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ABSTRACT OF THESIS 

In this thesis we use graph theory to investigate the structure 

of incomplete block designs. Specifically, we use graph theory 

methods and ideas to help develop simple and reliable means of 

producing efficient cyclic designs and a designs; we also point out, 

however, that there is a great deal of scope for graph theory to be 

used in other ways in connection with block designs. 

The necessary background from design of experiments and graph 

theory is sketched in Chapter 1, where also we define the principal 

concepts which link the two subjects: the variety concurrence graph, 

the block concurrence graph, and the design graph. We describe 

examples to clarify all these ideas. We observe, furthermore, that 

other researchers have made only inchoate and sporadic use of graph 

theory as a methodology for the investigation of block designs. 

Having outlined this background, we then turn, in Chapter 2, to 

one area in particular: we show that a fairly accurate assessment of 

the efficiency of a block design can be had by counting the numbers 

of circuits of various lengths in its variety concurrence graph. On 

the strength of this we define the graphical criteria of efficiency: 

(for h > 2) is defined to be the number of circuits of length h 

in this graph. We examine the strengths - both intuitive and 

mathematical - of these criteria, and also their close theoretical 

relationship with the widely used harmonic mean efficiency factor. 

We indicate that their main advantage over the latter criterion 

is their ease of calculation - and that this stems precisely from 
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their origins in the graph. 

In Chapters 3 and 4 we demonstrate in further detail just how 

straightforward the graphical criteria are when they are applied to, 

respectively, cyclic designs and c designs. We devise formulas to 

enumerate circuits of lengths two, three, and four in such designs by 

exploiting the considerable simplifications that are made possible 

by our graph theory approach. And we illustrate the power of the 

graphical criteria - and their facility of computation - by 

describing their application to several examples. 

Subsequently, in Chapter 5, we present algorithms which use 

some of the formulas obtained in Chapter 4 to generate efficient c 

designs, The rapidity of these algorithms is due, again, to the 

simplicity that arises from graph theory. This rapidity makes 

practicable a wider searching for efficient designs than has been 

possible hitherto. (In Appendix 2 we exemplify the improvements 

which can be obtained in consequence of this.) 

Finally, in Chapter 6, we discuss the link between the 

precision with which a design estimates variety differences and 

certain structural properties of the variety concurrence graph. Out 

of this discussion emerges a set of rules for the efficient 

allocation of controls in an experiment. 
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INTRODUCTION 

There often comes a time in the development of a subject 

when it is profitable to step outside it and look back in. That 

is what we do in this thesis for the subject of general block 

designs: we seek to demonstrate that many of the important problems 

associated with them can be illuminated by the methods of graph 

theory. Of course, our work here can be no more than a first step 

in that direction. We do, certainly, at the outset, give a 

comprehensive survey (in Chapter 1) of the ways in which graph 

theory arises in connection with block designs. But thereafter 

we narrow and deepen our attention. Principally, we use graph 

theory to devise a series of efficiency criteria, which we will 

call, accordingly, the graphical efficiency criteria: their theory 

we present in Chapter 2; examples of their applications (to cyclic 

designs and to cg designs) in Chapters 3 and 4; and their 

incorporation into simple algorithms for generating efficient 

designs in Chapter 5. Throughout this, graph theory will recur 

as the main aspect of the mathematical foundation of the criteria, 

facilitating theory and applications alike. We also, in Chapter 6, 

investigate briefly one further, related, application of graph 

theory to block designs: we show how it is relevant to the 

estimation of differences between the effects of pairs of varieties. 

Nevertheless, if the thesis is only a first step in the 

application of graph theory to block designs, we do indicate at 
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several points - especially in Chapter 1 - where there might be 

possibilities for future progress along these lines. 

As a preliminary, we summarise the most commonly occurring 

notation; all other notation will be explained fully as it arises. 

We always denote matrices by upper case letters, and vectors 

by lower case underlined. We denote the transpose of the matrix 

A by AT, and its trace by Tr(A). The nXl vector all of whose 

entries are 1 we denote by 1 , the nxn matrix all of whose entries 
T1 

are 1 by J, and the nxn identity matrix by I. (Sometimes we 

omit the suffix n from these, when the context makes clear what 

is intended.) And we have borrowed and adapted from Williams (1975) 

a shorthand notation for modular arithmetic: a dot above the 

operator (4- or 	means modulo v in Chapter 3, and modulo s in 

Chapters 4, 5, and 6. 
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• CHAPTER 1 

1.1 Introduction 

The main purpose of this first Chapter is to present the 

background required for the rest of the thesis. That background 

has two facets. On the one hand, and most obviously important, 

is the context in which block designs are used; this we outline 

in Section 1.2. On the other hand, and equally essential to the 

approach we will adopt, are the basic concepts of graph theory; 

these we describe in Section 1.3. Then, in Section 1.4, we bring 

the two together,defining the structures which will allow us, 

later, to use graph theory in the search for efficient block 

designs. 

But this Chapter has, furthermore, a subsidiary purpose: to 

give a general, brief, survey - also in Section 1.4 - of all the 

main links between graph theory and design. The intention of this 

survey is not only to explicate the ways in which these links have 

been exploited in the past, but moreover to indicate as well some 

possibilities which they open up for future research. 

1.2 Background from Design of Experiments 

We will posit throughout the thesis the following experiment, 

which will be the context in which all block designs± we consider 

would be used: v varieties are to be tested in b incomplete blocks, 

tFor an account of the relevant definitions, see John (1971), 
Chapter 11. 
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each with k plots, in such a way that each variety is replicated r 

times. There may be many ways of arranging the v varieties 

according to this general pattern; deciding which arrangement - that 

is, which design - is "best" is precisely where the problem lies. 

In order to be able to make this decision, it is, of course, 

necessary first of all to have some appropriate rules of choice. 

Suitable criteria have usually been derived from the normal 

equations for the intrablock estimation of the variety effects, and 

we will follow this approach here: the graphical criteria of 

efficiency which will form the main subject of the later Chapters 

will, like the customary existing criteria, be based on these 

equations. 

In this Section, therefore, we present the equations and 

summarise the existing criteria. Since the theory behind these 

has been developed elsewhere, we will not go into it in any detail: 

we will simply state the results which will be of use to us later 

1- 
on. 

1.2.1 Notation and definitions 

We will need the following notation. 

We let the effect of the .th 
 variety be Ti . and the vector of 

variety effects be r = (r 1 . ...... , T)T. Also, we let the 
th 
 block 

effect be ajJ1  and the vector of block effects be = 

The statistical model which we will assume for the data is the 

tThe summary of existing criteria is based on Shah (1960), where 
also can be found much of the theory associated with them. 
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standard one. If y,. is the yield obtained from a plot in block j 

which contains variety 1, then this model postulates that: 

13 
= .1 + T + 	. + e. .

J  1 	J 	1 

where p is the overall mean, and the e.. are independent normal 

variables with expected value 0 and variance cr 2 . 

We will consider for the most part - except, that is, when we 

make it explicitly clear otherwise - only binary designs: that is, 

those in which each variety occurs no more than once in each block. 

(It can be shown that, if k < v, as will usually be the case in, 

for example, variety trials, then an optimal design on any of the 

existing criteria will be binary if such exists.) 

Next, we let N be the vxb incidence matrix of the design. 

That is., N = (n..), where n 	 is 1 if variety i occurs in block j,ij 

and is 0 if it does not. 

The matrix NNT is called the variety concurrence matrix of the 

design (because its entry (NNT).j  is the number of times varieties 

i and j concur together in a block). 

Then, under the side condition 1  
= 0, the normal equations 

for estimating t are: 

(1.2) 

where C = rI - NNT and q = V - Nb; v is the vxl vector of variety v J-6

totals; that is V = (V1 .  ....... V)T, V. being the total yield of all 

Plots which contain variety i; b is the bxl vector of block totals; 

that is, b = (B1  ........ Bb ) T , B. being the total yield of all plots 

which lie in block j. 



A contrast in the variety effects is an expression: 

T 
C 	= 	. c.T., -- 	 11 i=l 

where c is such that 1 c = 0. 

Finally, if the design is connected 
t 
 (as will be all those 

which will interest us), then 0 is an eigenvaiue of C with 

multiplicity one. We let the non-zero eigenvalues of 1 
 C be: 

e 1  

We will sometimes re 

eigenvalue) as e 
mm 

canonical efficiency 

>e >e > ......>e 
- 2— 3— 	—v-i 

er to e 
v-i  (which is the smallest non-zero 

These eigenvalues are usually called the 

factors of the design; they are all less than 

or equal to 1, and greater than 0. 

1.2.2 Summary of the main existing criteria of efficiency 

The second part of the background from design of experiments 

concerns the customary criteria which have been proposed hitherto. 

These are usually given the names: 

A-criterion; 

D-criterion; 

E-criterion; 

S-criterion. 

(a) A.-criterion 

Under this criterion, the aim is to maximise what is called 

TThe concept of connectedness is explained more fully later, in 
1.4.3(a), and its relevance is explained in Chapter 6. 
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the harmonic mean efficiency factor, namely: 

v-i 
- 	v-I 

E e. 
1 i=1 

(This can be shown to be equivalent to minimising the average 

variance of the difference between pairs of variety effects: see 

Kempthorne (1956) and Kshirsagar (1958).) 

p-criterion 

This involves maximising the geometric mean efficiency factor: 

v-i - 
= 	il e. )vl 

(This can be shown to be equivalent to minimising the generalised 

variance of the estimates of r: see Wald (1943) and Kiefer (1958).) 

E-criterion 

This requires us to maximise the smallest canonical efficiency 

factor, e min' - (equivalent to minimising the maximum variance of a 

contrast: see Ehrenfêld (1955) and Wald (1943)). 

-criterion 

This fourth criterion is widely used in practice (though its 

many manifestations are not immediately recognisable as being he 

same). However (as we will explain shortly). it has a rather more 

tenuous theoretical base than the A- , D- , and E- criteria. 

It was first proposed by Shah (1960), and, in his formulation, 

involved minimising the variance of the canonical efficiency 

factors e.; that is, minimising 

v-i 	_2 
- E  v-i 	Ce. - e) . 	1 

i=l 



where e is the average of the e.  But e is simply k 
	

, and so 

this amounts to minimising 

v-i 
Z e 

1=1 1 
 

Now, 	 Tr(C 2 ) = 	E 	c. 
i,j=l 

(C being the matrix (c..)), and since this quantity is related (by 

means only of scalar factors and constants) to the quantity 

NN
(T 2 ) 

i ,j=l 

the -criterion can also be expressed as minimising 

= 	E 
1] i,j=1 

Finally, since the quantities 

T 	 T 
E 	(NN ).. and 	E 	(NN ).. 

	

13 	
i 	

11 
i,j=l 	 =l 

are both fixed, being, respectively, rkv and rv, the criterion can 

assume the form in which it is most often expressed: minimise the 

spread of the off-diagonal entries of the concurrence matrix NN 

These criteria are used to compare designs for given numbers 

of varieties, blocks and replicates. A design which has an 

optimal (that is, maximal) value of A will often be called 

k-optimal; similarly for each of the other criteria. 

Now, the advantage of the first three of these criteria is 



that they have a firm theoretical foundation, being related (as we 

have indicated briefly above) to important statistical features of 

the experiment. Their disadvantage is that they are relatively 

complicated to evaluate, having, moreover, no immediately obvious 

link with the purely combinatorial properties of the layout of 

the varieties. On the other hand, the -criterion is easy to 

calculate, and does have a transparently direct relationship with 

certain combinatorial aspects of the design (since, as we saw, it 

is equivalent to minimising the spread of concurrences between 

varieties). However, it lacks any rigorous theoretical 

justification: indeed its adoption would seem, historically, to 

have been based-on heuristic arguments (derived, primarily, from 

the observation that a balanced incomplete block design is optimal 

under all four criteria, but derived also, through time? from 

widely attested experience of it as a useful guide in the selection 

of efficient designs). 

The criteria which we will propose later in the thesis are, at 

once, easier to calculate than criteria (a) - (c), yet also more 

firmly based theoretically than (d). They will be seen to be, in a 

sense to be explained, a generalisation of the S-criterion, and 

collectively (that is, if the sequence could be continued 

indefinitely) a stronger condition than the i-criterion. 

All these points will emerge as natural consequences of the 

graph-theoretic approach which we will adopt throughout; it is to 

introducing the necessary background for this that we now turn. 
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1.3 Background from Graph Theory 

The recurrent mathematical theme of the thesis will be graph 

theory. Not only will this facilitate and clarify many of the 

definitions, results, and applications; it will also set the whole 

problem of efficiency criteria in a framework which, we will 

suggest, is intuitively appealing, mathematically coherent, and, 

in consequence, aesthetically elegant. 

The purpose of this Section is to introduce the necessary 

concepts and definitions from graph theory. We will not digress 

into technical details: these have been treated rigorously 

elsewhere (for example, in Harary (1969)or Berge (1973)). All we 

will do here is select those parts of the subject which we will 

require later. 

It should be emphasised at the outset that a "graph" in this 

context does not mean what working statisticians usually take it 

to mean. It has nothing to do with plotting curves against axes; 

it is defined, rather, as a network of points, along with lines 

joining pairs of these points. It is unfortunate that this 

semantic ambiguity has arisen, and the word "network" might, 

perhaps, convey more of the flavour of what is meantt But the word 

"graph" has become so firmly established in the literature that 

there is no prospect of dislodging it. So we will adhere to this 

conventional terminology, at the risk of offending the instincts of 

the statistically-minded reader. 

tAt least one eminent graph theorist agrees with this: Nash-Williams. 
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A graph, then, is simply a collection of points (or vertices), 

along with a set of lines joining together certain specified pairs 

of points. For example, the graph in Figure 1 has 7 points 

(numbered 0,1,2,3,4,5,6) and 10 lines: two lines joining 0 and 1; 

and single lines joining each of the pairs 0 and 3, 0 and 5, 0 and 

6, 1 and 2, 1 and 4, 1 and 6, 2 and 4, 2 and 5. 

Figure 1 

3 

5 

There arises at once a problem of presentation: because these 

sheets of paper are two-dimensional, the lines of graphs will tend 

to intersect each other in a misleading fashion. (For example, in 

the graph in Figure 1, the line 0-3 appears to intersect the lines 

1-4 and 1-2.) We will therefore adopt the convention that points 

will be denoted by unmistakably black dots; line intersections 

other than at such dots will have no meaning. 

First, some convenient terminology. Two points which are 

joined by a line are said to be adjacent, as are two lines which 

meet at a point. (For example, in Figure 1, the points 0 and 5 are 

adjacent, and the lines 0-5 and 6-0 are adjacent.) If there is 



- 12 - 

more than one line joining the same two points, then we will 

sometimes refer to these lines collectively as multiple lines. (We 

would use this to refer to, for example, the two lines joining 

the points 0 and 1 in Figure 1.) The valency of a given point is 

the number of lines on which it lies. (Thus, for example, the 

valency of 0-in Figure 1 is 5.) 

Such terminology is purely to avoid cumbersome circumlocutions. 

On a less mundane level are a further two notions, both of which will 

figure prominently later: namely, path and circuit. 

A patht  from i to j is exactly what it might be supposed to be 

intuitively: it is a route from i to j traversing lines of the 

graph. For example, in the graph in Figure 1, a path joining 5 to 

4 is as follows: 

5 - 2 - 1 - 4 . 

A path might loop back on itself, and might traverse certain lines 

more than once. For example, another 5-4 path in Figure 1 is: 

5-0 - 1-6 - 0 - 1- 4. 

A circuit  is a path which starts and finishes at the same 

point. For example, the following is a circuit joining 2 to itself 

in Figure 1: 

2 - 5 - 0 - 1 - 2. 

A proper circuit is one whose lines are all different (such as, in 

Figure 1; 

2 - 4 - 1 - 2). 

The definitions of path and circuit given here are different from 
those given in Harary (1969), but the same as in Berge (1973). We 
have chosen this definition to suit our purposes here. 
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The length of a path or circuit is the number of lines 

contained in it (not, it should be noted, the number of distinct 

lines: each line is counted once for each of its appearances). 

For example, the length of the first path above is 3 (lines 5-2, 

2-1, and 1-4); that of the second path is 6 (lines 5-0, 0-1, 1-6, 

6-0, 0-1, and 1-4); that of the first circuit is 4 (lines 2-5, 5-0, 

0-1, and 1-2); and that of the second circuit is 3 (lines 2-4, 4-1, 

and 1-2). 

That all this does have relevance to the problems of design 

will be seen, later, to arise from the fact that the properties of 

a graph can be encapsulated in the form of a matrix: the adjacency 

matrix. If the graph G has n points, then its adjacency matrix is 

the nxn matrix whose (i,j)th entry is the number of lines in G which 

join the points i and j. (If i is the same as j, this is taken to 

be zero.) In other words, if we denote the adjacency matrix by (a..) 

or A or A(G), then a j  is the number of lines i-j. Thus, for 

example, for the graph in Figure 1, A is as follows: 

A = 	0201011 
2010101 
0100110 
1000000 
0110000 
1010000 
1100000 

L 

Of considerable importance will be the fact that this matrix 

can be used to enumerate numbers of paths and circuits in the graph: 

to be precise, the number of i-j paths of length h is the ()th 

entry of the matrix A  - that is, (Ah)..; and the number of circuits 

of length h joining i to itself is (A'). (This result can be 



- 14 - 

proved by simple mathematical induction on h.) Thus, for example, 

in the graph in Figure 1, there are three 1-5 paths of length 2 

(two paths of the form 1-0-5, and one 1-2-5), and (A 2 ) 15  = 3. 

There is one slight complication to bear in mind when enumerating 

circuits by (A) 	This is that orientation is implicitly 

assumed to be significant. For example, in Figure 1, (A) 22  = 2, 

reflecting the fact that the configuration: 

2,74 

yields two 2-2 circuits of length three: namely, 2-4-1-2, and 

2-1-4-2. 

Finally in this Section on the background from graph theory, we 

mention three particular types of graph which we will use several 

times again. 

First, a connected graph is one in which every two points are 

joined by some path; that is, the points are all connected together 

by paths. 

Next, the complete graph with n points is the one in which 

every two points are joined by a line: for example, the following 

is the complete graph with 5 points: 

And, finally, the multipartite graph, which is slightly more 

complicated. In a graph of this kind, the points can be grouped 

into sets in such a way that no two points in the same set are 

joined by a line. These sets are called the sides of the graph. 
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For example, the following graph has three sides: namely, the sets 

{o,i}, {2,3,4}, and{5}: 

54 . 

(The grouping into sides is usually not unique. Here, another, way 

of grouping is {O,l}, {2,3}, and {4,51.) This graph is called 

tripartite - because it has three sides. A graph which has two sides 

will be called bipartite. 

These are now all the main definitions and ideas from .graph 

theory which we will require repeatedly. Occasionally we will need 

further concepts, but it will be more convenient - and will involve 

far less complication - if we introduce these as they arise. 

Having, therefore, sketched the relevant backgrounds from both 

design of experiments and graph theory, we turn next to drawing 

them together. 

1.4 The link between Graph Theory and Design 

The link between graph theory and general block designs has 

received only sporadic and inchoate attention in the literature. 

That is not to overlook the considerable volume of work that has 

employed combinatorial graph theory to construct balanced and 

partially balanced incomplete block designs. But such designs 

are available for only certain severely constrained values of the 

parameters; our interest here, in contrast, is at once more general 

and more unified, subsuming into a framework of graph theory the 
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structure of block designs of any type. It is this, more general, 

use of graph theory which has not been investigated very much 

hitherto. The principal - and just about the only - paper is by 

Patterson and Williams (1976a), but important as it is - in" breaking 

new ground in this area, it does not progress far beyond definitions. 

Apart from that, there is some interesting, if not as yet fully 

developed, use of graph theory in recent work by Mitchell and John 

on optimal incomplete block designs (Mitchell and John (1976) and 

John and Mitchell (1977)); and there are papers on the connectedness 

of designs by, amongst others, Jacroux, which, although not 

explicitly phrased in terms of graph theory, do point in that 

direction. 

We will describe and comment on the work of these authors as we 

present, in this Section, the several ways in which graph theory 

arises in the context of design of experiments. The main link - and 

the one which will concern us for most of the thesis - involves the 

variety concurrence graph, and this we introduce in 1.4.1. There 

are, also, the block concurrence graph (which we will deal with in 

1.4.2), and the design graph (1.4.3). What little work that has 

been done in the past on the possibilities of graph theory as a 

tool in the design of experiments has been concerned with these 

three graphs (or with slightly modified forms of them), There have, 

furthermore, been several other, more specialised, uses of graph 

theory which are essentially irrelevant to the search for efficient 

block designs. We do, however, include these briefly as well (1.4.4) 

since a part of our intention in this Chapter is (as we mentioned 
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on page 3) to give a reasonably comprehensive survey of the known - 

or, at least, the explicitly formulated - links between graph theory 

and design. 

1.4.1 The variety concurrence graph 

The graph which we have chosen to use most often in the thesis 

is the variety concurrence graph. This choice is, in a sense, 

arbitrary: in principle, it would have been possible to have 

presented all our material in terms of either the block concurrence 

graph or the design graph. However, there are a number of good 

reasons - mainly to do with ease of comprehension - which have led 

us to prefer the variety concurrence graph. (Occasionally, all the 

same,-we will turn to the other two - whenever that allows for a 

more cogent exposition.) 

First of all, we define what the variety concurrence graph of a 

block design is its points correspond to the v varieties of the 

design, and its lines to concurrences of pairs of varieties: that.is , 

there is a line joining points i and j for each concurrence of 

these varieties together in a block. 

A simple example of this is the following design for 4 

varieties in 6 blocks of size 3. The varieties are denoted by the 

numbers 0, 1, 2, and 3, and the blocks are the rows of the array: 

T 
This definition is an adaption of the one given by Patterson 
and Williams (1976a). 
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01 
12 
23 
30 
02 
13 

Then the variety concurrence graph of this design is: 

(Each variety concurs once with every other variety, and so each 

pair of varieties are joined by exactly one line.) 

One immediate consequence of this definition is that the 

valency of each point in the variety concurrence graph is r (k-1)t :  

that is, each point lies on exactly r(k-1) lines. To show this is 

straightforward: each variety lies in exactly r different blocks, 

and concurs in each block with k-i other varieties; so each of the 

r blocks gives rise to k-i lines which the given variety lies on, 

- 	and so that variety lies on, in total, r(k-1) lines. (Notice that 

this argument holds good regardless of whether the variety concurs 

more than once with some other variety: that is, regardless of 

whether the r sets of k-i varieties determined by the blocks which 

contain this variety are mutually disjoint in pairs. Of course, if 

two varieties concur together twice, say, then there are two lines 

joining them in the variety concurrence graph.) 

The importance of the variety concurrence graph lies in its 

connection with the statistical analysis of the design. On this 

tThis result is stated in Patterson and Williams (1976a). 
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connection is based the theory which forms the central part of 

the thesis, including, in particular, the development of our 

proposed graphical criteria of efficiency. We will elucidate this 

connection when we turn to these criteria in Chapter 2; all that is 

necessary here as background for the rest of this Chapter is to show 

how the adjacency matrix of this graph is related to the concurrence 

matrix NN 

This derives from the following observation, simple in itself, 

yet crucially important to the entire structure that links graph 

theory and design. For distinct varieties i and j, the entry in 

position (i,j) of the concurrence matrix is the number of 

concurrences of i and j together in blocks. But this is also, of 

course, the number of lines joining these varieties in the graph, 

since that is precisely how the graph is defined. And this number 

is the entry in position (i,j) of the adjacency matrix A. In 

T 
other words, for i not equal to j, CNN ).. = a... Now, the 

diagonal entries of NN   are each r, and the diagonal entries of A 

are each 0. So we have the equation: 

A = NN -rI v 	 (1.3) 

We return to this equation in Chapter 2, where we use it to 

show how the adjacency matrix enters into the solution of the 

normal equations. This will allow us, subsequently, to 

demonstrate how our graphical criteria are both based on these 

solutions, and also related to properties of the variety 

concurrence graph; it will be these two features of the criteria 

which will underlie their important strengths. 
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Meanwhile, however, we continue with our general exposition 

of the links between graph theory and design. We divide our 

discussion here of the variety concurrence graph into two main 

sections. First, in 1.4.1(a), we investigate its structure in 

certain special cases, thus providing some insight into the ways 

in which it arises from the form of the design: we consider 

balanced and partially balanced designs in some detail, and cyclic 

and a designs rather more briefly (since we will be returning to 

these two later on). Then, in 1.4.1(b), we describe the most 

important ways in which the variety concurrence graph has been used 

by researchers in the past. We indicate, where appropriate, some 

of the limitations of previous approaches, and we refer forward, in 

passing, to our attempts to widen and deepen this graph's uses. 

1.4.1(a) The structure 'of 'the variety 'concurrence 'graph 

I Balanced incomplete block designs 

The variety concurrence graph of a balanced design takes a 

particularly simple form - exemplified by the design we described 

on page 18. It will be noticed that in the graph of that design, 

every two points are joined by a line - reflecting the fact that each 

pair of varieties concur together once in some block of the design. 

This - or, rather, a slight generalisation of this - happens for any 

balanced design: every two points are joined by the same number of 

lines - the generalisation being that this number can be greater 

than one. The number is the parameter A of the design: the 

parameter which has, in the literature, come to stand for the 
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number of times each pair of varieties concur together in blocks. 

Following John (1971), page 220 and Patterson and Williams (1976a), 

A equals r(k-1) 
v-i 	

(which must, of course, be an integer). Thus, in 

our example on page 18, A is 1, since r is 3, k is 2, and v is 4. 

An example in which A is more than one is the cyclic design for 11 

varieties in 11 blocks of size 5 each which has the initial block 

{0,3,5,6,7} . In this, A is 2: that is, each pair of varieties 

concur together twice in blocks. So the variety concurrence graph 

has 11 points, each pair of which are joined by 2 lines. 

In this sense, the variety concurrence graph of a balanced 

design for .v varieties can be described as a multiple of the complete 

graph on v vertices. 

II Partially balanced incomplete block designs 

The variety concurrence graphs of balanced designs are, 

therefore, particularly simple. As soon, however, as the property 

of balance is removed, the structure of the variety concurrence 

graph can become much more complex. Indeed, the whole of this 

thesis from Chapter 2 onwards could be regarded as a first step in 

the investigation of this complexity in the cases of cyclic designs 

and a designs. Here, we give a preliminary idea of our later 

methods of reasoning by looking at partially balanced designs in 

which every pair of varieties either concur together once, or do 

not concur together at all. 

We will adopt the fairly standard notation used by, for example, 

John (1971), pages 251ff: varieties which concur together once are 
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called first associates, and those which do not concur are called 

second associates. So, in the variety concurrence graph, first 

associates are joined by one line, and second associates are not 

joined by any lines. So each variety has r(k-1) first associates: 

its valency in the graph is, as always, r(k-l), and since it is not 

joined more than once to any other variety, this implies that it is 

joined to r(k-1) other varieties - that is, that it has r(k-1) first 

associates. The number of second associates of each variety is, 

in consequence, v-l-r(k-l). That is, in John's notation, n 1  r(k-1) 

and n2  = v-1--r (k-i). 

The distinguishing feature which makes the design partially 

balanced is the following (John (1971), page 251): if two varieties 

are first associates, then the number of varieties that are both uth 

associates of one and w th associates of the other is the fixed 

1 
quantity puw (independent of the pair of first associates chosen); 

likewise with second associates: the fixed quantity is denoted, this 

time, by p 	 This amounts to saying that the graph is what is uw 

known as "strongly regular": that is, the number of points adjacent 

to both of two points that are themselves adjacent is fixed (being 

and the number of points adjacent to both of two points that 

are not adjacent is also fixed (being p 1). Indeed, p  and  p 1  

are the numbers of paths of length two between, respectively, two 

points that are adjacent and two that are not. For example, if the 

points i and j are adjacent, then p is the number of triangles 

to which the line i-j belongs: 
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One useful consequence of this observation is that it enables 

us to enumerate circuits of length three in the graph. JWhy this is 

of interest for us will become clear in Chapter 2, where our 

graphical criteria of efficiency will be seen to be based on just 

such counting.) There are, altogether, ½vr(k-l) lines, and each of 

them is part of pj triangles. So the quantity ½vr(k-l)pj counts 

each triangle three times. So the total number of circuits of length 

three is vr(k-l)p 1  . (Each diagram gives rise to six distinct 

circuits of length three once the different starting points and 

orientations are taken into account.) 

III Cyclic designs and a designs 

Since we will be discussing these designs later, we do no more 

than allude here to a couple of salient features of their variety 

concurrence graphs. 

On the one hand, it is interesting to observe that the variety 

concurrence graph of a cyclic design is what Biggs (1974), page 16, 

has defined as a circulant graph: that is, the adjacency matrix is 

a circulant matrix. The proof and expansion of this is contained 

in Chapter 3 below (page 91). 

On the other hand, the variety concurrence graph of an a design 

which has block size k and has s blocks in each replicate is 

multipartite, with k sides and with s points in each side. This is 

because varieties in an a design can be grouped into k columns of 

s varieties each, such that no pair of varieties in any column 

concur with each other; that is, the s varieties in a column are 
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not joined together by any lines in the variety concurrence graph, 

and so they form a side of the graph. 

1.4.1(b) Uses made by other researchers of 

graph and related ideas 

The variety concurrence graph has not 

other researchers. Raghavarao (1971), page 

briefly: he demonstrates, for example, that 

graph of any partially balanced design with  

the variety concurrence 

een extensively used by 

187, does refer to it 

the variety concurrence 

two associate classes 

is a strongly regular graph, and, conversely, that every strongly 

regular graph arises as the variety concurrence graph of some such 

design. (Our discussion above, pages 21-23, established a 

particular case of this.) He then generalises the result by 

generalising the concept of a strongly regular graph: he defines 

what he calls a strongly regular graph of order m in such a way as 

to characterise the variety concurrence graphs of partially 

balanced designs with m associate classes. The remainder of his 

material on the variety concurrence graph is, mostly, in this vein: 

concerned, ultimately, with using graph theory to help in the 

construction of designs that have certain specified combinatorial 

properties. 

Indeed, it is concerns such as these which have underlain most 

previous uses of the variety concurrence graph in the design of 

experiments: establishing the existence or non-existence of balanced 

or partially balanced designs. However, there are two important, 

recent, exceptions. The one is the work of Patterson and Williams 
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(1976a)on efficiency factors of block designs; however, since they 

make less use of the variety concurrence graph than they do of the 

block concurrence graph and the design graph, we will postpone 

discussion of their work until 1.4.2 and 1.4.3 below. The other 

exception, which we turn to now, is the work on Regular Graph 

Designs, a concept which has been used by a number of authors in 

the-search for efficient block designs. 

The concept was introduced by Mitchell and John (1976). They 

define a Regular Graph Design to be one in.which every pair of 

varieties concur together either A or A+1 times (for some fixed 

integer A which is the same for each pair). Thus, the variety 

concurrence graph of a Regular Graph Design has every pair of 

points joined by either A or X+l lines. Strictly speaking, the 

graph which Mitchell and John consider is not the variety 

concurrence graph, but, rather, a slightly modified form of it: 

since all they are interested in is the fact that the concurrences 

differ by one, they as it were ignore A of the lines between each 

pair, thus defining a graph (which we will call G 1 ) in which each 

pair of points are either not joined, or else joined by one line. 

Put more formally: instead of considering the variety concurrence 

graph - which has adjacency matrix A = T - rI - they consider 

the graph G1  whose adjacency matrix A 1  is obtained by subtracting 

A from each of the off-diagonal entries of A; that is, 

A1  = NNTIA(JI) 	 (1.4) 

Before we go into the uses to which this has been put, there 

are some important - critical - remarks to be made on Mitchell and 
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John's nomenclature, which, we will argue, is unfortunate in that it 

is the source of some potential confusion. The reason which they 

give for choosing the name "Regular Graph Design" is that in the 

graph G1  each of the points is adjacent to the same number - that is, 

r(k-l)-A(v-l) - of other points. This choice is, however, both 

misguided and misleading. 

It is misguided in that it misinterprets the standard definition 

of a regular graph from graph theory: that defines a graph to be 

regular if each of its points lies on the same number of lines - 

regardless of whether or not each point is adjacent to the same 

number of other points. Of course, if there are no multiple lines 

- as in the graph G1  of a Regular Graph Design - then a regular 

graph in the standard graph theory sense would be regular also in 

the idiosyncratic sense adopted by Mitchell and John. (No doubt, in 

fact, this is what underlay the confusion.) But when there are 

multiple lines, the two senses are not the same. 

Now, this is no mere quibble: the unfortunate aspect of the 

confusion is that the more commonly occurring definition of a regular 

graph tends either to render the nomenclature of Mitchell and John 

inexplicable, or else to cause the category of Regular Graph Designs 

to become redundant. For, it is not only Regular Graph Designs 

that have associated with them a graph G1 : any design for v varieties 

in b blocks of size k gives rise to such a graph by a simple 

extension of the ideas of Mitchell and John: if A is the smallest 

value of the off-diagonal entries of the variety adjacency matrix 

A, then G would have adjacency matrix A-X(J-I). (This definition 
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comes down to the same as that of Mitchell and John when the 

off-diagonal entries of A differ by only 1.) Then, since the 

variety concurrence graph of any such design is regular (in the 

standard sense), this graph G 1  is regular too (also in the standard 

sense). So, on the one hand, it seems rather perverse to use the 

term Regular Graph Design to refer only to those designs in which 

the graph G 1  happens to have no multiple lines; yet, on the other 

hand, the only natural way of avoiding this perversity would be to 

extend the category of Regular Graph Designs so that it would 

become coterminous with the class of all designs for v varieties in 

b blocks of size k - in which case the category would become 

redundant. 

In this sense, therefore, the usage is misguided, resting, as 

it does, on a misinterpretation of a definition in graph theory. 

And, moreover, it is misleading: not only because it might be 

supposed from it that a Regular Graph Design was one whose graph G 1  

was regular in the standard sense we have just described; but also 

because it lays emphasis on a property of the graph G 1  which is 

irrelevant to the purpose. The fact that each point is adjacent 

to the same number of other points (or, for that matter, lies on the 

same number of lines) has got nothing to do with the property that 

is supposed to be the. defining feature of designs in this category: 

namely, that any two points concur with each other either A or X+l 

times. 

All that said, however, we will retain this usage - not out of 

preference, but because it has become firmly established in the 

design literature. (Though, of course, the perpetuation of this 
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usage does violate an even more firmly established convention in 

graph theory: the standard definition of "regular".) The reason why 

we have analysed at some length what we consider to be an - 

unfortunate solecism is due to our feeling that since names in 

statistical theory are presumably supposed to make difficult concepts 

easy to remember,. the features they encapsulate ought to be 

well-defined and essential, rather than vague and incidental. 

Mitchell and John, themselves, do not use the concept of 

Regular Graph Designs in any detailed way. They merely use it as 

a convenient method of expressing a conjecture on which they base a 

search for optimal designs: they conjecture that if there does 

exist a Regular Graph Design in agiven class, then every A-optimal 

design in that class is a Regular Graph Design. (They also make 

analogous conjectures for p-optimal and k-optimal designs.) They use 

this conjecture to facilitate the search for efficient designs by 

searching, first of all, for regular graphs (according to their 

meaning of the term: but since the graphs they look at have no 

multiple lines, this amounts, as we have said, to the same as the 

standard notion). For each regular graph, they calculate what 

would have to be the concurrence matrix of any design that gave 

rise to that graph (by reversing the equation (1.4): it can be 

shown that A in that equation must be the integer part of the 

quantity r(k-1) ). From this, they work out what would be the 

corresponding value of A. Of course, there is no guarantee that 

there does exist a design with this particular concurrence graph 

and value of A.  So the final stage in their search is to take that 

concurrence matrix which has yielded the best value of A, and look 



- 29 - 

for a design that would have given rise to it; if no such design 

exists, then they do the same for the matrix which yielded the 

second best value of A, and so on. If their conjecture is correct, 

then this process will always lead to an k-optimal design. 

(We will return to this conjecture later, when we will show 

that it is equivalent to a conjecture of our own which we arrive at 

in a rather different way by means of graph theory: a way, in fact, 

which allows it to be generalised naturally. See, in particular, 

2.5. We will also show that Regular Graph Designs are optimal 

according to the a-criterion.) 

This technique of Mitchell and John - fruitful as it has 

turned out to be in their hands - does not go far beyond .a merely 

terminological use of graph theory, enabling them to draw on 

catalogues of regular graphs as part of their search for efficient 

designs. Their terminology does, however, allow a very much more 

concise description of the algorithm which they used for this 

search: see their report (1976). 

At least, however, they do draw on some graph theory 

terminology (even if waywardly) and results. Work by other authors 

on Regular Graph Designs has, in contrast, made no use of graph 

theory at all. Indeed, Mitchell and John were the first to notice 

the link with graph theory. Thus, for example, although the results 

of Conniffe and Stone (1974,1975) and of Shah et al (1976) 

establish the-optima1i-tyof.certainReu1ar Graph Designs, these 

authors did not phrase their theory in that way. (They talk, 

equivalently but more cumbersomely, of designs in which the 
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off-diagonal entries of the variety concurrence matrix NN differ by 

at most 1.) Likewise with the work of Takeuchi (1961), on the 

F,,,-optimality of certain group divisible designs that happen also 

to be Regular Graph Designs. Jacroux (1980), on the other hand 

- writing after the work of Mitchell and John - does employ the term 

"Regular Graph Design", but he makes no explicit use of graph theory. 

Even papers by Williams, Patterson and John (1976,1977) - 

despite reference to the pioneering introduction of a graph theory 

approach by the first two of these authors in 1976. (which we describe 

in the course of 1.4.2 and 1.4.3), and despite using the results 

which (as we have outlined) the third author obtained along with 

Mitchell - do not, regrettably, develop the use of graph theory any 

further. 

Se the variety concurrence graph has been used only occasionally 

in the literature, and then only as a source of a convenient (if at 

times - in the case of Regular Graph Designs - potentially confusing) 

terminology. 

1.4.2 The block concurrence graph 

The second graph which we define is the block concurrence 

graph, which we will sometimes denote by GB.  This is, perhaps, the 

least important of the three, for reasons which we will explain, 

but it has been used productively by Patterson and Williams (1976a). 

The points this time are the b blocks of the design, and the 

lines correspond to varieties which pairs of blocks have in common. 

That is to say, if B0  and B 1  are any two blocks, then they are 
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joined by a line for each variety that lies in both of them. 

To illustrate this, we return to the design which we used to 

exemplify the variety concurrence graph (page 18). The blocks in 

that design are as follows: 

B0 : 0 1 

1 2 

2 3 

3 0 

0 2 

1 3 

Then, for example, blocks B0  and B1  are joined by exactly one line 

in the block concurrence graph, since they share exactly one 

variety (namely, the variety 1). The graph is: 
n 

B0  

B5  

B2  

B3  

A number of interesting properties follow immediately from this 

definition. The valency of each point is k(r-l): there are k 

varieties in any given block, and each of them lies also in r-1 

other blocks, thus producing r-1 lines which the given block lies on. 

If the design has no multiple concurrences, then no two blocks are 

joined by more than one line: if they were, then the two varieties 

which produced these two lines would concur in both these blocks. 

And if the design is resolvable, then the block concurrence graph 

is multipartite: no variety occurs more than once in any replicate, 

tThi result is stated in Patterson and Williams (1976 a). 
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and so the blocks of a replicate form a side of the graph. 

But these - like most of the properties of the block 

concurrence graph - follow also from a far more general result 

which, in theory, renders this graph superfluous: the block 

concurrence graph is, simply, the variety concurrence graph of the 

dual design. The most concise way of establishing this is through 

the corresponding adjacency matrices. Recall that the adjacency 

matrix of the variety concurrence graph is A = T - rI, where N is  NN 

the vxb incidence matrix of the design. Then, since the incidence 

matrix of the dual design is NT (see, for example, Raghavarao (1971), 

page 199), it follows that the variety concurrence graph of the dual 

design is NT  - kI. (In the dual, the replication parameter is k.) 

But this is, also, the adjacency matrix of the block concurrence 

graph of the original design t: an off-diagonal entry (NTN)1.  can 

easily be shown to record the number of varieties which the blocks 

numbered i and j have in common, and the diagonal entries of N 
T  N are 

all k. This establishes the result. 

This equivalence does mean that the concept of the block 

concurrence graph is, perhaps, unnecessary: any results concerning 

it could be re-expressed in terms of the variety concurrence graph 

of the dual. Thus, for example, the three results we presented 

immediately above could be deduced in this fashion. That the valency 

of any point is k(r-1) follows from the result which we established 

on page 18 concerning the valencies of the points in the variety 

concurrence graph, along with the fact that the parameters r and k 

t This result is stated in Patterson and Williams (1976a). 
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are interchanged in the dual. That there are no multiple lines in 

the block concurrence graph whenever there are no multiple 

concurrences in the design can be deduced by way of the dual design 

by, simply, appropriately re-phrasing the proof we gave above. And 

that the block concurrence graph of a..resolvable design is 

multipartite follows by applying to the dual design the fact that 

the variety concurrence graph is multipartite whenever the varieties 

can be resolved into k columns such that no two varieties in the 

same column concur. (This is the case in, for example, a designs, 

as we pointed out on page 23 above.) 

Nevertheless, although, in a sense, therefore, the concept of 

the block concurrence graph is redundant - and although, 

consequently, it is the least important of the three graphs which 

we describe in this Chapter - it is, all the same, useful. It is 

useful, especially, insofar as it allows some more convenient 

notation: usually, for example, the number of blocks will be 

considerably less than the number of varieties, and so the block 

concurrence graph with its b points will be smaller, and therefore 

more manageable, than the variety concurrence graph with its v 

points. 

The block concurrence graph is useful, also, sometimes, for 

deriving results which it would be considerably more difficult to 

prove using the variety concurrence graph. One illustration of 

this is contained in 2.6.1. Another is in the work of Patterson 

and Williams (1976a). Using the block concurrence graph, they 

produce two important results, the first leading to the second. 
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First, they establish a relationship between the harmonic mean 

efficiency factors of a design and its dual: denoting these 

efficiency factors by, respectively, & and A , they show that: 

= v-b+(b-1) 1  

One interesting (but less important) consequence of this first 

result is that the design itself is A--optimal if the dual design is 

A-optimal. In particular, this means that the design is optimal if 

the dual is balanced - or, equivalently, if the block concurrence 

graph is a multiple of the complete graph. 

But the use which Patterson and Williams make of this first 

result has potentially wider Implications: they derive from it 

upper bounds for the harmonic mean efficiency factor of any block 

design. Their aim is to facilitate the search for efficient 

designs: a design which attains the upper bound will be known to be 

optimal, and one which is near it, nearly optimal. The authors 

expand these results elsewhere (Williams and Patterson (1977)): they 

incorporate the upper bounds they obtained by graph theory methods 

as the basis of a series of increasingly tight (and, therefore, 

more useful) upper bounds for the harmonic mean efficiency factor. 

We will not go into details here, as we do not intend to develop 

this topic in the thesis. It should, however, already be clear - 

even from what we have described - that this work by Patterson 

and Williams provides a cogent illustration of how graph theory can 

illuminate the problems of design.. 



- 35 - 

1.4.3 The design graph 

The third graph we describe in this Chapter is the design graph, 

which we will sometimes denote by GD.  This graph has a rather more 

complicated structure than either of those we have presented so far. 

It is bipartite, the points of one side being the varieties of the 

design, and those of the other being the blocks. Lines correspond 

to plots - that is, to incidence of varieties with blocks: a variety 

is joined to a block if the variety lies in a plot of the block. 

Thus, in a binary design, this graph has no multiple lines: no 

variety occurs more than once in any block. 

To illustrate this definition, we will, again, take the example 

which we used for the variety concurrence graph and the block 

concurrence graph. This design is listed on page 31. The two sides 

of the design graph here consist of the set of four varieties and 

the set of six blocks. A line joins a variety to a block if the 

variety lies in the block: thus, for example, a line joins variety 

0 to block B0  since 0 lies in B0 . The whole graph is: 

BLOCKS 

VARIETIES 

Some initial properties of the design graph follow immediately 
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from the definition. The valency of each variety is r (since each 

variety occurs in r plots), and the valency of each block is k (since 

each block has k plots). If the design is resolvable, then the side 

consisting of the blocks can be divided into r subsets (corresponding 

to the replicates) in such a way that each variety is joined to 

exactly one block in each subset. These properties have been 

established by Patterson and Williams (1976a), who also derive the 

form of the adjacency matrix of the design graph: it is 

A(GD) = 1N1 [

N

0 

T oJ 
(This is easy: no varieties are joined to each other - hence the top 

left-hand segment of zeroes - and neither are any two blocks - hence 

the bottom right-hand zeroes; and variety i is adjacent to block j 

if and only if it lies in that block, which happens precisely when 

n.. =1.) 
13 

This graph could enable some of the concepts which we 

presented earlier to be re-stated in simpler forms. Thus, for 

example, as Patterson and Williams point out, the dual design is 

obtained by interchanging the meaning of the two sides. 

There are many more such ramifications of the design graph, 

offering potentially fruitful areas of research. We will concentrate 

on describing, briefly,, two of its principal uses in the literature 

to date. On the one hand (in (a)), we will describe how it is 

relevant to the concept of (M,S)-optimality (as developed by Shah, 

and by Eccleston and Hedayat); and, on the other hand (in (b)), we 
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will outline how Patterson and Williams use this graph to help in 

the construction of resolvable two-replicate designs. 

1.4.3(a) The design graph and (j,)-optimality 

The link between the design graph and CM,a)-optinality has 

been established by Eccieston and Hedayat (1974) (and by Jacroux 

(1980)), although they do not phrase their results explicitly in 

terms of graph theory 
.t 
 They define three forms of "connectedness" 

for a block design - local, global, and pseudo-global - and then 

establish that in certain very general circumstances any 

optimal design possesses one or other of these properties. We will 

show here no more than that these three concepts have a natural 

interpretation in terms of the design graph: there is probably scope 

in this area for a great deal of further research invoking graph 

theory. 

A locally connected design in the terminology of Eccleston and 

Hedayat is defined to be the same as a connected design in the 

terminology of Bose (1947). And Bose's definition of connectedness 

has a very simple interpretation in graph theory terms: a design is 

connected in his sense if, and only if, its design graph is connected 

in the graph theory sense. (This is obvious: in his definition, a 

design is connected if for each two varieties there is what he calls 

t(,$)_optimality is a generalisation - invented by Eccleston and 
Uedayat - of £-optinality: it involves selecting first of all those 
designs which maximise Tr (C), and then choosing among them those 
which minimlee Tr(C 2 ). These two types of optimality are equivalent 
for all classes of designs which we consider in the thesis: when each 
variety is replicated the same number of times and each block has 
the same number of plots, the quantity Tr(C) is fixed. 
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a "chain" joining them; and this concept of a chain is precisely 

the same as that of a path in the design graph: it consists of 

alternating blocks and varieties such that consecutive elements in 

it are associated by design incidence - that is, are adjacent in the 

design graph.) 

Global connectedness is a stronger concept than local 

connectedness. A design is said by Eccleston and Hedayat to be 

globally connected if each pair of its varieties is globally 

connected; and two varieties i and j are globally connected if (in 

their words, page 1241), 

"each replicate of i is connected by a chain, as defined 
by Bose(1947), to each replicate of j." 

This means - since lines in the design graph correspond to plots in 

the design - that given any two lines on which lie i and j 

respectively, there is an i-j path including them; that is, more 

formally, if i lies on the line x in the design graph, and if j lies 

on the line y, then there is a path joining i and j in the design 

graph which has x as its first line and y as its last. 

Finally, pseudo-global' connectedness is weaker than global 

connectedness, but still stronger than local connectedness. 

Analogously to global connectedness, a design is said to be pseudo-

globally connected if each pair of its varieties is pseudo-globally 

connected; and two of its varieties i and j are pseudo-globally 

connected if (page 1242), 

"each replicate of i is connected by a chain, as defined 
by Bose, to at least one replicate of j and vice versa." 

This means - proceeding as for global connectedness - that given any 
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line in the design graph which i lies on, there is an i-j path 

which includes it, and likewise for any line which j lies on.. 

So the three concepts of connectedness as defined by Eccleston 

and Hedayat correspond to properties of the design graph. That 

this is so does suggest that graph theory techniques might enable 

a fruitful development of their ideas; it would, at any rate, be an 

interesting line of research. 

1.4.3(b) The design graph and resolvable two-replicate designs 

The second aspect of the design graph which we describe concerns 

the use made of it by Patterson and Williams (1976a) tohelp in the 

construction of resolvable two-replicate designs. Their work in this 

area constitutes a revealing example of how graph theory can simplify 

concepts that already exist in design theory - and can, besides, 

point to ways in which they can be generalised. These authors show 

that certain notions previously advanced by Bose and Nair (1962) can 

be expressed in a particularly simple form by means of the design 

graph; and they show, furthermore, that this re-interpretation 

indicates how these notions can be naturally extended. 

It is easier, in fact, to describe the generalisation first. 

It rests or their definition of what they call the 'contraction' of 

a resolvable two-replicate design, which they present in terms of 

graphs as follows. The block concurrence graph of a resolvable 

two-replicate design is bipartite (as we observed on page 32): if 

there are s blocks in each replicate, then there are s points in 

each side, each having valency k (which is what k(r-1) becomes 
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when r is 2). Hence that same graph can be taken as the design 

graph of a design for s varieties in s blocks of size k: the points 

of the first side correspond to varieties, and those of the second 

to blocks. It is this design which is the contraction. 

For example, consider the following resolvable two-replicate 

design for 12 varieties in 8 blocks of size 3: 

Block B0 : 0 4 8 

Replicate 0 	Block B1 : 1 5 9 

Block B2 : 2 6 10 

Block B3 : 3 7 11 

Block B4 : 0 5 10 

Replicate 1 	Block B5 : 1 6 11 

Block B6 : 2 7 8 

Block B7 : 349 

The block concurrence graph of this design is: 
BO 	Bi 	 B3  

So this is also the design graph of the contraction, which has 4 

varieties in 4 blocks of size 3 each. The varieties of the 

contraction correspond to the points labelled B 0 , B1 , B 2 , and B3  in 

this diagram, and the blocks of the contraction to the points 

labelled B4 , B5 , B6 , and B7 . So, re-labelling these varieties as 

0, 1, 2, and 3, the contraction is: 

012 

123 

230 

301 
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The designs of Bose and Nair can be best described, now, by 

employing the above terminology: their method of construction amounts 

to, in effect, (as Patterson and Williams show) selecting as the 

contraction an appropriately sized design that is balanced. Thus the 

use of the contraction has simplified and generalised Bose and Nair's 

ideas. 

This not only affords an interesting illustration of the way in 

which graph theory can illuminate the structure of designs; it also, 

more practically, helps in the search for efficient resolvable 

two-replicate designs. For there exists a simple relationship 

(derived by Patterson and Williams) between the harmonic mean 

efficiency factors of such a design and its contraction. This is 

established through the two adjacency matrices. The design 

incidence matrix of the resolvable two-replicate design can be 

written N = (N0 , N1 ), where N0  is the vxs incidence matrix 

corresponding to the replicate 0, and N 1  is that corresponding to 

the replicate 1. Then the adjacency matrix of the block 

concurrence graph is: 

A(G) = 	0 	NN B 	 1 

N ' NQ  0 

T 	 T 
(since NN = kI = N N ). 00 	5 	11 

Patterson and Williams use this - along with the further result 

that the adjacency matrix of the variety concurrence graph of the 

contraction is N T N N T N -kI - to show that if the harmonic mean 
0110 s 

efficiency factors of the design and its contraction are, 

respectively, A and A, then they are related by the expression: 

U 
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A = 
v-i 

v-2s+1+4 

In later papers, these authors, along with John (Williams, 

Patterson and John (1976, 1977)), use this formula to help in the 

search for efficient resolvable two-replicate designs: it enables 

this search to be reduced to the potentially far simpler one of 

looking for efficient designs for s varieties in s blocks of size k. 

We return to these ideas later (2.6.1 and 4.4.3), when we relate 

them to our graphical criteria of efficiency. 

The three graphs which we have now presented - the variety 

concurrence graph, the block concurrence graph, and the design 

graph - offer many promising lines of research.. A number of these, 

of course, we follow up in some detail in the main part of the 

thesis. But two such possibilities which we do not return to are 

worth mentioning very briefly here. 

The first concerns upper bounds for the smallest canonical 

efficiency factor (that is, for the Z criterion). The efficiency 

factors e. are related in a straightforward manner to the 

eigenvalues of the variety adjacency matrix A (see later, 2.3). 

Now, it turns out that certain approximations to these 

eigenvalues can be had in terms of the eigerivalues of the adjacency 

matrices of subgraphs of the variety concurrence graph (See Biggs 

(1974).) Initial results which we have obtained - admittedly in a 

t  subgraph of a graph is exactly what it sounds like: a collection 
of some of its points, together with all the lines which join 
pairs of points in this collection. 
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rather sporadic, unsystematic fashion - suggest that these 

approximations can provide fairly useful upper bounds for the 

smallest canonical efficiency factor: for example, in several 

individual cases we have looked at, they can be used to show that 

a design with double concurrences cannot have as high a value of its 

smallest canonical efficiency factor as the best known design with 

no double concurrences. 

Similar use can be made of the block concurrence graph and the 

design graph. 

The second possibility of further research concerns the 

Q-criterion. This criterion turns to be directly linked to the 

number of spanning trees in the variety concurrence graphi (The 

principal graph theory result of use here is known as the Matrix-

Tree Theorem: see Biggs (1974), Theorem 6.3.) The main implication 

of this link is that the more spanning trees there are, the higher 

is the value of the n-criterion; this allows, for example, the 

derivation of results on the P-criterion that are analogous to those 

on the i-criterion obtained by Eccieston and Hedayat (1974). 

A similar link can be established between the -criterion and 

the numbers of spanning trees in the block concurrence graph and 

the design graph. 

1.4.4 Further, miscellaneous; uses of graph theory in design 

The three graphs which we described in 1.4.1, 1.4.2, and 1.4.3 

TA tree is a connected subgraph (see footnote on page 42) with no 
proper circuits; a spanning tree is a tree which contains all the 
points. 
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will be the only ones which we will use later on. However, there. 

have been one or two other applications of graph theory to design 

which have little to do with any of these three graphs. Although, 

as we have already mentioned on page 16, these applications are 

irrelevant to what will mainly concern us in the thesis (that is, 

the search for efficient block designs), we will, nevertheless, for 

the sake of completeness, briefly describe them here. 

At the most elementary level, a number of authors writing on 

cyclic designs have used graph digrams as an aid to comprehension. 

This is found in, for example, the catalogue of cyclic designs (John, 

Wolock and David (1972)),. and in the original paper by David and 

Wolock (1965): they represent the varieties by points spaced round 

•1 a circle to help explain the cyclic method of construction. 

However, this use of graph diagrams does not go beyond mere 

illustration. Of more importance are three further areas in which 

graph theory has been put to some use: the construction of balanced 

and partially balanced 'designs; an application by Williams (1952) to 

designs for serially correlated observations; and the use of graph 

theory by Patterson to extend methods of constructing change-over 

designs that were first advanced by Quenouille. In the remainder' 

of this Chapter, we will ouline each of these three. 

1.4.4(a) The construction of balanced and partially balanced designs 

We have already mentioned that the variety concurrence graph 

can help in the construction of balanced and partially balanced 

tWe return to the graphs of cyclic designs later, in Chapter 3. 
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designs (as in, for example, Raghavarao (1971)). There have also 

been a number of other ways in which graph theory has been used for 

this purpose. But this work has limited relevance to the kind of 

designs which concern us here - since its bias is mathematical, not 

statistical. 

Typical of this has been the use of finite geometries to 

construct balanced designs: the points of the geometry are the 

varieties and the lines are the blocks. (See, for example, 

Raghavarao (1971) or John (1971); also Ray Chauduri and Wilson 

(1970) and Ray Chaudhuri (1970).) Indeed, in this connection there 

is a paper by di Páola (1966) wththe same title as this thesis. 

But that congruence of titles points to one of the principal 

limitations of the mathematicians' approach. A "block design" in 

their terminology is merely a balanced block design in ours; and the 

graph theory methods which mathematicians such as di Paola have 

developed for constructing designs that are balanced are not 

readily adaptable for constructing designs that are not: since these 

methods are not directly related to the statistical purposes of the 

designs - estimating effects or analysis of variance or fitting 

regression lines, for instance - they do not indicate how graph 

theory could be employed to construct general block designs of high 

efficiency. 

1.4.4(b) The construction of designs for serially correlated 

observations 

The second of the miscellaneous uses of graph theory which we 
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refer to was developed by Williams (1952). We describe this in 

slightly more detail in order to suggest ways in which graph theory 

could be used to extend further his line of research. He was 

interested in constructing designs for testing serially correlated 

observations: that is, in experiments where the observations form 

a one-dimensionsal sequence. In such a situation, it is intuitively 

desirable - and, indeed, Williams shows it also to be sensible 

statistically - to ensure that every two varieties are beside each 

other equally often: that is, occur with consecutive observations 

equally often. The method of construction which Williams uses to 

achieve this is based on graph theory. He constructs a graph with 

v points, which are to correspond to the v varieties; a line joins 

two points for each occasion on which they are to occur beside each 

other in the sequence: so, if each two are to occur beside each other ,  

c times, then they are joined by c lines in the graph. Such a 

graph can, of course, be constructed for any number v of varieties 

and for any value of c; the problem of constructing the design 

then becomes - as Williams shows - that of finding what in graph 

theory terminology is called an Eulerian circuit in this graph: that 

is, a circuit which traverses each line exactly once. Such a 

circuit will always exist if the valencies of the points of the 

graph are all even (that is, if c(v-1) is even), but will not exist 

if these valencies are odd (by a theormem of Euler - see Harary 

(1969), page 64). 

This application of graph theory is rather closer toour 

interests than the one we described in 1.4.4(a). Indeed, the graph 

which Williams considers can be interpreted as the variety 
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concurrence graph of a design in which each consecutive pair in the 

sequence forms a block of size two. Constructing designs of the 

type Williams is interested in is then equivalent to constructing 

balanced incomplete block designs for v varieties in ½cv(v-l) blocks 

of size 2. However, this interpretation is only possible when the 

Markov process which forms the basis of the statistical model for 

the design is assumed to be of the first order - that is, when there 

is only assumed to be correlation between consecutive observations. 

Complications arise as soon as the model is extended. 

There is, nevertheless, probably scope for further use of graph 

theory in this area. As an illustration, we discuss a problem which 

Williams only raises and does not investigate. Ideally, what is 

needed is a sequence in which the varieties are arranged in complete 

blocks: that is, which can be divided up into portions of v 

consecutive observations, such that each portion contains each 

variety exactly once. The problem is that the method of constructing 

the design by means of an Eulerian circuit does not guarantee that 

the sequence will take this form. What would guarantee it is some 

method of splitting up the set of lines of the graph into ½c(v-l) 

disjoint spanning circuits: that is, into circuits each of which 

passed through each point exactly once, and which did not have any 

lines in common. The circuits could then be put together to form 

an Eulerian circuit, and hence a design of the desired type. 

Such circuits are called Hamiltoriion in graph theory. So, in 

this graph theory terminology, the problem is to find ½c(v-l) 

disjoint Hamiltonian circuits. And this problem can be solved. In 
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those cases in which the number v of points is odd, the solution 

is a straightforward generalisation of a result given by Dec (1974), 

Theorem 2.8, page 33: he shows how to decompose the complete graph 

with v points into ½(v-l) disjoint Hamiltonian circuits; the graph 

we have here is composed of c copies of the complete graph, and Dec's 

technique can be applied to each of these in turn. In those cases 

where v is even, on the other hand, the solution is not quite so 

straightforward, but nevertheless can be constructed by a rather 

more subtle use of Dec's method. (A necessary condition for the 

existence of a solution in this case is the same as the necessary 

condition for the existence of an Eulerian circuit: that c(v-1) be 

even, which, since v-1 is odd, is the same as requiring that c 

be even.) 

1.4.4(c) The construction of change-over designs 

The last of the three miscellaneous applications of graph theory 

which we mention is, in a sense, similar to Williams's method: 

Patterson (1973) uses graphs to extend a method of constructing 

change-over designs which was originally devised (without using 

graph theory) by Quenouille. In these designs, v varieties are to 

be tested over 2v periods on v2  subjects in such a way that each 

subject receives each variety twice in the course of the 2v periods, 

and that each combination of varieties in consecutive periods occurs 

with exactly one subject. Patterson shows that the enumeration 

of these designs is equivalent to the enumeration of Eulerian 
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circuits in certain directed graphs! 

A directed graph is one in which an arrow (indicating direction) is 
associated with each line. An Eulerian circuit in such a graph is, 
analogously to undirected graphs, a circuit which traverses each 
directed line once in the direction of the arrow. 
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CHAPTER 2 

GRAPHICAL CRITERIA OF EFFICIENCY 

2,1 Introduction 

Having surveyed, in Chapter 1, the links between graph theory 

and design of experiments, we now concentrate our attention on one 

area in particular: on developing a set of criteria for assessing 

the efficiencies of block designs. These criteria are based on 

properties of the variety concurrence graph. From that basis - as 

we will demonstrate in this and later Chapters - stems their 

intuitive appeal, their mathematical justification, and, 

pre-eminently, the facility with which they can be applied in 

practice. 

Before we present the full mathematical details of these 

graphical criteria, we will introduce them more informally. We will 

explain (in 2.2) how they arise quite naturally, if heuristically, 

in the context of one of the principal purposes of the design: 

namely, the estimation of the differences between variety effects. 

Only then (in 2.3) will we show that they can be given a firmer 

mathematical foundation, by examining certain links between the 

variety concurrence graph, the solution of the normal equations of 

the design, and the h-criterion. Subsequently (in 2.4), we will 

discuss the strengths - both mathematical and intuitive - of the 

graphical criteria, especially as they compare with the customary 

criteria. Next (in 2.5), we will put forward a conjecture 

concerning the way in which the graphical criteria can be best used 
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to help construct efficient designs. Finally (in 2.6) we will 

narrow the discussion, establishing two further results which 

further justify the graphical criteria being applied to resolvable 

two-replicate designs. 

2.2 The intuitive background of the graphical criteria: paths, 

circuits, and the estimation of variety differences 

That the graphical criteria will make sense from a statistical 

point of view will derive, broadly speaking, from the connection 

between, on the one hand, the estimation of differences between 

variety effects, and, on the other, paths and circuits in the 

variety concurrence graph. For, paths in this graph correspond 

naturally to unbiased estimators of these differences. To be 

precise, if i and j are any two varieties, then each path joining 

them gives rise as follows to an unbiased estimator of the difference 

•1 
T. - T. 

1 	J 

Let it be any such path: that is, it is of the form: 

1=i0 -i1 -i2 - ...... 

In other words, each of the lines i 	in this path corresponds 

to a concurrence of the varieties i 
u 	u+l 

and i 	in some block, which 

we Will call, for convenience, block h 
U 
. Then the standard model 

(see equation (1.1)) gives us that: 

'ih 	
= 	 + 	+e. 

U 	 u 	u 	u  

and that: 	y. 	h = 	+ '• 	+ 8h + e. 	h 
u+1 u 	 u+l 	u 	u+l U 

tThe observations which follow are an adaptation into the language 
of graphs of certain remarks made originally by Bose (1947). 

4UQ> 
44 
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We use these equations to show that the Sum: 

n-i 

	

E 	
ih 	i h u=0 	U 	U+lu 

which we will call T ,. is an unbiased estimator of the difference 

we are interested in: namely, the difference T. - T.. 
3. 	3 

Subtracting the equation for yi h from that for '• h we get 
u+lu 	 3-uu 

that for each u = 0,1,... 

y. 	-y 	= r •  -r. 	+e 	-e 
i h U U 	u+l u 	U 	u+l 	u u 	.i+l u 

and so that the expected value of y. 	- yi 	is t 
1. uu 	u+l h u 	u 	u+l 

From this the result follows, for we now get that the expected value 

of P is r. 
3- 

- r.3 , since it equals 

n-1 
Z 	Ct. 	- t. 

u=0 	u 	u+l 

which equals r. - T. , which is r. - T.. 

	

in 	 1 	3 

That is, the difference between the effects of varieties i and 

j can be estimated by the quantity T , which is a function of the 

yields of the individual plots. Thus, each i-j path in the variety 

concurrence graph gives rise to an estimator T of the difference 

- r.. 
i 	3 

This observation suggests the following, initially intuitive, 

speculation, which will lead us heuristically to the graphical 

criteria: the more i-j paths there are in the graph, the more 

information the design gives about the difference r - r.. That is, 

the more i-j paths there are, the greater the precision (or the lower 

the variance) with which the design estimates this difference. 
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It transpires that this intuitive speculation can actually be 

fairly firmly grounded in theory. What concerns us here is not so 

much this speculation itself as what it suggests about the 

significance of circuits in the graph in assessing the overall 

quality of the design. Circuits are, in a sense, redUndant paths: 

because they merely join a variety back to itself, they contribute 

nothing to the capacity of the design to estimate differences 

between variety effects. So it might be surmised that a "good:" 

design will tend to have "few" of these circuits. 

Put differently, and more mathematically, the speculation 

suggests that if we want to maximise the information about all 

variety differences, then we should try to maximise the number of 

paths which join pairs of varieties in the variety concurrence 

graph. But, for fixed h, the total number of paths of length h 

is simply half the sum of the off-diagonal entries of the matrix 

A 
h
. (This is a direct consequence of the result on page 13 and 

the fact that A is a symmetric matrix.) Furthermore, the total 

number of circuits of length h (bearing in mind, again, the results 

on page 13) is the sum of the diagonal entries of A  - that is, 

Tr(Ah). So, since the sum of all entries of A' is fixed (being 

vrh(k_l) h - a consequence of equation (1.3)), the process of 

maximising the number of paths of length, h joining pairs of points 

is exactly the same process as minimising the number of circuits 

of length h. 

•1- See Chapter 6. The development of the graphical criteria here is 
entirely independent of that theory. 
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In short, this speculative reasoning suggests that if we want 

to maximise the information about differences between variety 

effects, then we should try to minimise the number of circuits 

(if possible of all lengths h) contained in the variety concurrence 

graph. 

It is this aim, in essence, which underlies the graphical 

criteria: they will involve enumerating circuits in the graph. That 

the justification of these criteria is rather more solid than the 

simple heuristic reasoning we have given here we establish next, in 

2.3. But their origins in the links between paths and the 

estimation of variety differences remains one of their most 

compelling, most intuitively appealing, attractions. 

2.3 The mathematical background of the graphical criteria: the 

variety concurrence graph, the normal equations, and the 

A-criterion 

Not, indeed, that the mathematical details do not also 

provide some further intuitive cogency. For they, too, are based 

in certain links between the variety concurrence graph and the 

design: this time, the relevance of the adjacency matrix to solving 

the normal equations. We present that in 2.3.1. Then, in 2.3.2 

we show how this enables us to establish a connection between the 

A-criterion and the graph, from which, in turn, we will derive the 

graphical criteria more formally. 
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2.3.1 The variety concurrence graph and the normal equations 

The relevance of the adjacency matrix to the normal equations 

rests on the equation (1.3), which linked that matrix to the 

concurrence matrix NN 

A = NN - rI 

Recall also that the normal equations for estimating the variety 

effects i (subject to the side condition 1T1 = 0) are: 

ci= 

1  
where 	 C = rI -NN 

We will show, first, that a solution to these equations is: 

= (C + rJ) 1a , 	 ( 2.1) 
where 3 = 	. Then we will show that this solution can be 

expressed in terms of the adjacency matrix A. 

Showing that (2.1) is a solution involves showing: 

that the matrix C + r3 is non-singular; 

that the vector t defined by (2.1) satisfies the 

normal equations. 

(a) In order to show that the matrix is non-singular, we show that 

all its eigenvalues are strictly positive. In fact, we show that its 

eigenvalues are r and re. (for i = 1,2 .....,v-1), where the e. are 

the canonical efficiency factors of the design as defined on page 6. 

Now, the eigenvalues of C are 0 and re  (1< i< v-l). An 

•1 The reason for taking this particular solution out of the many 
possible solutions of the normal equations is, principally, to 
simplify the algebra. That this solution also has some other 
desirable properties is established in Appendix 1. It is, 
furthermore, the one used by Pearce (1963) and Tocher (1952). 
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eigenvector associated with the eigenvaiue 0 is 1. So there is a 

set of orthogonal eigenvectors: 

{ 1 , x. : 1 < i < v-i  
- -1 	- - 

where re. 
3. 
has eigenvector x. . 	In particular, therefore, Jx = 0 

for each i. So for each i, 

(C + rJ)x. = Cx. 
1 	 -1 

= re. x. 
1-i 

and also, 	 (C + r3)1 = ri 

Hence the. eigenvalues of (C + rJ) are, indeed, r and re. for 

1 < i.< v-i, and so (C + rJ) is non-singular. 

(b) To show that the vector t defined by equation (2.1) satisfies 

the normal equations, we must show that: 

C = q 

that is, that: 	C(C + r3) 	= 

Now, of course, 	(C + r3) (C + r3) 1  = I. 

Hence, 	C(C + r3) 1 = 	- rJ(C + r3) 

Furthermore, 	 3(C + rJ) = 

(since 3C = 0 and 32 = 3) 

Therefore, 	 3 = r3(C + r3) -1 

It follows from these observations that: 

C(C-r3)
-1 

 

and so that 	C(C + r3)a = 	- 

But Jq = 0. (This stems from the definition of q: see page 5.) The 

result follows. 

For convenience, we will often denote (C + r3) 1  by C, it being 

a generalised inverse of C. (C is in Tocher's notation 2 .) 
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So the vector i defined by equation (2.1) is a solution of the 

normal equations. We now demonstrate the role of the adjacency 

matrix A - first by showing how this solution can be expressed in 

terms of it, and then (in 2.3.2) by describing how, in consequence, 

it is relevant to the A-criterion. 

The first of these points is straightforward. We have that: 

C = ri_mT ,  

and we can use equation (1.2) to express NNI in terms of A: 

T 
NN = A+rI. 

This now enables us to express C in terms of A: 

- r(k-1) 	1 C - 	I - --A, 

and, as a result, to express the solution in terms of A: 

-1 
= (C+rJ) 

= (r1 - 
	

T + rJ) 1a 
.LT + 
rk 

L(A + rI) + )l 	 (2.2) r 	rk 

2.3.2 The variety concurrence graph and the i-criterion 

The second point - the connection of the adjacency matrix A 

with the A-criterion - comes from this. We have that: 

V- 1 A = 
v-i -1 
E e 

i= 1 

Now, the eigenvalues of (C + rJ) 1  are and !1  for. 1 < i < v-i. 

(This follows from (a) on pages 56-57.) So: 

1 	
1v-1 	

1 1 - + - Z e. 	= Tr((C + r) ) r. 	r. 
1=1 

1 
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v-i 	
1 	 1 and so, 	E e. 	= rTr((C + rJ)  

i=l 

that is, 	 A = 	
vi 	

(2.3) 
Tr(C) -1 

So maximising A is equivalent to minimising the quantity rTr(C), and 

this equals Tr((I - 	(A + rI) + J)l) . From this we will derive rk 

the graphical criteria, which - as we have already indicated 

tentatively - are concerned with enumerating circuits. These 

criteria will emerge once we have expressed the quantity 

Tr((I - -(A + rI) + 3)1) as an infinite sum of terms involving 

Tr(A ) for h > 1. (Tr(A ) is, of course, the number of circuits of 

length h in the graph.) 

Expressing that quantity in this way involves two steps: first, 

we show that the matrix (I - 	(A+ rI) + J)- I can be expressed in rk 

the form: 
00 

I + 	I (I— (A + rI) - 
n=l r 

and, then, we expand the terms of this sum so that powers of the 

matrix A appear explicitly. 

For the first of these steps, we must verify that the 

infinite sum converges, and this can be done by showing that the 

eigenvalues of the matrix 	(A + rI) - 3 all lie in the interval 
rk 

[0,1).. Now, we have already shown that the eigenvalues of C + r3 

are r and re. for 1 < i < v-i. Also, 

+ rI) - 3 = I - C - 3 
rk 	 r 

= I - 	+ rJ) 

and so the elgenvalues of —(A -r rI) - 3 are 0 and 1- e. for 
rk 	 1 
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1 < i <v-1, all of which do indeed lie in [0,1) . This establishes 

that: 

00 

(I - 1 (A + rI) + 	= I + 	E ((A + rI) - J)n • 	(2.4) 

So it is the trace of this infinite sum which is to be minimised if 

A. is to be maximised. That this is connected with minimising the 

numbers of circuits of various lengths can be established by altering 

the form of the terms in the sum so that powers of A appear 

explicitly. That involves expanding the matrix (-(A + rI) - J) fl •  
rk 

We show, first, that for n.> 1 this equals: 

rI)n - 

then we will expand (A + rI) t1 . For the first of these, we use 

mathematical induction on n. The result is obviously true for n 

equal to 1. As the inductive step, suppose that it holds for some 

n > 1. Then the quantity (-(A + rI) - 3)n+1 must equal 

(1 (A+rI)h1J)((A+rI) -) 
n 
k 

 fl 	 rk r 

which equals: 

1 	 n+l 	1 
n+l 

41 (A + rI) 	 (A + rI).- 	(A + rI) + 
r 	k 	 r'c! 	 rk 

	

Now, (A + rI)a = rka = 	 n (A + rI), and so (A + rI) 	n n 
= r k 1. 

So, putting all these together, we have that: 

_________  

(!-(A + rI) - )n+1 = 	n+ln+l 	+ rI) n+1 
r k 

This completes the inductive step in the proof. So, indeed, 

+ rI) - 
) fl = 	1 (A + rI)n - 

rk 	 n  
r  



Finally, we expand (A + rI)nl. This is easy: it equals: 

n n n-hh 
E ( 1)r 	A 

h=O 

Hence we have expanded the matrix (2 (A + rI) - 3) as we 
rk 

wanted - that is, so that powers of the adjacency matrix A appear 

explicitly: 
n 

( 1 (A + rI) - 
J) fl = 	1 	(fl )  n-h h r 	A  

rk 	 n 	h 

	

r 	h=O 

And this in turn equals 

	

fl 	 n 
1... Z (().i Ah - i._ 3) n+l 

	

k '1 h=O 	r 

So, substituting back in (2.4), we get: 

(I - .!(A + rI) 
+ 3) l = 	

+ 	 l((fl)Lqh 
rk n=lh=Ok 

hh fl 	 n+1 

Therefore: 

CO 	n 1 	 kn 
Tr(rC ) 

= V + 	Z 	Z 	 - 	) . 	(2.5) 
fl=lh=Ok 	r 

Hence arise the graphical criteria. Minimising Tr(rC) is the 

same as minimising the expression on the right-hand side of (2.5), 

The only variable components of this expression are the quantities 

Tr (A 	Now, Tr(A1') is the number of circuits of length h in the 

variety concurrence graph. So, in a general sense, minimising 

Tr(rC) is connected with minimising the number of circuits (and so, 

as we have shown, with maximising the number of paths between 

distinct varieties) in this graph. It is on this, so far somewhat 

vague, notion that we base the graphical criteria. Briefly, these 
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are what we have already heuristically outlined when we discussed 

paths and variety differences earlier: that is, criterion ç  is 

defined to be the number of circuits of length h in the graph; that 

is 

= Tr (Ah )  

And the aim is to minimise the number of these circuits; that is, 

to minimise ç . Further, these criteria will be used sequentially: 

that is, in comparing two designs, criterion C will be invoked 

only if the designs are indistinguishable on the basis of the 

criteria ç1 , ç.2  ...... 

2.4 Further mathematical justification of the graphical criteria, 

and comparisons with existing criteria 

Thus far, therefore, we have defined the graphical criteria, 

and indicated how we intend to use them. In doing so, we have made 

clear why we consider them to be intuitively appealing by expressing 

them in terms of maximising the numbers of paths in the variety 

concurrence graphs. But there remain gaps in the theoretical 

justification of their application. Clearly, equation (2.5) does 

provide some indication on its own of their relevance to the 

i-criterion. It will not e  in general, be possible to say that they 

are equivalent to the A-criterion, any more than is the S-criterion 

- or, for that matter, the D-criterion or the E-criterion. However, 

it is possible to establish a number of results which suggest 

strongly that these graphical criteria are, mathematically, 

preferable to the S-criterion and almost as good as the A-criterion, 
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and that they are, intuitively, more attractive than either. These 

results can be summarised as follows. 

2.4.1 We will provide a justification of the sequential 

approach by establishing two results: first (in (a)) 

we will derive a measure of the relative 

significance of the successive graphical criteria, 

and then (in (b)) we will use this to show that 

what variations that there can be in values of A 

must be due to circuits of shorter lengths. 

2.4.2 We will show that if two designs are 

indistinguishable on all the graphical criteria, 

then they are indistinguishable on the A-criterion. 

2.4.3 We will show that the graphical criteria can be 

interpreted as a generalisation of the a-criterion. 

2.4.4 As a corollary of 2.4.3, we will suggest that the 

graphical criteria are more satisfactory intuitively 

than the a-criterion as it was formulated by 

Shah (1960) and as it has been interpreted ever 

since. 

Moreover, three further points in favour of the graphical 

criteria will arise later in the thesis: we will show in the next-

two Chapters that (in contrast to the A-, D-, and E-criteria) they 

can be reduced to relatively straightforward algorithms in the 

cases of certain standard series of designs; we will follow up the 

result in 2.4.1(b) by providing evidence that, in practice, the first 

few graphical criteria (for h 2, 3, and 4) perform almost as well 
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as the i-criterion; and we will show in Chapter 6 that the graphical 

criteria are linked to the precision with which the design estimates 

variety differences in a more detailed way than are the criteria 

currently in use. 

2.4.1 justification of the sequential use of the graphical criteria 

(a) First, then, how sound mathematically is our decision to use the 

graphical criteria sequentially? This practice implicitly assumes 

that the successive criteria are of decreasing significance. Is 

this justified, or could circuits of length h turn out to be less 

important than circuits of length n greater than h? In fact, we can 

answer these questions precisely: we show here in (a) that the 

criteria are, indeed, of decreasing significance, in a way that can 

be quantified exactly. 

The significance of C which equals Tr(Ah) depends on its 

contribution to the sum in the right-hand side of equation (2.5): 

that is, its contribution to the quantity: 

00 a  
E 	E 
n=lh=Ok 	r 

It seems natural to measure that contribution by the coefficient 

that multiplies it in this sum, for that coefficient is the weight 

which is given in the sum to each circuit of length h. We will call 

the coefficient w 

Fix some positive integer h. Then for n > h, h  appears once 

in: 

(()—C 	
kr 

n u uOk 	r 



- 64 - 

and it is multiplied there by 	
(n) 	

So, summing over all 
k 	r

CO 

n > h, the weight Wh  given to ç is, in total, !j:;. E 
r n=h k 

Now, so far, this is a purely formal sum: we do not yet know if it 

converges, far less what its value might be. In fact, however, we 

can show: (i) that this series converges; 

and (ii) that its sum equals h k h+l 
r (k- 1) 

To show that the series converges we use the limit form of the 

Ratio Test. (See, for example, White (1968).) 

If 	= 1 -(
n
) ,then 

n 	nh 
k 	 1 	n+l 

a 	 n+l 
n+l  

a 	- 	1 (n)  

- 1 (n+l) 	(n-h) 
- k (n+l-h) 

1 n+l 
k n+l-h 

_! 1 

	

k 	h 
n+l 

+ - as 

< 1 since k > 2. 

So the series does converge. 

Next, we find an explicit expression for the sum of the series. 

Define, for each non-negative integer h, 

CO 

- I 1 n 
h 	 n'h 

n=h k 

We show by mathematical induction on h that Sh = 
	

k 

 (k-i) h+1 
CO 	 CO 

Now, S= 	I !() = 	I 	= (1 - !) 1  = 	and so the 
n-0k no 
	

n=Ok n 
	 k 	k-i 
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result holds for h = 0. Suppose that it holds for some non-negative 

integer h. Then 
00 

1_ 
5h+i = 
	E 
nh+l k h+l 

CO 

- 	1  
E 	n(n-l) .... (n-h) (2.6) - 	(h-I-i) 	 n 

n=h+l 	k 

Hence 
CO 

- 	1 	 n(n-l) .....  (n-h) 

	

kSh+l - (hi-i). n=h+i 
	kill 

00 

- 	1 	 (n+l)n(n-l) 	(ri+l-h) 	 (2.7) 
- (h+1). n=h 

Notice that the sum (2.6) can be started at h, since when n =h, 

n - h is 0. So, by (2.6) and (2.7), and since convergent series of 

positive terms can be re-arranged in any way we like, 

CO 

(k-i) S 	= 	
1 	n (n-i) ..... (ni-i-h) (n+l-n+h) 

hi-i 	(hi-i) 	 n 
n=h 	 k 

Go 

	

n(n-l) ...... (n+1-h) 	h-i-i = 
= 	 n 	 (h+1) 

= 	; 	() 
nh k 

= 
k 

But, by the induction hypothesis, S = 
(k-i) 

So Sh+i = 	h-i2 	
, and hence the result holds for all h > 0. 

(k_i)  

This shows, therefore, that the weight given to C in the sum 

(2.5) is: 

(2.8) 

and this in turn establishes what we wanted: namely that the 
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successive graphical criteria C are of steadily decreasing 

significance. To be precise, C is r(k-1) times more significant 

than Ch1  Or, put differently, one circuit of length h counts for 

the same as r(k-l) circuits of length h+l (since w  = 

(It is interesting to note in.passing that r(k-1) is the valency of 

each point in the variety concurrence graph.) 

This does not mean, of course, that the infinite expansion (2.5) 

of Tr(rC) can necessarily be re-arranged in such a way that its 

principal (or outermost) index is h: usually, indeed, this will not 

be possible (since the terms of the sum are not all positive). What 

it does provide, rather, is a measure of the relative significance 

of circuits of different lengths in this expansion - and that is all 

that matters for the practice of invoking the graphical criteria 

sequentially. It is worth noticing, also, in particular, that it 

would be slightly misleading - if superficially plausible - to 

measure the contribution to Tr(rC) of circuits of length h by the 

the ratio 	- . To do so would be to ignore the contribution of 
Tr(rC ) 	 k'1 

the constant terms in the expansion (2.5) - that is, the terms - 

- and so would tend to give an inaccurately low measure of the 

significance of the circuits. 

So this result should be seen only, as providing support in a 

general way for our decision to use the graphical criteria 

sequentially. Likewise with the following corollary, which shows 

that for any fixed non-negative integer h, the combined weights 

given to all circuits with length strictly greater than h can never 

exceed the weight given to circuits of length h. 
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These combined weights are:. 

00 

k 
L) 	= 
m 	 in 	rn-I-i 

	

m=h+1 	m=h+1 r (k-i) 

k 

= rh(k_l) 2  

1 
1 

r(k-1) 

	

- 	- 	k 	 1 

- rh(k_l)h+l r(k-l) - 1 

Wh 

r(k-1) - 1 

So, for each non-negative integer h, the significance of the 

criterion.-2h - is (r(k-1)-1) times greater than the combined 

significance of all the criteria ç 41 , ç 2 ........ 

(b) But of far greater importance than the significance of circuits 

in one design on its own is their significance in accounting for 

differences between designs: the whole point of having criteria of 

efficiency is to compare different designs. What we show now is 

that differences between designs are due mainly to circuits of 

shorter lengths. To be preôise, we show (with a fairly minor 

qualification when k = 2) that w
h-h 

 - which is the contribution of 

circuits of length h to the sum (2.5) - converges to a constant 

quantity as h increases. Hence, in comparing two designs, 

differences in numbers of circuits of length h become negligible as 

h gets large; or, in other words, most of the difference between 

harmonic mean efficiency factors will be accounted for by differences 

in numbers of circuits of shorter lengths. 
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We show, first, that for k > 3, 

whc 	 ash 

	

h  + 	 + 

We return to the slightly more complicated case of k = 2 afterwards. 

The quantity ç , which equals Tr(Ah),  equals the sum of the 

eigenvalues of the matrix Ah.  Arguing exactly as in 2.3.1(a), we 

can show that the eigenvalues of A are r(k-1) and r(k-1) - rke. for 

1 < a. < v-i. So the eigenvalues of A 
h 
 are r h (k-i) 

h
and 

(r(k-1) - rke.).h (1 <i <v-l). Hence: 

h 	h 	
v-i 	

h = r (k- 1) 	+ 	Z (r(k-l) - rke1 ) 

It follows that: 	
v-i 	

k 	h 
whch = iT1 + 	

( 1 - iT e) 

and this does indeed converge to 	as h - 	since the canonical 

efficiency factors all lie in the interval ( .o 1 13. 

Now, this proof depends on the stipulation that k is not 

equal to 2: specifically, that condition ensures that even for a 

canonical efficiency factor e. which equals 1, the quantity 

k 	h 	 -lh 
(1 - 	e.) 	- which then is (—j-) - converges to zero. When k 

is equal to 2, matters become rather more awkward, though not so 

much so as to vitiate the general principle that it is circuits of 

shorter lengths which are important in determining differences in 

harmonic mean efficiency factors. 

Clearly, on the one hand, in this case, if there are no 

canonical efficiency factors which equal 1, then w C will still 

converge to 	(here equal to 2). Moreover, on the other hand, 

there cannot, if k = 2, be more than one canonical efficiency 
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factor which equals 1: if there were, then there would be more than 
v-i 	

h 	 h one term in E (r(k-l) - rke.) which éaualled (-r) , and so for 
1 	 - i=l 

large odd values of h, Whl  would be negative: an obvious 

contradiction since C is the number of circuits of length h in the 

graph. 

But that does leave the possibility that there is precisely 

one canonical efficiency factor which equals 1, and in such cases, 

for large values of h, 	 2k s close to, alternately, 	= 4 th 

even) and 0 (h odd). A simple example is this design for 4 varieties 

in 4 blocks of size 2.: 

01 
23 
02 
13 

This does not, of course, cause any difficulty if we are comparing 

two designs which each have no canonical efficiency factor equal to 

1, or two which each have one canonical efficiency factor equal to 

1; where problems do arise is in comparing a design of the first of 

these kinds with a design of the second. However, even here, things 

are not really as serious as they might seem. For we can, instead, 

shift attention to '2g2g + W2g+12g+l : it is clear from what we 

have already said that this quantity will always converge to the 

constant quantity k-1 = 4, and so that, in this slightly modified 

sense, it is still true to say that circuits of larger lengths are 

negligible in accounting for differences between designs. 

(A further point concerning the sequential approach is contained 

in 2.5.) 
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2.4.2 The graphical criteria are collectively a stronger'condition 

than the A-criterion 

Secondly, we show that the sequence of graphical criteria is, 

if it could be continued indefinitely, stronger than the A-criterion. 

That is, if two designs D0  and D are indistinguishable on all the 

graphical criteria, then they are indistinguishable on the 

&-criterion. 

As a matter of fact, this result is almost obvious: if D 0  and 

have respective variety adjacency matrices A0  and A1 , then their 

equivalence on all the graphical criteria means that Tr(A) = Tr(A) 

for all h >0, and so, by equation (2.5), Tr(rC0) = Tr(rC 1 ) (where 

C0  and C 1  are the respective C matrices associated with the normal 

equations). 

So by equation (2.4) D0  and D have equal values of ; in 

other words, they are indistinguishable on the A-criterion. 

2.4.3 The graphical criteria are a generalisation of the S-criterion 

The third point in favour of the graphical criteria is that they 

are a generalisation of the S-criterion. We show this by showing 

that C is equivalent to the i-criterion, in the sense that two 

designs D0  and D are indistinguishable on the C criterion if, and 

only if, they are indistinguishable on the S-criterion. 

We will use suffix 0 to denote matrices associated with design 

D0  and the suffix 1 to denote matrices associated with the design D 1 . 

Now, by equation (1.3), A 	N NT - rI for each u, and so 
u 	u  



V 	V 
= 	E 	E ((A ) )2 

i=1 j•=1 	
u 13 

V V 
= ((AL .) 2  +..E ((A 	))2 

• 	. 

1.1, 3=1  
U1J . 	 U31. 

i=l 
ij 

= 	Z ((NNT) • )2 
uu3.J 

j~ j 

= ((N NT). )2 
- 	 E 	((N 	

1T )  • • 
	

2 
• uu].J . 

i=1 
UU11 

Tr (A2 ) 
U 

(since Au  is symmetric) 
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= 	- .rv 
—u 

(where .. is the .E-measure for the design D ). 
—u 	- 	 U 

SoTr(A) = Tr(A) if, and only if, 	
= 

That is, D and D1  are equivalent on the s-criterion if, and 

only if, they are equivalent on the -criterion. 

The import of this equiza1ence can be illustrated as follows, 

by a comment from Patterson and Williams (1976b). After discussing, 

the use of the 5--criterion in selecting efficient a designs, these 

authors come to the following conclusion (page 87): 

"Thus, given the choice, we prefer an a(O,1) design to an 
a(0,1,2) design. If we have to use an a(0,1,2) design, we 
prefer one with as few pairs of varieties as possible 
concurring twice." 

(An a(O,l) design is one in which the off-diagonal entries of the 

variety concurrence matrix 
T 
 are all 0 or 1; an a(0,1,2) design 

is one where these entries are all 0, 1, or 2.) 

We explain now how the ç2-criterion would lead us to exactly 

the same conclusions. 

As we saw earlier, the s-criterion amounts to minimising 

the number of circuits of length 2 in the variety concurrence 

graph... Circuits of length 2 are of two types. On the one hand 
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there are those which traverse the same line twice: that is, if point 

i is adjacent to point j by the line x, then a circuit of length 

two can be formed by starting at i, traversing x to j, and then 

re-traversing x to i again: 

i J..  

On the other hand thereare proper circuits of length two: circuits 

where the lines traversed are different. That is, if i and j are 

joined by the distinct lines x and y, then a circuit of length two 

can be formed by traversing x from i to j, and then traversing y 

from j to i:  

Circuits of the first type cannot be avoided, and, moreover, 

the number of them is precisely twice the number of lines in the 

graph. (Recall from page 14 that a circuit is counted once for 

each of its points, here two.) Since there are ½vr(k-l) lines in 

the variety concurrence graph, the number of circuits of this 

type is vr(k-l). 

However, the number of circuits of the second type is not 

simply a function of v, k, and r, and it is this number, therefore, 

which the ç2-criterion is concerned with reducing. For any two 

points i and j, the number of lines joining them is a.., and so, if 

a. j  is greater than one, then the number of circuits of length two 

made up of pairs of these lines is 2x2x½a. . (a. . - 1). (The two 
1 3 1 3 

factors of 2 come in because each choice of two lines from the set 

of a.. lines is counted four times: once for each of the points, and, 
13 

for each of them, once for each of the two orientations.) So we 
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would want to reduce as far as is possible the number of multiple 

lines (that is, pairs of points i and j which have a.. greater than 

one). In particular, this means that the graphical criteria 

leads to the same conclusions as those contained in the quotation 

from Patterson and Williams on page 71. 

(The application of the graphical criteria to a designs is 

explored in more detail in Chapters 4 and 5.) 

Before we leave the c2  -criterion here, we establish a result 

which is of some general interest, and which will be useful later: 

namely,. that Regular Graph Designs have a minimal number of circuits 

of length two. 

Consider any design in the class for V varieties in blocks of 

size k, and with each variety replicated r times. Then the number 
V 

of circuits of length two is Tr(A2 ), which equals E a. , 
i,j=1 ij 

which is E a. since the diagonal entries of A are all zero. The 
1 

1J 	
3 

 
defining feature of a Regular Graph Design is that the off-diagonal 

entries of A differ by at most one. We show that this implies that 

a Regular Graph Design has a minimal value of E ai.. 
ij 	J 

To this end, we invoke a general result from elementary 

number theory: the partition of any integer z into u integer parts 

which differ by at most one has smaller sum of squares than any 

other partition of z into u integer parts. (For a proof, see 

Williams, Patterson and John (1976), page 298.) Now, for any 

design, the sum E a.. is vr(k-l), since each of the v points 
1 

13 	
J 

 
in the variety concurrence graph has valency r(k-1). That is, 

the integers a.. (1< i,j< v, ij) form a partition of the integer 
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vr(k-l). Translating the general number theory result into our 

terminology, we have that the integer partition of vr(k-l) into 

v(v-1) parts which has the smallest sum of-squares is the one whose 

parts differ by at most one. Since in a Regular Graph Design the 

off-diagonal entries of the adjacency matrix A form a partitibn of 

the integer vr(k-l) into v(v-1) integer parts differing by at most 

one, it follows that a Regular Graph Design has, indeed, a minimal 

value of the sum E a. .. That is, a Regular Graph Design has a 
ij 	

1J 	 - 

minimal number of circuits of length two, and so is optimal on 

the s-criterion. 

It should be emphasised that this does not imply that the 

range of the off-diagonal entries of the variety adjacency matrix 

is a reliable guide to the number of circuits of length two. 

We mention this since such a practice might seem at first sight to 

be attractive - precisely because of what we have just shown: a 

Regular Graph Design has both a minimal number of circuits of length 

two and also a minimal value of the range (namely, 1). Regular 

Graph Designs are rather special in this respect: in general, the 

possession of a small number of circuits of length two - or of a 

high value of the harmonic mean efficiency factor - need not be 

associated with the possession of a minimal value of the range. In 

illustration of this, we cite two designs for 90 varieties in 60 

blocks of size 9 (found by Gilchrist (1975), page 29). The details 

are immaterial here: what is important is that the one with the 

smaller number of circuits of length two (5024 as opposed to 5120) 

has the larger value of the range (3 as opposed to 2). 
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2.4.4 The graphical criteriaare intuitively more satisfactory 

than the S-criterion 

The fourth point - and the final one in this Chapter - which 

we make in favour of the graphical criteria concerns their resting 

on a more natural, more intuitively appealing, foundation than that 

which underlies the S-criterion. 

As developed by Eccleston and Hedayat (1974) from Shah (1960)., 

the a-criterion is a special case of the (M,)-criterion, which, as 

we noted on page 37, entails first selecting all designs which 

maximise Tr(C), and then choosing amongst them the ones which 

minimise Tr(C 2 ). We might, therefore, be inclined to speculate 

how these two criteria - and S - could be generalised in their 

own terms: that is, by considering Tr(Ch)  for h > 3. Immediately, 

however, an obvious question arises: are we to minimise or maximise 

Tr 

We answer this question by examining in more detail how the 

and S criteria ha' re their roots in the A-criterion. We have: 

A 	
v-i 

v-i 1 
Z e. 

i=1 
1 

CO 

So, since 0 < . 
	1 
l-e. 	

- 
< 1, 	= 	I M , 

- 	 n n=0 

• 	v-i 
- 

where: 	 M • = - 1 (1 - e, )n 
n 	v-i . 	 1 

i=l 

i v-i 
Then: 	 M = - 1 1 = 1; 

0 	v-i. 
i=l 
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1 v-i 
= 	E 

v-i 	
(i -e 1  .) = l-e; 

i=1 

v- i v-1 
M 	= 	e.) 2  = 1 - 2e + 	E 
2 	:v--1 i=1 	1 	 v-i 

	
i 

v-i 
= 2M E. e2 . 

	

1 	v-i. 	1 
1=1 

Arguing in an analogous fashion to the one we adopted in devising 

the graphical criteria, the maximising of &.is seen to be connected 

with the minimising of all the M. Minimising M 1  is equivalent to 

maximising e , and that is the j-criterion. For a fixed value of 
v-i 

M1  , minimising M2  is equivalent to minimising Tr(C 2 ) = r 2  E e 
i=1 

1 

and that is the -criterion. Continuing, we have: 

v-i 	 v-i 
- 	 2 	 3 

i 1 
M = 1 - 3e + 	 e. - - Z e. 3 	 v-i 	1 	v-i. 	1 

v-i 

	

which equals: 	1 + 3M2  - 3M1 - 
	

E e 
i=i 

and so, for fixed values of M andM , minimising M is equivalent 
v-i1 	2 	 3 

to maximising Tr(C 3 ) = r 3  E e 
i=l 

So the M and S criteria, when generalised in their own terms, 

could lead to a sequence of criteria that involve alternately 

minimising and maximising expressions in the matrix C. We would 

suggest that this has less intuitive appeal than do our graphical 

criteria, which involve consistently a process of minimising - and 

minimising, moreover (as we described in 2.2), quantities which have 

some direct relevance to the statistical purpose of the experiment: 
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to, that is, the estimation of differences between variety effects. 

2.5 Fundamental conjecture concerning 'the application of the 

graphical criteria 

Of course, the whole point of the graphical criteria is to 

use graph theory to help in the search for efficient designs. As a 

preliminary step to that end, we introduce here a conjecture which 

we will invoke frequently later in practical applications. 

This conjecture arises as a natural generalisation of the 

already widely accepted conjecture concerning the i-criterion which 

- 	 we alluded to in Chapter 1 (page 9): namely that any design which 

is best on the A-criterion will also be best on the S-criterion. 

Since the a-criterion is equivalent to the s-criterion, this 

conjecture is equivalent to that which would suggest that an 

h-optimal design is always ç-optimal. And from that a 

generalisation is obvious. Suppose that the design D is A-optimal, 

and that D' is any other design that is not A-optimal. We conjecture 

that if h0  is the first value of h for which the numbers of circuits 

of length h in the variety concurrence graphs of D and D' differ, 

then C (D) < C (D') (denoting the number of circuits of length h 
0 	0 	 - 

in D by C (D)). (That such an.h exists follows, from 24.2.) 
In 	 0 

If this conjecture is true, then it would be a partial converse 

to the result in 2.4.2. We have not been able to prove it; but 

neither have we found a counterexample. Indeed,, considering the 

theory we have presented (especially in 2.4.1(b)), we would suggest 

that the acceptance of this conjecture is as reasonable as is the 
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widespread acceptance of the conjecture concerning the S-criterion 

which we mentioned in the last paragraph. 

The use to which we propose to put our conjecture is analogous 

to the use which is made of that existing conjecture. That is, we 

will use our conjecture as a means of facilitating the search for 

A-optimal designs by restricting the search to designs which are 

optimal on certain of the graphical criteria; and we will be able 

to find these designs easily by exploiting simplifications made 

possible by the structure of the variety concurrence graphs. Thus, 

just as Mitchell and John (1977) searched for designs that are 

a-optimal among Regular Graph Designs (that is, among s-optimal 

designs), so, likewise, will we search for designs that are 

froptimal among those which are best on, for example, the 

ç-criterion as well as the ç2-criterion; and we will calculate C 3  

- that is, the number of circuits of length three - in a 

straightforward fashion from the graph-4 If our conjecture is 

correct, then such searching will find the designs which are 

&- optimal. 

Frequently, also, we will narrow the conjecture to refer only 

to specific series of designs: thus, for example, we will 

conjecture in Chapters 4 and 5 that the best a design on the 

A-criterion is best also on the C -, c 3 , and C -criteria. 

Before we leave this, there are two further comments worth 

making here. First, it does seem that establishing the truth 

(or falsity) of this conjecture would probably be very difficult. 

It would be at least as difficult as establishing the truth of the 
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conjecture concerning the S-criterion - and that is a problem which 

has remained unresolved for some time. In a sense, of course, this 

does not really matter; what does matter to the statistician is that 

such conjectures should work - should, that is, help to construct 

designs that do what they are supposed to do reasonably well. It 

seems likely - on the strength of the theory, and on the strength 

of the examples we have looked at - that this would indeed be the 

case with our conjecture; but full confirmation of that must await 

wider testing than we have had time to carry out for this thesis. 

The second comment relevant to our conjecture concerns the 

possibility of generalising it. The crudest generalisation would 

be to remove the condition that the design D be A-optimal; that is, 

to alter the conjecture so that it asserted that (in an obvious 

notation) (D) > AV) if, and only if, C (D) <(D'). However, 
0 	0 

this general claim turns out to be false. A counterexample can be 

constructed for 8 varieties in 12 blocks of size 2, the designs 

being as follows: 

Design D 	Design D' 

12 12 
13 13 
15 15 
24 24 
26 26 
34 35 
35 37 
46 4.6 
57 48 
68 57 
78 68 
78 78 
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These have the variety concurrence graphs: 

G (D) 
	

G (D') 
V 
	

V 

5j6 _

2 

Then A(D) = .4011 and A(DI) = .3889. So A(D) > A(D'), while it is 

obvious from the graph that ç2 (D)> ç2 (D'). 

But a more sensible generalisation would be to allow the design 

D to be in some sense "nearly" A-optimal. The claim would then be 

that if D were "nearly" k-optimal, and if D' were any other design, 

then A(D) > A(D') if, and only if, 	(D) <(D'). It seems 
0 	0 

probable that this restricted generalisãtion - with some suitably 

precise definition of "nearly" - is likely to be true. (In the 

above case, there exist designs for 8 varieties in 12 blocks of 

size 2 which have harmonic mean efficiency factors of around .5, 

and so the design D there is far enough away from optimality 

not to contradict this restricted generalisation.) 

2.6 The graphical criteria and resolvable two-replicate designs 

Finally in this Chapter, we add two further results, concerning 

the application of the graphical criteria to resolvable 

two-replicate designs. First (in 2.6.1) - as an extension of 2.4.1 

- we enhance the justification of the sequential approach by showing 

that, for such designs, the only graphical criteria which are of 

interest are those for circuits of even length. Then (in 2.6.2) we 
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show that the ç -criterion for these designs is equivalent to the 

ç-criterion for their contractions - thus lending extra credibility 

to the suggestion in 2.4.3 that the graphical criteria can be seen 

as a natural extension of the S-criterion. 

2.6.1 Redundancy of all the graphical criteria for circuits of odd 

length 

First, then, we show the following. Let D0  and D both be 

resolvable two-replicate designs for v varieties in blocks of size k, 

with respective variety adjacency matrices A0  and A1 . Then if they 

are indistinguishable on each of the graphical criteria ç .2 , 

they are indistinguishable on the graphical criterion 

That is, if Tr(A) = Tr(A) for each i = 2,3,...,2m, then 

Tr(Am 	 2m+1 
Tr(A 	). In other words, C 	tells us no more 2m+ 1 

about the efficiencies of the designs than do ç 2 , 	...... 	• 

We will establish this by means of a special property of the 

block concurrence graph of a resolvable two-replicate design - 

namely, that it has-no circuits at all of odd length - and also by 

means of certain links which we will show to exist between the 

adjacency matrices of the block concurrence graph and the variety 

concurrence graph. 

Recall from Chapter 1 that if a design is resolvable, then its 

block concurrence graph is multipartite, with sides corresponding 

to replicates. In particular, therefore, if the design has two 

replicates as well as being resolvable, then this graph is 

bipartite. It therefore. has no circuits of odd length, since the 
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successive points in any circuit must come alternately from each 

side. 

In consequence, for such designs, if we denote the adjacency 

matrix of the block concurrence graph by B, then 

Tr(B2m) - 0 for each m >0 	 (2.9) 

(since Tr(B2m) is the number of circuits of length 2m+1 in the 

graph). 

The next step - preliminary to arriving at what we want - is to 

express the number of circuits of length n in the variety 

concurrence graph in terms of the number of circuits of length n in 

the block concurrence graph and the number of circuits of length less 

than n in the variety concurrence graph. This we do by means of the 

following formula: 
n h 

Tr (A 	= Tr (B) - 	 (-k) fl_hrh_X ( fl )  (h) Tr (AX) . 	(2.10) 
h--Ox--0 	 X 

Xn 

The proof of this depends essentially on the fact that both A and B 

can be expressed in terms of the design incidence matrix N. Thus, 

as we have seen in Chapter 1, B = NTN - klb and A = T - rI. So, 

on the one hand, 

= 	

(_k)t1 h() (NTN)h 

h=0  

and therefore Tr(B) = 	E (_k)nh(n)Tr((NTN)h). 

h=O 	h 

On the other hand, NNT = A + rI, which implies that 

Th 	
h 

(NN h_X ti X 

= xO r()A 

Moreover, it also follows from the properties of the trace function 
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that Tr ((NNT)h) = Tr((NTN)).. Hence: 

n h 
n-h h-x n (h) T  (AX )  Tr(B') = 	E 	E (-k) 	r 	x h-C x=0 

The equation (2.10) now follows, by simply re-expressing this in 

terms of Tr(A n). 

We are now in a position to prove the main result of this 

Section 2.6.1. Suppose that D0  and D are as defined above, so that 

Tr (At) = Tr (At) for 0 < I < 2m. We want to show that Tr (A m+l) = 

Tr(Am4l). We have, from the formula (2.10), that for each u = 0 

and 1, 
2m+lh 

Tr (A2m) = Tr(B2m) - E 	E (_k) 2m+lhrhx(2m) (h) Tr (AX) 
U 	 U 	 h=Ox=O 	 h 	x 	u 

	

x2m+1 	
(2.11) 

But this quantity is the same for both values of U: both Tr(Bm) 

and Tr(Bm) are zero since the designs each have two replicates 

and are resolvable; and the remaining portions of the right-hand 

side of the equation (2.11) are equal by the hypothesis that 

Tr(A) = Tr(A) for i = 2,3 .....,2m. 

Hence, for resolvable two-replicate designs, the value of the 

graphical criterion 	is fully determined by the values of its 

predecssors c2 , 	...... 	In this sense, therefore, it is 

redundant. (This result is illustrated in a later example: page 

176.) 

2.6.2 Equivalence of the ç-criterion for resolvable two-replicate 

designs and the -criterion for their contractions 

The second result on resolvable two-replicate designs 
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establishes that the C--criterion for them is equivalent to the 

Q2_ criterionfor their contractions. Not only does this indicate 

in a different way from 2.4.3 that the graphical criteria can be 

seen as an extension of the -criterion; it also lends weight to our 

recommendation that to use them would be at least as sensible as the 

widespread practice of using the -criterion. 

To be precise, what we show is the following. Suppose that 

and D are both resolvable two-replicate designs, and suppose, 

moreover, that their variety concurrence graphs have the same number 

of circuits of length two. Then these graphs have the same number 

of circuits of length four (that is, the same number of squares) if, 

and only if, the variety concurrence graphs of their respective 

contractions have the same number of circuits of length two. 

It Will facilitate the exposition if we divide it into two 

stages. First, we show that the variety concurrence graphs of the 

designs D and D  have the same number of squares if, and only,if, 

their block concurrence graphs have the same number of squares. Then 

we show that their block concurrence graphs have the same number 

of squares if, and only if, the variety concurrence graphs of the 

I contractions have the same number of circuits of length two. 

Throughout the proof, matrices pertaining to the two designs 

will be distinguished by means of the suffices 0 and 1. 

The first part of the proof proceeds by arguments that are 

similar to those we adopted in 2.6.1 above. We have that the 

variety adjacency matrices are given by A = NNT 
-

21 	and that 

the block adjacency matrices are given by B = N 
T 
 N - kI , where U 
	u 	2s 
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N0  and N1  are the respective design incidence matrices, and s is the 

number of blocks in each replicate. Then the number of squares in 

the variety concurrence graph of the design D is the quantity Tr(A) 

and the number in the block concurrence graph is Tr(B). So the 

first step of the proof entails establishing that Tr(A) = Tr(A) if, 

and only if, Tr(B) = Tr(B). 

Suppose, on the one hand, that the variety concurrence graphs 

have the same-number of squares: that is, that Tr(A) = Tr(A7. 

Now, we have postulated that Tr(A) = Tr(A), and, of course, 

Tr(A0) = Tr(A 1 ) (both being 0). Also, therefore, since the designs 

are resolvable and two-replicate, the result of 2.6.1 gives us that 

Tr(A) = Tr(A). Then, by the equation (2.10) in 2.6..1 (with n = 4), 

it follows that Tr(B) = Tr(B); that is, that the block concurrence 

graphs have the same number of squares. 

On the. other hand, suppose, conversely, that the block 

concurrence graphs have the same number of squares: that is, that 

Tr(B) = Tr(B). Now, we have that Tr(B) = Tr(B) for u = 1, 2, 

and 3: for u = 1 and 3, this follows from equation (2.9) in 2.6.1, 

and for u = 2, it follows from equation (2.10) and the equalities 

Tr (Ag) = Tr (A) and Tr (A0 ) = Tr (A1 ). That Tr (At) and Tr (At) are 

equal can then be deduced by deriving formulas for these quantities 

that, analogously to the equation (2,10), express Tr(An) in terms 

of the traces of powers of the matrix B. Hence, the variety 

concurrence graphs have the same number of squares. 

This completes the first stage of the proof. Before we go 

into the formal details of the second stage, we will elucidate how 
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proper squares in the block concurrence graph of a resolvable 

two-replicate design correspond to proper circuits of length two 

in the variety concurrence graph of its contraction. The block 

concurrence graph of such a design is bipartite, with the two 

sides corresponding to the two replicates. So a proper square 

in this graph is of the form: 

B10  

11 	 01 
where blocks B00  and B01  belong to one replicate, and blocks B 10  

and B11  to the other. The depiction of this square can be altered 

as follows, to make it more suggestive of a bipartite graphs 

:::<:::. 
Then in the design graph of the contraction, the set {B, B 01 } 

corresponds to varieties, and the set {B10 , B11 } corresponds to 

blocks (this being the way in which the contraction is defined). 

It follows that this pair of varieties makes up a proper circuit 

of length two: each of the varieties B and B01  lie in each of the
00 

blocks B10  and B11 , and so they are joined by two lines in the 

variety concurrence graph of the contraction. 

Thus, proper squares in the block concurrence graph of a 

resolvable two-replicate design are associated with proper circuits 

of length two in its contraction. It is this association which 

constitutes the essence of the second stage of the proof; it remains 

only to present the full, formal, details, which we do, as usual, 

by means of the various adjacency matrices. The block adjacency 
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matrix B of the two-replicate design D 
U 
 equals: 

U  

0 M 
U 

MTO 
U 

where M is the design incidence matrix of the corresponding 

contraction. Hence: 

B 	(MMT)2 ° 	1 

	

0 	(MTM )2J 

So, Tr(B) = Tr((MMT)2) + Tr ((MTM  )2), and, by the properties of 

trace function, this equals 2Tr((M MT)2).  Moreover, if A is the 
•UU 	 Cu 

variety adjacency matrix of the contraction of the design D, then, 

of course, A = MMT - kI. (This follows from equation (1.3): 

in the contraction, there are s varieties, each of which is 

replicated k times.) Hence CM MT)2=  A2  + 2kA + k2 I , and so 
U cu 	s 

	

Tr((MMT)2) = Tr.(A 2 ) + k2s.. 	

0jflgg 

 these points together, we 

get: 

Tr (B4)= 2Tr(A2  ) + 2k2 s . 	 (2.12) 
U 	 Cu 

In other words, the number of squares in the block concurrence 

graph of the resolvable two-replicate design Du  is twice the number 

of circuits of length two in the variety concurrence graph of the 

contraction, plus a constant term 2k 2s. (This constant term records 

the circuits of length two that are not proer. The result of the 

second stage of the proof follows immediately: from equation (2.12), 

we deduce that the two block concurrence graphs have the same 

number of squares (that is, Tr(B) = Tr(B)) if, and only if, the 

corresponding contractions have the same number of circuits of 

length two in their variety concurrence graphs (that is, if, and 



only if, Tr(A2  ) = Tr(A 2  )). co 	ci 

This completes the proof of the result we stated at the 

beginning of this Section 2.6.2. So, in the sense defined by this 

result, the C4-criterion for resolvable two-replicate designs is 

equivalent to the 2-criterion for their contractions. In particular, 

this establishes the equivalence of special cases of the conjecture 

which we put forward in 2.5: on the one hand, the conjecture that 

all A-optimal resolvable two-replicate designs for ks varieties in 

2s blocks of size k are optimal on the 4-criterion (that is, have 

a minimal number of squares in their variety concurrence graphs); 

and,. on the other hand, the conjecture that all i-optimal designs 

for s varieties in s blocks of size k are optimal also on the 

-C2-criterion (that is, have a minimal number of circuits of length 

two in their variety concurrence graphs).. An illustration of the 

equivalence of these conjectures is contained in the final Section 

4.4.3 of the Chapter 4 on a designs, where we investigate at some 

length its relevance to the search for h-optimal two-replicate 

a(O,l) designs. (As a matter of fact, the material in that Section 

is not so much an application of the equivalence to such designs as 

a re-derivation of it by a method suitable only to them. The 

advantage of that method will be that it will throw some light on the 

structure of the variety concurrence graphs of a designs.) 
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CHAPTER 3 

APPLICATION OF THE GRAPHICAL CRITERIA TO CYCLIC DESIGNS 

3.1 Introduction 

Up till now, we have mostly been describing attributes which 

differentiate the graphical criteria from the S-criterion. On both 

mathematical and intuitive grounds, we have argued, the graphical 

criteria are, collectively, superior to the S-criterion. Now, 

however, and for most of the rest of the thesis, we turn to an 

important advantage which the graphical criteria have in common with 

the S-criterion, and which, in practical applications, renders them 

preferable to the i-criterion. 

This advantage is their ease of calculation. If it were not 

for this, there would be little reason to question the use of the 

i-criterion in the first place: for all that the graphical criteria 

are more rigorously linked to the statistical analysis than is the 

.a-criterion, they remain less so than is the A-criterion. But the 

problem with the i-criterion (as with the Q-criterion and the 

i-criterion) is that it requires, in general, the calculation of 

the eigenvalues of the matrix C; and for large designs, this 

calculation can be laborious, even on a computer. The graphical 

criteria, like the S-criterion, involve, simply calculating powers 

of the variety adjacency matrix A. That in itself can provide a 

considerable saving in computer time; what is more, the graph theory 

which underlies the ch_criteria can, in many cases, be used to 

simplify these calculations even further. 



In this Chapter and the next, we give two broad examples of 

such simplifications. Here, in Chapter 3, we discuss the application 

of the graphical criteria to cyclic designs; later, in Chapter 4, 

we deal with the rather more complicated case of application to 

designs. 

3.2 General form of the variety concurrence graph of a cyclic. 

design 

First, in this Section, we make some general observations about 

the variety concurrence graph of a cyclic design, stating results 

that will be useful later in the Chapter. 

Let D be a cyclic design with incidence matrix N. Then the 

variety concurrence matrix T is a circulant matrix: that is, 

T 	v-i 
=b.ri 	, 	 ( 3.1) 

for some integers b. > 0, where r is the vxv basic circulant: 

010 ..... 0 
001 ..... 0 

000 ......1 
100 ..... 0 

Furthermore, the numbers b. can be derived from the initial blocks 
1 

of the design, as follows. These initial blocks yield a paired- 

a 1  
difference set Ci , 2.. 

a2  ...... , ma... 	
, where m equals ½v if v is 

even and ½(v-l) if v is odd, and a is the number of times the 

quantityi (modulo v) appears among differences between pairs of 

elements in the same initial block (with the qualification that if 

k = 2 and one of the initial blocks is {o, ½v} , then the difference 
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½v arising from this block is counted only once in a, not twice; 

similar remarks apply if k = v-2 and one of the initial blocks is 

{l, 2,,..... ½v-1, ½v+l ....., v-l} . See John, Wolock and David 

(1972) page 16.) Then the numbers b. are given by the following 

expressions: 

b 	= r 
(3.2) 

b
i 
 = a

i 
 = b 

v-i 
 (1<i<m) 

- - 

(All the above theory has been developed fully by John (1966), 

David (1963), and John, Wolock and David (1972).) 

It follows immediately from (3.1), (3.2), and (1.3) that if A 

is the adjacency matrix of the variety concurrence graph of D, then 
v-i 

A = 	E b 1.r1 	. 	 ( 3.3) 

So the graph is in fact a circulant graph (defined by Biggs (1974), 

page 16, as a graph whose adjacency matrix is a circulant matrix, 

as in (3.3).) However, this observation does not appear to be 

particularly informative: the thoery of circulant graphs is less 

fully developed than the theory of cyclic designs. 

This notation also has the important advantage of revealing 

clearly when a cyclic design is balanced. Balance occurs whenever 

each pair of varieties in the design concur together equally often, 

and this will ,happen whenever the numbers a. are all equal. (The 

number of times two varieties i and j concur is the number of times 

the quantity i j occurs among the differences between pairs of 

elements in the same initial block.) In the case of balance, the 

In this Chapter, a dot above the operator, as here, means that the 
operation is to be conducted modulo V. 
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variety concurrence graph is, of course, a multiple of the complete 

graph on v points: this is something we have established, in 

1.4.1(a), for all balanced designs. It emerges also from equation 

(3.3), since if the numbers a are each equal to a, say, then the 
2. 

are 
 

numbers b. (for i > 1) each equal a, and so A = a E 	, which 
1 	

i=l 
equals a(Jv_Iv). 

Of particular interest to us later will be balanced cyclic 

designs which have only one initial block. (See Section 4.4.3(b).) 

In that case, the initial block is a perfect difference set (a 

definition of which appears later, page 205): that is, if the initial 

block is Cx0 , x1 ......, xkl} , then each of the residues 1, 2,... 

v-1 occurs equally often among the k(k-1) differences x 

(i 

We will now consider in more detail two aspects of the 

application of the graphical criteria to cyclic designs. First 

(in 3.3) we will use equation (3.3) to show that the criteria can 

be calculated in a very straightforward manner from the numbers b.; 

and, second (in 3.4), we will indicate some of the ways in which 

these criteria are - on account of their basis in the variety 

concurrence graph - relevant to the problem of adding further 

initial blocks to existing cyclic designs (a problem that arises in 

the work of John (1981)). 

3.3 Ease of calculation'of'the'graphical criteria for cyclic designs 

First, then, we show that equation (3.3) allows the graphical 
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criteria to be calculated very easily. This follows almost 

directly from (3.3). A simple mathematical induction argument 

establishes the following expression for A' (where h is any positive 

integer): 
= 	

b. b 	........r1 	. 

i11.. ,ih=l '1 12 

Now, the traces of powers of the matrix r take particularly simple 

forms, since the diagonal elements of r are 0 unless r is the 

identity matrix (which happens whenever n is a multiple of v). 

That is, Tr(r) = 0 if n 0 (modulo v), and Tr(rn) = v if n = 0 

(modulo v). Using this in combination with equation (3.4), we get: 

	

h 	
v-i 

	

Tr(A ) 	= v 	E 	b. b. .....b. 	. 	(3.5) 
.,il 	11 '2 

'h 

This expression for Tr(Ah) can be simplified further. First of all, 

we separate out the summation involving 
1h' 

 thus: 

h 	
v-i 	 v-i 

Tr(A) = v 	E 	 E 	b. ....b . 	b 
i1,.. 	 lhl '1 	h-l' 'h h-1

1hl" 1h-1 

The innermost summation can now be seen to pick out, for, given values 

of .. ....... 
1h-l' 

 those values of 
1h 
 which satisfy: 

(a), i 
h 
 lies in the set (1,2 ......,v-l} 

	

and (b)ih = vili2 	..... 

So we can remove the index 
1h 
 altogether by replacing it with 

v i1  i2 	 1h-1 (from condition (b)), and by 

stipulating that v 	 should not equal 0 

(condition (a)). Thus the entire expression for Tr(Ah)  becomes: 
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Tr(Ah) = V 
v-i 
E 

i1•• 
"h-i1 

vj• 

b. 	.....b. 	b.. 
'1 	'h-i 	'h-i 

We can also get round the complication in the summation - that is, 

	

the stipulation-that V 	 should not equal 0 - by 

re-defining b0  to be 0 (instead of r). Henceforth, this will 

always be assumed to be the case, and so we will have: 

	

h 	 v-i 

	

Tr (A) 	= v 	E 	b .....b. 	b.. 

	

l'" "h-i1 	1 	h-i 	1 	h-i 

There is one further simplification we can introduce: since 

b.. = b. for each i, we can replace the quantity v i 1  

	

by the quantity 	 1h-1 So we have, finally, the 

following expression for the number of circuits of length h: 

h 	 v-i 
C 	= Tr(A ) 	= v 	E 	b.....b. 	b. 	. (3.6) ==h i 

"h-i1 	1 	h-i 
3.
1 	h-i 

(This will be considerably easier to calculate than the generalised 

inverse used in John, Wolock and David (1972), page 4.) 

For convenience, we will let dh  denote the sum on the right-

hand side of equation (3.6), so that C =vdh. 

For example, for the first few values of h, the expression 

• (3.6) gives for the graphical criteria: 
v-i 

	

C 	= v E b 	; 	 (3.7) 
1=1 
v-1 

	

C 	= V E 	b.b.b.. 	; 	 (3.8) iji+j 

v-i 

	

C 	= v 	E 	b.b.b b... 	. 	(3.9) lJhl+34-h i,j,h--  l 

We now give two examples of this. 
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Example (1) 

This example is of cyclic designs for 6 varieties in blocks of 

size 2, each variety being replicated 3 times. John, Wolock and 

David (1972) list the best design as having the initial blocks 

(0, 11 and (0, 3) . Then the design - which we will call D - is: 

01 
12 
23 
34 
45 
50 
03 
14 
25, 

with harmonic mean efficiency factor A = . 5556. The variety 

concurrence graph of D is:: 

: 

	 2 

 -L 

From these initial blocks, the paired-difference set is 

{i, 2 0 , 31) . Hence, b1  = b3  = b5  = 1 and b 2  = b4  = 0. So 
v-1 
E b? = 3, and therefore C = 18. That is, there are 18 circuits 

i=l 
1 

of length two. (Since there is no pair of points joined by more 

than one line, these circuits are simply the ones which arise by 

traversing the same line twice, of which there are, since each point 

has valency r(k-l), vr(k-1), which is 18.) The number of circuits 

of length 3 is, from (3.8), 
V-1 

v 	E 
j,j=l 
5 

i=1 

b.b.b... 
1 J 1+3 

	

b. 	i(b 	i4- . 	4b. 	4- b 

	

1 	+1 	3 	i4-5 



This is in fact obvious from the graph diagram. 

Bearing in mind the isomorphisms of cyclic designs described 

by John, Wolock, and David (1972), page 3, we find that, essentially, 

the only other possibility for these values of v, k, and r has the 

initial blocks {o, 21 and 0, 31. That is, the design - which we 

will call D - is: 

02 
13 
24 
35 
40 
51 
03 
14 
2 5. 

This design has the variety concurrence graph: 

For this design, A = .5319, which is markedly worse than the 

first design. Here, the paired-difference set is {10, 21, 31} •  

5 
So b = b = 0 and b = b = b = 1. So 	b = 3, the same 

1 	5 	 2 	3 	4 	 1. =1 

 i 

as in the first case. (Again, there are no points joined by 

more than one line.) But the designs D and D 1  can be distinguished 

on the C 3-criterion: it is obvious from the diagram of the variety 

concurrence graph of D 1  that this second design does contain 

circuits of length three. By equation (3.8), the number of such 

circuits is 12. All of these arise from blocks which are generated 

by the first initial block: the two configurations: 
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02  v and A 3 
each contribute six circuits (orientation and starting point being, 

as always, significant). 

Example (2) 

Here, we look at designs for 12 varieties in blocks of size 2, 

each variety being replicated 4 times. The Table 1 (page 98) lists 

the distinct designs (after, that is, applying the isomorphisms of 

John, Wolock and David (1972)). They are listed according to 

decreasing value of A (in column 2). All the designs have the same 

number - namely 48 - of circuits of length 2. The numbers of 

circuits of length 3 are listed in column 3. Notice that the 

pattern of the quantities C bears out the conjecture in 2.5: that 

is, the higher the value of the harmonic mean efficiency factor, the 

smaller the number of circuits of length three. 

The C3-criterion is, however, in some cases, insufficiently 

sensitive to distinguish among designs which have different values 

of the harmonic mean efficiency factor; for the-se, we have to look 

at the next graphical criterion, C or number of circuits of length 

-four. Thus, for example, this criterion serves to distinguish 

among the first four designs in Table 1 (all of which have no 

circuits of length three) in the same way as does the harmonic 

mean efficiency factor: they have, respectively, 408, 504, 504, and 
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Table 1 

Cyclic designs for 12 varieties in 24 blocks of size 2. 

Comparison of harmonic mean efficiency factor with 

number of triangles. 

Column 1 Column 2 Column 3 

Initial blocks A 

(1) {o, 2), {o, 3} .4793 0 

(2) {o, ii, {o, 31 .4705 0 

(3) {o, 3}, {o, 51 .4705 0 

(4) {o, 11, {o, 5} .4648 0 

(5) {o, i), {o, 4} .4595 24 

(6) {o, 4}, {o, 5} .4595 24 

(7) {0, 3}, {0, 4} .4580 24 

(8) {o, i}, {o, 2} .4024 72 

(9) {0, 2}, {o, 5} .4024 72 

528 circuits of length four; again, therefore, the conjecture in 

2.S' is borne out in practice. 

3.4 Application of the graphical criteria to adding and extending 

initial blocks 

The second aspect of the application of the graphical 'criteria 

to cyclic designs which we will," investigate concerns a problem 

raised by John (1981) in the context of simplifying the search for 

efficient cyclic designs. An important part of the simplification 

which he suggests is the following. If we are looking for a design 

with x initial blocks, then there is, he says, Little point in 



searching through all possible combinations of x initial blocks: we 

do not risk much loss of efficiency by searching sequentially. That 

is, we search only those designs which contain among their x initial 

blocks the set of x-1 which have already been chosen - by a similar 

method - for the design with x-1 initial blocks. Thus, for example, 

John proposes a design for 9 varieties, each replicated 6 times, 

with three initial blocks of size 2: {o, 1), {o, 3), and {O, 21. 

He arrives at this by adding a third initial block to the first two 

of these (which form the most efficient cyclic design on the 

i-criterion for 9 varieties, each replicated 4 times in blocks of 

size 2: see the catalogue, John, Wolock and David (1972)). The 

resulting design has harmonic mean efficiency factor A = .5418. 

This compares quite well with the efficiency factor for the best 

cyclic design listed in the catalogue, which has initial blocks 

{o, 1), O, 2}, {o, 41 , and A = .5455. 

We show here how this sequential searching can be facilitated 

by invoking the graphical criteria: specifically, by exploiting 

their basis in the variety concurrence graph. At first (Sections 

3.4.1 to 3.4.0, we.examine the case in which we want to find an 

efficient design with two initial blocks of size 2; later (Section 

3.4.5), we indicate how our approach could be generalised. 

So, first of all, we start with one initial block IBa  equal 

to, say, {o, a} (where a 0), and we want to find the best choice 

of b (not equal to 0) to make up the second initial block IBb  equal 

to {o, b) . We investigate how to choose b in such a way that the 

resulting variety concurrence graph has as few circuits as possible. 



of certain specified lengths n. 

As a preliminary to this, we find out (in 3.4.1, 3.4.2, and 

3,4.3) how many circuits of length n are produced by the different 

choices of a and b (where n will be, respectively, 2, 3, and 4). 

Then (in 3.4.4) we apply the results to this search for a second 

initial block. 

In a cyclic design, the number of circuits of a given length 

n which start at each point is the same. This is because varieties 

i and j concur if, and only if, varieties i 4- 1 and j 4- 1 concur. 

Or, in the variety concurrence graph, i is adjacent to j if, and 

only if, i 4- 1 is adjacent to j 4- 1. Thus, the set of circuits of 

length n can be partitioned (according to starting point) into v 

equal-sized groups. (Notice that this is reflected in the 

expression (3.5); the number of circuits of length n starting at 

any given point p0  is, therefore, d.) In enumerating circuits of 

length n it is, in consequence, only necessary to enumerate those 

which start at 0. (One further thing to note is that the lines 

which are generated by the initial block {O, x} join varieties i 

and i 4- x for 0 < i < v-l.) 

3.4.1 Enumeration of circuits of length two 

As we explained earlier (page 72), the number of circuits of 

length two which contain only one line is a simple function of the 

quantities v, r, and k: it is vr(k-l), which is, here, 4v. (Strictly 

speaking, we showed this for a designs only, but the reasoning we 

gave applies equally here.) However, the number of circuits of 
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length two which contain two distinct lines depends also on. the 

values of the numbers a and b. Such circuits look like: 

0 

(where the point p 1  is not the same as the point 0). Each of these 

lines corresponds to addition or subtraction of one of a or b from 

its endpoint 0. There are, therefore, four distinct cases, depending 

on which, if any, of the lines comes from block lB. 

Case (i): both lines come from block lB 
a 

Since the two lines are distinct, and since they both arise 

from this one initial block, one of them must correspond to addition 

of a to the endpoint 0, and the other to subtraction of a from 0. 

From this we can derive the necessary condition: 2a = 0. However, 

this implies either that a is 0 (which we have already excluded), or 

that a is ½v. Now, by convention (see above, page 91), only half of 

the set of blocks generated by {o, ½v} is included in the design, 

So there are in fact no circuits of length two arising in this way. 

Case (ii): only the first line comes from block lB. 

Here, by considering this first line, p 1  is a or a; and then, 

by considering the second line, 0 = p 	b or 0 = p 	b. This 

gives four possible equations, one of which must hold for any such 

e'4 vr'ii4 I.. 

0 	= 	a 

0 = 	a 

0 	=ab 

0 	=ab 

Conversely, each of these yields v circuits of length two. 
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Case (iii): only the second line comes from block lB. 

The roles of a and b are interchanged here from Case (ii), and 

so we get four equations: 

0 	= 	b 

o 	= 	b 

0 	=b 4a 

.0 	=ba 

Hence, bringing together Cases (ii) and (iii), we have that 

each of the two equations: 

	

0 = a 	 (Al) 

	

and 0= a 	 ;(A2) 

yields 4v circuits of length two. 

Case (iv): no lines come from block lB 
a 

This parallels Case (i) (b being substituted for a), and so no 

circuits arise. 

So, in summary, if there are n(A1) equations of the form (Al), 

and n (A2) of the form (A2), then there are 4v (n (Al) + n (A2)) circuits 

of length two in which the two lines are different, and so 

4v + 4v(n(Al) + n(A2)) circuits of length two altogether. 

3.4.2' Enumeration of circuits of length three 

Matters become much more complicated when we are enumerating 

circuits of lengths greater than two. We can, however, simplify 

the description somewhat by making use of a certain symmetry which 

exists between a and b. It will be noticed in the enumeration of 

circuits of length two above that Cases (i) and (ii) are mirrored 



- 103 - 

by, respectively, Cases (iv) and (iii) - in the sense that (iv) can 

be obtained from (i), and (iii) from (ii), by interchanging a and b. 

So we could have enumerated circuits of length two in two stages. 

We would have given the replicates involved in the two lines the 

general labels y0  and (if appropriate - that is, if the second one 

is different) y1 . Then the first stage would have been to allocate 

one of a and b to y0 , and the other to y; and the second stage 

would have involved enumerating, for each allocation - and by means 

of general equations analogous to (Al) and (A2) in terms of y0  and 

y1 - the corresponding number of circuits that would have been 

generated. 

There would have been little benefit in doing this for circuits 

of length two: it would have yielded no significant simplification. 

However, such an approach will help clarify the enumeration of 

circuits of lengths three (in this Section 3.4.2) and four (in the 

next Section 3.4.3); it will, moreoverand much more importantly 

(as we will mention at the end, in Section 3.4.5', suggest how the 

material we present could be generalised for block size greater than 

2, and for more than two initial blocks. 

Any circuit of length three (or triangle as we will often call 

it) must be proper; that is, its lines must be distinct. (This is 

simply to state an obvious fact of geometry.) The paradigmatic 

triangle starting at 0 and traversing clockwise can be depicted as: 

- 	 0 	 p1 
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that is, this represents the circuit 0 - p 1  - p2  - 0. Each line 

here corresponds to the addition or subtraction of one of the 

quantities a or b. We will use the label y 0  to refer to the 

quantity (a or b) which is associated with the first line; if the 

other quantity is associated with some line, we will call it y1 . 

Then we will classify the circuits according to the pattern of 

appearances of these labels - that is, according to their order of 

occurrence and the signs (addition or subtraction) associated with 

them (in the direction of the circuit). This will enable us to 

derive general formulas for the numbers of triangles arising out of 

each allocation of the quantities a and b to the labels y0  and y1 . 

So in this scheme there are four Cases: 

all three lines have the same label; 

the first and second lines have the label y 0 , and the 

third has the label y1 ; 

the first and third lines have the label y0,  and the 

second has the label y 1 ; 

the first line has the label y 0 , and the second and 

third have the label y 1 . 

We discuss each of these in turn. 

Case (i): all three lines correspond to the same block. 

Here, since the points in the triangle are distinct, either all 

three lines correspond to addition of y0 , or else all three 

correspond to subtraction of y 0 . (If, for instance, the first line 

were to correspond to addition of y0  and the second to subtraction 

of y0 , then the point p2  would be y0  y0  which is 0.) Either way 
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we have that: 

- 	 3y0 = 0 . 	 (Bi) 

That is, if there are n(a,B1) equations (B1) for y0  = a and n(b, Bi) 

for y0  = b, then there are altogether 2v(n(a, Bi) + n(b, Bi)) 

triangles all three of whose lines arise from the same initial block. 

(Of course, n(y0 , Bi) is either 0 or 1 for each value of y0 .) 

Case (ii): first and second lines have the label y0  and third 

line has the label y 1 . 

In this Case, either both the first and the second lines 

correspond to addition of y0 , or both correspond to subtraction of 

y0; and for each of these, the third line can correspond to either 

addition or subtraction of y1 . So the triangles here can be of the 

following four types: 

0 

	

/ p1 0 	 0 W p 

WP 

 

I  2 	 p2 	 p2  

For the first and fourth of these we have the equation: 

	

= 0, 	 (B2) 

and for the second and third, the equation: 

	

2y0 y1  = 0. 	 (B3) 

So, if there are n(y0 , y1,  B2) equations of the form (B2) and 

n(y,., y,, B3) equations of the form (B3) (for thelabels y,  and y,), 
%J J. 	 LI 

then the number of triangles arising under this Case (ii) is: 

2v(n(a, b, B2) + n(b, a, B2) + n(a, b, B3) + n(b, a, B3)). 

Cases (iii) and (iv):the theory for these cases is similar to what 

we have already done. The number arising under each turns out to 
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be, as in Case (ii): 

2v(x(a, b, B2) + n(b, a, B2).+ n(a, b, B3) + n(b, a, B3)). 

In summary, therefore, we have that the total number of 

triangles is: 

2v(n(a, Bl) + n(b, Bi)) + 

6v(n(a, b, B2) + n(b, a, B2) + n(a, b, B3) + n(b, a, B3)). 

3.4.3 Enumeration of circuits of length four 

Here, to simplify matters further, we will confine our 

attention to designs which have no multiple concurrences (and so 

no multiple lines in their variety concurrence graphs); and we will 

also assume that neither a nor b equals ½v. The material could be 

extended to more general types of design; but that would tend to 

sacrifise illustrative clarity. 

We will often call circuits of length four squares, and we will 

depict the typical square as: 

P2 
(starting at 0 and traversing clockwise: that is, 0 - p1 - p2 - p3 

- 0). Immediately, a new complication arises that was not present 

with triangles: these four vertices need not be distinct. Certainly 

adjacent vertices must be different; but it remains possible that 0 

is the same as p 2  or that p1  is the same as p3 . We will deal with 

each of the resulting cases in turn, and we will find that in all 

but those cases where all the vertices are different, the number is 

a simple function of v, r, and k. 
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p _ 	___ 

Here, since there are no multiple lines, the circuit involves 

traversing the same line four. times: 

0 

There are altogether r(k-1) - that is, 4 - lines which 0 lies on, 

and so the total number of such circuits is 4v. 

P2 =0 and p1 p3  

In this case, again since there are no multiple lines, the 

circuit looks like:  

P3 
The number of these starting at 0 is the same as the number of 

pairs of distinct lines starting at 0, which is r(k-l) (r (k-1) - 1), 

and this equals 12. So the total number of such circuits is 12v. 

0 and 	.= 

This time, the circuit is: 	o 	

IP2

l  

Bearing in mind again that there are no multiple lines, there are 

r(k-1) lines joining 0 to points p 1 , and there are, for each such 

p 1 , a further r(k-1) - 1 lines joining p 1  to a. point p2  different 

from 0. So the total number of such circuits is vr(k-l) (r(k-l) 	1), 

which enials 12v again. 

(iv) 
2 
 0 and p1

-±-P-3  

It is in this case that difficulties arise: the number of 

squares is not simply a function of v, r, and k. Again, as for 

triangles, we will divide the enumeration into two stages: the 

first stage will involve allocating the quantities a and b to the 
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general labels y0  and y1;  and, then, the second stage will 

enumerate the number of squares for each allocation, by means of 

general formulas based on counting certain relationships between 

YO 
 and y1  which we will derive from the appropriate square diagrams. 

Again, too, y0  will always be the label associated with the first 

line. 

There are four general Cases (not exactly analogous to the 

types we formed for triangles): 

all four lines have the same label; 

three lines have the label y0  and one has the label y 1 ; 

two lines have the label y0  and two have the label y 1 ; 

one line has the label y0  and three have the label y 1 . 

We will deal with each of these in turn, and further sub-divide them 

as appropriate. 

Case (a): all four lines have the same label. 

Here, since the vertices of the square are distinct, either all 

four lines correspond to addition of y0 , or else all correspond to 

subtraction of y0 . So if there are n(y0 , Cl) equations of the 

following type: 

4y0  = 0, 	 (Cl) 

- 	 -. I - I - 	 I 	. - I 	 I 	 . ere are 	 -i- 	, 	,, squares arising under this 

Case (a). (Notice that the reason why such equations do yield 

squares of the appropriate type is that y 0  ½v.) 

Case (b): three lines have label y0  and one has label y 1 . 

It will be convenient to sub-divide this Case into three 

sub-cases, according to which line has the label 
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I the fourth line has the label y 1 ; 

II the third line has the label y 1 ; 

III the second line has the label y 1 . 

(Of course, the first line cannot have the label y 1 : our system 

of labelling presupposes that the first line has the label y0 .) 

Since the vertices are distinct, either there are three 

appearances of 4-y0  or three appearances of 	and for each of 

these, the fourth line can correspond either to y1  or to 

That is, there are four possible squares here: 

; 

p3 	p2 	p3  'do 	p3 	p2 	p3  ; 	p2  

The first and fourth of these arise from the equation: 

3y0 y1  = 0 , 	 (C2) 

and the second and third from the equation: 

3y0 y1  = 0 
	

(C3) 

So if there are n(y0 , y1 , C2) equations like (C2) and n(y 0 , y1 , C3) 

equations like (C3), then the total number of squares here is: 

2v(n(a, b, C2) + n(b, a, C2) + n(a, b, C3)' + n(b, a, C3)). 

and. III. We get, by similar arguments, exactly the same 

number for each of these other two sub-cases. 

Case (c): two lines have the label y0  and two have the label y1 . 

Again, it will be useful to sub-divide this Case into three 

sub-cases: 

I the first two lines have the label y0  and the last two 

have the label y 1 ; 

II the first and third lines have the label y 0  and the second 
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and fourth have the label y 1 ; 

III the first and fourth lines have the label y 0  and the 

second and third have the label y1. 

Again since the vertices are distinct, there are four 

possibilities: 

: :: 

The first and fourth 

	

o 	 - 	1 

	

Pi 	, 	4p 	
0 

	

lot 	2 	 p2 	
31 

- 	
.L.;J 

of these arise from the equation: 

2y0 4-2y1  = 0 ; 	 (C4) 

and the second and the third from the equation: 

2y0 2y1  = 0 . 	 (C5) 

So, using notation analogous to that which we have already employed, 

we have that the total number of squares here is: 

2v(n(a, b, C4) + n(b, a, C4) + n(a, b, C5) + n(b, a, C5)). 

Obviously, moreover, there is a symmetry in these equations 

between a and b, and so n(a, b, C4) = n(b, a, C4) and n(a, b, CS) = 
/ 

n(b, a, C5). So the number of squares in thifl sub-case is: 

4v(n(a, b, C4) + n(a, b, C5)). 

This is the most complicated of all the sub-cases we have to 

deal with. However, certain combinations of the signs 4. and - with 

the labels can be excluded immediately: any combination, to be 

precise, which gives rise to equations 2y0  = 0 or 2y1  =0, since we 

have stipulated that a and b do not equal 0 or ½v. Moreover, 

certain other combinations of signs with labels correspond to 

unavoidable squares: that is, they give rise to squares regardless 

of the values of a and b. These unavoidable squares are: 
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C_______ _______ 0 p1  0 p1

:'So 1

e 
1 

..r - -;-

p3  p2  p3 o 2  p2  p3  p2  

(That is, there are v squares of each of these forms, once the 

various possible starting points are taken into account. So there 

are altogether - taking account also of the two possible allocations 

of a and b to y0  and y1  - 8v unavoidable squares of this type.) 

Then, again using arguments very similar to those we have 

already employed, we find that the other possibilities which can 

arise are of the forms: 

Pi  i 	1 	

-"56 

	p1 	0 	p1
63 

________ 	-; 	
0

-bil 
3o 	2 	 e 	 3 • 	2 

The first and fourth of these arise from equation (C4) again, and 

the second and third from equation (C5). So, as in I, we get that 
0 

the nuxnberof squares is: 	 - 

4v(n(a, b, C4) + n(b, a, C5)). 

III. This is similar to I above, and we get exactly the same number 

here as there. 

Case (d): one line has the label y0  and three have the label y 1 . 

Here, since y0  must occur with the first line, and since, again, 

all the vertices are distinct, the only four possibilities are: 

16 	

Pi 
	or 	Pi 
	Pi 

 

j
p 

	

4 
1 	 1 	 1 	 1 

3 	2 	3 I 	 2 	3 	2 	3 	2 

The first and fourth arise from the equation: 

y0 43y1  = 0 , 	 (C6) 

and the second and third from the equation: 

y0 3y 1  = 0 . 	 (C7) 
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Moreover, the numbers of these equations are related to the numbers 

of equations of the forms (C2) and (C3) by interchanging a and b: 

thus, for example, n(a, b, C6) is the same as n(b, a, C2). So the 

total number here is: 

2v(n(b, a, C2) + n(a, b, C2) + n(b, a, C3) + n(a, b, C3)). 

So, summarising, we have enumerated circuits of length four as 

follows. From (i), (ii) and (iii) (page 107), and the formula for 

unavoidable squares in Case (c) II (page ill), there are altogether 

4v + 12v + 12v + 8v - that is, 36v - unavoidable circuits of length 

four. From Case (a) (page 108), there are 

2v(n(a, Cl) + n(b, Cl)) 

squares arising from equations like (Cl). From Case (b) I, II, and 

III (page 109) and from Case (d) (this page), there are 

8v(n(a, b, C2) + n(b, a, C2) + n(b, a, C3) + n(a, b, C3)) 

squares arising from equations like (C2) and (C3).. And, finally, 

from Case (c) I and III (pages 110 and 111) and from the last part 

of Case (c) II (page 111), there are 

12v(n(a, b, C4) + n(a, b, C5)) 

squares arising from equations like (C4) and (C5). 

3.4.4 Application to John's method of searching for efficient 

cyclic designs 

We can facilitate the application of these formulas to the 

problem raised by John (which we mentioned at the beginning, page 

99) by bringing them together in Table 2. (page 113). The point of 
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doing this is to make it easier to see exactly how many squares arise 

from each of the various relationships. (We have also adapted the 

numbering of the relationships, for ease of reference.) Further to 

the circuits listed in the Table there are, of course, 4v unavoidable 

circuits of length two (containing only one line), and 36v 

unavoidable circuits of length four. 

Table 2 

Enumeration of circuits of lengths 2, 3, and 4 in 

cyclic designs for v varieties with initial blocks {O, a} and {O, b}. 

Relationship 	Number of circuits 

Length two 	 a 4- b = 0 	 4v 	(Al) 

	

ab=O 	 4v 	(A2) 

Length three 	 3a = 0 	 2v 	(Bl)i 

	

3b = 0 	 2v 	(El) 2  

	

2a4-b=0 	 6v 	(B2) 1  

2b+a=0 6v (B2) 2  

2ab=0 6v (B3) 1  

2ba=0 6v (B3) 2  

Length four 	 4a = 0 •2v (Cl) 1  

4b=0 2v (Cl) 

3a4-b=0 8v (C2) 1  

3b4-a=0 8v (C2) 2  

3ab=0 By (C3) 1  

3ba=0 8v (C3) 2  

2a2b=0 12v  

2a2b=0 12v  
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We now describe three examples of how these rules can be used 

in the choice of the two initial blocks of size two. We will, as 

always (motivated by the conjecture in 2.5), invoke the graphical 

criteria sequentially: first, we will find those designs which 

have a minimal number of circuits of length two; then, among these, 

we will find those designs which have a minimal number of circuits 

of length three; and, finally, among these, we will find those 

designs which have a minimal number of circuits of length four. 

Each of these processes of selection will use the relevant rules in 

the Table: calculating numbers of circuits of length n by means of 

these rules will, in general, be much simpler than finding Tr(A') by 

unrefined computation (or, even, frequently, by taking advantage of 

the savings made possible by equation (3.6)). 

To shorten the examples, we' will consider only designs in 

which a is 1 (the' analysis for other values of a being similar); 

and we will restrict b to the set {1, 2 ......, m} (this being all 

that is necessary: all other choices of b correspond to the 

negatives, modulo v, of elements in this set, and the form of the 

relationships in the Table obviously implies that the numbers of 

circuits of each of the three lengths for a second initial block 

{O, b) are the same as the corresponding numbers for a second 

initial block {o, b} ). 

Example (1) 

Here, we look for a design with 8 varieties replicated 4 times. 

So m is 4, and hence we will choose b in the set {l, 2, 3}. (We 
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would not choose b equal to 4, since {o, 4} would provide only 

three replications of each variety.) 

Criterion 	if a,is 1, then to avoid -proper circuits of length 

two, we must (by (A) in the Table 2) choose b in the set {2, 31. 

Criterion ç 3 : (Bi) cannot hold (since 3 is not a factor of 8), and 

(B2) 2  cannot hold since a is 1. 2a = 2, and so (B2) 1  will not hold 

for b < 3. To avoid (B3) 1 , it is necessary to choose b not equal to 

2. Hence we must choose b equal to 3. (Notice that then (B3) 2  also 

is avoided.) 

Thus, avoiding circuits of length two and three leads us to the 

choice b = 3. That is, the two initial blocks are {o, l}, and 

{o, 31 . (This is the design given by John, Wolock and David. 

(1972).) 

Example (2) 

This one is for 9 varieties each replicated 4 times. So in is 4, 

and hence we will choose b in the set Cl, 2, 3, 41 

Criterion C 	if a is 1, then to avoid proper circuits of length two 

we must (by (A)) choose b in the set {2, 3, 41 

Criterion 	in this example (unlike the previous one), we cannot 

completely eliminate circuits of length three, for (B3) 1  would 

exclude b = 2, (Bi)., would exclude b = 3, and (B2), ) would exclude 

b = 4. Accordingly, unable to avoid circuits of length three, the 

best we can do is to make that choice of b in {2, 3, 41 which gives 

rise to as few such circuits as possible. Both of b equal to 2 and 

b equal to 4 give 6v - that is, 54 - circuits of length three. But 

b equal to 3 gives only 2v - that is, 18 - circuits of length three. 
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So we choose b equal to 3, giving initial blocks {0, 1) and {0, 3}. - 

(Again, this is the one listed by John, Wolock and David.) 

Example (3) 

10 varieties each replicated 4 times. So m is 5, and hence we 

will choose b in the set {l, 2, 3, 41. 

Criterion ç: if a is 1, then to avoid proper circuits of length 

two, we choose b in the set {2, - 3, 4}. 

Criterion C 3 : (Bl) 2  cannot hold (since 3 is not a factor of 10). 

2a = 2, and so (B2) 1  will not hold if b < 4. Neither will (B2) 2  

(since 2 is not a factor of 9), or (B3) 2  (since 2 is not a factor 

of 11). Moreover, to avoid (B3) 1 , it is necessary to choose b not 

equal to 2. So to avoid triangles, we must choose b in the set 

{3, 4). 

- 	Thus, in this example, applying criteria C and C 3  does not 

exhaust all choices. So we turn to C to choose between b equal to 

3 and b equal to 4. 

Criterion C 4 : it is not possible to avoid completely circuits of 

length four, since (C3) 1  excludes b equal to 3 and (C4) excludes b 

equal to 4. So we have to find which of the two choices of b yields 

the smaller number of such circuits. If b is 3, then (C2) and (C3), 

hold, and so there are By + By - that is, 160 - squares. But if b 

is 4, then only (C4) holds, and then there are l2v - that is, 120 - 

squares. So the criterion C 4  leads us to choose b = 4. (The 

number of unavoidable squares referred to on page 113 is, of course, 

the same for any choice of b: namely, 36v which equals 360.) 
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So, applying these three graphical criteria with a equal to 1 

leads us to choose the design with initial blocks {o, 1) and (0, 4}. 

(This, too, is the one listed in the catalogue.) 

3.4.5 Extension of the theory to general cyclic designs 

The theory and examples which we have presented illustrate the 

way in which the first few graphical criteria can be used to derive 

a set of simple rules (Table 2) for choosing cyclic designs with 

two initial blocks of size two. We have worked through the examples 

in some detail in order to show how these rules operate in practice. 

Clearly, however, they can be programmed on a computer into a very 

simple algorithm for choosing such designs. 

Moreover, these rules could be extended to the case of more 

than two initial blocks, and to block size greater than two. To 

conclude this Chapter, we describe very briefly how this could be 

done. That this extension is quite straightforward is a consequence 

of, above all, the two-stage approach to enumeration which we will 

continue to employ. 

Any line in a general cyclic design corresponds to addition or 

subtraction from a given endpoint of one of the differences listed 

in the paired-difference set for the design (which we defined on 

page 90). For the case we have already dealt with - that is, where 

there are two initial blocks {o, a} and {o, b) - the difference 

set is simply {a, b).(the signs depending on whether a and b 

are less than or greater than m). Just as the first stage of the 

enumeration for this special case involved allocating a and b to the 
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labels-y
0 
 and y1,  so, for the general case, the first stage will 

involve allocating differences to labels y0 , y1,  and also (where 

appropriate) y2  and  y3.  The second stage will then - analogously 

to what we have already done - invoke general formulas for the 

numbers of circuits arising out of each allocation. The derivation 

of these general formulas is rather more complicated than - but not 

fundamentally different from - the special case we have looked at: 

there is, for example, one extra type of triangle, in which the 

three lines each have a different label. 

And, of course, once the enumeration had been generalised in 

this way, it would be possible to devise rules for adding or 

extending initial blocks in this general case too. The approach 

by means of graph theory which we have advocated here could, 

therefore, provide a general means of facilitating John's method 

of searching for cyclic designs. 
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CHAPTER 4 

APPLICATION OF THE GRAPHICAL CRITERIA TO a DESIGNS 

4.1 Introduction: the number of circuits of length two 

The second area of application of the graphical criteria which 

we discuss concerns the selection of efficient a designs. Since 

the variety concurrence graph of an a design is, in general, more 

complicated than that of a cyclic design, the material in this 

Chapter will be correspondingly more complex and lengthy than that 

of Chapter 3. 

Throughout, we will be concerned with a designs for v = ks 

varieties in b = rs blocks, each variety being replicated r times, 

and each block having k plots. There will be .s blocks in each 

rep licate 

Our main aim will be to simplify the calculation of the numbers 

of circuits of various lengths in various types of a design; it will 

be by building on this that, in Chapter 5, we will be able to devise 

algorithms for generating efficient a designs. Recurrently here, we 

will use the graph theory basis of the criteria to show that they 

can be calculated by means of certain simple functions of the 

generating array a. 

In this respect, indeed, we are extending a result already 

obtained by Patterson and Williams (1976b). They show (page 85) that 

the pattern of concurrences of an a design can be found from this 

tFull details of the definition and construction of a  designs are 
in Patterson and Williams (1976b). 
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generating array. As an introduction to our later enumeration of 

circuits of lengths three and four, we will describe first how their 

theory can be used to enumerate proper circuits of length two. We 

will start by explaining this for a simple example, and then we will 

deal more generally with all a designs. (Circuits of length two 

that are not proper are, of course, easy to enumerate: there are, as 

we observed on page 72, exactly vr(k-1) of them.) 

The example we look at is for 12 varieties in 3 replicates and 

in blocks of size 3. The generating array is: 

a = 000 
012 
023 

Then the full design is (rows in each replicate being blocks): 

Replicate 0 
	

Replicate 1 	Replicate 2 

B0 : 0 4 8 
	

B4 : 0 5 10 
	

B8  : 0 6 11 

B 1 : 1 5 9 
	

B5 : 1 6 11 
	

B9  : 1 7 8 

B2 . 2 6 10 
	

B6 : 2 7 8 
	

B10 : .2 4 9 

B 3 : 3 7 11 
	

B7 : 3 4 9 
	

B11 : 3 5 10 

Now, in the variety concurrence graph of this design, proper 

circuits of length two arise as follows: 

3 Ic  

5* 10 

6* ' 11 

8 

Thus, bearing in mind that starting point and orientation are 

significant, there are altogether 16 proper circuits of length two. 

What is important for our purposes here is that these circuits can 
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be detected from the generating array a: the reason why, for example, 

the varieties 5 and 10 are joined by two lines - that is, concur 

twice - is that the corresponding entries of the array (namely those 

in the last two columns) determine that 5 and 10 will occur in the 

same row in both replicate I and replicate 2.. It is this kind of 

observation that the theory of Patterson and Williams generalises. 

They actually. show.. something slightly different, but 

equivalent: if the generating array has entries a 	(for 0 < u < r-1
Un 

and 0 < m < k-1 ), then a necessary and sufficient condition for the 

design to have no multiple concürrences is that for u u' and 

m 	m', 

1- a 	a 	a 
mu 	mu' 	m'u 	m'u' 	

(4.1) 

This result can be, as it were, turned round to allow us to count 

the number of proper circuits of length two in any a design: each 

equation of the following form yields exactly s such circuits: 

aa 	= a 	 . 	 (4.2) mu 	mu' 	m'u 	m'u' 

Moreover, every proper circuit of length two arises from one such 

equation, if we specify that the starting point is the one in 

column u and that the first line is the one corresponding to a 

block in replicate m: the opposite orientation is obtained by the 

different equation which arises by interchanging the left- - and 

right-hand sides\\of  (4.2), and the other starting point by 

multiplying both sides of (4.2) by 1. Thus, in the example, there 

t In this and all succeeding Chapters, a dot above the operator 
indicates ,modulo s. 
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are four different equations, as follows: 

12 = 	23 

23 = 	l2 

2 	1 = 	3 2 

32 = 	21 

and each of thesegives rise to s - that is, 4 - circuits of length 

two. For instance, the first of them gives rise to four circuits 

which can be represented by the diagram on page 120, the starting 

point being at the left-hand end (since m = 1), and the starting 

line being the one from replicate 1 (since u = 1). 

Later, in 5.2, we develop an algorithm for generating cz(O,l) 

designs which relies on equation (4.2). Meanwhile, in the rest 

of this Chapter, we show how the number of circuits of lengths three 

and four (which, as in Chapter 3, we will often call, respectively, 

triangles and squares) can, in a similar fashion, be found from the 

generating array a. 

4.2 The number of triangles in an a design 

First of all, then, we describe how the number of triangles in 

an a design can be calculated very straightforwardly from the 

generating 'array a. The formulas which we will develop will be 

applicable to all a designs, and we will provide a fairly broad 

range of examples to illustrate this. However, we will also describe 

how the method can be simplified for cz(O,l) designs, and for 

a designs in which the number of replicates is two or three. In 

particular, the case of three-replicate a(0,1) designs is so simple 
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that we will use it as an introduction to the more general cases. 

Of course, the application to such designs could be deduced as a 

corollary of the general results (and we will also show later how 

this can be done). But we present this particular application first 

in order to make the general results more accessible: the clearest 

way of explicating complex theory is through preparing the way for 

it by means of a simpler special case. 

4.2.1 IntroductiOn: three-replicate a(0 1 1) designs 

The only way a circuit of length three can arise is - as we 

noted in Chapter 3, page 103 - as a proper triangle. That is, none 

of the lines in it can be repeated. In what follows, the 

paradigmatic circuit of length three will be denoted by the diagram: 

where this notation will mean that the starting point is p0 , and that 

the orientation is clockwise: that is, p0 - p1 - p2 - p0. 

Now, each of these lines corresponds to a concurrence of the 

varieties at each end of it, and so to a block in some replicate. 

Obviously, the following are the only possibilities: 

I all the blocks lie in the same replicate; 

II the blocks lie in exactly two different replicates; 

III the blocks lie in three different replicates. 

We will call these, respectively, single-replicate triangles, 

two-replicate triangles, and three-replicate triangles. 

We show first (in Ci)) that there are no two-replicate triangles 
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in an a(0,1) design. Then (in (ii)), we show that the number of 

single-replicate triangles is a simple function of the numbers s, 

k, and r (which, of course, equals 3). Finally (in (iii)), we 

describe how three-replicate triangles can be enumerated in 

three-replicate a(0,1) designs. The arguments we use here, although 

shaped specifically for such designs, are typical of the arguments 

we will use later for the general case. 

(i) Two-replicate triangles 

In order to show that there are no two-replicate triangles in an 

a(0,1) design, it is sufficient to show that, if two of the 

replicates involved in the triangle are the same, then the three 

blocks are identical. 

Let the line joining the varieties p0  and p1  correspond to 

concurrence in block B0 , the line joining p 1  and p2  to concurrence 

in block B1 , and the line joining p2  and p0  to concurrence in block 

B2. 	

O 2l 	- 

Suppose, for example, that blocks B 0  and B1  lie in the same 

replicate. Then they are actually the same block, since variety p 1  

lies in only one block of that replicate. So the triangle looks 

like: 	 p 	 p1  

So p and p2  both occur in block B0 , and hence concur in this block. 

So, if B0  and B 
2
'were different blocks, then p0  and p. 1  would be 

joined by two lines, which would contradict the fact that the design 

has no double concurrences. 
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Hence all three blocks are the same (the argument being 

similar if the initial two blocks which lay in the same replicate 

were B0  and B2  or B1  and B2  instead of B0  and B1 ). 

Single-replicate triangles 

Triangles of this type arise out of three concurrences within 

the same block, since none of the varieties lies in more than one 

block of the same replicate. Each block gives rise to k(k-l) (k-2) 

such triangles (since, of course, orientation and starting point are 

significant). So, since there are rs - that is, 3s - blocks 

altogether, the total number of such triangles is 

3sk(k - 1) (k - 2), 	 (4.3) 

which we will call T 

Three-replicate triangles 

It follows from (i) and (ii) that differences in numbers of 

triangles among a(0,1) ,designs for three replicates must arise from 

differences in numbers of three-replicate triangles. In this type, 

all the blocks are distinct: 
B0  

/ P1 

p2  

These three blocks lie in different replicates; let the replicate 

in which block B0  lies be labelled i 0 , that in which B 1  lies be 

labelled i 1 , and that in which B2  lies be labelled i 2 . Then the 

enumeration of such triangles will be simplified if we divide it 

into two stages (reminiscent of, but not precisely analogous to, 
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the two stages we used when we were enumerating triangles in cyclic 

designs (page 104)). The first stage involves allocating the 

replicate numbers 0, 1, and 2 in some order to the labels i 0 , i 1 , 

and 	There are six ways of doing this. Then the second stage 

involves enumerating, for each such allocation, the number of 

three-replicate triangles with these values of i0 , i 1 , and i 2 . The 

reason why this approach leads to a simplification is that it enables 

us to use general rules for enumerating three-replicate triangles 

for general labels i 0 , i1 , and i 2 . The simplification becomes even 

more pronounced in the case of more general a designs, as we will 

show later. But, even for three-replicate c(0,1) designs, it 

transpires that matters are made markedly more straightforward if we 

proceed in this way. 

Indeed, this approach leads naturally to the observation that 

we only need enumerate triangles for one such allocation, since each 

of the six allocations yields the same number of three-replicate 

triangles. (This is a consequence of the fact that re-allocating 

the three replicates 0, 1, and 2 to the labels i0 , i 1 , and 12 simply 

corresponds to some combination of starting at a different vertex 

and traversing the triangle in the opposite direction. Thus, for 

example, the triangles arising when the allocation is 0 = o f  

i 1  = 1, and i 2  = 2 stand in a one-to-one relationship with the 

triangles when 
	 0, and i 2  = 2, the relationship being 

set up by the ransformtio: of starting point from p 0  to p2 , and the 

transformation of direction from clockwise to anti-clockwise.) Only 

having to do the calculations for one of the six allocations, we 
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choose to do it for the obvious one: i 0  = 0, i 1  = 1, and i 2  = 2 

(Then, in finding the total number of three-replicate triangles, we 

multiply the number for this allocation by six.) 

Henceforth, therefore, we will assume that block B lies in 
U 

replicate u (for u = 0, 1, and 2): 

More precisely, let the block B be the x th  block in replicate u. 

Further, let the variety 
p 
  lie in column j 	(The varieties of an 

th a design can be divided into k columns, the j column being the 

set {js, js+l ......, js+(s-l)} .) So the numbers j are distinct, 

since no pair of varieties in the same column can concur. 

The varieties in column j of replicate u occur in the order: 

js+ (x4 a .) 
U] 

for 0 < j < k-i and 0 < x < s-l. So the varieties in block x of - - 	 - - 	 v 

replicate u are: 

is + (x 
v 4 uj  

a ) for 0 < j < k-i . 	 (4.4) 

This, along with the triangle diagram immediately above, enables us 

to express each variety p in two different ways. For example, 

variety p0  lies in block B0 ; this means that p0  lies in column i 0  of 

block x0  of replicate 0., and so that: 

PO = i0s + (x 0  - 0j0 
a 	) . 	 (4.5) 

Then, since variety p 1  lies in block B0 , it lies in column j 1  of 

block x0  of replicate 0, and so: 

We also assume in this Section 4.2.1 that the array a is in standard 
form: that is, that a 	= 0 = a 	for each i.

Oj 
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P1 = i 1s + (x0  4- a0) 	. 	 (4.6) 

Continuing in this manner, we get a further four equations: 

from block B 1 : 	P1 = i 1 s + (x1  -1- a 1 ) 

p2 = j 2  s + (x 4- a 1 .) ; 	 (4.8) 

from block B2: 	P2 = i 2s + (x2  4- 2j 2 	 (4.9) 

PO =  i0   + (x 2  4-a 	 . 	(4.10)2j 0 

From these equations, we can derive a relationship among the a 
U3  

This set of six equations (4.5) - (4.10) holds if, and only if, the 

following set of three holds: 

x 4- a= x 4-a 	 (4.11) 0 	0j0 	2 	2j0  

x +a. 	= x 4-a 	 (4.12) 0 	031 	1 	lj i 

x 
1 	13 	2 

4- a 	= x 4- a 232 
	

. 	 (4.13) 

((4.11) is derived by equating the two expressions (4.5) and (4.10) 

for p0 , (4.12) by equating the two expressions for p 1 , and (4.13) 

by equating the two expressions for p 2 .) 

Now, if equations (4.11) - (4.13) are valid, then, by a 

simple process of eliminating the numbers x. (and bearing in mind 

that, since the array is in standard form, a0 . = 0 for each value 

of j) we can derive the following equation: 

a 	- a= a 	a 	 (4.14) lj 2 	1j 1 	2j 2 	2j 0  

(where the j 
u 
 are distinct). Moreover, conversely, each equation 

like (4.14) gives rise to s distinct triangles of the form depicted 

at the top of page 127: an equation like (4.14) specifies the 
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columns to which the three vertices belong; there are, then, s 

choices for p0, and that fixes all three vertices. That no two 

equations like (4.14) yield the same three-replicate triangle in 

this way results from the fact that the terms in the equation are 

fully determined by the columns to which the three ordered vertices 

belong. (The ordering is important, and is relevant because 

orientation and starting point are significant. As we mentioned 

above (page 126), other orientations and other starting points arise 

as a result of re-allocating the replicates to th6 labels i 0 , i1 , 

and i 2 .) 

- 	So, if there are t 3 (O, 1, 2) equations of the form (4.14), then 

there are st 3 (0, 1, 2) three-replicate triangles as in the diagram 

at the top of page 127, and so a total of 6st3 (0, 1, 2) 

three-replicate triangles altogether (taking into account the other 

possible allocations of replicates to labels). 

What this means is that there are 6t3 (0, 1, 2) series of s 

triangles each (arising from the s choices of vertex p0). These 

series can be grouped into t3 (O, 1, 2) sets of six, the series in 

each set of six being obtained from each other by the various choices 

of starting point and orientation. (We will illustrate these 

groupings below in the Example (1).) 

To facilitate the counting of equations like (4.14), we define 

two kxk arrays G 1  and G2 , whose ()th entries are, respectively, 

a 11  a3  and ct 2 	a2 . In enumerating such equations, the 

tThe notation t
3 
 (0, 1, 2) will be explained later when we deal with 

general a designs. It indicates, essentially, that the allocation 
referred to has 10 = 0, i 1  = 1, and '2 = 2. 
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condition that the suffices j 0 , j 1 , and j be distinct is 

equivalent to the condition that some pair of them be distinct 

(since if any two of them are equal, then condition (4.1) ensures 

that all three of them will be equal). Hence, for any given value 

of j 2 , the number of equations of the form (4.14) with that 

particular value of j is the number of equalities between an 

off-diagonal element of row j 2  of the array G and an off-diagonal 

t element of row j of the array G2 . 

Some further notation will simplify the description of the 

formula for enumerating these equalities. For each row j 

(0 < j <k-l), and for each x in {o, 1......, s-l} , let h 1 .(x) be 

the number of occurrences of x in the row j of G1 , and let h 2 (x) be 

the number of occurrences of x in row j of G2 . Then the number of 

equalities between an off-diagonal element of row j of G1  and an 

off-diagonal element of row j of G is: 

s-1 
E h (x) h .(x) 

x=l
.  

lj 	2j 

(The summation starts at 1 since zeroes occur only on the diagonals.) 

So, summing over j, the total number of equalities is: 

k-i s-1 
t3 (0, 1, 2) 	 E h 	(x) h 	(x) . 	 (4.15) 

j=0 x=l lj 
	2j 

Bringing together this equation with the comments concerning 

the number of three-replicate triangles that we made on page 129, 

tThe forms of these arrays G 1  and G2  bear some resemblance to the 
structure of what are known in combinatorial theory as perfect 
difference sets. We investigate this similarity further in the 
final Section 4.4.3 of this Chapter on a designs. 
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we find that the total number of these triangles is: 

k-i s-i 
6s E 	L h (x) h (x) , 	 (4.16) 

j=0 x=i lj 	2j  

which we will-call T 3 . 

Finally, recalling that the number of single-replicate 

triangles is (by equation (4.3)) 3sk(k - 1)(k - 2), and that for an 

cx(0,1) design there are no two-replicate triangles, we have that 

for an a(0,1) design in three replicates, the total number of 

triangles is: 

k-i s-i 
= 3sk(k - 1) (k - 2) + 6s E 	h (x) h (x) . 	(4.17) 

j=0 x=i lj 	2j  

(In Chapter 5, we describe how this formula can be used as the basis 

of an algorithm for constructing efficient three-replicate ct(0,1) 

designs.) 

We now turn to specific examples of these calculations. The 

first example illustrates how this theory can be used to enumerate 

circuits of length three, and the second how the number of 

three-replicate triangles can be used to compare three-replicate 

c(O,l) designs for fixed values of s and k. (Thus the first example 

is of purely mathematical interest; the second has a bearing on 

practical statistical applications.) 

Example (1) 

For s = 8 and k = 4, the best three-replicate c*(0,1) design has 

generating array: 

ci. = 0000 
0125 
03 7 1. 
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The arrays G1  and G2  are then: 

G 
	
0125 
	

0371 

0 
	
0763 
	

0 
	
0517 

1 
	

1 b 7 4 
	

3 
	
3042 

2 
	
2105 
	

7 
	
7406 

5 
	
5430 
	

1 
	
1620 

Then, by formula (4.15), t 3 (0, 1,2) = 2, and so the number of 

three-replicate triangles is (by equation (4.16)) 96. 

There are, by equation (4.3), 3sk(k - 1) (k - 2) = 576 single-

replicate triangles. 

The three-replicate triangles can be listed by examining the 

design, which is in full: 

Replicate 0 

0 	8 16 24 

1 	9 17 25 

2 	10 18 26 

3 	11 19 27 

4 	12 20 28 

5 	13 21 29 

6 	14 22 30 

7 	15 23 31 

Replicate 1 

0 	9 18 29 

1 	10 19 30 

2 	11 20 31 

3 	12 21 24 

4 	13 22 25 

5 	14 23 26 

6 	15 16 27 

7 	8 17 28 

Replicate 2 

0 	11 23 25 

1 	12 16 26 

2 	13 17 27 

3 	14 18 28 

4 	15 19 29 

5 	8 20 30 

6 	9 21 31 

7 	10 22 24 

As we explained earlier, there are t 3 (0, 1, 2) series of s triangles 

each, the series arising out of t3 (0, 1, 2) - that is, 2 - 

underlying triangle diagrams by means of different starting points 

and orientations. The two underlying series are as follows: 

(1) jo = 3; j i = 1; j 2  = 0. 

24 8 	25 	9 	26\ ,,,,,7 10 	27 	11 
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11 

26 	12 
	

29 	13 
	

30 	14 
	

31 	15 

(2) j 0  = 2; ji = 3; j 2  = 1. 

l6 24 	177 25 	l81 26 	19-27 

12 	 13 	 14 	 15 

20 	28 
	

2l\ ,,/29 
	

22 30 
	

23 3i 

10 

Each of these sixteen diagrams represents six circuits of length 

three when different starting points and orientations are taken into 

account. Notice that successive terms among the eight in a series 

are obtained by repeatedly adding 1 (modulo 8) to the vertices. 

Example (2) 

We consider all a(0,1) designs for three replicates in blocks 

of size 4, with 6 blocks in each replicate, which have the following 

as the first two rows in their generating arrays: 

0000. 

0123 

Then each of the possible extensions of these two rows to an a(0,1) 

design in three replicates has 3sk(k - 1) (k - 2) = 432 single-

replicate triangles. The numbers of three-replicate triangles, along 

with the corresponding values of the harmonic mean efficiency factor 

A, are given in Table 3 (page 134). Notice that the more three-

replicate triangles there are, the lower is the value of the 
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harmonic mean efficiency factor A - though, as we might expect from 

equation (2.5), the ordering induced by is more subtle than that 

induced by the numbers of three-replicate triangles: the number of 

such triangles is 252 for both the second and third groups in the 

Table. The next graphical criterion - 	, or numbers of squares 

- serves to distinguish between these two groups: those designs 

in the first group (with harmonic mean efficiency factor .7239) have 

7824 squares, while those in the second group (with harmonic mean 

efficiency factor .7229) have 7920 squares. Observations such as 

these tend to lend credibility to the conjecture in 2.5. 

Table 3 

Three-replicate a designs for 24 varieties in blocks of size 4. 

Comparison of harmonic mean efficiency factor with 

number of three-replicate triangles. 

Third row of 	 Number of 

generating array c. A three-replicate triangles. 

0 	5 3 2 .7265 216 
o 	4 1 5 .7265 216 
O 	3 1 4 .7265 216 
O 	2 5 1 .7265 216 

O 	5 4 2 .7239 252 
O 	4 3 2 .7239 252 
0 	3 5 1 .7239 252 
O 	2 4 1 .7239 252 

0 	5 1 4 .7229 252 
0 	4 3 5 .7229 252 
O 	3 5 4 .7229 252 
O 	2 1 5 .7229 252 

0 	4 3 1 .7196 288 
0 	3 5 2 .7196 288 
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4.2.2 Generalisation to all cL designs 

The generalisation to all a designs of these results on 

enumerating triangles is now a fairly straightforward process, and 

involves no ideas that are fundamentally different from those we 

have encountered hitherto. 

As in the case of three-replicate a(O,l) designs, we deal with 

the typical triangle: 

\P 2 p

1  

(starting at p0  and traversing the lines clotkwise). Again, each of. 

the lines corresponds to a concurrence in a block in some replicate, 

and, as before, we have the following types: 

I single-replicate triangles: all the blocks are in the same 

replicate; 

II two-replicate triangles: the blocks lie in exactly two 

different replicates; 

III three-replicate triangles: the blocks lie in three 

different replicates. 

We deal with each type separately, and bring together on page 150 

a summary of the formulas which we derive. 

I. Single-replicate triangles 

The number of single-replicate triangles is 

rsk(k - 1) (k - 2) , 	 (4.18) 

which we will denote again by T 1 . (This can be established by 

arguing exactly as in (ii) on page 125: the reasoning there 
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generalises in an obvious way to all a designs.) 

II. Two-replicate triangles 

Although we have to deal in some more detail with two-replicate 

and three-replicate triangles, it will nevertheless be apparent that 

the techniques we used for three-replicate cz(0,1) designs are 

essentially all that are needed here too. Moreover, it will also 

become clear that the enumeration of triangles of these types can be 

based on arrays like G 1  and G2 . 

The two replicates involved in a two-replicate triangle we will 

label as i0  and i 1  - and we will adopt the convention that the first 

replicate to occur is labelled i 0 . Then any triangle of this type is 

of one of the following three forms: 

(a) 	 (b) 	 (C) 

PO 	Pi p 	 p 1 	p0  

As in the case of three-replicate triangles in three-replicate 

a(0,1) designs, the enumeration of two-replicate triangles here will 

be facilitated if we divide it into two stages. The first stage 

involves allocating two of the replicate numbers 0, 1 ......, r-1 to 

the labels i0  and i 1 . (There are r(r-1) ways of doing this.) Then 

the second stage involves enumerating, for each such allocation, the 

number of triangles of each of the three forms (a), (b), and (c) 

having these particular values of i 0  and i 1 . 

We show that the number of two-replicate triangles for any given 

pair of replicates i 0  and i 1  can be calculated from the corresponding 
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two rows of the generating array a. To simplify this further, we 

stipulate that after selecting a pair of replicates i 0  and i1 , we 

will reduce the row corresponding to i0  to zeroes by adding constants 

to columns of the array a. The effect of this operation is, simply, 

to re-label the varieties, and so the number of two-replicate 

triangles arising from the new rows 
i0 
 and i 1  is exactly the same as 

the number arising from the old ones. (Re-labelling the vertices 

of a graph G transforms it into a graph G' that is isomorphic to 

G: that is, which has the same structural properties as G.) In 

other words, instead of assuming (as we have done up till now) that 

the array a is in standard form, we will assume here that 

. a . = 0 for each 1- i j. 
0J 

First, consider two-replicate triangles of the form (a) (page 

136). Let the block which corresponds to the line p0 - p 1  be B0 , 

the block corresponding to the line p1 - p2  be B1 , and the block 

corresponding to the line p2 - p0  be B2 . So B0  and B2  are in 

replicate i0 , and B 1  is in replicate i 1 , as follows: 

0  
LI

D 	
lo 

For each u = 0, 1, and 2, let B be the x th block in its replicate. 
U 	 U 

Also, let the variety 
Pu 
 lie in column j.  So, arguing exactly as 

tlmplicitly postulated here is the practice of using the same 
notation for all the forms of the original array a which can be 
obtained by reducing some row to zeroes. This should not lead to 
any confusion provided it is always remembered that, having chosen 
any two replicates i0  and i 1 , the first thing we do is reduce the 
row corresponding to i to zeroes. The alternative practice would 
have been to have addeg another suffix to the a. to indicate 
which of the r rows is zero; that, however, would have been 
awkward and excessively complicated 
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we did for three-replicate triangles in three-replicate a(0,1) 

designs, variety p0  lies in column j0 , and in block x0  of replicate 

i0 ; 	So: 

PO = 	j 0  	+ 	(x0  - a. 	) 	. 
00 

(4.19) 

Similarly, from block B 0 : 

p1 =s + 	(x0  4- a. 	. 	) 	; 
loJ l  

(4.20) 

from block B 1 : 	p1  = 	j 1  	+ 	(x 	4- a 	) 	; 
1lJl 

(4.21) 

p2 = 	j 2 s + 	(x 	4- a. 	. 	) 	; (4.22) 

from block B 2 : 	p2  = 	j 2 s + 	(x 	4- a 	) 	; (4.23) 
10J2 

=s +2 4- (4.24) 
0i 0 

Then, proceeding in the same way as earlier, we can derive from 

these equations a relationship among the. 	This set of six 

holds if, and only if, the following set of three holds: 

x 
2 

-1-a . 	= 	x 	4ct 
i0j 0 	0 

. 
i0j 0  

(4.25) 

x 
0 

4-a. 	. 	= 	x 	4-a. 
1 

(4.26) 
3.0J 1  1 13 

x 
1 

4-a. 	. 	= 	x 	4-a . 
1 

(4.27) 
1 1 j 2 	2 

032 

((4.25) 	is obtained by equating the two expressions (4.19) and 

(4.24) 	for p0 , and so on.) 

Now we use the fact that a. 	. = 0 for each j. 	We get: 
1 0J 

X2 	= 	X0  

(that is, blocks B0  and B1  are the same); 
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= 
0 	1 	i1J 1  

.:= 	c. 2 	1 	i1J 2  

Hence: 	 c. 	- c. 	= 0 . 	 (4.28) ll 	
'12 

Let there be t2 (i0 , i 
1 
 ) equations of this form (enumerating 

over ordered pairs of distinct columns j 1  and  j 2 ). The suffices 

10 and i 1  here indicate which two of the rows of the array aare 

involved, and what is the order of their occurrence. 

It now follows that there are s(k - 2)t 2 (i0 , i 
1 
 ) two-replicate 

triangles for this choice of two replicates i 0  and i 1 . 

Demonstrating this is very similar to the analogous proof for 

three-replicate triangles in three-replicate c(0,1) designs. An 

equation like (4.28) specifies the columns to which the varieties 

Pi 
 and p2  belong. There are, then, s choices for p 1 . (That is, s 

choices for the number 	This choice fixes the value of p 2 . 

Further, having chosen p 1 , there are k - 2 choices available for p 0  

in the block B0  = B2 . So an equation like (4.28) yields s(k - 2) 

two-replicate triangles. Moreover, no two equations like (4.28) 

yield the same two-replicate triangle (since the terms in 

equation (4.28) are fully determined by the columns to which the 

second and third points of the triangle belong.) Hence, indeed, the 

number of two-replicate triangles for this choice of two replicates 

10 and i 1  is: 

s(k - 2)t2 (i0 , i1 ) 	 (4.29) 

Two-replicate triangles of the forms (b) and (c) on page 136 
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can be treated very similarly, and it turns out that the number of 

each of them is, again, s(k - 2)t 2 (i0 , i 1 ). (For (b), we derive, in 

place of the equation (4.28), the equation: 

a.. 	a. . 	= 0; 
11J0 	1132 

for (c) we derive: a. 	a. . 	= 0.) 
1 l J 0 	ll  

So, bringing together the results for two-replicate triangles of the 

forms (a), (b), and (c), we have that the number of two-replicate 

triangles for a particular choice of two replicates i 0  and i 1  is: 

	

3s (k - 2)t2 (i0 , i 1 ) . 	 (4.30); 

So the total number of two-replicate triangles (over all choices 

of two replicates) is: 

3s (k - 2) 	E 	t2 (i0 , i 1 ) 
i0 i l  

(4.31) 

There are several simplifications which we can introduce to the 

calculation of the quantity (4.31). The most useful stems from the 

observation that the quantities t 2  are symmetrical in i 0  and i 1 : to 

be precise, t2 (i0 , i 1 ) = t 2 (i 1 , i0). This is due to the fact that 

if row i1  is reduced to zeroes instead of row i0 , then row i0  gets 

filled with the negatives of the former entries of row i 1 . It 

follows from this and the expression (4.31) that the number of 

two-replicate triangles is: 

6s (k - 2) 	E 	t2 (i0 , i 1 ) 
	

(4.32) 

10<1 1 

This we will denote by T2 . 	 - 

In practice, the calculation of these quantities t 2 (i0 , i 1 ) 

can be simplified by means of arrays analogous to the arrays G and 
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G2  which we used for three-replicate ct(0,1) designs. Define the 

kxk array G 
1  
. . 

1 	 1 
to have as its (j 	)th entry the quantity: 

01 	 2 

a.. 	a.
1131 	1132 

(The suffices i 
0 	1 

and i in G. 	refer to the two rows of the array 

a which are involved, the first of these rows being, as always, 

reduced to zeroes. Notice that with this notation, the two arrays 

G1  and G defined for three-replicate a(0,1) designs would be G 01  

and G02 .) Then t2 (i0 , i 1 ), which is the number of equalities of 

the form a 
l  . lJ 

. 
l 	l a.  lJ . = 0 (j 1 	j 2) is, simply, the number of 2  

zeroes among the off-diagonal entries of the array G. 
10 1 

III. Three-replicate triangles 

The enumeration of three-replicate triangles for general a 

designs is similar to the enumeration of such triangles in three-

replicate a(0,1) designs. 

Let the three replicates in the triangle be labelled i 0 , i 1 , 

and i 2 , occurring in that order. So, with our customary notation, 

we have the typical configuration: 

p02B  p1 

Again, we divide the enumeration into two stages. In the first 

stage, we allocate three of the replicate numbers 0, 1......, r-1 

to the labels i, i 1 , i 2 . There are r(r - 1) (r - 2) ways of doing 

this. Then in the second stage we enumerate, for each such 

allocation, the number of three-replicate triangles having these 

particular values of'i 0 , L  and i 2 . We show that this second stage 



- 142 - 

can be based on the corresponding rows of the generating array a, 

with the usual simplification that the row corresponding to 

the replicate i0  has been reduced to zeroes. (As in the case of 

two-replicate triangles, this operation does not alter the essential 

structure of the variety concurrence graph.) 

Arguing as before, we derive from the diagram on page 141 the 

following set of three equations (analogous to (4.11) - (4.13), or 

to (4.25) - (4.27)): 

from variety p0 : 	x2  4- a. . 	= x 4- a. 
1 2 J 0 	0 	10J 0  

from variety p : 	x 4- a. . 	= x 4- a. 

from variety p : 	x 4 a. . 	= x 4 a. 

Then, since a. 
1 

. = 0 for each j, we have: oJ 

X 	
1 

	

- X 	= a. o 	2 	2  j 0  

X = a. o 	1 	1 1j 1  

x2  = a.. 

It follows from this that: 

a. 	. 	a. 	. 	= 	a. 	. 	- a. 	. 	 (4.33) 

	

l l J l 	3 2 J 2 	1 2 J 0  

(where the suffices j 0 , j 1 , and j are distinct). 

Let there are be t 3 (i0 , i 1 , i 
2 
 ) equations of this form 

(counting over ordered triples of distinct columns j 0 , j 1 , and 

Again, the suffices i 0 , i 1 , and i 2  indicate which rows of the array 

a are involved, and what is the order of their occurrence. (This 

accounts for the notation which we used for three-replicate a(O,l) 



- 143 - 

designs: see the footnote on page 129.) 

We show now that there are, then, st3 (i, i 1 , i2 ) three-

replicate triangles for this choice of replicates i 0 , i1 , and i 2 . 

The argument is, once more, similar to the analogous proof for 

three-replicate triangles in three-replicate a(0,1) 'designs. An 

equation like (4.33) specifies the columns to which the vertices 

belong. Then there are s choices for p 0 , and that fixes all three 

vertices. No two equations like (4.33) give the same three-

replicate triangle, since (as with equation (4.14) before) the terms 

of equation (4.33) are fully determined by the columns which contain 

the three vertices of the triangle. (The starting vertex gives the 

value of j 0 , the second vertex in the orientation gives the value of 

and the third vertex gives the value of j 2 .) 

So the total number of three-replicate triangles is: 

s E t3 (i0 , j 1  i2 ) 	 (4.34) 

where this sum is over sets of distinct replicates i, i 1 , and i 2 . 

The calculation of this quantity can be made considerably 

easier by means of several different simplifications, all analogous 

to simplifications we have used previously. On the one hand, we 

will show that the range of the summation can be restricted to 

replicates with i0  < i1  < i, On the other hand, we will derive 

expressions (equation (4.36) below) for the quantities t 3 (i0 , i 1 , i 2 ) 

which will be based entirely on the arrays G which we introduced 
uw 

above in the context of enumerating two-replicate triangles. 

First, then, we simplify the summation: we show that the 

number of three-replicate triangles is: 
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6s 	E 	t3 (i0 , i 1 , i 2 ) 	 (4.35) 
io <i l <i 2  

(Compare equation (4.16) or equation (4.32).) 

Consider any three replicates u, w, and z. Then there are, in 

principle, six ways of allocating these three to the labels i0 , i 1 , 

and i 2  in the first stage of enumerating the three-replicate 

triangles. But, in fact, each of the six allocations yields the 

same number of triangles. This is because (as with the analogous 

situation for three-replicate ci.(O,l) designs), re-allocating these 

replicates u, w, and z to labels simply corresponds to some 

combination of starting at a different vertex and traversing the 

triangle in the opposite direction. Thus, for instance, the 

triangles arising when the allocation is i0  = u, i 1  = W. and i 2  = z 

stand in a one-to-one relationship with the triangles when i 0  

il = u, and i 2  = z, the relationship being set up by the rule that 

the starting point is p 2  (instead of p0), and the direction is 

anticlockwise (instead of clockwise). 

It follows that the expression (4.35) does, indeed, count all 

the three-replicate triangles. We therefore denote it by T 3 . 

The other important simplification that we can introduce into 

the enumeration of three-replicate triangles concerns the way in 

which we calculate the quantity t 3 (i0 , i 1 , i a ). We will derive  

formula for this which will be based on the arrays G , 	G. 	, and 
lol l 	102 

G. 	, and which will be seen to be a generalisation of the 
1 11 2 

formula (4.15) which we developed for use in enumerating three-

replicate triangles in three-replicate c(O,l) designs.. 
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In order to present this formula, we have to introduce some 

new notation. We have already defined the arrays G uw . Now we 

define quantities that will record the numbers of occurrences of 

each of the residues 0, 1......, s-i in the different rows of these 

arrays. For each such array G 	(where 0 < u < w < r-l), let
uw 

h 	(x) denote the number of occurrences of x in the row j of G 

	

uwJ 	 uw 

(where 0 < x < s-i, and 0 < j < k-l). (Thus, just as the arrays 

and G2  for three-replicate o.(0,1) designs became in this 

notation G01  and 	so the quantities h 1 . Cx) and h2 . (x) have 

become h01 .(x) and h02 .(x) respectively.) 

Then the formula which we will establish for t3 (i0 , i 1 , i 2 ) is: 

t3 (i0 , ui 1 2 )  = 

k-i s-i 

	

I 	1 h. 	(x)h i 	(x) - t (i 1 ) - t ( ,i ) - t (i 1 1 ) - k 
j0 =O 	

01 2 J 	2 0 1 	2. 0 2 	2 1 2 

(4.36) 

(We will show later that this is a generalisation of the expression 

(4.15) for t 3 (O, 1, 2) in three-replicate a(0,1) designs.) 

Now, t3 (i0 , i1 , i 
2 
 ) is the number of equalities of the form 

(4.33), which is the number of equalities between an off-diagonal 

antry of the array G. and an off-diagonal entry of the array 
10 1 

G. 	such that these entries are to be in the same row but not in 
101 2 

the same column. So far, this is close to the observations we made 

at a similar stage of the development for three-replicate c,(0,1) 

designs (page 130). However, there now arises a new complication. 

In the case of three-replicate ct(0,1) designs, we were able simply 

to count the numbers of appearances of each of the quantities x in 

the rows of the two arrays, and then multiply them together. This 
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we could do because of the absence of multiple lines, which 

ensured that there would not be equality between entries in the same 

place in both arrays. (We show below that this simplification 

applies to all a designs in which there are no multiple lines.) 

However, for the general a designs we are dealing with here, we have 

to be more careful: there can be equalities between entries in the 

same place in the two arrays. We get round these difficulties 

in the proof of equation (4.36) by means of the following 

quantities y 
U 

Jo)1 , which act as indicator variables for the cells 

of the array G
uw 	 uwj0J 1  

define y 	(x) to be 1 if G uw (j 
0  1i 1 ) = x, and 

to be 0 if it does not. Then the number of equalities of the form 

(4.33) which arise from a particular entry G. . ( j 2 ,j 1 ) ( 2  
01 

is: 
s-i 	 k-i 

y. 	(x) 	E 	 y 	(x) 
x=0 0121 	j 0 0 	

0220 

j o j l , j 2  

(x) is non-zero for exactly one value of x, when it is 1, 
10 l2l 

and then the inner sum records the number of occurrences of that 

value of x in the row j 2  of G. 	, off-diagonal (since 	j 2) and 
101 2 

not in the cell (j 2 , i 1 ) ( since j 34  

For convenience, we label this quantity X. 	. Then, since 

j 1 , we have that X. 	equals: 
2l 

s-i 	 k-i 	 s-i 
C) Z 	 C i i 	W) E Y i i j 3 Wy 	

(x)- E 	 () y  
x=0 0 121 	j0 0220 	x=0 0121 	0221 

s-1 

E y (x)y 	(x) - 

x=0 0121 	
i0i2j2J2 

(4.37) 
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Now, the sum 
k-i 
E 	y. 	(x) 
jo=0 •O22O 

is, simply, the number of occurrences of x in the row j of G. . 
02 

which we have previously defined as h. . 	
(x). (See page 145.) We 

0 
can substitute this in the first term in the expression (4.37). 

Also, we can simplify the third term by using the fact that 

y. 	C) is 1 for x = 0 and is 0 for x > 1. So we get the 
10123232 	 - 

following simplified version of the expression (4.37) for X. 
2l 

s-i 	 s-i 
Y 	(x)h 	(x) - 	E y 	()y 	(x) 

x0 	0l21 	101232 	x0 
101 1 J 2 J 1 	i01 2 J 2 J 1  

- 10 i2l 

So, summing over the whole range of values 	j 2 , we find that 

the number of equalities of the form (4.33) which arise out of the 

row j of G, 	is: 
101 1 

which equals: 

k-1 
.. 	x. 
j l=0 	21 

j l j 2  

s-i k-i 	 s-i k-i 
E 	E 	y (x) h 	(x) - E 	Z 	y 	(x) 
x0 j 1-0 	0121 	022 	x=0 j1 	

jijj 

j l j 2 	 j l j 2  

k-i 
Z 

j1=0 	
1011323 

j 1 j 2  

Simplifying this by the same techniques as we used immediately 

above on the expression (4.37), and then summing over j 2 , we get 

that the total number of equalities of the form (4.33) - in other 
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words, t 3 (i0 , j, i) - is: 

k-i s-i 	 k-i 	 k-i 
Z 	• 	h. . 	(x)h. 	W -  E 	h. . 	(0) - Z 	h. . 	(0) 

j 2 0 x=0 O'l2 	O22 	j=O 012 
	

j=O 

s-i k-i 
+ 	2k - 	• 	y 	. (x) y. 	C). 

x=0 j2,j•=O 0121 	o122i 

(4.38) 

Now, as we pointed out earlier when we were dealing with two-

replicate triangles, t2 (i0 , i 1 ) is the number of zeroes among the 

off-diagonal entries of the array G. . . On the other hand, the 
:I0 i 

Sum: 
k-i 

h. 	(0) 

is the total number of zeroes in the array G. 	, including the k 
01 

zeroes which inevitably appear on the leading diagonal. Hence: 

k-i 
E 	h 	(0) - k = t2 (i0 , i 1 ) • 	 (4.39) 

Similarly, we get that: 

k-i 
E 	h. . 	

(0) - k = t2  (i0 , j) 	 (4.40) 
j=0 022 

Furthermore, the final expression in (4.38) - namely: 

s-i k-i 
y. . 

1 	
(x)y. 	(x) 

x=O j2,j10 
10] J 2 J 1 	10l 2 J 2 J 

- is the number of equalities between entries G. . (j 2 , j 1 ) and 
10 1 

G. . (j 2 , 	(That is, between cells in the same position in the 
02 

two arrays It is not difficult to see that such equalities 
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identify the positions of the off-diagonal zeroes in the array 

G. 
1 

. . Indeed, it is almost obvious. Let a denote the generating 
12 

array with its row i 0  reduced to zeroes, and let a' denote it with 

row i 1  reduced to zeroes. That is, for each i and j: 

	

a'. 	= 	a.. 

	

13 	13 	1 1 J 

. 

Then equality between the • 2' J 1 
 th

entries of C. 	and G 
01 	02 

means that: 

a= a • 
1 1 j 2 	i1j1 	1232 	

i
2l 

So: 

(a • . 	a. 	.)-(cL. 	. 	- a. 	.)=(a. 	• 	- a. 	•)(a. 	a. 	•) 
1132 	1 1J 2 	liJi 	1 13 1 	1232 	11J2 	1 2 3 1 	1 13 1 

which implies that: 

0 = a'.at 
1232 	12J1 

That is, 0 = G.(j 2 , j 1), or, in other words, the (j 	
)th 

entry of the array G. 

	

	is zero. This argument can be reversed to 
12 

show that each off-diagonal zero in the array G. . corresponds to 
12 

an equality between entries in the same position in arrays C. . and 
01 

G. 
101 2 

Hence, again allowing for the fact that C. . and G . both 
101 1 	101 2 

have k zeroes down their leading diagonals, we find that we can 

simplify the final expression in (4.38) as follows: 

s-i k-i 
y. 

. . • 
	

1  
(x)y, . 
	(x) 	t2 (i1 , i 2 ) + k 	(4.41) 

	

x=0 j21j10 1  l2l 	0 2. 2 1 

Substituting in (4.38) from (4.39), (4.40), and (4.41) establishes 

the validity of the equation (4.36). 
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This completes the simplifications that are possible in 

enumerating three-replicate triangles. 

Summary of formulas for enumerating triangles in a designs 

Before we describe how all this theory can be used in practice, 

we bring together the important definitions and results in the 

following summary. The summary contains nothing that we have not 

already presented; it simply collates the material in a form that 

is more concise, and therefore can be more easily referred to. 

For 0 < u < w < r-1, we define the kxk array G by: first,
uw  

reduce the array ct so that the row corresponding to replicate u 

consists entirely of zeroes; then, with a in this form, let the 

(j, ) entry of G be a - a (for 0 < j 0 'j 1  <k-i). 0  1 	 uw 	W3 	Y3 	- 

Further, let t 2 (u,w) be the number of zeroes among the off-diagonal 

entries of G , let h 	(x) be the number of occurrences of x in the 
uw 	uwj 

row j of G 	(0 <x < s-1 and 0 <j <k-l), and then defineuw  

t3 (i0 , i 1 , i) by the equation (4.36). 

Then we have the following formulas for the number of triangles 

of the three different types. 

I. Single-replicate triangles 

T 1  = rsk(k - 1) (k - 2). (See equation (4.18).) 

II. Two-replicate triangles 

	

T 2  = 6s (k - 2) 	E 	t2 (i0 , i 1 ). (See equation (4.32).) 

10<1 1 

III. Three-replicate triangles 

T 3  = 6s 	E 	t 3 (i0 , i 1 , i 2 ). 	(See equation (4.35).) 

10<11<12 
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Notice that each of these formulas contains a factor s. This 

reflects the fact that we have been able to base. the enumeration on 

the array a, or, put differently, that the triangles occur in series 

of length s, the members of each series being generated by 

repeatedly adding 1 modulo s. 

It remains, to mention some aspects of the practical applications 

of these formulas. We have already described rules for enumerating 

triangles in three-replicate a(O,l) designs, and we will indicate 

here how these rules arise as particular cases of the general 

formulas given in the above summary. Also worthy of comment are the 

simplifications that are possible when the formulas are applied to 

a(O,l) designs in general, and to a designs in two replicates, and 

so we will look at these cases as well. Subsequently, we will 

provide some more examples. 

A natural way of looking for simplifications of the formulas 

in the summary is to investigate designs in which some or other of 

the two-replicate and three-replicate triangles are absent altogether 

(the number of single-replicate triangles being fixed for given 

values of r, s, and k). Obviously, on the one hand, when there are 

only two replicates, then there are no three-replicate triangles, 

for an indispensible first requirement, for the existence of such 

triangles is the existence of three distinct replicates. 

If, on the other hand, there are no multiple lines, then there 

are no two-repliate triangles. For, in this case, there are no 

equations of the form (4.28). (Any such equation produces double 
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lines joining varieties in column j 1  to varieties in column j 2 , one 

line corresponding to a block in replicate i 0 , and one to a block in 

replicate i 1 .) So, for c(0,1) designs, t2(i0, 'l 
 (which records 

the number of such equations) is zero for every pair of replicates 

i0  and i 1 . So, in such designs, there are no two-replicate 

triangles. (One consequence of this is that, in comparing two 

a(0,1) designs D and D', we should compare the numbers of three-

replicate triangles, since the number of single-replicate triangles 

is the same for both (being. rsk(k - l)(k - 2)). If the designs have 

T3  and T such triangles respectively, then D is better than D' on 

the graphical criterion ç if T3 < Ti.) 

The enumeration of three-replicate triangles in c(O,l) designs 

can be simplified too. The quantities t 3 (i0 , i 1 , i 
2 
 ) which are 

required for this enumeration are given by equation (4.36). Now, as 

we have just shown, t2 (u, w) = 0 for any two replicates u and w in 

a designs with no multiple lines. Hence, for such a design, 

equation (4.36) becomes: 
k-i s-1 

t (i 	i 	i ) 	= 	E 	E h. . 
3. 	

(x) h 	.(x) 	- k . 	(4.42) 

	

3 0 1 2 	j=O x=O 
101 J 	i0i 2 J 

Furthermore, the absence of multiple lines means that the only 

	

zeroes in the arrays G, 	and G. 	are the k zeroes down the 
101 1 	101 2 

leading diagonal, and so: 
k-1 s-1 

t (i 	= 	E h. 	(x) h. 	(x) . 	(4.43) 
3 0 	1 	2 	j=O x=l 

10113 

(It is worth noting that, since the design has no multiple lines, 

h jx) is either 0 or 1 for each of the values of u, w, x, and j.) 
uwj 

The formula (4.17) which we derived independently for the 
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number of triangles in a three-replicate a(O,l) design can be 

deduced from this as follows. Since the design has no multiple 

lines, it has no two-replicate triangles. The number of single-

replicate triangles is rsk(k - 1) (k - 2) = 3sk(k - 1) (k - 2). The 

number of three-replicate triangles is 

6s 	E 	t3 (i0 , i 1 , i 2 ) 
io <i l <i 2  

and, since there are only three replicates, this equals 

6st3 (0, 1, 2). Moreover, equation (4.43) above gives: 
k-1 s-1 

t3 (0, 1, 2) = 	Z 	E h01 .(x) h02 .(x) 
j=0 x=l. 

and so the formula (4.17) follows (bearing in mind that for u = 0 

and 1, G 
Ou 	 u 	Ou 

is the same as the earlier G and h is the same as the 

earlier h .) 
U 

Finally in this Section 4.2 on triangles in o. designs, we turn 

to some specific examples of these calculations. We will not, here, 

be interested in three-replicate cz(0,1) designs, since we described 

examples of them earlier. What we will look at is the enumeration 

of triangles in, first, an c&(0,1,2) design, and, second, an a(0,1) 

design which has four replicates. 

Example (1) 

This is an c&(0,1,2) design in three replicates for 28 varieties 

in blocks of size 4. (So s = 7) The generating array is: 

0000. 
0123 
0236 
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In line with the way we presented the theory, we will deal 

with the three different types of triangle in turn. The formulas 

come from the summary on page 150 above. 

1. single-replicate triangles. 

The number of such triangles is calculated easily: it is 

rsk(k - 1) (k - 2), which is 504. 

I.I. Two-replicate triangles. 

By the formula in the summary, the number of such triangles is: 

6s (k. -  2) Ct2  (0, 1) + t2 (0, 2) + t2  (1, 2)) 

The terms in this expression can be found by forming the arrays 

G02 , G12 , and then counting the numbers of zeroes off their 

diagonals. The arrays are: 

0123 	G 	0236 	G 	0113. 
01 	 02 	 12 

0 	0654 	0 	0541 	0 	0664 

1 	1065 	2 	2063 	1 	1005 

2 	2106 	3 	3104 	1 	1005 

3 	3210 	6 	6430 	3 	3220 

(The definitions of these arrays G are given on page 150. In 
uw 

forming G01  and G02 , the row u = 0 is already a row of zeroes, For 

G12 , however, we first have to reduce row u = 1 to zeroes, which 

causes row w = 2 to become 0 1 1 3.) 

There are no off-diagonal zeroes in G01  or in G02 , and there 

are 2 in G12 . So t2 (0, 1) = t2 (0, 2) = 0, and t2 (l, 2) = 2. So the 

total number of two-replicate triangles is6s(k - 2) (0 + 0 + 2), 

which is 168. 

III. Three-replicate triangles. 

Referring again to the summary on page 150, we find that the 



- 155 - 

number of three-replicate triangles is 6st 3 (0, 1, 2). The quantity 

t3 (0, 1, 2) is found from the arrays G01  and G02  given above, by 

means of the formula (4.36). That is, t3 (0, 1, 2) is 

k-i s-i 
E 	Z h01 .(x) h02 (x) - t2 CO, 1) - t2 (O, 2) - t2 (1, 2) - 

j=0 x=0 

where for u = 1 and 2, h.(x) is (as defined on page 150) the 

number of occurrences of x in row j of the array G0 . Hence 

2) = 9-0 - 0- 2 - 4 

which equals 3, and so the total number of three-replicate triangles 

is 6sx3 = 126. (As with the three-replicate triangles in the 

example on pages 131 - 133,--the two-replicate and three-replicate 

triangles here could be listed by examining the design.) 

Example (2) 

So far, we have concentrated exclusively in the examples in 

this Section 4.2 on a designs in three replicates. However, the 

formulas on page 150 are also, of course, applicable to a designs 

which have a larger number of replicates. Here, therefore, we 

broaden our scope to a four-replicate design. The one we will look 

at is the best ct(0,1) design in the ARCUS catalogue for 40 varieties 

in four replicates and blocks of size 5.. The generating array is: 

a 	= 	00000. 
01356 
02735 
06142 

The analysis can be simplified by means of the points about 

a(0,1) designs which we made on pages 151 - 153. There are no two-

replicate triangles, and the number of single-replicate triangles 
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is rsk(k - 1) (k - 2) = 1920 (since s = 8). The number of three--

replicate triangles is: 

6s 	E 	t3 (i0 , i 1 , i 2 ) 
i0 <i 1 <j 2  

which is the same as: 

6s(t3 (0, 1, 2) + t3 (0, 1, 3) + t3 (0, 2, 3) + t
3 
 (1, 2, 3)). 

The quantities t3 (i0 , i 1 , i 2 ) here can be calculated using equation 

(4.43), which, in turn, requires us to construct the arrays G. 
01 

and G. 	for the various combinations of values of i , i , and i 
1012 	 0 	1 	2 

For example, for t 3 (0, 1, 2), we first form the arrays G 01  and G02 : 

G01  01356 	 G02  02735 

0 	07532 	 0 	06153 

1 	10643 	 2 	20375 

3 	32065 	 7 	75042 

5 	54207 	 3 	31406 

6 	65310 	 5 	53620 

Then, using equation (4.43), we get that t 3 (0, 1, 2) = 9. (That is, 

for this allocation of replicates to the numbers i, i 1 , and 

there are 9 series of s (that is, 8) three-replicate triangles. 

Similarly, we get t 3 (0, 1, 3) = 10, t 3 (0, 2, 3) = 10, and 

t3 (1, 2, 3) = 10. So the total number of three-replicate triangles 

is 6s(9 + 10 + 10 + 10), which equals 1872. 

4.3 The number of squares in an a design 

Although the graphical criterion C 3  can provide a reasonably 

accurate measure of the efficiency of an a design, it is, 

nevertheless, frequently not as subtle as we might require. 



- 157 - 

Certainly, it can be used to exclude designs that are blatantly 

inefficient (and this is a point we return to in 5.3 when we 

construct an algorithm to generate a designs with small numbers of 

triangles). But even among a designs with few triangles there can 

be a fairly pronounced degree of variation in the values of the 

harmonic mean efficiency factor. This seems to be particularly 

true for designs with large numbers of varieties: it is then 

possible to exclude altogether two-replicate-and three-replicate 

triangles and yet still fall short of the best attainable value of 

the harmonic mean efficiency factor. Moreover, as we observed 

earlier (page 150), a two-replicate ct(0,1) design has no two- 

replicate and three-replicate triangles at all, and so the graphical 

criterion C cannot tell us anything very much about its efficiencyT 

In such cases, it becomes necessary to proceed to the next 

graphical criterion, C 4 . That is, numbers of squares will be used 

to distinguish between designs with the same numbers of triangles. 

The purpose of this Section 4.3 is to explain how the numbers of 

squares in an CL design can be calculated on the basis of the 

generating array a. The development will parallel closely the 

exposition for triangles, the main difference being that we will 

deal only with two specific series of designs. First of all, we 

will introduce some of the techniques and methods of argument in the 

context of discussing two-replicate a(0,1) designs. Then we will 

generalise slightly, to three-replicate a(0,1) designs, in the 

tThis is, in fact, a particular case of the more general result on 
two-replicate resolvable designs which we established in 2.6.1 
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course of which we will show how the numbers of squares of certain 

types are closely related to the numbers of three-replicate 

triangles. We restrict our attention to these two series partly 

because further generalisation leads us into daunting compexity 

with little reward at the end of it (it being unlikely, for example 

- bearing in mind the conjecture in 2.5 and our decision to use the 

graphical criteria sequentially - that we would ever need to. invoke 

the C criterion for designs with double lines), and partly because 

these two series are of especial interest in themselves (being 

widely used in practice). 

We will Illustrate the theory with examples in order to 

elucidate how the various formulas can be applied. 

4.3.1 Two-replicate ct(O,l) designs 

Our paradigmatic square can be drawn as: 

p01 	I pi  
p3 	 p2  

(Compare the triangle on page 123.) We will (as in Chapter 3) 

adopt as a notational convention that such a circuit starts at the 

top left-hand vertex (that is, at p 0 
 ) and is traversed clockwise 

-' 

 

at - 	- 	- 	- 
O 	1 	2 	3 	c0 

Immediately, we encounter the same complication as arose when 

we were counting squares in cyclic designs (page 106) : these four 

vertices need not be distinct; to be precise, it remains possible 

that p0  is the same as p 2  or that p1  is the same as p 3 . At various 

stages in the development, we will have to deal with these 
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possibilities separately. We will observe, however, that the only 

kinds of square that can vary in number are the proper ones: the 

ones in which all the vertices are distinct. We will bring together 

these observations at the end of the exposition (page 171). 

Now, as with triangles, each line of this square corresponds 

to a concurrence of the varieties at each end of it, and so to a 

block in some replicate. Then, since there are only two replicates, 

the following are the only possibilities: 

I Single-replicate squares: all the blocks lie in the same 

replicate. 

II Two-replicate squares: the blocks lie in two different 

replicates. 

We will discuss each of these types in turn, and we will find that 

complications arise only in the case of certain kinds of two-

replicate squares. (We will be using, again, many of the techniques 

which we developed in the course of counting triangles.) 

We will label the blocks B 0 , B1 , B2 , and B3  (where B0  

corresponds to the line p0 - p 1 , and so on round the square 

clockwise, and where these blocks are not necessarily, at this 

stage, distinct). 

I. single-replicate squares. 

All the blocks lie in the same replicate. So, in fact, they 

are all the same block, since no variety lies in two blocks of any 

replicate. For each block, we can enumerate the number of such 

squares as follows, the classification (into (a) - (d)) depending 

on whether or not p0  is the same as p 2  and p 1  is the same as p3. 
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Only two distinct vertices: p0  = p2  and p1  = p3 . 

Since each concurrence in a block yields exactly one line, this 

means that the same line, starting at p 0  is traversed four times: 

P 
0  . 
	Op 

There are k choices for p0 , and then k - 1 choices for p 1  (which 

must be different from p0 , being adjacent to it). So the number 

here is k(k - 1). 

First, second and fourth vertices distinct: p 0  = p2  and p1  p3 . 

Two different lines starting at p 0  are traversed twice each: 

P3 

There are k choices for p0 , and then k - 1 for p1.  The point p 3  

must be different from each of the two points p0  and p1 , and so 

there are k - 2 choices for it. So the number here is 

k(k - 1)(k - 2). 

First, second and third vertices distinct: p 0  p2  and p1 = p3. 

A path of length two which joins p 0  to a point different from 

p0  is traversed twice: 	P0  

This is similar to (b): there are k choices for p0,  then k - 1 for 

p 1 . The next point p2  must be different from p1  and p0 , which are 

distinct from each other, and so there are k - 2 choices for P2 . 

So the number here is k(k - 1) (k - 2). 

Proper squares: all the vertices are distinct: p 0  p2  and 

P i 0 p3 . 

There are k choices for p 0 , then k - 1 for p 1 . The vertex p2  

must be different from p1  and p0 , which are different from each 
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other, and so there are k - 2 choices for p 2 . Then p3  must be 

different from each of the three distinct points p0 , p 1 , and p 21 

and so there are k - 3 choices for it. So the number here is 

k(k - 1) (k - 2) (k - 3). 

Hence, bringing together the results of (a), (b), (c), and (d), 

the total number of circuits of length four which arise from the one 

block is: 

k(k - 1) + k(k - 1)(k - 2) + k(k - 1)(k - 2) ' + k(k - 1)(k - 2)(k -3) 

which equals: 

k(k - 1)(k 2  - 3k + 3). 

So the overall total of single-replicate squares is, since there are 

2s blocks altogether: 

2sk(k - 1) (k 2  - 3k + 3) . 	 (4.44) 

II. Two-replicate squares 

Extending the notation we used earlier for triangles, we let 

the two replicates involved be labelled i0  and i 1 , with i0  being the 

one which occurs first: that is, the replicate in which block B 0  

lies will always be labelled i 0 . Again, as with single-replicate 

squares, we deal with four different cases (a) - (d), depending 

on whether or not p0  is the same as p 2  an d p1  is the same as p 3 . 

(a) Only two distinct vertices: p0 = p 2  and pi = 

This means that each of the four lines in the circuit joins 

the two points p0  and p 1 . Now, some pair of these lines must be 

different, since not all the replicates are the same. It would 

follow if such a square existed that p 0  and p1  were joined by 
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two different lines, which would be a contradiction. So there are 

no circuits of this type at all.. 

First, second and fourth vertices distinct: p 0  = p2  and p 1  p3 . 

Since no pair of vertices are joined by more than one line, we 

have that the circuit must consist of two different lines starting 

at p0 , each being traversed twice: p1 

That is, B0  = B1  and B2  = B3 . So, since the circuit involves two 

replicates (the first being i 0), the line p0 - p 1  must be from the 

replicate i 0, and the line p0 - p3  must be from the replicate i 1 . 

Each variety p0  lies on k - 1 lines arising from replicate i 0 , and 

on k - 1 lines arising from replicate i 1 . Moreover, none of the 

lines, arising from replicate i 1  joins p0  to the same vertex as a 

line arising from replicate i0  (since the design has no multiple 

lines). So, for each ordered pair of replicates i 0  and i 1 , there 

are (k - 1) 2  circuits of this type starting at p 0 , and hence 

ks(k - 1)2 such circuits altogether (taking into account the ks 

possible starting points). There are two ways of allocating the 

replicates 0 and 1 to the labels i 0  and i 1 , and so the total number 

of circuits here is: 

-- 	 .. 

2J(5U( - .1W) .'4  ) 

First, second and third vertices distinct: p 0 36  p2  and p 1  = p3. 

Again using the fact that no pair of vertices are joined by 

more than one line, we have that in this circuit a path of length 

two which joins p0  to a point p 2  different from p0  is traversed 

twice: 
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p0 	1p 1  
'p2  

That is, B0  = B 3  and B1  B2 . Hence, since two replicates are 

involved (and the first is, as always, i0), we have that the first 

line is in replicate i0 , and that the second line is in replicate 

i 1 . Each variety p0  is joined to k - 1 varieties p1  by a line from 

replicate i0 . Then p1  is joined to k - 1 varieties p 2  (all 

different from p0  since the design has no multiple lines) by a line 

from replicate i 1 . So for each allocation of replicates to labels, 

there are (k - 1)2 circuits of this type starting at each variety, 

and so ks(k - 1) 2  such circuits altogether. Hence, since there are 

exactly two ways of allocating replicates to labels, the total 

number of squares of this type is, again: 

2ks(k - 1)2 
	

(4.46) 

(d) Two-replicate proper squares: all the vertices are distinct: 

PO  p
2  and p 1  p3 . 

We will find that the enumeration of these squares is rather 

more complicated, and that, unlike single-replicate squares and 

two-replicate squares that are not proper, the number of two-

replicate proper squares is not simply a function of s and k. Thus, 

as we mentioned at the beginning (page 159), when we are comparing 

designs, the quantities that can vary, and therefore the quantities 

that matter, are the numbers of these proper squares. 

We show first that blocks B 0  and B2  must lie in the replicate 

and that blocks B1  and B3  must lie in the replicate i 1 . 

Now, by.our initial.stipulation, block B 0  must lie in replicate 
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i0 . Suppose - towards a contradiction - that block B 2  lay in 

replicate i 1 . We show that, then, B1  could not lie in either 

replicate i0  or replicate i 1 . 

If B1  lay in replicate i 0 , then it would equal B0  (since 

variety p1  does not lie in two different blocks of that replicate). 

So the square would look like: 

PO 	 Pi  : 

t#j 	j 
P3 	 p2 

There would now be two possibilities for B 3 , both of which 

lead directly to contradictions.. (It should be emphasised that these 

contradictions will be subsidiary to - or nested with - the main 

contradiction which we are aiming at, and which we specified at the 

top of this page.) On the one hand, B 3  could be in replicate i 0 . 

In that case, it would equal B0 , since variety p0  lies in both 

blocks B0  and B 3 . So varieties p 3  and p2  would both lie in block 

B0 , which is in replicate i0 , and would both lie in block B2 , which 

is in replicate i 1 . This would mean that since p3  and p2  are 

distinct they would be joined by two different lines, which is a 

contradiction. On the other hand, B 3  could be in replicate i 1 . But 

then B 3  would have to equal B2 , and so we would get the same kind 

of contradiction, with p0  in place of p3 . (The argument works again 

precisely because p0  and p2  are distinct.) 

So, if B1  lay in replicate i0 , then both these possibilities 

for B3  would have resulted in a contradiction. 

So - still supposing that block B 2  lies in replicate i 1  - 

it would have to be the case that block B 1  lay in replicate i 1  too, 



- 165 - 

and consequently ecualled B 
2 

0 

POJ 	T'i 
c,I 
P3 	0% 	2 

Then there would be two possibilities for block B 3 , both of which 

would lead to contradictions in exactly the same way as before, 

with p1  playing the role of p2  above, p0  the role of p3 , and p3  the 

role of p0 . (We use the facts that p 1  and p0  are distinct and that 

Pi 
 and  p3  are distinct.) 

So we have shown that if block B 2  did not lie in replicate i0  

(and consequently lay in replicate i 1), then B 1  could not lie in 

either replicate i 0  or i 1 , and that is a contradiction. Hence, we 

have established that block B 2  must lie in replicate i 0 . So the 

square must be as follows: 

°1: 
B3 1 

P3 	 p2  

Second, we show that blocks B 1  and B3  both lie in replicate i 1 . 

NOw, if block B1  lay in replicate i0 , then, to avoid having 

two lines joining varieties p0  and.p3 , we would have to have block 

B3  in replicate i0  as well. But then the square would not involve 

two replicates. So block B 1  must lie in replicate i 1 . Likewise, to 

WV-014 d a double line joining p 1  and p2,  block B3  must lie in 

replicate i 1 . 

This completes the proof that in any proper two-replicate 

square, blocks B0  and B2  lie in replicate i0 , and blocks B 1  and B 3  

lie in replicate i. Hence we have established that the square 

can be depicted as: 
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 8
0  

(i B1 

pO  

1I. 	'c' 	 (4.47) 

P 3 	
St 	P 2  

So the enumeration of proper two-replicate squares comes down 

to the enumeration of squares of this form (4.47). We describe next 

how this can be carried out. As in the case of three-replicate 

triangles (and of squares in cyclic designs), we will divide the 

enumeration here into two stages. The first stage will involve 

the allocations of the replicate numbers 0 and 1 to the labels i 0  

and i 1 . Then the second stage will entail enumerating the number of 

squares for each allocation. However, again as with the enumeration 

of three-replicate triangles for three-replicate (0,1) designs, the 

first of these stages can be dispensed with, since the 

re-allocation of replicates to labels simply corresponds to choosing 

a new starting point; in consequence, the number of squares for each 

allocation is the same. (That is, the squares for the allocation 

i0  = 0 and i 1  = 1 stand in a one-to-one relationship with the 

squares for i0  = 1 and i1  = 0, the relationship being defined by 

starting at p 1  instead of p0 .) So, in describing how to enumerate 

these squares, we will assume that io=  0 and i 1  = 1, and we will 

remember to double the results at the end. So the square we will be 

working with looks like: 	0 

9311 
(4.48) 

p3 	 p2  

We set about devising rules for counting such squares by using 

techniques that we have adopted several times before. First, we 
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derive two equations for each of the varieties 
Pu. 

 Let the column 

in which p lies be j,  and let B be the x th block in its replicate,  

Then to say that varieties p0  and p1  concur in block B0  is to say 

that they occur in the same row x. of the array of blocks from 

replicate 0. Thus: 

P0 = j0s + (x - a 
0j 0  

Pi = i 1 s + (x0  + a0 ) 

Similarly, from each of the other three lines we get: 

from B1 : 	P1 = i 1s + (x - ct1 ) 

P2 = j 2   + (x 4 a1 ) 	; 	 (4.49) 

from B2 : 	p2  = j 2   + (x 4 a 
2 	0j 2  

P3 -= j 3   + (x2  4- a 
0j 3  

from B 3 : 	p3  = j 3   + (x 4-a 
3 	1j 

PO = j 0s + (x3  4- a 1 .) 

Next equating the pairs of expressions for each of the four 

varieties, we find that this set (4.49) is equivalent to: 

from p0 : 	x0 - x3  = a 1 . 

from p1 : 	x0 	 a1  
1 	 (4.50) 

from p2 : 	x2  - x1  = 

from p3 : 	x2 	X3 	a 1  

Now, if this set of equations holds, then, by eliminating the 

numbers x., we find that the following relationship amongst the 
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aiji must obtain: 

a 	- a 	-= a 	- a 	. 	 (4.51) 
1j 0 	1j 1 	1j3 	1j 2  

Moreover, since varieties in the same column do not concur (and so 

are not adjacent), the j. corresponding to adjacent vertices must be 

different. So we can add to (4.51) the condition: 

{j 0 , j} r {j 1 , i 3  	= 0 . 	 ( 4.51a) 

(Henceforth, whenever equation (4.51) is referred to, it will be 

implicitly assumed to be governed by equation (4.51a).) 

Still proceeding as we did when we were enumerating triangles, 

we show that each equation of the form (4.51) yields exactly s 

proper two-replicate squares, and that no two such equations give 

rise to the same square. An equation like (4.51) specifies the 

columns to which the vertices belong. There are, then, s choices 

for p0  (or, put differently but equivalently, s choices for x 0 ), 

and this, along with the equation, fixes all four vertices. That no 

two equations like (4.51) yield the same proper two-replicate 

square in this fashion is a consequence of the fact that the terms 

of the equation are fully determined by the columns to which the 

four ordered vertices belong. 

So, if there are c(0, 1) equations like (4.51), thenthere 

are sc(0, 1) proper two-replicate squares that look like diagram 

(4.48), and so 	total of 

2sc(0, 1) 
	

(4.52) 

proper two-replicate squares altogether (taking into account the 
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other possible allocation of replicates to labels). 

We can facilitate the calculation of c(O, 1) (that is, the 

enumeration of equations like (4.51)) by means of the same arrays 

G that were useful in enumerating triangiesT In fact, all we 
uw 

need here is the array G01 , whose (j, i )th entry is, of course, 

a 1 . 	a. . Then an equation like (4.51) arises whenever there is 
J O  

equality between a pair of off-diagonal elements of G which lie
01 

in different rows and different columns. (These restrictions ensure 

that the second part of (4.51) is satisfied: namely, condition 

(4.51a).) The number of such equalities is not difficult to 

calculate. For each x in the Set {O, 1,. ......  s-l}, let H(x) denote 

the total number of occurrences of x in the array G 01 . Then for 

each x, the number of equalities of the form (4.51) which arise 

between cells containing an entry xis, simply, H(x)(H(x) - 1). 

(That this is sods due to the fact that the design has no 

multiple lines, and hence that two different cells which contain 

x must lie in different rows and different columns: for example, if 

they lay in the same column j, and in rows u and v, then we would 

have a1 = a 1V , and so, by the condition (4.1), u would equal v, 

and the cells would be the same.) To obtain the total number of 

equalities like (4.51), we need only sum over x c {l, 2 ...... , s-l}, 

tAs we mentioned before (in the footnote to page 130), these arrays 
G are reminiscent of the structure of perfect difference sets. 
Wn we discuss this connection further in 4.4.3, we will, in 
particular, show that it can be used to yield lower bounds for the 
numbers of squares in two-replicate a designs, and, moreover, that 
in certain special cases, a design which actually attains this 
lower bound is optimal on the A-criterion as well. 
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for the only zero entries in the array G01  are the k zeroes down the 

leading diagonal. In other words, 

s-i 
c(0, 1) = 	Z H(x) 2  - k 2  + k 	 (4.53) 

x=1 s-i 
(using also the fact that, for the same reason, E H(x) = k(k - 1)). 

x=1 
So, bringing together equations (4.52) and (4.53), we have that 

the number of proper two-replicate squares is: 
s-i 

2s( E H(x) 2  - k 2  + k) . 	 (4.54) 
x=l 

Notice also that in the notation we adopted when we were enumerating 

triangles: 
k-i 

H 	= 	E h 	(x) 
j=0 Olj 

(h 	(x) being the number of occurrences of x in the row j of G ). 
Olj 	 01 

Summary of formulas for enumerating squares in two-replicate 

c(0,l) designs 

This completes the enumeration of squares in a two-replicate 

o(0,1) design. Before we describe some examples of this 

enumeration, we bring together the various results in the following 

summary. 

I. Single-replicate squares 

2ks(k - 1) (k 2  - 3k + 3) 

Ii. Two-replicate sqtiares 

Only two distinct vertices: 

None. 

First, second and fourth vertices distinct: 

2ks(k - 1)2. 
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First, second and third vertices distinct: 

2ks(k - 1) 2 . 

Proper squares: 
s-i 

2s( E H(x) 2  - k 2  + k) 
x=1 

As was the case with triangles, each of these expressions contains 

a factor s, reflecting the fact that the squares occur in series of 

length s, the members of which are generated by repeatedly adding 1 

modulo s to the vertices. Notice also that the only type of square 

which can vary in number is II (d). These are proper squares: so, 

as we mentioned above (page 159), all circuits of length four that 

really matter are proper squares. 

Finally in connection with two-replicate ci(O,l) designs, we 

give four examples of the application of this theory. The first 

example shows how it can be used to enumerate circuits of length 

four, and the other three concern its use in comparing a designs. 

(The last example provides powerful evidence of the general 

efficacy of the graphical criterion C when applied to a  designs 

in conjuction with the conjecture in 2.5.) 

Example (1) 

We consider a two-replicate a(O,l) design for 40 varieties 

in blocks of size 4. (So S = 10.) The generating array is: 

a = 0000. 
0589 

So, referring to the summary above, the number of single-replicate 



- 172 - 

squares is 2ks(k - 1) (k 2  - 3k + 3), which equals 1680. There are, 

as always, no two-replicate squares with only two distinct vertices, 

and there are 2ks(k - 1)2 - that is, 720 - of each of the types 

II (b) and (c) in the summary. In order to calculate the number of 

proper two-replicate squares, we need the array G £defined on
01 

page 169): 

G 01 0 5 8 9 

0 	0 5 	2 1 

5 	5 0 7 	6 

8 	8 3 0 9 

9 	9 4 1 0 

We then calculate the number of proper two-replicate squares by 

means of the equation (4.54). This requires finding the quantities 

H(x): that is, the number of times x occurs in the array G 01 . These 

quantities are given in the following table: 

x 	123456789 

H(x) 	2 1 1 1 2 1 1 1 2 
s-i 

So 	E H(x) 2  = 18, and, therefore, by equation (4.54), the number 
x= 1 

of proper two-replicate squares is 2s(18 - 16 + 4), which equals 

120. So the total number of squares is: 

_L) 8 	r I 2 LI r / 21  0 -r .i. z.' 

which is 3240. 

Following the development of the theory, the collection of 

proper two-replicate squares can be divided into 6 (that is, 

18 - 16 + 4) groups of 20 (that is, 2s) each. Each group 

corresponds to a particular set of numbers j (arising from a 
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particular equation of the form (4.51)). For each group there are 

10 (that is, s) circuits with their first line in replicate 0 (that 

is, the allocation i0  = 0 and i1 = 1), and 10 circuits with their 

first line in replicate 1 (that is, the allocation i 0  = 1 and 

il = 0). The six equations (4.51) are as follows: 

0 i l i 2  3 3  

= 98 0 3 2 3 
x=1. 

f9 

(o5 

=09 3 2 3 0 

= 50 0 10 1 
x=5 ' 

Lso = 05 1 0 1 0 

190 = 89 3 0 3 2 
x=9 

(..89 = 90 2 3 0 3 

For each of these equations, the first series of 10 has pattern of 

columns and replicates: 

::: 

:j:1 

and the second series has the pattern: 

::Io : 	

ojJ: 

For example, for the first equation, the two series are: 

(a) 

(i0 = 0 and i1 = 1) 

() 	041 	 ¶30 

II 	I 
39 	 -29  

%.J , 

U0 = 1 and i1 = 0) 

30 	 29 • 

39 



- 174 - 

l 	•31 31 !i 	t20 
10 

	

---' 	4 30 

(iii) 	2 	0 

It 
0  

20 

32 

1 

32 ¶ 	I 
lo 

30 

21 

31 

(iv) 	3 

° 

21 

22 

2 

1 	4 

31 

22 

32 

(v) 	4- 	
0 

ii 
I 	0 330 423 

3 

34 10 	: 
32 

23 

(vi) 	5 ! 	p 
Ii ° 	-424 

35 

4 

35 ¶ 
o 	oI 

33 

24 

34 

(vii) 	6 Qo 	• 
It o 	' 
° 	

4I 
36 

5 

36 

34 

25 

35 

(viii) 	7 	o 

° 36& 

25 

37 

6 

37 

I 	4 

35 

26 

(ix) 	6 4 
ii 

26 

38 

27 

7 

38 ¶ 
1 0 	ol 

4 eè- 

36 

27 

37 

(x) 	9MO  39 39 
to 

I . 6 

37 

28 

40 28 ge 38 

The remaining five equations have the following circuits as the -

first in their two series (the series being generated by repeatedly 

adding 1 modulo 10 to each of the vertices): 

(a) 	 (b) 

0
__io 	CI 

30 	 20 	 31 

1 	 31 	 300 	1  

Ii 
o 	

o1io 	
10 

154- 0 	
I 	0' 

0o I 15 

io. 	o 	 0 	,is 
I? 	 Ic' 	oI 

54 	15 	 10 
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c. 	¶0 	 0 	¶39 

it 	1II 	II 	 10 	01 
29 	° 439 	 30 	29 

20 	- 30 	 30 	1 
I' 	 10 	cJ 

3l 	0  4i 	 20 	' 	31 

Notice how this brings out the importance of the fact that, in 

enumerating circuits, starting point and orientation are significant. 

For example (temporarily putting aside the conventions that all 

circuits start at their top left-hand corner and are traversed 

clockwise), the following basic diagram gives rise to eight circuits 

when the different combinations of starting points and orientations 

are taken into account: 

	

0 	30 

10 	11 

	

39 	29 

The ways these different combinations arise are recorded in the 

following table (the ten circuits in each series being numbered 

(i), 	(ii) ......, (x) as on pages 173 - 174): 

Orientation Starting point Circuit 

Clockwise 0 (1) (a) (i) 

30 (1) (b) 	(i) 

29 (6) (a) (x) 

'I  39 (6) (b) (x) 

Anticlockwise 0 (5) (b) (i) 

30 (5) (a) (i) 

" 29 (2) (b) (x) 

39 (2) (a) (x) 
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Examples (2) 

Next, we look at two examples which illustrate how numbers of 

squares can be used to compare two-replicate designs. We will 

calculate the numbers of proper two-replicate squares, since these 

are (as we mentioned earlier, after the Summary on page 171) the 

only ones which can vary in number between designs. 

(a) s=l0 and k=4 

In a full listing of all connected (0,1) designs in two 

replicates for blocks of size 4 and with 10 blocks in each 

replicate, there are 8 different values of the harmonic mean 

efficiency factor A, listed in the Table 3 on page 177. The first 

column of the Table gives the second rows of the generating arrays 

of examples of designs with each of these values of A (it being 

assumed that the first rows each consist entirely of zeroes), and 

the third column gives the corresponding number of proper 

two-replicate squares. (The first example is, of course, the one 

which we have already analysed in detail in Example (1) above.) 

In the listing of all c(0,1) designs for these values of s and k, 

we found that all designs with equal values of the harmonic mean 

efficiency factor A have the same number of squares. However, 

the converse does not hold: for example, the third and fourth 

designs in the Table have the same numbers of squares, but different 

values of A. These two cannot be distinguished on the graphical 

criteria C or C3 . (We would not, of course, be using the 

criterion if they could.) Neither, therefore - since they 

are resolvable two-replicate designs - can they be distinguished 
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Table 3 

Two-replicate c(0,1) designs for 40 varieties in blocks of size 4: 

comparison of harmonic mean efficiency factor A with 

number of proper two-replicate squares. 

Second row of Number of 

generating array c. A proper two-replicate squares 

0 	5 	8 9 .60241816 120 

0 	5 	7 9 .60241652 120 

0 	6 	7 9 .59688341 160 

0 	6 	8 9 .59541331 160 

0 	2 	7 9 .58945432 200 

0 	4 	8 9 .58945275 200 

0 	7 	8 9 .55755820 320 

0 	4 	5 9 .53424658 400 

on the ç-criterion: this is a particular case of the result on 

such designs which we established in 2.6.1. (They each have, in 

fact, 13600 circuits of length 5.) However, they can be 

distinguished on the ç-criterion, and (as we might hope from our 

conjecture in 2.5), the design 0 6 7 9 has fewer circuits of 

length six than the design 0 6 8 9: the numbers are, respectively, 

74160 and 74280. (We found these values by the elementary, but 

laborious, method of calculating the matrices A5  and A6  , and then 

working out their Traces: we have not yet devised for circuits of 

length five or greater the kind of simple formulas that we have 

described for circuits of lengths three or four.) The tiny 
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difference between the values of A for the first and second designs 

in the Table is reflected first in a difference in numbers of 

circuits of length 10, the first design having fewer than the second. 

For the fifth and sixth designs, the first difference in circuits 

is also at length 10: the fifth has fewer circuits of length 10 than 

the sixth. 

(b) s=lo and k=5 

Here, examples of all the distinct values of the harmonic mean 

efficiency factor which occur among the connected cz(0,1) designs are 

listed (again-according to decreasing value of A) in Table 4 below. 

Table 4 

Two-replicate cz(0,1) designs for 50 varieties in blocks of size 5: 

comparison of harmonic mean efficiency factor A with 

number of proper two-replicate squares. 

Second row of Number of 

generating array a. A proper two-replicate squares. 

0 4 	7 8 	9 .68394157 520 

0 3 	5 8 	9 .68213457 560 

0 5 	7 8 	9 .68001546 600 

0 4 	6 8 	9 .67931323 600 

o 2 	6 B. 	9 .67775399 640 

0 4 	5 8 	9 .67228307 720 

0 6 	7 8 	9 .66708365 800 

Similar comments can be made about this Table as we made about the 

Table 3 in Example (2) (a). In particular, the third and fourth 
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designs can be distinguished first on the C -criterion, with design 

0 5 7 8 9 having fewer circuits (373240) of length six than 

design 0 4 6 8 9 (which has 373480). 

Example (3) 

An illustration of the efficacy of the graphical criterion 

can be found in its application to the problem of finding the best 

a(0,1) design in two replicates for the range of s and k in the 

ARCUS catalogue of efficient a designs: that is, 

4 <k <S - - 	
' subject to ks < 100  

and 5 < s < 15J 

We calculated the numbers of squares for all two-replicate a(O,l) 

designs for this range of s and k, and we found that if D and D' 

are any two such designs for the same values of s and k, then 

A < A' if, and only if, D has more squares than D'. (the harmonic 

mean efficiency factors being, respectively, A and A'). In other 

words, the graphical criterion C did not contradict the A-criterion 

for a(0,1) designs in two replicates with s and k in the range 

(4.55): that is, the more general form of the conjecture in 2.5 

was borne out for a designs withs and k in the range (4.55). This 

example therefore provides empirical confirmation of the power of 

the graphical criterion C and of the validity of the conjecture. 

We develop these ideas further in 5.4, when we use the C -criterion 

as the basis of an algorithm for constructing efficient two-

replicate a(0,1) designs outside the range specified in (4.55). 
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4.3.2 Three-replicate c(0,1) designs 

We now generalise slightly, to calculate numbers of squares in 

three-replicate c(0,1) designs. Of course, numbers of triangles 

do tell us something about the efficiency of these designs, as we 

have already indicated in some detail. The purpose of enumerating 

squares will be to distinguish amongst designs which have the same 

numbers of triangles. Although the theory is rather more 

complicated than it was for two-replicate c(O,l) designs, we will, 

nevertheless, show that a great deal of this complication is of 

little significance for our purposes here. However, in order to 

reach this stage of simplification, we will, first of all, have to 

classify squares in the same kind of way as we did for two-replicate 

c(O,l) designs. We continue to take as our model of a typical 

square the diagram we set out with earlier: 

- 	 p0,

40 	 -41 
3 	. 	2 

As before, the classification will be according to the number of 

replicates the lines of the square involve. Since there are three 

replicates in the design, there are now three different types of 

square, the first two of which are obviously analogous to the two 

types for two-replicate ct(O,l) designs: 

I Single-replicate squares: all the blocks are in the same 

replicate; 

II Two-replicate squares: the blocks lie in exactly two 

different replicates; 

III Three-replicate squares: the blocks lie in three 
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different replicates. 

The number of single-replicate squares will be seen to be a function 

of s and k. As we have already done with triangles, and with two-

replicate c(O,l) designs, we will divide the enumeration of two-

replicate and three-replicate squares into two stages: for each type, 

we will, first, list the ways of choosing the appropriate replicates; 

than we will enumerate the number of squares of that type for each 

particular choice. The advantage of this two-stage approach will be 

largely as before: it will allow us to develop general rules for 

enumerating the squares for each choice of replicates. Indeed, it 

will transpire that this enumeration can be based on the same arrays 

G 
uw 

 that we defined earlier in the course of counting triangles. 

Since we will be interested in enumerating squares usually only 

after triangles have already been counted, these arrays will often, 

in practice, already have been formed, and so a great deal of work 

will be saved. 

Single-replicate squares. 

The counting of squares of this type is very similar to the 

counting of single-replicate squares in two-replicate designs. The 

only difference, in fact, is that there are 3s blocks instead of 2s, 

and so the number of single-replicate squares here is: 

3ks(k - 1) (k 2  - 3k + 3) . 	 (4.56) 

Two-replicate squares. 

We will adopt the same notational convention as we have 
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employed several times before: the first replicate will be labelled 

i0 , and the next different one will be labelled i 1 . Once we have 

chosen an unordered pair of replicates {u, w) to allocate to i 0  and 

i 1 , the enumeration of two-replicate squares here is very similar 

to the enumeration of two-replicate squares in two-replicate designs, 

with u taking the place of 0 and w taking the place of 1. That is 

to say, first of all we reduce the array a so that the row 

corresponding to replicate u consists of zeroes. Then, we form the 

array G whose (j I j 
)th 

 entry is a 	a 	. Extending 	the 
UW 	 0 1 	 WJQ 	

W3  
notation we used earlier, we let H (x) be the number of occurrences 

U  

of x in the array G 
uw 
 (for x e (1, 2 ......, s-i)). Then it is clear 

that, by arguing in the same way as we did for two-replicate a(O,l) 

designs, and referring to the summary on page 170, the number of 

two-replicate squares for the two allocations i = u, i 1  = w and 

i.0  = w, i 1  = u taken together is: 
s-i 

2s(2k(k-1) 2 -k2 +k+ E H (x) 2 ) 
x=l uw 

It follows that the total number of two-replicate squares is the 

sum of these quantities over all the three ways of selecting two 

unordered numbers from the set of three replicates {0, 1, 2} . This 

total is, therefore, 
s-i 	 s-i 	 s-i 

6s(2k(k-1) 2 .- k2  + k) + 2s E H01 (X) 2  + 2s E E02 (x) 2  +2s 
x=l 	 x=i 	 x=l 

which is: 
s-1 

	

6ks(k - 1) (2k - 3) + 2s E (H01 (x) 2  + H02 (x) 2  + 11 12 (x) 2 ) . 	(4.57) 
x=l 
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III. Three-replicate squares. 

Here, all three replicates must appear among the lines; 

moreover, since there are four lines, some replicate must appear 

twice. We can simplify the enumeration of these squares by 

classifying them according to whether the replicate which appears 

twice occurs with adjacent lines or with opposite lines. The 

reason why this leads to a simplification is that the number of 

squares in the first of these classes turns out to be a function of 

the number of three-replicate triangles. 

(a) The replicate which appears twice in the square occurs with 

adjacent lines. 

This means that the square can be described as two triangles 

meeting along one of its diagonals, one triangle being of the 

single-replicate type and the other being of the three-replicate 

type. For example, if replicate i 0  is repeated on the first and 

second lines, then the square is of the form: 

	

o'r '160 	 1 
k. . 

p 3VB .  Vp2  

Then, since variety p 1  occurs in only one block of replicate i 0 , the 

block B0  is the same as the block B 1 . So the block B0  gives rise 

to a line joining p. and p 2 . and hence the square can be drawn as: 
 so 

po

Ell  p 

	

S 1 	2 

The triangle p0 - p1 - p2 - p0  involves only a single replicate, and 

the triangle p0 - p2 - p3 - p 0  involves three replicates, and they 

meet along the diagonal p0 - p2. 
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This observation makes the enumeration of these squares very 

simple. First, we divide them into four mutually exclusive groups, 

according to which two of the four lines are associated with the 

repeated replicate; then We enumerate the squares in each group. 

First and second lines dome from the same replicate. 

Here, since the first line must be associated with the 

replicate i0 , the repeated replicate is i 0 , and (as we 

showed above), the square looks like: 

PO 	
Go 	

P1 

IB 
p3 è 61 ' • * p2  

Second and third lines come from the same replicate. 

The first line must be associated with replicate i 0 . So 

the repeated replicate must be i, and hence (arguing as 

above), the square looks like: 

PO 	 p1  

p2  

Third and fourth lines come from the same replicate. 

For the second line to be different from the first line, 

it must be associated with the replicate i 1 . So the 

repeated replicate must be i 2 , and hence (arguing, again, 

as above), the square looks like 

p 3 	 p 

Fourth and first lines come from the same replicate. 

Then the repeated replicate must be i 0 (since i0  must be 

associated with the first line). So the square looks 
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like: 
a 

or ' Al 

:°1 - L 
The number of suares in each of these four groups can be 

found by systematically going through all three-replicate triangles 

and constructing on the appropriate line of each of them a single-

replicate triangle. Thus, in (i), the construction is on the first 

line of the triangle; in (ii), it is on the second line; in (iii), 

it is on the third line; and, in (iv), it is on the third line 

again. There are k - 2 ways of performing the construction on a 

given line (since the vertex that is added in this fashion to 

complete the square must be different from the two vertices that 

are joined by the line), and so if there are (as in the summary on 

page 150) T 3  three-replicate triangles, then, there are (k - 2)T 3  

squares in each group. Moreover, it is obvious that no square is 

enumerated in this way in two different groups, and so the total 

number of three-replicate squares in which the replicate which 

appears twice occurs with adjacent lines is: 

4(k - 2)T3  . 	 . 	(4.58) 

(The number T3  of three-replicate triangles can, of course, be 

calculated by means of the formulas which we derived earlier, and 

which are summarised on page 150: it equals: 
k-1 s-1 

6s E 	E h 	(x) h 	(x) 
j=0 x=l 013 	02j 

where h 	(x) is the number of occurrences of x in the row j of G .) uwj 	 UW 
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(b) The replicate which appears twice in the square occurs with 

opposite lines. 

This is the final remaining possibility. There are two 

sub-cases, depending on which of the two replicates -i0  and i 1  occur 

twice. (Replicate i 2  cannot occur twice on opposite lines since it 

can only occur on the third or fourth lines to leave room for it to 

be pre ceeded by two different replicates.) It will turn out to be 

convenient for the development of the enumeration formulas if we 

stipulate that the row of the generating array ct which is to be 

reduced to zeroes is the one corresponding to the replicate which 

occurs twice. This is a departure from our previous practice (where 

it was always the row i 0  that was reduced to zeroes). However, this 

will not make the formulas we derive any more complicated to apply, 

and it will greatly facilitate the theory, enabling is to establish 

rules for enumerating these squares which will be based, yet again, 

on the arrays G uw 

(i) Replicate i0  occurs twice. 

Here, the square looks like: 

Po, 	j P1 

83 

P3 	B 	2 

Proceeding as we have done before, we let block Bu  be the 

th block in its replicate (for u = 0, 1, 2, and 3). Then 

we can derive the following four equations from the above 

diagram by equating pairs of expressions for the varieties 

from p0: x3  - a. x 4- a. 
1  2jO 0 0J0 
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. 	= x1 4-a 	.; 1 	0 	. from p: 	x 4- a 	
1 13 

 1 l2 
= x2 4-a from p 2 : 	x 	a1  4- .. 

	

a 	= x34-a 

 1 032 

from p3 : 	 4- 
	1 

233 

Then, using the fact that the row i 0  of a consists only 

of zeroes, we can eliminate the numbers x to get: 
U 

a. 	. 	-a.. 	= 	a. 	. 	. 
11 3 1 	1 13 2 	1230 	12J3 

where {j 0 , j 2 } n {j 1 , j 3  } 	0 

Conversely, each equation of the form (4.59) gives rise to 

exactly s three-replicate squares in which the replicate 

i0  occurs with the first and third lines, and no two 

equations like (4.59) yield the same square of this form. 

(The proof of this is analogous to the many similar proofs 

we have given earlier.) So if there are d. . . equations 
101 11 2 

of this form, then there are sd. . . three-replicate 
101 11 2 

squares of this type for this allocation of replicate 

numbers 0, 1, and 2 to the labels i0 , i 1 , and i 2 . (The 

notation d 	is to be taken to mean that the row u is 
uwz 

reduced to zeroes. Clearly, d 
uzw 	'uwz 

= d 	.. Shortly, in 

equation (4.62), we will derive further simplifications 

for these quantities.) 

(ii) Replicate i 1  occurs twice. 

Thus the square is of the form: 

(4.59) 
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PO 	
B0 

03 	 at 
L•  

2. 
P3  

So, arguing as in (i), but this time assuming that row i 1  

of the generating array o is reduced to zeroes (since it 

is replicate i 1  that occurs twice here), we derive the 

following equation, analogous to (4.59): 

ai 
01 	

ai O
jo = 	22 	23 	

(4.60) 

where {j 0 , i 2 } n fi l ' i 3   = 0 

This equation is of exactly the same kind as equation 

(4.59), and so, in the same notation, there are d. 
0 2 

equations of the form (4.60>. We can show, as before, 

	

that there are, then, sd. 	three-replicate squares 
'1 0 2 

in which replicate i 1  occurs with the second and fourth 

lines. 

The following table summarises the information about three-

replicate squares in which the replicate that appears twice occurs 

with opposite lines; there are six allocations of replicates to 

labels. 

(i) (ii) 

i0  i 1  i 2  replicate i0  repeated., replicate i 1  repeated 

0 1 2 sd sd 
012 102 

0 2 1 sd sd 
021 201 

1 0 2 sd sd 
102 	' 012 

1 2 0 sd sd 
120 210 

2 0 1 sd201  sd021  

2 1 0 sd210  sd120 
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The way we have defined the types (i) and (ii) in this table 

ensures that there is no overlap betwee: 

first of these categories has its first 

third line, whereas every square in the 

second replicate repeated on its fourth 

total number of three-replicate squares 

replicate occurs with opposite lines by 

them: every square in the 

replicate repeated on its 

second category has its 

line. So we can find the 

in which the repeated 

simply summing the entries 

in the final two columns of the table. Furthermore, since d 	= 
uwz 

d 
uzw  for each u, w, and z, this establishes that the number of 

such squares is: 

4s(d012  + d12  + d201 ) . 	 (4.61) 

We are left with the task of calculating the quantities d 
uwz 

and to this end we derive the formula in the next equation (4.62). 

The notation is the same as we used earlier: the number of 

occurrences of x in row j of the array G UW 	 uwj 
is denoted by h 	(x), 

and the total number of occurrences of x in this array is denoted 

by H uw (x). Then the formula which we establish is: 
s-i 	 k-i s-i 

d 	= 	Z H (x)H (x) -  2 E 	E h 	(x)h 	(x) . 	(4.62) 
x l 

uwz 	 uw 	uz 	
j 	

uWJ 	uzJ =O x=l  

The argument which we will use to demonstrate the validity of this 

will be very similar to the one we followed when we were proving 

(4.35). In particular, the crucial tools will be, again, the 

indicator variables y 	which we defined on page 146. That is, 

UWJ0J1 	
is 1 if G (jj) 	x, and is 0 if not; (Of course, u

uw 

and w lie in the set Co, 1, 2}, j 0  and  j in the set {0, 1,..., k-l}, 

and x in the set (0, 1 ......, s-l}.) 
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Now, d uwz is the number of equations of the following form 

which arise when row u of the generating array a is reduced to 

zeroes: 

a. 	cz. 	= 	a. 	- a. wJl 	
W3 
	

Z3 
	

Z3 
	

(4.63) 

where (j0 , i 2 } '' 	1 1 i 3 1 = 0 

So d uwz is the number of equalities between an off-diagonal cell of 

G 
uw 	 uz 

and an off-diagonal cell of G such that these two cells are in 

different rows and in different columns. The number of such 

equalities which arise from a particular entry G(j0 , j 1 ) (for 

is: 
s-i 	 k-i 
E y 	.(x) 	E 	y 	C) 

	

x=l uwj0J1 	j2,j3=0 UZ23 

j 2O  

3l 

which equals: 

s-i 	 k-1 
E y 	. 	 (x) 	 y 	. J (x) uzi uwJ J 

x=i 	0 1 	j 21 j 3=0 	2 3 

s-i 	 k-i 
- 	 E 	(x) Z y 	()- 

x=l 	 j2=0 UZJ2J1 

j 2  ~
j 0 

 

s-I 	 k-1 

uwJ J 	 uzJ J • . Cx) 	y 	. • (x) 
x=l 	01 	j 3=0 	03 

j 3  ~
j 1  

Now, since the number of occurrences of x in column j of G is the 

same as the number of occurrences of x in row j of that same array .  

G 
uw 

, this equals: 

s-i 	 s-i 	 s-i 
Z y • (x)H 	(x) - Z y 	• (x)h 	• (x) - Z y 	• . (x)h 	• (x) 

x=i uwj 
0J 1 	UZ 	

x=l 	
• 

o'i 	i 	 X=I 
 UWJ 0J 3 	uz30  

Hence, summing over j0 , the total number of equalities altogether 

is: 
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d 	= 
uwz 

s-i 	 s-i k-i 	 s-i k-i 
E H 	(x)H (x) - E 	Z h 	.(-).h 	.(x) - 	E h 	.(x)h 	(x). 
x=1 x=i j 

1 
 =0 UW3  1 uZ3 1 x=l uzJo 

(Again, we use the fact that the number of appearances of x in the 

column jis the same as the number of appearances of x in the row 

j.) 

Finally, for each value of j 1 , the quantity: 

s-i 
h 	( -x) h 	(x) 

x=i 

can be expressed alternatively as: 

s-i 
h,()h 	CW). uwJ 	uzj 1  x=l 	1 

This observation establishes the validity of equation (4.62). 

The calculation of these quantities d 	can be further uwz 

facilitated by noticing. that for each u and w, 

H (x) = H  uw 	wu (x)  

h 	.(x) 	= h 	.(x). uWJ 	wuj 

This enables us to base the calculation of all the d 	on the uwz 

three arrays G01 , G02  and G12 . (Thus in the entire enumeration of 

squares, the only arrays we will have to form will be these three.) 

Bringing together these observations with equation (4.62), we 

have the following expressions for use.in.caiculating formula (4.61): 
s-i k-1 s-i 

d012  = 	E 	H01 (x)H02 (x) - 2 h 1 .(x)h 2 .() ; 	(4.64) 
.x=1 j=O x=l 
s-i k-I s-1 

102 
 E 	H01 (x)H12 (x) - 2 Z h01 , (x)h12 . (x) 	; 	(4.65) 

x=l j=O x=1 
s-i k-i s-i 

d201  =E 	H02 (x)H12 (x) - 2 Z E h ()h 	(x) 	. 	(4.66) 
x=l j=O x=i 02j 12j 
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(In establishing these equations, we have also used the fact that 

for each u and w, H 
uw 	uw 

(x) = H W. This is a consequence of the 

fact that the array G is skew-symmetric modulo s: that is,
uw 

G 	(j 	i ) = G 	Ci 	i ).) uw 0 1 	uw 1 0 

Summary of formulas for enumerating squares in three-replicate 

a.(O,l) designs. 

Before describing an example of the use of these formulas, we 

summarise them as follows (the notation being summarised afterwards) 

Single-replicate squares 

By equation (4.56), the number of single-replicate squares 

is: 	3ks(k - 1M2  - 3k + 3) 

Two-replicate squares 

By equation (4.57), the number of two-replicate squares is: 
s-i 

6ks(k - 1) (2k - 3) + 2s E (H01 (x) 2  + H02 (x) 2  + H12 (x) 2 ) 
x= 1 

Three-replicate squares 

The repeated replicate occurs with adjacent lines. 

By equation (4.58), the number here is: 

4(k - 2)T3  

The repeated replicate occurs with opposite lines. 

By equation (4.61), the, number here is: 

4s(d012  + d102  + d201 ) 

Notation 

The array G  
uw 	 uw 

is defined on page 182. Then, for each x, H (x) 

is the number of occurrences of x in this array, and h 	(x) is the uwJ 
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number of occurrences of x in its row j. T 3  is the number of 

three-replicate triangles (for which, see the summary on page 150). 

And d 
uwz  is the number of equations like (4.63), which can be 

expressed in the simpler form (4.62). (Further simplification is 

possible by means of equations (4.64) - (4.66).) 

One point worthy of note in connection with this enumeration is 

the part played by proper squares. It will be recalled that when we 

were enumerating squares in two-replicate o(O,l) designs, we noted 

that the only types of square that could vary in number were all 

proper. (See, specifically, page 171.) The observation we make 

here is analogous: the variable components in the formulas 

summarised above all arise from squares that are proper. That this 

is true of the variable part of the formula for two-replicate 

squares can be demonstrated in exactly the same way as we did 

earlier for two-replicate designs; that the same is true of the 

formulas for three-replicate squares is a consequence of the fact 

that it is impossible for a square of this type not to be proper: 

the mere fact that there are three replicates involved ensures 

that the lines, and hence the vertices, must be distinct. 

Example 

Finally, we give an example to illustrate how the formulas 

can be used to enumerate squares in three-replicate a(O,l) designs. 

The example is a three-replicate cL(O,l) design for 50 varieties 

in blocks of size 5. (So s = 10.) The generating array is: 
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= 0 0 0 0 0 
01234 
0 9 8 7 6 

In order to apply the formulas, we will need the arrays G 01 , 

G02 , and G12 . Referring to the definition on page 182, these are as 

follows: 

G 01 
01234 G 

02  
09876. G12  08 642 

0 09876 0 01234 0 02468 

1 10987 9 90123 8 80246 

2 21098 8 89012 6 68024 

3 32109 7 78901 4 46 802 

4 43210 6 67890 2 24680 

Then we get the following values of the relevant quantities H(x): 
uw 

x 	12345 6- 7 89 

H01 (x) 	4 3 2 1 0 1 2 3 4 

E02 (x) 	4 3 2 1 0 1 2 3 4 

112 	0 5 0 5 0 5 0 5 0 

We are now in a position to apply the formulas contained in the 

summary on page 192. 

The number of single-replicate squares is 

3ks(k - 1) (k2  - 3k + 3) 

which is 7800. 

The number of two-replicate squares is 
s-1 

6ks(k - 1) (2k - 3) + 2s E (H01 (x) 2  + H02 (x) 2  + H12 (x) 2 ) 
x=l 

which is 12800. 

(a) The number of three-replicate squares in which the 

repeated replicate occurs with opposite lines is 4(k - 2)T 3 , which 
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is: 
k-i s-i 

24(k - 2)s E 	I h 	(x)h 	.(x) , 
j=0 x=1 Olj 	02j 

and this equals 5760. 

(b) There are 4s(d012  + d102  + d201) three-replicate squares in 

which the repeated replicate occurs with adjacent lines. So the 

first step in enumerating them is the calculation of the quantities 

d 	. 
uwz 	 01 

We can do this from the arrays G ,• 02 G , 	
12 

and C by means 

of the equations (4.64), (4.65), and (4.66), andwe get: 

d012  = 44 

d102  = 24 

d201  = 24 

So the total number of squares of this type is: 

4s(44 + 24 + 24), 

which is 3680. 

- Hence the total number of squares altogether is: 

7800 + 12800 + 5760 + 3680, 

and this is 30040. 

4.4 Lower bounds for numbers of circuits of lengths two and four 

in an a design 

4.4.1 Introduction 

So far in this Chapter we have been concerned to devise 

formulas for calculating numbers of triangles and squares in various 

types of a. designs. But this, in itself, is of little intrinsic 

importance for the statistician, however interesting it may be 

mathematically. Where it does become useful is as part of a search 
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for efficient designs. That was the whole point of introducing 

graph theory in the first place, and it is to such searching that 

we now turn. In the next Chapter, we describe three algorithms 

for constructing efficient a designs which use the formulas we 

have derived in the earlier Sections of this Chapter. First of all, 

however, before we introduce these algorithms, there is one further 

theoretical aspect of the formulas which has relevance to this 

process of searching. 

That aspect concerns the calculation of lower bounds for numbers 

of circuits of various lengths. The purpose of this is to 

facilitate the searching: if a lower bound for a certain graphical 

criterion is known, and if, moreover, it is also known that there 

do exist designs which attain that bound, then the scope of the 

search need be no wider than the collection of such designs. 

Unfortunately, however, in only two particular cases have we 

been able to make useful progress on the level of theory: namely, 

finding lower bounds for the number of circuits of length two in 

quite a wide range of a designs, and for the number of squares in 

two-replicate a(O,l) designs. These lower bounds will form the 

subject of this Section 4.4. In other cases, the lower bounds 

which we have found by theoretical methods have been insufficiently 

tight: that is, they are not in general attainable. In consequence, 

as we will outline in the next Chapter, we have had to adopt in 

such cases rather more heuristic methods for incorporating lower 

bounds into algorithms. (See, in particular, page 235.) 
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4.4.2 Lower bound for the number of circuits of length two 

First, a lower bound for the number of circuits of length two. 

This is particularly simple, and will not detain us long here: the 

lower bound which we will use is the one attained when there are no 

proper circuits of length two; that is, when there are no multiple 

lines. In other words, an a design will attain the lower bound if, 

and only if, it is a (0,1) design. (The fact that such designs do 

indeed have a minimal number of circuits of length two follows from 

the argument we presented on page 73, where we showed that a design 

in which the off-diagonal elements of the variety adjacency matrix 

differ by no more than one - that is, a Regular Graph Design - is 

optimal on the graphical criterion 

A necessary condition for the existence of such a designs is 

that k < s. That this is also in many cases sufficient (and so 

that the lower bound is generally useful) has been shown by 

Patterson and Williams (1976b): they demonstrate the existence of 

c(0,1) designs for the following fairly wide range of combinations 

of r, s, and k: 

r =2 and k<s; 

r = 3, $ odd, and k < s; 

r = 3, s even, and k < s-l; 

r = 4, s odd and not a multiple of 3, and k < s. 

Moreover, it is also known that a(0,1) designs do exist for many 

values of r, s, and k outwith this range. Consequently, it seems 

worthwhile to construct an algorithm which will search for a designs 

which have no double lines. This algorithm will be called the 
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double-line algorithm, and will be described in Section 5.2. 

4.4.3(a) Lower bound for the number of squares in a two-replicate 

a(0,1) design 

The second area in which we calculate a lower bound is rather 

more complicated. First of all, here in (a), we derive a lower 

bound for the number of squares in two-replicate a(0,1) designs. 

(Recall from page 151 that the C criterion is the first useful 

one for such designs: numbers of triangles tell us nothing much 

about them.) Then, in (b), we will examine the structure of two-

replicate c(0,1) designs that contain a minimal number of squares. 

(In the next Chapter, we will show how the theory developed here 

can he used to devise an algorithm - to be known as the square 

algorithm - which will construct such designs.) 

The lower bound follows from the formulas we developed in 

4.3.1 for enumerating squares in two-replicate (0,1) designs. We 

showed that the total number, C, of squares in such a design 

is: 
s-1 

= 2k2s(k - 1) 2  + 2s E H(x) 2  
x=l 

(This is found by summing together the number of squares in. each of 

the categories in the summary on page 170. Recall that H(x) is the 

number of occurrences of the quantity x in the array G whose
01  

(j, i )th entry is a 1j. 0 . a lj1 

Now, the only variable part of this formula is the sum 
s-i 

H(x) 2  , 
x=l 

So, finding a lower bound for C is equivalent to finding a lower 
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bound for this sum. We show that a lower bound for the sum is: 

p(tS + 1)2 + ( S - 1 - p)6 2  

where p and 6 are the unique integers which satisfy the equation: 

k(k - 1) = 6(s - 1) + p , 0 < p < s - 2 . 	(4.67) 

- 1) (That is, 6 is the integer part of k(k 	, and p is the s-i 

remainder. . The uniqueness of these integers is guaranteed by the 

Euclidean Algorithm: see, for example, Birkhoff and MacLane (1965).) 

To demonstrate this, two points are important: first, that the 

numbers H(x) are integers, and, second. (as we showed on page 171), 

that their sum is k(k - 1). We invoke again an. observation from 

number theory which we have already referred to on page 73: the 

partition it of any integer z into u integer parts differing by at 

most one has smaller sum of squares than any other partition of z 

into u integer parts. Translating this into notation applicable 

to our problem here, we have that the partition it of the integer 

.k(k - 1) into s - 1 integer parts differing by at most one has 

smaller sum of squares than any other partition of k(k - 1) into 

s - 1 integer parts. In particular, the partition it has no larger 

sum of squares than the partition consisting of the numbers H(x). 

So we can find .a lower bound for the sum of squares 
s-i 
E H(x) 2  

x=l 

by finding the sum of squares corresponding to the partition g. 

The argument we use for this is very similar to the one we adopted 

on page 73. Let the two values of the numbers in it be y + 1 and y, 

and, further, let there be n values y + 1 and hence s - 1 - n values 

y. From the fact that it is a partition of k(k - 1), we have that 
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the sum of the numbers in 71 is k(k - 1); in other words, that: 

n(y + 1) + ( S - 1 - n)y = k(k - 1) 

That is, 

k(k - l) = y(s-1) +n 

Now, y and n are both .integers, and 0 < n < s-i. So, if, on the one 

hand, n is actually strictly less than s - 1, then it follows from 

the uniqueness of the - numbers 6 and p that y = 6 and n = p. In 

that case, the sum of squares of the partition rr is, indeed, 

p(6 + 1)2 + (s - 1 - p)6 2 . 

On the other hand, if .n equals s - 1, then 

k(k - 1) = (y + 1) (S - 1) 

and the sum of squares of the partition iT is Cs - 1) (y + l) 	This, 

again, equals 

p(6 + 1)2 + Cs - 1 - p)6 2 : 

s - 1 is here actually a factor of k(k.- 1), andso p = 0 and 

6 = k(k -l) = 
	+ 1. 

Bringing these points together,, we have established that a 
s-i 

lower bound for the sum of squares E H(x) 2  is: 
x=l 

p(6 + 1)2 + (S - 1 - p)6 2  , 	 (4.68) 

where 6 and p are the unique integers satisfying (4.67). 
c-i 

This lower bound (4.68) for E H(x) 2  allows us to find, in the 
x=l 

manner we outlined above, a lower bound L (say) for the number of 

squares in a two-replicate ci(O,l) design. It also allows us, more 

significantly, to develop an algorithm for the construction of 

efficient two-replicate cz.(O,l) designs; we describe this - the 

square algorithm - in 5.4. The algorithm searches for designs 
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which have the minimal number L of squares by searching for 

generating arrays a which give rise to quantities H(x) that differ 
s-i 

by no more than one: when that is the case, the sum I 
x=l 

attains the lower bound (4.68), and so the number of squares attains 

the lower bound L 4 . Unfortunately, it is not true that for every 

combination of the numbers s and k there will necessarily exist 

designs which attain this lower bound: for example, when s = 20 and 
s-i 

k = 5, the smallest value attained by the sum E H(x) 2  is 24, 
x=l 

whereas the lower bound (4.68) is 22. (Other examples occur when 

s = 16 or 17 and k = 6, and when s = 14 and k = 7.) However, 

experience suggests that it will usually be worthwhile searching: 

such designs do exist for most combinations of s and k we have• 

looked at - including,, for instance, all combinations in the ARCUS 

catalogue except s = 14 and k = 7. Indeed, for all but that one 

combination of s and k in the catalogue, not only do designs exist 

which attain the lower bound, but, moreover, the best listed design 

is among them; this provides strong support for our conjecture that 

the best two-replicate cx(O,l) design on the A-criterion will always 

be found among those which are best on the graphical criterion 

(See Section 2.5.) For example, taking s = 10 and k = 7, we have 

that.k(k - 1) = 42 and s - 1 = 9, and so that 	4 and p = 6. So 
S-1 

the lower bound (4.68) for E H(x) 2  is 198. This is, in fact, the 
x=l 

value of the sum of squares which is attained by the best listed 

design for these values of s and k. That design has generating 

array 

a = 0000000 
0123457 
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and so has the array G01  equal to: 

0123457 

0 0987653 

1 1098764 

2 2109875 

3 3210986 

4 4321097 

5 5432108 

7 7654320 

Then the values of the quantities H(x) (which count the numbers of 

appearances of each residue x in G01 ) are as in the following table: 

	

x 	123456789 

	

H(x) 	5 5 5 4 4 4 5 5 5 
s-i 

Hence E H(x) 2  = 198 - the same as the lower bound. 
x= 1 

4.4.3(b) (i) A class of two-replicate a(0,1) designs for which 

optimality on the graphical criterion C 4  implies 

optimality on the A-criterion: k(k - 1) is an integer 

multiple of s - 1 

Of course, attaining the minimum number L of squares does not, 

in general, guarantee optimality on any of the other criteria of 

efficiency. In particular, there can, amongst designs which do 

attain this minimum, be quite a wide range of values of the 

harmonic mean efficiency factor. However, there is one class of 

cases where a design with the minimal number of squares is, 

necessarily, also optimal on the A-criterion: namely, designs for 

which k(k - 1) is an integer multiple of s - 1. It is to the proof 
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of this result that we now turn. A crucial part will be played in 

this proof by the contraction of the two-replicate design. (See 

Section 1.4.3(b).) It will also be interesting to observehere some 

correspondences with the theory of perfect difference sets. 

In summary, the proof has two stages. First, we show that, in 

this case, a design which has the minimum number of squares has a 

contraction that is balanced. (It will be to this point that the 

connection with difference sets will be relevant, but we will 

postpone discussion of that connection until after the end of both 

stages of the proof.) Then we will use results obtained by 

Patterson and Williams (1976a) to show that this implies that the 

design is A-optimal. 

So, first of all, we show that if k(k - 1) is an integer 

multiple of s - 1, and if a two-replicate a(O,l) design for these 

values of s and k has the appropriate minimum number L 4  of squares, 

then the contraction of the design is balanced. 

When k(k - 1) is an integer multiple of s - 1, the remainder p 

is zero, and 6 =  k(k 
-l) . So, for the design to have the 

minimum number of squares, each of the quantities H(x) must equal 

5. (Strictly speaking, we have not previously stated this 

explicitly; however, it follows in a way that is very closely 

analogous to our derivation of the lower bound (4.68) on page 200.) 

That is, each of the numbers x in the set {l, 2 ...... , s-11 occurs 

the same number (namely, S) of times amongst the off-diagonal entries 

of the array G01 . 

Now, the contraction of this two-replicate a(0,1) design is, 
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as Williams, Patterson and John (1976) and Williams (1976) point 

out, a cyclic design for s varieties in blocks of size k, with 

initial block: 

B0 = 
	lO' a11......' al,kl} 

So, to show that the contraction is balanced, we have to show that 

this cyclic design is balanced. That involves showing that each 

pair of varieties in the cyclic design concur together the same 

number of times. We show that each' pair concur 6 times. If i and 

j are any two varieties in the cyclic design (that is, if i and j 

are distinct numbers in the set {o, 1......, s-l} ), then the 

number of times they concur together in a block of the cyclic design 

is the number of times the quantity i j occurs amongst the k(k - 1) 

differences a
lu 	lv 	 0 

a arising from the initial block B • And that 

is the number of times i j occurs amongst the off-diagonal 

elements of the array G01 , which number is 6. 

Therefore the cyclic design is, indeed, balanced (with each 

pair of its varieties concurring together 6 times). 

The second stage of the proof entails showing that the balanced 

structure of the contraction implies that the original two-replicate 

design itself is optimal according to the i-criterion. This 

involves little more than citing work done by other authors. On the 

one hand, it is a well known result that a balanced binary design is 

A-optimal. (See, for example, John (1971), page 247.) So the 

contraction is A-optimal in the class of all binary designs for 5 

varieties in s blocks of size k. (That the contraction is binary 

follows from the fact that the two-replicate design has no double 
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lines: this ensures, by requirement (4.1) on page 121, that all the 

numbers in the set {ac11  ....... a1,} _1 } are distinct, which, in lo, 

turn, guarantees that in the contraction no variety occurs more than 

once in any block.) 

But the -optimality of the contraction immediately implies the 

h.-optimality of the original two-replicate design, as noted by 

Williams, Patterson and John (1976), page 298 (deriving from a 

result of Patterson and Williams (1976a)). (See the formula which 

links the harmonic mean efficiency factors of the design and the 

contraction on page 42.) 

Therefore we have shown what we set out to show: that if 

k(k - 1) is an integer multiple of s - 1, then a two-replicate 

a(0,1) design with the minimal number L 4  of squares has a balanced 

contraction, and therefore is optimal according to the A-criterion. 

Before we illustrate this result by means of an example, there 

is one further point which is worth bringing out here: namely, the 

correspondence between what we have just shown and the theory of 

perfect difference sets. A perfect difference set is a set - say 

{x1 , x2  ......, x} - of residues modulo s such that among.the 

r1(n- I)-differences x. 	x. (for i 34  j), each of the residues in 

{1, 2 ...... , s-1 1, occurs equally often. That is precisely what we 

have here in the case of those designs with the minimal number of 

squares. The set 	
ll ...... ' aJ.,k_] I which formed the second 

row of the generating array c, and which also constituted the 

initial block of the cyclic contraction, is a perfect difference set. 

Of course, this is reflected in the fact that each of the S - 1 
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residues occurs equally often among the off-diagonal entries of the 

array G01 . Indeed, it is, furthermore, simply a re-phrasing of what 

we proved on page 204: namely, that the contraction is balanced. 

Perfect difference sets have long been known to yield balanced 

cyclic designs in this way: see, for example, John (1971) (pages 

275ff) or Raghavarao (1971) (page 80). The combinatorial literature 

contains many methods of constructing perfect difference sets. 

(For instance, Ryser (1963).) These methodscan, by means of the 

theory we have outlined in this Section, be used to construct two-

replicate a(0,1) designs which have a minimal number of squares and 

which are, in consequence, A-optimal. 

Example 

As an illustration of this theory, we consider two-replicate 

cx(0,1) designs having block size 4 and having 13 blocks in each 

replicate. So k(k - 1) = 12 and s - 1 = 12. That is, k(k - 1) is 

- 

an integer multiple of s - 1, and ô 
= k(k 	l)

- 	
, and so equals 1. 

The best listed two-replicate ct(0,1) design for these values of s 

and k has generating array 

a = 0000. 
0139 

So the array G01  for this design is: 

0 13:9 

0 0 12 10 	4 

1 1 011 5 

3 3207 

9 9860 
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Among the twelve off-diagonal entries of this array, each of the 

twelve residues in {i, 2 ...... , 12} occurs exactly once. In other 

words, among the differences 	 for this design, each of the
li 

residues occurs equally often. So the set' {0, 1, 3, 91 is a perfect 

difference set modulo 13. The contraction is a cyclic design with 

initial block {0, 1, 3, 9} , and this design is balanced: each pair 

of the 13 varieties in it concur together 6 = 1 times. 

4.4.3(b) (ii) Designs which attain the minimal number of squares in 

cases when k(k - 1) is not an integer multiple of 

s - l 

In general k(k - 1) will not be an integer multiple of s - 1, 

and so most of the theory in (i) above will not apply. However, one 

important aspect of that theory does remain relevant: namely, the 

use of the contraction to help in the search for A-optimal two-

replicate designs. We show here that in this more general case, a 

design which attains the minimal number L 4  of squares has a cyclic 

contraction which has a minimal number of circuits of length two. 

The argument here is very similar to the one we used in (i): 

the contraction is, as always for a designs, the cyclic design which 

has the initial block JO, a.. 
11 ......

, a 	} . Now, if the a design l,k 1 	s-i 
has the minimal number of squares, then the sum E H(x) 2  must equal 

x= 1 
the lower bound given by equation (4.68). 'But that implies that the 

quantities H(x) differ by at most one: the result from Williams, 

Patterson and John (1976) which we invoked earlier. (page 199) proves 

that if the H(x) were to differ by more than one, then the sum of 
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their squares could not be minimal. 

This means that among the off-diagonal elements of the array 

G01 , p of the residues occur 6 + 1 times, and s - 1 - p of them 

occur 6 times (where p and 6 are defined in (4.67)). So in the 

cyclic design which is the contraction, every pair of varieties 

concur either 6 or 6 + 1 times; hence the contraction is a Regular 

Graph Design, and so has a minimal number of circuits of length 

two (as we showed on page 73). 

These results enable us to bring together two conjectures 

relevant to the search for a-optimal two-replicate a(0,1) designs. 

On the one hand, suppose that in the class of symmetric cyclic 

designs for s varieties in s blocks of size k, there exist designs 

which are Regular Graph Designs: that is, in which every pair of 

varieties concur together A or A + 1 times (for some integer A). 

Then the work of Mitchell and John (1976) would suggest the 

conjecture that all A-optimal cyclic designs for these parameters 

are to be found among those cyclic designs which are Regular Graph 

Designs. If this conjecture is true, then it follows that any 

-optimal two-replicate a(O,l) design has the minimal number L 4  of 

squares. - (For, the contraction of such an A-optimal a design must, 

by Williams, Patterson and John (1976), page 298, be an A-optimal 

cyclic design; so this contraction must, by the conjecture, be a 

Regular Graph Design, which implies that the original a design has 

L4  squares.) 

On the other hand, suppose that in the class of two-replicate 

a(0,1) designs for the parameters s and k, there exist designs which 
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have the minimal number L4  of squares. Then our comments in 2.5 

would lead us to conjecture. that the A-optimal two-replicate design 

for these parameters has that number of squares. If, now, this 

conjecture is true, then it follows that any h-optimal symmetric 

cyclic design for s varieties in s blocks of size k is a Regular 

Graph Design. (For, any such cyclic design is the contraction of a 

two-replicate a(0,1) design for parameters s and k; that a design 

must, therefore, be A-optimal, again by Williams, Patterson and 

John (1976), page 298; so it must, by this second conjecture, have 

the minimal number L 4  of squares, which, with the theory we have 

presented above, implies that the contraction is a Regular Graph 

Design.) 

The equivalence of these two conjectures is a special case of 

the more general equivalence of analogous conjectures which we 

established in 2.6.2. We could, of course, have deduced this 

particular equivalence from that earlier result. However, that 

would have obscured some interesting features of the structure of 

the variety concurrence graphs of a designs which have been 

elicited by the method we have adopted here: for example, the 

connection with balanced cyclic designs, with Regular Graph Designs, 

ant, above all, with the lower bound L4. for the number of squares. 
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CHAPTER 5 

CONSTRUCTING EFFICIENT a DESIGNS 

5.1 IntrOduction: outline of general approach 

We have seen now that the graphical criteria of efficiency are 

interesting at several different levels of mathematical abstraction 

and practical applicability. On the one hand, they have (as our 

initial exposition in Chapter 2 made clear) many strengths of a 

purely theoretical nature: the link which they provide between the 

combinatorial structure of the design and its efficiency is 

intuitively satisfying in that it makes some mathematical sense of 

our heuristic expectations. 

But of rather greater importance,on the other hand, (as 

we mentioned in 2.5) are the implications of the graphical criteria 

for the selection of designs in practice; and we have already shown 

- in Chapters 3 and 4 - that they offer an attractive substitute for 

the A-criterion, involving, as they do, calculations that are - 

owing to the basis of the criteria in the variety concurrence 

graph - relatively straightforward. 

Yet, simply to make that statement is (as we mentioned on page 

196) to.say very little of real use to the experimenter. It would 

be superfluous - if mathematically interesting and elegant - merely 

to have yet another series of measures for comparing designs that 

have already been constructed - no matter that these measures may 

be considerably easier to calculate than the ones employed hitherto. 

What is needed, besides, is some indication of how the graphical 
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criteria can be incorporated into simple and rapid algorithms for 

the generation of designs with a reasonably high efficiency. Only 

once this has been done can graph theory be said to have been of 

some real practical benefit. 

The purpose of this Chapter is to outline three ways in which 

this could be achieved. Of course, what we suggest here will be by 

no means the only method of using the graphical criteria to help in 

the generation of efficient designs. Indeed, as we will make clear 

(page 214), there is an obvious, if clumsy, way in which the 

criteria could be used to modify any plan of systematic searching so 

as to avoid designs that are, in some defined sense, inefficient. 

But the important feature of the algorithms that we will describe 

here is that they do use some of our earlier results in a rather 

more subtle manner, as part of their essential mechanism. Although 

they might not make the best possible use of these results (and we 

will indicate where they are particularly weak), they will, we hope, 

be a reasonable basis on which to build methods of greater 

refinement. 

We describe three algorithms for constructing efficient cx 

designs. The first is based on the graphical criterion 	and is 

applicable to all combinations of parameters r, s, and k. We will 

call it the double-line algorithm because its purpose is to 

construct designs with a minimal number of double-lines. The other 

two introduce some extra refinement, but for rather more restricted 

values of the parameters: the one invokes the graphical criteria 

2 and C3  to construct efficient three-replicate a designs; since 
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its purpose is to produce designs with a minimal number of triangles, 

we will call it the triangle algorithm. And the other invokes the 

graphical criteria ç,2  and C. to construct efficient two-replicate 

designs; this one we call the square algorithm since it lists 

designs with a minimal number of squares. If the conjecture in 

2.5 is true, then among the designs listed by these algorithms will 

be the best a designs on the A-criterion. 

First of all, however, before going into details, we will 

discuss briefly some of the general ideas which have guided our 

approach. 

The algorithms have a common underlying structure based on two 

tree searches. The first of these searches concerns the selection 

of replicates (or, in other words, rows of the generating array a): 

designs with r + 1 replicates will be produced by adding an (r + 
1) th 

replicate to designs with r replicates (that is, by adding an 

(r + 1)th row to a given r rows of the array a). The second tree 

search (which is embedded in the first) concerns the choice of 

numbers to fill the (r + 1)th row of the array a: these are 

selected sequentially from the left, and, in principle (before, that 

is, any algebraic refinement is introduced), there are s ways of 

filling each of the k places in the row (from the set 

{O, 1 ......, s-i}). In what follows in the rest of this Chapter, we 

do not modify in any way the first of these searches: we will always 

select replicates sequentially; in consequence, the, algorithms 

would be more accurately described as algorithms for adding an 

(r + 1)th replicate to a given set of r replicates. Of course, this 
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comes down to the same thing when constructing two-replicate 

designs - if, as we can assume, the first row of the generating 

array cx always consists entirely of zeroes. However, for the other 

two algorithms - the double-line algorithm and the triangle 

algorithm - this sequential addition of replicates could, probably, 

be improved: perhaps, indeed, analogously to the refinements we 

introduce here into the selection of the (r + 1)th row. 

So we are interested in adding an (r + 1)th row to a given set 

of r rows of the generating array cx in such a way that the 

resulting design in r + 1 replicates has a reasonably high 

efficiency (according to the particular criterion we are invoking). 

Clearly, the crudest way of doing this would be to go through, 

systematically, all the s possible (r + 1)th rows and discard 

those with a value of A less than a certain specified threshold. 

Such a method would, of course, be excessively laborious, and it is 

precisely our purpose here to show how this crude technique can be 

considerably refined by means of some of the theory we discussed 

in Chapter 4. But although we allude to this technique only to set 

about modifying it immediately, it remains, nevertheless, the 

underlying structure in all that follows. 

5.2 Algorithm using the graphical criterion ç: the double-line 

algorithm 

One refinement of that crude structure would be to substitute 

for the A-criterion one (or more) of the graphical criteria. This 

would, certainly, reduce the amount of calculation that would have 
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to be carried out. Indeed, any process of complete systematic 

searching could be refined in this obvious though clumsy way: 

namely, by calculating the number of circuits of some length h 

produced by each of the possible (r + 1)t1 rows, and then rejecting 

those rows which gave rise to a value of C greater than a certain 

threshold. (This is the point which we anticipated above on page 

211; we return to it on page 232 below.) But the algorithm we now 

describe makes rather more subtle use of the graphical criterion 

ç . Instead of referring to the criterion only after the whole new 

row has been constructed, the algorithm will invoke it each time 

an individual element is chosen. That is, the C2 -criterion will be 

used to restrict the amount of searching that has to be gone 

through by excluding at as early a stage as possible certain 

possibilities for elements of the new row. 

Expressed differently - in terms of the variety concurrence 

graph - what this amounts to is as follows. We want to construct 

designs with as few double lines in their graphs as possible. So we 

use this aim as the principle which guides the selection of each 

successive element of the new row. In particular, our interest here 

will be to find designs which have no double lines at all: that is, 

to find (O,l) designs. So we use some of the theory we outlined 

in Chapter 4 to help us select elements for the added row which do 

not give rise to any double lines. It is the resulting mechanism 

which we will call the double-line-algorithm. 

It will be illuminating if we carry with us a particular 

example: this will at each stage help to clarify our general points 
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by making them more concrete, and, therefore, more apprehensible. 

The example we will use is quite simple. The initial generating 

array a to be extended is: 

a = 00000 
01352 

that is, there are two replicates and each block is of size 5. The 

value of s will be taken to be 6. So the design generated by the 

array a is a two-replicate a(0,1) design for 30 varieties. The aim 

of the algorithm when applied to this example will be, then, to add 

a third row to a so that the new array will generate a three-

replicate a(0,1) design. 

The particular piece of theory we adduce is on page 121: 

equation (4.2). We pointed out there that the number of double 

lines in the variety concurrence graph is s times the number of 

equalities of the following form among elements of the array a: 

a 	a , 	a mu 	mu 	m'u 
(5.1) 

where u u' and m m' 

Thus, for a design to have no double lines, there must be no 

equalities of this type. In other words, an array a yields a 

(0,1) design if, and only if, for each pair u and u' of different 

columns of it, the r quantities amu 	mu 
a ,. are all distinct (for 

0 < m < r-l). Notice that the array a in our example yields no 

equalities of the form (5.1): the design has no double lines. 

Our description of how this enters into the selection of 

elements for the new row will facilitated if we denote the 

collection of these r quantities amu 	
mu' (for 0 < m < r-l) by a 

- - 

single symbol. This symbol we will choose to be D,. That is, 
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D 
UU' 

 is the set mu 
	mu a 	: 0 < m < r-l} . Then we will let D 

- 

refer to the entire rx½k(k - 1) array consisting of the sets D, in 

the following pattern: 

D01 , D02  ....., D01 ; 	D13  ......Di, _ i ; D23  .....etc. 

It will be appropriate - for obvious reasons - to call this array 

D the difference array of the design. So a necessary and sufficient 

condition for the design to have no double lines is that each of 

the columns of its difference array should contain r distinct 

elements. 

In our example, D has 2 rows and 10 columns. Its first column, 

for instance, consists of the elements 0 0 and 0 1: that is, 

0 and 5. The whole difference array is in this case: 

D01  D02  D03  D04 	D 12  D13  D14 	D23  D24 	D34  

0 	0 	0 	0 	D 	0 	0 	0 	0 	0 

5 	3 	1 	4 	4 	2 	5 	4 	1 	3 

The reason why this notation simplifies the description is that 

when we add a row to the array a, the columns D
uu 
 of the difference 

array D undergo only a very simple modification: they each acquire 

an extra element and are otherwise unchanged. That is, if the new 

difference array is called D', then its columns are related to those 

of the original difference array by the simple identity: 

D' 	- 	D 	uc' 	cft 	} UU 	 uu' 	ru 	ru' 

(where the elements of the row added to the generating array have 

been denoted by a' 0 ......, since numbering of the rows is 

from 0, the first suffix here is r, not r + 1.) 

Thus, for example, if we were to extend the array a we had 
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above to the array: 

a' = 0 0 0 0 0 
01352 
02145 

then the new difference array D' would be: 

D 1  D02  D 3  D 4 	D 2  D 3  D 4 	D 3  D 4 	D 4  

0 	0 	0 	0 	0 	0 	0 	0 	0 	0 

5 	3 	1 	4 	4 	2 	5 	4 	1 	3 

4 	5 	2 	1 	1 	4 	3 	3 	2 	5 

This array is obtained from the original difference array D by 

adding appropriate elements 	- a, to the bottom of the columns 

D,: for example, D01  has added to it the element a 0  c 1  which 

equals 0 - 2. 

Now, as we noted at the top of the previous page, an extension 

of the given array a will generate a design with no double lines if, 

and only if, the numbers in any column of the new difference array 

0' are all distinct. Thus,, in the example, that the extended 

generating array does yield an a(0,1) design is confirmed by the 

fact that no column of the corresponding difference array D' 

contains any element twice. 

One necessary condition for this to happen is that each of the 

original columns D
uu 
 should contain r distinct elements, or, in 

other words, that the array a which we started out with should 

generate a design that has no double lines. So, in what follows, 

this will always be assumed to be the case. Then, given that this 

holds, the extension will generate a design with no double lines if, 

and only if, each of the additional quantities a' -a' , is 
ru 	ru 
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distinct from the elements already in the corresponding column of 

the original difference array D. 

It is this re-phrased form of the condition (5.1) which we use 

as a guide in the selection of elements for the new row of the 

generating array a. The point of employing this alternative form 

of that condition is that it enables us to shift the problem from 

extending the array a to extending the array D - and allows us 

thereby to ensure the absence of double lines in a much more 

straightforward fashion. Of course, not every extension of D to 

r + 1 rows can be related to an extension of c: the extra row of 

D' must conform to the pattern defined by the differences a' 
ru 

Furthermore, amongst those extensions of D which do correspond to 

an extension of a, by no means all will yield a design that has no 

double lines. So, if we are to use the difference array D as a 

means of extending the array a, then we must establish necessary 

and sufficient conditions for an extension of D to correspond, first, 

to some extension of a, and, second and more particularly, to an 

extension of a that generates a design with no double lines. 

We will deal with these two problems separately. First, then, 

what is the condition that must be satisfied by a row of numbers 

added to D in order for the new, larger, difference array D' to 

correspond to some extension of the generating array a? This 

question can be answered immediately: clearly, this condition is 

that there exist k numbers a' (for 0 < j < k-l) such that the final 
rj 

element in the column D 	of D' should be a' 	a' 	for each uu 	 ru 	ru' 

pair u and u' (0 < u < u' < k-l): this is exactly what is meant by 
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saying that the array D' must conform to the pattern of having 

arisen as the difference array of a generating array a'. 

We will now express this in a slightly different form which 

will prove more useful in the development of the algorithm. All we 

are interested in, as a matter of fact, are generating arrays a' 

that are in standard form. So we can stipulate without any loss of 

generality (that is, without, essentially, missing any designs) that 

in the extended generating array a', the first element of the added 

row is zero: that is, that a' O = 0. Hence, if the extension D' of 
r 

the difference array D corresponds to an array a', then the first 

k -.1 entries of the added row of D' must be, for 1 <u' <k-1, 

a' which, in consequence of our stipulation, equals a',. 

Then, once we have chosen these k - 1 elements, the remainder of 

the last row of D is fully determined, since every remaining element 

in that row can be expressed as a difference of some pair of these 

first k - 1. Moreover, any choice of elements to fill the first 

k - 1 places corresponds to an extension of the array a. 

In other words, the first condition (namely, that the 

extension of D should correspond to an extension of a) is satisfied 

if we confine ourselves to choosing these k - 1 elements, and then 

form the remainder of the new row accordingly. 

Thus, in our example - which has initial difference array D 

defined on page 216 - if we choose 4 elements to be at the bottom of 

the 4 columns D01 , D02 , D03 , and D04 , and then form the rest of the 

third row according to the pattern of differences, then we will have 

a difference array D' corresponding to some a design in three 
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replicates (though not necessarily, as yet, a design with no double 

lines). For instance, if we chose as the 4 elements the numbers 

1, 2, 3, and 5 (that is, if we let a 	 = 	 = 12, 	3, 

and 	= 5), then we would get the extended difference array: 

D' 	D' 	D' 	D' 	D' 	D' 	D' 	D' 	D' 	D' 01 02 	03 	04 	12 	13 	14 	23 	24 	34 

0 	0 	0 	0 	0 	0 	0 	0 	0 	0 

5 	3 	1 	4 	4 	2 	5 	4 	1 	3 

1 	2 	3 	5 	1 	2 	4 	1 	3 	2 

This method might not, at first sight, appear to be particularly 

helpful. In a sense, indeed, it is saying no more than that if the 

extended generating array a' is in standard form, then the sub-array 

of D' consisting of its first k - 1 columns contains simply the 

negatives modulo s of the entries of the array a'. However, the 

point of expressing things in this way is that allows us to 

incorporate very easily the second of the two conditions: namely, 

that the extension of a must generate a design with no double 

lines. That second condition requires that we must choose the 

k - 1 elements a' 	(1 < u' < k-i) in such a way that, for each ru' 	- 	- 

column D, of the original difference array D, the extra difference 

a' 	at , is distinct from the elements already in it. 
ru 	r1 l , 

 instance, in our example, the choice of 4 elements which we 

have just made (namely a 1  = 5, a 	= 4, a 3  = 3, and a 4  = 1) does 

not yield an a(0,1) design, for the new difference array D' does not 

satisfy that necessary condition: the element 2 which is added to 

column D 13  already appears in its second row. 

We show now how this second condition can be incorporated as a 
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set of rules for choosing the first k - 1 elements of the row that 

is to be added to the difference array D. It will be rather more 

straightforw.rd if we talk about choosing the elements la' Ul f it 

being these, rather than their negatives, which appear at the feet 

of the first k - 1 columns of D'. So, for convenience, we will 

labelct 	as x , (0 < U' < k-i), where, of course x = 0. Then ru 	u 	- - 	 0 

the condition for the design to have no double lines becomes: 

x 	x should not lie in column D , for 0 < U' < u < k-l. The 
U 	U' 	 uu 	- 	- 

method which we propose will involve choosing each x in such a way 

that for every u' < u, x
U 	U' 	u'u 

x 	D 	. Clearly this will be 

sufficient to ensure that the design has no double lines. (It would 

for example have prevented us choosing x 3  = 3 in the illustration 

on page 220.) Its advantage for our purpose here is that it defines 

rules for choosing x which depend only on the array D (which we 

start out with) and on those quantities x, which have already been 

chosen. Thus this method provides an acceptable basis for an 

algorithm. 

Before we describe the steps of this algorithm and illustrate 

its application to our. example, however, we introduce one further 

simplification which will make it easier to operate (especially on 

a computer). This simplification takes further advantage of the 

fact that the rules for choosing x have been expressed entirely 

in terms of those x, which have already been selected. The 

requirement that x
U 	U 	 u'u 

x , should not lie in the column D 	of the 

original difference array D is equivalent to the requirement that 

x 
U 	 U 

should not lie in the set x , + U D 
, U 

. So, after having chosen 
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the element x 1  at Step (n'), the algorithm will modify the 

difference array D by adding x 1  to each of the columns D, for 

V >n' + 1. Then, at subsequent Steps (n), double lines will be 

avoided simply by choosing x so that it does not lie in any of the 

columns whose second suffix is n. That is, expressed more formally, 

the Steps of the double-line algorithm are: 

Step (0) 

Set X0  = 0. 

Step (1) 

Choose x1  D01 . 

Add x 
1 	 lv 
to all the elements in columns D 	(2 <v < k-i). 

- - 

Call the new array D' , and its columns D 
Ulu 

Step (2): 

 Choose X2 	U D J  

 Add x to all the elements in the columns D 1  
2 2v 

(3 < V < k-i). 	Call the new array D 	and its columns 

U l u 

In general, Step (n) 	(for n < k-2): 
n-i 

(n-i) 
 Choose  U D 

n 	Un 
U=o (n- i) 

 Add x to all the elements in the columns D 
flu n 

(r) 
(n+l < u' < k-i). 	Call the new array D' , and its 

(n) 
columns D 

uu 

(Of course, the final Step (k-l) - does not involve a part 	(b).) 

Having chosen the numbers x (0 < u < k-i) in this fashion, we 

let a' 	x ru 	u 

These Steps will be made clearer if we illustrate their 
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application to the example which we have been discussing all along. 

The original difference array D is given on page 216. We will 

follow through the Steps in some detail in order to expose fully 

how they work. 

Step (0) 

Let x0  = 0. 

Step (1) 

Choose x1  D01 . That is, choose x1  so that it does not 

lie in the first column on the left of the array D. This. 

column contains the elements 0 and 5. So we have to 

choose x1  to lie in the set (1, 2, 3, 4) ; say x 1  = 1 

Form the array D 	That is, add x 1  to all the elements 

in the columns D 12 , D13 , and D14 . So the new array D 1  

is (with x1  = 1 written at the bottom of column' 	): 
01 

D 1  D 1  D 1  D 1 	D '  D 1  D 1 	D 1  D 1 	D 1  
01 	02 03 	04 	12 	13 	14 	23 	24 	34 

0 	0 	0 	0 	1 	1 	1 	0 	0 	0 

5 	3 	1 	4 	5 	3 	0 	4 	1 	3 

1 

Step (2) 

Choose x2  Du DJ 	. That is, choose x 2  so that it 

does not lie in the columns D 	or D 	 of the array 
02 	12 

These columns contain the elements 0, 1, 3, and 5. So we 

must choose x2  in the set {2, 4) . For example, x 2  = 2. 

Form the array 	That is, add x2  to all the elements 

in the columns D 	 and D 	 . Then D 2  is (with x = 2 
23 	24 	 2 
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written at the feet of columns D 	 and D 	 ): 02 	12 
D (2) 	(2) D

2  D 2 	D 2  D 2  D 2 	D2 	(2) 	(2) 01  D02 03 
	04 	12 	13 	14 	23 D

24 	D34  

0 	0 	0 	0 	1 	1 	1 	2 	2 	0 

5 	3 	1 	4 	5 	3 	0 	0 	3 	3 

1 	2 	 2 

Step (3) 

Choose x3 4 DJDJD 	That is, choose23  

x3 	(0, 1, 2, 31 . So we must choose x 3  to lie in the 

set (4, 5} : say, x3  = 4. 

Form the array D 3  by adding x3  to all the elements in 

	

the column. 	Then the array D is: 

D 3  D 3  D 3  D 3 	D 3  D 3  D 3 	D 3  D 3  01 	02 03 	04 	12 	13 	14 	23 	24 	
D34 

0 	0 	0 	0 	1 	1 	1 	2 	2 	4 

5 	3 	1 	4 	5 	3 	0 	0 	3 	1 

1 	2 	4 	 2 	4 	 4 

Step (4) 

(3) 	(3) 	(3) 	(3) Finally, choose x4  i D04 uD14 0D24 uD34  , which equals 

10, 1, 2, 3, 4} . So we must choose x 4  = 5. 

That is, we have x 1  = 1, x 7  = 2, x = 4, and x4  = 5. This 

means that the third row of the extended generating array a' is made 

up of the negatives of these numbers: namely, 5, 4, 2, and 1. So 

the new, extended, array a' which the algorithm has produced is: 

at = 0 0 0 0 0 
0 1,3 5 2 
054.2 1 
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Next, we show how the theory we have presented and illustrated 

can be used as the basis of an algorithm for finding all extensions 

of a given r-replicate a(O,l) design to an (r + 1)-replicate cL(0,1) 

design. As we mentioned earlier (page 212), this will involve 

incorporating what we have presented into a tree search: indeed, the 

above Steps become the means of limiting the number of branches of 

the tree that have to be searched. 

Each branch of the tree corresponds to a particular choice of 

the numbers x1 , x2  . ..... , and x. 1 . Thus, before the theory is 

used to exclude certain combinations of numbers, there are 

branches altogether. (It is 
5k1 

 rather than the s which we 

mentioned earlier because we are-now assuming that x0  = 0.) The 

theory enables this number to be reduced by a large amount, by 

excluding certain branches before they are complete. To be precise, 

a branch which has not reached x - can be terminated as soon as it 

is no longer possible to choose the next x at Step (n) (a): that is, 

as soon as the set: 
n-i 

u D 

=O (f1)
un 

contains all the elements in {o, 1 ......, s-l} . In other words, a 

branch stops either when it has yielded k - 1 numbers x1 , x 2  ..... 

and k-l' or else when it reaches a Step (n) at which the columns 

D 1  (0 < u < ri-l) contain between them all the numbers in the set 
un 

{o, 1 ......, s-l} 

To illustrate this, we return to the example, and to the branch 

which starts by choosing x 1  = 2. (This is, of course, one of the 

permissible choices for x 2 , as we noted on page 223 under Step (1).) 
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Then, for this value of x 1 , the array D 	 is: 

D 1  D 1  D 1  D 1 	D 1  D 1  D 1 	D 1  D 1 	D 1  
01 	02 	03 	04 	12 	13 	14 	23 	24 	34 

0 	0 	0 	0 	2 	2 	2 	0 	0 	0 

5 	3 	1 	4 	0 	4 	1 	4 	1 	3 

2 

Then, at Step (2), we must choose x 2  so that it does not equal 

any of the numbers already in the columns D 
02 

 or D 12 
	

This 

means that we must choose x 2  to be 1, 4, or 5. Suppose that we 

choose it to be 5. Then the array D '2  is: 

D 2  D 2  D 2  D 2 	D 2  D2(2) 	(2) 	(2) 	
(2) 

01 02 	03 	04 	12 	13 D
14 	D23  D24 	D34  

0 	0 	0 	0 	2 	2 	2 	5 	5 	0 

5 	3 	1 	4 	0 	4 	1 	3 	0 	3 

2 	5 	 5 

Next, we have to choose x 3  •so that it does not equal any of the 

elements that are already in the columns 	DJ 	or D 	 . But
23 

this is impossible, since these three columns together already 

contain all six of the elements in the set Co, 1, 2, 3, 4, 5) . In 

other words, this branch of the tree is terminated here because 

there are no choices available for the next new element of the third 

row, 

If we pursue this type of argument for each of the branches, 

then we get in this example the tree in Figure 2 (page 227). The 

eight completed branches of this tree correspond to the eight 

extensions of the given generating array 

= 00000 
01352 
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FIGURE 2 

Tree of choices produced by the double-line algorithm 

when extending the array 0 0 0 0 0 
01352 

(NP on a branch means that it is not possible to go any further.) 
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which generate a.(0,1) designs. Thus, the double-line algorithm has 

yielded the following third rows (taking the negatives of the 

numbers on these completed branches): 0 5 4 2 1; 0 5 2 1 3; 

0453 l;04 21 3;0 342 l;0 3145; 

0 2 5 3 1; and 0 2 1 4 5. 

A rough measure of the efficacy of the algorithm can be had by 

comparing the number of Steps that are involved here with the number 

that would be involved in a complete tree search without any 

constraints on the choice of the individual numbers x U . (That is, 
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following the practice we suggested at the very beginning of this 

Section 5.2 (page 214), and testing whether the new design has no 

double lines only after a whole new row has been selected.) The 

number of Steps is, in fact, the number of line segments in the 

tree, including those segments which end with N?. So the total 

number of Steps involved in the above example is 40. on the other 

hand, in the complete tree, each node at each level would have six 

lines emanating from it downwards, and so the total number of lines 

would be 6 + 36 + 216 + 1296 = 1554. Even if we imposed the very 

obvious constraint on the complete tree that only x 0  is zero, there 

would still be 5 + 25 + 125 + 625 = 780 line segments. 

Finally in connection with the double-line algorithm, we 

establish explicitly that it is reliable (that is, that each 

extension it yields will generate an c(0,1) design), and that it is 

exhaustive (that is, that it yields all extensions which generate 

an a(O,l) design). 

The first of these results - that the algorithm is reliable - 

is obviously guaranteed by the theory which we presented at the 

outset of this Section 5.2, and which underlies its mechanism. 

The second result, too, is already implicit in what we have 

said earlier. Any extension of the generating array a. to an array - 

' which generates an Cr + 1)-replicate cz(0,1) design corresponds 

uniquely to a set {x1 , x2  ......, xkl}.  (That is, we can assume 

that the array cx' is in standard form, and then x is defined to be 

s-a' for 1 < u < k-i.) We must show that every such set occurs as 
ru 	- - 

one of the completed branches of the tree. To show this, it is 
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sufficient to show that at Step (n) (having already chosen the 

numbers x . 
1 	n-i 	 n 
...... , x 	), the number x is one of .those which do not 

lie in the set: 
n-i 

(thus ensuring that at Step (n) (a), X is available as a choice 

outside this set). If this did not hold, then x would be contained 
n 

i 	
(n-1 ) 

n one of the sets D , tor some U' in the range 0 < u' < n-l. Now, 
Un 	 - - 
(n-) by its definition, D 
u n 	 mu 

equals a 	- a mn 4 x u ,: 0 < m < r-l}. 
- - 

So, x would equal a 	a 4- x , for some m. But then a , 	a n 	 mu 	mn 	u 	 ru 	rn 

which equals x
n 
 - xut , would equal a 

mu , - mn 
a , and this would 

contradict the hypothesis that the array a' generates a design with 

no multiple lines. (This hypothesis implies that the entries of the 

array c' satisfy the condition (4.1) on page 121.) 

5.3 Algorithm using the graphical criterion C3 : the triangle 

algorithm 

The algorithm which we have just described offers a systematic 

yet fairly rapid way of listing a(0,l) designs. This may, 

frequently, be enough: some experimenters consider it a sufficient 

guarantee of efficiency that the design should have no double lines; 

so they would simply take the first design which the algorithm came 

up with. However, usually some more refined measure of efficiency 

will also be required, to distinguish among the a.(0,1) designs which 

are listed by the double-line algorithm. We have suggested already 

the crudest way of doing this: namely, by calculating for each of 
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them the value of the harmonic mean efficiency factor . But one 

of the main themes of this thesis is that graph theory methods can 

to some extent be used in place of A. (The conjecture on which this 

is based is stated in 2.5.) So, at the very least, there is no 

point in calculating A before invoking rather more of the graphical 

criteria than simply the ç2-criterion which lay behind the double-

line algorithm. Of course, it will always be possible to refer to 

the A-criterion ultimately (the graphical criteria being, in 

principle, less sensitive than the k-criterion).. Nevertheless, the 

point of the graphical criteria is that they can serve the function 

of, as it were, a preliminary sieve: the only designs for which it 

is necessary to go through the laborious business of calculating 

the value of A are those which pass this preliminary test, and are 

therefore reasonably efficient. according to certain of the graphical 

criteria. 

In this Section 5.3, therefore, we describe an algorithm - the 

triangle algorithm - which generates three-replicate ct designs by 

referring to both the ç-criterion and the C 3-criterion. But 

before we enter into its description, there is one small caveat 

which should be borne in mind. Although this algorithm can be 

seen as a refinement of the double-line algorithm for three-

replicate designs, it should not be taken as entirely superseding 

it: the double-line algorithm does remain of interest in its own 

right. Searching for designs with a minimal number of circuits of 

length two has been a recurrent theme in the literature (usually 

expressed in terms of searching for designs with a small range of 
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concurrences, and reflecting the widespread faith in the S-criterion 

- see Section 1.2.2). The double-line algorithm can be interpreted 

as a contribution to this area of work, and the validity of its 

assumptions about the desirability of avoiding double lines will 

therefore be generally acceptable to experimenters. On the other 

hand, the triangle algorithm requires, besides, the acceptance of a 

certain conjecture based on the graphical criterion C 3 . namely, that 

the best three-replicate ct(O,l) designs will be found among those 

which have a minimal number of triangles in their variety 

concurrence graphs. This conjecture, having been first advanced 

only in this thesis (Section 2.5), has not been as fully investigated 

and discussed as the one concerning double-lines; in consequence, 

and until this new conjecture has been more thoroughly tested, the 

triangle algorithm should perhaps be treated with rather more 

circumspection than the double-line algorithm. 

One way of using the C 3-criterion would be to impose it on the 

double-line algorithm at the points where we proposed earlier to 

calculate A. That is, for each of the (O,l) designs produced by 

the algorithm, we would calculate the number of triangles in the 

variety concurrence graph by using the theory in 4.2.1. Then we 

would reject those designs for which this number was greater than 

a certain threshold. Only in order to distinguish among the 

designs which remained would we calculate the value of the harmonic 

mean efficiency factor 

This, in itself, does, of course, enable some savings in 

We will refer to this as the modified double-line algorithm. 
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computer time. We could, for example, set the threshold initially 

at the number of triangles in the first design to be found by the 

double-line algorithm, and subsequently at the minimum number of 

triangles in the designs listed so far. Adopting this practice can 

reduce by a useful amount the number of designs for which the value 

of A would have to be calculated: for instance, in looking for 

extensions of the array: 

= 0000 
0125 

(with s = 8) to three replicates, this approach reduces the number 

of designs listed from 76 to 11. 

However, this is not the best method of invoking the 

ç-criterion, for it makes savings only at the very end of the 

algorithm: that is, only in the calculation of the values of the 

harmonic mean efficiency factor after the new rows have been 

selected. It does not modify that part of the algorithm which is 

actually concerned with this selection: it merely rejects those 

choices which have, in some defined sense, too many triangles. Thus, 

this method combines the C 3-criterion and the double-line algorithm 

in a way that is closely analogous to the initial proposal we made 

(page 214) for combining the ç2-criterion and a complete tree search. 

So the drawbacks of that earlier proposal are present here also: 

both suggestions fail to incorporate the criteria they invoke into 

the basic mechanism of choice in the underlying tree searches. 

Just as we went on to show in Section 5.2 that more subtle use 

could be made of the ç -criterion, so, here, we now explain how more 
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subtle use can be made of the -criterion. That is, we show how 

the theory we developed earlier (Section 4.2.1) for enumerating 

triangles can be used as the essential mechanism of an algorithm. 

Instead of invoking the ç-criterion only after a whole new row has 

been selected, we refer to it each time we choose an element of the 

row - in much the same way as we referred to the ç-criterion in 

the double-line algorithm. 

Here, the specific piece of theory which we use is the 

formula (4.17) for enumerating triangles in a three-replicate cz(O,l) 

design. The only variable part of that formula is the number of 

three-replicate triangles. So, in order to find designs with a 

minimal number of triangles, it will be sufficient to look for those 

with a minimal number T3  of triangles of this type. In other words, 

we will look for designs which have a minimal value of the quantity 
k-1 s-1 

T 	= 6s E 	E h (x) h (x) 
j=O x=i lj 	2j 

Now, that it is possible to incorporate this aim into an 

algorithm will turn out to be a consequence of the theory which 

underlay our derivation of this formula. It arose from the arrays 

G and G which we defined on page 129; and the sum 
1 	2 	 k-is-i 

E 	E h (x) h (x) 	 (5.2) 
j=O x=l lj 
	2j 

(which we called t3 (O, 1, 21) is the number of equalities of the 

form (4.14) between off-diagonal elements in the same rows of G 1  and 

G2 . That is, it is the number of equalities of the form: 

2i 	2j 	ii 	ih 	
(5.3) 

(where, if the design has no double lines, it is sufficient, as we 

noted on page 130, to stipulate that the suffices i, j, and h are 
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not all the same). The algorithm we develop here will add a third 

row to a two-replicate a(O,l) design in such a way as to give rise 

to as few such equalities as possible. It will be the forms of the 

two arrays G 1  and G2  themselves which will enable us to achieve this 

in a straightforward and useful fashion. 

Thus far, then, the theory for this algorithm parallels closely 

that for the double-line algorithm in 5.2. In practice, however, 

there is, here, an important new complication. Previously, we were 

able to eliminate double lines altogether in most designs of 

interest; so the double-line algorithm was constructed so as to 

yield designs with no double lines at all. Here, on the other hand, 

it is by no means always possible to eliminate completely three-

replicate triangles: for many values of s and k which might well 

arise in real experiments, the minimum, attainable number of such 

triangles is greater than 0. (For example, for s = 8 and k = 4, 

the minimum is 96; that is, t 3 (0, 1, 2) cannot be made smaller than 

2.) 

To solve this complication on the level of theory would be 

very difficult: indeed, it seems unlikely that combinatorial 

arguments alone could, in general, predict just how many three-

replicate triangles there must be. So our approach will be rather 

more heuristic. The details of how we deal with the complication 

cannot be thoroughly explained until we have described the algorithm 

more fully . However, it will be useful if we indicate here at the 

outset the general approach which we will adopt to getting round it. 

Essentially, what we do is extend the amount of searching which 
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the algorithm has to conduct. However, we do not do this 

indiscriminately: we use some theory as well. To start out with, 

the algorithm constructs an initial design by some determinate 

rule (such as, keeping to a minimum the number of new equalities 

of the type (5.3) which are created in turn by each new element 

of the third row). The value of t3 (O, 1, 2) for this design (that 

is, the total number of equalities of the type (5.3)) then becomes 

a threshold in the search for the next design: a new third row is 

built up element by element with the restriction that the number 

of equalities of the type (5.3) should never exceed this threshold. 

Then, in searching for a third new row, the threshold is the value 

of the quantity t 3 (O, 1, 2) for this second one, and so on. 

In principle, this plan might appear rather clumsy. However, 

it turns out, in practice, to permit some considerable savings over 

the search based on the double-line algorithm. We return to this 

point at the end of this Section (page 248). Before that, we will 

now describe in detail how the theory from Section 4.2.1, along 

with the general points we have just outlined, can be used to 

develop an algorithm. 

The function of the algorithm will be to add a third replicate 

to a two-replicate c(O,l) design. It will do this by adding a third 

row to the two rows of the generating array c of the two-replicate 

design, and it will form this third row by adding elements from the 

left (starting always with a 20 = 0). The central point of the 

discussion which follows is to devise rules for choosing these 

elements. These rules will ensure that two conditions are 
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satisfied: first, that each design constructed in this fashion has 

no double lines, and second that it has no more equalities of the 

type (5.3) than the threshold that has been set by the previous 

designs Listed. 

Now, the first of these conditions is satisfied if there are 

no equations of the form (5.1) among elements of the extended 

generating array. For this to be the case, it will be sufficient 

for the following to hold, since the two-replicate design which we-

start out with is postulated to have no doable lines: 

(i) 	a . 	a . 	0 

	

21 	2j  for i 	j 

	

a 2i 	
a 	 34 a 	a.li 

The second of the conditions requires the calculation of the number 

of equalities like (5.3). We will concentrate initially on devising 

a straightforward way of counting these equalities which will be 

based on the array G and a series of modified forms of it. 

Subsequently, we will show how the first condition, in its two 

parts, can be incorporated into this process in a very easy 

fashion. 

As with the exposition in 5.2 for the doable-line algorithm, 

it will clarify matters here if we continually refer the theory back 

to a particular example. The one we choose has block size 4 and 

has 8 blocks in each replicate, and the initial two-replicate design 

is generated by the array: 

a = 0000. 
0124 

Then the array G 1  is in this case: 
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0124 

0 0764 

1 1075 

2 2106 

4 4320 

First of all, then, how to define rules for choosing the 

elements of the third row which are related to the number of 

equalities of the type (5.3) which are created? Choosing an element 

can give rise to equalities of this type along with previous 

elements of the third row in two different ways: with i = u or with 

j = u. The number of such equalities with i = u is the number of 

times a 
2u 
 occurs in the set: 

lu. = 	2j +lu 	afl1 . 0 < h < k-i, and 0 < j < u-i) 

(i .< u-1 ensuring that i, j, and h are not all the same); and the 

number of such equalities with j = u is the number of times CL 2  

occurs in the sets: 

S2 	
= 	2i 	'xli + CLlh 0 < h < k-l} 

for 0 < i < u-i (i < u-i ensuring that i, u, and h are not all the 

same). 

The calculation of these numbers will be facilitated by certain 

modifications to the array G 1 . After having chosen the new elements 

21 	
' 2,u-1 of the extended generating array a, we construct 

an array which we will call G ' : it has u rows; row .i (0 < i < u-i) 

is formed by subtracting the row i of the array G 1  from the quantity 

a; that is, it is the set S 	; then row u of G 	consists of 2i 	 2ui 	 1 

the uk elements of the set S 
lu 

To illustrate this construction with reference to our example, 
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suppose we have chosen a21  = 3. So u 2. Then the first two 

rows of G 	are: 

	

a20 0 	a20 7 	a20 6 	a20 4 

	

a21 1 	a21 0 	a21 7 

That is, these first two rows are: 

0124 

2346. 

The the third row of G 2  consists of the numbers: 

	

20 4- 2 	a20  4- 1 	a20  4 0 	a20  4- 6 

	

a21 4-2 	a21 4-1 	a21 4-0 	a21 4- 6 

That is, this row is: 

2 106543 1. 

So the array G 	is: 

0124 

2346 

21065431. 

It follows immediately that the number of new equalities of the 

type (5.3) which are created by choosing a 2  equal to some x is 

precisely the number of times x occurs in this array G J ' . In our 

example, for instance, if we chose a 22  = 5, then one new such 

equality is created, since 5 occurs once in the array G 	 This 

equality has i = 2, j = 1, and h = 0: that is, it is: 

a 22  - a 21  = a12 	a10  

There are two further points to be made about this process. 

	

The first is that the arrays G 	 can be formed sequentially, since 

rows 0, 1 ......, u-1 in the array G+U  are the same as these rows 



- 239 - 

in the array G11).  The second point concerns the first condition 

which.we temporarily left aside on page 236: that is, we show, 

finally, how double lines can be avoided by means of certain simple 

rules based on the arrays G '  . Double lines will be avoided if 

the requirements (i) and (ii) on page 236 are adhered to. The first 

of these stipulates, simply, that the numbers a2 . be  distinct; this 

is easy to ensure. The second will hold if we choose each element 

a 2u in such a way that for each i < u: 
- 

ct 
2i 	2u 	a ii 	lu 

That is, if: 

aa(aa ). 2u 	2i 	ii 	lu 

In other words, a2  must be chosen so that it does not equal any 

of the elements in the column u of the array G '  

For example, in our illustration, we must choose a 
22 
 so that, 

first, it does not equal ct20  or a21 ; that is, so that it does not 

equal 0 or 3; and, second, so that it does not equal any of the 

elements in column two of the array G 2 ; that is, so that it does 

not equal 2, 4, or 0. Thus, to ensure that there will be no double 

lines, we have to choose a 22  to be in the set (1, 5, 6, 71 

Bringing together all these points, we can now describe the 

Steps in the triangle algorithm. We will subsequently illustrate 

them in detail with reference to our example. 

That the theory we have presented does provide a reasonable 

basis for an algorithm is due to the fact that it defines conditions 

on the element a which depend only on the given array that is to 
LU 

be extended and on the elements a 2 . (0 < j < u-l) which have already 
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been selected: it is this which allows the theory to be used to 

define Steps for selecting these elements sequentially. 

Step (0) 

Initially, we set a20  = 0. We also have a threshold number of 

equalities of the type (5.3), which we denote by r. (As we 

explained earlier, the threshold is the minimum number of such 

equalities in the designs listed so far; at the beginning of the 

algorithm, when no designs have yet been listed, we set r = 

Step (1): 

Form the array G 1  

Choose a21  according to the rules: 

a21  must not equal a20 ; 

a21  must not lie in the column 1 of G; 

the number of times (n 1 ) which a21  occurs in G 1  

must not exceed the threshold n. 

Step (2): 

Form the array G J 2 . 

Choose a 22  according to the rules: 

a22  must not equal a 20  or a 21 

a 22  must not lie in the column 2 of G 2 ; 

the number of times (n 2 ) which  a 22  occurs in G 2  

must not exceed r - 

In general, for 1 < u < k-i, Step (U): 

Form the array G (u) 

Choose a 2u according to the rules: 

(1) a 2  must not equal a 20 , a21...... 
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a2  must not lie in the column u of 

(u) 
the number of times (n ) which a occurs in G 

u 	2u 	 1 

must not exceed: 
u-i 

n - 	E n. 
i=l 

Incorporating these rules for choosing the numbers a 2  into a 

tree search will, broadly, follow the practice we adopted for the 

double-line algorithm: that is, each branch of the tree will 

correspond to a set of k - 1 elements a21, a22'*** ..' a 2,3 _ 1 l and 

a branch will be terminated either when a complete set is constructed 

(in which case the algorithm has found another new row), or else 

when the constraints (b) prevent any further elements being chosen. 

The difference with this algorithm, compared to the double-line 

algorithm, concerns the threshold r which arises in constraint (3). 

We propose that the order in which the algorithm goes through the 

various choices available for a 2u after the three constraints have 

been imposed will be according to increasing values of the number n 

of new equalities like (5.3) which are created. The advantage of 

choosing in this way is that it can often lead to more rapid 

revision of the threshold r, and hence to further restriction of 

the amount of searching that needs to be carried out. (We will 

illustrate this point below, page 245.) 

This general method will be clarified if we work through its 

application to the example we have been referring to throughout 

this Section 5.3. That is, we want to extend to a three-replicate 

c&(O,l) design the two-replicate c&(O,l) design which is generated by 
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the array: 

a. = 0 0 0 0 
01 24, 

with s = 8. 

First of all, we fix a20  - 0. Initially, the threshold rj is 

set at . We have also that the array G1  is: 

0124 

0 0764 

1 - 1 0 7 	5 

2 2106 

4 4320 

In searching for the first extension, the threshold does not 

really operate, being larger than any possible number of equalities 

that could arise. Below (page 244), we illustrate the operation of 

the threshold in looking for subsequent extensions. 

Step (1) 

Form the array G 1  (as described on page 237): 

0124 
1075. 

Choose a21  according to the rules: 

a 21  must not equal a 20 , that is, it must not equal 0. 

a21  must not lie in the column 1 of 	that is, it 

must not equal 1 or 0. 

So we have to choose a 21  in the set 2, 3, 4, 5, 6, 71 

Letting a 21  be 3 or 6 creates no equalities of the form (5.3), 

whereas letting it equal 2, 4, 5, or 7 creates one such equality. 

Adopting the principle that each a 2  should be chosen (in the set 

defined by the constraints (b)) so as to minimise the number of new 
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equalities of the form (5.3) that are created, we will let a =
21 

Step (2) 

Form the array G 2 : 

0124 
2346 
21065431. 

Choose a22  SO that: 

it does not equal a 20  or a21 , that is, so that it 

does not equal 0 or 3; 

it does not lie in the column 2 of G 2 ; that is, so 

that it does not equal 2, 4, or 0. 

So we have to choose a 22  to lie in the set Cl, 5, 6, 7} . The 

number 1 occurs three times in G 6 occurs twice, 5 occurs once, 

and 7 does not occur at all. So we choose a = 7.
22 

Step (3) 

Form the array G 3 : 

0]. 24 
2346 
5671 
432076533217. 

Choose a 23  so that: 

it does not equal a 20 , a 21 , or a 22 ; that is, so that 

it does not equal 0, 3, or 7. 

it does not lie ifl the column 3 of G (3)1 ; that is, so 

that it does not equal 4, 6, 1, or 0. 

So we have to choose a23  to lie in the set (2, 51. The choice 

a 23  = 2 creates four equalities of the form (5.3) (since 2 occurs 

four times in the array G 3 i. The choice 5, on the other hand, 
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creates only two such equalities. So we let a23  = 5. 

So we have the first extension 0 3 7 5, which gives rise to 

t3 (0, 1, 2) = 2 equalities of type (5.3). So we now set the 

threshold ri to be 2; henceforth in the algorithm, we will be 

interested only in those choices of the numbers a which create no 

more than two equalities. 

Having listed this extension, the algorithm then returns 

(or "backtracks" in computing terminology) to Step (2), and takes 

the next available choice for a22 . The remaining set at this Step 

is {i, 5, 6). However, now that we have re-set the threshold to 

be 2, the choice 1 (which would create three equalities of the type 

(5.3)) is prohibited. Of the other two elements in this set, 5 

creates the smaller number of equalities, and so we next let a 22  = 5. 

(This creates one equality, which, being less than the threshold, 2, 

is acceptable; that is, n2  = 1.) 

Then we go on to a new Step (3): 

Form the array 

0124 
2346 
3457 
432076531075. 

Choose a23  so that: 

it does not equal a 20 , a 21 , or 	that is, so that22  

it does not equal 0, 3, or 5. 

it does not lie in the column 3 of G 3 ; that is, so 

that it does not eqiia1 4, 6, 7, or 0. 

So we have to choose a 23  to lie in the set {l, 21. The number 
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(3) 
1 occurs twice in the array G 1  , and 2 occurs three times. So, to 

choose a23  equal to 1 would create 3 equalities of type (5.3) 

altogether (including the n 2  = 1 equality which arose at Step (2)); 

and to choose a 23  equal to 2 would create .4 equalities altogether. 

Since both of these choices therefore create more equalities than 

the threshold 2, we have to terminate this branch of the tree 

without having found any admissible third rows. 

(Notice how this example illustrates the usefulness of going 

through the choices for a 23  according to increasing numbers of new 

equalities that are created. If, for example, we had chosen a 22  = 5 

the first time round - instead of a 22  = 7 - then, working through 

the Step (3) that would have ensued, the best third row we could 

have found would have been 0 3 5 1, which creates altogether 

t3 (0, 1, 2) = 3 equalities of type (5.3). So the threshold would 

have been set after this first extension at r = 3, which, being 

less restrictive than r = 2, would have left us with more searching 

to go through subsequently. Eventually, of course (as we show 

below, page 247), the algorithm would have set the threshold at 

= 2; but the point is that it would have taken longer to get there, 

and would have listed a number of designs that were not C 3-optimal 

in the meantime.) 

Pursuing this argument for each of the possibilities, we would 

list the following third rows: 

0375; 	0637; 	0267; 	0745. 

Each of these has t 3 (0, 1, 2) = 2 equalities of the type (5.3). In 

a complete listing of all possible extensions of the initial two- 
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replicate array to a three-replicate ci(0,1) design (for which we 

can use the double-line algorithm), these four are the only ones 

with values of t 3 (0, 1, 2) equal to 2, and there are none with 

values less than two. Moreover, these four include (as our 

conjecture in 2.5 would lead us to expect) the best extensions 

according to the i-criterion as well: the first two have 

A = .70954931, and the other two have A = .70931253. 

That each design listed has no double lines is guaranteed by 

the theory we presented earlier (specifically, constraints (1) and 

(2) at each Step (u) (b)). We must show also, finally, that the 

algorithm will list everythird row which generates a design which 

has no double lines and has a minimal number of triangles. (That is, 

a minimal number of equalities of the type (5.3).) So, suppose the 

numbers CL  20  CL  21  ...... CL2,kl constitute such a third row. To show 

that this design will be found by the algorithm, it is sufficient 

to show that this set of numbers occurs as a completed branch of the 

tree. And to demonstrate this, we have to show that for each u > 1, 

	

once the numbers a .. 	 CL
...... , CL 	 have been chosen, the number 

	

20 	2,u-1 	 2u 

will be among those available at the next Step. So we have to show 

that this number a, is not excluded by any of the restrictions (b) 

at Step (u). 

It is not excluded by (b) (l), since the premise that this row 

generates a design with no double lines guarantees that a does not 

equal any of CL 20  ......,a u-1 

If a 2  were excluded by constraint (b) (2), then it would lie 
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in column u of array G, which consists of the numbers 

a 	(a 	a 
2i 	11 	lu 

for 0 <i <u-i, and 0 (in row u). Again because the third row 

yields a design with no double lines, a 2  cannot lie in this set. 

So a 2u cannot be excluded by (b) (2) 

If a2  were excluded by (b) (3), then the number of times, n 

() 	
u-i 	

U 

that a2  occurs in the array 	would exceed - E n.,. But 
k-i 	 i=1 

this would imply that r < E n., which sum equals the value of 
i=i 

1 

t3 (0, 1, 2) for this design. In other words, this design would 

have strictly more than the threshold number of equalities of the 

form (5.3). But this is impossible, since the design is postulated 

to have a minimal number t 3 (0, 1, 2) of such equalities, and each 

value which n assumes (apart from its initial value ) actually 

occurs as the number of equalities in some design that has been 

listed. So a 2u cannot be excluded by constraint (b) (3). 

This completes the proof that the algorithm is exhaustive; 

that is, that it will list every extension which generates a design 

with no double lines and a minimal number of triangles. 

Of course, the algorithm might list other new rows as well: 

for example, changing slightly the example we have discussed, if we 

use the algorithm to list extensions of the array 

0000 
0125 

(with s = 8) , then it gives six rows, the first two of which have 

tThi s  point shows how constraint (b) (2) operates in essentially the 
same way as the mechanism of the double-line algorithm, and so 
makes it possible to describe this triangle algorithm as a 
refinement of that earlier one - as we did on page 211. 
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3 equalities like (5.3), and the remaining four have 2. That this 

sort of thing happens is one of the weaknesses of our theory, and 

is due to the rather heuristic approach which we have adopted to 

finding the minimal number of triangles that must occur. If, in 

contrast, we could devise a way of predicting exactly what this 

minimum will be, then we could eliminate superfluous listing such 

as this: we would, simply, set the threshold r to this minimum at 

the beginning and leave it at that value throughout. 

However, in the absence of being able to predict this, we 

have been forced to adopt the practice we have outlined: that is, 

of revising the threshold ri after each new design is found. The 

mechanism of the rest of the algorithm will, we hope, lead fairly 

rapidly, in general, to r being reduced to the minimum. 

In any case, the algorithm as it stands does seem to offer 

useful savings in time over all the other methods which we have 

proposed. Table 5 (page 249) gives some examples of timings (in 

seconds) on the EMITS 2980 computer at Edinburgh University. The 

comparison we make here is between the time taken by the triangle 

algorithm (column 4), and the time taken by the modified double-

line algorithm (column 5). (See footnote on page 231.) Columns 

one and two give the values of s and k respectively, and column 3 

gives the second row of the array which is to be extended to 

three rows. (The first row of this array is, as always, taken to 

consist entirely of zeroes.) 

That most of the savings shown by this Table are due to the 

more efficient mechanism of the triangle algorithm can be 
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illustrated by comparing 

un-modified, double-line 

instance, in the case of 

double-line algorithm tal 

modification we proposed 

contrast to the triangle 

also the time taken by the full, 

algorithm, as expounded in 5.2. For 

the last example in the Table, the full 

es 12.60 seconds, and so the simple 

on page 231 saves only 1.18 seconds, in 

algorithm which saves 11.17 seconds. 

TABLE 5 

Comparison of computer timings (in seconds) for triangle 

algorithm and modified double-line algorithm 

Triangle Modified 

algorithm double-line 

$ k Array to be extended algorithm 

30 4 0 1 2 5 10.26 158.12 

20 7 0 1 3 7 11 19 13 87.65 > 7200 

20 6 0 1 2 5 7 11 3.16 6904.58 

12 6 0 1 2 5 7 11 11.94 109.36 

12 6 0 1 3 5 7 9 18.52 109.21 

11 5 0 1 3 5 2 1.43 11.42 

Of course, the speed of operation of the triangle algorithm 

is of more than purely formal interest. The whole purpose of the 

algorithms we have described in this Chapter is to help in the 

search for efficient a designs by reducing the amount of fruitless 

searching that has to be carried out. Because it makes 

significant gains in this respect, the triangle algorithm allows, 

for example, a complete search of all reasonably good three- 

replicate designs for the values of s and k in the ARCUS catalogue. 
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We have used the algorithm to search for extensions of pairs of 

rows 0 and 1 as given in the catalogue: that is, in each case to 

search for a third row which generates a design that has a higher 

value of the harmonic mean efficiency factor than the one listed. 

In twenty cases (out of the forty-nine in the catalogue), we have 

been able to find a better third row by this method: the 

absolute improvements range from .00004463 to .00168974, and the 

relative improvements from .00559061% to .21527135%. For full 

details of this, see Appendix 2. 

5.4 Algorithm using the graphical criterion C4 : the square 

algorithm 

The triangle algorithm which we presented in the last Section 

is restricted to designs in three replicates. In principle, it 

could be extended - at the expense of much greater complexity - to 

constructing designs with more than three replicates, using the 

theory we expounded in 4.2.2 for enumerating triangles in general 

ci.(0,1) designs. However, the one case where the graphical criterion 

cannot be put to use is in helping to construct c(0,1) designs 

that have only two replicates: as we observed earlier, the number 

of triangles in these designs 15 simply a function of s andk,. 

and so the -C3- criterionis of little use in assessing their 

efficiency. So, to develop a refinement of the double-line 

algorithm that can be used for constructing efficient two-replicate 

designs, we have to turn to the next graphical criterion, namely 

In this Section 5.4, we describe an algorithm which invokes 
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that criterion: it constructs two-replicate ct(0,1) designs which 

have a minimal number of squares in their variety concurrence 

graphs. This algorithm will be called the square algorithm. 

The theory which we use comes, again, from Chapter 4: 

specifically, the formulas for calculating the number of squares in 

two-replicate a(O,l) designs (which we summarised on pages 170 and 

171). In this sense, the square algorithm is analogous to the 

triangle algorithm: it builds up second rows of the generating 

array a by using these formulas as a guide in the choice of the 

individual elements of that row. (The first row is, as always, 

postulated to consist entirely of zeroes.) There are, however, two 

important differences in our approach here which distinguish it 

from the one we adopted in Section 5.3. In the first place, we 

were not able to predict in advance for the triangle algorithm the 

minimal number of triangles that would occur. Here, in contrast, 

we can be more succussful in calculating the number of squares 

which the best designs will contain - by using the material in 

Section 4.4.3. There, we derived a lower bound L 4  for the number 

of squares in two-replicate a(0,1) designs, and we observed that 

in most cases we have looked at, the lower bound is attained by 

the best designs. On the strength of these observations, it would 

seem likely to be worthwhile to develop an algorithm that will list 

only those designs which have this minimum number L 4  of squares 

- and this is what we do in the square algorithm. In other words, 

the approach we adopt for this algorithm is less heuristic than the 

one we adopted for the triangle algorithm. 
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There is, also, a further important difference between the 

square algorithm and the triangle algorithm. This difference 

concerns the assumptions on which they are based. It will be 

recalled that the triangle algorithm is founded on a conjecture 

about the desirability of minimising the number of triangles: 

namely, that the best ct(0,1) design will always be amongst those 

which have a minimal number of triangles. Valid as we would argue 

this conjecture to be, it is related to the assumptions of the 

double-line algorithm only through the theory of Chapter 2, and, in 

consequence, requires (as we mentioned on page 231) to be treated 

with care until it has been more thoroughly investigated. 

The square algorithm, on the other hand, does not require any 

significant extension of the assumptions which underlay the double-

line algorithm. The conjecture on which the square algorithm is 

based concerns the desirability of minimising the number of squares 

in a two-replicate c(O,l) design: to be precise, it asserts that 

the best two-replicate a(O,l) design will always be found amongst 

those which have a minimal number of squares. Now, this conjecture 

is (as we observed in 4.4.3) related, through the contraction of 

the two-replicate design, to a conjecture closely analogous to that 

which underlay the double-line algorithm: namely, that the best 

cyclic designs have a minimal number of circuits of length two. 

The double-line algorithm, it will be recalled, is based on the 

conjecture that the best c designs have a minimal number of circuits 

of length two, and both these conjectures are special cases of the 

widely accepted general conjecture that all A-optimal designs have 
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a minimal number of circuits of length two ( - widely accepted in 

the equivalent form, that is, which asserts that all A-optimal 

designs are i-optimal). In this sense, therefore, the square 

algorithm involves assumptions that are no wider than those 

underlying the double-line algorithm. Consequently, we would 

recommend for the square algorithm and two-replicate designs what 

we were as yet reluctant (page 231) to recommend for the triangle 

algorithm and three-replicate designs: namely, that the square 

algorithm should supersede the double-line algorithm (and all other 

algorithms based on the S-criterion) in the search for A-optimal 

two-replicate designs. 

Of course, as before with the C 3-criterion (page 231), one way 

of using the ç-criterion would be to calculate the number of 

squares in each two-replicate design. listed by the double-line 

algorithm, and then to discard those designs in which that number 

was greater than L4 . However, again as before, that is not the 

best way of using the criterion. Just as, earlier, we employed 

the formulas for numbers of triangles to devise rules for choosing 

the elements of the new row one by one, so, here, we do likewise 

with the formulas for the number of squares. First of all, we 

describe how the formulas can be used as the basis of the algorithm, 

and then we illustrate with an example how this works out in 

practice. 

In Section 4.4.3, we found that the total number of squares in 

a two-replicate c(0,1) design is: 
S-1 

= 2k2s(k - 1) 2  + 2s E H(x) 2  , 
x=1 

I 
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where H(x) is the number of times the residue x occurs in the array 

G01  (whose (i01 	th entry is 	 We subsequently showed 

that a design would have the minimum number L of squares whenever 

these quantities H(x) differed by at most one, and that this would 

happen if p of them had the value 6 + 1, and $ - 1 - p of them had 

the value 6 (p and 6 being the unique integers satisfying: 

k(k - 1) = S(s - 1) + p, 0 <p <5 - 2). 

That is, the minimum would be attained if p of the residues occurred 

6 + 1 times among the k(k - 1) off-diagonal entries of the array 

G01 , and s - 1 - p of them occurred 6 times. 

These observations form the theoretical background of the 

square algorithm. Postulating that the first of the two rows of 

the generating array a is to consist of zeroes, and that the entry 

io 
is also to be zero, this algorithm adds, one by one, the 

elements a 
ij  (1 < 

j < k-i) in such a way that the completed row 

both generates a design with no double lines, and also yields 

quantities 11(x) that differ by at most one. 

The first of these requirements is incorporated easily: to 

avoid double lines, it is necessary and sufficient that the entries 

lj (1 5 i < k-i) be distinct and non-zero. The second requirement, 

also, gives rise to constraints operating on the choices of the 

individual entries a li . If we denote by G 	 the (j + l)x(j + 1) 
01 

sub-array of G01  determined by the first j + 1 entries c, all'" 

T l• of the new row, then necessary and sufficient conditions 

for the H(x) to differ by at most one are on the one hand that no 

t 	 (k-l) 
In this notation, G01  is, of course, the same as G01 
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residue x should appear more than 6 + 1 times in any of the sub- 

(j) arrays 	and on the other hand that no more than p of the
01 

residues x should appear as many as 6 + 1-times in any of the sub-

arrays. 

There is, moreover, one further constraint which can be 

introduced, in order to reduce the amount of searching that the 

algorithm must carry out: we can stipulate that the entries of the 

added row be in ascending order of magnitude from the left. This 

constraint leads to no.loss of thoroughness in the search, since 

every two-replicate c design is isomorphic to one in which this is 

satisfied. (See Patterson and Williams (1976b), page 86: 

permutation of the columns of the generating array yields an 

isomorphic design.) 

In summary, therefore, the square algorithm is essentially a 

tree search (as were the double-line algorithm and the triangle 

algorithm), choosing, sequentially, entries a,, of the new row so 

as to satisfy the following four constraints: 

the a1j  are distinct and non-zero; 

the a1  are in ascending order of magnitude from the left; 

no residue x appears more than 6 + 1 times in G; 
Ol 

(4) no more than p of the residues x appear as many as 6 + 1 

times in Ol 

(It will be useful in practice to notice that constraints (1) and 

(2) together have the consequence that a j  must not exceed S k 4 i 

(for 1 < j < k-i), since the k - 1 - j entries to the right of a1 
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must be distinct (condition (1)), and greater than a 1j (condition 

(2)).) 

Finally in this Section 5.4 we illustrate the operation of the 

square algorithm by means of an example. Consider the problem of 

listing efficient two-replicate c(O,l) designs for block size 4 and 

for 8 blocks in each replicate. First of all, the algorithm 

calculates the values of S and p: k(k - 1) is 12 and s - 1 is 7. 

12 
So 6 is the integer part of - , which is 1, and p is the remainder, 

which is 5. So the minimum value of the sum E H(x) 2  is 
x= 1 

p(ô + 1)2 + ( S 	p)6 2  = 22, and hence the minimum number of 

squares is L4  = 2k2s(k - 1) 2  + 2sx22 = 2656. 

So for a design to have this minimum number of squares, it 

is necessary that five of the quantities H(x). have the value 2, and 

that two of them have the value 1. That is, it is necessary that 

five of the residues occur among the off-diagonal entries of G 01 

twice, and that two of them occur once. 

Step (1) 

Only constraints (1) and (2) operate at this Step. 

Choose a not equal to zero, and, as we noted above,
11  

not greater than s k - 1 = 5. So c 11  must lie in the 

set {l, 2, 3, 4, 51 . As an example, consider what 

happens when we choose a to be 1.
11 

Form the array G: it is: 
01 

01 

0 	07 

1 	10 
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Step (2) 

To satisfy constraints (1) and (2), a 
12 
 must be chosen 

greater than 1, but not greater than s - k 4- 2 = 6. None 

of these choices violates constraints (3) and M. 

Continuing with the example, we choose a 12 = 2. 

Form the array 
01 

012 

0 076 

1 107 

2 210. 

Step (3) 

To satisfy the constraints (1) and (2), we must choose a 13 

greater than 2, and not greater than s k 4- 3 = 7; that is, in the 

set {3, 4, 5, 6, 71 . Not all of these choices satisfy constraints 

(3) and (4). For example, if we were to choose a equal to 3,13 

then the residue 1 would appear in the array G 01  three times. 

However, the choice a = 4 does satisfy the constraints: G is
13 

then: 

0124 

0 0764 

1 1075 

2 2106 

4 1 	4 320 

The numbers of times the various residues occur among the off-

diagonal entries of this array are as follows: 

	

x 	1234567 

	

H(x) 	2 2 12 122. 
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s-i 
So, as anticipated, the sum E H(x) 2  equals 22, and so the design 

x=l 
has the minimal number 2656 of squares. (As a matter of fact, this 

design is the best on the h-criterion as well.) 
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rr.rrrP 

THE ESTIMATION OF DIFFERENCES BETWEEN VARIETY EFFECTS 

6.1 Introduction 

In this final Chapter, we return to an aspect of the background 

of the graphical criteria which we left uninvestigated in Chapter 2. 

It will be recalled that the introductory, intuitive, motivation 

for these criteria (which we presented in 2.2) rested on the link 

between paths in the variety concurrence graph and the precision 

with which the design estimates the difference between variety 

effects: we explained how each path joining the varieties i and j 

gives rise to an unbiased estimator of the difference between their 

effects, and we suggested on the strength of this that a design 

with a large number of such paths would tend to provide a lot of 

information about this difference, This suggestion led us to the 

graphical criteria. We then went on to establish them on a firmer 

theoretical basis which was entirely independent, in fact, of their 

heuristic origins in that suggestion. It is to the validity and 

implications of the suggestion that we now turn. Of course, 

precisely because the criteria were subsequently established on a 

basis that was independent of the suggestion, the material in this 

Chapter is not directly relevant to what we have been discussing 

in Chapters 2, 3, 4 and 5. However, the link between paths and 

the estimation of variety differences is interesting in its own 

right, providing, as it does, yet another illustration of the use 

of graph theory in elucidating important features of the design 
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of experiments. Furthermore, it will emerge (at the end of 6.2.2) 

that our investigations here yield an extra argument in favour of 

the graphical criteria. 

6.2 Paths and variances 

6.2.1 The importance of differences 

That the capacity of a design to estimate differences between 

variety effects is important is a consequence, quite simply, of the 

frequency with which this is one of the principal purposes of the 

experiment. In trials for the National and Recommended Lists 

of cereal varieties for example, the experimenter will want to 

know whether the new varieties are giving yields that are 

significantly better than the yields of varieties already on the 

Lists. Testing this will require the separate comparisons of each 

of the new varieties with each of the old ones; that is, the 

estimation of differences between the effects of pairs of varieties, 

one new and one old. 

There are two properties required of a design in order for it 

to provide useful information on differences. Although we will 

only be concerned with one of them here, they both have 

interpretations in terms of graph theory. 

The first requirement is that each difference should be 

estimable. Now, as has often been pointed out elsewhere, a 

necessary and sufficient condition for this is that the design 

should be connected, in the sense defined by Bose (1947). But, as 

1•See, for example, Patterson and Silvey (1980), page 220. 
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we have already observed in 1.4.3(a), this is equivalent to 

requiring that the design graph should be connected in the graph 

theory sense. We do not pursue this further here; but, as we also 

mentioned in 1.4.3(a), it seems likely that graph theory techniques 

could prove useful at this most basic level of ensuring that designs 

are connected. 

What will concern us is the second requirement: namely, that 

the estimators of the differences between variety effects should 

have low variance. Our exposition will be largely of a theoretical 

and explanatory nature, elucidating the way in which the magnitudes 

of these variances are related to the numbers of paths - and also 

circuits - in the variety concurrence graph. Nevertheless, out of 

this will emerge what we will recommend as a practically useful 

result: we will show, in 6.3.2, that the theory we develop in this 

Chapter can be used to devise rules for the efficient allocation of 

control varieties. These rules will be seen to be at least as good 

as those proposed hitherto, and we will describe an example in 

which they are actually better. 

6.2.2 The variance of differences between variety effects 

It is intuitively reasonable, and, moreover, in conformity 

with accepted statistical practice, to measure the amount of 

information about a variety difference by the inverse of the 

variance of its best estimator. What we will show is that these 

variances are determined by numbers of paths and circuits in the 

variety concurrence graph. As will become clear, the development 
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is similar to that of Section 2.3, and, indeed, a number of results 

established there will be of use here. 

First, we will outline 'briefly some standard results on the 

variances of differences. Recall that the statistical model is: 

y13.. = 
 1 

where p is the overall mean, t. is 
1 

the effect of block j, and the e. 
13 

with expected value 0 and variance 

3 
	e.

13 	
, 	 (6.1) 

the effect of variety i, . is 
3 

are independent normal variables 

Then the normal equations 

for estimating the variety effects r, subject to the side condition 

T 
1 t = 0, are: 

where: 

(6.2) 

C = ri _T.  

It follows from this that if y is the vector of a contrast - 

that is, if 1T1 =0 - then the quantity = T is estimable', with 

estimator = T which has variance V(i) = T c 	a
2 .(C could 

be any reflexive generalised inverse of C, but we will continue 

to assume it is the one we defined in 2.3.1 (page 56): that is, 

C = (C + r3)
1 . )t 

Now, the difference between the effects of the varieties i and 

j is T i 
 - r.

J 
 , which we will represent by 	, where y. ,  is the 

- 	 ' 	 .1--i 

vXl vector with entry i equal to 1, entry j equal to -1, and all 

other entries equal to 0. So this is a contrast, is therefore 

estimable, and in consequence has variance Y . 
 C Y. .02. Expanding 

-13 	-13 

tThe theory behind all this can be found in, for example, John 
(1971). 
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this quantity, we find that it equals a 2  multiplied by: 

	

V. 	= 	(C).. + (C).. - 2(C) 	. 	 (6.3) 
13 	 11 	 JJ 	ij 

Our next step is to express this equation in terms of the variety 

adjacency matrix A. It was shown in 2.3 that if C = .(C + 

then we get the following expression for rC in terms of A: 
CO 	n 	 n 

rC = 1+ E E 
n+l 

	

nl h=O kn 	r 

Inserting this in equation (6.3) gives: 

	

CO 	n 
V.. = 	+ S 	S 	

- 	I ((Ar') 	+ (Ah) 	- 2(Ah) 	) , (6.4) 
13 

	

h+1 	ii 	jj 	ij r 	 n 
n4 h 0 k r 

and so we have indeed derived a relationship between the variance 

of the difference and numbers of paths and circuits in the variety 

concurrence graph. Notice, in particular, that the variance V.. 0 2  
13 

is smallest when the quantities (Ar').. + (Ar') 33 .. - 2 (Ah)
1
.  .3 - which 

13.  

we will call q(i f  j) - are smallest. And minimising this quantity 

is associated with, on the one hand, increasing the number of i - j 

paths of length h (as we anticipated in the suggestion we made in 

Section 2.2, and which we referred to again on page 259), and, on 

the other hand, decreasing the numbers of circuits which start at 

i and j. This observation indicates a further important aspect 

of the graphical criteria. Not only are they concerned with some 

overall, average, quality of the design (in the way the A-criterion 

is, for example); they also are linked to the precision with which 

the individual variety differences are estimated. That is, the 

graphical criteria will tend both to increase the number of i - i 

paths of length h (as pointed out in 2.2), and also to decrease the 

numbers of circuits of length h starting at i and j (insofar as 
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they decrease the total number of circuits). In other words, we 

might expect that minimising the quantity C will tend to minimise 

all the quantities q (i s  j), and so to maximise the precision with 

which the design estimates each of the individual variety 

differences. 

This, then, is a further argument in favour of the :graphical 

criteria, since the criteria currently in use are not linked thus 

to the variances with which individual variety differences are 

estimated; they are linked only to some overall average of these 

variances. 

6.3 Applications 

We can now use the expression (6.4) to examine some of the 

questions which arise from the general connection between paths and 

variances which we outlined in Section 2.2. To be precise, we will 

investigate the following points: 

6.3.1 Any i - j path - of whatever length- yields an 

unbiased estimator of T. - T. , and the least squares 
1 	J 

estimate provided by the design as a whole represents, 

in a sense, a weighted combination of these paths. 

What is the relative significance in this least squares 

estimate of i - j paths of different lengths, and what 

is the precise role of circuits? 

6.3.2 Suppose that the experiment is to incorporate control 

varieties. The differences between these varieties and 

all the rest will, therefore, be of especial interest. 
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How should we allocate the controls in order to 

maximise the information on these differences? 

6.3.1 Relative importance of paths of different lengths 

First, how relatively important are paths of different lengths? 

Now, in a general sense, shorter paths give rise to estimators with 

lower variances. To explain this, we will look at an-example. 

Suppose that the variety concurrence graph contains the following 

configuration as a subgraph: 

0________1 

where the line joining the points 0 and 1 corresponds to concurrence 

in block B0 , the line joining 1 and 2 to concurrence in block B 1 , 

and the line joining 2 and 0 to concurrence in B 2 . Thus the 

configuration can be depicted as: 

0. .l .  

So, amongst the plots of the design there is one containing the 

variety 0 in block 	having in consequence a yield y. Similarly 

there are yields y02 , y10 , y11,  y21  and y22 . The triangle gives 

two unbiased estimators, 	and l' 
 of the difference i.i = 

since it provides two paths joining the varieties 0 and 1. One of 

these paths is simply the line 0 - 1, and so, following the 

development in 2.2, the corresponding estimator is: 

= y10 - YOO . 	 (6.5) 

The other path consists of the two lines 0 - 2 and 2 - 1, and so 
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the estimator is: 

=Y22 - 	+ 	- 	• 	 (6.6) 

The path which yielded the estimator 	is shorter than the path 

which yielded &J , and this is directly reflected in the fact that 

has the smaller variance: since the yields y.. are assumed under 

the model (6.1) to be uncorrelated, the variances of the two 

estimators are: 

Var(i 0) = 2 c2 ; 	 (6.7) 

Var(41) = 4c 2 	 (6.8) 

In fact, it is straightforward to show in general that an i - j 

path of length m gives rise to an estimator of T. -T with variance 

2mc2 (with one important proviso: if any y.. appears more than once 

with the same sign, then the variance is obviously greater than 

this) 

Of course, this rather simplistic approach to estimating the 

difference T. 2. - T. J obscures some of the complexities of the least 

squares estimates provided by the design taken as a whole. Most 

obviously, it ignores the contribution from circuits in equation 

- 	(6.4). Furthermore, by concentrating on comparing single plots 

containing the two varieties, it fails to allow for the impact of 

replication; and it is precisely the purpose of replication to 

overcome some of the variability of single observations by comparing 

instead variety means. 

It is interesting to note that this result holds even if the 
model incorporates recovery of interblock information, for, in 
calculating the variance of the estimators, the appearances of the 
intrablock correlation a2  cancel each other out in the same way as 
do the block effects. 
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Nevertheless, the considerations exemplified above do suggest 

why we might expect that it would be desirable for varieties to be 

joined by paths that are as short as possible. 

Now, these heuristic arguments can be given a firmer 

mathematical foundation by means of equation (6.4). For that 

equation enables us to evaluate exactly the importance of individual 

paths and circuits. Thus, the contribution of an i - j path of 

length h > 1 to the variance v• . 	of the difference r.- t.is the 

coefficient which multiplies (Ah).. in (6.4), and this is: 

- 

(arguing as in 2.4.1(a)). Similarly, the contribution of a circuit 

of length h starting at i, or of one starting at j, is: 

k 
h+l 	h+l 

r (k 	1) 

Hence, paths of length h - 1 are r(k - 1) times more important 

in determining the pattern of the variances than are paths of length 

h. Likewise for circuits. Of course, this does not mean that paths 

and circuits of length h cannot be outweighed by paths and circuits 

of lengths greater than h. Indeed, we will describe later an 

example in which this happens. (See Example (2b).) Nevertheless, 

J. 

'One important point about this should be emphasised, analogous to 
a point we made earlier - page 66 - at a similar stage in the 
development of the graphical criteria. Although we have isolated 
the contribution to Vij made by paths and circuits of each length h, 
it is not in general true that the infinite sum on the right-hand 
side of equation (6.4) can be separated into three components, one 
each for (Ah),  (A1 '), and (A"). The convergence of this sum 
depends on the way its terms are arranged, as the following example 
for v=b=r=k=2 shows: 01 

01 
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the above discussion does suggest that, in a general sense, what 

matter in determining the pattern of the variances are paths and 

circuits of shorter lengths. Again, therefore, we have found that 

important statistical features of the design are reflected in 

certain easily conceptualised aspects of the variety concurrence 

graph. 

As a preliminary clarification of these observations, we will 

now consider the first few values of h on the right-hand side of 

the equation (6.4): h = 0, 1, and 2. Subsequently, we will examine 

some specific examples. 

For h equal to 0, the total contribution is 
CO 

= 	i. I 	(1 + 1) 
iJ 	n=1k1 r 0 

2 
= r(k - l) ' 

which is invariant over all i and j, and therefore is not 

particularly informative. However, it does already indicate the 

importance of the replication number r: V.. 
(0)  decreases as r 

increases. 

For h equal to 1, we get a rather more interesting result. 

The contribution here is: 

= 	
(fl) 

(-2a. .) 
iJ 	n=lkr r2 1 	ij 

= 	 -a.. 
r2 (k - 1)2 iJ 

Thus, V9 varies in a reverse relationship with the number of 
ij 

times that i and j concur. This is exactly what is usually assumed 
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in practice for the variance V . 
1 J 

The case of h equal to 2 is the first one where circuits start 

to play a role. Here, the contribution is: 

V 	
= 	k 	

((A2 ).. + (A2 ).. - 2(A2 )..) 
13 	

r 3 (k - 1) 3 	11 	 33 	13  

	

If all the diagonal elements (A 2 ) 	are the same, then, again, the
uu 

only quantity that matters is the number of i - j paths of length 

two. This will happen in, for example, a design with no double 

lines (when all the diagonal elements are r(k - 1)), or in any 

cyclic design. To illustrate these points more concretely, we will 

now discuss a number of specific examples. 

Example (1) 

The first example concerns cyclic designs. One of the 

interesting properties of cyclic designs is that the number of 

circuits which start at each of the points is the same. (We have 

previously noticed this in Chapter 3: page 100. The number of 

these circuits of length h is given by the quantity d   on page 94.) 

So, for a cyclic design, the variance of the variety difference 

- r. is, by equation (6.4) 

00 	n 
V.. 	= 	+ 2 	E 	Z 	 () (d - (Ah)..) . 	(6.9) 

nlhOk 	r 	 -' 

For a given cyclic design, the only variable quantities on the 

right-hand side of the equation (6.9) are the numbers of i - j 

paths of the different lengths h: circuits, therefore, do not enter 

tsee , for example, Patterson, Williams and Hunter (1978), page 398. 
Henceforth in this Chapter we will suppress the constant a2. 
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into comparisons between variances of these differences. 

The example we will look at is for 10 varieties in 10 blocks 

of size 4, with initial block {o, 1, 3, 8} . We will be interested 

in the pattern of variances of differences with the variety 0; that 

is, the variances of quantities T. - T. The Table 6 below lists 

in its first column the distinct variances which occur for 

estimating these differences. In column two are the varieties j 

which give rise to these variances. In columns three and four are 

the numbers of j - 0 paths of lenghts, respectively, 1 and 2. 

Table 6 

Cyclic design for 10 varieties in 10 blocks generated by {0,1,3,8). 

Comparison of variances of differences T. - T0  with 

numbers of j - 0 paths of lengths 1 and 2. 

Variance of 	Variety 	 Numbers of j - 0 paths of: 

- 	 j 	 length 1 	length 2 

.5773 5 2 16 

.5907 2, 8 2 13 

.5935 3, 7 2 12 

.6542 1, 9 1 12 

.6956 4, 6 0 16 

This Table reveals how the pattern of the variances is 

reflected by the pattern of paths in what can be called a reverse 

lexicographic fashion. Thus, the pattern of paths of length 1 is 

the reverse of the pattern of the variances. Then, among cases 
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where there are the same number of j - 0 paths of length 1, the 

pattern of variances is reflected by the pattern of paths of length 

2 (again in reverse order). That the pattern of paths is important 

in a lexicographic way is the consequence of the fact that paths of 

length h - 1 count for more than paths of length h. Thus, for 

example, there are sixteen 4 - 0 paths of length 2, and only twelve 

1 - 0 paths of length 2, yet the variance V10  is smaller than the 

variance V40 : the four extra 4 - 0 paths of length 2 are not enough 

to compensate for the fact that there are no 4 - 0 paths of length 

1 while there is one 1 - 0 path of length 1; such compensation 

would require (by the theory on page 267) lxr(k - 1) = 9 extra 

paths of length 2. 

Examples 2) 

However, in general, the number of circuits starting at 

variety j is not the same for each j. So, if we are interested in 

comparing the variances T. -  t for a given design, then the 

equation (6.4) looks like: 

	

CO 	n 
V 	= 	+z 	E•_ 	

1 	n ( (A  h ) 	+ (A  h) 	- 2(Ah) 	) . (6.10). 
h+l ' h 	00 	JJ 	Oj Oj 	r 	 n 

nlh0k r 

For a given design, the quantity which varies in this is q (O l  j) 

(which we defined on page 263). Now, since q(O, 	is 

(Ah) 	+ 
00 	

(Ahj 
j

).. - 2 (Ah).. 

the numbers of j - 0 paths alone do not fully account for the 

	

pattern of the variances of the differences T - 	
circuits of 

length h starting at j are relevant as well. Nevertheless, for 
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differences involving a fixed variety (here 0), paths are twice as 

important as circuits. Further, in designs with no double lines, 

(A 2 ).. = r(k - 1) for each j, and so the pattern of the numbers 
33 	 2 

is the same as the pattern of the numbers of j - 0 paths of length 

2 (but in reverse order). 

We take these remarks into account in the next two examples, 

both of which are c designs. 

Example (2a) 

This is an c(0,1) design for 30 varieties in blocks of size 

5, each variety being replicated 4 times. The generating array is: 

ci. 	= 	00000 
0 1 3 2 4 
05231 
04512 

Then the Table 7 on page 273 records information about paths of 

lengths 1 and 2; since the design has no double lines, this is 

adequate to represent the patterns of the quantities q 1  and q2  

	

(though in reverse order). (In fact, (A 2 ) 	r(k - 1) = 16 for 

each i.) 

Similar remarks can be made about this Table as we made about 

the Table 6. Thus, for example, a great deal of the pattern of 

the variances is reflected lexicographically in the pattern of 

paths of lengths 1 and 2. However, the patterns of paths are not 

as subtle as the variances: for example, 

Var( T 15  - T0) > Var( T 	
- 

t0 )
24 

but 15 and 24 are both joined to 0 by one path of length 1 and 
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Table 7 

cc design for 30 varieties generated by-0 0 0 0 0 
01324 
05231 
04512 

Comparison of variances of differences T. - T0  with 

numbers of j - 0 paths of lengths 1 and 2.. 

Variance of 	Variety 	. 	Numbers of j - 0 paths of: 

T. - 	 j 	 length 1 	length 2 
j 	0 

.60075645 6, 20, 	26 1 9 

.60336062 11, 19 1 8 

.60342262 10, 18 1 8 

.60373264 12, 14 1 8 

.60435268 25, 28 1 8 

.60596478 24 1 7 

.60633681 15, 17 1 7 

.60863095 7, 21 	. 1 6 

.63392857 13 0 12 

.63944692 1, 5 0 10 

.64062500 3 0 10 

.64205109 2, 4 0 9 

.64242312 8, 22, 	27 0 9 

.64502728 9, 23 0 8 

.64763145 29 0 7 

.64955357 16 0 6 

seven paths of length 2. In fact, to match faithfully the pattern 

of the variances, it is necessary to proceed to the next two values 

of h. The quantities q3 , it turns out, almost fully reflect the 
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variances. (For example, q3 (15, 0) = -34, while q 3 (24, 0) = -40.) 

The only exception is the comparison between the pairs {10, 18) and 

{ii, 191 , all of which have q 3  equal to -40. However, the first 

of these pairs have q equal to 240, and the second have q 4  equal 

to 228, which serves to distinguish them in a way that reflects the 

difference in the respective variances lexicographically. 

Again, as in Example (1), extra paths of length 2 are, here, 

never able to compensate for a deficiency of paths of length 1. 

Thus, for example, there are twelve 13 - 0 paths of length 2, and 

only six 21 - 0 paths of length 2, yet T 
13 - 	

has higher variance 

than T - t: the one 21 - 0 path of length 1 is not outweighed by
21 

the six extra 13 - 0 paths of length 2. 

In point of fact, this observation is no accident for designs 

with no double lines: a deficiency of paths of length 1 in such a 

design can never be made good by paths of length 2 alone. We can 

establish this by showing that in any design which has no double 

lines, each pair of varieties are joined by at most r(k- 1) paths 

of length 2. Suppose that this were not the case for some such 

design: that is, suppose that varieties i and j were joined by 

more than r(k - 1) paths of length 2. Now, the valency of the 

point i is exactly r(k - 1). So some pair of these paths would 

have to start with the same line. But, then, since these two 

paths are distinct, they would have to finish with different lines 

(since each contains only two lines). This would imply that there 

would be a pair of points joined by two lines, which would violate 

the condition that the design has no double lines. This 
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contradiction establishes the result. 

Although this result does provide yet further evidence of the 

importance of paths of shorter lengths, it does not establish that 

a deficiency of paths of length 1 cannot be compensated for 

collectively by paths of lengths greater than 1. Nevertheless, we 

have not been able to find an example of a design in which this 

occurs: that is, in all the examples we have analysed, if there are 

more i - j lines than there are i' - j' lines, then Var(t. - T.) is 

strictly less than Var(t., - T.,). Indeed, in nearly every 

design we have looked at (which includes many (0,1) designs and 

all (0,1,2) designs in the ARCUS catalogue of c designs), the first 

value of h for which there is a difference in the quantities 

reflects the pattern of the variances: that is, if q(i, j) equals 

j') for each u < h, and if 	(i ?  i) < 	(i', j'), then 

Var(r 1  . 	
1 

- r.) < Var(T.' 
	J' 

- T i  d, regardless of the relative size of 
3  

(i, i) and q(i', j') for values of u greater than h. We would 

speculate that this will hold in all "reasonable" cases. (Clearly 

this speculation is analogous to, though weaker than, the 

speculation in 2.5 concerning the graphical criteria.) 

tThis result can be extended to show that it for any two points u 
and v there are not more than e lines joining u and v, then for any 
two points i and j, there are at most er1k - l)h-1 i - j paths of 
length h. However, this extension is of limited value because of 
the importance of circuits in the quantities q h . Nevertheless, if 
for each h the number of circuits of length h starting at each i is 
the same (as is the case in, for example, cyclic designs), then this 
extension enables us to show that a deficiency of paths of length h 
cannot be made good by paths of length n alone for any .n greater 
than h. (The proof is by mathematical induction on h.) 
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However, although we have found this to hold in most cases, we 

have been able to construct an example of an a(0,1,2) design in 

which it does not hold. This is the example we describe next. 

Example (2b) 

The example is of an a(0,1,2) design for 24 varieties in 

blocks of size 4, each variety being replicated 3 times. The 

generating array is: 

a = •0 0 0 0 
0512 
0012, 

and s = 6. Obviously this example would not be used in practice.: 

its interest is purely formal, in that it indicates that the 

speculation on the previous page does not hold for all designs. 

(The best listed a(O,l) design for these values of v, r, and k 

does satisfy the speculation.) The variety differences we will 

be interested in here are 121 T0 and 117 - 	
Now, 

Var( 1 21 - To) = 1.1334 and Var( 117 - 	= 1.1468, and so 

Var( 1 21 To) < Var( 1 17 - Ta). Neither variety 21 nor variety 

17 is joined to variety 0 by a. line. However, q 2 (2l, 0) = 24 and 

0) = 22. So q2 (21, 0) > q 2 (l7, 0), and so this is contrary 

to the speculation (with h = 2). 

What in fact happens here is that higher values of h 

compensate for this excess in q2 (2l, 0). The next three values of 

the quantities q are in the following table: 

q3  q4  q5  

21 48 478 2016 

17 54 524 2590 
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For each of these values of h, q (21l 0) < q (17 l  0), and indeed 

the total contribution to the variances of these three quantities 

is enough to make good the effect of the opposite difference in 

the values of q2 : to show this, it is (by equation 6.10)) sufficient 

to show that: 

5 	kq(2l, 0) 
	

5 	kq(l7, .0) 

h=2 rh(k - 1) h+1 < 
	

h=2 r'(k - l) 1  

that is, that: 

0) 
	

0) 

h=2 9h-2 
	h=2 9h-2 

and that this does hold can be shown by simply calculating each of 

these sums. (The left-hand side is 38 and the right-hand side is 

38.022.) 

6.3.2 The incorporation of control varieties 

If the experiment involves control varieties, then the 

differences between them and each of the others will be of 

particular interest So it will be desirable that these differences 

should have low variance. We propose here a set of rules for 

allocating the controls in such a way as to achieve this aim. These 

rules will be seen to be in a sense analogous to the graphical 

criteria of efficiency which we discussed in Chapter 2. They will 

be based (as were the criteria) on certain features of the variety 

concurrence graph, and we will indicate how this basis can be used 

tFor discussion of controls in trials for National and Recommended 
Lists of cereal varieties, see Patterson and Silvey (1980), page 
225. 
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to simplify the application of the rules to a designs: specifically, 

we will show that for c designs the rules lead to an allocation of 

controls that is at least as efficient as the allocation 

recommended in the literature, and we will describe an example in 

which the new allocation is more efficient than the conventional 

one. 

First of all, we introduce some notation in order to make 

the argument clearer. Suppose there are to be c controls, which we 

will refer to collectively as the set K. Then the problem is to 

find a subset K of the varieties which is such that the variances 

of differences between a variety in K and a variety outside it are 

as small as possible. Now, the average of these variances is a 

• 	scalar multiple of the quantity: 

E 	EV. 
icK jK 

which we will for convenience call V(K). So our aim is to 

determine how to choose the subset K so as to minimise this 

quantity V(K). By equation (6.4), V(K) equals 

__ 2c(v-c 	
n 

) 	 1 	1 n 	 h 	h 	h 
+ z 

r 	 n h~lh ( E 	Z 
((A  ) 	+ (A ) 	- 2(A ) 

ii 	ii 	1J 
n=l h=O k r 	iK jK 

To simplify this, we replace the innermost summation by the symbol 

that is, we let 

y 	E 	E C(Ah) . 	+ (A  h) 	- 2(Ah). .) 	 (6.12) 
h 	icK jK 

So: 
n 

+ 2c (v - c) 	E 	 ' V(K) = 	r 	n=lh=Ok r h+lh h  
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Now, arguing as we have done several times before, the 

contribution of y
h 
 to this sum is: 

rh+l(k 	1) h+l h 

In consequence, the terms y h are of steadily decreasing significance 

(by a factor of r(k - 1) each time), in the same way as were the 

numbers of circuits - 	- in Chapter 2. So, following the practice 

we adopted in Chapter 2, we propose here that a reasonable method 

of minimising the quantity V(K) would be to minimise the quantities 

sequentially. In other words: we will find first those subsets 

K which minimise y1 ; then, amongst these, we will find those subsets 

which minimise y2 ; and so on. 

To make this clearer, we will examine in more detail what 

minimising the first few quatitities q entails. 

h= 1 

It turns out that minimising the quantity y 1  is equivalent to 

the conventional and widely accepted rules for allocating controls 

in block designs. (See, for example, Patterson, Williams and 

Hunter (1978), page 397.) We have: 

=E 	E 	(a.. + a 	2a. .) 
icK jK 	JJ 	13 

= -2 E 	E a 
- j i( ,- 	11 

icx(  

Now, 
v-i 

a . = E 	E a. . - E 	E a 
iCK jgK 	icK j=O 13 	icK jcK 13 

= cr(k - 1) - 	E a.. 
13 

icK JcK 
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So, 

Y1 = -2cr(k - 1) + 2 E 	E a. 
1 	 . 

	
13 

icK jcK 

Hence, in order to minimise y1 , we would want to minimise the 

quantity 

a 
1J 

icK jcK 

which is twice the number of times which controls concur together 

in blocks. In other words, we would want to allocate the controls 

to variety labels in such a way that the controls concur with 

each other in blocks as seldom as possible. Thus, again (as 

with the S-criterion in 2.4.3), we have been able to exploit a 

graph theory approach to give a firmer mathematical foundation to 

a standard practice (namely, the method of allocating controls 

advocated by Patterson, Williams and Hunter (1978)). Furthermore, 

this approach indicates how this practice could be generalised, 

for it suggests that, having-minimised y 
1 
 , we should subsequently 

attempt to minimise y 2 . 

h=2 

The quantity y 2  can be simplified as follows. 

y 	= 	E 	E 	((A2 ) . 	+ (A2 ) . 	- 2(A2) . 
2 	cK jK 	

J_J 

= (v-c) I (A2) 	c I (A2 ) . . -. 2 1 	I (A2 ) 
icK 	 jjK 	 icK jK 	

ij 

= (v-c) 1 (A 2 ).. + c(Tr(A 2 ) - I (A2 )..) - 2cr 2 (k-1) 2  
ieK 	

11 	 . 	 11 
icK 

+21 	1 (A2 ). 
1J 

icK JcK 
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= cTr(A 2) - 2cr 2 (k-1) 2 + (v-2c) E (A2).. 
11• 

 + 2 E .Z (A2).. 

	

1EK 	 i 	
13 

cX jEK 

= cTr(A 2) - 2cr2(k-1) 2 + (v-2c+2) E (A2) 11 
 + 2 Z (A 2). 

. . 	13  eK 
ij 

So, for a given design, minimising y 2  is equivalent to 

minimising the final two terms in this expression. In particular, 

if the diagonal elements (A 2).. are all equal (for example, if the 

design is cyclic, or if it has no double lines), then to minimise 

we must minimise: 

E 	(A2).. 
LEK jcK 	

13 

ij 

That is, we must minimise the number of paths of length two which 

join controls to each other. 

In other words, having first listed the ways of allocating 

the controls so that they are joined to each other by as few paths 

of length 1 as possible, we now suggest that the second, subsequent, 

aim should be to allocate them so that they are joined to each 

other by few paths of length two. 

The calculation of the number of such paths for the various 

choices of the set K can, as we might expect, be reduced to fairly 

straightforward algorithms in the case of certain specific series 

of designs. As an illustration, we will consider the application 

to a(0,1) designs in which there are to be fewer than s control 

varieties. (That is, where c < s, s being the number of blocks 

in a replicate.) 

Patterson, Williams and Hunter (1978) recommend that in a 

situation like this the controls should be allocated to the first 
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c variety labels 0, 1......, c-l. This allocation would certainly 

achieve our aim of minimising the quantity y 1 , since these first c 

varieties do not concur with each other in an ci design. However, 

allocating the controls in this way would not necessarily achieve 

our second aim: namely, minimising y2.  What we show here is how 

that second aim might be fulfilled. We will show that it leads to 

a straightforward set of rules for allocating the controls which 

is based on the entries of the generating array ci. (which we will 

assume to be in standard form). 

To simplify matters, we will follow Patterson, Williams and 

Hunter (1978) as far as choosing to allocate the controls to 

variety labels in the first column bf the design: that is, to 

labels in the set Z = { o, 1 ......, s-l}. So our problem is to 

find that subset K of c varieties in Z which minimises y 2 . Since 

the design has no double lines, this means that we should find the 

subset whose members are joined to each other by as few paths of 

length two as possible. 

Consider any subset K = 	0......' 	
consisting of c 

varieties from Z. Then paths of length 2 between two elements of 

K are of the form: 

pp j 

where u is some other variety not necessarily in Z. Suppose that 

u lies in column .j 1  of the design, that the line p. - u corresponds 

to concurrence in block x0  of replicate h0 , and that the line P - U 
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corresponds to concurrence in block x 1  of replicate h1 . Then, since 

varieties p. and p. both occur. in column 0, and since the generating 

array ct is in standard form, we get the following four equations 

(arguing as in Chapter 4 - for example, pages 127 - 129): 

pi 
= X0  

U = j 1s + (x0  4- a. 
h0j 1  

U = j s + (x1  4- a 	) h1j 1  

pi = xi  

It follows from this that: 

P . p. 	= 	a - a. 	. (6.13) 

Conversely, for each equation (6.13) there is exactly one p. - 

path of length 2, since with x0 = p. and x1 = p, the value of 

variety u is fully determined. 

Hence the number of p. - p. paths of length 2 is the same as 

the number of equations (6.13). So the total number of paths of 

length 2 which join two controls to each other is exactly half the 

number of equations like (6.13) (with p. and p. ranging over the 

set K, 0 < h0 , h1  < r-1 (h0  h1), and 0 < j 1  < k-i). The factor 

of half is present because the enumeration of equations (6.13) 

counts each path twice, once for each of its endpoints. 

We can translate this into a simple algorithm as follows. 

Given any a(0,1). design, we first form the r(r - l)xk array H of 

elements a 	 ci 1 	for 0 < h0 , h 1  < r-1 (h0 	h1), and 
oj i 	1J 1  

0 < j1 < k-l. We then choose the c control varieties 
Pu 
 out of the 

set Z so that the values which appear among the resulting 
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differences p. 	p. occur as seldom as possible in the array H. 

For instance, consider the Example (2a) which we discussed 

earlier (page 272): an cz(0,1) design for 30 varieties in blocks of 

size 5, each variety being replicated 4 times. The generating 

array is: 

= 00 000 
01 324 
05 231 
04 5 12, 

and s = 6. Then the array H is contained in the final five columns 

of the following table: 

h0  h1  

0 1 05342 

0 2 01435 

o 3 02154 

1 0 01324 

1 2 02153 

1 3 03412 

2 0 05231 

2 1 04513 

2 3 01325 

3 0 04512 

3 1 03254 

3 2 05341 

The occurrences of the residues 1, 2, 3, 4, and 5 in this array 

are: 

1 	2 	3 	4 	5 

109 	10 	9 	10. 

Suppose now that there are to be 2 control varieties, p 0  and p 1 . 

There are () = 15 possible pairs, but among these only three sets 
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of differences p 	Pi  ? p
1 	p 	occur, namely (5, 11 , {4, 2} 

and (3, 31 . The pair of differences (1, 5) gives 10 + 10 = 20 

equations (6.13) since 1 occurs 10 times in H, as does 5. Similarly, 

the pair {2, 41 gives 9 + 9 = 18 equations (6.13), and the pair 

(3, 31 gives 10 + 10 = 20. So the best choice of two controls 

under our proposed rules is a set which gives rise to differences 

2 and 4. For example, we could allocate the controls to the labels 

0 and 2. 

Now, this conflicts with the choice that would have been made 

if we were to use the rule suggested by Patterson, Williams, and 

Hunter (1978): they would allocate the controls to the labels 0 and 

1. But, in fact, in this case our recommendation is slightly better 

than this conventional recommendation. If the controls are given 

to labels 0 and 1, then the average variance of a d-ifference between 

a control variety and the rest is .62073280, whereas if our 

recommendation is followed and the cotrols given to labels 0 and 2, 

then the average is the slightly smaller .62063979. 

If we apply these proposed rules sequentially, then they will, 

clearly, be at least as good as the rules conventionally in use. 

Minimising the quantity y 1  will, as we explained, lead to our 

allocating the controls in such a way as to minimise the 

concurrences between them. That is the same as spreading them 

throughout the blocks as evenly as possible, and this is, of course, 

the advice given by, for example, Patterson, Williams and Hunter 

(1978). Moreover, subsequently attempting to minimise the quantity 

can lead, as we have just seen in the Example, to some 
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improvement over the allocation that would have been arrived at by 

the conventional recommendations. Of course, the theory on pages 

277 -'281 above offers no conclusive guarantee that the allocation 

which minimises y1  and y2  will also minimise the average variance 

of differences between control varieties and the rest. Nevertheless 

on the strength of that theory, we would speculate that this will 

usually happen in practice. (This speculation can be seen to be 

analogous to the speculation on page 275, and to the conjecture in 

Section 2.5.) So far, we have not found a counterexample to 

this speculation; indeed, the theory on which it is based makes 

clear that it is as reasonable to accept its truth as it is to 

accept the rules conventionally recommended. In the light of 

these considerations, we would suggest that it might be of some 

advantage to experimenters if our rules for allocating controls 

were adopted in practice. 
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CONCLUSION 

A conclusion is, of course, invidious, suggesting, as it does, 

a finality which is quite contrary to the spirit in which we would 

like to end: the whole tenor of this thesis is that it is merely a 

preliminary essay on the areas we have covered. So we will 

confine ourselves to mentioning very briefly the ways in which our 

material could be extended. 

It could be extended, most obviously, by further research into 

the theory and applications of the graphical criteria of efficiency: 

into, for instance, the conjecture in 2.5, and into their use in 

generating efficient cyclic designs. The basis of the criteria in 

the variety concurrence graph will, we would expect, continue to 

permit considerable simplifications. 

But the more important extension* would be in the further and 

broader use of graph theory to illuminate the problems of the 

design of experiments. We have been concerned in this thesis 

mainly with the capacity of graph theory to simplify combinatorial 

complexities; and our material in Chapters 3 and 4 especially 

would indicate that there is, indeed, a great deal of scope for 

this to be done. There is, as well, something which we have not 

looked at very much here: the prospect of using some of the deeper 

theorems of abstract graph theory itself to clarify the structure 

of designs. 

So it does appear likely, we would suggest, that graph theory 
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has the potential to become a highly productive methodology in the 

general investigation of experiment design. 
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APPENDIX 1 

THE CHOICE OF SOLUTION TO THE NORMAL EQUATIONS 

Underlying the theory in Chapter 2 was the solution (2.1) 

to the normal equations for estimating the variety effects subject 

to the side condition 1T = o: 

I = (C+rJ) -1 

It was by expanding the expression (C.+ rJ) 1  as an infinite sum 

of matrices that we established the link between the harmonic mean 

efficiency factor A. and the numbers of circuits in the variety 

concurrence graph. The form of this solution was, therefore, 

crucial to the development of our argument; it was the pivot 

which held together the several aspects of our exposition: the 

mathematical structure of the design, the conceptual framework of 

graph theory, and the statistical purpose of the experiment. It 

also had the incidental advantage (as we noted on page 55) of being 

the solution used by other researchers, such as Pearce and Tocher. 

Beyond these advantages, moreover, lies one further reason for 

choosing this particular solution. This reason concerns the rate 

of convergence of the infinite series (2.4) and (2.5) (the series 

which, of course, also played a central role in our argument). 

Any solution of the normal equations subject to the side condition 

= 0 must be of the form: 

= (C+01) 1c, 

where S is some non-zero real number. We show in this Appendix that 

choosing S = r is sensible if we want the series associated with 
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the infinite expansion of the solution to converge rapidly. 

Now, 

(C+ 03) = r 	 03 

= r (I_NNT + 3) .  
rk 	r 

So: 

(C + 03) 1  = 1(1 - 	+ 	3) 1 
r 	rk 	r 

Arguing as in 2.3.1(a), we can establish that the eigenvalues of 

the matrix 	- 	3 are 1 - 	and 1 - e. (1 < i < v-l). The 
rk 	r 	 r 	 1 	- - 

quantities 1- e. all lie in the interval [0,1). So, provided 

0 < 0 < 2r, all these eigenavalues lie in the interval (-1,1), and 

hence: 

	

- 	+ 0 
J) 

-1 =I + E(!NNT - U J)  fl 

That is, 
00 

r(C + 03)l = 	+ n
T - . 3) fl 

i   

which is analogous to the series numbered (2.4). We will therefore 

call this series here (2.4a). Now, 

1 	
1 v-1 

Tr(r(C + 03) ) = re 	+ E e. 
1 i=l 

which we will label (0). Hence: 

- 

(0) - re- 
Also, 

CO 

-1 	 1 T 8 	n 
Tr(r(C + 03) ) = v + E Tr ((—NN - - 3) ) 

n=1 	
rk 	r 

which we will call (2.5a) (since it is analogous to the series 

(2.5) in the main text). 

	

Define 	= v + n1Tr 	
T - 0 J)n) , so that 
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8(0) 	- 	8(0) as m - 

So it makes sense to choose 0 so as to minimise, if possible, all 

the quantities: 

18m  (0) - 8(0)1 

Now, 
m 	 v-i 

= 	

+ 	

— .)fl 

+ 	
- e 

n=1 	 i=l 
 

and 
CO 	

e
V-1 

8(0) 	=v + 
	

— ..) fl + 

	

— e  

n=l 	 i=l

.)n)  

So: 
CO 	 v-i 

On 	 n 
8(0)— 8° 	= 	E ( (1 — —) + Z (1 - e m 	 .) ) r 	 1 n-m+l 	 i=l 

m+ 1 
v-i (1 — e.) r ;., Om+].  

	

= — c:j -• ---) 	+ E 0 	r 	 e. 
i=1 	1 

It will be convenient to divide the range of 0 into two, so that 

(a) 0 < 1 - - < 1, and (b) -1< 1 - - < 0 

O<l --- < 1 
- 	r 

That is, 0 < 0 < r. Then 8(0) - 8m° > 0, and so to minimise 

this difference, we want to minimise the quantity r -(1 — O 
— m+1 

) 	. By 

considering the first derivative of this expression, we can find 

- 4. I-i. -. minimum 	 -. -' 4.. 3. - 4 	.. 4 	4-- 	 I 	1 - .. c - . 	 i. . 	.. 	£e '.4 4.4.1 the range (, '.1, 1.. J C. t_ U - .L. 

-1< 1--<0 

That is, r < 0 < 2r. Here, we have a slight problem, since 

the expression 8(0) - might be either positive or negative. 

(To be precise, it is positive for m odd, and also for m even if 

0 < 2r - re . 
mm 
 .) However, we still have: 

-  
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til+l 

rO 	m+1 	 1 

< 
i=l 	i 

m+l 
v-i (1 - e.) 

Since E 	 + 0 as m - 	, it still makes sense to 
. 

i=l 	
e 

1 

re  
minimise 	- 1)m+l . Again by considering the first derivative, 

the minimum of this expression for r < e < 2r is attained at 0 =.r. 

So the choice of 0 = r is, in this sense, optimal, in that it 

will tend to maximise the rate of convergence of the series 

(2.4a) and (2.5a). 
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APPENDIX 2 

SOME BETTER THREE—REPLICATE 'ct(O,l) DESIGNS 

In this Appendix we give one small illustration of the results 

that can be achieved when the graphical criteria of efficiency are 

used to help search for efficient designs. 

We mentioned at the end of Section 5.3 that we had used the 

triangle algorithm to improve on certain of the three-replicate 

(O,l) designs that are listed in the ARCUS catalogue. It is these 

improvements that we detail here. We have concentrated on improving 

the third rows of the generating arrays: that is, in each case we 

took the first two rows as given in the catalogue, and then used the 

triangle algorithm to search for a third row that was better than 

the third row listed. That we could do this was, we reiterate, a 

consequence of the savings made possible by the graph theory 

techniques which underlie the algorithm: these techniques permit a 

considerable curtailment of the amount of searching that has to be 

carried out. It seems probable that graph theory could help in a 

similar way in achieving greater improvements by altering the 

second row as well. And it could, more generally, be used to 

devise algorithms for constructing efficient ci. designs with more 

than three replicates, and efficient designs of other types. 

The table which follows lists the 20 improved designs which 

we have found. (In the remaining 29 cases in the catalogue we 

were not able to find any better designs than the ones already 

known.) They are arranged as in the catalogue, according to 
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increasing values of s and k with k changing more rapidly than s. 

In each case, the generating array is given first, at the left-hand 

margin: in fact, only the last two rows and the last k - 1 columns, 

the first row and the first column being assumed to consist of 

zeroes. Then, in column 2 of the table, is the harmonic mean 

efficiency factor of this design, in column 3 is the absolute 

improvement this represents over the best design in the catalogue; 

and in column 4 this improvement is expressed as a percentage 

of the harmonic mean efficiency factor of the design in the 

catalogue. For example, the first design is for s = 10 and k = 5. 

The generating array is: 

00000 
01348 
05 92 1, 

and this has harmonic mean efficiency factor .75731454. The 

catalogued generating array has harmonic mean efficiency factor 

.75716650. The absolute improvement is, therefore, 

.75731454 - .75716650 = .00014804 , 

and this is, as a percentage of the harmonic mean efficiency factor 

in the catalogue, 

• 00014804 X100 
.75716650 

= •01955184. 
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Generating array Harmonic mean Absolute Percentage 

efficiency factor improvement improvement 

(1) (2) (3) (4) 

s=10 k=5 

1 3 	4 	8 .75731454 .00014804 .01955184 

5921 

s = 10 	k = 6 

1 2 	3 	5 6 .79834761 .00004463 .00559061 
49517 

s=10 k=7 

7 6 	9 	2 4 1 .82726784 .00027245 .03294456 
238475 

s=11 k=5 

1 4 	9 	7 .75409153 .00089929 .11939714 

8 2 	6 	10 

s = 11 	k = 6 

1 2 	4 	8 9 .79481871 .00012560 .01580484 

4 6 	9 	7 10 

s=11 k=7 

4 5 	2 	1 6 3 .82417192 .00015464 .01876660 

3 .6 	9 	10 8 7 

s=12 k=5 

3 2 	10 7 .75135796 .00051776 .06895742 

7598 

s =.12 	k = 6 

3 2 	10 7 1 .79200849 .00008914 .01125620 

4 8 	9 	105 

S = 12 	k = 7 

1 7 	9 	8 3 10 .82169780 .00033593 .04089915 

5 6 	3 	10 4 8 
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Generating array Harmonic mean Absolute Percentage 

efficiency factor improvement improvement 

(1) (2) (3) (4) 

s=12 k=8 

2 6 	7 	10 3 5 	4 .84388275 .00014691 .01741185 
4 5 	113 108 1 

s = 13 	k = 4 

1 3 	9 .68331835 .00024538 .03592296 
265 

s = 13 	k = 5 

1 2 	4 	9 .74811319 .00100363 .13433505 
6 10 11 12 

s = 13 	k = 6 

1 3 	9 	4 7 .78981944 .00016945 .02145887 

5 10 12 6 2 

s = 13 	k= 7 

1 3 	9 	12 7 4 .81954858 .00024924 .03042112 
4 11 8 	1 5 10 

s = 14 	k = 4 

1 9 	11 .67957796 .00077505 .11417894 

13 10 5 

s=14 k=5 

1 9 11 2 	 .74589440 

7 4 5 13 

s = 14 k = 6 

1 9 11 2 5 	 .78812133 

3 6 4 101 

s = 14 k = 7 

1 9 11 4 3 5 	.81763004 

6 7 8 10413 

	

.00093852 	.12598330 

	

.00123013 	.15632784 

	

.00028606 	.03499873 



- 297 - 

Generating array 	Harmonic mean 	Absolute 	Percentage 

efficiency factor 	improvement 	improvement 

(1) 	 (2) 	 (3) 	 (4) 

s = 15 k = 5 

1 3 7 13 	 .74354255 
2 9 12 11 

s = 15 k = 6 

1 3 7 13 14 	.78662467 
8 9 10 2 12 

	

.00132177 	.17808313 

	

.00168974 	.21527135 
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