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Smoke buildup and light scattering in a cylindrical cavity above a uniform flow.

Abstract

In this study, we use computational fluid dynami&@FD) and aerosol dynamics
modeling to investigate the buildup of smoke amhtliscattering in a cylindrical cavity
geometry, considered to be an idealized representat a photoelectric smoke detector.
CFD coupled with the quadrature method of mome@i®M) is used for simulation of
aerosol dynamics. The Rayleigh-Debye-Gans/PolydigpEractal Aggregate (RDGPFA)
theory is used for calculation of smoke extinctéord angular light scattering. It is seen
that the flow external to the cavity sets up arcedating flow pattern within the cavity
and that the flow processes determine the spaigttilition of smoke. Aerosol
extinction and scattering calculations are perfarioeexamine the time varying profiles
of the intensity along a simulated LED light beand @he scattered intensity at different
angles. The variation of the detector activatiometwith inlet velocity and smoke volume
fraction is obtained from a calculation of the daguight scattering. The results are
compared with calculations using an empiricallyedeined detector response function
and with a simpler model that assumes a uniforrmmibligion of smoke inside the cavity.
Results indicate that although the distributiorsimioke inside the cavity is not uniformly
mixed, the simple first order mixing model with appriately chosen parameters is valid

for predicting detector activation time.
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Nomenclature
a Primary particle radius (m).
A Equivalent inlet area for plug flow i

A Cross sectional area of scattering volumé (m
C.  Mass concentration of smoke (kgjm

D(r) Diffusivity of particles of radius r (ffs).

D,  Fractal dimension.

2 —
E(m) Factor for absorptiork(m) = Im( m2 1J
m® +2

: m” -1
F(m) Factor for scattering-(m) =|—;
m° +2
f, Volume fraction.
fv Volume fraction averaged over the cavity.

g Acceleration due to gravity (nfjs

| Light intensity (W/nf).

k Wave numberaﬁ) (mh).

k,  Boltzmann constant (J§
K, Fractal prefactor.

Extinction coefficient (ri).



L Characteristic length (m).

m Complex index of refraction of sodin = 154+ 048).

m Mass flow rate (kg/s).

M m™ moment of the size distribution.

n(v) Size density function (# of particles of volumewbf gas).
N Number of primary particles per aggregate.

Number of quadrature points.

p Output voltage of the detector (microvolts).

P Power scattered to the detector (Watts).

P’ Power at the detector per unit power of the LEDree.
q Scattering wave vectay = 4771 sin(gj (m™).

r Distance to the detector from the scattering etdr(ra).

r Volume equivalent radius of the fractal aggredate

\

R Radius of the cylindrical cavity (m).

R,..(d) Detector response function (microvolts%m

R Radius of gyration (m).

n

Coordinate along the path of incident light beam). (
T Temperature of the fluid = 300K .

t Smoke entry time lag (s).

U Inlet velocity (m/s).

U, Terminal settling velocity (m/s).



Y Total volume of the soot agglomerate®m
v Flow velocity vector (m/s).
v Volume ().

W  Quadrature weight (#/fh

Subscripts / superscripts

~, Dummy variable (for integration).

abs Absorption.

act Detector activation.

cav Cauvity.

coac Pertaining to coagulation.

cr Threshold value (for detector activation).

det Detector.

diff Pertaining to diffusion.

€, External to the smoke detector.

flow Pertaining to the flow.

i j Pertaining to the"ior " quadrature point / weight.
mix Mixing model.

p Pertaining to the primary particle of the sooglagrerate.

settling Pertaining to gravitational settling.

sca Scattering.

s,sc0, 51 Pertaining to smoke inside the detector, outsisedetector and at detector

activation respectively.



v Used to define the volume equivalent radiys

Greek symbols

B Coagulation kernel (M

A Wavelength of incident bea = 632nm) .

Y7 Viscosity of the fluid (Pa s).

6 Angle with respect to the incident beam in thdtsecimg plane.
p  Density of soot (kg/r}).

o Cross section (A

4 Time scale (seconds).

Q Solid angle (steradians).

1. Introduction

Smoke detectors have been credited as being tigke simost influential technology in
reducing the number of fire deaths over the paste20s. The accurate detection of a fire
often means the difference between safe egrespaadtially life threatening conditions
for people caught in structure fires. Consequentdyring the simulation of a fire
scenario, the accurate prediction of the respohsenoke detectors is crucial. Due to the
scale and complexity of a fire event, methods fetedtor activation prediction have
mostly relied on empirical techniques. A widely disemethod is the temperature
correlation and the response time index (RTI) metlideskestad and Delichatsios

(1977), Benjamin et. al. (1979)). The temperatweatation method is based on the



reasoning that heat generation and transport frnr@ing material to a sensing location
is analogous to the smoke generation and trangpmrt the fire to the sensor and
therefore the temperature and smoke concentratizst be correlated. The response is
predicted using the RTI which is a measure of tkasgivity of the detector to
temperature changes. Generally a temperature #i$8°G above the ambient is used as
the criteria for detector activation. The shortcogsi of this approach have been
discussed by Bukowski and Averill (1998). For efifee detection of a fire one needs to
accurately determine the total time associated #iéhignition and growth of the fire,
transit of the smoke or other combustion byproduotsa detector and the detector
activation time. Simplified physical arguments hdeen used to derive correlations for
the time scales associated with all of the abovenpimena. A summary of these
correlations is presented by Newman (1987). Iniqder, an empirical correlation for
the detector response time based on a detectaynssgunction is given in Mulholland
and Liu (1981). The correlation is developed fqragticular smoke detector model. One
of the objectives of this study is to compare deteresponse times obtained using this
correlation with direct simulations. More detailg@atment like Computational Fluid
Dynamics (CFD) can provide a more accurate prefiotif fire detection times (lerardi
and Barnett (2003)). However detailed models invmgvthe coupled flow field and
aerosol dynamics effects are only recently beingsictered (e.g. Snegirev et al. (2001)).
For an understanding of activation for a particulgre of detector it is appropriate to
focus on the smoke/aerosol properties (concentratgze distribution, index of
refraction etc.) in the vicinity of the detectohh& most widely used model for smoke

detector activation assumes that activation is niéget only on the smoke concentration



within the sensing chamber/volume inside the smd&gector housing. The sensing
chamber/volume smoke concentration is modeled fasteaorder system that is coupled
to an external smoke concentration with a time (ag. Cleary et al. (2000)). A

schematic of this model is shown in Fig. 1.

=L -t -c e, &

mix

In equation (1)C(t )is the smoke mass concentration inside the sechiagber at time
t and C_, is the smoke concentration external to the detdwtasing at an earlier time

t—t,. There are two time parametets and 7., in (1). The parametet,denotes the

time lag that is associated with the entry and fvatien of the smoke into the sensing
chamber of the detector. Depending on the detelgsign, smoke has to be transported
through an external detector housing consistinigtefs, baffles and other obstacles used
to block stray light (in the case of photoelectiietectors) from entering the sensing
chamber. A model suggested by Heskestad (197%) us¢ a plug flow model over an

equivalent length scald,,. The entry time is given by
L
t =—=< 2
°= 0, )

The second time constanf,, gives the mixing time or the time scale requiredsmoke

concentration to reach the threshold for deteattivation. Both these parameters depend
on the geometry as well as the size distributionthef smoke and local convection
velocity through the detector. If we assume tha&t éxternal smoke concentration is

constant then (1) can be integrated to give



(S50 =1- eXL{M] t>t, (3)
Csoo Z-mi><

I = mix (4)

where L, is a characteristic mixing length scale. One gédives of this work is to test

this hypothesis and determirne,, using (4).

Another quantity of interest in detection is theimotion coefficient and it is usually
assumed that the extinction coefficient is propordi to the concentration. Experimental
characterization of smoke detectors involves theéerdenation of the two time

parameterst( andr, ) or the length scalé , and threshold concentratid®, (t, by

assuming a fit of the form (2) or (3) from whidhand 7,,, can be calculated (e.g.
Bjorkman et al. (2002); Cleary et al. (2000)). Ipits of the numerous experimental
studies to characterize smoke detectors, the thealrstudy of these processes remains a
difficult task. This is due to the fact that smaletector geometries as well as the physics
associated with the detection process are cometicatevertheless, due to differences in
design and the practical difficulties in experinadyt characterizing each brand, a
theoretical analysis of detector response involingl principles is clearly necessary.
Due to advances in CFD and aerosol dynamics mageltnis gradually becoming

feasible to study smoke entry and build up as wsllpredicting detector response



theoretically. Once a standardized methodologyalable manufacturers can evaluate
different designs without the need for expensigting.

In this work we focus on some basic phenomenadteimportant in most detectors of
the photoelectric type. We perform a CFD study ¢edipvith aerosol dynamics of the

smoke accumulation in the sensing chamber. Dueg@xtreme variations in design, we

ignore the time constant associated with smokeyetitr and instead focus on the mixing
process (i.e. the time scalg, ). We also present a calculation for the extinction

coefficient and the angular distribution of lightastering from fractal agglomerates.
Although we have chosen a simplified geometry, ghepose is to illustrate analytical

methods that can be adapted to a wide range oftdetesigns.

2.1 Flow and aerosol model

In this section we briefly describe the CFD modwa éhe aerosol equations. A simplified
geometry is used to model the smoke detector sygkrig. 2). The computational grid
shown in Figure 2 is generated using the softwaaeni®@t 2.1. Hexahedral meshes are
used for both the cavity and the external domaire fflow solver is capable of creating
the grid interface between the two domains.

Unlike typical smoke detectors that consist of atemnal housing enclosing a smaller
sensing chamber, we effectively consider a detestwse internal cavity is comprised
entirely of the sensing chamber. For simplicityyoohe half of the detector is considered
as the inflow and detector geometry are both symowith respect to the vertical plane.

The main flow is set up along the x-axis (from extk). The internal cavity has a radius



of 7.5 cm and a height of 10cm. An LED light souarel a photodiode are assumed to be
placed at an elevation of 5cm (mid-height) withie tavity. The details of the scattering
arrangement are given in the next section. Bel@\cHvity, an external flow is simulated
in a computational volume that is 20 cm in len@us, cm in width and 4 cm in depth. As
mentioned earlier we only consider the flow fietdlae location of the sensing chamber.
The primary flow field induces a secondary reciatulg flow within the cavity where the
smoke detection takes place. This secondary flomesponsible for transport of the
smoke to the location of the LED beam. The lighatred by the particles that are
present in the path of the LED beam (i.e. the sdati volume) is detected by a
photodiode that is assumed to be placed in themiference of the cavity. The internal
flow within the smoke detector is simulated usingcanmercial CFD package (Fluent
6.1). The CFD solver has been benchmarked to $bé/enass and momentum equations.
The aerosol dynamics associated with the probleronsidered next.
A user defined function has been included to stiteeaerosol general dynamic equation
(GDE). The GDE for modeling aerosol dynamics inuadgpace is,
on(r,)/ot+0O0n(r,)v=00D(r,)On(r,)
cu2f’ ﬁ(mrﬁ —'rﬁijn(f;)n«rﬁ ~FEAYR, - [ BTN, 0T, (1)n(r,
)
where the state of the particle (fractal aggregat@ssumed to be defined by its volume
equivalent radiusr,. In writing the GDE, the term containing the pelgi current in
radius space that includes both the nucleationsanfdce growth terms is dropped. In the

problem that is considered here, we neglect thesaéphysics involving nucleation and

condensation. The second term on the left handgids the convective transport of the



smoke by the fluid flow. The flow field is obtainém the CFD solver. The first term
on the right hand side gives the diffusion of tleeosol, the next two terms model the
coagulation and the last term models the gravitatisettling. For the problem under
consideration, the effects of gravitational segflidiffusion and coagulation were found
to be negligible. These aerosol evolution proceasesmportant in the smoke generation
and transport phases and ultimately determine éhesal size distribution at the point of
detector entry. The GDE is solved using a QuadeaMethod of Moments (QMOM)
formulation. A description of the methodology canfbund in McGraw (1997). In recent
years this method has been extended to a largeerushlimportant aerosol phenomena.
We refer the reader to McGraw and Wright (2003)ight; McGraw, and Rosner (2001),
Wright (2000), Upadhyay and Ezekoye (2003) andresiees therein. Modifications of
the QMOM called DQMOM (direct quadrature methodnedments) and its possible
applications in turbulent reacting flow simulatibave been discussed in Fox (2003).
The moment equations can be approximately closeck dhe integrals involving
n(r,t) are evaluated by quadrature sums. For the sakeerérglity the full moment
equations are presented below.

oM /ot+0[M V=

%:(D OD(F,; W, — DU, (7, )W)

i=1

" e . (6)
*U2Y Y IE°+T,)° =1, =1, 1B B WW,

i=1 j=1
m= 0123..

wherer,; are the quadrature points and are the quadrature weights.

In this work, size dependence of diffusivity andtlseg velocity is not considered. An

equivalent diffusivity and settling velocity evated for the average size of the particles



is used. The effective diffusivity and settling aeity, neglecting the slip correction, is

. kT 4, ? . : .
given by D=6 2 and U, = AL, respectively. For the size of the particles

T, 18u
considered, the settling velocities are found torheh smaller than the smallest flow
velocities encountered in the problem and thusiggonal settling is neglected. For
instance for the typical particle sizes consideredhis work, the diffusivity is in the
order of 10"'m?%s settling velocity is in the order of #@ 10° m/s. Taking the radius of

the cavity as a characteristic length scale, theratteristic time scales for diffusion,

2
T i ~% is of the order of 10 seconds. The characteristic time for settling,

R ) .
— ~10* seconds. Both these time scales are much smhadarthe minimum
t

T

settling -

flow convective time scaler,, ~UB ~10%, considered in this study. The continuum

Brownian kernel for fractal aggregates is uggdor collision of two particles of volume

2k T - -
B (0 40 fyYOr 4O

3 i , j ) Taking an average value
L

v, andv, is given by 8 =

of 3, the characteristic coagulation time is givenmy,, ~ ﬁ Here M, is the
B v 0

first moment andv is the average volume of the aggregates. Caloungshow that’

coag
is much greater than any other time scale. As oeetl earlier surface growth and
nucleation effects are not considered. For the snugtector problem considered in this
work only convective effects are dominant and teesol computations are very much

simplified.



The quadrature method of moments first introducetbGraw (1997) is an increasingly
popular method for solving aerosol dynamics prolsleifthis is because unlike other
moment methods, there are no assumptions or testscon the form of the size
distribution function. A further use of the QMOM ¢tisat other quantities of interest like
the extinction coefficient and the intensity of tbeeed light can be approximated directly

from the momentsM , that are obtained using (6). Although for thisticalar problem,

we see that the coagulation, diffusion and sediat@mt terms are negligible, and the full
capabilities of QMOM are not utilized, QMOM nevestbss appears to be a very useful
tool for more sophisticated studies of smoke detsciThe number of quadrature points

N, to be used in (6) is determined by the requiretlieey of the quadrature sum in

approximating the integral. The number of quadefwints must also be chosen such
that other smoke properties that are approximateduadrature sums are accurate. In
this problem, the size distribution always remdognormal due to negligible effects of

diffusion and coagulation. A lognormal distributican be completely specified using
three moments. The smoke extinction coefficient @mel angular intensity involve

integration over the lognormal distribution andibate found to be accurately evaluated
using two quadrature points. Therefore, in thigdgtthe two-point quadrature scheme

(N, =2) is used and the four momeriis,,M,,M,,M; are tracked.

2.2 Light scattering

The photoelectric detector works on the light ssatg principle. A light source typically

a light emitting diode emits a beam towards a ligflapp. An alarm activation detector,



typically at some angle to the beam in the scaiteplane, measures light scattering to
determine the presence of smoke particles. The gggnto be considered for the
scattering model is shown in Fig. 3. The scatteangngement is similar to that used in
experimental studies of a photoelectric detectay. (@/einert et al. (2003)). A light beam
from an LED source is shone across the chambearticles are present in the chamber,
they scatter light. The light scattered by the ips is incident on detectors placed on
the periphery of the cavity. For this analysis veé&et an LED beam incident in a
horizontal plane at the mid-height of the cylindticavity and calculate the angular
scattering distribution along the outer circumfern

Light scattering from irregular particles is a cdicgted phenomenon. A complete
characterization of the light scattered from sootsmoke requires the solution of
Maxwell’'s equations. Due to the complexity of thesguations, they have only been
carried out for some basic shapes. However a diggilon exists for computation of
light scattering due to soot produced from flamiings. In this case, it has been shown
that the structure of soot aggregates is fractg. (8orensen et al. (1992)). It has also
been shown that for these aggregates, the Raylzeglye-Gans approximation is
applicable (see for example Farias et al. (1998)ei®en (2001)). The Rayleigh-Debye-
Gans-Polydisperse-Fractal-Aggregates (RDGPFA) agbroconsiderably simplifies
computations of the absorption and extinction pridge of soot agglomerates as shown
below. It must be mentioned that this approximatswalid only for soot produced from
typical flaming fires. For smoke generated from ktadng combustion or other nuisance
aerosols, this approximation is not valid as carséen from the degree of polarization

measurements presented in Loepfe et al. (1997)\&idert et al. (2003). Computations



using the more complicated Mie theory are only médgebeing carried out (Sorensen
(2000). In the following we briefly develop the eqions for the absorption and
scattering coefficients for fractal aggregates present a methodology for computation

of angular light scattering.

2.2.1 Extinction

First the incident intensity along the LED lightdne needs to be established. The general
theory uses the total absorption and scatteringscsections. A soot cluster consists of a
number of spherical primary particles distributed a fractal cluster. The primary
particles are assumed to be Rayleigh absorbersaaiterers. The total absorption cross
section for an aggregate is the sum of the absorptross sections of the Rayleigh
particles (Nelson (1989)).

O e = 47TNka*E(m) (7)

In this equatiomN is the number of primary particles per aggregates the primary
particle radius anoh is the complex index of refraction for soot. Iistivork, m is taken

to be 154+ 048 . This value is reported in Koylu and Faeth (19%@8)soot generated by
turbulent diffusion flames of hydrocarbon fuelsidtalso mentioned that the refractive
index is relatively independent of the type of firelthe visible and infrared spectrum.
The differential scattering cross section is nob@y the sum of the scattering cross
sections of the individual Rayleigh particles bessaone has to consider the interference
of light scattered by the individual primary pales. These effects are modeled by the

use of a structure factor which contains the infaran about the spatial arrangement of



the primary particles within the cluster. It isunétion of the scattering wave vectary,
and a characteristic size of the cluster usuakgnao be the radius of gyratioR,;. The

differential scattering cross section for incidempolarized light is then written as

(Sorensen (1997))

dascat — 21,446 1+ COSZQ
= Nk )( : jS( R) (8)
S(ng):(l (3[) ]q R, J )

where S(qR) is the structure factor. Various forms of the tinee factor have been

proposed in the literature. However they are nat different and for the sake of
simplicity, the Fischer-Burford form (9) is usedtims study. The differential scattering
cross section multiplied by the incident intengiiyes the fraction of the total power
scattered in a particular solid angle and hencanismportant quantity in the study of
angular light scattering. The total scattering sresction can be found by integrating

over all solid angles. Details of the integrati@m de found in Sorensen (1997).

O = jj"dascatdej sin® ¢d(p— TN ?k*a’F(MG(KR,) (10)
where
G(kR) = (1+[ jk?g )2 (11)

The differential scattering cross section depend® oThe integration in equation (9) is
non-trivial because the expression for the strecfactor, which has & dependence, is

usually complicated. To carry out this integratitime relatively simpler Guinier form



2 2
(S(q) =1- i ?ng ) of the structure factor that is valid for smglR, was used. The result

was then modified to get an expressi@tkR)), that is valid for the entire range qR, .

This approach is similar to the one used by Dobhitg Megaridis (1991) with the slight
difference that our computation involves unpolatizecident light. Expressions (7) and
(8) have been obtained for a cluster of a particsilze. For a polydisperse population of
aggregates, the expressions need to be integrasxdtlte entire size distribution. The

size dependencies are containedNinand R;. In our calculations we have chosen the

volume equivalent radius as the size parametervéhame of the fractal cluster can thus

be obtained and from it the two quantities.

N=Y = (r—VT;vp = (4/3)&® (12)
v, (a
1
R, = {%}D (13)
The values of the fractal prefactok,(=  24d4nd fractal dimension¥;, = 1)8are

taken from Koylu and Faeth (1994). The extinctiaor the entire population is
determined by integrating over the size distributié particularly nice feature of the
guadrature method of moments is that integrals twersize distribution can be easily
and accurately approximated by quadrature sums.vahee for the local population

averaged extinction coefficient is then evaluated a

IZext = T(Jscat(rv) + aabs(rv))n(rv)drv = ZQ (Jscat(rv,i ) + Jabs(rv,i ))VV| (14)



Once the total absorption and scattering crossosecand the extinction coefficient have
been determined, the intensity along the path kenfjthe light beam can be easily found

using an application of the Beer Lambert law.
1) =1, ex;{— [Kou(s) cB'J (15)
0

Computational results show that extinction is rgggle for detector activation studies

and attenuation along the LED beam can be ignored.
2.2.2 Angular light scattering

Finally we can now calculate the angular variatodrthe scattered light intensity. The
geometry for the light scattering is shown in gln our analysis, the scattering plane is
a horizontal plane at the mid-height of the cyliodr cavity. A source of coherent,
monochromatic light of wavelength, equal to 632nm (usually a Light Emitting Diode
(LED)) is placed at one location at the circumfeeersuch that the beam is along a
diameter. The diameter of the LED beam is assuroebet equal to the width of a
computational cell (i.e. 5mm). In practice thereildobe a divergence of the beam from
the LED. In that case the scattering volume beccamasnical region and light scattering
computations must be carried out over all the degilgy in the scattering volume. In this
study, the LED beam is assumed to be collimated.

An internet survey of different smoke detector desirevealed that there is a wide
variation in the beam divergence as well as thealeangth of the LED. In most cases the

beam divergence is quite small (around-18°). Further as most of the scattering into



the detector comes from the scattering volume dioske LED beam, the usually small
angular divergence is ignored in this study. Thanbaliameter of 5mm is chosen by
measuring the width of the aperture for a particldanoke detector model. The
wavelength of 632 nm is characteristic of a red L& also corresponds to the standard
He-Ne lasers used by various researchers.

In the baseline case, a detector is placed at smgle of 20 to the incident beam. The
total intensity on a detector placed at an afjl@ith respect to the center is given by the
intensity scattered in that particular angle by thk particles along the LED beam.
Consider a region at a distanse along the beam. The intensity incident on it can b

found from (15). For a single particle, the powenattered per solid angle at angle
D Ndo ., do,., . . .

@' =96(s) is given byl (S)W Wherew is evaluated a#'. The power received

by the detector at the fixed angl (6(s' =R) as shown in Figure 3) is given by

[(s)

dascat ( Ajet cos@ - 9')

Q0 )’ J Also accounting for the polydispersity of the tseang
r(s

particles, we get the scattered power at amfjlby particles at spatial locatios and

within the scattering volumé\ds' as

4P(9) = (s')k‘*aﬁF(m)(“ il )j( P fi‘;'”)j [T N()? SR, ()0, )dr A

(16)
The total power at angéeis found by summing over the contributions frornttad

particles alongs'.

P(6) = _Cfo{l (S')k“aGF(m)(“ 00252 (9’)}( A c;cz(f -0)

jj:’ N(r,)* S(@R, (r,)n(r, )dr, |A.cs
(17)



To evaluate detector response characteristicseritexia used for detector activation is
taken to be the power at the detector per unit poivthe LED given by

P©)

PO =1

(18)

In deriving (16) we are assuming that there ismercluster scattering and the scattered
intensity travels to the detector without any attgion. This is justified because the
smoke volume fraction within the detector is uspalfficiently small given that the
detector would sound before the concentration $elsetome high enough for intercluster
multiple scattering. As described later, our choafethe critical power for detector
activation gives an optical thickness less thaf. The medium is certainly optically thin
up to the moment at which the detector sounds. éMaduation of the scattered power
received at the detector is as far as one can gbeirprediction of the activation time
from first principles. The alarm threshold is sgt the electronics of the photodiode,

which varies between different manufacturers.

3. Simulations and results

Simulations of the smoke entry, accumulation antéamn are carried out for a range of
flow velocities and particle volume fractions. Auglflow velocity profile is used as the
input boundary condition at the location x = - @l(in Fig. 2). The flow is simulated

using a commercial CFD package (Fluent 6.1). Takhy radius of the cavity as a
characteristic length scale, the maximum Reynoldsitver is around 3000. The main
flow is essentially an external flow past a flaatel The velocities inside the cavity are

even smaller. Therefore for all the velocities ¢demed the flow is laminar. The



boundary conditions used in the simulation are sanmed in Table 1. For the particles,
the inlet condition is a fixed lognormal distribati of fractal particles characterized by
the volume equivalent radius. The geometric medame equivalent radius and the
geometric standard deviation are taken to be Ari%nd 2 respectively for a wide range

of volume fractions. For fractal aggregates, themeadius of 0.1%um corresponds to

N =400 for a primary particle radiusa=20nm. For this N and with D, = 1.8
R, = 036um. These values are characteristic of soot produfredn flaming

hydrocarbon fuels and have been reported in Koyl Baeth (1994). To predict the
detector response we assume that an LED shinessattre cavity diameter at the plane
of symmetry (y = 0) and at the mid height (z = @)5A detector is assumed to be
placed at the circumference at an angle Gfta@he incident beam. The scattered field is
calculated using a series of steps. First a stetatg flow profile is obtained from the
CFD calculation. Then the aerosol calculations eagied out in a time dependent
manner in the presence of the steady velocity lgrofine outputs of the calculation are
the temporally and spatially varying moments of heaticle size distribution. The
moments along the spatial direction of the inciddD beam are used in the scattering

analysis to determine the scattered intensititisealight detector location.

3.1 Features of the flow field

The flow is predominantly responsible for transpzrsmoke into the detector and hence

we include a brief description of the flow fieldnd flow field generated inside the cavity

at the plane of symmetry due to the outside flovehswn in Fig. 4a. The x- and z-



components of the velocity are shown as a detéolekl at the flow field revealed the y-
velocity component to be much smaller than the rotive. The external flow field is
entrained near the base of the cavity and is puspadirds at the wall. This induces a
counterclockwise recirculating flow inside the dgviThe same type of profile was
observed at different vertical planes parallel be tone shown. Fig. 4b shows the
component of the velocity along the z-directionttisaresponsible for transporting the
smoke into the sensing chamber. Almost all theiglaest enter at the right and are
transported up. Fig. 5 shows the x-y velocity vectat four different horizontal planes
inside the cavity. These velocity components aspaasible for horizontally dispersing
the particles that are transported inside by thiéca (z-) velocity. Near the base of the
plane and slightly upward the flow is in the +xedition. At a certain height the flow
reverses due to the recirculation and flows inthedirection. This motion aids in filling
up the cavity uniformly with particles. The samewlfeatures are seen for a wide range
of values of the inlet velocity. At very low inlgelocities (~0.001 m/s), the smoke entry

process differs. Smoke enters from the left antsdsom the right.

3.2 Smoke buildup within the detector

We first examine the buildup of smoke at the scaievolume along the LED beam (y =
0, z = 0.05m). Fig. 6 shows the volume fractiorfifgs at different times for free stream
smoke volume fraction of Tand inlet velocity of 0.1 m/s. It is seen that flpvocesses

are largely responsible for the smoke distributiethin the cavity. For instance the flow

enters the cavity towards the right (close to #vic Fig. 2) and that is where the smoke



first begins to build up. Some of the smoke is ttransported across the detector by the
velocity in the —x direction. After the flow loopsound the cavity, smoke starts to appear

at the opposite end and a second hump beginswa gro

3.3 Light scattering by smoke particles

The angular distribution of the power due to scamite is computed using the
methodology outlined in section 2.2. Fig. 7 sholes attenuation of the incident intensity
along the LED beam when the inlet volume fractisrl®® and the inlet velocity is 0.1
m/s. There is very little attenuation in this caSi. 8 shows the variation in scattered
power with angle along the circumference of theitgefer inlet volume fraction of 18,
There is a slight increase in the scattered povitr time. The strong forward scattering
is due to the structure factor and it distinguisties scattering from fractal aggregates
from Rayleigh scattering. There have been numeeapserimental measurements of the
extinction coefficient of fractal shaped soot aggtes obtained from different
hydrocarbon fuels. A check on the computationstif@r extinction coefficient can be
made by comparison with the experimental resultapiled in Widmann (2003). The

mass specific extinction coefficient can be calmda from (14) as

o, =K./ p,p=18g/cc. For the wavelengthl =632nm (and using typical values for

ext
the other paramentersy A = 29x10°m’g™ while the empirical correlation given by
Widmann (2003) iso A = 4.808x10°m*g™. This discrepancy is mostly due to the

uncertainty in the refractive index of soot. Fostance in the experimental study by

Dobbins et al. (1994), at =630nm o is reported as 7.8m". They could get the same



value from their theoretical computation by settinthe refractive index
m=155+0.780 . Using m=155+0.780 in (14), we geto_ = 7.4m*g™". This small
difference is possibly due to the simplified exgies used by Dobbins et al. (1994) to
compute the total scattering cross section. Howavehis work the extinction is not
significant and the slight error in its computaticem be disregarded. Our choice of the
refractive index (hn= 154+ 048 ) probably leads to some error in the computaticth®
angular scattering as well. Due to uncertaintyhe value for the refractive index for
smoke, this error is not easy to quantify.

Since the scattered intensity is not exactly comgbutut is obtained from a quadrature
approximation, it is necessary to test its accurAsymentioned earlier, due to negligible
effects of agglomeration, the distribution does dwinge (i.e. remains lognormal) and
therefore higher moments can be calculated fromthree moments. Results shown in
Fig. 9 for the angular variation of scattered powkow that there is a trivially small
difference between two-point and higher point agpnations. This is remarkable

considering that the intensity has aW, dependence which is very accurately

approximated using moments up M, as in the 2-point scheme. In more realistic

simulations of smoke detectors, there may be moreptex flow and diffusion effects
and arbitrary size distribution of smoke. The aacyr of low order moment

approximations would greatly simplify the simulaits

3.4 Detector response study



The objective of any analysis on smoke detectostter similar geometries is to predict
the detector response time. While the analysisepted above enables the computation
of the scattered light power falling on the photat#i, a translation of the incident power
to a detector signal is required. In a typical agien, the photodiode converts the power
into an electric current that upon reaching a @erfareshold value, causes the alarm to
sound. The relation between the incident power taedoutput current is usually linear
but the threshold current depends on the elecsamd varies widely. Consequently, for
a theoretical study, an arbitrary choice must be&endn this study we assume that a
photodiode is placed at an angle of 20 the incident beam in the scattering plane (cf.
Fig. 3). A fixed value for the incident power penitupower of the source (LED)
(hereafter referred to as the critical powBf,) is chosen as the threshold criterion. Then
the time taken to reach this critical value is assd to be the detector response time.
Another empirically based method has been suggéstédulholland (1995). It involves

use of a detector response functidR,,(d), which when integrated over the size

distribution gives the detector output voltage.cbonpare with the calculations based on

the light scattering analysis, we use a correlatwnR,(d) developed for a particular

photoelectric smoke detector in Mulholland and [(il980). We evaluate the output
voltage,p, by integrating over the smoke size distributioriie same scattering volume

(i.e. along the LED beam).
- %‘EEOI::O Rdet(a)n(a)(s')dacsr (19)

R,.(d) =131 %" (20)



The integral fop in equation (19) is computed by a quadrature saimguthe known
guadrature points and weights. For this particat@del, detector sounds whem=> 2
volts (Mulholland and Liu (1980)).

Fig. 10 is the log-log plot showing the variatiohtlee activation time with the velocity.
Due to the arbitrary choice of the threshold sigmaly the comparison of the trends are

meaningful. Calculations fot_, using the scattering computations closely mateh th

act

calculations using the detector response functmmH, =10°. As P, increases to

around 10, there is a slight deviation from the power lawhdeor at around

U, ~ 0.1m/s. For lower values of,

cr?

the light scattering calculations reveal a polaer

~CU_ ™. The

act e

variation of the activation timet,,, with velocity, U, given byt

act ?

data for the entire range of velocities for differéhreshold criteria can be fit reasonably

CU,. ",m= ,lwith a prefactorC that varies

act e

well with a power law given byt

according to the threshold intensity criterion. 3@&eesults indicate that at least for this

particular geometry, a simple scaling for the mixiime ast__, = UL may be adequate.

e

Fig. 11 shows the comparison of the detector respdime with the smoke volume

fraction at the inlet. The trends using the twdedé#nt calculation procedures are again

similar for P, =107 for a wide range of inlet volume fractions. Theteurves begin to

deviate at very low volume fractionsf(~10"° onwards). At lower P!

cr’

the light
scattering computations show a power law for thevaiton time in terms of the volume

fraction ast,, ~ Cf,”*”. However asP. is increased, the power law is only applicable at

\'%

higher volume fractions. For example Fig. 11 shdwat with P, =107, the power law



scaling begins to break down at, ~10° and for P, =107°, it breaks down at

f, ~10°. For these cases, the response time increases thsn a power law for

decreasing volume fractions. The same trends foathivation time calculated using two
different methods is expected provided the threspolwer and the threshold voltage are

compatible. The criteria for activation computedngs(19) depends on thév,

moment. The moment dependency for the light s¢atfeés not so easy to evaluate. For

6+—

2
the Guinier regime (smaljR, ), equation (17) gives aM, —%M 1, dependence for
Dy

the scattered intensity at a particular angle.tRerpower law regime (larggR;) again
an M, dependence is expected. If the smoke sampleinerdaly small particles or i
is small (i.e. small scattering angles), then ttedtered intensity! M. In this case it is

reasonable to expect similar trends for the agbwatime. An interesting observation
from Fig. 11 is that for the range of inlet velgcand volume fraction where a power law
behavior is applicable, the value of the expongaimost the same for all the curves.
The CFD analysis and the light scattering compamagillow a check for the validity of
the assumptions leading to equation (3). Equat®)ns a model for a perfectly stirred
mixing process. The volume fraction is proportiottathe mass concentration and so (3)

can be rearranged to give the following

t-t, _ _m(l_@J (21)

Tmix Voo

There are two unknowng,and 7. The characteristic mixing time,  can be

determined by computing an average volume fracﬁpnbtained from CFD calculations



(given by f(t) :ij'v f,(X,t)dV,,, ) for the entire cavity and fitting the variatiofi o

V o

cav

f, = (1)
f

Voo

with an exponential curve. The results shown in Figsi@w a very good

agreement with the basic model (3) for the entrege of inlet velocities. The data from
Fig. 12 shows that,,, scales ag,, ~203U_ "' = 203U, . Comparison with equation
(4) shows that__, =20.3m for this particular geometry. For a chosen fixetbeity, the
mixing timer . can then be obtained. Supposing there is a sanigieal volume fraction

for detector activationf, (t,, ,)thent,, can be computed as a function of inlet volume

act act

fraction using (21). We fixf, (t,, )for each case by assuming this relation holds for

act

f, =10 and usingt,, computed from the CFD simulation. The other unkmow

act

parameter,t,, is obtained by a best fit of the data fof, (obtained from direct

simulations) to equation (21). Fig. 13 shows at pib activation time with external
volume fraction calculated using (21) for free atrevelocity of 0.1 m/s and 1m/s. It is
seen that the detector activation times calculatsidg (21) are very similar to the
activation times obtained using the full CFD arghtiscattering model. Further under the
assumption that, is specified as in equation (2), valueslgfbetween 0.3m and 0.35m
give the best fit for a wide range of inlet velaest These values are of the order of the
maximum size of the computational model (Fig. 2)widver the most obvious choice of

L, =L /2 with L being the maximum size of the computational dorns&iown in Fig. 2

does not give a good fit.



Fig. 6 shows that smoke volume fraction is nofarm inside the cavity, especially at
short times when the detector activates. Even thdlg spatial and temporal distribution
of smoke inside the cavity is not homogeneous,th@ particular geometry, the two

parameter first order model given by (2) and (3)séen to work very well for the

prediction of detector activation time.

The size distribution of the smoke that entersdiétector can be quite different from the
size distribution of the smoke at the location i fire due to agglomeration during the
transit from the fire to the detector. In Fig. Ide plot the variation in activation time

with volume fraction for different geometric meaadius and geometric standard

deviation. For larger volume fractions there isdilberence in the activation time while

for smaller volume fractionsf, ~107°, some differences can be seen. We see that the
activation time is almost independent of the geoimetean radiusy, as the geometric

standard deviatiowr ,

(polydispersity) becomes higher. For the monaetisp case and
for lower values ofo, it is seen that detector activation time decreasg¢h increasing
r,- The activation time decreases with increasing/gispersity due to the increased

scattering from the larger sized particles. Howgevtlee differences are not substantial
since the results are plotted on a linear scales important to note that these results
apply only for fractal aggregates and differeneeaerosol morphology could affect the
response time. Computations also showed that detectivation time does not vary

significantly with primary particle size.

4. Conclusions



A coupled CFD and aerosol dynamics simulation oblementry and accumulation
processes in a cylindrical cavity geometry is eafrout. The geometry and the flow
represent an idealized smoke detector. It is séan for this configuration, flow
processes determine the distribution of smoke ésid cavity. Flow enters the cavity by
entrainment, it is pushed up at one side setting ugcirculating flow inside the cavity.
The same type of flow is seen for a wide rangentdtivelocities. Light scattering
calculations are carried out using the RDGPFA moftel fractal agglomerates.
Attenuation is weak for inlet volume fractions andul0® and hence the light scattered is
also weak. We found that for higher inlet volumacfions (around 1%), there is
pronounced attenuation but the detector responadg before the attenuation effects
become significant. Therefore a simple model far #itenuation and scattering that
ignores multiple scattering is applicable.

A detailed CFD study has been used to test thalityalof the simple mixing model
(equation (3)) that is widely used in the empirichhracterization of smoke detectors.
Our calculations indicate that this model is acwurto predict the average mass
concentration or volume fraction inside the caatywell as the detector response time
for mass fractal aggregates. This is especiallthasdetector response time appears to
depend very weakly on the size distribution paranset Even though the spatial
distribution of smoke inside the cavity is not hajaneous, it may still be possible to
define a single average volume fraction or smoke&entration as a threshold. However

the parameters andt, appearing in the simple model do not seem to ety related

to any geometric length scale of the problem. Tlammer of entry of the smoke and its

spatial variation within the sensing chamber mayeht be considered only for the



purposes of designing smoke detectors with fagigpanse times. The results we have
obtained are only for a very simple idealized maxfed smoke detector. It is necessary to
extend the type of analysis presented in this papemore realistic smoke detector
geometries and for different types of smoke toagekearer understanding of how smoke
entry and accumulation affects detector respomnse. fThe coupling of a general moment
method like QMOM to a computational fluid dynampackage will allow more detailed
evaluation of aerosol detector physics. Considatiegmportance of accurate prediction
of smoke detector activation time, it is also d&sie to check whether the simple model
that is widely used in experimental characterizatf smoke detectors is always

applicable.
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Table 1

Summary of the boundary conditions used in the #oat aerosol dynamics simulation.

(Boundaries are labeled in Figure 2.)

Boundary Flow Boundary Aerosol Boundary Condition
Condition
I Fixed Inlet Velocity Fixed inlet moments (lognaahdistribution).
Il Symmetry Symmetry
1] Constant pressure | Zero gradients for the moments in flow directi
(Atmospheric pressure VM, =0,m= 0123
\Y Wall (no slip) Perfectly absorbing wall
M, =0m= 0123
\% Symmetry Symmetry
Vi Wall (no slip) Perfectly absorbing wall
M, =0m= 0123
Vi Wall (no slip) Perfectly absorbing wall
M, =0m= 0123




List of figures

Fig. 1. Schematic illustrating the first order, tparameter smoke detector model.

Fig. 2. Geometry and computational grid. Flow di@tis shown and the boundaries are

labeled and referred to in Table 1.

Fig. 3. Schematic of the light scattering arrangame

Fig. 4. (a) X- and Z- velocity vector componentstte plane of symmetry at Y=0.0,

(vector lengths are equal and do not show the radg)i. (b) Z- velocity component at

the plane of symmetry at Y=0.0.

Fig. 5. Plots of X-Y velocity vectors at the fouiffdrent horizontal planes at Z=0.0m,

Z=0.025m, Z=0.05m and Z=0.075m. Z-velocity contcanes also shown.

Fig. 6. Variation of volume fraction with distane¢ the mid height of the cavity for

various times. Volume fraction of the free streari(®.

Fig. 7. Variation of normalized intensity with disice at the mid height of the cavity for

various times. Volume fraction of the free streamG®.



Fig. 8. Variation of scattered power at the circaerafhce of the cavity with angle at mid-

height for different times. Volume fraction of tiree stream is I8

Fig. 9. Comparison of the angular scattering comgbuising 2-point, 3-point and 4-point
guadrature approximations. Differences are too Isimal the three profiles to be

distinguishable.

Fig. 10. Log-log plot showing the variation of ttietector activation time with velocity at
the inlet. Comparison of the results obtained uding light scattering calculation
(equation 18) and the detector response functiguaf@n 19) for different choices of the

threshold power.

Fig. 11. Log-log plot showing the variation of thetector activation time with smoke
volume fraction at the inlet. Comparison of theuttssobtained using the light scattering
calculation (equation 18) and the detector respdmsetion (equation 19) for different

choices of the threshold power.

Fig. 12. Plot of the averaged and normalized voldraetion with time for different

velocities to evaluate the mixing time scale parane

Fig. 13. Log-log plot showing the variation of tdetector activation time (calculated

using equation 18) with smoke volume fraction atitilet, free stream velocity is 0.1m/s



and 1m/s. Also shown are the best fits of the ttatguation 21 obtained from the simple

model (equation (3)).

Fig. 14. Plot of the activation time with logarithofi the volume fraction for different
values of the geometric mean radius and the geamstndard deviation. The free

stream velocity is 0.1 m/s.
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