible ways in

which a scene could be termed interesting [Dee and Hogg, 2004b], within this thesis

the concentration will be upon human activity and how people interact.

1.1 Motivation

Previous work has established that most humans are very good at picking up both the

subtle nuances and more dramatic aspects of behaviour and using them to interpret

what a person is feeling or what their immediate intentions are [Baldwin and Baird,

2001]. The dynamics of group behaviour are also similarly interpreted by people. For

example, one can immediately tell the difference between a group greeting one another

and the more likely scenario of simply passing by one another. Likewise, the ability to

spot when an individual is acting suspiciously is a skill that many security staff possess.

It has been shown by Troscianko et al. [Troscianko et al., 2004] that it is possible for

both expert and non expert humans to distinguish between criminal and non-criminal

group behaviour when observing CCTV footage over a variety of situations prior to

the event occurring.

Within this thesis we investigate the identification and classification of multiple

person interactions. This thesis seeks to investigate ways in which multiple person

interactions can be identified within a video sequence. The aim is to automatically

classify interacting behaviour through a range of scenarios and situations. The over-

arching goal of this thesis is to investigate whether it is possible to classify multiply

interacting people in a range of situations as observed from a video camera.

This is currently an unresolved problem in computer vision although there has been

some previous investigation of the issue [Oliver, 2000, Hongeng and Nevatia, 2001].

We will seek to expand and improve upon previous work. A more comprehensive

review of previous work is presented in chapter 2.

Understanding of interactions involving many people will help in the automatic in-

terpretation of video sequences. By interpreting situations involving multiple people

it would be possible to automatically get a computer system to identify specific or in-

teresting situations. Potentially dangerous or violent situations, such as fighting, could

then be automatically detected. This would have significant benefits for surveillance

applications.
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1.2 Thesis Structure

First a literature review is presented in chapter 2. This review details previous work

within the field along with an identification of gaps within the current work. Chapter

3 then presents work upon team game interactions. Team game interactions provide

a simpler and more constrained problem with which we start to investigate classifica-

tion of interacting individuals. The chapter presents a simpler way to identify team

interactions than previously suggested in the literature.

Chapter 4 generalises the approach to a surveillance situation. Here the role of

time is investigated as we show results when varying the amount of frames taken into

consideration before classifying a sample. A new feature set is presented along with

a new proposed model. We demonstrate its superior performance over a number of

datasests. Finally the ability of a computer to detect pre and post fighting situations is

investigated in chapter 5. Results are then presented along with generalisation to cases

where there may be many classes of interest.

1.3 Research area and Contribution

This thesis shows it is possible to classify multiple person interactions correctly more

than 85% of the time and to do it better than the previous state of the art method as

demonstrated in [Oliver et al., 2000a]. We also show that it is possible for a computer

to identify if fighting behaviour is about to occur.

The main contributions of this thesis are:

• Comparison and demonstration of a simpler and more accurate model for learn-

ing team activities. The presented model requires no pre-defined template and is

quick to compute. It is also more accurate than the previously suggested model.

• Significant improvement in classification performance between interacting per-

sons for specific interactions when compared to the previous best method.

• Demonstration and quantification of the performance effects of frame length in

classification accuracy.

• Investigation and demonstration of detection and classification of fighting situa-

tions including pre-fighting situations.

• Demonstration of a scalable hierarchical classifier for detecting fighting behaviour.
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• Large scale classification on publicly available data thus enabling others to make

meaningful comparisons

• The creation of the BEHAVE dataset [Blunsden et al., 2007b]. This is a large

publicly available and annotated dataset.



Chapter 2

Previous Work

The main aim of this chapter is to show previous work within the domain of human

activity recognition. This thesis seeks to demonstrate how one can identify and classify

human interaction. Within this chapter previous approaches to the problem of human

behaviour recognition are reviewed. The review is used to identify gaps in current

research which subsequent chapters address.

This review addresses the areas which are relevant for the work presented in this

thesis and behaviour recognition as a whole. First previous work for representation

of moving people is given in section 2.1. The issue of modeling a persons behaviour

is looked at in section 2.2. Specific work related to modelling groups of people is

presented in section 2.3. Finally a section on tracking technology is included (section

2.4) to show that the methods presented both in the review and the main thesis are

possible with current state of the art tracking.

2.1 Representation of Moving People

This section reviews current representation technology. For the purposes of the re-

search proposed here the interest lies in determining how a person or object of interest

is to be represented. This is important as any interpretation of human behaviour (within

the context of vision) will actually be an interpretation of the representation of that per-

son.

5
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2.1.1 Human Shape Representation

Blob Models

Blob models have been used in many previous applications [Pentland, 1976, Oliver

et al., 1997, Bobick and Bolles, 1992, Kauth et al., 1995] of modeling features within

an image. The blob typically refers to the shape of the foreground features which are

identified by background removal or direct estimation of foreground features. Blobs

are typically modeled as large areas of connected foreground components. The features

of these regions are extracted and used to form an estimate of the probability density

function (PDF) of the colour [Oliver et al., 2000a, Wren et al., 1997b], or intensity

[Caporossi et al., 2004] of the foreground region. In Oliver et al. [Oliver et al., 2000a]

RGB colour space is used to form a Gaussian PDF of the colour distribution of the blob

(as do [Kang and Cho, 2004, Traver et al., 2004]), others such as the Pfinder system

[Wren et al., 1997b] use YUV colour space and Caporossi et al. [Caporossi et al.,

2004] use chrominance information derived from RGB colour.

Contour Models

A widely used approach for identification of humans and also more general objects

is through the use of active contours [Kass et al., 1988] and active shape models

[Cootes et al., 1994, 1992b,a]. Lefevre and Vincent [Lefevre and Vincent, 2004] used

a snake model for the identification of players within a football game. A more ad-

vanced version of using such snake like models is presented by Baumberg [Baumberg,

1995, Baumberg and Hogg, 1994b] who developed a tracker using active shape models

whereby the point distribution model of a person is automatically learned from training

data. Magee also demonstrated the use of a shape model for the tracking of livestock

[Magee, 2000] for the purposes of gait analysis.

Recently the use of active appearance models (AAM) which include information

about intensity information of the area enclosed by the model have been used for real

time tracking. Stegman [Stegmann, 2001] tracks a range of objects using AAM based

methods.

Part Models

A still richer description of the human form is given by those models which seek to

localise individual parts of a person . The W4 system attempts to label parts of the
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body using silhouette information [Haritaoglu et al., 2000]. Results using a simple

planar body model [Haritaoglu et al., 1998] where the human form is approximated by

a set of connected rectangles [Ju et al., 1996] are also presented.

More complex limb models are proposed by Sidenbladh and Black [Gavrila and

Davis, 1996, Kakadiaris and Metaxas, 1996], where deformable limb models are pro-

posed, see Figure 2.1. When building such 3D models the effects of perspective pro-

jection must be taken into account [Wachter and Nagel, 1999, Yamamoto, 1998], by

doing so a more accurate mapping of the model to the data is achievable. Tempo-

ral aspects of human motion have also been used to improve the model fit to the data

[Deutscher et al., 1999, Pavlovic et al., 1999, Leventon and Freeman, 1998, Sidenbladh

et al., 2000] by using probabilistic or inverse kinematic models as the person moves

throughout the scene. In [Leventon and Freeman, 1998] and [Brand, 1999] a 3D model

is estimated from a 2D stick figure which has been extracted from the image sequence,

motion was the main cue for its construction. In [Efros et al., 2003] a 2D stick figure

is again fitted to the image data, however it is estimated using a similarity metric to

previous examples rather than using geometric estimates.

(b) (c)

Figure 2.1: Some examples of geometric models fitted to the human form, (a) is adopted

from from Sidenbladh and Black [Gavrila and Davis, 1996, Kakadiaris and Metaxas,

1996] where a fully 3D model is used and fitted to the human body. (c) is from the W4

system where a simpler approximate cardboard model is used. Only the main parts of

the human are labeled using ellipses to approximate the components of a human figure

Many of these methods give a rich description of the human body which has obvi-

ous benefits for modeling the behavioral aspects of human motion. Despite the bene-

fits there are inherent problems with trying to creating 3D models from 2D data. Such

problems include but are not limited to occlusion, depth perception and kinematic sin-
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gularities [Morris and Rehg, 1998]. To counter these problems steps such as stereo

cameras [Ju et al., 1996], simplified backgrounds and specific clothing have been used

[Gavrila and Davis, 1996, Kakadiaris and Metaxas, 1996] with some success.

Learned Feature Models

Human representations have been suggested which lie somewhere between the blob

feature (see section 2.1.1) and a well defined and structured representation such as that

used by the part and contour models (sections 2.1.1 and 2.1.1). A collection of feature

points were proposed for tracking by Tomasi and Kanade [Tomasi and Kanade, 1991]

and have been subsequently used by Hannuna [Hannuna et al., 2005] for the repre-

sentation and recognition of quadruped motion. Viola and Jones [Viola and Jones,

2001] also use a point model but instead of all points being calculated based on the

same feature (as in [Tomasi and Kanade, 1991]) a bank of Haar like features at various

scales and configurations are used (see figure 2.21(a)). The features and positions are

selected via AdaBoost [Schapire, 2002] and classified using a cascaded classifier. This

method was extended to moving pedestrians where the final representation consisted

of several Haar features applied to offset images of consecutive frames. Such a rep-

resentation consists of many filter responses localised in a specific place in a image

window. Learning features was also the focus of Papageorgiou et al. [Papageorgiou

et al., 1998].

Another approach using function responses have been used particularly by [Felzen-

szwalb, 2001] who coupled PAC learning [Kearns and Vazirani, 1994] with edge re-

sponses. The Hausdorff distance (equation 2.1) metric was used to compare lines

within the selected image window. Here A and B are two finite point sets.

h(A,B) = max
a∈A

min
b∈B
||a−b|| (2.1)

Image edges are also used by Wu and Nevatia [Wu and Nevatia, 2007] who use

edge segments quantised by orientation (see figure 2.22) to represent small segments

of a human figure. The model is then built up into parts denoting the torso, legs and

head and shoulders of the person as well as considering the whole. Using structured

models was also demonstrated by Lee and Nevatia [Lee and Nevatia, 2006]. Part based

detection was investigated by Mikolajczyk et al..[Mikolajczyk et al., 2004] whose work

is similar to that of Viola and Jones as they too use a collection of outputs from filters

and use many weak classifiers to produce a strong classifier to detect a human presence.
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Mohan [Mohan et al., 2001] has also proposed a method of detecting objects based on

learned components.

Crowded scenes have provided an interesting problem in which to apply part based

models. Many of these scenes contain a high amount of occlusion and so do not pro-

vide enough of the information which can be required by global models. Leibe et al.

[Leibe et al., 2005] use a sample patch code book with a Hough matching procedure to

generate an initial hypothesis of the person. Once these matches have been established

all features are used in a global shape model whereby chamfer matching [Barrow et al.,

1977] is applied to the object as a whole.

2.1.1.1 Summary

Representation of the human form has been approached from two main angles, the

first is to derive some statistical measure of a region which is thought to represent an

object of interest. The other main approach is to try and fit a generic model to the

image data. Active appearance model based techniques fall somewhere between the

two approaches. Within the context of our specific project we decided that statistical

based descriptions are more appropriate due to the range of situations and variable

quality of the images. Such situations where there are multiple occlusions and poor

quality of video would make 3D model fitting problematic and most likely impossible

in the general case at present.

2.1.2 Human Motion Representation

Here the representation of motion is considered. Many approaches use the representa-

tions given in the previous section to form the basis of motion models.

One simple but powerful representation of objects is through the use of moments

[Hu, 1962]. These were employed by Shutler [Shutler and Nixon, 2001] who used a

temporal extension to Zernike moments [Teague, 1979] as a compact representation

of human movement, which is invariant to rotation and to an extent scaling. Whilst

having such an invariant representation seems appealing due to its obvious generalisa-

tion capabilities it is hard to tell what such a representation actually means and a less

abstract representation is often favoured. Hoey and Little [Hoey and Little, 2000] also

use a Zernike moment representation to represent flow information when classifying

facial expressions.

In Davis and Bobick [Davis and Bobick, 1997] a more direct approach was taken.
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They defined a motion energy image, which represents a localised measure of how the

object’s intensity distribution changes through time, as shown in figure 2.2. Within the

W4 system [Haritaoglu et al., 2000] a similar idea (referred to as temporal textures)

is employed to represent movement through time. This idea is the same as Davis and

Bobick except it is extended to cope with objects moving throughout the scene by

aligning the centre of the bounding boxes throughout the sequence.

Figure 2.2: Motion energy images acquired from an exercise routine, adapted from

[Davis and Bobick, 1997]

Senior [Senior, 2002] extends this approach by using the full RGB colour space and

also defines a probabilistic framework for correspondence matching between frames.

The other major novelty in Senior’s approach is through the incorporation of occlusions

into the modeling stage. If a model is partially occluded then such regions are not

included in the matching process (defined by a likelihood of occlusion measure). In this

way one is not trying to match a person with some statically or dynamically occluding

object, which would lead to a poor overall model likelihood.

(a) (b)

Figure 2.3: (a) Human movement prototypes from which the optical flow representations

(b) are calculated using motion pairs.



Chapter 2. Previous Work 11

The use of image information in this way has also been proposed by Efros et al.

[Efros et al., 2003] who stored a sequence of prototype human models based upon

optical flow (figure 2.3).

Similar work has been produced by Yilmaz et al. [Yilmaz and Shah, 2005] who

used a spatio temporal volume of extracted outlines of silhouettes from people. The

Gaussian and the mean curvature are used to calculate points or interest in the volume.

These points are then used for classification. Although the representation is robust

to 3D rotations the creation of the volume itself is heavily view dependent due to its

dependency upon silhouettes for creation of the volume. Scovanne [Scovanner and

Ali, 2007] also investigates using space time volumes but use a SIFT[Lowe, 2004] like

feature description applied to 3 dimensions. Blank et al. [Blank et al., 2005] follow a

similar path by using the Poisson equation to extract space-time features such as local

space-time salience, action dynamics, shape structure and orientation. Such features

are used with spectral clustering [Zelnik-Manor and Perona, 2004] to classify types

of action. All of the space time approaches use a similar silhouette extraction method

for construction of the space time volume. Roh [Roh et al., 2008] also take a similar

approach to gesture spotting by using silhouettes for spotting gestures in the domain

of sports.

Another approach utilising a non silhouetted space time volume and optical flow

was proposed by Ke et al. [Ke et al., 2005] who propose using optical flow taken over

a small window size for a fixed frame length to represent actions. Classification is per-

formed using a feature selection algorithm as proposed by Wu et al. [Wu et al., 2002].

The use of optical flow in [Ke et al., 2005] was shown to be superior to using intensity

features such as those introduced by Laptev and Lindeberg [Laptev and Lindeberg,

2002] within the domain of action recognition. A diagram illustrating their approach

is given in figure 2.4.

Niebles et al. Niebles et al. [2006] also propose using localised feature responses.

These features are shown in equation (2.2)

R = (I ∗g∗hev)
2 +(I ∗g∗hod)

2 (2.2)

where g(x;y;s) is the 2D Gaussian smoothing kernel, applied only along the spatial

dimensions (x,y), and hev and hod are a quadrature pair of 1D Gabor filters applied

temporally, which are defined as hev(t;τ,ω) = −cos(2πtω)e−t2/τ2
and hod(t;τ;ω) =

−sin(2πtω)e−t2/t2
. The parameter s corresponds to the spatial scale whilst t corre-

sponds temporal scale of the detector. These detectors are used to form a code book
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Figure 2.4: The top row illustrates the 3D volumetric features used in the classifiers.

The first feature calculates the volume. The other three features calculate volumetric

differences in X, Y, and time. The bottom row shows multiple features learned by the

classifier to recognize the hand wave action in a detection volume. The volume only

represents a small part of the entire image. Adapted from [Ke et al., 2005].

from which each sequence is labeled. This labeling is used with a pLSA [Hofmann,

1999] classifier on several datasets. The method shows good results compared to pre-

vious approaches from Dollar et al.[Dollar et al., 2005] and Ke et al. [Ke et al., 2005].

2.1.2.1 Summary

Motion representations try to describe how something is changing with respect to time.

Such representations are usually coarse and attempt to describe the directionality and

locality of the moving component rather than accurately preserving the underlying

model.

The approaches reviewed so far are required to have information from either var-

ious scales [Ke et al., 2005][Hofmann, 1999][Davis and Bobick, 1997] or exhaustive

viewpoints [Yilmaz and Shah, 2005, Efros et al., 2003, Intille and Bobick, 2001] in

order to be applicable in the general case. Although it is claimed that some models

can work for for multiple viewpoints [Yilmaz and Shah, 2005] this is typically only

true of the model itself (ie the 3D volume) whereas differing camera viewpoints will

cause very different models to be constructed. Several authours have attempted to

create invariant representation [Gritai et al., 2004], [Rao et al., 2003] (however the
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views displayed a high degree of similarity to one another) [Rao et al., 2003], or model

complexity was increased significantly [Sidenbladh et al., 2000]. Such a restrictions

are perhaps not as as limiting as first imagined as many surveillance camera positions

provide similar viewpoints.

Motion is important in establishing what a person is doing, for example fast mo-

tions may be unusual or characterise a certain type of behaviour. However it should be

noted that many of the methods are not translation independent. In order to be able to

recognise and classify action from differing viewpoints it will be necessary to capture

data from such viewpoints in order to model them accurately.

2.1.3 Scene Based Motion Representation

Within this section scene understanding is treated as the semantic interpretation of im-

age sequences based upon knowledge (either learned or imposed) of a scene. Typically

there is a learning phase which consists of automatically constructing a semantic model

of the scene. This model represents typical behaviour within the current scene.

One such model is that of Makris and Ellis[Makris and Ellis, 2002] who track

pedestrians as they move throughout the scene. These tracks are used to build proba-

bilistic spline representations which capture common pathways throughout the scene,

along with common variations of the pathways. Nair and Clark [Nair and Clark, 2002]

also represent common trajectories throughout the scene, however they use a HMM

representation. Again trajectory information plays a key role in Morris and Hogg [Mor-

ris and Hogg, 2000] who used trajectory information to classify unusual behaviour.

However this time the trajectory information is defined in relation to a set of landmark

points rather than an absolute position.

A similar approach is taken within the domain of traffic modeling [Grimson et al.,

1998, Galata et al., 2002, Magee, 2004, Ivanov and Bobick] where common traffic

flow throughout the scene is learned. Significant deviations from the common flows

are classified as representing anomalous behaviour.

An alternative approach is to discover those parts of the scene which display some

regularity with respect to how it is used and to concentrate upon such areas. Needham

[Needham, 2003] builds a scene model for a football game which represents the most

common areas on the playing field which players inhabit. Common positions and

directionality of players within a game is learned. Brand and Kettnaker [Brand and

Kettnaker, 2000] take a similar localisation approach, where regions within the scene
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(a) (b) (c)

Figure 2.5: (a) Shows two learned route models superimposed upon the scene. The

central line of the trajectory is the expected route, the surrounding lines are the expected

variance from the route. (b) and (c) show evaluated route which an individual has taken

throughout the scene. (b) shows a route which is evaluated as typical, where as (c)

shows a route which is classified as being atypical. The red circle illustrates where the

route differs significantly from those captured by the model. Adapted from [Makris and

Ellis, 2002]

are learned along with typical trajectories through that region. To classify movement

regions are modeled using a modified entropic HMM [Dietterich, 2002].

In Dee and Hogg [Dee and Hogg, 2004a,b] a measure of “interestingness” is pro-

posed. Within this paper the validity of defining atypical behaviour as interesting

behaviour, is questioned. In this case interest is defined as significant deviation from a

goal or sub goal. These goals and sub goals characterise what could be expected as a

person moves throughout the scene rather than just representing what people typically

do.

2.1.3.1 Summary

By representing the scene in this way these models are only valid for the current scene.

If the cameras attention is moved elsewhere then the scene semantics must be re-

learned. This is of course possible but it will take time to re-learn the scene semantics

and so they are not applicable if the camera is constantly moved (unless this is com-

pensated for) or if one wishes to identify common behaviours in a scene independent

way.

2.2 Behaviour Modeling

One of the major aims of a computer vision surveillance system is to allow the auto-

matic semantic interpretation of the video sequences. Previous sections presented ideas
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which allow representations of important image features throughout a sequence. This

section presents a review of the interpretation of those features within the sequence. It

is divided into two main sections, pre-defined behaviour and learned behaviours.

One can interpret pre-defined behaviours as those which an expert has defined situ-

ations of interest from well known patterns and behaviours, such as tactics in a football

game. These situations are then to be automatically identified by the computer when

they appear in the video sequence.

The definition and representation of such models has been made explicit by the

designers of the system, although the behaviours which they represent may of course

be very general. When the behaviours are learned, it is meant that their representation

is automatically encoded within the parameters and structure of a model. In this case

a set of manually selected video sequences showing the behaviour of interest is usu-

ally given to the computer and the representation of such a situation is created by the

system.

2.2.1 Manually Defined Behaviours

Within the general A.I. community there has been much previous work upon trying to

form an automatic understanding of many situations and behaviours. One of the earli-

est attempts to provide an interpretation of situations is with Minsky’s frames [Minsky,

1975] which presented a framework for interpreting situations that an artificial agent

may encounter. Other related approaches, such as scripts [Schank and Abelson, 1977]

and schema’s [Bobrow, 1977] have been proposed which seek to describe various sit-

uations in a compact linguistic format.

Such a high level approach is pursued by Crowley and Reignier [Crowley and

Reignier, 2003] who describe a generic software processing model for the interpre-

tation of context when observing human activities. Some parts of this theoretical

framework have been implemented in the “Context Toolkit” as proposed by Salber

et al.[Salber et al., 1999].

Much research has been centred upon the idea of representing an observed sce-

nario through a compact description. In particular much work has been focused upon

the automatic recognition of activities based upon a pre-specified template of specific

behaviour. Before such templates are be applied there is usually a tracking stage where

persons or objects of interest are applied. There are frequently zones or areas of in-

terest which are marked on screen and combined with the tracker it is possible to tell
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(a) (b)

Figure 2.6: Zones of interest defined within the image. For image (a) the zone of interest

is defined around the barriers where a three dimensional representation of the barrier

is given (in yellow). Here a person is jumping over the barrier which is something the

system looks for, and on this occasion is flagged. Whilst in (b) the space in front of the

exit ( shown in red) is defined as a zone of interest. Here the system correctly detects

that there is indeed a potential blocking event being caused although it is not clear who

they are blocking (as there are no passengers leaving the station at this time). Adapted

from [Cupillard et al., 2004].

where a person is and whether they are in a specific region of the scene. Figure 2.6

gives an example of how a zone of interest is created and used.

In [Rota and Thonnat, 2000] Rota and Thonnat propose a declarative representation

of activities defined as a set of spatio-temporal and logic constraints for recognising

activities. In Gerber, Nagel and Schreiber [Gerber and Schreiber, 2000] fuzzy logic

was used to recognise pre-specified activities within the scene over a short time period.

Van Vu [Van Vu et al., 2003] also define behaviour in a similar way by using pre-

defined scenario model where the actors, sub-scenarios and constraints are used to

form templates. Within the work they propose a method where only a limited subset

of the possible transitions from one state to another are considered.

The ADVISOR system [Naylor and Attwood, 2003] is a large scale visual surveil-

lance system which uses a pre-specified scenario to identify behaviours of interest.

The behaviours are not defined linguistically, as in the case of [Van Vu et al., 2003]

but are realised as a finite state machine (FSM) [Gibson, 1999]. Several behaviours

are demonstrated within the system, such as fighting, vandalism, overcrowding and

barrier jumping [Cupillard et al., 2004] (figure 2.6and 2.7). Datta et al. [Datta et al.,

2002] also specifically identify criminal or hazardous behaviour within the observed
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sequence although they use a less flexible template approach.

(a) (b)

Figure 2.7: The FSM represents those specific states which occur within the activity of

interest and the allowable transitions between such states. This example is used for

the detection of pedestrians blocking an area which has been defined as being a zone

of interest within the visual scene. (a) Finite State Machine representing blocking of a

zone of interest, the states are supplied by interpreting the information given as output

by the vision component of the system. (b) tree, figures from [Cupillard et al., 2004]

Using a FSM representation (as in [Cupillard et al., 2004]) it is possible to define

simple behaviour templates which can consist of individuals or groups displaying a

relatively simple sequence of state transitions. For situations involving many inter-

acting individuals a tree representation is used to represent the behaviour of interest.

This tree is composed of sub-sequences within the overall behaviour. This method

is based upon the previous work of [Van Vu et al., 2003] who described a method to

match pre-defined temporal scenario descriptions to observed features in near linear

time complexity. To recognise the situation where people are fighting several individ-

ual sub-sequences are defined (such as lying on floor, high group velocity) in a tree

structure (see figure 2.7 (b)). When there are more of these sub-activities recognised

the time threshold for the duration of events decreases. When more sub-activities are

concurrently detected they do not have to have as long a duration to be identified as

performing a specific behaviour.

A pre-defined representation is also used by Datta [Datta et al., 2002] who specif-

ically detects instances of fighting between two people. They use a predefined con-

strained sequence of events between two interacting individuals from an extracted

video stream. Events detected are the raising of an arm, the recoil motion of a per-

son’s head and the proximity of one person to another. Such a recoil measure requires

the localisation of a person’s head within the scene, whereas Cupillard et al. [Cupil-

lard et al., 2004] use coarser measures such as velocity change and splitting of tracked

groups. Pre-defined behaviour is also the focus of Ryoo and Aggarwal work in [Ryoo
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and Aggarwal, 2006a] and [Ryoo and Aggarwal, 2006b] where temporal information

is included within a scripting framework for the detection of two person interactions.

This method was later extended to also include interactions with objects [Ryoo and

Aggarwal, 2007]. The work of Ryoo and Aggarwal required the accurate partition-

ing of a human to determine some of the lower level behaviour which needed to be

detected in order for the overall sequence to be correctly recognised.

Methods requiring a detailed knowledge of the human body have been shown to be

useful when classifying interactions. The work of Park, first with Aggerwal [Park and

Aggarwal, 2004] then later with Trivedi [Park and Trivedi, 2007] proposes a system for

classifying two person interactions. Each body part is recognised with both a ellipse

and a convex hull, with the ellipse model giving a greater degree of detail. These parts

are estimated using a Bayesian network (as shown in figure 2.8). The estimated parts

are then used as input into a dynamic Bayesian network for classification of the actual

interaction.

Intille and Bobick [Intille and Bobick, 1999] also represent scenarios with a tem-

poral element. Their representation is goal directed where a pre-defined and pre-

parameterised Bayesian network is updated to infer the likelihood of a particular sce-

nario occurring based upon the observable evidence. Each node has a simple yes/no

state along with a label indicating whether the state has actually been observed or if

it was thought to have been observed. Each of these networks are applied to the ob-

ject(s) in question and provides a likelihood that the observed evidence supports the

proposition that the object in question is attempting to reach this goal.

Perse et al. [Perse et al., 2006] take a similar template based approach but this time

in the domain of basketball, squash and tennis. Such templates are pre-defined by an

expert (normally a sports coach) and refer to a specific pattern of people, movement

and ball passing over a temporal window.

In more recent work [Perse et al., 2007] such templates have been extended to

incorporate a Bayesian framework. The authors also used a feature detector to evaluate

things such as fit to line and screening (where one player blocks another). An example

of such an activity network is given in figure 2.9. The figure represents a “double

screen play“ where two players screen two of the opposition players whilst the ball

is passed. The bottom layer represents the temporal relations between the elements

and the arrows represent a dependency. A model’s probability is calculated using an

inference algorithm and the class of the model giving highest probability is taken to be

class of the current action.
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(a)

(b)

Figure 2.8: (a) Pointing sequence the left image shows the original captured video

whilst the image on the right shows the segmented image. Different colours show how

the body parts of the two individuals have been segmented. (b) The lower-left panel

shows a tree structure that represents individual body part regions of a person. The

lower-right panel shows a Bayesian network to estimate the body poses in each frame.

The upper-left panel shows a sequence represented by the concatenation of two tree

structures for two interacting persons at each frame. The upper right panel shows a

dynamic Bayesian network, which recognizes the two-person interactions. Adapted

from [Park and Aggarwal, 2004].
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Figure 2.9: Example for the Bayesian network for the Double screen activity. Nodes rep-

resent the variables and the arrows represent probabilistic relations between variables.

Adapted from [Perse et al., 2007]

In a related approach Shi et al. [Shi et al., 2004] propose a sequential representation

of temporal actions. The network is represented as a Bayesian network with parent

nodes representing a previous step in the sequence (see figure 2.10). Each node has an

associated duration model realised as a Gaussian distribution.

The duration model represents the likelihood of the node being active once it has

been activated (ie once the state has been reached). Due to the potentially large state

space a condensation based probability propagation method is presented (d-condensation).

The hypotheses which are considered by the d-condensation algorithm are constrained

to only come from the set of reachable states (from the current state(s)). This step helps

to avoid problems where many hypotheses will have similar probabilities, as has been

previously commented upon [Arulampalam et al., 2002]. This model can be thought

of as a sequential, probabilistic FSM with an explicit duration model.

Figure 2.10: Propositional network for performing a glucose calibration task. Each state

is represented as a box with the directional arrows showing the allowable subsequent

states from that state. Each state has a duration model associated with it. Adapted

from [Shi et al., 2004]
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2.2.2 Learned Behaviour

In contrast to hand constructed models for classifying an action sequence, learned

methods seek to automatically build such a representation. Here the action sequences

are learned and represented automatically from data rather than being defined by an

external entity.

Automatic learning of behaviour between two people was proposed by Galata,

Johnson and Hogg [Galata et al., 2001, 2002], who build variable length models of

human behaviour. In order to derive a tractable representation of the state space gener-

ated by a person’s actions a prototyping approach [Johnson and Hogg, 1996] is used.

Action sequences are represented as a sequence of finite vector prototypes which can

be automatically learned from training data. Vector quantisation has also been em-

ployed by [Brand and Kettnaker, 2000, Oliver et al., 2000a, Kadir et al., 2004] for the

purposes of generating a discrete representation of a continuous state space.

A variable length Markov model (VLMM) [Ron et al., 1996, Guyon and Pereira,

1996] was used by Galata et al. [Galata et al., 2002, 2001] to represent and predict

observed behaviour. A string of tokens, w, representing previous states, are used to

predict the next token a′ according to the estimate P̂(a′|w) (where the hat P̂ represents

an estimate) of P(a′|w). The Kullback-Leibler (KL) divergence [Kullback and Leibler,

1951] (shown in equation 2.3) is used to measure the difference in distributions to

determine if a longer memory should be used to potentially improve the estimate. If

this measure exceeds a manually set threshold (ε) then the longer memory (aw) is used,

otherwise the shorter memory is considered sufficient.

KL(aw,w) = P̂(aw)∑
a′

P̂(a′|aw) log
P̂(a′|aw)
P̂(a′|w)

(2.3)

Here KL(aw,w) refers to the KL divergence (also known as cross entropy), a is

the current token, a′ is the next token and w is the memory, aw refers to the longer

memory.

The modeling of the actual behaviour of a person is done by constructing a set

of key prototypes. Such prototypes are established by clustering the extracted human

point models, as shown in Figure 2.11(b). Cluster centres are then used to form action

sequence templates. This stage is necessary so that a variable length Markov model

(VLMM) can represent actions in a sufficiently abstract way to recognise high level

behaviour. These templates form the alphabet which is used by the VLMM. This is

illustrated in Figure 2.11.
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(a)

(b)

Figure 2.11: (a) Illustration of the hierarchical model used [Johnson et al., 1998] show-

ing the states of the PFSA corresponding to the memories of the VLMM. Three al-

ternative templates for a movement between k2 and k3 are also given. (b) Predictive

behaviour for the learned model.
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Figure 2.12: Learned primitive interactions – traffic domain example. The two dots

represent pairs of close vehicles (larger dot being the reference vehicle). The arrows

show their direction of movement. These patterns represent typical “midpoints” as result

of clustering the input data into B different conceptual “regions”. Adapted from [Galata

et al., 2002]

Johnson et al. [Johnson et al., 1998] use a VLMM to generate virtual interactions.

Computer generated models are learned which can automatically recognise types of

behaviour exhibited by a person and respond appropriately. This is demonstrated in

the form of a handshake sequence between a person and a synthetic agent. VLMM

have also been used for the automatic modeling of traffic behaviour [Johnson et al.,

1998]. The VLMM was also used to model interactions between vehicles on a section

of road. A discrete set of primitives is learned, representing the interactions of the two

vehicles with the representative set obtained through clustering (see Figure 2.12). The

temporal dependencies in the behaviour of the interacting vehicles are then learned

using the VLMM model in a similar way to [Johnson et al., 1998].

The idea of using feature space prototypes was investigated in Blunsden et al.

[Blunsden et al., 2007a] who use a sliding window in feature space to compare with

the correct time window. The Hausdorff distance is used for comparison of the two

feature trajectories over a fixed time window.

Hidden Markov models [Rabiner, 1990] have been used in modelling temporal

problems within the vision community by several authours [Oliver et al., 1998, Brand

and Kettnaker, 2000]. The observation at time t is defined as yt . The parameters of the

model are given by λ = (Π,A,B) and are determined by the expectation maximisation

(EM) algorithm as described by [Dellaert, 2002]. The prior distribution ∏ represents
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the prior probability of each state πi = P(x = i). The hidden state to hidden state

transition matrix is given by A. This represents the probability P(xt = i|xt−1 = j).

Each entry in the matrix B represents the emission probability P(y|x = j) of making

observation yt when in state j. To model continuous input a continuous model such as

a mixture of Gaussians, [Duda et al., 2000] can be used.

Representation through a sufficient level of abstractness is investigated in Bui,

Venkatesh and West [Bui et al., 2002] who proposed a multiple layered abstract hidden

Markov model (AHMM). They are not the first people to propose using various HMM

inspired representations to represent the level of abstractness. Oliver, Horvitz and Garg

[Oliver et al., 2002] used a layered bank of HMMs to encode increasingly abstract

concepts when modeling human activity within an office situation. Bui, Venkatesh

and West’s approach consists of using various HMM models in a connected layered

approach (cf Oliver et al’s approach was not connected) where higher layers represent

a more abstract (coarse) description of the concept. The architecture of such a model

is given in figure 2.13.

This architecture is modeled so as to represent a process which can be decomposed

into various sub-goals. This has an advantage over using a standard HMM representa-

tion where invalid transitions are permitted. If one were to imagine a simple printing

task, there are sub goals which need to be completed, such as, write a document, send

document to printer and collect document from printer. Knowledge that the task ’send

document’ has been completed would imply the next step is to attempt collect it which

would guide future behaviour. This goal directed behaviour is a similar idea to that

proposed by Intille and Bobick [Intille and Bobick, 1999], as described in the previous

section.

This idea is further expanded in [Nguyen et al., 2003] where a memory component

is added to the model. This step allows the model to store a sub-goal sequence which

it was previously following. In doing so more complex behaviours can be represented

by, for example reverting back to an old sequence, or knowing that the current sub-

goal sequence has been tried so try something else. Having a memory component thus

allows the representation of (slightly) more complex behaviours.

The ideas proposed by Galata et al. [Galata et al., 2001, 2002, Johnson et al.,

1998] and Nguyen, Bui, Venkatesh and West [Bui et al., 2002, Nguyen et al., 2003]

have concentrated upon modeling the behaviour of a single person. In Galata et al.

there is interaction with another human but this was represented as a learned response

to a person’s actions. In Oliver et al. [Oliver et al., 2000a, 2002, Oliver, 2000] the
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Figure 2.13: The abstract hidden Markov model (AHMM). Higher up in the chains rep-

resent more abstract concepts. Within this particular model the highest level is the goal,

in this example the goal is to print a document. Lower levels represent more specific

items such as what the subject is currently doing, eg sitting, walking, at computer. Note

also the specific inclusion of the goal achievement node forming a buffer between the

state and goal layers.

interaction between people is specifically represented and modeled. Within this work

both a HMM [Rabiner, 1990] and a coupled HMM (CHMM)[Brand, 1996a] are used

to represent the interactions between individuals. Here only the CHMM is reviewed as

it produced far superior results in conducted experiments.

The CHMM model, as presented by Oliver et al. [Oliver et al., 2000a] and (sepa-

rately) Brand [Brand, 1996b] consist of two interacting hidden Markov models where

the hidden node of each chain is connected to the hidden node of the other chain(s) at

the next time-step. The three chain version of this model is illustrated in figure 2.14.

For cases where there are more than two interacting chains approximation techniques

are needed [Jordan et al., 1999]. When there are only two interacting chains exact

inference may be computed [Brand, 1996a, Saul and Jordan, 1995].

Oliver et al. [Oliver et al., 2000a] use a set of video sequences, which exhibit

pre-defined behaviours are used as input to the model. From this visual input the

magnitude of velocity of each individual (vi =
√

ẋ2
i + ẏ2

i , i = {1,2}), the change in

distance between two people ( ˙d1,2) and the degree of alignment between two people

(sign(v1.v2)) are used as features. Image features were extracted using background

subtraction and representing people as simple blob models. It should be noted that the

input data is identical for each chain except for the velocity which is unique to each

individual.
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Howard and Jebara [Howard and Jebara, 2004] use a hierarchical tree architecture

to aggregate several person’s trajectories (again within the domain of American foot-

ball) into a Markov process describing the team activity. Although they only present

limited results the approach presents a plausible interpretation of the structure within

the game. Each player is modeled, then the team, then the game as a whole. Others

such as Zhang et al. [Zhang et al., 2000] have also used an aggregating approach for

group action clustering in meetings. However in this instance a hierarchical architec-

ture is not as explicit.

One of the shortcomings of a hidden Markov model approach is the lack of an

explicit duration model, this can be problematic especially with regard to its geometric

distribution. Such a shortcoming has been highlighted by Tweed et al. [Tweed et al.,

2005] who proposed using a hidden semi Markov model to model the duration of

events. Du et al. [Du et al., 2006] also address the issue of modeling the varying

length of time an activity can take. They apply a hierarchical duration-state dynamic

Bayesian network (HDS-DBN) to the problem of two person interactions. The features

are divided into local and global features before being used within the HDS-DBN

model.

2.2.3 Modeling Interaction Dynamics

Within this section the case where there may be multiple interactions is considered.

There are significant computational challenges when an arbitrary number of links or

interactions are introduced, each of which may or may not shape the future actions of

other processes. Here a review of some of the challenges and potential solutions when

using such representation are identified.

When modeling an arbitrary number of potentially interacting people a C chain

CHMM is the natural extension (where C is the number of chains in the model), such

a model is shown in figure 2.14 (right) along with a standard HMM (left) for compari-

son. Xiang and Gong [Gong and Xiang, 2003b,a] have followed this approach, where

each Markov chain within the model represents an event type (eg truck moving, cargo

unloading). The specific domain of interest is in modeling cargo loading/unloading sit-

uations at airports. A model set consisting of all possible couplings (O(C2)) between

the chains is created.

Each potential model has its parameters trained by an Expectation Maximisation

(EM) [Dellaert, 2002, Minka, 1998] algorithm. Models are then evaluated using a
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Figure 2.14: The HMM (left) and the CHMM (right), visible nodes are shaded, hidden

nodes are not. Note that each chain within a CHMM is in itself a fully specified HMM

model with its own observations and state transition parameters. How these parame-

ters are updated distinguish such coupled models from being a collection of individual

HMM’s

information theoretic metric, in this case the Bayesian Information Criterion [Schwarz,

1978] or Bayesian Dirichlet score (BDe) [Heckerman et al., 1995] to measure the fit

of the data upon the trained model. A penalising term to discourage overly complex

models is also inherent within both metrics.

The model with the best score is chosen to represent the situation, this method is

illustrated in figure 2.16. Using such an evaluation scheme the chosen model structure

successfully classified more situations correctly compared to a fully coupled CHMM

model. This situation can be explained by the learned model structure accurately rep-

resenting the state transition diagram of the sequence (shown in figure 2.15 (b)). This

structure forms a constraint over the representable form of the posterior distribution

so that it is closely related to the actual state sequence. When using a fully coupled

CHMM it is likely that the inherent freedom in a fully coupled CHMM means that

spurious features such as noise are learned and represented. This can be confirmed by

looking at the presented error rates where a fully coupled CHMM has a recognition

rate of around 60% compared to 90% for a sparsely connected model.

Whilst using such an approach would allow the modeling of an arbitrary number of

interactions in a single framework, (which was desirable for the purposes it was used

in) there are a number of problems inherent in such an approach. When learning a

complete model in this way interactions are characterized by the presence or absence
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(a)

(b)

Figure 2.15: (a) The airport loading task which Xiang and Gong have model. Above the

sequence shows the visual input to the classifier. (b) The actual task being modeled

represented as a state transition diagram. This diagram was manually constructed.

Figures are adapted from [Gong and Xiang, 2003b].

of links from one process to another. Additionally the actual influence that one chain

has upon another is embedded in the parameters of the state transition matrices of

each chain. There is no explicit representation of interaction other than a presence or

absence of links within the model.

This hard yes/no threshold does not integrate well with the Bayesian approach

where the ability to deal with uncertainty remains one of its key contributions. The

other major drawback is that each model has to be evaluated separately meaning that

there are (assuming all possible couplings) O(C2) potential couplings to train and eval-

uate. The authors also do not provide details of the learning algorithm used to train

such models.

Using a standard exact EM algorithm the learning algorithm for CHMM’s requires

the estimation of O(T NC)) parameters per chain (as given in [Brand, 1996b]). How-

ever Brand [Brand, 1996b] has shown that it is possible to approximate this by dynamic

programming using a algorithm of O(T (CN2)). Unfortunately this is only realistically

possible for a small (he states 4) number of chains due to the exponentially smaller

state space being sampled as more chains are added. Other approaches such as dec-

imation [Saul and Jordan, 1995] have been suggested, although such a technique is
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Figure 2.16: Evaluation scheme used in [Gong and Xiang, 2003b,a]. Each model is

trained with the data and then a score is generated from an information measure (see

text) for each model model architecture. The best scoring model is the one which is

chosen to represent the situation.

only possible for a limited class of graph structures. Another approach taken by some

authors is to use Monte Carlo methods [MacKay, 1998] to sample the state space and

generate good estimates of the model’s statistics.

Kwon and Murphy [Kwon and Murphy, 2000] use domain knowledge to restrict

couplings so that only a subset of possible couplings are made. Others, such as Tian

et al. [Tian et al., 2003], Choudhury et al. [Choudhury and Pentland, 2004, Choud-

hury et al., 2003, Basu and Choudhury, 2004, Basu et al., 2001] and Zhong and Ghosh

[Zhong and Ghosh, 2001a,b] approximate the joint distribution when computing the

posterior distribution. Saul and Jordon proposed a tractable approximation for the task

of modeling an n-order Markov model [Saul and Jordan, 1999]. This approximation

can be modified slightly so that it represents an C-chain coupled model. This approxi-

mation is shown in equation 2.4. It can be seen that the posterior can now be calculated

as a weighted sum rather than requiring the full joint distribution.

P(Sc
t |S1

t−1, ..,S
C
t−1) =

C

∑
c′=1

ψc,c′P(Sc
t |Sc′

t−1) (2.4)

The coupling strength from chain c′ to c is given by ψc,c′ . There is a constraint

upon the influence parameter in that ∑
C
c′=1 ψc,c′ = 1.

Such an approach is taken in Choudhury et al. [Choudhury and Pentland, 2004,

Choudhury et al., 2003, Basu and Choudhury, 2004, Basu et al., 2001] where each
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individual is represented as a separate HMM model. This method is an extension of

that proposed by Asavathiratham [Asavathiratham, 1996] for representing influences

between interacting Markov chains. Here HMM models are used in place of Markov

chains and the influence parameter is learned rather than a-priori fixed. A debating

game is used for testing the model where speech cues provide the input to the model.

Both the HMM parameters and the overall influence are automatically updated

during the learning stage. Due to the use of a HMM the hidden state sequences are

revealed using a Viterbi decoding [Forney, 1973] and then the re-estimation of the

influence between people is computed. This step is necessary so that the model rep-

resents a coupling at the hidden layer rather than trying to model a coupling at the

observation layer. They effectively make the “hidden” parameters “visible”. Other

parameters of the HMM are updated using the Baum-Welch algorithm [Baum, 1969].

One of the disadvantages of such an approach is that a Viterbi decoding can in-

troduce inaccuracies into the learning phase and that it is replacing a probabilistic

measure of the hidden state with a definite state, which is not always appropriate. In

Zhong and Ghosh [Zhong and Ghosh, 2001a,b] the interaction is modeled directly at

the hidden layer using a modified forward backward algorithm. As the HMM’s are

coupled together the forward and backward parameters are also modified to represent

this situation (equations 2.5-2.7).
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The extended forward backward variable αc
t ( j) is defined for state j for the cth

chain at the tth timestep. The prior distribution is given by πc
j with the hidden to ob-

served probability probability being given by bc
j. The number of chains is represented

by Nc. The indicator function dc,c′ is set to one if there is a link between chain c and

c′ or zero otherwise. Tractable learning within such a model is performed using a EM

algorithm which is discussed in [Zhong and Ghosh, 2001a]. The domain of airline

loading/unloading has also been researched by Vaswani et al. [Vaswani et al., 2003]

who used a particle filter to model the normal behaviour of passengers walking to and

from a plane.
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In Tian et al. [Tian et al., 2003] a gradient based version of this algorithm is

presented. It is suggested that such a gradient based method will give smoother on-line

learning in the coupled case in much the same way that Baldi and Chauvin [Baldi and

Chauvin, 1994] showed for the standard HMM. EM learning can give large jumps in

parameter space, whilst gradient based equivalents have been shown to give smoother

changes in the learning parameters. Here the influence model is applied to discover

influences within customer data for a marketing application. Results are presented

and prove comparable to those of the self mapping described by Zhong and Ghosh

[Zhong and Ghosh, 2001a] on large scale datasets. There are no results presented

which give proof of the gradient approach having smoother on-line learning in this

model. However the rationale for this assumption is based upon the work of Baldi and

Chauvin’s [Baldi and Chauvin, 1994] findings for a single HMM.

Other authors have attempted to extend the HMM to incorporate multiple inter-

acting agents. Lui and Chua [Liu and Chua, 2006] modified a multiple input HMM

by assigning a role parameter to each input. The role a person plays, such as a vic-

tim or perpetrator of a mugging is assigned while the inference stage is occurring.

This makes it possible to handle three person interactions where the roles are different

within that interaction. Unfortunately it requires scenarios where exactly three people

are interacting as both training and testing sequences.

2.2.3.1 Structure Learning

An alternative approach taken is to learn the complete model structure from the data

alone. Several authors have proposed such approaches[Friedman et al., 1998, Fried-

man and Goldszmidt, 1996, Koivisto and Sood, 2004, Heckerman et al., 1995]. Al-

though this work has not been formally applied to vision research it has been applied

in other domains (specifically finance and simulation). Friedman introduced the struc-

tural expectation maximisation (SEM) algorithm [Friedman et al., 1998, Friedman and

Goldszmidt, 1996] for learning Bayesian network structure. The SEM algorithm in-

terleaves the structure discovery and parameter estimation step of model learning. The

automatic determination of structure allows one to see the relationships between the

variables in the data. In the case of human interaction modeling this would repre-

sent the interactions between people. However such modes currently represent static

Bayesian networks and so may not best represent continuously changing data. One

possible use for structure discovery would be for learning an action sequence in much

the same way as Cupillard et al. [Cupillard et al., 2004] used FSM’s to represent action
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sequences.

In related work Kubica et al [Kubica et al., 2003a,b] seek to establish most likely

groupings based upon link data. Such an approach allows multiple interacting individ-

uals to be grouped together for further analysis. By identifying groups present within

an image (his was not done in this case) the amount of data which requires processing

could be reduced, as only properties of the group need be considered. However there

has been no specific application of such an approach to vision problems.

2.2.3.2 Applicability to our Problem

Of these structure models a CHMM structure seems the most appropriate for the task

of modeling interacting people. By using a causal model where influence is directly

represented is appropriate for modeling interactions. Other approaches to structure

learning such as SEM and group learning assume that the structure is fixed throughout

all data samples. This could be modified to incorporate a time dimension but would

increase the computation cost. Using a CHMM approach models the situation to be

represented in the most natural way.

2.3 Groups

Methods such as those outlined above in section 2.2.3 require the group size to be deter-

mined apriori. Within the context of a general surveillance system this is an unrealistic

assumption. In [Khan and Shah, 2005] Khan and Shah propose a way of recognis-

ing groups of interacting people based upon the rigidity of their formation. Individuals

within the group are tracked by finding their heads and mid points (thus giving 2 points

per tracked person). These tracks are used to form a 3D shape describing the structure

of the group. A rigid shape such as this is present in structured groups such as people

marching in a parade or convoys. As such the method works well when identifying

rigid group activities and is able to distinguish when a non-rigid event is occurring.

Khan and Shah’s method can deal with regular and rigid group patterns where the

distance is constant and regular (subject to some small variation). However this is a

restricted class of group behaviour. Within surveillance video a much richer class of

group interactions is required to be modeled and identified.

Hong and Nevatia [Hongeng and Nevatia, 2001] build up a representation from

a collection of lower level features rather than enforcing a global model. The event
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Figure 2.17: Rigid events (top row), give a distinctive rigid shape that is consistent

throughout the observed frames. The lower row shows a random crowd. Adapted from

[Khan and Shah, 2005]

detection is completed by a hierarchy of features derived from a blob tracker. This

hierarchy can be seen in figure 2.18.

Events are represented by finite state automata such as those shown at the top of

the hierarchy of figure 2.18. A probabilistic evaluation of such events is used, mainly

due to the uncertainty within the system. The probability that the complete automation

state sequence of a multiple state complex event (MS) occurs within the most likely

state transition timing given the sequence observations O :

P(MS∗ |O) = max
∀(t1,..,tN)

P
(
S1(t1,t2−1)S2(t2,t3−1) · · ·SN(tN ,tN−1)|O

)
(2.8)

Within equation (2.8) the term ti refers to the time that the transition to state i from

state i− 1 occurs and Si(ti,ti+1−1) means that scenario i occurs occurs between ti and

ti+1−1.

A specific ontology was derived by Hakeen and Shah [Hakeem and Shah, 2004] for

the classification of meetings. This was later extended in [Hakeem and Shah, 2007]

to learn, the structure of group interactions. The actual detection of lower level events

such as meets, moves, stops etc is not detailed (only that there is some function which

can detect this). In order to learn the event structure a sub event dependency graph

(shown in figure 2.19 ) is created which depicts the conditional dependency between

sub events. These sub events are then clustered using spectral clustering under the

assumption that events of correlated sub events have high intra clustering weights and
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Figure 2.18: Hierarchy of a ’converse’ event. Simpler features are combined to form

higher level features which enable recognition of the whole event. Adapted from [Hon-

geng and Nevatia, 2001].
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Figure 2.19: Partial event correlation graph for the sample video of voting events. The

sub-events are the vertexes, and the conditional probabilities between sub-events are

represented by the weights on the hyperarcs. Note that a single example of hyperarcs

with cardinality of 3 and 4 are shown respectively in green and red, so as to keep the

figure comprehensible. Also, the circled number on the hyperarc represents the order

index in Pi, e.g. the B-arc of cardinality 4 represents P(stops|moves,lowers,raises).

Adapted from [Hakeem and Shah, 2004]

low inter cluster weights. The method effectively builds up a representation of a more

complex event using common sub events and the relations between them.

Hosie et al. [Hosie et al., 1998] also take a bottom up approach and use pair

primitives (such as converge/diverge) between two people to build up a set of rules

which define an interacting group. These rules are pre-scripted and define what a

group is. The system can cope with people leaving and joining a group with no set

limit on group size. Unfortunately the data upon which the system was tested is limited

although the rules may well of applied for a larger test corpus.

2.4 Tracking

Here a section on tracking is included with the intended purpose of showing that track-

ing technology is available and it is reasonable to assume that it can provide tracks

which will enable behaviour detection to take place. Tracking is not the main objec-

tive of this thesis, however it is important to show that it is sufficiently developed to
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enable behaviour recognition to take place. The purpose of a tracker is to locate an

object of interest in every frame and keep a consistent label for the object throughout

the video sequence. There may be many objects within a scene and it is a tracker’s job

to accurately record the positions of all such objects. Trackers may be responsible for

identification of the objects as well as keeping track of them. Here we concentrate on

tracking using a single video camera covering a scene. Other approaches to tracking

involve using multiple cameras [Batista, 2004, Fleuret et al., 2007] or specialist 3D

scanning equipment [Cui et al., 2006].

2.4.1 Object Identification

Background Modeling

Many tracking techniques rely on the removal of the background in order to identify the

object of interest. The aim is to accurately model a background so that it can be elimi-

nated from the image leaving only those objects of interest in the image. The question

of the correct or optimal colour space to perform such background operations has been

investigated by several authors. One of the most commonly used colour spaces is RGB

(red, green, blue). It has been empirically shown by Paschos [Paschos, 2001] that the

differences in the RGB colour space do not correspond to differences as perceived by

humans. Another aspect of the RGB colour space is that it is highly correlated. Colour

spaces such as LUV (Luminance, with uv being the chromaticity coordinates of a spec-

ified white point) are perceptually uniform color spaces, while HSV (Hue, Saturation,

Value) is an approximately uniform color space. A problem with these colour spaces

is that they are more sensitive to noise than RGB [Song et al., 1996], for this reason

there is no clear best colour space in which to model the background.

Image differencing

One of the simplest ways to remove the background is to have a background image,

which contains no objects of interest. The difference between this image and each

subsequent image is then calculated at every pixel location. If the difference is greater

than a threshold then mark the pixel as being non background. Early examples of this

were conducted by Jain and Nagel [Jain and Nagel, 1979] who studied the difference

between two temporally adjacent frames. Wren et al. [Wren et al., 1997a] went on to

propose modeling of each image pixel I(x,y) using a single Gaussian (a 3D Gaussian

for Y,U,V colour spaces). The parameters of the Gaussian, namely the mean µ(x,y) and
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covariance Σ are learned from several frames worth of data. Pixels which are deemed to

deviate from this distribution are labeled as foreground objects. The issue of how to set

this deviation or threshold has been addressed by Ching [Ching, 1994] and Rosin and

Ellis[Rosin and Ellis, 1995]. Threshold variation can help when intensity variations

are observed and are non-uniform across the image (if done per pixel/region).

One of the main issues with threshold adaption is that image intensity can change

for some or all parts of the image throughout time. In addition to this the pixel itself

may change. One commonly cited example is that of a curtain constantly being blown

across a window causing a bimodal distribution on the pixels colour values. In an

attempt to model such occurrences Stauffer and Grimson [Grimson and Stauffer, 1999]

use a mixture of Gaussian to model each pixels colour and use dynamic updating of

the means and covariance of the mixture model to reflect changes in the visual scene.

Taking inspiration from the relative success of the mixture model approach kernel

methods such as those of Elgammal et al. [Elgammal et al., 2001] and (separately) Han

et al. [Han et al., 2004] have been shown to be effective at background modeling. Both

the kernel and Gaussian methods require a set (normally contiguous but this is not a

requirement) of images in order to build robust background models. One problem that

remains throughout all methods is how fast to update the background model. If it is too

slow then changing lighting conditions can have a detrimental effect on the estimation

of what is considered to be foreground. Conversely if it’s too fast then foreground

objects can be rapidly “absorbed” into the background model leading to few correct

detections. Varying threshold methods are again useful in such situations.

Oliver et al. [Oliver et al., 2000a] propose a holistic approach using an eigenspace

decomposition. A number of training frames (k) are placed into a matrix B formed by

concatenating m rows in each frame to form a background matrix B of size k× l (where

l = (n×m)). Eigenvalue decomposition is applied to the covariance matrix of B and

the η most significant eigenvectors are then used to represent the background. Fore-

ground images are found by projecting the current image with the η most significant

eigenvectors and finding the differences between the original and the reconstructed

image.

Segmentation

Clustering methods and related segmentation methods have also been used to model

the background distribution. These seek to group together similar parts of the back-

ground in an attempt to better model the components of the scene. An advantage over
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per-pixel methods is the reduced computational resources required. Authors such as

Indupalli et al. [Indupalli et al., 2006] and Picardi and Jan [Piccardi and Jan, 2004]

have employed clustering methods when modeling the background. In particular Pi-

cardi and Jan applied the mean shift method when modeling the background. The

mean shift method [Comanicu and Meer, 2002, Rodriguez and Suarez, 2006] uses an

initialised (usually by hand) image region and the model is generated based on this

region. Typically a probability density function (approximated by a histogram) of the

region’s intensity values is calculated. The difference between the target and the cur-

rent region is then calculated and the position is iteratively updated based upon the

gradient. Comaniciu et al. [Comaniciu et al., 2003] successfully use this method to

segment a foreground object and its position throughout a sequence. Collins [Collins,

2003] extends this method to take into account the changing scale of an object through

a sequence leading to performance increases when the object’s scale varies signif-

icantly. Occlusions are the main problem with such methods where the temporary

loss of an object behind some scene feature can cause tracking problems. Robertson

[Robertson, 2006] suggested a way to overcome such limitations in the standard algo-

rithm.

Other techniques used for segmentation have also been applied to the problem of

background removal. One particularly notable segmentation technique which has been

applied to background segmentation is that of graph cuts [Boykov and Jolly, 2001].

Graph cuts are an optimisation method where (in this instance) the boundary energy

between foreground and background is minimised. This minimal boundary is called

the cut and determines what is background and what is foreground. Both interactive

[Blake et al., 2004, Rother et al., 2004] and non-interactive solutions [Ahn et al., 2006,

Russell and Gong, 2006b] have been proposed. Notably graph cuts methods have en-

joyed particular success where the tracked object is occluded by non stationary objects

[Russell and Gong, 2006a]. Some results of background segmentation using graph cuts

is shown in figure 2.20.

Contour Models

Snakes, such as those introduced by Kass et al. [Kass et al., 1988] have also been

applied to segmentation problems. A snake is typically initialised so that it completely

encloses the object of interest and then an energy function as given in equation (2.9) is

minimised.
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Figure 2.20: Segmentation of a person from behind the moving branches of a tree.

The segmentation gives (bottom row) gives a good approximation of the ground truth

(middle) in a difficult (even for a human) segmentation problem. Adapted from [Russell

and Gong, 2006a]

E(Γ) =
∫ 1

0
Eint(v)+Eim(v)+Eext(v)ds (2.9)

In this equation the energy term E(Γ) with Γ is the contour (as defined by a set of

points) s is the arc length of the contour. Eint(v) contains the regularisation constraints

whilst Eim(v) is the gradient energy of the image v. Any additional constraints are

contained in Eext(v). This iterative energy minimisation has been solved by gradient

descent optimisation [Kass et al., 1988] and also more recently Xie and Mirmehdi [Xie

and Mirmehdi, 2007] applied level sets to the minimisation. There is a wide variety

of energy functions which have been used by various authors Zhu and Yuille [Zhu and

Yuille, 1996] proposed using region information instead of the image gradient. Para-

gios and Deriche [Paragios and Deriche, 2002] propose using a convex combination of

the gradient and region-based energies.

One of the main drawbacks of the snake method is its sensitivity to initialisation

and its non-explicit use of a model meaning that the object you are wishing to identify

can be ambiguously or ill defined resulting in the model getting trapped in other regions

of the image. Pryor et al. [Pryor et al., 2007] have used such models within a larger

tracking system.

A more constrained version of a snake like model has been used by Cootes and
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Taylor [Cootes et al., 1992b,a, 1994] who quantified the statistical variation on a set of

landmark points. Recent additions to the model incorporate texture [Stegmann, 2001]

information as well. The contour model is then fitted to a new example by iterative

optimisation of both the point position and texture similarity. Such models have been

used by Magee [Magee, 2000] for the tracking of livestock while human tracking was

the focus for Galata et al. [Galata et al., 2001] and Baumberg and Hogg [Baumberg

and Hogg, 1994a]. The main drawbacks with such methods are the pre-labeling of

the training data to get a consistent set of points coupled with the complex motion of

human movement, especially arms. Another problem which requires special treatment

is the onset of occlusions which can detrimentally affect the model matching stage.

There have been attempts to automatically select the landmark features [Saragih and

Goecke, 2006, Walker et al., 1999] but as yet there is no universally agreed way of

doing so.

Feature Selection

One of the drawbacks of statistical shape models is the requirement for prior and con-

sistent labeling of points to be available. Although several ways of addressing this

shortcoming have been proposed [Saragih and Goecke, 2006, Walker et al., 1999] they

have only been applied to very specialised and sanitised training data. Viola, Jones

and Snow [Viola et al., 2003] propose a method of tracking humans based on Haar like

filters. Such filters are applied to difference images of a walking pedestrian as shown

in figure 2.21. These features can be calculated quickly by using an integral image

representation [Viola and Jones, 2001].

Such features are then used with an AdaBoost [Schapire, 2002] learning and clas-

sification procedure. The advantage of such an approach is that it automatically uses

both motion and appearance to track pedestrians. However the method requires a large

training set which may be time consuming to acquire. Although real time performance

can be achieved (see [Comport et al., 2005] for a comparison of other real time meth-

ods) peak accuracy of 90% correct detection is not quite good enough for commercial

application at present.

A boosted classifier approach was also favoured by Wu and Nevatia [Wu and Neva-

tia, 2007] who used edgelet features in a nested boosted classifier as shown in figure

2.22. In addition to finding the whole full body in one go Wu and Nevatia break up

the pedestrian into 3 additional parts (head and shoulders, torso and legs). These parts

are also learned using edgelet features via AdaBoost. The advantage of breaking de-
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(a)

(b)

Figure 2.21: (a) Haar like features which are selected by the tracker. These features

are placed at every pixel location. The sum of the pixels which lie in the darker region

is subtracted from the sum of those in the lighter area. (b) From left to right. Original

image at t and at t+1. The absolute difference between the two images is next. The

following images show the difference between an image at t and t+1 but shifted by

(respectively) up, down, left and right one pixel. Adapted from [Viola et al., 2003].
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Figure 2.22: Edgelet features are extracted from a edge image. They are further quan-

tised based upon their orientation. Adapted from [Wu and Nevatia, 2007]

tection up into separate parts is realised when attempting to identify and track heavily

occluded pedestrians. Senior [Senior, 2002, Senior et al., 2001] also attempted to deal

with occlusions by combining a person colour model with an occlusion model. The oc-

clusion model helps to keep track of people when it deems parts of them to be occluded

by reducing the weighting placed upon these pixels when evaluating the likelihood of

a tracked person (and also conversely increase the likelihood on good pixels). Other

methods for taking into account occlusions (although on this occasion static) are given

in [Greenhill et al., 2004] where semantic knowledge of the scene is embedded in the

tracking process.

Zhao and Nevadia [Zhao and Nevatia, 2003] again use a parts based model using

edge features. However they use a hypothesised pose model and attempt to fit it to the

data using incremental computation of the likelihood of such a model fitting the data.

Sidenbladh and Black [Sidenbladh and Black, 2001] also use a Bayesian approach to

learn the features for a hypothesised human model.

Dynamical Models

Many of the ideas shown in the preceding sections require a method to enforce tempo-

ral continuity of an identification or to direct the model where to look for the target in

relation to the last frame.

The Kalman filter [Kalman, 1960] has been used within many tracking systems.

The moving object’s location is represented at time t by xt . The change in state is

modeled by the dynamic equation given in equation (2.10).
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xt = Ftxt−1 +Btut +wt (2.10)

Here the state (normally the location in tracking applications) at time t is dependent

upon the previous state at t−1. The state transition model F is applied to the state at

the previous timestep (xt−1). The control input model Bt at time t is applied to the

control parameters ut . The final term wt represents additional white noise which is

assumed to be from a zero mean multivariate Gaussian distribution with covariance

Qt , giving wt v N (0,Qt), where N is the normal (Gaussian) distribution. At time t

an observation (zt) of the true state xt is made according to equation 2.11.

zt = Htxt +vt (2.11)

The observation model which maps the the true state space into the observed space

is given by Ht . The term vt is modeled by a zero mean Gaussian distribution with

covariance Rk. The initial state and the noise vectors at each state are assumed to be

mutually independent of one another.

The current state of a Kalman filter can be represented by two variables, x̂t|t is

the estimate of the state x at time t whilst the error covariance is given by Pt|t . The

error covariance is a measure of the estimation of the accuracy of the state estimate.

The predictions for the estimated state and the error covariance are given in equations

(2.12) and (2.13) respectively.

x̂t|t−1 = Ftxt−1|t−1 +Btut (2.12)

Pt|t−1 = FtPt−1|t−1FT
t +Qt (2.13)

The filter contains two main steps, the prediction step, as noted above, and an

update step where the parameters of the model are updated.

The updated state x̂t|t and covariance Pt|t estimate are given as (with I being the

identity matrix) :

x̂t|t = x̂t|t−1 +Kt ỹt

Pt|t = (I−KtHt)Pt|t−1

With Kt , Stand ỹt being defined as :
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ỹt = zt−Ht x̂t|t−1 (2.14)

St = HtPt|t−1HT
t Rt (2.15)

Kt = Pt|t−1HT
t S−1

t (2.16)

In the equations above the measurement residual is given by equation (2.14) whilst

the covariance of this residual is given in equation (2.15). The Kalman gain is shown

in equation (2.16).

Despite the Kalman filters wide applicability to vision problems and its ability to

provide an optimal linear estimate it has shortcomings within tracking applications

due to the non Gaussian distributed nature of tracked objects. Robertson [Robert-

son, 2006] showed that the filter has shortcomings when modeling behaviour which

switches states rapidly. For instance when someone stops and turns round the model is

unable to adapt quickly enough to follow the movement.

In an attempt to overcome problems of the filter’s assumption of a single Gaus-

sian distribution Isard and Blake [Isard and Blake, 1996, 1998] introduced a particle

filter (which they termed condensation) which can model multimodal distributions.

The conditional state density p(Xt |Zt) at time t is represented by a set of particles{
s(n)
t : n = 1, ..,N

}
with associated weights

{
π

(n)
t : n = 1, ..,N

}
denoting the sampling

probability of the particle. Weights are used to denote the importance of the sample

[Isard and Blake, 1998]. For each pair
(

π
(n)
t ,s(n)

t

)
a cumulative weight c(n)

t is stored

where c(N)
t = 1. At each timestep new samples are drawn from the previous times sam-

ples. Importance sampling was used by Isard and Blake [Isard and Blake, 1998] but

other sampling methods have been proposed by MacKay [MacKay, 2003] and Doucet

et al. [Doucet et al., 2001]. Importance sampling is described below:

• Selection. Select N random samples
ˆ

s(n)
t from the set of all samples St−1. The

chance that a sample is selected is weighted by it importance (ie higher weighted

samples have more chance of being selected.)

• Prediction. For each of the selected samples ŝ(n)
t , generate a new sample s(n)

t =

f
(

ŝ(n)
t ,W (n)

t

)
. The function f is a non negative function, often it represents a

motion model describing the movement (or lack thereof) of the tracked object or

expected features of the object. W (n)
t is a zero mean Gaussian error.

• Correction. Weights π
(n)
t corresponding to the new samples s(n)

t are computed
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using the measurements zt by π
(n)
t = p(zt |xt = s(n)

t ), where p(.)can be modeled

as a Gaussian density.

For tracking purposes these samples have encoded colour [Rowe et al., 2007], point

features [Fan et al., 2006], contours [Isard and Blake, 1996] and kinematic models

[Sidenbladh et al., 2000].

Other multiple hypothesis models include the joint probabilistic data association

filter, used by Nguyen et al. [Nguyen et al., 2006]. Models with inbuilt logical con-

straints to guide tracking have been used by [Bennett et al., 2004].

2.5 Conclusion

Interaction such as Oliver used very simple interactions, The features also had a high

degree of redundancy so it is questionable what the extra coupling of the model achieves.

Others such as Khan enforce a rigid structure upon the interaction types which (as

demonstrated in Khan’s paper) is not applicable to the general case. Many others have

successfully employed a pre defined script which has proved to be both successful in

terms of classifying situations and also has been implemented in commercial systems

(for example Object Video). However there is little work on identifying interacting

individuals in more complex surveillance situations for larger scale datasets.

The ability to learn a representation is useful in that it would allow one to train a

system by simply showing examples of the desired behaviour instead of relying on an

expert to produce an exhaustive list of how a behaviour should be defined. Of course

pre-defined behaviour evaluation has proved to be successful but within this thesis we

seek to advance state of the art in detecting interaction between individuals without the

aid of a pre-defined script. Previous work has demonstrated this ability on limited and

small datasets, here we shall make use of real data and seek to improve upon previous

methods, most notably those of Oliver et al. [Oliver et al., 2000a].

There is also a gap in the current work with regard to detecting dangerous situations

before they happen. Specifically the ability to detect behaviour which can lead to a fight

has not been previously investigated by computer vision researchers. This question has

been investigated by physiologists such as Troscianko [Troscianko et al., 2004] who

demonstrated that it was possible for humans to perform this task.

The ability of a computer to track a person was discussed and demonstrated that it is

feasible in section 2.4. The ability to track an individual is central to many approaches
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and this ability is assumed throughout this thesis.



Chapter 3

Detection of Coordinated Motion

Parts of this chapter have appeared in Blunsden et al. Recognition of coordinated multi

agent activities, the individual vs the group, 2006 [Blunsden et al., 2006]

3.1 Introduction

This chapter deals with the problem of identifying coordinated, well structured and

restricted team actions. Here we concentrate on the domain of sports. In particular

the focus is on Football and European handball. Coordinated motion is defined as

that displayed in organised games and which typically have a well defined structure.

The investigation of group activities within a comparatively restricted domain of sports

activities will form a starting point from which the more general case of unstructured

interaction will be investigated.

This chapter deals with those team interactions which have an agreed classification1

but where there is not necessarily a rigid structure. For example here we concentrate

upon the games of football and handball. Structures in these games are more loosely

defined than those of for example, American football where the action often follows a

set plan. The aim of this chapter is to investigate how to model such team activities. For

restricted cases such as team sports the domain provides a good testing ground within

a well restricted and controlled setting. Here we will perform a comparison between

individually modelling each player within the game and taking team information as

a whole to model the game state. In the following sections both methods will be

explained and their results presented on two different datasets. First a brief review of

1By agreed classification it is meant that an expert coach will have labeled the particular instance of
that behaviour.

47
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previous work will be given.

The investigation within this chapter will focus on classifying loosely structured

team interactions. By this it is meant that there are agreed terms for what is happening

within a game but there is not necessarily a template or state model which can accu-

rately describe the action. A contrast to this is the work of Intillie and Bobick [Intille

and Bobick, 1999] and also (separately) Perse et al. [Perse et al., 2007, 2006] where

pre-specified team actions were available. This is covered in more detail in section 3.4.

Within the domain of sports analysis some authors have sought to classify team be-

haviour from broadcast footage, particular examples being Assglag et al. [Jurgen Ass-

falg, 2003] and Ekin et al. [Ekin et al., 2003] who incorporate shot information into

the classification framework. Whilst this is necessary when attempting to automate

the highlight generation process such methods have an implied domain expert (the

cameraman/editor) watching the sporting event meaning that the data already contains

knowledge of the game state. A particular example of this could be fast camera motion

when a player is going to score a goal, or slow motion replays to illustrate interesting

events. Here we concentrate upon understanding what is going on within the game

without the potential bias of an expert viewer.

3.2 The Problem

Within this chapter we want to address the problem of classifying team activity. Team

activity will mean the particular style or structure that the team is adopting when play-

ing the game. These styles will be identifiable by an expert in the game. Classification

of team game activities would be useful for automatically finding examples of a partic-

ular play or style from many games. It would be useful for coaches and also potentially

fans of team games who would be able to specify what it is they want to watch.

3.3 Contribution

This chapter presents two competing approaches to classification of team game activ-

ities. We do not require a pre-specified template to identify activities and instead use

examples to learn activities. We present a faster and more accurate method using whole

team activities as contrasted with the previous state of the art as given by Howard and

Jebara [Howard and Jebara, 2004]. We also highlight issues with per player modelling

and limited video data.
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3.4 Previous Work

In fitting with the theme of modelling the individual vs modelling the whole this section

will broadly divide previous research into two sections. First research where individu-

als are modelled and then aggregated to give a overall team state is described. Then a

review of previous research using features derived from of the whole teams features is

given.

3.4.1 Individual modelling

The work most closely resembling the domain of interest here is that of Intillie and Bo-

bick [Intille and Bobick, 1999]. The goal was to classify pre-defined plays within the

game of American football. Intillie and Bobick used predefined Bayesian networks to

evaluate the likelihood of an observed play. Based on visual evidence a goal network

was used to determine the belief that certain actions had been committed. This pro-

vides input into a multiagent network combining many agent’s visual goal networks to

compute the likelihood that a particular play was being observed. Perse et al. [Perse

et al., 2007, 2006] take a similar template based approach. Both of these approaches

use a template based description of a particular scenario. Within the context of the

game such sequences of moves are well defined and are rehearsed so it is possible to

recognise a specific sequence of moves that the team is attempting to execute.

In addition to the static Bayesian network architectures used by [Intille and Bobick,

1999] dynamic Bayesian networks have also been applied to multiagent problems. In

[Oliver et al., 2000b] Oliver et al. used coupled hidden Markov models to model

two person interactions. Again separate models are trained for each class of inter-

action. However there was no explicit apriori domain knowledge within the models.

The likelihoods of observing a given interaction was determined from examples. Cou-

pled models have also been employed by Xiang and Gong [Gong and Xiang, 2003b]

who modeled vehicle interactions on an airport loading bay. All possible couplings

of the model were enumerated and evaluated using the Bayesian information criterion

[Schwarz, 1978] to determine the best connection architecture.

More recently Howard and Jebara [Howard and Jebara, 2004] use a tree architec-

ture to aggregate several persons trajectories (again within the domain of American

football) into a hierarchical Markov process describing the team activity. Although

they only present limited results the approach presents a plausible interpretation of the

structure within the game. Each player is modeled, then the team, then the game as
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a whole. Others such as Zhang et al. [Zhang et al., 2000] have also used an aggre-

gating approach for group action clustering in meetings. However, in this instance, a

hierarchical architecture is not as explicit.

3.4.2 Team modelling

Features derived from the overall team have been previously investigated by Taki et al.

[Taki et al., 1998] and Fujimura and Sugihara [Fujimura and Sugihara, 2005]. Both

approaches analyse how the team as a whole is doing within the context of a football

game. Fujimura and Sugihara introduce the idea of a Voronoi diagram tessellated on

the basis of how quickly a player can get to a particular location. This region is referred

to as a dominant region for the player. Certain regions are given more weight (eg

regions close to goal). Separately Needham [Needham, 2003] modeled the positions

of players within a football game but did not publish any attempt to analyse the results

or categorise team performance.

Central to the team modelling is the idea of a dominant region. The dominant

region first starts with the calculation of a player’s sphere of influence. This is defined

by the region that a particular player can reach before any other player. The individual

k at time t is represented as pt
k ∈ Pt , where P = {p1, p2, .., pn}is the set of all player’s

positions. The dominant region of this player is given in equation 3.1 as:

D(pt
k) =

{
x|ts(x, pt

k)≤ ts
(
x, pt

m
)
, for m 6= k

}
(3.1)

The dominant region D(pt
k) is in this case bounded by the game area (the football

field) with the position x referring to the two dimensional (in this case) world coordi-

nate. The shortest time ts is the time necessary for an individual k to move from their

current position pt
k to the point indicated by x. The function D(pt

k) defines a region

where the player pt
k can occupy before any other player (ie they can reach that point

before any other player). To determine this the current motion vector of player pt
k is

combined with the positional information to determine the time required to reach the

point. The acceleration and speed of a player are approximated based on the average

individual. A graphical representation of this can be shown in figure 3.1.

The calculation of the dominant region is then used in further processing when

evaluating the team as a whole. The team is evaluated on space making, ball passing

and the amount of pressure they put upon the opposing team. To evaluate the ability of

the team to make space the entire team’s dominant region throughout time is measured.
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(a) (b)

Figure 3.1: (a) Example of several players dominant regions overlaid upon one half of

a football field. (b) The variation through time of the ratio of the attacking team. In

this example the attacking teams cooperative movement is superior from around frame

180 onwards. During the latter half of this sequence to dominant team scored a goal.

Adapted from [Taki et al., 1998]
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The amount of pressure is determined by spacial factors such as density of players,

sphere of influence, distance from goal and distance from the ball.

3.4.2.1 Summary

Previous work has made use of template based approaches [Intille and Bobick, 1999],

[Perse et al., 2007, 2006] with considerable success. However here we are interested in

investigating how a method can learn when only presented with positive examples. As

well as investigating a different area from previous work such an approach could make

it possible for non-experts to define how they would like to see the game classified.

Such an approach would be useful for watching highlights of games as determined by

the viewers themselves.

We are also interested in comparing the approach of modelling each individual

vs modelling the whole team. We make use of Howard and Jebara’s [Howard and

Jebara, 2004] method for modelling individual players. This method is one of the most

recent developments in team classification. They also state that “A naive approach to

modeling our data is to stack or concatenate each player’s time series into a single

multivariate series”. In this chapter we test the validity of this statement.

In order to make it as fair a comparison as possible we make use of features which

can be commonly used for both individual and team modelling. For this reason we

do not follow Taki et al. [Taki et al., 1998] or Fujimura and Sugihara’s [Fujimura

and Sugihara, 2005] approaches to calculating a feature set who use many whole team

features. For example it would be unclear how to divide up the mean team position

between individual players. They also use such metrics for evaluating how the team is

doing, not necessarily what it is doing.

3.5 Classification Approach

This section details the approach to the classification problem. First the extracted

features are introduced in section 3.5.1. The classification algorithms are then detailed

in section 3.5.3.

3.5.1 Extracted Features

In addition to the original xn,t and yn,t court position provided in the data set (for the

nth player at the tth timestep), three additional features were also calculated. A speed
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feature (sn,t) was calculated for every player of every frame. The speed (sn,t) of a

player was calculated over the past w frames (equation 3.4). Such a feature helps to

distinguish between fast and slow breaks. Here a temporal window size (w) is used due

to the high sample rate (25 fps) resulting in very small movements between consecutive

frames. If the change in position was calculated based solely upon the previous frame

then frequently that change would be either zero or very close to zero. Coupled with

the error in the associated tracking process most of this movement would be the result

of noise.

The directional change of a player is also encoded in the feature vector with the

direction of change in x (cx
n,t equation 3.2) and y (cy

n,t equation 3.3) being calculated,

again over the past w frames. The window size (w) for calculating the change in po-

sition was empirically set to 25 frames (1 second) throughout all experiments. To

prevent features from one complete activity sequence overlapping with those from an-

other class (ie immediately after transitions) the first w frames from the sequence are

removed. In addition to removing any overlap between features this also helps with

eliminating the transitional period where one activity turns into another.

cx
n,t = sign(xn,t−w− xn,t) (3.2)

cy
n,t = sign(yn,t−w− yn,t) (3.3)

sn,t = ‖(xn,t−w,yn,t−w)− (xn,t ,yn,t)‖ (3.4)

This gives a final feature vector for the nth player at the tth timestep as given by

equation (3.5).

pn,t =
[
xn,t ,yn,t ,cx

n,t ,c
y
n,t ,sn,t

]T (3.5)

3.5.2 Classification

Each test/training sample was taken from the original data annotations and consists

of a sequence of contiguous frames containing the calculated features as described in

section 3.5.1. These sequences are taken directly from the annotated sequences. Within

this classification scheme the minimum sample length varied due to the length of time

an activity was being performed. For the training phase only the training samples were

used and for the testing phase only the unseen test samples were used. The training
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and test samples did not overlap. The individual and group classification methods are

now detailed and results are presented in section 3.6.

3.5.3 Methods

3.5.3.1 Individual modelling approach

Within this section a method for representation and classification of team action is

given. Here each individual is modeled as having their own independent Markovian

dynamics with each individual then aggregated into an overall team model. Each indi-

vidual model is then used as input into a higher level process which models the current

activity of the team. The approach implemented here is that of Howard and Jebara

[Howard and Jebara, 2004]. This approach is chosen to contrast to the global view

where all the players are considered as forming the input signal (section 3.5.3.5). The

dynamical systems tree (DST) was chosen as it does not require an explicit domain

model (cf. Intille and Bobick [Intille and Bobick, 1999]) and is capable of generating

a class label for a given sequence (cf. Xiang and Gong [Gong and Xiang, 2003b]).

This hierarchical model also represents the problem well in that we hypothesize that

each player forms input into a higher level process representing the team activity. The

dynamical systems tree model is explained in section 3.5.3.2.

3.5.3.2 Dynamical Systems Tree

The dynamical systems tree was introduced by Howard and Jebara [Howard and Je-

bara, 2004]. The model consists of several independent switched linear dynamical

systems (SLDS). Within the context of the complete tree these processes are referred

to as leaf-processes. Each SLDS subsumes both a hidden Markov model and a stan-

dard (ie non switched) linear dynamical system. For this reason the explanation of the

DST shall deal with SLDS, however it is general to all three methods.

Within the SLDS the transitions between hidden states are Gaussian. The and

emissions are continuous hidden states again with a Gaussian distribution.

In order to couple the independent SLDSs together a Markovian aggregating pro-

cess is used. Each of these aggregating processes have the leaf processes as their

children. In the general model an aggregating process can have another aggregating

process as its parent, however here only one aggregating process is used. The process’s

role is to combine all the player’s processes into an overall process which describes the

team’s activities. The structure of the model is such that each player is modeled with
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Figure 3.2: The structure of the dynamical systems tree. Unfolded on the left whilst the

diagram on the right shows a compact representation of the model. A circle within a

circle represents repetition throughout time.

their own SLDS while the overall team is modeled with a single aggregating process.

This structure is given in figure 3.2

3.5.3.3 Probability distribution

The DST consists of one or more aggregating process and leaf processes arranged in

a hierarchical manner. An aggregating process is a Markov chain which has at most

one parent process. For the problem represented here there is one aggregating process

which represents the group activity. The states of the aggregating (a) process states are

represented by sa = {sa
0, ..,s

a
T}, where T represents the maximum possible time. The

activity aggregating process, without any parents, has the conditional distribution:

p(sa) = p(sa
0)

T

∏
t=1

p(sa
t |sa

t−1) (3.6)

Each player is modeled as a switching linear dynamical system (SLDS) and is

referred to as a leaf process within this framework. A leaf process has a parent aggre-

gating process and has the following conditional distribution:

p(si,xi,yi|sπ(i)) = p(si
0|sπ(i))p(xi

0|si
0)p(yi

0|xi
0)

×
T

∏
t=1

p(si
t |si

t−1,s
π(i)
t )p(xi

t |xi
t−1,s

i
t)p(yi

t |xi
t)

(3.7)

In this conditional distribution si = {si
0, ..,s

i
T} represents the ith leaf process’s dis-

crete Markovian hidden state. xi = {xi
0, ..,x

i
T} is the continuous Markovian hidden
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state, with yi = {yi
0, ..,y

i
T} being the observations of the ith leaf process. The leaf pro-

cesses parent process is given by π(i) with discrete hidden states sπ(i) = {sπ(i)
0 , ..,sπ(i)

T }.
This gives the conditional distribution over all variables in the DST with A aggre-

gating processes and L leaf process’s as:

P(S ,X ,Y ) = ∏
a∈A

p(sa)∏
i∈L

p(si,xi,yi|sπ(i)) (3.8)

where S ,X ,Y represents the discrete hidden, continuous hidden and emission vari-

ables, respectively.

The estimation of the parameters of the DST model are given in the appendix sec-

tion B.1.

3.5.3.4 Is the model appropriate to the task?

The DST model as used in the remainder of this chapter is shown in figure 3.2. Each

player is modelled as a first order switching linear dynamical system (as shown in

figure 3.2). The hidden state of each of the player models are aggregated by the ag-

gregator state. The role of the aggregator state is to model the state of the team as a

whole based upon each player’s state. The main assumption behind this model is that

the team’s state can be modelled as a function of the players states.

This model is appropriate to the task as each player within the team is individu-

ally fulfilling some function but this function is contributing towards the overall teams

behaviour (as modelled by the aggregation variable). It is hoped that by modelling

the overall state of the team by aggregating each individual through time an accurate

model can be formed.

Due to the high complexity of the model an approximation of the probability dis-

tribution is used. The uncoupling of absolute links between higher and lower levels

for each player is performed to allow the algorithm to become tractable. More details

of this procedure are provided in the appendix (B.1) and also in Howard and Jebara

[2004].

The main advantage of modelling individual players and combining their individ-

ual states into a single function is the high similarity between the model and the game

being modelled. Compare this to a coupled hidden Markov model which could be set

up to link all players to one another. Assuming this could be done (it would be infea-

sible at present for games with more than 8-10 players due to memory requirements

without some form of approximation) there is no explicit game state in such a model,
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which is the very thing we are trying to model. The DST provides an explicit “team

state” in the form of the aggregator variable.

3.5.3.5 Group modelling

In contrast to modelling each individual player the input vector is now made up of all

the players in the team. That is the input signal per frame is given by equation (3.9).

For the example of handball where there are 7 players each with 5 attributes this forms

a 35 dimensional input vector per frame.

qt =
[
p1,t, ..,pN,t

]
(3.9)

Here pn,t is as defined in equation (3.5) and N is the size of the team (where

N=7 for handball and N=11 for football). A support vector machine (SVM) classifier

[Scholkopf, 2000] is then trained upon this data. Partitioning of training and testing

data followed the same convention as in the individual case. The SVM classifier is

briefly reviewed here before describing its application to the sports dataset. The SVM

classifier was chosen after examining the eigenvector projections of the data (figure

3.9). The data is well separated in the space per class but not clustered around any

obvious points. The decision boundaries between the classes are also non-linear, for

this reason a SVM classification scheme was deemed an appropriate classifier to use.

3.5.3.6 SVM

A SVM classifier seeks to find a separating (hyper) plane such that the distance be-

tween the plane and each data point is maximised. This distance is given by the margin

which is defined as being the minimum perpendicular distance from the plane to a data

point. A point is then classified by the discriminant function:

f (x) = sgn(
N

∑
i

yiλi.k(x,xi)+b) (3.10)

Within this equation xi is the ith datapoint with yi ∈{+1,−1} being the correspond-

ing class label and λi the Lagrangian term associated with the ith data point. When the

data point (xi) has a non-zero Lagrangian (λi) value it is considered a support vector

(ie contributing to the hyperplane separating the classes). The term b is a constant

scalar representing the offset from the origin. The kernel function is represented by k.

Throughout these experiments a Gaussian kernel function is used. The problem is to

maximise :
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W (λ) =
N

∑
i=1

λi−
1
2

N

∑
i=1

λiλ jyiy jk(xi,x j) (3.11)

subject to 0≤ λi ≤C, i = 1, ...,N and ∑
N
i=1 λiyi = 0

The constant C places an upper bound on the Lagrange parameters, thereby limiting

the influence of individual patterns. In experiments presented here C was set to 10 as

good classification performance was obtained with this value. Although using pairwise

classification strategies have been shown to be preferable in some situations [Duan and

Keerthi, 2003] the one against all method proved to work well for this problem and so

is preferred.

The SVM classifier is trained using individual points from qt (equation (3.9)). Each

frame in the training set was assigned an activity label corresponding to the class of the

complete sequence. This effectively removed the temporal ordering of the data (which

is an area of future research). The publicly available Torch libraries [Collobert et al.,

2002] were used to compute the results.

To classify a test sequence each point in that sequence is individually labeled by

the SVM classifier. This produces a vector of tokens for each (variable length) sample

(L =
[
l1 = c1, .., lt = c1.., lsamplen = ci

]
). Here lt represents the label at time t and is

an element from the set of all possible classes as determined by the SVM classifier.

To classify the entire sample from the labeled vector the most frequent label in this

labelling is taken to be the label of the whole sample.

3.6 Experiments

This section details the experiments performed to evaluate the methods described in

the previous sections.

3.6.1 Experimental Setup

The experiments were set up to compare the accuracy of the individual modelling

approach from section 3.5.3.1 and the group approach as described in section 3.5.3.5.

The experiments were set up to classify whole sequences of actions which have been

labeled by an expert. The data is described in section 3.7 and consists of positions of

all players performing a specified game action.

In order to test the methods described a training and test set were created. In order

to fairly compare both the group and individual approaches to classification we shall
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randomly permute samples to be included in the training and testing sample.

A question we address in this chapter is how does the amount of time you view a

particular sequence affect your ability to classify it? To address this question the input

required to classify a single frame is changed from one consisting of 1 frame in length

to 150 frames. The maximum size of window was set at 150 as above this the number

of available sequences reduces dramatically and there are no examples of some classes

beyond this length. Most sequences range between 50 and 200 frames in length.

The two methods were compared across a range of window sizes. Such window

sizes corresponded to the information which was available in order to make a decision

on the classification of that frame. A frame is classified using information from pre-

vious frames to decide upon the class of the current frame. For example to classify a

frame using a window size of 3 the test data required will consist of :

qt =


p1,t, ..,pN,t

p1,t−1, ..,pN,t−1

p1,t−2, ..,pN,t−2

 (3.12)

This process is shown in figure 3.3.

3.7 Results on Data Sets

Here results for two different datasets are introduced. First synthetic data is used in

order to show that the previously described methods are feasible. We then move on to

substantially more complex dataset and attempt classification of data obtained from a

game of handball.

3.7.1 Synthetic Data

For initial testing of the suggested method a synthetic dataset was used. The synthetic

data was gathered from the TricTrac dataset [multitel, 2006] which provides a multi

camera viewpoints for showing 3 separate scenarios within a football match. The first

shows a team attacking with a goal being scored. The second shows one team attacking

and shooting the ball at the goal without a goal being scored and the final case shows

the team successfully defending an attack with no shot or goal resulting.

Because the data was generated synthetically the tracking positions are available

and are highly accurate. The position of all 11 players from one team are given in world
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Figure 3.3: Data required to label a frame.

Figure 3.4: Original video data from the TriacTrac dataset. This sequence is from sce-

nario 1 where a goal is scored.
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(a) (b)

Figure 3.5: Results using the TricTrac dataset over varying window sizes. (a) Results

using the dynamical systems tree to classify the TriacTrac dataset over varying window

sizes. (b) Results using support vector machines to classify the TriacTrac dataset over

varying window sizes.

co-ordinates (even though the videos show multiple views). The world co-ordinates are

used as input throughout the experiments.

The data comprises of a total of 10,162 individual frames. For each frame the world

co-ordinates of each individual player are given. The length of each sequence ranged

from 682 frames to 971 frames. Results are presented using a varying window size.

3.7.2 Results

This dataset does not seem to provide enough of a challenge for a classifier and indeed

the situations it depicts are all very similar (although they vary in length). This factor

results in perfect classification by both methods. These results are shown in figure 3.5

for both the SVM and DST methods. The reason that it is included in this thesis is

to illustrate that the methods are feasible to classify the differing situations and that

results on synthetic examples should be backed up with real examples. This is the

focus of the next section where real video data from a real game is used to test the

methods in a more realistic and challenging scenario.

3.7.3 CVBASE Dataset

The data set used in this section is from the publicly available CVBASE dataset [CVb,

2006]. Only the handball sequences are used in the methods and results presented here.

The handball dataset consists of 3 separate video cameras recording a 10 minute long

game. Court coordinates of each of the players for one team throughout this sequence

are available (first 1,000 frames are shown in figure 3.6 (a)). The activity the whole
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team is engaged in and the starting and end times of the activity is also annotated.

In total there are 15,000 annotated frames each giving the positions of all 7 players

(unless the player was temporarily out of shot). From these frames there are around 60

complete sequences ranging from a few frames in length to many hundreds.

The timeout class from the original dataset was removed as this is not regarded

as a coordinated activity. In addition some classes have been merged together. This

step was primarily taken due to the high similarity between the activities themselves.

The classes offense against set-up defense, setting up an offense’ (nfpn) and ’offense

against set-up defense, ending an offense’ (nfan) were merged. These classes are

highly similar in description and in appearance and require extra information about

the game (ie the ability to detect an attempt on goal) to distinguish them. The classes

’defense, basic defense, against preparation of an offense’ (obz) and ’defense, basic

defense against ending offense’(obg) were merged for similar reasons. The classes

’defense returning’ (ovpp) and ’defense slowly returning’ (ovpc) were merged as the

actual speed difference distinguishing each class is not well defined. These activities

may have looked different if information on the other team was also available, particu-

larly in distinguishing between trying to stop a fast break. This gives 5 final classes as

shown in figure 3.6 (b).

3.7.4 Results on Sequences

Here results for both the DST and SVM methods are given. The overall results are

given in figure 3.7. Throughout the experiments the window size was varied from 1

to 150 frames. For this particular case the overall results improve slightly when using

a SVM classifier with an increased window size. The results when using the DST

method are more erratic. Although the classification rates were obtained over multiple

runs (as was the case for all experiments) it is visible that there is greater variation

in the average performance of the DST classifier. However the variance for smaller

window sizes is actually less than that of the DST. This would suggest that the learned

model is more generaliseable. Once the window size used has exceeded 100 frames

performance begins to drop. The results using a DST are not as consistent as those

when using a SVM. This could be down to the random initialization required for the

DST coupled with the larger number of parameters which are required.

The per-class results are given in figure 3.8. Per-class results demonstrate the vari-

ability in performance that varying window sizes can make. For many classes and in-
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(a)

(b)

Figure 3.6: (a) The first 1000 frames from the video sequence and the associated

player positions as given in court coordinates. (b) Positional information of each player

(different colour) plotted in court co-ordinates. The classes are: nfpn - offence against

set-up defense , ovpc - defense, returning, obg - defense, basic defense, nks - offense,

fast break, npp - offense, slowly going into offense.
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Figure 3.7: Overall results from all classes

deed overall the DST classifier gives a less consistent classification performance then

the SVM method. This is mainly down to the increase in parameters and the random

initialisation used by the EM update process. Results when classifying class 1 display

this contrast between the two classifiers. For class 2 the SVM consistently outper-

forms the DST. There is a significant drop in performance by the DST after 100 frames

whereby the accuracy drops significantly. For the SVM there is a slow improvement

in classification accuracy until around a window size of 75 frames at which point the

improvement stops.

When looking at the results for class 3 it is shown that for almost all window sizes

the DST method slightly outperforms the SVM method. As window size increases this

gap becomes smaller. The results for class 4 are perhaps the most interesting and show

how the window size can relate to the underlying data. There is drastic improvement

in classification accuracy between zero and 100 frames where classification peaks.

After this point there is a decline in performance. This is perhaps because of the class

itself. The class involves a fast break meaning with the characterisation of this class

involving a quick movement. If the window size is too small it gets confused with

other defending classes or too big then the main action is lost. Again a rapid rise in
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Class 1 - offense against set-up defense Class 2 - defense, returning.

Class 3 - defense, basic defense Class 4 - offense, fast break

Class 5 - offense, slowly going into offense

Figure 3.8: Per-class results for the CVBASE dataset.

classification accuracy is observed where the shorter window sizes are confused with

those of other classes such as defending due to the offense taking a long time to build

up. Finally Class 5 displays a rapid rise in classification accuracy where the shorter

window sizes are confused with those of other classes. Such an example would be the

confusion with defending due to the offense taking a long time to build up.

It is worthwhile noting that those sequences on which the DST method performed

poorly are those which had fewer examples. Classes 2,4 and 5 had an average of 750,

330 and 450 training samples respectively. This may indicate that the DST method with

its greater number of parameters requires more training data than the SVM method to

accurately learn the input data.

The results show that for many cases it is easier to classify what is going on when



Chapter 3. Detection of Coordinated Motion 66

Team Individual

Figure 3.9: PCA projection showing training data projected into two dimensions using

two eigenvectors with the two largest eigenvalues. 1) Green - offense against set-up

defense, 2) Blue defense, returning. 3) Light Blue - defense, basic defense. 4) Purple -

offense, fast break 5) Yellow - offense, slowly going into offense.

the team as a whole is considered rather than trying to model individuals within that

team. The PCA projections of both the team and the individuals data (corresponding

to input data for the SVM and DST methods respectively) and plot them as given in

figure 3.9. When looking at the plot taking the team as a whole (left plot) the classes are

clearly more separated than when looking at individuals (right plot). This can account

for the better overall performance of the SVM method which used this data.

One reason that PCA data was not used within the classification methods them-

selves is that it would not be clear how much of an effect the PCA was having on

the data compared to the classification methods themselves. Due to the way that the

methods require input data (individual vs concatenated) it would not be possible to test

whether it was the model or the PCA projections which were causing the differences in

classification. However it is a useful tool for plotting the data. If one were to use PCA

projected data there would also be the additional parameter of how many eigenvectors

to use in the reconstruction.

3.7.4.1 Continuous Classification

In addition to the classification of pre-segmented sequences a trained model was run

over the whole video sequence (all 15,000 frames). Models were trained on a randomly

selected sample of complete activity sequences. The number of training sequences

accounted for 50% of the total video length. This random sampling approach was

taken in preference to simply dividing the complete video in half as the distribution
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of activities is not uniform and some only occur in the second half of the game. The

models were trained using the procedures described in the preceding sections. As this

process results in a continuous labelling of the complete sequence the time out class

was also used for training. For labelling an individual frame the previous n frames were

used as input into the classifier. Throughout the experiments the window size was set to

100. This produces a labelling for every frame in the sequence (after 100 frames have

passed). The results are shown in figure 3.10. It is clearly visible that there is some

delay in making a correct classification when the activity changes in both the SVM-

group and the DST classifiers. The overall correct classification rate when using the

SVM-group classifier is 72.3%, with the DST giving a performance of 61.9%. When

looking at the plot of correct and predicted there is a high correlation, with most of

the mis-classifications being due to delaying the decision or between frames 10,000-

12,000. The team activity changes fairly rapidly in quick succession during this time

period, which may explain the poor performance. It is also visible that there is a lag

between the current action and what the algorithm thinks is going on. This is due to

the decision being based upon previous information due to the window size.

3.8 Conclusion

This chapter has shown that in certain cases where team interaction is constrained,

such as in the team sports domain, better classification performance can be obtained

by considering the team as a whole. There are many situations where this approach

may not find favour. Such an example would be when the team is not a consistent size

or if the interactions are not as regular in nature as those encountered in team games.

By considering team interactions as a whole rather than modelling each individual it

can be possible to reduce model complexity (number of parameters). This can be very

important in many domains where it is often hard and laborious to obtain datasets. We

also want to be able to quickly understand and classify data despite a relatively small

training set. The ability of a computer system to classify team game interactions would

be useful for smart video applications such as selecting only the interesting highlights

from a game for later viewing.

Within this chapter we have compared two models which take a individual and

a team based approach to classifying the teams state. The models are also different

in a more fundamental way with the DST being a generative model whilst the SVM

is a discriminative model. In this particular case the discriminative model performs
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(a)

(b)

Figure 3.10: Classifications for every frame in the handball sequence. Dotted line de-

notes correct (ground truth) class. Continuous line denotes label determined by the

classifier. (a) labelling as given by the SVM-group classifier. (b) labelling as given by

the DST classifier.
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better than the generative one. However one potential drawback to using a discrimina-

tive model is that it is not possible to generate samples from the model and so check

that such samples agree with the input data. Such tests can be done to allow the val-

idation of the model and to help tune the parameters and state space by using model

selection algorithms [Gong and Xiang, 2003b]. The discriminative SVM cannot pro-

duce additional samples as it models the boundary between the classes not the classes

themselves. The SVM is also a simpler model as only the boundary is required for

classification where as the more complex discriminative model is not able to form an

accurate model. For classification problems such as this there is no requirement to pro-

duce samples from the model, however one could imagine situations (such as model

validation) where such a property would be desirable.

Future chapters will seek to extend the classification of interactions to more general

and less structured cases.
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Chapter 4

Detection and Classification of

Interacting Persons

4.1 Introduction

This chapter presents a way to classify interactions between people. Examples of

the interactions we investigate are people meeting one another, walking together and

fighting amoung others. A new feature set is proposed along with a corresponding

classification method. Results are presented which show the new method performing

significantly better than the previous state of the art method as proposed by [Oliver

et al., 2000b].

4.2 Previous Work

There has been much previous work upon identifying what activity individual people

are engaged in. [Davis and Bobick, 2001] used a moment based representation based

on extracted silhouettes and [Efros et al., 2003] modelled human activity by generating

optical flow descriptions of a person’s action. Descriptions were generated by first

hand-tracking an individual, re-scaling to a standard size and then taking the optical

flow of a persons actions over several frames. A database of these descriptions was

created and matched to novel situations. This method was extended by [Robertson,

2006] who also included location information to help give contextual information to a

scene. Location information is of assistance when trying to determine if someone is

loitering or merely waiting at a road crossing. Following on from flow based features

[Dollar et al., 2005] extracted spatio-temporal features to identify sequences of actions.

70
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[Ribeiro and Santos-Victor, 2005] took a different approach to classify an indi-

vidual’s actions in that they used multiple features calculated from tracking (such as

speed, eigenvectors of flow) and selected those features which best classified the per-

sons actions using a classification tree with each branch using at most 3 features to

classify the example.

The classification of interacting individuals was studied by [Oliver et al., 2000a]

who used tracking to extract the speed, alignment and derivative of the distance be-

tween two individuals. This information was then used to classify sequences using

a coupled hidden Markov model (CHMM). [Liu and Chua, 2006] expanded the two

person classification to three person sequences using a hidden Markov model (HMM)

with an explicit role attribute. Information derived from tracking was used to provide

features such as the relative angle between two persons to classify complete sequences.

Xiang and Gong again used a CHMM to model interactions between vehicles on an

aircraft runway. This features are calculated by detecting significantly changed pixels

over several frames. The correct model for representing the sequence is determined

by the connections between the separate models. Goodness of fit is calculated by the

Bayesian information criterion. Using this method a model representing the sequences

actions is determined.

Multi-person interactions within a rigid formation was also the goal of [Khan and

Shah, 2005]who used a geometric model to detect rigid formations between peo-

ple, such an example would be a marching band. [Intille and Bobick, 2001] used a

pre-defined Bayesian network to describe planned motions during American football

games. Others such as [Perse et al., 2007] also use a pre-specified template to evaluate

the current action being performed by many individuals. Pre-specified templates have

been used by [Van Vu et al., 2003, Hongeng and Nevatia, 2001] within the context of

surveillance applications.

4.3 Contribution

The main contributions of this chapter are to advance state of the art by improving

classification of unstructured interactions over the previous best published method

([Oliver, 2000, Oliver et al., 2000a]). As this is unstructured we also do not require

a template in order to evaluate what is going on as in [Van Vu et al., 2003, Hongeng

and Nevatia, 2001] and [Perse et al., 2007].
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Figure 4.1: Bounding box tracking. Coloured lines show the previous position of the

centre of the tracked object.

4.4 Features

Video data is rich in information with the resolution of modern surveillance cameras

capable of delivering megapixel resolution at a sustained framerate of greater than

10fps. Such data is overwhelming and mostly unnecessary for classification of inter-

actions. As a first step, tracking of the individuals is employed. There is a rich body of

work upon tracking of people and objects within the literature. This work is discussed

in the literature review (see chapter 1). For all experiments performed in this thesis

the bounding box method of identifying a person was used. The positional informa-

tion was calculated based upon the centre of this box. This process is illustrated in

figure (4.1). Such tracking information is typical of the output of many tracking proce-

dures and it will be assumed that such a tracker is available throughout all experiments

carried out in this chapter.

It was suggested by [Gigerenzer et al., 1999] that there are seven features which

were required for interactions to be recognized between two tracks. In their experi-

ments two participants were required to act out scenarios such as chasing, courting and

fighting by moving a cursor around a computer screen. The two participants were in

different locations so the interaction remained anonymous.

The seven suggested features are :

1. mean absolute velocity across both agents

2. mean absolute vorticity across both agents

3. relative distance between agents

4. relative velocity of the two agents
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5. relative vorticity of the two agents

6. relative heading of the two agents

7. relative angle between one agent’s heading and the others current position

Classification of these scenarios by German adults resulted in a 75% accuracy with

the significant confusion arising when attempting to distinguish between playing and

fighting. Although the work of [Gigerenzer et al., 1999] provides some rational for

choice of features, other authors have used alternative features. [Oliver et al., 1998,

2000a] use speed, alignment, relative distance and derivative of the relative distance for

classifying pairwise interactions using a coupled hidden Markov model. Others such as

[Liu and Chua, 2006] use the relative angles and ratios of dot products. Other authors

such as [Robertson and Reid, 2005] and [Gong and Xiang, 2003a] also incorporate

positional information. Within this work the absolute positional information is not

used. Such information because an interaction should be recognised regardless of its

position.

4.4.1 Movement Based Features

Movement plays an important role in recognising interactions. The speed of an indi-

vidual is calculated as shown in equation (4.1). The double vertical bar (‖.‖) represents

a vector L2 norm as given by ‖x‖= sqrt(x2
1 +x2

2+, . . . ,+x2
n), where xn refers to the nth

component of the vector x.

st
i =
‖pt

i−pt−w
i ‖

w
(4.1)

Here pt
i refers to the position of the tracked object at time t for object i. Within this

work only two dimensional co-ordinates are used pt
i = [xt

i,y
t
i] due to the tracking infor-

mation only being available in two dimensions. The w temporal offset is introduced

due to the high frame rates which typify many modern video cameras. High frame

rates of around 25fps can mean that taking the last frame (w=1) results in very small

movement between subsequent frames. Combined with the effect of noise and impre-

cision in the tracking process these small values are mostly dominated by noise. The

absolute difference in speed (εt
[i, j]) between two tracks is also calculated (

∣∣∣st
i− st

j

∣∣∣).
Vorticity (νi

t) is measured as a deviation from a line. A window of points is used

Pt
i = [pt−w

i , ..,pt
i], the window is the same size as that used in equation (4.1). The

principle direction of the points are found by fitting a line to the set of points. To
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do so the eigenvector corresponding to the largest eigenvalue of the covariance of the

window of points was found. The distances from each point in the window to the line

are calculated. These distances are then summed and normalised by window length.

The amount of movement over a time period w is also calculated.

4.4.2 Alignment Based Features

The alignment of two tracks can give valuable information as to how they are interact-

ing. The degree of alignment is common to [Gigerenzer et al., 1999], [Oliver et al.,

1998, 2000a] and [Liu and Chua, 2006] who all make use of such information when

classifying trajectory information.

To calculate the dot product the heading (h) of the object is taken as in equation

(4.2) and the dot product was calculated from the directions of tracks i and j.

ĥt
i =

pt
i−pt−w

i

‖pt
i−pt−w

i ‖
(4.2)

at
[i, j] = ĥt

i·ĥt
j (4.3)

In addition to alignment the potential intersection (γi, j
t ) of two trajectories is also

calculated. Such a features are suggested in [Gigerenzer et al., 1999] and [Liu and

Chua, 2006]. We first test for an intersection of the headings. This is achieved as

shown in algorithm 1.

Within algorithm 1 we use an unnormalized version of the heading. Within this

algorithm the × symbol represents the cross product. The cross product is defined

between two vectors ((x1,y1)× (x2,y2)) as given in equation (4.4). As before pt
j refers

to the point in two dimensions of track j at time t.

The line is defined by equation (4.2) with h being the heading of the object, s being

the cross product with µ being the mean position of the points.

(x1,y1)× (x2,y2) = (x1× y2)− (x2× y1) (4.4)

As the eigenvectors direction may not correspond to the direction of the trajectory

is moving in (as it is fit to a set of points) it is further necessary to take into account

the direction dt
[i, j] to make sure that both trajectories are heading in the direction of the

intersection.
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Algorithm 1 Algorithm to determine the meeting of two trajectories
dt

[i, j] = pt
j−pt

i // distance between targets j and i at time t

ct
[i, j] = ht

i×ht
j // cross product of the headings of i and j at time t

if ct
[i, j]! = 0 // non zero cross product

δt
[i, j] =

dt
[i, j]×ht

j

ct
[i, j]

ιt
[i, j] = pt

i +δt
[i, j].h

t
i - they intersect at this point

else if ct
[i, j] = 0 // parallel but may be in opposite direction - ie walking towards each

other

if ‖dt
[i,j]‖> 0 and ht

i =−ht
j and ‖ht

i‖> 0 and ‖ht
j‖> 0

rt
i = ||ht

i ||
||ht

i ||+||ht
j||

δt
[i, j] =

dt
[i,j]×rt

i

ct
[i, j]

ιt
[i, j] = pt

i +δt
[i, j].h

t
i- they intersect at this point

else

ιt
[i, j] =do not meet

end

4.4.3 Distance Based Features

Distance is a good measure for many types of interaction, for example meeting is

not possible without being in close physical proximity. First an Euclidean distance

measure is used as given in equation 4.5.

dt
[i, j] = ‖p

t
i−pt

j‖ (4.5)

The derivative of the distance was also calculated. This is the difference in distance

at contiguous time steps. It is calculated as shown in equation 4.6 below.

ḋt
[i, j] = dt

[i, j]−dt−1
[i, j] (4.6)

An instantaneous measure such as the distance and the derivative of the distance

can both be prone to short term tracking errors. In an effort to remove this effect a

window size containing w points (as in Pt
i in section 4.4.1) was averaged. The distance

was calculated for every point (as in equation 4.5) in this window.

d̂t
[i, j] =

t
∑

t−w
dt

[i, j]

‖t− (t−w)‖
(4.7)
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Figure 4.2: The frame to classify (t) uses information from ±w frames around the cur-

rent frame in order to classify the frame.

4.4.4 Final Feature Vector

The final feature vector for each pair of people is given in equation (4.8).

ri, j
t =

[
st

i,s
t
j, ṡ

i
t , ṡ

j
t ,ε

t
[i, j],a

t
[i, j],d

t
[i, j], ḋ

t
[i, j], d̂

t
[i, j],ν

i
t ,γ

i, j
t

]
(4.8)

The vector between persons i and j at time t is made up of the speed of each

person (st
i,s

t
j) and along with the corresponding change in speed ṡi

t , ṡ
j
t . The alignment,

distance and change in distance at a particular point in time is given by at
[i, j], dt

[i, j]and

ḋt
[i, j] respectively. The normalised distance is given by |d|t[i, j] and the vorticity of a

trajectory is given by νi
t . The possible intersection of two trajectories is given by γ

i, j
t .

The final vector contains 10 features. The data was normalised to have zero mean and

unit standard deviation.

4.5 Observation Window Size

Throughout these experiments we investigated the role of varying the number of video

frames used before making a decision as to what is happening within the frame. Figure

4.2 below shows how this is achieved. Throughout this work we used information from

before and after the current frame in order to classify it. This helps with the lag problem

as experienced in Chapter 2 (Team Interaction). The window size variation throughout

this work is equivalent to a few seconds delay. This was not foreseen as a problem

if such an approach was taken in a real surveillance application. The fact that there

would be a lag in classification if making use of only previous information seems an

appropriate trade-off for an increase in accuracy.
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4.6 Classification Methods

This section introduces the classifiers which are used throughout subsequent experi-

ments. We make use of a simple linear discriminant classifier (LDA) which is non-

probabilistic and provides a baseline for performance. This is introduced in section

4.6.1. We then detail hidden Markov models (HMM) in section 4.6.2 which are used

widely throughout the literature. We then introduce a newer model, the conditional

random field (CRF) in section 4.6.3. Finally the previous best method as suggested by

[Oliver, 2000] is briefly reviewed in section 4.6.4.

4.6.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) seeks to maximise the objective function given in

equation 4.9. Here SW is the within class scatter matrix with SB being the between class

scatter matrix. Both the between class and within class scatter matrices are defined in

equations 4.10 and 4.11 respectively.

J(w) =
wT SBw
wT SW w

(4.9)

For the scatter matrices (given below) N is the total number of samples with Nc

being the number of examples of class c. The mean of class c is denoted as µc (as

shown in equation 4.12) with the variance (x̄) calculated as in equation (4.13).

SB =
1

Nc

Nc

∑
c

(µc− x)(µc− x̄)T (4.10)

SW =
1
N

Nc

∑
c

1
Nc

∑
i∈c

(xi−µc)(xi−µc)T (4.11)

µc =
1

Nc
∑
i∈c

xi (4.12)

x̄ =
1
N ∑

c
Ncµc (4.13)

The objective function (equation 4.9) is often referred to as the signal to noise

ratio. What we are trying to achieve is a projection (w) which maximises the distance

of the class means relative to the (sum of) variances of a particular class. To generate a

solution it is noted that equation 4.9 has a property whereby it is invariant with respect

to scaling of the wvectors (eg w→ αw, where α is some arbitrary scaling). Therefore
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w can be chosen such that wT SW w = 1. It is also common (and indeed the case here)

to perform a whitening step (zero mean and unit variance) on the data prior to input

into this method. Therefore LDA is:

minw −1
2

wT SBw

subject to wT SW w = 1

This gives the Lagrangian

Lp =−1
2

wT SBw+
1
2

λ(wSww−1) (4.14)

Using the Karush-Kuhn-Tucker condition the equality which needs to hold at the

solution is:

S−1
W SBw = λw (4.15)

As the matrix S−1
W SB is not symmetric then equation 4.15 is in the form of a gener-

alised eigenvalue problem. Using the fact that SB is symmetric and positive definite it

is possible to write SB = S
1
2
BS

1
2
B where S

1
2
B is defined as in equation 4.16.

S
1
2
B = UΛ

1
2U−1 (4.16)

In equation (4.16) U are the eigenvectors of matrix SB and Λ are eigenvalues ob-

tained by a singular value decomposition of the matrix SB = UΛU . If v is defined as

v = S
1
2
Bw then it follows that,

S
1
2
BS−1

W S
1
2
Bv = λv (4.17)

This problem is now a regular eigenvalue problem for a symmetric positive defini-

tive matrix (S
1
2
BS−1

W S
1
2
B) and solutions can be found for λk and vk that give wk = S

1
2
Bvk.

Projections are found for each class (ie class vs all others projection) and the mean and

variance (C) of the class projection are found. In order to classify a novel point the

new point is projected with S−1
W . The class label is determined by taking the smallest

Mahalonobis distance between the calculated class model’s mean and variance and the

new test point.
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4.6.2 Hidden Markov Models

The model is parameterised by the prior distribution Π with each element πi represent-

ing πi = p(x = i) across all hidden states i ∈ [1, ..,N]. The (stationary) state transition

matrix A is used to represent the probability of a transition from one state (i) to an-

other ( j) through time. An entry within the symmetric matrix A is referenced by

ai, j = p(xt = i|xt−1 = j). Within this work we are concerned with continuous inputs

(rt) which can be accommodated within the model by using a Gaussian mixture model

to model the distribution p(rt |xt = j).

b j(rt) =
M

∑
m=1

c j,mN
(
rt ,µ j,m,Σ j,m

)
(4.18)

Here the observed data Ris the vector being modelled, c j,m is the mixture coeffi-

cient for the mth mixture in state j. N is a Gaussian distribution with mean vector µ j,m

and covariance matrix Σ j,m for the mth mixture component in state j. A restriction on

the mixture coefficient is that it must satisfy the following constraints:

M

∑
m=1

c j,m = 1, 1≤ j ≤ N (4.19)

c j,m ≥ 0, 1≤ j ≤ N, 1≤ m≤M (4.20)

The parameters of the HMM can be represented as λ = (Π,A,θ) where θ represents

the parameters for the mixture model θ = (C,µ,Σ).

4.6.2.1 Inference

The goal of inference is to compute the probability of the observation sequence R
given the parameters of the model p(R|λ). Here the forward backward procedure

(also known as the Baum-Welch algorithm [Baum et al., 1970]) is presented. It is also

possible to solve this problem using the well known junction tree algorithm [Huang and

Darwiche, 1996]. However, here the forward backward algorithm is used for speed and

simplicity.

The forward variable is defined as:

αt(i) = p(r1,r2, ..,rt ,qt = S j|λ) (4.21)

with qt being the (hidden) state at time t. To generate the probability the solution

to αt(i)can be calculated incrementally as show in algorithm 2.
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Algorithm 2 Forward parameter recursive algorithm
Initialisation

α1(i) = πib j(r1)

Induction

αt+1( j) =
(
∑

N
i=1 αt (i)ai, j

)
b j(rt+1)

Termination

p(R|λ) = ∑
N
i=1 αT (i)

Algorithm 3 Backward parameter recursive algorithm
Initialisation

βT (i) = 1

Induction

βt(i) = ∑
N
j=1 ai, jb j(rt+1)βt+1( j)

The backward parameter β is also used within inference and parameter updating

and represents the conditional probability given below in equation 4.22.

βt(i) = P(rt+1,rt+2, ..,rT |qt = Si,λ) (4.22)

As in the case of the forward parameter a recursive updating procedure is used as

given in algorithm 3.

The forward and backward variables can be used to calculate the probability of

being in state i at time t by equation (4.23):

γt(i) =
αt (i)βt (i)

∑
N
j=1 αt ( j)βt ( j)

(4.23)

We make use of this equation when updating the parameters of the model in the

following subsection.

4.6.2.2 Parameter Updates

This section details how to updates the parameters of the HMM. All updates are per-

formed within an expectation maximisation (EM) framework.

The prior probability is estimated as:

π̂i = γ1(i) (4.24)

with γ1(i) being defined as in 4.23, the hat represents the fact that this is an estimate

of the true prior distribution. The state transition matrix is updated according to the



Chapter 4. Detection and Classification of Interacting Persons 81

following:

âi, j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

(4.25)

The term ξt(i, j) represents the probability of being in state i at time t and in state

j at time t + 1 given the observations and the model parameters. This is shown in

equation 4.26.

ξt(i, j) = p
(
qt = Si,qt+1 = S j|R,λ

)
(4.26)

Using the previous definitions of the forward αt(i) and backward βt(i) variables

the term ξt(i, j) can be written as:

ξt(i, j) =
αt(i)ai, jbi(rt+1)βt+1( j)

∑
N
r=1 ∑

N
s=1 αt (r)ar,sbr(rt+1)βt+1(s)

(4.27)

For the estimation of the parameters of the mixture models θ = (C,µ,Σ) the fol-

lowing formulas are used:

ĉ j,k = ∑
T
t=1 γt ( j,k)

∑
T
t=1 ∑

M
n=1 γt ( j,n)

(4.28)

µ̂ j,k = ∑
T
t=1 γt ( j,k) · rt

∑
T
t=1 γt ( j,k)

(4.29)

Σ̂ j,k =
∑

T
t=1 γt ( j,k) ·

(
rt−µ j,k

)(
rt−µ j,k

)T

∑
T
t=1 γt ( j,k)

(4.30)

For each class, examples from that class are presented to a HMM and the parame-

ters are set as described above. There is one model for each class. In order to classify a

new example (R) the likelihood of that example (p(R|λ)) is computed for each trained

model (see section 4.6.2.1). The model producing the highest likelihood (p(R|λ)) is

then taken to be the class of the new example. Within this experiment we used a

model with 4 hidden states and 3 mixture components per state. These values were

determined empirically.

4.6.3 Conditional Random Field

In this section the workings of a conditional random field (CRF) are explained and

then the specific formulation as applied in this thesis is given. The structure of the

CRF weuse is shown in Figure 4.3. The CRF can be configured to resemble HMM like
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Figure 4.3: CRF model. The observations (r) are shown for each timestep. The class

label x is also shown.

models. However they can be more expressive in that arbitrary dependencies on the

observations are allowed. Using the feature functions of the CRF allows any part of

the input sequence to be used at any time during the inference stage. It is also possible

that different state’s (classes) can have differing feature functions (though we do not

make use of this here). The feature functions describe the structure of the model.

The CRF is also a discrimanative model where as the HMM is a generative one. A

potential advantage of the discriminative CRF over generative models is that they have

been shown to be more robust to violations of independence assumptions [Lafferty

et al., 2001].

The discrete temporal state at a particular timestep t is given by xt which takes a

value from the set of all class labels x ∈ X = {1,2, ..,C}. Here C is the number of class

labels and t = 1, ..,T ,with T being the maximum length of the sequence. Observations

at time t are denoted as rt with the joint observations given as Rt = (r1, ..,rt). Likewise

the join state is given by Xt = (x1, ..,xt). For notational compactness we shall often

refer to Xt as X and Rt as R in accordance with other authors ( [Sminchisescu et al.,

2005, Wallach, 2004]).

The distribution over joint labels X given observations R and parameters θ are

specified below :

pθ (X|R) =
1

Zθ (R) ∏
c∈C(X,R)

φ
c
θ(Xc,Rc) (4.31)

In the above equation (4.31) φc
θ

is the positive valued potential function of clique

c and Zθ(R) is the observation dependent normalisation (sometimes referred to as a

partition function) as given in 4.32. C(X,R) is the set of maximal cliques.
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Zθ(R) = ∑
x

∏
c∈C(X,R)

φ
c
θ(Xc,Rc) (4.32)

Here a first order linear chain is used (as shown in figure 4.3). The cliques are

pairs of neighbouring states (xt , xt+1), whilst the connectivity among observations is

unrestricted and are known and fixed in the graph. A CRF model with T timesteps (as

we use here) can be rewritten in terms of exponential feature functions Fθ computed in

terms of weighted sums over the features of the cliques. This exponential formulation

is given in equations 4.33 and it’s normalising term4.34.

pθ (X|R) =
1

Zθ (R)
exp

(
T

∑
t=1

Fθ(xt ,xt−1,R)

)
(4.33)

Zθ(R) = ∑
X

exp

(
T

∑
t=1

Fθ(xt ,xt−1,R)

)
(4.34)

The conditional log likelihood of the CRF is given as in equation 4.35. Assuming

that the training data is fully labelled
{

Xd,Rd}
d=1,..,D the parameters of the model are

obtained by optimisation of this function.

Lθ =
D

∑
d=1

log pθ

(
Xd|Rd

)
=

D

∑
d=1

(
T

∑
i=t

Fθ(xd
t ,xd

t−1,R
d)− logZθ

(
Rd
))

(4.35)

In order to make parameter optimisation more stable the problem often makes use

of a regularised term. This means the problem becomes one of optimising the penalised

likelihood (Lθ + Rθ) which consists of both the likelihood Lθ (as in 4.35) and the

regularising term Rθ. The regularising term used within this work is chosen to be Rθ =

−‖θ‖2 which corresponds to soft feature selection. The derivative of the likelihood

w.r.t. the parameters (θ) of the model as given in equation 4.36:

dLθ

dθ
=

D

∑
d=1

(
T

∑
i=t

dFθ(xd
t ,xd

t−1,R
d)

dθ
−∑

X
pθ(X|R)

T

∑
t=1

dFθ(xt ,xt−1,Rd)
dθ

)
(4.36)

A gradient ascent optimisation method is used to perform likelihood maximisation.

In this case we use scalar conjugate gradient optimisation.

Efficient computation of the observation dependent normalisation can be computed

using matrix multiplication. For a first order model a matrix Mt(R) of size c×c which

contains all possible assignments of pairs of neighbouring states to class labels.
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Mt(R) = [exp(Fθ (xt ,xt−1,R))] ,xt,xt−1 ∈ X (4.37)

The conditional probability of a class label sequence is:

pθ(X|R) = ∏
T+1 exp(Fθ (xt ,xt−1,R))

Zθ (R)
(4.38)

with the observation dependent normalisation factor Zθ (R) calculated as:

Zθ(R) =

(
T+1

∏
t=1

Mt (R)

)
start,stop

(4.39)

Here two dummy states (x0 = start and xT+1 = stop) have been added. The sub-

script indicates the particular entry of the matrix product. The potential functions at

neighbouring sites can be chosen as:

Fθ(xt ,xt−1,R) = ψθ(xt ,R)+ψ(xt ,xt+1) (4.40)

where

ψθ (xt ,R) =
A

∑
a=1

λa fa (xt ,R) (4.41)

and

ψθ (xt ,xt−1) =
B

∑
b=1

βbgb (xt ,xt−1) (4.42)

In this formulation the parameters to estimate are given as :

θ = {(λa,βb) ,a = 1, ..,A,b = 1, ..,B} (4.43)

The feature functions ψθ (xt ,R) at each timestep are those which are given in sec-

tion 4.4. The transition function ψθ (xt ,xt−1) concerns itself with the class to class

transitions which are given in the data labels.

Once trained novel input is given to a CRF model and a probability distribution

is given throughout all timesteps for all classes. In this case we choose the highest

probability as being the classification label of the new example. A Gaussian prior over

the input data was used throughout all experiments.

The feature functions (as given in equation 4.40) describe the conditional depen-

dency between the observations R and the model’s state variables. In this case each

dimension of the observation vector will have a feature function for each state (ie class)



Chapter 4. Detection and Classification of Interacting Persons 85

variable. The observation is not the feature function itself, but there is a feature func-

tion for each observation. The transition function (gb (xt ,xt−1)) represents the class

transitions. The function we use simply states that if we are in class 1 at time t−1 then

we expect to be in the same class at time t. Each feature pair (Fθ(xt ,xt−1,R)) consists of

a feature function and a transition function. The model is made up of all combinations

of features and class transitions. There are numbero f classes×numbero f f eatures (in

this case 11, see section 4.4) features. For example if there are 5 classes then there are

55 (5x11) features (with associated functions) which make up the CRF model.

When showing a novel example to a trained model the output of the model is a

probability distribution (pθ (X|R)). The class with the highest probability is selected

as the class label for the novel example.

4.6.4 Oliver’s Coupled Hidden Markov Model

Here we briefly cover Oliver’s method ([Oliver et al., 2000a]) of classifying interacting

individuals. This work is reviewed as it provides a state of the art method to compare

our results with. Oliver used coupled hidden Markov models to model five different

interactive behaviours. These behaviours are:

• Change direction to meet, approach, meet and go on separately.

• Change direction to meet, approach, meet and go on together.

• Approach, meet and go on separately.

• Approach, meet and go on together.

• Follow, reach and go on together.

We briefly present an overview of the methods and features that Oliver used in order to

classify such behaviour. Oliver’s work is used for comparison with the work presented

here.

4.6.4.1 Oliver’s features

Oliver et al. use 4 features to classify interacting individuals. Oliver measures the posi-

tion, orientation and velocity. From these measurements several features are extracted.

The two input vectors for the coupled model (one per chain) are :
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f1 = [v1,d1,2,a1,2]

f2 = [v2,d2,1,a2,1]

Here the velocity of each person is given by v and is calculated as vi =
√

ẋi
2 + ẏ2

i ,

where the dot represents the movement w.r.t. time. The derivative of the relative dis-

tance between two agents is given by di, j. The alignment between two people is given

by a1,2 = sign(p1 · p2) where the dot denotes the dot product between two vectors. The

vector p represents the directional vector of a person. Each feature vector is calculated

at each timestep and used as input into the CHMM model.

4.6.4.2 CHMM inference and learning

The coupled HMM as used by Oliver is shown in figure 4.4 (b).

The posterior hidden state of a two chain CHMM is given in equation (4.44).

P(S|O) =
P(s1)P(o1|s1)P(s′1)P(o′1|s′1)

P(O)
. . .

×
T

∏
t=2

P(st |st−1)P(s′t |s′t−1)P(s′t |st−1)P(st |s′t−1) . . .

×P(ot |st)P(o′t |s′t) (4.44)

Here the state at a particular timestep is represented by st along with the observa-

tion ot at a particular timestep. The prime (’) denotes which of the chains the state

or observation belongs to (as shown in figure 4.4). The intra state transition probabil-

ity matrices are represented by P(st |st−1)P(s′t |s′t−1) whilst the inter state (cross chain)

probability matrices are represented by P(s′t |st−1)P(st |s′t−1). The observation probabil-

ities are given by P(ot |st)P(o′t |s′t). The learning algorithm used to update the parame-

ters of the model is given by [Brand et al., 1997]. This procedure is not repeated in this

thesis and an interested reader should consult [Brand et al., 1997]. In all subsequent

experiments we use 2 hidden states with 2 mixture components per state. These values

were determined empirically.

4.7 Results

This section details the results of classification on three datasets. First results are

presented on synthetic data. Use is then made of real data from the publicly avail-
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(a)

(b)

Figure 4.4: Structure of the hidden Markov model model (a), compared to the 2 chain

coupled hidden Markov model (b) as used by Oliver.
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able CAVIAR [project/IST 2001 37540, 2004] and BEHAVE [Blunsden et al., 2007b]

datasets.

4.7.1 Experimental setup

The CAVIAR dataset has been previously used in [Dee and Hogg, 2004a, Wu and

Nevatia, 2007] however there is not a universally agreed training and testing set. There-

fore it was deemed that in order to characterise an algorithm’s true performance upon

a dataset it should be tested with different subsets of the entire data. This will give an

indication of the expected performance of the algorithm rather than finding a particu-

larly good (in terms of classification accuracy) subset and publishing results based on

this. This allows performance to be characterised much more realistically by showing

the true expected accuracy rather than simply a lucky configuration. All such tests are

carried out independently of one another, for example the model’s previously learned

parameters are not used in subsequent runs.

We are interested in comparing the four methods as described in the previous sec-

tion. Furthermore the role of time is investigated. We seek to investigate what is the

optimal length of time a sequence should be watched before a decision is made. Re-

sults comparing each method and the effects of time are given in section 4.7.2.

Throughout the training procedure the testing set was kept separate from the train-

ing data and was unseen by the learning algorithm until testing time. Therefore only the

training set was used when determining the parameters of the learning model. Training

and testing sets were split 50/50 on a per class basis. Partitioning was done per-class

rather than over the whole dataset due to the uneven distribution of classes. Such a

step means that in the training stage the learning algorithm will have examples of ev-

ery type of class. We would not expect a correct classification on unseen classes and

so this measure can stop misleading results. In order to show the average performance

this procedure was repeated over 50 different partitions of the training and test data.

The dataset contains examples of complete sequences, for example a sequence

consisting of two people walking together may be hundreds of frames long. Our goal

is to classify each frame correctly. If we were to take this sequence and split it up

as training and testing frames then the classification task would be much simpler as

training and testing points would be simply a matter of interpolation between highly

similar points. It is for this reason that when deciding on the training and testing

data we partition based on the complete sequences. This means that an entire walking



Chapter 4. Detection and Classification of Interacting Persons 89

(a)

(b)

Figure 4.5: Different training and testing partitioning schemes. The top diagram (a)

represents data partitioning which would result in interpolation. The method shown in

(b) is preferred and should result in a more challenging problem.

together sequence will be assigned to the training set whilst another complete walking

together sequence will be assigned to the testing set. This should avoid the pitfall of

having training and testing data which is essentially the same. This is especially true as

the data has a very strong temporal coupling. The two approaches are shown in figure

4.5.

4.7.2 Classification Results

This section presents the results obtained by using the methods described in the preced-

ing chapters. Results using a conditional random field (CRF) , hidden Markov model

(HMM) and its coupled variation (CHMM) are presented. Results using a linear dis-

criminant model (LDA) are also presented and used as a baseline non-probabilistic

method to which results are compared. We present the result of classification over

many training and testing subsets to give an indication of the standard deviation and

the expected performance when using a method. Results are presented over many dif-

ferent window sizes. The classification results are presented on three data sets. The
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details of these datasets can be found in the Appendix.

In order to ensure a fair comparison over varying window sizes we restrict the test

set so that it is composed of only those frames for which it is possible to compute

features for the largest window size. For example if there is a sequence consisting of

5 frames then when using a window size of greater than 5 frames to classify it would

not be possible to classify this frame (eg if we were trying to take into account the

previous 10 frames it would not be possible to classify this frame). This allows a fair

comparison between differing window sizes and ensures that results are presented on

the same data.

Graphs are presented showing the averaged performance along with one standard

deviation.

4.7.2.1 Synthetic Data set

The synthetic dataset is used to test out the proposed approach with known data. The

synthetic dataset consists of 12,385 frames over five classes. These classes are: walk

together (2950) meet (1636), wait (2101), split (3243) and follow (2455) with the num-

ber of example frames given in brackets. These examples are divided into sequences

which range in length between 100 and 500 frames.

Results graphs

The overall results upon the synthetic dataset are presented in figure 4.6. For both the

HMM and CHMM models there is a rise in classification performance as the window

size is increased from 1 until around 10 frames for the HMM and 20 frames for the

CHMM. After this time there is only a very slight gradual improvement. The case of

the CRF there is a slight decline as the window size increases. Classification by CRF

produces the best results and works well when classifying frames using only a small

amount of information. The standard deviation ( 1σ shown by the shaded regions)

for all three methods remains fairly constant throughout. All three of the probabilistic

graphical models out perform LDA.

The per class results are shown in figures 4.7 and 4.8. When classifying the be-

haviour “following” (figure 4.7 (a)) the window size has the most significant effect and

all methods show an improvement when the information content is increased. Again

the CRF model shows the best performance. When classifying instances of “meeting”

and “splitting” there is an initial improvement for both HMM and CHMM methods be-



Chapter 4. Detection and Classification of Interacting Persons 91

Figure 4.6: Overall results on the synthetic dataset for each method. Lines show aver-

aged results (over 50 runs) whilst the shaded regions show one standard deviation.

tween window sizes of 1 and 20. There is no subsequent improvement when increasing

the window size further.

Attempts to classify instances of people “walking together” (figure 4.8 (a)) give the

most trouble for all classification methods. This is visible by the low performance and

the high standard deviation when classifying examples. Both the HMM and CHMM

initially quickly improve when the window size is increased before this improvement

declines or even reverses slightly (as is the case of the HMM). Both the CRF and the

LDA’s performance decreases slightly when the length of time increases. In all cases

the standard deviation of performance remains high but fairly constant.

Again a reduction in the accuracy of classification is observed when classifying the

waiting behaviour (figure 4.8 (b)) for both the CRF and LDA methods. This reduction

tails off for window sizes greater than 140. This is likely to be caused by the longer

sequences averaging out better than medium length ones. Classification by LDA gives

the highest variation in performance.

This may be caused by the CRF classifier having a better short term model. The

CRF features are only made up of features which state the previous class should be

the same as this class. The classification of multiple frames just uses the probability

of each of these separate frames. For longer window sizes there may be more noise
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(a) (b)

(c)

Figure 4.7: Per class results upon the synthetic data. The classes are: (a) follow (b)

meet (c) split
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(a) (b)

Figure 4.8: Per class results upon the synthetic data. The classes are: (a) walk together

(b) wait.

which confuses the short term model of the CRF. In contrast the HMM model is much

better at smoothing the signal across the entire sequence. The forward algorithm used

to determine the likelihood seems to smooth the signal much better than the CRF.

The case of the CHMM the more gradual improvement could be attributable to the

larger number of parameters which requires more data in order to represent the data

adequately.

Best Results : Confusion Matrices

The confusion matrices giving the best overall result for over all the runs are now

presented. The window size at which this performance was achieved is also given.

The results for the HMM and CRF models are given in figure 4.9.

The results for the CHMM and the LDA methods are given in figure 4.10.

All methods have some degree of trouble in classifying people walking together.

This is most frequently mis-classified as “splitting”, however the converse is not so

true. This is perhaps due to the fact that when walking together there are small varia-

tions in the distance between people which can be confused with the start of a people

splitting up. None of the methods seem to improve dramatically with time which is
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True

Walk Together Meet Wait Split Follow

Walk Together 0.88 0 0 0 0

Classified Meet 0 1 0 0 0

Wait 0 0 1 0 0

Split 0.12 0 0 1 0

Follow 0 0 0 0 1

Total Samples 667 102 164 493 550

HMM - Best 96% at window size 100

True

Walk Together Meet Wait Split Follow

Walk Together 0.91 0 0 0 0

Classified Meet 0 1 0 0 0

Wait 0 0 1 0 0

Split 0.09 0 0 1 0

Follow 0 0 0 0 1

Total Samples 752 102 174 906 369

CRF - Best 97% at window size 2

Figure 4.9: Confusion matrices displaying the best results for classification upon the

synthetic dataset for the hidden Markov model and the conditional random field.
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True

Walk Together Meet Wait Split Follow

Walk Together 0.57 0 0 0 0.15

Classified Meet 0 1 0 0 0

Wait 0 0 1 0 0

Split 0.43 0 0 1 0

Follow 0 0 0 0 0.85

Total Samples 892 363 442 751 1027

CHMM - Best 84% at window size 90

True

Walk Together Meet Wait Split Follow

Walk Together 0.48 0 0 0 0

Classified Meet 0 1 0 0 0

Wait 0 0 0.95 0 0

Split 0.34 0 0.05 1 0.03

Follow 0.18 0 0 0 0.97

Total Samples 1362 94 175 455 105

LDA - Best 67% at window size 102

Figure 4.10: Confusion matrices displaying the best results for classification upon the

synthetic dataset for the coupled hidden Markov model and linear discriminant analysis.
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not what you would expect. However the constant movement of people away from one

another over a short time period may explain this effect to some degree. The fact that

all methods show a similar pattern may mean its cause is rooted in the features used

rather than by the classification algorithms themselves. A feature which represents the

distance over a long period may improve performance in this respect.

Summary of Classification Upon the Synthetic Dataset

When classifying with a CRF the best performance is achieved with small amounts of

information. It should be remembered that some features (such as the speed and the

change in distance etc.) use a few frames to calculate them. Even when the window

size is small information is still coming from multiple frames. This may explain the

good performance with small window sizes.

For all classes the CRF method gives the best performance (ie the CRF attains the

highest average performance over all window sizes for all classes). For a particular

window size another method may outperform it but the best average performance over

all window sizes will be a result of CRF classification.

When looking at the overall results the HMM method performs almost as well

when using a window size of greater than 100 frames. Conversely the CRF methods

performance declines slightly when the window size decreases. This is most likely due

to the temporal model only taking into account the previous frame. The decline may

be due to noise throughout the sequence which is not “averaged out” as effectively as

in the case of the HMM.

The results of both the HMM and the CRF perform significantly better than the

CHMM method as proposed by [Oliver et al., 2000a]. Perhaps this is not surprising

as there is a high degree of redundancy in the information input Oliver’s proposed

method. Both the standard HMM and the CRF also require significantly less com-

puting time both for training and classification. However, the results using a CHMM

creates a similar pattern to that of a HMM in that there is significant early improvement

in performance followed by a very slight improvement. This is expected as the like-

lihood propagates through the model in a similar way (forward-backward algorithm).

In contrast for both the CRF and the LDA larger window sizes can cause a decrease in

performance (walk together/wait). Again this is most likely due to the noise introduced

in the longer sequences coupled with the short term temporal model (or no temporal

model, for the LDA). All classes seem to confuse walking together and splitting. This

is perhaps understandable as both contain a walking motion and the distance between
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the the people is not completely constant.

An extension to the temporal model of the CRF could help to improve results fur-

ther. The temporal feature (equation 4.42) could be extended to aggregate previous

timesteps rather than just using the previous one.

4.7.2.2 CAVIAR Dataset

The CAVIAR dataset contains 11,415 frames which have labelled examples of interac-

tions. Within this set there are 5 distinct classes which we seek to identify and classify.

The 5 classes consists of examples of people: walking together (2,543), approaching

(942), ignoring (4,916), meeting one another (1,801), splitting up (879) and fighting

(334). The numbers in brackets indicates how many frames contain this behaviour.

Results graphs

In similarity to the synthetic data the CRF method performs the best at smaller window

sizes. However in this case the HMM method attains the highest averaged performance

at a window size of 90. As the window size is increased there is an increase in classi-

fication performance for both the dynamic probabilistic models of the HMM and the

CHMM. The CRF retains roughly the same performance, whilst performance using the

LDA decreases slightly. In all cases the variability in performance increases slightly

with an increase in window size.

When looking at the per class results (displayed in figure 4.12) there are some

interesting patterns. When classifying one person approaching another (figure 4.12

(a)) the variation in classification is very high. In all cases except when using a HMM

the accuracy decreases. For the HMM a decrease is followed by an increase at which

point there is no further improvement. The improvement is in contrast to the other

classifiers and suggests that the model is able to pick out approaching behaviour it has

seen enough evidence. The HMM is able to better distinguish between approaching

and ignoring (which gives the other methods the most trouble) after a window size of

30. This is most likely to its better temporal model compared to the CRF and LDA.

The larger number of parameters in the CHMM combined with the small number of

examples (942) could explain its poor performance.

In the case of fighting (figure 4.12 (b)) there is a systematic pattern which is fol-

lowed by all classification methods. For all methods performance is poor but after a

window size of 30 performance rapidly decreases for all methods. This is mainly to
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Figure 4.11: Overall results on the CAVIAR dataset for each method. Lines show aver-

aged results (over 50 runs) whilst the shaded regions show one standard deviation.

do with the examples themselves. The actual fighting (ie somebody throwing a punch)

is over very quickly, for some examples it takes less than a second. Larger window

sizes seem to swamp examples with frames containing seemingly normal behaviour

and so lose the significant but quick action. There are also relatively few examples of

fighting (only 4 complete sequences). This may lead to there simply not being enough

information to accurately learn a generalisable representation.

Classes ignore and meet (figure 4.12 (c) and (d)) display comparatively little vari-

ation as window size is increased. Oliver’s CHMM method performs particularly well

on the ignore class.

The results of classifying people splitting from one another are shown in figure 4.13

(e). With a HMM the results improve with a larger window size. Once the window size

has increased beyond 75 there is no variance as the method seems capable of consistent

perfect classification. The standard deviation decreases for both the CRF and for the

CHMM at a window size of over 50. This indicated that enough time has passed to

conclude that the people are indeed splitting. However there are a few cases where

after walking away the person stops or turns around before carrying on again. This

type of behaviour can lead to mis-classification for all methods but the HMM seems

to be particularly robust to it. It should also be noted that there are relatively few



Chapter 4. Detection and Classification of Interacting Persons 99

(a) (b)

(c) (d)

Figure 4.12: Per class results for the CAVIAR dataset showing performance of differing

classification methods over varying window size. The classes shown are (a) approach,

(b) fight, (c) ignore , (d) meet.
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(e) (f)

Figure 4.13: Per class results for the CAVIAR dataset showing performance of differing

classification methods over varying window size. The classes shown are (a) split, (b)

walk together.

examples of splitting behaviour (879) within this dataset.

Walking together (figure 4.13 (f)) shows little variation in classification accuracy

depending upon the window size.

Best Results : Confusion Matrices

The confusion matrices for the best results are given in figure 4.14 for HMM (a) and

CRF (b) classification and in figure 4.15 for CHMM (a) and LDA (b) classification.

The HMM confuses walk with meet around 8% of the time but the biggest error is

confusing splitting with meeting. The confusion may arise as again there is no feature

which seems to be able to distinguish between cases where somebody moves away and

then moves back and when they continually move away (as is the case for splitting).

Examples for fighting are completely missed. This is most likely down the the very

small sample size of this class.

For the CRF the method has problems confusing walk together and ignore. In addi-

tion split is often classified as two people ignoring one another. This can be understood

as after some distance the two people appear to be ignoring one another if you can only
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True

Walk Together Approach Ignore Meet Split Fight

Walk Together 0.92 0 0.002 0 0 0

Classified Approach 0 1.0 0 0 0 0

Ignore 0 0 0.99 0 0 0

Meet 0.08 0 0 0.86 0 1.0

Split 0 0 0.004 0.14 1.0 0

Fight 0 0 0.004 0 0 0

Total Samples 479 1.0 1652 336 41 7

HMM - Best 97% at window size 90

True

Walk Together Approach Ignore Meet Split Fight

Walk Together 0.87 0 0 0 0 0

Classified Approach 0 0.43 0 0 0 0

Ignore 0.09 0.57 1.0 0 0.51 0.35

Meet 0 0 0 1.0 0 0

Split 0.03 0 0 0 0.48 0

Fight 0.01 0 0 0 0 0.65

Total Samples 624 77 1243 356 87 17

CRF - Best 93% at window size 45

Figure 4.14: Confusion matrices displaying the best results for classification upon the

CAVIAR dataset for the hidden Markov model and the conditional random field.

look a few frames into the past (ie its not possible to determine that the persons were

previously together over the timescale (45 frames) given).

Like the CRF model the CHMM method appears to have problems distinguish-

ing between walking together and ignoring one another. However in the case of the

CHMM the error is greater. Approaching is often confused with ignoring. This may

be to do with a large window size identifying people as getting nearer one another

but who do not actually meet (eventually). The constrained exits and entrances to the

scene mean that many people do get nearer one another before passing each other.

Other methods using the new feature set do not display this problem. Again fighting

classification poses a problem.

LDA performs the worst of all methods and confuses many of the same classes as
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True

Walk Together Approach Ignore Meet Split Fight

Walk Together 0.70 0 0 0 0 0

Classified Approach 0.05 0.26 0.02 0 0 0

Ignore 0.24 0.74 0.98 0 0.7 0.83

Meet 0 0 0 0.97 0 0

Split 0 0 0 0.03 0.3 0.17

Fight 0.01 0 0 0 0 0

Total Samples 841 70 708 834 185 128

CHMM - Best 78% at window size 90

True

Walk Together Approach Ignore Meet Split Fight

Walk Together 0.78 0 0 0.09 0.09 0.1

Classified Approach 0.05 0.39 0.04 0.02 0 0.34

Ignore 0.04 0.61 0.92 0.01 0.29 0

Meet 0 0 0 0.78 0 0.05

Split 0.7 0 0.04 0.08 0.6 0.22

Fight 0.06 0 0 0.02 0.02 0.29

Total Samples 1140 390 1389 573 223 222

LDA - Best 75% at window size 4

Figure 4.15: Confusion matrices displaying the best results for classification upon the

CAVIAR dataset for the coupled hidden Markov model and linear discriminant analysis.

the CHMM. However it seems to also have trouble classifying the meeting class.

Summary of Classification Upon the CAVIAR Dataset

Again it is visible that for small window sizes the CRF method offers the best per-

formance. However in this dataset the HMM model gives the best possible average

performance. Both the HMM and the CRF using the new proposed features show su-

perior performance to Oliver’s method. A particular problem for all methods is in the

classification of fighting behaviour. A small sample size and the short timescale where

any fighting actually occurs contribute towards this. We see that for some cases the

window is too small (such as walking together and ignore) or too large (such as ignore

and approach). A per class time window or an enhanced feature set would help this
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problem.

One of the other features of this dataset is that for “approaching”, “splitting” and

“fighting” there were perhaps not enough examples to get a build a sufficiently gener-

alisable model. A simple answer would be to say that more data is required. However

in many real surveillance applications such an approach is not possible so showing

how a method performs using only limited data is still of value.

4.7.2.3 BEHAVE Dataset

The BEHAVE dataset contains 134,457 frames which have labelled examples of in-

teractions. Within this set there are 5 distinct classes which we seek to identify and

classify. The 8 classes consist of examples of people: In a group (91,421), Approach-

ing (8,991), walking together (14,261), splitting (11,046), ignoring (1,557), fighting

(4,772), running (1,870) and chasing (539) one another. The numbers in brackets indi-

cates how many frames contain this behaviour.

Results graphs

The overall averaged classification is shown in figure 4.16. The CRF clearly performs

better than all other methods on this dataset for all window sizes. There is a slight in-

crease in performance when the window size is increased when using a CRF. However

the effect is more dramatic for both the CHMM, HMM and the LDA method. All three

of these methods (HMM, CHMM, LDA) increase in performance as the window size

is increased. Significant performance increases are observed between window sizes of

1 and 20.

Per class results (figures 4.17 and 4.18) display a similar story where increasing

the window size has little effect upon CRF classification. When classifying splitting

(figure 4.17 (a)), approaching (figure 4.17 (b)) and fighting (figure 4.17 (c)) increasing

the window size improves the performance of the HMM, CHMM and the LDA classi-

fiers. The HMM classifier gives the best performance of all methods when classifying

fighting (figure 4.17 (c)).

Increasing window size also gives a similar increase in performance for both the in

group classification (4.18 (a)) and the walking together class (4.18 (b)). However when

classifying people in a group (4.18 (a)) the LDA method decreases in performance.
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Figure 4.16: Overall performance on the BEHAVE dataset for each method. Lines show

averaged results (over 50 runs) whilst the shaded regions show one standard deviation.

Best Results : Confusion Matrices

For the HMM classifier (figure 4.19 (a)) there is some confusion between being in a

group and fighting. There are similarities in that a lot of the fighting occurs between

groups of people in close proximity. Walking together and fighting are also confused.

Again the method seems to be identifying the movement and close proximity but not

the long term erratic trajectories that fighting produces. Splitting mainly gets confused

with being in a group. At the initial split people are near each other so this can look

similar to being in a group over a short time period. Interestingly the best performance

attained by the HMM is higher than that of the CHMM (Figure 4.20 (b)) even though

its average performance is worse.

For the CRF classifier (figure 4.19 (b)) the main confusion arises between confus-

ing approaching and walking together and being in a group. This is likely to be caused

by high similarities during the later stages of approaching when a person is almost in a

group. The transitional effect may also be responsible for confusing the early stages of

walking together and approaching one another (ie. to walk together). There also seems

to be some confusion when classifying splitting behaviour. The main confusion seems

to be with walking together. Again early stages of such sequences appear similar (ie.

movement and near each other, at least for the initial stages of splitting).
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(a) (b)

(c) (d)

Figure 4.17: Per class results for the BEHAVE dataset showing performance of differing

classification methods over varying window size. The classes shown are (a) split, (b)

approach, (c) fight , (d) ignore.
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(a) (b)

Figure 4.18: Per class results for the BEHAVE dataset showing performance of differing

classification methods over varying window size. The classes shown are (a) in group,

(b) walk together.
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True

In Group Approach Walk Together Split Ignore Fight

In Group 0.94 0 0 0.17 0 0

Classified Approach 0 1 0 0 0 0

Walk Together 0 0 0.96 0.02 0 0.05

Split 0 0 0 0.73 0 0

Ignore 0 0 0 0.08 1 0

Fight 0.6 0 0.04 0 0 0.95

Total Samples 1510 272 190 237 253 162

(a) - HMM - Best 94% at window size 32

True

In Group Approach Walk Together Split Ignore Fight

In Group 0.99 0.02 0 0.01 0 0

Classified Approach 0 0.96 0 0 0.04 0

Walk Together 0 0.02 0.97 0.02 0 0.04

Split 0 0 0 0.97 0 0

Ignore 0.005 0 0 0 0.96 0

Fight 0.005 0 0.02 0 0 0.96

Total Samples 42176 3321 4994 3293 293 1628

(b) - CRF - Best 98% at window size 45

Figure 4.19: Confusion matrices displaying the best results for classification upon the

BEHAVE dataset for the hidden Markov model and the conditional random field.
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True

In Group Approach Walk Together Split Ignore Fight

In Group 0.97 0.03 0 0.02 0.27 0.15

Classified Approach 0.01 0.97 0 0 0.49 0.04

Walk Together 0 0 0.9 0.02 0 0.14

Split 0.01 0 0 0.95 0.17 0

Ignore 0.01 0 0 0.01 0.01 0

Fight 0 0 0.1 0 0.05 0.67

Total Samples 40486 1656 4207 2305 895 1443

(c) - CHMM - Best 93% at window size 50

True

In Group Approach Walk Together Split Ignore Fight

In Group 0.94 0 0.09 0.01 0.27 0.31

Classified Approach 0.003 1 0.01 0 0.44 0.05

Walk Together 0.2 0 0.71 0.07 0.03 0.47

Split 0.007 0 0.02 0.87 0 0

Ignore 0.01 0 0 0.01 0.24 0

Fight 0.02 0 0.16 0.02 0.02 0.15

Total Samples 44262 3029 4873 3529 758 1491

(d) - LDA - Best 88% at window size 10

Figure 4.20: Confusion matrices displaying the best results for classification upon the

BEHAVE dataset for the hidden Markov model and the conditional random field.

As with the HMM and CRF, splitting and in group are confused using the CHMM

(Figure 4.20 (a)). However the CHMM seems to have a great deal of trouble also

classifying the ignore behaviour. Fighting is frequently confused with in group and

approach which also have movement close to one another. The higher errors over

multiple classes indicate that the feature set is unable accurately classify the data well.

LDA classification (Figure 4.20 (b)) also displays a high level of confusion across

many of the classes. The worst classification results are for fighting (15% correct) and

ignoring behaviour (24% correct).
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Summary of Classification Upon the BEHAVE Dataset

It is again shown that the CRF method performs well when there is limited information

available (a few frames). The CRF classifier also gives the best overall classification

performance (figure 4.19 (b)) and the best averaged performance ( figure 4.16) over all

window sizes. However again we see that the method’s temporal model is insufficient

to cope with some situations (as highlighted by confusion between approaching, walk-

ing together and being in a group). A better model over a long time period will help in

such instances. Oliver’s CHMM method performs well and gives better average clas-

sification than the HMM and the LDA methods. However its performance is 5% less

accurate that of the CRF classifier at best. For smaller window sizes (up to 40) this gap

is up to 20%.

4.8 Window Size Classification

Based upon results in the previous section we can see that when classifying examples

each class has an associated window size at which the classification is optimal. In this

section we present an initial investigation to exploit that fact.

The original classification scheme as detailed in previous sections (4.4,4.5) is mod-

ified to allow each class to use a different window size when classifying an example.

We select the window size per class as follows :

1. Divide the data into training and testing as before. Set aside some examples

contained in the training set, label them the validation set.

2. Train model as before using only the training set.

3. For a range of window sizes classify the validation set.

4. For each class pick the best performing window size.

5. Final overall model consists of C class models each with its own window size

(where C is the number of classes).

The classifier for each class may require a differing window size. In order to classify

using this model the example must be of at least equal length to the largest window

size selected.

When classifying a novel frame the following steps are taken. Each per class clas-

sifier is shown the number of frames required (as previously selected). For example if
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class 1 has a window size of 10 then 10 frames will be presented to the classifier for

class 1. Each class produces a likelihood and the class with the highest likelihood is

taken.

Results using this classification method are shown in the following sections. The

multiple window classifier is compared to the best achieved using only a single window

across all classes. We also show the previous maximum best and the window size at

which this was achieved. The previous best refers to just the best class result for a

particular class at a particular window size. This number is included for comparison.

The best per class result only displays the best performance achieved in this class but

does not take into account the overall result (ie it is simply the best result for this class.

eg if we only wanted to optimise this class then we would choose this window size

for all classes). We average over 50 runs as before. All other parameters (eg hidden

variables etc) are kept the same.

4.8.1 Synthetic Dataset

Results on the synthetic dataset are given in figures 4.21 and 4.22. Overall the multi

window classifier performs at least 3% better over all methods. It is visible that for

each class the multiple window method does not perform as well as the previous best

recorded performance for that class. This is due to the multiple window classifier

confusing classes due to the combination of multiple windows. It produces a different

overall classifier which can confuse classes in a different way than before. In one way

the best overall result is not obtainable as optimising upon a single window can affect

performance upon another window size and thus reduce overall performance as is the

case here. We can see ho using differing window sizes can improve upon the previous

best performance by the generation of a new classifier as shown in figure 4.21 when

using a CRF classifier. However outperforming the best previous on a particular class

is not generally true.

4.8.2 CAVIAR Dataset

Tables giving results on the caviar data are given in figures 4.24 and 4.23. In simi-

larity to the synthetic dataset the multiple window size classifier slightly outperforms

the best result using a single window size. However there are individual cases where

the best single window outperforms using class dependent window sizes. For example

when using a HMM to classify splitting behaviour the single window method classifies
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HMM

Class Single Window (70) Multiple Window Best Per Class Best Window

Walk Together 0.78 0.93 0.8 40

Meet 1.00 100 1.00 20

Wait 1.00 0.99 1.00 2

Split 1.00 0.97 1.00 60

Follow 0.92 0.72 1.00 170

Overall 0.9 0.93

CRF

Class Single Window (2) Multiple Window Best Per Class Best Window

Walk Together 0.85 1.00 0.85 2

Meet 1.00 1.00 1.00 2

Wait 0.99 0.92 0.99 2

Split 0.99 0.95 1.00 10

Follow 0.92 0.94 1.00 100

Overall 0.92 0.96

Figure 4.21: Results of using a variable window size for each class on the synthetic

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the Multiple Window column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.
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LDA

Class Single Window (200) Multiple Window Best Per Class Best Window

Walk Together 0.44 0.54 0.48 2

Meet 1.00 1.00 1.00 2

Wait 0.88 0.80 0.98 2

Split 1.00 0.98 1.00 2

Follow 0.95 0.1 0.95 2

Overall 0.57 0.65

CHMM

Class Single Window (70) Multiple Window Best Per Class Best Window

Walk Together 0.54 0.65 0.56 110

Meet 1.00 1.00 1.00 160

Wait 0.99 1.00 1.00 120

Split 1.00 1.00 1.00 150

Follow 0.83 0.90 0.85 140

Overall 0.83 0.88

Figure 4.22: Results of using a variable window size for each class on the synthetic

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the ’Multiple Window’ column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.



Chapter 4. Detection and Classification of Interacting Persons 113

90.77% correct whereas the multiple window method only gives a 81.58% classifica-

tion rate. This effect is likely because we only choose the best window size for each

class and its effect upon other classes is not considered. This can mean that another

classifier for a particular window size has produced a higher likelihood and so misclas-

sified the example.

4.8.3 BEHAVE Dataset

The results upon the BEHAVE dataset were much closer with the largest difference in

overall classification performance of 5.38% between the HMM models. When exam-

ining best window size which has been selected by the algorithm in figures 4.25 and

4.26 it is visible that the best performance occurs with a window size of 100 for many

of the classes. Therefore selecting the best window size per class produces a similar

classifier to one in which a single window size is used.

4.8.4 Summary

Using a different window size for each class produces a slightly superior overall clas-

sifier. The increase in performance ranged from 2% up to 8%. For cases such as the

BEHAVE dataset where many of the optimal window sizes are the same this effect is

not as pronounced.

Choosing the window size based upon only the performance of the class may not

be the best way to determine the best window size. This is effect is seen when com-

paring the best per class performance (ie maximum obtained for this class) against the

multiple window size performance. However the best class does not take into account

the effect on other classes. By selecting a certain combination of window sizes within

the overall classifier those test samples may be confused where previously they were

not (when all classes had the same window size). Future work would investigate the

best way to combine the best per-class window size.

4.9 Feature Set Comparison

Within this section we investigate the role of the new feature set (as given in equation

4.8), against that proposed by [Oliver et al., 2000a] (section 4.6.4). Experiments were

performed using the window size classifier using features calculated as proposed in

this thesis and those proposed by [Oliver et al., 2000a]. The per class window size was
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HMM

Class Single Window (70) Multiple Window Best Per Class Best Window

Walk Together 0.89 0.90 0.92 90

Approach 0.79 0.89 0.81 50

Ignore 0.87 0.80 0.90 90

Meet 0.96 1.00 0.98 90

Split 0.90 0.81 1.00 80

Fight 0 1.00 0.35 2

Overall 0.89 0.87

CRF

Class Single Window (90) Multiple Window Best Per Class Best Window

Walk Together 0.84 0.90 0.87 2

Approach 0.25 0.81 0.49 2

Ignore 0.95 0.87 0.95 90

Meet 0.99 0.88 0.99 50

Split 0.57 0.66 0.68 40

Fight 0 0.69 0.66 20

Overall 0.89 0.88

Figure 4.23: Results of using a variable window size for each class on the CAVIAR

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the ’Multiple Window’ column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.
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LDA

Class Single Window (90) Multiple Window Best Per Class Best Window

Walk Together 0.65 0.73 0.81 2

Approach 0.02 0.43 0.32 2

Ignore 1.00 0.82 1.00 90

Meet 1.00 0.64 1.00 90

Split 0.11 0.73 0.42 20

Fight 0 0.19 0.34 20

Overall 0.58 0.65

CHMM

Class Single Window (90) Multiple Window Best Per Class Best Window

Walk Together 0.80 0.73 0.80 90

Approach 0.12 0.58 0.35 10

Ignore 0.93 0.92 0.95 60

Meet 0.75 0.84 0.76 80

Split 0.24 0.32 0.30 60

Fight 0.0 0.05 0.06 20

Overall 0.70 0.7

Figure 4.24: Results of using a variable window size for each class on the CAVIAR

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the ’Multiple Window’ column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.
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HMM

Class Single Window (60) Multiple Window Best Per Class Best Window

In Group 0.95 0.99 0.96 100

Approach 0.89 1.00 0.90 100

Walk Together 0.91 0.94 0.92 80

Split 0.81 0.87 0.87 100

Ignore 1.00 1.00 1.00 50

Fight 0.95 0.80 0.98 100

Overall 0.92 0.97

CRF

Class Single Window (2) Multiple Window Best Per Class Best Window

In Group 0.98 0.99 0.98 100

Approach 0.96 0.99 0.97 80

Walk Together 0.92 0.97 0.93 100

Split 0.93 0.99 0.95 80

Ignore 0.78 1.00 0.94.01 100

Fight 0.84 1.00 0.89 100

Overall 0.96 0.98

Figure 4.25: Results of using a variable window size for each class on the BEHAVE

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the ’Multiple Window’ column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.
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LDA

Class Single Window (2) Multiple Window Best Per Class Best Window

In Group 0.94 0.91 0.94 2

Approach 0.99 0.99 0.99 2

Walk Together 0.58 0.59 0.66 40

Split 0.91 0.73 0.99 100

Ignore 0.26 0.0 0.61 100

Fight 0.09 0.05 0.10 10

Overall 0.78 0.80

CHMM

Class Single Window (60) Multiple Window Best Per Class Best Window

In Group 0.97 0.98 0.97 100

Approach 0.97 1.00 1.00 80

Walk Together 0.92 0.92 0.93 100

Split 0.97 1.00 1.00 80

Ignore 0.0 0.07 0.03 2

Fight 0.65 0.7 0.7 100

Overall 0.94 0.95

Figure 4.26: Results of using a variable window size for each class on the BEHAVE

dataset. The best single window refers to the best result using a single window across

all classes. Results when using a different size window to classify each class window

are given in the ’Multiple Window’ column. The best possible classification result ob-

tained for that particular class is given in ’Best Per Class’. Finally the best window size

is given.
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LDA Feature Set

Class Blunsden Oliver

1 0.50 0.4

2 1.00 1.00

3 0.80 0.79

4 0.98 1.00

5 0.08 0.01

Overall 0.69 0.58

CRF Feature Set

Class Blunsden Oliver

1 1.00 0.61

2 1.00 0.91

3 0.92 1.00

4 0.95 0.99

5 0.94 1.00

Overall 0.96 0.85

HMM Feature Set

Class Blunsden Oliver

1 0.93 0.90

2 1.00 1.00

3 0.99 1.00

4 0.97 0.99

5 0.72 1.00

Overall 0.93 0.90

CHMM Feature Set

Class Blunsden Oliver

1 0.66 0.65

2 1.00 1.00

3 1.00 1.00

4 1.00 0.98

5 0.91 0.89

Overall 0.88 0.85

Figure 4.27: Comparison of classification performance between the feature set pro-

posed in this thesis and that proposed by [Oliver et al., 2000a] on the synthetic dataset.

The classes are (1) Walk Together, (2) Meet (3) Wait, (4) Split, (5) Follow.

the same for both sets of features. The results for the synthetic dataset are given in

table 4.27 whilst the tables showing the comparison for the CAVIAR dataset and the

BEHAVE dataset are given in tables 4.28 and 4.29 respectively.

When classifying the synthetic dataset (figure 4.27) the overall performance im-

proved when using the new feature set by at least 1% and in some cases (CRF) by

over 10%. The method showing the smallest difference is that of LDA, which per-

forms poorly for both feature sets. The results are quite close however it should be

remembered that the synthetic data set contains the cleanest data which corresponds to

a simple movement model. This means that fewer features may be required to accu-

rately represent it.

The most noticeable difference is between features sets when someone is fighting.

Only recording the direction, speed and alignment seems to miss some of the high

movements over a short space of time. The vorticity feature is an example of something

which would pick this up in the new feature set. The new feature set seems better at
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LDA Feature Set

Class Blunsden Oliver

1 0.73 0.55

2 0.43 0.37

3 0.82 0.69

4 0.64 0.81

5 0.73 0.69

6 0.19 0

Overall 0.65 0.58

CRF Feature Set

Class Blunsden Oliver

1 0.90 0.68

2 0.81 0.48

3 0.87 0.65

4 0.88 0.9

5 0.66 0.69

6 0.69 0.0

Overall 0.86 0.70

HMM Feature Set

Class Blunsden Oliver

1 0.9 0.88

2 0.9 0.78

3 0.80 0.87

4 0.99 0.91

5 0.82 0.15

6 1.00 0.0

Overall 0.88 0.82

CHMM Feature Set

Class Blunsden Oliver

1 0.74 0.70

2 0.59 0.51

3 0.92 0.89

4 0.84 0.76

5 0.32 0.45

6 0.06 0

Overall 0.71 0.65

Figure 4.28: Comparison of classification performance between the feature set pro-

posed in this thesis and that proposed by [Oliver et al., 2000a] on the CAVIAR dataset.

Classes are (1) Walk Together, (2) Approach, (3) Ignore, (4) Meet, (5) Split, (6) Fight.
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LDA Feature Set

Class Blunsden Oliver

1 0.91 0.92

2 0.99 0.71

3 0.57 0.55

4 0.72 0.34

5 0.0 0.0

6 0.05 0.01

Overall 0.80 0.80

CRF Feature Set

Class Blunsden Oliver

1 0.98 0.98

2 0.99 1.00

3 0.96 0.94

4 0.99 1.00

5 1.00 0.83

6 1.00 0.95

Overall 0.98 0.98

HMM Feature Set

Class Blunsden Oliver

1 0.98 0.98

2 1.00 0.99

3 0.94 0.96

4 0.86 0.96

5 1.00 0.84

6 0.80 0.69

Overall 0.97 0.96

CHMM Feature Set

Class Blunsden Oliver

1 0.98 0.93

2 1.00 0.99

3 0.92 0.96

4 1.00 0.89

5 0.07 0.12

6 0.7 0.87

Overall 0.95 0.94

Figure 4.29: Comparison of classification performance between the feature set pro-

posed in this thesis and that proposed by [Oliver et al., 2000a] on the BEHAVE dataset.

Classes are (1) InGroup, (2) Approach, (3) Walk Together, (4) Split, (5) Ignore, (6) Fight,

(7) Run Together, (8) Chase

dealing with real data which contains noise and less simplistic motion models which

form part of the synthetic dataset.

The results are much closer (around 1% difference) when using the BEHAVE

dataset 4.29. The dataset is much larger than the CAVIAR one with more examples so

it is possible that the models can smooth out many of the short term variations which

occur in the Oliver feature set which previously had to be encoded in the feature set (ie

vorticity or features predicting a meeting).

4.9.1 Summary

The new feature set improves classification performance. However, it improves perfor-

mance most when there are limited examples and where fast changes occur. Through-
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out this thesis we have not considered feature reduction methods such as PCA. This

is mainly because we want to be able to see how the features are used by the classi-

fiers and to compare them fairly (for example if PCA based feature reduction was used

then we wouldn’t know if PCA was the reason or if another factor was at work when

comparing with Oliver’s method). However future work should investigate feature

selection more thoroughly.

4.10 Conclusions and future work

Over all datasets the CRF classifier performs well (80-95%) when using limited in-

formation. The previous best method suggested by Oliver [Oliver, 2000] is improved

upon using the CRF classifier in conjunction with the new proposed feature set. The

new proposed feature set also outperforms Oliver’s method when using a HMM model

for a great many cases. When classifying the CAVIAR dataset the performance of the

HMM classifier improves as the window size is increased until it becomes the best

performing classifier.

The CRF classifier displays an ability to better classify data in the short term com-

pared to the HMM. In contrast the HMM model improves more rapidly when the ob-

servation window size is increased suggesting it is better at smoothing the signal over

longer sequences. The forward algorithm used to determine the likelihood seems to

smooth the signal much better than the CRF. The case of the CHMM the more gradual

improvement could be attributable to the larger number of parameters which requires

more data in order to represent the data adequately. A suggestion for future work would

be therefore to improve the long term temporal model of the CRF that we are using. It

should be noted that these comments about the CRF model apply for the single chain

structure which is used here. There are many architectures which can be used within

the CRF framework. A higher order CRF may produce a better temporal model and so

we would expect to see larger improvements when the observation window size is in-

creased. However a CRF model will always be discriminative compared to the HMM

and CHMM’s generative ability. The ability to generate samples may be important

in certain cases (such as estimating a model’s complexity [Gong and Xiang, 2003b])

however this ability is not required for the classification tasks as presented here.

Throughout all experiments on all of the datasets it is visible that there seems to be

an optimal window size for classification of a particular class. For some activities such

as fighting in the CAVIAR dataset (4.12 (b)) the window size is quite short (due to the
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speed of a fight) where as for other classes such as the ignore behaviour (figure 4.17

(c)) a longer window size improves performance. An initial investigation into using per

class window sizes was presented however other ways of combining different window

sizes could be investigated. Other feature sets or feature selection algorithms could be

investigated.



Chapter 5

Pre-Fight Detection

5.1 Introduction

This chapter investigates pre-fighting situations as viewed from a video camera within

a surveillance domain. The main aim is to establish the feasibility of detecting fighting

situations. Here, we are also interested in investigating the possibility of detecting pre-

fighting situations. Pre-fighting is useful in surveillance situations where the timely

intervention of a CCTV operator could avoid a potentially criminal situation and thus

prevent an escalation of violence. The main approach taken is to detect rough move-

ment based visual features and to use them to represent the activity that is occurring.

Specifically, we follow a similar approach to Dollar et al. [Dollar et al., 2005] who

use spatio-temporal features calculated throughout image sequences. We do not try

to model each limb or hand of each person as this is not possible to perform reliably

with the high degree of movement and occlusion which is prevalent in such situations.

Once the features have been extracted from the sequence per-class clustering is then

applied in order to form a dictionary of cluster centres, as detailed in section 5.5. This

dictionary is used to generate a histogram based description of an image sequence.

Histogram representations are then supplemented by other features (section 5.4.2).

A method to determine the best structure for classification is also presented using

a hierarchical AdaBoost algorithm (section 5.6).

5.2 Contribution

This chapter presents work upon the feasibility of classifying pre and post fighting sit-

uations in addition to identifying actual fighting and non fighting (normal) situations.

123
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It is shown that such classification is possible. A way to identify a (hierarchical) struc-

ture for classification is presented along with a generalisation which makes it possible

to apply the method to other datasets containing more classes.

5.3 Previous and Related Work

Human ability to predict dangerous or criminal activities from CCTV has previously

been investigated by Troscianko et al. [Troscianko et al., 2004]. In their work par-

ticipants from either an expert or a non-expert group were shown videos from CCTV

cameras. At a particular point in time the video was paused and the participants were

asked to predict on a scale of 1 to 5 if they thought a dangerous act would be committed

by an individual or individuals in the video.

There were 16 videos displaying criminal behaviour with a further 16 matched as

closely as possible to the situation where nothing happened. Human performance clas-

sified 80% of criminal incidents correctly with 65% of normal but similar incidents

matched correctly. Dee and Hogg [Dee and Hogg, 2004a] also investigate human

performance using a computational model and found correlations in the rating of ’in-

terestingness’.

The most similar work to ours is that of Datta et al. [Datta et al., 2002] who detect

person on person violence using a range of measures derived from a background re-

moved and segmented representation of the person. The measures include acceleration

and jerk along with the leg and arm orientations. All are computed from a side on point

of view and results indicate good performance on their dataset of 62 situations with a

correct classification of 97%.

Cupillard et al. [Cupillard et al., 2002] also investigate fighting situations within

the domain of Metro surveillance. They use pre-defined templates of activity to match

the on screen activity and classify the image sequence.

Ribeiro et al. [Ribeiro and Santos-Victor, 2005] also attempt to classify what a per-

son is doing within the CAVIAR dataset using a hierarchical feature selection method.

Others such as Davis and Bobick [Davis and Bobick, 2001] used moments based upon

a stabilised silhouette image to classify more general motion. Efros et al. [Efros et al.,

2003] used a optical flow based similarity measure to match different persons actions.

Within this work we seek to improve upon previous work by not requiring back-

ground subtraction [Datta et al., 2002, Ribeiro and Santos-Victor, 2005, Davis and

Bobick, 2001] or detailed identification of the person’s limbs and other details [Datta
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et al., 2002]. The use of interest point features also allows partial matching in the

presence of occlusion and a smaller number of total samples (whole person matching

such as [Efros et al., 2003, Davis and Bobick, 2001] has been shown to require a large

number of samples [Robertson and Reid, 2005]).

5.4 Temporal Features

This section describes the features that are extracted from each sequence. Sequences

have been labeled as belonging to one of four classes, either fighting, pre-fighting,

post-fighting or normal behaviour. From the original (manual) bounding box tracking

each box is scaled to a uniform size of x = 30,y = 90. This size was chosen as it is

the average size of all bounding boxes over this particular dataset. An example of the

re-scaled data is shown in figure 5.1, along with the corresponding response function

(described below). The reason for the re-scaling is so that all bounding boxes can be

described in the same way and to make the process as scale invariant as possible. It

is apparent that the bounding boxes contain other information such as background and

occlusions from other people.

5.4.1 Features

We make use of Dollar et al.’s [Dollar et al., 2005] approach to sequence representation

as it has been previously successful [Niebles et al., 2006, Dollar et al., 2005], can deal

with occlusions and does not require background subtraction. The method is briefly

reviewed here.

Dollar et al. [Dollar et al., 2005] developed a spatio-temporal response function

for classifying sequences of behaviours. Their approach assumes a stationary camera

(or that the effects of camera motion can be compensated for). The response function

is given in equation (5.1).

R = (I⊗g⊗hev)2 +(I⊗g⊗hod)2 (5.1)

The 2D smoothing Gaussian function g(x,y,σ) is applied only along the spatial

dimensions of the image sequence I. The two functions hev and hod are a pair of

Gabor filters which are defined as hev(t;τ,ω) = −cos(2πtω)e−t/τ2
and hod(t;τ,ω) =

−sin(2πtω)e−t2/τ2
. They are applied along the temporal dimensions of the image se-

quence. Throughout all experiments we set ω = 4/τ. This gives the response function



Chapter 5. Pre-Fight Detection 126

Figure 5.1: The scaled original image (top row) along with the corresponding response

image (R - equation 5.1) bottom row.

two parameters corresponding to the spatial scale (σ) and the temporal scale (τ). They

were set to (τ = 3,σ = 3) throughout all experiments. This follows on from work by

Dollar [Dollar et al., 2005] and separately Niebles et al. [Niebles et al., 2006] who

found that the 3×3×3 spatial and temporal resolution was sufficient for action recog-

nition. Only those responses above a threshold value are recorded. Examples of feature

responses are shown in figure 5.1.

From these response functions a cuboid descriptor is formed. This is a three dimen-

sional cuboid formed from the original image sequence in space and time. It consists

of all (greyscale) pixel values within an area of six times the scale at which it was

detected. Only those regions where the response is above a certain threshold are used.

The descriptor is the cuboid volume of the original intensity image centred at the points

selected from the response image.

5.4.2 Other Features

In addition to features derived purely from local visual information, additional features

were calculated from the tracking process. One feature which is not possible to get

from the re-scaled image information is the amount of actual movement of a person

over the sequence. This movement is averaged over the length of the sequence:

di =

∥∥pi
1−pi

T

∥∥
T

(5.2)

pi
t =
[
xi

t ,y
i
t
]

is the position (in image coordinates) of the ith person at the tth timestep.

T is the number of timesteps in the whole sequence. In addition to positional features

we also include a measure of how active the sequence is. To do this we sum over all

response images in the sequence (90×30×T ) the absolute value of the response im-

age R . This is then used to give the mean response (Rµ). The standard deviation (Rσ)
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is also taken and used as a feature. These additional features were found to improve

performance.

5.5 Sequence Representation

Each sequence generates a set of cuboids (as detailed in section 5.4.1). Each pre-

identified class (fighting, pre-fight, post fight and normal) generates a large number of

cuboids over all sequences. From this large number of cuboids a smaller set is sub-

sampled (using random sampling) so that these cuboids can be clustered. K-means

clustering [Duda et al., 2000] is used to identify k cluster centres (using the Euclidean

distance as a similarity metric). Clustering was performed per class, with the final

dictionary consisting of all clusters concatenated into one. The question of how many

cluster centres (k) to use is investigated in section 5.7.1.1.

For each sequence a histogram is created based upon the previously learned clus-

ter centres. The response function (equation 5.1) is applied throughout the complete

sequence. Cuboids are then generated from the complete sequence as described in

section 5.4.1.

For each cuboid in the new sequence the nearest cluster within the learned cluster

centre dictionary is found. A histogram is then made of all matches throughout the

sequence. This histogram is then normalised. Examples of image sequences and their

corresponding histograms are given in figure 5.2.

In addition to the histogram the features, as described in section 5.4.2, are included

in the sequence representation. This gives a final representation (Si) of sequence i :

Si =
[
hi | di,R i

µ ,R i
σ

]
(5.3)

hi is the ith histogram and di the distance as given in equation 5.2 for the ith se-

quence. The mean (R i
µ ) and standard deviation (R i

σ) of the response image sequence

(R ) for the ith sequence make up the other additional features.

5.6 Classification

Our aim is to investigate whether it is possible to detect dangerous situations involving

fighting and within that if it is possible to further tell if a fight is likely to occur or has

just finished (the usefulness of post fight situations arises from the fact that cameras
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Figure 5.2: Examples of sequences along with the corresponding histogram represen-

tation. The histograms are computed over the entire sequence. Top is a fighting se-

quence, bottom left is a normal sequence and bottom right is a post fighting sequence.

The fixed size histograms are composed from the whole complete sequence, whose

length can vary. The histograms are normalised to unit weight

may not cover the entire area to capture the actual event but it would be useful to detect

such situations).

Here AdaBoost [Freund and Schapire, 1996] is used to classify each sequence

based upon the sequence representation. The implementation of AdaBoost uses a deci-

sion tree classifier as a weak learner. By using a decision tree we hope to exploit cases

where the co-occurrence of different cluster centre responses can help in establishing

the class of a sequence. An example of this could be a response indicating fast lower

body movement occurring at the same time as a response indicating fast upper body

movement.

The approach also differs from a standard AdaBoost classifier in that we employ

a hierarchical classification method. Such a hierarchy is preferable to multiclass Ad-

aBoost (such as that used by Zhu et al. [Zhu et al., 2006] ) due to the nature of the

problem itself. We are trying to group similar things together to make them easier to

classify.
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5.6.1 Hierarchical AdaBoost

Within this section we introduce the workings of the algorithm and then present an

extension to allow us to classify the data. AdaBoost is used as it is one of the best

classifiers available when dealing with lots of small features. We use a weak classifier

(small decision tree) which makes use of both the strength of response in the histogram

and may use multiple cluster centres simultaneously to classify an action. The possi-

bility of using two or more cluster centres together means that there is a very large set

of possible features. AdaBoost is capable of working with such a large feature set and

producing good results. It is for this reason that we make use of it.

A general overview of the proposed method is that all possible partitions of positive

and negative examples from the data are generated. For example a possible partition

could be to treat classes 1 and 2 as being positive and classes 3 and 4 as negative.

The next level down in the tree is made up of all possible partitions of classes from

the parent. This level is then partitioned until no more partitioning is possible. In this

example the next level down would contain leaf nodes for each class and the algorithm

would terminate. This process continues until no examples remain. In section 5.7 we

compute all possible trees which can be constructed in this way. The best tree (as

evaluated using validation data) is then used for classification of the previously unseen

test data.

The hierarchical component is added for two reasons. The first is that we would

like to be able to interpret our final classifier in some way. For example the ability to

check that the final structure is in some way aligned to our beliefs about how to classify

the problem (one problem with many classifiers is you get a list of numbers out of them

but the meaning of such numbers can easily be hidden). The second is perhaps far more

important should one wish to pursue this approach in a real application. By using a

hierarchical approach it is possible to refine the behaviour you are looking for. For

example a surveillance operator may want to find all examples of fighting behaviour

but then further split it into pre/post fight (as we do here) and even further into fights

which start with a chase. Using a hierarchy will give such abilities whilst retaining the

ability to quickly classify a broad range of behaviours of interest.

5.6.1.1 AdaBoost

The AdaBoost algorithm was introduced by Freund and Schapire [Freund and Schapire,

1996]. AdaBoost is an algorithm for constructing a strong classifier ( f (x)) from a lin-
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Algorithm 4 AdaBoost algorithm
Given: (x1,y1), ..,(xm,ym);xi ∈ X ,yi ∈ {−1,1}
Initialise weights D1(i) = 1

m , i = 1, ..,m

For t = 1, ..,T

Find the classifier ht : X →{−1,1}
with minimum error w.r.t. distribution Dt

ht = minh j∈H ε j, where ε j = ∑
m
i=1 Dt(i)

[
yi 6= h j(xi)

]
,H = {h(x)}

if εt > 0.5 then stop

Choose αt ∈ R
Update Dt+1(i) = Dt(i)exp(−αtyiht(xi))

Zt
,

Zt is a normalisation constant chosen so Dt+1 is a

probability distribution (eg, sum over all x).

Output strong classifier

H(x) = sign
(
∑

T
t=1 αtht(x)

)
ear combination of weak classifiers (ht(x)) as shown in equation (5.4).

f (x) =
T

∑
t=1

αtht(x) (5.4)

The algorithm for calculating these weights (αt) along with the final strong classi-

fier H(x) is given in algorithm 4.

The weak classifier h(x) we use is a decision tree. The indicator function
[
yi 6= h j(xi)

]
evaluates

to 1 or 0 depending whether the condition is true or not. The weighting αt is set as in

equation (5.5), with rt is the weighted error rate of classification.

αt =
1
2

log
(

1+ rt

1− rt

)
(5.5)

5.6.1.2 Hierarchy

To discover the best structure (in terms of classification performance) the set of P
possible hierarchical partitions of the classes was created. At each level within the

hierarchy we look at all possible partitions of the binary class labels. The number of

possible partitions at a particular leaf is given in equations (5.6) and (5.7) :
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Algorithm 5 Algorithm to build all trees given a set of classes.
T =BuildTree(C )

T = {}
P=allPartitions(C )

for each (l,r) ∈ P
al=BuildTree(l)

ar=BuildTree(r)

for each tl ∈ al

for each tr ∈ ar

T = T ∪{(tl, tr)}

f (N,k) =


(

N
k

)
/2 i f ,k = N

2(
N
k

)
otherwise

(5.6)

‖P‖=
b(N/2)c

∑
k=1

f (N,k) (5.7)

N is the number of possible classes (in our case totaling four). The case where

k = N
2 removes mirror partitions (ie partitions which are the same but simply swapped

between the right and left side) from the set of partitions. For this four class problem

there are ‖P‖ = 7 initial possible partitions : (([1][2 3 4]),([1 2][3 4]),([1 3][2 4]),([1

4][2 3]),([2][1 3 4]),([3][1 2 4]),([4][1 2 3])). Another partition is calculated at every

node of the tree from the classes assigned to that node until each node has only one

class.

The hierarchical model starts with a set of all possible partitions P of the set of all

class labels (Cn) at the current node n. Each of these partitions (pn) has a left (l) and

right (r) branch such that:

pn = {ln,rn} (5.8)

ln ⊂ Cn (5.9)

rn = Cn\ln (5.10)

The method proceeds as shown in algorithm 6. All possible trees are built using

all possible classes using the build tree function as given in algorithm 5. For each of
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Algorithm 6 Evaluation of all trees
T =BuildTree(all Classes)

for each pi ∈ T

di = HierarchicalAdaBoost(li,ri)

for all v j ∈ V
φi, j = Classify(di,v j)

i=argmaxi assessment(
{

φi, j
}

)

Algorithm 7 Hierarchical AdaBoost, di - Tree at ith level
di = HierarchicalAdaBoost(li,ri)

if |li|> 1

dl = HierarchicalAdaBoost(li)
if |ri|> 1

dr = HierarchicalAdaBoost(ri)

x=AdaBoost(li,ri)

di = (x,dl,dr)

the trees the hierarchical AdaBoost algorithm is run to learn the parameters (di) of the

AdaBoost classifier. The validation data V is then assessed and the best tree structure

is chosen. The pseudo code for the hierarchical AdaBoost learner is given in algorithm

7. Classification of data is shown in algorithm 8.

The purpose of the proposed algorithm is to estimate the structure of the decision

making process involved in classification i.e., what is the best structure for the decision

tree that does the classification. This leads to considering which classes should be

merged or split at each decision level. It is hoped that by testing possible structures

of the classification better performance can be obtained. Similar events could also be

grouped and classified together at a higher level (eg fighting behaviour) whilst lower

levels can provide more fine grain information such as pre-fighting behaviour.

A note about the general applicability of such a brute force approach to obtaining

the structure should be given. The algorithms will always converge to a tree structure

as at each level the remaining classes are divided until there no possible partitions left.

However practical computing limitations mean that only a finite number of classes can

be used before memory limits are reached. Equation 5.7 gives details of the number of

partitions required for a specific number of classes to classify.
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Algorithm 8 Data classification. V are the data samples. EvalLeft is the evaluation

function which determines whether the data V is in the left or right partition.
C=Classify(d,v)

if EvalLeft(d,v)

if leafNode(dl)

c = dl

else

c =Classify(dl,v)

else if leafNode(dr)

c = dr

else

c=Classify(dr,v)

5.7 Experiments and Results

We used the publicly available BEHAVE [Blunsden et al., 2007b] and CAVIAR [project/IST

2001 37540, 2004] datasets. This sequence contains examples of multi-party interac-

tions. There are over 70,000 frames within this dataset showing ten types of interac-

tion. We label each person as belonging to one of four classes (fighting, pre-fighting,

post fighting or normal). The dataset consisted of 1,138 complete sequences. Results

on the smaller CAVIAR dataset are also presented. This dataset contains 56 complete

sequences taken in the lobby of the INRIA Labs at Grenoble, France.

5.7.1 Classification of Complete Sequences

These experiments are similar in spirit to those of Troscianko et al. [Troscianko et al.,

2004] who tested human ability to detect dangerous situations by using complete pre-

segmented sequences prior to asking the question: what happens next? Here the com-

plete test sequences of varying lengths are used to test the algorithm’s performance.

First the question of optimal dictionary size is investigated. The best performing dic-

tionary size is then used to classify whole sequences and results are presented and

discussed. We use two publicly available datasets to test the method. First we use the

small scale CAVIAR dataset [project/IST 2001 37540, 2004] before also demonstrat-

ing the approach upon the BEHAVE dataset [Blunsden et al., 2007b].
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(a)

(b)

Figure 5.3: The effect of dictionary size on classification performance on the BEHAVE

dataset. Overall results are shown in (a) whilst per class results are given in (b). For

figure (b) Blue dots denote normal behaviour, red dashes and crosses denotes fighting.

Green squares with dashes and dots denotes pre-fighting whilst purple circles denote

post fighting behaviours. For both graphs the shaded areas represent standard devia-

tion.

5.7.1.1 How many cluster centres should the dictionary contain ?

Here an investigation into the optimal number of cluster centres is presented. For this

experiment the number of cluster centres used to construct the dictionary was varied.

For each dictionary size the dictionary was created as detailed in section 5.5. At each

dictionary size the classifier was run 50 times over a different subset of training and

testing data. The averaged performance for each dictionary size is shown in figure 5.3.

The graph shows that the best performance occurs when a dictionary size consisting

of between 40 and 60 clusters is used. There is almost no improvement in performance

for any of the classes when the dictionary is increased beyond 50 clusters. For this

reason a dictionary consisting of 50 clusters is used through all subsequent experiments

on the BEHAVE dataset. This size of dictionary is relatively small suggesting that

there are few but important clusters which are sufficient to classify the data. When
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more clusters are added this does not improve performance. This is most likely caused

by the effect of adding clusters that occupy a similar region of the feature space. When

this is converted to a histogram instead of having a few strong responses there are

many weak responses which impair the ability of the classifier to further distinguish

between sequences. As we make use of an AdaBoost classifier which uses a tree model

as a weak learner it tends to over specialise when there are many features representing

similar features resulting in no observable performance increase.

Results for the CAVIAR sequence are also given below in figure 5.4. Here the

effect of the dictionary size is less pronounced. One of the reasons for this is that

the majority of the examples within the dataset are from the normal class. There are

very few examples (4) of fighting within this dataset. In the following section the per

class results are given. With so few examples one may question why we pursue the

classification problem on this dataset. One of the reasons is that this distribution of

examples is more representative of the distribution of real data where fighting events

are even rarer but we still want our algorithms to be able to capture and classify them.

Based upon figure 5.4 we use a dictionary of size 50 for all subsequent experiments

upon the CAVIAR dataset.

An alternative approach could be to use one of the model order selection methods.

Other authours such as [Gong and Xiang, 2003a] make use of metrics such as the

Bayesian information criterion (BIC) to evaluate competing models. Such an approach

is desirable when evaluating model complexity or making use of on-line updates of the

model to determine its representation.

Due to the small number of parameters we want to set (cluster centres) it is possible

to enumerate all feasible combinations (in this case feasible means before memory

requirements become prohibitive).

5.7.1.2 Results

Results on the BEHAVE dataset

The classification tree was constructed by first separating the training and test data into

two distinct and equal sized sets. The data was separated per sequence so that training

samples were not taken from the same sequence as those used for testing. The best tree

as determined by our method over a number of runs is given in figure 5.5. Confusion

matrices for this tree are given in figure 5.6.

This tree gives an overall classification performance of 89.9% correct classification
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(a)

(b)

Figure 5.4: The effect of dictionary size on classification performance on the CAVIAR

dataset. Overall results are shown in (a) whilst per class results are given in (b). For

figure (b) blue dots denote normal behaviour, red dashes and crosses denotes fighting.

Green squares with dashes and dots denotes pre-fighting whilst purple circles denote

post fighting behaviours. For both graphs the shaded areas represent standard devia-

tion.

Figure 5.5: The final classification tree. Shaded nodes show the classes from which

partitions of the data are formed.
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True

Fight Pre-Fight Post Fight Normal

Fight 0.96 0.02 0.06 0.02

Classified Pre-Fight 0.04 0.88 0.08 0.01

Post-Fight 0 0.08 0.78 0.01

Normal 0 0.02 0.08 0.96

Total Samples 25 97 65 382

(a)

True

Fighting Related Normal

Fighting Related 0.96 0.04

Classified Normal 0.04 0.96

Total Samples 187 382

(b)

Figure 5.6: Confusion matrix for classification of sequences. (a) Shows the perfor-

mance treating each class individually whilst (b) shows results with all fighting behaviour

aggregated. Results are for the BEHAVE dataset.

with a standard deviation over multiple runs of 0.019. The confusion matrices for

classifying individual classes and all fighting behaviour as one is given in figure 5.6(b).

For normal vs fighting behaviour correct classification is at 96%. The structure groups

post and pre fight behaviour together suggesting that there is a high degree of similarity

between them.

When grouping all fighting based behaviour together the performance increases

substantially. It is useful to show performance for such normal vs non-normal be-

haviour as there are many applications to surveillance situations. The cases where a

fighting situation is classified as normal is relatively low with much of the confusion

arising between pre, post and actual fighting.

Results on the CAVIAR dataset

For the smaller dataset the results are also promising. However it should be noted that

the number of fighting examples is significantly less then examples from the BEHAVE

dataset. Again when grouping all the fighting situations together (pre/post and actual

fighting) the results improve significantly. None of the fighting situations are confused
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True

Fight Pre-Fight Post Fight Normal

Fight 1 0 0 0.11

Classified Pre-Fight 0 1 0.2 0

Post-Fight 0 0 0.8 0

Normal 0 0 0 0.89

Total Samples 2 3 5 18

(a)

True

Fighting Related Normal

Fighting Related 1 0.11

Classified Normal 0 0.89

Total Samples 10 18

(b)

Figure 5.7: Confusion matrix for classification of sequences for the CAVIAR dataset.

(a) Shows the performance treating each class individually whilst (b) shows results with

all fighting behaviour aggregated.

with a normal situation. Overall performance is 89.3% with again a very small standard

deviation of 0.1. The overall accuracy rises to 92.9% when considering all fighting vs

no fighting situations. The tree retains the same structure as the one above and so is

not reproduced here.

However some normal situations are misclassified as a fight situation. This is per-

haps to do with some of the fighting scenes being acted out rather than being actual

fights. Some of the scenes where a people are walking together and meeting one an-

other can look similar to fighting scenes within this dataset. It is often the pre and

post fight behaviour which also helps to identify a fight something which the normal

sequences do not display.

5.7.2 Labeling of Continuous Sequences

A further experiment was conducted whereby sequences were not pre-segmented but

instead a continuous video stream was presented to the classifier. This task is much

harder than using pre-segmented sequences due to the high degree of overlap between

different classes as they transition from one to the other.
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Figure 5.8: Construction of the histograms for continuously labeling all frames in the

video. The current frames (highlighted) histogram is made up of cuboid centres from

within a specified window (in this case 50 frames either side).

In order to continuously classify each frame a window around the current frame

was used to provide the features which the classifier used. This approach is shown in

figure 5.8. The reason a window around the current frame to classify is used is to help

with lag when the activity changes. Whole sequences were again divided into training

and testing with the results of classifying only the test set are presented. By dividing up

complete sequences rather than only frames we ensure we are classifying data rather

than interpolating it.

Every other step of the algorithm stayed the same, except that the features are

derived from a finite window around the current frame. This gave a vast increase of

the number of samples. For the BEHAVE dataset there are 31094 samples of size

±50 frames to classify (vs 1138 complete sequences, as in the previous section). The

CAVIAR dataset gives 3094 individual frames to classify (vs 56 complete sequences).

First we investigate what window size it is appropriate to use.

5.7.2.1 Optimal Window Size

To determine how much video information to use to best classify a frame the window

size was varied between 10 and 100 frames. It was found that 10 was the minimum

amount of time needed (just under half a second) in order for there to be sufficient

cuboid descriptors generated. At the other end, many sequences displaying a behaviour

of interest (such as pre-fighting) are not much longer in duration (as taken from the

previously segmented data). It is possible to generate window sizes of greater than 100

but several behaviours will be contained within that sequence and would not provide
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(a)

(b)

Figure 5.9: Results of varying window size when continuously classifying the BEHAVE

dataset. Overall results are shown in (a) whilst per class results are given in (b). For

figure (b) blue dots denote normal behaviour, red dashes and crosses denotes fighting.

Green squares with dashes and dots denotes pre-fighting whilst purple circles denote

post fighting behaviours. For both graphs the shaded areas represent standard devia-

tion.

a fair test of the algorithm’s ability to classify a short video clip. The results for the

BEHAVE sequences are shown in figure 5.9

This experiment was also carried out upon the CAVIAR dataset. The length of time

that some of the classes such as pre-fighting takes within the caviar sequences meant

that it was only possible to run experiments up to a window size of 50. The results can

be seen in figure 5.10.

Both sets of results were run over 50 runs using a different subset of training and

testing data in order to establish the variance of each window size. The standard devia-

tion is is given by the shaded regions. It is possible to see that around a window size of

60 the improvement in using larger window sizes is reduced. However both pre-fight

and post fight improve when a window size of 90 is used as does fighting although not

to the same degree. As these are the classes we are most interested in then the window
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(a)

(b)

Figure 5.10: Results of varying window size when continuously classifying the CAVIAR

dataset. Overall results are shown in (a) whilst per class results are given in (b). For

figure (b) blue dots denote normal behaviour, red dashes and crosses denotes fighting.

Green squares with dashes and dots denotes pre-fighting whilst purple circles denote

post fighting behaviours. For both graphs the shaded areas represent standard devia-

tion.
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True

Fight Pre-Fight Post Fight Normal

Fight 0.67 0.38 0.32 0.05

Classified Pre-Fight 0.17 0.2 0 0.01

Post-Fight 0.01 0 0.68 0.01

Normal 0.15 0.42 0 0.93

Total Samples 1382 254 25 12432

(a)

True

Fighting Related Normal

Fighting Related 0.81 0.07

Classified Normal 0.19 0.93

Total Samples 1661 12432

(b)

Figure 5.11: Confusion matrices for the BEHAVE dataset continuous sequences at a

window size of 90. (a) shows per class performance whilst (b) shows the results of

aggregating fighting behaviour together.

size should be set to 90 in order to classify them as best as possible.

For the CAVIAR sequences there is not such a pronounced effect especially overall.

There is a steep rise in classification performance for the fighting class between 40 and

50 frames so this was determined to be the best size overall. However it should be

noted that for this dataset there are very few fighting situations compared to normal

situations. Results are presented when using a window size of 45 for the CAVIAR

dataset.

5.7.2.2 Classification Results

Behave Dataset

The best result when using this method on the BEHAVE sequence gave an overall

classification performance of 89%. Again this rose to 92% when only fighting vs

normal behaviour was considered. Confusion matrices for classification of continuous

video data on the BEHAVE dataset is given in figure 5.11.

An example of classification is given below in figure 5.12.
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When classification is performed in this manner parts of the sequences are misclas-

sified as being normal when they are not. The lower number of examples when using a

100 window size for post-fight sequences is due to the short timescale upon which they

happen (ie there are not as many post fight situations of 100 frames in length). A future

improvement will be to construct the histograms to adapt their length based upon the

video information available. The switching between normal and fighting frames is due

to the similarity in their appearance over a relatively short timescale.

Figure 5.12: Predicted actions for the individual shown in the red box. The numbers

in parenthesis refer to the frame numbers. Here Class 1 is fighting, 2 pre-fighting, 3

post fighting and 4 is for a normal situation. Around frame 54,935 the individual slowly

breaks away from the fighting. This may explain the errors around this time, it looks

very similar to a group splitting up. There is a slight prediction delay between fighting

and post-fight behaviour of running away. This is down to using a window around the

current frame, thus basing the classification on some portion of the past, coupled with

the uncertainty as event change.

CAVIAR dataset

Results for the CAVIAR dataset are given in figure 5.13. For this dataset the results are

not as good. Fighting and pre-fighting are frequently confused with normal behaviour.
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True

Fight Pre-Fight Post Fight Normal

Fight 0.07 0 0 0.092

Classified Pre-Fight 0 0 0.03 0.004

Post-Fight 0 0.11 0.32 0.004

Normal 0.92 0.88 0.64 0.9

Total Samples 27 62 103 1355

(a)

True

Fighting Related Normal

Fighting Related 0.24 0.1

Classified Normal 0.76 0.9

Total Samples 192 1355

(b)

Figure 5.13: Confusion matrices for continuous sequences. (a) shows per class perfor-

mance whilst (b) shows the results of aggregating fighting behaviour together. CAVIAR

dataset. Results are for a window size of 45.

This may have to do with the very small number of fighting examples contained within

this dataset coupled with the very short time span. When watching pre and post fighting

behaviour some of the examples have less purposeful movement and speed than those

contained in the BEHAVE sequences and real fights.

5.8 Generalisation of Structure

For problems in a more general context with more classes it may not be possible or de-

sirable to exhaustively test every possible tree. There may simply be too many classes

or one may just wish to further subdivide a class without re-calculating the entire clas-

sification structure. An example of this could be to subdivide pre-fighting into those

where persons are already running at one another against those cases where persons

are already in a group. Such a method would make the surveillance system more

adaptable.

In this section we introduce a method to iteratively build a classification tree with-

out exhaustive search, as was the case in the previous sections. The same classification
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Algorithm 9 The overall algorithm for dynamically constructing classification trees.
DynamicBoost(C )

// add a single node with all possible classes

T =addNodeToTree(C ,T )

// then work out the best partition for these classes

While_More_Nodes(T )

N = GetNextNode(T )

[P ,C ] = BestPartition(N )

T = AddNode(P ,C ,T )

Algorithm 10 Algorithm to find the best partition for a particular node of the tree
BestPartition(N )

C = NC

P = all_partitions(C )

for each (l,r) ∈ P
resi= AdaBoost(li,ri)

i = maxi(resi)

return [Pi,Ci]

method is used upon the resulting final tree as given in algorithm 8. The general ap-

proach that is used is one of evaluating all possible class partitions, then selecting the

best performing partition. The best performing partition is then used by nodes further

down the hierarchy to split the data again (into left and right partitions) and then once

again evaluating such partitions. This procedure of selecting the best partition and then

creating new nodes with a reduced set is continued until each tree node is empty and

thus there are no more classes to partition.

The algorithms to dynamically build such a tree are given below. The overall al-

gorithm is given in algorithm 9 whilst the main modification to determine the best

partition at a particular node is given in algorithm 10.

The addition of a new tree node is shown in algorithm 11.

5.8.1 Results Using a Dynamically Created Tree

Here the results when using a dynamical classification tree structure are presented.

Again we compare them to the previous best results which were generated using a

dictionary of size 90 for the BEHAVE dataset. The results are presented in figure 5.14.
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Algorithm 11 Algorithm to add a node to the tree
T = AddNode(P ,C , T )

if ‖C‖ > 1

//create nodes for both the left and right partitions and add them to the tree

T = addNodeToTree(l,T )

T = addNodeToTree(r,T )

else

//add a terminating node to the tree

T = addNodeToTree({} ,T )

True

Fight Pre-Fight Post Fight Normal

Fight 0.78 0 0.05 0.01

Classified Pre-Fight 0.03 0.86 0.05 0.03

Post-Fight 0.05 0.06 0.88 0.02

Normal 0.14 0.08 0.02 0.94

Total Samples 36 92 55 386

(a)

True

Fighting Related Normal

Fighting Related 0.93 0.06

Classified Normal 0.07 0.94

Total Samples 183 386

(b)

Figure 5.14: Confusion matrix for the best performing dynamically created tree on the

BEHAVE dataset.
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True

Fight Pre-Fight Post Fight Normal

Fight 0.67 0 0 0.07

Classified Pre-Fight 0 0.75 0.2 0

Post-Fight 0 0 0.8 0

Normal 0.33 0.25 0 0.93

Total Samples 3 4 5 15

(a)

True

Fighting Related Normal

Fighting Related 0.83 0.07

Classified Normal 0.17 0.93

Total Samples 12 15

(b)

Figure 5.15: Confusion matrix for the best performing dynamically created tree on the

CAVIAR dataset.

The previous averaged result when exhaustively searching over all of the possible

trees was 89.9% with a standard deviation of 0.02. The overall accuracy rises to 95%

when considering all fighting vs no fighting situations. Using a dynamically structured

tree we attain 88.5% (a drop of 1.4%) overall classification accuracy when averaged

over 50 runs along with a std deviation of 0.2 (a rise). Performance when considering

only fighting vs non fighting gives 93% accuracy (compared with 95% previously)

when considering all fighting vs non fighting events. Experiments were also conducted

upon the CAVIAR dataset. These results are shown in figure 5.15.

When considering all trees on the CAVIAR dataset the overall classification ac-

curacy is 89.3% with again a very small standard deviation of 0.1. When dynami-

cally constructing the trees the average drops to 77% (drop of 12%) with a rise in

the standard deviation to 0.8 (against 0.1). When considering fighting vs non fight-

ing behaviour the accuracy increased to to 92.9% using an exhaustive search where as

dynamically constructing the tree gave an average of 89%.
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5.8.1.1 Summary

This section has demonstrated a way to successfully classify behaviour types without

exhaustive search. It is perhaps not surprising that an exhaustive search yields better

results. However there may be many situations where this is not possible.

For the larger BEHAVE dataset there is a very small difference between exhaustive

search and dynamical construction of the classifier. The effect is greater on the smaller

CAVIAR dataset where a drop in averaged performance of 12% is observed. Due to

the small amount of fighting examples the method seeks to best classify the normal

behaviour first. This effect is less pronounced when classifying all fighting behaviour

together.

5.9 Comparison With Other Work

Based on the work of Trosciankio [Troscianko et al., 2004] the performance of our clas-

sifier system compares favourably with that of human performance (reported human

performance is 80% of criminal incidents correctly with 65% of similar but normal

incidents classified correctly). However it should be noted that the datasets are differ-

ent (it was not possible to obtain Trosciankio’s dataset). One of the main advantages

of our method is that it has been demonstrated to work for small datasets such as the

one we are using. This is an advantage when training data is limited, especially with

regard to abnormal situations which by their very nature happen infrequently. The

ability to learn the models from the visual evidence rather than requiring the use of a

pre-determined [Cupillard et al., 2002] script is useful in chaotic situations where it is

unclear what the correct script is.

When a smaller dataset is used the method struggles. The fights in the CAVIAR

dataset look very different to one another and are also very short, especially when you

partition them into specific classes such as pre and post fighting. The few examples

may give rise as to why the method performs so poorly when continuously labeled data

is used.

5.10 Conclusion and Future Work

The major contribution this chapter has addressed is that of investigating the feasibility

of identifying pre-fight situations. The ability to identify when a fight is likely to break
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out is useful in surveillance applications as it may be possible to intervene to stop a

crime occurring or at least identify such situations at the earliest possible opportunity

to allow useful intervention. The role of identifying post fighting behaviour is also of

use as there may be some areas which CCTV cameras do not cover. They may only

witness the end of a fight but it may be important to send assistance to this area in an

effort to help victims and stop further criminal acts occurring.

The second major contribution is in publishing results on publicly available datasets.

Such transparency is important in order to establish how well algorithms work in com-

parison to others.

This chapter has presented a way to classify fighting situations. Our method gives

96% correct classification on the BEHAVE dataset compared to Datta et al. [Datta

et al., 2002] who reported 97% and Cupillard et al. [Cupillard et al., 2002] who re-

port 95% for detection of fighting situations on other (and separate) datasets. However

our method does not require the pre segmentation of parts of individuals, foreground

extraction or pre compiled behaviour models. It has also been demonstrated that it is

possible to identify pre and post-fight situations. Such cases are important to monitor-

ing situations as intervention before the act is always preferable.

A hierarchical classifier is useful in many surveillance applications. Using such a

structure can visually show you how the classification algorithm perceives the features

which are given to it. This can be useful as a sanity check to make sure that the method

is grouping things as you expect them to be.

However it is felt the most useful aspect of using a hierarchical classifier is in

the ability to subdivide behaviours into a finer degree of granularity. For example in

a surveillance application one may wish to identify all the fighting situations (as we

have done here) and then obtain further granularity so as to identify pre and post fight

situations as we have shown. This ability is useful as it can allow a fine tuning of a

surveillance system. The dynamical method given in section 5.8 would be of use in

such cases.

Future work should seek to improve the classification of continuous sequences per-

haps by incorporating temporal models (eg, hidden Markov models) to improve clas-

sification. A further extension would be to remove the manual tracking component

altogether (although some targets will be temporarily lost), or to combine individuals

into group actions.
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Chapter 6

Conclusion

Within this thesis we have investigated the classification of multiple interacting per-

sons. This has been approached in several ways throughout. First we looked at how

team game interaction can be classified. This was demonstrated on publicly available

data of sports games. Results were then presented demonstrating how a simpler linear

classifier (a support vector machine) modelling the team as a whole could outperform

a complex hierarchical linear dynamical system, which modelled individual players.

In chapter 3 we moved away from structured interactions and concentrated upon

a more general surveillance application. We improved upon the previous best results

as published by Oliver et al. [Oliver et al., 2000a] by introducing a new feature set

and using an improved classifier. We demonstrated improved performance against

the previous best method and demonstrated the effect of frame length in classification

accuracy. Again results were presented over several datasets with a combined total of

over 150,000 samples.

Finally we look at the ability to detect fighting events. In particular we look at the

ability to detect pre and post fight events and have shown that this is possible using

a hierarchical model. Performance upon two substantial datasets was reported. The

hierarchical classifier was then extended to include a dynamically created tree. Such

an approach would be useful in large scale problems or where a finer degree of detail

is required without re-computing the whole structure.

6.0.1 Main Contributions

The main contribution’s of this thesis are now expanded upon.

• Comparison and demonstration of a simpler and more accurate model for learn-

151
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ing team activities. The presented model requires no pre-defined template and is

quick to compute. It is also more accurate than the previously suggested model

(Chapter 3).

– In chapter 3 we demonstrated how using a feature vector calculated from

team information can perform significantly better than individually mod-

elling the players. When using a feature vector comprising of team in-

formation compared to individually modelling the players the data can be

shown to be better separated when using PCA. The main benefit of taking

this approach is the reduction in complexity in the model which is required.

The simpler SVM model out performed a linear dynamical system. One of

the reasons for this was that in cases where there are relatively few exam-

ples a simpler model does better as it has less parameters to learn. This is a

common theme in video applications where the representation needs to be

learned despite few training examples.

• Significant improvement in classification performance between interacting per-

sons (Chapter 4).

– Within chapter 4 we improve upon the previous best method of Oliver et

al.’s [Oliver et al., 2000a] proposed method. A new richer feature set is

also introduced. We demonstrate its superior performance of our proposed

method over several datasets. We also make a comparison between other

probabilistic and non probabilistic models. We demonstrate how a condi-

tional random field (CRF) model can be used in surveillance applications.

Results for a hidden Markov model (HMM) and linear discriminant (LDA)

are also given.

• Demonstration and quantification of the performance effects relating to the length

of time a sequence is viewed before making a decision (Chapter 4 and 5).

– In chapter 4 the amount of frames it is necessary to observe before making

a decision is investigated. We find that for several classes of interaction

there is a optimal window size to use. For other classes this effect is not

exhibited. CRF classification outperforms all methods when there are only

a limited amount of frames to use for classification (small window size). It

does not always improve significantly with larger window sizes suggesting
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a longer range temporal component should be incorporated into its for-

mulation. Both of the dynamic probabilistic models (HMM and coupled

HMM) do generally improve when more information is afforded to them.

There is usually an initial dramatic improvement past which there is very

little improvement.

– In chapter 4 we used a per class window size to improve classification

performance. Such a classifier improved performance between 2% to 10%.

– In chapter 5 we also observe this effect where the window size plays a role

in classification accuracy. It is shown that increasing the window size im-

proves performance up to a point. We also note that there is some variation

between classes as to which is the optimal window size to use.

• Investigation and demonstration of pre-fight detection (Chapter 5).

– Chapter 5 demonstrates the feasibility of identifying pre-fighting behaviour.

This is demonstrated upon two datasets. We also show that the feasibility

of detecting behaviour associated with fighting. In this case the ability to

classify pre, post and actual fighting and to differentiate such situations

from normal behaviour has been demonstrated. To our knowledge this is

the first investigation of the ability of a computer to perform this task. Hu-

man performance has to perform such a task has been tested in [Troscianko

et al., 2004].

• Demonstration of a scalable hierarchical classifier for detecting fighting behaviour

(Chapter 5).

– A hierarchical classifier with the ability to determine its structure from val-

idation data was also presented in chapter 5. Such an ability would be

useful in cases where additional subdivision of classification was required

(eg. fights with running and fights with groups). It would also prove useful

where there are a large number of classes and it would not be feasible to

obtain the best tree by exhaustive search.

• The creation of the BEHAVE dataset [Blunsden et al., 2007b].

– This is a publicly available and annotated dataset with a large number

of frames showing different interacting behaviours. Most of the frames
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demonstrating interacting behaviours are also marked up with ground truth

consisting of a bounding box. The creation of such a dataset is important as

it allows others to make comparisons to the results presented here. It will

hopefully also be useful to other researchers in their work.

• Publish results on several publicly available datasets (all chapters).

– The publication of results on publicly available datasets allows meaningful

comparisons between methods to be easily made. Having a benchmark

which is repeatable by others is essential in evaluating progress in the field.

6.0.2 Future Directions

Based on the work presented in this thesis some future directions are now suggested.

• Adaption of team based models to include unusual events like a player missing.

– One of the major weaknesses in the team classification chapter was its in-

ability to deal with unusual events such a player missing. A simple way

would be to train a set of models without each individual player present.

Should a player be removed one of these other models would be used.

However this is a computationally heavy approach and not wholly satisfac-

tory. A better way should be determined.

• Temporal Modelling improvements in the CRF

– The CRF model as used in chapter 4 performed extremely well especially

when classifying using limited frame information. However there was a

shortcoming in that longer window sizes did not always improve classifica-

tion and in some instances reduced it. Other dynamical models such as the

HMM and CHMM always improved to some extent as window size was

increased. However this improvement became less after an initial period

of rapid improvement. Future work should seek to address the shortcom-

ings of the CRF by incorporating a stronger medium to long term temporal

model.

– Another possibility for investigation should be the ability to make use of

a classifier which can use a variable length window size depending upon
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the class. For some classes the window size makes a large difference in

performance. There is also no universally best window size (as its class

dependent) so this should be exploited to give an improvement in perfor-

mance.

• Incorporation of group building framework (such as that of Hakeen and Shah

[Hakeem and Shah, 2007]).

– Hakeen and Shah [Hakeem and Shah, 2007] presented a way to build up

group interactions given a interaction ontology. They provided details of

how to build up a model of being in a group given that you can detect

low level behaviour similar to what we present here. They do not provide

details of how such features are obtained. Their method could be used

in conjunction with the classification methods presented here to build up

a richer and more detailed picture of what is happening within a video

sequence.

• Temporal smoothing of individual frame classification.

– Throughout all chapters when classifying continuous sequences it is visible

that there is some jumping of classification and also a lag. Whilst it is

relatively easy to correct for lag (use a few frames ahead as well, giving a

few seconds delay in classification) a temporal model would help to stop

the rapid switching of classification labels. A Viterbi decoding or similar

approach could be used to improve upon the performance shown here.

• Improvement in selection and combination of a per class window size classifier

– In chapter 4 the effect of using a different window size for each class was

investigated. In this instance the classifier gave slightly improved perfor-

mance. There may be other ways to create a per class window size classifier

which give a greater performance increase.

6.0.3 Final Word

This thesis has introduced the problem of multiple person interaction and presented

some improved feelings for classification of multiple person interaction. This is still
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very much an open problem. There are more possible avenues for exploration than

those listed under future work in section 6.0.2.

One major stumbling block seems to be the lack of willingness to share essential

tools such as well annotated datasests and tracking tools. Once the community can suc-

cessfully negotiate these barriers then progress on surveillance and associated vision

research will dramatically improve. In this respect probably the most lasting contri-

bution of this thesis and associated work has been to make available a large annotated

dataset. It is hoped others do the same.



Appendix A

Datasets

A.1 CAVIAR Dataset

The CAVIAR dataset [project/IST 2001 37540, 2004] contains 27 separate sequences

ranging between a few seconds and a few minutes. The resolution of the images is

half-resolution PAL standard (384 x 288 pixels, 25 frames per second) and compressed

using MPEG2. In addition to the video data the positions of people have been hand

labelled giving the bounding box of a person. This dataset was obtained inside the

lobby of INRIA in France. A homography was available for this dataset and was used

throughout the experiments.

From this data all two and multi person interactions were annotated. This dataset

gives 81 complete sequences where an interaction is taking place and over 10,600

frames which contain examples of an interaction.

The CAVIAR dataset contains 11,415 frames which have labelled examples of in-

teractions. Within this set there are 5 distinct classes which we seek to identify and

classify. The 5 classes consists of examples of people: walking together (2,543), ap-

proaching one another (942), ignoring (4,916), meeting one another (1,801), splitting

up (879) and fighting (334). The numbers in brackets indicates how many frames

contain this behaviour. An example of a sequence is given in figure A.1.

A.2 BEHAVE Dataset

The intended purpose of the BEHAVE dataset [Blunsden et al., 2007b] was to generate

many more interactions as compared to other data available. The video is of an out-

door scene obtained at a resolution of 640x480 at 25 frames per second. The BEHAVE
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Figure A.1: Two frames from a fight sequence taken from the CAVIAR dataset. The

people highlighted in the green and the blue are fighting.

(a) (b)

Figure A.2: Two frames from the BEHAVE sequence. The sequence on the left (a)

shows one group approaching another whilst the frame on the right (b) demonstrates

fighting behaviour.

dataset contains 134,457 frames which have labelled examples of interactions. Within

this set there are 5 distinct classes which we seek to identify and classify. The 8 classes

consist of examples of people: In a group (91,421), Approaching (8,991), walking to-

gether (14,261), splitting (11,046), ignoring (1,557), fighting (4,772), running (1,870)

and chasing (539) one another. The numbers in brackets indicates how many frames

contain this behaviour. Again situations were acted out with ground truth generated by

manual marking of a bounding box for every person on screen. Example frames from

this dataset are given in figure A.2.

A.3 Handball Data

The data set used throughout this paper is from the publicly available CVBASE dataset

[CVb, 2006]. Only the handball sequences are used in the methods and results pre-

sented here. The handball dataset consists of 3 separate video cameras recording a 10
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minute long game. Court coordinates of each of the players for one team throughout

this sequence are available (first 1000 frames are shown in figure A.3). The activity

the whole team is engaged in and the starting and end times of the activity is also

annotated. The timeout class from the original dataset was removed as this is not re-

garded as a coordinated activity. In addition some classes have been merged together.

This step was primarily taken due to the high similarity between the activities them-

selves. The classes ’offence against set-up defence, setting up an offence’(nfpn) and

’offence against setup defence, ending an offence’ (nfan) were merged. These classes

are highly similar in description and in appearance and require extra information about

the game (ie the ability to detect an attempt on goal) to distinguish them. The classes

’defence, basic defence, against preparation of an offence’(obz) and ’defence, basic

defence against ending offence’(obg) were merged for similar reasons. The classes

’defence returning’ (ovpp) and ’defence slowly returning’ (ovpc) were merged as the

actual speed difference distinguishing each class was not well defined. These activities

may have looked different if information on the other team was also available, partic-

ularly in distinguishing between trying to stop a fast break. This gives 5 final classes

shown in figure A.4.

A.4 Synthetic Data

The synthetic dataset it used to test out the proposed approach with known data. The

synthetic dataset consists of 12,385 frames over five classes. These classes are:

walk together (2950) meet (1636), wait (2101), split (3243) follow (2455) with

the number of example frames given in brackets. These examples are divided into

sequences which range in length between 100 and 500 frames.

The data was generated by a program. Noise was added to the initial trajectories in

an effort to make the set more challenging.

A.5 Football Data

The football data was gathered from the synthetically generated TricTrac dataset [mul-

titel, 2006]. The dataset provides a multi camera viewpoint for showing 3 separate

scenarios within a football match. The first shows a team attacking with a goal being

scored. The second shows one team attacking and shooting the ball at the goal without



Appendix A. Datasets 160

Figure A.3: The first 1000 frames from the video sequence and the associated player

positions as given in court coordinates.
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Figure A.4: Positional information of each player (different colour) plotted in court co-

ordinates. The classes are: nfpn - offence against set-up defence , ovpc - defence,

returning, obg - defence, basic defence, nks - offence, fast break, npp - offence, slowly

going into offence.

(a) - Follow (b)-Split

(c) - Walk Together (d) Meet

Figure A.5: Example trajectories of four classes from the synthetic interaction dataset.
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Figure A.6: Original video data from the TriacTrac dataset. This sequence is from

scenario 1 where a goal is scored.

a goal being scored and the final case shows the team successfully defending an attack

with no shot or goal resulting.

The data comprises of a total of 10,162 individual frames. For each frame the world

co-ordinates of each individual player are given. The length of each sequence ranged

from 682 frames to 971 frames.
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Algorithms

B.1 Variational Estimate of theDynamical Systems Tree

The parameters for the aggregating processes (indexed by s) and the leaf processes

(indexed by i) for the initial timestep are given as :

p(sa
0 = j) = φ

a( j)

p(si
0 = j) = ψ

i( j)

p(xi
o|si

o = j) = N (xi
0|µi

j,q
i
j)

p(yi
0|xi

0) = N
(
yi

0|Cxi
0,R
)

The function N (x|µ,σ) represents the Gaussian function for variable x with mean

µ and variance σ.The scaling factor is denoted by C whilst R is a (static) covariance

matrix. The mean value of the ith leaf process in state j is given as µi
j with associated

variance qi
j . For all subsequent timesteps the parameters are:

p(sa
t = j|sa

t−1 = k,sπ(a)
t = l) = Φ

a( j,k, l)

p
(

si
t = j|si

t−1 = k,sπ(i)
t = l

)
= Ψ

i( j,k, l)

p(xt
t |xi

t−1,s
i
t = j) = N (xi

t |Ai
jx

i
t−1,Q

i
j)

p(yi
t |xi

t) = N (yi
t |Cxi

t ,R)

Computing the likelihood directly within this model is not tractable. In order to

perform inference and subsequently expectation maximisation the model is partitioned

into a simpler and less connected subset. An approximate (ie not the true) variational
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distribution Q (S ,X ) is used to model the true posterior P (S ,X |Y ). In order to com-

pute the variational distribution the model is simplified with all Markov chains being

unlinked from one another. This allows the forward backward algorithm [Rabiner,

1990] to be applied to compute the likelihoods. Using the techniques described in

[Neal and Hinton, 1998] the updating of parameters of this variational distribution can

be completed. For the DST model the following inequality on the incomplete log-

likelihood is given by:

logP (Y |Θ)≥∑
s

∫
x
Q (S ,X ) log

P (S ,X ,Y |Θ)
Q(S ,X )

dX (B.1)

This variational bound is at equality Θ = Θ∗when Q (S ,X ) = P (S ,X |Y ,Θ). Given

that Q is a simpler bound than P (S ,X |Y ,Θ) the bound will be lowered and can no

longer make tangential contact. The parameters of Q are thus optimised to get Q
as close as possible to the posterior as measured by the Kullback-Leibler divergence

(KL(Q (S ,X )||P (S ,X |Y ) ).

The update rules for Q are derived using Hamiltonians (denoted by H in equations

B.2 and B.3) of the probability distributions, as described by Ghahramani and Hinton

[Ghahramani and Hinton, 1998], given by :

P(S,X ,Y ) =
1
z

exp(−H(S ,X ,Y )) (B.2)

Q(S,X) =
1

zQ
exp
(
−HQ (S ,X )

)
(B.3)

z is a normalisation function. This was described by Ghahramani and Hinton

[Ghahramani and Hinton, 1998]. The Q distribution has the following parameters

for each aggregating and leaf process.

Q (sa
o = j) = φ̂a( j), Q (sa

t = j|sa
t−1 = k) = ˆΦa

t ( j,k)

Q (si
o = j) = ψ̂a( j), Q (si

t = j|si
t−1 = k) = ψ̂i

t( j,k)

Q (xi
0) = N (xi

0|µ̂i, q̂i), Q (xi
t |xi

t−1) = N (xi
t |Âi

tx
i
t−1, Q̂

i
t)

As suggested in [Ghahramani and Hinton, 1998] to find the Q which minimises

the KL divergence the derivatives of the difference of Hamiltonians (D = HQ −H) are

set to zero as shown in equation B.4:

∂〈D〉
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t 〉
=

∂〈D〉
∂
〈
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〈
si
tsi

t−1
〉 =

∂〈D〉
∂
〈
xi

t
〉 =

∂〈D〉
∂
〈
xi

txi
t−1
〉 = 0 (B.4)
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Angled brackets (〈〉) refer to an averaged value. Solving these updates the varia-

tional parameters for each aggregator process (indexed by a, in this case there is only

one) and each leaf process (indexed by i) as follows:
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Âi j = Q̂i
t ∑

j

〈
si
t( j)
〉
(Qi

j)
−1Ai

j

ˆ(Qi
t)
−1 = ∑

j

〈
si
t( j)
〉
(Qi

j)
−1 +∑

j

〈
si
t+1( j)

〉
(Ai

j)
T (Qi

j)
−1Ai

j− ( ˆAi
t+1)

T ( ˆQi
t+1)
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These are conditional distributions and as such should be normalised. After iter-

ating the variational parameter updates (as given above) the forward-backward algo-

rithm is used to give an inference on Q to get the normalised probabilities and asso-

ciated marginals which are used to compute expectations over the hidden variables.

The marginal probabilities which are required for calculating the values of the hidden

variables are given below :

p(xt)

p(xt ,xt−1)

p(st)

p(st ,st−1)

The above approximate expectation step (as given in equation B.5) is then used

to perform a maximum likelihood update of parameters Θ using the current Q distri-

bution. As previously mentioned the true log likelihood of the model is intractable,
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here the bound is evaluated. During learning the bound increases monotonically as

the variational parameters in Q and Θ are iterated and updated. The bound itself is

computed via the expected Hamiltonian’s H under Q summed with the entropy of the

Q distribution:

B (Q,Θ) = EQ (S ,X )
{

H(S ,X ,Y )−HQ (S ,X )
}

(B.6)

Such expectations only involve calculations over at most pairwise cliques of Q .

The term B (Q,Θ) as given in equation (B.6) is recursively computed for each aggre-

gator and leaf process throughout the tree. Due to the decoupling assumptions the

variational parameter updates (equation B.5) are independent given the inferred expec-

tations under the Q distribution.

A DST model is created for each class. The examples for that class are then pre-

sented to the model and the parameters are updated as described above. In order to

classify a new sequence the data is shown to each model and the likelihood calculated.

The model with the highest likelihood is then taken to be the correct class and the

sequence is labeled as such.



Bibliography

Machine vision group, university of ljubljana, cvbase ’06 workshop on computer

vision based analysis in sport environments, found at url: http://vision.fe.uni-

lj.si/cvbase06/, 2006. URL http://vision.fe.uni-lj.si/cvbase06/.

J.H. Ahn, K.C. Kim, and H.R Byun. Robust object segmentation using graph cut with

object and background seed estimation. In ICPR06, pages II: 361–364, 2006.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for

on-line nonlinear/non-gaussian bayesian tracking. In IEEE Transactions on Signal

Processing, 50(2), pages 174–188, 2002.

C. Asavathiratham. The Influence Model: A Tractable Representation for the Dynamics

of Networked Markov Chains. PhD thesis, Massachusetts Institute of Technology,

1996.

P. Baldi and Y. Chauvin. Smooth on-line learning algorithms for hidden markov mod-

els. Neural Computation, 6(2):307–318, 1994.

D. A. Baldwin and J. A. Baird. Discerning intentions in dynamic human action. Trends

in Cognitive Science, 4(5):171–178, 2001.

H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspon-

dence and chamfer matching: Two new techniques for image matching. In IJCAI,

1977.

S. Basu and T. Choudhury. Modeling conversational dynamics as a mixed memory

markov process. In Advances of Neural Information Processing Systems (NIPS

2004). MIT Press, December 2004.

S. Basu, T. Choudhury, B. Clarkson, and A. Pentland. Towards measuring human

interactions in conversational settings. In CVPR ’01 (Workshop: Cues in Communi-

cation), December 2001.

167



Bibliography 168

J. Batista. Tracking pedestrians under occlusion using multiple cameras. In ICIAR

(2), volume 3212 of Lecture Notes in Computer Science. Springer, 2004. ISBN

3-540-23240-0.

L. E. Baum. An inequality and associated maximization technique in statistical esti-

mation for probabilistic functions of markov processes. Inequalities, 3:1–8, 1969.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring

in the statistical analysis of probabilistic functions of markov chains. Annals of

Mathimatical Statistics, 41(1):164–171, 1970.

A Baumberg and D C Hogg. An efficient method for contour tracking using active

shape models. In IEEE Workshop on Motion of Non-rigid and Articulated Objects,

1994a.

A. M Baumberg. Learning Deformable Models for Tracking Human Motion. PhD

thesis, The University of Leeds, School of Computer Studies, 1995.

A. M. Baumberg and D. C. Hogg. An efficient method for contour tracking using

active shape models. In IEEE Workshop on Motion of Non-Rigid and Articulated

Objects, pages 194–199, Austin,Texas, July 1994b.

B. Bennett, D. Magee, A. G. Cohn, and D. C. Hogg. Using spatio-temporal continuity

constraints to enhance visual tracking of moving objects. ECAI 2004 Proceedings

of the 16th European Conference on Artificial Intelligence, 2:922–926, 2004.

A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmentation

using an adaptive gmmrf model. In European Conference on Computer Vision. 2004.

Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri. Actions

as space-time shapes. In ICCV, pages 1395–1402, 2005.

S. Blunsden, R.B. Fisher, and E.L. Andrade. Recognition of coordinated multi agent

activities, the individual vs the group. In European Conference on Computer Vision

(ECCV), CVBASE workshop, Graz, Austria, 2006.

S. Blunsden, E. Andrade, and R. Fisher. Non parametric classification of human inter-

action. In IbPRIA07, volume 2, pages 347–354, 2007a.

S. Blunsden, E. Andrade, A. Laghaee, and R. Fisher. Be-

have interactions test case scenarios, epsrc project gr/s98146,



Bibliography 169

http://groups.inf.ed.ac.uk/vision/behavedata/interactions/index.html. On Line,

September 2007b. URL http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/index.html.

A. F. Bobick and R. Bolles. The representation space paradigm of concurrent evolving

object descriptions. In PAMI, pages 146–156, February 1992.

D. Bobrow. An overview of krl. In Cognitive Science. McGraw Hill, New York, 1977.

Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region

segmentation of objects in n-d images. In In Proc. IEEE Int. Conf. on Computer

Vision, 2001.

M. Brand. Shadow puppetry. In ICCV ’99: Proceedings of the International Confer-

ence on Computer Vision-Volume 2, page 1237, 1999.

M. Brand. Coupled hidden markov models for complex action recognition, 1996a.

submitted.

M. Brand. Coupled hidden markov models for modeling interacting processes, Novem-

ber 1996b. URL "citeseer.ist.psu.edu/article/brand97coupled.html".

M. Brand and V. Kettnaker. Discovery and segmentation of activities in video. IEEE

Transactions Pattern Analysis Machine Intelligence, 22(8):844–851, 2000. ISSN

0162-8828. doi: http://dx.doi.org/10.1109/34.868685.

M. Brand, N. M. Oliver, and A. Pentland. Coupled hidden markov models for complex

action recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, San Juan, June 1997.

H. H. Bui, S. Venkatesh, and G. West. Tracking and surveillance in wide-area spatial

environments using the abstract hidden markov model. Hidden Markov models:

applications in computer vision, pages 177–196, 2002.

A. Caporossi, D. Hall, P. Reignier, and J. L. Crowley. Robust visual tracking from dy-

namic control of processing. In International Workshop on Performance Evaluation

of Tracking and Surveillance, volume 1, pages 23–31, June 2004.

W. S. Ching. A novel change detection algorithm using adaptive threshold. In Pattern

Recognition Letters, 1994.



Bibliography 170

T. Choudhury and A. Pentland. Characterizing social networks using the sociometer.

In In the Proceedings of : the North American Association for Computational Social

and Organizational Science, Pittsburg, PA, June 2004.

T. Choudhury, B. Clarkson, S. Basu, and A. Pentland. Learning communities: Con-

nectivity and dynamics of interacting agents. In In Proceedings of the International

Joint Conference on Neural Networks Special Session on Autonomous Mental De-

velopment, Portland, OR, July 2003.

R. T. Collins. Mean-shift blob tracking through scale space. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR ’03), volume 2,

2003.

R. Collobert, S. Bengio, and J. MariÃ c©thoz. Torch: a modular machine learning

software library. Technical report, IDIAP, 2002. Technical report IDIAP-RR 02-46.

D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Trans.

Pattern Analysis Machine Intell., 25:564–575, 2003.

D. Comanicu and P. Meer. Mean shift: A robust approach toward feature space anal-

ysis. IEEE Transactions Pattern Analasis and Machine Intelligence, 24:603–619,

2002.

A.I. Comport, D. Kragik, E. Marchand, and Chaumette. F. Robust real-time visual

tracking: Comparison, theoretical analysis and performance evaluation. In In IEEE

Int. Conf. on Robotics and Automation, ICRA’05, April 2005.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. Training models of shape from sets

of examples. In British Machine Vision Conference, pages 9–18, July 1992a.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. Active shape models - ’smart snakes’.

In British Machine Vision Conference (BMVC), pages 266–275. Springer-Verlag,

1992b.

T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. The use of active shape models for

locating structures in medical images. In Image and Vision Computing, volume 12,

pages 355–366, July 1994.

J. L. Crowley and P. Reignier. Dynamic composition of process federations for context

aware perception of human activity. In International Workshop on Performance

Evaluation of Tracking and Surveillance, volume 1, page xx, October 2003.



Bibliography 171

J. Cui, H. Zha, H. Zhao, and R. Shibasaki. Robust tracking of multiple people in crowds

using laser range scanners. In International Conference on Pattern Recognition

(ICPR), page 1, Aug 2006.

F. Cupillard, F. Bremond, and M. Thonnat. Group behavior recognition with multiple

cameras. In Sixth IEEE Workshop on Applications of Computer Vision (WACV).,

2002.

F. Cupillard, F. Bremond, and M. Thonnat. Behaviour recognition for individuals,

groups of people and crowd, 2004.

A. Datta, M. Shah, and N. D. V. Lobo. Person-on-person violence detection in video

data. In Proceedings of the 16 th International Conference on Pattern Recognition

(ICPR’02) Volume 1, page 10433. IEEE Computer Society, 2002. ISBN 0-7695-

1695-X.

J. W. Davis and A. F. Bobick. The representation and recognition of action using

temporal templates. In IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, volume 23, pages 257–267. IEEE Computer Society, 2001.

J. W. Davis and A. F. Bobick. The representation and recognition of action using

temporal templates. MIT, 1997.

H. Dee and D. C. Hogg. Is it interesting? comparing human and machine judgements

on the pets dataset. Sixth International Workshop on Performance Evaluation of

Tracking And Surveillance, 33(1):49–55, 2004a.

H. M. Dee and D. C. Hogg. Detecting inexplicable behaviour. In British Machine

Vision Conference, pages 477–486, September 2004b.

F. Dellaert. The expectation maximization algorithm, February 2002. Technical Re-

port.

J. Deutscher, B. North, B. Bascle, and A. Blake. Tracking through singularities and

discontinuities by random sampling. In ICCV (2), pages 1144–1149, 1999.

T. G Dietterich. Machine learning for sequential data: A review. In T. Caelli (Ed.)

Lecture Notes in Computer Science. Springer-Verlag, 2002.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse

spatio-temporal features. In PETS, pages 65–72, China, 2005.



Bibliography 172

A Doucet, N de Freitas, and N Gordon. Sequential Monte Carlo Methods in Practice.

Springer, 2001.

Youtian Du, Feng Chen, Wenli Xu, and Weidong Zhang. Interacting activity recog-

nition using hierarchical durational-state dynamic bayesian network. In Advances

in Multimedia Information Processing, volume 4261 of Lecture Notes in Computer

Science, pages 185–192. Springer Berlin / Heidelberg, 2006.

K. Duan and S. S. Keerthi. Which is the best multiclass svm method? an empirical

study. In Neural Information Processing Systems, 2003.

R.O. Duda, P. E. Hart, and G. D. Stork. Pattern Classification, Second Edition. Wiley

Interscience, University of Texas at Austin, Austin, USA, November 2000.

A. Efros, A. Berg, G. Mori, and J. Malik. Recognising action at a distance. In In 9th

International Conference on Computer Vision, volume 2, pages 726–733, 2003.

A. Ekin, A.M. Tekalp, and R. Mehrotra. Automatic soccer video analysis and summa-

rization. IEEE Transactions on Image Processing, 12(7):796–807, July 2003.

A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis. Background and foreground

modelling using nonparametric kernel density estimation for visual surveillance. In

Proceedings of the IEEE Conference on Computer Vision and Patterand Recogni-

tion, volume 2, page 1, jun 2001.

G. Fan, V. B. Venkataraman, L. Tang, and J. P. Havlicek. A comparative study of

boosted and adaptive particle filters for affine-invariant target detection and tracking.

In OTCBVS06, 2006.

P. Felzenszwalb. Learning models for object recognition. In CVPR, volume 1, pages

56–62, 2001.

F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-camera people tracking with a

probabilistic occupancy map. In accepted to IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2007.

G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 3(61):268–278, 1973.

Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In Ninth

Annual Conference on Computational Learning Theory, pages 325–332, 1996.



Bibliography 173

N. Friedman and M. Goldszmidt. Learning bayesian networks with local structure. In

In Proc. Twelfth Conf. on Uncertainty in Artificial Intelligence (UAI 96), 1996.

N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic probabilis-

tic networks. In Proceedings of the Annual Conference on Uncertainty in Artificial

Intelligence, pages 139–147. Elsevier Science Publishing Comapny, Inc., 1998.

Akira Fujimura and Kokichi Sugihara. Geometric analysis and quantitative evaluation

of sport teamwork. Syst. Comput. Japan, 36(6):49–58, 2005.

A. Galata, N. Johnson, and D. Hogg. Learning variable length markov models of

behaviour. Int. Journal of Computer Vision and Image Understanding (CVIU), 81

(3):398–413, March 2001.

A. Galata, D. Cohn, A. G.and Magee, and D. Hogg. Modeling interaction using learnt

qualitative spatio-temporal relations and variable length markov models. In Euro-

pean Conference on Artificial Intelligence (ECAI), pages xx–xx, July 2002.

D. M. Gavrila and L. S. Davis. 3-d model-based tracking of humans in action: a multi-

view approach. In CVPR ’96: Proceedings of the 1996 Conference on Computer

Vision and Pattern Recognition (CVPR ’96), page 73. IEEE Computer Society, 1996.

H. Gerber, R. Nagel and H. Schreiber. Deriving textual descriptions of road traffic

queues from video sequences. In The 15-th European Conference on Artificial In-

telligence (ECAI’2002), pages 736–740, Lyon, France, July 2000.

Z. Ghahramani and G. E. Hinton. Variational learning for switching state space models.

Neural Computation, 12(4):963–996, 1998.

D. Gibson. Finite state machines - making simple work of complex functions. Tech-

nical report, SPLat Control Pty. Ltd, 2-12 Penninsula Blvd, Seaford, Victoria, AUS-

TRALIA, 1999. Technical report.

G. Gigerenzer, P. M. Todd, and ABC Research Group. Simple Heuristics That Make

Us Smart. Evolution and Cognition Series. Oxford University Press, 1999.

S. Gong and T. Xiang. Discovering bayesian causality among visual events in a com-

plex outdoor scene. In IEEE International Conference on Advanced Video- and

Signal-based Surveillance, pages 177–182, July 2003a.



Bibliography 174

S. Gong and T. Xiang. Recognition of group activities using a dynamic probabilistic

network. In IEEE International Conference on Computer Vision, pages 742–749,

October 2003b.

D. Greenhill, J. R. Renno, J. Orwell, and G. A. Jones. Learning the semantic landscape:

Embedding scene knowledge in object tracking. In Special Issue on Video Object

Processing, 2004.

W. E. L. Grimson and C. Stauffer. Adaptive background mixture models for real time

tracking. In CVPR, 1999.

W. E. L. Grimson, C. Stauffer, and R. Romano. Using adaptive tracking to classify and

monitor activities in a site. In CVPR, 1998.

A. Gritai, Y. Sheikh, and M. Shah. On the invariant analysis of human actions. In 17th

conference of the International Conference on Pattern Recognition, 2004.

I. Guyon and F. Pereira. Design of a linguistic postprocessor using variable memory

length markov models. In In International Conference on Document Analysis and

Recognition, volume 14, pages 454–457. IEEE Computer Society Press, 1996.

A. Hakeem and M. Shah. Learning, detection and representation of multi-agent events

in videos. Artificial Intelligence, 171:586–605, 2007.

A. Hakeem and M. Shah. Ontology and taxonomy collaborated framework for meeting

classification. In ICPR04, pages IV: 219–222, 2004.

B. Han, D. Comaniciu, and L. Davis. Sequential kernel density approximation through

mode propagation: applications to background modeling. In ACCV - Asian Confer-

ence on Computer Vision, 2004.

S. Hannuna, N. Campbell, and D. Gibson. Identifying quadruped gait in wildlife video.

In International Conference on Image Processing. IEEE, September 2005.

I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Who? when? where? what? a real

time system for detecting andtracking people. In AFGR98, pages 222–227, 1998.

I. Haritaoglu, D. Harwood, and L.S. Davis. W4: Real-time surveillance of people and

their activities. PAMI, 22(8):809–830, August 2000.



Bibliography 175

D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The

combination of knowledge and statistical data. Machcine Learning, pages 197–243,

1995. ISSN 0885-6125.

J. Hoey and J. Little. Representation and recognition of com-

plex human motion. In CVPR, pages 752–759, 2000. URL

citeseer.ist.psu.edu/hoey00representation.html.

T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50–57, August

1999.

S. Hongeng and R. Nevatia. Multi-agent event recognition. In ICCV, volume 2, pages

84–91, 2001.

R. Hosie, S. Venkatesh, and G. A. W. West. Classifying and detecting group behaviour

from visual surveillance data. In ICPR, volume 1, pages 602–604, 1998.

A. Howard and T. Jebara. Dynamical systems trees. In Uncertainty in Artificial Intel-

ligence, July 2004.

M. Hu. Visual pattern recognition by moment invariants. In IRE Transactions on

Information Theory, IT-8, volume 2, 1962.

C. Huang and A. Darwiche. Inference in belief networks: A procedural guide. Iner-

national Journal of Approximate Reasoning, 15:225–263, 1996.

S. Indupalli, M.A. Ali, and B. Boufama. A novel clustering-based method for adaptive

background segmentation. In CRV06, 2006.

S. S. Intille and A. F. Bobick. A framework for recognizing multi-agent action from

visual evidence. MIT Media Laboratory, 1999.

S. S. Intille and A. F. Bobick. Recognizing planned, multiperson action. CVIU, 81(3):

414–445, March 2001.

M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional

density. In Proceedings of the European Conference on Computer Vision, pages

343–356, Cambridge UK, 1996.

M. Isard and A. Blake. Condensation : conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(1):5–28, 1998.



Bibliography 176

Y. A. Ivanov and A. F. Bobick. Recognition of multi-agent interaction in video surveil-

lance. unknown.

R. Jain and H. Nagel. On the analysis of accumulative difference pictures from image

sequences of real world scenes. IEEE Trans. Patt. Analy. Mach. Intell., 1:206–214,

1979.

N. Johnson and D. Hogg. Learning the distribution of object trajectories for event

recognition. In Image and Vision Computing, 14(8), volume 14, pages 609–615,

1996.

N. Johnson, A. Galata, and D. Hogg. The acquisition and use of interaction behaviour

models. In In Proc. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition - CVPR’98, pages 866–871. IEEE Computer Society Press,

1998. URL citeseer.ist.psu.edu/article/johnson97acquisition.html.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to varia-

tional methods for graphical models. Machine Learning, 37(2):183–233, 1999.

S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people: A parameterized model of ar-

ticulated image motion. In FG ’96: Proceedings of the 2nd International Conference

on Automatic Face and Gesture Recognition (FG ’96), page 38. IEEE Computer So-

ciety, 1996.

Carlo Colombo Alberto Del Bimbo Walter Nunziati Jurgen Assfalg, Marco Bertini.

Semantic annotation of soccer videos: automatic highlights identification. In Com-

puter Vision and Image Understanding, 2003.

T. Kadir, R. Bowden, E. J. Ong, and A. Zisserman. Minimal training, large lexicon, un-

constrained sign language recognition. In Proceedings of the 15th British Machine

Vision Conference, Kingston, page to appear, 2004.

I. A. Kakadiaris and D. Metaxas. Model-based estimation of 3d human motion with

occlusion based on active multi-viewpoint selection. In CVPR ’96: Proceedings

of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR ’96),

page 81. IEEE Computer Society, 1996.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.



Bibliography 177

H. B. Kang and S. H. Cho. Short-term memory-based object tracking. In International

Conference on Image Analysis and Recognition (ICIAR). Springer Verlag, Septem-

ber 2004.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In Interna-

tional Journal of Computer Vision, pages 321–331, 1988.

R. Kauth, A. Pentland, and G. Thomas. Blob and unsupervised clustering approach

for object detection. In ICCV95, pages 786–793, 1995.

Yan Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using volumet-

ric features. In International Conference on Computer Vision, volume 1, pages 166–

173, 2005.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT

Press, 1994.

S. M. Khan and M. Shah. Detecting group activities using rigidity of formation. In

MM05, Singapore, November 2005.

M. Koivisto and K. Sood. Exact bayesian structure discovery in bayesian networks.

Journal of Machine Learning Res., 5:549–573, 2004. ISSN 1533-7928.

Jeremy Kubica, Andrew Moore, David Cohn, and Jeff Schneider. cgraph: A fast

graph-based method for link analysis and queries. In Marko Grobelnik, Natasa

Milic-Frayling, and Dunja Mladenic, editors, Proceedings of the 2003 IJCAI Text-

Mining and Link-Analysis Workshop, pages 22–31, 2003a.

Jeremy Kubica, Andrew Moore, and Jeff Schneider. Tractable group detection on large

link data sets. In Xindong Wu, Alex Tuzhilin, and Jude Shavlik, editors, The Third

IEEE International Conference on Data Mining, pages 573–576. IEEE Computer

Society, November 2003b.

S Kullback and R. A. Leibler. On information and sufficiency. In Annals of Mathe-

matical Statistics, volume 55, pages 79–86, 1951.

Jaimyoung Kwon and Kevin Murphy. Modeling freeway traffic using coupled hmms.

Machine Learning, May 2000.



Bibliography 178

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In 18th International Conference

on Machine Learning, 2001.

I. Laptev and T. Lindeberg. Velocity-adaptation of spatio-temporal receptive fields

for direct recognition of activities: An experimental study. In ECCV Workshop on

Statistical Methods in Video Processing, pages 61–66, 2002.

M. Lee and R. Nevatia. Human pose tracking using multilevel structured models. In

ECCV 06, 2006.

S. Lefevre and N. Vincent. Real time multiple object tracking based on active contours.

In International Conference on Image Analysis and Recognition (ICIAR). Springer

Verlag, September 2004.

B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In

CVPR, volume 1, pages 878–885, 2005.

M. E. Leventon and W. T. Freeman. Bayesian estimation of 3-d human motion. Tech-

nical Report TR1998-006 17, Mitsubishi Electric Research Laboratories, July 1998.

X. Liu and C. S. Chua. Multi-agent activity recognition using observation decomposed

hidden markov models. Image and Vision Computing, pages 166–175, 2006. URL

http://www.sciencedirect.com/science/article/B6V09-4HM7RW0-5/2/8458ff7a694e1a8102533fbd9f4fbb30.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

D. J. C. MacKay. Introduction to monte carlo methods. In M. I. Jordan, editor, Learn-

ing in Graphical Models, NATO Science Series, pages 175–204. Kluwer Academic

Press, 1998.

David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, 2003.

D. Magee. Machine Vision Techniques for the Evaluation of Animal Behaviour. PhD

thesis, The University of Leeds, School of Computer Studies, 2000.

D. Magee. Tracking multiple vehicles using foreground, background and motion mod-

els. In Image and Vision Computing, volume 22, pages 143–155, September 2004.



Bibliography 179

D. Makris and T. J. Ellis. Spatial and probabilistic modelling of pedestrian behaviour.

In British Machine Conference, volume 1, pages 557–566, September 2002.

C. Mikolajczyk, C. Schmid, and A. . Zisserman. Human detection based on a prob-

abilistic assembly of robust part detectors. In ECCV04, volume 1, pages 69–82,

2004.

T. Minka. Expectation-maximization as lower bound maximization, 1998. Tutorial

published on the web at http://www-white.media.mit.edu/ tpminka/ papers/em.html.

M. Minsky. A framework for representing knowledge. In P. Winston, editor, The

Psychology of Computer Vision. McGraw Hill, New York, 1975.

Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based object

detection in images by components. IEEE Trans. Pattern Anal. Mach. Intell., 23(4):

349–361, 2001. ISSN 0162-8828. doi: http://dx.doi.org/10.1109/34.917571.

D. D. Morris and J. Rehg. Singularity analysis for articulated object tracking. Pro-

ceedings of CVPR ’98, pages 289–296, June 1998.

R. J. Morris and D. C. Hogg. Statistical models of object interaction. International

Journal of Computer Vision, 37(2):209–215, 2000.

multitel. Trictrac project, found at url: http://www.multitel.be/trictrac. Internet, Feb

2006.

V. Nair and J. J. Clark. Automated visual surveillance using hidden markov models.

McGill University, 2002.

M. Naylor and C. I. Attwood. Advisor annotated digital video for intelligent surveil-

lance and optimised retrieval. ADVISOR Consortium, May 2003. Final Report.

R. M. Neal and G. E. Hinton. A new view of the em algorithm that justifies incremental,

sparse, and other variants. In Learning in Graphical Models. Kluwer, 1998.

C. Needham. Tracking and modelling of team game interactions. PhD thesis, UNiver-

sity of Leeds, 2003.

Nguyen, Venkatesh, and Bui. Recognising behaviours of multiple people with hierar-

chical probabilistic model and statistical data association’. In BMVC06, 2006.



Bibliography 180

N. T. Nguyen, H. H. Bui, S. Venkatesh, and G. A. West. Recognising and monitoring

high-level behaviours in complex spatial environments. In CVPR, pages 620–625,

2003.

J. C. Niebles, H. Wang, and L. FeiFei. Unsupervised learning of human action cate-

gories using spatial-temporal words. In British Machine Vision Conference, Edin-

burgh, 2006.

N. Oliver, F. Berard, and A. Pentland. Lafeter: lips and face tracking. In S. Juan, editor,

IEEE International Conference on Computer Vision and Pattern Recognition, Puerto

Rico, June 1997.

N. Oliver, B. Rosario, and A. Pentland. Graphical models for recognising human

interactions. nips, 1998.

N. M. Oliver. Towards Perceptual Intelligence: Statistical Modelling of Human Indi-

vidual and Interactive Behaviours. PhD thesis, Massachusetts Institute of Technol-

ogy, June 2000.

N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision system for

modelling human interactions. IEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8), August 2000a.

N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision system for

modelling human interactions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):831–843, 2000b.

N. M. Oliver, E. Horvitz, and A. Garg. Layered representations for human activity

recognition. icmi, 1(1), August 2002.

C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian detection system.

In Proc. of Intelligent Vehicles, pages 241–246, 1998.

N. Paragios and R Deriche. Geodesic active regions and level set methods for super-

vised texture segmentation. Int. J. Comput. Vision, 46:223–247, 2002.

S. Park and J. K. Aggarwal. Event semantics in two-person interactions. In ICPR04,

pages IV: 227–230, 2004.



Bibliography 181

S. Park and M. M. Trivedi. Multi-person interaction and activity analysis: a synergistic

track and body-level analysis framework. Machine Vision and Applications, 18:151–

166, 2007.

G. Paschos. Perceptually uniform color spaces for color texture analysis: an empirical

evaluation. IEEE Trans. Image Process., 10:932–937, 2001.

V. Pavlovic, J. M. Rehg, T. J. Cham, and K. P. Murphy. A dynamic bayesian network

approach to figure tracking using learned dynamic models. In ICCV (1), pages 94–

101, 1999.

A. Pentland. Classification by clustering. In S. Juan, editor, IEEE Symposium on

Machine Processing and Remotely Sensed Data, Pardue, IN, June 1976.

M. Perse, M. Kristan, J. Pers, and S. Kovacic. A template-based multi-player action

recognition of the basketball game. In J. Pers and D. R. Magee, editors, ECCV

Workshop on Computer Vision Based Analysis in Sport Environments, pages 71–82,

Graz, Austria, May 2006.

M. Perse, M. Kristan, J. Pers, and S. Kovacic. Automatic evaluation of organized

basketball activity. In M Grabner and H. Grabner, editors, Computer Vision Winter

Workshop, pages 11–18, St. Lambrecht, Austria, 2007.

M. Piccardi and T. Jan. Mean-shift background image modelling. In IEEE Interna-

tional Conference on Image Processing (ICIP-2004), October 2004.

EC Funded CAVIAR project/IST 2001 37540. found at

url: http://homepages.inf.ed.ac.uk/rbf/caviar/, 2004. URL

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

G. Pryor, P. Vela, T. Rehman, and A. Tannenbaum. Layered active contours for track-

ing. In British Machine Vision Conference, 2007.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Readings in speech recognition, pages 267–296, 1990.

C. Rao, A. Gritai, M. Shah, and T. Syeda-Mahmood. View-invariant alignment and

matching of video sequences. In The Ninth IEEE International Conference on Com-

puter Vision, Nice, France, 2003.



Bibliography 182

P. Ribeiro and J. Santos-Victor. Human activities recognition from video: model-

ing, feature selection and classification architecture. In Workshop on Human Activ-

ity Recognition and Modelling (HAREM 2005 - in conjunction with BMVC 2005),

pages 61–70, Oxford, September 2005.

N. M. Robertson. Automatic Causal Reasoning for Video Surveillance. PhD thesis,

Heartford College, University of Oxford, June 2006.

N. M. Robertson and I. D. Reid. Behaviour understanding in video: A combined

method. In International Conference on Computer Vision (ICCV), Beijing, China,

pages 339–344, October 2005.

R. Rodriguez and A.G. Suarez. An image segmentation algorithm using iteratively the

mean shift. In CIARP06, pages 326–335, 2006.

M. C. Roh, B. Christmas, J. Kittler, and S. W Lee. Gesture spotting for low-resolution

sports video annotation. Pattern Recognition, 41:1124–1137, 2008.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic au-

tomata with variable memory length. Machine Learning, 25(2-3):117–149, 1996.

P. Rosin and T. Ellis. Image difference threshold strategies and shadow detection. In

British Machine Vision Conference, pages 347–356, 1995.

N. Rota and M. . Thonnat. Activity recognition from video sequences using declarative

models. In W. Horn, editor, 14th European Conference on Artificial Intelligence

(ECAI 2000), Berlin, 2000. IOS Press, Amsterdam.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground extraction

using iterated graph cuts. Proc. ACM Siggraph, 2004.

D. Rowe, I. Huerta, J. Gonzalez, and J. J. Villanueva. Robust multiple-people tracking

using colour-based particle filters. In IbPRIA07, 2007.

D. Russell and S. Gong. Segmenting highly textured nonstationary background;. In

BMVC2006, 2006a.

D.M. Russell and S. Gong. Minimum cuts of a time-varying background. In British

Machine Vision Conference, 2006b.



Bibliography 183

M. S. Ryoo and J. K. Aggarwal. Semantic understanding of continued and recursive

human activities. In 18th International Conference on Pattern Recognition, vol-

ume 1, pages 379–382, Hong Kong, 2006a.

M. S. Ryoo and J. K. Aggarwal. Recognition of composite human activities through

context-free grammar based representation. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 1709–1719,

New York, NY, 2006b.

M. S. Ryoo and J. K. Aggarwal. Hierarchical recognition of human activities interact-

ing with objects. In 2nd International Workshop on Semantic Learning Applications

in Multimedia (SLAM) in conjunction with CVPR, Minneapolis, MN, June 2007.

D. Salber, A. K. Dey, and G. Abowd. The context toolkit: Aiding the development of

context-enabled applications. In CHI99, pages 434–441. ACM Publ, 1999.

J. Saragih and R. Goecke. Learning active appearance models from image sequences.

In VisHCI ’06: Proceedings of the HCSNet workshop on Use of vision in human-

computer interaction, 2006.

L. K. Saul and M. I. Jordan. Boltzman chains and hidden markov models. In

G. Tesauro, D.S. Touretzky, and T. Leen, editors, NIPS, volume 7, Cambridge, MA,

1995.

L. K. Saul and M. I. Jordan. Mixed memory markov models: Decomposing complex

stochastic processes as mixtures of simpler ones. Machine Learning, pages 75–87,

June 1999.

R. C. Schank and R. P. Abelson. Scripts, Plans, Goals and Understanding,. Lawrence

Erlbaum Associates, Hillsdale, New Jersey, 1977.

R. E. Schapire. The boosting approach to machine learning: An overview. Technical

report, University of California, Princeton University Department of Computer Sci-

ence 35 Olden Street Princeton NJ 08544, 2002. In MSRI Workshop on Nonlinear

Estimation and Classification.

Bernhard Scholkopf. Statistical learning and kernel machines. Technical report, Mi-

crosoft Research Cambridge, Guildhall Street, Cambridge CB2 3NH, UK, February

2000. Technical report.



Bibliography 184

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,

1978.

P. Scovanner and M. Ali, S.and Mubarak Shah. A 3-dimensional sift descriptor and its

application to action recognition. In ACM Multimedia, pages 357–360, 2007.

A. Senior. Tracking people with probabilistic appearance models. In PETS02, pages

48–55, 2002.

A. Senior, A. Hampapur, Y. L. Tian, L. Brown, S. Pankanti, and R. Bolle. Appearance

models for occlusion handling. In in proceedings of Second International workshop

on Performance Evaluation of Tracking and Surveillance systems in conjunction

with CVPR’01, December 2001.

Y. Shi, D. Huang, Y. Minnen, A. F. Bobick, and I. A. Essa. Propagation networks

for recognition of partially ordered sequential action. In CVPR (2), pages 862–869,

2004.

Jamie D Shutler and Mark S. Nixon. Zernike velocity moments for description and

recognitionof moving shapes. In BMVC, 2001.

H. Sidenbladh and M. J. Black. Learning image statistics for bayesian tracking. In Int.

Conference on Computer Vision, ICCV-2001, Vancouver, volume 2, pages 702–716,

June 2001.

H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3d human figures

using 2d image motion. In European Conference on Computer Vision, D. Vernon

(Ed., pages 702–718. Springer Verlag, June 2000.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Conditional models for contex-

tual human motion recognition. In International Conference on Computer Vision,

2005.

K. Y. Song, J. Kittler, and M. Petrou. Defect detection in random color textures. Israel

Verj. Cap Journal, 9:667–683, 1996.

M. B. Stegmann. Object tracking using active appearance models. In

Proc. 10th Danish Conference on Pattern Recognition and Image Analy-

sis, volume 1, pages 54–60, Copenhagen, Denmark, July 2001. URL

http://www.imm.dtu.dk/pubdb/p.php?115.



Bibliography 185

T. Taki, J. I. Hasegawa, and T. Fukumura. Group motion features for teamwork evalu-

ation and its application to soccer games. In ICPR98, page SA21, 1998.

M. R. Teague. Image analysis via the general theory of moments. Journal of the

Optical Society of America, 8(70):920–930, 1979.

Y. H. Tian, Z. Mei, T. J. Huang, and W. Gao. Incremental learning for interaction

dynamics with the influence model. In The Ninth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 60–68, August 2003.

C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report

CMU-CS-91-132, Carnegie Mellon University, April 1991.

V. J. Traver, A. Bernardino, P. Moreno, and J. Santos-Victor. Appearance-based object

detection in space-variant images: a multi-model approach. In ICIAR - International

Conference on Image Analysis and Recognition, September 2004.

T. Troscianko, A. Holmes, J. Stillman, M. Mirmehdi, and D. Wright. What happens

next? the predictability of natural behaviour viewed through cctv cameras. Percep-

tion, 33(1):87–101, February 2004. ISSN ISSN 0301-0066.

D. Tweed, R. Fisher, J. Bins, and T. List. Efficient hidden semi-markov model in-

ference for structured video sequences. In 2nd Joint IEEE Int. Workshop on Visual

Surveillance and Performance Evaluation of Tracking and Surveillance, (VS-PETS),

pages 247–254, Beijing, October 2005.

T. Van Vu, F. Bremond, and M. Thonnat. Automatic video interpretation: A recog-

nition algorithm for temporal scenarios based on precompiled scenario models. In

ICVS, 2003.

N. Vaswani, A. R. Chowdhury, and R. Chellappa. Activity recognition using the dy-

namics of the configuration of interacting objects. In Computer Vision and Pattern

Recognition, 2003.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In In IEEE Conference on Computer Vision and Pattern Recognition, pages

609–615, 2001.

P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and

appearance. In In 9th International Conference on Computer Vision, volume 1,

pages 734–741, October 2003.



Bibliography 186

S. Wachter and H. H. Nagel. Tracking persons in monocular image sequences. Comput.

Vis. Image Underst., 74(3):174–192, 1999. ISSN 1077-3142.

K. N. Walker, T. F. Cootes, and C. J. Taylor. Automatically building appearance models

from image sequences. In British Machine Vision Conference, 1999.

H. M. Wallach. Conditional random fields: An introduction. Technical report, Univer-

sity of Pennsylvania, 2004. CIS Technical Report MS-CIS-04-21.

C. Wren, A. Azarbayejani, and A. Pentland. Pfinder: Real-time tracking of the human

body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:780–785,

1997a.

C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder:

Real-time tracking of the human body. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 19(7):780–785, 1997b. URL

citeseer.ist.psu.edu/wren97pfinder.html.

Bo Wu and Ram Nevatia. Detection and tracking of multiple, partially occluded hu-

mans by bayesian combination of edgelet based part detectors. International Journal

of Computer Vision, 75(2):247–266, 2007.

J. Wu, J. M. Rehg, , and M. D. Mullin. Learning a rare event detection cascade by

direct feature selection. In NIPS, 2002.

Xianghua Xie and Majid Mirmehdi. Implicit active model using radial basis function

interpolated level sets. In Proceedings of the 18th British Machine Vision Confer-

ence, 2007.

M. Yamamoto. Incremental tracking of human actions from multiple views. In

CVPR98, 1998.

A. Yilmaz and M. Shah. Actions sketch: a novel action representation. In IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, volume 1,

pages 20–25, June 2005.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Neural Information

Processing Systems, 2004.



Bibliography 187

D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and G. Lathoud. Modelling in-

dividual and group actions in meetings: A two-layer hmm framework. IDIAP Re-

search Institute, Martigny, Switzerland, 2000.

T. Zhao and R. Nevatia. Bayesian human segmentation in crowded situations. In IEEE

Conference on Computer Vision and Pattern Recognition, June 2003.

S. Zhong and J. Ghosh. A new formulation of coupled hidden markov models. Techni-

cal report, Department of Electrical and Computer Engineering, University of Texas

at Austin, Austin, USA, September 2001a. Technical report.

S. Zhong and J. Ghosh. Distance-coupled hidden markov models. Technical report,

Department of Electrical and Computer Engineering, University of Texas at Austin,

Austin, USA, September 2001b. Submitted to NIPS 2001.

J. Zhu, S. Rosset, H. Zhou, and T. Hastie. Multi-class adaboost. Technical report,

University of Michigan, Ann Arbor, 2006.

S. Zhu and A. Yuille. Region competition: unifying snakes, region growing, and

bayes/mdl for multiband image segmentation. IEEE Trans. Patt. Analy. Mach. In-

tell., 18:884–900, 1996.


