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Smoke buildup and light scattering in a cylindrical cavity above a uniform flow. 

 

Abstract 

     

In this study, we use computational fluid dynamics (CFD) and aerosol dynamics 

modeling to investigate the buildup of smoke and light scattering in a cylindrical cavity 

geometry, considered to be an idealized representation of a photoelectric smoke detector. 

CFD coupled with the quadrature method of moments (QMOM) is used for simulation of 

aerosol dynamics. The Rayleigh-Debye-Gans/Polydisperse Fractal Aggregate (RDGPFA) 

theory is used for calculation of smoke extinction and angular light scattering.  It is seen 

that the flow external to the cavity sets up a recirculating flow pattern within the cavity 

and that the flow processes determine the spatial distribution of smoke. Aerosol 

extinction and scattering calculations are performed to examine the time varying profiles 

of the intensity along a simulated LED light beam and the scattered intensity at different 

angles. The variation of the detector activation time with inlet velocity and smoke volume 

fraction is obtained from a calculation of the angular light scattering. The results are 

compared with calculations using an empirically determined detector response function 

and with a simpler model that assumes a uniform distribution of smoke inside the cavity. 

Results indicate that although the distribution of smoke inside the cavity is not uniformly 

mixed, the simple first order mixing model with appropriately chosen parameters is valid 

for predicting detector activation time.  
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Nomenclature 

a  Primary particle radius (m). 

A  Equivalent inlet area for plug flow (m2). 

sA  Cross sectional area of scattering volume (m2) 

sC  Mass concentration of smoke (kg/m3). 

)(rD  Diffusivity of particles of radius r (m2/s). 

fD  Fractal dimension. 
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vf  Volume fraction. 

vf  Volume fraction averaged over the cavity. 

g  Acceleration due to gravity (m/s2). 

I  Light intensity (W/m2). 

k  Wave number (
λ
π2

) (m-1). 

Bk  Boltzmann constant (JK-1) 

fk  Fractal prefactor. 

extK  Extinction coefficient (m-1). 



eL  Characteristic length (m). 

m  Complex index of refraction of soot )48.054.1( im += . 

m&  Mass flow rate (kg/s). 

mM  mth moment of the size distribution. 

)(vn  Size density function (# of particles of volume v/m3 of gas). 

N  Number of primary particles per aggregate. 

QN  Number of quadrature points. 

p  Output voltage of the detector (microvolts). 

P  Power scattered to the detector (Watts). 

P′  Power at the detector per unit power of the LED source. 

q  Scattering wave vector 
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q  (m-1). 

r  Distance to the detector from the scattering element (m). 

vr  Volume equivalent radius of the fractal aggregate (m). 

R  Radius of the cylindrical cavity (m). 

)(det dR Detector response function (microvolts cm3). 

gR  Radius of gyration (m). 

s Coordinate along the path of incident light beam (m). 

T  Temperature of the fluid KT 300= . 

et  Smoke entry time lag (s). 

U  Inlet velocity (m/s). 

tU  Terminal settling velocity (m/s).   



v  Total volume of the soot agglomerate (m3). 

v
r

 Flow velocity vector (m/s). 

V  Volume (m3). 

W  Quadrature weight (#/m3). 

 

Subscripts / superscripts 

~,’  Dummy variable (for integration). 

abs  Absorption. 

act   Detector activation. 

cav  Cavity. 

coag  Pertaining to coagulation. 

cr        Threshold value (for detector activation). 

det  Detector. 

diff   Pertaining to diffusion. 

∞,e   External to the smoke detector. 

flow   Pertaining to the flow. 

ji,   Pertaining to the ith or jth quadrature point / weight. 

mix  Mixing model. 

p   Pertaining to the primary particle of the soot agglomerate. 

settling Pertaining to gravitational settling. 

scat  Scattering. 

srss ,, ∞  Pertaining to smoke inside the detector, outside the detector and at detector 

activation respectively. 



v   Used to define the volume equivalent radius vr .  

 

Greek symbols 

β  Coagulation kernel (m3). 

λ  Wavelength of incident beam )632( nm=λ . 

µ  Viscosity of the fluid (Pa s). 

θ  Angle with respect to the incident beam in the scattering plane. 

ρ  Density of soot (kg/m3). 

σ  Cross section (m2). 

τ  Time scale (seconds).  

Ω  Solid angle (steradians). 

 
 
1. Introduction 

   

Smoke detectors have been credited as being the single most influential technology in 

reducing the number of fire deaths over the past 30 years. The accurate detection of a fire 

often means the difference between safe egress and potentially life threatening conditions 

for people caught in structure fires. Consequently, during the simulation of a fire 

scenario, the accurate prediction of the response of smoke detectors is crucial. Due to the 

scale and complexity of a fire event, methods for detector activation prediction have 

mostly relied on empirical techniques. A widely used method is the temperature 

correlation and the response time index (RTI) method (Heskestad and Delichatsios 

(1977), Benjamin et. al. (1979)). The temperature correlation method is based on the 



reasoning that heat generation and transport from a burning material to a sensing location 

is analogous to the smoke generation and transport from the fire to the sensor and 

therefore the temperature and smoke concentration must be correlated. The response is 

predicted using the RTI which is a measure of the sensitivity of the detector to 

temperature changes. Generally a temperature rise of 13°C above the ambient is used as 

the criteria for detector activation. The shortcomings of this approach have been 

discussed by Bukowski and Averill (1998). For effective detection of a fire one needs to 

accurately determine the total time associated with the ignition and growth of the fire, 

transit of the smoke or other combustion byproducts to a detector and the detector 

activation time. Simplified physical arguments have been used to derive correlations for 

the time scales associated with all of the above phenomena. A summary of these 

correlations is presented by Newman (1987). In particular, an empirical correlation for 

the detector response time based on a detector response function is given in Mulholland 

and Liu (1981). The correlation is developed for a particular smoke detector model. One 

of the objectives of this study is to compare detector response times obtained using this 

correlation with direct simulations. More detailed treatment like Computational Fluid 

Dynamics (CFD) can provide a more accurate prediction of fire detection times (Ierardi 

and Barnett (2003)). However detailed models involving the coupled flow field and 

aerosol dynamics effects are only recently being considered (e.g. Snegirev et al. (2001)). 

For an understanding of activation for a particular type of detector it is appropriate to 

focus on the smoke/aerosol properties (concentration, size distribution, index of 

refraction etc.) in the vicinity of the detector. The most widely used model for smoke 

detector activation assumes that activation is dependent only on the smoke concentration 



within the sensing chamber/volume inside the smoke detector housing. The sensing 

chamber/volume smoke concentration is modeled as a first order system that is coupled 

to an external smoke concentration with a time lag (e.g. Cleary et al. (2000)). A 

schematic of this model is shown in Fig. 1. 
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In equation (1) )(tCs  is the smoke mass concentration inside the sensing chamber at time 

t  and ∞sC  is the smoke concentration external to the detector housing at an earlier time 

ett − . There are two time parameters et  and mixτ  in (1). The parameter et denotes the 

time lag that is associated with the entry and penetration of the smoke into the sensing 

chamber of the detector. Depending on the detector design, smoke has to be transported 

through an external detector housing consisting of filters, baffles and other obstacles used 

to block stray light (in the case of photoelectric detectors) from entering the sensing 

chamber. A model suggested by Heskestad (1975) is to use a plug flow model over an 

equivalent length scale, eL . The entry time is given by  

e

e
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L
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The second time constant mixτ  gives the mixing time or the time scale required for smoke 

concentration to reach the threshold for detector activation. Both these parameters depend 

on the geometry as well as the size distribution of the smoke and local convection 

velocity through the detector. If we assume that the external smoke concentration is 

constant then (1) can be integrated to give 
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It may be possible to scale the mixing time parameter, mixτ , with the inlet velocity as 
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where mixL  is a characteristic mixing length scale. One of objectives of this work is to test 

this hypothesis and determine mixL  using (4).  

Another quantity of interest in detection is the extinction coefficient and it is usually 

assumed that the extinction coefficient is proportional to the concentration. Experimental 

characterization of smoke detectors involves the determination of the two time 

parameters (et  and mixτ ) or the length scale mixL  and threshold concentration )( rsr tC  by 

assuming a fit of the form (2) or (3) from which et and mixτ  can be calculated (e.g. 

Bjorkman et al. (2002); Cleary et al. (2000)). In spite of the numerous experimental 

studies to characterize smoke detectors, the theoretical study of these processes remains a 

difficult task. This is due to the fact that smoke detector geometries as well as the physics 

associated with the detection process are complicated. Nevertheless, due to differences in 

design and the practical difficulties in experimentally characterizing each brand, a 

theoretical analysis of detector response involving first principles is clearly necessary. 

Due to advances in CFD and aerosol dynamics modeling, it is gradually becoming 

feasible to study smoke entry and build up as well as predicting detector response 



theoretically. Once a standardized methodology is available manufacturers can evaluate 

different designs without the need for expensive testing.  

In this work we focus on some basic phenomena that are important in most detectors of 

the photoelectric type. We perform a CFD study coupled with aerosol dynamics of the 

smoke accumulation in the sensing chamber. Due to the extreme variations in design, we 

ignore the time constant associated with smoke entry, et , and instead focus on the mixing 

process (i.e. the time scale mixτ ). We also present a calculation for the extinction 

coefficient and the angular distribution of light scattering from fractal agglomerates. 

Although we have chosen a simplified geometry, the purpose is to illustrate analytical 

methods that can be adapted to a wide range of detector designs. 

 

2.1 Flow and aerosol model 

  

In this section we briefly describe the CFD model and the aerosol equations. A simplified 

geometry is used to model the smoke detector system (cf. Fig. 2). The computational grid 

shown in Figure 2 is generated using the software Gambit 2.1. Hexahedral meshes are 

used for both the cavity and the external domain. The flow solver is capable of creating 

the grid interface between the two domains.  

Unlike typical smoke detectors that consist of an external housing enclosing a smaller 

sensing chamber, we effectively consider a detector whose internal cavity is comprised 

entirely of the sensing chamber. For simplicity only one half of the detector is considered 

as the inflow and detector geometry are both symmetric with respect to the vertical plane. 

The main flow is set up along the x-axis (from –x to +x). The internal cavity has a radius 



of 7.5 cm and a height of 10cm. An LED light source and a photodiode are assumed to be 

placed at an elevation of 5cm (mid-height) within the cavity. The details of the scattering 

arrangement are given in the next section. Below the cavity, an external flow is simulated 

in a computational volume that is 20 cm in length, 7.5 cm in width and 4 cm in depth.  As 

mentioned earlier we only consider the flow field at the location of the sensing chamber. 

The primary flow field induces a secondary recirculating flow within the cavity where the 

smoke detection takes place. This secondary flow is responsible for transport of the 

smoke to the location of the LED beam. The light scattered by the particles that are 

present in the path of the LED beam (i.e. the scattering volume) is detected by a 

photodiode that is assumed to be placed in the circumference of the cavity. The internal 

flow within the smoke detector is simulated using a commercial CFD package (Fluent 

6.1). The CFD solver has been benchmarked to solve the mass and momentum equations. 

The aerosol dynamics associated with the problem is considered next. 

A user defined function has been included to solve the aerosol general dynamic equation 

(GDE). The GDE for modeling aerosol dynamics in radius space is, 
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where the state of the particle (fractal aggregate) is assumed to be defined by its volume 

equivalent radius vr . In writing the GDE, the term containing the particle current in 

radius space that includes both the nucleation and surface growth terms is dropped. In the 

problem that is considered here, we neglect the aerosol physics involving nucleation and 

condensation. The second term on the left hand side gives the convective transport of the 



smoke by the fluid flow. The flow field is obtained from the CFD solver. The first term 

on the right hand side gives the diffusion of the aerosol, the next two terms model the 

coagulation and the last term models the gravitational settling. For the problem under 

consideration, the effects of gravitational settling, diffusion and coagulation were found 

to be negligible. These aerosol evolution processes are important in the smoke generation 

and transport phases and ultimately determine the aerosol size distribution at the point of 

detector entry. The GDE is solved using a Quadrature Method of Moments (QMOM) 

formulation. A description of the methodology can be found in McGraw (1997). In recent 

years this method has been extended to a large number of important aerosol phenomena. 

We refer the reader to McGraw and Wright (2003), Wright, McGraw, and Rosner (2001), 

Wright (2000), Upadhyay and Ezekoye (2003) and references therein. Modifications of 

the QMOM called DQMOM (direct quadrature method of moments) and its possible 

applications in turbulent reacting flow simulation have been discussed in Fox (2003). 

The moment equations can be approximately closed once the integrals involving 

),( trn are evaluated by quadrature sums. For the sake of generality the full moment 

equations are presented below. 
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where ivr ,  are the quadrature points and iW  are the quadrature weights.  

In this work, size dependence of diffusivity and settling velocity is not considered. An 

equivalent diffusivity and settling velocity evaluated for the average size of the particles 



is used. The effective diffusivity and settling velocity, neglecting the slip correction, is 

given by 
v
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considered, the settling velocities are found to be much smaller than the smallest flow 

velocities encountered in the problem and thus gravitational settling is neglected. For 

instance for the typical particle sizes considered in this work, the diffusivity is in the 

order of 10-11m2/s settling velocity is in the order of 10-5 to 10-6 m/s. Taking the radius of 

the cavity as a characteristic length scale, the characteristic time scales for diffusion, 
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Rτ  seconds. Both these time scales are much smaller than the minimum 

flow convective time scale, 210~~
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Brownian kernel for fractal aggregates is used.β  for collision of two particles of volume 
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of β , the characteristic coagulation time is given by 
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µτ . Here 0M  is the 

first moment and v  is the average volume of the aggregates. Calculations show that coagτ  

is much greater than any other time scale. As mentioned earlier surface growth and 

nucleation effects are not considered. For the smoke detector problem considered in this 

work only convective effects are dominant and the aerosol computations are very much 

simplified. 

 



The quadrature method of moments first introduced by McGraw (1997) is an increasingly 

popular method for solving aerosol dynamics problems. This is because unlike other 

moment methods, there are no assumptions or restrictions on the form of the size 

distribution function. A further use of the QMOM is that other quantities of interest like 

the extinction coefficient and the intensity of scattered light can be approximated directly 

from the moments, mM , that are obtained using (6). Although for this particular problem, 

we see that the coagulation, diffusion and sedimentation terms are negligible, and the full 

capabilities of QMOM are not utilized, QMOM nevertheless appears to be a very useful 

tool for more sophisticated studies of smoke detectors. The number of quadrature points 

QN  to be used in (6) is determined by the required accuracy of the quadrature sum in 

approximating the integral. The number of quadrature points must also be chosen such 

that other smoke properties that are approximated by quadrature sums are accurate. In 

this problem, the size distribution always remains lognormal due to negligible effects of 

diffusion and coagulation. A lognormal distribution can be completely specified using 

three moments. The smoke extinction coefficient and the angular intensity involve 

integration over the lognormal distribution and both are found to be accurately evaluated 

using two quadrature points. Therefore, in this study the two-point quadrature scheme 

( 2=QN ) is used and the four moments 3210 ,,, MMMM  are tracked. 

 

2.2 Light scattering  

 

The photoelectric detector works on the light scattering principle. A light source typically 

a light emitting diode emits a beam towards a light stop.  An alarm activation detector, 



typically at some angle to the beam in the scattering plane, measures light scattering to 

determine the presence of smoke particles. The geometry to be considered for the 

scattering model is shown in Fig. 3. The scattering arrangement is similar to that used in 

experimental studies of a photoelectric detector (e.g. Weinert et al. (2003)). A light beam 

from an LED source is shone across the chamber. If particles are present in the chamber, 

they scatter light. The light scattered by the particles is incident on detectors placed on 

the periphery of the cavity. For this analysis we take an LED beam incident in a 

horizontal plane at the mid-height of the cylindrical cavity and calculate the angular 

scattering distribution along the outer circumference.  

Light scattering from irregular particles is a complicated phenomenon. A complete 

characterization of the light scattered from soot or smoke requires the solution of 

Maxwell’s equations. Due to the complexity of these equations, they have only been 

carried out for some basic shapes. However a simplification exists for computation of 

light scattering due to soot produced from flaming fires. In this case, it has been shown 

that the structure of soot aggregates is fractal (e.g. Sorensen et al. (1992)). It has also 

been shown that for these aggregates, the Rayleigh-Debye-Gans approximation is 

applicable (see for example Farias et al. (1995), Sorensen (2001)). The Rayleigh-Debye-

Gans-Polydisperse-Fractal-Aggregates (RDGPFA) approach considerably simplifies 

computations of the absorption and extinction properties of soot agglomerates as shown 

below. It must be mentioned that this approximation is valid only for soot produced from 

typical flaming fires. For smoke generated from smoldering combustion or other nuisance 

aerosols, this approximation is not valid as can be seen from the degree of polarization 

measurements presented in Loepfe et al. (1997) and Weinert et al. (2003). Computations 



using the more complicated Mie theory are only recently being carried out (Sorensen 

(2000). In the following we briefly develop the equations for the absorption and 

scattering coefficients for fractal aggregates and present a methodology for computation 

of angular light scattering. 

 

2.2.1 Extinction 

 

First the incident intensity along the LED light beam needs to be established. The general 

theory uses the total absorption and scattering cross sections. A soot cluster consists of a 

number of spherical primary particles distributed in a fractal cluster. The primary 

particles are assumed to be Rayleigh absorbers and scatterers. The total absorption cross 

section for an aggregate is the sum of the absorption cross sections of the Rayleigh 

particles (Nelson (1989)). 

)(4 3 mENkaabs πσ =          (7)  

In this equationN  is the number of primary particles per aggregate, a  is the primary 

particle radius andm is the complex index of refraction for soot. In this work, m is taken 

to be i48.054.1 + . This value is reported in Koylu and Faeth (1996) for soot generated by 

turbulent diffusion flames of hydrocarbon fuels. It is also mentioned that the refractive 

index is relatively independent of the type of fuel in the visible and infrared spectrum. 

The differential scattering cross section is not simply the sum of the scattering cross 

sections of the individual Rayleigh particles because one has to consider the interference 

of light scattered by the individual primary particles. These effects are modeled by the 

use of a structure factor which contains the information about the spatial arrangement of 



the primary particles within the cluster. It is a function of the scattering wave vector, q  

and a characteristic size of the cluster usually taken to be the radius of gyration, gR . The 

differential scattering cross section for incident unpolarized light is then written as 

(Sorensen (1997)) 
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where ( )gS qR  is the structure factor. Various forms of the structure factor have been 

proposed in the literature. However they are not too different and for the sake of 

simplicity, the Fischer-Burford form (9) is used in this study. The differential scattering 

cross section multiplied by the incident intensity gives the fraction of the total power 

scattered in a particular solid angle and hence is an important quantity in the study of 

angular light scattering. The total scattering cross section can be found by integrating 

over all solid angles. Details of the integration can be found in Sorensen (1997). 
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The differential scattering cross section depends on θ . The integration in equation (9) is 

non-trivial because the expression for the structure factor, which has a θ  dependence, is 

usually complicated. To carry out this integration, the relatively simpler Guinier form 



(
3

1)(
22

gRq
qS −= ) of the structure factor that is valid for small gqR  was used. The result 

was then modified to get an expression, )( gkRG , that is valid for the entire range of gqR . 

This approach is similar to the one used by Dobbins and Megaridis (1991) with the slight 

difference that our computation involves unpolarized incident light. Expressions (7) and 

(8) have been obtained for a cluster of a particular size. For a polydisperse population of 

aggregates, the expressions need to be integrated over the entire size distribution. The 

size dependencies are contained in N  and gR . In our calculations we have chosen the 

volume equivalent radius as the size parameter. The volume of the fractal cluster can thus 

be obtained and from it the two quantities. 
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The values of the fractal prefactor ( 44.2=fk ) and fractal dimension ( 8.1=fD ) are 

taken from Koylu and Faeth (1994). The extinction for the entire population is 

determined by integrating over the size distribution. A particularly nice feature of the 

quadrature method of moments is that integrals over the size distribution can be easily 

and accurately approximated by quadrature sums. The value for the local population 

averaged extinction coefficient is then evaluated as 
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Once the total absorption and scattering cross sections and the extinction coefficient have 

been determined, the intensity along the path length of the light beam can be easily found 

using an application of the Beer Lambert law. 
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Computational results show that extinction is negligible for detector activation studies 

and attenuation along the LED beam can be ignored. 

 

2.2.2 Angular light scattering 

 

Finally we can now calculate the angular variation of the scattered light intensity. The 

geometry for the light scattering is shown in Fig. 3. In our analysis, the scattering plane is 

a horizontal plane at the mid-height of the cylindrical cavity. A source of coherent, 

monochromatic light of wavelength,λ , equal to 632nm (usually a Light Emitting Diode 

(LED)) is placed at one location at the circumference such that the beam is along a 

diameter. The diameter of the LED beam is assumed to be equal to the width of a 

computational cell (i.e. 5mm). In practice there could be a divergence of the beam from 

the LED. In that case the scattering volume becomes a conical region and light scattering 

computations must be carried out over all the cells lying in the scattering volume. In this 

study, the LED beam is assumed to be collimated.  

An internet survey of different smoke detector designs revealed that there is a wide 

variation in the beam divergence as well as the wavelength of the LED. In most cases the 

beam divergence is quite small (around 10°-15°). Further as most of the scattering into 



the detector comes from the scattering volume close to the LED beam, the usually small 

angular divergence is ignored in this study. The beam diameter of 5mm is chosen by 

measuring the width of the aperture for a particular smoke detector model. The 

wavelength of 632 nm is characteristic of a red LED and also corresponds to the standard 

He-Ne lasers used by various researchers.   

 In the baseline case, a detector is placed at some angle of 20° to the incident beam. The 

total intensity on a detector placed at an angle θ  with respect to the center is given by the 

intensity scattered in that particular angle by all the particles along the LED beam. 

Consider a region at a distance s′  along the beam. The intensity incident on it can be 

found from (15). For a single particle, the power scattered per solid angle at angle 
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within the scattering volume sdAs ′  as  
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The total power at angleθ  is found by summing over the contributions from all the 

particles along s′ . 
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To evaluate detector response characteristics, the criteria used for detector activation is 

taken to be the power at the detector per unit power of the LED given by 

sAI

P
P

0

)(
)(

θθ =′            (18)  

In deriving (16) we are assuming that there is no intercluster scattering and the scattered 

intensity travels to the detector without any attenuation. This is justified because the 

smoke volume fraction within the detector is usually sufficiently small given that the 

detector would sound before the concentration levels become high enough for intercluster 

multiple scattering. As described later, our choice of the critical power for detector 

activation gives an optical thickness less than 10-3. The medium is certainly optically thin 

up to the moment at which the detector sounds. The evaluation of the scattered power 

received at the detector is as far as one can go in the prediction of the activation time 

from first principles. The alarm threshold is set by the electronics of the photodiode, 

which varies between different manufacturers. 

 

3. Simulations and results 

 

Simulations of the smoke entry, accumulation and detection are carried out for a range of 

flow velocities and particle volume fractions. A plug flow velocity profile is used as the 

input boundary condition at the location x = - 0.1 m (in Fig. 2). The flow is simulated 

using a commercial CFD package (Fluent 6.1). Taking the radius of the cavity as a 

characteristic length scale, the maximum Reynolds number is around 3000. The main 

flow is essentially an external flow past a flat plate. The velocities inside the cavity are 

even smaller. Therefore for all the velocities considered the flow is laminar. The 



boundary conditions used in the simulation are summarized in Table 1.  For the particles, 

the inlet condition is a fixed lognormal distribution of fractal particles characterized by 

the volume equivalent radius. The geometric mean volume equivalent radius and the 

geometric standard deviation are taken to be 0.15 µm and 2 respectively for a wide range 

of volume fractions. For fractal aggregates, the mean radius of 0.15 µm corresponds to 

400=N  for a primary particle radius, nma 20= . For this N  and with 8.1=fD , 

mRg µ36.0= . These values are characteristic of soot produced from flaming 

hydrocarbon fuels and have been reported in Koylu and Faeth (1994). To predict the 

detector response we assume that an LED shines across the cavity diameter at the plane 

of symmetry (y = 0) and at the mid height (z = 0.05m). A detector is assumed to be 

placed at the circumference at an angle of 20° to the incident beam. The scattered field is 

calculated using a series of steps. First a steady state flow profile is obtained from the 

CFD calculation. Then the aerosol calculations are carried out in a time dependent 

manner in the presence of the steady velocity profile. The outputs of the calculation are 

the temporally and spatially varying moments of the particle size distribution. The 

moments along the spatial direction of the incident LED beam are used in the scattering 

analysis to determine the scattered intensities at the light detector location. 

 

3.1 Features of the flow field 

 

The flow is predominantly responsible for transport of smoke into the detector and hence 

we include a brief description of the flow field. The flow field generated inside the cavity 

at the plane of symmetry due to the outside flow is shown in Fig. 4a. The x- and z- 



components of the velocity are shown as a detailed look at the flow field revealed the y-

velocity component to be much smaller than the other two. The external flow field is 

entrained near the base of the cavity and is pushed upwards at the wall. This induces a 

counterclockwise recirculating flow inside the cavity. The same type of profile was 

observed at different vertical planes parallel to the one shown. Fig. 4b shows the 

component of the velocity along the z-direction that is responsible for transporting the 

smoke into the sensing chamber. Almost all the particles enter at the right and are 

transported up. Fig. 5 shows the x-y velocity vectors at four different horizontal planes 

inside the cavity. These velocity components are responsible for horizontally dispersing 

the particles that are transported inside by the vertical (z-) velocity. Near the base of the 

plane and slightly upward the flow is in the +x direction. At a certain height the flow 

reverses due to the recirculation and flows in the – x direction. This motion aids in filling 

up the cavity uniformly with particles. The same flow features are seen for a wide range 

of values of the inlet velocity. At very low inlet velocities (~0.001 m/s), the smoke entry 

process differs. Smoke enters from the left and exits from the right.   

 

3.2 Smoke buildup within the detector 

 

We first examine the buildup of smoke at the scattering volume along the LED beam (y = 

0, z = 0.05m). Fig. 6 shows the volume fraction profiles at different times for free stream 

smoke volume fraction of 10-9 and inlet velocity of 0.1 m/s. It is seen that flow processes 

are largely responsible for the smoke distribution within the cavity. For instance the flow 

enters the cavity towards the right (close to + 7 cm in Fig. 2) and that is where the smoke 



first begins to build up. Some of the smoke is then transported across the detector by the 

velocity in the –x direction. After the flow loops around the cavity, smoke starts to appear 

at the opposite end and a second hump begins to grow. 

 

3.3 Light scattering by smoke particles 

 

The angular distribution of the power due to scattering is computed using the 

methodology outlined in section 2.2. Fig. 7 shows the attenuation of the incident intensity 

along the LED beam when the inlet volume fraction is 10-9 and the inlet velocity is 0.1 

m/s. There is very little attenuation in this case. Fig. 8 shows the variation in scattered 

power with angle along the circumference of the cavity for inlet volume fraction of 10-9. 

There is a slight increase in the scattered power with time. The strong forward scattering 

is due to the structure factor and it distinguishes the scattering from fractal aggregates 

from Rayleigh scattering. There have been numerous experimental measurements of the 

extinction coefficient of fractal shaped soot aggregates obtained from different 

hydrocarbon fuels. A check on the computations for the extinction coefficient can be 

made by comparison with the experimental results compiled in Widmann (2003). The 

mass specific extinction coefficient can be calculated from (14) as 

ccgKexts /8.1,/ ≈= ρρσ . For the wavelength nm632=λ  (and using typical values for 

the other paramenters), 136109.2 −−×= gmsλσ  while the empirical correlation given by 

Widmann (2003) is 13610808.4 −−×= gmsλσ . This discrepancy is mostly due to the 

uncertainty in the refractive index of soot. For instance in the experimental study by 

Dobbins et al. (1994), at nm630=λ sσ  is reported as 7.8m2g-1. They could get the same 



value from their theoretical computation by setting the refractive index 

im 780.055.1 += . Using  im 780.055.1 +=  in (14), we get 124.7 −= gmsσ . This small 

difference is possibly due to the simplified expression used by Dobbins et al. (1994) to 

compute the total scattering cross section. However in this work the extinction is not 

significant and the slight error in its computation can be disregarded. Our choice of the 

refractive index ( im 48.054.1 += ) probably leads to some error in the computation of the 

angular scattering as well. Due to uncertainty in the value for the refractive index for 

smoke, this error is not easy to quantify. 

Since the scattered intensity is not exactly computed but is obtained from a quadrature 

approximation, it is necessary to test its accuracy. As mentioned earlier, due to negligible 

effects of agglomeration, the distribution does not change (i.e. remains lognormal) and 

therefore higher moments can be calculated from any three moments. Results shown in 

Fig. 9 for the angular variation of scattered power show that there is a trivially small 

difference between two-point and higher point approximations. This is remarkable 

considering that the intensity has an 6M  dependence which is very accurately 

approximated using moments up to 4M  as in the 2-point scheme. In more realistic 

simulations of smoke detectors, there may be more complex flow and diffusion effects 

and arbitrary size distribution of smoke. The accuracy of low order moment 

approximations would greatly simplify the simulations.         

 

3.4 Detector response study 

 



The objective of any analysis on smoke detectors or other similar geometries is to predict 

the detector response time. While the analysis presented above enables the computation 

of the scattered light power falling on the photodiode, a translation of the incident power 

to a detector signal is required. In a typical operation, the photodiode converts the power 

into an electric current that upon reaching a certain threshold value, causes the alarm to 

sound. The relation between the incident power and the output current is usually linear 

but the threshold current depends on the electronics and varies widely. Consequently, for 

a theoretical study, an arbitrary choice must be made. In this study we assume that a 

photodiode is placed at an angle of 20° to the incident beam in the scattering plane (cf. 

Fig. 3). A fixed value for the incident power per unit power of the source (LED) 

(hereafter referred to as the critical power, crP′ ) is chosen as the threshold criterion. Then 

the time taken to reach this critical value is assumed to be the detector response time. 

Another empirically based method has been suggested by Mulholland (1995). It involves 

use of a detector response function, )(det dR , which when integrated over the size 

distribution gives the detector output voltage. To compare with the calculations based on 

the light scattering analysis, we use a correlation for )(det dR  developed for a particular 

photoelectric smoke detector in Mulholland and Liu (1980). We evaluate the output 

voltage,p , by integrating over the smoke size distribution in the same scattering volume 

(i.e. along the LED beam). 
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The integral forp  in equation (19) is computed by a quadrature sum using the known 

quadrature points and weights. For this particular model, detector sounds when 2≥p  

volts (Mulholland and Liu (1980)). 

Fig. 10 is the log-log plot showing the variation of the activation time with the velocity. 

Due to the arbitrary choice of the threshold signal only the comparison of the trends are 

meaningful. Calculations for actt  using the scattering computations closely match the 

calculations using the detector response function for 610−≈′crP . As crP′  increases to 

around 10-6, there is a slight deviation from the power law behavior at around 

1.0~eU m/s. For lower values of crP′ , the light scattering calculations reveal a power law 

variation of the activation time, actt , with velocity, eU , given by 12.1~ −
eact CUt .  The 

data for the entire range of velocities for different threshold criteria can be fit reasonably 

well with a power law given by 1,~ ≈− mCUt m
eact , with a prefactor C  that varies 

according to the threshold intensity criterion. These results indicate that at least for this 

particular geometry, a simple scaling for the mixing time as 
e

act U

L
t =  may be adequate.  

Fig. 11 shows the comparison of the detector response time with the smoke volume 

fraction at the inlet. The trends using the two different calculation procedures are again 

similar for 610−≈′crP  for a wide range of inlet volume fractions. The two curves begin to 

deviate at very low volume fractions ( 1010~ −
vf  onwards). At lower crP′ , the light 

scattering computations show a power law for the activation time in terms of the volume 

fraction as 09.0~ −
vact Cft . However as crP′  is increased, the power law is only applicable at 

higher volume fractions. For example Fig. 11 shows that with 710−=′crP , the power law 



scaling begins to break down at 910~ −
vf  and for 610−=′crP , it breaks down at 

810~ −
vf . For these cases, the response time increases faster than a power law for 

decreasing volume fractions. The same trends for the activation time calculated using two 

different methods is expected provided the threshold power and the threshold voltage are 

compatible. The criteria for activation computed using (19) depends on the 7.5M  

moment. The moment dependency for the light scattering is not so easy to evaluate. For 

the Guinier regime (small gqR ), equation (17) gives an 
fD

M
q

M 12
6

2

6 3 +
−  dependence for 

the scattered intensity at a particular angle. For the power law regime (large gqR ) again 

an 6M  dependence is expected.  If the smoke sample contains only small particles or if q  

is small (i.e. small scattering angles), then the scattered intensity 6M∝ . In this case it is 

reasonable to expect similar trends for the activation time. An interesting observation 

from Fig. 11 is that for the range of inlet velocity and volume fraction where a power law 

behavior is applicable, the value of the exponent is almost the same for all the curves. 

The CFD analysis and the light scattering computation allow a check for the validity of 

the assumptions leading to equation (3). Equation (3) is a model for a perfectly stirred 

mixing process. The volume fraction is proportional to the mass concentration and so (3) 

can be rearranged to give the following 
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There are two unknowns et and mixτ . The characteristic mixing time mixτ  can be 

determined by computing an average volume fraction vf  obtained from CFD calculations 



(given by ∫=
cavV cavv

cav
v dVtxf

V
tf ),(

1
)(

r
) for the entire cavity and fitting the variation of 

( )v v

v

f f t

f
∞

∞

−
 with an exponential curve. The results shown in Fig. 12 show a very good 

agreement with the basic model (3) for the entire range of inlet velocities. The data from 

Fig. 12 shows that mixτ  scales as 197.0 3.203.20~ −− ≈ eemix UUτ . Comparison with equation 

(4) shows that mLmix 3.20=  for this particular geometry. For a chosen fixed velocity, the 

mixing time mixτ  can then be obtained. Supposing there is a single critical volume fraction 

for detector activation )( actv tf , then actt  can be computed as a function of inlet volume 

fraction using (21). We fix )( actv tf  for each case by assuming this relation holds for 

10
0 10−=vf  and using actt  computed from the CFD simulation. The other unknown 

parameter, et , is obtained by a best fit of the data for actt  (obtained from direct 

simulations) to equation (21).  Fig. 13 shows a plot of activation time with external 

volume fraction calculated using (21) for free stream velocity of 0.1 m/s and 1m/s. It is 

seen that the detector activation times calculated using (21) are very similar to the 

activation times obtained using the full CFD and light scattering model. Further under the 

assumption that et  is specified as in equation (2), values of eL  between 0.3m and 0.35m 

give the best fit for a wide range of inlet velocities. These values are of the order of the 

maximum size of the computational model (Fig. 2). However the most obvious choice of 

2/LLe =  with L  being the maximum size of the computational domain shown in Fig. 2 

does not give a good fit. 



 Fig. 6 shows that smoke volume fraction is not uniform inside the cavity, especially at 

short times when the detector activates. Even though the spatial and temporal distribution 

of smoke inside the cavity is not homogeneous, for this particular geometry, the two 

parameter first order model given by (2) and (3) is seen to work very well for the 

prediction of detector activation time. 

The size distribution of the smoke that enters the detector can be quite different from the 

size distribution of the smoke at the location of the fire due to agglomeration during the 

transit from the fire to the detector. In Fig. 14, we plot the variation in activation time 

with volume fraction for different geometric mean radius and geometric standard 

deviation. For larger volume fractions there is no difference in the activation time while 

for smaller volume fractions 1010~ −
vf , some differences can be seen. We see that the 

activation time is almost independent of the geometric mean radius, gr , as the geometric 

standard deviation,gσ , (polydispersity) becomes higher. For the monodisperse case and 

for lower values of gσ , it is seen that detector activation time decreases with increasing 

gr . The activation time decreases with increasing polydispersity due to the increased 

scattering from the larger sized particles. However, the differences are not substantial 

since the results are plotted on a linear scale. It is important to note that these results 

apply only for fractal aggregates and differences in aerosol morphology could affect the 

response time. Computations also showed that detector activation time does not vary 

significantly with primary particle size.     

 

4. Conclusions 

 



A coupled CFD and aerosol dynamics simulation of smoke entry and accumulation 

processes in a cylindrical cavity geometry is carried out. The geometry and the flow 

represent an idealized smoke detector. It is seen that for this configuration, flow 

processes determine the distribution of smoke inside the cavity. Flow enters the cavity by 

entrainment, it is pushed up at one side setting up a recirculating flow inside the cavity. 

The same type of flow is seen for a wide range of inlet velocities. Light scattering 

calculations are carried out using the RDGPFA model for fractal agglomerates. 

Attenuation is weak for inlet volume fractions around 10-9 and hence the light scattered is 

also weak. We found that for higher inlet volume fractions (around 10-6), there is 

pronounced attenuation but the detector responds long before the attenuation effects 

become significant. Therefore a simple model for the attenuation and scattering that 

ignores multiple scattering is applicable.  

A detailed CFD study has been used to test the validity of the simple mixing model 

(equation (3)) that is widely used in the empirical characterization of smoke detectors. 

Our calculations indicate that this model is accurate to predict the average mass 

concentration or volume fraction inside the cavity as well as the detector response time 

for mass fractal aggregates. This is especially as the detector response time appears to 

depend very weakly on the size distribution parameters. Even though the spatial 

distribution of smoke inside the cavity is not homogeneous, it may still be possible to 

define a single average volume fraction or smoke concentration as a threshold. However 

the parameters τ  and et  appearing in the simple model do not seem to be directly related 

to any geometric length scale of the problem. The manner of entry of the smoke and its 

spatial variation within the sensing chamber may have to be considered only for the 



purposes of designing smoke detectors with faster response times. The results we have 

obtained are only for a very simple idealized model of a smoke detector. It is necessary to 

extend the type of analysis presented in this paper to more realistic smoke detector 

geometries and for different types of smoke to get a clearer understanding of how smoke 

entry and accumulation affects detector response time. The coupling of a general moment 

method like QMOM to a computational fluid dynamics package will allow more detailed 

evaluation of aerosol detector physics. Considering the importance of accurate prediction 

of smoke detector activation time, it is also desirable to check whether the simple model 

that is widely used in experimental characterization of smoke detectors is always 

applicable.    
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Table 1 

Summary of the boundary conditions used in the flow and aerosol dynamics simulation. 

(Boundaries are labeled in Figure 2.) 

 
Boundary Flow Boundary 

Condition 
Aerosol Boundary Condition 

I Fixed Inlet Velocity Fixed inlet moments (lognormal distribution). 
II Symmetry Symmetry 
III Constant pressure 

(Atmospheric pressure) 
Zero gradients for the moments in flow direction 

;3,2,1,0,0 ==∇⋅ mMV m

r
 

IV Wall (no slip) Perfectly absorbing wall 
3,2,1,0,0 == mM m  

V Symmetry Symmetry 
VI Wall (no slip) Perfectly absorbing wall 

3,2,1,0,0 == mM m  

VII Wall (no slip) Perfectly absorbing wall 
3,2,1,0,0 == mM m  
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Fig. 1. Schematic illustrating the first order, two parameter smoke detector model. 

 

Fig. 2. Geometry and computational grid. Flow direction is shown and the boundaries are 

labeled and referred to in Table 1. 

 

Fig. 3. Schematic of the light scattering arrangement. 

 

Fig. 4. (a) X- and Z- velocity vector components at the plane of symmetry at Y=0.0, 

(vector lengths are equal and do not show the magnitude). (b) Z- velocity component at 

the plane of symmetry at Y=0.0. 

 

Fig. 5. Plots of X-Y velocity vectors at the four different horizontal planes at Z=0.0m, 

Z=0.025m, Z=0.05m and Z=0.075m. Z-velocity contours are also shown. 

 

Fig. 6. Variation of volume fraction with distance at the mid height of the cavity for 

various times. Volume fraction of the free stream is 10-9. 

  

Fig. 7. Variation of normalized intensity with distance at the mid height of the cavity for 

various times. Volume fraction of the free stream is 10-9. 

 



Fig. 8. Variation of scattered power at the circumference of the cavity with angle at mid-

height for different times. Volume fraction of the free stream is 10-9. 

 

Fig. 9. Comparison of the angular scattering computed using 2-point, 3-point and 4-point 

quadrature approximations. Differences are too small for the three profiles to be 

distinguishable.  

 

Fig. 10. Log-log plot showing the variation of the detector activation time with velocity at 

the inlet. Comparison of the results obtained using the light scattering calculation 

(equation 18) and the detector response function (equation 19) for different choices of the 

threshold power. 

 

Fig. 11. Log-log plot showing the variation of the detector activation time with smoke 

volume fraction at the inlet. Comparison of the results obtained using the light scattering 

calculation (equation 18) and the detector response function (equation 19) for different 

choices of the threshold power. 

 

Fig. 12. Plot of the averaged and normalized volume fraction with time for different 

velocities to evaluate the mixing time scale parameter τ. 

 

Fig. 13. Log-log plot showing the variation of the detector activation time (calculated 

using equation 18) with smoke volume fraction at the inlet, free stream velocity is 0.1m/s 



and 1m/s. Also shown are the best fits of the data to equation 21 obtained from the simple 

model (equation (3)). 

 

Fig. 14. Plot of the activation time with logarithm of the volume fraction for different 

values of the geometric mean radius and the geometric standard deviation. The free 

stream velocity is 0.1 m/s. 
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