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Abstract 

The current trend in turkey breeding is to maximise meat yield as a response to mar-
ket demands. Although there is evidence that the intense selection for body traits has a 
detrimental effect on the reproductive performance of hens, the degree of the correlated 
responses has not been assessed for modem turkey lines. Furthermore, little is known 
about the longitudinal characteristics of egg laying. The common approach for breeders 
is to use the total egg production over a specified period, which implicitly ignores the 
changes in the underlying physiology of laying. One way of providing more accurate 
modelling might be to account for these changes over time. Therefore, the objective of 
this thesis was to investigate the longitudinal aspect of the genetics of egg laying in two 
heavy female turkeys and explore whether considering time features of laying may im-
prove selection efficiency. The dataset consisted of records from two commercial lines, 
although only one had longitudinal data. The genetic correlation between body weight 
and total egg number was estimated to be -0.7±0.1 and -0.5±0.1 in the two lines studied. 
Both estimates were highly negative and larger in magnitude than in traditional and lighter 
lines, suggesting that the continuous selection for growth hinders genetic progress for egg 
production. Heritability estimates for body weight were high (around 0.4), while being 
lower for total egg number (around 0.2 for egg records on which Box-Cox transformation 
has been applied to reduce their deviation from normality). 

Since heavier birds tended to lay fewer eggs within a specific period, this implied reduced 
rates of lay. In order to explore this consequence of the selection for antagonistic traits, 
a time-to-event trait was formulated that corresponded to the days required for a hen to 
lay 82 eggs (the average egg production in the dataset). It was shown that the Weibull 
distribution could satisfactorily serve as the baseline function under a survival analysis 
context. So, a frailty model was constructed to perform a genetic analysis of the time trait 
and it was found that its heritability estimate was between that for the transformed and 
untransformed total egg number. 

Random regression (RR) models were also considered for the longitudinal analysis of egg 
production. It was shown by cross-validation that these models offered lower prediction 
errors for missing values compared to multi-trait and repeatability models. Furthermore, 
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a second cross-validation strategy between RR models of different polynomial order sug-
gested that the model with second order Legendre polynomials was the most appropriate 
for the specific dataset. Based on this, a liability model was developed under a Bayesian 
approach in order to obtain heritability profiles on a daily basis. There, it was shown in 
greater detail that the genetic variance changed over time: at the onset of laying it was 
high, but it rapidly reduced until reaching a minimum that coincided with the period of 
the production peak, and finally it increased towards the end of the laying period. Genetic 
parameters were estimated for the cumulative production of all subperiods of the laying 
period and used to detect efficient selection windows for which the output of selection 
based on partial records was better compared to the selection for the total egg produc-
tion. It was indicated that periods covering the last month of the laying period appeared 
to be favourable on both the underlying and observed scale. In order to capitalise on the 
changes of genetic variance over time, a bivariate RR model for the monthly egg produc-
tion and body weight was applied to detect periods where the genetic association between 
the traits was weaker than that between body weight and total egg number. The genetic 
correlation estimate tended to vary over time (it ranged from -0.4 to -0.7) but it was not 
possible to identify a laying stage presenting a clear advantage in combining an efficient 
selection for egg production and a moderate correlation with body weight. 

As the genetic covariance was shown to change over time, treating egg production as a dy-
namic trait provided more accurate modelling of the underlying biological mechanisms. 
So, it may be possible to achieve higher selection efficiency when the daily laying records 
are allocated different weights compared to total egg production, in which equal weight 
is given to each day of the laying period. In conclusion, the detailed covariance structure 
obtained on a longitudinal basis can be used to target more effectively the selection pres-
sure on the most informative stages of laying and thus, to maximise the output of breeding 
programmes. 
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CHAPTER 1. INTRODUCTION 
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1.1 General introduction 

Sixty years ago, the world consumption of poultry meat was low, but since the Second 

World War a rapid development has been observed (Taha, 2003). The sector is charac-

terised by a relatively constant annual growth rate (Arthur and Albers, 2003) and only 

recently has progress been slowed down due to the threat of the avian influenza pandemic 

(USDA, 2006). Although the broiler chicken industry dominates the poultry meat output, 

turkey and duck sectors are also significant, particularly in some countries. 

The progress in the productivity of birds is unprecedented (Fairfull et at., 1998). This can 

be attributed to many factors, such as the introduction of improved management methods 

and the development of novel nutrition strategies. Nevertheless, the application of modem 

breeding programmes accounts for 90% of the observed improvement (Reddy, 1996), 

highlighting the importance of well-designed breeding schemes. 

This chapter provides an overview of the recent trends in the turkey industry, examines 

the implications of the breeders' response to market demands to focus more on growth 

traits and illustrates how this results in the reduction of egg numbers and disturbs laying 

dynamics. This was the motive to perform a pilot study on the longitudinal aspects of the 

egg laying in order to seek alternative strategies to improve the current selection program. 

1.2 Trends in turkey breeding 

The supply chain of the poultry sector consists of the primary breeders, the multipliers, the 

growers, the meat processors and the wholesalers/retailers (Figure 1.1). Only a limited 

number of breeding companies possess the breeding stock and perform the genetic im-

provement. The impact of the selection in purebred lines is remarkable, since one breeder 

hen may produce more than 1,500 tonnes of turkey meat at the commercial level. B reed-

ing companies sell day-old poults to the multipliers, which in turn sell the final hybrids 

to the growers. The poultry supply chain is characterised by numerous large vertically 
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MULTIPLIER BREEDERS 
Perform the final cross 
Sell 	the 	commercial 

hybrid poults to growers 

PRIMARY BREEDER 
Set the breeding objectives 
Perform the selection 
Maintain I  for purebred lines 
Sell parent stock to multipliers 

as eggs  

Parent stock 
GROWERS 

Rear turkeys 

L
III meat to processor 

Commercial hybrid 

MEAT PROCESSORS 

The size of round boxes is proportional to the population size. One breeder hen in the "purebred line' 
level produces 1,750,000kg of turkey meat at the commercial level 

Figure 1.1: The supply chain of poultry sector. 

integrated enterprises that buy poults directly from the breeders or multipliers and sell 

processed turkey meat to the market. These key players have established direct commu-

nication with the breeding companies and thus the trends of the market are efficiently 

transferred to the breeding companies, which adapt the selection goals accordingly. 

1.2.1 Market demands and breeding objectives 

A significant shift in consumers' preference has been observed towards low fat and low 

cholesterol foods. Turkey meat, having these attributes, is consistent with modern diets 

and is becoming a more favourable option. Moreover, turkey meat is ideal for further 
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processing. A large part of the total turkey meat production is destined for the food 

manufacturing industry. Therefore, the demand for turkey meat is increasing and the 

sector is rapidly developing, particularly in US (Jones, 2006). 

Body weight constitutes a principal breeding objective in meat-type poultry. It is eas-

ily measured with minimum cost and is highly heritable in poultry (Emmerson, 2003). 

This permits a reliable selection of birds based on their individual performance. Another 

important growth related trait is feed efficiency, which contributes to the reduction of 

the production cost and decreases the environmental impact of intensive farming (Flock, 

1998). However, its recording is expensive and thus, due to resource constraints, only re-

cently it has started to be included in breeding programs in turkeys, in contrast to broiler 

chicken. 

From an economic viewpoint, the breast muscle is the most important part of the car-

cass, because it represents 70% of the total revenue source and it is the most suitable as 

a raw material for the food processing industry. Therefore, the conformation of the bird 

is of paramount importance to breeders in order to maximise the yield of the breast mus-

cle. The selection criteria used to assess the bird capability for breast meat yield include 

phenotypic assessment of the keel and shank length and the width of the breast muscle 

(Buss, 1990) expressed as subjective conformation scores by experienced personnel. All 

these traits are highly heritable (Buss, 1990; LeBihan-Duval et al., 1998) and positively 

correlated with body weight (Wilkiewicz-Wawro et al., 2003). This classification system 

has been proven effective, primarily for fleshing (Emmerson, 2003). Nevertheless, the 

lack of objective measurements increases the variability of commercial lines originating 

from different breeding companies (Nestor et at., 2001). A more direct approach is to in-

corporate information from the carcass composition from half-sibs in the selection index. 

Additionally, measurements on live animals can be taken with ultrasonic devices. The ex-

tra cost from the application of such methods can be justified in broiler breeding, but for 

turkey breeders the cost-benefit ratio may not yet be persuasive, because the turnover of 

this industry is significantly smaller. Nevertheless, obtaining an insight to the body com-

position of breeding hens may provide significant information and this is why recently an 

investment on introducing this technology is under way in turkeys. 
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The breeding objectives include also reproduction traits. Both breeding companies and 

multipliers are interested in the maintenance of a satisfactory egg production in order to 

replace the lines and sustain the efficiency of the production system. Therefore, the traits 

that turkeys are selected for are fertility and hatchablity, as well as the total egg number 

within a defined laying period. 

1.2.2 The breeder response to trends and changes in breeding schemes 

The market demand for heavier birds dictates the need for the breeding companies to meet 

this objective (Douglas, n.d.). This goal appears to be feasible, since the genetic variance 

for growth traits remains high, suggesting that the selection limits have not been reached 

yet for them (Havenstein, 2003). However, changes in the structure of the breeding pro-

grammes may be required in order to achieve a rapid increase in the body weight of the 

commercial hybrid. 

The traditional structure of the breeding programmes involves a number of purebred lines 

that are crossed in order to combine the desirable traits by maximising the benefits from 

the heterosis. An overview of the applied system is given in Figure 1.2. 

The purebred lines remain the property of the breeding company and constitute the nu-

cleus stock in which the genetic selection is performed. They are distinguished in two 

categories, male and female lines. The former, also called sire lines, (A & B in Fig-

ure 1.2), are selected for body weight and body conformation, especially for wide breast 

muscle, and their progeny gives the male for the grandparent stock. The latter, also called 

dam lines, (C & D in Figure 1.2), were tradionally selected for reproductive traits, such 

as the total egg production, and they give the female for the grandparent stock. This 

difference in selection criteria is reflected to their body weight; male lines are heavier 

and larger, and female lines are lighter and smaller in size. The progeny of the purebred 

lines is the great-grandparent stock, which is also selected for the target traits and it is 

used mainly to multiply the line to obtain the population size required to produce the next 

stock. This is the grandparent stock, which is sold by the breeding company to the mul- 
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MALE LINES 	FEMALE LINES 

A B C D 

Pure lines 0 X 	X 	• XØ 0 X 

LU 	 Pure Bred 
Best animals used as parents for pure lines next generation 

Regular animals used as grandparents 

	

A B 	C D 
Gr2ndnarnt 	 :. 

Cross-Bred 

'-\J-day pullets/ 
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Figure 1.2: A simplified breeding scheme. The crosses above the line are performed by 

the primary breeding company and the crosses below the line by commercial multipliers 

(modified from www.hybridturkeys.com). 

tipliers or to the integrated production companies as hatchable eggs or one-day poults. 

These birds, being hybrids, have superior performance for both growth and reproduction 

traits, but they cannot be used to regenerate the original lines, effectively protecting the 

ownership of the elite genetic material of breeding companies (van Arendonk and Bijma, 

2003). Grandparent stock is crossed again to obtain the parent stock (AB and CD). The fi-

nal multiplication gives the commercial hybrids (ABCD) that are distributed to farms for 

growing, slaughtering, processing and consumption. In total, four generations separate 

the purebred lines and the final hybrids. 

This multiplication scheme offers to the breeding companies the flexibility to adapt quickly 

to the market demands by choosing which lines participate in the final crosses. For this 
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reason they maintain several purebred lines that are selected for different breeding objec-

tives. Although the reproductive traits from the female lines are important to multipliers, 

it is the growth traits, inherited from the male lines, that are crucial to growers. Due to 

competition, the challenge for breeders is to achieve a rapid increase in the body weight 

of turkeys. So, it can be inferred that the best strategy to achieve this goal is to put se-

lection pressure for growth not only to the sire but also to the dam line. This change in 

the selection process only recently has been applied. However, this could have several 

implications, which are discussed in the next section. 

1.3 	Implications of selecting for increased body weight 

When extra selection pressure is put on a trait in order to improve productivity, unwanted 

correlated responses in other production traits may occur. The intense directional selec-

tion for body weight and conformation causes modifications to the body composition and 

to the hormonal background of turkeys. The impact of this change is multiple: modern 

broilers and turkeys are known to suffer from skeletal defects, particularly in legs (White-

head et at., 2003); reduced immunological responses (Bayyari et al., 1997) that could 

provide an explanation why heavy lines are more susceptible to diseases such as fowl 

cholera (Li et al., 2001); and decreased adaptability to environmental conditions (Rauw 

et at., 1998). These problems may contribute to the reduced viability that is observed in 

heavy turkeys (Havenstein et at., 2003). The following sections focus on the impact of the 

selection for increased weight on body conformation and how this is related to the meat 

quality and reproductive performance. 

1.3.1 Impact on meat quality and body composition 

Meat quality is a complex trait involving physiological aspects of muscle and fat tissue; 

organoleptic properties, such as the colour and tenderness; and factors that are related 

to the processing capability, such as the water-holding and emulsifying capacity. This 
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section focuses on the impact of selection for growth on muscle and adipose tissues and 

how this relates to the meat quality. It should be mentioned that the majority of the 

published results refer to broiler chicken, so caution is suggested when making inferences 

for turkeys. A comparison of genetic parameter estimates for the same traits in broiler 

chicken (LeBihan-Duval et at., 2001) and turkeys (Remignon and LeBihan-Duval, 2003) 

revealed quantitative differences between the two species. 

There is evidence that selection for body weight affects the morphology of the muscle fi-

bres in turkeys (Swatland, 1989) and increases the levels of plasma creatine kinase, which 

is associated with muscle damage (Wilson et at., 1990; Hocking et at., 1998). These 

muscle abnormalities are more frequent in fast-growing turkeys, as well as the increased 

occurrence of pale, soft and exudative turkey meat (PSE). The latter constitutes a major 

problem for the turkey meat industry, since it may affect as much as 40% of the total 

production destined for processing (Owens et at., 2000). Whereas the causative muta-

tion of PSE meat in pigs has been detected (Otsu et at., 1991), in turkeys the mechanism 

seems not to be the same and contradictory results exist. Fernandez et al. (2001) reported 

that no significant differences in post-mortem metabolism were found between fast and 

slow growing turkey lines. However, reports from long-term selection experiments sug-

gested that a genetic association of PSE occurrence and growth rate is likely (Velleman 

and Nestor, 2004). In conclusion, it appears that selection for rapid growth may increase 

the output of the total meat production, but it has a negative impact on the quality of the 

turkey meat. 

The adipose tissue contributes to the flavour and tenderness of the meat. However, fat 

in excess of requirements decreases the feed efficiency, increases the cost of rearing and 

reduces the processing capacity of the meat, because fatty carcasses are more perishable. 

For these reasons, an indirect selection is applied using the body conformation and feed 

conversion traits to reduce the fat. A direct approach would include ultrasonic measure-

ments on living birds or information from slaughtered half-sibs. Excess fat is stored in the 

abdominal cavity and constitutes an indicator of the overall fat level. Indirect selection for 

growth seems to have conflicting effects on the fat content. On the one hand, the genetic 

correlation between body weight and abdominal fat was estimated to range between 0.2 
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and 0.5 for broiler chicken (Chambers, 1990; LeBihan-Duval et at., 1998, 1999) and to 

be 0.25 in turkeys (Chapuis et at., 1996). On the other hand, breast muscle yield was 

found to be negatively correlated with abdominal fat in broilers, but the association ap-

peared weak, being equal to -0.1 (LeBihan-Duval et at., 1998, 1999; Berri et al., 2001). 

However, another possible factor that may also be involved is the subjective scoring for 

optimum body conformation, given by the breeder. The desirable conformation is to have 

birds not only with wide breast but also with a developed and round rear part, so a selector 

having these criteria may favour birds with increased abdominal fat. In conclusion, it ap-

pears that selection for body weight increases the fat content in heavy turkey lines (Buss, 

1990). 

1.3.2 Impact on reproductive performance 

The reproductive performance represents a combination of a plethora of traits that are af-

fected by both genetical and environmental factors, such as the age of sexual maturation, 

sperm properties, fertility and hatchability. The selection for body weight and confor-

mation causes problems in the reproductive effectiveness of both male and female birds. 

An obvious consequence is that male turkeys are so heavy that natural mating is impos-

sible and thus artificial insemination is essential (Rauw et at., 1998). Furthermore, nega-

tive genetic correlations are observed between semen yield and fertility and body weight 

(Nestor, 1976, 1977b). The effects appear analogous to chicken, so this section provides 

an overview of the implications in relation to the body conformation and composition. 

The selection for wide breast muscle is associated with increased egg production in ducks 

(Farhat et at., 1998). However, selection for low body fat may have the opposite effect. 

Thus, the extreme leaness may result in a delay of sexual maturity, since a critical fat 

content is associated with the initiation of egg production in broilers (Katanbaf et at., 

1989). It should be noted though that the opposite extreme body condition, excessive 

fatness, was also linked to the incidence of reproductive problems, as described below 

(Fairfull et at., 1998). 
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The intense selection for body weight is associated with increased incidence of oviduct 

prolapse (Hocking, 1993). This is a severe failure of the reproductive system that leads to 

culling and can result in losses up to the 10% of the flock (Buchanan et at., 2000a). The 

aetiology remains unknown, although it was postulated that in heavy lines ovulation is 

initiated before the oviduct reaches a mature stage and therefore these hens are susceptible 

to prolapse (Melnychuk et at., 1997). Nevertheless, in later studies it has been suggested 

that prolapse is likely to be physiologically associated with the effect of oestrogen on 

collagen breakdown and an interference of growth factors has been speculated (Buchanan 

et at., 2000a). The latter may suggest a plausible pathway to explain the correlation 

between the selection for increased body weight and prolapse incidences. Tablante et at. 

(2000) associated the obesity with the prolapse and highlighted the negative impact of the 

latter on welfare, since it invokes the vent-pecking form of cannibalism. 

Increased body weight is considered to be a predisposing factor for multiple ovarian hi-

erarchies (Melnychuk et al., 1997; Hocking and Bernard, 1998). Although in a normal 

ovulation cycle only one follicle develops, it is possible that additional follicles grow si-

multaneously. This results in an internal ovulation or double-yolked eggs that cannot be 

hatched (Buchanan et at., 2000b). The impact of photostimulation is believed to medi-

ate the incidence of multiple hierarchies by postponing the initiation of laying (Hocking 

et at., 1988, 1992). This provides additional evidence that rapid growth is associated 

with poor reproductive performance. Furthermore, multiple hierarchies were also linked 

with excessive fat due to long-term selection for body weight at an early age (Hort et at., 

2000), suggesting another underlying mechanism. Growth factors appear to be involved 

in the regulation of follicular development (Decuypere et at., 2002). These factors may 

interfere with regulation of the secretion of reproductive hormones. It was suggested that 

low levels of oestrogen affect the ovarian function and thus are associated with the multi-

ple hierarchies (Buchanan et al., 2002). An additional implication of the increased body 

weight seems to be broodiness, to which heavy turkey lines are also prone (Elhalawani 

and Rosenboim, 1993). 

In conclusion, the increased body weight is associated with a series of linked malfunc-

tions of the reproductive system, which contribute to the poor laying performance of 
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heavy turkey lines. Although the exact mechanisms have not been fully understood, the 

evidence suggests that the selection for rapid growth may lead to multiple ovulation and 

premature initiation of laying, which in turn results in decreased reproductive perfor-

mance. Modern turkey lines have the genetic potential to rapidly gain body weight if fed 

ad libitum, albeit this would be detrimental for their reproductive performance (Kerr et 

at., 2001). It can be postulated that the impact of selection for growth on body composi-

tion and particularly on fat deposits may be significant, perhaps mediated through growth 

factors or other components of the endocrinological system. Nevertheless, further studies 

are required to investigate this hypothesis. 

1.4 	Genetics of egg production and selection for body weight 

One of the most used traits to assess the reproductive performance of hens is the total 

number of eggs laid within a specific period. The reason for its popularity is that total egg 

production is the most obvious trait, offers a summary value and is correlated with other 

important egg-related traits. According to the selection on egg or growth traits, poultry 

industry has specialised in two branches: a laying and a meat sector. The comparison 

between lines in which the emphasis is given either to egg or meat yield is interesting but 

requires caution due to the different genetic backgrounds involved. The same applies also 

for comparisons between species. Nevertheless, the number of published results for the 

genetics of egg production in turkeys is limited. The vast majority of studies have been 

performed on table-egg laying chicken, which hampers the comparison of results. 

A large variability in the heritability estimates of total egg number is observed in turkeys 

(Marks, 1990). Estimates range from 0.02 (Whitson et at., 1944) to 0.61 (McCartney 

et at., 1968). Using these estimates to find a consensus value is not applicable for many 

reasons. First, the majority of the published results refer to analyses performed up to forty 

years ago, using traditional or experimental turkey lines whose genetic background has 

very low similarity to the modern ones. Second, these studies employed classic estimation 

methodology, such as the ANOVA that is not robust with large and unbalanced datasets 
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and to effects of selection, and leads to biased estimates of variance components (Hofer, 

1998; Gianola, 2000). For an historical overview of the estimation methods for genetic 

parameters in poultry see Besbes and Ducrocq (2003). These results are indispensable for 

tracing back the evolution of selection in turkey, but have limited value for the evaluation 

of modern turkey lines, especially for those that have been intensively selected for growth. 

With the exception of those of Chapuis et at. (1996), there are no estimates for the genetic 

parameters of egg production in contemporary turkey lines. In conclusion, the absence of 

up-to-date estimates dictates the need to obtain them for modern lines employing current 

methodology, such as the restricted maximum likelihood framework (REML) that has 

become popular for obtaining point estimates (Szwaczkowski, 2003). 

The situation is analogous for the estimates of the genetic correlation between egg produc-

tion and body weight. Estimates rely heavily on the genetic background and selection his-

tory of the populations examined. Hence, a compilation of older results given by Arthur 

and Abplanalp (1975) on light-type birds suggests a weak correlation of -0.1. However, it 

can be postulated that the genetic gain accumulated after consecutive generations of selec-

tion for body weight strengthens the genetic correlation. Such evidence arises from long 

term selection experiments for either body weight or egg production extending over more 

than thirty generations. Nestor et at. (2000) reviewed the progress made and they con-

cluded that the magnitude of correlation changed along with selection for body weight. 

Since the start of the experiment body weight at sixteen weeks of age doubled and egg 

production reduced significantly, particularly at the first and last ten generations. In con-

trast, in a line selected on a long-term basis for egg production, egg production had al-

most doubled within the experiment period, while body weight had significantly reduced 

(Emmerson et at., 2002). Both experiments suggested that the progress for the selected 

character is constant, while the correlated response for the other one changes over time. 

Results reported not only by Nestor et at. (2000) and Emmerson et at. (2002), but also 

by LeBihan-Duval et at. (1998) lead me to suggest a general form of responses shown in 

Figure 1.3. 

These observations suggest that intense selection for body weight has a detrimental effect 

on egg production. However, the magnitude of the effect for modern heavy-type turkey 
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Figure 1.3: Conceptual diagram showing the changes over time in body weight and egg 

number for a line selected for growth. 

lines that are simultaneously selected for body weight and egg production is not known 

as no data are available. Nestor (1977a) reported that progress in body weight may be 

feasible without a decreased egg production when a selection index is used. However, 

this study referred to a light line that was selected only for nine generations and so, the 

correlation between the two traits was likely to be low, as discussed in the previous para-

graph. Breeders may use a selection index to improve both traits, but it is likely that the 

improvement would decline over time, particularly if the genetic correlation is strong. 

In a tandem selection scheme Nestor (1985) concluded that it was not feasible to main-

tain body weight at the same level and increase egg production after selecting for body 

weight for eleven generations. In conclusion, it can be postulated that the relationship 

between body weight and egg production is dynamic depending heavily on the selection 

history, but in order to evaluate this hypothesis additional results are required from studies 

performed on modern turkey lines. 
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Another reason for studying the association between growth and egg production is the ef-

fects of continuous selection for body weight on the reproductive performance of turkeys. 

As described above, the incidences of multiple hierarchies are increased in heavy turkey 

lines. At the phenotypic level this is translated into a reduced number of consecutive days 

in which a hen lays eggs, resulting in smaller clutches. Thus, irregular ovposition results 

in less eggs laid within the production period. The other negative consequence is that the 

number of hatchable eggs is reduced due to the increased incidence of double-yolked eggs 

and eggs with shell defects. In broiler chicken it was found that defective eggs may ac-

count for the 17% of the total production (van Middelkoop and Siegel, 1976; Anthony et 

at., 1989). This phenomenon is also known as EODES, an acronym for erratic oviposition 

and deffective egg syndrome. 

An additional implication of increased incidence of erratic laying patterns in heavy turkey 

lines is that the prediction of their production capability is hindered. Various mathematical 

models have been suggested to describe the laying curve of hens (for a review of older 

models see Fairfull and Gowe (1990)). The main characteristic of egg laying is that it is 

a multiphase process comprising three stages: an initiation period, in which the hen-day 

production is rapidly increases until it reaches a peak; a stabilisation period, in which 

the daily production remains constant; and finally, a decreasing period, in which the rate 

of laying drops. It appears that older models failed to account for all these features, 

since they did not fit data satisfactorily (Fairfull and Gowe, 1990; Anang et at., 2001). 

A recently proposed model by Grossman and Koops (2001) appears to offer a better fit. 

It consists of two components, the one accounting for the increasing phase of laying and 

the other for the decreasing one. This model was intended to describe individual laying 

curves and consequently it fails to model average performance. Moreover, it depends 

on many individual-specific variables that increase complexity, although it accounts for 

the persistency of laying extending the concept introduced by Grossman et at. (2000). 

Nevertheless, all these models have been devised to describe the production curve in 

table-egg chickens, which have been intensively selected for optimised and consistent 

laying patterns in order to maximise the overall yield. If most of them do not offer a 

robust performance on regular laying patterns, it is unlikely that they would be suitable to 
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describe the laying curve of lines from another species that has been selected for growth. 

The dynamic character of laying is not only relevant to modelling of the egg production, 

but it is also important for the more detailed genetic evaluation of hens. The use of the 

total egg number as a selection criterion conceals the patterns of laying and does not en-

able information to be obtained on the changes in genetic variance during the production 

period. An approach to address this problem is to investigate the cumulative production 

over parts of the whole laying period and examine the covariance structure between them. 

This can be achieved by using a multi-trait (Anang et at., 2000) or a repeatabilty model 

(Szwaczkowski, 2003). An alternative approach is to exploit the potential of covariance 

functions or the equivalent random regression models to accurately model the changes of 

covariance over time (Kirkpatrick and Heckman, 1989; Kirkpatrick et at., 1990; Meyer 

and Hill, 1997; Meyer, 1998). The experience from dairy cattle (Werf et at., 1998) sug-

gests that the random regression models could offer an alternate method to analyse egg 

production under a longitudinal prospective. Nevertheless, poultry breeding has yet to 

benefit from their application. Only one published study made use of them in reporting 

results for a light, table-egg laying chicken line (Anang et at., 2002). As it has been il-

lustrated in the preceding section, the impact of intense selection for body weight has a 

highly significant effect on the overall laying profile. So, this warrants research on modern 

heavy lines in order to investigate further the longitudinal aspects of the egg production. 

Nevertheless, it should be noted that the erratic laying patterns of laying, due to variable 

clutch size across hens, add a layer of complexity in the effort of modelling egg production 

over time. Moreover, daily egg production is an "all-or-none" character that introduces 

further complications in the statistical analysis of the data. Across all the thesis these 

issues are discussed in more details and especially in chapters 3 and 6, where different 

approaches are investigated to overcome the aforementioned points. 
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1.5 	Strategies to reduce the impact of selection for body 

weight 

Modern turkey lines have the genetic potential to rapidly gain body weight. Although this 

is desirable for fulfilling the commercial objective, it hastens the onset of lay, results in 

reduced overall yield and causes a plethora of reproductive problems, such as prolapse 

and multiple hierarchies. Two potential strategies can be suggested to reduce the negative 

consequences of the increased body weight. The first one focuses on the regulation of the 

growth rate and has been successfully applied in broiler chickens, while the second one 

involves the use of sophisticated genetic tools to obtain an insight of the egg production 

over time. 

An effective husbandry method to decelerate the growth rate of the breeding stock is 

to impose feed restriction. The positive effect from the application of this management 

strategy has been established in broilers and it has been shown that egg production of the 

parent stock of broilers is dramatically improved in comparison to ad libitum fed birds 

(Klein-Hessling, 2003). However, the benefits from the application of feed restriction in 

turkey breeder hens appear to be limited. Although the prevalence of multiple ovulations 

is decreased, the overall laying performance is not improved (Hocking, 2003). A side-

effect of the feed restriction is that it affects the welfare of birds (Renema and Robinson, 

2004) and thus it might not be compatible with future rearing regulations. Other man-

agement methods may involve the application of alternative lighting schemes, because 

the initiation of laying in turkeys is regulated by the photoperiod, but further research is 

required. 

The second approach is to examine alternative methods to select for reproductive per-

formance. As it was illustrated in the previous sections, selection for growth triggers a 

concatenation of responses that have a detrimental effect on egg production and affect the 

dynamics of laying. Nevertheless, information on the longitudinal pattern of egg produc-

tion is not adequate. So, the first step would be to exploit the potential of the statistical 

tools available in order to obtain an insight into the genetics of egg production over the 
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laying period. This would allow focus on the patterns of laying and the seeking of alter-

native traits that would be more relevant to the underlying mechanisms that govern the 

association of growth and reproduction in turkeys. The final goal would be to optimise 

the combined selection for growth and reproduction. 

1.6 Research objectives 

The current trend in turkey breeding is to place great emphasis on body weight and con-

formation in order to respond to market demands. However, intense selection for growth 

has multiple negative effects on other important traits, including meat quality, and partic-

ularly to the reproduction performance. Moreover, the reduced reproductive performance 

may result in reduced size of families and this could increase inbreeding (by decreasing 

the effective population size) and reduce the number of available progeny for performing 

half-sib test (e.g. for meat-quality traits). This implies that the sustainability of such a 

selection practise is in question and thus, it stresses the need to obtain more detail on the 

genetics of egg production. So far, the dynamic character of egg laying was neglected 

since egg production was treated as a summary measurement for the whole period, but 

statistical developments have provided a framework to perform a detailed longitudinal 

study. However, there is a lack of published results and especially for modern turkey 

lines. Therefore, an exploratory research is required to shed light on the dynamics of 

laying and focusing on the accurate modelling of the genetic covariance over time. 

In order to carry out this research egg records collected on a longitudinal basis from a 

modern turkey line that was selected both for growth and reproduction traits were used. 

A detailed description of the dataset is given in Chapter 2. The research objectives were 

defined as follows: 

. To obtain genetic parameters for the population used in this study and to investigate 

the strength of the genetic association between growth and reproduction traits in 

a modern turkey line selected for body weight, conformation and egg production 
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(Chapter 3). 

To examine the time related patterns of egg laying by using survival analysis (Chap-

ter 4). 

To investigate the application of random regression models in the genetic analysis 

of egg production of turkeys; to compare results from a multi-trait (MTM) and a re-

peatability (REP) model using the same dataset; and in order to assess the efficiency 

of each model for predicting missing values, used a reduced dataset to predict val-

ues of the deleted records for each alternative model (Chapter 5). 

To estimate genetic parameters for the daily egg production over the whole laying 

period in turkeys using a longitudinal threshold model under a Bayesian framework; 

and second, to explore the possibility of using the information obtained in order to 

investigate alternative selection strategies for the genetic improvement of laying 

turkeys (Chapter 6). 

To estimate the strength of the genetic association of the monthly egg production 

with body weight by performing a bivariate analysis employing RRM (Chapter 7). 

Overall, the aim of this study was the investigation of the longitudinal character of egg 

laying and whether a genetical analysis taking account of the time-related properties of 

egg production can enhance the output of breeding programs for improving egg produc-

tion in turkeys. 



Chapter 2 

Data Description and Handling 

mi 



CHAPTER 2. DATA DESCRIPTION AND HANDLING 	 36 

2.1 Introduction 

The population used in this study consisted of a modern female line that was simulta-

neously selected for growth and reproduction traits. This line was purebred, owned and 

developed by a breeding company, and it represented the breeders' response to the mar-

ket demands for increased body weight. So, birds of this line were heavier than those of 

the regular female lines and at the same time, they appeared to maintain a better repro-

ductive performance than the male lines. However, it seems that negative effects on egg 

production have started to emerge and thus, the sustainability of this breeding scheme is 

jeopardised. 

A detailed description of the population studied and of the performed undergoing selec-

tion follows. Records for body weight and daily egg production were available for five 

generations, but the dataset demanded special treatment in order to be analysed, so a de-

scription of the data handling procedures is also included. Brief details are also given for 

the software developed specifically for this project. 

2.2 	Population description 

Each year poults were born in hatches and were transferred to rearing farms under an all-

in/all-out policy to maximise biosecurity. So, birds belonging to the same hatch formed 

a contemporary group. Individual growth was measured and selection performed at two 

ages. The first selection was performed at the age of fourteen weeks. Mass selection 

was applied using body weight and conformation as criteria and additionally a walking 

test was performed to assure that the heavy birds were free from leg deficiencies. Poor 

performers were culled. The selection intensity was higher for males than females (for 

details see Table 3.1). The second selection stage was performed at twenty-four weeks of 

age. The criteria used were the same as in the previous stage and birds, according to their 

performance, were either culled or selected to be used as parents for the next generation. 

The number of females selected as layers was fixed for each year: in total 480 hens were 
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used as layers 

At 29 weeks of age, birds were transferred to the laying farms. Hens were assigned to 

pens. Males were kept in separate pens, because in turkeys the mating is performed only 

by artificial insemination. Hens were photostimulated for a period of two weeks in order 

to initiate egg laying. Hens laid in individual trap-nests and their production was recorded 

on a daily basis for the whole laying period, which extended over twenty weeks. A pre-

selection was performed after six weeks of egg production by identifying top performing 

hens based on their so far performance and the final step was at the tenth week of the 

laying period. A selection index was employed, including both individual performance 

on body weight and egg production and pedigree information for these traits. Since this 

was a female line, additional reproductive traits, such fertility and hatchability were also 

considered. Top performing hens were selected as parents for the next generation of the 

purebred line, while hens that scored less satisfactorily were assigned as parents for the 

great-grand parent stock, as illustrated in Figure 1.2. 

The line was fully pedigreed. The family structure was hierarchical, with dams nested 

within sires and thus only maternal full-sibs and paternal half-sibs existed. On average 

each sire was mated with three dams and the average family size per dam was approxi-

mately 30 offspring. Matings were specifically designed in order to prevent inbreeding. 

The pedigree available for this study extended over five consecutive generations for the 

UK population (see next section for detailed description). The average rate of inbreeding 

(AF) in this populaton was less than 1% and only a handful of birds belonging in the last 

generation had an inbreeding coefficient equal to 25%. These estimates were obtained 

using the package matvec (Wang et at., n.d.). 

2.3 	Dataset description 

The dataset consisted of two sets of traits, body weight at various ages and daily egg 

production over the whole laying period. For growth-related traits, records for the body 
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weight at the age of fourteen, nineteen and twenty-four weeks were available for four 

generations. In total weight data for two populations were available: the first one was 

situated in UK and the second one in the USA. Further details on the analysis of these 

traits are given in Chapter 3. 

Egg production, which was recorded on a daily basis for twenty weeks for five genera-

tions. Summary data for the production over 140 days were available for both the UK and 

USA populations and these were used for the analysis in Chpater 3. However, daily egg 

data were available only for the UK population. In total the production records of 2400 

hens were available for the longitudinal analysis. The dataset consisted of a sequence of 

140 binary records (0: no egg; 1: egg laid) each one corresponding to a specific day of 

the whole production period. Eggs were collected daily because if they were left over, 

broodiness can be initiated, which results in the interruption of egg laying. Some hens 

may also cease laying for a prolonged period, so in this case they were put in the nest in 

order to ensure that eggs were not laid in floor. If a hen died during the laying period, the 

rest of its records after the date of the culling were treated as missing values. The mortal-

ity was found to be, around 5% of the initial population (hen housed). Cracked eggs were 

treated as no eggs, because they could not be hatched. Eggs laid on the floor were also 

excluded, since they could not be assigned to a hen. In conclusion, the trait considered in 

this analysis was the trap nested production of hatchable eggs. The analysis of these data 

is the topic of Chapters 3, 4, 5, 6 and 7. 

2.4 Data handling 

Body weight data were contained in an Excel spreadsheet format, so it was simple to 

import them into the database. Each bird had a unique identifier. Nevertheless, this was a 

large string of numbers and letters, so it was converted into a simpler format, as described 

in the next section. 

The daily egg production was recorded on paper sheets, called trapcards. A typical ex- 
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ample is presented in Figure 2.1. Each trapcard contained information on the pen and the 

farm. Hens were identified using three-numbered tags, which were reused each year, so 

it was necessary to link these tags with the unique identifiers in the pedigree file and the 

body weight data. Records for daily production were noted in a calendar-styled fashion. 

Incidences of an egg were denoted as one, while a blank marked the "no egg" status. An 

"X" denoted cracked eggs, which were not considered in the analysis. If a hen was culled, 

the date and the cause was marked. For instance, in Figure 2. 1, the hen tagged as 626 was 

removed on the 15 1h   of January due to prolapse. Culling decisions were also made in case 

of leg problems and for non-identified causes. Each day, the number of eggs laid on the 

floor was also noted, although these were not included in the analysis. 

Trapcards were handwritten and thus it was necessary to digitise them before further 

processing. Due to poor legibility, the records were typed into a computer file. This was 

undertaken in Rothamsted Institute under the supervision of Professor Robin Thompson. 

The text files produced were imported to the database program in order to create a master 

database that contained all the available data for each bird included in this analysis. 

This was the starting point to generate a number of egg-related traits that were used in the 

subsequent analyses. Hence, the first trait was the total number of egg laid within the 140 

days available. This was generated by simple summing of all the records for each hen. 

The total egg number was used in the estimation of the genetic parameters as described 

in Chapter 3. A second trait was the monthly egg production, which corresponded to 

the sum of the eggs laid within four week periods. This trait was used to investigate 

the application of random regression models in analysis of the genetics of egg laying, 

described in Chapter 5. Another trait was the time that each hen needed to lay 82 eggs, 

which was the grand mean over the five generations. The rationale of this analysis is given 

in Chapter 4. There it is also discussed how additional traits can be generated using this 

database on the laying patterns that can be exploited to investigate the dynamics of the 

egg production. 

In order to perform the analyses described in the next chapters a number of tools was used. 

Initial statistical analyses were perfromed using GenStat (Genstat, 2006), SPSS (SPSS, 
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Figure 2.1: A typical example of a trapcard. Additional information is contained, includ-

ing the cause of culling, the cracked eggs (marked with "X"), and the eggs laid in the 

floor. 

2006), Stata (StataCorp, 2006) and R (R, 2006). Pedigree structure (as presented in Figure 

??) was visualised with the Pedigree Viewer program (Kinghorn and Kinghorn, 2006). 

The estimation of variance components estimates was performed using ASRem1 (Gilmour 

et al., 2001) and DMU (Jensen and Madsen, 2006). Project specifications included also 

the necessary tools to develop custom programs under the Windows and Unix platforms 

(in both Unix flavours Linux Fedora Core 4 and Mac OS X 10.4) and visualisation tools 

such as the gnuplot. A description follows below. 
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2.4.1 Development of custom programs 

The implementation of the programs was performed using Fortran 95 and Perl v5.8.6. 

Furthermore, SQL queries were used to extract data from the database and Unix scripts 

were written to perform a series of data handling related tasks. 

The coding scheme used by the company for the pedigree employed large tags for each 

hen, so the first task was to write a program to simplify the coding in order to fix poten-

tial compatibility issues with the software used in later stages. This simplified tagging 

scheme was used to link the information on the summary and daily production records. 

In conclusion, a new coding system was applied that allowed the unique identification of 

birds and a link to their production data. The typing of the data on the trapcards was a 

painstaking task and minor errors were unavoidable, so the second task was to check for 

inconsistencies between the handwritten and the digitised trapcards. Having created the 

database, several scripts were written to generate the necessary datasets for the analyses 

that are described in the following chapters. 

The output of an analysis employing random regression (RR) models is the covariance 

matrix of the regression coefficients. Further manipulation is needed to obtain the profile 

of the genetic parameters over time, so for this task specific programs were also devel-

oped. A simplistic solution would be to perform the computations with a mathematics 

package, but a suite of tools was used instead to accommodate a series of features. Hence, 

this program provided a simple interface to compute and visualise the profiles of the ge-

netic parameters. Additionally, it was possible to estimate standard errors (SE) for the 

estimates of genetic parameters obtained using a REML framework. An outline of the 

estimation algorithm can be found in Chapter 5. The estimation of SE was also extended 

to be used in a bivariate RR model (see Chapter 7). Because Perl does not provide built-in 

functions for matrix operations, a custom library was written for this purpose. 

Additionally, programs in Fortan were written to process DMU output for the anlysis de-

scribed in Chapter 6. There, the probabilistic framework provided by the Markov Chain 

Monte Carlo (MCMC) method allowed estimation of statistics of the posterior distribu- 
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tions of the genetic parameters and the generation of novel traits, such as the cumulative 

production between any two time points of the laying period. So, the programs developed 

summarised the results from the MCMC realisations in order to generate the key figures 

as these can be found in Chapter 6. 



Chapter 3 

Genetic parameters for a heavy female 

turkey line: The impact of simultaneous 

selection for body weight and total egg 

number 
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3.1 Introduction 

As it has been discussed in Chapter 1, the selection for growth causes multiple negative 

implications on reproduction traits. However, in case of a simultaneous selection for 

both body weight and conformation and total egg number, the magnitude and intensity of 

the correlated responses on either traits has not been investigated thoroughly for modern 

turkey lines. Inferring the estimates from the literature appears not to be an option, since 

only a handful of published estimates exist and none of these studies has been performed 

on a line in which combined selection is applied. 

Figure 1.3 presented a conceptual diagram for the evolution of body weight and egg pro-

duction when growth traits have been selected over a prolonged number of consecutive 

generations. This graph represented a compilation based on evidence from published lon-

gitudinal studies. Nevertheless, the validity of this hypothesis can be tested using data 

from the purebred lines of a major breeding company. 

Therefore, the objective of this study was to investigate the effect of dual-purpose selec-

tion in two experimental populations by estimating the genetic parameters for each. Both 

populations derived from the same heavy female line that was simultaneously selected for 

body weight and egg number, but they were located in different countries, the first in the 

UK and the second in the USA. Various mixed models applying multivariate REML were 

used in the analysis to investigate maternal effects, and transformations were employed to 

reduce the deviation from normality for egg production. 

3.2 Materials and methods 

3.2.1 Data description 

The two populations shared a common origin from a female line. The British population 

included 20784 animals, while the North American population numbered 16231 birds. 
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Table 3.1: Descriptive statistics covering all the four generations for body weight at 14 

(BW14), 19 (BW19) and 24 (BW24) weeks of age for males (M) and females (F) and egg 

production (EGG). 

Trait No records Mean SD CV (%) 

UK POPULATION 

BW14 (kg) M 10487 11.5 2.5 9.9 

F 10297 8.5 1.6 8.8 

BW19 (kg) M 3670 17.6 3 .2 8.1 

F 6385 12.2 1.9 7.1 

BW24 (kg) M 2688 22.3 3.5 7.2 

F 6261 14.6 2.2 6.8 

EGG 1728 82.0 23.2 28.3 

USA POPULATION 

BW14(kg) M 7859 11.6 2.1 8.26 

F 8372 8.3 1.4 7.55 

BWI9(kg) M 3442 17.4 2.7 7.11 

F 5083 11.4 1.6 6.36 

BW24 (kg) M 2452 20.7 3.8 8.22 

F 5435 13.2 2.0 6.8 

EGG 1772 82.4 24.5 29.7 

The description of this line can be found in Chapter 2. No data were available from the 

common base population before the separation. For the the USA population the records 

for BW19 were not available for female birds for year 2002. The summary statistics are 

presented in Table 3.1. 

The available traits were: body weight at 14 (BW14), 19 (BW19) and 24 (BW24) weeks 

of age and the total number of eggs laid (EGG) within 139 days of production. In both 

locations the line was selected for body weight and egg number, as well as for body 

conformation, with an emphasis on increasing breast muscle yield. However, no data on 
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this trait were available for the study. 

3.2.2 Dealing with deviation from normality for egg production trait 

Egg production in poultry has been shown to exhibit a significant departure from the 

form of a normal distribution (Clayton, 1975; Nestor et al., 1996). The consequence 

is that genetic parameters estimates are biased when using REML, since the underlying 

assumptions of normality, linearity of heritability and homogeneity of variance are not 

satisfied (Ibe and Hill, 1988). A two-step method was used in this study to reduce the 

non-normality of egg production data. 

The first step was to identify and exclude outliers from the dataset. In order to set a thresh-

old to distinguish outliers from acceptable data, an approach similar to that of Koerhuis 

(1996) was used. In brief, egg production was treated as an all-or-none trait. It was as-

sumed that individuals with egg production under a certain threshold do not contribute 

to the total genetic variance and are "outliers" for environmental reasons, e.g. disease. 

Their egg production was set equal to zero, while records of birds with higher production 

were recoded as one. The heritability was estimated using the linear model for various 

thresholds. The threshold for outliers was taken to be the value for which heritability of 

the recoded data exceeded 0.001, a reasonable but nevertheless arbitrary threshold. Data 

on birds with production below the threshold were excluded from the main analysis, i.e. 

treated as missing data for all traits. 

The second step was the application of the Box-Cox transformation Box and Cox (1964) 

to the egg production data. Previous research showed that this methodology reduces the 

heterogeneity of residuals, increases the linearity of heritability and provides a satisfactory 

approximation to the normal distribution for egg production (The and Hill, 1988; Besbes 

et al., 1993; Koerhuis, 1996; Savas et al., 1999). The formula for this transformation is: 

(3.1) 

where y is the original untransformed observation and G is the geometric mean of the 
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In order to estimate the optimum parameter A , several runs of REML models, described 

in the next section, with different values were performed to produce the log-likelihood 

profile for A (Darwash et al., 1997). The optimal A value was chosen as that which 

maximised the log likelihood for the additive animal model (Meyer, 1989). However, 

rounded values were preferred, unless the final model likelihood was notably different in 

the log-likelihood tests from that of the intermediate optimum value. The rationale for 

this preference was that rounded values to the nearest integer (or half-integer) for Aare 

more easily interpreted. 

3.2.3 Genetic model 

Rearing and laying farms as well as hatches were found to be confounded and no data 

were available for certain hatches and years. Hence, a fixed effect, growth cohort, repre-

senting all year, rearing and hatch subclasses was fitted. Similarly, for egg production the 

egg cohort, representing all year, laying farm and pen subclasses, was used. Sex and its 

interaction with growth cohort were included as fixed effects in analyses of body weight. 

All data were analysed with the ASRem1 package (ver. 1.10 Gilmour et al. (2001)). 

In order to obtain unbiased estimates of variance components, a multivariate model was 

applied, including four traits: BW14, BW19, BW24 and EGG, since this would cater for 

the impact of consecutive selection. Several models of analysis were compared with the 

base model (model (0), no dam effect) and between them: 

yi 	= x/3j  + Z1 a1  + e1 	 (0) 

yj 	= X/3 + Z1 a1  + Z2 c + e1, cov(a,c) =0 
	

(A) 

yi 
	 cov(a,di ) =0 

	
(B) 

yi 
	 cov(a,di) Aaa1d1 	 (C) 

yj 	 cov(a,di) =0 
	

(D) 

yj 	= X1 J3j + Z1 a + Z21d1  + Z2 c + e, cov(a,d) = A2ad 
	

(E) 
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where y (Ni) is the vector of Ni observations recorded for the i1h  trait; /3j (f) is the vector 

of fixed effects for the i1h  trait; a1  (Ni) is the vector of the random additive genetic effect 

for the ith  trait (a1 - N(O, a2a)); c1  (Nt) is the vector of the environmental permanent 

maternal effects common to all the progeny from a given dam; d (Na) is the vector of 

maternal genetic effects (d1  N(O, a2d)); e1  (Ni) is the vector of residuals for the i1h  trait 

(e1  iN(O, 2e)); X1, Z11, Z21  are known design matrices; and A is the known relationship 

matrix between animals. Extension of previous notations to the multivariate analysis of 

yj and Yj  was straightforward with for (A), (D) and (E) cov(a1,c)=O (i j), for (B) 

cov(a1 ,d)=O, for (C) and (E) cov(a1 ,d1)=Aa2a1d1  (i J). 

The log-likelihood was computed for all five models and that used for the final analyses 

was chosen using the principle of Occams razor (Feurer, 1957). 

3.3 Results 

3.3.1 Outlier exclusion & Box-Cox transformations 

The test applied for the outlier identification indicated that the optimum threshold ex-

cluded individuals whose egg production was equal to or less than 15 eggs in the UK 

population and 5 eggs in the USA. With these criteria, 69 and 53 birds respectively were 

excluded, representing approximately 4% and 3% of the total number of records. The 

exclusion of these individuals reduced the skewness and kurtosis (Table 3.2). After con-

secutive REML runs, the optimum values for parameter A of the Box-Cox transformation 

were found to be 2.70 and 2.60 respectively for the UK and USA populations. However, 

the A-parameters finally selected were 3 (i.e. a cubic transformation) and 2.5, since the 

reductions in the log-likelihood from the optimum using these values were not signifi-

cant (P>0.05). After the application of Box-Cox transformation both the skewness and 

kurtosis were considerably reduced in magnitude, suggesting a better approximation to 

normal distribution (Table 3.2). This is confirmed in Figure 3.1, showing histograms for 
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Table 3.2: Effects of outlier exclusion (step 1) followed by Box-Cox transformation (step 

2) on the coefficient of variation (C.V.), skewness and kurtosis of egg production. 

Raw Data After Step 1 After Step 2 

UK POPULATION 

Number of observations 1728 1659 1659 

C.V. 29.5 20.9 13.1 

Skewness -1.56 -1.26 0.03 

Kurtosis 2.57 1.99 -0.25 

USA POPULATION 

Number of observations 1772 1719 1719 

C.V. 29.7 23.4 15.7 

Skewness -1.76 -1.26 -0.37 

Kurtosis 2.97 1.99 -0.30 

each population of the distribution of the egg production data when untransformed and 

after Box-Cox transformation (step 2). Figure 3.2 shows a normal probability plot for the 

UK population in order to assess visually whether or not the transofrmation reduced the 

deviation from the normal distribution. The corresponding graphs for the USA population 

were very similar (results are not shown). 

3.3.2 Maternal effects model 

In total one base model including only an animal effect and five maternal models were 

tested for both body weight traits and egg production (Table 3.3). The principal result 

was that the inclusion of a second random effect, representing maternal effects, either 

genetic or environmental, gave a significant increase in the log-likelihood for all the body 

weight traits. In contrast, maternal effects appear not to influence the egg production and 

the maternal random effect was omitted from all subsequent analyses reported. For body 
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Figure 3.1: Histograms for the untransformed (left panel) and the Box-Cox transformed 

(A=3 for UK & A=2.5 for USA) data (right panel) for total egg number in selection flocks 

of turkeys in the UK and USA. 

weight, there was no evidence (P>0.05) supporting the inclusion of both an environmental 

and a genetic maternal effect (comparing models D, E to A, B). Also in the case of the 

genetic model, there was no evidence of covariance between additive and maternal effects 

(i.e. model Q. Therefore the choice of the final model was made between A and B. Model 

A was chosen, because it introduces no covariances between maternal effects of different 

individuals. 
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Figure 3.2: Normal probability plots (observed probability - expected probability) for the 

untransformed (left panel) and the Box-Cox transformed (right panel) in the UK popula-

tion. 

3.3.3 Multi-trait analysis 

The estimates of the variance components are presented in Table 3.4. The additive genetic 

variance (ax) for the USA birds was higher. For body weight, the common environmental 

variance (o) only represented approximately 4% of the phenotypic variance (c) for UK 

and 2% for USA populations (using model A as described in the previous section). Whilst 

the fraction of the phenotypic variance of body weight explained by the maternal effects 

was low, it was statistically significant for all body weight traits, as the log-likelihood 

tests suggested. Finally, the residual variance (o) was lower for the USA birds. 

The genetic and phenotypic parameter estimates are shown in Table 3.5. In general, the 

precision of the heritability estimates was higher for body weight traits than that for egg 

production, since fewer records were available for the latter. Heritability estimates for UK 

birds were lower than USA birds. Genetic correlations between weight measures taken 

between 14, 19 and 24 weeks ranged between 0.89 and 0.97 in the two populations. In 

contrast, the genetic correlation between egg production and body weight was negative, 
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Table 3.3: Log-likelihood values for the model with only additive effects and their dif-

ference for all maternal effects models tested for body weight traits. All models differed 

significantly from the simple model, but no difference was detected between them (A = 

maternal effects only as environmental ones; B = maternal effects only as genetic ones; C = same 

as B but with covariance between additive animal and maternal genetic effects, D = maternal 

effects as genetic and environmental; E = same as D but with covariance between additive animal 

and maternal genetic effects). 

Model 1  BW14 BW19 BW24 

Simple UK -19395 -10402 -11232 

USA -14672 -8535.1 -8781 

 UK 24.1 4.1 0.6 

USA 10 3 1.9 

 UK 24.2 5 0.6 

USA 11.1 3.3 2.9 

 UK 24.1 5 0.2 

USA 11.5 3.5 2.9 

 UK 22.5 4.3 0.2 

USA 11.9 2.6 2.3 

 UK 22.4 4.2 0.5 

USA 7.5 2.8 2.5 

strong and consistent over the different ages. However the magnitude of this associa-

tion appeared to differ between the two populations: for UK birds the genetic correlation 

reached a value of -0.75, while for the USA population it did not exceed -0.55. These es-

timates were not statistically different, as it can be inferred from comparing the respective 

standard errors from Table-3.5. Estimates for the residual correlations (-0.06 to -0.20) 

were lower than those of the phenotypic ones and followed the correlation trends .between 

the traits, highlighting the large difference between the gene action and the environmental 

effect for this particular line. The phenotypic correlations between body weight at dif- 
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Table 3.4: Estimates from multivariate REML of variance components for body weight 

at 14 (BW14, kg2), 19 (BW19, kg2) and 24 (BW24, kg2) weeks of age and for total egg 

number laid in a production period of 139 days (EGG). Maternal effects were not fitted 

for egg number (qA2  additive genetic variance; cr, common environmental variance; Y = 

residual variance; a = phenotypic variance) 

BW14 BW19 BW24 EGG 

UK POPULATION 

1.052 1.762 2.046 1.145 
(TC2 0.126 0.211 0.226 - 

Ce 1.688 3.285 5.017 4.133 

C 2.866 5.258 7.289 5.278 

USA POPULATION 

CA 1.325 1.998 2.543 2.251 

0.062 0.087 0.123 - 

1.376 2.546 3.303 4.461 

2.763 4.631 5.969 6.712 

ferent ages and egg production were also negative, but less strong, ranging from -0.14 to 

-0.26 for the UK population and around -0.15 in the USA. 

3.4 Discussion 

A strong negative genetic correlation between body weight and total egg production was 

detected in this study and its magnitude indicates that the simultaneous selection for both 

traits may not be effective. An on-going selection of alleles with pleiotropic but antago-

nistic effect could be an interpretation of these results. 

The outlier exclusion and especially the Box-Cox transformation resulted in an approxi-

mation to the normal distribution. For both datasets, the optimal value of the power index 



CHAPTER 3. GENETIC PARAMETER ESTIMATION 	 54 

Table 3.5: Phenotypic correlations and genetic parameter estimates from the multivari-

ate REML for body weight at 14 (BW14), 19 (BW19) & 24 (BW24) weeks of age and 

egg production (EGG). Heritability estimates are given on the diagonal (in bold), genetic 

correlations above diagonal and phenotypic below. 

BW14 BW19 BW24 EGG 

UK POPULATION 

BWI4 0.37 ± 0.03 0.96 + 0.01 0.89 ± 0.02 -0.74+0.07 

BW19 0.65 0.34 + 0.03 0.96 ± 0.01 -0.75±0.08 

BW24 0.53 0.79 0.28 + 0.03 -0.75±0.08 

EGG -0.14 -0.22 -0.26 0.22+0.04 

USA POPULATION 

BWI4 0.48 + 0.03 0.97 + 0.01 0.89 + 0.01 -0.48+0.09 

BW19 0.72 0.43 + 0.03 0.97 + 0.01 -0.51+0.08 

BW24 0.69 0.77 0.43+0.03 -0.55+0.09 

EGG -0.15 -0.15 -0.14 0.34+0.06 

for transformation (A) was very similar and greater than 1 as expected, since raw egg pro-

duction data is negatively skewed (the and Hill, 1988). However, because A relies heavily 

on the specific dataset structure, the values proposed by previous researchers cannot be 

compared directly, especially since they referred to chicken populations (Ibe and Hill, 

1988; Besbes et at., 1993; Koerhuis, 1996; Savas et at., 1999; Unver et at., 2004). Never-

theless, the power transformations of 2.6 and 2.7 obtained for these data were remarkably 

similar to those of Chapuis et at. (1996), who reported values of 2.75 and 2.4 respectively, 

although the turkey populations for the two studies were different. 

The application of the two-step procedure had an impact in increasing heritability. The 

estimated heritability for the untransformed data in the UK population for the egg produc-

tion was 0. 11, slightly increased after step 1 to 0. 13, while after the Box-Cox transforma-

tion (step 2) it reached 0.22. However, the first step removed the observed bi-modality in 

such a way as to limit the loss of genetic variation. Similar results were obtained for the 
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USA population. 

It was concluded that the inclusion of maternal effects had an impact on modelling body 

weight but not for egg production. Ignoring maternal effects resulted in the overestimation 

of the heritability for body weight, a conclusion also reached by others (Chambers, 1990; 

LeBihan-Duval et at., 1998). However, the form of the maternal effects fitted has differed 

among studies; Koerhuis (1996) and LeBihan-Duval et at. (1998) treated the maternal in-

fluence in broilers as an environmental effect, whereas Chapuis et at. (1996) fitted genetic 

effects in their analysis of turkey data. Furthermore, Koerhuis et at. (1997) proposed a 

model including both additive genetic and environmental maternal effects when studying 

juvenile body weight at 6 weeks of age. Nevertheless, the dataset used in this study in-

cluded body weight measurements at a greater age, when maternal influences could be 

assumed to have less input. Our results supported the hypothesis that the contribution of 

maternal influences to the phenotypic variance decreases with age (Table 3.3). Further-

more, the lack of evidence for maternal effects for egg production is also consistent with 

this hypothesis. The failure to detect maternal effects in egg production is common to 

other poultry studies (see Szwaczkowski (2003) for a review). 

In the population structure studied here, there dams are nested within sires, so there are 

mostly full sibs (with few exceptions of remates) and all chicks were hatched within a 

single laying season. Thus, it is difficult to separate the dominance variance from envi-

ronmental covariances among sibs, or other causes of maternal effects, e.g. egg-related 

factors. The low contribution of the maternal effects to the total variance suggests that 

the dominance effect within these lines is low: the estimated value of a2  = 0.04 places an 

upper bound of 0.16 on the fraction of variance explained by dominance (o 	4 x 

However, this does not imply that inbreeding depression would be absent since the magni-

tude of the depression will depend on other factors such as the number of loci contributing 

to this variance and the degree of directional dominance. So, it does not preclude a cross 

with another line may display significant heterosis. The latter is an important observation 

given the structure and the potential options available to the turkey breeding industry. 

In this study body weight was not treated as a separate trait in males and females, in 
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contrast with previous suggestion from Chapuis et al. (1996). In an analysis where sexes 

were analysed separately (results not shown), heritability estimates for body weight were 

marginally higher for females, consistent with the observations of LeBihan-Duval et al. 

(1998). However, the genetic correlation between male and female body weight was very 

high (0.95) and the genetic correlation estimates between body weight and egg number 

were similar when the analysis included only female records. This justified the use of 

body weight as a common trait for both sexes to reduce dimensionality, especially since 

no information for an underlying genetic mechanism is available that would suggest the 

opposite. Nevertheless, sex was used as a fixed effect since its effect on body weight was 

significant. 

The heritability estimates for both body weight and total egg number were within the 

range suggested in the literature. Arthur and Abplanalp (1975) reviewed 18 reports on 

the heritability of body weight at various ages and arrived at an average of 0.41 and Buss 

(1990) reported a similar average but indicated that estimates considered by him to be 

reliable could range from 0.23 to 0.71. For total egg number, Arthur and Abplanalp 

(1975) reported a range from 0.13 to 0.49 with an average of 0.22. The most relevant 

comparison of parameters is with Chapuis et al. (1996) who used large samples from 

two modern female lines, in which combined selection for growth and egg production 

was performed, with a similar transformation to egg number, in order to estimate genetic 

parameters. Their estimates for body weight were very high, exceeding 0.50 for body 

weight at 12 and 16 weeks, a comparable value to the result for the USA flock, while they 

reported heritability estimates for egg production of over 0.30 for Box-Cox transformed 

data. 

In the results, the heritability estimates of the USA population were greater than that for 

the UK population although they originated from the same base population. This was due 

to both a greater genetic variance for all traits, and, for body weight, less environmental 

variance. There is a number of possible explanations: different environments, e.g. climate 

and dietary ingredients encouraging greater expression of genetic potential; or genetic 

sampling in establishing the lines. However, the lack of data from the common generation 

prevented a detailed study of the genotype-environment interactions. 
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Whilst the genetic correlations among the body weights were all close to 1, giving flexibil-

ity to select for body weight as early as 14 weeks of age, the genetic correlations observed 

between body weight and egg production were large in magnitude and antagonistic. The 

values for the UK and USA populations averaged -0.72 (s.e. 0.08) and -0.50 (s.e. 0.09) 

respectively, among the largest reported observations for turkeys. For female lines, Arthur 

and Abplanalp (1975) and Buss (1990) reported much lower consensus values of -0.1 and 

-0.05 respectively, yet these results refer to lightweight strains where selection pressure 

for growth was minimal 

In heavier populations, Nestor (1977a) reported realised genetic correlations of -0.42 (s.e. 

0.12) for a line selected for body weight, and a more negative -0.66 (s.e. 0.42) for a 

line selected for growth and egg number, but with a correspondingly large standard er-

ror. Further evidence is provided by Chapuis et al. (1996) where their estimates ranged 

from -0.2 (light line) to -0.5 (heavy line). The genetic correlation was even stronger for 

the populations included in this study being consistent with the fact that the birds were 

heavier. 

Hence, it may be suggested that the magnitude of the correlation for these modem lines 

with heavier body weight is much greater than proposed by Arthur and Abplanalp (1975) 

and Buss (1990) and a more reasonable consensus value might be -0.53 (a weighted aver-

age from the present study, Chapuis et at. (1996), Nestor et at. (1996) and Emmerson et 

at. (2002). Such a consensus value offers a very different prospect for selection towards 

increasing body weight and maintaining egg production. 

Furthermore, Nestor et at. (1996) gave results of long-term response of egg production to 

continued selection solely for increased body weight and showed that the rate of response 

declined over time. Starting from a lower average egg production than any of the lines 

studied here, the egg production decreased and reached an apparent selection plateau, 

where perhaps further decreases were offset by natural selection. This could arise from 

fixation during selection of genes favouring larger weights but with minimal effect on egg 

production, leaving the segregating genetic variation dominated by pleiotropic loci with 

antagonistic effects on the traits. It also suggests that intense selection pressure for body 
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weight could lead modern heavy female lines to such an unfavourable low egg production, 

despite the simultaneous selection for the trait, due to the lower accuracy of selection for 

egg production compared to body weight. In conclusion, the results presented in this 

analysis provided evidence to support the hypothesis as this was conceptualised in Figure 

1.3. 

One other indirect consequence of the intense selection for growth seems to be the more 

erratic laying patterns in the populations studied. Traits that take account of the number of 

the eggs set in a specific period, such as the persistency and intensity of lay, might provide 

further information to increase the accuracy of selection for higher egg numbers. For the 

latter, evidence exists that it mediates the strength of the correlation between body weight 

and egg number (Nestor et al., 2000). Such a hypothesis may warrant an investigation 

into alternative selection strategies for heavy turkey lines, including a greater role for egg 

laying pattern traits. 

Within this context, the next chapters provide a longitudinal analysis of the egg production 

in turkeys. The next chapter explores the potential use of the intensity of lay, defined 

as a time-to-event trait, while Chapters 5, 6 and 7 focus also on the persistency of lay, 

expressed as individual laying patterns and how these can be capitalised on the more 

detailed genetic analysis of the egg production. 



Chapter 4 

Application of Survival Analysis for the 

genetic study of time-related patterns of 

egg production 
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4.1 Introduction 

Survival analysis involves the study of the time between a fixed starting point and a termi-

nating event that may occur within a specified period. It is possible that for some subjects 

included in the analysis no event occurs, or these records are lost from the follow-up. This 

phenomenon is known as right censoring and requires special methods of analysis (Cox, 

1972). The advantage of survival analysis is that it combines the information on whether 

records are censored or not in order to model effectively time-to-event traits. 

An early study in animal breeding employing survival analysis for the statistical analy-

sis of mortality using non-simulated data dates back to 1986 (Woolliams et at., 1986). 

The potential of this methodology for genetic evaluation was demonstrated in studies of 

low-heritable traits for which analysis is not straightforward, because their distribution is 

unknown or skewed (Sölkner and Ducrocq, 1999). Longevity constitutes a typical trait 

for which survival analysis has been applied to dairy cattle (Ducrocq, 1987; Vukasinovic 

et at., 1999), lambs (Southey et at., 2000), rabbits (Piles et at., 2006), swine (Yazdi et at., 

2000), and poultry (Ducrocq et at., 2000). 

Recently, survival analysis has been applied to the genetic analysis of other time-related 

traits, such as the study of the time to the first veterinary treatment of clinical mastitis 

(Saebø and Frigessi, 2004) and the interval between calving and the last insemination 

(Schneider et at., 2005) in dairy cattle. In the former example it was suggested that the 

formulation of time-to-event traits may contribute in the more efficient ranking of sires 

by providing the probability of them being in the genetically superior group. Schneider 

(2006) showed that the use of survival analysis compared to a linear model for the lon-

gitudinal analysis of female fertility and mastitis traits can achieve higher accuracy of 

selection which translates to more rapid genetic progress. 

The most common approach for thegenetic analysis of egg production is to use the total 

number of eggs laid within a specified period. However, as discussed in Chapter 3, the 

total egg number is a discrete character and therefore, it is characterised by a significant 

deviation from normality that hinders the estimation of genetic parameters. Although 
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power transformations to data can be applied to reduce this departure from the normal 

distribution, it may also be possible to use an alternative approach. The survival analysis 

framework can provide such a tool. 

In order to formulate a time-to-event trait to use in a survival analysis, two points have 

to be defined for time recording: a starting and a terminating point. In the context of the 

study of egg production the beginning of the time of recording can be taken as with the 

onset of the laying period, while the "event" can be defined as the days that are required 

for a hen to lay a specific number of eggs. If a hen fails to reach the production target or 

it is culled before this happens, then it is treated as a censored record. The survival trait is 

complementary to the cumulative egg production over a specific period in that the former 

measure accounts for a fixed number of eggs laid over time, while the latter accounts for 

the eggs laid over a fixed interval. Both measures capture features of laying dynamics, 

but under the survival framework setting a starting point and a production target allow 

focusing on specific laying stages and studying the performance of birds over time. 

The aim of this chapter was to investigate the application of survival analysis to the lon-

gitudinal genetic analysis of egg production. This was an exploratory study, as this has 

not been applied to poultry before. Therefore, non-parametric models were initially fitted 

for determining an appropriate parametric model to permit the inclusion of a random sire 

effect. The aim was to obtain heritability estimates to quantify the contribution of the 

genetic component on laying patterns. 

4.2 Materials and methods 

4.2.1 Key concepts of survival analysis 

Let T be a variable for the time to an event for an individual. Then the probability that T 

exceeds a specified time t is given by the survival function S(t): 

S(t)=P(T>t)l—F(t) 	 (4.1) 
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where F(t) is the cumulative distribution function for T. Therefore, the survival function 

represents the probability that the event does not occur to an individual from the starting 

point to a specified time. In the context of this analysis the survival function provided the 

probability that a hen has not laid a pre-specified number of eggs up to a specific day of the 

laying period. In order to model the survival function, a hazard function can be defined. 

This function represents the instantaneous risk that the event occurs to an individual in the 

interval At conditional upon survival up to time t. So, the hazard function A (t) is given 

by 

= urn P(t < T <t+AtT > t) = 	
(4.2) 

At 	 S(t) 

where f(t) is the probability density function of T expressing the change in the survival 

function within a small time interval At (i.e. f(t) = S' dS(t) 
(t) = ----). The relationship be-di 

tween the survival and hazard functions can be derived from equation 4.2 as: 

S(t)=exp[— / 	(u) du. 	 (4.3) 
'Jo 

(t) _S'(t) (—logS(t)) 	 (4.4) 
S(t)dt 

The survival function can be estimated directly from the data using a non-parametric 

model. Alternatively, the hazard function can be defined using a semi or fully parametric 

model and as follows from 4.3 and 4.4 the corresponding survival function can be esti-

mated. In this study both non and fully parametric models were considered. These are 

presented in the following sections. 

4.2.2 Nonparametric survival model 

Empirical estimates of survival and hazard functions were obtained using the nonpara-

metric Kaplan-Meier (KM) or product-limit method (Kaplan and Meier, 1958). A general 

formula for obtaining KIN'I survival probabilities is: 

(t1) = (t) (l - 	 (4.5) 
ni 
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According to 4.5, the KM estimate for an individual of not having the event at time j 

is calculated from the survival probability at time t_1, Si_,; the number of individuals 

not having the event just before time t, d1; and the number of events occurring at time 

t, n1. A fundamental assumption of the KM method is that events occur independently 

and thus it is possible to multiply the survival probabilities together in order to obtain the 

cumulative survival probability. Klvl survival probabilities can be plotted against time as a 

step function for each factor affecting survival, providing a quick and robust visualisation 

of their impact on the time-to-event. KIVI curves for each group can be compared to test 

if they are statistically equivalent or not by using a logrank test (Peto and Peto, 1972) that 

employs a Chi-square test to compare the expected and observed number of events in each 

group. 

In this study KM curves were plotted for the factors "year" in order to detect trends that 

may be due to the on-going selection for body weight and for "sire" in order to investigate 

whether there was a significant variance between groups of hens stratified as paternal half-

sibs. The corresponding KM curves were compared using the logrank test. This evidence 

was used to develop more sophisticated models, as described below. The nonparametric 

analysis was carried out using SPSS and STATA packages. 

4.2.3 Parametric survival model 

When using nonparamteric survival curves it is not possible to consider more than one 

factor simultaneously (Bradburn et al., 2003). Moreover, a logrank test can only indicate 

a difference between groups, but does not provide an estimate of the effect. A popular 

method to overcome these constraints is to use a regression model for the hazard function. 

Thus, the hazard of an individual can be estimated at any time, given specification of a set 

of explanatory variables, according to the following formula 

P )(t,X) =20(t)exp{/3X1 } 	 (4.6) 

where )w is the baseline function and Xi is the vector of predictor variables with the as- 
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sociated regression coefficients P. The first component of the model, the baseline hazard, 

is a function of time and the second, the exponential expression, involves only the effects 

X's, which do not depend on time. Equation 4.6 encapsulates the proportional hazard 

assumption (PH), according to which the hazard of one individual is proportional to the 

hazard of any other individual independently of time, or in other words that the hazard 

ratio remains constant over time. The PH assumption in mathematical notation translates 

as follows: 
(t,X) 	o 

2(t,X*) 

Equation 4.7 shows that when the hazard functions of any two individuals are plotted 

against time, the curves cannot cross. The most general regression model that satisfies the 

PH assumption is the Cox model (Cox, 1972). According to this, the baseline function is 

not defined and this is why this model is also called a semi-parametric model. Although 

the baseline hazard is unspecified, reasonably good estimates of the regression coefficients 

can be obtained (Kleinbaum and Klein, 2005). The PH assumption can be tested graph-

ically by comparing the expected survival curve derived from a Cox model against the 

observed KM. The PH assumption is valid only when the estimates and observed curves 

are close to each other. 

In contrast to the Cox model the form of the baseline hazard function is completely spec-

ified in a parametric model. The Weibull model is a widely used parametric model in 

which the survival times are assumed to follow the Weibull distribution. The Weibull 

model satisfies the PH assumption, but in addition it also implies that the effect of ex-

planatory variables on the hazard is monotonic with survival time. The hazard function 

of a Weibull model is defined as follows: 

A(t,X) = ypt' 	 (4.8) 

P 
where'y= exp{L/31Xj} , y> 0 

and.2L0(t) =pt'' 

(4.7) 
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The parameter y is derived from the regression coefficients. The parameter p is called 

shape parameter and it determines if the hazard increases (p > 1), remains constant (p = 

1, Weibull reduces to the exponential model) or decreases (p < 1) over time. The baseline 

hazard Ao corresponds to the intercept of the model. 

Preliminary results from the empirical hazard function suggested that the hazard increases 

monotonically over time and it was hypothesised that a Weibull model might fit the data. 

In order to evaluate this hypothesis, log-log KM survival curves were plotted against the 

logs of time. If a linear relationship is to be detected on the graphical test, this suggests 

that a Weibull model is suitable to fit data on a fully parametric model. The benefit from 

fitting a Weibull model to data is a significant reduction of the computation time com-

pared to the Cox model, particularly for a large sets of records (Sölkner and Ducrocq, 

1999). Except for specifying the baseline hazard function, it was also important to deter-

mine which factors will be included in the model. Log-likelihood tests were performed 

comparing the likelihoods obtained from the candidate Weibull models using the STATA 

package. 

4.2.4 Frailty survival model 

The set of the explanatory variables included in the Weibull model corresponds to the 

fixed effects in a linear models context. It is possible to extend the model to include also a 

random effect. These models are called frailty models (Vaupel et al., 1979). An extension 

is the shared frailty model, in which groups of individuals are assumed to share the same 

frailty (Kleinbaum and Klein, 2005). In the context of a genetic analysis, this similarity 

refers to the shared features between half/full sibs due to both genetic and environmental 

factors. 

In this study the Weibull model with two fixed effects, year and pen, was extended to 

include a random effect accounting for the sire component. Thus, the hazard function for 

time t of hen i was defined as follows: 

2'ijkin (t) = )LO (t)yea +penk+sire,fl 
	 (49) 
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where )j(t) is the baseline hazard function assumed to follow a Weibull distribution with 

parameters y and p as defined in 4.8; year1  the fixed effect of year j; penk the fixed 

effect of pen k; and sire,, the random effect of sire m, the sire of hen i. Sire effects were 

assumed to follow a multinormal distribution with variance o. Sires were assumed to be 

unrelated. 

4.2.5 Estimation of genetic parameters 

The sire model presented in Equation 4.9 does not include any residual component. Var-

ious approaches have been suggested to account for the residual variance. In this study, 

heritability estimates were obtained on the original scale, using the equation proposed 

by Yazdi et al. (2002), which is not dependant on the Weibull parameters provided that 

parameter p does not take extreme values. The authors showed that when p takes val-

ues around 2, the heritability estimates from the following simple equation are close to 

estimates derived from more complex formulas (Ducrocq, 1987): 

h2— 
4a? 

(4.10) 

where c,2  is the sire variance, which was estimated using the Survival Kit v3.12 (Ducrocq 

and Sölkner, 1998). The error of the heritability estimate was computed using the formula 

from Gilmour et al. (2001): 

var( -) — 	2 Var(a)Var(0)2Covar(aZ2 2 ,a) 
) 	(4.11) 

cy 

Given that a 	4c71 o 	1 + o, the variance of the heritability is given by the following 

formula: 
Var() 	Var(o) 	2Var(c) 

var(s ) 
16a( 	+ (1+)2 - 

(4.12) (i+o)2  

The standard error of the heritability was computed as the square root of the estimate in 

4.12. 
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4.2.6 Defining starting point and terminating event 

The dataset consisted of daily egg production records that covered a period of 140 days. 

The average yield across all the five available generations was 82 eggs. This was consid-

ered as the target production and hence, the "event" was defined as the time that a hen 

required to lay 82 eggs. 

The definition of the event affected the selection of the starting point for measuring the 

time to event. Due to the biological limitation that a hen can only lay one egg per day, it is 

implied that at least 82 days are required before the event occurs. In reality more time is 

needed, because eggs are laid in clutches. Although the intuitive choice was the onset of 

lay, preliminary experimentation suggested that using day 90, which coincided with the 

day that the first hen reached the target production, gave better results, in terms of fitting 

the model. The rationale of this choice is discussed in the following sections. 

In conclusion, the dataset consisted of 2289 individuals, from which 1599 hens were un-

censored (they laid 82 eggs before the 140 days) and 688 were censored (their production 

was less than 82 eggs over 140 days). The average time-to-82-eggs was 30 days after the 

starting point (which corresponded to day 120 of the whole laying period). 

4.3 Results 

4.3.1 Nonparametric analysis (KM curves) 

A plot of KM estimates for the survival and hazard function stratified per year is presented 

in Figure 4.1. The trend observed from this graph implies that the rate of lay was reducing 

across years. The results from the logrank test suggested that there was sufficient evidence 

to reject the null hypotheis that the KM curves stratified per year were statistically equiv-

alent (p < 0.05). This also implied that the effect of the year was significant and thus it 

should be included in the parametric model. The graph of the empirical hazard function 
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Figure 4.1: Kaplan-Meir plots of empirical survival (left panel) and hazard function (right 

panel) stratified per year. 

indicated that hazard appeared to be monotonically increased over time. 

A plot of the KM estimates for the survival and hazard function stratified per sire is pre-

sented in Figure 4.2. In the graph it is shown that a considerable variability is observed 

between KM curves corresponding to different sires. For certain sires all their progeny 

reached the production target, while for other sires, few of their offspring were successful. 

The results from the logrank test suggested that the Kl\'I curves were not equivalent for 

all sires (p < 0.05). This indicates that the sire component explained a significant part of 

the variance observed in the "survival" probabilities. The graph of the empirical hazard 

function also implied that hazard appeared to be monotonically increasing over time. 

Similar KM estimates for the survival and hazard function stratified per pen were ob-

tained, suggesting that pen also constituted a significant factor to be included in the anal-

ysis. The evidence accumulated from the nonparametric models was used to develop the 

fully parametric model. The results are presented below. 
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Figure 4.2: Kaplan-Meier plots of empirical survival (left panel) and hazard function 

(right panel) stratified per sire. 

4.3.2 Parametric model (Weibull model) 

It was concluded from the log-likelihood tests that two fixed effects had to be included 

in the Weibull model: year and pen. The inclusion of an interaction term was not found 

significant and therefore it was omitted. 

In order to develop a parametric model, the proportional hazards assumption was graph-

ically tested. In Figure 4.3 a comparison of the survival curves estimated from a Cox 

model and the observed survival curves both stratified by year is presented. As the graph 

suggests, the curves appear to be close to one another and without considerable discrep-

ancies. This lends support that the PH assumption is not violated. 

The next graphical test was to assess whether a Weibull model provided a suitable fit 

to the dataset. Figure 4.4 presents the plots of the log(-log) transformed KM"survival" 

estimates against the log of time when the time of recording started at the onset of lay (left 

panel) and at the 901h  day of the production period (right panel). As it is demonstrated in 
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Figure 4.3: Comparison of survival curves expected from a Cox model and observed 

stratified per year against time. Lack of discrepancies between the curves suggests that 

the PH assumption is not violated. 

the figures, only in the second case does a linear relationship appears to apply. Therefore, 

it can be concluded from this graphical test that the Weibull assumption is likely to hold 

only in the case in which time was recorded from the day that the first hen reached the 

production target (day 90). 

The parameter p that determines the shape of the hazard function under the Weibull model 

was equal to 2.263. Since a value greater than one was found, this indicates that hazard 

increases over time, being consistent with the KM estimates. The intercept of the Weibull 

model Ao was estimated to be equal to -8.192. All regression coefficients from the Weibull 

model were significantly different from zero, providing evidence that all factors included 

in the model had a significant effect. 
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Figure 4.4: Log-Log Kaplan-Meier survival estimates stratified for year to compare the 

appropriateness of datasets in which time recording started the first (left panel and 901h 

(right panel) day of the laying period. 

4.3.3 Heritability estimates 

The sire variance was estimated from the mode of the marginal posterior density and it was 

found to be equal to 0.047. The standard deviation of the marginal posterior distribution of 

the sire variance estimate was equal to 0.022. As reported above, the value of the Weibull 

shape parameter p was close to two, so it was possible to use the simplified heritability 

formula in Equation 4.10 in order to estimate the heritability of the time-to-lay-82-eggs. 

Hence, the point estimate of the heritability was 0. 16, having a standard error equal to 

0.08. 
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4.4 Discussion 

This study constituted a preliminary investigation focusing on the time required to achieve 

a target egg yield, rather than the total production per Se. The definition of the terminating 

event allowed me to encapsulate features of laying patterns, such as the persistency of lay, 

whilst using a Weibull model for modelling the baseline hazard. This simplified the esti-

mation of the heritability, which was found to be similar to previous heritability estimates 

for total egg number in the same population. This study showed that the application of 

survival analysis is feasible and has potential to be a viable alternative for increasing the 

efficiency of selection for egg production. 

As the breeding objective in the current turkey line was to increase egg production, the 

time-to-event trait should have a high correlation with the total egg number. In this anal-

ysis the event has been defined as the time required for hens to lay 82 eggs that corre-

sponded to the average production over the five available generations. The phenotypic 

correlation between the time trait and the total yield was strong (0.71). 

The time-to-event trait, as defined in this study, facilitated the distinction between fast 

and slow laying hens. Birds that reached the production target quickly, tended to lay more 

eggs in total than birds that required more days. In Figure 4.5 it is demonstrated that a 

strong linear relationship is observed between the rate of lay and the total production, 

when censored records are not considered. From the graph it is seen that, provided a hen 

achieves the production target, the time that it was required to the event is a good predictor 

of the total egg production. In conclusion, the definition of the terminating event allowed 

the formulation of a trait which was not only tightly linked to the total egg production, but 

also accounted for features of laying patterns, such is the rate and persistency of lay. The 

latter is of great importance for poultry breeders, since it is not easily defined (Grossman 

et at., 2000), but is included in the breeding objectives (Groen, 2003). 

The choice of the time event had also a positive impact on the shape of the hazard function. 

Since the number of hens reaching the target production increases over time, this implies 

that the probability that an event would occur in a short interval also increases towards 
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Figure 4.5: Fast laying hens tend to have higher total egg production, implying that the 

time-to-event trait may provide a means to assess persistency of lay (Censored records 

were not included in the graph. 

the end of the laying period. This was consistent with the increasing hazards assumption 

and thus it was possible to fit a Weibull model with positive value for parameter p. Had 

the target production been set to correspond to a low number of eggs, the hazard would 

initially be increased, but after a period it would decrease, since almost all hens would 

have laid the required number of eggs. This would violate the assumption of monotonic 

hazard function and thus it would hamper the fit of a Weibull model. Setting the starting 

point of time recording also had an impact on the form of the hazard function, as shown in 

Figure 4.4. An additional benefit of shifting the start of recording from the onset to a later 

stage of laying is that hens with exceptionally low production, due to early culling, have 

not been included in the analysis. This may constitute a more straightforward method to 

exclude outliers than those considered in Chapter 3. 

The interpretation of the regression coefficients corresponding to the explanatory van 

ables in the parametric model demands careful consideration. Although positive values 

for the regression coefficients reveal a negative effect on the survival of the subject, within 
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the context of this analysis, a positive coefficient denotes that a factor has an accelerating 

effect on the rate of lay and increases the intensity of lay. Hence, in this analysis, a posi-

tive coefficient is associated with meeting the breeding objective, which is an increase in 

egg production. In contrast, the progeny of sires, which are associated with negative re-

gression coefficients, are expected to require additional time until reaching the production 

target. 

Due to the apparent strong association between these two traits, it may be suggested that 

the development of survival models may have the potential to overcome some of the 

problems of the traditional selection for improving egg production. There is a series of 

arguments to advocate that this should be investigated. First, the normality assumptions 

that impair the estimation of genetic parameters for total egg number are not an issue 

under a survival model. Second, the outlier exclusion is handled by an explicit censor-

ing rule when appropriate starting and terminating points are selected. Third, it appears 

that there is a considerable amount of genetic variation available for time traits. In this 

study it was shown that the heritability for the survival trait was comparable to that of the 

(un)transformed total number of eggs (survival: 0.16±0.08 - untransformed:. 0.11±0.04 - 

transformed: 0.22±0.04). The survival estimate may also be biased downwards, as it was 

derived from a sire model, while the other two were obtained from a multivariate model 

which accounted better for the ongoing selection. Fourth, time-to-event models allow 

the incorporation of both the persistency of lay and total egg production. In conclusion, 

survival models could constitute a versatile genetic tool to allow to identify good laying 

hens, not only based solely on their egg yield, but also considering their laying pattern. 

Moreover, as shown here, it is possible to construct events that give the desired distribu-

tional properties and so, a Weibull model can be used, which simplifies the estimation 

procedure and renders feasible large-scale analyses. 

Despite the potential advantages of survival models, their development is still an ongoing 

process, which prevents them from being seamlessly incorporated into current breeding 

programs. One of the still unresolved issues is that the random model that is predom-

inately used in genetic applications is not consistent with the animal model because it 

does not account for unobserved heterogeneity of environmental origin, since a residual 
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effect is not directly included (Ducrocq and Casella, 1996). Although various approxi-

mate methods were used to estimate the individual heterogeneity, it was shown by simu-

lation studies that parameter estimates may be biased (Damgaard and Korsgaard, 2006). 

Previous studies have suggested that although this bias impairs the prediction of selection 

gains, the ranking of sires appears not to be affected (Yazdi et al., 2002). Furthermore, the 

estimation of best linear unbiased predictor for the random genetic effects is complicated, 

which makes these models less attractive from a practical point of view (Korsgaard et al., 

1998), unless a BayesianlMCMC approach is adopted (Saebø and Frigessi, 2004) 

Several of the issues noted above constitute fields of active research. Damgaard and 

Korsgaard (2006) developed a survival model that included a residual term in order to 

reduce the bias and improve the accuracy of prediction of breeding values. Another long-

known constraint of using survival analysis is that a bivariate analysis between a time-to-

even trait and a linear Gausian trait was not possible. Nevertheless, it has recently been 

indicated that this is feasible under a Bayesian framework (Damgaard and Korsgaard, 

2006). However, these advances have not been yet diffused in a ready-to-use software for 

routine genetic evaluation. 

Survival analysis provided a robust framework to define and investigate laying patterns, 

whose study was not straightforward with more conventional methods. This approach 

allows animal breeders address the longitudinal aspects of egg production and how these 

can be exploited to design more efficient breeding strategies. The development of frailty 

models to accommodate genetic effects is analogous to the introduction of a random ef-

fect in a linear regression framework as a way to account for correlation between clusters 

(Kleinbaum and Klein, 2002), which in a breeding context represents sire families. This 

observation puts the analysis presented in this chapter into the context with other method-

ologies to study longitudinal traits, such as random regression. The application of random 

regression models constitutes the topic of the following three chapters. 
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5.1 Introduction 

The analysis described in the previous chapter drew attention to the time-dependent fea-

tures of the egg production. It was shown that the selection for body weight affects the 

intensity of lay, which in turn relates to the dynamics of lay. Nevertheless, there is limited 

information on the longitudinal aspects of the egg production, so before examining the 

genetics of egg laying dynamics per Se, an investigation of the most appropriate statisti-

cal methodology was performed. This allowed me to build a framework to explore the 

genetics of egg production over time and perform an initial genetic analysis. 

Random Regression (RR) models, have become a popular methodology for the genetic 

study of longitudinal data since the last decade. Literature is abundant with studies investi-

gating the application of RR models in a wide variety of time-dependent traits (Schaeffer, 

2004). However, the first and still one of the principal application field is in dairy cattle 

breeding, where RR models have underpinned the development of test day models for 

genetic evaluation. 

Milk and egg production are analogous traits in that both change over time in a broadly 

comparable way and thus, when modelling the average production as a function of time, 

curves with similar shapes are generated. The success in the application of RRMs in dairy 

cattle attracted the attention of poultry breeders. Anang et al. (2002) reported that a RR 

model could be the most favourable model for analysing egg production data when com-

pared to other longitudinal models, including a multi-trait one. Other studies investigated 

the efficiency of RR models for the genetic evaluation of egg related traits, such as fertility 

and hatchability (Sapp et al., 2004). 

The benefits from the application of RR models stimulate the investigation and the ex-

tension of their use in the genetic study of egg production. The source and the scale of 

variation in egg laying are not constant during the whole laying period. Changes over 

time can be expressed as a common component depending on time for all animals in the 

population that may be described with a fixed regression, and as an individual variation 

over time. Random regression is a method of modelling covariance functions that can be 
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easily implemented into the genetic evaluations. So, RR models can detect both genetic 

and environmental factors that affect individual performance. Thus, a more accurate mod-

elling of variance-covariance structure can lead to a more accurate prediction of breeding 

values (Huisman et at., 2002). Furthermore, the function of genetic variance over time 

can be used to identify optimum points for selection and maximise its impact (Sapp et at., 

2004) or even alter the pattern of the genetic response (Schaeffer, 2004). 

Therefore, the objective of this chapter was to investigate the application of RR models 

in the genetic analysis of egg production of turkeys. Furthermore, the same dataset was 

analysed using a multi-trait (MTM) and a repeatability (REP) model and results were 

compared. In order to assess the model efficiency of predicting missing values, a reduced 

dataset was used and the predicted values of the deleted records were compared for the 

three alternative models. 

5.2 Materials and methods 

The description of the population and the dataset can be found in Chapter 2. The produc-

tion period was arbitrarily divided into five periods, each one including four weeks. In 

this way, each period corresponded approximately to the monthly egg production. So, the 

records used in the analysis were the sums of the eggs laid during a period of four weeks. 

All the analyses were performed using the AI-REML algorithm with the package DMU 

(Jensen and Madsen, 2006) and in all cases an animal model was considered. 

5.2.1 Fixed regression 

The data were analysed using repeatability model (REP), multi-trait model (MTM) and 

random regression model (RRM). The REP and RR models included a fixed regression 

part to account for the phenotypic trajectory of the average observations of the monthly 

egg production in different periods. 
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The shape of the laying pattern was modelled using the family of curves described by 

Ali and Schaeffer (1987). Although this model was initially introduced to describe the 

milking curve, its use can be extended to egg production data. Thus, the average egg 

production (y) of the population at time t is described by the following formula: 

(5.1) 

where b0, b1 , b2, b3 and b4  were the regression coefficients and t corresponded to each 

one of the five time periods (t = I - 5). 

A combined fixed effect was fitted in all models to account for the factors year, hatch 

and pen. Since some classes of these parameters were missing, a superfactor was used to 

avoid having missing levels and accounting for the interactions between the factors. 

5.2.2 Repeatability Model 

The REP model treated the five-period summary measurements as repeated records. The 

model included a permanent environmental and an additive genetic effect and a fixed 

regression to model the phenotypic trajectory. Hence, the model to describe the egg pro-

duction of period t (y) was: 

Yijt =S+FR+c1+a1+e1 	 (5.2) 

where Si was the ith  combined fixed effect, FRt  was the fixed regression terms given 

by equation 5.1, c3  and a1  were the random effects of the permanent environment and 

additive genetic effect respectively for the animal j (with c r  N(O, 	I) and a N(O, 

aA) respectively) and eijt  was the residual (e N(O, oI). This model assumes a genetic 

correlation of unity and independence of residuals across all periods. 
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5.2.3 Random Regression Model 

An extension of the REP model was to include time functions in the random part of the 

model. The choice of the random regression function included two candidates: the Ali-

Schaeffer function following the suggestion by Anang et al. (2001) and the Legendre 

polynomials. The model with the Ali-Schaeffer equation did not converged due to its 

complexity, so, the Legendre polynomials were finally used. This family of orthogonal 

polynomials has many advantages to be used as random regressions (Pool et al., 2000). 

The Legendre polynomials of order m were denoted as Øm  (w), where t is the standardized 

time period Wt using the following formula (Schaeffer, 2004): 

Wt  

	

2 (ti tmin) - 
	 (5.3) 

(tm tmin ) 

where, tj was the ith  period, tmj fl  and tm corresponded to the earliest and latest period 

respectively (trn jn  = 1 and tmax = 5). According to the random regression model used, the 

egg production Yij  of period t was: 

k 	 k 
Yijt = Si+FR + L Cjmø(Wt) + L aØ(w) +e 1 	 (5.4) 

m=O 	m=O 

where Si was the ith  combined fixed effect, FRt  was the fixed regression for month t 

given by equation 5. 1, the third term represented the permanent environmental effect, the 

forth term represented the additive genetic effect of the 11h  bird, and eijt  was the residual 

term. Terms Cjm and ajm  represented the random regression coefficients on the Legendre 

polynomial functions. 

The degree of the orthogonal polynomials, k was tested in order to determine the most 

proper combination. The likelihood of each model was compared with a log-likelihood 

test using the appropriate degrees of freedom, determined by the difference between num-

bers of model parameters (for each effect the degrees of freedom were: i (k + 1)(k + 2), 

where k corresponded to the order of polynomials). Detection of non-zero eigenvalues of 

the corresponding eigenfunction of the covariance matrix provided further evidence for 
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the necessary polynomials order (Meyer and Hill, 1997). Based on the log-likelihood test, 

the third order polynomial was the best (RR3), but the corresponding eigenvalue to the 

cubic regression was close to zero. So, the analysis was repeated for the second order 

polynomials (RR2) in order to compare the results. 

Let matrix G be a 5x5 matrix of the estimates of variance for each period (in the diagonal) 

and the covariance between different periods (off-diagonal elements), it can be calculated 

by the covariance function (Kirkpatrick et at., 1990): 

Gc1TV 	 (5.5) 

where, is a 4x5 matrix of the time covariates and V is a 4x4 matrix containing the co-

variance components of the random regression coefficients for the additive genetic effect 

(matrices 1 and V are 3x5 and 3x3 respectively when using second order polynomial). 

Likewise, a covariance matrix was computed for the permanent environmental effect (C). 

Finally, the residual covariance matrix (R) was the 5x5 identity matrix multiplied by the 

homogenous residual variance component. The total phenotypic covariance matrix (P) 

was the sum of the additive genetic, permanent environmental and residual covariance 

matrices (P = G + C + R). 

The heritability (h2) for time i and the genetic correlation (p) between time points j and 

k were defined as: 

pi,i 
	 (5.6) 

gJ,k 	
(5.7) 

X gk,k 

where gj,j and pi,j were the diagonal elements of matrices G and P corresponding to the 

genetic and phenotypic variance for period i and gj,k  was the element of the G matrix 

corresponding to the genetic covariance between periods j and k. 

The standard error of heritability was calculated by extending the methodology proposed 

by Fischer et at. (2004), adapted to accommodate the output of DMU package. The 
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formula used to estimate the variance of the heritability estimate for the i1h  period was 

based on a Taylor series expansion and it was given by the following equation: 

var(h2) = (h2)2  x V9i 	
('+-2x COV(g,,p,)) 	

(5.8) 

	

g,1 	 gj,j X 

where gjj and pij and, vgj,j and Vj,j were the diagonal elements of matrices G and P and 

VG and VP respectively. Matrices VG and VP correspond to the variance of G and P and 

were derived as the direct product of the variance-covariance matrix with the vector that 

included all the unique elements of matrix P (as in 5.5) for both genetic and permanent 

effects as long as the residual. 

5.2.4 Multi-trait Model 

A multi-trait model was also used in order to contrast it with the regression models. So, 

the egg numbers of the five sub-periods were treated as different traits and analysed si-

multaneously. Hence, the egg production Yij  of period k was: 

Ykij = Ski +akJ+ekJ 	 (5.9) 

where Ski  was the i1h  combined fixed effect, akf  was the random additive genetic effect for 

the animal j (a N(O,oA)) and e1, j1  was the residual term (e '-N(O,I)). The additive 

genetic effect was given as the direct product of matrices G, the 5x5 matrix that describes 

the genetic variance-covariance between the five periods and A, the relationship matrix 

among the animals. 

5.2.5 Model Comparison 

In order to compare the predictive ability of the various models the data were divided 

into two parts. The first part corresponded to 80% of the total data and it was used to 

estimate parameters for the different models. This dataset was created as follows: within 
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each generation, the first period was deleted for the first bird and so on. This was repeated 

for each group of five birds as they appeared in the dataset after sorting on generation, 

hatches and pen. Therefore, 2,400 observations were deleted, balanced in relation to the 

fixed effects. This corresponded to the 20% of the data and it was used to validate the 

model by comparing the predictions to the observed data using the mean square error of 

the difference. The rationale for this strategy was to study the model's ability to predict 

missing values, a situation often encountered in practice. 

However, the MT model did not include a permanent environment as a second random 

effect, in contrast with the RR and REP models. This component is contained in the 

residual for each period and should be accounted for in the comparison. Due to the data 

separation protocol, residuals for the first, the second and so on periods were missing. 

The missing residual, conditional on the observed residuals of the other periods for an 

individual can be estimated via a multiple regression. So, the adjusted prediction was the 

sum of the fixed and the additive genetic effect plus the missing residual, estimated by the 

regression. 

A further model comparison was performed only between RR2 and RR3, by assessing 

their prediction ability when only the last period was deleted. The objective of this second 

comparison was to detect if a model overfits the data. It was not possible to include MT 

model in this comparison, since it would not be possible to predict the deleted record from 

the four remaining ones. 

5.3 Results 

Phenotypic variances for egg production estimated from the three models are summarized 

in Table 5.1. For the REP model the estimates were assumed to be constant across the 

periods, while for the MT and RR, estimates were available for each of the five time 

points. The observed trend was that phenotypic variance increased along with the time 

periods. 
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Table 5.1: Phenotypic variance for all models and for all periods (RR2 = random re-

gression model with second order regression; RR3 = random regression model with third 

order regression; REP = repeatability model and MT = multi-trait model). 

Periods RR2 RR3 REP MTM 

1 19.14 19.48 23.64 18.91 

2 21.32 22.68 23.64 22.22 

3 26.29 25.56 23.64 26.02 

4 28.67 28.05 23.64 28.31 

5 30.37 29.70 23.64 30.03 

Heritability estimates are presented in Table 5.2 for all the three models. The RR3 had 

the higher estimates, with the exception of the fourth period. The heritability estimates 

from RR2 and MTM were very close for all the periods. The REP model had the lowest 

estimates from all models. In Table 5.3 the estimates of the ratio of the permanent envi-

ronmental variance to the total variance (c2) are also presented. The c2  estimated from the 

RRM were close to each other regardless of the polynomial degree used, while the REP 

estimates were lower. 

Table 5.4 presents the genetic correlations between egg numbers of different periods, es-

timated based on MT and on RR2 models. Although the values differed to some extent 

between the 2 models, the same pattern was observed. First, a weak correlation between 

the first and the middle stages of the production was observed. Second, the correlation 

between consecutive periods was strong. Third, the first and the last period were pos-

itively correlated. Phenotypic covariances are presented in Table 5.5. The phenotypic 

correlations were positive between all periods 

Based on the heritability estimates from the MTM and RR models, a heritability profile 

was plotted by joining the estimates for each time point and thus covering the whole 

production period (Figure 5.1). This plot allows the visualization of the dynamics of the 

genetic variance over time. 
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Table 5.2: Heritability for all models and for all periods (RR2 = random regression model 

with second order regression; RR3 = random regression model with third order regression; 

REP = repeatability model and MTM: multi-trait model). 

Periods RR2 

heritability 

RR3 REP MTM 

0.12±0.03 0.13±0.04 0.04±0.01 0.14±0.04 

2 0.05±0.02 0.11±0.03 0.04±0.01 0.06±0.03 

3 0.07±0.03 0.08±0.03 0.04±0.01 0.07±0.03 

4 0.07±0.02 0.05±0.02 0.04±0.01 0.05±0.03 

5 0.07±0.03 0.08±0.03 0.04±0.01 0.10±0.03 

TOTAL 0.07 0.08 0.04 0.07 

Table 5.3: Estimates of the proportion of phenotypic variance explained by the permanent 

environment (c2) for all models and for all periods (RR2 = random regression model with 

second order regression; RR3 = random regression model with third order regression; 

REP = repeatability model). 

Periods RR2 

C- 

RR3 REP 

1 0.45±0.03 0.50±0.04 0.45±0.03 

2 0.56±0.03 0.58±0.03 0.45±0.03 

3 0.60±0.03 0.64±0.03 0.45±0.03 

4 0.64±0.02 0.70±0.02 0.45±0.03 

5 0.65±0.03 0.69±0.03 0.45±0.03 

The predictive ability was evaluated by comparing the difference between predicted and 

true values for the missing data. When data were deleted in a balanced fashion over 

periods, the RR3 model had the lowest MS error (MSE; MSE = 5.72), followed by the 

RR2 model (MSE = 13.84). The MTM model, though adjusted for the random effect 
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Table 5.4: Genetic correlation coefficients between all periods based on RR2 (upper tri-

angle) and on MTM (lower triangle) (RR2 = random regression model with second order 

regression and MTM = multi-trait model). 

RR2 

MT Period I Period 2 Period3 Period 4 Period 5 

Period I - 0.39 -0.09 -0.08 0.32 

Period 2 0.17 - 0.87 0.79 0.47 

Period 3 0.11 0.54 - 0.95 0.48 

Period 4 0.05 0.62 0.77 - 0.71 

Period 5 0.17 0.61 0.66 0.88 - 

Table 5.5: Phenotypic correlation coefficients between all periods based on RR2 (upper 

triangle) and on MTM (lower triangle) (RR2 = random regression model with second 

order regression and MTM = multi-trait model) 

RR2 

MT Period 1 Period 2 Period3 Period 4 Period 5 

Period 1 - 0.47 0.37 0.31 0.27 

Period 2 0.48 - 0.61 0.57 0.47 

Period 3 0.39 0.64 - 0.67 0.58 

Period 4 0.34 0.54 0.68 - 0.66 

Period 5 0.30 0.46 0.62 0.71 - 

of the permanent environment, had a relatively large value (MSE = 16.31). The model 

with the largest MSE was REP (MSE = 18.89). Therefore, the comparison of the MSE 

suggested that the RR3 model was the most efficient to predict missing values. However, 

when the RR2 and RR3 models were compared using the reduced data set in which the 

last period was deleted for all hens, the results were different. In this case the RR2 model 

had the lowest MSE(MSE = 40.73), whereas the RR3 model appeared to have a larger 
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Figure 5.1: Heritability profile for all models (MTM multi-trait model; RR2 Random 

regression model using 2' order Legendre polynomials; RR3 Same as RR2 but using 

Yd  order polynomials). 

error (MSE = 67.43), 

5.4 Discussion 

The estimates of genetic parameters from the RR2 and RR3 model were comparable with 

the MT model, and both gave a detailed description of the dynamics of genetic variance 

in contrast with the REP model, which assumed a constant heritability and genetic cor-

relation between periods. The present study showed that the heritability of 28 days egg 

production was high in the beginning of the laying period, decreased in the second period, 

remained constant for the rest of the time points, and increased again in the last stage of 
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laying. The model comparison showed that both RR models, particularly the RR3 model, 

were more efficient in predicting missing values than the MTM or REP models but that 

the RR2 model was more robust to predict missing periods. 

The use of the Ali-Schaeffer equation as the function for the fixed regression provided a 

robust tool to describe the trajectory of the average egg production (Anang et at., 2001). 

In the current data set, the fit was perfect, because a 5-term equation was used to model 

5 time points. However, a very good fit was also obtained when the same equation with 

the 5 time points was tested to fit for 10 or more time points (this is illustrated in the 

next Chapter, where 140 time points are fitted). This result provides evidence that the 

Ali-Schaeffer equation can be used satisfactorily to model the average egg production, 

with the benefit of being simpler than other models proposed, such as the Grossman et al. 

(2000) persistency model. 

The REP model used in the current analysis was similar to the test-day models introduced 

by Ptak and Schaeffer (1993); however, it was unsatisfactory for the present data set, be-

cause more detailed analyses showed that the major assumption of the REP model did 

not hold. Results from the RR and MT models illustrated that the genetic correlations be-

tween egg productions of different periods varied from 0.1 to 0.9, whereas the REP model 

assumes a value of 1. Another assumption of the REP model is that genetic variance re-

mains constant between periods, and this was not supported by the estimates derived from 

the RR and MTM models. In brief, the REP model offers a quick and simple approach 

for the genetic analysis of longitudinal data and has been used for the genetic evaluation 

of the egg production in poultry (Anang et at., 2001), but the limitations stemming from 

the assumptions of the model makes it less preferable than other options. 

The RR models offer an improvement over the REP model, because they allow the mod-

eling of the genetic covariance between periods and are a development of covariance 

functions described by Kirkpatrick et at. (1994). Anang et al. (2002) concluded that RR 

was the preferred model for the genetic evaluation of egg production of laying chickens, 

and the current data extend this observation to turkeys when compared against the MTM 

model, which represents a more traditional approach to modeling repeated records over 
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time. The comparison of genetic parameter estimates from the RR2 and MTM models 

showed that both models were equally effective to de- scribe the dynamics of the genetic 

variance over time. The general shape of the heritability profile obtained from the 3 mod-

els agreed with results from Anang et at. (2000, 2002). Similar trends are also observed 

for heritability of milk production using test-day models in dairy cattle 

The RR models can deal with a large number of production periods with few parameters. 

In the present study, the total number of covariances for the MTM was 30, compared to 

13 and 21 for RR2 and RR3 respectively. The model comparison using the first cross-

validation strategy showed that both the RR had a lower mean square error than MTM. 

The lowest mean square error was obtained with RR3. 

The superior prediction ability of the RR3 over RR2 could be associated with a larger 

number of explanation variables. Therefore a second cross-validation strategy was used 

to discriminate between RR2 and RR3. The second strategy was used to detect the ability 

of the two RR models to predict the egg production beyond the observed period, rather 

than predicting an internal missing value. Using the second strategy, RR2 gave the best fit, 

suggesting that the advantage of RR3 in the initial model comparison was a consequence 

of the larger number of explanation variables associated with RR3. 

Further indications for rejecting the RR3 were provided by the different heritability profile 

when compared to RR2 and MTM and the larger standard errors. The latter suggests 

that the RR3 overfits the data, while further evidence of over-fitting was implied by the 

eigenvalue of the third order regression coefficient being close to zero, despite the fact that 

the RR3 had a lower log-likelihood value. Olori et at. (1999) used similar arguments when 

considering the appropriate order of RR when modelling lactation curves. Therefore, a 

trade-off seems to exist between the number of parameters and the model efficiency and 

so, determining the polynomial order requires consideration. It was concluded that RR2 

was the most appropriate model in this dataset. 

Apart from the appropriate polynomial order, the number of the time points that a RRM 

will fit is also crucial. Initially, a ten-period model was considered, but it failed to con-

verge. Possibly, the underlying biological mechanism, involving overlapping oviposi- 
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tions, interfered with the separation in ten periods. The egg number distribution within 

each period was more erratic and the approximation via the normal distribution less sat-

isfactory. 

One approach not followed in the current study was the use of transformations to reduce 

deviations from normality, even though this was considered in Chapter 3 for the whole 

laying period. The justification for excluding this approach was that simple data screening 

showed that a separate transformation would be required for each period. This would 

result in cumbersome evaluation procedures and would obscure inferences. 

In conclusion, the application of RR in egg production of turkeys appears to be promis-

ing. It can effectively model the laying procedure even when missing values exist, as 

highlighted in the current study. The implementation of RR allows the genetic evaluation 

of egg production on a monthly basis and could provide helpful information for breeders 

to optimize selection strategies. Nevertheless, in view of the rapidly changing heritability 

over the initial period, use of more time points may be warranted, in order to increase 

the accuracy of estimates and thus, to derive the full benefits of modelling the genetic 

variation over time for providing a more reliable framework for breeders. This analysis 

constitutes the topic of the following Chapter. 
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6.1 Introduction 

In the previous chapter the advantage that random regression (RR) models offer over 

repeatability and multiple trait models was shown. The division of the laying period into 

intervals allowed to investigate the longitudinal aspect of egg production. Hence, it can 

be suggested that increasing the number of sub-periods would improve the accuracy of 

the modelling, since even minute changes will be captured. However, a limitation in the 

number of sub-periods seems to exist in the analysis of egg production data in turkeys 

using RR linear Gaussian model. In the analysis described in the previous chapter it was 

not possible to obtain convergence when periods shorter than a month were fitted in the 

RR model. 

Under an alternative modelling approach, time periods can be set to cover only a single 

day. Thus, egg laying is converted to a binary trait, where 0 corresponds to none egg laid 

and I to an egg laid. Therefore, daily egg production over time can be modelled using a 

liability RR model. Sorensen et at. (1995) introduced a threshold model for categorical 

responses using a Bayesian approach, which was further developed by Sorensen and Gi-

anola (2002). Rekaya et at. (1998) extended the model by including a random regression 

term for the study of longitudinal binary responses. Successful model implementations 

were found in studies in dairy cattle performed by Rekaya et al. (2003), Heringstad et at. 

(2003) and Chang et at. (2004) for the genetic analysis of clinical mastitis and by Averill 

et al. (2006) for fertility evaluation. Such conclusions are the stimulus for adaptation of 

this model for studying the structure of the genetic covariance of daily egg production in 

turkeys. 

The objectives of this study were, first, to estimate genetic parameters for the daily egg 

production over the whole laying period in turkeys using a longitudinal threshold model 

under a Bayesian framework; and second, to explore the possibility of using the infor-

mation obtained in order to investigate alternative selection strategies for the genetic im-

provement of laying turkeys. 
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6.2 Materials and methods 

A detailed description of the dataset can be found in Chapter 2. The data used in this 

analysis consisted of the daily egg production of hens over 140 days. 

6.2.1 Genetic model 

Since daily egg production was treated as a binary trait, it was postulated that the ob-

served record yi of the i1h  day in the production period is associated with an unobserved 

underlying variable, the liability 2,j j 	N(u, .2))•  So, if 	> T then an egg is laid in 

the i1h  day (yi = 1) and if 2,i < T, then no egg is laid (yi = 0), where T is an unknown fixed 

threshold (Sorensen and Gianola, 2002). 

The term jui represents the mean liability of the population for each production day 

(i=1...140) and in order to account for the population trajectory over time, the formula 

introduced by Ali and Schaeffer (1987) was fitted as a fixed regression. Although this 

function was introduced for describing the lactation curve, it is also adequate to model 

the pattern of egg laying (Anang et at., 2001). Some experimentation with the current 

dataset suggested that a better fit was achieved when using Ali-Schaeffer for fixed regres-

sion compared to Legendre polynomials. 

In order to account for individual liability as a deviation from average performance, ran-

dom regression terms were fitted for both the additive genetic effect of the sire and a 

second random term peculiar to each record that included the remaining genetic and per-

manent environmental effects, which will be referred to as a permanent environmental 

effect. Legendre orthogonal polynomials were used as random regression functions be-

cause of their benefit of increasing the mixing properties of the Markov Chain Monte 

Carlo (MCMC) process (Chang et at., 2004). The Legendre polynomials of order m were 

denoted as Øm(wt), where wt was the standardised time period using the following for- 

mula (Schaeffer, 2004): 	
2(t - tmin) 

- 1 	 (6.1) Wt 	
(t,7 	- t) 
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and where, tt  was the tt  period, tmj fl  and trn corresponded to the earliest and latest period 

in the present study respectively (tmin  = 1 and t fl2ax = 140). The order of the polynomial m 

was set equal to two, based on the results from Chapter 5. 

Thus, the unobserved liability A j  of a hen j of sire k to lay an egg in day t was: 

2 	 2 
2 jkt YHP+b0+b1 z1  +b2z+b31og[z'] +b4log[z']2  + 	c 1Ø(w) + 	s1 çb(w) +eJk 

m=O 
(6.2) 

where YHPj was the combined fixed effect for the factors year, hatch and pen, Zt = tJ140 

and b0, b1 , b2, b3  and b4  were the regression coefficients of the Ali-Schaeffer fixed regres-

sion for day t. Terms Cjm and Skm  represented the remainder genetic plus the permanent 

environmental and the sire genetic random regression coefficients of hen j and sire k, re-

spectively, for Legendre polynomials Ø, ('v) of order m, where wt  was the standardised 

day t (Kirkpatrick et al., 1990). The residual effect, eJk,  was assumed to have constant 

variance over time equal to one (e N(0, l)). The sire model was preferred to a full 

animal model due to the computation benefits. Sires were considered to be related. 

A Bayesian MCMC approach was used to fit the above model 6.2 to data. Uniform, in-

dependent prior distributions were assigned to fixed effects and to all fixed regression 

coefficients, while the random regression coefficients were assumed to follow a multi-

variate normal prior (Chang et at., 2004). Both permanent and additive genetic variances 

were assumed to follow independent scaled inverse X2  prior distribution. 

Draws from the fully conditional posterior distributions were obtained using a Gibbs 

sampler with data augmentation (Sorensen et at., 1995). A single long chain of length 

1,050,000 with a bum-in period equal to 50,000 was used. A little experimentation in-

dicated that such a chain led to small Monte Carlo variances of features of posterior 

distributions. Convergence was monitored visually by inspection of traceplots. 
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6.2.2 Inferences of genetic parameters 

The covariance matrix S for the sire genetic effects was computed as: 

(6.3) 

where was the estimate of S with order 140x 140, was a 1400 matrix of time covari-

ates and V was a 3x3 matrix containing the variance components of the intercept and the 

random regression coefficients for sire genetic effect. Likewise, a covariance matrix was 

computed for the permanent environmental effect and a residual covariance for the 140 

laying days was constructed from a 140x140 identity matrix multiplied by the homoge-

nous residual variance. 

These matrices were used to infer the genetic parameters on the underlying scale. Thus, 

the total phenotypic covariance matrix (P) was the sum of the sire, permanent environ-

mental and residual covariance matrices. The liability heritability (hI)  for day i and ge-

netic correlation (p) between days j and k were defined as: 

hi - 
	

(6.4) 
Po 

(6.5) 

Moreover, a new trait was defined: the cumulative liability (C,) that corresponded to the 

sum of liabilities between days x and y (1 < x <y < 140). The heritability of Cx,y  between 

days x and y at the level of the liability was estimated as follows: 

2 	
- 4ctSc  

x,y 	ctPc  
(6.6) 

where c was an indicator vector with 140 elements corresponding to the days of laying 

period, with c1  = 1, when x < i <y and c1  = 0 otherwise. The heritability of the total 

liability (hI)  corresponded to x = 1 and y = 140. 

The genetic correlation P(c,,T)  between the cumulative liability C, from day x to day y 
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and the total liability T, was defined as: 

ctSt  
P(C,T) = __________ 	 (6.7) 

/(ctSc) (ttSt) 

where c and t were indicator vectors with 140 elements corresponding to the laying days 

and S was the sire covariance matrix. The values of vector c elements were set as de-

scribed in equation 6.6, while all vector t elements were equal to one, since they corre-

sponded to the whole period. 

The correlation between cumulative and total liability PCT  was used to assess the effi-

ciency of indirect selection for cumulative liability of egg production from day x to day 

y in lieu of the direct selection for total liability. Following Falconer and McKay (1996) 

indirect selection is more efficient than direct selection when the following inequality is 

valid, given that the intensity of selection remains the same in both cases: 

hi x Pid > hd 
	 (6.8) 

where, hi and hd are the square root of the heritability of the indirectly and directly Se-

lected trait respectively estimated from 6.6, and Pid  is the genetic correlation between the 

two correlated characters, estimated from 6.7. 

All combinations of starting (x) and finishing (y) days were examined to identify the in-

tervals where indirect selection is more efficient than direct selection, on both the liability 

and observed scales. Since the problem space consists of 140x140 states, a two-step 

procedure was followed. First, an initial screening of problem space was performed by 

substituting the function terms in 6.8 with the estimates obtained from posterior means. 

This indicated the candidate periods for which indirect selection appeared to be more ef-

fective than the direct on average. The second step was to calculate again 6.8 for each 

of the available MCMC iterations and compute the ratio of those satisfying the inequality 

versus the total number of the iterations. This probability indicated the effectiveness of 

indirect selection using the partial production of a specific period compared to the direct 

selection for total liability. 
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Since a liability model was used, all the variance component estimates referred to the 

underlying scale and hence results had to be translated to the observed scale. Robertson 

and Lerner (1949) showed that in the case of a character having only one threshold the 

heritability on the observed scale (h2 
 b )is equal to: os 

	

hbs = (1) xh 	 (6.9) 

where the hI  is the heritability on the liability scale, p is the proportion of hens laying an 

egg each day with the product p( 1 - p) corresponding to the phenotypic variance in the 

observed scale (a( 2)0b5) and f(x) is the height of the standardised normal curve at the 

position of the threshold x11, (Lynch and Walsh (1998) and Mrode (2005)). Equation 6.9 

can be generalised to convert the covariance matrices on the observed scale, if the heri-

tability in the liability scale is written as the ratio of the genetic and phenotypic variance 

on the liability scale. Thus, the covariance matrix for the sire on the observed scale (Sobs) 

was obtained as follows: 

S0bS = FSF 	 (6.10) 

where S is the covariance matrix for the sire effect on the liability scale, and F a 

140x140 diagonal matrix with i1h  diagonal element corresponding to the i1h  day of the 

period equal to: 

F(i,i) = 	x 	
f(x ) 

Ai 	/px(1—p) 

where o is the phenotypic variance, p1  the proportion of laying hens and f(x) is the 

height of the standardised normal curve for the ith  day. Equation 6.10 was also applied to 

obtain the covariance matrix of the permanent environmental effect on the observed scale. 

Finally, the phenotypic covariance matrix on the observed scale was also obtained as 

follows: the diagonal elements were set to be equal to p(l - p) and the off-diagonals 

were set to be equal to the sum of the corresponding elements of the sire and permanent 

environmental matrices. Using this scaling method, the modified covariance matrices 

were used in equations 6.4, 6.5, 6.6, 6.7 and 6.8 in order to estimate the heritability and 
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genetic correlation, and to investigate direct and correlated response to selection on the 

observed scale. As follows from 6.5 and 6.10, the genetic correlation was the same on 

both scales. 

The availability of all MCMC iterations made feasible the estimation of moments of the 

posterior distribution for each estimated parameter, including means, variances as well as 

coefficients of skewness and kurtosis. All parameters were estimated as the mean of their 

respective posterior distribution. 

6.3 Results 

6.3.1 Fixed regression 

The fixed regression coefficients, after being transformed to the observed scale, were 

used to model the average daily egg production. Hence, the predictions were plotted as 

a function of time and compared against the raw data for hen-day production (6.1). The 

dependent variable was expressed as the hen-day production, i.e. the probability of a hen 

laying an egg on a specific day of the production period. In the beginning of the laying 

period the fitted values from the model agreed well with the raw means, but in the second 

half the model appeared to underestimate the average daily production. This deviation is 

addressed in the discussion section of this Chapter. 

6.3.2 Genetic parameters for the daily egg production 

The additive genetic variance for each day was estimated both on the liability and on the 

observed scale. The coefficients of skewness and kurtosis of the posterior distribution 

were calculated for each day using all the saved MCMC samples and were plotted against 

all laying days in Figure 6.2. This plot indicates that the posterior distribution of the 

heritability estimates for all time points is characterised as right-skewed and leptokurtic 
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Figure 6.1: Fit of the fixed regression modelling the average daily laying curve (hen-day 

production) over the raw data (points). 
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Figure 6.2: Skewness and kurtosis of the distribution of daily heritability on the observed 

scale (the curve shape was similar for both moments in the liability scale). 

on both the liability and the observed scale. Figures 6.3 and 6.4 display the heritability 

plot during whole production period on the liability and on the observed scale respec-

tively. A common observation was that the heritability increased at the onset of laying 

but rapidly decreased, reaching a minimum level in the first month, and towards the end 

of the production period rose again. 

The inconsistency between the heritability estimates on liability and on observed scale 

(Figures 6.3 and 6.4) during the first production days is explained by the low frequency 

of daily egg production at this period and how this affects the estimation of heritability on 

the observed scale (i.e. p in equation 6.9 was small). As at the onset of laying, the hen-

day production was low, so the heritability on the observed scale was also low, despite the 

estimated heritability on the liability scale being at its maximum. 
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Figure 6.3: Plot of the daily heritability in the liability scale, including the standard devi-

ation of the estimates. 
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Figure 6.4: Plot of the daily heritability in the observed scale, including the standard 

deviation of the estimates. 

A surface plot of the genetic correlation between all days of the laying period is presented 

in Figure 6.5. The estimates on the liability and observed scale were identical (see section 

6.2.2). A high genetic correlation was observed for consecutive periods. The first days of 

laying were negatively correlated with days around the middle of the production period. 

In contrast, the first and last days of the laying period were positively correlated at the 

genetic level, providing evidence that the persistency of lay has a genetic basis. The same 

pattern was observed for the phenotypic correlation. 

6.3.3 Cumulative liability/egg production from day one to day x 

The posterior distribution of the heritability of cumulative egg production from day one 

to day x (x< 140) was unimodal, right-skewed and leptokurtic on both underlying and ob-

served scales. Standardised moments of the posterior distribution were plotted over time 
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Figure 6.5: Surface plot of the genetic correlation between all days of laying period. 

and it was concluded that the curve shape was similar to the plot presented in Figure 6.2 

(results are not shown). Figure 6.6 presents the heritability plot of the cumulative liability 

starting from day one and extending up to the last day of the laying period. The peak 

of the heritability was observed for the cumulative liability that covered the first twenty 

laying days. The same pattern was observed on the observed scale (results not shown), 

but the absolute values of estimates were lower due to the scaling applied. 

The heritability of total liability was found to be equal to 0.09 ± 0.04. This estimation, 

after being translated to the observed scale, corresponded to the heritability of the total 

egg number and it was estimated to be 0.06 ± 0.04. 



CHAPTER 6. THRESHOLD RANDOM REGRESSION MODEL 	 104 

Figure 6.6: Plot of the heritability estimates, including the standard deviation, of the 

cumulative egg production from day one up to day x (x < 140) in the liabiltiy scale. 

6.3.4 Cumulative liability/egg production & indirect selection 

The means of the posterior distributions for total liability and egg production were used 

as the criterion in equation 6.8 to identify efficient selection windows. Figure 6.7 presents 

the result of this search on the liability scale. The optimum time periods are visualised 

as light areas (with yellow colour) on the surface plot. The graph shows that indirect 

selection to improve total egg production appeared to be more efficient when selecting for 

cumulative egg production during the last days of the production period. The systematic 

search in the second half of the laying period (including all periods starting from day x 

and finishing to day y with 71 < x < y 40) suggested that the probability that an effective 

selection window existed during this time frame exceeded 0.85. The combination for 

which the indirect selection appeared to be the most effective is the one that corresponded 

to the partial production between days 120 and 140. This observation was validated for 

72% of all available draws from the posterior distribution. 
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Figure 6.7: Search for optimum time windows (marked as light-coloured, yellow) for 

which the indirect selection using the cumulative production between two days, corre-

sponding to x and y axes of the contour plot, is predicted to be more efficient than the 

direct selection for the total egg number in the liability scale. 

Figure 6.7 indicates that a selection window may also exist for partial egg production 

whose recording starts from the first day. The probability of observing a selection window 

during the first half of the laying period (all combinations of periods starting from day x 

and finishing day y with I< x <y <70), in which the indirect selection was predicted 

to be more efficient than the direct selection, was 0.65 on the liability scale and 0.63 

on the observed scale. In this part, the most efficient combination on the liability scale 

appeared to be the periods for which recording of eggs started at the first day and finished 

between days 14 and 34. In Figure 6.8 this interval corresponds to the x values (days) 

for which the curve surpasses the straight line corresponding to the square root of the 

heritability of total liability (right-hand side term in equation 6.8). The occurrence of this 

window was validated for 50% of all available draws from the posterior distribution, as 

Figure 6.9 illustrates. The combination for which the indirect selection appeared to be 

the most effective during the first half of the laying period was the cumulative liability 
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Figure 6.8: Comparison of the indirect selection for cumulative production beginning 

from day one up to day x and the direct selection for total egg number. Partial egg pro-

duction starting from the first day and finishing between days 14 and 34 is the only interval 

when the indirect selection is predicted to be more efficient. 

between day one and twenty-two. This was observed for 53% of all available draws from 

the posterior distribution. 

6.4 Discussion 

The fixed regression described satisfactorily the average daily egg production for the first 

part of the laying period. The random regression provided heritability and genetic cor-

relation estimates on a daily basis that allowed a detailed insight to be obtained of the 

dynamics of the genetic parameters of egg production for the whole production period 

on the liability scale. A selection window, where the indirect selection using cumulative 

egg production as a criterion appeared to be more efficient than the direct selection for 
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Figure 6.9: Likelihood of an efficient selection window existing when the cumulative 

production from day one up to day x (x140) is used for indirect selection for the total 

egg number in both the liability and observed scale. 

total egg number, was observed for both the first and the last month of production, with 

the latter appearing to be more favourable due to the higher efficiency and likelihood of 

occurrence. However, this potential advantage needs to be weighted against other factors 

that govern the design of breeding programmes. 

6.4.1 Liability and observed scale 

In this Chapter a liability model was used, and therefore, results are applicable on the 

underlying basis and careful consideration is required when they are interpreted on the 

observed scale. Nevertheless, the adoption of a liability model may offer certain advan-

tages for the genetic analysis of egg production. 

Daily egg production is perceived as a binary character, despite being a quantitative trait 
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presumably regulated by a large number of loci. The use of the liability scale allows 

accounting for these polygenic effects on a continuous scale and therefore, it may be 

suggested that this approach provides, a model closer to the underlying biological mech-

anisms. Furthermore, because the liability of daily egg production is assumed to follow 

the normal distribution, the departure from normality that hampers the analysis on the ob-

served scale (see the and Hill (1988) and Chapter 3) is no longer an issue. Hence, the use 

of the unobserved scale may constitute a more biologically meaningful approach than the 

power transformations for removing the bias on the estimation of the genetic parameters, 

due to the discrete character of egg records on the observed scale. 

This becomes evident in the case of a bivariate analysis of egg production and body 

weight. Because of the departure from normality, the common approach is to apply a 

power transformation, as in Chapter 3. So, the genetic correlation estimated is in fact that 

between the transformed egg production and body weight, which is assumed to reflect 

more closely the true relationship between the traits. However, if the liability of egg pro-

duction is considered, then no transformation on data is required. Furthermore, it has been 

suggested that the underlying scale may provide a more accurate model of the biology of 

laying. So, it may be postulated that the genetic correlation between the liability of egg 

production and body weight is a more precise estimation of the true genetic relationship 

between the two traits. 

Despite the advantages of the use of the liability scale, a major drawback is that all the es-

timates need to be translated back to the observed scale. For this purpose, equation 6.10 is 

used, but this provides only an approximation. Therefore, careful interpretation of results 

is recommended when using results from a liability model in order to make inferences for 

selection on the observed scale. 

6.4.2 Laying patterns 

The fixed regression model accounted for hens culled, corresponding to hen-day produc- 

tion. Despite the good fit for the first half of the laying period, toward the end of the 
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production period the model appeared to underestimate raw means. Explanations could 

be either an inefficiency of Ali and Schaeffer equation to adjust to the shape of the laying 

curve or as if the raw means are biased upwards. To test the model capability, a simple 

multiple regression was applied to raw means and the fit of the model improved, suggest-

ing that the function can effectively describe the shape of the laying curve. The alternative 

explanation involves biased raw means, due to genetic trends from selection for which the 

predicted egg production did not account. The number of birds removed from production 

was larger for the first half, and the culled birds were characterised by low yield. Despite 

this discrepancy, the fixed regression term appeared to model satisfactorily the average 

egg laying in turkeys, offering a robust alternative to previous approaches (for a review 

see Fairfull and Gowe (1990)), 

The high genetic variance and heritability in the initial period most likely reflected the 

variance observed for the onset of laying and my decision not to correct data for the age 

at first egg, as it is illustrated in Figure 6.3. The period between twenty and sixty days 

was characterised by a reduced heritability, but this coincided with the stage when hens' 

laying rate is maximised (Figure 6.1). Furthermore, during this period the proportion of 

the permanent environmental effect was increased in contrast with the sire component that 

was reduced. So, the heritability drop was a result of the reduced contribution of genetic 

variance and the respective increase of the permanent environmental effect because the 

majority of hens were laying well. However, towards the end of lay, when the rate of lay 

was reduced, sire variance increased and a boost in heritability was observed. 

The trends of the daily heritability were consistent with the study performed in the pre-

vious chapter using a REML random regression and a multi-trait model examining the 

monthly egg production. The current observations on laying patterns were also in com-

pliance with the findings of Anang et al. (2002), in which they reported the application of 

RRMs in the monthly egg production of chicken. Fairfull and Gowe (1990) compiled a 

consensus table from earlier studies presenting the heritability of individual laying stages 

in chicken, indicating an agreement with our results about the patterns of lay. The patterns 

of genetic correlation were also consistent with the results presented in Chapter 5. 
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6.4.3 Indirect selection using partial production 

The use of part records as a criterion to indirectly select for egg production has been 

investigated in the past for egg laying chickens (for a review see Ayyagari et al. (1980) and 

McMillan et al. (1986)). However, in all the previous studies each period was analysed 

separately and hence the level of accuracy may not has been optimal. A detailed model, 

like the one used in this study, may shed light on the complex dynamics of egg laying. 

The search for efficient selection windows showed that intervals towards the end of the 

production period appeared to be more efficient. The high genetic correlation between 

the cumulative production of the last days of laying and the full production period could 

serve as an explanation (Figure 6.5). There, it is shown that the start and the end days of 

the laying period were positively correlated. It can also be implied that the persistency of 

lay provides an additional explanation, since birds that perform well in the last stage of 

lay are likely to have an analogous egg yield in the previous periods resulting in a high 

total egg output. The importance of persistency has also been suggested from the survival 

analysis in Chapter 4, where it was indicated that the production of the last laying stage 

was strongly correlated to the total yield. 

Despite the advantage of using the cumulative production of the last production days, 

the efficiency of a breeding program is influenced by many factors, including the timing 

of selection. In this context, waiting for the last days of the production to perform the 

selection may not be the best practice, because it prolongs the generation interval. Hence, 

the benefit from the more efficient selection should be compared with the loss of progress 

due to longer periods between consecutive generations. 

For this reason the case of the cumulative production starting from day one up to day x 

was also considered, although it appeared not to be the most efficient selection window. 

The periods, for which the probability of occurrence of an efficient selection windows 

exceeds 50%, are the partial records covering the period from day one to days between 

the 141hi  and 341h  (Figure 6.9). This selection window may be beneficial for breeders, 

since our results implied that the selection based on the partial production of the first days 
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may be at least as efficient as waiting to obtain the total egg number. This can accelerate 

the genetic progress, since it allows earlier selection and thus, minimising the generation 

interval. Additional benefits from earlier selection can be that the maintenance cost of 

the nucleus flock can be reduced, since the recording of the egg production on a daily 

basis may be limited to the first month. Nevertheless, in this particular population these 

gains may be compromised, because the probability of occurrence of the early selection 

window appears to be relatively low. 

Moreover, the aforementioned conclusions were derived from a liability model, so con-

sideration is required when they are used to make inferences on the observed scale. How-

ever, when a REML RR model was applied on the same dataset on the observed scale, the 

search for periods for which indirect selection appeared to be more effective than direct 

selection pointed to similar laying stages as the daily liability model. This consistency 

between models may suggest that results from the liability model could be extrapolated 

to the observed scale. 

In this study the partial production was investigated as an alternative trait for indirect 

selection, but all periods were examined on the same basis. Alternatively, the use of 

economic weights in relation to the timing of laying may constitute a more objective-

oriented approach to allow focusing on the most interesting periods in terms of genetic 

information. Breeders may capitalise upon this information in order to maximise the 

output of selection. 

This study has illustrated that the application of a longitudinal threshold model for the 

study of the daily egg production in turkeys is feasible. The treatment of the daily laying 

as a binary character made possible the genetic analysis, whereas this was not possible 

with a more conventional approach on the observed scale. The cost of obtaining a detailed 

modelling of the genetic covariance structure over time is the increased requirements 

in computing resources. Nevertheless, breeders can obtain a useful tool to maximise 

the potential of selection, optimise the use of resources and perform reliable and rapid 

screening of the output of alternative breeding strategies. 



Chapter 7 

Bivariate Analysis of Monthly Egg 

Production and Body Weight in Turkeys 

Using a Random Regression Model 

112 



CHAPTER 7. BIVARIATE RANDOM REGRESSION MODEL 	 113 

7.1 Introduction 

The current trend in turkey breeding is to select for both growth and reproduction traits. 

However, it has been shown in Chapter 3 that the correlation between body weight and 

total egg production was strongly negative in the current population, hindering the simul-

taneous selection for these characters. Results from a monthly (Chapter 5) and a daily 

(Chapter 6) model of the egg production have illustrated that heritability changes over 

the duration of the laying period. This change is partly due to environmental factors and 

partly due to genetic variance varying over time, implying that gene effects can also have 

a time-dependent property. This adds a new dimension to genetic correlation between lon-

gitudinal traits: Instead of considering it as a fixed measure of the relationship between 

characters, it may also be treated as time-dependent estimate. 

Therefore, a combined analysis of body weight and longitudinal egg production would 

allow investigation of the structure of the genetic covariance between the characters. The 

motive for such an analysis is to detect laying stages in which the magnitude of correlation 

appears to be more favorable than the correlation for total egg production. 

As discussed in the previous chapters, random regression (RR) models can provide a ro-

bust framework to study laying over time for a univariate analysis. Therefore, the same 

approach can be used to implement a bivariate analysis of egg production and body weight 

on a longitudinal basis in order to detect periods for which a breeding opportunity could 

emerge. An additional benefit of a multi-variate analysis is that it accounts for previous 

selection and thus, reduces the bias in estimates of variance components (Mrode, 2005). 

This is of particular relevance to poultry breeding, where birds are preselected using their 

body weight as a criterion and only qualified birds are selected for egg production. More-

over, this breeding strategy has been performed intensely over numerous generations. 

The bivariate analysis employing RR models has been applied to dairy cattle (Gallo et al., 

2001; Veerkamp et at., 2001), but no relevant studies exist in poultry breeding. Jaifrezic et 

al. (2004) highlighted the potential of this approach for the combined genetic analysis, but 

based on simulation data, suggested that the choice of the model relies on the covariance 
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structure of records contained in the examined dataset. In dairy cattle, it has been shown 

that it is feasible to apply a bivariate RR model to investigate the longitudinal relationship 

between milking traits (Karacaören et al., 2006). 

So, the goal of this study was to investigate the covariance structure between monthly egg 

production and body weight at the age of fourteen weeks over time. For this purpose, a 

bivariate model was developed that included fixed and random regression terms for the 

longitudinal trait (egg production) and a Gaussian trait (body weight). The estimation 

of genetic parameters aimed to assess the dynamic character of the genetic correlation 

between the two traits and ultimately to detect periods in which the strength of the genetic 

association between the traits was weaker compared to that between total egg number and 

body weight. 

7.2 Materials and methods 

7.2.1 Traits considered 

The traits included in this study were the monthly egg production and the body weight 

at a specific age. The first trait was identical to that used in the analysis developed in 

Chapter 5 and consisted of the cumulative egg production of four laying weeks (EGG). 

Given that records for twenty weeks were available, in total five periods were generated, 

which corresponded approximately to the monthly egg production. In total, 1920 hens 

were included in the analysis, originating from 4 generations. 

The second trait was the body weight at fourteen weeks (BW14), being the same trait 

as used in Chapter 3. The primary selection for growth traits was performed at this age, 

and hence, the number of records was the maximum, compared to weights at later stages 

for which weight measurements were also available. Moreover, at this time point the 

selection intensity was also the highest. Finally, it has been shown in Chapter 3 that the 

genetic correlation between body weights at this age and later stages was very strong 
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were included in the analysis, originating from 4 generations. 

The second trait was the body weight at fourteen weeks (BW14), being the same trait 

as used in Chapter 3. The primary selection for growth traits was performed at this age, 

and hence, the number of records was the maximum, compared to weights at later stages 

for which weight measurements were also available. Moreover, at this time point the 

selection intensity was also the highest. Finally, it has been shown in Chapter 3 that the 

genetic correlation between body weights at this age and later stages was very strong 
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(close to unity), and so estimates based on BW14 would be also reliable predictors for 

the other body weight traits. All this suggested that BW14 was the single trait with the 

greatest potential to reduce selection bias, and therefore, it was selected to be analysed 

simultaneously with EGG. In total, 20784 birds, both females and males, were included 

in the analysis from 4 generations. 

7.2.2 Genetic model 

For the egg production the model included a hyper-factor to account for the fixed effects, 

including all combinations of hatch, pen and year (see Chapters 5 & 6). The model 

also included a fixed regression term, derived from the Ali-Schaeffer equation (Ali and 

Schaeffer, 1987), in order to model the phenotypic trajectory for the mean egg production 

over the different periods. Two random effects were considered for egg production: one 

for the additive genetic and one for the permanent environmental component. Legendre 

polynomials were fitted for the RR. The polynomials were of second order, a choice based 

on the results presented in Chapter 5. 

Hence, the model fitted for the egg production y of hen i at time t was: 

2 	 2 
Yijt =YHPj+FR+ E aim Ø(wt)+ L cjmç,n (wt )+ejjt 	(7.1) 

m=O 	 m=O 

where YHPJ  was the 11h  combined fixed effect for the hyper factor and FRt  was the fixed 

regression terms for time t provided by Ali-Schaeffer equation (Equation 5.1). Terms 

aim and Cjm (with aim  N(0, oA) and Cim  N(0, al); A being the relationship matrix 

between animals and I the identity matrix) corresponded to the random effects of the addi-

tive genetic and permanent environment effect, respectively, for the animal j for Legendre 

polynomials Ø,(w) of order m, where wt  was the standardised day t (Kirkpatrick et al., 

1990). Finally, e1 (e 1 	N(0, cI)) which was assumed to be homogeneous across all 

periods. 

For the body weight the fixed effects consisted of the following: sex, hatch, cohort and 

an interaction term between sex and cohort, in accordance to the model used earlier (see 
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Chapter 3). The model for body weight included also a dam random effect, which was 

treated as a environmental one (i.e. cov(a,d) = 0). 

Hence the model fitted for the body weight y for individual i of dam m was 

Yijklm = Sf + Hk + C1  + S.C11  + a + d 1  + eJkl 	 (7.2) 

where S3  was the 11h  sex, Hk the kth  hatch, C1  the 11h  cohort and S.C11  the interaction 

between the j1 h sex and 111  cohort. Terms a1  and d, (with a '-'-i  N(0, cA) and dm  

N(0,oI)) respectively; A being the relationship matrix between animals and I the iden-

tity matrix) corresponded to the random effects of additive genetic effect of individual i 

and the permanent environmental effect of its dam m. Finally, eijklin  was the residual term 

(ejjklm 	N(0, YI)). 

As derived from 7.1 and 7.2, the model of the monthly egg production included a second 

random effect, corresponding to the permanent environment of the hen, whilst this effect 

cannot be fitted to body weight model, since only one record was available per bird. 

This inconsistency would result in covariance matrices for the two random effects having 

unequal dimensions, and so it would not be possible to obtain a total covariance matrix, 

corresponding to phenotypic variance. To overcome this constraint, body weight data 

points were doubled by adding and subtracting from the original records a small quantity 

(e.g. 0.02). This was equivalent as having two measurements for body weight with a 

small error. This treatment allowed to obtain symmetric covariance matrices having the 

same dimensions for both random effects and estimate genetic correlations between the 

two traits. 

In conclusion, six traits were included in the analysis, 5 corresponding to the time points 

available for egg production and one for BW14. Therefore, all covariance matrices had 

the same dimensions (6 x 6). However, due to the use of RR, the number of variance 

components estimates reduced to 10 unique items that formed a 4 x 4 coefficient matrix 

(K) for both the genetic and permanent environmental random effect. The structure of 

matrix K is given in 7.3. There it is shown that the diagonal elements accommodate the 

variance of body weight (BW) and the three elements of the RR, i.e the intercept (int), the 
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linear (un) and square (sq) regression coefficients. The off-diagonal elements correspond 

to the covariances between the diagonal elements. 

W 	BW,int 	UBW,lin 	aBW,sq 

K 
2 

aBW,int 	°jflt 	int,lin 	Cintlsq 
(7.3) 

0BW,lin 	Cint,lin 	0 n 	01in,sq 

0BW,sq 	0int,sq 	lin,sq 	0 q 

7.2.3 Estimation of genetic parameters 

The covariance matrix for the genetic effect G was given as the product of 

G 	(DT  Kg 	 (7.4) 

where 4 was the 4 x 6 matrix of the time covariates for the Legendre polynomials and 

Kg  the 4 x 4 matrix containing the estimate of variance for BW 14 and the intercept and 

the two random regression coefficients for EGG. Likewise, the covariance matrix Kpe  for 

the permanent environmental effect PE was computed. Finally, the residual covariance 

matrix R was constructed from a 6 x 6 identity matrix, having the first diagonal element 

equal to the residual variance for BW14 and the rest five diagonal elements equal to the 

homogeneous residual variance for EGG. Finally, the phenotypic covariance matrix P was 

computed as the sum of G, PE and R. 

The heritability (hi) for period i and the genetic correlation (r 1) between periods i and j 

were estimated as follows: 

h=2 . 	 (7.5) 
Pi, z 

G,1 	
(7.6) 

x G1,1  

by substituting the appropriate elements of G and P matrices. 

The approximate standard errors (ASEs) of genetic parameters were estimated using the 

inverse of the average information matrix. The dimensions of this matrix were 22 x 22, 
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since every line corresponded to the unique covariance between each variance component 

estimate (10 for additive genetic effects, 10 for permanent environment and 2 for residual) 

and all the other ones. The method proposed by Fischer et al. (2004) was extended in 

order to estimate not only ASEs for the heritability, but also for the correlation estimates 

between all traits. 

According to Fischer et al. (2004), equation 7.4 can be also written using vector forms of 

the matrices (i.e. by stacking the columns of matrices to form a vector). Because all the 

matrices involved are symmetric, it is obvious that the off-diagonal elements are contained 

twice in the vector form. In order to compute the covariance of the covariance matrix, the 

output of ASRemI (file *.vvp)  can be used. In this file, only the covariance of the unique 

variance components is contained. In this particular example, as explained above, 10 

unique elements are contained in Kg. Therefore, the challenge was to devise a formula to 

convert the 10 x 10 matrix from the ASRem1 output to the vector form of the covariance 

of covariance matrix of the regression coefficients for the additive genetic effect Vec(Kg). 

The dimensions of this new matrix were 16 x 16 (i.e. (order)2  x (order)2). The new 

matrix then can be used to estimate the vector form of the matrix containing the covariance 

of covariance matrix Vec(VG), as follows: 

Vec(VG) = ( ® )'Vec(Kg) ('1(3  ') 	 (7.7) 

The dimensions of VG were equal to 36 x 36 (i.e. (traits)2  x (traits)2). The same proce-

dure was followed to estimate respective matrices for Kpe. This matrix contains redundant 

elements, therefore it can be summarised to a 6 x 6 matrix, which contains the variance 

of the corresponding element of Kg. The mapping function relied on the number of traits 

and it was arbitrarily expressed for the specific problem. As a guideline, the following 

rules were used to define the diagonal and non-diagonal elements: 

VG 	- ' 1VG616, + VG6161  + - ii 	4G 	4G 1  

v'Je,ip) 
- 	G11 

y 
Ka61 

i, i" 
\2 VG66 	VP61  

G2 	
+ 	p2  

+ VG6161VG6161  

2G,G171 	+ 

2covGP66  + 	
G2P2 

2,1 	2.2 
VG6161VG6161 + VG516, 	

(7.8) G,1G1,1 G 1  
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where r is the square of the correlation coefficient between periods i and j, as estimated 

in 7.6. The functions in 7.8 were formulated according to the standard formulas for ob-

taining the variance of variance components (Gilmour et at. (2001); see also Equation 

4.11). The diagonal elements of VG corresponded to the variance of the heritability and 

the off-diagonal to the variance of the correlation between the i1h  and 11h  trait. ASEs were 

obtained as the square root of the appropriate elements of VG. 

The latest version of ASRem1 (v.2) was used to estimate the variance components. The 

translation of the estimates of regression coefficients into covariance matrices over time 

was performed using the custom-developed program. Routines for the estimation of ASEs 

for RR were included in this program, since there was no available software to compute 

them. The validity of the ASEs estimates was tested by repeating the estimation of SEs 

using the data for RR model as in Chapter 5. 

7.3 Results 

The results for genetic, environmental and total phenotypic covariance over time for the 

monthly egg production are summarised in Tables 7.1, 7.2 and 7.3 respectively. There it 

is shown that genetic variance was increased at the onset of laying, significantly reduced 

at the peak of production, in second month, and towards to the end of the production 

period was increased again. In contrast, the permanent environmental component was 

monotonically increased over time. The same trend applied also for the total phenotypic 

variance. 

Heritability was estimated for egg production that corresponded to each individual period 

of laying and also for the cumulative yield from onset and up to the fifth period. Since the 

cumulative yield of all periods is equivalent to the total egg production, the heritability of 

the total egg number was found to be 0.14. These estimates are presented in Table 7.4. The 

change in heritability estimates of egg yield for each individual period is also visualised 

in Figure 7.1. 
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Table 7.1: Genetic (co)variance over time for monthly egg production. 

Period 1 2 3 4 5 

1 3.16 	1.26 	0.42 	0.63 1.88 

2 1.11 	1.11 	1.26 1.59 

3 1.58 	1.81 1.83 

4 2.27 2.64 

5 4.00 

Table 7.2: Permanent environmental (co)variance over time for monthly egg production. 

Period 	1 2 3 4 5 

1 	7.98 8.05 7.58 6.59 4.98 

2 10.81 12.02 11.69 9.83 

3 14.51 15.06 13.69 

4 16.68 16.47 

5 18.26 

Table 7.3: Total phenotypic (co)variance over time for monthly egg production 

Period 	1 2 3 4 5 

1 	19.37 9.31 8.01 7.18 6.86 

2 20.52 13.13 12.96 11.41 

3 24.69 16.88 15.51 

4 27.73 19.11 

5 30.87 

The heritability for body weight at fourteen weeks was estimated to be equal to 0.31±0.03. 

For the same trait, the environmental maternal effect accounted for the 6% of the total 

phenotypic variance, suggesting a considerable contribution of dam component, being 
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Table 7.4: Heritability estimates for the egg production of individual periods (left column) 

and cumulative production up to period x (right column). 

Period 	h2  period h2  cumulative 

1 0.20 + 0.04 0.20 ± 0.04 

2 0.07 ± 0.02 0.15 ± 0.03 

3 0.07 ± 0.02 0.12 ± 0.02 

4 0.09 ± 0.03 0.12 ± 0.03 

5 0.15 ± 0.03 0.14 ± 0.03 

Figure 7.1: Heritability profile for all periods. 

consistent with the conclusions in Chapter 3. 

The estimates of phenotypic and genetic correlation are summarised in Table 7.5. Overall, 
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the general pattern of the genetic correlation between laying stages was consistent with 

the findings from the previous chapters. In particular, the genetic correlation between 

consecutive periods was found to be strong, while a weak association appeared to link the 

onset and the middle of lay. 

The phenotypic correlation between all periods of laying and body weight was weak, yet 

statistically different from zero. In contrast, the genetic correlation between laying stages 

and body weight was strongly negative. Periods three and four, which corresponded to the 

middle part of the whole production period, had the lowest estimates with body weight 

among all the laying subperiods. Despite the fact that these estimates appeared to be con-

siderably lower than the respective estimates of body weight with the rest of the periods, 

due to their large standard error, it was not not possible to reject the null hypothesis that 

the genetic covariance changed over time. Moreover, these estimates could not support 

the hypothesis that a specific laying stage had a weaker genetic correlation with body 

weight than its correlation with total egg production. 

Table 7.5: Phenotypic (above the diagonal - in italics) and genetic correlation (below the 

diagonal - regular fonts) betweem body weight at 14 weeks (BW14) and egg production 

of individual periods (P1 to P5). 

BW 	P1 	P2 	P3 	P4 	P5 

BW 1 -0.20±0.03 -0.12±0.03 -0.08±0.03 -0.10±0.03 -0.16±0.03 

P1 -0.57±0.11 1 0.46±0.02 0.36±0.02 0.31±0.02 0.27±0.02 

P2 -0.47±0.17 0.67±0.12 1 0.58±0.02 0.54±0.02 0.45±0.02 

P3 -0.29±0.18 0.19±0.21 0.84±0.07 1 0.64±0.02 0.56±0.02 

P4 -0.41±0.14 0.23±0.19 0.80±0.10 0.95±0.03 1 0.66±0.02 

P5 -0.63±0.11 0.59±0.14 0.75±0.14 0.73±0.12 0.88±0.06 1 
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7.4 Discussion 

The application of the bivariate model for body weight and monthly egg production, mod-

elled by random regression terms, offered the benefit of accounting for on-going selection 

on the population for growth and reproduction traits. The heritability estimates for egg 

production, whilst being consistent with previous results in pattern, they tended to be 

greater in magnitude. Although there was some indication that periods in the middle 

of the laying period had a weaker association with body weight, there was not enough 

statistical evidence to establish such an advantage. Nevertheless, a genetic evaluation em-

ploying bivariate RR models may still offer a benefit, in terms of the increased heritability 

estimates for the egg production. 

The population studied in this analysis was selected for both growth and reproduction 

traits. This was not accounted for in the previous chapters, since a univariate longitudinal 

analysis of egg production had been performed. This may have resulted in underestimated 

heritabilities. The application of a bivariate model can reduce the bias on the estimation 

of variance components because it includes information on the on-going selection. More-

over, a higher precision of the estimates is achieved (Mrode, 2005). 

There are benefits from the BLUP analysis of two or more strongly correlated traits, such 

as that an increase in the accuracy of evaluations is expected (Thompson and Meyer, 

1986). Moreover, a notable benefit for the low heritable trait is that the heritability es-

timate is increased, when analysed simultaneously with a strongly correlated, but more 

heritable trait (Mrode, 2005). In situations where a culling decision on animals has been 

made on early stages based on the performance on one trait and only selected individ-

uals have records for the other trait, then a multivariate analysis removes the bias that 

a univariate analysis of the second trait would impose. These advantages of the multi-

trait genetic evaluation are very relevant to the current population, because body weight 

and egg production were highly correlated and selection was performed on the former 

previous to selection for the latter. 

The heritability estimate for the body weight was similar to the estimate from the mul- 
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tivariate analysis presented in Chapter 3 (0.37+0.03) and in good agreement with liter-

ature (Buss, 1990). The small difference between current and previous estimate can be 

explained by the fact that the latter analysis included also weight at 19 and 24 weeks. Al-

though primary selection was performed at 14 weeks, a second selection stage was taking 

place at 24 weeks. Therefore, the increased heritabilty estimate from the previous chapter 

may be partly explained by the fact that this model contained more information on the se-

lection history of the population. Maternal effects were found similar in magnitude to the 

previous estimates, providing additional evidence on the importance of including them in 

the genetic analysis of growth traits, as this was discussed in Chapter 3. 

The pattern of estimates of additive and permanent environmental variance for monthly 

egg production was comparable to that from the univariate RR model, as this was reflected 

in the similar shape of heritability profiles from the single- and two-trait analysis. Nev-

ertheless, the estimates from the bivariate model were systematically increased compared 

to the univariate ones, due to the reasons explained above. Nevertheless, this difference 

was not statistically significant, due to the relatively large standard error of the estimates 

(Table 7.6). 

Table 7.6: Comparison of heritability estimates with their standard errors for a bivariate 

(2' order) and two univariate RR models (2'" and Yd  order respectively) 

Period Bivariate RR2 	RR3 

1 0.20 (0.04) 0.12 (0.03) 0.13 (0.04) 

2 0.07 (0.02) 0.05 (0.02) 0.11 (0.03) 

3 0.07 (0.02) 0.07 (0.03) 0.08 (0.03) 

4 0.09 (0.03) 0.07 (0.03) 0.05 (0.03) 

5 0.15 (0.03) 0.07 (0.03) 0.08 (0.03) 

The benefit from the multivariate analysis, in terms of increased heritability for egg pro-

duction, is of particular interest in case of the longitudinal analysis of laying. It has been 

previously shown that these models can provide the genetic covariance structure over 

time, but their benefit was hampered by the fact that it was not possible to account for 
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the on-going selection for other traits. However, this study has shown that it is possible 

to analyse simultaneously a dynamic and a static trait and capitalise upon the increased 

accuracy of estimates. This improvement can be considerable, as our results have sug-

gested. When a univariate RR model was applied, the cumulative heritability over all 

periods, which corresponded to total production, it was found to be 0.07. In contrast, in 

this analysis, the overall cumulative heritability was estimated to be 0.14. 

An alternative approach for accounting for both the longitudinal aspect of laying and 

selection on body weight would be to employ a multi-trait model. However, in this case 

the high dimensionality of the problem space would impose considerable constrains on 

the solution convergence. So, were such a model to be used with the present dataset, 

the amount of covariances estimated would be equal to 43 (21 for additive genetic, 1 for 

maternal effects and 21 for residuals) instead of 23 in a RR model( 10 for additive genetic, 

10 for permanent environmental, 1 for maternal effects and 2 for residuals). Thus, the 

advantage of RR models, as already been shown in Chapter 5, becomes more obvious in 

the context of the current study. 

There was not sufficient evidence to confirm the initial hypothesis for a varying over 

time genetic covariance between laying stages and body weight, due to the large ASEs of 

correlation estimates. The precision of the estimates depends on the number of records 

available and how individuals are connected through the relationship matrix. Since no 

additional observations were available for analysis, a more detailed insight of the longitu-

dinal changes of genetic covariance was obtained by monitoring the proportion of genetic 

variance of egg production that is not associated with body weight. The proportion of 

genetic variance of egg production Oflex  that is not explained by body weight is given 

from the following formula: 

a"", ex  = o(1 - r 2 ) 	 (7.9) 

where, r2  is the square of the correlation coefficient. From 7.9, the proportion of genetic 

variance that is not explained by the regression on body weight was very high for both 

the middle periods (91% and 83% repsepctively for periods 3 and 4). Nevertheless, these 

periods had also the lowest heritability estimates. Hence, even if it could be suggested that 
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the genetic correlation relaxed for these periods, still they would not represent a breeding 

opportunity, because of their low heritability. The use of either partial production from 

period 3 or 4 is less efficient compared to the direct selection for total egg production. In 

conclusion, even if genetic covariance was shown to be variable over time from another 

study using more data that would achieve higher estimate precision, it is expected that 

the favourable periods could not be exploited for making simultaneous selection of the 

antagonistic traits more efficient than the use of total egg production and body weight. 

This study showed that the application of bivariate analysis offered increased heritability 

estimates of the monthly egg production over previous estimates obtained from a univari-

ate longitudinal analysis. However, it was not possible to pinpoint a laying stage for which 

the selection for partial records would be at least as efficient as the selection for total egg 

number, whilst the correlation with body weight being lower. This suggests that the num-

ber of options for breeders to manage the unfavourable strong association between those 

two traits is reduced. 
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8.1 Objectives revisited 

The first indication of investigating the reproduction physiology of avian species dates 

back to Aristotle'. Since then, a substantial number of key mechanisms involved in egg 

laying have been unravelled. These suggest that a complex regulatory network, heavily 

relying on the endocrine system, governs the phenotypic expression of the trait perceived 

as egg production. Nevertheless, little effort has been put into translating these findings 

in a quantitative genetics context. From a breeder's point of view, the objective is to max-

imise the total number of eggs laid within a specified period. Although the rationale for 

using this trait derives from its economic importance, it implicitly ignores the longitudinal 

aspect of egg laying. 

Therefore, the main objective of this thesis was to contribute to the investigation of egg 

laying genetics over time. The motive was to explore whether considering the egg produc-

tion as a dynamic trait would offer additional benefits over treating it as a static character. 

These advantages may refer to both a theoretical and applied basis. In the former context, 

the development of models could enhance our understanding of egg laying and indicate 

new research paths for more detailed studies. In the latter context, these models may pro-

vide more accurate description of egg laying, identify new traits as an alternative to the 

total egg number and thus, improve the output of the breeding programs performed on 

commercial populations. 

Different aspects of egg production over time have been studied in the previous chap-

ters. Although the results have been discussed in the respective sections, here they are 

linked together, forming a wider picture. Key findings from each chapter are summarised 

first. This review then considers their implications and thus combines them in an holistic 

overview of the longitudinal character of egg laying under a quantitative genetics perspec-

tive. 

'Aristotle, Historia Animalium VI. III, 56]a4-21 - First description of chicken embryo development. 
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8.2 	Key findings 

The main findings of the five research chapters are summarised below. 

Chapter 3: The objective of this chapter was to investigate the strength of the genetic 

association between growth and reproduction traits in turkeys selected for body weight, 

conformation and egg production. Two distinct populations but derived from the same 

heavy turkey female line and situated in different locations (UK and USA), were used 

to estimate genetic parameters using multivariate REML for the following traits: body 

weight at 14 (BW14), 19 (BWI9) and 24 (BW24) weeks of age and total egg number 

(EGG). A Box-Cox transformation was applied to egg production data to reduce the im-

pact of non-normality. The heritability estimates for each trait for the UK and USA pop-

ulations respectively were: BWI4 0.37 and 0.48; BW19 0.34 and 0.43; BW24 0.28 and 

0.43; EGG 0.22 and 0.34. The genetic correlation between body weight at all ages and 

total egg production was strongly negative, reaching a value of -0.75 for the UK and - 

0.55 for the USA population. The comparison of these results with published estimates 

in turkeys led to the hypothesis that the genetic correlation may get stronger in magni-

tude following selection for increased body weight. This could arise from fixation during 

selection of genes favouring larger weights but with minimal effect on egg production, 

leaving the segregating genetic variation dominated by pleiotropic loci with antagonistic 

effects on the traits studied. Thus, in order to avoid continued selection for body weight 

reducing egg production, alternative selection strategies should be considered. 

Chapter 4: An alternative approach was applied for the longitudinal study of egg produc-

tion. A time-to-event trait was formulated that consisted of the time required for a hen to 

lay 82 eggs, which was the grand average of the egg production over the five generations 

available. This definition of the terminating event allowed the fitting of a Weibull survival 

model that included a random effect, corresponding to the sire component. This new trait 

accounted for features of laying patterns, such as the rate and persistency of lay, yet it 

was strongly correlated with the total egg number. This suggested that the time-to-event 

trait can be considered as a selection criterion for the improvement of the egg production. 
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Supportive arguments are first, that the normality assumption that hampers the estimation 

of genetic parameters is no longer an issue under a survival analysis context. Second, an 

explicit censoring rule can be suggested for excluding outliers. Third, the genetic variance 

available appears to be increased, as implied by the relatively high heritability estimate, 

derived from a sire model. Nevertheless, for the purposes of genetic evaluation, survival 

models are still under development with the most notable constraints being the inability to 

obtain BLUP estimates of breeding values and to perform multivariate analysis. In con-

clusion, this study showed that the application of survival analysis is feasible and has the 

potential to allow breeders to summarise effectively data for improving egg production, 

as research is performed to resolve issues that limit the scope of its application. 

Chapter 5: Random regression (RR) models have become a popular methodology for 

the genetic study of longitudinal data in dairy cattle, however their implementation in 

poultry breeding is limited. Therefore, the first objective of this chapter was to investi-

gate the application of RR models for the genetic analysis of egg production in turkeys. 

Data collected from a heavy female line were used to estimate genetic parameters with 

two RR models, one having second order Legendre polynomials as regression over time 

(RR2) and another with third order polynomials (RR3). The second objective was to 

benchmark the performance of RR models with more conventional methods; so, genetic 

parameters were re-estimated using a multi-trait (MT) and a repeatability (REP) model. 

In order to assess the model efficiency at predicting missing values two reduced datasets 

were used. The first one included a number of deleted records evenly spread over all pe-

riods. For each model the predicted values of those deleted records were compared with 

the true values. The second dataset was generated by eliminating the last period. Thus, 

RR models were further compared against each other by estimating the mean square error 

of the predictions for the missing period. In the first test, the REP model had the poorest 

performance in predicting missing values. Heritability estimates from the RR2 and MT 

models were close to each other, while the RR3 estimates were different. Both RR models 

demonstrated better predictive ability than the MT model. However, when only RR mod-

els were compared in the second test, the RR2 resulted in the smallest mean square error. 

This provided evidence that the RR3 model overfitted the data, suggesting that the choice 
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of the appropriate polynomial order requires careful consideration. This study has illus-

trated that the application of RR models for the genetic analysis of the egg production in 

turkeys is not only feasible, but also offers higher accuracy of prediction than alternative 

longitudinal models. 

Chapter 6: The previous chapter indicated that the longitudinal analysis of egg pro-

duction can benefit from the application of RR models. In order to study in detail the 

laying patterns, the length of individual periods included in RR model had to be reduced. 

However, the model fitted failed to converge, when periods shorter than four weeks were 

fitted. Paradoxically, the extremely short interval of a single day was more tractable by 

treating the daily egg production as a binary character. Therefore, a threshold liability 

model was used, which included RR terms for both a residual hen and a sire genetic ef-

fect,implemented under a Bayesian framework. The objectives of this chapter were, first, 

to estimate genetic parameters for daily egg production over the whole laying period; and 

second, to explore the possibility of using the information obtained to investigate alter-

native selection strategies for the genetic improvement of laying turkeys. The shape of 

the heritability profile and the correlation patterns were in accordance with the estimates 

from the monthly RR model of the previous chapter, albeit they provided a more detailed 

insight into laying dynamics. The efficiency of selection using the cumulative production 

of subperiods was compared to selection for total egg number. The periods for which the 

indirect selection was more efficient constituted favourable breeding opportunities. Such 

efficient selection windows were observed for both the first and the last month of pro-

duction, with the latter appearing to be more favourable due to the higher genetic gains 

associated. Although the potential advantage of using partial records needs to be put into 

context along with other factors that govern the design of efficient breeding programs, it 

might offer a tool for improving egg production in a multi-trait selection scheme. Since 

results referred to the liability scale, an approximation was used in order to translate them 

to the observed scale. 

Chapter 7: In previous chapters it was demonstrated that the genetic variance changes 

over time, implying that the genetic effects on egg production vary during the laying pe- 

nod. Hence, it can be postulated that the genetic association between loci controlling 
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body weight at a certain age and loci affecting the egg production over specific laying 

stages may also be varying in magnitude. Therefore, the objective of this chapter was 

to investigate the genetic covariance structure on a longitudinal basis in order to indicate 

periods in which the genetic correlation appears to be more favourable under the cur-

rently applied breeding program. For this purpose a bivariate RR model was formulated 

that included body weight at 14 weeks (BW14) and monthly egg production, as specified 

in Chapter 5. Although the pattern of the heritability estimates was consistent with the 

results from the previous chapters, the magnitude of the heritability for egg production 

was increased. This happened because the bivariate model accounted for the selection 

for body weight over many generations and removed the bias in the genetic parameter 

estimates of the egg production from the univariate RR model. The genetic correlation 

patterns provided evidence that the genetic association between the two traits tended to 

vary over time, but the differences detected were not significant due to the large standard 

errors of the estimates. Nevertheless, even if the benefit of these laying stages in terms of 

reducing the strength of the association was significant, this would not constitute a breed-

ing opportunity. The reason is that the periods in which genetic correlations tended to be 

weaker were also the periods with the lowest genetic variance. So the potential benefit 

from the reduced correlation appeared to be counterbalanced by the loss of genetic gains, 

due to the reduced heritability. This implies that meticulous evaluation of the candidate 

population is warranted before the bivariate RR model is deployed in large-scale breeding 

programs. 

8.3 Implications 

The longitudinal genetic analysis of egg production revealed time-depended characteris-

tics of genetic variance that potentially can assist in unraveling the genetics of laying over 

time. Ultimately, this may be exploited by the design of more efficient breeding programs. 

In the next sections, these implications are discussed in detail. 
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8.3.1 Laying dynamics 

Among the key findings of this thesis was that the genetic variance of egg production has 

a dynamic character. In order to illustrate this point further, the patterns of inheritance 

can be analysed by estimating the eigenvalues of the regression coefficients of RR models 

and plotting the corresponding eigenfunctions over time (Kirkpatrick et al., 1990). In this 

context, the components of genetic variance can be clustered and thus, each eigenvalue 

corresponds to a linear combination of a set of genetic factors. The decomposition of the 

genetic variance therefore enables the assessment of how the contribution of each factor 

set in the total genetic variance changes over time2 . The eigenvectors were estimated 

from the genetic covariance matrix obtained from the daily model (matrix V in Equation 

6.3). The rationale for choosing the daily model was that it not only provided more 

time points than the monthly one, but also referred to the underlying scale, which can 

be considered more suitable for the investigation of heritability of time trends. Since the 

remaining genetic effects were included in the residual hen effect, the eigenfunctions of 

the environmental covariance matrix were also estimated. 

The first two genetic eigenvalues accounted for approximately 98% of the sum of all ge-

netic eigenvalues (74.5% and 23.3% respectively). The three genetic eigenfunctions were 

plotted against time (Figure 8. 1), where it is seen that all of them change considerably over 

time. Furthermore, the first and the third eigenfunctions change algebraic sign during the 

laying period, which implies that the effect of the corresponding genetic components is 

different between the periods. A possible interpretation is that different sets of genetic 

factors are activated during the laying period. Moreover, the selection on eigenfunctions 

associated with contrasting gene effects is expected to vary according to the sign of the 

variable. For example, selecting for the leading eigenfunction would increase egg pro-

duction in the beginning and finishing laying stages, whereas it would decrease it in the 

2Additionally, the eigenvalues have been used to test the significance whether the inclusion of higher 

order polynomials as additional regression terms improves the fit of the RR model or not (Meyer and Hill, 

1997). This has been discussed in Chapter 5, where it was stressed that the improvements on the model 

fit as a consequence of increasing the number of regression coefficients should be counterbalanced by the 

problem of overfitting the data. 
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Figure 8.1: Eigenfunctions of the genetic covariance function coefficient matrix. 

middle phase. 

The contrasting genetic effects over time have been already implied by the genetic cor-

relation surface presented in Figure 6.5. There, it was demonstrated that the beginning 

and finishing stages of laying were negatively correlated with the middle period, covering 

the interval between 45 and 110 days. This coincided approximately with the period for 

which the leading eigenfunction changes sign. Also, day 45 was the day where the hen-

tability started to rise again after reaching its minimum value. At the phenotypic level, the 

change of sign of the leading eigenfunction coincides with the beginning of the decline 

in the hen-day egg production after the peak at 39 days, which signifies the upturn of ge-

netic variance (Figure 6.1). The phenotypic correlation was also weak for the periods for 

which the first eigenfunction was negative. In conclusion, the plots of genetic eigenfunc-

tions and genetic covariance provided complementary evidence to postulate that different 

sets of genetic factor are activated during the laying period. 
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Figure 8.2: Eigenfunctions of the residual hen covariance function coefficient matrix. 

The first two eigenvalues of the residual hen effect accounted for approximately 98% of 

the sum of all eigenvalues (80.7% and 17.4% respectively). In this case, the eigenfunction 

plot displays a different picture from the genetic plot (Figure 8.2). The first eigenfunction 

appears to be less variable over time and the second eigenfunction increases constantly 

over time. Despite its small contribution to the sum of eigenvalues, the pattern of the 

third eigenfunction may be interesting. It appears to have a very similar shape to the 

leading genetic eigenfunction. Since all remaining genetic components are included in 

the residual hen effect, this high similarity provides a tantalising suggestion that the third 

residual hen eigenfunction is associated with the same genetic factors as in the first genetic 

eigenfunction. 

The eigenfunction profiles presented above appeared substantially different from those 

for milk production in dairy cattle. There, it was demonstrated that the leading genetic 
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eigenfunction appeared to be approximately constant during the lactation and only the 

second eigenfunction, which accounted for a smaller portion of the total genetic variance, 

indicated contrasting gene effects over time (Kirkpatrick et at., 1990; Olori et at., 1999; 

Togashi and Lin, 2006). A suggestive explanation of this notable difference could be the 

significance of age-related changes on egg production physiology, because avian species 

are short-lived and a decline in their reproduction performance is observed toward the end 

of their production life, including decreased egg production and clutch size 3  (Ottinger, 

1992; Wu et at., 2005). 

The decomposition of genetic variance, presented in Figures 8.1 and 8.2, was the first per-

formed not only in turkeys, but also for any poultry. This analysis may have implications 

for unraveling the genetics of egg laying. The variability over time of the genetic eigen-

functions implies that the associated genetic factors affect egg production accordingly to 

the laying stage. Plausible explanations could be that different genes affect specific laying 

stages. The results of Minvielle et at. (2006) performed in Japanese quail provided sup-

port for the existence of QTLs influencing a specific laying phase. There, several QTLs 

have been detected that had an effect only at a particular laying stage. This also led the 

authors to postulate the existence of QTLs affecting the shape of laying curve. 

8.3.2 Capitalise upon laying dynamics 

As discussed above, the dynamic character of egg laying raises many questions for basic 

studies. Nevertheless, the challenge is also to translate the findings from this thesis to 

benefits in a quantitative genetics context to enhance breeding strategies. 

The simple approach to select for egg production is by counting the number of eggs 

over a fixed period of time. Although the total egg number implicitly accounts also for 

some aspects of the dynamics of lay, the analytical focus is placed on the total volume of 

production. However, in Chapter 4 it was shown that the opposite approach (i.e. counting 

3The decreased clutch size suggests a more erratic laying patterns towards the end of the production 

period, which was also evident in the data used in this thesis. 
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time to lay a fixed number of eggs) appeared to be at least as efficient as the total egg-

number strategy in terms of the expected genetic progress. Not only was the time-to-event 

trait strongly correlated to the total egg production, but also accounted for traits related 

to laying patterns, such as the rate and persistency of lay. These time-related laying traits 

have not been intensively selected by turkey breeders, implying that there is a considerable 

genetic variance to be exploited for accelerating genetic progress. The results in Chapter 4 

support this hypothesis. Nevertheless, in this thesis apart from investigating the potential 

of survival analysis, the need has also been stressed for advances in methodological issues 

that would allow the wide-scale application of this framework in poultry breeding. 

The aforementioned analysis indicated that, first, time trends are significant for genetic 

evaluations, and second, that it is possible to use partial records for genetic evaluations 

without information loss. A direct benefit from reducing the recording time is the bet-

ter allocation of resources. However, in order to identify these informative periods it is 

important to have an insight into the genetic relationship between production at different 

points of the laying period. In Chapter 5 it has been shown that RR models can provide 

the machinery to estimate effectively the genetic covariance structure between all laying 

days. 

The RR models provided a detailed model of the genetic covariance structure between all 

time points of the laying period. This can provide a tool to project partial production over 

any required number of days and assess the genetic correlation with total production. So, 

it is possible to target selection only to laying stages where indirect selection for partial 

records appears to be at least as efficient as direct selection for total egg production. 

In Chapter 6 I discussed how the covariance structure over time, derived from a RR model, 

can be used to assess the efficiency of selection based on partial records. There, it was 

suggested that the cumulative production of the first month can be used without compro-

mising the expected genetic progress when using full production records. The benefit of 

an early selection is that it permits breeders to use a hen's own performance for genetic 

evaluation purposes before the completion of the production cycle. In a routine breeding 

program, where there is a continuous flow of eggs that are hatched and poults are sent 
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time to lay a fixed number of eggs) appeared to be at least as efficient as the total egg-

number strategy in terms of the expected genetic progress. Not only was the time-to-event 

trait strongly correlated to the total egg production, but also accounted for traits related 

to laying patterns, such as the rate and persistency of lay. These time-related laying traits 

have not been intensively selected by turkey breeders, implying that there is a considerable 

genetic variance to be exploited for accelerating genetic progress. The results in Chapter 4 

support this hypothesis. Nevertheless, in this thesis apart from investigating the potential 

of survival analysis, the need has also been stressed for advances in methodological issues 

that would allow the wide-scale application of this framework in poultry breeding. 

The aforementioned analysis indicated that, first, time trends are significant for genetic 

evaluations, and second, that it is possible to use partial records for genetic evaluations 

without information loss. A direct benefit from reducing the recording time is the bet-

ter allocation of resources. However, in order to identify these informative periods it is 

important to have an insight into the genetic relationship between production at different 

points of the laying period. In Chapter 5 it has been shown that RR models can provide 

the machinery to estimate effectively the genetic covariance structure between all laying 

days. 

The RR models provided a detailed model of the genetic covariance structure between all 

time points of the laying period. This can provide a tool to project partial production over 

any required number of days and assess the genetic correlation with total production. So, 

it is possible to target selection only to laying stages where indirect selection for partial 

records appears to be at least as efficient as direct selection for total egg production. 

In Chapter 6 I discussed how the covariance structure over time, derived from a RR model, 

can be used to assess the efficiency of selection based on partial records. There, it was 

suggested that the cumulative production of the first month can be used without compro-

mising the expected genetic progress when using full production records. The benefit of 

an early selection is that it permits breeders to use a hen's own performance for genetic 

evaluation purposes before the completion of the production cycle. In a routine breeding 

program, where there is a continuous flow of eggs that are hatched and poults are sent 
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Table 8.1: Heritability estimates (h2) for the egg production in the first month of the 

laying period derived from a univariate animal model (h2  with standard error (SE) for un-

transformed and Box-Cox transformed values) and threshold RR model (h2  with standard 

deviation (SD) of the posterior distribution are given both in liability and observed scale). 

Model 	 Comments 	 Heritability SE/SD 

Animal model Untransformed records 0.09 0.03 

Animal model Transformed records 0.20 0.04 

Threshold RR model Observed scale 0.30 0.08 

Threshold RR model Liability scale 0.42 0.09 

to rearing farms while their dams continue laying eggs, breeders will be able to combine 

individual partial performance with parent information, increasing the accuracy of pre-

diction of breeding values, which in turn would accelerate the genetic progress achieved 

per generation. 

Nevertheless, in a scenario where the partial production of the first month was to be used, 

the magnitude of the heritability would also be significant for determining the genetic 

gains. In order to contrast the estimates derived from the daily RR model, heritability 

was also estimated from a univariate model, similar to this used in Chapter 3, for untrans-

formed and Box-Cox transformed records of the first month of production. The results 

are summarised in Table 8.1. There, it appears that higher heritability estimates were 

obtained when a RR model was employed. 

Nevertheless, caution in warranted when selection pressure is put on the production of the 

first month (Flock, 1977). The increased genetic variability that is detected in this period 

is probably due to the differences among birds with regards to their sexual maturity at the 

onset of lay. The results from this thesis suggested that the genetic correlations between 

early, late and total production are positive, and thus the selection on early records may 

favour hens that are more mature by the time of the beginning of lay. However, decreasing 

the age at first egg can result in smaller eggs that are less likely to be hatchable. Neverthe- 
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less, the use of selection indices can assist breeders in balancing the benefits from using 

the early records with undesirable side effects. 

The advantage that RR models offers is that they provide an effective method to account 

for the longitudinal fluctuations of genetic variance. Nevertheless, these changes could 

also reflect sampling error of the estimates. Sales and Hill (1976) have shown that the use 

of noisy information could inflate selection index. Nevertheless, the standard errors of the 

estimates of variance components from the monthly model were small and almost identi-

cal to the error from the multivariate model (see Table 5.2). Similarly, the standard errors 

of the genetic correlations from the bivariate model were close to the corresponding errors 

from Chapter 3 (see Table 3.5 and Table 7.5). The results from the daily model also sug-

gest that the standard deviation of the posterior distribution of the genetic parameters was 

low (see Figure 6.3). Variance components from the random regression estimates were 

increased at both ends of the production period. This reflects the variable performance of 

birds in these stages, since at the onset of lay the initiation of egg production is affected 

by the sexual maturity and toward the end of the laying period, the persistency of lay de-

termines the productivity. In these periods both genetic and phenotypic variance appeared 

increased when using a random regression model, but the application of a multi-variate 

model suggested the same. 

In conclusion, RR models appear to offer some advantages for the genetic evaluation 

of egg production. The incorporation of a simple RR model, like the one developed in 

Chapter 5, in the routine evaluation of a breeding program is not anticipated to be difficult. 

Such models are used for routine genetic evaluation in dairy cattle for a number of years. 

Nevertheless, the extension to a daily threshold model may not be as easy, because of 

the model's increased requirements in computing resources. So, its implementation may 

not be possible for practical purposes for the time being. However, thanks to advances in 

computer technology, this constraint is likely to be alleviated in the foreseeable future. 

Despite the proposed improvements for the genetic evaluation of egg production, the Un-

favourable genetic correlation between egg production and body weight remained an is- 

sue. Although this genetic association tended to have a dynamic character (Chapter 7), the 
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evidence was not sufficient to pinpoint a laying stage presenting a breeding opportunity 

for both traits. Arguably, the magnitude of the correlation was prohibitive and therefore, 

it may be suggested that this extreme value was population-specific. So, in this challeng-

ing breeding situation, the best strategy to maintain the sustainability of selection is to 

maximise the efficiency of selection for both traits. In this thesis it was suggested that 

the application of longitudinal models can contribute towards this goal. Moreover, egg 

production currently appears to be of low priority compared to growth traits, so a selec-

tion index with appropriate weights can also provide a mechanism to meet the breeding 

objective. 

In conclusion, the application of longitudinal genetic analysis of egg production may have 

considerable implications for poultry breeding. In the next section, a series of significant 

points that are expected to improve the output of selection for egg production are outlined. 

8.3.3 Selecting for improved egg production 

The key question that arises is what is the most appropriate selection method for improv-

ing egg production. In this thesis various suggestions have been made that are summarised 

below. 

The most simple, yet necessary, step is the data collection on a longitudinal basis. In 

breeding companies eggs are collected on a daily basis, hence it is straight-forward to 

assign them to hens. The importance of digital recording (e.g. using barcoded tags) on 

farms is highlighted, since it minimises the occurrence of identification errors. Although 

the collection of data is performed at a considerable cost, the utilisation of the data into 

longitudinal models is still not applied on a practical basis. Therefore, there is scope for 

improvements in line with the conclusions from this thesis. 

It is well known that multivariate analysis offers an array of advantages in terms of in-

creasing the efficiency of selection (for a summary see section 7.1). For the total egg 

number the implementation is straightforward (see Chapter 3). Nevertheless, I showed it 

was feasible to perform a multivariate genetic analysis using RR for accounting for the 
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dynamic character of laying. The benefit of the increased heritability estimates should 

translate to more rapid genetic progress for egg production. The same conclusion is ex-

pected to apply for a multivariate analysis employing a survival model, yet this cannot be 

easily implemented yet. 

The RR framework allows targeted selection to the most informative laying stage, as 

discussed in section 8.3.2. In all analyses considered here, the economic value of eggs was 

assumed to be uniform throughout the laying period. However, with the use of different 

weights according to the timing of lay, it is possible to focus on interesting stages in 

terms of their economic importance. For instance, egg production decreases toward the 

ending of the laying period, but eggs are larger, yielding larger poults that might have 

an advantage in terms of survival and growth rates that translates to additional economic 

benefit for producers. 

Breeding objectives are reviewed periodically and therefore a flexible analytical frame-

work offers the machinery to adjust to new challenges and include additional traits. The 

importance of time patterns may not be restricted only to egg production. There are other 

traits that constitute components of the reproduction performance of a hen. Hence, for 

breeders it is not only important that a hen lays as many eggs as possible, but it is also 

essential that these eggs are fertile and hatchable. Particularly the improvement of late 

fertility/hatchability is a significant breeding objective. The implementation of longitudi-

nal models for these traits can contribute in an analogous way as described in this thesis. 

In conclusion, as long as the longitudinal dimension of a trait is integrated in the genetic 

evaluation system, it can easily be extended to meet future challenges. 

8.4 Future developments 

This thesis drew attention to the longitudinal aspects of egg production and demonstrated 

their importance. However, there is a lack of similar studies in chicken, despite the poten-

tial to expand this methodology framework in this sector. It would be intriguing to repeat 
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the analyses described here to an array of populations with different genetic backgrounds, 

such as laying hens and broiler breeders. This would allow comparisons between lines 

and/or species and thus it would improve our understanding of the relationship of laying 

patterns with other significant production traits. 

This study implied that genetic factors had a time-depended effects. Thanks to the recent 

publication of the chicken genome (Hillier et at., 2004), the availability of markers has 

been significantly increased, while the cost of genotyping dropped considerably. Thus, 

a handful of studies has been performed for the identification of QTLs (Hocking, 2005; 

Abasht et at., 2006). Nevertheless, only the study of Minvielle et at. (2006) considered the 

longitudinal character of egg production. However, such studies would benefit from the 

application of a RR model, since it provides a robust framework to perform longitudinal 

studies. Therefore, it would be possible to detect QTLs with laying stage specific effects, 

as this thesis postulated. 

In an animal breeding context, the implementation of a genomic approach can substan-

tially accelarate the genetic improvement of egg production. It is known that for traits 

that are sex-limited and recorded later in life the use of Marker-Assisted Selection (MAS) 

can improve the accuracy of selection by permiting the combination of parental infor-

mation and genotypic data from the poults as an indicator of their potential (Dekkers, 

2004). The developement of a panel in which, for the markers included, associations for 

both egg production and growth traits are available, may also facilitate selection for those 

antagonistic traits. Extending the idea of using genotyping data, the breeding values of 

individuals can be estimated based solely on a large number of markers spread across the 

genome (Meuwissen et at., 2001). Simulation studies have demonstrated the potential of 

genomic selection in dairy cattle, where the cost saved from the progeny testing is larger 

than the cost of genotyping (Schaeffer, 2006). In poultry though, because there is no 

progeny testing involved in the evaluation of birds, the cost of massive genotyping on a 

routine basis remains very high (although it will eventually be reduced). Therefore, for 

poultry breeders the challenge is to use effectively the genomic information and improve 

the output of the selection programmes. 
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8.5 General conclusions 

The objective of this thesis was to investigate the genetics of egg production on a longi-

tudinal basis. That being so, the focus was placed on accounting for time trends. Novel 

time-to-event traits, such as counting the time required for a hen to lay a fixed number 

of eggs, were formulated, that implied that the dynamic character of egg production is 

important. On a more detailed analysis it was demonstrated that the genetic variance 

affecting egg laying changes over time. The results suggested that the longitudinal char-

acter of variance components can be precisely described. Therefore, the treatment of egg 

laying as a longitudinal trait can provide a more accurate modelling of the underlying 

biological mechanisms. On a practical basis this can translate to increased efficiency of 

selection, due to the higher accuracy of prediction of breeding values. Furthermore, the 

detailed covariance structure obtained on a longitudinal basis can be used to target more 

effectively the selection pressure on the most informative stages of laying and thus to 

maximise the genetic gain from breeding programmes. However, it was also noted that 

complex models need to be applied for fully deploying the potential of this approach. 

Despite the complications, the adoption of a longitudinal framework for the genetic eval-

uation of reproduction traits in poultry appears to be favourable for the improvement of 

current breeding strategies. 
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